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Overview: GAM Procedure

The GAM procedure fits generalized additive models as those models are defined by Hastie and Tibshirani
(1990). This procedure provides an array of powerful tools for data analysis, based on nonparametric
regression and smoothing techniques.

Nonparametric regression relaxes the usual assumption of linearity and enables you to uncover structure
in the relationship between the independent variables and the dependent variable that might otherwise be
missed. SAS provides many procedures for nonparametric regression, such as the LOESS procedure for
local regression and the TPSPLINE procedure for thin-plate smoothing splines. The generalized additive
models fit by the GAM procedure combine the following:

� an additivity assumption (Stone 1985) that enables relatively many nonparametric relationships to be
explored simultaneously

� the distributional flexibility of generalized linear models (Nelder and Wedderburn 1972)

Thus, you can use the GAM procedure when you have multiple independent variables whose effect you
want to model nonparametrically, or when the dependent variable is not normally distributed. See the
section “Nonparametric Regression” on page 2548 for more details on the form of generalized additive
models.

The GAM procedure does the following:

� provides nonparametric estimates for additive models

� supports the use of multidimensional data

� supports multiple SCORE statements

� fits both generalized semiparametric additive models and generalized additive models

� enables you to choose a particular model by specifying the model degrees of freedom or smoothing
parameter

� supports graphical displays produced through ODS Graphics

Getting Started: GAM Procedure

The following example illustrates the use of the GAM procedure to explore in a nonparametric way how
two factors affect a response. The data come from a study (Sockett et al. 1987) of the factors affecting
patterns of insulin-dependent diabetes mellitus in children. The objective is to investigate the dependence of
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the level of serum C-peptide on various other factors in order to understand the patterns of residual insulin
secretion. The response measurement is the logarithm of C-peptide concentration (pmol/ml) at diagnosis,
and the predictor measurements are age and base deficit (a measure of acidity).

title 'Patterns of Diabetes';
data diabetes;

input Age BaseDeficit CPeptide @@;
logCP = log(CPeptide);

datalines;
5.2 -8.1 4.8 8.8 -16.1 4.1 10.5 -0.9 5.2
10.6 -7.8 5.5 10.4 -29.0 5.0 1.8 -19.2 3.4
12.7 -18.9 3.4 15.6 -10.6 4.9 5.8 -2.8 5.6
1.9 -25.0 3.7 2.2 -3.1 3.9 4.8 -7.8 4.5
7.9 -13.9 4.8 5.2 -4.5 4.9 0.9 -11.6 3.0
11.8 -2.1 4.6 7.9 -2.0 4.8 11.5 -9.0 5.5
10.6 -11.2 4.5 8.5 -0.2 5.3 11.1 -6.1 4.7
12.8 -1.0 6.6 11.3 -3.6 5.1 1.0 -8.2 3.9
14.5 -0.5 5.7 11.9 -2.0 5.1 8.1 -1.6 5.2
13.8 -11.9 3.7 15.5 -0.7 4.9 9.8 -1.2 4.8
11.0 -14.3 4.4 12.4 -0.8 5.2 11.1 -16.8 5.1
5.1 -5.1 4.6 4.8 -9.5 3.9 4.2 -17.0 5.1
6.9 -3.3 5.1 13.2 -0.7 6.0 9.9 -3.3 4.9
12.5 -13.6 4.1 13.2 -1.9 4.6 8.9 -10.0 4.9
10.8 -13.5 5.1
;

The following statements perform the desired analysis. The PROC GAM statement invokes the procedure
and specifies the diabetes data set as input. The MODEL statement specifies logCP as the response variable
and requests that univariate smoothing splines with the default of 4 degrees of freedom be used to model the
effect of Age and BaseDeficit.

ods graphics on;
proc gam data=diabetes;

model logCP = spline(Age) spline(BaseDeficit);
run;

The results are shown in Figure 38.1 and Figure 38.2.

Figure 38.1 Summary Statistics

Patterns of Diabetes

The GAM Procedure
Dependent Variable: logCP

Smoothing Model Component(s): spline(Age) spline(BaseDeficit)

Summary of Input Data Set

Number of Observations 43
Number of Missing Observations 0
Distribution Gaussian
Link Function Identity
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Figure 38.1 continued

Iteration Summary and Fit Statistics

Final Number of Backfitting Iterations 5
Final Backfitting Criterion 5.542745E-10
The Deviance of the Final Estimate 0.4180791724

Figure 38.1 shows two tables. The first table summarizes the input data set and the distributional family
used for the model; the second table summarizes the convergence criterion for backfitting.

Figure 38.2 Analysis of Model

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 1.48141 0.05120 28.93 <.0001
Linear(Age) 0.01437 0.00437 3.28 0.0024
Linear(BaseDeficit) 0.00807 0.00247 3.27 0.0025

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs

Spline(Age) 0.995582 3.000000 0.011675 37
Spline(BaseDeficit) 0.995299 3.000000 0.012437 39

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(Age) 3.00000 0.150761 12.2605 0.0065
Spline(BaseDeficit) 3.00000 0.081273 6.6095 0.0854

Figure 38.2 displays summary statistics for the model. It consists of three tables. The first is the “Param-
eter Estimates” table for the parametric part of the model. It indicates that the linear trends for both Age
and BaseDeficit are highly significant. The second table is the summary of smoothing components of the
nonparametric part of the model. By default, each smoothing component has approximately 4 degrees of
freedom (DF). For univariate spline components, one DF is taken up by the (parametric) linear part of the
model, so the remaining approximate DF is 3, and the main point of this table is to present the smoothing
parameter values that yield this DF for each component. Finally, the third table is the “Analysis of Deviance”
table for the nonparametric component of the model.
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Graphical displays are produced when ODS Graphics is enabled. By default, the graphics features of PROC
GAM produce plots of the partial predictions of each variable. In these plots, the partial prediction for
a predictor such as Age is its nonparametric contribution to the model, s.Age/. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
graphics available in the GAM procedure, see the section “ODS Graphics” on page 2563.

Plots for both predictors (Figure 38.3) show a strong quadratic pattern, with a possible indication of higher-
order behavior. Further investigation is required to determine whether these patterns are real or not.

Figure 38.3 Partial Predictions for Each Predictor

Syntax: GAM Procedure

The following statements are available in PROC GAM:

PROC GAM < options > ;
CLASS variable <(options)> <variable <(options)> � � � > </options> ;
MODEL dependent < options > = < PARAM(effects) > < smoothing effects > < /options > ;
SCORE DATA = SAS-data-set OUT = SAS-data-set ;
OUTPUT OUT = SAS-data-set < keyword < =prefix > � � � keyword < =prefix >> ;
BY variables ;
FREQ variable ;
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The syntax of the GAM procedure is similar to that of other regression procedures in the SAS System. The
PROC GAM and MODEL statements are required. The CLASS statement, if specified, must precede the
MODEL statement. The CLASS and SCORE statements can appear multiple times; all other statements
must appear only once.

The syntax for PROC GAM is described in the following sections in alphabetical order after the description
of the PROC GAM statement.

PROC GAM Statement

PROC GAM < options > ;

The PROC GAM statement invokes the procedure. You can specify the following options.

DATA=SAS-data-set
specifies the SAS data set to be read by PROC GAM. The default value is the most recently created
data set.

DESCENDING

DESC
reverses the sorting order of all classification variables (specified in the CLASS statement). If both
the DESCENDING and ORDER= options are specified, PROC GAM orders the categories according
to the ORDER= option and then reverses that order. This option has the same effect as the classi-
fication variable option DESCENDING in the CLASS statement and the response variable option
DESCENDING in the MODEL statement.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of all classification variables (specified in the CLASS state-
ment). This ordering determines which parameters in the model correspond to each level in the data.
Note that the ORDER= option in the CLASS statement and the ORDER= response variable option
in the MODEL statement override the ORDER= option in the PROC GAM statement.

PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < � � � plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot-request, you can
omit the parentheses around the plot-request. Here are some examples:

plots=all

plots=components(commonaxes)

plots(unpack)=components(commonaxes clm)
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ODS Graphics must be enabled before requesting plots. For example:

ods graphics on;

proc gam data=test plots(unpack)=components(commonaxes clm);
model z=spline(x) spline(y);

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

With ODS Graphics enabled, the output graph by default is a panel of multiple plots of partial pre-
diction curves of smoothing components, if PLOTS is not specified or no options are specified for
PLOTS.

Global Plot Options

The global-plot-options apply to all plots generated by the GAM procedure, unless altered by a
specific-plot-option.

UNPACK
specifies that multiple smoothing component plots that are collected into graphics panels be
displayed separately. Use this option if you want to access individual smoothing component
plots within the panel.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots be produced.

NONE
suppresses all plots.

COMPONENTS | COMPONENT < (components-options) >
requests the SmoothingComponentPlot that displays a panel of smoothing component plots.
The following components-options are available:

ADDITIVE requests that the additive component plots are produced for spline and loess
effects. The additive component plots combine the linear trend and the non-
parametric prediction for each spline or loess effect.
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CLM includes confidence limits in the smoothing component plots. By default,
95% confidence limits are produced, but you can change the significance
level by specifying the ALPHA= option in the MODEL statement. Note
that producing these limits can be computationally intensive for large data
sets.

COMMONAXES specifies that smoothing component plots use a common vertical axis. This
enables you to visually judge relative effect size.

UNPACK specifies that the smoothing components be displayed individually.

BY Statement

BY variables ;

You can specify a BY statement with PROC GAM to obtain separate analyses on observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the GAM procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are ar-
ranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures
Guide.

CLASS Statement

CLASS variable <(options)> <variable <(options)> � � � > </options> ;

The CLASS statement names the classification variables to be used in the analysis. The CLASS statement
must precede the MODEL statement. You can specify various options for each variable by enclosing them in
parentheses after the variable name. You can also specify global options for the CLASS statement by placing
them after a slash (/). Global options are applied to all the variables specified in the CLASS statement. If
you specify more than one CLASS statement, the global options specified on any one CLASS statement
apply to all CLASS statements. However, individual CLASS variable options override the global options.
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DESCENDING

DESC
reverses the sorting order of the classification variable. If both the DESCENDING and ORDER= op-
tions are specified, PROC GAM orders the categories according to the ORDER= option and then
reverses that order.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the categories of categorical variables. This ordering determines
which parameters in the model correspond to each level in the data. When the default OR-
DER=FORMATTED is in effect for numeric variables for which you have supplied no explicit format,
the levels are ordered by their internal values. The following table shows how PROC GAM interprets
values of the ORDER= option.

Value of ORDER= Levels Sorted By
DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
with no explicit format, which are sorted by their unfor-
matted (internal) value

FREQ Descending frequency count; levels with the most obser-
vations come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is machine-
dependent. For more information on sorting order, see the chapter on the SORT procedure in the SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. If you
specify TRUNCATE without the length n, the first 16 characters of the formatted values are used.
When formatted values are longer than 16 characters, you can use this option to revert to the levels
as determined in releases previous to SAS 9. The default is to use the full formatted length of the
CLASS variable. The TRUNCATE option is available only as a global option.

FREQ Statement

FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data
set. Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used
n times.

The analysis produced by using a FREQ statement reflects the expanded number of observations. You
can produce the same analysis (without the FREQ statement) by first creating a new data set that contains
the expanded number of observations. For example, if the value of the FREQ variable is 5 for the first
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observation, the first five observations in the new data set are identical. Each observation in the old data set
is replicated ni times in the new data set, where ni is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If
the value is not an integer, only the integer portion is used.

The FREQ statement is not available when a loess smoother is included in the model.

MODEL Statement

MODEL dependent <(options)> = <PARAM(effects)> <smoothing effects> </options> ;

MODEL event/trials = <PARAM(effects)> <smoothing effects> </options> ;

The MODEL statement specifies the dependent variable and the independent effects you want to use in the
model. Specify the independent parametric variables inside the parentheses of PARAM( ). The parametric
variables can be either classification variables or continuous variables. Classification variables must be
declared in a CLASS statement. Interactions between variables can also be included as parametric effects.
Multiple PARAM() statements are allowed in the MODEL statement. The syntax for the specification of
effects is the same as for the GLM procedure (Chapter 41, “The GLM Procedure”).

Only continuous variables can be specified in smoothing effects. Any number of smoothing effects can be
specified, as follows:

Smoothing Effect Meaning
SPLINE(variable <, DF=number>) Fit a smoothing spline with the vari-

able and with DF=number
LOESS(variable <, DF=number>) Fit a local regression with the vari-

able and with DF=number
SPLINE2(variable1, variable2 <,DF=number>) Fit a bivariate thin-plate smoothing

spline with variable1 and variable2
and with DF=number

The number specified in the DF= option must be positive. If you specify neither the DF= option nor the
METHOD=GCV in the MODEL statement, then the default used is DF=4. Note that for univariate spline
and loess components, a degree of freedom is used by default to account for the linear portion of the model,
so the value displayed in the “Fit Summary” and “Analysis of Deviance” tables will be one less than the
value you specify.

Both parametric effects and smoothing effects are optional. If none are specified, a model that contains only
an intercept is fitted.

If only parametric variables are present, PROC GAM fits a parametric linear model by using the terms inside
the parentheses of PARAM( ). If only smoothing effects are present, PROC GAM fits a nonparametric
additive model. If both types of effect are present, PROC GAM fits a semiparametric model by using the
parametric effects as the linear part of the model.
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Table 38.1 shows how to specify various models for a dependent variable y and independent variables x, x1,
and x2. si . /; i D 1; 2 are nonparametric smooth functions.

Table 38.1 Syntax for Common GAM Models

Type of Model Syntax for model Mathematical Form
Parametric y=param(x1 x2) E.Y jX D x/ D ˇ0 C ˇ1x1 C ˇ2x2
Nonparametric y=spline(x) E.Y jX D x/ D ˇ0 C ˇ1x C s.x/

Nonparametric y=loess(x) E.Y jX D x/ D ˇ0 C ˇ1x C s.x/

Semiparametric y=spline(x1) param(x2) E.Y jX D x/ D ˇ0 C ˇ1x1 C ˇ2x2 C s.x1/

Additive y=spline(x1) spline(x2) E.Y jX D x/ D ˇ0 C ˇ1x1 C ˇ2x2 C s1.x1/C s2.x2/

Thin-plate spline y=spline2(x1,x2) E.Y jX D x/ D ˇ0 C s.x1; x2/

Response Variable Options

Response variable options determine how the GAM procedure models probabilities for binary data.

You can specify the following options by enclosing them in parentheses after the response variable. See the
section “CLASS Statement” on page 2540 for more detail.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC GAM orders the response categories according to the ORDER= option and then
reverses that order.

EVENT=‘category ’ | keyword
specifies the event category for the binary response model. PROC GAM models the probability of the
event category. You can specify the value (formatted, if a format is applied) of the event category in
quotes, or you can specify one of the following keywords. The default is EVENT=FIRST.

FIRST
designates the first ordered category as the event.

LAST
designates the last ordered category as the event.

One of the most common sets of response levels is f0; 1g, with 1 representing the event for which
the probability is to be modeled. Consider the example where Y takes the value 1 and 0 for event
and nonevent, respectively, and X is the explanatory variable. By default, PROC GAM models the
probability that YD 0. To model the probability that YD 1 , specify the following MODEL statement:

model Y (event='1') = X;
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. By default, ORDER=FORMATTED.
When ORDER=FORMATTED, the values of numeric variables for which you have supplied no ex-
plicit format (that is, for which there is no corresponding FORMAT statement in the current PROC
GAM run or in the DATA step that created the data set), are ordered by their internal (numeric) value.
If you specify the ORDER= option in the MODEL statement and the ORDER= option in the CLASS
statement, the former takes precedence. The following table shows the interpretation of the ORDER=
values:

Value of ORDER= Levels Sorted By
DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
with no explicit format, which are sorted by their unfor-
matted (internal) value

FREQ Descending frequency count; levels with the most obser-
vations come first in the order

INTERNAL Unformatted value

For the FORMATTED and INTERNAL values, the sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS Pro-
cedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

Model Options

ALPHA=number
specifies the significance level ˛ of the confidence limits on the final nonparametric component esti-
mates when you request confidence limits to be included in the output data set. Specify number as a
value between 0 and 1. The default value is 0.05. See the section “OUTPUT Statement” on page 2546
for more information about the OUTPUT statement.

ANODEV=type
specifies the type of method to be used to produce the “Analysis of Deviance” table for smoothing
effects. The available choices are as follows:

REFIT specifies that PROC GAM perform �2 tests by fitting nested GAM models. This
is the default choice if you do not specify the ANODEV= option. This choice
requires fitting separate GAM models where one smoothing term is omitted from
each model.

NOREFIT specifies that PROC GAM perform approximate tests of smoothing effects. To test
each smoothing effect, a weighted least squares model is fitted to the remaining
parametric part of the model while keeping other nonlinear smoothers fixed. For
details, see Hastie (1991). This choice requires only a single GAM fitting to be
performed, which reduces the time of the procedure.

NONE requests that the procedure not produce the “Analysis of Deviance” table for
smoothing effects.
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DIST=distribution-id

LINK=distribution-id
specifies the distribution family used in the model. The choices for distribution-id are displayed in
Table 38.2. See “Distribution Family and Canonical Link” on page 2558 for more information.

Table 38.2 Distribution Families for GAM Models

DIST= Distribution Link Function Response Data Type
GAUSSIAN | GAUS | NORM Normal (Gaussian) Identity Continuous variables
BINOMIAL | LOGI | BIN Binomial Logit Binary variables
POISSON | POIS | LOGL Poisson Log Nonnegative discrete variables
GAMMA | GAMM Gamma Negative reciprocal Positive continuous variables
IGAUSSIAN | IGAU | INVG Inverse Gaussian Squared reciprocal Positive continuous variables

Canonical link functions are used with those distributions. Although alternative links are possible the-
oretically, the final fit of nonparametric regression models is relatively insensitive to the precise choice
of link functions. Therefore, only the canonical link for each distribution family is implemented in
PROC GAM. The loess smoother is not available for DIST=BINOMIAL when the number of trials is
greater than 1.

EPSILON=number
specifies the convergence criterion for the backfitting algorithm. The default value is 1E�8.

EPSSCORE=number
specifies the convergence criterion for the local scoring algorithm. The default value is 1E�8.

ITPRINT
produces an iteration summary table for the smoothing effects when doing backfitting and local scor-
ing.

MAXITER=number
specifies the maximum number of iterations for the backfitting algorithm. The default value is 50.

MAXITSCORE=number
specifies the maximum number of iterations for the local scoring algorithm. The default value is 100.

METHOD=GCV
specifies that the value of the smoothing parameter should be selected by generalized cross validation.
If you specify both METHOD=GCV and the DF= option for the smoothing effects, the user-specified
DF is used, and the METHOD=GCV option is ignored. See the section “Selection of Smoothing
Parameters” on page 2555 for more details on the GCV method.

OFFSET=variable
specifies an offset for the linear predictor. An offset plays the role of a predictor whose coefficient
is known to be 1. For example, you can use an offset in a Poisson model when counts have been
obtained in time intervals of different lengths. With a log link function, you can model the counts
as Poisson variables with the logarithm of the time interval as the offset variable. The offset variable
cannot appear in the CLASS statement or elsewhere in the MODEL statement.
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OUTPUT Statement

OUTPUT OUT = SAS-data-set < keyword < =prefix > � � � keyword < =prefix >> ;

The OUTPUT statement creates a new SAS data set that contains diagnostic measures calculated after fitting
the model.

All the variables in the original data set are included in the new data set, along with the variables created
by specifying keywords in the OUTPUT statement. These new variables contain the values of a variety of
statistics and diagnostic measures that are calculated for each observation in the data set. If no keywords
are present, the OUT= data set contains only the original data set and predicted values. The predicted
values include the linear predictor for the response and the prediction for each smoothing term in the model.
When you specify a distribution family with the DIST= or LINK= option in the MODEL statement,
predicted response values after applying the inverse link function are also included. Predicted values are
computed for observations with missing response values whose values of the specified explanatory variables
are nonmissing, and whose values of the specified smoothing variables are within the smoothing ranges of
the fitted model.

Details on the specifications in the OUTPUT statement are as follows.

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. This specification is re-
quired.

keyword < =prefix >
specifies the statistics to include in the output data set. The keywords and the statistics they represent
are as follows:

PREDICTED predicted values for each smoothing component and overall predicted values on
the response scale at design points. The prediction for each spline or loess term is
only for the nonlinear component of each smoother.

LINP linear prediction values on the link scale at design points

UCLM upper confidence limits for each predicted smoothing component

LCLM lower confidence limits for each predicted smoothing component

ADIAG diagonal element of the hat matrix associated with the observation for each
smoothing spline component

RESIDUAL residual standardized by its weights

STD standard deviation of the prediction for each smoothing component

ALL all statistics in this list
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The names of the new variables that contain the statistics are formed by concatenating the user sup-
plied prefix and the corresponding variable names. If you do not specify a prefix, the names are formed
by using default prefixes listed in the following table:

Keyword Prefix
PRED P_
LINP LINP_
UCLM UCLM_
LCLM LCLM_
ADIAG ADIAG_
RESID R_
STD STD_ (for spline)

STDP_ (for loess)

For example, suppose that you have a dependent variable y and an independent smoothing variable
x, and you specify the keywords PRED=MyP_ and ADIAG=MyA_. In this case, in addition to the
variables in the input data set, the output SAS data set will contain the variables MyP_y, MyP_x, and
MyA_x. If the keywords PRED and ADIAG are specified without prefixes, the output SAS data set
will contain the variables P_y, P_x, and ADIAG_x.

SCORE Statement

SCORE DATA = SAS-data-set OUT = SAS-data-set ;

The SCORE statement calculates predicted values for a new data set. All the variables in the DATA= data
set are included in the OUT= data set, along with the predicted values. The predicted values consist of
predicted responses after the inverse link function transformation, predicted values of all smoothing terms,
and predicted values on the link scale. Predicted values are computed for observations with missing response
values whose values of the specified explanatory variables are nonmissing, and whose values of the specified
smoothing variables are within the smoothing ranges of the fitted model. The predicted variables use the
same naming convention as the OUTPUT statement. If you have multiple data sets to predict, you can
specify multiple SCORE statements.

The following options must be specified in the SCORE statement:

DATA=SAS-data-set
specifies an input SAS data set containing all the variables included in independent effects in the
MODEL statement. The predicted response is computed for each observation in the SCORE DATA=
data set.

OUT=SAS-data-set
specifies the name of the SAS data set to contain the predictions.
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Details: GAM Procedure

Missing Values

When fitting a model, PROC GAM excludes any observation with missing values for an explanatory vari-
able, offset variable, or dependent variable. However, if only the response is missing, predicted values can
be computed and output to a data set by using the OUTPUT or SCORE statement.

Nonparametric Regression

Nonparametric regression relaxes the usual assumption of linearity and enables you to explore the data more
flexibly, uncovering structure in the data that might otherwise be missed.

However, many forms of nonparametric regression do not perform well when the number of independent
variables in the model is large. The sparseness of data in this setting causes the variances of the estimates to
be unacceptably large unless the sample size is extremely large. The problem of rapidly increasing variance
for increasing dimensionality is sometimes referred to as the “curse of dimensionality.” Interpretability is
another problem with nonparametric regression based on kernel and smoothing spline estimates. These
estimates contain information about the relationship between the dependent and independent variables, and
the information is often difficult to comprehend.

To overcome these difficulties, additive models were proposed by some researchers, for example, Stone
(1985). These models estimate an additive approximation to the multivariate regression function. The
benefits of an additive approximation are at least twofold. First, since each of the individual additive terms is
estimated by using a univariate smoother, the curse of dimensionality is avoided, at the cost of not being able
to approximate universally. Second, estimates of the individual terms explain how the dependent variable
changes with the corresponding independent variables.

To extend the additive model to a wide range of distribution families, Hastie and Tibshirani (1990) proposed
generalized additive models. These models enable the mean of the dependent variable to depend on an
additive predictor through a nonlinear link function. The models permit the response probability distribution
to be any member of the exponential family of distributions. Many widely used statistical models belong to
this general class; they include additive models for Gaussian data, nonparametric logistic models for binary
data, and nonparametric log-linear models for Poisson data.
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Additive Models and Generalized Additive Models

This section describes the methodology and the fitting procedure behind generalized additive models.

Let Y be a response random variable andX1; X2; � � � ; Xp be a set of predictor variables. A regression proce-
dure can be viewed as a method for estimating the expected value of Y given the values of X1; X2; � � � ; Xp.
The standard linear regression model assumes a linear form for the dependency of Y on X :

Y D ˇ0 C ˇ1X1 C ˇ2X2 C � � � C ˇpXp C �

where E.�/ D 0 and Var.�/ D �2. Given a sample, estimates of ˇ0; ˇ1; � � � ; ˇp are usually obtained by the
least squares method.

The additive model generalizes the linear model by modeling the dependency as

Y D s0 C s1.X1/C s2.X2/C � � � C sp.Xp/C �

where sj .X/; j D 1; 2; : : : ; p; are smooth functions, E.�/ D 0 and Var.�/ D �2.

In order to be estimable, the smooth functions si have to satisfy standardized conditions such as
E
�
sj .Xj /

�
D 0. These functions are not given a parametric form but instead are estimated in a non-

parametric fashion.

While traditional linear models and additive models can be used in most statistical data analysis, there are
types of problems for which they are not appropriate. For example, the normal distribution might not be
adequate for modeling discrete responses such as counts or bounded responses such as proportions.

Generalized additive models address these difficulties, extending additive models to many other distributions
besides just the normal. Thus, generalized additive models can be applied to a much wider range of data
analysis problems.

Like generalized linear models, generalized additive models consist of a random component, an additive
component, and a link function relating the two components. The response Y , the random component, is
assumed to have exponential family density

fY .yI �; �/ D exp
�
y� � b.�/

a.�/
C c.y; �/

�

where � is called the natural parameter and � is the scale parameter. The mean of the response variable �
is related to the set of covariates X1; X2; � � � ; Xp by a link function g. The quantity

� D s0 C

pX
jD1

sj .Xj /

defines the additive component, where s1. /; � � � ; sp. / are smooth functions, and the relationship between
� and � is defined by g.�/ D �. The most commonly used link function is the canonical link, for which
� D � .



2550 F Chapter 38: The GAM Procedure

Generalized additive models and generalized linear models can be applied in similar situations, but they
serve different analytic purposes. Generalized linear models emphasize estimation and inference for the pa-
rameters of the model, while generalized additive models focus on exploring data nonparametrically. Gen-
eralized additive models are more suitable for exploring the data and visualizing the relationship between
the dependent variable and the independent variables.

Forms of Additive Models

Suppose that y is a continuous variable and x1 and x2 are two explanatory variables of interest. To fit an
additive model, you can use a MODEL statement similar to that used in many regression procedures in the
SAS System:

model y = spline(x1) spline(x2);

This model statement requires the procedure to fit the following model:

�.x1; x2/ D ˇ0 C ˇ1x1 C ˇ2x2 C s1.x1/C s2.x2/

where the si . / terms denote nonparametric spline functions of the respective explanatory variables.

The GAM procedure can fit semiparametric models. The following MODEL statement assumes a linear
relation with x1 and an unknown functional relation with x2:

model y = param(x1) spline(x2);

If you want to fit a model containing a functional two-way interaction between x1 and x2, you can use the
following MODEL statement:

model y = spline2(x1,x2);

In this case, the GAM procedure fits a model equivalent to that of PROC TPSPLINE.

Estimates from PROC GAM

PROC GAM provides the capability to fit both nonparametric and semiparametric models. So that you
can better understand the underlying trend of any given factor, PROC GAM separates the linear trend from
any general nonparametric trend during the fitting as well as in the final report. This makes it easy to
determine whether the significance of a smoothing variable is associated with a simple linear trend or a
more complicated pattern.

For example, suppose you want to fit a semiparametric model as

y D ˛0 C ˛1z C f1.x1/C f2.x2/
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The GAM estimate for this model is

y D b̨0 C b̨1z C č1x1 C č2x2 C bs1.x1/C bs2.x2/
where bs1 and bs2 are linear-adjusted nonparametric estimates of the f1 and f2 effects. The p-values forb̨0; b̨1; č1; and č2 are reported in the parameter estimates table. č1 and č2 are the estimates labeled
Linear(x1) and Linear(x2) in the table. The p-values for bs1 and bs2 are reported in the analysis of deviance
table.

Only bs1, bs2, and Oy are output to the output data set, with the corresponding variable names P_x1, P_x2, and
P_y. For Gaussian data, the complete marginal prediction for variable x1 is:

č
1x1 C P_x1

If the additive component plots are requested by the ADDITIVE suboption, the additive component for
variable x2 is computed as:

č
2.x2 � Nx2/C P_x2

where Nx2 is the mean for variable x2.

Backfitting and Local Scoring Algorithms

Much of the development and notation in this section follows Hastie and Tibshirani (1986).

Additive Models

Consider the estimation of the smoothing terms s0; s1. /; � � � ; sp. / in the additive model

�.X/ D s0 C

pX
jD1

sj .Xj /

where E
�
sj .Xj /

�
D 0 for every j . Since the algorithm for additive models is the basis for fitting general-

ized additive models, the algorithm for additive models is discussed first.

Many ways are available to approach the formulation and estimation of additive models. The backfitting
algorithm is a general algorithm that can fit an additive model with any regression-type fitting mechanisms.

Define the kth set of partial residuals as

Rk D Y � s0 �
X
j¤k

sj .Xj /

thenE.RkjXk/ D sk.Xk/. This observation provides a way to estimate each smoothing function sk. / given
estimates fOsj . /; j ¤ kg for all the others. The resulting iterative procedure is known as the backfitting
algorithm (Friedman and Stuetzle 1981). The following formulation is taken from Hastie and Tibshirani
(1986).
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The Backfitting Algorithm

The unweighted form of the backfitting algorithm is as follows:

1. Initialization:
s0 D E.Y /; s

.1/
1 D s

.1/
2 D � � � D s

.1/
p D 0;m D 0

2. Iterate:
m D mC 1;
for j D 1 to p do:

Rj D Y � s0 �
Pj�1

kD1
s
.m/

k
.Xk/ �

Pp

kDjC1
s
.m�1/

k
.Xk/;

s
.m/
j D E.Rj jXj /;

3. Until:
RSS D 1

n




Y � s0 �Pp
jD1 s

.m/
j .Xj /




2 fails to decrease, or satisfies the convergence criterion.

In the preceding notation, s.m/j . / denotes the estimate of sj . / at themth iteration. It can be shown that with
many smoothers (including linear regression, univariate and bivariate splines, and combinations of these),
RSS never increases at any step. This implies that the algorithm always converges (Hastie and Tibshirani,
1986). Note, however, that for distributions other than Gaussian, numerical instabilities with weights can
cause convergence problems. Even when the algorithm converges, the individual functions need not be
unique, since dependence among the covariates can lead to more than one representation for the same fitted
surface.

A weighted backfitting algorithm has the same form as for the unweighted case, except that the smoothers
are weighted. In PROC GAM, weights are used with non-Gaussian data in the local scoring procedure
described later in this section.

The GAM procedure uses the following condition as the convergence criterion for the backfitting algorithm:Pn
iD1

Pp
jD1

�
s
.m�1/
j .Xij / � s

.m/
j .Xij /

�2
1C

Pn
iD1

Pp
jD1

�
s
.m�1/
j .Xij /

�2 � �

where � D 10�8 by default; you can change this with the EPSILON= option in the MODEL statement.

Generalized Additive Models

The algorithm described so far fits only additive models. The algorithm for generalized additive models is a
little more complicated. Generalized additive models extend generalized linear models in the same manner
that additive models extend linear regression models—that is, by replacing the form ˛C

P
j ˇj xj with the

additive form ˛C
P
j fj .xj /. See “Generalized Linear Models Theory” on page 2671 in Chapter 39, “The

GENMOD Procedure,” for more information.

PROC GAM fits generalized additive models by using a modified form of adjusted dependent variable
regression, as described for generalized linear models in McCullagh and Nelder (1989), with the additive
predictor taking the role of the linear predictor. Hastie and Tibshirani (1986) call this the local scoring
algorithm. Important components of this algorithm depend on the link function for each distribution, as
shown in the following table.
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Distribution Link Adjusted Dependent (z) Weights (w)
Normal � y 1

Binomial log
�

�
n��

�
�C .y � �/=n�.1 � �/ n�.1 � �/

Gamma �1=� �C .y � �/=�2 �2

Poisson log.�/ �C .y � �/=� �

Inverse Gaussian 1=�2 � � 2.y � �/=�3 �3=4

Once the distribution and hence these quantities are defined, the local scoring algorithm proceeds as follows.

The General Local Scoring Algorithm

1. Initialization:
si D g.E.y//; s

0
1 D s

0
2 D � � � D s

0
p D 0;m D 0

2. Iterate:
m D mC 1;
Form the predictor �, mean �, weights w, and adjusted dependent variable z based on their corre-
sponding values from the previous iteration:

�
.m�1/
i D s0 C

pX
jD1

s
.m�1/
j .xij /

�
.m�1/
i D g�1

�
�
.m�1/
i

�
wi D

�
V
.m�1/
i

��1
�

"�
@�

@�

�.m�1/
i

#2

zi D �
.m�1/
i C

�
yi � �

.m�1/
i

�
�

�
@�

@�

�.m�1/
i

where V .m�1/i is the variance of Y at �.m�1/i . Fit an additive model to z by using the backfitting
algorithm with weights w to obtain estimated functions s.m/j . /; j D 1; : : : ; p;

3. Until:
The convergence criterion is satisfied or the deviance fails to decrease. The deviance is an extension
to generalized linear models of the RSS; see “Goodness of Fit” on page 2677 in Chapter 39, “The
GENMOD Procedure,” for a definition.

The GAM procedure uses the following condition as the convergence criterion for local scoring:

Pn
iD1wi

Pp
jD1

�
s
.m�1/
j .Xij / � s

.m/
j .Xij /

�2
Pn
iD1wi

�
1C

Pp
jD1

�
s
.m�1/
j .Xij /

�2� � �s

where �s D 10�8 by default; you can change this with the EPSSCORE= option in the MODEL statement.
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The estimating procedure for generalized additive models consists of two loops. Inside each step of the
local scoring algorithm (outer loop), a weighted backfitting algorithm (inner loop) is used until convergence
or until the RSS fails to decrease. Then, based on the estimates from this weighted backfitting algorithm, a
new set of weights is calculated and the next iteration of the scoring algorithm starts. The scoring algorithm
stops when the convergence criterion is satisfied or the deviance of the estimates stops decreasing.

Smoothers

You can specify three types of smoothers in the MODEL statement:

� SPLINE(x) specifies a cubic smoothing spline term for variable x

� LOESS(x) specifies a loess term for variable x

� SPLINE2(x1, x2) specifies a thin-plate smoothing spline term for variables x1 and x2

A smoother is a tool for summarizing the trend of a response measurement Y as a function of one or more
predictor measurements X1; � � � ; Xp. It produces an estimate of the trend that is less variable than Y itself.
An important property of a smoother is its nonparametric nature. It does not assume a rigid form for the
dependence of Y onX1; � � � ; Xp. This section gives a brief overview of the smoothers that can be used with
the GAM procedure. In the MODEL statement,

Cubic Smoothing Spline

A smoothing spline is the solution to the following optimization problem: among all functions �.x/ with
two continuous derivatives, find one that minimizes the penalized least square

nX
iD1

.yi � �.xi //
2
C �

Z b

a

�
�

00

.t/
�2

dt

where � is a fixed constant and a � x1 � � � � � xn � b. The first term measures closeness to the data while
the second term penalizes curvature in the function. It can be shown that there exists an explicit, unique
minimizer, and that minimizer is a natural cubic spline with knots at the unique values of xi .

The value �=.1C �/ is the smoothing parameter. When � is large, the smoothing parameter is close to 1,
producing a smoother curve; small values of �, corresponding to smoothing parameters near 0, are apt to
produce rougher curves, more nearly interpolating the data.

Local Regression

Local regression was proposed by Cleveland, Devlin, and Grosse (1988). The idea of local regression is that
at a predictor x, the regression function �.x/ can be locally approximated by the value of a function in some
specified parametric class. Such a local approximation is obtained by fitting a regression surface to the data
points within a chosen neighborhood of the point x. A weighted least squares algorithm is used to fit linear
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functions of the predictors at the centers of neighborhoods. The radius of each neighborhood is chosen so
that the neighborhood contains a specified percentage of the data points. The smoothing parameter for the
local regression procedure, which controls the smoothness of the estimated curve, is the fraction of the data
in each local neighborhood. Data points in a given local neighborhood are weighted by a smooth decreasing
function of their distance from the center of the neighborhood. See Chapter 52, “The LOESS Procedure,”
for more details.

Thin-Plate Smoothing Spline

The thin-plate smoothing spline is a multivariate version of the cubic smoothing spline. The theoretical
foundations for the thin-plate smoothing spline are described in Duchon (1976, 1977) and Meinguet (1979).
The smoothing parameter for the thin-plate smoothing spline smoother is the parameter that controls the
smoothness penalty. When the smoothing parameter is close to 0, the fit is close to an interpolation. When
the smoothing parameter is very large, the fit is a smooth surface. Further results and applications are given
in Wahba and Wendelberger (1980). See Chapter 92, “The TPSPLINE Procedure,” for more details.

Selection of Smoothing Parameters

CV and GCV

The smoothers discussed here have a single smoothing parameter. In choosing the smoothing parameter,
cross validation can be used. Cross validation works by leaving points .xi ; yi / out one at a time, estimating
the squared residual for smooth function at xi based on the remaining n � 1 data points, and choosing the
smoother to minimize the sum of those squared residuals. This mimics the use of training and test samples
for prediction. The cross validation function is defined as

CV.�/ D
1

n

nX
iD1

�
yi � O�

.�i/

�
.xi /

�2
where O�.�i/

�
.xi / indicates the fit at xi , computed by leaving out the i th data point. The quantity nCV.�/ is

sometimes called the prediction sum of squares, or PRESS (Allen 1974).

All of the smoothers fit by the GAM procedure can be formulated as a linear combination of the sample
responses

O�.x/ D A.�/y

for some matrix A.�/, which depends on �. (The matrix A.�/ depends on x and the sample data as well,
but this dependence is suppressed in the preceding equation.) Let ai i be the i th diagonal element of A.�/.
Then the CV function can be expressed as

CV.�/ D
1

n

nX
iD1

�
.yi � O��.xi //

1 � ai i

�2
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In most cases, it is very time-consuming to compute the quantity ai i individually. To solve this computa-
tional problem, Wahba (1990) has proposed the generalized cross validation function (GCV ) that can be
used to solve a wide variety of problems involving selection of a parameter to minimize the prediction risk.

The GCV function is defined as

GCV.�/ D
n
Pn
iD1.yi � O��.xi //

2

.n � Trace.A.�///2

The GCV formula simply replaces the ai i with Trace.A.�//=n. Therefore, it can be viewed as a weighted
version of CV . In most of the cases of interest, GCV is closely related to CV but much easier to compute.
Specify the METHOD=GCV option in the MODEL statement in order to use the GCV function to choose
the smoothing parameters.

Degrees of Freedom

The estimated GAM model can be expressed as

O�.X/ D Os0 C

pX
jD1

Aj .�j /Y

Because the weights are calculated based on previous iteration during the local scoring iteration, the matrices
Aj might depend on Y for non-Gaussian data. However, for the final iteration, the Aj matrix for the spline
smoothers has the same role as the projection matrix in linear regression; therefore, nonparametric degrees
of freedom (DF) for the j th spline smoother can be defined as

DF.j th spline smoother/ D Trace.Aj .�j //

For loess smoothers Aj is not symmetric and so is not a projection matrix. In this case PROC GAM uses

DF.j th loess smoother/ D Trace.Aj .�j /0Aj .�j //

The GAM procedure gives you the option of specifying the degrees of freedom for each individual smooth-
ing component. If you choose a particular value for the degrees of freedom, then during every local scoring
iteration the procedure will search for a corresponding smoothing parameter lambda that yields the specified
value or comes as close as possible. The final estimate for the smoother during this local scoring iteration
will be based on this lambda. Note that for univariate spline and loess components, an additional degree of
freedom is used by default to account for the linear portion of the model, so the value displayed in the “Fit
Summary” and “Analysis of Deviance” tables will be one less than the value you specify.

Confidence Intervals for Smoothers

Buja, Hastie and Tibshirani (1989) showed that each smoothing function estimate from the backfitting algo-
rithm is the result of a linear mapping applied to the working response, if the backfitting algorithm converges.
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The smoothing function estimate can be expressed as

Osj .xj / D Hj z

where xj is the j th covariate and z is the adjusted dependent variable that is formed in the local scoring
algorithm. If the errors are independent and identically distributed, then

Cov.Osj / D �2HjHTj

where �2 D Var.z/.

However, direct computation of Hj is formidable within the backfitting framework. Hastie and Tibshirani
(1990) proposed using each individual smoothing matrix Aj .�j / as a subsitute for the linear operator Hj
when computing confidence intervals. In the GAM procedure, curvewise confidence intervals for smoothing
splines and pointwise confidence intervals for loess are provided in the output data set.

Curvewise Confidence Interval for Smoothing Spline Smoothers

Viewing the spline model as a Bayesian model, Wahba (1983) proposes Bayesian confidence intervals for
smoothing spline estimates as:

Os�.xi /˙ z˛=2

q
OVi i .�/

where OVi i .�/ is the i th diagonal element of the Bayesian posterior covariance matrix OV and z˛=2 is the
1 � ˛=2 quantile of the standard normal distribution. The confidence intervals are interpreted as intervals
“across the function” as opposed to pointwise intervals.

Suppose that you fit a spline estimate to experimental data that consist of a true function f and a random
error term �i . In repeated experiments, it is likely that about 100.1 � ˛/% of the confidence intervals cover
the corresponding true values, although some values are covered every time and other values are not covered
by the confidence intervals most of the time. This effect is more pronounced when the true response curve
or surface has small regions of particularly rapid change.

In the GAM procedure, let the smoothing matrix for the nonlinear part of the j th spline term be QAj after the
linear part is separated out from Aj .�/. The Bayesian posterior variance for the nonlinear part is computed
as

OVj D O� QAjW�1

where O� is the dispersion parameter estimate and W is the weight matrix from the final local scoring itera-
tion. If you specify UCLM, LCLM, ADIAG, and STD options in the OUTPUT statement, the statistics are
derived based on OVj .

When you request both the ADDITIVE and CLM suboptions in the PLOTS=COMPONENTS option, each
of the SmoothingComponentPlots displays a confidence band for the total contribution of each smoothing
spline smoother. The confidence band is derived from the total variance that is contributed by both linear
and nonlinear parts by the j th term

O�
�

xTj .X
TWX/�1xj C QAjW�1

�
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Pointwise Confidence Interval for Loess Smoothers

As shown in Cleveland, Devlin, and Grosse (1988), the smoothing matrix A.�/ for a loess smoother is
asymmetric. The confidence intervals are computed as follows:

Os�.xi /˙ z˛=2

q
OVi i .�/

where OVi i .�/ is the i th diagonal element of the covariance matrix OV and z˛=2 is the 1� ˛=2 quantile of the
standard normal distribution.

In the GAM procedure, let the smoothing matrix for the nonlinear part of the j th loess term be QAj after the
linear part is separated out from Aj .�/. The covariance matrix for the nonlinear part is then

OVj D O� QAjW�1 QATj

where O� is the dispersion parameter estimate and W is the weight matrix from the final local scoring itera-
tion. If you specify UCLM, LCLM, and STD options in the OUTPUT statement, the statistics are derived
based on OVj .

When you request both the ADDITVE and CLM suboptions in the PLOTS=COMPONENTS option, each of
the SmoothingComponentPlots displays confidence intervals for total prediction of each loess smoother. The
confidence intervals are derived from the total variance that is contributed by both the linear and nonlinear
parts by the j th term

O�
�

xTj .X
TWX/�1xj C QAjW�1 QATj

�

Distribution Family and Canonical Link

In general, there is not just one reasonable link function for a given response variable distribution. For
parametric models, the choice of link function can lead to substantively different estimates and tests. How-
ever, the inherent flexibility of nonparametric models makes them less likely to be sensitive to the precise
choice of link function. Thus, for simplicity and computational efficiency, the GAM procedure uses only
the canonical link for each distribution, as discussed in the following sections.

The Gaussian Model

For a Gaussian model, the link function is the identity function, and the generalized additive model is the
additive model. The Gaussian model is selected by default or when you specify the DIST=GAUSSIAN
option in the MODEL statement.

The Binomial Model

The binomial model is selected by specifying the DIST=BINOMIAL option in the MODEL statement. A
binomial response model assumes that the proportion of successes Y is such that Y has a Bi.n; p.x//
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distribution. Bi.n; p.x// refers to the binomial distribution with the parameters n and p.x/. Often the data
are binary, in which case n D 1. The canonical link is

g.p/ D log
p

n � p
D �

By default, PROC GAM models the probability of the response level with the lower ordered value. Ordered
values are assigned to response levels in ascending sorted order and are displayed in the “Response Profiles”
table. For binary data, if your event category has a higher Ordered Value, then by default the nonevent is
modeled. The effect of modeling the nonevent is to change the signs of the estimated coefficients for linear
terms in the model for the event. You can change which probability is modeled by specifying the EVENT=,
DESCENDING, or ORDER= response variable options in the MODEL statement.

The Poisson Model

The Poisson model is selected by specifying the DIST=POISSON option in the MODEL statement. The
link function for the Poisson model is the log function. Assuming that the mean of the Poisson distribution
is �.x/, the dependence of �.x/ and independent variables x1; � � � ; xk is

g.�/ D log.�/ D �

The Gamma Model

The gamma model is selected by specifying the DIST=GAMMA option in the MODEL statement. Let
the mean of the gamma distribution be �.x/. The canonical link function for the gamma distribution is
�1=�.x/. Note that this link function is the negative of the default link function in PROC GENMOD for a
gamma model. The relationship between �.x/ and the independent variables x1; � � � ; xk is

g.�/ D �
1

�
D �

The Inverse Gaussian Model

The inverse Gaussian model is selected by specifying the DIST=IGAUSSIAN option in the MODEL state-
ment. Let the mean of the inverse Gaussian distribution be �.x/. The canonical link function for inverse
Gaussian distribution is 1=�2. Therefore, the relationship between �.x/ and the independent variables
x1; � � � ; xk is

g.�/ D
1

�2
D �

Dispersion Parameter

Continuous distributions in the exponential family (Gaussian, gamma, and inverse Gaussian) have a disper-
sion parameter that can be estimated by the scaled deviance. For these continuous response distributions,
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PROC GAM incorporates this dispersion parameter estimate into standard errors of the parameter estimates,
prediction standard errors of spline and loess components, and chi-square statistics. The discrete distribu-
tions used in GAM (binomial and Poisson) do not have a dispersion parameter. For more details on the
distributions, dispersion parameter, and deviance, see “Generalized Linear Models Theory” on page 2671
in Chapter 39, “The GENMOD Procedure.”

Computational Resources

Since PROC GAM implements a doubly iterative method (inner backfitting iterations within each local
scoring iteration), data are accessed multiple times in performing a fit. To expedite the data access, PROC
GAM keeps the data used in the analysis in memory.

Let

n D number of observations used in the analysis

pr D number of parametric variables

ps D number of univariate spline smoothers

pl D number of loess smoothers

pb D number of bivariate thin-plate spline smoothers

p D pr C ps C pl C pb

pn D ps C pl C pb

m D maximum number of iterations for the backfitting algorithm

In addition to the space to store the data (8np bytes), the minimum working space (in bytes) needed for
fitting a model using PROC GAM is

.16C8pr/.nC2pr/C.160C48pC16psC8pbC8pl/nC8pC32pbC32psC8mC8nC.4nC4/psC4:

For fitting bivariate thin-plate smoothing spline variables, an extra 80C120nC8n2C8pb bytes of memory
is needed. For fitting loess variables, an extra 48nC 16pl bytes of memory is needed. If model inference
or confidence limits are requested, additional memory is required.

It is difficult to provide accurate estimates of the time required to fit a GAM model. Both the backfitting
algorithm and the local scoring algorithm are iterative techniques whose convergence rates depend on the
particular data being analyzed. Furthermore, the time required depends on the types of smoothers that you
specify, as well as on the inferential information you request.

You can estimate the time required for problems with a larger number of observations by observing the time
required for smaller problems and then using the following growth rules (obtained using by simulations)
that show that the time required grows proportionally with the following:

� n3 when at least one bivariate thin-plate spline is used

� n3=2 when only loess smoothers are used

� n when only univariate smoothing splines are used
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For additive models (models with Gaussian response distribution) with a fixed number of observations, the
time required is roughly proportional to p3=2n . For generalized additive models (models with non-Gaussian
distributions), the computation time grows more rapidly as pn increases. This is harder to quantify as it
depends on the distribution family and the number of iterations required for the local scoring algorithm to
converge.

Figure 38.4 Feasible Problem Sizes for Different Smoothers

Figure 38.4 shows a rough estimation of feasible sizes for the smoothers that you can use, as a function of
the number of observations and number of smoothing components. This figure depicts the regions where
you can expect a single fit of an additive model to finish within a few minutes on a typical Pentium 4 system.

Note that the times reflected in Figure 38.4 are based on fitting additive models (no local scoring iterations)
when no analysis of deviance or confidence limits are computed. The time required for fitting generalized
additive models grows proportionally with the number of the local scoring iterations. Furthermore, analysis
of deviance (if you do not request the fast approximations with the ANODEV option) requires fitting mul-
tiple GAM models as each smoothing component is omitted sequentially, and so the time estimates need
to be multiplied by the number of smoothing components when analysis of deviance is performed. Finally
computation of confidence limits for each individual smoother increases the time required, especially when
loess smoothers are utilized.
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For univariate spline smoothers, subject to the aforementioned caveats, problems that correspond to all
shaded regions in Figure 38.4 can be completed within a few minutes. For univariate loess smoothers,
the two darkest regions are feasible. For bivariate spline smoothers, problems that correspond to only the
darkest shading can be completed in the order of a few minutes. The problems that correspond to the upper
right unshaded region might be possible, but they require long computation times.

ODS Table Names

PROC GAM assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery
System.”

Table 38.3 ODS Tables Produced by PROC GAM

ODS Table Name Description Statement Option
ANODEV Analysis of deviance table for smoothing

variables
PROC Default

ClassSummary Summary of classification variables PROC Default
ConvergenceStatus Convergence status of the local scoring

algorithm
PROC Default

InputSummary Input data summary PROC Default
IterHistory Iteration history table MODEL ITPRINT
IterSummary Iteration summary PROC Default
FitSummary Fit parameters and fit summary PROC Default
ParameterEstimates Parameter estimation for regression vari-

ables
PROC Default

ResponseProfile Frequency counts for binary models MODEL DIST=BINOMIAL

By referring to the names of such tables, you can use the ODS OUTPUT statement to place one or more of
these tables in output data sets.
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ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 608 in Chapter 21,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, the GAM procedure by default produces plots of the partial predictions for
each nonparametric predictor in the model. Use the PLOTS option in the PROC GAM statement to control
aspects of these plots.

ODS Graph Names

PROC GAM assigns a name to each graph it creates by using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 38.4.

Table 38.4 Graphs Produced by PROC GAM

ODS Graph Name Plot Description PLOTS= Option
SmoothingComponentPlot Panel of multiple partial prediction

curves
COMPONENTS

SmoothingComponentPlot Unpacked partial prediction curves COMPONENTS(UNPACK)

By default, partial prediction plots for each component are displayed in panels containing at most six plots.
If you specify more than six smoothing components, multiple panels are used. Use the PLOTS(UNPACK)
option in the PROC GAM statement to display these plots individually.

Examples: GAM Procedure

Example 38.1: Generalized Additive Model with Binary Data

This example illustrates the capabilities of the GAM procedure and compares it to the GENMOD proce-
dure.From this example, you can see that PROC GAM is very useful in visualizing the data and detecting
the nonlinearity among the variables.
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The data used in this example are based on a study by Bell et al. (1994). Bell and his associates studied the
result of multiple-level thoracic and lumbar laminectomy, a corrective spinal surgery commonly performed
on children. The data in the study consist of retrospective measurements on 83 patients. The specific
outcome of interest is the presence (1) or absence (0) of kyphosis, defined as a forward flexion of the
spine of at least 40 degrees from vertical. The available predictor variables are age in months at time of
the operation (Age), the starting of vertebrae levels involved in the operation (StartVert), and the number
of levels involved (NumVert). The goal of this analysis is to identify risk factors for kyphosis. PROC
GENMOD can be used to investigate the relationship among kyphosis and the predictors. The following
statements create the data kyphosis and fit a logistic model specifying linear effects for the three predictors:

title 'Comparing PROC GAM with PROC GENMOD';
data kyphosis;

input Age StartVert NumVert Kyphosis @@;
datalines;
71 5 3 0 158 14 3 0 128 5 4 1
2 1 5 0 1 15 4 0 1 16 2 0
61 17 2 0 37 16 3 0 113 16 2 0
59 12 6 1 82 14 5 1 148 16 3 0
18 2 5 0 1 12 4 0 243 8 8 0
168 18 3 0 1 16 3 0 78 15 6 0
175 13 5 0 80 16 5 0 27 9 4 0
22 16 2 0 105 5 6 1 96 12 3 1
131 3 2 0 15 2 7 1 9 13 5 0
12 2 14 1 8 6 3 0 100 14 3 0
4 16 3 0 151 16 2 0 31 16 3 0
125 11 2 0 130 13 5 0 112 16 3 0
140 11 5 0 93 16 3 0 1 9 3 0
52 6 5 1 20 9 6 0 91 12 5 1
73 1 5 1 35 13 3 0 143 3 9 0
61 1 4 0 97 16 3 0 139 10 3 1
136 15 4 0 131 13 5 0 121 3 3 1
177 14 2 0 68 10 5 0 9 17 2 0
139 6 10 1 2 17 2 0 140 15 4 0
72 15 5 0 2 13 3 0 120 8 5 1
51 9 7 0 102 13 3 0 130 1 4 1
114 8 7 1 81 1 4 0 118 16 3 0
118 16 4 0 17 10 4 0 195 17 2 0
159 13 4 0 18 11 4 0 15 16 5 0
158 15 4 0 127 12 4 0 87 16 4 0
206 10 4 0 11 15 3 0 178 15 4 0
157 13 3 1 26 13 7 0 120 13 2 0
42 6 7 1 36 13 4 0
;

proc genmod data=kyphosis descending;
model Kyphosis = Age StartVert NumVert/link=logit dist=binomial;

run;

The GENMOD analysis of the independent variable effects is shown in Output 38.1.1. Based on these
results, the only significant factor is StartVert with a log odds ratio of �0:1972. The variable NumVert has
a p-value of 0:0904 with a log odds ratio of 0:3031.
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Output 38.1.1 GENMOD Analysis: Partial Output

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Wald
Parameter DF Estimate Error Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -1.2497 1.2424 -3.6848 1.1853 1.01 0.3145
Age 1 0.0061 0.0055 -0.0048 0.0170 1.21 0.2713
StartVert 1 -0.1972 0.0657 -0.3260 -0.0684 9.01 0.0027
NumVert 1 0.3031 0.1790 -0.0477 0.6540 2.87 0.0904
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

The GENMOD procedure assumes a strict linear relationship between the predictors and the response func-
tion, which is the logit (log odds) in this model. The following SAS statements use PROC GAM to investi-
gate a less restrictive model, with moderately flexible spline terms for each of the predictors:

title 'Comparing PROC GAM with PROC GENMOD';
proc gam data=kyphosis;

model Kyphosis (event='1') = spline(Age ,df=3)
spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;

The MODEL statement requests an additive model with a univariate smoothing spline for each term. The
response variable option EVENT= chooses KyphosisD 1 (presence) as the event so that the probability of
presence of kyphosis is modeled. The option “DIST=BINOMIAL” with binary responses specifies a logistic
model. Each term is fit by using a univariate smoothing spline with three degrees of freedom. Of these three
degrees of freedom, one is taken up by the linear portion of the fit and two are left for the nonlinear spline
portion. Although this might seem to be an unduly modest amount of flexibility, it is better to be conservative
with a data set this small.

Output 38.1.2 and Output 38.1.3 list the output from PROC GAM.

Output 38.1.2 Summary Statistics

Comparing PROC GAM with PROC GENMOD

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Summary of Input Data Set

Number of Observations 83
Number of Missing Observations 0
Distribution Binomial
Link Function Logit
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Output 38.1.2 continued

Response Profile

Ordered Total
Value Kyphosis Frequency

1 0 65
2 1 18

NOTE: PROC GAM is modeling the probability that Kyphosis=1. One way to change
this to model the probability that Kyphosis=0 is to specify the response
variable option EVENT='0'.

Iteration Summary and Fit Statistics

Number of local scoring iterations 9
Local scoring convergence criterion 2.6635661E-9
Final Number of Backfitting Iterations 1
Final Backfitting Criterion 5.2326593E-9
The Deviance of the Final Estimate 46.610922438

Output 38.1.3 Model Fit Statistics

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -2.01533 1.45620 -1.38 0.1706
Linear(Age) 0.01213 0.00794 1.53 0.1308
Linear(StartVert) -0.18615 0.07628 -2.44 0.0171
Linear(NumVert) 0.38347 0.19102 2.01 0.0484

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs

Spline(Age) 0.999996 2.000000 328.512831 66
Spline(StartVert) 0.999551 2.000000 317.646685 16
Spline(NumVert) 0.921758 2.000000 20.144056 10

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(Age) 2.00000 10.494369 10.4944 0.0053
Spline(StartVert) 2.00000 5.494968 5.4950 0.0641
Spline(NumVert) 2.00000 2.184518 2.1845 0.3355
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The critical part of the GAM results is the “Analysis of Deviance” table, shown in Output 38.1.3. For each
smoothing effect in the model, this table gives a �2 test comparing the deviance between the full model and
the model without the nonparametric component of this variable. The analysis of deviance results indicate
that the nonparametric effect of Age is highly significant, the nonparametric effect of StartVert is nearly
significant, and the nonparametric effect of NumVert is insignificant at the 5% level.

PROC GAM can also perform approximate analysis of deviance for smoothing effects by using the AN-
ODEV=NOREFIT option, as in the following statements:

title 'PROC GAM with Approximate Analysis of Deviance';
proc gam data=kyphosis;

model Kyphosis (event='1') = spline(Age ,df=3)
spline(StartVert,df=3)
spline(NumVert ,df=3) /

dist=binomial anodev=norefit;
run;

Output 38.1.4 Approximate Analysis of Deviance Table

PROC GAM with Approximate Analysis of Deviance

The GAM Procedure
Dependent Variable: Kyphosis

Smoothing Model Component(s): spline(Age) spline(StartVert) spline(NumVert)

Smoothing Model Analysis
Approximate Analysis of Deviance

Source DF Chi-Square Pr > ChiSq

Spline(Age) 2.00000 7.0888 0.0289
Spline(StartVert) 2.00000 5.0431 0.0803
Spline(NumVert) 2.00000 2.2471 0.3251

The “Approximate Analysis of Deviance” table shown in Output 38.1.4 yields similar conclusions to those
of the “Analysis of Deviance” table (Output 38.1.3). In addition to fitting the model using all the specified
smoothing effects, the default ANODEV=REFIT option requires fitting p additional subset models to p
smoothing effects. Each submodel is fit by omitting one smoothing term from the model. By contrast, the
ANODEV=NOREFIT option keeps the nonparametric terms fixed and requires a weighted least squares fit
for only the parametric part of the model. Hence, GAM with the ANODEV=NOREFIT option is compu-
tationally inexpensive and is useful for obtaining approximate analysis of deviance results for models with
many smoothing effects. This option assumes that the remaining nonparametric terms do not change much
with the deletion of one nonparametric component. It should be used with caution when a model contains
highly correlated predictors.

Plots of the partial predictions for each predictor can be used to investigate why PROC GAM and PROC
GENMOD produce different results. The following statements use ODS Graphics to produce plots of the
individual smoothing components. The CLM suboption in the PLOTS=COMPONENTS option adds a
curvewise Bayesian confidence band to each smoothing component, while the COMMONAXES suboption
forces all three smoothing component plots to share the same vertical axis limits, allowing a visual judgment
of the relative nonparametric effect sizes.
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ods graphics on;

proc gam data=kyphosis plots=components(clm commonaxes);
model Kyphosis (event='1') = spline(Age ,df=3)

spline(StartVert,df=3)
spline(NumVert ,df=3) / dist=binomial;

run;

ods graphics off;

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For spe-
cific information about the graphics available in the GAM procedure, see the section “ODS Graphics” on
page 2563. The smoothing component plots are displayed in Output 38.1.5.

Output 38.1.5 Partial Prediction for Each Predictor

The plots show that the partial predictions corresponding to both Age and StartVert have a quadratic pattern,
while NumVert has a more complicated but ultimately nonsignificant pattern.

An important difference between the first analysis of these data with GENMOD and the subsequent analysis
with GAM is that GAM indicates that Age has a significant but nonlinear association with kyphosis. The
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difference is due to the fact that the GENMOD model includes only the linear effect of Age whereas the
GAM model allows a more complex relationship, which the plots indicate is nearly quadratic. Having used
the GAM procedure to discover an appropriate form of the dependence of Kyphosis on each of the three
independent variables, you can use the GENMOD procedure to fit and assess the corresponding parametric
model. The following statements fit a GENMOD model with quadratic terms for all three variables. The
parameter estimates are shown in Output 38.1.6.

title 'Comparing PROC GAM with PROC GENMOD';
proc genmod data=kyphosis descending;

model kyphosis = Age Age *Age
StartVert StartVert*StartVert
NumVert NumVert *NumVert /

link=logit dist=binomial;
run;

Output 38.1.6 Logistic Model with Quadratic Terms

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Wald
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 -5.8134 2.5618 -10.8345 -0.7923 5.15
Age 1 0.0819 0.0345 0.0143 0.1496 5.63
Age*Age 1 -0.0004 0.0002 -0.0008 -0.0000 4.32
StartVert 1 0.4394 0.3234 -0.1944 1.0733 1.85
StartVert*StartVert 1 -0.0396 0.0202 -0.0791 -0.0001 3.86
NumVert 1 0.3798 0.5988 -0.7939 1.5535 0.40
NumVert*NumVert 1 0.0020 0.0420 -0.0803 0.0843 0.00
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Maximum Likelihood
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.0233
Age 0.0176
Age*Age 0.0376
StartVert 0.1742
StartVert*StartVert 0.0495
NumVert 0.5259
NumVert*NumVert 0.9621
Scale

NOTE: The scale parameter was held fixed.

The p-value for the �2 test is 0:0376 for dropping the quadratic term of Age, 0:0495 for dropping the
quadratic term of StartVert, and 0:9621 for dropping this quadratic term of NumVert. The results for the
quadratic GENMOD model are consistent with the GAM results.
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Example 38.2: Poisson Regression Analysis of Component Reliability

In this example, the number of maintenance repairs on a complex system are modeled as realizations of
Poisson random variables. The system under investigation has a large number of components, which occa-
sionally break down and are replaced or repaired. During a four-year period, the system was observed to
be in a state of steady operation, meaning that the rate of operation remained approximately constant. A
monthly maintenance record is available for that period, which tracks the number of components removed
for maintenance each month. The data are listed in the following statements, which create a SAS data set:

title 'Analysis of Component Reliability';
data equip;

input year month removals @@;
datalines;
1987 1 2 1987 2 4 1987 3 3
1987 4 3 1987 5 3 1987 6 8
1987 7 2 1987 8 6 1987 9 3
1987 10 9 1987 11 4 1987 12 10
1988 1 4 1988 2 6 1988 3 4
1988 4 4 1988 5 3 1988 6 5
1988 7 3 1988 8 4 1988 9 5
1988 10 3 1988 11 6 1988 12 3
1989 1 2 1989 2 6 1989 3 1
1989 4 5 1989 5 5 1989 6 4
1989 7 2 1989 8 2 1989 9 2
1989 10 5 1989 11 1 1989 12 10
1990 1 3 1990 2 8 1990 3 12
1990 4 7 1990 5 3 1990 6 2
1990 7 4 1990 8 3 1990 9 0
1990 10 6 1990 11 6 1990 12 6
;

For planning purposes, it is of interest to understand the long- and short-term trends in the maintenance
needs of the system. Over the long term, it is suspected that the quality of new components and repair work
improves over time, so the number of component removals would tend to decrease from year to year. It is not
known whether the robustness of the system is affected by seasonal variations in the operating environment,
but this possibility is also of interest.

Because the maintenance record is in the form of counts, the number of removals are modeled as realizations
of Poisson random variables. Denote by �ij the unobserved component removal rate for year i and month
j . Since the data were recorded at regular intervals (from a system operating at a constant rate), each �ij is
assumed to be a function of year and month only.

A preliminary two-way analysis is performed by using PROC GENMOD to make broad inferences on repair
trends. A log-link is specified for the model

log�ij D �C ˛Yi C ˛
M
j

where � is a grand mean, ˛Yi is the effect of the i th year, and ˛Mj is the effect of the j th month.
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In the following statements, the CLASS statement declares the variables year and month as categorical.
Type III sum of squares are requested to test whether there is an overall effect of year and/or month.

title2 'Two-way model';
proc genmod data=equip;

class year month;
model removals=year month / dist=Poisson link=log type3;

run;

Output 38.2.1 displays the listed Type III statistics for the fitted model. With the test for year effects yielding
a p-value of 0:4527, there is no evidence of a long-term trend in maintenance rates. Apparently, the quality
of new or repaired components did not change between 1987 and 1990. However, the test for monthly trends
does yield a small p-value of 0:0321, indicating that seasonal trends are significant at the ˛ D 0:05 level.

Output 38.2.1 PROC GENMOD Listing for Type III Analysis

Analysis of Component Reliability
Two-way model

The GENMOD Procedure

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

year 3 2.63 0.4527
month 11 21.12 0.0321

If year is dropped from the model, the focus of the analysis is now on identifying the form of the underlying
seasonal trend, which is a task that PROC GAM is especially suited for. PROC GAM will be used to fit
both a reduced categorical model, with year eliminated, and a nonparametric spline model. Although PROC
GENMOD also has the capability to fit categorical models, as demonstrated earlier, PROC GAM will be
used here to fit both models for a better comparison.

The following PROC GAM statements specify the reduced categorical model and write predicted values to a
data set. For this part of the analysis, a CLASS statement is again used to specify that month is a categorical
variable. In the follow-up, the seasonal effect will be treated as a nonparametric function of month.

title2 'One-way model';
proc gam data=equip;

class month;
model removals=param(month) / dist=Poisson;
output out=est p;

run;
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The following statements use the SGPLOT procedure to generate a plot of the estimated seasonal trend. The
plot is displayed in Output 38.2.2.

proc sort data=est;by month;run;
proc sgplot data=est;

title "Predicted Seasonal Trend";
yaxis label="Number of Removals";
xaxis integer values=(1 to 12);
scatter x=Month y=Removals / name="points"

legendLabel="Removals";
series x=Month y=p_Removals / name="line"

legendLabel="Predicted Removals"
lineattrs = GRAPHFIT;

discretelegend "points" "line";
run;

Output 38.2.2 Predicted Seasonal Trend from a Parametric Model Fit Using a CLASS Statement

The predicted repair rates shown in Output 38.2.2 form a jagged seasonal pattern. Ignoring the month-to-
month fluctuations, which are difficult to explain and can be artifacts of random noise, the general removal
rate trend is high in winter and low in summer.
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One advantage of nonparametric regression is its ability to highlight general trends in the data, such as
those described earlier, and to attribute local fluctuations to unexplained random noise. The nonparametric
regression model used by PROC GAM specifies that the underlying removal rates �j are of the form

log�j D ˇ0 C ˇ1Monthj C s.Monthj /

where ˇ1 is a linear coefficient and s. / is a nonparametric regression function. ˇ1 and s. / define the linear
and nonparametric parts, respectively, of the seasonal trend.

The following statements request that PROC GAM fit a cubic spline model to the monthly repair data. The
output listing is displayed in Output 38.2.3 and Output 38.2.4.

title 'Analysis of Component Reliability';
title2 'Spline model';
proc gam data=equip;

model removals=spline(month) / dist=Poisson method=gcv;
run;

The METHOD=GCV option is used to determine an appropriate level of smoothing.

Output 38.2.3 PROC GAM Listing for Cubic Spline Regression Using the METHOD=GCV Option

Analysis of Component Reliability
Spline model

The GAM Procedure
Dependent Variable: removals

Smoothing Model Component(s): spline(month)

Summary of Input Data Set

Number of Observations 48
Number of Missing Observations 0
Distribution Poisson
Link Function Log

Output 38.2.4 Model Fit Statistics

Regression Model Analysis
Parameter Estimates

Parameter Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 1.34594 0.14509 9.28 <.0001
Linear(month) 0.02274 0.01893 1.20 0.2362
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Output 38.2.4 continued

Smoothing Model Analysis
Fit Summary for Smoothing Components

Num
Smoothing Unique

Component Parameter DF GCV Obs

Spline(month) 0.901512 1.879980 0.115848 12

Smoothing Model Analysis
Analysis of Deviance

Sum of
Source DF Squares Chi-Square Pr > ChiSq

Spline(month) 1.87998 8.877764 8.8778 0.0103

Notice in the listing in Output 38.2.4 that the DF value chosen for the nonlinear portion of the spline by
minimizing GCV is about 1.88, which is smaller than the default value of 3. This indicates that the spline
model of the seasonal trend is relatively simple. As indicated by the “Analysis of Deviance” table, it is a
significant feature of the data. The table lists a p-value of 0:0103 for the hypothesis of no seasonal trend.
Note also that the “Parameter Estimates” table lists a p-value of 0:2362 for the hypothesis of no linear factor
in the seasonal trend indicating no signifidant linear trend.

The following statements use ODS Graphics to plot the smoothing component for the effect of Month on
predicted repair rates. The CLM suboption for the PLOTS=COMPONENTS option adds a 95% confidence
band to the fit.

ods graphics on;

proc gam data=equip plots=components(clm);
model removals=spline(month) / dist=Poisson method=gcv;

run;

ods graphics off;

For general information about ODS graphics, see Chapter 21, “Statistical Graphics Using ODS.” For spe-
cific information about the graphics available in the GAM procedure, see the section “ODS Graphics” on
page 2563. The smoothing component plot is displayed in Output 38.2.5.

In Output 38.2.5, it is apparent that the pattern of repair rates follows the general pattern observed in Out-
put 38.2.2. However, the plot in Output 38.2.5 is much cleaner because the month-to-month fluctuations are
smoothed out to reveal the broader seasonal trend.
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Output 38.2.5 Estimated Nonparametric Factor of Seasonal Trend, Along with 95% Confidence Bounds

In Output 38.2.1 the small p-value (p D 0:0321) for the hypothesis of no seasonal trend indicates that the
data exhibit significant seasonal structure. Output 38.2.5 is a graphical illustration of the seasonality of the
number of removals.

Example 38.3: Comparing PROC GAM with PROC LOESS

In an analysis of simulated data from a hypothetical chemistry experiment, additive nonparametric re-
gression performed by PROC GAM is compared to the unrestricted multidimensional procedure of PROC
LOESS.

In each repetition of the experiment, a catalyst is added to a chemical solution, thereby inducing synthesis
of a new material. The data are measurements of the temperature of the solution, the amount of catalyst
added, and the yield of the chemical reaction. The following statements read and plots the raw data.
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data ExperimentA;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield @@;

datalines;
80 0.005 6.039 80 0.010 4.719 80 0.015 6.301
80 0.020 4.558 80 0.025 5.917 80 0.030 4.365
80 0.035 6.540 80 0.040 5.063 80 0.045 4.668
80 0.050 7.641 80 0.055 6.736 80 0.060 7.255
80 0.065 5.515 80 0.070 5.260 80 0.075 4.813
80 0.080 4.465 90 0.005 4.540 90 0.010 3.553
90 0.015 5.611 90 0.020 4.586 90 0.025 6.503
90 0.030 4.671 90 0.035 4.919 90 0.040 6.536
90 0.045 4.799 90 0.050 6.002 90 0.055 6.988
90 0.060 6.206 90 0.065 5.193 90 0.070 5.783
90 0.075 6.482 90 0.080 5.222 100 0.005 5.042
100 0.010 5.551 100 0.015 4.804 100 0.020 5.313
100 0.025 4.957 100 0.030 6.177 100 0.035 5.433
100 0.040 6.139 100 0.045 6.217 100 0.050 6.498
100 0.055 7.037 100 0.060 5.589 100 0.065 5.593
100 0.070 7.438 100 0.075 4.794 100 0.080 3.692
110 0.005 6.005 110 0.010 5.493 110 0.015 5.107
110 0.020 5.511 110 0.025 5.692 110 0.030 5.969
110 0.035 6.244 110 0.040 7.364 110 0.045 6.412
110 0.050 6.928 110 0.055 6.814 110 0.060 8.071
110 0.065 6.038 110 0.070 6.295 110 0.075 4.308
110 0.080 7.020 120 0.005 5.409 120 0.010 7.009
120 0.015 6.160 120 0.020 7.408 120 0.025 7.123
120 0.030 7.009 120 0.035 7.708 120 0.040 5.278
120 0.045 8.111 120 0.050 8.547 120 0.055 8.279
120 0.060 8.736 120 0.065 6.988 120 0.070 6.283
120 0.075 7.367 120 0.080 6.579 130 0.005 7.629
130 0.010 7.171 130 0.015 5.997 130 0.020 6.587
130 0.025 7.335 130 0.030 7.209 130 0.035 8.259
130 0.040 6.530 130 0.045 8.400 130 0.050 7.218
130 0.055 9.167 130 0.060 9.082 130 0.065 7.680
130 0.070 7.139 130 0.075 7.275 130 0.080 7.544
140 0.005 4.860 140 0.010 5.932 140 0.015 3.685
140 0.020 5.581 140 0.025 4.935 140 0.030 5.197
140 0.035 5.559 140 0.040 4.836 140 0.045 5.795
140 0.050 5.524 140 0.055 7.736 140 0.060 5.628
140 0.065 6.644 140 0.070 3.785 140 0.075 4.853
140 0.080 6.006
;

proc sort data=ExperimentA;
by Temperature Catalyst;

run;

proc template;
define statgraph surface;
dynamic _X _Y _Z _T;
begingraph;

entrytitle _T;
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layout overlay3d/
xaxisopts=(linearopts=(tickvaluesequence=

(start=85 end=135 increment=25)))
yaxisopts=(linearopts=(tickvaluesequence=

(start=0 end=0.08 increment=0.04)))
rotate=30 cube=false;

surfaceplotparm x=_X y=_Y z=_Z;
endlayout;

endgraph;
end;

run;

ods graphics on;
proc sgrender data=ExperimentA template=surface;

dynamic _X='Temperature' _Y='Catalyst' _Z='Yield' _T='Raw Data';
run;

The plot is displayed in Output 38.3.1. A surface fitted to the plot of Output 38.3.1 by PROC LOESS will be
of a very general (and flexible) type, since the procedure requires only weak assumptions about the structure
of the dependencies among the data. PROC GAM, on the other hand, makes stronger structural assumptions
by restricting the fitted surface to an additive form. These differences will be demonstrated in this example.

Output 38.3.1 Surface Plot of Yield by Temperature and Amount of Catalyst
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The following statements request that both PROC LOESS and PROC GAM fit surfaces to the data:

ods output ScoreResults=PredLOESS;
proc loess data=ExperimentA;

model Yield = Temperature Catalyst
/ scale=sd select=gcv degree=2;

score;
run;

proc gam data=PredLoess;
model Yield = loess(Temperature) loess(Catalyst) / method=gcv;
output out=PredGAM p=Gam_p_;

run;

In both cases the smoothing parameter was chosen as the value that minimizes GCV. This is performed
automatically by PROC LOESS and PROC GAM.

The following statements generate plots of the predicted yields, which are displayed in Output 38.3.2:

proc template;
define statgraph surface1;
begingraph;

entrytitle "Fitted Surface";
layout lattice/columns=2;

layout
overlay3d/xaxisopts=(linearopts=(tickvaluesequence=

(start=85 end=135 increment=25)))
yaxisopts=(linearopts=(tickvaluesequence=

(start=0 end=0.08 increment=0.04)))
zaxisopts=(label="P_Yield")
rotate=30 cube=0;

entry "PROC LOESS"/location=outside valign=top
textattrs=graphlabeltext;

surfaceplotparm x=Temperature y=Catalyst z=p_Yield;
endlayout;
layout
overlay3d/xaxisopts=(linearopts=(tickvaluesequence=

(start=85 end=135 increment=25)))
yaxisopts=(linearopts=(tickvaluesequence=

(start=0 end=0.08 increment=0.04)))
rotate=30 cube=0
zaxisopts=(label="P_Yield")
rotate=30 cube=0;

entry "PROC GAM"/location=outside valign=top
textattrs=graphlabeltext;

surfaceplotparm x=Temperature y=Catalyst z=Gam_p_Yield;
endlayout;

endlayout;
endgraph;
end;

run;

proc sgrender data=PredGAM template=surface1;
run;
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Output 38.3.2 Fitted Regression Surfaces

Though both PROC LOESS and PROC GAM use the statistical technique loess, it is apparent from Out-
put 38.3.2 that the manner in which it is applied is very different. By smoothing out the data in local
neighborhoods, PROC LOESS essentially fits a surface to the data in pieces, one neighborhood at a time.
The local regions are treated independently, so separate areas of the fitted surface are only weakly related.
PROC GAM imposes additive structure, requiring that cross sections of the fitted surface always have the
same shape and thereby relating regions that have a common value of the same individual regressor variable.
Under that restriction, the loess technique need not be applied to the entire multidimensional scatter plot,
but only to one-dimensional cross sections of the data.

The advantage of using additive model fitting is that its statistical power is directed toward univariate
smoothing, and so it is able to discern the finer details of any underlying structure in the data. Regression
data can be very sparse when viewed in the context of multidimensional space, even when every individual
set of regressor values densely covers its range. This is the familiar curse of dimensionality. Sparse data
greatly restrict the effectiveness of nonparametric procedures, but additive model fitting, when appropriate,
is one way to overcome this limitation.
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To examine these properties, you can use ODS Graphics to generate plots of cross sections of the unre-
stricted (PROC LOESS) and additive (PROC GAM) fitted surfaces for the variable Catalyst, as shown in
the following statements:

proc template;
define statgraph projection;
begingraph;

entrytitle "Cross Sections of Fitted Surfaces";
layout lattice/rows=2 columndatarange=unionall

columngutter=10;
columnAxes;

columnAxis / display=all griddisplay=auto_on;
endColumnAxes;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="LOESS Prediction"
linearopts=(viewmin=2 viewmax=10));
seriesplot x=Catalyst y=p_Yield /

group=temperature
name="Temperature";

endlayout;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="GAM Prediction"
linearopts=(viewmin=2 viewmax=10));
seriesplot x=Catalyst y=Gam_p_Yield /

group=temperature
name="Temperature";

endlayout;

columnheaders;
discreteLegend "Temperature" / title = "Temperature";

endcolumnheaders;

endlayout;
endgraph;
end;

run;

proc sgrender data=PredGAM template=projection;
run;
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The plots are displayed in Output 38.3.3.

Output 38.3.3 Cross Sections of Fitted Regression Surfaces

Notice that the cross sections in the top panel (PROC LOESS) of Output 38.3.3 have varying shapes, while
every cross section in the bottom panel (PROC GAM) is the same curve shifted vertically. This illustrates
precisely the kind of structural differences that distinguish additive models. A second important comparison
to make between Output 38.3.2 and Output 38.3.3 is the level of detail in the fitted regression surfaces. Cross
sections of the PROC LOESS surface are rather flat, but those of the additive surface have a clear shape.
In particular, the ridge near Catalyst=0.055 is only vaguely evident in the PROC LOESS surface, but it is
plainly revealed by the additive procedure.

For an example of a situation where unrestricted multidimensional fitting is preferred over additive regres-
sion, consider the following simulated data from a similar experiment. The following statements create
another SAS data set and plot.
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data ExperimentB;
format Temperature f4.0 Catalyst f6.3 Yield f8.3;
input Temperature Catalyst Yield @@;

datalines;
80 0.005 9.115 80 0.010 9.275 80 0.015 9.160
80 0.020 7.065 80 0.025 6.054 80 0.030 4.899
80 0.035 4.504 80 0.040 4.238 80 0.045 3.232
80 0.050 3.135 80 0.055 5.100 80 0.060 4.802
80 0.065 8.218 80 0.070 7.679 80 0.075 9.669
80 0.080 9.071 90 0.005 7.085 90 0.010 6.814
90 0.015 4.009 90 0.020 4.199 90 0.025 3.377
90 0.030 2.141 90 0.035 3.500 90 0.040 5.967
90 0.045 5.268 90 0.050 6.238 90 0.055 7.847
90 0.060 7.992 90 0.065 7.904 90 0.070 10.184
90 0.075 7.914 90 0.080 6.842 100 0.005 4.497
100 0.010 2.565 100 0.015 2.637 100 0.020 2.436
100 0.025 2.525 100 0.030 4.474 100 0.035 6.238
100 0.040 7.029 100 0.045 8.183 100 0.050 8.939
100 0.055 9.283 100 0.060 8.246 100 0.065 6.927
100 0.070 7.062 100 0.075 5.615 100 0.080 4.687
110 0.005 3.706 110 0.010 3.154 110 0.015 3.726
110 0.020 4.634 110 0.025 5.970 110 0.030 8.219
110 0.035 8.590 110 0.040 9.097 110 0.045 7.887
110 0.050 8.480 110 0.055 6.818 110 0.060 7.666
110 0.065 4.375 110 0.070 3.994 110 0.075 3.630
110 0.080 2.685 120 0.005 4.697 120 0.010 4.268
120 0.015 6.507 120 0.020 7.747 120 0.025 9.412
120 0.030 8.761 120 0.035 8.997 120 0.040 7.538
120 0.045 7.003 120 0.050 6.010 120 0.055 3.886
120 0.060 4.897 120 0.065 2.562 120 0.070 2.714
120 0.075 3.141 120 0.080 5.081 130 0.005 8.729
130 0.010 7.460 130 0.015 9.549 130 0.020 10.049
130 0.025 8.131 130 0.030 7.553 130 0.035 6.191
130 0.040 6.272 130 0.045 4.649 130 0.050 3.884
130 0.055 2.522 130 0.060 4.366 130 0.065 3.272
130 0.070 4.906 130 0.075 6.538 130 0.080 7.380
140 0.005 8.991 140 0.010 8.029 140 0.015 8.417
140 0.020 8.049 140 0.025 4.608 140 0.030 5.025
140 0.035 2.795 140 0.040 3.123 140 0.045 3.407
140 0.050 4.183 140 0.055 3.750 140 0.060 6.316
140 0.065 5.799 140 0.070 7.992 140 0.075 7.835
140 0.080 8.985
;

proc sort data=ExperimentB;
by Temperature Catalyst;

run;

proc sgrender data=ExperimentB template=surface;
dynamic _X='Temperature' _Y='Catalyst' _Z='Yield' _T='Raw Data';

run;
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A plot of the raw data is displayed in Output 38.3.4.

Output 38.3.4 Raw Data from Experiment B

Though the surface displayed in Output 38.3.4 is quite jagged, a distinct feature of the plot is a large ridge
that runs diagonally across its surface. One would expect that the ridge would appear in the fitted regression
surface of an appropriate nonparametric procedure. Nevertheless, between PROC LOESS and PROC GAM,
only PROC LOESS is able to capture this significant feature.

The SAS program for fitting the new data is essentially the same as that for the data set from the first
experiment and produces output data set PredGAMb for this experiment. As in Output 38.3.2, multivariate
and additive fitted surfaces for these data are displayed in Output 38.3.5.
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Output 38.3.5 Fitted Regression Surfaces

It is clear from Output 38.3.5 that the results of PROC LOESS and PROC GAM are completely different.
While the plot in the left panel resembles the raw data plot in Output 38.3.4, the plot in the right panel is
essentially featureless.

To understand what is happening, compare the scatter plots of Yield by Catalyst for the two data sets in this
example. These are generated by the following statements and displayed in Output 38.3.6.

data PredGAM;
set PredGAM;

rename Yield=Yield_a;
run;

data PredGAMb;
set PredGAMb;
set PredGAM(keep=Yield_a);

run;
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proc template;
define statgraph scatter2;
dynamic _X _Y1 _Y2;
begingraph;

entrytitle "Scatter Plots of Yield by Catalyst";
layout lattice/rows=2 columndatarange=unionall

rowdatarange=unionall
columngutter=15;

columnAxes;
columnAxis / display=all griddisplay=auto_on;

endColumnAxes;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="Yield of Experiment A"
linearopts=(viewmin=2 viewmax=10));
scatterplot x=_X y=_Y1;

endlayout;

layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="Yield of Experiment B"
linearopts=(viewmin=2 viewmax=10));
scatterplot x=_X y=_Y2;

endlayout;

endlayout;
endgraph;
end;

run;

proc sgrender data=PredGAMb template=scatter2;
dynamic _X='Catalyst' _Y1='Yield_a' _Y2='Yield';

run;

ods graphics off;

The top panel of Output 38.3.6 hints at the same kind of structure exhibited in the fitted cross sections of
Output 38.3.3. In PROC GAM, the additive model component corresponding to Catalyst is fit to a similar
scatter plot, with the partial residuals computed in the backfitting algorithm, so it is able to capture the
trend seen here. In contrast, when the second data set is viewed from the perspective of Output 38.3.6, the
diagonal ridge apparent in Output 38.3.4 is washed out, and no clear structure shows up in the scatter plot.
As a result, the additive model fit produced by PROC GAM is relatively featureless.
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Output 38.3.6 Scatter Plots of Yield by Catalyst
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