

# SAS/STAT® 9.3 User's Guide The CANDISC Procedure (Chapter)



This document is an individual chapter from SAS/STAT® 9.3 User's Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2011. SAS/STAT® 9.3 User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

**U.S. Government Restricted Rights Notice**: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at **support.sas.com/publishing** or call 1-800-727-3228.

 $SAS^{@}$  and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. @ indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

# Chapter 28

# The CANDISC Procedure

| Contents                                              |      |
|-------------------------------------------------------|------|
| Overview: CANDISC Procedure                           | 1645 |
| Getting Started: CANDISC Procedure                    | 1647 |
| Syntax: CANDISC Procedure                             | 1651 |
| PROC CANDISC Statement                                | 1652 |
| BY Statement                                          | 1655 |
| CLASS Statement                                       | 1656 |
| FREQ Statement                                        | 1656 |
| VAR Statement                                         | 1656 |
| WEIGHT Statement                                      | 1656 |
| Details: CANDISC Procedure                            | 1657 |
| Missing Values                                        | 1657 |
| Computational Details                                 | 1657 |
| Input Data Set                                        | 1658 |
| Output Data Sets                                      | 1659 |
| Computational Resources                               | 1661 |
| Displayed Output                                      | 1662 |
| ODS Table Names                                       | 1664 |
| Example: CANDISC Procedure                            | 1665 |
| Example 28.1: Analysis of Iris Data With PROC CANDISC | 1665 |
| References                                            | 1671 |

## **Overview: CANDISC Procedure**

Canonical discriminant analysis is a dimension-reduction technique related to principal component analysis and canonical correlation. The methodology used in deriving the canonical coefficients parallels that of a one-way MANOVA. MANOVA tests for equality of the mean vector across class levels. Canonical discriminant analysis finds linear combinations of the quantitative variables that provide maximal separation between classes or groups. Given a classification variable and several quantitative variables, the CANDISC procedure derives *canonical variables*, linear combinations of the quantitative variables that summarize between-class variation in much the same way that principal components summarize total variation.

The CANDISC procedure performs a canonical discriminant analysis, computes squared Mahalanobis distances between class means, and performs both univariate and multivariate one-way analyses of variance.

Two output data sets can be produced: one containing the canonical coefficients and another containing, among other things, scored canonical variables. The canonical coefficients output data set can be rotated by the FACTOR procedure. It is customary to standardize the canonical coefficients so that the canonical variables have means that are equal to zero and pooled within-class variances that are equal to one. PROC CANDISC displays both standardized and unstandardized canonical coefficients. Correlations between the canonical variables and the original variables as well as the class means for the canonical variables are also displayed; these correlations, sometimes known as loadings, are called canonical structures. To aid the visual interpretation of group differences, you can use ODS Graphics to display graphs of pairs of canonical variables from the scored canonical variables output data set.

Given two or more groups of observations with measurements on several quantitative variables, canonical discriminant analysis derives a linear combination of the variables that has the highest possible multiple correlation with the groups. This maximal multiple correlation is called the *first canonical correlation*. The coefficients of the linear combination are the *canonical coefficients* or *canonical weights*. The variable defined by the linear combination is the *first canonical variable* or *canonical component*. The second canonical correlation is obtained by finding the linear combination uncorrelated with the first canonical variable that has the highest possible multiple correlation with the groups. The process of extracting canonical variables can be repeated until the number of canonical variables equals the number of original variables or the number of classes minus one, whichever is smaller.

The first canonical correlation is at least as large as the multiple correlation between the groups and any of the original variables. If the original variables have high within-group correlations, the first canonical correlation can be large even if all the multiple correlations are small. In other words, the first canonical variable can show substantial differences between the classes, even if none of the original variables do. Canonical variables are sometimes called *discriminant functions*, but this usage is ambiguous because the DISCRIM procedure produces very different functions for classification that are also called discriminant functions.

For each canonical correlation, PROC CANDISC tests the hypothesis that it and all smaller canonical correlations are zero in the population. An *F* approximation (Rao 1973; Kshirsagar 1972) is used that gives better small-sample results than the usual chi-square approximation. The variables should have an approximate multivariate normal distribution within each class, with a common covariance matrix in order for the probability levels to be valid.

Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative variables and a set of dummy variables coded from the class variable. Canonical discriminant analysis is also equivalent to performing the following steps:

- 1. Transform the variables so that the pooled within-class covariance matrix is an identity matrix.
- 2. Compute class means on the transformed variables.
- 3. Perform a principal component analysis on the means, weighting each mean by the number of observations in the class. The eigenvalues are equal to the ratio of between-class variation to within-class variation in the direction of each principal component.
- 4. Back-transform the principal components into the space of the original variables, obtaining the canonical variables.

An interesting property of the canonical variables is that they are uncorrelated whether the correlation is calculated from the total sample or from the pooled within-class correlations. The canonical coefficients are not orthogonal, however, so the canonical variables do not represent perpendicular directions through the space of the original variables.

# **Getting Started: CANDISC Procedure**

The data in this example are measurements of 159 fish caught in Finland's lake Laengelmavesi; this data set is available from the Puranen. For each of the For each of the seven species (bream, roach, whitefish, parkki, perch, pike, and smelt) the weight, length, height, and width of each fish are tallied. Three different length measurements are recorded: from the nose of the fish to the beginning of its tail, from the nose to the notch of its tail, and from the nose to the end of its tail. The height and width are recorded as percentages of the third length variable. The fish data set is available from the Sashelp library.

The following step uses PROC CANDISC to find the three canonical variables that best separate the species of fish in the Sashelp. Fish data and create the output data set outcan. With the NCAN=3 option, only the first three canonical variables are displayed. The ODS EXCLUDE statement is specified to exclude the canonical structure tables and most of the canonical coefficient tables in order to obtain a more compact set of results. The TEMPLATE and SGRENDER procedures are used to create a plot of the first two canonical variables. The following statements produce Figure 28.1 through Figure 28.6:

```
title 'Fish Measurement Data';
proc candisc data=sashelp.fish ncan=3 out=outcan;
   ods exclude tstruc bstruc pstruc tcoef pcoef;
   class Species;
   var Weight Length1 Length2 Length3 Height Width;
run;
proc template;
   define statgraph scatter;
      begingraph;
         entrytitle 'Fish Measurement Data';
         layout overlayequated / equatetype=fit
            xaxisopts=(label='Canonical Variable 1')
            yaxisopts=(label='Canonical Variable 2');
            scatterplot x=Can1 y=Can2 / group=species name='fish';
            layout gridded / autoalign=(topright);
               discretelegend 'fish' / border=false opaque=false;
               endlayout;
         endlayout;
      endgraph;
   end:
run;
proc sgrender data=outcan template=scatter;
run;
```

PROC CANDISC begins by displaying summary information about the variables in the analysis. This information includes the number of observations, the number of quantitative variables in the analysis (specified with the VAR statement), and the number of classes in the classification variable (specified with the CLASS statement). The frequency of each class is also displayed.

Figure 28.1 Summary Information

|                                  | Fis                                                  | h Measurement               | Data                                   |                                                          |
|----------------------------------|------------------------------------------------------|-----------------------------|----------------------------------------|----------------------------------------------------------|
|                                  | The                                                  | CANDISC Proce               | dure                                   |                                                          |
| Total Sampl                      | e Size                                               | 158 E                       | F Total                                | 157                                                      |
| Variables                        |                                                      | 6 [                         | F Within Clas                          | ses 151                                                  |
| Classes                          |                                                      | 7                           | F Between Cla                          | sses 6                                                   |
| N                                | Number of Obs                                        | ervations Read              | l 1.                                   | 59                                                       |
| N                                | Number of Obs                                        | ervations Used              | l 1.                                   | 58                                                       |
|                                  | Clas                                                 | s Level Inform              | ation                                  |                                                          |
|                                  | Clas<br>Variable                                     | s Level Inform              | ation                                  |                                                          |
| Species                          | 5_55                                                 | s Level Inform Frequency    | mation<br>Weight                       | Proportion                                               |
| Species<br>Bream                 | Variable                                             |                             | Weight                                 | Proportion                                               |
| -                                | Variable<br>Name                                     | Frequency                   | Weight                                 | -                                                        |
| Bream                            | Variable<br>Name<br>Bream                            | Frequency                   | Weight<br>34.0000<br>11.0000           | 0.215190<br>0.069620                                     |
| Bream<br>Parkki                  | Variable<br>Name<br>Bream<br>Parkki                  | Frequency<br>34<br>11       | Weight<br>34.0000<br>11.0000           | 0.215190<br>0.069620<br>0.354430                         |
| Bream<br>Parkki<br>Perch         | Variable<br>Name<br>Bream<br>Parkki<br>Perch         | Frequency<br>34<br>11<br>56 | Weight 34.0000 11.0000 56.0000 17.0000 | 0.215190<br>0.069620<br>0.354430<br>0.107595             |
| Bream<br>Parkki<br>Perch<br>Pike | Variable<br>Name<br>Bream<br>Parkki<br>Perch<br>Pike | Frequency  34  11  56  17   | Weight 34.0000 11.0000 56.0000 17.0000 | 0.215190<br>0.069620<br>0.354430<br>0.107595<br>0.126582 |

PROC CANDISC performs a multivariate one-way analysis of variance (one-way MANOVA) and provides four multivariate tests of the hypothesis that the class mean vectors are equal. These tests, shown in Figure 28.2, indicate that not all of the mean vectors are equal (p < .0001).

Figure 28.2 MANOVA and Multivariate Tests

| Fish Measurement Data                 |                 |            |            |        |        |
|---------------------------------------|-----------------|------------|------------|--------|--------|
|                                       | The CANDISC     | Procedure  |            |        |        |
| Multivar                              | iate Statistics | and F Appr | oximations | :      |        |
|                                       | S=6 M=-0        | .5 N=72    |            |        |        |
| Statistic                             | Value           | F Value    | Num DF     | Den DF | Pr > F |
| Wilks' Lambda                         | 0.00036325      | 90.71      | 36         | 643.89 | <.0001 |
| Pillai's Trace                        | 3.10465132      | 26.99      | 36         | 906    | <.0001 |
| Hotelling-Lawley Trace                | 52.05799676     | 209.24     | 36         | 413.64 | <.0001 |
| Roy's Greatest Root                   | 39.13499776     | 984.90     | 6          | 151    | <.0001 |
| Roy's Greatest Root  NOTE: F Statisti |                 |            | -          |        | <.0001 |

The first canonical correlation is the greatest possible multiple correlation with the classes that can be achieved by using a linear combination of the quantitative variables. The first canonical correlation, displayed in Figure 28.3, is 0.987463. A likelihood ratio test is displayed of the hypothesis that the current

canonical correlation and all smaller ones are zero. The first line is equivalent to Wilks' lambda multivariate test.

Figure 28.3 Canonical Correlations

|   | Fi            | sh Measurement   | Data        |        |            |
|---|---------------|------------------|-------------|--------|------------|
|   | Th            | e CANDISC Proce  | edure       |        |            |
|   |               | Adjusted         | Approxima   | ate    | Squared    |
|   | Canonical     | Canonical        | Standa      | ard    | Canonical  |
|   | Correlation   | Correlation      | Er          | ror Co | orrelation |
| 1 | 0.987463      | 0.986671         | 0.001       | 989    | 0.975084   |
| 2 | 0.952349      | 0.950095         | 0.007       | 425    | 0.906969   |
| 3 | 0.838637      | 0.832518         | 0.023       | 678    | 0.703313   |
| 4 | 0.633094      | 0.623649         | 0.0478      | 821    | 0.400809   |
| 5 | 0.344157      | 0.334170         | 0.070       | 356    | 0.118444   |
| 6 | 0.005701      |                  | 0.079       | 806    | 0.000033   |
|   |               | Eigenvalues      | of Inv(E)   | *H     |            |
|   |               | -                | (1-CanRsq)  |        |            |
|   | Eigenvalue    | Difference       | Proportion  | on Cui | mulative   |
| 1 | 39.1350       | 29.3859          | 0.75        | 18     | 0.7518     |
| 2 | 9.7491        | 7.3786           | 0.18        | 73     | 0.9390     |
| 3 | 2.3706        | 1.7016           | 0.04        | 55     | 0.9846     |
| 4 | 0.6689        | 0.5346           | 0.01        | 28     | 0.9974     |
| 5 | 0.1344        | 0.1343           | 0.00        | 26     | 1.0000     |
| 6 | 0.0000        |                  | 0.00        | 00     | 1.0000     |
|   | Test of H0: T | he canonical co  | orrelations | in the |            |
|   | current row   | and all that f   | follow are  | zero   |            |
|   | Likelihood    | Approximate      |             |        |            |
|   | Ratio         | F Value          | Num DF      | Den DF | Pr > F     |
| 1 | 0.00036325    | 90.71            | 36          | 643.89 | <.0001     |
| 2 | 0.01457896    | 46.46            | 25          | 547.58 | <.0001     |
| 3 | 0.15671134    | 23.61            | 16          | 452.79 | <.0001     |
| 4 | 0.52820347    | 12.09            | 9           | 362.78 | <.0001     |
| 5 | 0.88152702    | 4.88             | 4           | 300    | 0.0008     |
| - | <del>-</del>  | · - <del>-</del> |             |        |            |

The first canonical variable, Can1, shows that the linear combination of the centered variables Can1= $-0.0006 \times \text{Weight} - 0.33 \times \text{Length1} - 2.49 \times \text{Length2} + 2.60 \times \text{Length3} + 1.12 \times \text{Height} - 1.45 \times \text{Width separates the species most effectively (see Figure 28.4).}$ 

Figure 28.4 Raw Canonical Coefficients

|          | Fish Meas             | urement Data    |              |  |
|----------|-----------------------|-----------------|--------------|--|
|          | The CANDISC Procedure |                 |              |  |
|          | Raw Canonic           | al Coefficients |              |  |
| Variable | Can1                  | Can2            | Can3         |  |
| Weight   | -0.000648508          | -0.005231659    | -0.005596192 |  |
| Length1  | -0.329435762          | -0.626598051    | -2.934324102 |  |
| Length2  | -2.486133674          | -0.690253987    | 4.045038893  |  |
| Length3  | 2.595648437           | 1.803175454     | -1.139264914 |  |
| Height   | 1.121983854           | -0.714749340    | 0.283202557  |  |
| Width    | -1.446386704          | -0.907025481    | 0.741486686  |  |

PROC CANDISC computes the means of the canonical variables for each class. The first canonical variable is the linear combination of the variables Weight, Length1, Length2, Length3, Height, and Width that provides the greatest difference (in terms of a univariate F test) between the class means. The second canonical variable provides the greatest difference between class means while being uncorrelated with the first canonical variable.

Figure 28.5 Class Means for Canonical Variables

|           | Class Means on Canonical Variables |             |             |  |
|-----------|------------------------------------|-------------|-------------|--|
| Species   | Can1                               | Can2        | Can3        |  |
| Bream     | 10.94142464                        | 0.52078394  | 0.23496708  |  |
| Parkki    | 2.58903743                         | -2.54722416 | -0.49326158 |  |
| Perch     | -4.47181389                        | -1.70822715 | 1.29281314  |  |
| Pike      | -4.89689441                        | 8.22140791  | -0.16469132 |  |
| Roach     | -0.35837149                        | 0.08733611  | -1.10056438 |  |
| Smelt     | -4.09136653                        | -2.35805841 | -4.03836098 |  |
| Whitefish | -0.39541755                        | -0.42071778 | 1.06459242  |  |
|           |                                    |             |             |  |

A plot of the first two canonical variables (Figure 28.6) shows that Can1 discriminates between three groups: 1) bream; 2) whitefish, roach, and parkki; and 3) smelt, pike, and perch. Can2 best discriminates between pike and the other species.

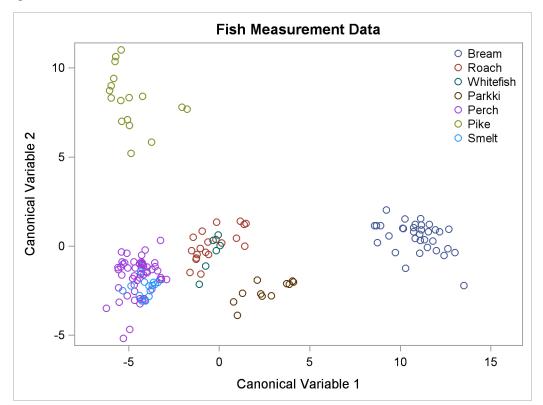



Figure 28.6 Plot of First Two Canonical Variables

# **Syntax: CANDISC Procedure**

The following statements are available in PROC CANDISC:

```
PROC CANDISC < options>;
CLASS variable;
BY variables;
FREQ variable;
VAR variables;
WEIGHT variable;
```

The BY, CLASS, FREQ, VAR, and WEIGHT statements are described after the PROC CANDISC statement.

#### **PROC CANDISC Statement**

#### PROC CANDISC < options> ;

The PROC CANDISC statement invokes the CANDISC procedure. The options listed in Table 28.1 are available in the PROC CANDISC statement.

Table 28.1 CANDISC Procedure Options

| Option         | Description                                           |  |  |  |
|----------------|-------------------------------------------------------|--|--|--|
| Input Data Set |                                                       |  |  |  |
| DATA=          | Specifies input SAS data set                          |  |  |  |
| Output Data S  | ets                                                   |  |  |  |
| OUT=           | Specifies output data set with canonical scores       |  |  |  |
| OUTSTAT=       | Specifies output statistics data set                  |  |  |  |
| Method Details | S                                                     |  |  |  |
| NCAN=          | Specifies the number of canonical variables           |  |  |  |
| PREFIX=        | Specifies a prefix for naming the canonical variables |  |  |  |
| SINGULAR=      | Specifies the singularity criterion                   |  |  |  |
| Control Displa | yed Output                                            |  |  |  |
| ALL            | Displays all output                                   |  |  |  |
| ANOVA          | Displays univariate statistics                        |  |  |  |
| BCORR          | Displays between correlations                         |  |  |  |
| BCOV           | Displays between covariances                          |  |  |  |
| BSSCP          | Displays between SSCPs                                |  |  |  |
| DISTANCE       | Displays squared Mahalanobis distances                |  |  |  |
| NOPRINT        | Suppresses all displayed output                       |  |  |  |
| PCORR          | Displays pooled correlations                          |  |  |  |
| PCOV           | Displays pooled covariances                           |  |  |  |
| PSSCP          | Displays pooled SSCPs                                 |  |  |  |
| SHORT          | Suppresses some displayed output                      |  |  |  |
| SIMPLE         | Displays simple descriptive statistics                |  |  |  |
| STDMEAN        | Displays standardized class means                     |  |  |  |
| TCORR          | Displays total correlations                           |  |  |  |
| TCOV           | Displays total covariances                            |  |  |  |
| TSSCP          | Displays total SSCPs                                  |  |  |  |
| WCORR          | Displays within correlations                          |  |  |  |
| WCOV           | Displays within covariances                           |  |  |  |
| WSSCP          | Displays within SSCPs                                 |  |  |  |

#### ALL

activates all of the display options.

#### **ANOVA**

displays univariate statistics for testing the hypothesis that the class means are equal in the population for each variable.

#### **BCORR**

displays between-class correlations.

#### **BCOV**

displays between-class covariances. The between-class covariance matrix equals the between-class SSCP matrix divided by n(c-1)/c, where n is the number of observations and c is the number of classes. The between-class covariances should be interpreted in comparison with the total-sample and within-class covariances, not as formal estimates of population parameters.

#### **BSSCP**

displays the between-class SSCP matrix.

#### DATA=SAS-data-set

specifies the data set to be analyzed. The data set can be an ordinary SAS data set or one of several specially structured data sets created by SAS statistical procedures. These specially structured data sets include TYPE=CORR, COV, CSSCP, and SSCP. If you omit the DATA= option, the procedure uses the most recently created SAS data set.

#### **DISTANCE**

#### **MAHALANOBIS**

displays squared Mahalanobis distances between the group means, *F* statistics, and the corresponding probabilities of greater squared Mahalanobis distances between the group means.

#### NCAN=n

specifies the number of canonical variables to be computed. The value of n must be less than or equal to the number of variables. If you specify NCAN=0, the procedure displays the canonical correlations, but not the canonical coefficients, structures, or means. A negative value suppresses the canonical analysis entirely. Let v be the number of variables in the VAR statement, and let c be the number of classes. If you omit the NCAN= option, only  $\min(v, c-1)$  canonical variables are generated; if you also specify an OUT= output data set, v canonical variables are generated, and the last v - (c-1) canonical variables have missing values.

#### **NOPRINT**

suppresses the normal display of results. Note that this option temporarily disables the Output Delivery System (ODS); see Chapter 20, "Using the Output Delivery System," for more information.

#### OUT=SAS-data-set

creates an output SAS data set containing the original data and the canonical variable scores. To create a permanent SAS data set, specify a two-level name (see *SAS Language Reference: Concepts*), for more information about permanent SAS data sets).

#### OUTSTAT=SAS-data-set

creates a TYPE=CORR output SAS data set that contains various statistics, including class means, standard deviations, correlations, canonical correlations, canonical structures, canonical coefficients, and means of canonical variables for each class. To create a permanent SAS data set, specify a two-level name (see SAS Language Reference: Concepts, for more information about permanent SAS data sets).

#### **PCORR**

displays pooled within-class correlations (partial correlations based on the pooled within-class covariances).

#### **PCOV**

displays pooled within-class covariances.

#### PREFIX=name

specifies a prefix for naming the canonical variables. By default the names are Can1, Can2, Can3, and so forth. If you specify PREFIX=Abc, the components are named Abc1, Abc2, and so on. The number of characters in the prefix plus the number of digits required to designate the canonical variables should not exceed 32. The prefix is truncated if the combined length exceeds 32.

#### **PSSCP**

displays the pooled within-class corrected SSCP matrix.

#### SHORT

suppresses the display of canonical structures, canonical coefficients, and class means on canonical variables; only tables of canonical correlations and multivariate test statistics are displayed.

#### SIMPLE

displays simple descriptive statistics for the total sample and within each class.

#### SINGULAR=p

specifies the criterion for determining the singularity of the total-sample correlation matrix and the pooled within-class covariance matrix, where 0 . The default is SINGULAR=1E-8.

Let **S** be the total-sample correlation matrix. If the R square for predicting a quantitative variable in the VAR statement from the variables preceding it exceeds 1 - p, then **S** is considered singular. If **S** is singular, the probability levels for the multivariate test statistics and canonical correlations are adjusted for the number of variables with R square exceeding 1 - p.

If S is considered singular and the inverse of S (squared Mahalanobis distances) is required, a quasi inverse is used instead. For details see the section "Quasi-inverse" on page 1982 in Chapter 32, "The DISCRIM Procedure."

#### **STDMEAN**

displays total-sample and pooled within-class standardized class means.

#### **TCORR**

displays total-sample correlations.

#### **TCOV**

displays total-sample covariances.

#### **TSSCP**

displays the total-sample corrected SSCP matrix.

#### **WCORR**

displays within-class correlations for each class level.

#### **WCOV**

displays within-class covariances for each class level.

#### **WSSCP**

displays the within-class corrected SSCP matrix for each class level.

#### **BY Statement**

#### BY variables;

You can specify a BY statement with PROC CANDISC to obtain separate analyses on observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the CANDISC procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

#### **CLASS Statement**

#### CLASS variable;

The values of the CLASS variable define the groups for analysis. Class levels are determined by the formatted values of the CLASS variable. The CLASS variable can be numeric or character. A CLASS statement is required.

#### **FREQ Statement**

#### FREQ variable;

If a variable in the data set represents the frequency of occurrence for the other values in the observation, include the name of the variable in a FREQ statement. The procedure then treats the data set as if each observation appears n times, where n is the value of the FREQ variable for the observation. The total number of observations is considered to be equal to the sum of the FREQ variable when the procedure determines degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not used in the analysis. If the value is not an integer, the value is truncated to an integer.

#### **VAR Statement**

#### VAR variables;

You specify the quantitative variables to include in the analysis by using a VAR statement. If you do not use a VAR statement, the analysis includes all numeric variables not listed in other statements.

#### **WEIGHT Statement**

#### **WEIGHT** variable;

To use relative weights for each observation in the input data set, place the weights in a variable in the data set and specify the name in a WEIGHT statement. This is often done when the variance associated with each observation is different and the values of the WEIGHT variable are proportional to the reciprocals of the variances. If the value of the WEIGHT variable is missing or is less than zero, then a value of zero for the weight is assumed.

The WEIGHT and FREQ statements have a similar effect except that the WEIGHT statement does not alter the degrees of freedom.

#### **Details: CANDISC Procedure**

#### **Missing Values**

If an observation has a missing value for any of the quantitative variables, it is omitted from the analysis. If an observation has a missing CLASS value but is otherwise complete, it is not used in computing the canonical correlations and coefficients; however, canonical variable scores are computed for that observation for the OUT= data set.

#### **Computational Details**

#### **General Formulas**

Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative variables and a set of dummy variables coded from the class variable. In the following notation the dummy variables are denoted by  $\mathbf{y}$  and the quantitative variables by  $\mathbf{x}$ . The total sample covariance matrix for the  $\mathbf{x}$  and  $\mathbf{y}$  variables is

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_{xx} & \mathbf{S}_{xy} \\ \mathbf{S}_{yx} & \mathbf{S}_{yy} \end{bmatrix}$$

When c is the number of groups,  $n_t$  is the number of observations in group t, and  $S_t$  is the sample covariance matrix for the x variables in group t, the within-class pooled covariance matrix for the x variables is

$$\mathbf{S}_p = \frac{1}{\sum n_t - c} \sum (n_t - 1) \mathbf{S}_t$$

The canonical correlations,  $\rho_i$ , are the square roots of the eigenvalues,  $\lambda_i$ , of the following matrix. The corresponding eigenvectors are  $\mathbf{v}_i$ .

$$S_p^{-1/2}S_{xy}S_{yy}^{-1}S_{yx}S_p^{-1/2}$$

Let V be the matrix with the eigenvectors  $v_i$  that correspond to nonzero eigenvalues as columns. The raw canonical coefficients are calculated as follows:

$$\mathbf{R} = \mathbf{S}_p^{-1/2} \mathbf{V}$$

The pooled within-class standardized canonical coefficients are

$$\mathbf{P} = \operatorname{diag}(\mathbf{S}_p)^{1/2}\mathbf{R}$$

The total sample standardized canonical coefficients are

$$\mathbf{T} = \operatorname{diag}(\mathbf{S}_{xx})^{1/2}\mathbf{R}$$

Let  $\mathbf{X}_c$  be the matrix with the centered  $\mathbf{x}$  variables as columns. The canonical scores can be calculated by any of the following:

$$\mathbf{X}_{c} \mathbf{R}$$

$$\mathbf{X}_c \operatorname{diag}(\mathbf{S}_p)^{-1/2} \mathbf{P}$$

$$\mathbf{X}_c \operatorname{diag}(\mathbf{S}_{xx})^{-1/2}\mathbf{T}$$

For the multivariate tests based on  $E^{-1}H$ ,

$$\mathbf{E} = (n-1)(\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy})$$

$$\mathbf{H} = (n-1)\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$$

where n is the total number of observations.

#### **Input Data Set**

The input DATA= data set can be an ordinary SAS data set or one of several specially structured data sets created by statistical procedures available with SAS/STAT software. For more information about special types of data sets, see Appendix A, "Special SAS Data Sets." The BY variable in these data sets becomes the CLASS variable in PROC CANDISC. These specially structured data sets include the following:

- TYPE=CORR data sets created by PROC CORR by using a BY statement
- TYPE=COV data sets created by PROC PRINCOMP by using both the COV option and a BY statement
- TYPE=CSSCP data sets created by PROC CORR by using the CSSCP option and a BY statement, where the OUT= data set is assigned TYPE=CSSCP with the TYPE= data set option
- TYPE=SSCP data sets created by PROC REG by using both the OUTSSCP= option and a BY statement.

When the input data set is TYPE=CORR, TYPE=COV, or TYPE=CSSCP, then PROC CANDISC reads the number of observations for each class from the observations with \_TYPE\_='N' and the variable means in each class from the observations with \_TYPE\_='MEAN'. The CANDISC procedure then reads the within-class correlations from the observations with \_TYPE\_='CORR', the standard deviations from the observations with \_TYPE\_='STD' (data set TYPE=CORR), the within-class covariances from the observations with \_TYPE\_='COV' (data set TYPE=COV), or the within-class corrected sums of squares and crossproducts from the observations with \_TYPE\_='CSSCP' (data set TYPE=CSSCP).

When the data set does not include any observations with \_TYPE\_='CORR' (data set TYPE=CORR), \_TYPE\_='COV' (data set TYPE=COV), or \_TYPE\_='CSSCP' (data set TYPE=CSSCP) for each class, PROC CANDISC reads the pooled within-class information from the data set. In this case, PROC CANDISC reads the pooled within-class correlations from the observations with \_TYPE\_='PCORR', the pooled within-class standard deviations from the observations with \_TYPE\_='PSTD' (data set TYPE=CORR), the pooled within-class covariances from the observations with \_TYPE\_='PCOV' (data set TYPE=COV), or the pooled within-class corrected SSCP matrix from the observations with\_TYPE\_='PSSCP' (data set TYPE=CSSCP).

When the input data set is TYPE=SSCP, then PROC CANDISC reads the number of observations for each class from the observations with \_TYPE\_='N', the sum of weights of observations from the variable INTERCEPT in observations with \_TYPE\_='SSCP' and \_NAME\_='INTERCEPT', the variable sums from the variable=*variablenames* in observations with \_TYPE\_='SSCP' and \_NAME\_='INTERCEPT', and the uncorrected sums of squares and crossproducts from the variable=*variablenames* in observations with \_TYPE\_='SSCP' and \_NAME\_=*variablenames*.

#### **Output Data Sets**

#### **OUT= Data Set**

The OUT= data set contains all the variables in the original data set plus new variables containing the canonical variable scores. You determine the number of new variables by using the NCAN= option. The names of the new variables are formed as described in the PREFIX= option. The new variables have means equal to zero and pooled within-class variances equal to one. An OUT= data set cannot be created if the DATA= data set is not an ordinary SAS data set.

#### **OUTSTAT= Data Set**

The OUTSTAT= data set is similar to the TYPE=CORR data set produced by the CORR procedure but contains many results in addition to those produced by the CORR procedure.

The OUTSTAT= data set is TYPE=CORR, and it contains the following variables:

- the BY variables, if any
- the CLASS variable
- TYPE, a character variable of length 8 that identifies the type of statistic
- \_NAME\_, a character variable of length 32 that identifies the row of the matrix or the name of the canonical variable
- the quantitative variables (those in the VAR statement, or if there is no VAR statement, all numeric variables not listed in any other statement)

The observations, as identified by the variable \_TYPE\_, have the following \_TYPE\_ values:

| _TYPE_   | Contents                                                                                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| N        | number of observations both for the total sample (CLASS variable missing) and within each class (CLASS variable present)                            |
| SUMWGT   | sum of weights both for the total sample (CLASS variable missing) and within each class (CLASS variable present) if a WEIGHT statement is specified |
| MEAN     | means both for the total sample (CLASS variable missing) and within each class (CLASS variable present)                                             |
| STDMEAN  | total-standardized class means                                                                                                                      |
| PSTDMEAN | pooled within-class standardized class means                                                                                                        |
| STD      | standard deviations both for the total sample (CLASS variable missing) and within each class (CLASS variable present)                               |
| PSTD     | pooled within-class standard deviations                                                                                                             |
| BSTD     | between-class standard deviations                                                                                                                   |
| RSQUARED | univariate R squares                                                                                                                                |

The following kinds of observations are identified by the combination of the variables \_TYPE\_ and \_NAME\_. When the \_TYPE\_ variable has one of the following values, the \_NAME\_ variable identifies the row of the matrix:

| _TYPE_ | Contents                                                                                                           |
|--------|--------------------------------------------------------------------------------------------------------------------|
| CSSCP  | corrected SSCP matrix for the total sample (CLASS variable missing) and within each class (CLASS variable present) |
| PSSCP  | pooled within-class corrected SSCP matrix                                                                          |
| BSSCP  | between-class SSCP matrix                                                                                          |
| COV    | covariance matrix for the total sample (CLASS variable missing) and within each class (CLASS variable present)     |
| PCOV   | pooled within-class covariance matrix                                                                              |
| BCOV   | between-class covariance matrix                                                                                    |
| CORR   | correlation matrix for the total sample (CLASS variable missing) and within each class (CLASS variable present)    |
| PCORR  | pooled within-class correlation matrix                                                                             |
| BCORR  | between-class correlation matrix                                                                                   |

When the \_TYPE\_ variable has one of the following values, the \_NAME\_ variable identifies the canonical variable:

| _TYPE_   | Contents               |
|----------|------------------------|
| CANCORR  | canonical correlations |
| STRUCTUR | canonical structure    |

BSTRUCT between canonical structure

PSTRUCT pooled within-class canonical structure

SCORE total sample standardized canonical coefficients

PSCORE pooled within-class standardized canonical coefficients

RAWSCORE raw canonical coefficients

CANMEAN means of the canonical variables for each class

You can use this data set with PROC SCORE to get scores on the canonical variables for new data by using one of the following forms:

```
* The CLASS variable C is numeric;
proc score data=NewData score=Coef(where=(c = . )) out=Scores; run;

* The CLASS variable C is character;
proc score data=NewData score=Coef(where=(c = ' ')) out=Scores;
run;
```

The WHERE clause is used to exclude the within-class means and standard deviations. PROC SCORE standardizes the new data by subtracting the original variable means that are stored in the \_TYPE\_='MEAN' observations, and dividing by the original variable standard deviations from the \_TYPE\_='STD' observations. Then PROC SCORE multiplies the standardized variables by the coefficients from the \_TYPE\_='SCORE' observations to get the canonical scores.

#### **Computational Resources**

In the following discussion, let

n = number of observations

c = number of class levels

v = number of variables in the VAR list

l = length of the CLASS variable

#### **Memory Requirements**

The amount of memory in bytes for temporary storage needed to process the data is

$$c(4v^2 + 28v + 4l + 68) + 16v^2 + 96v + 4l$$

With the ANOVA option, the temporary storage must be increased by 16v bytes. The DISTANCE option requires an additional temporary storage of  $4v^2 + 4v$  bytes.

#### **Time Requirements**

The following factors determine the time requirements of the CANDISC procedure:

- The time needed for reading the data and computing covariance matrices is proportional to  $nv^2$ . PROC CANDISC must also look up each class level in the list. This is faster if the data are sorted by the CLASS variable. The time for looking up class levels is proportional to a value ranging from n to  $n \log(c)$ .
- The time for inverting a covariance matrix is proportional to  $v^3$ .
- The time required for the canonical discriminant analysis is proportional to  $v^3$ .

Each of the preceding factors has a different constant of proportionality.

#### **Displayed Output**

The displayed output from PROC CANDISC includes the class level information table. For each level of the classification variable, the following information is provided: the output data set variable name, frequency sum, weight sum, and the proportion of the total sample.

The optional output from PROC CANDISC includes the following:

- Within-class SSCP matrices for each group
- Pooled within-class SSCP matrix
- Between-class SSCP matrix
- Total-sample SSCP matrix
- Within-class covariance matrices for each group
- Pooled within-class covariance matrix
- Between-class covariance matrix, equal to the between-class SSCP matrix divided by n(c-1)/c, where n is the number of observations and c is the number of classes
- Total-sample covariance matrix
- Within-class correlation coefficients and Pr > |r| to test the hypothesis that the within-class population correlation coefficients are zero
- Pooled within-class correlation coefficients and Pr > |r| to test the hypothesis that the partial population correlation coefficients are zero
- Between-class correlation coefficients and Pr > |r| to test the hypothesis that the between-class population correlation coefficients are zero

- ullet Total-sample correlation coefficients and  $\Pr > |r|$  to test the hypothesis that the total population correlation coefficients are zero
- Simple statistics, including N (the number of observations), sum, mean, variance, and standard deviation both for the total sample and within each class
- Total-sample standardized class means, obtained by subtracting the grand mean from each class mean and dividing by the total sample standard deviation
- Pooled within-class standardized class means, obtained by subtracting the grand mean from each class mean and dividing by the pooled within-class standard deviation
- Pairwise squared distances between groups
- Univariate test statistics, including total-sample standard deviations, pooled within-class standard deviations, between-class standard deviations, R square,  $R^2/(1-R^2)$ , F, and Pr > F (univariate F values and probability levels for one-way analyses of variance)

#### By default, PROC CANDISC displays these statistics:

- Multivariate statistics and *F* approximations including Wilks' lambda, Pillai's trace, Hotelling-Lawley trace, and Roy's greatest root with *F* approximations, numerator and denominator degrees of freedom (Num DF and Den DF), and probability values (Pr > F). Each of these four multivariate statistics tests the hypothesis that the class means are equal in the population. See the section "Multivariate Tests" on page 92 in Chapter 4, "Introduction to Regression Procedures," for more information.
- Canonical correlations
- Adjusted canonical correlations (Lawley 1959). These are asymptotically less biased than the raw
  correlations and can be negative. The adjusted canonical correlations might not be computable and
  are displayed as missing values if two canonical correlations are nearly equal or if some are close to
  zero. A missing value is also displayed if an adjusted canonical correlation is larger than a previous
  adjusted canonical correlation.
- Approximate standard error of the canonical correlations
- Squared canonical correlations
- Eigenvalues of  $E^{-1}H$ . Each eigenvalue is equal to  $\rho^2/(1-\rho^2)$ , where  $\rho^2$  is the corresponding squared canonical correlation and can be interpreted as the ratio of between-class variation to pooled within-class variation for the corresponding canonical variable. The table includes Eigenvalues, Differences between successive eigenvalues, the Proportion of the sum of the eigenvalues, and the Cumulative proportion.
- Likelihood ratio for the hypothesis that the current canonical correlation and all smaller ones are zero in the population. The likelihood ratio for the hypothesis that all canonical correlations equal zero is Wilks' lambda.
- Approx *F* statistic based on Rao's approximation to the distribution of the likelihood ratio (Rao 1973, p. 556; Kshirsagar 1972, p. 326)

• Numerator degrees of freedom (Num DF), denominator degrees of freedom (Den DF), and Pr > F, the probability level associated with the F statistic

The following statistics can be suppressed with the SHORT option:

- Total canonical structure, giving total-sample correlations between the canonical variables and the original variables
- Between canonical structure, giving between-class correlations between the canonical variables and the original variables
- Pooled within canonical structure, giving pooled within-class correlations between the canonical variables and the original variables
- Total-sample standardized canonical coefficients, standardized to give canonical variables with zero mean and unit pooled within-class variance when applied to the total-sample standardized variables
- Pooled within-class standardized canonical coefficients, standardized to give canonical variables with zero mean and unit pooled within-class variance when applied to the pooled within-class standardized variables
- Raw canonical coefficients, standardized to give canonical variables with zero mean and unit pooled within-class variance when applied to the centered variables
- Class means on the canonical variables

#### **ODS Table Names**

PROC CANDISC assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 28.2. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table 28.2 ODS Tables Produced by PROC CANDISC

| <b>ODS Table Name</b> | Description                             | PROC CANDISC Option |
|-----------------------|-----------------------------------------|---------------------|
| ANOVA                 | Univariate statistics                   | ANOVA               |
| AveRSquare            | Average R square                        | ANOVA               |
| BCorr                 | Between-class correlations              | BCORR               |
| BCov                  | Between-class covariances               | BCOV                |
| BSSCP                 | Between-class SSCP matrix               | BSSCP               |
| BStruc                | Between canonical structure             | default             |
| CanCorr               | Canonical correlations                  | default             |
| CanonicalMeans        | Class means on canonical variables      | default             |
| Counts                | Number of observations, variables,      | default             |
|                       | classes, df                             |                     |
| CovDF                 | DF for covariance matrices, not printed | any *COV option     |
| Dist                  | Squared distances                       | DISTANCE            |

Table 28.2 continued

| ODS Table Name   | Description                             | PROC CANDISC Option |
|------------------|-----------------------------------------|---------------------|
| DistFValues      | F statistics based on squared distances | DISTANCE            |
| DistProb         | Probabilities for F statistics from     | DISTANCE            |
|                  | squared distances                       |                     |
| Levels           | Class level information                 | default             |
| MultStat         | MANOVA                                  | default             |
| NObs             | Number of observations                  | default             |
| PCoef            | Pooled standard canonical coefficients  | default             |
| PCorr            | Pooled within-class correlations        | PCORR               |
| PCov             | Pooled within-class covariances         | PCOV                |
| PSSCP            | Pooled within-class SSCP matrix         | PSSCP               |
| <b>PStdMeans</b> | Pooled standardized class means         | STDMEAN             |
| PStruc           | Pooled within canonical structure       | default             |
| RCoef            | Raw canonical coefficients              | default             |
| SimpleStatistics | Simple statistics                       | SIMPLE              |
| TCoef            | Total-sample standard canonical         | default             |
|                  | coefficients                            |                     |
| TCorr            | Total-sample correlations               | TCORR               |
| TCov             | Total-sample covariances                | TCOV                |
| TSSCP            | Total-sample SSCP matrix                | TSSCP               |
| TStdMeans        | Total standardized class means          | STDMEAN             |
| TStruc           | Total canonical structure               | default             |
| WCorr            | Within-class correlations               | WCORR               |
| WCov             | Within-class covariances                | WCOV                |
| WSSCP            | Within-class SSCP matrices              | WSSCP               |

# **Example: CANDISC Procedure**

## **Example 28.1: Analysis of Iris Data With PROC CANDISC**

The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters on 50 iris specimens from each of three species: *Iris setosa*, *I. versicolor*, and *I. virginica*. The iris data set is available from the Sashelp library.

This example is a canonical discriminant analysis that creates an output data set containing scores on the canonical variables and plots the canonical variables.

The following statements produce Output 28.1.1 through Output 28.1.6:

```
title 'Fisher (1936) Iris Data';
proc candisc data=sashelp.iris out=outcan distance anova;
  class Species;
  var SepalLength SepalWidth PetalLength PetalWidth;
run;
```

PROC CANDISC first displays information about the observations and the classes in the data set in Output 28.1.1.

Output 28.1.1 Iris Data: Summary Information

|              | Fis          | ner (1936) Iris | Data           |            |
|--------------|--------------|-----------------|----------------|------------|
|              | The          | e CANDISC Proce | dure           |            |
| Total Sample | e Size       | 150 Di          | Total          | 149        |
| Variables    |              | 4 D             | Within Class   | es 147     |
| Classes      |              | 3 D             | F Between Clas | ses 2      |
| N            | umber of Ob: | servations Read | 15             | 0          |
| N            | umber of Ob  | servations Used | 15             | 0          |
|              | Cla          | ss Level Inform | ation          |            |
|              | Variable     |                 |                |            |
| Species      | Name         | Frequency       | Weight         | Proportion |
| Setosa       | Setosa       | 50              | 50.0000        | 0.333333   |
|              | Versicolo:   | r 50            | 50.0000        | 0.333333   |
| Versicolor   |              |                 |                |            |

The DISTANCE option in the PROC CANDISC statement displays squared Mahalanobis distances between class means. Results from the DISTANCE option are shown in Output 28.1.2.

Output 28.1.2 Iris Data: Squared Mahalanobis Distances and Distance Statistics

|                                | Fisher (1936) Iris Data     |                           |                            |  |  |
|--------------------------------|-----------------------------|---------------------------|----------------------------|--|--|
|                                | The CANDISC Procedure       |                           |                            |  |  |
|                                | Squared Distance to Species |                           |                            |  |  |
| From<br>Species                | Setosa                      | Versicolor                | Virginica                  |  |  |
| Setosa<br>Versicol<br>Virginic |                             | 89.86419<br>0<br>17.20107 | 179.38471<br>17.20107<br>0 |  |  |

Output 28.1.2 continued

| F Statistics, ND | F=4, DDF=144             | for Squared Dis | tance to Species           |
|------------------|--------------------------|-----------------|----------------------------|
| From             |                          |                 |                            |
| Species          | Setosa                   | Versicolor      | Virginica                  |
| Setosa           | 0                        | 550.18889       | 1098                       |
| Versicolor       | 550.18889                | 0               | 105.31265                  |
| Virginica        | 1098                     | 105.31265       | 0                          |
|                  |                          |                 |                            |
| Prob > Mahalanol | ois Distance             | for Squared Dis | tance to Species           |
|                  | ois Distance :<br>Setosa | -               | tance to Species Virginica |
| From             |                          | Versicolor      | -                          |
| From<br>Species  | Setosa                   | Versicolor      | Virginica                  |

The ANOVA option uses univariate statistics to test the hypothesis that the class means are equal. The resulting R-square values (see Output 28.1.3) range from 0.4008 for SepalWidth to 0.9414 for PetalLength, and each variable is significant at the 0.0001 level. The multivariate test for differences between the classes (which is displayed by default) is also significant at the 0.0001 level; you would expect this from the highly significant univariate test results.

Output 28.1.3 Iris Data: Univariate and Multivariate Statistics

|          |                       |           | Fisher     | (1936) Iris | Data     |           |         |        |
|----------|-----------------------|-----------|------------|-------------|----------|-----------|---------|--------|
|          | The CANDISC Procedure |           |            |             |          |           |         |        |
|          |                       |           | Univariat  | e Test Stat | istics   |           |         |        |
|          |                       |           | Univariace | e lest stat | ISCICS   |           |         |        |
|          |                       | F Stat    | istics,    | Num DF=2,   | Den DE   | r=147     |         |        |
|          |                       | Total     | Pooled     | Between     |          |           |         |        |
|          |                       | Standard  | Standard   | Standard    |          | R-Square  |         |        |
| Variable | Label                 | Deviation | Deviation  | Deviation   | R-Square | / (1-RSq) | F Value | Pr > F |
| Sepal    | Sepal                 | 8.2807    | 5.1479     | 7.9506      | 0.6187   | 1.6226    | 119.26  | <.0001 |
| Length   | Length (mm)           |           |            |             |          |           |         |        |
| _        | Sepal                 | 4.3587    | 3.3969     | 3.3682      | 0.4008   | 0.6688    | 49.16   | <.0001 |
| Width    | Width (mm)            |           |            |             |          |           |         |        |
|          | Petal                 | 17.6530   | 4.3033     | 20.9070     | 0.9414   | 16.0566   | 1180.16 | <.0001 |
| Length   | Length (mm)           |           |            |             |          |           |         |        |
|          | Petal                 | 7.6224    | 2.0465     | 8.9673      | 0.9289   | 13.0613   | 960.01  | <.0001 |
| Width    | Width (mm)            |           |            |             |          |           |         |        |
|          |                       |           |            |             |          |           |         |        |

Output 28.1.3 continued

|                                                                                                             | Average R         | -Square  |        |        |        |
|-------------------------------------------------------------------------------------------------------------|-------------------|----------|--------|--------|--------|
| τ                                                                                                           | Jnweighted        | 0.72     | 24358  |        |        |
| 7                                                                                                           | Weighted by Varia | nce 0.86 | 89444  |        |        |
| Multivariate Statistics and F Approximations $S=2 \qquad M=0.5 \qquad N=71$                                 |                   |          |        |        |        |
| Statistic                                                                                                   | Value             | F Value  | Num DF | Den DF | Pr > F |
| Wilks' Lambda                                                                                               | 0.02343863        | 199.15   | 8      | 288    | <.0001 |
| Pillai's Trace                                                                                              | 1.19189883        | 53.47    | 8      | 290    | <.0001 |
| Hotelling-Lawley Trace                                                                                      | 32.47732024       | 582.20   | 8      | 203.4  | <.0001 |
| Roy's Greatest Root                                                                                         | 32.19192920       | 1166.96  | 4      | 145    | <.0001 |
| NOTE: F Statistic for Roy's Greatest Root is an upper bound.  NOTE: F Statistic for Wilks' Lambda is exact. |                   |          |        |        |        |

The R square between Can1 and the class variable, 0.969872, is much larger than the corresponding R square for Can2, 0.222027. This is displayed in Output 28.1.4.

Output 28.1.4 Iris Data: Canonical Correlations and Eigenvalues

|        | Fisher (1936) Iris Data                                                                |                                      |                               |            |                                    |  |
|--------|----------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------|------------------------------------|--|
|        | Tì                                                                                     | ne CANDISC Proce                     | edure                         |            |                                    |  |
|        | Canonical<br>Correlation                                                               | Adjusted<br>Canonical<br>Correlation | Approximat<br>Standar<br>Erro | d          | Squared<br>Canonical<br>orrelation |  |
| 1<br>2 | 0.984821<br>0.471197                                                                   |                                      |                               |            | 0.969872<br>0.222027               |  |
|        | <pre>Eigenvalues of Inv(E)*H</pre>                                                     |                                      |                               |            |                                    |  |
|        | Eigenvalue                                                                             | Difference                           | Proportion                    | Cum        | nulative                           |  |
| 1 2    | 32.1919<br>0.2854                                                                      | 31.9065                              | 0.9912<br>0.0088              |            | 0.9912<br>1.0000                   |  |
|        | Test of H0: The canonical correlations in the current row and all that follow are zero |                                      |                               |            |                                    |  |
|        | Likelihood<br>Ratio                                                                    | Approximate<br>F Value               | Num DF D                      | en DF      | Pr > F                             |  |
| 1 2    | 0.02343863<br>0.77797337                                                               | 199.15<br>13.79                      | 8                             | 288<br>145 | <.0001<br><.0001                   |  |

Output 28.1.5 Iris Data: Correlations between Canonical and Original Variables

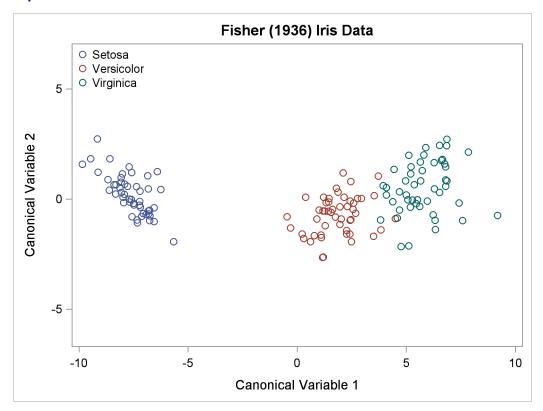
|             | Fisher (1936) I                   | ris Data  |          |  |  |
|-------------|-----------------------------------|-----------|----------|--|--|
|             | The CANDISC Pr                    | ocedure   |          |  |  |
|             | Total Canonical                   | Structure |          |  |  |
| Variable    | Label                             | Can1      | Can2     |  |  |
| SepalLength | Sepal Length (mm)                 | 0.791888  | 0.217593 |  |  |
| SepalWidth  | Sepal Width (mm)                  | -0.530759 | 0.757989 |  |  |
| PetalLength | Petal Length (mm)                 | 0.984951  | 0.046037 |  |  |
| PetalWidth  | Petal Width (mm)                  | 0.972812  | 0.222902 |  |  |
|             | Between Canonical Structure       |           |          |  |  |
| Variable    | Label                             | Can1      | Can2     |  |  |
| SepalLength | Sepal Length (mm)                 | 0.991468  | 0.130348 |  |  |
| SepalWidth  | Sepal Width (mm)                  | -0.825658 | 0.564171 |  |  |
| PetalLength | Petal Length (mm)                 | 0.999750  | 0.022358 |  |  |
| PetalWidth  | Petal Width (mm)                  | 0.994044  | 0.108977 |  |  |
|             | Pooled Within Canonical Structure |           |          |  |  |
| Variable    | Label                             | Can1      | Can2     |  |  |
| SepalLength | Sepal Length (mm)                 | 0.222596  | 0.310812 |  |  |
| SepalWidth  | Sepal Width (mm)                  | -0.119012 | 0.863681 |  |  |
| PetalLength | Petal Length (mm)                 | 0.706065  | 0.167701 |  |  |
| PetalWidth  | Petal Width (mm)                  | 0.633178  | 0.737242 |  |  |

The raw canonical coefficients (shown in Output 28.1.6) for the first canonical variable, Can1, show that the classes differ most widely on the linear combination of the centered variables:  $-0.0829378 \times \text{SepalLength} 0.153447 \times \text{SepalWidth} + 0.220121 \times \text{PetalLength} + 0.281046 \times \text{PetalWidth}.$ 

Output 28.1.6 Iris Data: Canonical Coefficients

| Fisher (1936) Iris Data |                        |                    |              |  |
|-------------------------|------------------------|--------------------|--------------|--|
| The CANDISC Procedure   |                        |                    |              |  |
| Tot                     | al-Sample Standardized | Canonical Coeffici | ents         |  |
| Variable                | Label                  | Can1               | Can2         |  |
| SepalLength             | Sepal Length (mm)      | -0.686779533       | 0.019958173  |  |
| SepalWidth              | Sepal Width (mm)       | -0.668825075       | 0.943441829  |  |
|                         |                        |                    |              |  |
| PetalLength             | Petal Length (mm)      | 3.885795047        | -1.645118866 |  |

Output 28.1.6 continued


| Pooled      | Within-Class Standardiz | ed Canonical Coeff | icients      |
|-------------|-------------------------|--------------------|--------------|
| Variable    | Label                   | Can1               | Can2         |
| SepalLength | Sepal Length (mm)       | 4269548486         | 0.0124075316 |
| SepalWidth  | Sepal Width (mm)        | 5212416758         | 0.7352613085 |
| PetalLength | Petal Length (mm)       | 0.9472572487       | 4010378190   |
| PetalWidth  | Petal Width (mm)        | 0.5751607719       | 0.5810398645 |
|             | Raw Canonical C         | coefficients       |              |
| Variable    | Label                   | Can1               | Can2         |
| SepalLength | Sepal Length (mm)       | 0829377642         | 0.0024102149 |
| SepalWidth  | Sepal Width (mm)        | 1534473068         | 0.2164521235 |
| PetalLength | Petal Length (mm)       | 0.2201211656       | 0931921210   |
| PetalWidth  | Petal Width (mm)        | 0.2810460309       | 0.2839187853 |

Output 28.1.7 Iris Data: Canonical Means

| Class      | s Means on Canonical | Variables    |
|------------|----------------------|--------------|
| Species    | Can1                 | Can2         |
| Setosa     | -7.607599927         | 0.215133017  |
| Versicolor | 1.825049490          | -0.727899622 |
| Virginica  | 5.782550437          | 0.512766605  |

The TEMPLATE and SGRENDER procedures are used to create a plot of the first two canonical variables. The following statements produce Output 28.1.8:

```
proc template;
   define statgraph scatter;
      begingraph;
         entrytitle 'Fisher (1936) Iris Data';
         layout overlayequated / equatetype=fit
            xaxisopts=(label='Canonical Variable 1')
            yaxisopts=(label='Canonical Variable 2');
            scatterplot x=Can1 y=Can2 / group=species name='iris';
            layout gridded / autoalign=(topleft);
               discretelegend 'iris' / border=false opaque=false;
               endlayout;
         endlayout;
      endgraph;
   end;
proc sgrender data=outcan template=scatter;
run;
```



Output 28.1.8 Iris Data: Plot of First Two Canonical Variables

The plot of canonical variables in Output 28.1.8 shows that of the two canonical variables, Can1 has more discriminatory power.

## **References**

Fisher, R. A. (1936), "The Use of Multiple Measurements in Taxonomic Problems," *Annals of Eugenics*, 7, 179–188.

Kshirsagar, A. M. (1972), Multivariate Analysis, New York: Marcel Dekker.

Lawley, D. N. (1959), "Tests of Significance in Canonical Analysis," *Biometrika*, 46, 59–66.

Puranen, J. (1917), "Fish Catch data set (1917)," Journal of Statistics Education Data Archive, last accessed May 22, 2009.

URL http://www.amstat.org/publications/jse/datasets/fishcatch.txt

Rao, C. R. (1973), *Linear Statistical Inference and Its Applications*, Second Edition, New York: John Wiley & Sons.

# Subject Index

```
\mathbf{A}
analysis of variance
    multivariate (CANDISC), 1648
\mathbf{C}
CANDISC procedure
     computational details, 1657
     computational resources, 1661
     input data set, 1658
     introductory example, 1647
     Mahalanobis distance, 1666
     MANOVA, 1648
     memory requirements, 1661
     missing values, 1657
     multivariate analysis of variance, 1648
     ODS table names, 1664
     output data sets, 1653, 1654, 1659
     time requirements, 1662
canonical coefficients, 1646
canonical component, 1646
canonical discriminant analysis, 1645
canonical variables, 1645
canonical weights, 1646
D
discriminant analysis
     canonical, 1645
discriminant functions, 1646
F
first canonical variable, 1646
M
Mahalanobis distance, 1653
     CANDISC procedure, 1666
MANOVA
     CANDISC procedure, 1648
multivariate analysis of variance
    CANDISC procedure, 1648
```

# Syntax Index

| A                                          | TCOV option, 1655                         |
|--------------------------------------------|-------------------------------------------|
|                                            | TSSCP option, 1655                        |
| ALL option                                 | WCORR option, 1655                        |
| PROC CANDISC statement, 1653               | WCOV option, 1655                         |
| ANOVA option                               | WSSCP option, 1655                        |
| PROC CANDISC statement, 1653               | CANDISC procedure, VAR statement, 1656    |
| ,                                          | CANDISC procedure, WEIGHT statement, 1656 |
| В                                          | CLASS statement                           |
|                                            | CANDISC procedure, 1656                   |
| BCORR option                               |                                           |
| PROC CANDISC statement, 1653               | D                                         |
| BCOV option                                |                                           |
| PROC CANDISC statement, 1653               | DATA= option                              |
| BSSCP option                               | PROC CANDISC statement, 1653              |
| PROC CANDISC statement, 1653               | DISTANCE option                           |
| BY statement                               | PROC CANDISC statement, 1653              |
| CANDISC procedure, 1655                    |                                           |
| 1                                          | $\mathbf{F}$                              |
| C                                          |                                           |
|                                            | FREQ statement                            |
| CANDISC procedure                          | CANDISC procedure, 1656                   |
| syntax, 1651                               |                                           |
| CANDISC procedure, BY statement, 1655      | M                                         |
| CANDISC procedure, CLASS statement, 1656   |                                           |
| CANDISC procedure, FREQ statement, 1656    | MAHALANOBIS option                        |
| CANDISC procedure, PROC CANDISC statement, | PROC CANDISC statement, 1653              |
| 1652                                       | N                                         |
| ALL option, 1653                           | N                                         |
| ANOVA option, 1653                         |                                           |
| BCORR option, 1653                         | NCAN= option                              |
| BCOV option, 1653                          | PROC CANDISC statement, 1653              |
| BSSCP option, 1653                         | NOPRINT option                            |
| DATA= option, 1653                         | PROC CANDISC statement, 1653              |
| DISTANCE option, 1653                      | 0                                         |
| MAHALANOBIS option, 1653                   | O                                         |
| NCAN= option, 1653                         | OUT.                                      |
| NOPRINT option, 1653                       | OUT= option                               |
| OUT= option, 1653                          | PROC CANDISC statement, 1653              |
| OUTSTAT= option, 1654                      | OUTSTAT= option                           |
| PCORR option, 1654                         | PROC CANDISC statement, 1654              |
| PCOV option, 1654                          | P                                         |
| PREFIX= option, 1654                       | 1                                         |
| PSSCP option, 1654                         | DCODD (                                   |
| SHORT option, 1654                         | PCORR option                              |
| SIMPLE option, 1654                        | PROC CANDISC statement, 1654              |
| SINGULAR= option, 1654                     | PCOV option                               |
| STDMEAN option, 1654                       | PROC CANDISC statement, 1654              |
| TCORR option, 1655                         | PREFIX= option                            |
|                                            | PROC CANDISC statement, 1654              |

PROC CANDISC statement, see CANDISC procedure PSSCP option PROC CANDISC statement, 1654  $\mathbf{S}$ SHORT option PROC CANDISC statement, 1654 SIMPLE option PROC CANDISC statement, 1654 SINGULAR= option PROC CANDISC statement, 1654 STDMEAN option PROC CANDISC statement, 1654  $\mathbf{T}$ TCORR option PROC CANDISC statement, 1655 TCOV option PROC CANDISC statement, 1655 TSSCP option PROC CANDISC statement, 1655  $\mathbf{V}$ VAR statement CANDISC procedure, 1656 W WCORR option PROC CANDISC statement, 1655 WCOV option PROC CANDISC statement, 1655 WEIGHT statement CANDISC procedure, 1656 WSSCP option PROC CANDISC statement, 1655

# **Your Turn**

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

# **SAS®** Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS\* Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

#### **SAS®** Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

#### **SAS®** Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF free on the Web.
- Hard-copy books.

support.sas.com/publishing

#### **SAS®** Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

support.sas.com/spn



Sas THE POWER TO KNOW