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Overview: PHREG Procedure

The analysis of survival data requires special techniques because the data are almost always incomplete
and familiar parametric assumptions might be unjusti�able. Investigators follow subjects until they reach a
prespeci�ed endpoint (for example, death). However, subjects sometimes withdraw from a study, or the study
is completed before the endpoint is reached. In these cases, the survival times (also known as failure times)
arecensored; subjects survived to a certain time beyond which their status is unknown. The uncensored
survival times are sometimes referred to aseventtimes. Methods of survival analysis must account for both
censored and uncensored data.

Many types of models have been used for survival data. Two of the more popular types of models are the
accelerated failure time model (Kalb�eisch and Prentice 1980) and the Cox proportional hazards model
(Cox 1972). Each has its own assumptions about the underlying distribution of the survival times. Two
closely related functions often used to describe the distribution of survival times are the survivor function
and the hazard function. See the section “Failure Time Distribution” on page 6886 for de�nitions. The
accelerated failure time model assumes a parametric form for the effects of the explanatory variables and
usually assumes a parametric form for the underlying survivor function. The Cox proportional hazards model
also assumes a parametric form for the effects of the explanatory variables, but it allows an unspeci�ed form
for the underlying survivor function.

The PHREG procedure performs regression analysis of survival data based on the Cox proportional hazards
model. Cox's semiparametric model is widely used in the analysis of survival data to explain the effect of
explanatory variables on hazard rates.

The survival time of each member of a population is assumed to follow its own hazard function,� i .t / ,
expressed as

� i .t / D �.t I Z i / D � 0.t / exp.Z0
i � /

where� 0.t / is an arbitrary and unspeci�ed baseline hazard function,Z i is the vector of explanatory variables
for the ith individual, and� is the vector of unknown regression parameters that is associated with the
explanatory variables. The vector� is assumed to be the same for all individuals. The survivor function can
be expressed as

S.t I Z i / D ŒS0.t /• exp.Z0
i � /

whereS0.t / D exp.�
Rt

0 � 0.u/du/ is the baseline survivor function. To estimate� , Cox (1972, 1975)
introduced the partial likelihood function, which eliminates the unknown baseline hazard� 0.t / and accounts
for censored survival times.

The partial likelihood of Cox also allows time-dependent explanatory variables. An explanatory variable is
time-dependent if its value for any given individual can change over time. Time-dependent variables have



6812 F Chapter 86: The PHREG Procedure

many useful applications in survival analysis. You can use a time-dependent variable to model the effect of
subjects changing treatment groups. Or you can include time-dependent variables such as blood pressure or
blood chemistry measures that vary with time during the course of a study. You can also use time-dependent
variables to test the validity of the proportional hazards model.

An alternative way to �t models with time-dependent explanatory variables is to use the counting process style
of input. The counting process formulation enables PROC PHREG to �t a superset of the Cox model, known
as the multiplicative hazards model. This extension also includes recurrent events data and left-truncation of
failure times. The theory of these models is based on the counting process pioneered by Andersen and Gill
(1982), and the model is often referred to as the Andersen-Gill model.

Multivariate failure-time data arise when each study subject can potentially experience several events (for
example, multiple infections after surgery) or when there exists some natural or arti�cial clustering of subjects
(for example, a litter of mice) that induces dependence among the failure times of the same cluster. Data in
the former situation are referred to as multiple events data, which include recurrent events data as a special
case; data in the latter situation are referred to as clustered data. You can use PROC PHREG to carry out
various methods of analyzing these data.

The population under study can consist of a number of subpopulations, each of which has its own baseline
hazard function. PROC PHREG performs a strati�ed analysis to adjust for such subpopulation differences.
Under the strati�ed model, the hazard function for thejth individual in theith stratum is expressed as

� ij .t / D � i0 .t / exp.Z0
ij � /

where� i0 .t / is the baseline hazard function for theith stratum andZ ij is the vector of explanatory variables
for the individual. The regression coef�cients are assumed to be the same for all individuals across all strata.

Ties in the failure times can arise when the time scale is genuinely discrete or when survival times that are
generated from the continuous-time model are grouped into coarser units. The PHREG procedure includes
four methods of handling ties. Thediscretelogistic model is available for discrete time-scale data. The
other three methods apply to continuous time-scale data. Theexactmethod computes the exact conditional
probability under the model that the set of observed tied event times occurs before all the censored times
with the same value or before larger values.BreslowandEfron methods provide approximations to the exact
method.

Variable selection is a typical exploratory exercise in multiple regression when the investigator is interested in
identifying important prognostic factors from a large number of candidate variables. The PHREG procedure
provides four selection methods: forward selection, backward elimination, stepwise selection, and best subset
selection. The best subset selection method is based on the likelihood score statistic. This method identi�es a
speci�ed number of best models that contain one, two, or three variables and so on, up to the single model
that contains all of the explanatory variables.

The PHREG procedure also enables you to do the following: include an offset variable in the model; weight
the observations in the input data; test linear hypotheses about the regression parameters; perform conditional
logistic regression analysis for matched case-control studies; output survivor function estimates, residuals,
and regression diagnostics; and estimate and plot the survivor function for a new set of covariates.

PROC PHREG can also be used to �t the multinomial logit choice model to discrete choice data. Seehttp:
//support.sas.com/resources/papers/tnote/tnote_marketresearch.html for more in-
formation about discrete choice modeling and the multinomial logit model. Look for the “Discrete Choice”
report.
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The PHREG procedure uses ODS Graphics to create graphs as part of its output. For example, theASSESS
statement uses a graphical method that uses ODS Graphics to check the adequacy of the model. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

For both the BASELINE and OUTPUT statements, the default method of estimating a survivor function has
changed to the Breslow (1972) estimator—that is, METHOD=CH. The option NOMEAN that was available
in the BASELINE statement prior to SAS/STAT 9.2 has become obsolete—that is, requested statistics at the
sample average values of the covariates are no longer computed and added to the OUT= data set. However,
if the COVARIATES= data set is not speci�ed, the requested statistics are computed and output for the
covariate set that consists of the reference levels for the CLASS variables and sample averages for the
continuous variable. In addition to the requested statistics, the OUT= data set also contains all variables in
the COVARIATES= data set.

The remaining sections of this chapter contain information about how to use PROC PHREG, information
about the underlying statistical methodology, and some sample applications of the procedure. The section
“Getting Started: PHREG Procedure” on page 6813 introduces PROC PHREG with two examples. The
section “Syntax: PHREG Procedure” on page 6821 describes the syntax of the procedure. The section
“Details: PHREG Procedure” on page 6886 summarizes the statistical techniques used in PROC PHREG.
The section “Examples: PHREG Procedure” on page 6973 includes eight additional examples of useful
applications. Experienced SAS/STAT software users might decide to proceed to the “Syntax” section, while
other users might choose to read both the “Getting Started” and “Examples” sections before proceeding to
“Syntax” and “Details.”

Getting Started: PHREG Procedure

This section uses the two-sample vaginal cancer mortality data from Kalb�eisch and Prentice (1980, p. 2)
in two examples to illustrate some of the basic features of PROC PHREG. The �rst example carries out a
classical Cox regression analysis and the second example performs a Bayesian analysis of the Cox model.

Two groups of rats received different pretreatment regimes and then were exposed to a carcinogen. Investiga-
tors recorded the survival times of the rats from exposure to mortality from vaginal cancer. Four rats died of
other causes, so their survival times are censored. Interest lies in whether the survival curves differ between
the two groups.

The following DATA step creates the data setRats, which contains the variableDays (the survival time in
days), the variableStatus (the censoring indicator variable: 0 if censored and 1 if not censored), and the
variableGroup (the pretreatment group indicator).

data Rats;
label Days =�Days from Exposure to Death�;
input Days Status Group @@;
datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 0 209 1 0
213 1 0 216 1 0 220 1 0 227 1 0
230 1 0 234 1 0 246 1 0 265 1 0
304 1 0 216 0 0 244 0 0 142 1 1
156 1 1 163 1 1 198 1 1 205 1 1
232 1 1 232 1 1 233 1 1 233 1 1
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233 1 1 233 1 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 323 1 1 204 0 1 344 0 1
;

By using ODS Graphics, PROC PHREG allows you to plot the survival curve forGroup=0 and the survival
curve forGroup=1, but �rst you must save these two covariate values in a SAS data set as in the following
DATA step:

data Regimes;
Group=0;
output;
Group=1;
output;

run;

Classical Method of Maximum Likelihood

PROC PHREG �ts the Cox model by maximizing the partial likelihood and computes the baseline survivor
function by using the Breslow (1972) estimate. The following statements produce Figure 86.1 and Figure 86.2:

ods graphics on;
proc phreg data=Rats plot(overlay)=survival;

model Days * Status(0)=Group;
baseline covariates=regimes out=_null_;

run;

In the MODEL statement, the response variable,Days, is crossed with the censoring variable,Status, with
the value that indicates censoring is enclosed in parentheses. The values ofDays are considered censored if
the value ofStatus is 0; otherwise, they are considered event times.

Graphs are produced when ODS Graphics is enabled. The survival curves for the two observations in the
data setRegime, speci�ed in theCOVARIATES=option in the BASELINE statement, are requested through
the PLOTS= option with the OVERLAY option for overlaying both survival curves in the same plot.

Figure 86.2 shows a typical printed output of a classical analysis. SinceGroup takes only two values, the null
hypothesis for no difference between the two groups is identical to the null hypothesis that the regression
coef�cient for Group is 0. All three tests in the “Testing Global Null Hypothesis: BETA=0” table (see the
section “Testing the Global Null Hypothesis” on page 6906) suggest that the survival curves for the two
pretreatment groups might not be the same. In this model, the hazard ratio (or risk ratio) forGroup, de�ned
as the exponentiation of the regression coef�cient forGroup, is the ratio of the hazard functions between
the two groups. The estimate is 0.551, implying that the hazard function forGroup=1 is smaller than that
for Group=0. In other words, rats inGroup=1 lived longer than those inGroup=0. This conclusion is also
revealed in the plot of the survivor functions in Figure 86.2.
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Figure 86.1 Comparison of Two Survival Curves
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Figure 86.2 Survivorship for the Two Pretreatment Regimes

In this example, the comparison of two survival curves is put in the form of a proportional hazards model.
This approach is essentially the same as the log-rank (Mantel-Haenszel) test. In fact, if there are no ties in the
survival times, the likelihood score test in the Cox regression analysis is identical to the log-rank test. The
advantage of the Cox regression approach is the ability to adjust for the other variables by including them in
the model. For example, the present model could be expanded by including a variable that contains the initial
body weights of the rats.

Next, consider a simple test of the validity of the proportional hazards assumption. The proportional hazards
model for comparing the two pretreatment groups is given by the following:

�.t / D
�

� 0.t / if GROUPD 0
� 0.t /e � 1 if GROUPD 1

The ratio of hazards ise� 1 , which does not depend on time. If the hazard ratio changes with time, the
proportional hazards model assumption is invalid. Simple forms of departure from the proportional hazards
model can be investigated with the following time-dependent explanatory variablex D x.t / :

x.t / D
�

0 if GROUPD 0
log.t / � 5:4 if GROUPD 1
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Here,log.t / is used instead oft to avoid numerical instability in the computation. The constant, 5.4, is the
average of the logs of the survival times and is included to improve interpretability. The hazard ratio in the
two groups then becomese� 1 � 5:4� 2 t � 2 , where� 2 is the regression parameter for the time-dependent variable
x. The terme� 1 represents the hazard ratio at the geometric mean of the survival times. A nonzero value of
� 2 would imply an increasing.� 2 > 0/ or decreasing.� 2 < 0/ trend in the hazard ratio with time.

The following statements implement this simple test of the proportional hazards assumption. The MODEL
statement includes the time-dependent explanatory variableX, which is de�ned subsequently by the program-
ming statement. At each event time, subjects in the risk set (those alive just before the event time) have their
X values changed accordingly.

proc phreg data=Rats;
model Days * Status(0)=Group X;
X=Group * (log(Days) - 5.4);

run;

The analysis of the parameter estimates is displayed in Figure 86.3. The Wald chi-square statistic for testing
the null hypothesis that� 2 D 0 is 0.0158. The statistic is not statistically signi�cant when compared to a
chi-square distribution with one degree of freedom (p = 0.8999). Thus, you can conclude that there is no
evidence of an increasing or decreasing trend over time in the hazard ratio.

Figure 86.3 A Simple Test of Trend in the Hazard Ratio

Bayesian Analysis

PROC PHREG uses the partial likelihood of the Cox model as the likelihood and generates a chain of posterior
distribution samples by the Gibbs Sampler. Summary statistics, convergence diagnostics, and diagnostic
plots are provided for each parameter. The following statements generate Figure 86.4–Figure 86.10:

ods graphics on;
proc phreg data=Rats;

model Days * Status(0)=Group;
bayes seed=1 outpost=Post;

run;

The BAYES statement invokes the Bayesian analysis. The SEED= option is speci�ed to maintain reproducibil-
ity; the OUTPOST= option saves the posterior distribution samples in a SAS data set for post-processing; no
other options are speci�ed in the BAYES statement. By default, a uniform prior distribution is assumed on the
regression coef�cientGroup. The uniform prior is a �at prior on the real line with a distribution that re�ects
ignorance of the location of the parameter, placing equal probability on all possible values the regression
coef�cient can take. Using the uniform prior in the following example, you would expect the Bayesian
estimates to resemble the classical results of maximizing the likelihood. If you can elicit an informative prior
on the regression coef�cients, you should use the COEFFPRIOR= option to specify it.
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You should make sure that the posterior distribution samples have achieved convergence before using them
for Bayesian inference. PROC PHREG produces three convergence diagnostics by default. If ODS Graphics
is enabled before calling PROC PHREG as in the preceding program, diagnostics plots are also displayed.

The results of this analysis are shown in the following �gures.

The “Model Information” table in Figure 86.4 summarizes information about the model you �t and the size
of the simulation.

Figure 86.4 Model Information

PROC PHREG �rst �ts the Cox model by maximizing the partial likelihood. The only parameter in the
model is the regression coef�cient ofGroup. The maximum likelihood estimate (MLE) of the parameter and
its 95% con�dence interval are shown in Figure 86.5.

Figure 86.5 Classical Parameter Estimates

Since no prior is speci�ed for the regression coef�cient, the default uniform prior is used. This information is
displayed in the “Uniform Prior for Regression Coef�cients” table in Figure 86.6.

Figure 86.6 Coef�cient Prior

The “Fit Statistics” table in Figure 86.7 lists information about the �tted model. The table displays the DIC
(deviance information criterion) and pD (effective number of parameters). For more information, see the
section “Fit Statistics” on page 6954.
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