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Overview: PHREG Procedure
The analysis of survival data requires special techniques because the data are almost always incomplete
and familiar parametric assumptions might be unjustifiable. Investigators follow subjects until they reach a
prespecified endpoint (for example, death). However, subjects sometimes withdraw from a study, or the study
is completed before the endpoint is reached. In these cases, the survival times (also known as failure times)
are censored; subjects survived to a certain time beyond which their status is unknown. The uncensored
survival times are sometimes referred to as event times. Methods of survival analysis must account for both
censored and uncensored data.

Many types of models have been used for survival data. Two of the more popular types of models are the
accelerated failure time model (Kalbfleisch and Prentice 1980) and the Cox proportional hazards model
(Cox 1972). Each has its own assumptions about the underlying distribution of the survival times. Two
closely related functions often used to describe the distribution of survival times are the survivor function
and the hazard function. See the section “Failure Time Distribution” on page 6886 for definitions. The
accelerated failure time model assumes a parametric form for the effects of the explanatory variables and
usually assumes a parametric form for the underlying survivor function. The Cox proportional hazards model
also assumes a parametric form for the effects of the explanatory variables, but it allows an unspecified form
for the underlying survivor function.

The PHREG procedure performs regression analysis of survival data based on the Cox proportional hazards
model. Cox’s semiparametric model is widely used in the analysis of survival data to explain the effect of
explanatory variables on hazard rates.

The survival time of each member of a population is assumed to follow its own hazard function, �i .t/,
expressed as

�i .t/ D �.t IZi / D �0.t/ exp.Z0iˇ/

where �0.t/ is an arbitrary and unspecified baseline hazard function, Zi is the vector of explanatory variables
for the ith individual, and ˇ is the vector of unknown regression parameters that is associated with the
explanatory variables. The vector ˇ is assumed to be the same for all individuals. The survivor function can
be expressed as

S.t IZi / D ŒS0.t/� exp.Z
0

iˇ/

where S0.t/ D exp.�
R t
0 �0.u/du/ is the baseline survivor function. To estimate ˇ, Cox (1972, 1975)

introduced the partial likelihood function, which eliminates the unknown baseline hazard �0.t/ and accounts
for censored survival times.

The partial likelihood of Cox also allows time-dependent explanatory variables. An explanatory variable is
time-dependent if its value for any given individual can change over time. Time-dependent variables have



6812 F Chapter 86: The PHREG Procedure

many useful applications in survival analysis. You can use a time-dependent variable to model the effect of
subjects changing treatment groups. Or you can include time-dependent variables such as blood pressure or
blood chemistry measures that vary with time during the course of a study. You can also use time-dependent
variables to test the validity of the proportional hazards model.

An alternative way to fit models with time-dependent explanatory variables is to use the counting process style
of input. The counting process formulation enables PROC PHREG to fit a superset of the Cox model, known
as the multiplicative hazards model. This extension also includes recurrent events data and left-truncation of
failure times. The theory of these models is based on the counting process pioneered by Andersen and Gill
(1982), and the model is often referred to as the Andersen-Gill model.

Multivariate failure-time data arise when each study subject can potentially experience several events (for
example, multiple infections after surgery) or when there exists some natural or artificial clustering of subjects
(for example, a litter of mice) that induces dependence among the failure times of the same cluster. Data in
the former situation are referred to as multiple events data, which include recurrent events data as a special
case; data in the latter situation are referred to as clustered data. You can use PROC PHREG to carry out
various methods of analyzing these data.

The population under study can consist of a number of subpopulations, each of which has its own baseline
hazard function. PROC PHREG performs a stratified analysis to adjust for such subpopulation differences.
Under the stratified model, the hazard function for the jth individual in the ith stratum is expressed as

�ij .t/ D �i0.t/ exp.Z0ijˇ/

where �i0.t/ is the baseline hazard function for the ith stratum and Zij is the vector of explanatory variables
for the individual. The regression coefficients are assumed to be the same for all individuals across all strata.

Ties in the failure times can arise when the time scale is genuinely discrete or when survival times that are
generated from the continuous-time model are grouped into coarser units. The PHREG procedure includes
four methods of handling ties. The discrete logistic model is available for discrete time-scale data. The
other three methods apply to continuous time-scale data. The exact method computes the exact conditional
probability under the model that the set of observed tied event times occurs before all the censored times
with the same value or before larger values. Breslow and Efron methods provide approximations to the exact
method.

Variable selection is a typical exploratory exercise in multiple regression when the investigator is interested in
identifying important prognostic factors from a large number of candidate variables. The PHREG procedure
provides four selection methods: forward selection, backward elimination, stepwise selection, and best subset
selection. The best subset selection method is based on the likelihood score statistic. This method identifies a
specified number of best models that contain one, two, or three variables and so on, up to the single model
that contains all of the explanatory variables.

The PHREG procedure also enables you to do the following: include an offset variable in the model; weight
the observations in the input data; test linear hypotheses about the regression parameters; perform conditional
logistic regression analysis for matched case-control studies; output survivor function estimates, residuals,
and regression diagnostics; and estimate and plot the survivor function for a new set of covariates.

PROC PHREG can also be used to fit the multinomial logit choice model to discrete choice data. See http:
//support.sas.com/resources/papers/tnote/tnote_marketresearch.html for more in-
formation about discrete choice modeling and the multinomial logit model. Look for the “Discrete Choice”
report.

http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html
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The PHREG procedure uses ODS Graphics to create graphs as part of its output. For example, the ASSESS
statement uses a graphical method that uses ODS Graphics to check the adequacy of the model. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

For both the BASELINE and OUTPUT statements, the default method of estimating a survivor function has
changed to the Breslow (1972) estimator—that is, METHOD=CH. The option NOMEAN that was available
in the BASELINE statement prior to SAS/STAT 9.2 has become obsolete—that is, requested statistics at the
sample average values of the covariates are no longer computed and added to the OUT= data set. However,
if the COVARIATES= data set is not specified, the requested statistics are computed and output for the
covariate set that consists of the reference levels for the CLASS variables and sample averages for the
continuous variable. In addition to the requested statistics, the OUT= data set also contains all variables in
the COVARIATES= data set.

The remaining sections of this chapter contain information about how to use PROC PHREG, information
about the underlying statistical methodology, and some sample applications of the procedure. The section
“Getting Started: PHREG Procedure” on page 6813 introduces PROC PHREG with two examples. The
section “Syntax: PHREG Procedure” on page 6821 describes the syntax of the procedure. The section
“Details: PHREG Procedure” on page 6886 summarizes the statistical techniques used in PROC PHREG.
The section “Examples: PHREG Procedure” on page 6973 includes eight additional examples of useful
applications. Experienced SAS/STAT software users might decide to proceed to the “Syntax” section, while
other users might choose to read both the “Getting Started” and “Examples” sections before proceeding to
“Syntax” and “Details.”

Getting Started: PHREG Procedure
This section uses the two-sample vaginal cancer mortality data from Kalbfleisch and Prentice (1980, p. 2)
in two examples to illustrate some of the basic features of PROC PHREG. The first example carries out a
classical Cox regression analysis and the second example performs a Bayesian analysis of the Cox model.

Two groups of rats received different pretreatment regimes and then were exposed to a carcinogen. Investiga-
tors recorded the survival times of the rats from exposure to mortality from vaginal cancer. Four rats died of
other causes, so their survival times are censored. Interest lies in whether the survival curves differ between
the two groups.

The following DATA step creates the data set Rats, which contains the variable Days (the survival time in
days), the variable Status (the censoring indicator variable: 0 if censored and 1 if not censored), and the
variable Group (the pretreatment group indicator).

data Rats;
label Days ='Days from Exposure to Death';
input Days Status Group @@;
datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 0 209 1 0
213 1 0 216 1 0 220 1 0 227 1 0
230 1 0 234 1 0 246 1 0 265 1 0
304 1 0 216 0 0 244 0 0 142 1 1
156 1 1 163 1 1 198 1 1 205 1 1
232 1 1 232 1 1 233 1 1 233 1 1
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233 1 1 233 1 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 323 1 1 204 0 1 344 0 1
;

By using ODS Graphics, PROC PHREG allows you to plot the survival curve for Group=0 and the survival
curve for Group=1, but first you must save these two covariate values in a SAS data set as in the following
DATA step:

data Regimes;
Group=0;
output;
Group=1;
output;

run;

Classical Method of Maximum Likelihood
PROC PHREG fits the Cox model by maximizing the partial likelihood and computes the baseline survivor
function by using the Breslow (1972) estimate. The following statements produce Figure 86.1 and Figure 86.2:

ods graphics on;
proc phreg data=Rats plot(overlay)=survival;

model Days*Status(0)=Group;
baseline covariates=regimes out=_null_;

run;

In the MODEL statement, the response variable, Days, is crossed with the censoring variable, Status, with
the value that indicates censoring is enclosed in parentheses. The values of Days are considered censored if
the value of Status is 0; otherwise, they are considered event times.

Graphs are produced when ODS Graphics is enabled. The survival curves for the two observations in the
data set Regime, specified in the COVARIATES= option in the BASELINE statement, are requested through
the PLOTS= option with the OVERLAY option for overlaying both survival curves in the same plot.

Figure 86.2 shows a typical printed output of a classical analysis. Since Group takes only two values, the null
hypothesis for no difference between the two groups is identical to the null hypothesis that the regression
coefficient for Group is 0. All three tests in the “Testing Global Null Hypothesis: BETA=0” table (see the
section “Testing the Global Null Hypothesis” on page 6906) suggest that the survival curves for the two
pretreatment groups might not be the same. In this model, the hazard ratio (or risk ratio) for Group, defined
as the exponentiation of the regression coefficient for Group, is the ratio of the hazard functions between
the two groups. The estimate is 0.551, implying that the hazard function for Group=1 is smaller than that
for Group=0. In other words, rats in Group=1 lived longer than those in Group=0. This conclusion is also
revealed in the plot of the survivor functions in Figure 86.2.
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Figure 86.1 Comparison of Two Survival Curves

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.RATS

Dependent Variable Days Days from Exposure to Death

Censoring Variable Status

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

40
40

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

40 36 4 10.00

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 204.317 201.438

AIC 204.317 203.438

SBC 204.317 205.022

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 2.8784 1 0.0898

Score 3.0001 1 0.0833

Wald 2.9254 1 0.0872

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Group 1 -0.59590 0.34840 2.9254 0.0872 0.551
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Figure 86.2 Survivorship for the Two Pretreatment Regimes

In this example, the comparison of two survival curves is put in the form of a proportional hazards model.
This approach is essentially the same as the log-rank (Mantel-Haenszel) test. In fact, if there are no ties in the
survival times, the likelihood score test in the Cox regression analysis is identical to the log-rank test. The
advantage of the Cox regression approach is the ability to adjust for the other variables by including them in
the model. For example, the present model could be expanded by including a variable that contains the initial
body weights of the rats.

Next, consider a simple test of the validity of the proportional hazards assumption. The proportional hazards
model for comparing the two pretreatment groups is given by the following:

�.t/ D

�
�0.t/ if GROUP D 0
�0.t/e

ˇ1 if GROUP D 1

The ratio of hazards is eˇ1 , which does not depend on time. If the hazard ratio changes with time, the
proportional hazards model assumption is invalid. Simple forms of departure from the proportional hazards
model can be investigated with the following time-dependent explanatory variable x D x.t/:

x.t/ D

�
0 if GROUP D 0
log.t/ � 5:4 if GROUP D 1



Bayesian Analysis F 6817

Here, log.t/ is used instead of t to avoid numerical instability in the computation. The constant, 5.4, is the
average of the logs of the survival times and is included to improve interpretability. The hazard ratio in the
two groups then becomes eˇ1�5:4ˇ2 tˇ2 , where ˇ2 is the regression parameter for the time-dependent variable
x. The term eˇ1 represents the hazard ratio at the geometric mean of the survival times. A nonzero value of
ˇ2 would imply an increasing .ˇ2 > 0/ or decreasing .ˇ2 < 0/ trend in the hazard ratio with time.

The following statements implement this simple test of the proportional hazards assumption. The MODEL
statement includes the time-dependent explanatory variable X, which is defined subsequently by the program-
ming statement. At each event time, subjects in the risk set (those alive just before the event time) have their
X values changed accordingly.

proc phreg data=Rats;
model Days*Status(0)=Group X;
X=Group*(log(Days) - 5.4);

run;

The analysis of the parameter estimates is displayed in Figure 86.3. The Wald chi-square statistic for testing
the null hypothesis that ˇ2 D 0 is 0.0158. The statistic is not statistically significant when compared to a
chi-square distribution with one degree of freedom (p = 0.8999). Thus, you can conclude that there is no
evidence of an increasing or decreasing trend over time in the hazard ratio.

Figure 86.3 A Simple Test of Trend in the Hazard Ratio

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Group 1 -0.59976 0.34837 2.9639 0.0851 0.549

X 1 -0.22952 1.82489 0.0158 0.8999 0.795

Bayesian Analysis
PROC PHREG uses the partial likelihood of the Cox model as the likelihood and generates a chain of posterior
distribution samples by the Gibbs Sampler. Summary statistics, convergence diagnostics, and diagnostic
plots are provided for each parameter. The following statements generate Figure 86.4–Figure 86.10:

ods graphics on;
proc phreg data=Rats;

model Days*Status(0)=Group;
bayes seed=1 outpost=Post;

run;

The BAYES statement invokes the Bayesian analysis. The SEED= option is specified to maintain reproducibil-
ity; the OUTPOST= option saves the posterior distribution samples in a SAS data set for post-processing; no
other options are specified in the BAYES statement. By default, a uniform prior distribution is assumed on the
regression coefficient Group. The uniform prior is a flat prior on the real line with a distribution that reflects
ignorance of the location of the parameter, placing equal probability on all possible values the regression
coefficient can take. Using the uniform prior in the following example, you would expect the Bayesian
estimates to resemble the classical results of maximizing the likelihood. If you can elicit an informative prior
on the regression coefficients, you should use the COEFFPRIOR= option to specify it.
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You should make sure that the posterior distribution samples have achieved convergence before using them
for Bayesian inference. PROC PHREG produces three convergence diagnostics by default. If ODS Graphics
is enabled before calling PROC PHREG as in the preceding program, diagnostics plots are also displayed.

The results of this analysis are shown in the following figures.

The “Model Information” table in Figure 86.4 summarizes information about the model you fit and the size
of the simulation.

Figure 86.4 Model Information

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Model Information

Data Set WORK.RATS

Dependent Variable Days Days from Exposure to Death

Censoring Variable Status

Censoring Value(s) 0

Model Cox

Ties Handling BRESLOW

Sampling Algorithm ARMS

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

PROC PHREG first fits the Cox model by maximizing the partial likelihood. The only parameter in the
model is the regression coefficient of Group. The maximum likelihood estimate (MLE) of the parameter and
its 95% confidence interval are shown in Figure 86.5.

Figure 86.5 Classical Parameter Estimates

Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Group 1 -0.5959 0.3484 -1.2788 0.0870

Since no prior is specified for the regression coefficient, the default uniform prior is used. This information is
displayed in the “Uniform Prior for Regression Coefficients” table in Figure 86.6.

Figure 86.6 Coefficient Prior

Uniform Prior for
Regression
Coefficients

Parameter Prior

Group Constant

The “Fit Statistics” table in Figure 86.7 lists information about the fitted model. The table displays the DIC
(deviance information criterion) and pD (effective number of parameters). For more information, see the
section “Fit Statistics” on page 6954.
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Figure 86.7 Fit Statistics

Fit Statistics

DIC (smaller is better) 203.444

pD (Effective Number of Parameters) 1.003

Summary statistics of the posterior samples are displayed in the “Posterior Summaries and Intervals” table in
Figure 86.8. Note that the mean and standard deviation of the posterior samples are comparable to the MLE
and its standard error, respectively, because of the use of the uniform prior.

Figure 86.8 Summary Statistics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Group 10000 -0.5998 0.3511 -1.2984 0.0756

PROC PHREG provides diagnostics to assess the convergence of the generated Markov chain. Figure 86.9
shows the effective sample size diagnostic. There is no indication that the Markov chain has not reached
convergence. For information about interpreting these diagnostics, see the section “Statistical Diagnostic
Tests” on page 141 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Figure 86.9 Convergence Diagnostics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Group 10000.0 1.0000 1.0000

You can also assess the convergence of the generated Markov chain by examining the trace plot, the
autocorrelation function plot, and the posterior density plot. Figure 86.10 displays a panel of these three plots
for the parameter Group. This graphical display is automatically produced when ODS Graphics is enabled.
Note that the trace of the samples centers on –0.6 with only small fluctuations, the autocorrelations are quite
small, and the posterior density appears bell-shaped—all exemplifying the behavior of a converged Markov
chain.
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Figure 86.10 Diagnostic Plots

The proportional hazards model for comparing the two pretreatment groups is

�.t/ D

�
�0.t/ if Group=0
�0.t/eˇ if Group=1

The probability that the hazard of Group=0 is greater than that of Group=1 is

Pr.�0.t/ > �0.t/eˇ / D Pr.ˇ < 0/

This probability can be enumerated from the posterior distribution samples by computing the fraction of
samples with a coefficient less than 0. The following DATA step and PROC MEANS perform this calculation:

data New;
set Post;
Indicator=(Group < 0);
label Indicator='Group < 0';

run;
proc means data=New(keep=Indicator) n mean;
run;



Syntax: PHREG Procedure F 6821

Figure 86.11 Prob(Hazard(Group=0) > Hazard(Group=1))

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : Indicator

Group < 0

N Mean

10000 0.9581000

The PROC MEANS results are displayed in Figure 86.11. There is a 95.8% chance that the hazard rate of
Group=0 is greater than that of Group=1. The result is consistent with the fact that the average survival time
of Group=0 is less than that of Group=1.

Syntax: PHREG Procedure
The following statements are available in the PHREG procedure. Items within < > are optional.

PROC PHREG < options > ;
ASSESS keyword < / options > ;
BASELINE < OUT=SAS-data-set > < COVARIATES=SAS-data-set >

< keyword=name . . . keyword=name > < / options > ;
BAYES < options > ;
BY variables ;
CLASS variable < (options) > < . . . variable < (options) > > < / options > ;
CONTRAST < 'label ' > effect values < , . . . , effect values > < / options > ;
FREQ variable ;
EFFECT name = effect-type (variables < / options >) ;
ESTIMATE < 'label ' > estimate-specification < / options > ;
HAZARDRATIO < 'label ' > variable < / options > ;
ID variables ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect lsmestimate-specification < / options > ;
MODEL response <� censor (list) > = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < / options > ;
Programming statements ;
RANDOM variable < / options > ;
ROC < 'label ' > specification ;
SLICE model-effect < / options > ;
STORE < OUT= > item-store-name < / LABEL='label ' > ;
STRATA variable < (list) > < . . . variable < (list) > > < / option > ;
< label: > TEST equation < , . . . , equation > < / options > ;
WEIGHT variable < / option > ;

The PROC PHREG and MODEL statements are required. The CLASS statement, if present, must precede
the MODEL statement, and the ASSESS or CONTRAST statement, if present, must come after the MODEL
statement. The BAYES statement, that invokes a Bayesian analysis, is not compatible with the ASSESS,
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CONTRAST, ID, OUTPUT, and TEST statements, as well as a number of options in the PROC PHREG and
MODEL statements. For more information, see the section “Specifics for Bayesian Analysis” on page 6945.

The rest of this section provides detailed syntax information for each statement, beginning with the PROC
PHREG statement. The remaining statements are covered in alphabetical order.

PROC PHREG Statement
PROC PHREG < options > ;

The PROC PHREG statement invokes the PHREG procedure. Table 86.1 summarizes the options available
in the PROC PHREG statement.

Table 86.1 PROC PHREG Statement Options

Option Description

ALPHA= Specifies the level of significance
ATRISK Displays a table that contains the number of units and the corresponding

number of events in the risk sets
CONCORDANCE Computes concordance statistics
COVM Uses the model-based covariance matrix in the analysis
COVOUT Adds the estimated covariance matrix to the OUTEST= data set
COVSANDWICH Requests the robust sandwich estimate for the covariance matrix
DATA= Names the SAS data set to be analyzed
EV Requests the Schemper-Henderson predictive measures
FAST Uses a fast algorithm for large data with start/stop input
INEST= Names the SAS data set that contains initial estimates
MULTIPASS Recompiles the risk sets
NAMELEN= Specifies the length of effect names
NOPRINT Suppresses all displayed output
NOSUMMARY Suppresses the summary display observation frequencies
OUTEST= Creates an output SAS data set containing estimates of the regression

coefficients
PLOTS= Controls the plots that are produced through ODS Graphics
ROCOPTIONS Specifies options for receiver operating characteristic analysis
SIMPLE Displays simple descriptive statistics
TAU= Specifies upper time limit for Uno’s concordance statistic and the integrated

area under the curve
ZPH Requests diagnostics based on weighted residuals for checking the propor-

tional hazards assumption

You can specify the following options in the PROC PHREG statement.

ALPHA=number
specifies the level of significance ˛ for 100.1 � ˛/% confidence intervals. The value number

must be between 0 and 1; the default value is 0.05, which results in 95% intervals. This value is
used as the default confidence level for limits computed by the BASELINE, BAYES, CONTRAST,
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HAZARDRATIO, and MODEL statements. You can override this default by specifying the ALPHA=
option in the separate statements.

ATRISK
displays a table that contains the number of units at risk at each event time and the corresponding

number of events in the risk sets. For example, the following risk set information is displayed if the
ATRISK option is specified in the example in the section “Getting Started: PHREG Procedure” on
page 6813.

Risk Set Information
Number of Units

Days At Risk Event

142 40 1
143 39 1
156 38 1
:::

:::
:::

296 5 2
304 3 1
323 2 1

CONCORDANCE < =method< (options) > >
computes concordance statistics for the model specified in the MODEL statement (unless the NOFIT
option is specified) and for each model specified in an ROC statement. For more information, see the
section “Concordance Statistics” on page 6925. You can specify the following methods:

HARRELL < (SE) >
requests Harrell’s concordance statistic (Harrell et al. 1984). The SE suboption, if specified,
produces standard error for the concordance statistic by the method of Kang et al. (2015).

UNO < (uno-options) >
computes the concordance statistic of Uno et al. (2011). You can specify the following uno-
options:

SE
computes the standard error for the concordance statistic by using the perturbation resampling
approach as described in Uno et al. (2011).

SEED=n
specifies an integer seed for the random number generator to generate the perturbation
samples.

ITER=n
specifies the number of perturbation samples to use.

ALPHA=number
specifies the significance level of the confidence interval for the concordance probability.
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DIFF
calculates paired differences in the estimated concordance statistics among all identified
ROC models. If the SE suboption is also specified, standard errors and confidence limits are
also computed.

Specifying the CONCORDANCE option without any suboptions is equivalent to specifying
CONCORDANCE=HARRELL.

COVOUT
adds the estimated covariance matrix of the parameter estimates to the OUTEST= data set. The
COVOUT option has no effect unless the OUTEST= option is specified.

COVM
requests that the model-based covariance matrix (which is the inverse of the observed information
matrix) be used in the analysis if the COVS option is also specified. The COVM option has no effect if
the COVS option is not specified.

COVSANDWICH < (AGGREGATE) >

COVS < (AGGREGATE) >
requests the robust sandwich estimate of Lin and Wei (1989) for the covariance matrix. When this
option is specified, this robust sandwich estimate is used in the Wald tests for testing the global null
hypothesis, null hypotheses of individual parameters, and the hypotheses in the CONTRAST and TEST
statements. In addition, a modified score test is computed in the testing of the global null hypothesis,
and the parameter estimates table has an additional StdErrRatio column, which contains the ratios of
the robust estimate of the standard error relative to the corresponding model-based estimate. Optionally,
you can specify the keyword AGGREGATE enclosed in parentheses after the COVSANDWICH (or
COVS) option, which requests a summing up of the score residuals for each distinct ID pattern in the
computation of the robust sandwich covariance estimate. This AGGREGATE option has no effect if
the ID statement is not specified.

DATA=SAS-data-set
names the SAS data set that contains the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

EV
requests the Schemper-Henderson measure (Schemper and Henderson 2000) of the proportion of
variation that is explained by a Cox regression. This measure of explained variation (EV) is the
ratio of distance measures between the 1/0 survival processes and the fitted survival curves with
and without covariates information. The distance measure is referred to as the predictive inaccuracy,
because the smaller the predictive inaccuracy, the better the prediction. When you specify this option,
PROC PHREG creates a table that has three columns: one presents the predictive inaccuracy without
covariates (D); one presents the predictive inaccuracy with covariates (Dz); and one presents the EV
measure, computed according to 100D�Dz

Dz
%.

FAST
uses an alternative algorithm to speed up the fitting of the Cox regression for a large data set that has
the counting process style of input. Simonsen (2014) has demonstrated the efficiency of this algorithm
when the data set contains a large number of observations and many distinct event times. The algorithm
requires only one pass through the data to compute the Breslow or Efron partial log-likelihood function
and the corresponding gradient and Hessian. PROC PHREG ignores the FAST option if you specify a
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TIES= option value other than BRESLOW or EFRON, or if you specify programming statements for
time-varying covariates. You might not see much improvement in the optimization time if your data
set has only a moderate number of observations.

INEST=SAS-data-set
names the SAS data set that contains initial estimates for all the parameters in the model. BY-group
processing is allowed in setting up the INEST= data set. For more information, see the section
“INEST= Input Data Set” on page 6957.

MULTIPASS
requests that, for each Newton-Raphson iteration, PROC PHREG recompile the risk sets that cor-
respond to the event times for the (start,stop) style of response and recomputes the values of the
time-dependent variables defined by the programming statements for each observation in the risk sets.
If the MULTIPASS option is not specified, PROC PHREG computes all risk sets and all the variable
values and saves them in a utility file. The MULTIPASS option decreases required disk space at the
expense of increased execution time; however, for very large data, it might actually save time, because
it is time-consuming to write and read large utility files. This option has an effect only when the
(start,stop) style of response is used or when there are time-dependent explanatory variables.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters, where n is a value
between 20 and 200. The default length is 20 characters.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output Delivery System
(ODS); for more information about ODS, see Chapter 20, “Using the Output Delivery System.”

NOSUMMARY
suppresses the summary display of the event and censored observation frequencies.

OUTEST=SAS-data-set
creates an output SAS data set that contains estimates of the regression coefficients. The data set also
contains the convergence status and the log likelihood. If you use the COVOUT option, the data set
also contains the estimated covariance matrix of the parameter estimators. For more information, see
the section “OUTEST= Output Data Set” on page 6956.

PLOTS< (global-plot-options) > = plot-request

PLOTS< (global-plot-options) > = (plot-request < . . . < plot-request > >)
controls the plots that are produced through ODS Graphics. Two types of plots can be produced: plots
related to the receiver operating characteristic curves (such as AUC, AUCDIFF, and ROC) and the
baseline function plots (such as CIF, CUMHAZ, MCF, and SURVIVAL).

For the baseline function plots, each observation in the COVARIATES= data set in the BASELINE
statement represents a set of covariates for which a curve is produced for each plot-request and for
each stratum. You can use the ROWID= option in the BASELINE statement to specify a variable in
the COVARIATES= data set for identifying the curves that are produced for the covariate sets. If the
ROWID= option is not specified, the produced curves are identified by the covariate values if there is
only a single covariate or by the observation numbers of the COVARIATES= data set if the model has
two or more covariates. If the COVARIATES= data set is not specified, a reference set of covariates
that consists of the reference levels for the CLASS variables and the average values for the continuous
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variables is used. For plotting more than one curve, you can use the OVERLAY= global-plot-option to
group the curves in separate plots.

When you specify one plot-request , you can omit the parentheses around the plot request. Here are
some examples:

plots=survival
plots=(survival auc)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc phreg plots(cl)=survival;

model Time*Status(0)=X1-X5;
baseline covariates=One;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 607 in Chapter 21, “Statistical Graphics Using ODS.”

The global-plot-options include the following:

CL< =EQTAIL | HPD >
displays the pointwise interval limits for the specified curves. For the classical analysis, CL
displays the confidence limits. For the Bayesian analysis, CL=EQTAIL displays the equal-tail
credible limits and CL=HPD displays the HPD limits. Specifying just CL in a Bayesian analysis
defaults to CL=HPD.

OVERLAY < =overlay-option >
specifies how the curves for the various strata and covariate sets are overlaid. If the STRATA
statement is not specified, specifying OVERLAY without any option will overlay the curves for
all the covariate sets. The available overlay-options are as follows:

BYGROUP

GROUP
overlays, for each stratum, all curves for the covariate sets that have the same GROUP=
value in the COVARIATES= data set in the same plot.

INDIVIDUAL

IND
displays, for each stratum, a separate plot for each covariate set.

BYROW

ROW
displays, for each covariate set, a separate plot containing the curves for all the strata.
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BYSTRATUM

STRATUM
displays, for each stratum, a separate plot containing the curves for all sets of covariates.

The default is OVERLAY=BYGROUP if the GROUP= option is specified in the BASELINE
statement or if the COVARIATES= data set contains the _GROUP_ variable; otherwise the
default is OVERLAY=INDIVIDUAL.

TIMERANGE=(< min > < ,max >)

TIMERANGE=< min > < ,max >

RANGE=(< min > < ,max >)

RANGE=< min > < ,max >
specifies the range of values on the time axis to clip the display. The min and max values are the
lower and upper bounds of the range. By default, min is 0 and max is the largest event time.

You can specify the following plot-requests:

AUC
plots the time-dependent area under the curve (AUC) for each identified model. For a particular
time t, the AUC is the area under the receiver operating characteristic (ROC) curve at t. This
option is ignored if time points are specified in the AT= suboption in the ROCOPTIONS option.

AUCDIFF
plots the difference between two AUC curves for each pair of identified models. This option is
ignored if time points are specified in the AT= suboption in the ROCOPTIONS option.

CIF
plots the estimated cumulative incidence function (CIF) for each set of covariates in the
COVARIATES= data set in the BASELINE statement. If the COVARIATES= data set is not
specified, the estimated CIF is plotted for the reference set of covariates, which consists of
reference levels for the CLASS variables and average values for the continuous variables.

CUMHAZ
plots the estimated cumulative hazard function for each set of covariates in the COVARIATES=
data set in the BASELINE statement. If the COVARIATES= data set is not specified, the
estimated cumulative hazard function is plotted for the reference set of covariates, which consists
of reference levels for the CLASS variables and average values for the continuous variables.

MCF
plots the estimated mean cumulative function for each set of covariates in the COVARIATES=
data set in the BASELINE statement. If the COVARIATES= data set is not specified, the
estimated mean cumulative function is plotted for the reference set of covariates, which consists
of reference levels for the CLASS variables and average values for the continuous variables.

NONE
suppresses all the plots in the procedure. Specifying this option is equivalent to disabling ODS
Graphics for the entire procedure.
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ROC< (TICK) >
plots the time-dependent receiver operating characteristic (ROC) curves. You must specify
the time points at which the ROC curves are calculated by using the AT= suboption in the
ROCOPTIONS option. A plot is produced for each time point. Grid lines are displayed for
both axes at 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. By default, the plots are displayed in panels, with
each panel containing up to six plots. Tick values are not shown in the panel plots unless
you specify the keyword TICK to show the tick values at the grid lines. You can specify the
OVERLAY=INDIVIDUAL global-plot-option to display each plot individually.

SURVIVAL
plots the estimated survivor function for each set of covariates in the COVARIATES= data set in
the BASELINE statement. If COVARIATES= data set is not specified, the estimated survivor
function is plotted for the reference set of covariates, which consists of reference levels for the
CLASS variables and average values for the continuous variables.

ROCOPTIONS (options)
specifies options that apply to the analysis of receiver operating characteristic (ROC) curves for the
model that is specified in the MODEL statement (unless the NOFIT option is specified) and for each
model specified in a ROC statement. You can specify the following options:

AT=number-list
specifies the list of time points at which the ROC curves are calculated. The number-list can be a
list of numbers separated by blanks, or of the form 10 to 30 by 5, or a combination of both.

AUC
displays the area under the curve at time points specified in the AT= suboption or at the event
times if the AT= suboption is not specified.

AUCDIFF
displays the differences between the AUC functions for each pair of identified models at the time
points specified in the AT= suboption or at the event times if no time points are specified.

IAUC
displays the integrated area under the curve (IAUC), computed as a weighted average of the AUC
values at all the event times if the TAU= option is not specified or at the event times less than
or equal to the value specified in the TAU= option. The weights that are used are jumps of the
Kaplan-Meier estimate of the survivor function.

METHOD=method < (options) >
specifies the method to calculate ROC curves and AUC statistics. For more information, see the
section “Time-Dependent ROC Curves” on page 6928. You can specify the following methods
along with any applicable options:

IPCW< (ipcw-options) >

UNO< (ipcw-options) >
uses the inverse probability of censoring weighting (IPCW) technique of Uno et al. (2007).
Event observations are weighted according to their probabilities of being censored. The
following ipcw-options apply only to AUC calculations:
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CL
computes the pointwise confidence limits for the AUC based on perturbation resampling.

SEED=n
specifies an integer seed for the random number generator to generate perturbation
samples.

ITER=n
specifies the number of perturbation samples.

ALPHA=value
specifies the significance level of the confidence interval for the AUC.

KM
uses the conditional Kaplan-Meier method of Heagerty, Lumley, and Pepe (2000).

NNE < (nne-options) >
uses the nearest neighbors technique of Heagerty, Lumley, and Pepe (2000). You can specify
the following nne-options:

ASYM
uses asymmetric kernels in the estimation.

SPAN=value
specifies the proportion of observations to be used in deriving the bandwidth for the
kernel-based estimation. By default, SPAN=0.05.

RECURSIVE

CHAMBLESS
uses the method of Chambless and Diao (2006). The calculation is recursive, and it is
performed on the ordered event times sequentially from the smallest to the largest.

By default, METHOD=NNE.

OUTAUC=SAS-data-set
names the output data set to contain the data necessary to produce the AUC plot. Each curve
is identified by the corresponding model label. For the list of variables in this data set, see the
section “OUTAUC= Output Data Set in the ROCOPTIONS Option” on page 6958.

OUTROC=SAS-data-set
names the output data set to contain the data necessary to produce the ROC plots. Each ROC
curve corresponds to a block of observations that are identified by a time point and a model
label. For the list of variables in this data set, see the section “OUTROC= Output Data Set in the
ROCOPTIONS Option” on page 6958.

SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum, and maximum) for each
explanatory variable in the MODEL statement.
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TAU=value
specifies the upper time limit for computing the integrated area under the curve (IAUC) statistic and
Uno’s concordance statistic. Only event times that do not exceed the specified value are used in the
calculation. The default value is the largest event time.

ZPH< (zph-options) >
requests diagnostics based on the weighted Schoenfeld residuals for checking the proportional hazards
assumption (for more information, see the section “ZPH Diagnostics” on page 6924). For each
predictor, PROC PHREG presents a plot of the time-varying coefficients in addition to a correlation
test between the weighted residuals and failure times in a given scale. You can specify the following
zph-options:

FIT=NONE | LOESS | SPLINE
displays a fitted smooth curve in a plot of time-varying coefficients. FIT=LOESS displays a loess
curve. FIT=SPLINE fits a penalized B-spline curve. If you do not want to display a fitted curve,
specify FIT=NONE. By default, FIT=SPLINE.

GLOBAL
computes the global correlation test.

NOPLOT
suppresses the plots of the time-varying coefficients ˇ.t/.

NOTEST
suppresses the correlation tests.

OUT=SAS-data-set
names the output data set that contains the time-varying coefficients ˇ.t/, one row per event time.
The variables that contain ˇ.t/ have the same names as the predictors. The data set also contains
the transformed event times g.t/.

TRANSFORM=IDENTITY | KM | LOG | RANK
specifies how the failure times should be transformed in the diagnostic plots and correlation tests.
You can choose from the following transformations:

IDENTITY specify the identity transformation, g.t/ D t .

KM specifies the complement of the Kaplan-Meier estimate transformation,
g.t/ D 1 �KM.t/.

LOG specifies the log transformation, g.t/ D log.t/.

RANK specifies the rank transformation, g.t/ D rank.t/.

ASSESS Statement
ASSESS < VAR=(list) > < PH > < / options > ;

The ASSESS statement performs the graphical and numerical methods of Lin, Wei, and Ying (1993) for
checking the adequacy of the Cox regression model. The methods are derived from cumulative sums of
martingale residuals over follow-up times or covariate values. You can assess the functional form of a
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covariate or you can check the proportional hazards assumption for each covariate in the Cox model. PROC
PHREG uses ODS Graphics for the graphical displays. You must specify at least one of the following options
to create an analysis.

VAR=(variable-list)
specifies the list of explanatory variables for which their functional forms are assessed. For each
variable on the list, the observed cumulative martingale residuals are plotted against the values of the
explanatory variable along with 20 (or n if NPATHS=n is specified) simulated residual patterns.

PROPORTIONALHAZARDS

PH
requests the checking of the proportional hazards assumption. For each explanatory variable in the
model, the observed score process component is plotted against the follow-up time along with 20 (or n
if NPATHS=n is specified) simulated patterns.

The following options can be specified after a slash (/):

NPATHS=n
specifies the number of simulated residual patterns to be displayed in a cumulative martingale residual
plot or a score process plot. The default is n=20.

CRPANEL
requests that a plot with four panels, each containing the observed cumulative martingale residuals and
two simulated residual patterns, be created.

RESAMPLE < =n >
requests that the Kolmogorov-type supremum test be computed on 1,000 simulated patterns or on n
simulated patterns if n is specified.

SEED=n
specifies an integer seed for the random number generator used in creating simulated realizations
for plots and for the Kolmogorov-type supremum tests. Specifying a seed enables you to reproduce
identical graphs and p-values for the model assessments from the same PHREG specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.

BASELINE Statement
BASELINE < OUT=SAS-data-set > < OUTDIFF=SAS-data-set > < COVARIATES=SAS-data-set >

< TIMELIST=list > < keyword=name . . . keyword=name > < / options > ;

The BASELINE statement creates a SAS data set (named by the OUT= option) that contains the baseline
function estimates at the event times of each stratum for every set of covariates in the COVARIATES= data
set. If the COVARIATES= data set is not specified, a reference set of covariates consisting of the reference
levels for the CLASS variables and the average values for the continuous variables is used. You can use the
DIRADJ option to obtain the direct adjusted survival curve that averages the estimated survival curves for
the observations in the COVARIATES= data set. No BASELINE data set is created if the model contains a
time-dependent variable defined by means of programming statement.
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Table 86.2 summarizes the options available in the BASELINE statement.

Table 86.2 BASELINE Statement Options

Option Description

Data Set and Time List Options
OUT= Specifies the output BASELINE data set
OUTDIFF= Specifies the output data set that contains differences of direct adjusted

survival curves
COVARIATES= Specifies the SAS data set that contains the explanatory variables
TIMELIST= Specifies a list of time points for Bayesian computation of survival

estimates.

Keyword Options
CIF= Specifies the cumulative incidence estimate
CMF= Specifies the cumulative mean function estimate
CUMHAZ= Specifies the cumulative hazard function estimate
LOGLOGS= Specifies the log of the negative log of SURVIVAL
LOGSURV= Specifies the log of SURVIVAL
LOWERCIF= Specifies the lower pointwise confidence limit for CIF
LOWERCMF= Specifies the lower pointwise confidence limit for CMF
LOWERCUMHAZ= specifies the lower pointwise confidence limit for CUMHAZ
LOWERHPDCUMHAZ= Specifies the lower limit of the HPD interval for CUMHAZ
LOWERHPD= Specifies the lower limit of the HPD interval for SURVIVAL
LOWER= Specifies the lower pointwise confidence limit for SURVIVAL
STDCIF= Specifies the estimated standard error of CIF
STDCMF= Specifies the estimated standard error of CMF
STDCUMHAZ= Specifies the estimated standard error of CUMHAZ
STDERR= Specifies the standard error of SURVIVAL
STDXBETA= Specifies the estimated standard error of the linear predictor estimator
SURVIVAL= Specifies the survivor function estimate
UPPERCIF= Specifies the upper pointwise confidence limit for CIF
UPPERCMF= Specifies the upper pointwise confidence limit for CMF
UPPERCUMHAZ= Specifies the upper pointwise confidence limit for CUMHAZ
UPPERHPDCUMHAZ= Specifies the upper limit of the HPD interval for CUMHAZ
UPPERHPD= Specifies the upper limit of the HPD interval for SURVIVAL
UPPER= Specifies the upper pointwise confidence limit for SURVIVAL
XBETA= Specifies the estimate of the linear predictor x0ˇ

Other Options
ALPHA= Specifies the significance level of the confidence interval for the survivor

function
CLTYPE= Specifies the transformation used to compute the confidence limits
DIRADJ Computes direct adjusted survival curves
GROUP= Names a variable whose values are used to identify or group the survival

curves
METHOD= Specifies the method used to compute the survivor function estimates
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Table 86.2 continued

Options Description

NORMALSAMPLE= Specifies the number of normal random samples for CIF confidence
limits

ROWID= Names the variable in the COVARIATES= data set for identifying the
baseline functions curves in the plots

SEED= Specifies the random number generator seed

The following options are available in the BASELINE statement.

OUT=SAS-data-set
names the output BASELINE data set. If you omit the OUT= option, the data set is created and given a
default name by using the DATAn convention. For more information, see the section “OUT= Output
Data Set in the BASELINE Statement” on page 6958.

OUTDIFF=SAS-data-set
names the output data set that contains all pairwise differences of direct adjusted probabilities between
groups if the GROUP= variable is specified, or between strata if the GROUP= variable is not specified.
It is required that the DIRADJ option be specified to use the OUTDIFF= option.

COVARIATES=SAS-data-set
names the SAS data set that contains the sets of explanatory variable values for which the quantities
of interest are estimated. All variables in the COVARIATES= data set are copied to the OUT= data
set. Thus, any variable in the COVARIATES= data set can be used to identify the covariate sets in the
OUT= data set.

TIMELIST=list
specifies a list of time points at which the survival function estimates and cumulative hazard function
estimates are computed. The following specifications are equivalent:

timelist=5,20 to 50 by 10
timelist=5 20 30 40 50

If the TIMELIST= option is not specified, the default is to carry out the prediction at all event times
and at time 0. This option can be used only for the Bayesian analysis.

keyword=name
specifies the statistics to be included in the OUT= data set and assigns names to the variables that
contain these statistics. Specify a keyword for each desired statistic, an equal sign, and the name of the
variable for the statistic. Not all keywords listed in Table 86.3 (and discussed in the text that follows)
are appropriate for both the classical analysis and the Bayesian analysis; and the table summaries the
choices for each analysis.
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Table 86.3 Summary of the Keyword Choices

Keyword Classical Bayesian

Survivor Function
SURVIVAL= x x
STDERR= x x
LOWER= x x
UPPER= x x
LOWERHPD= x
UPPERHPD= x

Cumulative Hazard Function
CUMHAZ= x x
STDCUMHAZ= x x
LOWERCUMHAZ= x x
UPPERCUMHAZ= x x
LOWERHPDCUMHAZ= x
UPPERHPDCUMHAZ= x

Cumulative Incidence Function
CIF= x
STDCIF= x
LOWERCIF= x
UPPERCIF= x

Cumulative Mean Function
CMF= x
STDCMF= x
LOWERCMF= x
UPPERCMF= x

Others
XBETA= x x
STDXBETA= x x
LOGSURV= x
LOGLOGS= x

You can specify the following keywords:

CIF=
specifies the cumulative incidence function estimate for competing risks data. Specifying
CIF=_ALL_ is equivalent to specifying CIF=CIF, STDCIF=StdErrCIF, LOWERCIF=LowerCIF,
and UPPERCIF=UpperCIF.
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CMF=

MCF=
specifies the cumulative mean function estimate for recurrent events data. Speci-
fying CMF=_ALL_ is equivalent to specifying CMF=CMF, STDCMF=StdErrCMF,
LOWERCMF=LowerCMF, and UPPERCMF=UpperCMF. Nelson (2002) refers to the mean
function estimate as MCF (mean cumulative function).

CUMHAZ=
specifies the cumulative hazard function estimate. Specifying CUMHAZ=_ALL_
is equivalent to specifying CUMHAZ=CumHaz, STDCUMHAZ=StdErrCumHaz,
LOWERCUMHAZ=LowerCumHaz, and UPPERCUMHAZ=UpperCumHaz. For a Bayesian
analysis, CUMHAZ=_ALL_ also includes LOWERHPDCUMHAZ=LowerHPDCumHaz and
UpperHPDCUMHAZ=UpperHPDCumHaz.

LOGLOGS=
specifies the log of the negative log of SURVIVAL.

LOGSURV=
specifies the log of SURVIVAL.

LOWER=

L=
specifies the lower pointwise confidence limit for the survivor function. For a Bayesian analysis,
this is the lower limit of the equal-tail credible interval for the survivor function. The confidence
level is determined by the ALPHA= option.

LOWERCIF=
specifies the lower pointwise confidence limit for the cumulative incidence function. The
confidence level is determined by the ALPHA= option.

LOWERCMF=

LOWERMCF=
specifies the lower pointwise confidence limit for the cumulative mean function. The confidence
level is determined by the ALPHA= option.

LOWERHPD=
specifies the lower limit of the HPD interval for the survivor function. The confidence level is
determined by the ALPHA= option.

LOWERHPDCUMHAZ=
specifies the lower limit of the HPD interval for the cumulative hazard function. The confidence
level is determined by the ALPHA= option.

LOWERCUMHAZ=
specifies the lower pointwise confidence limit for the cumulative hazard function. For a Bayesian
analysis, this is the lower limit of the equal-tail credible interval for the cumulative hazard
function. The confidence level is determined by the ALPHA= option.
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STDERR=
specifies the standard error of the survivor function estimator. For a Bayesian analysis, this is the
standard deviation of the posterior distribution of the survivor function.

STDCIF=
specifies the estimated standard error of the cumulative incidence function estimator.

STDCMF=

STDMCF=
specifies the estimated standard error of the cumulative mean function estimator.

STDCUMHAZ=
specifies the estimated standard error of the cumulative hazard function estimator. For a Bayesian
analysis, this is the standard deviation of the posterior distribution of the cumulative hazard
function.

STDXBETA=
specifies the estimated standard error of the linear predictor estimator. For a Bayesian analysis,
this is the standard deviation of the posterior distribution of the linear predictor.

SURVIVAL=
specifies the survivor function (S.t/ D ŒS0.t/�exp.ˇ

0x/) estimate. Specifying SURVIVAL=_ALL_
is equivalent to specifying SURVIVAL=Survival, STDERR=StdErrSurvival, LOWER=LowerSurvival,
and UPPER=UpperSurvival; and for a Bayesian analysis, SURVIVAL=_ALL_ also specifies
LOWERHPD=LowerHPDSurvival and UPPERHPD=UpperHPDSurvival.

UPPER=

U=
specifies the upper pointwise confidence limit for the survivor function. For a Bayesian analysis,
this is the upper limit of the equal-tail credible interval for the survivor function. The confidence
level is determined by the ALPHA= option.

UPPERCIF=
specifies the upper pointwise confidence limit for the cumulative incidence function. The
confidence level is determined by the ALPHA= option.

UPPERCMF=

UPPERMCF=
specifies the upper pointwise confidence limit for the cumulative mean function. The confidence
level is determined by the ALPHA= option.

UPPERCUMHAZ=
specifies the upper pointwise confidence limit for the cumulative hazard function. For a Bayesian
analysis, this is the upper limit of the equal-tail credible interval for the cumulative hazard
function. The confidence level is determined by the ALPHA= option.

UPPERHPD=
specifies the upper limit of the equal-tail credible interval for the survivor function. The confidence
level is determined by the ALPHA= option.
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UPPERHPDCUMHAZ=
specifies the upper limit of the equal-tail credible interval for the cumulative hazard function.
The confidence level is determined by the ALPHA= option.

XBETA=
specifies the estimate of the linear predictor x0ˇ.

The following options can appear in the BASELINE statement after a slash (/). The METHOD= and
CLTYPE= options apply only to the estimate of the survivor function in the classical analysis. For the
Bayesian analysis, the survivor function is estimated by the Breslow (1972) method.

ALPHA=value
specifies the significance level of the confidence interval for the survivor function. The value must be
between 0 and 1. The default is the value of the ALPHA= option in the PROC PHREG statement, or
0.05 if that option is not specified.

CLTYPE=method
specifies the transformation used to compute the confidence limits for S.t; z/, the survivor function for
a subject with a fixed covariate vector z at event time t. The CLTYPE= option can take the following
values:

LOG
specifies that the confidence limits for log.S.t; z// be computed using the normal theory approxi-
mation. The confidence limits for S.t; z/ are obtained by back-transforming the confidence limits
for log.S.t; z//. The default is CLTYPE=LOG.

LOGLOG
specifies that the confidence limits for the log.� log.S.t; z/// be computed using normal the-
ory approximation. The confidence limits for S.t; z/ are obtained by back-transforming the
confidence limits for log.� log.S.t; z///.

NORMAL

IDENTITY
specifies that the confidence limits for S.t; z/ be computed directly using normal theory approxi-
mation.

DIRADJ
computes direct adjusted survival curves (Makuch 1982; Gail and Byar 1986; Zhang et al. 2007) by
averaging the estimated survival curves for the observations in the COVARIATES= data set. For more
information about the adjusted survival curves, see the section “Direct Adjusted Survival Curves”
on page 6935 and Example 86.8. If the COVARIATES= data set is not specified, the input data set
specified in the DATA= option in the PROC PHREG statement is used instead. If you also specify the
GROUP= option, PROC PHREG computes an adjusted survival curve for each value of the GROUP=
variable.

GROUP=variable
names a variable whose values identify or group the estimated survival curves. The behavior of this
option depends on whether you also specify the DIRADJ option:

� If you also specify the DIRADJ option, variable must be a CLASS variable in the model. A direct
adjusted survival curve is computed for each value of variable in the input data. The variable
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does not have to be a variable in the COVARIATES= data set. Each direct adjusted survival curve
is the average of the survival curves of all individuals in the COVARIATES= data set with their
value of variable set to a specific value.

� If you do not specify the DIRADJ option, variable is required to be a numeric variable in the
COVARIATES= data set. Survival curves for the observations with the same value of the variable
are overlaid in the same plot.

METHOD=method
specifies the method used to compute the survivor function estimates. For more information, see the
section “Survivor Function Estimators” on page 6932. You can specify the following methods:

BRESLOW
CH
EMP

specifies that the Breslow (1972) estimator be used to compute the survivor function—that is, that
the survivor function be estimated by exponentiating the negative empirical cumulative hazard
function.

FH
specifies that the Fleming-Harrington (FH) estimates be computed. The FH estimator is a tie-
breaking modification of the Breslow estimator. If there are no tied event times, this estimator is
the same as the Breslow estimator.

PL
specifies that the product-limit estimates of the survivor function be computed. This estimator
is not available if you use the model syntax that allows two time variables for counting process
style of input; in such a case the Breslow estimator (METHOD=BRESLOW) is used instead.

The default is METHOD=BRESLOW.

NORMALSAMPLE=n
specifies the number of sets of normal random samples to simulate the Gaussian process in
the estimation of the confidence limits for the cumulative incidence function. By default,
NORMALSAMPLE=100.

ROWID=variable

ID=variable

ROW=variable
names a variable in the COVARIATES= data set for identifying the baseline function curves in the
plots. This option has no effect if the PLOTS= option in the PROC PHREG statement is not specified.
Values of this variable are used to label the curves for the corresponding rows in the COVARIATES=
data set. You can specify ROWID=_OBS_ to use the observation numbers in the COVARIATES= data
set for identification.

SEED=n
specifies an integer seed, ranging from 1 to 231–1, to simulate the distribution of the Gaussian process
in the estimation of the confidence limits for the cumulative incidence function. Specifying a seed
enables you to reproduce identical confidence limits from the same PROC PHREG specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day on the computer’s clock.
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For recurrent events data, both CMF= and CUMHAZ= statistics are the Nelson estimators, but their standard
error are not the same. Confidence limits for the cumulative mean function and cumulative hazard function
are based on the log transform.

BAYES Statement
BAYES < options > ;

The BAYES statement requests a Bayesian analysis of the regression model by using Gibbs sampling. The
Bayesian posterior samples (also known as the chain) for the regression parameters can be output to a SAS
data set. Table 86.4 summarizes the options available in the BAYES statement.

Table 86.4 BAYES Statement Options

Option Description

Monte Carlo Options
INITIAL= Specifies initial values of the chain
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations after burn-in
SAMPLING= Specifies the sampling algorithm
SEED= Specifies the random number generator seed
THINNING= Controls the thinning of the Markov chain

Model and Prior Options
COEFFPRIOR= Specifies the prior of the regression coefficients
DISPERSIONPRIOR= Specifies the prior of the dispersion parameter for frailties
PIECEWISE= Specifies details of the piecewise exponential model

Summaries and Diagnostics of the Posterior Samples
DIAGNOSTICS= Displays convergence diagnostics
PLOTS= Displays diagnostic plots
STATISTICS= Displays summary statistics

Posterior Samples
OUTPOST= Names a SAS data set for the posterior samples

The following list describes these options and their suboptions.

COEFFPRIOR=UNIFORM | NORMAL < (normal-option) > | ZELLNER < (zellner-option) >

CPRIOR=UNIFORM | NORMAL < (normal-option) > | ZELLNER < (zellner-option) >

COEFF=UNIFORM | NORMAL < (normal-option) > | ZELLNER < (zellner-option) >
specifies the prior distribution for the regression coefficients. The default is COEFFPRIOR=UNIFORM.
The following prior distributions are available:
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UNIFORM
specifies a flat prior—that is, the prior that is proportional to a constant (p.ˇ1; : : : ; ˇk/ / 1 for
all �1 < ˇi <1).

NORMAL< (normal-option) >
specifies a normal distribution. The normal-options include the following:

INPUT=SAS-data-set
specifies a SAS data set that contains the mean and covariance information of the normal
prior. The data set must contain the _TYPE_ variable to identify the observation type,
and it must contain a variable to represent each regression coefficient. If the data set also
contains the _NAME_ variable, values of this variable are used to identify the covariances
for the _TYPE_=’COV’ observations; otherwise, the _TYPE_=’COV’ observations are
assumed to be in the same order as the explanatory variables in the MODEL statement.
PROC PHREG reads the mean vector from the observation with _TYPE_=’MEAN’ and the
covariance matrix from observations with _TYPE_=’COV’. For an independent normal prior,
the variances can be specified with _TYPE_=’VAR’; alternatively, the precisions (inverse of
the variances) can be specified with _TYPE_=’PRECISION’.

RELVAR < =c >
specifies a normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements equal
to the variances of the corresponding ML estimator. By default, c=1E6.

VAR=c
specifies the normal prior N.0; cI/, where I is the identity matrix.

If you do not specify a normal-option, the normal prior N.0; 106I/, where I is the identity matrix,
is used. For more information, see the section “Normal Prior” on page 6950.

ZELLNER< (zellner-option) >
specifies the Zellner g-prior for the regression coefficients. The g-prior is a normal prior distribu-
tion with mean zero and covariance matrix equal to .gX0X/�1, where X is the design matrix and
g can be a constant or a parameter with a gamma prior. The zellner-options include the following:

G=number
specifies a constant number for g.

GAMMA < (SHAPE=a ISCALE=b) >
specifies that g has a gamma prior distribution G.a; b/ with density f .t/ D b.bt/a�1e�bt

�.a/
.

By default, a=b=1E–4.

If you do not specify a zellner-option, the default is ZELLNER(g=1E–6).

DISPERSIONPRIOR=GAMMA< (gamma-options) > | IGAMMA< (igamma-options) > | IMPROPER

DPRIOR=GAMMA< (gamma-options) > | IGAMMA< (igamma-options) > | IMPROPER
specifies the prior distribution of the dispersion parameter. For gamma frailty, the dispersion parameter
is the variance of the gamma frailty; for lognormal frailty, the dispersion parameter is the variance of
the normal random component. The default is DISPERSIONPRIOR=IMPROPER.

You can specify the following values for this option:



BAYES Statement F 6841

GAMMA< (gamma-options) >
specifies the gamma prior. A gamma prior G.a; b/ with hyperparameters a and b has density
f .�/ D ba�a�1e�b�

�.a/
, where a is the shape parameter and b is the inverse-scale parameter. You

can use the following gamma-options enclosed in parentheses to specify the hyperparameters:

SHAPE=a
ISCALE=b

results in a G.a; b/ prior when both gamma-options are specified.

SHAPE=c
results in a G.c; c/ prior when specified alone.

ISCALE=c
results in a G.c; c/ prior when specify alone.

The default is SHAPE=1E–4 and ISCALE=1E–4.

IGAMMA< (igamma-options) >
specifies the inverse-gamma prior. An inverse-gamma prior IG.a; b/ with hyperparameters a

and b has a density f .�/ D ba��.aC1/e�
b
�

�.a/
, where a is the shape parameter and b is the scale

parameter. You can use the following igamma-options enclosed in parentheses to specify the
hyperparameters:

SHAPE=a

SCALE=b
results in a IG.a; b/ prior when both igamma-options are specified.

SHAPE=c
results in a IG.c; c/ prior when specified alone.

SCALE=c
results in a IG.c; c/ prior when specified alone.

The default is SHAPE=2.001 AND SCALE=0.01.

IMPROPER
specifies the improper prior, which has a density f .�/ proportional to ��1.

DIAGNOSTICS=ALL | NONE | keyword | (keyword-list)
DIAG=ALL | NONE | keyword | (keyword-list)

controls the number of diagnostics produced. You can request all the diagnostics in the following
list by specifying DIAGNOSTICS=ALL. If you do not want any of these diagnostics, you specify
DIAGNOSTICS=NONE. If you want some but not all of the diagnostics, or if you want to change
certain settings of these diagnostics, you specify a subset of the following keywords. The default is
DIAGNOSTICS=(AUTOCORR GEWEKE ESS).

AUTOCORR < (LAGS= numeric-list) >
computes the autocorrelations of lags given by LAGS= list for each parameter. Elements in the list
are truncated to integers and repeated values are removed. If the LAGS= option is not specified,
autocorrelations of lags 1, 5, 10, and 50 are computed for each variable. For more information,
see the section “Autocorrelations” on page 149 in Chapter 7, “Introduction to Bayesian Analysis
Procedures.”
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ESS
computes the effective sample size of Kass et al. (1998), the correlation time, and the efficiency
of the chain for each parameter. For more information, see the section “Effective Sample Size”
on page 149 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Caro standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size. For more information. see the section “Standard Error of the Mean Estimate” on page 150
in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch tests for each parameter. For more information, see
the section “Heidelberger and Welch Diagnostics” on page 145 in Chapter 7, “Introduction to
Bayesian Analysis Procedures.” The tests consist of a stationary test and a halfwidth test. The
former tests the null hypothesis that the sample values form a stationary process. If the stationarity
test is passed, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. The default is the value of the
ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. The default is the value of the
ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.

EPS=value
specifies a small positive number � such that if the halfwidth is less than � times the sample
mean of the retaining samples, the halfwidth test is passed.

GELMAN < (gelman-options) >
computes the Gelman and Rubin convergence diagnostics. For more information, see the section
“Gelman and Rubin Diagnostics” on page 142 in Chapter 7, “Introduction to Bayesian Analysis
Procedures.” You can specify one or more of the following gelman-options:

NCHAIN=number

N=number
specifies the number of parallel chains used to compute the diagnostic and has to be 2 or
larger. The default is NCHAIN=3. The NCHAIN= option is ignored when the INITIAL=
option is specified in the BAYES statement, and in such a case, the number of parallel chains
is determined by the number of valid observations in the INITIAL= data set.

ALPHA=value
specifies the significance level for the upper bound. The default is the value of the ALPHA=
option in the PROC PHREG statement, or 0.05 if that option is not specified (resulting in a
97.5% bound).
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GEWEKE < geweke-options >
computes the Geweke diagnostics. For more information, see the section “Geweke Diagnostics”
on page 143 in Chapter 7, “Introduction to Bayesian Analysis Procedures.” The diagnostic is
essentially a two-sample t-test between the first f1 portion and the last f2 portion of the chain.
The default is f1=0.1 and f2=0.5, but you can choose other fractions by using the following
geweke-options:

FRAC1=value
specifies the early f1 fraction of the Markov chain.

FRAC2=value
specifies the latter f2 fraction of the Markov chain.

RAFTERY < (raftery-options) >
computes the Raftery and Lewis diagnostics. For more information, see the section “Raftery and
Lewis Diagnostics” on page 146 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”
The diagnostic evaluates the accuracy of the estimated quantile ( O�Q for a given Q 2 .0; 1/) of a
chain. O�Q can achieve any degree of accuracy when the chain is allowed to run for a long time.
A stopping criterion is when the estimated probability OPQ D Pr.� � O�Q/ reaches within ˙R
of the value Q with probability S; that is, Pr.Q � R � OPQ � Q C R/ D S . The following
raftery-options enable you to specify Q;R; S; and a precision level � for a stationary test.

QUANTILE=value

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.

PROBABILITY=value

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON=value

EPS=value
specifies the tolerance level (a small positive number) for the test. The default is 0.001.

INITIAL=SAS-data-set
specifies the SAS data set that contains the initial values of the Markov chains. The INITIAL= data
set must contain a variable for each parameter in the model. You can specify multiple rows as the
initial values of the parallel chains for the Gelman-Rubin statistics, but posterior summary statistics,
diagnostics, and plots are computed only for the first chain.
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NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 2000.

NMC=number
specifies the number of iterations after the burn-in. The default is 10000.

OUTPOST=SAS-data-set

OUT=SAS-data-set
names the SAS data set that contains the posterior samples. For more information, see the section
“OUTPOST= Output Data Set in the BAYES Statement” on page 6958. Alternatively, you can output
the posterior samples into a data set, as shown in the following example in which the data set is named
PostSamp.

ODS OUTPUT PosteriorSample = PostSamp;

PIECEWISE < =keyword < (< NINTERVAL=number > < INTERVALS=(numeric-list) > < PRIOR=option >) > >

specifies that the piecewise constant baseline hazard model be used in the Bayesian analysis. You can
specify one of the following two keywords:

HAZARD
models the baseline hazard parameters in the original scale. The hazard parameters are named
Lambda1, Lambda2, : : :, and so on.

LOGHAZARD
models the baseline hazard parameters in the log scale. The log-hazard parameters are named
Alpha1, Alpha2, : : :, and so on.

Specifying PIECEWISE by itself is the same as specifying PIECEWISE=LOGHAZARD.

You can choose one of the following two options to specify the partition of the time axis into intervals
of constant baseline hazards:

NINTERVAL=number

N=number
specifies the number of intervals with constant baseline hazard rates. PROC PHREG partitions
the time axis into the given number of intervals with approximately equal number of events in
each interval.

INTERVALS=(numeric-list)

INTERVAL=(numeric-list)
specifies the list of numbers that partition the time axis into disjoint intervals with constant
baseline hazard in each interval. For example, INTERVALS=(100, 150, 200, 250, 300) specifies a
model with a constant hazard in the intervals [0,100), [100,150), [150,200), [200,250), [250,300),
and [300,1). Each interval must contain at least one event; otherwise, the posterior distribution
can be improper, and inferences cannot be derived from an improper posterior distribution.

If neither NINTERVAL= nor INTERVAL= is specified, the default is NINTERVAL=8.

To specify the prior for the baseline hazards (�1; : : : ; �J ) in the original scale, you specify the
following:
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PRIOR = IMPROPER | UNIFORM | GAMMA< (gamma-option) > | ARGAMMA< (argamma-option) >

The default is PRIOR=IMPROPER. The available prior options include the following:

IMPROPER
specifies the noninformative and improper prior p.�1; : : : ; �J / /

Q
i �i
�1 for all �i > 0.

UNIFORM
specifies a uniform prior on the real line; that is, p.�i / / 1 for all �i > 0.

GAMMA < (gamma-option) >
specifies an independent gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt

�.a/
, which

can be followed by one of the following gamma-options enclosed in parentheses. The
hyperparameters a and b are the shape and inverse-scale parameters of the gamma distri-
bution, respectively. For more information, see the section “Independent Gamma Prior”
on page 6949. The default is G.10�4; 10�4/ for each �j , setting the prior mean to 1 with
variance 1E4. This prior is proper and reasonably noninformative.

INPUT=SAS-data-set
specifies a data set containing the hyperparameters of the independent gamma prior.
The data set must contain the _TYPE_ variable to identify the observation type, and it
must contain the variables named Lambda1, Lambda2, . . . , and so forth, to represent
the hazard parameters. The observation with _TYPE_=’SHAPE’ identifies the shape
parameters, and the observation with _TYPE_=’ISCALE’ identifies the inverse-scale
parameters.

RELSHAPE< =c >
specifies independent G.c O�j ; c/ distribution, where O�j ’s are the MLEs of the hazard

rates. This prior has mean O�j and variance
O�j
c

. By default, c=1E–4.

SHAPE=a and ISCALE=b
together specify the G.a; b/ prior.

SHAPE=c

ISCALE=c
specifies the G.c; c/ prior.

ARGAMMA < (argamma-option) >
specifies an autoregressive gamma prior of order 1, which can be followed by one of the following
argamma-options. For more information, see the section “AR1 Prior” on page 6949.

INPUT=SAS-data-set
specifies a data set containing the hyperparameters of the correlated gamma prior. The
data set must contain the _TYPE_ variable to identify the observation type, and it must
contain the variables named Lambda1, Lambda2, . . . , and so forth, to represent the hazard
parameters. The observation with _TYPE_=’SHAPE’ identifies the shape parameters, and
the observation with _TYPE_=’ISCALE’ identifies the relative inverse-scale parameters;
that is, if aj and bj are, respectively, the SHAPE and ISCALE values for �j ; 1 � j � J ,
then �1 � G.a1; b1/, and �j � G.aj ; bj =�j�1/ for 2 � j � J .
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SHAPE=a and SCALE=b
together specify that �1 � G.a; b/ and �j � G.a; b=�j�1/ for 2 � j � J .

SHAPE=c

ISCALE=c
specifies that �1 � G.c; c/ and �j � G.c; c=�j�1/ for 2 � j � J .

To specify the prior for ˛1; : : : ; ˛J , the hazard parameters in the log scale, you specifying the following:

PRIOR=UNIFORM | NORMAL< (normal-option) >
specifies the prior for the loghazard parameters. The default is PRIOR=UNIFORM. The available
PRIOR= options are as follows:

UNIFORM
specifies the uniform prior on the real line; that is, ˛i / 1 for all �1 < ˛i <1.

NORMAL< (normal-option) >
specifies a normal prior distribution on the log-hazard parameters. The normal-options include
the following. If you do not specify a normal-option, the normal prior N.0; 106I/, where I is the
identity matrix, is used.

INPUT=SAS-data-set
specifies a SAS data set containing the mean and covariance information of the normal
prior. The data set must contain the _TYPE_ variable to identify the observation type,
and it must contain variables named Alpha1, Alpha2, . . . , and so forth, to represent the
log-hazard parameters. If the data set also contains the _NAME_ variable, the value of
this variable will be used to identify the covariances for the _TYPE_=’COV’ observations;
otherwise, the _TYPE_=’COV’ observations are assumed to be in the same order as the
explanatory variables in the MODEL statement. PROC PHREG reads the mean vector from
the observation with _TYPE_=’MEAN’ and the covariance matrix from observations with
_TYPE_=’COV’. For more information, see the section “Normal Prior” on page 6950. For an
independent normal prior, the variances can be specified with _TYPE_=’VAR’; alternatively,
the precisions (inverse of the variances) can be specified with _TYPE_=’PRECISION’.

If you have a joint normal prior for the log-hazard parameters and the regression coeffi-
cients, specify the same data set containing the mean and covariance information of the
multivariate normal distribution in both the COEFFPRIOR=NORMAL(INPUT=) and the
PIECEWISE=LOGHAZARD(PRIOR=NORMAL(INPUT=)) options. For more informa-
tion, see the section “Joint Multivariate Normal Prior for Log-Hazards and Regression
Coefficients” on page 6950.

RELVAR < =c >
specifies the normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements
equal to the variances of the corresponding ML estimator. By default, c=1E6.

VAR=c
specifies the normal prior N.0; cI/, where I is the identity matrix.
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PLOTS < (global-plot-options) > = plot-request

PLOTS < (global-plot-options) > = (plot-requests)
controls the diagnostic plots produced through ODS Graphics. Three types of plots can be requested:
trace plots, autocorrelation function plots, and kernel density plots. By default, the plots are displayed
in panels unless the global plot option UNPACK is specified. If you specify more than one type of plots,
the plots are displayed by parameters unless the global plot option GROUPBY=TYPE is specified.
When you specify only one plot request, you can omit the parentheses around the plot request. For
example:

plots=none
plots(unpack)=trace
plots=(trace autocorr)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc phreg;

model y=x;
bayes plots=trace;

run;

If ODS Graphics is enabled but you do not specify the PLOTS= option in the BAYES statement, then
PROC PHREG produces, for each parameter, a panel that contains the trace plot, the autocorrela-
tion function plot, and the density plot. This is equivalent to specifying plots=(trace autocorr

density).

The global-plot-options include the following:

FRINGE
creates a fringe plot on the X axis of the density plot.

GROUPBY = PARAMETER | TYPE
specifies how the plots are to be grouped when there is more than one type of plots. The choices
are as follows:

TYPE
specifies that the plots be grouped by type.

PARAMETER
specifies that the plots be grouped by parameter.

GROUPBY=PARAMETER is the default.

SMOOTH
displays a fitted penalized B-spline curve each trace plot.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed
separately.
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The plot-requests include the following:

ALL
specifies all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR
displays the autocorrelation function plots for the parameters.

DENSITY
displays the kernel density plots for the parameters.

NONE
suppresses all diagnostic plots.

TRACE
displays the trace plots for the parameters. For more information, see the section “Visual Analysis
via Trace Plots” on page 137 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Consider a model with four parameters, X1–X4. Displays for various specification are depicted as
follows.

1. PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter
side by side with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

2. PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, fol-
lowed by panels of autocorrelation plots:

Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)
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3. PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correla-
tion plot, parameter by parameter:

Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)

4. PLOTS(UNPACK GROUPBY=TYPE) = (TRACE AUTOCORR) displays all the separate trace
plots followed by the separate autocorrelation plots:

Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)

SAMPLING=keyword
specifies the sampling algorithm used in the Markov chain Monte Carlo (MCMC) simulations. Two
sampling algorithms are available:

ARMS

GIBBS
requests the use of the adaptive rejection Metropolis sampling (ARMS) algorithm to draw the
Gibbs samples. ALGORITHM=ARMS is the default.
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RWM
requests the use of the random walk Metropolis (RWM) algorithm to draw the samples.

For details about the MCMC sampling algorithms, see the section “Markov Chain Monte Carlo Method”
on page 129 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

SEED=number
specifies an integer seed ranging from 1 to 231–1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-statoptions) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent to
specifying STATISTICS=(SUMMARY INTERVAL COV CORR). If you do not want any posterior
statistics, you specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL).
For more information, see the section “Summary Statistics” on page 150 in Chapter 7, “Introduction to
Bayesian Analysis Procedures.” The global-options include the following:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and 1.
Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for each
parameters. The default is the value of the ALPHA= option in the PROC PHREG statement, or
0.05 if that option is not specified (yielding the 95% credible intervals for each parameter).

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT= 25, 50, 75, which yield the 25th, 50th, and 75th percentile
points for each parameter.

You can specify the following values for a keyword or as part of a keyword-list . To specify a list, place
parentheses around multiple keywords that are separated by spaces.

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentile points, but you can use the global
PERCENT= option to request specific percentile points.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the global ALPHA= option
to request intervals of any probabilities.
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THINNING=number

THIN=number
controls the thinning of the Markov chain. Only one in every k samples is used when THINNING=k,
and if NBI=n0 and NMC=n, the number of samples kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THINNING=1.

BY Statement
BY variables ;

You can specify a BY statement with PROC PHREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the PHREG procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
Response variables do not need to be specified in the CLASS statement.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options in
parentheses after the variable name. You can also specify global-options for the CLASS statement by placing
them after a slash (/). Global-options are applied to all the variables specified in the CLASS statement. If you
specify more than one CLASS statement, the global-options specified in any one CLASS statement apply to
all CLASS statements. However, individual CLASS variable options override the global-options. You can
specify the following values for either an option or a global-option:
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CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options
are specified, PROC PHREG orders the categories according to the ORDER= option and then reverses
that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC PHREG interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; ; the default is PARAM=REF. Design matrix columns
are created from CLASS variables according to the corresponding coding schemes:
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See
the section “Other Parameterizations” on page 389 in Chapter 19, “Shared Concepts and Topics,” for
further details.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. When formatted values are longer
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than 16 characters, you can use this option to revert to the levels as determined in releases before SAS
9. The TRUNCATE option is available only as a global option.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
See the section “Other Parameterizations” on page 389 in Chapter 19, “Shared Concepts and Topics,” for
examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC PHREG initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For instance,
suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:

Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC PHREG detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

CONTRAST Statement
CONTRAST 'label ' row-description < , . . . row-description > < / options > ;

The CONTRAST statement provides a mechanism for obtaining customized hypothesis tests. It is similar to
the CONTRAST statement in PROC GLM and PROC CATMOD, depending on the coding schemes used
with any categorical variables involved.

The CONTRAST statement enables you to specify a matrix, L, for testing the hypothesis Lˇ D 0. You must
be familiar with the details of the model parameterization that PROC PHREG uses (for more information,
see the PARAM= option in the section “CLASS Statement” on page 6851). Optionally, the CONTRAST
statement enables you to estimate each row, l 0iˇ, of Lˇ and test the hypothesis l 0iˇ D 0. Computed statistics
are based on the asymptotic chi-square distribution of the Wald statistic.
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There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement.

The syntax of a row-description is:

effect values < ,. . . ,effect values >

The following parameters are specified in the CONTRAST statement:

label identifies the contrast on the output. A label is required for every contrast specified, and it must be
enclosed in quotes.

effect identifies an effect that appears in the MODEL statement. You do not need to include all effects
that are included in the MODEL statement.

values are constants that are elements of the L matrix associated with the effect. To correctly specify
your contrast, it is crucial to know the ordering of parameters within each effect and the variable
levels associated with any parameter. The “Class Level Information” table shows the ordering
of levels within variables. The E option, described later in this section, enables you to verify the
proper correspondence of values to parameters.

The rows of L are specified in order and are separated by commas. Multiple degree-of-freedom hypotheses
can be tested by specifying multiple row-descriptions. For any of the full-rank parameterizations, if an effect
is not specified in the CONTRAST statement, all of its coefficients in the L matrix are set to 0. If too many
values are specified for an effect, the extra ones are ignored. If too few values are specified, the remaining
ones are set to 0.

When you use effect coding (by specifying PARAM=EFFECT in the CLASS statement), all parameters are
directly estimable (involve no other parameters). For example, suppose an effect coded CLASS variable A
has four levels. Then there are three parameters (˛1; ˛2; ˛3) representing the first three levels, and the fourth
parameter is represented by

�˛1 � ˛2 � ˛3

To test the first versus the fourth level of A, you would test

˛1 D �˛1 � ˛2 � ˛3

or, equivalently,

2˛1 C ˛2 C ˛3 D 0

which, in the form Lˇ D 0, is

�
2 1 1

�24 ˛1
˛2
˛3

35 D 0
Therefore, you would use the following CONTRAST statement:

contrast '1 vs. 4' A 2 1 1;

To contrast the third level with the average of the first two levels, you would test
˛1 C ˛2

2
D ˛3

or, equivalently,

˛1 C ˛2 � 2˛3 D 0
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Therefore, you would use the following CONTRAST statement:

contrast '1&2 vs. 3' A 1 1 -2;

Other CONTRAST statements involving classification variables with PARAM=EFFECT are constructed
similarly. For example:

contrast '1 vs. 2 ' A 1 -1 0;
contrast '1&2 vs. 4 ' A 3 3 2;
contrast '1&2 vs. 3&4' A 2 2 0;
contrast 'Main Effect' A 1 0 0,

A 0 1 0,
A 0 0 1;

When you use the less-than-full-rank parameterization (by specifying PARAM=GLM in the CLASS state-
ment), each row is checked for estimability. If PROC PHREG finds a contrast to be nonestimable, it displays
missing values in corresponding rows in the results. PROC PHREG handles missing level combinations
of categorical variables in the same manner as PROC GLM. Parameters corresponding to missing level
combinations are not included in the model. This convention can affect the way in which you specify the L
matrix in your CONTRAST statement. If the elements of L are not specified for an effect that contains a
specified effect, then the elements of the specified effect are distributed over the levels of the higher-order
effect just as the GLM procedure does for its CONTRAST and ESTIMATE statements. For example, suppose
that the model contains effects A and B and their interaction A*B. If you specify a CONTRAST statement
involving A alone, the L matrix contains nonzero terms for both A and A*B, since A*B contains A.

The Cox model contains no explicit intercept parameter, so it is not valid to specify one in the CONTRAST
statement. As a consequence, you can test or estimate only homogeneous linear combinations (those with
zero-intercept coefficients, such as contrasts that represent group differences) for the GLM parameterization.

The degrees of freedom are the number of linearly independent constraints implied by the CONTRAST
statement—that is, the rank of L.

You can specify the following options after a slash (/).

ALPHA= p
specifies the level of significance p for the 100.1� p/% confidence interval for each contrast when the
ESTIMATE option is specified. The value p must be between 0 and 1. By default, p is equal to the
value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.

E
requests that the L matrix be displayed.

ESTIMATE=keyword
requests that each individual contrast (that is, each row, l 0iˇ, of Lˇ) or exponentiated contrast (el

0
i
ˇ) be

estimated and tested. PROC PHREG displays the point estimate, its standard error, a Wald confidence
interval, and a Wald chi-square test for each contrast. The significance level of the confidence interval
is controlled by the ALPHA= option. You can estimate the contrast or the exponentiated contrast
(el
0
i
ˇ), or both, by specifying one of the following keywords:

PARM specifies that the contrast itself be estimated.

EXP specifies that the exponentiated contrast be estimated.

BOTH specifies that both the contrast and the exponentiated contrast be estimated.
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SINGULAR=number
tunes the estimability check. This option is ignored when the full-rank parameterization is used. If v is
a vector, define ABS(v) to be the largest absolute value of the elements of v. For a row vector l 0 of
the contrast matrix L, define c to be equal to ABS.l/ if ABS.l/ is greater than 0; otherwise, c equals
1. If ABS.l 0 � l 0T/ is greater than c � number , then l is declared nonestimable. The T matrix is the
Hermite form matrix I�0 I0, where I�0 represents a generalized inverse of the information matrix I0 of
the null model. The value for number must be between 0 and 1; the default value is 1E–4.

TEST< (keywords) >
requests a Type 3 test for each contrast. The default is to use the Wald statistic, but you can requests
other statistics by specifying one or more of the following keywords:

ALL
requests the likelihood ratio tests, the score tests, and the Wald tests. Specifying TEST(ALL) is
equivalent to specifying TEST=(LR SCORE WALD).

NONE
suppresses the Type 3 analysis. Even if the TEST option is not specified, PROC PHREG displays
the Wald test results for each model effect if a CLASS variable is involved in a MODEL effect.
The NONE option can be used to suppress such display.

LR
requests the likelihood ratio tests. This request is not honored if the COVS option is also specified.

SCORE
requests the score tests. This request is not honored if the COVS option is also specified.

WALD
requests the Wald tests.

EFFECT Statement
EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to as constructed effects to distinguish them from the usual model effects that are
formed from continuous or classification variables, as discussed in the section “GLM Parameterization of
Classification Variables and Effects” on page 385 in Chapter 19, “Shared Concepts and Topics.”

You can specify the following effect-types:

COLLECTION specifies a collection effect that defines one or more variables as a single
effect with multiple degrees of freedom. The variables in a collection are
considered as a unit for estimation and inference.

LAG specifies a classification effect in which the level that is used for a particular
period corresponds to the level in the preceding period.

MULTIMEMBER | MM specifies a multimember classification effect whose levels are determined by
one or more variables that appear in a CLASS statement.



6858 F Chapter 86: The PHREG Procedure

POLYNOMIAL | POLY specifies a multivariate polynomial effect in the specified numeric variables.

SPLINE specifies a regression spline effect whose columns are univariate spline ex-
pansions of one or more variables. A spline expansion replaces the original
variable with an expanded or larger set of new variables.

Table 86.5 summarizes the options available in the EFFECT statement.

Table 86.5 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Specifies the number of periods in the lag

PERIOD= Names the variable that defines the period. This option is required.

WITHIN= Names the variable or variables that define the group within which
each period is defined. This option is required.

Multimember Effects Options
NOEFFECT Specifies that observations with all missing levels for the

multimember variables should have zero values in the
corresponding design matrix columns

WEIGHT= Specifies the weight variable for the contributions of each of the
classification effects

Polynomial Effects Options
DEGREE= Specifies the degree of the polynomial
MDEGREE= Specifies the maximum degree of any variable in a term of the

polynomial
STANDARDIZE= Specifies centering and scaling suboptions for the variables that

define the polynomial

Spline Effects Options
BASIS= Specifies the type of basis (B-spline basis or truncated power

function basis) for the spline effect
DEGREE= Specifies the degree of the spline effect
KNOTMETHOD= Specifies how to construct the knots for the spline effect

For more information about the syntax of these effect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 395 in Chapter 19, “Shared Concepts and Topics.”
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ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , < 'label ' > estimate-specification < (divisor=n) > > < , . . . >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 86.6 summarizes options available in the ESTIMATE statement. If the BAYES statement is specified,
the ADJUST=, STEPDOWN, TESTVALUE, LOWER, UPPER, and JOINT options are ignored. The
PLOTS= option is not available for the maximum likelihood analysis. It is available only for the Bayesian
analysis.

Table 86.6 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down

fashion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
PLOTS= Requests ODS statistical graphics if the analysis is sampling-based
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays estimates



6860 F Chapter 86: The PHREG Procedure

Table 86.6 continued

Option Description

ILINK Computes and displays estimates and standard errors on the inverse
linked scale

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” on
page 442 in Chapter 19, “Shared Concepts and Topics.”

FREQ Statement
FREQ variable < / option > ;

The FREQ statement identifies the variable (in the input data set) that contains the frequency of occurrence
of each observation. PROC PHREG treats each observation as if it appears n times, where n is the value of
the FREQ variable for the observation. If not an integer, the frequency value is truncated to an integer. If the
frequency value is missing, the observation is not used in the estimation of the regression parameters.

The following option can be specified in the FREQ statement after a slash (/):

NOTRUNCATE

NOTRUNC
specifies that frequency values are not truncated to integers.

HAZARDRATIO Statement
HAZARDRATIO < 'label ' > variable < / options > ;

The HAZARDRATIO statement enables you to request hazard ratios for any variable in the model at
customized settings. For example, if the model contains the interaction of a CLASS variable A and a
continuous variable X, the following specification displays a table of hazard ratios comparing the hazards of
each pair of levels of A at X=3:

hazardratio A / at (X=3);

The HAZARDRATIO statement identifies the variable whose hazard ratios are to be evaluated. If the variable
is a continuous variable, the hazard ratio compares the hazards for a given change (by default, a increase
of 1 unit) in the variable. For a CLASS variable, a hazard ratio compares the hazards of two levels of the
variable. More than one HAZARDRATIO statement can be specified, and an optional label (specified as a
quoted string) helps identify the output.

Table 86.7 summarizes the options available in the HAZARDRATIO statement.
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Table 86.7 HAZARDRATIO Statement Options

Option Description

ALPHA= Specifies the alpha level
AT Specifies the variables that interact with the variable of interest
CL= Specifies confidence limits
DIFF= Specifies which differences to consider
E Displays the log-hazard ratio
PLCONV= Controls the convergence criterion
PLMAXIT= Specifies the maximum number of iterations to achieve the convergence
PLSINGULAR= Specifies the tolerance for testing the singularity
UNITS= Specifies the units of change

Options for the HAZARDRATIO statement are as follows.

ALPHA=number
specifies the alpha level of the interval estimates for the hazard ratios. The value must be between 0
and 1. The default is the value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that
option is not specified.

AT (variable=ALL | REF | list < . . . variable=ALL | REF | list > )
specifies the variables that interact with the variable of interest and the corresponding values of the
interacting variables. If the interacting variable is continuous and a numeric list is specified after the
equal sign, hazard ratios are computed for each value in the list. If the interacting variable is a CLASS
variable, you can specify, after the equal sign, a list of quoted strings corresponding to various levels of
the CLASS variable, or you can specify the keyword ALL or REF. Hazard ratios are computed at each
value of the list if the list is specified, or at each level of the interacting variable if ALL is specified, or
at the reference level of the interacting variable if REF is specified.

If this option is not specified, PROC PHREG finds all the variables that interact with the variable of
interest. If an interacting variable is a CLASS variable, variable= ALL is the default; if the interacting
variable is continuous, variable=m is the default, where m is the average of all the sampled values of
the continuous variable.

Suppose the model contains two interactions: an interaction A*B of CLASS variables A and B, and
another interaction A*X of A with a continuous variable X. If 3.5 is the average of the sampled values
of X, the following two HAZARDRATIO statements are equivalent:

hazardratio A;
hazardratio A / at (B=ALL X=3.5);

CL=WALD | PL | BOTH
specifies whether to create the Wald or profile-likelihood confidence limits, or both for the classical
analysis. By default, Wald confidence limits are produced. This option is not applicable to a Bayesian
analysis.
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DIFF=diff-request
specifies which differences to consider for the level comparisons of a CLASS variable. This option
is ignored in the estimation of hazard ratios for a continuous variable. The diff-requests include the
following:

DISTINCT

DISTINCTPAIRS

ALL
requests all comparisons of only the distinct combinations of pairs

PAIRWISE
requests all possible pairwise comparisons of levels

REF
requests comparisons between the reference level and all other levels of the CLASS variable.

For example, let A be a CLASS variable with 3 levels (A1, A2, and A3), and A3 is specified as the
reference level. The following table depicts the hazard ratios displayed for the three alternatives of the
DIFF= option:

Hazard Ratios Displayed
DIFF=option A1 vs A2 A2 vs A1 A1 vs A3 A3 vs A1 A2 vs A3 A3 vs A2

DISTINCT
p p p

PAIRWISE
p p p p p p

REF
p p

The default is DIFF=DISTINCT.

E
displays the vector h of linear coefficients such that h0ˇ is the log-hazard ratio, with ˇ being the vector
of regression coefficients.

PLCONV=value
controls the convergence criterion for the profile-likelihood confidence limits. The quantity value
must be a positive number, with a default value of 1E–4. The PLCONV= option has no effect if
profile-likelihood confidence intervals (CL=PL) are not requested.

PLMAXIT=n
specifies the maximum number of iterations to achieve the convergence of the profile-likelihood
confidence limits. By default, PLMAXITER=25. If convergence is not attained in n iterations, the cor-
responding profile-likelihood confidence limit for the hazard ratio is set to missing. The PLMAXITER=
option has no effect if profile-likelihood confidence intervals (CL=PL) are not requested.

PLSINGULAR=value
specifies the tolerance for testing the singularity of the Hessian matrix in the computation of the
profile-likelihood confidence limits. The test requires that a pivot for sweeping this matrix be at least
this number times a norm of the matrix. Values of the PLSINGULAR= option must be numeric. By
default, value is the machine epsilon times 1E7, which is approximately 1E–9. The PLSINGULAR=
option has no effect if profile-likelihood confidence intervals (CL=PL) are not requested.
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UNITS=value
specifies the units of change in the continuous explanatory variable for which the customized hazard
ratio is estimated. The default is UNITS=1. This option is ignored in the computation of the hazard
ratios for a CLASS variable.

ID Statement
ID variables ;

The ID statement specifies additional variables for identifying observations in the input data. These vari-
ables are placed in the OUT= data set created by the OUTPUT statement. In the computation of the
COVSANDWICH estimate, you can aggregate over distinct values of these ID variables.

Only variables in the input data set can be included in the ID statement.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement compares least squares means (LS-means) of fixed effects. LS-means are predicted
population margins—that is, they estimate the marginal means over a balanced population. In a sense,
LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 86.8 summarizes the options available in the LSMEANS statement. If the BAYES statement is specified,
the ADJUST=, STEPDOWN, and LINES options are ignored. The PLOTS= option is not available for the
maximum likelihood analysis. It is available only for the Bayesian analysis.

Table 86.8 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as

determined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of

LS-means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
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Table 86.8 continued

Option Description

CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 458
in Chapter 19, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , < 'label ' > values < divisor=n > > < , . . . >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 86.9 summarizes the options available in the LSMESTIMATE statement. If the BAYES statement is
specified, the ADJUST=, STEPDOWN, TESTVALUE, LOWER, UPPER, and JOINT options are ignored.
The PLOTS= option is not available for the maximum likelihood analysis. It is available only for the Bayesian
analysis.

Table 86.9 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as

determined by a data set
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Table 86.9 continued

Option Description

SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of

LS-means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and

LS-means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
on page 477 in Chapter 19, “Shared Concepts and Topics.”

MODEL Statement
MODEL response <� censor (list) > = effects < / options > ;

MODEL (t1, t2)<� censor (list) > = effects < / options > ;

The MODEL statement identifies the variables to be used as the failure time variables, the optional censoring
variable, and the explanatory effects, including covariates, main effects, interactions, nested effects; for more
information, see the section “Specification of Effects” on page 3670 in Chapter 47, “The GLM Procedure.”
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A note of caution: specifying the effect T*A in the MODEL statement, where T is the time variable and A is a
CLASS variable, does not make the effect time-dependent. For more information, see the section “Time and
CLASS Variables Usage” on page 6886 for more information.

Two forms of MODEL syntax can be specified; the first form allows one time variable, and the second form
allows two time variables for the counting process style of input (for more information, see the section
“Counting Process Style of Input” on page 6892).

In the first MODEL statement, the name of the failure time variable precedes the equal sign. This name
can optionally be followed by an asterisk, the name of the censoring variable, and a list of censoring values
(separated by blanks or commas if there is more than one) enclosed in parentheses. If the censoring variable
takes on one of these values, the corresponding failure time is considered to be censored. Following the equal
sign are the explanatory effects (sometimes called independent variables or covariates) for the model.

Instead of a single failure-time variable, the second MODEL statement identifies a pair of failure-time
variables. Their names are enclosed in parentheses, and they signify the endpoints of a semiclosed interval
.t1; t2� during which the subject is at risk. If the censoring variable takes on one of the censoring values, the
time t2 is considered to be censored.

The censoring variable must be numeric and the failure-time variables must contain nonnegative values. Any
observation with a negative failure time is excluded from the analysis, as is any observation with a missing
value for any of the variables listed in the MODEL statement. Failure-time variables with a SAS date format
are not recommended because the dates might be translated into negative numbers and consequently the
corresponding observation would be discarded.

Table 86.10 summarizes the options available in the MODEL statement. These options can be specified after
a slash (/). Four convergence criteria are allowed for the maximum likelihood optimization: ABSFCONV=,
FCONV=, GCONV=, and XCONV=. If you specify more than one convergence criterion, the optimization
is terminated as soon as one of the criteria is satisfied. If none of the criteria is specified, the default is
GCONV=1E–8.

Table 86.10 MODEL Statement Options

Option Description

Model Specification Options
EVENTCODE= Specific the code that represents the event of interest for

competing-risks data
NOFIT Suppresses model fitting
OFFSET= Specifies offset variable
SELECTION= Specifies effect selection method

Effect Selection Options
BEST= Controls the number of models displayed for best subset

selection
DETAILS Requests detailed results at each step
HIERARCHY= Specifies whether and how hierarchy is maintained and

whether a single effect or multiple effects are allowed to
enter or leave the model per step

INCLUDE= Specifies number of effects included in every model
MAXSTEP= Specifies maximum number of steps for stepwise selection
SEQUENTIAL Adds or deletes effects in sequential order
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Table 86.10 continued

Option Description

SLENTRY= Specifies significance level for entering effects
SLSTAY= Specifies significance level for removing effects
START= Specifies number of variables in first model
STOP= Specifies number of variables in final model
STOPRES Adds or deletes variables by residual chi-square criterion

Maximum Likelihood Optimization Options
ABSFCONV= Specifies absolute function convergence criterion
FCONV= Specifies relative function convergence criterion
FIRTH Specifies Firth’s penalized likelihood method
GCONV= Specifies relative gradient convergence criterion
XCONV= Specifies relative parameter convergence criterion
MAXITER= Specifies maximum number of iterations
RIDGEINIT= Specifies the initial ridging value
RIDGING= Specifies the technique to improve the log likelihood

function when its value is worse than that of the previous
step

SINGULAR= Specifies tolerance for testing singularity

Confidence Interval Options
ALPHA= Specifies ˛ for the 100.1 � ˛/% confidence intervals
PLCONV= Specifies profile-likelihood convergence criterion
RISKLIMITS= Computes confidence intervals for hazard ratios

Display Options
CORRB Displays correlation matrix
COVB Displays covariance matrix
ITPRINT Displays iteration history
NODUMMYPRINT Suppresses “Class Level Information” table

TYPE1 Displays Type 1 analysis
TYPE3 Displays Type 3 tests or joint tests of effects
Miscellaneous Options
ENTRYTIME= Specifies the delayed entry time variable
ROCLABEL= Specifies a label to identify the model that is specified in

the MODEL statement model for an ROC analysis
TIES= Specifies the method of handling ties in failure times

ALPHA=value
sets the significance level used for the confidence limits for the hazard ratios. The quantity value must
be between 0 and 1. The default is the value of the ALPHA= option in the PROC PHREG statement,
or 0.05 if that option is not specified. This option has no effect unless the RISKLIMITS option is
specified.
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ABSFCONV=value

CONVERGELIKE=value
specifies the absolute function convergence criterion. Termination requires a small change in the
objective function (log partial likelihood function) in subsequent iterations,

jlk � lk�1j < value

where lk is the value of the objective function at iteration k.

BEST=n
is used exclusively with the best subset selection (SELECTION=SCORE). The BEST=n option
specifies that n models with the highest-score chi-square statistics are to be displayed for each model
size. If the option is omitted and there are no more than 10 explanatory variables, then all possible
models are listed for each model size. If the option is omitted and there are more than 10 explanatory
variables, then the number of models selected for each model size is, at most, equal to the number of
explanatory variables listed in the MODEL statement.

See Example 86.2 for an illustration of the best subset selection method and the BEST= option.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COVB
displays the estimated covariance matrix of the parameter estimates.

DETAILS
produces a detailed display at each step of the model-building process. It produces an “Analysis of
Variables Not in the Model” table before displaying the variable selected for entry for forward or
stepwise selection. For each model fitted, it produces the “Analysis of Maximum Likelihood Estimates”
table.

See Example 86.1 for a discussion of these tables.

ENTRYTIME=variable

ENTRY=variable
specifies the name of the variable that represents the left-truncation time. This option has no effect when
the counting process style of input is specified. For more information, see the section “Left-Truncation
of Failure Times” on page 6893.

EVENTCODE=number

FAILCODE=number
specifies the number that represents the event of interest for the competing-risks analysis of Fine and
Gray (1999). For example:

model T*Status(0 1)= X1-X5 / eventcode=2;

This specifies that a subject whose Status value is 2 has the event of interest, a subject whose Status
value is 0 or 1 is a censored observation, and a subject that has another value of the Status variable has
a competing event.
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FCONV=value
specifies the relative function convergence criterion. Termination requires a small relative change in
the objective function (log partial likelihood function) in subsequent iterations,

jlk � lk�1j

jlk�1j C 1E � 6
< value

where lk is the value of the objective function at iteration k.

FIRTH
performs Firth’s penalized maximum likelihood estimation to reduce bias in the parameter estimates

(Heinze and Schemper 2001; Firth 1993). This method is useful when the likelihood is monotone—that
is, the likelihood converges to finite value while at least one estimate diverges to infinity.

GCONV=value
specifies the relative gradient convergence criterion. Termination requires that the normalized prediction
function reduction is small,

gkH�1k gk
jlkj C 1E � 6

< value

where lk is the log partial likelihood, gk is the gradient vector (first partial derivatives of the log
partial likelihood), and Hk is the negative Hessian matrix (second partial derivatives of the log partial
likelihood), all at iteration k.

HIERARCHY=keyword

HIER=keyword
specifies whether and how the model hierarchy requirement is applied and whether a single effect
or multiple effects are allowed to enter or leave the model in one step. You can specify that only
CLASS variable effects, or both CLASS and continuous variable effects, be subject to the hierarchy
requirement. The HIERARCHY= option is ignored unless you also specify the forward, backward, or
stepwise selection method.

Model hierarchy refers to the requirement that, for any term to be in the model, all effects contained
in the term must be present in the model. For example, in order for the interaction A*B to enter the
model, the main effects A and B must be in the model. Likewise, neither effect A nor B can leave the
model while the interaction A*B is in the model.

You can specify any of the following keywords in the HIERARCHY= option:

NONE
indicates that the model hierarchy is not maintained. Any single effect can enter or leave the
model at any given step of the selection process.

SINGLE
indicates that only one effect can enter or leave the model at one time, subject to the model
hierarchy requirement. For example, suppose that you specify the main effects A and B and the
interaction of A*B in the model. In the first step of the selection process, either A or B can enter
the model. In the second step, the other main effect can enter the model. The interaction effect
can enter the model only when both main effects have already been entered. Also, before A or B
can be removed from the model, the A*B interaction must first be removed. All effects (CLASS
and continuous variables) are subject to the hierarchy requirement.
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SINGLECLASS
is the same as HIERARCHY=SINGLE except that only CLASS effects are subject to the hierarchy
requirement.

MULTIPLE
indicates that more than one effect can enter or leave the model at one time, subject to the model
hierarchy requirement. In a forward selection step, a single main effect can enter the model, or an
interaction can enter the model together with all the effects that are contained in the interaction.
In a backward elimination step, an interaction itself, or the interaction together with all the effects
that the interaction contains, can be removed. All effects (CLASS and continuous variable) are
subject to the hierarchy requirement.

MULTIPLECLASS
is the same as HIERARCHY=MULTIPLE except that only CLASS effects are subject to the
hierarchy requirement.

The default value is HIERARCHY=SINGLE, which means that model hierarchy is to be maintained
for all effects (that is, both CLASS and continuous variable effects) and that only a single effect can
enter or leave the model at each step.

INCLUDE=n
includes the first n effects in the MODEL statement in every model. By default, INCLUDE=0. The
INCLUDE= option has no effect when SELECTION=NONE.

ITPRINT
displays the iteration history, including the last evaluation of the gradient vector.

MAXITER=n
specifies the maximum number of iterations allowed. The default value for n is 25. If convergence is
not attained in n iterations, the displayed output and all data sets created by PROC PHREG contain
results that are based on the last maximum likelihood iteration.

MAXSTEP=n
specifies the maximum number of times the explanatory variables can move in and out of the model
before the stepwise model-building process ends. The default value for n is twice the number of
explanatory variables in the MODEL statement. The option has no effect for other model selection
methods.

NODUMMYPRINT

NODESIGNPRINT

NODP
suppresses the “Class Level Information” table, which shows how the design matrix columns for the
CLASS variables are coded.

NOFIT
performs the global score test, which tests the joint significance of all the explanatory variables in the
MODEL statement. No parameters are estimated. If the NOFIT option is specified along with other
MODEL statement options, NOFIT takes precedence, and all other options are ignored except the
TIES= option.



MODEL Statement F 6871

OFFSET=name
specifies the name of an offset variable, which is an explanatory variable with a regression coefficient
fixed as one. This option can be used to incorporate risk weights for the likelihood function.

PLCONV=value
controls the convergence criterion for confidence intervals based on the profile-likelihood function.
The quantity value must be a positive number, with a default value of 1E–4. The PLCONV= option
has no effect if profile-likelihood based confidence intervals are not requested.

RIDGING=keyword
specifies the technique to improve the log likelihood when its value is worse than that of the previous
step. The available keywords are as follows:

ABSOLUTE
specifies that the diagonal elements of the negative (expected) Hessian be inflated by adding the
ridge value.

RELATIVE
specifies that the diagonal elements be inflated by the factor equal to 1 plus the ridge value.

NONE
specifies the crude line-search method of taking half a step be used instead of ridging.

The default is RIDGING=RELATIVE.

RIDGEINIT=value
specifies the initial ridge value. The maximum ridge value is 2000 times the maximum of 1 and
the initial ridge value. The initial ridge value is raised to 1E–4 if it is less than 1E–4. By default,
RIDGEINIT=1E–4. This option has no effect for RIDGING=ABSOLUTE.

RISKLIMITS< =keyword >

RL< =keyword >
produces confidence intervals for hazard ratios of main effects not involved in interactions or nestings.
Computation of these confidence intervals is based on the profile likelihood or based on individual
Wald tests. The confidence coefficient can be specified with the ALPHA= option. You can specify one
of the following keywords:

PL
requests profile-likelihood confidence limits.

WALD
requests confidence limits based on the Wald tests.

BOTH
request both profile-likelihood and Wald confidence limits.

Classification main effects that use parameterizations other than REF, EFFECT, or GLM are ignored.
If you need to compute hazard ratios for an effect involved in interactions or nestings, or using some
other parameterization, then you should specify a HAZARDRATIO statement for that effect.
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ROCLABEL='label '
specifies a label to identify the model that is specified in the MODEL statement (or the final model if a
selection method is used) when a concordance analysis or an ROC analysis is conducted. By default,
ROCLABEL='Model'.

SELECTION=method
specifies the method used to select the model. The methods available are as follows:

BACKWARD

B
requests backward elimination.

FORWARD

F
requests forward selection.

NONE

N
fits the complete model specified in the MODEL statement. This is the default value.

SCORE
requests best subset selection. It identifies a specified number of models with the highest-score
chi-square statistic for all possible model sizes ranging from one explanatory variable to the total
number of explanatory variables listed in the MODEL statement. This option is not allowed if an
explanatory effect in the MODEL statement contains a CLASS variable.

STEPWISE

S
requests stepwise selection.

For more information, see the section “Effect Selection Methods” on page 6940.

SEQUENTIAL
forces variables to be added to the model in the order specified in the MODEL statement or to be
eliminated from the model in the reverse order of that specified in the MODEL statement.

SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of explanatory variables.
The default value is 1E–12.

SLENTRY=value

SLE=value
specifies the significance level (a value between 0 and 1) for entering an explanatory variable into the
model in the FORWARD or STEPWISE method. For all variables not in the model, the one with the
smallest p-value is entered if the p-value is less than or equal to the specified significance level. The
default value is 0.05.
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SLSTAY=value

SLS=value
specifies the significance level (a value between 0 and 1) for removing an explanatory variable from
the model in the BACKWARD or STEPWISE method. For all variables in the model, the one with the
largest p-value is removed if the p-value exceeds the specified significance level. The default value is
0.05.

START=n
begins the FORWARD, BACKWARD, or STEPWISE selection process with the first n effects listed in
the MODEL statement. The value of n ranges from 0 to s, where s is the total number of effects in the
MODEL statement. The default value of n is s for the BACKWARD method and 0 for the FORWARD
and STEPWISE methods. Note that START=n specifies only that the first n effects appear in the first
model, while INCLUDE=n requires that the first n effects be included in every model. For the SCORE
method, START=n specifies that the smallest models contain n effects, where n ranges from 1 to s; the
default value is 1. The START= option has no effect when SELECTION=NONE.

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method) number of effects
to be included in the final model. The effect selection process is stopped when n effects are found. The
value of n ranges from 0 to s, where s is the total number of effects in the MODEL statement. The
default value of n is s for the FORWARD method and 0 for the BACKWARD method. For the SCORE
method, STOP=n specifies that the smallest models contain n effects, where n ranges from 1 to s; the
default value of n is s. The STOP= option has no effect when SELECTION=NONE or STEPWISE.

STOPRES

SR
specifies that the addition and deletion of variables be based on the result of the likelihood score test
for testing the joint significance of variables not in the model. This score chi-square statistic is referred
to as the residual chi-square. In the FORWARD method, the STOPRES option enters the explanatory
variables into the model one at a time until the residual chi-square becomes insignificant (that is, until
the p-value of the residual chi-square exceeds the SLENTRY= value). In the BACKWARD method, the
STOPRES option removes variables from the model one at a time until the residual chi-square becomes
significant (that is, until the p-value of the residual chi-square becomes less than the SLSTAY= value).
The STOPRES option has no effect for the STEPWISE method.

TYPE1
requests that a Type 1 (sequential) analysis of likelihood ratio test be performed. This consists of
sequentially fitting models, beginning with the null model and continuing up to the model specified in
the MODEL statement. The likelihood ratio statistic for each successive pair of models is computed
and displayed in a table.

TYPE3 < (keywords) >
requests a Type 3 test or a joint test for each effect that is specified in the MODEL statement. For more
information, see the section “Type 3 Tests and Joint Tests” on page 6907. The default is to use the Wald
statistic, but you can requests other statistics by specifying one or more of the following keywords:

ALL
requests the likelihood ratio tests, the score tests, and the Wald tests. Specifying TYPE3(ALL) is
equivalent to specifying TYPE3=(LR SCORE WALD).
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NONE
suppresses the Type 3 analysis. Even if the TYPE3 option is not specified, PROC PHREG
displays the Wald test results for each model effect if a CLASS variable is involved in a MODEL
effect. The NONE option can be used to suppress such display.

LR
requests the likelihood ratio tests. This request is not honored if the COVS option is also specified.

SCORE
requests the score tests. This request is not honored if the COVS option is also specified.

WALD
requests the Wald tests.

TIES=method
specifies how to handle ties in the failure time. The following methods are available:

BRESLOW
uses the approximate likelihood of Breslow (1974). This is the default value.

DISCRETE
replaces the proportional hazards model by the discrete logistic model

�.t I z/
1 � �.t I z/

D
�0.t/

1 � �0.t/
exp.z0ˇ/

where �0.t/ and h.t I z/ are discrete hazard functions.

EFRON
uses the approximate likelihood of Efron (1977).

EXACT
computes the exact conditional probability under the proportional hazards assumption that all
tied event times occur before censored times of the same value or before larger values. This is
equivalent to summing all terms of the marginal likelihood for ˇ that are consistent with the
observed data (Kalbfleisch and Prentice 1980; DeLong, Guirguis, and So 1994).

TIES=EXACT can take a considerable amount of computer resources. If ties are not extensive,
TIES=EFRON and TIES=BRESLOW methods provide satisfactory approximations to TIES=EXACT
for the continuous time-scale model. In general, Efron’s approximation gives results that are much
closer to the exact method results than Breslow’s approximation does. If the time scale is genuinely
discrete, you should use TIES=DISCRETE. TIES=DISCRETE is also required in the analysis of
case-control studies when there is more than one case in a matched set. If there are no ties, all four
methods result in the same likelihood and yield identical estimates. The default, TIES=BRESLOW, is
the most efficient method when there are no ties.

XCONV=value

CONVEREPARM=value
specifies the relative parameter convergence criterion. Termination requires a small relative parameter
change in subsequent iterations,

max
i
jı
.i/

k
j < value
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where
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.i/

k
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j < :01

�
.i/
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.i/

k�1

�
.i/

k�1

otherwise

where � .i/
k

is the estimate of the ith parameter at iteration k.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > < / option > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set
and optionally contains variables for the estimated linear predictor and its standard error estimate, survival
estimates, residuals, and influence statistics.

The estimated linear predictor and its standard error estimate are computed for all observations in which
the explanatory variables have no missing values, even if the observed time is missing; if the observed time
is not missing, the predicted probability is computed at the observed time. By adding observations that
have a missing censoring indicator to the input data set, you can compute predicted probabilities for new
observations or for settings of explanatory variables and observed times that are not present in the data
without affecting the model. Alternatively, you can use the BASELINE statement to compute predicted
survival probabilities for new observations.

No data set is created for the OUTPUT statement if the model contains any time-dependent variables that are
defined by programming statements.

Table 86.11 summarizes the options available in the OUTPUT statement. The statistic and diagnostic
keywords specify the statistics to be included in the output data set and name the new variables that contain
the statistics.

Table 86.11 OUTPUT Statement Options

Option Description

METHOD= Specifies the method to use to estimate the survival probabilities
OUT= Names the output data set
Statistic Keywords
ATRISK= Names the variable that contains the number of subjects at risk
CIF= Names the variable that contains the cumulative incidence probability
LOGLOGS= Names the variable that contains the log of the negative log of survival

probability
LOGSURVS= Names the variable that contains the log of survival probability
XBETA= Names the variable that contains the linear predictor
STDXBETA= Names the variable that contains standard error of the linear predictor
SURVIVAL= Names the variable that contains the survival probability
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Table 86.11 continued

Option Description

Diagnostic Keywords
DFBETA= Requests the standardized deletion parameter differences
LD= Names the variable that contains the likelihood displacement diagnostic
LMAX= Names the variable that contains the relative influence diagnostic
RESDEV= Names the variable that contains the deviance residuals
RESMART= Names the variable that contains the martingale residuals
RESSCH= Requests the Schoenfeld residuals
RESSCO= Requests the score residuals
WTRESSCH= Requests the weighted Schoenfeld residuals

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the OUTPUT data set is created and given a
default name by using the DATAn convention. For more information, see the section “OUT= Output
Data Set in the OUTPUT Statement” on page 6957.

METHOD=method
specifies the method used to compute the survivor function estimates. For more information, see the
section “Survivor Function Estimators” on page 6932. This option appears in the OUTPUT statement
after a slash (/). You can specify the following methods:

BRESLOW

CH

EMP
computes the cumulative hazard function estimate of the survivor function; that is, the survivor
function is estimated by exponentiating the negative cumulative hazard function.

FH
computes the Fleming-Harrington (FH) estimates of the survivor function. The FH estimator is a
tie-breaking modification of the Breslow estimator. If there are no tied event times, this estimator
is the same as the Breslow estimator.

PL
computes the product-limit estimates of the survivor function. This estimator is not available if
you use the model syntax that allows two time variables for the counting process style of input;
in such a case, the Breslow estimator (METHOD=BRESLOW) is used instead.

By default, METHOD=BRESLOW.

The following list describes the statistic and diagnostic keywords:

ATRISK=name
names the variable that contains the number of subjects at risk at the observed time (or at the right
endpoint of the at-risk interval when a counting-process specification is used in the MODEL statement,
as described in the section “Counting Process Style of Input” on page 6892).
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CIF=name
names the variable that contains the cumulative incidence probabilities at the observed times. For more
information, see the section “Cumulative Incidence Prediction” on page 6900.

DFBETA=_ALL_ |name-list
requests the approximate changes in the parameter estimates . Ǒ � Ǒ.j // when the jth observation is
omitted. These variables are a weighted transform of the score residual variables and are useful in
assessing local influence and in computing robust variance estimates. You can specify this option in
one of the following ways:

name-list specifies up to s variable names, where s is the number of regression parameters of
the model that is specified in the MODEL statement. The first variable contains the
changes in the first regression parameter, the second variable contains the changes
for the second regression parameter, and so on.

_ALL_ requests the changes for all parameters and names them DFBETA_xxx, where xxx is
the name of the model regression parameter that is formed from the input variable
names (concatenated with the appropriate categories if a classification variable
is used). For example, suppose that the model contains a continuous variable X
and a CLASS variable Gender with two levels (“Female” and “Male”) and that
Gender has a GLM parameterization. Three statistics are produced: DFBETA_X,
DFBETA_GenderFemale, and DFBETA_GenderMale.

If an effect that is specified in the MODEL statement is not included in the final model, the correspond-
ing statistics are set to missing. For more information, see the section “Diagnostics Based on Weighted
Residuals” on page 6924.

LD=name
names the variable that contains the approximate likelihood displacement when the observation is
left out. This diagnostic can be used to assess the impact of each observation on the overall fit of the
model. For more information, see the section “Influence of Observations on Overall Fit of the Model”
on page 6925.

LMAX=name
names the variable that contains the relative influence of observations on the overall fit of the model.
This diagnostic is useful in assessing the sensitivity of the model’s fit to each observation. For more
information, see the section “Influence of Observations on Overall Fit of the Model” on page 6925.

LOGLOGS=name
names the variable that contains the log of the negative log of the variable named in the SURVIVAL=
option.

LOGSURV=name
names the variable that contains the log of variable named in the SURVIVAL= option.

RESDEV=name
names the variable that contains the deviance residuals. This variable is a transform of the variable
named in the RESMART= option and can achieve a more symmetric distribution. For more information,
see the section “Residuals” on page 6921.
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RESMART=name
names the variable that contains the martingale residuals. The martingale residual at the observed time
t can be interpreted as the difference over Œ0; t � in the observed number of events minus the expected
number of events. For more information, see the section “Residuals” on page 6921.

RESSCH=_ALL_ | name-list
requests Schoenfeld residuals, which are useful in assessing the proportional hazards assumption.
Schoenfeld residuals are computed only at uncensored times and are missing for censored times. You
can specify this option in one of the following ways:

name-list specifies up to s variable names, where s is the number of regression parameters of
the model that is specified in the MODEL statement. The first variable contains the
Schoenfeld residuals for the first regression parameter, the second variable contains
the Schoenfeld residuals for the second regression parameter, and so on.

_ALL_ requests Schoenfeld residuals for all regression parameters and names them
RESSCH_xxx, where xxx is the name of the model regression parameter that is
formed from the input variable names (concatenated with the appropriate categories
if a classification variable is used). For example, suppose that the model contains
a continuous variable X and a CLASS variable Gender with two levels (“Female”
and “Male”) and that Gender has a GLM parameterization. Three statistics are
produced: RESSCH_X, RESSCH_GenderFemale, and RESSCH_GenderMale.

If an effect in the MODEL statement is not included in the final model, the corresponding Schoenfeld
residuals are set to missing. For more information, see the section “Residuals” on page 6921.

RESSCO=_ALL_ | name-list
requests the score residuals, which are a decomposition of the first partial derivative of the log likelihood.
These residuals can be used to assess the leverage that is exerted by each subject in the parameter
estimates. They are also useful in constructing robust sandwich variance estimates. You can specify
this option in one of the following ways:

name-list specifies up to s variable names, where s is the number of regression parameters of
the model that is specified in the MODEL statement. The first variable contains the
score residuals for the first regression parameter, the second variable contains the
score residuals for the second parameter, and so on.

_ALL_ requests score residuals for all regression parameters and names them RESSCO_xxx,
where xxx is the name of the model regression parameter that is formed from the
input variable names (concatenated with the appropriate categories if a classification
variable is used). For example, suppose that the model contains a continuous
variable X and a CLASS variable Gender with two levels (“Female” and “Male”)
and that Gender has a GLM parameterization. Three statistics are produced:
RESSCO_X, RESSCO_GenderFemale, and RESSCO_GenderMale.

If an effect in the MODEL statement is not included in the final model, the corresponding score
residuals are set to missing. For more information, see the section “Residuals” on page 6921.
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STDXBETA=name
names the variable that contains the standard error estimates of linear predictor that is specified in the
XBETA= option.

SURVIVAL=name
names the variable that contains the predicted survival probabilities at the observed times. For more
information, see the section “Survivor Function Estimators” on page 6932.

WTRESSCH=_ALL_ | name-list
requests the weighted Schoenfeld residuals, which are useful in investigating the nature of nonpropor-
tionality if the proportional hazard assumption does not hold. You can specify this option in one of the
following ways:

name-list specifies up to s variable names, where s is the number of regression parameters of
the model that is specified in the MODEL statement. The first variable contains the
weighted Schoenfeld residuals for the first regression parameter, the second variable
contains the weighted Schoenfeld residuals for the second regression parameter,
and so on.

_ALL_ requests weighted Schoenfeld residuals for all regression parameters and names
them WTRESSCH_xxx, where xxx is the name of the model regression parameter
that is formed from the input variable names (concatenated with the appropri-
ate categories if a classification variable is used). For example, suppose that
the model contains a continuous variable X and a CLASS variable Gender with
two levels (“Female” and “Male”) and that Gender has a GLM parameterization.
Three statistics are produced: WTRESSCH_X, WTRESSCH_GenderFemale, and
WTRESSCH_GenderMale.

If an effect in the MODEL statement is not included in the final model, the corresponding weighted
Schoenfeld residuals are set to missing. For more information, see the section “Diagnostics Based on
Weighted Residuals” on page 6924.

XBETA=name
names the variable that contains the estimates of the linear predictor.

Programming Statements
Programming statements are used to create or modify the values of the explanatory variables in the MODEL
statement. They are especially useful in fitting models with time-dependent explanatory variables. Program-
ming statements can also be used to create explanatory variables that are not time dependent. For example,
you can create indicator variables from a categorical variable and incorporate them into the model. PROC
PHREG programming statements cannot be used to create or modify the values of the response variable, the
censoring variable, the frequency variable, or the strata variables.

The following DATA step statements are available in PROC PHREG:
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ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

By default, the PUT statement in PROC PHREG writes results to the Output window instead of the Log
window. If you want the results of the PUT statements to go to the Log window, add the following statement
before the PUT statements:

FILE LOG;

DATA step functions are also available. Use these programming statements the same way you use them in
the DATA step. For detailed information, see SAS Statements: Reference.

Consider the following example of using programming statements in PROC PHREG. Suppose blood pressure
is measured at multiple times during the course of a study investigating the effect of blood pressure on some
survival time. By treating the blood pressure as a time-dependent explanatory variable, you are able to use
the value of the most recent blood pressure at each specific point of time in the modeling process rather than
using the initial blood pressure or the final blood pressure. The values of the following variables are recorded
for each patient, if they are available. Otherwise, the variables contain missing values.

Time survival time

Censor censoring indicator (with 0 as the censoring value)

BP0 blood pressure on entry to the study

T1 time 1

BP1 blood pressure at T1

T2 time 2

BP2 blood pressure at T2

The following programming statements create a variable BP. At each time T, the value of BP is the blood
pressure reading for that time, if available. Otherwise, it is the last blood pressure reading.
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proc phreg;
model Time*Censor(0)=BP;
BP = BP0;
if Time>=T1 and T1^=. then BP=BP1;
if Time>=T2 and T2^=. then BP=BP2;

run;

For other illustrations of using programming statements, see the section “Classical Method of Maximum
Likelihood” on page 6814 and Example 86.6.

RANDOM Statement
RANDOM variable < / options > ;

The RANDOM statement enables you to fit a shared frailty model for clustered data. For more information
about the frailty model, see the section “The Frailty Model” on page 6896. The variable that represents the
clusters must be a CLASS variable (declared in the CLASS statement).

The following options can be specified in the RANDOM statement:

ABSPCONV=r
specifies an absolute variance estimate convergence criterion for the doubly iterative estimation process.
The PHREG procedure applies this criterion to the variance parameter estimate of the random effects.
Suppose O� .j / denotes the estimate of the variance parameter at the jth optimization. By default, PROC
PHREG examines the relative change in the variance estimate between optimizations (see the PCONV=
option). The purpose of the ABSPCONV= criterion is to stop the doubly iterative process when the
absolute change j O� .j / � O� .j�1/j is less than the tolerance criterion r . This convergence criterion does
not affect the convergence criteria applied within any individual optimization. In order to change the
convergence behavior within an individual optimization, you can use the ABSCONV=, ABSFCONV=,
ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in the NLOPTIONS statement.

ALPHA=value
specifies the ˛ level of the confidence limits for the random effects. The default is the value of the
ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified. This option is
ignored if the SOLUTION option is not also specified.

DIST=GAMMA | LOGNORMAL
specifies the distribution of the shared frailty. DIST=GAMMA specifies a gamma frailty model.
DIST=LOGNORMAL specifies a lognormal frailty model; that is, the log-frailty random variable has
a normal distribution with mean zero. The default is DIST=LOGNORMAL.

METHOD=REML | ML
specifies the estimation method for the variance parameter of the normal random effects.
METHOD=REML performs the residual maximum likelihood; METHOD=ML performs maxi-
mum likelihood. This option is ignored for the gamma frailty model. The default is METHOD=REML.

NOCLPRINT
suppresses the display of the “Class Level Information for Random Effects” table.
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PCONV=r
specifies the variance estimate convergence criterion for the doubly iterative estimation process. The
PHREG procedure applies this criterion to the variance estimate of the random effects. Suppose O� .j /

denotes the estimate of variance at the jth optimization. The procedure terminates the doubly iterative
process if the relative change

2 �
j O� .j / � O� .j�1/j

j O� .j /j C j O� .j�1/j

is less than r . To check an absolute convergence criterion in addition, you can specify the ABSPCONV=
option in the RANDOM statement. The default value for r is 1E–4. This convergence criterion does
not affect the convergence criteria applied within any individual optimization. In order to change the
convergence behavior within an individual optimization, you can use the ABSCONV=, ABSFCONV=,
ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in the NLOPTIONS statement.

SOLUTION < (number-list) >
displays statistical measures of the random-effect parameters. The behavior of this option depends on
whether you also specify the BAYES statement:

� When you do not specify a BAYES statement, this option displays point estimates and confidence
intervals for the random components and for the frailties.

� When you also specify a BAYES statement, this option displays the summary statistics and
diagnostics of the random-effect parameters. Optionally, you can specify a number-list of indices
of the random-effect parameters for which the summary statistics and diagnostics are to be
displayed. For example, to display the summary statistics and diagnostics for the second to the
fifth random-effect parameters, specify

SOLUTION(2 to 5)

If you specify SOLUTION without a list, summary statistics and diagnostics are displayed for
each random-effect parameter.

INITIALVARIANCE=value

INITIAL=value
specifies an initial value of the dispersion parameter. For the lognormal frailty model, the dispersion
parameter represents the variance of the normal random effect; for the gamma frailty model, it
represents the variance of the gamma frailty. The default is INITIAL=1.

ROC Statement
ROC < 'label ' > specification ;

The ROC statement specifies a model to be used in the concordance analysis or ROC analysis. There is no
limit to the number of ROC statements that you can have. You can specify a label in quotation marks to
identify an ROC statement. If you do not specify a label , the model in the ith ROC statement is labeled
“ROCi”.

You can specify one of the following specifications:
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effect-list
specifies a list of effects that have previously been specified in the MODEL statement.

PRED=variable
specifies a variable in the input data set. The variable does not have to be specified in the MODEL
statement. For an example, see Example 86.16.

SOURCE=item-store-name
specifies a one- or two-level name of an existing item store.

The PRED= option and the SOURCE= option enable you to input a model that is produced outside PROC
PHREG; for example, you can fit a parametric survival model by using PROC LIFEREG, save the model in
an item store, and then specify the item-store name in the SOURCE= option in a ROC statement to produce
an ROC analysis of the imported model.

STRATA Statement
STRATA variable < (list) > < . . . variable < (list) > > < / option > ;

The proportional hazards assumption might not be realistic for all data. If so, it might still be reasonable to
perform a stratified analysis. The STRATA statement names the variables that determine the stratification.
Strata are formed according to the nonmissing values of the STRATA variables unless the MISSING option
is specified. In the STRATA statement, variable is a variable with values that are used to determine the
strata levels, and list is an optional list of values for a numeric variable. Multiple variables can appear in the
STRATA statement.

The values for variable can be formatted or unformatted. If the variable is a character variable, or if the
variable is numeric and no list appears, then the strata are defined by the unique values of the variable. If
the variable is numeric and is followed by a list, then the levels for that variable correspond to the intervals
defined by the list. The corresponding strata are formed by the combination of levels and unique values. The
list can include numeric values separated by commas or blanks, value to value by value range specifications,
or combinations of these.

For example, the specification

strata age (5, 10 to 40 by 10) sex;

indicates that the levels for age are to be less than 5, 5 to 10, 10 to 20, 20 to 30, 30 to 40, and greater than 40.
(Note that observations with exactly the cutpoint value fall into the interval preceding the cutpoint.) Thus,
with the sex variable, this STRATA statement specifies 12 strata altogether.

The following option can be specified in the STRATA statement after a slash (/):

MISSING
allows missing values (‘.’ for numeric variables and blanks for character variables) as valid STRATA
variable values. Otherwise, observations with missing STRATA variable values are deleted from the
analysis.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21. For details about the syntax of the SLICE statement, see the section “SLICE Statement” on
page 506 in Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure. For details about the syntax of the STORE statement, see the section
“STORE Statement” on page 509 in Chapter 19, “Shared Concepts and Topics.”

TEST Statement
< label: > TEST equation < , . . . , equation > < / options > ;

The TEST statement tests linear hypotheses about the regression coefficients. PROC PHREG performs a
Wald test for the joint hypothesis specified in a single TEST statement. Each equation specifies a linear
hypothesis; multiple equations (rows of the joint hypothesis) are separated by commas. The label , which
must be a valid SAS name, is used to identify the resulting output and should always be included. You can
submit multiple TEST statements.

The form of an equation is as follows:

term < ˙ term . . . > < = < ˙ term <˙ term . . . > > >

where term is a variable or a constant or a constant times a variable. The variable is any explanatory variable
in the MODEL statement. When no equal sign appears, the expression is set to 0. The following program
illustrates possible uses of the TEST statement:

proc phreg;
model time= A1 A2 A3 A4;
Test1: test A1, A2;
Test2: test A1=0,A2=0;
Test3: test A1=A2=A3;
Test4: test A1=A2,A2=A3;

run;

Note that the first and second TEST statements are equivalent, as are the third and fourth TEST statements.

The following options can be specified in the TEST statement after a slash (/):
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AVERAGE
enables you to assess the average effect of the variables in the given TEST statement. An overall
estimate of the treatment effect is computed as a weighted average of the treatment coefficients as
illustrated in the following statement:

TREATMENT: test trt1, trt2, trt3, trt4 / average;

Let ˇ1, ˇ2, ˇ3, and ˇ4 be corresponding parameters for trt1, trt2, trt3, and trt4, respectively. Let
Ǒ D . Ǒ1; Ǒ2; Ǒ3; Ǒ4/

0 be the estimated coefficient vector and let OV. Ǒ/ be the corresponding variance
estimate. Assuming ˇ1 D ˇ2 D ˇ3 D ˇ4, let Ň be the average treatment effect. The effect is estimated
by c0 Ǒ, where c D Œ104 OV

�1
. Ǒ/14��1 OV

�1
. Ǒ/14 and 14 D .1; 1; 1; 1/0. A test of the null hypothesis

H0 W Ň D 0 is also included, which is more sensitive than the multivariate test for testing the null
hypothesis H0 W ˇ1 D ˇ2 D ˇ3 D ˇ4 D 0.

E
specifies that the linear coefficients and constants be printed. When the AVERAGE option is specified
along with the E option, the optimal weights of the average effect are also printed in the same tables as
the coefficients.

PRINT
displays intermediate calculations. This includes L OV. Ǒ/L0 bordered by .L Ǒ � c/, and ŒL OV. Ǒ/L0��1
bordered by ŒL OV. Ǒ/L0��1.L Ǒ � c/, where L is a matrix of linear coefficients and c is a vector of
constants.

For more information, see the section “Using the TEST Statement to Test Linear Hypotheses” on page 6910.

WEIGHT Statement
WEIGHT variable < / option > ;

The variable in the WEIGHT statement identifies the variable in the input data set that contains the case
weights. When the WEIGHT statement appears, each observation in the input data set is weighted by the
value of the WEIGHT variable. The WEIGHT values can be nonintegral and are not truncated. Observations
with negative, zero, or missing values for the WEIGHT variable are not used in the model fitting. When the
WEIGHT statement is not specified, each observation is assigned a weight of 1. The WEIGHT statement is
available for TIES=BRESLOW and TIES=EFRON only.

The following option can be specified in the WEIGHT statement after a slash (/):

NORMALIZE

NORM
causes the weights specified by the WEIGHT variable to be normalized so that they add up the actual
sample size. With this option, the estimated covariance matrix of the parameter estimators is invariant
to the scale of the WEIGHT variable.
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Details: PHREG Procedure

Failure Time Distribution
Let T be a nonnegative random variable representing the failure time of an individual from a homogeneous
population. The survival distribution function (also known as the survivor function) of T is written as

S.t/ D Pr.T � t /

A mathematically equivalent way of specifying the distribution of T is through its hazard function. The
hazard function �.t/ specifies the instantaneous failure rate at t. If T is a continuous random variable, �.t/ is
expressed as

�.t/ D lim
�t!0C

Pr.t � T < t C�t j T � t /
�t

D
f .t/

S.t/

where f .t/ is the probability density function of T. If T is discrete with masses at x1 < x2 < : : : , then
survivor function is given by

S.t/ D
X
xj�t

Pr.T D xj / D
X
j

Pr.T D j /ı.t � xj /

where ı.u/=0 if u < 0 and ı.u/=1 otherwise. The discrete hazards are given by

�j D Pr.T D xj j T � xj / D
Pr.T D xj /
S.xj /

; j D 1; 2; : : :

Time and CLASS Variables Usage
The following DATA step creates an artificial data set, Test, to be used in this section. There are four variables
in Test: the variable T contains the failure times; the variable Status is the censoring indicator variable with
the value 1 for an uncensored failure time and the value 0 for a censored time; the variable A is a categorical
variable with values 1, 2, and 3 representing three different categories; and the variable MirrorT is an exact
copy of T.

data Test;
input T Status A @@;
MirrorT = T;
datalines;

23 1 1 7 0 1
23 1 1 10 1 1
20 0 1 13 0 1
24 1 1 10 1 1
18 1 2 6 1 2
18 0 2 6 1 2
13 0 2 13 1 2
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9 0 2 15 1 2
8 1 3 6 1 3

12 0 3 4 1 3
11 1 3 8 1 1
6 1 3 7 1 3
7 1 3 12 1 3
9 1 2 15 1 2
3 1 2 14 0 3
6 1 1 13 1 2

;

Time Variable on the Right Side of the MODEL Statement

When the time variable is explicitly used in an explanatory effect in the MODEL statement, the effect is not
time-dependent. In the following specification, T is the time variable, but T does not play the role of the time
variable in the explanatory effect T*A:

proc phreg data=Test;
class A;
model T*Status(0)=T*A;

run;

The parameter estimates of this model are shown in Figure 86.12.

Figure 86.12 T*A Effect

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

T*A 1 1 -0.16549 0.05042 10.7734 0.0010 . A 1 * T

T*A 2 1 -0.11852 0.04181 8.0344 0.0046 . A 2 * T

To verify that the effect T*A in the MODEL statement is not time-dependent, T is replaced by MirrorT, which
is an exact copy of T, as in the following statements:

proc phreg data=Test;
class A;
model T*Status(0)=A*MirrorT;

run;

The results of fitting this model (Figure 86.13) are identical to those of the previous model (Figure 86.12),
except for the parameter names and labels. The effect A*MirrorT is not time-dependent, so neither is A*T.

Figure 86.13 T*A Effect

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

MirrorT*A 1 1 -0.16549 0.05042 10.7734 0.0010 . A 1 * MirrorT

MirrorT*A 2 1 -0.11852 0.04181 8.0344 0.0046 . A 2 * MirrorT
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CLASS Variables and Programming Statements

In PROC PHREG, the levels of CLASS variables are determined by the CLASS statement and the input data
and are not affected by user-supplied programming statements. Consider the following statements, which
produce the results in Figure 86.14. Variable A is declared as a CLASS variable in the CLASS statement. By
default, the reference parameterization is used with A=3 as the reference level. Two regression coefficients
are estimated for the two dummy variables of A.

proc phreg data=Test;
class A;
model T*Status(0)=A;

run;

Figure 86.14 shows the dummy variables of A and the regression coefficients estimates.

Figure 86.14 Design Variable and Regression Coefficient Estimates

The PHREG ProcedureThe PHREG Procedure

Class Level Information

Class Value
Design

Variables

A 1 1 0

2 0 1

3 0 0

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 -1.40925 0.64802 4.7293 0.0297 0.244 A 1

A 2 1 -0.65705 0.51764 1.6112 0.2043 0.518 A 2

Now consider the programming statement that attempts to change the value of the CLASS variable A as in
the following specification:

proc phreg data=Test;
class A;
model T*Status(0)=A;
if A=3 then A=2;

run;

Results of this analysis are shown in Figure 86.15 and are identical to those in Figure 86.14. The if A=3

then A=2 programming statement has no effects on the design variables for A, which have already been
determined.
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Figure 86.15 Design Variable and Regression Coefficient Estimates

The PHREG ProcedureThe PHREG Procedure

Class Level Information

Class Value
Design

Variables

A 1 1 0

2 0 1

3 0 0

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 -1.40925 0.64802 4.7293 0.0297 0.244 A 1

A 2 1 -0.65705 0.51764 1.6112 0.2043 0.518 A 2

Additionally any variable used in a programming statement that has already been declared in the CLASS
statement is not treated as a collection of the corresponding design variables. Consider the following
statements:

proc phreg data=Test;
class A;
model T*Status(0)=A X;
X=T*A;

run;

The CLASS variable A generates two design variables as explanatory variables. The variable X that is created
by the X=T*A programming statement is a single time-dependent covariate whose values are evaluated using
the exact values of A that exist in the data, not the dummy-coded values that represent the levels of A. In the
Test data set, A assumes the values of 1, 2, and 3, and these are the exact values that are used in producing X.
If A is a character variable, the programming statement converts the character value of A to numeric before
carrying out the multiplication. If the values of A were Bird, Cat, and Dog, the programming statement
X=T*A would produce an error for failing to convert the character values to numeric values.

Figure 86.16 Single Time-Dependent Variable X*A

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 0.15798 1.69338 0.0087 0.9257 1.171 A 1

A 2 1 0.00898 0.87573 0.0001 0.9918 1.009 A 2

X 1 0.09268 0.09535 0.9448 0.3311 1.097

To generalize the simple test of proportional hazard assumption for the design variables of A (as in the section
the “Classical Method of Maximum Likelihood” on page 6814), you specify the following statements, which
are not the same as in the preceding program or as in the specification in the section “Time Variable on the
Right Side of the MODEL Statement” on page 6887:
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proc phreg data=Test;
class A;
model T*Status(0)=A X1 X2;
X1= T*(A=1);
X2= T*(A=2);

run;

The Boolean parenthetical expressions (A=1) and (A=2) resolve to a value of 1 or 0, depending on whether
the expression is true or false, respectively.

Results of this test are shown in Figure 86.17.

Figure 86.17 Simple Test of Proportional Hazards Assumption

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

A 1 1 -0.00766 1.69435 0.0000 0.9964 0.992 A 1

A 2 1 -0.88132 1.64298 0.2877 0.5917 0.414 A 2

X1 1 -0.15522 0.20174 0.5920 0.4417 0.856

X2 1 0.01155 0.18858 0.0037 0.9512 1.012

In general, when your model contains a categorical explanatory variable that is time-dependent, it might
be necessary to use hardcoded dummy variables to represent the categories of the categorical variable.
Alternatively, you might consider using the counting-process style of input where you break up the covariate
history of an individual into a number of records with nonoverlapping start and stop times and declare the
categorical time-dependent variable in the CLASS statement.

Partial Likelihood Function for the Cox Model
Let Zl.t/ denote the vector explanatory variables for the lth individual at time t. Let t1 < t2 < : : : < tk
denote the k distinct, ordered event times. Let di denote the multiplicity of failures at ti ; that is, di is the
size of the set Di of individuals that fail at ti . Let wl be the weight associated with the lth individual. Using
this notation, the likelihood functions used in PROC PHREG to estimate ˇ are described in the following
sections.

Continuous Time Scale

Let Ri denote the risk set just before the ith ordered event time ti . Let R�i denote the set of individuals
whose event or censored times exceed ti or whose censored times are equal to ti .
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Exact Likelihood

L1.ˇ/ D

kY
iD1

8̂̂̂̂
<̂
ˆ̂̂:
Z 1
0

Y
j2Di

2666641 � exp

0BBBB@� eˇ0Zj .ti /X
l2R�

i

eˇ
0Zl .ti /

t

1CCCCA
377775 exp.�t /dt

9>>>>=>>>>;
Breslow Likelihood

L2.ˇ/ D

kY
iD1

eˇ
0
P
j2Di Zj .ti /24X

l2Ri

eˇ
0Zl .ti /

35di

Incorporating weights, the Breslow likelihood becomes
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Efron Likelihood
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Incorporating weights, the Efron likelihood becomes
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Discrete Time Scale

Let Qi denote the set of all subsets of di individuals from the risk set Ri . For each q 2 Qi , q is a di -tuple
.q1; q2; : : : ; qdi / of individuals who might have failed at ti .
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Discrete Logistic Likelihood

L4.ˇ/ D

kY
iD1

eˇ
0
P
j2Di Zj .ti /X

q2Qi

eˇ
0
Pdi
lD1

Zql .ti /

The computation of L4.ˇ/ and its derivatives is based on an adaptation of the recurrence algorithm of Gail,
Lubin, and Rubinstein (1981) to the logarithmic scale. When there are no ties on the event times (that is,
di � 1), all four likelihood functions L1.ˇ/, L2.ˇ/, L3.ˇ/, and L4.ˇ/ reduce to the same expression. In a
stratified analysis, the partial likelihood is the product of the partial likelihood functions for the individual
strata.

Counting Process Style of Input
In the counting process formulation, data for each subject are identified by a triple fN; Y;Zg of counting,
at-risk, and covariate processes. Here, N.t/ indicates the number of events that the subject experiences over
the time interval .0; t �; Y.t/ indicates whether the subject is at risk at time t (one if at risk and zero otherwise);
and Z.t/ is a vector of explanatory variables for the subject at time t. The sample path of N is a step function
with jumps of size +1 at the event times, and N.0/ D 0. Unless Z.t/ changes continuously with time, the
data for each subject can be represented by multiple observations, each identifying a semiclosed time interval
.t1; t2�, the values of the explanatory variables over that interval, and the event status at t2. The subject
remains at risk during the interval .t1; t2�, and an event might occur at t2. Values of the explanatory variables
for the subject remain unchanged in the interval. This style of data input was originated by Therneau (1994).

For example, a patient has a tumor recurrence at weeks 3, 10, and 15 and is followed up to week 23. Consider
three fixed explanatory variables Trt (treatment), Number (initial tumor number), and Size (initial tumor size),
and one time-dependent covariate Z that represents a hormone level. The value of Z might change during the
follow-up period. The data for this patient are represented by the following four observations:

T1 T2 Status Trt Number Size Z

0 3 1 1 1 3 12.3
3 10 1 1 1 3 14.7
10 15 1 1 1 3 13.8
15 23 0 1 1 3 15.5

Here (T1,T2] contains the at-risk intervals. The variable Status indicates whether a recurrence has occurred
at T2; a value of 1 indicates a tumor recurrence, and a value of 0 indicates nonrecurrence. The following
statements fit a multiplicative hazards model with baseline covariates Trt, Number, and Size, and a time-
varying covariate Z.

proc phreg;
model (T1,T2) * Status(0) = Trt Number Size Z;

run;

Another useful application of the counting process formulation is delayed entry of subjects into the risk set.
For example, in studying the mortality of workers exposed to a carcinogen, the survival time is chosen to
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be the worker’s age at death by malignant neoplasm. Any worker joining the workplace at a later age than
a given event failure time is not included in the corresponding risk set. The variables of a worker consist
of Entry (age at which the worker entered the workplace), Age (age at death or age censored), Status (an
indicator of whether the observation time is censored, with the value 0 identifying a censored time), and X1
and X2 (explanatory variables thought to be related to survival). The specification for such an application is
as follows:

proc phreg;
model (Entry, Age) * Status(0) = X1 X2;

run;

Alternatively, you can use a time-dependent variable to control the risk set, as illustrated in the following
specification:

proc phreg;
model Age * Status(0) = X1 X2;
if Age < Entry then X1= .;

run;

Here, X1 becomes a time-dependent variable. At a given death time t, the value of X1 is reevaluated for each
subject with Age � t ; subjects with Entry > t are given a missing value in X1 and are subsequently removed
from the risk set. Computationally, this approach is not as efficient as the one that uses the counting process
formulation.

Left-Truncation of Failure Times
Left-truncation occurs when individuals are not observed at the natural time origin of the phenomenon under
study but come under observation at some known later time (called the left-truncation time). The risk set just
prior to an event time does not include individuals whose left-truncation times exceed the given event time.
Thus, any contribution to the likelihood must be conditional on the truncation limit having been exceeded.

You use the ENTRY= option to specify the variable that represents the left-truncation time. Suppose T1 and
T2 represent the left-truncation time and the survival time, respectively. To account for left-truncation, you
specify the following statements:

proc phreg;
model T2*Dead(0)=X1-X10/entry=T1;
title 'The ENTRY= option is Specified';

run;

Equivalently, you can use the counting process style of input for left-truncation:

proc phreg;
model (T1,T2)*Dead(0)=X1-X10;
title 'Counting Process Style of Input';

run;

Since the product-limit estimator of the survivor function is not available for the counting process style of
input, you cannot use PROC PHREG to obtain the product-limit estimate of the survivor function if you have
data with left-truncation times. In the preceding PROC PHREG calls, if you also specify METHOD=PL in a
BASELINE statement or an OUTPUT statement, it is defaulted to METHOD=BRESLOW.
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The Multiplicative Hazards Model
Consider a set of n subjects such that the counting process Ni � fNi .t/; t � 0g for the ith subject represents
the number of observed events experienced over time t. The sample paths of the process Ni are step functions
with jumps of size C1, with Ni .0/ D 0. Let ˇ denote the vector of unknown regression coefficients. The
multiplicative hazards function ƒ.t;Zi .t// for Ni is given by

Yi .t/dƒ.t;Zi .t// D Yi .t/ exp.ˇ0Zi .t//dƒ0.t/

where

� Yi .t/ indicates whether the ith subject is at risk at time t (specifically, Yi .t/ D 1 if at risk and Yi .t/ D 0
otherwise)

� Zi .t/ is the vector of explanatory variables for the ith subject at time t

� ƒ0.t/ is an unspecified baseline hazard function

See Fleming and Harrington (1991) and Andersen et al. (1992). The Cox model is a special case of this
multiplicative hazards model, where Yi .t/ D 1 until the first event or censoring, and Yi .t/ D 0 thereafter.

The partial likelihood for n independent triplets .Ni ; Yi ;Zi /; i D 1; : : : ; n, has the form

L.ˇ/ D
nY
iD1

Y
t�0

�
Yi .t/ exp.ˇ0Zi .t//Pn
jD1 Yj .t/ exp.ˇ0Zj .t//

��Ni .t/
where �Ni .t/ D 1 if Ni .t/ �Ni .t�/ D 1, and �Ni .t/ D 0 otherwise.

Proportional Rates/Means Models for Recurrent Events
Let N.t/ be the number of events experienced by a subject over the time interval .0; t �. Let dN.t/ be the
increment of the counting process N over Œt; t C dt/. The rate function is given by

d�Z.t/ D EŒdN.t/jZ.t/� D eˇ
0Z.t/d�0.t/

where �0.:/ is an unknown continuous function. If the Z are time independent, the rate model is reduced to
the mean model

�Z.t/ D eˇ
0Z�0.t/

The partial likelihood for n independent triplets .Ni ; Yi ;Zi /; i D 1; : : : ; n, of counting, at-risk, and covariate
processes is the same as that of the multiplicative hazards model. However, a robust sandwich estimate is
used for the covariance matrix of the parameter estimator instead of the model-based estimate.

Let Tki be the kth event time of the ith subject. Let Ci be the censoring time of the ith subject. The at-risk
indicator and the failure indicator are, respectively,

Yi .t/ D I.Ci � t / and �ki D I.Tki � Ci /
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Denote

S .0/.ˇ; t / D

nX
iD1

Yi .t/eˇ
0Zi .t/ and NZ.ˇ; t / D

Pn
iD1 Yi .t/e

ˇ0Zi .t/Zi .t/
S .0/.ˇ; t /

Let Ǒ be the maximum likelihood estimate of ˇ, and let I. Ǒ/ be the observed information matrix. The robust
sandwich covariance matrix estimate is given by

I�1. Ǒ/
nX
iD1

�
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0
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Ǒ/

�
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For a given realization of the covariates �, the Nelson estimator is used to predict the mean function
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0�

nX
iD1

X
k

I.Tki � t /�ki

S .0/. Ǒ; Tki /

with standard error estimate given by
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Z �

0

ŒZi .u/ � NZ. Ǒ; u/�d OMi .u/

�
Since the cumulative mean function is always nonnegative, the log transform is used to compute confidence
intervals. The 100.1 � ˛/% pointwise confidence limits for ��.t/ are

O��.t/e
˙z˛=2

O�. O�� .t//

O��.t/

where z˛=2 is the upper 100˛=2 percentage point of the standard normal distribution.
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The Frailty Model
You can use the frailty model to model correlations between failures of the same cluster. The hazard rate for
the jth individual in the ith cluster is

�ij .t/ D �0.t/eˇ
0Zij .t/C
i

where �0.t/ is an arbitrary baseline hazard rate, Zij is the vector of (fixed-effect) covariates, ˇ is the vector
of regression coefficients, and 
i is the random effect for cluster i.

Frailties are the exponential transformations of the random components, and the frailty model can be written
as

�ij .t/ D �0.t/e
i eˇ
0Zij .t/

The random components 
1; : : : ; 
s (alternatively, the frailties e
1 ; : : : ; e
s ) are assumed to be independent
and identically distributed. Modeling is based on the random effects rather than on the frailties.

Two frailty distributions are available in PROC PHREG: gamma and lognormal. Use the DIST= option in the
RANDOM statement to choose the distribution. Let � be an unknown parameter. The frailty distributions are
listed in Table 86.12.

Table 86.12 Frailty Distributions

Frailty Option Distribution Density f(
i / Mean and Variance

DIST=GAMMA e
i � G
�
1
�
; 1
�

� exp.
i
�
/ exp

�
�

exp.
i /
�

�
�
1
� �. 1

�
/

E(e
i )=1, V(e
i )=�

DIST=LOGNORMAL 
i � N.0; �/
1p
.2��/

exp
�
�

2
i

2�

�
E(
i )=0, V(
i )=�

The unknown parameter � is a dispersion parameter. Each frailty distribution has a central tendency of 1
(the gamma frailty has a mean of 1, and the lognormal frailty has a median of 1). Thus, you can infer that
individuals in cluster i with frailty e
i > 1 (or e
i < 1) tend to fail at a faster (or slower) rate than they fail
under an independence model.

PROC PHREG estimates the regression coefficients ˇ, the random effects 
1; : : : ; 
s , and the dispersion
parameter � . The RANDOM statement in PROC PHREG enables you to fit a shared frailty model by
a penalized partial likelihood approach. For more information, see the section “The Penalized Partial
Likelihood Approach for Fitting Frailty Models” on page 6943. If you also specify the BAYES statement,
PROC PHREG performs a Bayesian analysis of the shared frailty model. For more information, see the
section “Frailty Model” on page 6951.

If the RANDOM statement is specified, any ASSESS, BASELINE, and OUTPUT statements are ignored.
Also ignored are the COVS options in the PROC PHREG statement and the following options in the
MODEL statement: BEST=, DETAILS, HIERARCHY=, INCLUDE=, NOFIT, PLCONV=, SELECTION=,
SEQUENTIAL, SLENTRY=, SLSTAY=, TYPE1, and TYPE3(ALL, LR, SCORE). Profile likelihood confi-
dence intervals for the hazard ratios are not available for the frailty model analysis.
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Proportional Subdistribution Hazards Model for Competing-Risks Data
Competing risks arise in the analysis of time-to-event data when the event of interest can be impeded by a
prior event of a different type. For example, a leukemia patient’s relapse might be unobservable because the
patient dies before relapse is diagnosed. In the presence of competing risks, the Kaplan-Meier method of
estimating the survivor function is biased, because you can no longer assume that a subject will experience
the event of interest if the follow-up period is long enough. The cumulative incidence function (CIF), which
is the marginal failure subdistribution of a given cause, is widely used in competing-risks analysis.

The proportional hazards model for the subdistribution that Fine and Gray (1999) propose aims at modeling
the cumulative incidence of an event of interest. They define a subdistribution hazard,

N�k.t/ D �
d

dt
.1 � Fk.t//

where Fk.t/ is the cumulative incidence function for the failure of cause k, and they impose a proportional
hazards assumption on the subdistribution hazards:

N�k.t jZ/ D N�k;0 exp.ˇ0kZ/

The estimation of the regression coefficients is based on modified risk sets, where subjects that experience a
competing event are retained after their event. The weight of those subjects that are artificially retained in
the risk sets is gradually reduced according to the conditional probability of being under follow-up had the
competing event not occurred.

You use PROC PHREG to fit the Fine and Gray (1999) model by specifying the EVENTCODE= option in
the MODEL statement to indicate the event of interest. Maximum likelihood estimates of the regression
coefficients are obtained by the Newton-Raphson algorithm. The covariance matrix of the parameter estimator
is computed as a sandwich estimate. You can request the CIF curves for a given set of covariates by using the
BASELINE statement. The PLOTS=CIF option in the PROC PHREG statement displays a plot of the curves.
You can obtain Schoenfeld residuals and score residuals by using the OUTPUT statement.

To model the subdistribution hazards for clustered data (Zhou et al. 2012), you use the COVS(AGGREGATE)
option in the PROC PHREG statement. You also have to specify the ID statement to identify the clusters.
To model the subdistribution hazards for stratified data (Zhou et al. 2011), you use the STRATA statement.
PROC PHREG handles only regular stratified data that have a small number of large subject groups.

When you specify the EVENTCODE= option in the MODEL statement, the ASSESS, BAYES, and
RANDOM statements are ignored. The ATRISK and COVM options in the PROC PHREG state-
ment are also ignored, as are the following options in the MODEL statement: BEST=, DETAILS,
HIERARCHY=, INCLUDE=, NOFIT, PLCONV=, RISKLIMITS=PL, SELECTION=, SEQUENTIAL,
SLENTRY=, SLSTAY=, TYPE1, and TYPE3(LR, SCORE). Profile likelihood confidence intervals for
the hazard ratios are not available for the Fine and Gray competing-risks analysis.

Parameter Estimation

For the ith subject, i D 1; : : : ; n, let Xi , �i , �i , and Zi .t/ be the observed time, event indicator, cause
of failure, and covariate vector at time t, respectively. Assume that K causes of failure are observable
(�i 2 .1; : : : ; K/). Consider failure from cause 1 to be the failure of interest, with failures of other causes as
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competing events. Let

Ni .t/ D I.Xi � t; �i D 1/

Yi .t/ D 1 �Ni .t�/

Note that if �i D 1, then Ni .t/ D I.Xi � t / and Yi .t/ D I.Xi � t /; if �i ¤ 1, then Ni .t/ D 0 and
Yi .t/ D 1. Let

ri .t/ D I.Ci � Ti ^ t /

wi .t/ D ri .t/
G.t/

G.Xi ^ t /

whereG.t/ is the Kaplan-Meier estimate of the survivor function of the censoring variable, which is calculated
using fXi ; 1��i ; i D 1; 2; : : : ; ng. If �i D 0, then ri .t/ D 1 when t � Xi and 0 otherwise; and if �i D 1,
then ri .t/ D 1. Table 86.13 displays the weight of a subject at a function of time.

Table 86.13 Weight for the ith Subject

t; Xi Status ri .t/ Yi .t/ wi .t/

t � Xi �i D 0 1 1 1
�i�i D 1 1 1 1
�i�i ¤ 1 1 1 1

t > Xi �i D 0 0 1 0
�i�i D 1 1 0 G.t/=G.Xi /

�i�i ¤ 1 1 1 G.t/=G.Xi /

The regression coefficients ˇ are estimated by maximizing the pseudo-likelihood L.ˇ/ with respect to ˇ:

L.ˇ/ D

nY
iD1

 
exp.ˇ0Zi .Xi //Pn

jD1 Yj .Xi /wj .Xi / exp.ˇ0Zj .Xi //

!I.�i�iD1/

The variance-covariance matrix of the maximum likelihood estimator Ǒ is approximated by a sandwich
estimate.

With a.0/ D 1, a.1/ D a, and a.2/ D aa0, let

S.r/2 .ˇ; u/ D

nX
jD1

wj .u/Yj .u/Zj .u/˝r exp.ˇ0Zj .u//; r D 0; 1; 2

NZ.ˇ; u/ D
S.1/2 .ˇ; u/

S
.0/
2 .ˇ; u/
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The score function U2.ˇ/ and the observed information matrix O� are given by

U2. Ǒ/ D
nX
iD1

�
Zi .Xi / � NZ.ˇ; Xi /

�
I.�i�i D 1/

O� D �
@U2. Ǒ/
@ˇ

D

nX
iD1

 
S.2/2 . Ǒ; Xi /

S
.0/
2 . Ǒ; Xi /

� NZ˝2. Ǒ; Xi /

!
I.�i�i D 1/

The sandwich variance estimate of Ǒ is

cvar. Ǒ/ D O��1 O† O��1
where O† is the estimate of the variance-covariance matrix of U2. Ǒ/ that is given by

O† D

nX
iD1

. O�i C O i /
˝2

where

O�i D

Z 1
0

�
Zi .u/ � NZ. Ǒ; u/

�
wi .u/d OM

1
i .u/

O i D

Z 1
0

Oq.u/
�.u/

d OM c
i .u/

Oq.u/ D �
nX
iD1

Z 1
0

�
Zi .s/ � NZ. Ǒ; s/

�
wi .s/d OM

1
i I.s � u > Xi /

�.u/ D
X
j

I.Xj � u/

OM 1
i .t/ D Ni .t/ �

Z t

0

Yi .s/ exp. Ǒ0Zi .s//d Oƒ10.s/

OM c
i .t/ D I.Xi � t; �i D 0/ �

Z t

0

I.Xi � u/d Oƒ
c.u/

Oƒ10.t/ D

nX
iD1

Z t

0

1

S
.0/
2 . Ǒ; u/

wi .u/dNi .u/

Oƒc.t/ D

Z t

0

P
i dfI.Xi � u;�i D 0/gP

i I.Xi � u/

Residuals

You can use the OUTPUT statement to output Schoenfeld residuals and score residuals to a SAS data set.

Schoenfeld residuals: Zi .Xi / � NZ. Ǒ; Xi /;�i�i D 1 1 � i � n

Score residuals O�i C O i 1 � i � n
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Cumulative Incidence Prediction

For an individual with covariates Z D z0, the cumulative subdistribution hazard is estimated by

Oƒ1.t I z0/ D
Z t

0

expŒ Ǒ0z0�d Oƒ10.u/

and the predicted cumulative incidence is

OF1.t I z0/ D 1 � expŒ� Oƒ1.t I z0/�

To compute the confidence interval for the cumulative incidence, consider a monotone transformation m.p/
with first derivative Pm.p/. Fine and Gray (1999, Section 5) give the following procedure to calculate pointwise
confidence intervals. First, you generate B samples of normal random deviates f.Ak1; : : : ; Akn/; 1 � k � Bg.
You can specify the value of B by using the NORMALSAMPLE= option in the BASELINE statement. Then,
you compute the estimate of varfmŒ OF1.t I z0/� �mŒF1.t I z0/�g as

O�2.t I z0/ D
1

B

BX
kD1

OJ 21k.t I z0/

where

OJ1k.t I z0/ D PmŒ OF1.t I z0/� expŒ� Oƒ1.t I z0/�
nX
iD1

Aki

�Z t

0

exp. Ǒ0z0/

S
.0/
2 . Ǒ; u/

wi .u/d OM
1
i .u/

C Oh0.t I z0/ O�
�1. O�i C O i /C

Z 1
0

Ov.u; t; z0/

O�.u/
d OM c

i .u/

�

Oh.t I z0/ D exp. Ǒ0z0/
�
Oƒ10.t/z0 �

Z t

0

NZ. Ǒ; u/d Oƒ10.u/
�

Ov.u; t; z0/ D � exp. Ǒ0z0/
nX
iD1

Z t

0

1

S
.0/
2 . Ǒ; s/

wi .s/d OM
1
i .s/I.s � u > Xi /

A 100(1–˛)% confidence interval for OF1.t I z0/ is given by

m�1
�
mŒ OF1.t I z0/�˙ z˛ O�.t I z0/

�
where z˛ is the 100.1 � ˛=2/th percentile of a standard normal distribution.

The CLTYPE option in the BASELINE statement enables you to choose the LOG transformation, the
LOGLOG (log of negative log) transformation, or the IDENTITY transformation. You can also output the
standard error of the cumulative incidence, which is approximated by the delta method as follows:

O�2. OF .t I z0// D
�
PmŒ OF .t I z0/�

��2
O�2.t I z0/

Table 86.14 displays the variance estimator for each transformation that is available in PROC PHREG.
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Table 86.14 Variance Estimate of the CIF Predictor

CLTYPE= keyword Transformation cvar. OF .t I z0//
IDENTITY m.p/ D p O�2.t I z0/

LOG m.p/ D log.p/
�
OF1.t I z0/

�2
O�2.t I z0/

LOGLOG m.p/ D log.� log.p//
�
OF .t I z0/ log. OF .t I z0//

�2
O�2.t I z0/

Hazard Ratios
Consider a dichotomous risk factor variable X that takes the value 1 if the risk factor is present and 0 if the
risk factor is absent. The log-hazard function is given by

logŒ�.t jX/� D logŒ�0.t/�C ˇ1X

where �0.t/ is the baseline hazard function.

The hazard ratio  is defined as the ratio of the hazard for those with the risk factor (X = 1) to the hazard
without the risk factor (X = 0). The log of the hazard ratio is given by

log. / � logŒ .X D 1;X D 0/� D logŒ�.t jX D 1/� � logŒ�.t jX D 0/� D ˇ1

In general, the hazard ratio can be computed by exponentiating the difference of the log-hazard between any
two population profiles. This is the approach taken by the HAZARDRATIO statement, so the computations
are available regardless of parameterization, interactions, and nestings. However, as shown in the preceding
equation for log. /, hazard ratios of main effects can be computed as functions of the parameter estimates,
and the remainder of this section is concerned with this methodology.

The parameter, ˇ1, associated with X represents the change in the log-hazard rate from X = 0 to X = 1. So the
hazard ratio is obtained by simply exponentiating the value of the parameter associated with the risk factor.
The hazard ratio indicates how the hazard change as you change X from 0 to 1. For instance,  D 2 means
that the hazard when X = 1 is twice the hazard when X = 0.

Suppose the values of the dichotomous risk factor are coded as constants a and b instead of 0 and 1. The
hazard when X D a becomes �.t/ exp.aˇ1/, and the hazard when X D b becomes �.t/ exp.bˇ1/. The
hazard ratio corresponding to an increase in X from a to b is

 D expŒ.b � a/ˇ1� D Œexp.ˇ1/�b�a � Œexp.ˇ1/�c

Note that for any a and b such that c D b � a D 1;  D exp.ˇ1/. So the hazard ratio can be interpreted as
the change in the hazard for any increase of one unit in the corresponding risk factor. However, the change in
hazard for some amount other than one unit is often of greater interest. For example, a change of one pound
in body weight might be too small to be considered important, while a change of 10 pounds might be more
meaningful. The hazard ratio for a change in X from a to b is estimated by raising the hazard ratio estimate
for a unit change in X to the power of c D b � a as shown previously.

For a polytomous risk factor, the computation of hazard ratios depends on how the risk factor is parameterized.
For illustration, suppose that Cell is a risk factor with four categories: Adeno, Large, Small, and Squamous.
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For the effect parameterization scheme (PARAM=EFFECT) with Squamous as the reference group, the
design variables for Cell are as follows:

Design Variables
Cell X1 X2 X3

Adeno 1 0 0
Large 0 1 0
Small 0 0 1
Squamous –1 –1 –1

The log-hazard for Adeno is

logŒ�.t jAdeno/� D logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/
D �0.t/C ˇ1

The log-hazard for Squamous is

logŒ�.t jSquamous/� D logŒ�0.t/�C ˇ1.X1 D �1/C ˇ2.X2 D �1/C ˇ3.X3 D �1//
D logŒ�0.t/� � ˇ1 � ˇ2 � ˇ3

Therefore, the log-hazard ratio of Adeno versus Squamous

logŒ .Adeno;Squamous/� D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D 2ˇ1 C ˇ2 C ˇ3

For the reference cell parameterization scheme (PARAM=REF) with Squamous as the reference cell, the
design variables for Cell are as follows:

Design Variables
Cell X1 X2 X3

Adeno 1 0 0
Large 0 1 0
Small 0 0 1
Squamous 0 0 0

The log-hazard ratio of Adeno versus Squamous is given by

log. .Adeno;Squamous//

D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D .logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0// �
.logŒ�0.t/�C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0//

D ˇ1
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For the GLM parameterization scheme (PARAM=GLM), the design variables are as follows:

Design Variables
Cell X1 X2 X3 X4

Adeno 1 0 0 0
Large 0 1 0 0
Small 0 0 1 0
Squamous 0 0 0 1

The log-hazard ratio of Adeno versus Squamous is

log. .Adeno;Squamous//

D logŒ�.t jAdeno/� � logŒ�.t jSquamous/�

D logŒ�0.t/�C ˇ1.X1 D 1/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 0// �
.log.�0.t//C ˇ1.X1 D 0/C ˇ2.X2 D 0/C ˇ3.X3 D 0/C ˇ4.X4 D 1//

D ˇ1 � ˇ4

Consider Cell as the only risk factor in the Cox regression in Example 86.3. The computation of hazard ratio
of Adeno versus Squamous for various parameterization schemes is tabulated in Table 86.15.

Table 86.15 Hazard Ratio Comparing Adeno to Squamous

Parameter Estimates
PARAM= Ǒ

1
Ǒ
2

Ǒ
3

Ǒ
4 Hazard Ratio Estimates

EFFECT 0.5772 –0.2115 0.2454 exp.2 � 0:5772 � 0:2115C 0:2454/ D 3:281
REF 1.8830 0.3996 0.8565 exp.1:8830/ D 3:281
GLM 1.8830 0.3996 0.8565 0.0000 exp.1:8830/ D 3:281

The fact that the log-hazard ratio (log. /) is a linear function of the parameters enables the HAZARDRATIO
statement to compute the hazard ratio of the main effect even in the presence of interactions and nest effects.
The section “Hazard Ratios” on page 6901 details the estimation of the hazard ratios in a classical analysis.

To customize hazard ratios for specific units of change for a continuous risk factor, you can use the UNITS=
option in a HAZARDRATIO statement to specify a list of relevant units for each explanatory variable in
the model. Estimates of these customized hazard ratios are given in a separate table. Let .Lj ; Uj / be a
confidence interval for log. /. The corresponding lower and upper confidence limits for the customized
hazard ratio exp.cˇj / are exp.cLj / and exp.cUj /, respectively (for c > 0), or exp.cUj / and exp.cLj /,
respectively (for c < 0).
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Newton-Raphson Method
Let L.ˇ/ be one of the likelihood functions described in the previous subsections. Let l.ˇ/ D logL.ˇ/.
Finding ˇ such that L.ˇ/ is maximized is equivalent to finding the solution Ǒ to the likelihood equations

@l.ˇ/

@ˇ
D 0

With Ǒ0 D 0 as the initial solution, the iterative scheme is expressed as

ǑjC1 D Ǒ
j
�

"
@2l. Ǒj /

@ˇ2

#�1
@l. Ǒj /

@ˇ

The term after the minus sign is the Newton-Raphson step. If the likelihood function evaluated at ǑjC1

is less than that evaluated at Ǒj , then ǑjC1 is recomputed using half the step size. The iterative scheme
continues until convergence is obtained—that is, until ǑjC1 is sufficiently close to Ǒj . Then the maximum
likelihood estimate of ˇ is Ǒ D ǑjC1.

The model-based variance estimate of Ǒ is obtained by inverting the information matrix I. Ǒ/

OVm. Ǒ/ D I�1. Ǒ/ D �
"
@2l. Ǒ/

@ˇ2

#�1

Firth’s Modification for Maximum Likelihood Estimation
In fitting a Cox model, the phenomenon of monotone likelihood is observed if the likelihood converges to a
finite value while at least one parameter diverges (Heinze and Schemper 2001).

Let xl.t/ denote the vector explanatory variables for the lth individual at time t. Let t1 < t2 < : : : < tm
denote the k distinct, ordered event times. Let dj denote the multiplicity of failures at tj ; that is, dj is the size
of the set Dj of individuals that fail at tj . Let Rj denote the risk set just before tj . Let ˇ D .ˇ1; : : : ; ˇk/0

be the vector of regression parameters. The Breslow log partial likelihood is given by

l.ˇ/ D logL.ˇ/ D
mX
jD1

�
ˇ0
X
l2Dj

xl.tj / � dj log
X
h2Rj

eˇ
0xh.tj /

�

Denote

S.a/j .ˇ/ D
X
h2Rj

eˇ
0xh.tj /Œxh.tj /�˝a a D 0; 1; 2

Then the score function is given by

U.ˇ/ � .U.ˇ1/; : : : ; U.ˇk//
0

D
@l.ˇ/

@ˇ

D

mX
jD1

�X
l2Dj

xl.tj / � dj
S.1/j .ˇ/

S0j .ˇ/

�
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and the Fisher information matrix is given by

I.ˇ/ D �
@2l.ˇ/

@ˇ2

D

mX
jD1

dj

� S.2/j .ˇ/

S
.0/
j .ˇ/

�

�S.1/j .ˇ/

S.0/j .ˇ/

��S.1/j .ˇ/

S.0/j .ˇ/

�0�

Heinze (1999); Heinze and Schemper (2001) applied the idea of Firth (1993) by maximizing the penalized
partial likelihood

l�.ˇ/ D l.ˇ/C 0:5 log.jI.ˇ/j/

The score function U.ˇ/ is replaced by the modified score function by U�.ˇ/ � .U �.ˇ1/; : : : ; U �.ˇk//0,
where

U �.ˇr/ D U.ˇr/C 0:5tr
�
I�1.ˇ/

@I.ˇ/
@ˇr

�
r D 1; : : : ; k

The Firth estimate is obtained iteratively as

ˇ.sC1/ D ˇ.s/ C I�1.ˇ.s//U�.ˇ.s//

The covariance matrix OV is computed as I�1. Ǒ/, where Ǒ is the maximum penalized partial likelihood
estimate.

Explicit formulae for @I.ˇ/
@ˇr

; r D 1; : : : ; k

Denote

xh.t/ D .xh1.t/; : : : ; xhk.t//
0

Q.a/jr .ˇ/ D
X
h2Rj

eˇ
0xh.tj /xhr.tj /Œxh.tj /�˝a a D 0; 1; 2I r D 1; : : : ; k

Then

@I.ˇ/
@ˇr

D

mX
jD1

dj

��Q.2/jr .ˇ/

S
.0/
j .ˇ/

�
Q.0/jr .ˇ/

S
.0/
j .ˇ/

S.2/j .ˇ/

S
.0/
j .ˇ/

�
�

�Q.1/jr .ˇ/

S
.0/
j .ˇ/

�
Q.0/jr .ˇ/

S
.0/
j .ˇ/

S.1/j .ˇ/

S
.0/
j .ˇ/

�� S.1/j .ˇ/

S
.0/
j .ˇ/

�0
�

� S.1/j .ˇ/

S
.0/
j .ˇ/

��Q.1/jr .ˇ/

S
.0/
j .ˇ/

�
Q.0/jr .ˇ/

S
.0/
j .ˇ/

S.1/j .ˇ/

S
.0/
j .ˇ/

�0�
r D 1; : : : ; k
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Robust Sandwich Variance Estimate
For the ith subject, i D 1; : : : ; n, let Xi , wi , and Zi .t/ be the observed time, weight, and the covariate vector
at time t, respectively. Let �i be the event indicator and let Yi .t/ D I.Xi � t /. Let

S .r/.ˇ; t / D

nX
jD1

wjYj .t/eˇ
0Zj .t/Z

N
r

j .t/; r D 0; 1

Let NZ.ˇ; t / D S.1/.ˇ;t/

S.0/.ˇ;t/
. The score residual for the ith subject is

Li .ˇ/ D �i
�

Zi .Xi / � NZ.ˇ;Xi /
�
�

nX
jD1

�j
wjYi .Xj /eˇ

0Zi .Xj /

S .0/.ˇ; Xj /

�
Zi .Xj / � NZ.ˇ; Xj /

�

For TIES=EFRON, the computation of the score residuals is modified to comply with the Efron partial
likelihood. For more information, see the section “Residuals” on page 6921.

The robust sandwich variance estimate of Ǒ derived by Binder (1992), who incorporated weights into the
analysis, is

OVs. Ǒ/ D I�1. Ǒ/
� nX
jD1

.wjLj . Ǒ//
N
2

�
I�1. Ǒ/

where I. Ǒ/ is the observed information matrix, and a
N
2 D aa0. Note that when wi � 1,

OVs. Ǒ/ D D0D

where D is the matrix of DFBETA residuals. This robust variance estimate was proposed by Lin and Wei
(1989) and Reid and Crépeau (1985).

Testing the Global Null Hypothesis
The following statistics can be used to test the global null hypothesis H0Wˇ D 0. Under mild assumptions,
each statistic has an asymptotic chi-square distribution with p degrees of freedom given the null hypothesis.
The value p is the dimension of ˇ. For clustered data, the likelihood ratio test, the score test, and the Wald
test assume independence of observations within a cluster, while the robust Wald test and the robust score
test do not need such an assumption.

Likelihood Ratio Test

�2LR D 2
h
l. Ǒ/ � l.0/

i
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Score Test

�2S D

�
@l.0/
@ˇ

�0 �
�
@2l.0/
@ˇ2

��1 �
@l.0/
@ˇ

�

Wald’s Test

�2W D
Ǒ0

"
�
@2l. Ǒ/

@ˇ2

#
Ǒ

Robust Score Test

�2RS D

"X
i

L0i

#0 "X
i

L0i L0i
0

#�1 "X
i

L0i

#
where L0i is the score residual of the ith subject at ˇ D 0; that is, L0i D Li .0;1/, where the score process
Li .ˇ; t / is defined in the section “Residuals” on page 6921.

Robust Wald’s Test

�2RW D
Ǒ0Œ OVs. Ǒ/��1 Ǒ

where OVs. Ǒ/ is the sandwich variance estimate. For more information, see the section “Robust Sandwich
Variance Estimate” on page 6906.

Type 3 Tests and Joint Tests
For models that use less-than-full-rank parameterization (as specified by the PARAM=GLM option in the
CLASS statement), a Type 3 test of an effect of interest (main effect or interaction) is a test of the Type III
estimable functions that are defined for that effect. When the model contains no missing cells, the Type 3 test
of a main effect corresponds to testing the hypothesis of equal marginal means. For more information about
Type III estimable functions, see Chapter 47, “The GLM Procedure,” and Chapter 15, “The Four Types of
Estimable Functions.” Also see Littell, Freund, and Spector (1991).

For models that use full-rank parameterization, all parameters are estimable when there are no missing
cells, so it is unnecessary to define estimable functions. The standard test of an effect of interest in this
case is the joint test that the values of the parameters associated with that effect are zero. For a model that
uses effects parameterization (as specified by the PARAM=EFFECT option in the CLASS statement), the
joint test for a main effect is equivalent to testing the equality of marginal means. For a model that uses
reference parameterization (as specified by the PARAM=REF option in the CLASS statement), the joint test
is equivalent to testing the equality of cell means at the reference level of the other model effects. For more
information about the coding scheme and the associated interpretation of results, see Muller and Fetterman
(2002, Chapter 14).

If there is no interaction term, the Type 3 test of an effect for a model that uses GLM parameterization is the
same as the joint test of the effect for the model that uses full-rank parameterization. In this situation, the
joint test is also called the Type 3 test. For a model that contains an interaction term and no missing cells,
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the Type 3 test of a component main effect under GLM parameterization is the same as the joint test of the
component main effect under effect parameterization. Both test the equality of cell means. But this Type 3
test differs from the joint test under reference parameterization, which tests the equality of cell means at the
reference level of the other component main effect. If some cells are missing, you can obtain meaningful
tests only by testing a Type III estimation function, so in this case you should use GLM parameterization.

The results of a Type 3 test or a joint test do not depend on the order in which you specify the terms in the
MODEL statement.

The following statistics can be used to test the null hypothesis H0LWLˇ D 0, where L is a matrix of
known coefficients. Under mild assumptions, each of the following statistics has an asymptotic chi-square
distribution with p degrees of freedom, where p is the rank of L. Let Q̌L be the maximum likelihood of ˇ
under the null hypothesis H0L; that is,

l. Q̌L/ D max
LˇD0

l.ˇ/

Likelihood Ratio Statistic

�2LR D 2
h
l. Ǒ/ � l. Q̌L/

i

Score Statistic

�2S D

"
@l. Q̌L/

@ˇ

#0 "
�
@2l. Q̌L/

@ˇ2

#�1 "
@l. Q̌L/

@ˇ

#

Wald’s Statistic

�2W D
�
L Ǒ
�0 h

L OV. Ǒ/L0
i�1 �

L Ǒ
�

where OV. Ǒ/ is the estimated covariance matrix, which can be the model-based covariance matrix
h
�
@2l. Ǒ/

@ˇ2

i�1
or the sandwich covariance matrix VS . Ǒ/. For more information, see the section “Robust Sandwich Variance
Estimate” on page 6906.

Confidence Limits for a Hazard Ratio
Let ej be the jth unit vector—that is, the jth entry of the vector is 1 and all other entries are 0. The hazard
ratio for the explanatory variable with regression coefficient ˇj D e0jˇ is defined as exp.ˇj /. In general, a
log-hazard ratio can be written as h0ˇ, a linear combination of the regression coefficients, and the hazard
ratio exp.h0ˇ/ is obtained by replacing ej with h.

Point Estimate

The hazard ratio exp.e0jˇ/ is estimated by exp.e0j Ǒ/, where Ǒ is the maximum likelihood estimate of the ˇ.
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Wald’s Confidence Limits

The 100.1 � ˛/% confidence limits for the hazard ratio are calculated as

exp
�

e0j Ǒ ˙ z˛=2
q

e0j OV. Ǒ/ej

�
where OV. Ǒ/ is estimated covariance matrix, and z˛=2 is the 100.1 � ˛=2/th percentile point of the standard
normal distribution.

Profile-Likelihood Confidence Limits

The construction of the profile-likelihood-based confidence interval is derived from the asymptotic �2

distribution of the generalized likelihood ratio test of Venzon and Moolgavkar (1988). Suppose that the
parameter vector is ˇ D .ˇ1; : : : ; ˇk/0 and you want to compute a confidence interval for ˇj . The profile-
likelihood function for ˇj D 
 is defined as

l�j .
/ D max
ˇ2Bj .
/

l.ˇ/

where Bj .
/ is the set of all ˇ with the jth element fixed at 
 , and l.ˇ/ is the log-likelihood function for ˇ.
If lmax D l. Ǒ/ is the log likelihood evaluated at the maximum likelihood estimate Ǒ, then 2.lmax � l

�
j .ˇj //

has a limiting chi-square distribution with one degree of freedom if ˇj is the true parameter value. Let
l0 D lmax � 0:5�

2
1.1� ˛/, where �21.1� ˛/ is the 100.1� ˛/th percentile of the chi-square distribution with

one degree of freedom. A 100.1 � ˛/% confidence interval for ˇj is

f
 W l�j .
/ � l0g

The endpoints of the confidence interval are found by solving numerically for values of ˇj that satisfy
equality in the preceding relation. To obtain an iterative algorithm for computing the confidence limits, the
log-likelihood function in a neighborhood of ˇ is approximated by the quadratic function

Ql.ˇ C ı/ D l.ˇ/C ı0gC
1

2
ı0Vı

where g D g.ˇ/ is the gradient vector and V D V.ˇ/ is the Hessian matrix. The increment ı for the next
iteration is obtained by solving the likelihood equations

d

dı
fQl.ˇ C ı/C �.e0j ı � 
/g D 0

where � is the Lagrange multiplier, ej is the jth unit vector, and 
 is an unknown constant. The solution is

ı D �V�1.gC �ej /

By substituting this ı into the equation Ql.ˇ C ı/ D l0, you can estimate � as

� D ˙

�
2.l0 � l.ˇ/C

1
2
g0V�1g/

e0jV
�1ej

� 1
2
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The upper confidence limit for ˇj is computed by starting at the maximum likelihood estimate of ˇ and
iterating with positive values of � until convergence is attained. The process is repeated for the lower
confidence limit, using negative values of �.

Convergence is controlled by value � specified with the PLCONV= option in the MODEL statement (the
default value of � is 1E–4). Convergence is declared on the current iteration if the following two conditions
are satisfied:

jl.ˇ/ � l0j � �

and

.gC �ej /0V�1.gC �ej / � �

The profile-likelihood confidence limits for the hazard ratio exp.e0jˇ/ are obtained by exponentiating these
confidence limits.

Using the TEST Statement to Test Linear Hypotheses
Linear hypotheses for ˇ are expressed in matrix form as

H0WLˇ D c

where L is a matrix of coefficients for the linear hypotheses, and c is a vector of constants. The Wald
chi-square statistic for testing H0 is computed as

�2W D
�
L Ǒ � c

�0 h
L OV. Ǒ/L0

i�1 �
L Ǒ � c

�
where OV. Ǒ/ is the estimated covariance matrix. Under H0, �2W has an asymptotic chi-square distribution
with r degrees of freedom, where r is the rank of L.

Optimal Weights for the AVERAGE option in the TEST Statement

Let ˇ0 D .ˇi1 ; : : : ; ˇis /
0, where fˇi1 ; : : : ; ˇisg is a subset of s regression coefficients. For any vector

e D .e1; : : : ; es/0 of length s,

e0 Ǒ0 � N.e0ˇ0; e0 OV. Ǒ0/e/

To find e such that e0 Ǒ0 has the minimum variance, it is necessary to minimize e0 OV. Ǒ0/e subject to
Pk
iD1 ei D

1. Let 1s be a vector of 1’s of length s. The expression to be minimized is

e0 OV. Ǒ0/e � �.e01s � 1/

where � is the Lagrange multiplier. Differentiating with respect to e and �, respectively, yields

OV. Ǒ0/e � �1s D 0
e01s � 1 D 0
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Solving these equations gives

e D Œ10s OV
�1
. Ǒ0/1s��1 OV

�1
. Ǒ0/1s

This provides a one degree-of-freedom test for testing the null hypothesis H0 W ˇi1 D : : : D ˇis D 0 with
normal test statistic

Z D
e0 Ǒ0q

e0 OV. Ǒ0/e

This test is more sensitive than the multivariate test specified by the TEST statement

Multivariate: test X1, ..., Xs;

where X1, . . . , Xs are the variables with regression coefficients ˇi1 ; : : : ; ˇis , respectively.

Analysis of Multivariate Failure Time Data
Multivariate failure time data arise when each study subject can potentially experience several events (for
instance, multiple infections after surgery) or when there exists some natural or artificial clustering of subjects
(for instance, a litter of mice) that induces dependence among the failure times of the same cluster. Data
in the former situation are referred to as multiple events data, and data in the latter situation are referred to
as clustered data. The multiple events data can be further classified into ordered and unordered data. For
ordered data, there is a natural ordering of the multiple failures within a subject, which includes recurrent
events data as a special case. For unordered data, the multiple event times result from several concurrent
failure processes.

Multiple events data can be analyzed by the Wei, Lin, and Weissfeld (1989), or WLW, method based on the
marginal Cox models. For the special case of recurrent events data, you can fit the intensity model (Andersen
and Gill 1982), the proportional rates/means model (Pepe and Cai 1993; Lawless and Nadeau 1995; Lin
et al. 2000), or the stratified models for total time and gap time proposed by Prentice, Williams, and Peterson
(1981), or PWP. For clustered data, you can carry out the analysis of Lee, Wei, and Amato (1992) based on
the marginal Cox model. To use PROC PHREG to perform these analyses correctly and effectively, you have
to array your data in a specific way to produce the correct risk sets.

All examples described in this section can be found in the program phrmult.sas in the SAS/STAT sample
library. Furthermore, the “Examples” section in this chapter contains two examples to illustrate the methods
of analyzing recurrent events data and clustered data.

Marginal Cox Models for Multiple Events Data

Suppose there are n subjects and each subject can experience up to K potential events. Let Zki .:/ be the
covariate process associated with the kth event for the ith subject. The marginal Cox models are given by

�k.t IZki / D �k0eˇ
0
k
Zki .t/; k D 1; : : : ; KI i D 1; : : : ; n

where �k0.t/ is the (event-specific) baseline hazard function for the kth event and ˇk is the (event-specific)
column vector of regression coefficients for the kth event. WLW estimates ˇ1; : : : ;ˇK by the maximum
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partial likelihood estimates Ǒ1; : : : ; ǑK , respectively, and uses a robust sandwich covariance matrix estimate
for . Ǒ01; : : : ; Ǒ

0
K/
0 to account for the dependence of the multiple failure times.

By using a properly prepared input data set, you can estimate the regression parameters for all the marginal
Cox models and compute the robust sandwich covariance estimates in one PROC PHREG invocation. For
convenience of discussion, suppose each subject can potentially experience K = 3 events and there are two
explanatory variables Z1 and Z2. The event-specific parameters to be estimated are ˇ1 D .ˇ11; ˇ21/0 for the
first marginal model, ˇ2 D .ˇ12; ˇ22/0 for the second marginal model, and ˇ3 D .ˇ13; ˇ23/0 for the third
marginal model. Inference of these parameters is based on the robust sandwich covariance matrix estimate of
the parameter estimators. It is necessary that each row of the input data set represent the data for a potential
event of a subject. The input data set should contain the following:

� an ID variable for identifying the subject so that all observations of the same subject have the same ID
value

� an Enum variable to index the multiple events. For example, Enum=1 for the first event, Enum=2 for
the second event, and so on.

� a Time variable to represent the observed time from some time origin for the event. For recurrence
events data, it is the time from the study entry to each recurrence.

� a Status variable to indicate whether the Time value is a censored or uncensored time. For example,
Status=1 indicates an uncensored time and Status=0 indicates a censored time.

� independent variables (Z1 and Z2)

The WLW analysis can be carried out by specifying the following:

proc phreg covs(aggregate);
model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23;
strata Enum;
id ID;
Z11= Z1 * (Enum=1);
Z12= Z1 * (Enum=2);
Z13= Z1 * (Enum=3);
Z21= Z2 * (Enum=1);
Z22= Z2 * (Enum=2);
Z23= Z2 * (Enum=3);

run;

The variable Enum is specified in the STRATA statement so that there is one marginal Cox model for
each distinct value of Enum. The variables Z11, Z12, Z13, Z21, Z22, and Z23 in the MODEL statement
are event-specific variables derived from the independent variables Z1 and Z2 by the given programming
statements. In particular, the variables Z11, Z12, and Z13 are event-specific variables for the explanatory
variable Z1; the variables Z21, Z22, and Z23 are event-specific variables for the explanatory variable Z2.
For j D 1; 2, and k D 1; 2; 3, variable Zjk contains the same values as the explanatory variable Zj for the
rows that correspond to kth marginal model and the value 0 for all other rows; as such, ˇjk is the regression
coefficient for Zjk. You can avoid using the programming statements in PROC PHREG if you create these
event-specific variables in the input data set by using the same programming statements in a DATA step.

The option COVS(AGGREGATE) is specified in the PROC PHREG statement to obtain the robust sandwich
estimate of the covariance matrix, and the score residuals used in computing the middle part of the sandwich
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estimate are aggregated over identical ID values. You can also include TEST statements in the PROC PHREG
code to test various linear hypotheses of the regression parameters based on the robust sandwich covariance
matrix estimate.

Consider the AIDS study data in Wei, Lin, and Weissfeld (1989) from a randomized clinical trial to assess
the antiretroviral capacity of ribavirin over time in AIDS patients. Blood samples were collected at weeks 4,
8, and 12 from each patient in three treatment groups (placebo, low dose of ribavirin, and high dose). For
each serum sample, the failure time is the number of days before virus positivity was detected. If the sample
was contaminated or it took a longer period of time than was achievable in the laboratory, the sample was
censored. For example:

� Patient #1 in the placebo group has uncensored times 9, 6, and 7 days (that is, it took 9 days to detect
viral positivity in the first blood sample, 6 days for the second blood sample, and 7 days for the third
blood sample).

� Patient #14 in the low-dose group of ribavirin has uncensored times of 16 and 17 days for the first and
second sample, respectively, and a censored time of 21 days for the third blood sample.

� Patient #28 in the high-dose group has an uncensored time of 21 days for the first sample, no
measurement for the second blood sample, and a censored time of 25 days for the third sample.

For a full-rank parameterization, two design variables are sufficient to represent three treatment groups.
Based on the reference coding with placebo as the reference, the values of the two dummy explanatory
variables Z1 and Z2 representing the treatments are as follows:

Treatment Group Z1 Z2

Placebo 0 0
Low dose ribavirin 1 0
High dose ribavirin 0 1

The bulk of the task in using PROC PHREG to perform the WLW analysis lies in the preparation of the input
data set. As discussed earlier, the input data set should contain the ID, Enum, Time, and Status variables, and
event-specific independent variables Z11, Z12, Z13, Z21, Z22, and Z23. Data for the three patients described
earlier are arrayed as follows:

ID Time Status Enum Z1 Z2

1 9 1 1 0 0
1 6 1 2 0 0
1 7 1 3 0 0

14 16 1 1 1 0
14 17 1 2 1 0
14 21 0 3 1 0

28 21 1 1 0 1
28 25 0 3 0 1



6914 F Chapter 86: The PHREG Procedure

The first three rows are data for Patient #1 with event times at 9, 6, and 7 days, one row for each event. The
next three rows are data for Patient #14, who has an uncensored time of 16 days for the first serum sample,
an uncensored time of 17 days for the second sample, and a censored time of 21 days for the third sample.
The last two rows are data for Patient #28 of the high-dose group (Z1=0 and Z2=1). Since the patient did not
have a second serum sample, there are only two rows of data.

To perform the WLW analysis, you specify the following statements:

proc phreg covs(aggregate);
model Time*Status(0)=Z11 Z12 Z13 Z21 Z22 Z23;
strata Enum;
id ID;
Z11= Z1 * (Enum=1);
Z12= Z1 * (Enum=2);
Z13= Z1 * (Enum=3);
Z21= Z2 * (Enum=1);
Z22= Z2 * (Enum=2);
Z23= Z2 * (Enum=3);
EqualLowDose: test Z11=Z12, Z12=Z23;
AverageLow: test Z11,Z12,Z13 / e average;

run;

Two linear hypotheses are tested using the TEST statements. The specification

EqualLowDose: test Z11=Z12, Z12=Z13;

tests the null hypothesis ˇ11 D ˇ12 D ˇ13 of identical low-dose effects across three marginal models. The
specification

AverageLow: test Z11,Z12,Z13 / e average;

tests the null hypothesis of no low-dose effects (that is, ˇ11 D ˇ12 D ˇ13 D 0). The AVERAGE option
computes the optimal weights for estimating the average low-dose effect Ň1 D ˇ11 D ˇ12 D ˇ13 and
performs a 1 DF test for testing the null hypothesis that Ň1 D 0. The E option displays the coefficients for
the linear hypotheses, including the optimal weights.

Marginal Cox Models for Clustered Data

Suppose there are n clusters with Ki members in the ith cluster, i D 1; : : : ; n. Let Zki .:/ be the covariate
process associated with the kth member of the ith cluster. The marginal Cox model is given by

�.t IZki / D �0.t/eˇ
0Zki .t/k D 1; : : : ; Ki I i D 1; : : : ; n

where �0.t/ is an arbitrary baseline hazard function and ˇ is the vector of regression coefficients. Lee, Wei,
and Amato (1992) estimate ˇ by the maximum partial likelihood estimate Ǒ under the independent working
assumption, and use a robust sandwich covariance estimate to account for the intracluster dependence.

To use PROC PHREG to analyze the clustered data, each member of a cluster is represented by an observation
in the input data set. The input data set to PROC PHREG should contain the following:

� an ID variable to identify the cluster so that members of the same cluster have the same ID value

� a Time variable to represent the observed survival time of a member of a cluster
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� a Status variable to indicate whether the Time value is an uncensored or censored time. For example,
Status=1 indicates an uncensored time and Status=0 indicates a censored time.

� the explanatory variables thought to be related to the failure time

Consider a tumor study in which one of three female rats of the same litter was randomly subjected to a drug
treatment. The failure time is the time from randomization to the detection of tumor. If a rat died before the
tumor was detected, the failure time was censored. For example:

� In litter #1, the drug-treated rat has an uncensored time of 101 days, one untreated rat has a censored
time of 49 days, and the other untreated rat has a failure time of 104 days.

� In litter #3, the drug-treated rat has a censored time of 104 days, one untreated rat has a censored time
of 102 days, and the other untreated rat has a censored time of 104 days.

In this example, a litter is a cluster and the rats of the same litter are members of the cluster. Let Trt be a 0-1
variable representing the treatment a rat received, with value 1 for drug treatment and 0 otherwise. Data for
the two litters of rats described earlier contribute six observations to the input data set:

Litter Time Status Trt

1 101 1 1
1 49 0 0
1 104 1 0

3 104 0 1
3 102 0 0
3 104 0 0

The analysis of Lee, Wei, and Amato (1992) can be performed by PROC PHREG as follows:

proc phreg covs(aggregate);
model Time*Status(0)=Treatment;
id Litter;

run;

Intensity and Rate/Mean Models for Recurrent Events Data

Suppose each subject experiences recurrences of the same phenomenon. Let N.t/ be the number of events a
subject experiences over the interval [0,t] and let Z.:/ be the covariate process of the subject.

The intensity model (Andersen and Gill 1982) is given by

�Z.t/dt D EfdN.t/jFt�g D �0.t/e
ˇ0Z.t/dt

where Ft represents all the information of the processes N and Z up to time t, �0.t/ is an arbitrary baseline
intensity function, and ˇ is the vector of regression coefficients. This model consists of two components:
(1) all the influence of the prior events on future recurrences, if there is any, is mediated through the time-
dependent covariates, and (2) the covariates have multiplicative effects on the instantaneous rate of the
counting process. If the covariates are time invariant, the risk of recurrences is unaffected by the past events.
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The proportional rates and means models (Pepe and Cai 1993; Lawless and Nadeau 1995; Lin et al. 2000)
assume that the covariates have multiplicative effects on the mean and rate functions of the counting process.
The rate function is given by

d�Z.t/ D EfdN.t/jZ.t/g D eˇ
0Z.t/d�0.t/

where �0.t/ is an unknown continuous function and ˇ is the vector of regression parameters. If Z is time
invariant, the mean function is given by

�Z.t/ D EfN.t/jZg D eˇ
0Z�0.t/

For both the intensity and the proportional rates/means models, estimates of the regression coefficients are
obtained by solving the partial likelihood score function. However, the covariance matrix estimate for the
intensity model is computed as the inverse of the observed information matrix, while that for the proportional
rates/means model is given by a sandwich estimate. For a given pattern of fixed covariates, the Nelson
estimate for the cumulative intensity function is the same for the cumulative mean function, but their standard
errors are not the same.

To fit the intensity or rate/mean model by using PROC PHREG, the counting process style of input is needed.
A subject with K events contributes K + 1 observations to the input data set. The kth observation of the
subject identifies the time interval from the (k – 1) event or time 0 (if k = 1) to the kth event, k D 1; : : : ; K.
The (K + 1) observation represents the time interval from the Kth event to time of censorship. The input data
set should contain the following variables:

� a TStart variable to represent the (k – 1) recurrence time or the value 0 if k = 1

� a TStop variable to represent the kth recurrence time or the follow-up time if k = K + 1

� a Status variable indicating whether the TStop time is a recurrence time or a censored time; for
example, Status=1 for a recurrence time and Status=0 for censored time

� explanatory variables thought to be related to the recurrence times

If the rate/mean model is used, the input data should also contain an ID variable for identifying the subjects.

Consider the chronic granulomatous disease (CGD) data listed in Fleming and Harrington (1991). The
disease is a rare disorder characterized by recurrent pyrogenic infections. The study is a placebo-controlled
randomized clinical trial conducted by the International CGD Cooperative Study to assess the effect of
gamma interferon to reduce the rate of infection. For each study patient the times of recurrent infections
along with a number of prognostic factors were collected. For example:

� Patient #17404, age 38, in the gamma interferon group had a follow-up time of 293 without any
infection.

� Patient #204001, age 12, in the placebo group had an infection at 219 days, a recurrent infection at 373
days, and was followed up to 414 days.

Let Trt be the variable representing the treatment status with value 1 for gamma interferon and value 2 for
placebo. Let Age be a covariate representing the age of the CGD patient. Data for the two CGD patients
described earlier are given in the following table.
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ID TStart TStop Status Trt Age

174054 0 293 0 1 38

204001 0 219 1 2 12
204001 219 373 1 2 12
204001 373 414 0 2 12

Since Patient #174054 had no infection through the end of the follow-up period (293 days), there is only one
observation representing the period from time 0 to the end of the follow-up. Data for Patient #204001 are
broken into three observations, since there are two infections. The first observation represents the period
from time 0 to the first infection, the second observation represents the period from the first infection to the
second infection, and the third time period represents the period from the second infection to the end of the
follow-up.

The following specification fits the intensity model:

proc phreg;
model (TStart,TStop)*Status(0)=Trt Age;

run;

You can predict the cumulative intensity function for a given pattern of fixed covariates by specifying the
CUMHAZ= option in the BASELINE statement. Suppose you are interested in two fixed patterns, one for
patients of age 30 in the gamma interferon group and the other for patients of age 1 in the placebo group.
You first create the SAS data set as follows:

data Pattern;
Trt=1; Age=30;
output;
Trt=2; Age=1;
output;

run;

You then include the following BASELINE statement in the PROC PHREG specification. The CUM-
HAZ=_all_ option produces the cumulative hazard function estimates, the standard error estimates, and the
lower and upper pointwise confidence limits.

baseline covariates=Pattern out=out1 cumhaz=_all_;

The following specification of PROC PHREG fits the mean model and predicts the cumulative mean function
for the two patterns of covariates in the Pattern data set:

proc phreg covs(aggregate);
model (Tstart,Tstop)*Status(0)=Trt Age;
baseline covariates=Pattern out=out2 cmf=_all_;
id ID;

run;

The COV(AGGREGATE) option, along with the ID statement, computes the robust sandwich covariance
matrix estimate. The CMF=_ALL_ option adds the cumulative mean function estimates, the standard error
estimates, and the lower and upper pointwise confidence limits to the OUT=Out2 data set.
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PWP Models for Recurrent Events Data

Let N.t/ be the number of events a subject experiences by time t. Let Z.t/ be the covariate vectors of the
subject at time t. For a subject who has K events before censorship takes place, let t0 D 0, let tk be the kth
recurrence time, k D 1; : : : ; K, and let tKC1 be the censored time. Prentice, Williams, and Peterson (1981)
consider two time scales, a total time from the beginning of the study and a gap time from immediately
preceding failure. The PWP models are stratified Cox-type models that allow the shape of the hazard function
to depend on the number of preceding events and possibly on other characteristics of {N.t/ and Z.t/}. The
total time and gap time models are given, respectively, as follows:

�.t jFt�/ D �0k.t/eˇ
0
k
Z.t/; tk�1 < t � tk

�.t jFt�/ D �0k.t � tk�1/eˇ
0
k
Z.t/; tk�1 < t � tk

where �0k is an arbitrary baseline intensity functions, and ˇk is a vector of stratum-specific regression
coefficients. Here, a subject moves to the kth stratum immediately after his (k – 1) recurrence time and
remains there until the kth recurrence occurs or until censorship takes place. For instance, a subject who
experiences only one event moves from the first stratum to the second stratum after the event occurs and
remains in the second stratum until the end of the follow-up.

You can use PROC PHREG to carry out the analyses of the PWP models, but you have to prepare the input
data set to provide the correct risk sets. The input data set for analyzing the total time is the same as the AG
model with an additional variable to represent the stratum that the subject is in. A subject with K events
contributes K + 1 observations to the input data set, one for each stratum that the subject moves to. The input
data should contain the following variables:

� a TStart variable to represent the (k – 1) recurrence time or the value 0 if k = 1

� a TStop variable to represent the kth recurrence time or the time of censorship if k D K C 1

� a Status variable with value 1 if the Time value is a recurrence time and value 0 if the Time value is a
censored time

� an Enum variable representing the index of the stratum that the subject is in. For a subject who has
only one event at t1 and is followed to time tc , Enum=1 for the first observation (where Time=t1 and
Status=1) and Enum=2 for the second observation (where Time=tc and Status=0).

� explanatory variables thought to be related to the recurrence times

To analyze gap times, the input data set should also include a GapTime variable that is equal to (TStop –
TStart).

Consider the data of two subjects in CGD data described in the previous section:

� Patients #174054, age 38, in the gamma interferon group had a follow-up time of 293 without any
infection.

� Patient #204001, age 12, in the placebo group had an infection at 219 days, a recurrent infection at 373
days, and a follow-up time of 414 days.
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To illustrate, suppose all subjects have at most two observed events. The data for the two subjects in the input
data set are as follows:

ID TStart TStop Gaptime Status Enum Trt Age

174054 0 293 293 0 1 1 38

204001 0 219 219 1 1 2 12
204001 219 373 154 1 2 2 12
204001 373 414 41 0 3 2 12

Subject #174054 contributes only one observation to the input data, since there is no observed event. Subject
#204001 contributes three observations, since there are two observed events.

To fit the total time model of PWP with stratum-specific slopes, either you can create the stratum-specific
explanatory variables (Trt1, Trt2, and Trt3 for Trt, and Age1, Age2, and Age3 for Age) in a DATA step, or you
can specify them in PROC PHREG by using programming statements as follows:

proc phreg;
model (TStart,TStop)*Status(0)=Trt1 Trt2 Trt3 Age1 Age2 Age3;
strata Enum;
Trt1= Trt * (Enum=1);
Trt2= Trt * (Enum=2);
Trt3= Trt * (Enum=3);
Age1= Age * (Enum=1);
Age2= Age * (Enum=2);
Age3= Age * (Enum=3);

run;

To fit the total time model of PWP with the common regression coefficients, you specify the following:

proc phreg;
model (TStart,TStop)*Status(0)=Trt Age;
strata Enum;

run;

To fit the gap time model of PWP with stratum-specific regression coefficients, you specify the following:

proc phreg;
model Gaptime*Status(0)=Trt1 Trt2 Trt3 Age1 Age2 Age3;
strata Enum;
Trt1= Trt * (Enum=1);
Trt2= Trt * (Enum=2);
Trt3= Trt * (Enum=3);
Age1= Age * (Enum=1);
Age2= Age * (Enum=2);
Age3= Age * (Enum=3);

run;

To fit the gap time model of PWP with common regression coefficients, you specify the following:

proc phreg;
model Gaptime*Status(0)=Trt Age;
strata Enum;

run;
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Model Fit Statistics
Suppose the model contains p regression parameters. The three statistics displayed by the PHREG procedure
are calculated as follows:

� –2 log likelihood:

�2 Log L D �2 log.Ln. Ǒ//

where Ln.:/ is a partial likelihood function for the corresponding TIES= option as described in the
section “Partial Likelihood Function for the Cox Model” on page 6890, and Ǒ is the maximum
likelihood estimate of the regression parameter vector.

� Akaike’s information criterion (AIC):

AIC D �2 Log LC 2p

� Schwarz Bayesian criterion (SBC):

SBC D �2 Log LC p log.d/

where d is the number of uncensored observations in the data (Volinsky and Raftery 2000). The SBC
statistic is also known as the Bayesian information criterion (BIC).

The –2 log likelihood statistic has a chi-square distribution under the null hypothesis (that all the explanatory
effects in the model are zero) and the procedure produces a p-value for this statistic. The AIC and SBC
statistics offer two different ways of adjusting the –2 log likelihood statistic for the number of terms in
the model and the number of observations used. It is recommended that you use these statistics when you
compare different models for the same data (for example, when you use the METHOD=STEPWISE option
in the MODEL statement); lower values of the statistic indicate a more desirable model.

Schemper-Henderson Predictive Measure
Measures of predictive accuracy of regression models quantify the extent to which covariates determine an
individual outcome. Schemper and Henderson’s (2000) proposed predictive accuracy measure is defined as
the difference between individual processes and the fitted survivor function.

For the ith individual (1 � i � n), let li ; Xi ; �i ; and Zi be the left-truncation time, observed time, event
indicator (1 for death and 0 for censored), and covariate vector, respectively. If there is no delay entry, then
li D 0. Let t.1/ < � � � < t.m/ be m distinct event times with dj deaths at t.j /. The survival process Yi .t/ for
the ith individual is

Yi .t/ D

8<:
1 li � t < Xi
0 t � Xi and �i D 1

undefined t � Xi and �i D 0
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Let OS.t/ be the Kaplan-Meier estimate of the survivor function (assuming no covariates). Let OS.t jZ/ be the
fitted survivor function with covariates Z, and if you specify TIES=EFRON, then OS.t jZ/ is computed by the
Efron method; otherwise, the Breslow estimate is used.

The predictive accuracy is defined as the difference between individual survival processes Yi .t/ and the fitted
survivor functions with ( OS.t jZi )) or without ( OS.t/) covariates between 0 and � , the largest observed time.
For each death time t.j /, define a mean absolute distance between the Yi .t/ and the OS.t/ as

OM.t.j // D
1

nj

nX
iD1

I.li � t.j //

�
I.Xi > t.j / � li /.1 � OS.t.j ///C�iI.Xi � t.j // OS.t.j //

C .1 ��i /I.Xi � t.j //

"
.1 � OS.t.j ///

OS.t.j //

OS.Xi /
C OS.t.j //

 
1 �
OS.t.j //

OS.Xi /

!#�

where nj D
Pn
iD1 I.li � t.j //. Let OM.t.j /jZ/ be defined similarly to OM.t.j //, but with OS.t.j // replaced

by OS.t.j /jZi / and OS.Xi / replaced by OS.Xi jZi /. Let OG.t/ be the Kaplan-Meier estimate of the censoring or
potential follow-up distribution, and let

w D

mX
jD1

dj

OG.t.j //

The overall estimator of the predictive accuracy with ( ODz) and without ( OD) covariates are weighted averages
of OM.t.j /jZ/ and OM.t.j //, respectively, given by

ODz D
1

w

mX
jD1

dj

OG.t.j //
OM.t.j /jZ/

OD D
1

w

mX
jD1

dj

OG.t.j //
OM.t.j //

The explained variation by the Cox regression is

V D 100

 
1 �

ODz

OD

!
%

Because the predictive accuracy measures ODz and OD are based on differences between individual survival
processes and fitted survivor functions, a smaller value indicates a better prediction. For this reason, ODz and
OD are also referred to as predictive inaccuracy measures.

Residuals
This section describes the computation of residuals (RESMART=, RESDEV=, RESSCH=, and RESSCO=)
in the OUTPUT statement.
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First, consider TIES=BRESLOW. Let

S .0/.ˇ; t / D
X
i

Yi .t/eˇ
0Zi .t/

S .1/.ˇ; t / D
X
i

Yi .t/eˇ
0Zi .t/Zi .t/

NZ.ˇ; t / D
S .1/.ˇ; t /

S .0/.ˇ; t /

dƒ0.ˇ; t / D
X
i

dNi .t/

S .0/.ˇ; t /

dMi .ˇ; t / D dNi .t/ � Yi .t/eˇ
0Zi .t/dƒ0.ˇ; t /

The martingale residual at t is defined as

OMi .t/ D

Z t

0

dMi . Ǒ; s/ D Ni .t/ �

Z t

0

Yi .s/e
Ǒ 0Zi .s/dƒ0. Ǒ; s/

Here OMi .t/ estimates the difference over .0; t � between the observed number of events for the ith subject
and a conditional expected number of events. The quantity OMi � OMi .1/ is referred to as the martingale
residual for the ith subject. When the counting process MODEL specification is used, the RESMART=
variable contains the component ( OMi .t2/ � OMi .t1/) instead of the martingale residual at t2. The martingale
residual for a subject can be obtained by summing up these component residuals within the subject. For the
Cox model with no time-dependent explanatory variables, the martingale residual for the ith subject with
observation time ti and event status �i is

OMi D �i � e Ǒ
0Zi

Z ti

0

dƒ0. Ǒ; s/

The deviance residuals Di are a transform of the martingale residuals:

Di D sign. OMi /

s
2

�
� OMi �Ni .1/ log

�
Ni .1/ � OMi

Ni .1/

��
The square root shrinks large negative martingale residuals, while the logarithmic transformation expands
martingale residuals that are close to unity. As such, the deviance residuals are more symmetrically distributed
around zero than the martingale residuals. For the Cox model, the deviance residual reduces to the form

Di D sign. OMi /

q
2Œ� OMi ��i log.�i � OMi /�

When the counting process MODEL specification is used, values of the RESDEV= variable are set to missing
because the deviance residuals can be calculated only on a per-subject basis.

The Schoenfeld (1982) residual vector is calculated on a per-event-time basis. At the jth event time tij of the
ith subject, the Schoenfeld residual

OUi .tij / D Zi .tij / � NZ. Ǒ; tij /
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is the difference between the ith subject covariate vector at tij and the average of the covariate vectors over
the risk set at tij . Under the proportional hazards assumption, the Schoenfeld residuals have the sample path
of a random walk; therefore, they are useful in assessing time trend or lack of proportionality. Harrell (1986)
proposed a z-transform of the Pearson correlation between these residuals and the rank order of the failure
time as a test statistic for nonproportional hazards. Therneau, Grambsch, and Fleming (1990) considered a
Kolmogorov-type test based on the cumulative sum of the residuals.

The score process for the ith subject at time t is

Li .ˇ; t / D
Z t

0

ŒZi .s/ � NZ.ˇ; s/�dMi .ˇ; s/

The vector OLi � Li . Ǒ;1/ is the score residual for the ith subject. When the counting process MODEL
specification is used, the RESSCO= variables contain the components of .Li . Ǒ; t2/ � Li . Ǒ; t1// instead of
the score process at t2. The score residual for a subject can be obtained by summing up these component
residuals within the subject.

The score residuals are a decomposition of the first partial derivative of the log likelihood. They are useful
in assessing the influence of each subject on individual parameter estimates. They also play an important
role in the computation of the robust sandwich variance estimators of Lin and Wei (1989) and Wei, Lin, and
Weissfeld (1989).

For TIES=EFRON, the preceding computation is modified to comply with the Efron partial likelihood. For a
given time t, let �i .t/=1 if the t is an event time of the ith subject and 0 otherwise. Let d.t/ D

P
i �i .t/,

which is the number of subjects that have an event at t. For 1 � k � d.t/, let

S .0/.ˇ; k; t/ D
X
i

Yi .t/

�
1 �

k � 1

d.t/
�i .t/

�
eˇ
0Zi .t/

S .1/.ˇ; k; t/ D
X
i

Yi .t/

�
1 �

k � 1

d.t/
�i .t/

�
eˇ
0Zi .t/Zi .t/

NZ.ˇ; k; t/ D
S .1/.ˇ; k; t/

S .0/.ˇ; k; t/

dƒ0.ˇ; k; t/ D
X
i

dNi .t/

S .0/.ˇ; k; t/

dMi .ˇ; k; t/ D dNi .t/ � Yi .t/

�
1 ��i .t/

k � 1

d.t/

�
eˇ
0Zi .t/dƒ0.ˇ; k; t/

The martingale residual at t for the ith subject is defined as

OMi .t/ D

Z t

0

1

d.s/

d.s/X
kD1

dMi . Ǒ; k; s/ D Ni .t/�

Z t

0

1

d.s/

d.s/X
kD1

Yi .s/

�
1��i .s/

k � 1

d.s/

�
e Ǒ
0Zi .s/dƒ0. Ǒ; k; s/

Deviance residuals are computed by using the same transform on the corresponding martingale residuals as
in TIES=BRESLOW.

The Schoenfeld residual vector for the ith subject at event time tij is

OUi .tij / D Zi .tij / �
1

d.tij /

d.tij /X
kD1

NZ. Ǒ; k; tij /
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The score process for the ith subject at time t is given by

Li .ˇ; t / D
Z t

0

1

d.s/

d.s/X
kD1

�
Zi .s/ � NZ.ˇ; k; s/

�
dMi .ˇ; k; s/

For TIES=DISCRETE or TIES=EXACT, it is difficult to come up with modifications that are consistent with
the corresponding partial likelihood. Residuals for these TIES= methods are computed by using the same
formulas as in TIES=BRESLOW.

Diagnostics Based on Weighted Residuals

ZPH Diagnostics

The vector of weighted Schoenfeld residuals, ri , is computed as

ri D neI�1. Ǒ/ OUi .ti /

where ne is the total number of events and OUi .ti / is the vector of Schoenfeld residuals at event time ti . The
components of ri are output to the WTRESSCH= variables in the OUTPUT statement.

The weighted Schoenfeld residuals are useful in assessing the proportional hazards assumption. The idea
is that most of the common alternatives to the proportional hazards can be cast in terms of a time-varying
coefficient model,

�.t;Z/ D �0.t/ exp.ˇ1.t/Z1 C ˇ2.t/Z2 C � � � /

where �.t;Z/ and �0.t/ are hazard rates. Let Ǒj and rij be the jth component of Ǒ and ri , respectively.
Grambsch and Therneau (1994) suggest using a smoothed plot of ( Ǒj C rij ) versus ti to discover the
functional form of the time-varying coefficient ˇj .t/. A zero slope indicates that the coefficient does not
vary with time.

DFBETA Diagnostics

The weighted score residuals are used more often than their unscaled counterparts in assessing local influence.
Let Ǒ.i/ be the estimate of ˇ when the ith subject is left out, and let ı Ǒi D Ǒ � Ǒ.i/. The jth component
of ı Ǒi can be used to assess any untoward effect of the ith subject on Ǒj . The exact computation of ı Ǒi
involves refitting the model each time a subject is omitted. Cain and Lange (1984) derived the following
approximation of�i as weighted score residuals:

ı Ǒi D I�1. Ǒ/ OLi

Here, OLi is the vector of the score residuals for the ith subject. Values of ı Ǒi are output to the DFBETA=
variables. Again, when the counting process MODEL specification is used, the DFBETA= variables contain
the component I�1. Ǒ/.Li . Ǒ; t2/ � Li . Ǒ; t1//, where the score process Li .ˇ; t / is defined in the section
“Residuals” on page 6921. The vector ı Ǒi for the ith subject can be obtained by summing these components
within the subject.

Note that these DFBETA statistics are a transform of the score residuals. In computing the robust sandwich
variance estimators of Lin and Wei (1989) and Wei, Lin, and Weissfeld (1989), it is more convenient to use
the DFBETA statistics than the score residuals (see Example 86.10).
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Influence of Observations on Overall Fit of the Model
The LD statistic approximates the likelihood displacement, which is the amount by which minus twice the
log likelihood (�2 logL. Ǒ/), under a fitted model, changes when each subject in turn is left out. When the
ith subject is omitted, the likelihood displacement is

2 logL. Ǒ/ � 2 logL. Ǒ.i//

where Ǒ.i/ is the vector of parameter estimates obtained by fitting the model without the ith subject. Instead
of refitting the model without the ith subject, Pettitt and Bin Daud (1989) propose that the likelihood
displacement for the ith subject be approximated by

LDi D OL
0

iI�1. Ǒ/ OLi

where OLi is the score residual vector of the ith subject. This approximation is output to the LD= variable.

The LMAX statistic is another global influence statistic. This statistic is based on the symmetric matrix

B D LI�1. Ǒ/L0

where L is the matrix with rows that are the score residual vectors OLi . The elements of the eigenvector
associated with the largest eigenvalue of the matrix B, standardized to unit length, give a measure of the
sensitivity of the fit of the model to each observation in the data. The influence of the ith subject on the global
fit of the model is proportional to the magnitude of �i , where �i is the ith element of the vector � that satisfies

B� D �max� and �0� D 1

with �max being the largest eigenvalue of B. The sign of �i is irrelevant, and its absolute value is output to
the LMAX= variable.

When the counting process MODEL specification is used, the LD= and LMAX= variables are set to missing,
because these two global influence statistics can be calculated on a per-subject basis only.

Concordance Statistics
The predictive accuracy of a statistical model can be measured by the agreement between observed and
predicted outcomes. In the context of logistic regression with binary outcomes, the concordance statistic (also
known as C-statistic) is the most commonly used measure of accuracy. The concept underlying concordance
is that a subject who experiences a particular outcome has a higher predicted probability of that outcome than
a subject who does not experience the outcome.

The C-statistic can be calculated as the proportion of pairs of subjects whose observed and predicted outcomes
agree (are concordant) among all possible pairs in which one subject experiences the outcome of interest and
the other one does not. The higher the C-statistic, the better the model can discriminate between subjects
who do experience the outcome of interest and subjects who do not.

C-statistics can be formulated for any modeling approach that generates predicted values. In the context of
survival analysis, various C-statistics have been formulated to deal with right-censored data. PROC PHREG
provides concordance statistics that were introduced by Harrell (1986) and Uno et al. (2011). The following
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subsections discuss these statistics. In these subsections, ˇ denotes the true regression parameters, and for a
pair of subjects whose covariate vectors are Z1 and Z2 the survival times are denoted as T1 and T2 and the
censoring times are denoted as D1 and D2, respectively. For the ith individual (1 � i � n) in a sample, let
Xi ; �i ; and Zi be the observed time, event indicator (1 for death and 0 for censored), and covariate vector,
respectively. Let Ǒ denote the maximum partial likelihood estimates of ˇ.

Harrell’s Concordance Statistic

Harrell (1986) proposes the following definition of the concordance probability:

CH D Pr.ˇ0Z1 > ˇ0Z2jT1 < T2; T1 < min.D1;D2//

Assuming no ties in the event times and the predictor scores, CH can be estimated by

OCH D

P
i¤j �iI.Xi < Xj /I.

Ǒ0Zi > Ǒ0Zj /P
i¤j �iI.Xi < Xj /

When there are ties in the predictor scores, the preceding calculation can be adjusted to be

OCH D

P
i¤j �iI.Xi < Xj /

h
I. Ǒ0Zi > Ǒ0Zj /C 0:5I. Ǒ0Zi D Ǒ0Zj /

i
P
i¤j �iI.Xi < Xj /

Assuming that the censoring time is independent of the event time, Kang et al. (2015) derive the standard
errors estimator by using the delta method. Note this derivation assumes that Ǒ is fixed, so it does not account
for the variability in estimating ˇ. In order to show this condition more explicitly, the linear predictor ˇ0Z is
replaced by a single variable Y. For a pair of subjects i and j, define the following quantities:

sgn.Yi ; Yj / D I.Yi � Yj / � I.Yi � Yj /

csgn.Xi ; �i ; Xj ; �j / D I.Xi � Xj /�j � I.Xi � Xj /�i

Let tijXY D csgn.Xi ; �i ; Xj ; �j / sgn.Yi ; Yj /, t�ijXX D csgn.Xi ; �i ; Xj ; �j /2. Further define the follow-
ing quantities:

tXY D
1

n.n � 1/

X
i¤j

tijXY

t�XX D
1

n.n � 1/

X
i¤j

t�ijXX

Harrell’s estimator can be rewritten as

OCH D
1

2

�
tXY

t�XX
C 1

�

Applying the delta method, the variance of Harrell’s C-statistic can be estimated by

cvar. OCH / D h 1
t�XX

�
tXY
t�2XX

i � cvar.tXY / bcov.t�XX ; tXY /
bcov.t�XX ; tXY / cvar.t�XX /

� h
1
t�XX

�
tXY
t�2XX

i0
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where

cvar.t�XX / D 4
P
i

�P
j t
�
ijXX

�2
�
P
i

P
j t
�2
ijXX �

2.2n�3/
n.n�1/

�P
i

P
j t
�2
ijXX

�2
n.n � 1/.n � 2/.n � 3/

cvar.tXY / D 4
P
i

�P
j tijXY

�2
�
P
i

P
j tijXY �

2.2n�3/
n.n�1/

�P
i

P
j tijXY

�2
n.n � 1/.n � 2/.n � 3/

bcov.t�XX ; tXY / D
4
P
i

�P
j t
�
ijXX

P
j 0 tij 0XY

�
�
P
i

P
j t
�
ijXX tijXY �

2.2n�3/
n.n�1/

�P
i

P
j t
�2
ijXX

� �P
i

P
j tijXY

�
n.n � 1/.n � 2/.n � 3/

Uno’s Concordance Statistic

Uno et al. (2011) propose the following method for estimating the concordance probability:

CU D Pr.ˇ0Z1 > ˇ0Z2jT1 < T2/

If � is a specified time point within the support of the censoring variable, Uno et al. (2011) also define a
truncated version of the concordance probability as

CU D Pr.ˇ0Z1 > ˇ0Z2jT1 < T2; T1 < �/

You can specify a � value in the TAU= option in the PROC PHREG statement. If the TAU= option is not
specified, there is no truncation and the � value is taken as the largest event time.

For the ith individual (1 � i � n), let Xi ; �i ; and Zi be the observed time, event indicator (1 for death and 0
for censored), and covariate vector, respectively. Let OG.t/ be the Kaplan-Meier estimate of the censoring
distribution (assuming no covariates). CU is consistently estimated by

OCU D

Pn
iD1

Pn
jD1�i

OG.X�i /
�2I.Xi < Xj ; Xi < �/

h
I. Ǒ0Zi > Ǒ0Zj /C 0:5 � I. Ǒ0Zi D Ǒ0Zj /

i
Pn
iD1

Pn
jD1�i

OG.X�i /
�2I.Xi < Xj ; Xi < �/

Define W D
p
n. OCU � CU /. It can be shown that W is asymptotically distributed as a normal random

variable with mean zero. The variance of W can be approximated by using the perturbation-resampling
method. Specifically, let f i ; i D 1; : : : ; ng be a set of independent samples from an exponential distribution
with mean of 1 and variance of 1. For a large n, W can be approximated by

QW D
X
i<j

0:5 �
h
OVij . Ǒ/C OVj i . Ǒ/

i
 i j C

h
OK.G�/ � OK. OG/

i
C

h
OCU .ˇ

�/ � OCU . Ǒ/
i

where

OK.G/ D

P
i<j G.X

�
i /
�2I.Xi < Xj ; Xi < �/�i

h
I. Ǒ0Zi > Ǒ0Zj /C 0:5 � I. Ǒ0Zi D Ǒ0Zj / � OC� . Ǒ/

i
P
i<j
OG.X�i /

�2I.Xi < Xj ; Xi < �/�i
;

OVij . Ǒ/ D
G.X�i /

�2I.Xi < Xj ; Xi < �/�i

h
I. Ǒ0Zi > Ǒ0Zj /C 0:5 � I. Ǒ0Zi D Ǒ0Zj / � OC� . Ǒ/

i
P
i<j
OG.X�i /

�2I.Xi < Xj ; Xi < �/�i
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and G�.�/ and ˇ� are the perturbed versions of OG and Ǒ. G�.�/ is calculated as

G�.t/ D OG.t/ � OG.t/
2

n.n � 1/

X
i<j

Z t

0

1

n�1
P
i I.Xi � u/

h
d OM.u/C d OM.u/

i
 i j =2

where OM.t/ D I.Xi � u;�i D 0/ �
R t
0 I.Xi � u/d OƒC .u/ and OƒC .�/ is a consistent estimator of the

cumulative hazard function for the censoring time variable. ˇ� is calculated as

ˇ� D Ǒ C
2

n.n � 1/

X
i<j

n
OH. Ǒ/

h
Ui . Ǒ/C Uj . Ǒ/

i
=2
o
 i j

where OH is the estimated variance-covariance matrix of Ǒ divided by n and Ui is the contribution to the
partial likelihood function from the ith individual. The third term of the formula for QW is dropped out if you
use the PRED= option in an ROC statement to specify a variable that contains the prediction scores.

Suppose O�2 is the sample variance based on M realizations of QW . The 100.1 � ˛/% confidence limits for
CU are OCU ˙ z˛=2 O� , where z˛=2 is the upper 100˛=2 percentile of the standard normal distribution.

Time-Dependent ROC Curves
In the context of logistic regression with binary outcomes, receiver operator characteristic (ROC) curves
and AUC (area under the ROC curve) statistics are commonly used to assess the ability of the model to
discriminate between the two outcomes. To adapt the concept of ROC curves to the survival setting, various
definitions and estimators of time-dependent ROC curves and AUC functions have been proposed. See
Blanche, Latouche, and Viallon (2013) for a comprehensive survey of different methods. Time-dependent
ROC curves and AUC functions characterize how well the fitted model can distinguish between subjects who
experience an event from subjects who are event-free.

Whereas C-statistics provide overall measures of predictive accuracy, time-dependent ROC curves and AUC
functions summarize the predictive accuracy at specific times. In practice, it is common to use several time
points within the support of the observed event times.

Let T denote the event-time variable, and let Y denote the continuous variable to be assessed. At time t, a
binary outcome can be defined as follows:

Dt D I.T � t /

Suppose c denotes a specific value within the support of Y. The sensitivity (SE) and specificity (SP) can be
defined as

SEt .c/ D Pr.Y > cjDt D 1/

SPt .c/ D Pr.Y � cjDt D 0/

The ROC curve at time t is defined to be

ROCt .c/ D SEt .c/
�
1 � SP�1t .c/

�
This definition is often referred to as the “cumulative/dynamic” ROC curve in the literature. “Cumulative”
means all events that occurred before time t are considered as “cases.” Other types of time-dependent ROC
curves are available in the literature—for example, in Heagerty and Zheng (2005).
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The AUC statistic at time t is the area under the ROC curve at time t:

AUCt D
Z

ROCt .u/du

Let ˇ denote the vector of regression parameters. For the ith individual (1 � i � n), let Xi ; �i ; and Zi
be the observed time, event indicator (1 for death and 0 for censored), and covariate vector, respectively.
Let Ǒ denote the maximum partial likelihood estimates of ˇ. The estimated linear predictor for the ith
individual is Yi D ˇ0Zi . PROC PHREG supports the approaches that are described in the following sections
for estimating time-dependent ROC curves.

Inverse Probability of Censoring Weighting Approach

Let OG.t/ be the Kaplan-Meier estimate of the censoring distribution (assuming no covariates). Assuming
that the censoring distribution is independent of the failure time distribution, the sensitivity and specificity
under a specific threshold value c can be consistently estimated by

cSEt .c/ D Pn
iD1�iI.

Ǒ0Zi > c;Xi � t /= OG.Xi /Pn
iD1�iI.Xi � t /=

OG.Xi /

cSPt .c/ D Pn
iD1 I.

Ǒ0Zi � c;Xi > t/Pn
iD1 I.Xi > t/

ROCt .c/ can be estimated by substituting in these estimated sensitivities and specificities. The estimated
AUCt is calculated by using the trapezoidal rule to integrate the estimated ROCt .c/ curve.

Uno et al. (2007) propose estimating the standard errors of the AUCt estimator by using the perturbation-
resampling method. Let f i ; i D 1; : : : ; ng be a set of independent samples from an exponential distribution
with mean of 1 and variance of 1. The perturbed versions of cSEt .c/ and cSPt .c/ are

cSE�t .c/ D Pn
iD1�iI.ˇ

�0Zi > c;Xi � t / i= OG�.Xi /Pn
iD1�iI.Xi � t / i=

OG�.Xi /

cSP�t .c/ D Pn
iD1 I.ˇ

�0Zi � c;Xi > t/ iPn
iD1 I.Xi > t/ i

where G�.�/ and ˇ� represent the perturbed versions of OG.�/ and Ǒ. G�.�/ is calculated as

G�.t/ D OG.t/ � OG.t/
2

n.n � 1/

X
i<j

Z t

0

1

n�1
P
i I.Xi � u/

h
d OM.u/C d OM.u/

i
 i j =2

where OM.t/ D I.Xi � u;�i D 0/ �
R t
0 I.Xi � u/d OƒC .u/ and OƒC .�/ is a consistent estimator of the

cumulative hazard function for the censoring time variable. ˇ� is calculated as

ˇ� D Ǒ C
2

n.n � 1/

X
i<j

n
OH. Ǒ/

h
Ui . Ǒ/C Uj . Ǒ/

i
=2
o
 i j

where OH is the estimated variance-covariance matrix of Ǒ divided by n and Ui is the partial likelihood
contribution from the ith individual.
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The perturbed AUCt estimate is obtained by substituting in the perturbed sensitivities and specificities.
Suppose O�2 is the sample variance based on M realizations of the perturbed AUCt . The 100.1 � ˛/%
confidence limits for AUCt are 1AUCt ˙ z˛=2 O� , where 1AUCt is the estimated AUCt and z˛=2 is the upper
100˛=2 percentile of the standard normal distribution.

To choose this method of computing the time-dependent ROC curve, specify METHOD=IPCW in the
ROCOPTIONS option in the PROC PHREG statement.

NOTE: This perturbation approach of estimating the standard error of the AUCt statistic does not apply to a
model that is specified by the PRED= option or SOURCE= option in an ROC statement.

Conditional Kaplan-Meier Approach

By using Bayes’ theorem, sensitivity and the specificity can be written as

SEt .c/ D Pr.Y > cjDt D 1/ D
Œ1 � S.t jY > c/�Pr.Y > c/

1 � S.t/

SPt .c/ D Pr.Y � cjDt D 0/ D
S.t jY � c/Pr.Y � c/

S.t/

where S.�/ is the survivor function and S.�jY > c/ is the conditional survivor function for Y > c.

Heagerty, Lumley, and Pepe (2000) use the Kaplan-Meier method to estimate the survivor function S.:/ and
the conditional survivor function S.:jY > c/. The latter was estimated using subjects where the condition
Y > c is met. The sensitivity and the specificity are estimated by

cSEt .c/ D
h
1 � OSKM .t jY > c/

i
Œ1 � OFY .c/�

1 � OSKM .t/

cSPt .c/ D OSKM .t jY � c/ OFY .c/
OSKM .t/

where OSKM .�/ is the Kaplan-Meier estimator and OFY .c/ D
P
i I.Yi � c/=n.

To choose this method of computing ROC curves, specify METHOD=KM in the ROCOPTIONS in the
PROC PHREG statement.

Nearest Neighbors Approach

Following Akritas (1994), the bivariate survival function, S.c; t/ D Pr.Y > c; T > t/, can be estimated by

OSbn.c; t/ D
1

n

X
i

OSbn.t jY D Yi /I.Yi > c/

where OSbn.t jY D Yi / is a smoothed estimate of the conditional survival function. Define the weighted
Kaplan-Meier estimator as

OSbn.t jY D Yi / D
Y

s2fXi WiD1;��� ;n;�iD1g;s�t

"
1 �

P
j Kbn.Yi ; Yj /I.Xi D s/�iP
j Kbn.Yi ; Yj /I.Xi D s/

#

where Kbn.Yi ; Yj / is a kernel function that depends on the parameter bn. Akritas (1994) uses the nearest
neighbor kernel, Kbn.Yi ; Yj / D I f�bn < OFY .Yi / � OFY .Yj / < bng, where 0 < 2bn < 1; this effectively
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selects the nearest 2bn proportion of observations in the neighborhood. The default value for bn is 0.05.
You can specify a different value by using the SPAN= suboption in METHOD=NNE in the ROCOPTIONS
option in the PHREG statement.

The sensitivity and specificity can then be estimated as

cSEt .c/ D 1 � OFY .c/ � OSbn.c; t/

1 � OSbn.t/

cSPt .c/ D 1 � OSbn.c; t/
OSbn.t/

where OSbn.t/ D OSbn.�1; t /. For more information, see Heagerty, Lumley, and Pepe (2000).

To choose this method of computing time-dependent ROC curves, specify METHOD=NNE in the
ROCOPTIONS option in the PROC PHREG statement.

Recursive Approach

Chambless and Diao (2006) propose estimating time-dependent ROC curves by using a recursive approach
akin to the Kaplan-Meier method. Let t1 < t2 < � � � < tM be the distinct event times in the data. The area
under the curve at time tm; 1 � tm �M , can be derived as

AUCtm D
Pm
kD1 
k�.tk/.1 � �.tk//S.tk�1/ �

Pm
kD1 �k�.tk/.1 � S.tk�1//S.tk�1/

S.tm/.1 � S.tm//

where S.�/ is the survivor function, �.�/ is the hazard function, t0 D 0, �0 D 0, and

�k D Pr.ˇ0Zi > ˇ0Zj jXi D tk; �i D 1;Xj > tk/


k D Pr.ˇ0Zi > ˇ0Zj jXi D tk�1; �i D 1;Xj D tk; �j D 1/

In a recursive fashion, the sensitivity and specificity at time tm can be shown to be

SEtm.c/ D
mX
kD1

�k.c/�.tk/S.tk�1/=Œ1 � S.tm/�

SPtm.c/ D
Pr.ˇ0Zi � c/ �

Pm
kD1Œ1 � �k.c/��.tk/S.tk�1/

S.tm/

where �k.c/ D Pr.ˇ0Zi > cjXi D tk; �i D 1/.

Define Rk to be the risk set at time tk , and let rk be the number of subjects in Rk . Let Z.k/ be the covariate
vector for the subject whose event time is tk . The unknown parameters �k , 
k , and �k.c/ can be estimated by

O�k D
1

k � 1

kX
iD1

I. Ǒ0Z.i/ > Ǒ
0Z.k//

O
k D
1

rk � 1

X
j2Rk

I. Ǒ0Z.k/ > Ǒ
0Zj /

O�k.c/ D I. Ǒ
0Z.k/ > c/
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When there is only one event at each event time, �.tk/ is estimated by O�.tk/ D 1=rk and S.tk/ is estimated
by the Kaplan-Meier method as OS.tk/ D OS.tk�1/Œ1� O�.tk�1/�. In the case of a tie, the order of the events in
the calculation is the same as the order of their appearance in the input data set.

To choose this method of computing time-dependent ROC curves, specify METHOD=RECURSIVE in the
ROCOPTIONS option in the PROC PHREG statement.

Survivor Function Estimators
Three estimators of the survivor function are available: the Breslow (1972) estimator, which is based on the
empirical cumulative hazard function, the Fleming and Harrington (1984) estimator, which is a tie-breaking
modification of the Breslow estimator, and the product-limit estimator (Kalbfleisch and Prentice 1980, pp.
84–86).

Let ft1 < � � � < tkg be the distinct uncensored times of the survival data.

Breslow Estimator

To select this estimator, specify the METHOD=BRESLOW option in the BASELINE statement or OUTPUT
statement. For the jth subject, let f.Xj ; �j ;Zj .://g represent the failure time, the event indicator, and the
vector of covariate values, respectively. For t � 0, let

Yj .t/ D I.Xj � t /

�j .t/ D

�
1 Xj D t and �j D 1

0 otherwise

d.t/ D
X
j

�j .t/

Note that d.t/ is the number of subjects that have an event at t. Let

S .0/.ˇ; t / D
X
j

Yj .t/eˇ
0Zj .t/

S .1/.ˇ; t / D
X
j

Yj .t/eˇ
0Zj .t/Zj .t/

NZ.ˇ; t / D
S .1/.ˇ; t /

S .0/.ˇ; t /

For a given realization of the explanatory variables �, the cumulative hazard function estimator at � is

OƒB.t; �/ D e Ǒ
0�
X
ti�t

d.ti /

S .0/. Ǒ; ti /

with variance estimated by

O�2. OƒB.t; �// D e2 Ǒ
0�
X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2
CH.t; �/0ŒI. Ǒ/��1H.t; �/
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where

H.t; �/ D e Ǒ
0�
X
ti�t

d.ti /

S .0/. Ǒ; ti /

�
NZ. Ǒ; ti / � �

�
For the marginal model, the variance estimator computation follows Spiekerman and Lin (1998).

The Breslow estimate of the survivor function for Z D � is

OSB.t; �/ D exp.� OƒB.t; �//

By the delta method, the standard error of OSB.t; �/ is approximated by

O�. OSB.t; �// D OSB.t; �/ O�. OƒB.t; �//

Fleming-Harrington Estimator

To select this estimator, specify the METHOD=FH option in the BASELINE statement or OUTPUT statement.
With Yj .t/ and d.t/ as defined in the section “Breslow Estimator” on page 6932 and for 1 � k � d.t/, let

S
.0/
E .ˇ; k; t/ D

X
j

Yj .t/

�
1 �

k � 1

d.t/
�j .t/

�
eˇ
0Zj .t/

S
.1/
E .ˇ; k; t/ D

X
j

Yj .t/

�
1 �

k � 1

d.t/
�j .t/

�
eˇ
0Zj .t/Zj .t/

NZEˇ; k; t/ D
S
.1/
E .ˇ; k; t/

S
.0/
E .ˇ; k; t/

For a given realization of the explanatory variables, the Fleming-Harrington adjustment of the cumulative
hazard function is

OƒF .t; �/ D e Ǒ
0�
X
ti�t

� d.ti /X
kD1

1

S
.0/
E . Ǒ; k; ti /

�
with variance estimated by

O�2. OƒF .t; �// D e2 Ǒ
0�
X
ti�t

�d.ti /X
kD1

1

ŒS
.0/
E . Ǒ; k; ti /�2

�
CHE .t; �/

0ŒI. Ǒ/��1HE .t; �/

where

HE .t; �/ D e Ǒ
0�

��X
ti�t

d.ti /X
kD1

1

S
.0/
E . Ǒ; k; ti /

NZE . Ǒ; k; ti /
�
� OƒF .t; 0/�

�

The Fleming-Harrington estimate of the survivor function for Z D � is

OSF .t; �/ D exp.� OƒF .t; �//

By the delta method, the standard error of OSB.t; �/ is approximated by

O�. OSF .t; �// D OSF .t; �/ O�. OƒF .t; �//
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Product-Limit Estimator

To select this estimator, specify the METHOD=PL option in the BASELINE statement or OUTPUT statement.
Let Di denote the set of individuals that fail at ti . Let Ci denote the set of individuals that are censored in the
half-open interval Œti ; tiC1/, where t0 D 0 and tkC1 D 1. Let 
l denote the censoring times in Œti ; tiC1/,
where l ranges over Ci .

The likelihood function for all individuals is given by

L D
kY
iD0

8<:Y
l2Di

�
ŒS0.ti /�

exp.Z0
l
ˇ/
� ŒS0.ti C 0/�

exp.Z0
l
ˇ/
� Y
l2Ci

ŒS0.
l C 0/�
exp.Z0

l
ˇ/

9=;
where D0 is empty. The likelihood L is maximized by taking S0.t/ D S0.ti C 0/ for ti < t � tiC1 and
allowing the probability mass to fall only on the observed event times t1, : : : , tk . By considering a discrete
model with hazard contribution 1 � ˛i at ti , you take S0.ti / D S0.ti�1 C 0/ D

Qi�1
jD0 ˛j , where ˛0 D 1.

Substitution into the likelihood function produces

L D
kY
iD0

8<: Y
j2Di

�
1 � ˛

exp.Z0
j
ˇ/

i

� Y
l2Ri�Di

˛
exp.z0

l
ˇ/

i

9=;
If you replace ˇ with Ǒ estimated from the partial likelihood function and then maximize with respect to
˛1; : : : ; ˛k , the maximum likelihood estimate Ǫ i of ˛i becomes a solution of

X
j2Di

exp.Z0j Ǒ/

1 � Ǫ
exp.Z0

j
Ǒ/

i

D

X
l2Ri

exp.Z0l Ǒ/

When only a single failure occurs at ti , Ǫ i can be found explicitly. Otherwise, an iterative solution is obtained
by the Newton method.

The baseline survival function is estimated by

OS0.t/ D OS0.ti�1 C 0/ D

i�1Y
jD0

Ǫj ; ti�1 < t � ti

For a given realization of the explanatory variables �, the product-limit estimate of the survival function at
Z D � is

OSP .t; �/ D Œ OS0.t/�
exp.ˇ0�/

Approximating the variance of � log.SP .t; �// by the variance estimate of the Breslow estimator of the
cumulative hazard function, the variance of the product-limit estimator at Z D � is given by

O�. OSP .t; �// D OSP .t; �/ O�. OƒB.t; �//
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Direct Adjusted Survival Curves

Consider the Breslow estimator of the survival function. For j D 1; : : : ; n, let �j represent the covariate set
of the jth patient. The direct adjusted survival curve averages the estimated survival curves for each patient:

NS.t/ D
1

n

nX
jD1

OS.t; �j /

The variance of NS.t/ can be estimated by

O�2. NS.t// D
1

n2

�
V .1/t /C V .2/.t/

�
where

V .1/.t/ D

� nX
jD1

e Ǒ
0�j OS.t; �j /

�2X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2

V .2/.t/ D

� nX
jD1

OS.t; �j /H.t; �j /

�0�
I. Ǒ/

��1� nX
jD1

OS.t; �j /H.t; �j /

�

Comparison of Direct Adjusted Probabilities of Two Strata
For a stratified Cox model, let k index the strata. For the jth patient, let OSk.t; �j / and Hk.t; �j / be the
estimated survival function and the H vector for the kth stratum. The direct adjusted survival curve for the
kth stratum is

NSk.t/ D
1

n

nX
jD1

OSk.t; �j /

The variance of NS1.t/ � NS2.t/ can be estimated by

O�2. NS1.t/ � NS2.t// D
1

n2

�
U
.1/
1 .t/C U

.1/
2 C U

.2/
12 .t/

�
where

U
.1/

k
.t/ D

0@ nX
jD1

eˇ
0�j OSk.t; �j /

1A2X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2
; k D 1; 2

U
.2/
12 .t/ D

8<:
nX
jD1

h
OS1.t; �j /H1.t; �j / � OS2.t; �j /H2.t; �j /

i9=;
0

I�1. Ǒ/

8<:
nX
jD1

h
OS1.t; �j /H2.t; �j / � OS1.t; �j /H.2t; �j /

i9=;
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Comparison of Direct Adjusted Survival Probabilities of Two Treatments
For j D 1; : : : ; n, let �jk represent the covariate set of the jth patient with the kth treatment, k D 1; 2. The
direct adjusted survival curve for the kth treatment is

NSk.t/ D
1

n

nX
iDj

OS.t; �jk/

The variance of NS1.t/ � NS2.t/ can be estimated by

O�2
�
NS1.t/ � NS2.t/

�
D

1

n2

�
V
.1/
12 .t/C V

.2/
12 .t/

�
where

V
.1/
12 .t/ D

8<:
nX
jD1

h
eˇ
0�1j OS.t; �1j / � eˇ

0�2j OS.t; �2j /
i9=;

2X
ti�t

d.ti /

ŒS .0/. Ǒ; ti /�2

V
.2/
12 .t/ D

8<:
nX
jD1

h
OS.t; �1j /H.t; �1j / � OS.t; �2j /H.t; �2j /

i9=;
0

I�1. Ǒ/

8<:
nX
jD1

h
OS.t; �1j /H.t; �1j / � OS.t; �2j /H.t; �2j /

i9=;
Confidence Intervals for the Survivor Function

When the computation of confidence limits for the survivor function S.t/ is based on the asymptotic normality
of the survival estimator OS.t/—which can be the Breslow estimator OSB.t/, the Fleming-Harrington estimator
OSF .t/, or the product-limit estimator OSP .t/—the approximate confidence interval might include impossible

values outside the range [0,1] at extreme values of t. This problem can be avoided by applying the asymptotic
normality to a transformation of S.t/ for which the range is unrestricted. In addition, certain transformed
confidence intervals for S.t/ perform better than the usual linear confidence intervals (Borgan and Liestøl
1990). The CLTYPE= option in the BASELINE statement enables you to choose one of the following
transformations: the log-log function, the log function, and the linear function.

Let g be the transformation that is being applied to the survivor function S.t/. By the delta method, the
standard error of g. OS.t// is estimated by

�.t/ D O�
h
g. OS.t//

i
D g0

�
OS.t/

�
O�Œ OS.t/�

where g0 is the first derivative of the function g. The 100(1–˛)% confidence interval for S.t/ is given by

g�1
n
gŒ OS.t/�˙ z˛

2
g0Œ OS.t/� O�Œ OS.t/�

o
where g�1 is the inverse function of g. The choices for the transformation g are as follows:
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� CLTYPE=NORMAL specifies linear transformation, which is the same as having no transformation in
which g is the identity. The 100(1–˛)% confidence interval for S.t/ is given by

OS.t/ � z˛
2
O�
h
OS.t/

i
� S.t/ � OS.t/C z˛

2
O�
h
OS.t/

i
� CLTYPE=LOG specifies log transformation. The estimated variance of log. OS.t// is O�2.t/ D O�2. OS.t//

OS2.t/
:

The 100(1–˛)% confidence interval for S.t/ is given by

OS.t/ exp
�
�z˛

2
O�.t/

�
� S.t/ � OS.t/ exp

�
z˛
2
O�.t/

�
� CLTYPE=LOGLOG specifies log-log transformation. The estimated variance of log.� log. OS.t// is

O�2.t/ D O�2Œ OS.t/�

Œ OS.t/ log. OS.t//�2
: The 100(1–˛)% confidence interval for S.t/ is given by

h
OS.t/

iexp�z˛
2
O�.t/

�
� S.t/ �

h
OS.t/

iexp��z˛
2
O�.t/

�

Caution about Using Survival Data with Left Truncation
The product-limit estimator is used in a number of instances in the PHREG procedure, such as to transform
the time values in the ZPH option in the PROC PHREG statement. The product-limit estimator is also used to
construct the weights in the inverse probability of censoring weighting (IPCW) techniques, which are adapted
to fit the proportional subdistribution model of Fine and Gray (1999) for competing-risks data and to assess
the predictive accuracy of a model (Schemper and Henderson 2000). Although the product-limit estimator is
the gold standard for estimating the survivor function of right-censored data, it might not be meaningful for
right-censored data with left-truncation, as illustrated by Example 4.3 in Klein and Moeschberger (2003).
In their example, 94 men and 365 women passed through the Channing House Retirement Center between
January 1964 and July 1975. The outcome is the time to death, using the natural metric of age (in months).

The following statements create the data set Channing, which contains the following variables:

� Gender: female or male

� Age_entry: age at entry, in months

� Age_exit: age at exit (death or last follow-up), in months

� Death: death indicator, with the value 1 for death and 0 for censoring

data Channing;
input Gender$ Age_entry Age_exit Death @@;
datalines;

Female 1042 1172 1 Female 921 1040 1 Female 885 1003 1
Female 901 1018 1 Female 808 932 1 Female 915 1004 1
Female 901 1023 1 Female 852 908 1 Female 828 868 1
Female 968 990 1 Female 936 1033 1 Female 977 1056 1
Female 929 999 1 Female 936 1064 1 Female 1016 1122 1
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Female 910 1020 1 Female 1140 1200 1 Female 1015 1056 1
Female 850 940 1 Female 895 996 1 Female 854 969 1

... more lines ...

Male 751 777 1 Male 906 966 1 Male 835 907 1
Male 946 1031 1 Male 759 781 1 Male 909 914 0
Male 962 998 1 Male 984 1022 1 Male 891 932 1
Male 835 898 1 Male 1039 1060 1 Male 1010 1044 1

;

The following statements use the PHREG procedure to save the product-limit estimate of the survivor function
for each gender in the data set Outs. For each gender, the number of subjects at risk and the number of deaths
at each death time are captured in the data set Atrisk. By merging these two data sets, Outs and Atrisk, you can
conveniently display side by side the number of subjects at risk, the number of deaths, and the product-limit
survival estimate at each death time.

ods graphics on;
proc phreg data=Channing plots(overlay=row)=survival atrisk;

model Age_exit*Death(0)= /entrytime=Age_entry;
strata Gender;
baseline out=Outs survival=Probability / method=pl;
ods output RiskSetInfo=Atrisk;

run;

data Outs;
set Outs;
if Gender="Female" then StratumNumber=1;
else StratumNumber=2;

run;
data Outs;

merge atrisk outs;
by StratumNumber Age_exit;

run;

proc print data=Outs;
id Gender;
var Age_exit Atrisk Event Probability;

run;

Figure 86.18 displays two product-limit survival curves, one for women and one for men. The survival
probabilities are tabulated in Figure 86.19 for women and in Figure 86.20 for men. Although the survival
curve for women does not appear unusual, the survival curve for men looks odd, because the curve drops to 0
at 781 months even though the majority of men survive beyond 781 months. At 781 months, the risk set
consists of a single time to death, rendering the product-limit estimate as 0 at 781 months and thereafter. The
product-limit curve for men for these data is meaningless. Klein and Moeschberger (2003) suggest using
only those observations in which the value of Age_exit exceeds 781 months.
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Figure 86.18 Product-Limit Estimates for Women and Men

Figure 86.19 Product-Limit Survival Probabilities for Women

Gender Age_exit Atrisk Event Probability

Female 0 . . 1.00000

Female 804 21 1 0.95238

Female 822 36 1 0.92593

Female 830 46 1 0.90580

Female 840 58 1 0.89018

Female 845 66 1 0.87669

Female 861 89 1 0.86684

. . . .

. . . .

. . . .

Female 1152 8 1 0.11493

Female 1172 7 1 0.09852

Female 1192 4 1 0.07389

Female 1200 3 2 0.02463
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Figure 86.20 Product-Limit Survival Probabilities for Men

Gender Age_exit Atrisk Event Probability

Male 0 . . 1.0

Male 777 2 1 0.5

Male 781 1 1 0.0

Male 869 24 1 0.0

Male 872 25 1 0.0

Male 876 25 1 0.0

Male 893 33 1 0.0

. . . .

. . . .

. . . .

Male 1085 10 1 0.0

Male 1094 8 2 0.0

Male 1128 3 1 0.0

Male 1139 2 1 0.0

PROC PHREG currently makes no attempt to circumvent the problem of the invalid product-limit estimator
for left-truncated data.

Effect Selection Methods
Five effect selection methods are available. The simplest method (and the default) is SELECTION=NONE,
for which PROC PHREG fits the complete model as specified in the MODEL statement. The other four meth-
ods are FORWARD for forward selection, BACKWARD for backward elimination, STEPWISE for stepwise
selection, and SCORE for best subsets selection. These methods are specified with the SELECTION= option
in the MODEL statement and are based on the score test or Wald test as described in the section “Type 3
Tests and Joint Tests” on page 6907.

When SELECTION=FORWARD, PROC PHREG first estimates parameters for effects that are forced into the
model. These are the first n effects in the MODEL statement, where n is the number specified by the START=
or INCLUDE= option in the MODEL statement (n is zero by default). Next, the procedure computes the
score statistic for each effect that is not in the model. Each score statistic is the chi-square statistic of the
score test for testing the null hypothesis that the corresponding effect that is not in the model is null. If the
largest of these statistics is significant at the SLSENTRY= level, the effect with the largest score statistic is
added to the model. After an effect is entered in the model, it is never removed from the model. The process
is repeated until none of the remaining effects meet the specified level for entry or until the STOP= value is
reached.

When SELECTION=BACKWARD, parameters for the complete model as specified in the MODEL statement
are estimated unless the START= option is specified. In that case, only the parameters for the first n effects
in the MODEL statement are estimated, where n is the number specified by the START= option. Next, the
procedure computes the Wald statistic of each effect in the model. Each Wald’s statistic is the chi-square
statistic of the Wald test for testing the null hypothesis that the corresponding effect is null. If the smallest of
these statistics is not significant at the SLSTAY= level, the effect with the smallest Wald statistic is removed.
After an effect is removed from the model, it remains excluded. The process is repeated until no other
variable in the model meets the specified level for removal or until the STOP= value is reached.
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The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD option except that effects
already in the model do not necessarily remain. Effects are entered into and removed from the model in
such a way that each forward selection step can be followed by one or more backward elimination steps.
The stepwise selection process terminates if no further effect can be added to the model or if the effect just
entered into the model is the only effect that is removed in the subsequent backward elimination.

For SELECTION=SCORE, PROC PHREG uses the branch-and-bound algorithm of Furnival and Wilson
(1974) to find a specified number of models with the highest score (chi-square) statistic for all possible
model sizes, from 1, 2, or 3 variables, and so on, up to the single model that contains all of the explanatory
variables. The number of models displayed for each model size is controlled by the BEST= option. You can
use the START= option to impose a minimum model size, and you can use the STOP= option to impose a
maximum model size. For instance, with BEST=3, START=2, and STOP=5, the SCORE selection method
displays the best three models (that is, the three models with the highest score chi-squares) that contain 2, 3,
4, and 5 variables. One of the limitations of the branch-and-bound algorithm is that it works only when each
explanatory effect contains exactly one parameter—the SELECTION=SCORE option is not allowed when
an explanatory effect in the MODEL statement contains a CLASS variable.

The SEQUENTIAL and STOPRES options can alter the default criteria for adding variables to or removing
variables from the model when they are used with the FORWARD, BACKWARD, or STEPWISE selection
method.

Assessment of the Proportional Hazards Model
The proportional hazards model specifies that the hazard function for the failure time T associated with a
p � 1 column covariate vector Z takes the form

�.t IZ/ D �0.t/eˇ
0Z

where �0.:/ is an unspecified baseline hazard function and ˇ is a p � 1 column vector of regression
parameters. Lin, Wei, and Ying (1993) present graphical and numerical methods for model assessment
based on the cumulative sums of martingale residuals and their transforms over certain coordinates (such
as covariate values or follow-up times). The distributions of these stochastic processes under the assumed
model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations
can be generated by simulation. Each observed residual pattern can then be compared, both graphically
and numerically, with a number of realizations from the null distribution. Such comparisons enable you to
assess objectively whether the observed residual pattern reflects anything beyond random fluctuation. These
procedures are useful in determining appropriate functional forms of covariates and assessing the proportional
hazards assumption. You use the ASSESS statement to carry out these model-checking procedures.

For a sample of n subjects, let .Xi ; �i ;Zi / be the data of the ith subject; that is, Xi represents the observed
failure time, �i has a value of 1 if Xi is an uncensored time and 0 otherwise, and Zi D .Z1i ; : : : ; Zpi /0 is a
p-vector of covariates. Let Ni .t/ D �iI.Xi � t / and Yi .t/ D I.Xi � t /. Let

S .0/.ˇ; t / D

nX
iD1

Yi .t/eˇ
0Zi and Z.ˇ; t / D

Pn
iD1 Yi .t/e

ˇ0ZiZi
S .0/.ˇ; t /

Let Ǒ be the maximum partial likelihood estimate of ˇ, and let I. Ǒ/ be the observed information matrix.
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The martingale residuals are defined as

OMi .t/ D Ni .t/ �

Z t

0

Yi .u/e
Ǒ 0Zid Oƒ0.u/; i D 1; : : : ; n

where Oƒ0.t/ D
R t
0

Pn
iD1 dNi .u/

S.0/. Ǒ;u/
.

The empirical score process U. Ǒ; t / D .U1. Ǒ; t /; : : : ; Up. Ǒ; t //0 is a transform of the martingale residuals:

U. Ǒ; t / D
nX
iD1

Zi OMi .t/

Checking the Functional Form of a Covariate

To check the functional form of the jth covariate, consider the partial-sum process of OMi D OMi .1/:

Wj .z/ D

nX
iD1

I.Zj i � z/ OMi

Under that null hypothesis that the model holds, Wj .z/ can be approximated by the zero-mean Gaussian
process

OWj .z/ D

nX
lD1

�l

�
I.Zjl � z/ �

Pn
iD1 Yi .Xl/e

ˇ0Zi I.Zij � z/
S .0/. Ǒ; Xl/

�
Gl �

nX
kD1

Z 1
0

Yk.s/e
Ǒ 0ZkI.Zjk � z/ŒZk � NZ. Ǒ; s/�0d Oƒ0.s/

�I�1. Ǒ/
nX
lD1

�l ŒZl � NZ. Ǒ; Xl/�Gl

where .G1; : : : ; Gn/ are independent standard normal variables that are independent of .Xi ; �i ;Zi /, i D
1; : : : ; n.

You can assess the functional form of the jth covariate by plotting a small number of realizations (the default
is 20) of OWj .z/ on the same graph as the observedWj .z/ and visually comparing them to see how typical the
observed pattern of Wj .z/ is of the null distribution samples. You can supplement the graphical inspection
method with a Kolmogorov-type supremum test. Let sj be the observed value of Sj D supz jWj .z/j and
let OSj D supz j OWj .z/j. The p-value Pr.Sj � sj / is approximated by Pr. OSj � sj /, which in turn is
approximated by generating a large number of realizations (1000 is the default) of OWj .:/.

Checking the Proportional Hazards Assumption

Consider the standardized empirical score process for the jth component of Z

U �j .t/ D ŒI
�1. Ǒ/jj �

1
2Uj . Ǒ; t /;
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Under the null hypothesis that the model holds, U �j .t/ can be approximated by

OU �j .t/ D ŒI�1. Ǒ/jj �
1
2

� nX
lD1

I.Xl � t /�l ŒZjl � NZj . Ǒ; t /�Gl �

nX
kD1

Z t

0

Yk.s/e
Ǒ 0ZkZjkŒZk � NZ. Ǒ; s/�0d Oƒ0.s/

�I�1. Ǒ/
nX
lD1

�l ŒZl � NZ. Ǒ; Xl/�Gl
�

where NZj . Ǒ; t / is the jth component of NZ. Ǒ; t /, and .G1; : : : ; Gn/ are independent standard normal variables
that are independent of .Xi ; �i ;Zi , .i D 1; : : : ; n/.

You can assess the proportional hazards assumption for the jth covariate by plotting a few realizations of
OU �j .t/ on the same graph as the observed U �j .t/ and visually comparing them to see how typical the observed

pattern of U �j .t/ is of the null distribution samples. Again you can supplement the graphical inspection
method with a Kolmogorov-type supremum test. Let s�j be the observed value of S�j D supt jU �j .t/j
and let OS�j D supt j OU �j .t/j. The p-value PrŒS�j � s

�
j � is approximated by PrŒ OS�j � s

�
j �, which in turn is

approximated by generating a large number of realizations (1000 is the default) of OU �j .:/.

The Penalized Partial Likelihood Approach for Fitting Frailty Models
Let 
 D .
1; : : : ; 
s/0 be the vector of random components for the s clusters.

Gamma Frailty Model

Assume each e
i has an independent and identically distributed gamma distribution with mean 1 and a
common unknown variance � ; that is, e
i is iid G

�
1
�
; 1
�

�
. The penalty function is

�
1

�

sX
iD1

�

i � e
i

�
plus a function of � . The penalized partial log likelihood is given by

lp.ˇ;
; �/ D lpartial.ˇ;
/C
1

�

sX
iD1

�

i � e
i

�
where lpartial.ˇ;
/ is the log of any of the partial likelihoods in the sections “Partial Likelihood Function for
the Cox Model” on page 6890 and “The Multiplicative Hazards Model” on page 6894.

The profile marginal log-likelihood of this shared frailty model (Therneau and Grambsch 2000, pp. 257–258)
is

lm.�/ D lp. Ǒ.�/; O
.�/; �/C

sX
iD1

�
��1 � .��1 C di / log

�
��1 C di

�
C ��1 log.��1/C log

�
�.��1 C di /

�.��1/

��
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where di is the number of events in the ith cluster.

The maximization of this approximate likelihood is a doubly iterative process that alternates between the
following two steps:

� For a provisional value of � , the best linear unbiased predictors (BLUP) of ˇ and 
 are computed
by maximizing the penalized partial log-likelihood lp.ˇ;
; �/. The marginal likelihood is evaluated.
This constitutes the inner loop.

� A new value of � is obtained by the golden section search based on the marginal likelihood of all the
previous iterations. This constitutes the outer loop.

The outer loop is iterated until the bracketing interval of � is small.

Lognormal Frailty Model

With each 
i having a zero-mean normal distribution and a common variance � , the penalty function is

1

2�

 0


plus a function of � . The penalized partial log likelihood is given by

lp.ˇ;
; �/ D lpartial.ˇ;
/ �
1

2�

 0


where lpartial.ˇ;
/ is the log of any of the partial likelihoods in the sections “Partial Likelihood Function for
the Cox Model” on page 6890 and “The Multiplicative Hazards Model” on page 6894.

For a given � , let H be the negative Hessian of the penalized partial log likelihood lp.ˇ;
; �/; that is,

H D H.ˇ;
/ D
�

H11 H12
H21 H22

�

where H11 D �
@2lp.ˇ;
;�/

@ˇ2
;H12 D H021 D �

@2lp.ˇ;
;�/

@ˇ@

, and H22 D �

@2lp.ˇ;
;�/

@
2
.

The marginal log likelihood of this shared frailty model is

lm.ˇ; �/ D �
1

2
log.�s/C log

� Z
elp.ˇ;
;�/d


�
Using a Laplace approximation to the integral as in Breslow and Clayton (1993), an approximate marginal
log likelihood (Ripatti and Palmgren 2000; Therneau and Grambsch 2000) is given by

lm.ˇ; �/ � �
1

2
log.�s/ �

1

2
log.jH22.ˇ; Q
; �/j/ � lp.ˇ; Q
; �/

The maximization of this approximate likelihood is a doubly iterative process that alternates between the
following two steps:

� For a provisional value of � , PROC PHREG computes the best linear unbiased predictors (BLUP) of ˇ
and 
 by maximizing the penalized partial log likelihood lp.ˇ;
; �/. This constitutes the inner loop.
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� For ˇ and 
 fixed at the BLUP values, PROC PHREG estimates � by maximizing the approximate
marginal likelihood lm.ˇ; �/. This constitutes the outer loop.

The outer loop is iterated until the difference between two successive estimates of � is small.

The ML estimate of � is

O� D
O
 0 O
 C trace.H�122 /

s

The variance for O� is

var. O�/ D 2 O�
�
s C

1

O�2
trace.H�122H�122 / �

2

O�
trace.H�122 /

��1

The REML estimation of � is obtained by replacing .H22/�1 by .H�1/22.

The inverse of the final H matrix is used as the variance estimate of . Ǒ; O
/0.

The final BLUP estimates of the random components 
1; : : : ; 
s can be displayed by using the SOLUTION
option in the RANDOM statement. Also displayed are estimates of the lognormal frailties, which are the
exponentiated estimates of the BLUP estimates.

Wald-Type Tests for Penalized Models

Let I be the negative Hessian of the partial log likelihood lpartial.ˇ;
/:

I D
�

I11 I12
I21 I22

�

where I11 D �
@2lpartial.ˇ;
/

@ˇ2
; I12 D I021 D �

@2lpartial.ˇ;
/

@ˇ@

, and I22 D �

@2lpartial.ˇ;
/

@
2
. Write �0 D .ˇ0;
 0/0.

The Wald-type chi-square statistic for testing H0 W C� D 0 is

.C O�/0.CH�1C0/�1.C O�/

Let H be the negative Hessian of the penalized partial log likelihood lp.ˇ;
; �/ at the ML estimate � ; that is,
H D @2

@ˇ@

lp.ˇ;
; O�/. Let V D H�1IH�1. Gray (1992) recommends the following generalized degrees of

freedom for the Wald test:

DF D traceŒ.CH�1C0/�1CVC0/�

See Therneau and Grambsch (2000, Section 5.8) for a discussion of this Wald-type test.

PROC PHREG uses the label "Adjusted DF" to represent this generalized degrees of freedom in the output.

Specifics for Bayesian Analysis
To request a Bayesian analysis, you specify the new BAYES statement in addition to the PROC PHREG
statement and the MODEL statement. You include a CLASS statement if you have effects that involve
categorical variables. The FREQ or WEIGHT statement can be included if you have a frequency or weight
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variable, respectively, in the input data. The STRATA statement can be used to carry out a stratified analysis
for the Cox model, but it is not allowed in the piecewise constant baseline hazard model. Programming
statements can be used to create time-dependent covariates for the Cox model, but they are not allowed in
the piecewise constant baseline hazard model. However, you can use the counting process style of input
to accommodate time-dependent covariates that are not continuously changing with time for the piecewise
constant baseline hazard model and the Cox model as well. The HAZARDRATIO statement enables you to
request a hazard ratio analysis based on the posterior samples. The ASSESS, CONTRAST, ID, OUTPUT,
and TEST statements, if specified, are ignored. Also ignored are the COVM and COVS options in the
PROC PHREG statement and the following options in the MODEL statement: BEST=, CORRB, COVB,
DETAILS, HIERARCHY=, INCLUDE=, MAXSTEP=, NOFIT, PLCONV=, SELECTION=, SEQUENTIAL,
SLENTRY=, and SLSTAY=.

Piecewise Constant Baseline Hazard Model

Single Failure Time Variable
Let f.ti ; xi ; ıi /; i D 1; 2; : : : ; ng be the observed data. Let a0 D 0 < a1 < : : : < aJ�1 < aJ D 1 be a
partition of the time axis.

Hazards in Original Scale The hazard function for subject i is

h.t jxi I�/ D h0.t/ exp.ˇ0xi /

where

h0.t/ D �j if aj�1 � t < aj ; j D 1; : : : ; J

The baseline cumulative hazard function is

H0.t/ D

JX
jD1

�j�j .t/

where

�j .t/ D

8<:
0 t < aj�1
t � aj�1 aj�1 � t < aj
aj � aj�1 t � aj

The log likelihood is given by

l.�;ˇ/ D

nX
iD1

ıi

� JX
jD1

I.aj�1 � ti < aj / log �j C ˇ0xi
�
�

nX
iD1

� JX
jD1

�j .ti /�j

�
exp.ˇ0xi /

D

JX
jD1

dj log �j C
nX
iD1

ıiˇ
0xi �

JX
jD1

�j

� nX
iD1

�j .ti / exp.ˇ0xi /
�

where dj D
Pn
iD1 ıiI.aj�1 � ti < aj /.

Note that for 1 � j � J , the full conditional for �j is log-concave only when dj > 0, but the full
conditionals for the ˇ’s are always log-concave.

For a given ˇ, @l
@�
D 0 gives

Q�j .ˇ/ D
djPn

iD1�j .ti / exp.ˇ0xi /
; j D 1; : : : ; J
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Substituting these values into l.�;ˇ/ gives the profile log likelihood for ˇ

lp.ˇ/ D

nX
iD1

ıiˇ
0xi �

JX
jD1

dj log
� nX
lD1

�j .tl/ exp.ˇ0xl/
�
C c

where c D
P
j .dj log dj � dj /. Since the constant c does not depend on ˇ, it can be discarded from lp.ˇ/

in the optimization.

The MLE Ǒ of ˇ is obtained by maximizing

lp.ˇ/ D

nX
iD1

ıiˇ
0xi �

JX
jD1

dj log
� nX
lD1

�j .tl/ exp.ˇ0xl/
�

with respect to ˇ, and the MLE O� of � is given by

O� D Q�. Ǒ/

For j D 1; : : : ; J , let

S.r/j .ˇ/ D

nX
lD1

�j .tl/eˇ
0xlx˝r

l
; r D 0; 1; 2

Ej .ˇ/ D
S.1/j .ˇ/

S
.0/
j .ˇ/

The partial derivatives of lp.ˇ/ are

@lp.ˇ/

@ˇ
D

nX
iD1

ıixi �
JX
jD1

djEj .ˇ/

�
@2lp.ˇ/

@ˇ2
D

JX
jD1

dj

� S.2/j .ˇ/

S
.0/
j .ˇ/

�

�
Ej .ˇ/

��
Ej .ˇ/

�0�

The asymptotic covariance matrix for . O�; Ǒ/ is obtained as the inverse of the information matrix given by

�
@2l. O�; Ǒ/

@�2
D D

�
d1

O�21

; : : : ;
dJ

O�2J

�

�
@2l. O�; Ǒ/

@ˇ2
D

JX
jD1

O�jS.2/j . Ǒ/

�
@2l. O�; Ǒ/

@�@ˇ
D .S.1/1 . Ǒ/; : : : ;S.1/J . Ǒ//

See Example 6.5.1 in Lawless (2003) for details.
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Hazards in Log Scale By letting

˛j D log.�j /; j D 1; : : : ; J

you can build a prior correlation among the �j ’s by using a correlated prior ˛ � N.˛0; †˛/, where
˛ D .˛1; : : : ; ˛J /

0.

The log likelihood is given by

l.˛;ˇ/ D

JX
jD1

dj˛j C

nX
iD1

ıiˇ
0xi �

JX
jD1

e˛jS .0/j .ˇ/

Then the MLE of �j is given by

e Ǫj D O�j D
dj

S0j .
Ǒ/

Note that the full conditionals for ˛’s and ˇ’s are always log-concave.

The asymptotic covariance matrix for . Ǫ ; Ǒ/ is obtained as the inverse of the information matrix formed by

�
@2l. Ǫ ; Ǒ/

@˛2
D D

�
e ǪjS0j . Ǒ/; : : : ; e

ǪJS0J .
Ǒ//

�
�
@2l. Ǫ ; Ǒ/

@ˇ2
D

JX
jD1

e Ǫj S.2/j . Ǒ/

�
@2l. Ǫ ; Ǒ/

@˛@ˇ
D .e Ǫj S.1/1 . Ǒ/; : : : ; e Ǫj S.1/J . Ǒ//

Counting Process Style of Input
Let f..si ; ti �; xi ; ıi /; i D 1; 2; : : : ; ng be the observed data. Let a0 D 0 < a1 < : : : < ak be a partition of
the time axis, where ak > ti for all i D 1; 2; : : : ; n.

Replacing �j .ti / with

�j ..si ; ti �/ D

8<:
0 ti < aj�1 _ si > aj
ti �max.si ; aj�1/ aj�1 � ti < aj
aj �max.si ; aj�1/ ti � aj

the formulation for the single failure time variable applies.

Priors for Model Parameters

For a Cox model, the model parameters are the regression coefficients. For a piecewise exponential model,
the model parameters consist of the regression coefficients and the hazards or log-hazards. The priors for the
hazards and the priors for the regression coefficients are assumed to be independent, while you can have a
joint multivariate normal prior for the log-hazards and the regression coefficients.
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Hazard Parameters
Let �1; : : : ; �J be the constant baseline hazards.

Improper Prior The joint prior density is given by

p.�1; : : : ; �J / D

JY
jD1

1

�j
for all �j > 0

This prior is improper (nonintegrable), but the posterior distribution is proper as long as there is at least one
event time in each of the constant hazard intervals.

Uniform Prior The joint prior density is given by

p.�1; : : : ; �J / / 1 for all �j > 0

This prior is improper (nonintegrable), but the posteriors are proper as long as there is at least one event time
in each of the constant hazard intervals.

Gamma Prior The gamma distribution G.a; b/ has a PDF

fa;b.t/ D
b.bt/a�1e�bt

�.a/
; t > 0

where a is the shape parameter and b�1 is the scale parameter. The mean is a
b

and the variance is a
b2

.

Independent Gamma Prior Suppose for j D 1; : : : ; J , �j has an independent G.aj ; bj / prior. The joint
prior density is given by

p.�1; : : : ; �J / /

JY
jD1

�
�
aj�1

j e�bj�j
�
;8�j > 0

AR1 Prior �1; : : : ; �J are correlated as follows:

�1 � G.a1; b1/

�2 � G

�
a2;

b2

�1

�
: : : : : :

�J � G

�
aJ ;

bJ

�J�1

�
The joint prior density is given by

p.�1; : : : ; �J / / �
a1�1
1 e�b1�1

JY
jD2

�
bj

�j�1

�aj
�
aj�1

j e
�

bj
�j�1

�j
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Log-Hazard Parameters
Write ˛ D .˛1; : : : ; ˛J /0 � .log �1; : : : ; log �J /0.

Uniform Prior The joint prior density is given by

p.˛1 : : : ˛J / / 1;8 �1 < ˛i <1

Note that the uniform prior for the log-hazards is the same as the improper prior for the hazards.

Normal Prior Assume ˛ has a multivariate normal prior with mean vector ˛0 and covariance matrix ‰0.
The joint prior density is given by

p.˛/ / e�
1
2
.˛�˛0/

0‰�10 .˛�˛0/

Regression Coefficients
Let ˇ D .ˇ1; : : : ; ˇk/0 be the vector of regression coefficients.

Uniform Prior The joint prior density is given by

p.ˇ1; : : : ; ˇk/ / 1;8 �1 < ˇi <1

This prior is improper, but the posterior distributions for ˇ are proper.

Normal Prior Assume ˇ has a multivariate normal prior with mean vector ˇ0 and covariance matrix †0.
The joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0†�10 .ˇ�ˇ0/

Joint Multivariate Normal Prior for Log-Hazards and Regression Coefficients Assume .˛0;ˇ0/0 has
a multivariate normal prior with mean vector .˛00;ˇ

0
0/
0 and covariance matrix ˆ0. The joint prior density is

given by

p.˛;ˇ/ / e�
1
2
Œ.˛�˛0/

0;.ˇ�ˇ0/
0�ˆ�10 Œ.˛�˛0/

0;.ˇ�ˇ0/
0�0

Zellner’s g-Prior Assume ˇ has a multivariate normal prior with mean vector 0 and covariance matrix
.gX0X/�1, where X is the design matrix and g is either a constant or it follows a gamma prior with density
f .�/ D b.b�/a�1e�b�

�.a/
where a and b are the SHAPE= and ISCALE= parameters. Let k be the rank of X. The

joint prior density with g being a constant c is given by

p.ˇ/ / c
k
2 e�

1
2
ˇ0.cX0X/�1ˇ

The joint prior density with g having a gamma prior is given by

p.ˇ; �/ / �
k
2 e�

1
2
ˇ0.�X0X/�1ˇ b.b�/

a�1e�b�

�.a/
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Dispersion Parameter for Frailty Model
Improper Prior The density is

p.�/ D
1

�

Inverse Gamma Prior The inverse gamma distribution IG.a; b/ has a density

p.� ja; b/ D
ba��.aC1/e�

b
�

�.a/

where a and b are the SHAPE= and SCALE= parameters.

Gamma Prior The gamma distribution G.a; b/ has a density

p.� ja; b/ D
ba�a�1e�b�

�.a/

where a and b are the SHAPE= and ISCALE= parameters.

Posterior Distribution

Denote the observed data by D.

Cox Model

�.ˇjD/ / L.Djˇ/„ ƒ‚ …
partial likelihood

prior‚…„ƒ
p.ˇ/

Frailty Model
Based on the framework of Sargent (1998),

�.ˇ;
; � jD/ / L.Djˇ;
/„ ƒ‚ …
partial likelihood

random effects‚…„ƒ
g.
j�/ p.ˇ/p.�/„ ƒ‚ …

priors

where the joint density of the random effects 
 D .
1; : : : ; 
s/0 is given by

g.
j�/ /

8<:
Q
i exp

�
i
�

�
exp

�
� exp

�
i
�

��
gamma frailtyQ

i exp
�
�

2
i

2�

�
lognormal frailty
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Piecewise Exponential Model
Hazard Parameters

�.�;ˇjD/ / LH .Dj�;ˇ/p.�/p.ˇ/

where LH .Dj�;ˇ/ is the likelihood function with hazards � and regression coefficients ˇ as parameters.

Log-Hazard Parameters

�.˛;ˇjD/ /

�
LLH.Dj˛;ˇ/p.˛;ˇ/ if .˛0;ˇ0/0 � MVN
LLH.Dj˛;ˇ/p.˛/p.ˇ/ otherwise

where LLH.Dj˛;ˇ/ is the likelihood function with log-hazards ˛ and regression coefficients ˇ as parameters.

Sampling from the Posterior Distribution

For the Gibbs sampler, PROC PHREG uses the ARMS (adaptive rejection Metropolis sampling) algorithm
of Gilks, Best, and Tan (1995) to sample from the full conditionals. This is the default sampling scheme.
Alternatively, you can requests the random walk Metropolis (RWM) algorithm to sample an entire parameter
vector from the posterior distribution. For a general discussion of these algorithms, see section “Markov
Chain Monte Carlo Method” on page 129 in Chapter 7, “Introduction to Bayesian Analysis Procedures.”

You can output these posterior samples into a SAS data set by using the OUTPOST= option in the BAYES
statement, or you can use the following SAS statement to output the posterior samples into the SAS data set
Post:

ods output PosteriorSample=Post;

The output data set also includes the variables LogLike and LogPost, which represent the log of the likelihood
and the log of the posterior log density, respectively.

Let � D .�1; : : : ; �k/0 be the parameter vector. For the Cox model, the �i ’s are the regression coefficients
ˇi ’s, and for the piecewise constant baseline hazard model, the �i ’s consist of the baseline hazards �i ’s
(or log baseline hazards ˛i ’s) and the regression coefficients ˇj ’s. Let L.Dj�/ be the likelihood function,
where D is the observed data. Note that for the Cox model, the likelihood contains the infinite-dimensional
baseline hazard function, and the gamma process is perhaps the most commonly used prior process (Ibrahim,
Chen, and Sinha 2001). However, Sinha, Ibrahim, and Chen (2003) justify using the partial likelihood as the
likelihood function for the Bayesian analysis. Let p.�/ be the prior distribution. The posterior f�.�jD/ is
proportional to the joint distribution L.Dj�/p.�/.

Gibbs Sampler
The full conditional distribution of �i is proportional to the joint distribution; that is,

�.�i j�j ; i ¤ j;D/ / L.Dj�/p.�/

For example, the one-dimensional conditional distribution of �1, given �j D ��j ; 2 � j � k, is computed as

�.�1j�j D �
�
j ; 2 � j � k;D/ D L.Dj� D .�1; �

�
2 ; : : : ; �

�
k /
0/p.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

Suppose you have a set of arbitrary starting values f� .0/1 ; : : : ; �
.0/

k
g. Using the ARMS algorithm, an iteration

of the Gibbs sampler consists of the following:
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� draw �
.1/
1 from �.�1j�

.0/
2 ; : : : ; �

.0/

k
;D/

� draw �
.1/
2 from �.�2j�

.1/
1 ; �

.0/
3 ; : : : ; �

.0/

k
;D/

�
:::

� draw �
.1/

k
from �.�kj�

.1/
1 ; : : : ; �

.1/

k�1
;D/

After one iteration, you have f� .1/1 ; : : : ; �
.1/

k
g. After n iterations, you have f� .n/1 ; : : : ; �

.n/

k
g. Cumulatively, a

chain of n samples is obtained.

Random Walk Metropolis Algorithm
PROC PHREG uses a multivariate normal proposal distribution q.:j�/ centered at � . With an initial parameter
vector �.0/, a new sample �.1/ is obtained as follows:

� sample �� from q.:j�.0//

� calculate the quantity r D min
n
�.��jD/

�.�.0/jD/
; 1
o

� sample u from the uniform distribution U .0; 1/

� set �.1/ D �� if u < r ; otherwise set �.1/ D �.0/

With �.1/ taking the role of �.0/, the previous steps are repeated to generate the next sample �.2/. After n
iterations, a chain of n samples f�.1/; : : : ;�.n/g is obtained.

Starting Values of the Markov Chains

When the BAYES statement is specified, PROC PHREG generates one Markov chain that contains the
approximate posterior samples of the model parameters. Additional chains are produced when the Gelman-
Rubin diagnostics are requested. Starting values (initial values) can be specified in the INITIAL= data set in
the BAYES statement. If the INITIAL= option is not specified, PROC PHREG picks its own initial values
for the chains based on the maximum likelihood estimates of � and the prior information of � .

Denote Œx� as the integral value of x.

Constant Baseline Hazard Parameters �i ’s
For the first chain that the summary statistics and diagnostics are based on, the initial values are

�
.0/
i D

O�i

For subsequent chains, the starting values are picked in two different ways according to the total number of
chains specified. If the total number of chains specified is less than or equal to 10, initial values of the rth
chain (2 � r � 10) are given by

�
.0/
i D

O�ie
˙

�
Œ r
2
�C2

�
Os. O�i /
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with the plus sign for odd r and minus sign for even r. If the total number of chains is greater than 10, initial
values are picked at random over a wide range of values. Let ui be a uniform random number between 0 and
1; the initial value for �i is given by

�
.0/
i D

O�ie16.ui�0:5/Os.
O�i /

Regression Coefficients and Log-Hazard Parameters �i ’s
The �i ’s are the regression coefficients ˇi ’s, and in the piecewise exponential model, include the log-hazard
parameters ˛i ’s. For the first chain that the summary statistics and regression diagnostics are based on, the
initial values are

�
.0/
i D O�i

If the number of chains requested is less than or equal to 10, initial values for the rth chain (2 � r � 10) are
given by

�
.0/
i D O�i ˙

�
2C

�
r

2

��
Os. O�i /

with the plus sign for odd r and minus sign for even r. When there are more than 10 chains, the initial value
for the �i is picked at random over the range . O�i � 8Os. O�i /; O�i C 8Os. O�i //; that is,

�
.0/
i D O�i C 16.ui � 0:5/Os. O�i /

where ui is a uniform random number between 0 and 1.

Fit Statistics

Denote the observed data by D. Let � be the vector of parameters of length k. Let L.Dj�/ be the likelihood.
The deviance information criterion (DIC) proposed in Spiegelhalter et al. (2002) is a Bayesian model
assessment tool. Let Dev.�/ D �2 logL.Dj�/. Let Dev.�/ and N� be the corresponding posterior means of
Dev.�/ and � , respectively. The deviance information criterion is computed as

DIC D 2Dev.�/ �Dev. N�/

Also computed is

pD D Dev.�/ �Dev. N�/

where pD is interpreted as the effective number of parameters.

Note that Dev.�/ defined here does not have the standardizing term as in the section “Deviance Information
Criterion (DIC)” on page 152 in Chapter 7, “Introduction to Bayesian Analysis Procedures.” Nevertheless,
the DIC calculated here is still useful for variable selection.

Posterior Distribution for Quantities of Interest

Let � D .�1; : : : ; �k/0 be the parameter vector. For the Cox model, the �i ’s are the regression coefficients
ˇi ’s; for the piecewise constant baseline hazard model, the �i ’s consist of the baseline hazards �i ’s (or log
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baseline hazards ˛i ’s) and the regression coefficients ˇj ’s. Let S D f�.r/; r D 1; : : : ; N g be the chain that
represents the posterior distribution for � .

Consider a quantity of interest � that can be expressed as a function f .�/ of the parameter vector � . You can
construct the posterior distribution of � by evaluating the function f .�.r// for each �.r/ in S . The posterior
chain for � is ff .�.r//; r D 1; : : : ; N g: Summary statistics such as mean, standard deviation, percentiles,
and credible intervals are used to describe the posterior distribution of � .

Hazard Ratio
As shown in the section “Hazard Ratios” on page 6901, a log-hazard ratio is a linear combination of the
regression coefficients. Let h be the vector of linear coefficients. The posterior sample for this hazard ratio is
the set fexp.h0ˇ.r//; r D 1; : : : ; N g.

Survival Distribution
Let x be a covariate vector of interest.

Cox Model Let f.ti ; zi ; ıi /; i D 1; 2; : : : ; ng be the observed data. Define

Yi .t/ D

�
1 t < ti
0 otherwise

Consider the rth draw ˇ.r/ of S. The baseline cumulative hazard function at time t is given by

H0.t jˇ
.r// D

X
i Wti�t

ıiPn
lD1 Yl.ti /exp.z

0
l
ˇ.r//

For the given covariate vector x, the cumulative hazard function at time t is

H.t I xjˇ.r// D H0.t jˇ.r// exp.x0ˇ.r//

and the survival function at time t is

S.t I xjˇ.r// D expŒ�H .r/.t I xjˇ.r//�

Piecewise Exponential Model Let 0 D a0 < a1 < : : : < aJ < 1 be a partition of the time axis.
Consider the rth draw �.r/ in S, where �.r/ consists of �.r/ D .�

.r/
1 ; : : : ; �

.r/
J /0 and ˇ.r/. The baseline

cumulative hazard function at time t is

H0.t j�
.r// D

JX
jD1

�
.r/
j �j .t/

where

�j .t/ D

8<:
0 t < aj�1
t � aj�1 aj�1 � t < aj
aj � aj�1 t � aj
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For the given covariate vector x, the cumulative hazard function at time t is

H.t I xj�.r/;ˇ.r// D H0.t j�.r// exp.x0ˇ.r//

and the survival function at time t is

S.t I xj�.r/;ˇ.r// D expŒ�H.t I xj�.r/;ˇ.r//�

Computational Resources
Let n be the number of observations in a BY group. Let p be the number of explanatory variables. The
minimum working space (in bytes) needed to process the BY group is

maxf12n; 24p2 C 160pg

Extra memory is needed for certain TIES= options. Let k be the maximum multiplicity of tied times. The
TIES=DISCRETE option requires extra memory (in bytes) of

4k.p2 C 4p/

The TIES=EXACT option requires extra memory (in bytes) of

24.k2 C 5k/

If sufficient space is available, the input data are also kept in memory. Otherwise, the input data are reread
from the utility file for each evaluation of the likelihood function and its derivatives, with the resulting
execution time substantially increased.

Input and Output Data Sets

OUTEST= Output Data Set

The OUTEST= data set contains one observation for each BY group containing the maximum likelihood
estimates of the regression coefficients. If you also use the COVOUT option in the PROC PHREG state-
ment, there are additional observations containing the rows of the estimated covariance matrix. If you
specify SELECTION=FORWARD, BACKWARD, or STEPWISE, only the estimates of the parameters and
covariance matrix for the final model are output to the OUTEST= data set.

Variables in the OUTEST= Data Set
The OUTEST= data set contains the following variables:

� any BY variables specified

� _TIES_, a character variable of length 8 with four possible values: BRESLOW, DISCRETE, EFRON,
and EXACT. These are the four values of the TIES= option in the MODEL statement.
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� _TYPE_, a character variable of length 8 with two possible values: PARMS for parameter estimates or
COV for covariance estimates. If both the COVM and COVSANDWICH options are specified in the
PROC PHREG statement along with the COVOUT option, _TYPE_=’COVM’ for the model-based
covariance estimates and _TYPE_=’COVS’ for the robust sandwich covariance estimates.

� _STATUS_, a character variable indicating whether the estimates have converged

� _NAME_, a character variable containing the name of the TIME variable for the row of parameter
estimates and the name of each explanatory variable to label the rows of covariance estimates

� one variable for each regression coefficient and one variable for the offset variable if the OFFSET=
option is specified. If an explanatory variable is not included in the final model in a variable selection
process, the corresponding parameter estimates and covariances are set to missing.

� _LNLIKE_, a numeric variable containing the last computed value of the log likelihood

Parameter Names in the OUTEST= Data Set
For continuous explanatory variables, the names of the parameters are the same as the corresponding variables.
For CLASS variables, the parameter names are obtained by concatenating the corresponding CLASS variable
name with the CLASS category; see the PARAM= option in the CLASS statement for more details. For
interaction and nested effects, the parameter names are created by concatenating the names of each component
effect.

INEST= Input Data Set

You can specify starting values for the maximum likelihood iterative algorithm in the INEST= data set. The
INEST= data set has the same structure as the OUTEST= data set but is not required to have all the variables
or observations that appear in the OUTEST= data set.

The INEST= data set must contain variables that represent the regression coefficients of the model. If
BY processing is used, the INEST= data set should also include the BY variables, and there must be one
observation for each BY group. If the INEST= data set also contains the _TYPE_ variable, only observations
with _TYPE_ value ’PARMS’ are used as starting values.

OUT= Output Data Set in the ZPH Option

The OUT= data set in the ZPH option contains the variable of event times and the variables that represent the
time-varying coefficients, one for each parameter. If the transformation that you specify in the ZPH option is
not an identity, the OUT= data set also contains a variable that represents the transformed event times.

OUT= Output Data Set in the OUTPUT Statement

The OUT= data set in the OUTPUT statement contains all the variables in the input data set, along with
statistics you request by specifying keyword=name options. The new variables contain a variety of diagnostics
that are calculated for each observation in the input data set.
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OUT= Output Data Set in the BASELINE Statement

The OUT= data set in the BASELINE statement contains all the variables in the COVARIATES= data set,
along with statistics you request by specifying keyword=name options. For unstratified input data, there are 1
+ n observations in the OUT= data set for each observation in the COVARIATES= data set, where n is the
number of distinct event times in the input data. For input data that are stratified into k strata, with ni distinct
events in the ith stratum, i D 1; : : : ; k, there are 1+ni observations for the ith stratum in the OUT= data set
for each observation in the COVARIATES= data set.

OUTAUC= Output Data Set in the ROCOPTIONS Option

The OUTAUC= data set contains data necessary for producing the AUC (area under the curve) plot; it can be
created by specifying the OUTAUC= suboption in the ROCOPTIONS option in the PROC PHREG statement.
This data set has the following variables:

� any specified BY variables

� _ID_, the sequence number of the model

� _SOURCE_, the model label

� the time variable, which identifies time point t at which the AUC statistic is calculated

� _AUC_, the AUC statistic, which is the area under the time-dependent ROC curve at each event time

� _STDERR_, the standard error of the AUC statistic

� _LOWERAUC_, the lower confidence limit for the AUC

� _UPPERAUC_, the upper confidence limit for the AUC

OUTIDFF= Output Data Set in the BASELINE Statement

The OUTDIFF= data set contains the differences of the direct adjusted survival probabilities between two
treatments or two strata and their standard errors.

OUTPOST= Output Data Set in the BAYES Statement

The OUTPOST= data set contains the generated posterior samples. There are 3+n variables, where n is the
number of model parameters. The variable Iteration represents the iteration number, the variable LogLike
contains the log-likelihood values, and the variable LogPost contains the log-posterior-density values. The
other n variables represent the draws of the Markov chain for the model parameters.

OUTROC= Output Data Set in the ROCOPTIONS Option

The OUTROC= data set contains data necessary for producing the ROC plot; it can be created by specifying
the OUTROC= suboption in the ROCOPTIONS option in the PROC PHREG statement. This data set has the
following variables:

� any specified BY variables
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� the time variable, which identifies the time point at which the ROC curve is calculated

� _ID_, the sequence number of the model

� _SOURCE_, the model label

� _CUTOFF_, the cutpoint for predicting the response. Any observation whose predicted value exceeds
or equals to the cutpoint is predicted to be an event; otherwise, it is predicted to be a nonevent.

� _SENSITIVITY_, the sensitivity, which is the proportion of event observations that were predicted to
have an event response

� _SPECIFICITY_, the specificity, which is the proportion of nonevent observations that were predicted
to have a nonevent response

Displayed Output
If you use the NOPRINT option in the PROC PHREG statement, the procedure does not display any output.
Otherwise, PROC PHREG displays results of the analysis in a collection of tables. The tables are listed
separately for the maximum likelihood analysis and for the Bayesian analysis.

Maximum Likelihood Analysis Displayed Output

Model Information
The “Model Information” table displays the two-level name of the input data set, the name and label of the
failure time variable, the name and label of the censoring variable and the values indicating censored times,
the model (either the Cox model or the piecewise constant baseline hazard model), the name and label of the
OFFSET variable, the name and label of the FREQ variable, the name and label of the WEIGHT variable, and
the method of handling ties in the failure time for the Cox model. The ODS name of the “Model Information”
table is ModelInfo.

Number of Observations
The “Number of Observations” table displays the number of observations read and used in the analysis. The
ODS name of the “Number of Observations” is NObs.

Class Level Information
The “Class Level Information” table is displayed when there are CLASS variables in the model. The table
lists the categories of every CLASS variable that is used in the model and the corresponding design variable
values. The ODS name of the “Class Level Information” table is ClassLevelInfo.

Class Level Information for Random Effects
The “Class Level Information for Random Effects” table is displayed when the RANDOM statement is
specified. The table lists the categories of the classification variable specified in the RANDOM statement.
The ODS name of the “Class Level Information for Random Effects” table is ClassLevelInfoR.
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Summary of the Number of Event and Censored Values
The “Summary of the Number of Event and Censored Values” table displays, for each stratum, the breakdown
of the number of events and censored values. The ODS name of the “Summary of the Number of Event and
Censored Values” table is CensoredSummary.

Risk Sets Information
The “Risk Sets Information” table is displayed if you specify the ATRISK option in the PROC PHREG
statement. The table displays, for each event time, the number of units at-risk and the number of units that
experience the event. The ODS name of the “Risk Sets Information” table is RiskSetInfo.

Descriptive Statistics for Continuous Explanatory Variables
The “Simple Statistics for Continuous Explanatory Variables” table is displayed when you specify the
SIMPLE option in the PROC PHREG statement. The table contains, for each stratum, the mean, standard
deviation, and minimum and maximum for each continuous explanatory variable in the MODEL statement.
The ODS name of the “Descriptive Statistics for Continuous Explanatory Variables” table is SimpleStatistics.

Frequency Distribution of CLASS Variables
The “Frequency Distribution of CLASS Variables” table is displayed if you specify the SIMPLE option in the
PROC PHREG statement and there are CLASS variables in the model. The table lists the frequency of the
levels of the CLASS variables. The ODS name of the “Frequency Distribution of CLASS Variables” table is
ClassLevelFreq.

Maximum Likelihood Iteration History
The “Maximum Likelihood Iteration History” table is displayed if you specify the ITPRINT option in the
MODEL statement. The table contains the iteration number, ridge value or step size, log likelihood, and
parameter estimates at each iteration. The ODS name of the “Maximum Likelihood Iteration History” table
is IterHistory.

Gradient of Last Iteration
The “Gradient of Last Iteration” table is displayed if you specify the ITPRINT option in the MODEL
statement. The ODS name of the “Gradient of Last Iteration” table is LastGradient.

Convergence Status
The “Convergence Status” table displays the convergence status of the Newton-Raphson maximization. The
ODS name of the “Convergence Status” table is ConvergenceStatus.

Model Fit Statistics
The “Model Fit Statistics” table displays the values of –2 log likelihood for the null model and the fitted
model, the AIC, and SBC. The ODS name of the “Model Fit Statistics” table is FitStatistics.

Covariance Parameter Estimates
The “Covariance Parameter Estimates” table displays the estimate of the variance parameter of the random
effect and the standard error estimate of the variance parameter estimator. The ODS name of the “Covariance
Parameter Estimates” table is CovParms.
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Testing Global Null Hypothesis: BETA=0
The “Testing Global Null Hypothesis: BETA=0” table displays results of the likelihood ratio test, the score
test, and the Wald test for testing the hypothesis that all parameters are zero. For the frailty model, the
score test is not displayed and an adjusted degrees of freedom is used (for more information, see the section
“Wald-Type Tests for Penalized Models” on page 6945). For ODS purpose, the name of the “Testing Global
Null Hypothesis: BETA=0” table is GlobalTests.

Likelihood Ratio Statistics for Type 1 Analysis
The “Likelihood Ratio Statistics for Type 1 Analysis” table is displayed if the TYPE1 option is specified in
the MODEL statement. The table displays the degrees of freedom, the likelihood ratio chi-square statistic,
and the p-value for each effect in the model. The ODS name of “Likelihood Ratio Statistics for Type 1
Analysis” is Type1.

Type 3 Tests
The “Type 3 Tests” table is displayed if the model contains a CLASS variable or if the TYPE3 option is
specified in the MODEL statement. The table displays, for each specified statistic, the Type 3 chi-square, the
degrees of freedom, and the p-value for each effect in the model. For the frailty model, the table also displays
the adjusted Wald-type test results (for more information, see the section “Wald-Type Tests for Penalized
Models” on page 6945). The ODS name of “Type 3 Tests” is Type3.

Analysis of Maximum Likelihood Estimates
The “Analysis of Maximum Likelihood Estimates” table displays the maximum likelihood estimate of the
parameter; the estimated standard error, computed as the square root of the corresponding diagonal element
of the estimated covariance matrix; the ratio of the robust standard error estimate to the model-based standard
error estimate if you specify the COVS option in the PROC PHREG statement; the Wald Chi-Square statistic,
computed as the square of the parameter estimate divided by its standard error estimate; the degrees of
freedom of the Wald chi-square statistic, which has a value of 1 unless the corresponding parameter is
redundant or infinite, in which case the value is 0; the p-value of the Wald chi-square statistic with respect to
a chi-square distribution with one degree of freedom; the hazard ratio estimate; and the confidence limits for
the hazard ratio if you specified the RISKLIMITS option in the MODEL statement. The ODS name of the
“Analysis of Maximum Likelihood Estimates” table is ParameterEstimates.

Solution for Random Effects
The “Solution for Random Effects” table displays the BLUP estimates of the random effects, the estimated
standard errors, the confidence intervals for the random effects, the exponentiated values of the BLUP
estimates, and confidence intervals for the exponentiated random effects. The ODS name of the “Solution for
Random Effects” table is SolutionR.

Regression Models Selected by Score Criterion
The “Regression Models Selected by Score Criterion” table is displayed if you specify SELECTION=SCORE
in the MODEL statement. The table contains the number of explanatory variables in each model, the score
chi-square statistic, and the names of the variables included in the model. The ODS name of the “Regression
Models Selected by Score Criterion” table is BestSubsets.

Analysis of Effects Eligible for Entry
The “Analysis of Effects Eligible for Entry” table is displayed if you use the FORWARD or STEPWISE
selection method and you specify the DETAILS option in the MODEL statement. The table contains the
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score chi-square statistic for testing the significance of each variable not in the model (after adjusting for
the variables already in the model), and the p-value of the chi-square statistic with respect to a chi-square
distribution with one degree of freedom. This table is produced before a variable is selected for entry in a
forward selection step. The ODS name of the “Analysis of Effects Eligible for Entry” table is EffectsToEntry.

Analysis of Effects Eligible for Removal
The “Analysis of Effects Eligible for Removal” table is displayed if you use the BACKWARD or STEPWISE
selection method and you specify the DETAILS option in the MODEL statement. The table contains the Wald
chi-square statistic for testing the significance of each candidate effect for removal, the degrees of freedom of
the Wald chi-square, and the corresponding p-value. This table is produced before an effect is selected for
removal. The ODS name of the “Analysis of Effects Eligible for Removal” table is EffectsToRemoval.

Summary of Backward Elimination
The “Summary of Backward Elimination” table is displayed if you specify the SELECTION=BACKWARD
option in the MODEL statement. The table contains the step number, the effects removed at each step, the
corresponding chi-square statistic, the degrees of freedom, and the p-value. For ODS purpose, the name of
the “Summary of Backward Elimination” table is ModelBuildingSummary.

Summary of Forward Selection
The “Summary of Forward Selection” table is displayed if you specify the SELECTION=FORWARD
option in the MODEL statement. The table contains the step number, the effects entered at each step, the
corresponding chi-square statistic, the degrees of freedom, and the p-value. For ODS purpose, the name of
the “Summary of Forward Selection” table is ModelBuildingSummary.

Summary of Stepwise Selection
The “Summary of Stepwise Selection” table is displayed if you specify SELECTION=STEPWISE is specified
in the MODEL statement. The table contains the step number, the effects entered or removed at each step, the
corresponding chi-square statistic, the degrees of freedom, and the corresponding p-value. For ODS purpose,
the name of the “Summary of Stepwise Selection” table is ModelBuildingSummary.

Covariance Matrix
The “Covariance Matrix” table is displayed if you specify the COVB option in the MODEL statement. The
table contains the estimated covariance matrix for the parameter estimates. The ODS name of the “Covariance
Matrix” table is CovB.

Correlation Matrix
The “Correlation Matrix” table is displayed if you specify the COVB option in the MODEL statement.
The table contains the estimated correlation matrix for the parameter estimates. The ODS name of the
“Correlation Matrix” table is CorrB.

Hazard Ratios for label
The “Hazard Ratios for label” table is displayed if you specify the HAZARDRATIO statement. The table
displays the estimate and confidence limits for each hazard ratio. The ODS name of the “Hazard Ratios for
label” table is HazardRatios.
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Predictive Inaccuracy and Explained Variation
The “Predictive Inaccuracy and Explained Variation” table is displayed if you specify the EV option in the
PROC PHREG statement. The table displays the predictive inaccuracy without covariates, the predictive
inaccuracy with covariates, and the explained variation. If you specify the STRATA statement, the table also
contains the stratum identification. The ODS name of the “Predictive Inaccuracy and Explained Variation”
table is ExplainedVariation.

ZPH Tests of Nonproportional Hazards
The “ZPH Tests of Nonproportional Hazards” table is displayed if you specify the ZPH option in the
PROC PHREG statement. For each parameter, the table displays the correlation between the time-varying
coefficients and transformed times; the chi-square statistic and the corresponding p-value; and the t statistic
and the corresponding p-value. The ODS name of the “ZPH Tests of Nonproportional Hazards” table is
zphTest.

Coefficients of Contrast label
The “Coefficients of Contrast label” table is displayed if you specify the E option in the CONTRAST
statement. The table displays the parameter names and the corresponding coefficients of each row of contrast
label . The ODS name of the “Coefficients of Contrast label” table is ContrastCoeff.

Contrast Test Results
The “Contrast Test Results” table is displayed if you specify the CONTRAST statement. The table displays
the degrees of freedom, test statistics, and the p-values for testing each contrast. The ODS name of the
“Contrast Test Results” table is ContrastTest.

Contrast Estimation and Testing Results by Row
The “Contrast Estimation and Testing Results by Row” table is displayed if you specify the ESTIMATE
option in the CONTRAST statement. The table displays, for each row, the estimate of the linear function of
the coefficients, its standard error, and the confidence limits for the linear function. The ODS name of the
“Contrast Estimation and Testing Results by Row” table is ContrastEstimate.

Linear Coefficients for label
The “Linear Coefficients label” table is displayed if you specify the E option in the TEST statement with label
being the TEST statement label. The table contains the coefficients and constants of the linear hypothesis.
The ODS name of the “Linear Coefficients for label” table is TestCoeff.

L[cov(b)]L’ and Lb-c
The “L[cov(b)]L’ and Lb-c” table is displayed if you specified the PRINT option in a TEST statement with
label being the TEST statement label. The table displays the intermediate calculations of the Wald test. The
ODS name of the “L[cov(b)]L’ and Lb-c” table is TestPrint1.

Ginv(L[cov(b)]L’) and Ginv(L[cov(b)]L’)(Lb-c)
The “Ginv(L[cov(b)]L’) and Ginv(L[cov(b)]L’)(Lb-c)” table is displayed if you specified the PRINT option in
a TEST statement with label being the TEST statement label. The table displays the intermediate calculations
of the Wald test. The ODS name of the “Ginv(L[cov(b)]L’) and Ginv(L[cov(b)]L’)(Lb-c)” table is TestPrint2.
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label Test Results
The “label Test Results” table is displayed if you specify a TEST statement with label being the TEST
statement label. The table contains the Wald chi-square statistic, the degrees of freedom, and the p-value.
The ODS name of “label Test Results” table is TestStmts.

Average Effect for label
The “Average Effect for label” table is displayed if the AVERAGE option is specified in a TEST statement
with label being the TEST statement label. The table contains the weighted average of the parameter estimates
for the variables in the TEST statement, the estimated standard error, the z-score, and the p-value. The ODS
name of the “Average Effect for label” is TestAverage.

Reference Set of Covariates for Plotting
The “Reference Set of Covariates for Plotting” table is displayed if the PLOTS= option is requested without
specifying the COVARIATES= data set in the BASELINE statement. The tables contains the values of the
covariates for the reference set, where the reference levels are used for the CLASS variables and the sample
averages for the continuous variables.

Harrell’s Concordance Estimates
The “Harrell’s Concordance Estimates” table is displayed if you specify CONCORDANCE=HARRELL in
the PROC PHREG statement (or by default if you specify the CONCORDANCE option without specifying a
method). The table displays the label of the identified model, the Harrell concordance estimate, the estimated
standard error if the SE suboption is specified, the number of concordance pairs, the number of discordance
pairs, the number of pairs that are tied in the predictor, and the number of pairs that are tied in time. The
ODS name of the “Harrell’s Concordance Estimates” table is Concordance.

Uno’s Concordance Estimates
The “Uno’s Concordance Estimates” table is displayed if you specify CONCORDANCE=UNO in the PROC
PHREG statement. The table displays the label of the identified model, the Uno concordance estimate, and
the estimated standard error if the SE suboption is specified. The ODS name of the “Uno’s Concordance
Estimates” table is Concordance.

Difference in Uno’s Concordance Estimates
The “Difference in Uno’s Concordance Estimates” table is displayed if you specify CONCORDANCE=UNO
in the PROC PHREG statement and you specify both the SE and DIFF suboptions. The table identifies which
pair of models is being compared and displays the difference of their concordance estimates, the estimated
standard error of the difference, the Wald chi-square statistic (computed as the square of the difference
divided by its standard error estimate), and the p-value of the Wald chi-square statistic with respect to a
chi-square distribution with one degree of freedom. The ODS name of the “Difference in Uno’s Concordance
Estimates” table is ConcordanceDiff.

Time-Dependent Area under the Curve
The “Time-Dependent Area under the Curve” table is displayed if you specify the AUC suboption in the
ROCOPTIONS option in the PROC PHREG statement. The table displays the label of the identified model,
the time point at which the ROC curves are calculated, and the corresponding area under the ROC curve
(AUC). If you specify METHOD=IPCW(CL) in the ROCOPTIONS option, the table also displays the
estimated standard error and the confidence limits for the AUC. The ODS name of the “Time-Dependent
Area under the Curve” table is AUC.
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Differences in Time-Dependent Area under the Curve
The “Differences in Time-Dependent Area under the Curve” table is displayed if you specify the AUCDIFF
suboption in the ROCOPTIONS option in the PROC PHREG statement. The table identifies which pair of
models is being compared and displays the time point at which ROC curves are calculated and the difference
in the AUC statistics. If you also specify METHOD=IPCW(CL) in ROCOPTIONS option, the table also
displays the estimated standard error and the confidence limits for the difference in the AUC. The ODS name
of the “Differences in Time-Dependent Area Under the Curve” table is AUCDiff.

Integrated Time-Dependent Area under the Curve
The “Integrated Time-Dependent Area under the Curve” table is displayed if you specify the IAUC suboption
in the ROCOPTIONS option in the PROC PHREG statement. The table displays the label of the identified
model and the integrated area under the curve (IAUC). The ODS name of the “Integrated Time-Dependent
Area Under the Curve” table is IAUC.

Bayesian Analysis Displayed Output

Model Information
The “Model Information” table displays the two-level name of the input data set, the name and label of the
failure time variable, the name and label of the censoring variable and the values indicating censored times,
the model (either the Cox model or the piecewise constant baseline hazard model), the name and label of the
OFFSET variable, the name and label of the FREQ variable, the name and label of the WEIGHT variable,
the method of handling ties in the failure time, the number of burn-in iterations, the number of iterations
after the burn-in, and the number of thinning iterations. The ODS name of the “Model Information” table is
ModelInfo.

Number of Observations
The “Number of Observations” table displays the number of observations read and used in the analysis. The
ODS name of the “Number of Observations” is NObs.

Summary of the Number of Event and Censored Values
The “Summary of the Number of Event and Censored Values” table displays, for each stratum, the breakdown
of the number of events and censored values. This table is not produced if the NONSUMMARY option is
specified in the PROC PHREG statement. The ODS name of the “Summary of the Number of Event and
Censored Values” table is CensoredSummary.

Descriptive Statistics for Continuous Explanatory Variables
The “Simple Statistics for Continuous Explanatory Variables” table is displayed when you specify the
SIMPLE option in the PROC PHREG statement. The table contains, for each stratum, the mean, standard
deviation, and minimum and maximum for each continuous explanatory variable in the MODEL statement.
The ODS name of the “Descriptive Statistics for Continuous Explanatory Variables” table is SimpleStatistics.

Class Level Information
The “Class Level Information” table is displayed if there are CLASS variables in the model. The table lists
the categories of every CLASS variable in the model and the corresponding design variable values. The ODS
name of the “Class Level Information” table is ClassLevelInfo.
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Frequency Distribution of CLASS Variables
The “Frequency Distribution of CLASS Variables” table is displayed if you specify the SIMPLE option in the
PROC PHREG statement and there are CLASS variables in the model. The table lists the frequency of the
levels of the CLASS variables. The ODS name of the “Frequency Distribution of CLASS Variables” table is
ClassLevelFreq.

Regression Parameter Information
The “Regression Parameter Information” table displays the names of the parameters and the corresponding
level information of effects containing the CLASS variables. The ODS name of the “Regression Parameter
Information” table is ParmInfo.

Constant Baseline Hazard Time Intervals
The “Constant Baseline Hazard Time Intervals” table displays the intervals of constant baseline hazard and
the corresponding numbers of failure times and event times. This table is produced only if you specify
the PIECEWISE option in the BAYES statement. The ODS name of the “Constant Baseline Hazard Time
Intervals” table is Interval.

Maximum Likelihood Estimates
The “Maximum Likelihood Estimates” table displays, for each parameter, the maximum likelihood estimate,
the estimated standard error, and the 95% confidence limits. The ODS name of the “Maximum Likelihood
Estimates” table is ParameterEstimates.

Hazard Prior
The “Hazard Prior” table is displayed if you specify the PIECEWISE=HAZARD option in the BAYES
statement. It describes the prior distribution of the hazard parameters. The ODS name of the “Hazard Prior”
table is HazardPrior.

Log-Hazard Prior
The “Log-Hazard Prior” table is displayed if you specify the PIECEWISE=LOGHAZARD option in the
BAYES statement. It describes the prior distribution of the log-hazard parameters. The ODS name of the
“Log-Hazard Prior” table is HazardPrior.

Coefficient Prior
The “Coefficient Prior” table displays the prior distribution of the regression coefficients. The ODS name of
the “Coefficient Prior” table is CoeffPrior.

Initial Values
The “Initial Values” table is displayed if you specify the INITIAL option in the BAYES statement. The table
contains the initial values of the parameters for the Gibbs sampling. The ODS name of the “Initial Values”
table is InitialValues.

Fit Statistics
The “Fit Statistics” table displays the DIC and pD statistics for each parameter. The ODS name of the “Fit
Statistics” table is FitStatistics.
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Posterior Summaries
The “Posterior Summaries” table displays the size of the posterior sample, the mean, the standard error,
and the percentiles for each model parameter. The ODS name of the “Posterior Summaries” table is
PostSummaries.

Posterior Intervals
The “Posterior Intervals” table displays the equal-tail interval and the HPD interval for each model parameter.
The ODS name of the “Posterior Intervals” table is PostIntervals.

Posterior Covariance Matrix
The “Posterior Covariance Matrix” table is produced if you include COV in the SUMMARY= option in the
BAYES statement. This tables displays the sample covariance of the posterior samples. The ODS name of
the “Posterior Covariance Matrix” table is Cov.

Posterior Correlation Matrix
The “Posterior Correlation Matrix” table is displayed if you include CORR in the SUMMARY= option in the
BAYES statement. The table contains the sample correlation of the posterior samples. The ODS name of the
“Posterior Correlation Matrix” table is Corr.

Posterior Autocorrelations
The “Posterior Autocorrelations” table displays the lag 1, lag 5, lag 10, and lag 50 autocorrelations for each
parameter. The ODS name of the “Posterior Autocorrelations” table is AutoCorr.

Gelman-Rubin Diagnostics
The “Gelman-Rubin Diagnostics” table is produced if you include GELMAN in the DIAGNOSTIC= option
in the BAYES statement. This table displays the estimate of the potential scale reduction factor and its 97.5%
upper confidence limit for each parameter. The ODS name of the “Gelman-Rubin Diagnostics” table is
Gelman.

Geweke Diagnostics
The “Geweke Diagnostics” table displays the Geweke statistic and its p-value for each parameter. The ODS
name of the “Geweke Diagnostics” table is Geweke.

Raftery-Lewis Diagnostics
The “Raftery-Lewis Diagnostics” tables is produced if you include RAFTERY in the DIAGNOSTIC= option
in the BAYES statement. This table displays the Raftery and Lewis diagnostics for each variable. The ODS
name of the “Raftery-Diagnostics” table is “Raftery.”

Heidelberger-Welch Diagnostics
The “Heidelberger-Welch Diagnostics” table is displayed if you include HEIDELBERGER in the DIAGNOS-
TIC= option in the BAYES statement. This table describes the results of a stationary test and a halfwidth test
for each parameter. The ODS name of the “Heidelberger-Welch Diagnostics” table is Heidelberger.

Effective Sample Sizes
The “Effective Sample Sizes” table displays, for each parameter, the effective sample size, the correlation
time, and the efficiency. The ODS name of the “Effective Sample Sizes” table is ESS.
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Hazard Ratios for label
The “Hazard Ratios for label” table is displayed if you specify the HAZARDRATIO statement. The table
displays the posterior summary for each hazard ratio. The summary includes the mean, standard error,
quartiles, and equal-tailed and HPD intervals. The ODS name of the “Hazard Ratios for label” table is
HazardRatios.

Reference Set of Covariates for Plotting
The “Reference Set of Covariates for Plotting” table is displayed if the PLOTS= option is requested without
specifying the COVARIATES= data set in the BASELINE statement. The table contains the values of the
covariates for the reference set, where the reference levels are used for the CLASS variables and the sample
averages for the continuous variables.

ODS Table Names
PROC PHREG assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
separately in Table 86.16 for the maximum likelihood analysis and in Table 86.17 for the Bayesian analysis.
For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Each of the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements creates ODS tables,
which are not listed in Table 86.16 and Table 86.17. For information about these tables, see the corresponding
sections of Chapter 19, “Shared Concepts and Topics.”

Table 86.16 ODS Tables for a Maximum Likelihood Analysis
Produced by PROC PHREG

ODS Table Name Description Statement / Option

AUC Area under the ROC curve at specific
time points

PROC / ROCOPTIONS(AUC)

AUCDiff Differences in AUC between models PROC / ROCOPTIONS(AUCDIFF)
BestSubsets Best subset selection MODEL / SELECTION=SCORE
CensoredSummary Summary of event and censored ob-

servations
Default

ClassLevelFreq Frequency distribution of CLASS
variables

CLASS, PROC / SIMPLE

ClassLevelInfo CLASS variable levels and design
variables

CLASS

ClassLevelInfoR Class levels for random effects RANDOM
Concordance Concordance statistics PROC / CONCORDANCE=
ConcordanceDiff Concordance differences between

models
PROC / CONCORDANCE=UNO(DIFF)

ContrastCoeff L matrix for contrasts CONTRAST / E
ContrastEstimate Individual contrast estimates CONTRAST / ESTIMATE=
ContrastTest Wald test for contrasts CONTRAST
ConvergenceStatus Convergence status Default
CorrB Estimated correlation matrix of pa-

rameter estimators
MODEL / CORRB
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Table 86.16 continued

ODS Table Name Description Statement / Option

CovB Estimated covariance matrix of pa-
rameter estimators

MODEL / COVB

CovParms Variance estimates of the random ef-
fects

RANDOM

EffectsToEnter Analysis of effects for entry MODEL / SELECTION=F|S
EffectsToRemove Analysis of effects for removal MODEL / SELECTION=B|S
ExplainedVariation Schemper-Henderson predictive ac-

curacy and explained variation
PROC / EV

FitStatistics Model fit statistics Default
FunctionalFormSupTest Supremum test for functional form ASSESS / VAR=
GlobalScore Global chi-square test MODEL / NOFIT
GlobalTests Tests of the global null

hypothesis
Default

HazardRatios Hazard ratios and confidence limits HAZARDRATIO
IAUC Integrated area under the curve PROC / ROCOPTONS(IAUC)
IterHistory Iteration history MODEL /ITPRINT
LastGradient Last evaluation of gradient MODEL / ITPRINT
ModelBuildingSummary Summary of model building MODEL / SELECTION=B|F|S
ModelInfo Model information Default
NObs Number of observations Default
ParameterEstimates Maximum likelihood estimates of

model parameters
Default

ProportionalHazardsSupTest Supremum test for proportional haz-
ards assumption

ASSESS / PH

ResidualChiSq Residual chi-square MODEL / SELECTION=F|B
ReferenceSet Reference set of covariates for plot-

ting
PROC / PLOTS=

RiskSetInfo Risk set information PROC / ATRISK
SimpleStatistics Summary statistics of input continu-

ous explanatory variables
PROC / SIMPLE

SolutionR Solutions for random effects RANDOM / SOLUTION
TestAverage Average effect for test TEST / AVERAGE
TestCoeff Coefficients for linear hypotheses TEST / E
TestPrint1 L[cov(b)]L’ and Lb-c TEST / PRINT
TestPrint2 Ginv(L[cov(b)]L’) and

Ginv(L[cov(b)]L’)(Lb-c)
TEST / PRINT

TestStmts Linear hypotheses testing results TEST
Type1 Type 1 likelihood ratio tests MODEL / TYPE1
ModelANOVA Type 3 tests or joint tests MODEL / TYPE3 | CLASS
zphTest Proportional hazards assumption

tests based on scaled Schoenfeld
residuals

PROC / ZPH
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Table 86.17 ODS Table for a Bayesian Analysis Produced by
PROC PHREG

ODS Table Name Description Statement / Option

AutoCorr Autocorrelations of the posterior
samples

BAYES

CensoredSummary Numbers of the event and censored
observations

PROC

ClassLevelFreq Frequency distribution of CLASS
variables

CLASS, PROC / SIMPLE

ClassLevelInfo CLASS variable levels and design
variables

CLASS

CoeffPrior Prior distribution of the regression
coefficients

BAYES

Corr Posterior correlation matrix BAYES / SUMMARY=CORR
Cov Posterior covariance Matrix BAYES / SUMMARY=COV
ESS Effective sample sizes BAYES / DIAGNOSTICS=ESS
FitStatistics Fit statistics BAYES
Gelman Gelman-Rubin convergence diagnos-

tics
BAYES /
DIAGNOSTICS=GELMAN

Geweke Geweke convergence diagnostics BAYES
HazardPrior Prior distribution of the baseline haz-

ards
BAYES / PIECEWISE

HazardRatios Posterior summary statistics for haz-
ard ratios

HAZARDRATIO

Heidelberger Heidelberger-Welch convergence di-
agnostics

BAYES /
DIAGNOSTICS=HEIDELBERGER

InitialValues Initial values of the Markov chains BAYES
ModelInfo Model information Default
NObs Number of observations Default
MCError Monte Carlo standard errors BAYES /

DIAGNOSTICS=MCERROR
ParameterEstimates Maximum likelihood estimates of

model parameters
Default

ParmInfo Names of regression coefficients CLASS,BAYES
Partition Partition of constant baseline hazard

intervals
BAYES / PIECEWISE

PostIntervals Equal-tail and high probability den-
sity intervals of the posterior samples

BAYES

PosteriorSample Posterior samples BAYES / (for ODS output data set
only)

PostSummaries Summary statistics of the posterior
samples

BAYES
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Table 86.17 continued

ODS Table Name Description Statement / Option

Raftery Raftery-Lewis convergence diagnos-
tics

BAYES /
DIAGNOSTICS=RAFTERY

ReferenceSet Reference set of covariates for plot-
ting

PROC / PLOTS=

SimpleStatistics Summary statistics of input continu-
ous explanatory variables

PROC / SIMPLE

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 607 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 606 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graphs
that PROC PHREG generates are listed separately in Table 86.18 for the maximum likelihood analysis and
in Table 86.19 for the Bayesian analysis. When the ODS Graphics are in effect in a Bayesian analysis,
each of the ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements can produce plots associated
with their analyses. For information of these plots, see the corresponding sections of Chapter 19, “Shared
Concepts and Topics.”
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Table 86.18 Graphs for a Maximum Likelihood Analysis Produced by PROC PHREG

ODS Graph Name Plot Description Statement / Option

AUCPlot Area under the curve plot PROC / PLOTS=AUC
AUCDiffPlot Area under the curve dif-

ference plot
PROC / PLOTS=AUCDIFF

CIFPLOT Cumulative incidence
function plot

PROC / PLOTS=CIF

CumhazPlot Cumulative hazard func-
tion plot

PROC / PLOTS=CUMHAZ

CumulativeResiduals Cumulative martingale
residual plot

ASSESS / VAR=

CumResidPanel Panel plot of cumulative
martingale residuals

ASSESS / VAR= & CRPANEL

MCFPlot Mean cumulative func-
tion plot

PROC / PLOTS=MCF

ROCPanel Receiver operating char-
acteristic plots in panels

PROC / PLOTS=ROC

ROCPlot Receiver operating char-
acteristic plot

PROC / PLOTS(OVERLAY=IND)=ROC

ScoreProcess Standardized score pro-
cess plot

ASSESS / PH

SurvivalPlot Survivor function plot PROC / PLOTS=SURVIVAL

Table 86.19 Graphs for a Bayesian Analysis Produced by PROC
PHREG

ODS Graph Name Plot Description Statement / Option

ADPanel Autocorrelation function
and density panel

BAYES / PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

BAYES / PLOTS= AUTOCORR

AutocorrPlot Autocorrelation function
plot

BAYES / PLOTS(UNPACK)=AUTOCORR

CumhazPlot Cumulative hazard func-
tion plot

PROC / PLOTS=CUMHAZ

DensityPanel Density panel BAYES / PLOTS=DENSITY
DensityPlot Density plot BAYES / PLOTS(UNPACK)=DENSITY
SurvivalPlot Survivor function plot PROC / PLOTS=SURVIVAL
TAPanel Trace and autocorrelation

function panel
BAYES / PLOTS=(TRACE AUTOCORR)

TADPanel Trace, density, and autocor-
relation function panel

BAYES / PLOTS=(TRACE AUTOCORR
DENSITY)

TDPanel Trace and density panel BAYES / PLOTS=(TRACE DENSITY)
TracePanel Trace panel BAYES / PLOTS=TRACE
TracePlot Trace plot BAYES / PLOTS(UNPACK)=TRACE
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Examples: PHREG Procedure
This section contains 16 examples of using PROC PHREG. Example 86.13 and Example 86.14 illustrate
Bayesian methodology, and the other examples use the classical method of maximum likelihood.

Example 86.1: Stepwise Regression
Krall, Uthoff, and Harley (1975) analyzed data from a study on multiple myeloma in which researchers
treated 65 patients with alkylating agents. Of those patients, 48 died during the study and 17 survived. The
following DATA step creates the data set Myeloma. The variable Time represents the survival time in months
from diagnosis. The variable VStatus consists of two values, 0 and 1, indicating whether the patient was
alive or dead, respectively, at the end of the study. If the value of VStatus is 0, the corresponding value of
Time is censored. The variables thought to be related to survival are LogBUN (log(BUN) at diagnosis), HGB
(hemoglobin at diagnosis), Platelet (platelets at diagnosis: 0=abnormal, 1=normal), Age (age at diagnosis, in
years), LogWBC (log(WBC) at diagnosis), Frac (fractures at diagnosis: 0=none, 1=present), LogPBM (log
percentage of plasma cells in bone marrow), Protein (proteinuria at diagnosis), and SCalc (serum calcium at
diagnosis). Interest lies in identifying important prognostic factors from these nine explanatory variables.

data Myeloma;
input Time VStatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;
label Time='Survival Time'

VStatus='0=Alive 1=Dead';
datalines;

1.25 1 2.2175 9.4 1 67 3.6628 1 1.9542 12 10
1.25 1 1.9395 12.0 1 38 3.9868 1 1.9542 20 18
2.00 1 1.5185 9.8 1 81 3.8751 1 2.0000 2 15
2.00 1 1.7482 11.3 0 75 3.8062 1 1.2553 0 12
2.00 1 1.3010 5.1 0 57 3.7243 1 2.0000 3 9
3.00 1 1.5441 6.7 1 46 4.4757 0 1.9345 12 10
5.00 1 2.2355 10.1 1 50 4.9542 1 1.6628 4 9
5.00 1 1.6812 6.5 1 74 3.7324 0 1.7324 5 9
6.00 1 1.3617 9.0 1 77 3.5441 0 1.4624 1 8
6.00 1 2.1139 10.2 0 70 3.5441 1 1.3617 1 8
6.00 1 1.1139 9.7 1 60 3.5185 1 1.3979 0 10
6.00 1 1.4150 10.4 1 67 3.9294 1 1.6902 0 8
7.00 1 1.9777 9.5 1 48 3.3617 1 1.5682 5 10
7.00 1 1.0414 5.1 0 61 3.7324 1 2.0000 1 10
7.00 1 1.1761 11.4 1 53 3.7243 1 1.5185 1 13
9.00 1 1.7243 8.2 1 55 3.7993 1 1.7404 0 12

11.00 1 1.1139 14.0 1 61 3.8808 1 1.2788 0 10
11.00 1 1.2304 12.0 1 43 3.7709 1 1.1761 1 9
11.00 1 1.3010 13.2 1 65 3.7993 1 1.8195 1 10
11.00 1 1.5682 7.5 1 70 3.8865 0 1.6721 0 12
11.00 1 1.0792 9.6 1 51 3.5051 1 1.9031 0 9
13.00 1 0.7782 5.5 0 60 3.5798 1 1.3979 2 10
14.00 1 1.3979 14.6 1 66 3.7243 1 1.2553 2 10
15.00 1 1.6021 10.6 1 70 3.6902 1 1.4314 0 11
16.00 1 1.3424 9.0 1 48 3.9345 1 2.0000 0 10
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16.00 1 1.3222 8.8 1 62 3.6990 1 0.6990 17 10
17.00 1 1.2304 10.0 1 53 3.8808 1 1.4472 4 9
17.00 1 1.5911 11.2 1 68 3.4314 0 1.6128 1 10
18.00 1 1.4472 7.5 1 65 3.5682 0 0.9031 7 8
19.00 1 1.0792 14.4 1 51 3.9191 1 2.0000 6 15
19.00 1 1.2553 7.5 0 60 3.7924 1 1.9294 5 9
24.00 1 1.3010 14.6 1 56 4.0899 1 0.4771 0 9
25.00 1 1.0000 12.4 1 67 3.8195 1 1.6435 0 10
26.00 1 1.2304 11.2 1 49 3.6021 1 2.0000 27 11
32.00 1 1.3222 10.6 1 46 3.6990 1 1.6335 1 9
35.00 1 1.1139 7.0 0 48 3.6532 1 1.1761 4 10
37.00 1 1.6021 11.0 1 63 3.9542 0 1.2041 7 9
41.00 1 1.0000 10.2 1 69 3.4771 1 1.4771 6 10
41.00 1 1.1461 5.0 1 70 3.5185 1 1.3424 0 9
51.00 1 1.5682 7.7 0 74 3.4150 1 1.0414 4 13
52.00 1 1.0000 10.1 1 60 3.8573 1 1.6532 4 10
54.00 1 1.2553 9.0 1 49 3.7243 1 1.6990 2 10
58.00 1 1.2041 12.1 1 42 3.6990 1 1.5798 22 10
66.00 1 1.4472 6.6 1 59 3.7853 1 1.8195 0 9
67.00 1 1.3222 12.8 1 52 3.6435 1 1.0414 1 10
88.00 1 1.1761 10.6 1 47 3.5563 0 1.7559 21 9
89.00 1 1.3222 14.0 1 63 3.6532 1 1.6232 1 9
92.00 1 1.4314 11.0 1 58 4.0755 1 1.4150 4 11
4.00 0 1.9542 10.2 1 59 4.0453 0 0.7782 12 10
4.00 0 1.9243 10.0 1 49 3.9590 0 1.6232 0 13
7.00 0 1.1139 12.4 1 48 3.7993 1 1.8573 0 10
7.00 0 1.5315 10.2 1 81 3.5911 0 1.8808 0 11
8.00 0 1.0792 9.9 1 57 3.8325 1 1.6532 0 8

12.00 0 1.1461 11.6 1 46 3.6435 0 1.1461 0 7
11.00 0 1.6128 14.0 1 60 3.7324 1 1.8451 3 9
12.00 0 1.3979 8.8 1 66 3.8388 1 1.3617 0 9
13.00 0 1.6628 4.9 0 71 3.6435 0 1.7924 0 9
16.00 0 1.1461 13.0 1 55 3.8573 0 0.9031 0 9
19.00 0 1.3222 13.0 1 59 3.7709 1 2.0000 1 10
19.00 0 1.3222 10.8 1 69 3.8808 1 1.5185 0 10
28.00 0 1.2304 7.3 1 82 3.7482 1 1.6721 0 9
41.00 0 1.7559 12.8 1 72 3.7243 1 1.4472 1 9
53.00 0 1.1139 12.0 1 66 3.6128 1 2.0000 1 11
57.00 0 1.2553 12.5 1 66 3.9685 0 1.9542 0 11
77.00 0 1.0792 14.0 1 60 3.6812 0 0.9542 0 12
;

The stepwise selection process consists of a series of alternating forward selection and backward elimination
steps. The former adds variables to the model, while the latter removes variables from the model.

The following statements use PROC PHREG to produce a stepwise regression analysis. Stepwise selection
is requested by specifying the SELECTION=STEPWISE option in the MODEL statement. The option
SLENTRY=0.25 specifies that a variable has to be significant at the 0.25 level before it can be entered into
the model, while the option SLSTAY=0.15 specifies that a variable in the model has to be significant at
the 0.15 level for it to remain in the model. The DETAILS option requests detailed results for the variable
selection process.
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proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein SCalc
/ selection=stepwise slentry=0.25
slstay=0.15 details;

run;

Results of the stepwise regression analysis are displayed in Output 86.1.1 through Output 86.1.7.

Individual score tests are used to determine which of the nine explanatory variables is first selected into
the model. In this case, the score test for each variable is the global score test for the model containing
that variable as the only explanatory variable. Output 86.1.1 displays the chi-square statistics and the
corresponding p-values. The variable LogBUN has the largest chi-square value (8.5164), and it is significant
(p = 0.0035) at the SLENTRY=0.25 level. The variable LogBUN is thus entered into the model.

Output 86.1.1 Individual Score Test Results for All Variables

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.MYELOMA

Dependent Variable Time Survival Time

Censoring Variable VStatus 0=Alive 1=Dead

Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

65 48 17 26.15

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

LogBUN 1 8.5164 0.0035

HGB 1 5.0664 0.0244

Platelet 1 3.1816 0.0745

Age 1 0.0183 0.8924

LogWBC 1 0.5658 0.4519

Frac 1 0.9151 0.3388

LogPBM 1 0.5846 0.4445

Protein 1 0.1466 0.7018

SCalc 1 1.1109 0.2919

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

18.4550 9 0.0302
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Output 86.1.2 displays the results of the first model. Since the Wald chi-square statistic is significant (p =
0.0039) at the SLSTAY=0.15 level, LogBUN stays in the model.

Output 86.1.2 First Model in the Stepwise Selection Process

Step 1. Effect LogBUN is entered. The model contains the following effects:Step 1. Effect LogBUN is entered. The model contains the following effects:

LogBUN

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 301.959

AIC 309.716 303.959

SBC 309.716 305.830

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.7572 1 0.0053

Score 8.5164 1 0.0035

Wald 8.3392 1 0.0039

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.74595 0.60460 8.3392 0.0039 5.731

The next step consists of selecting another variable to add to the model. Output 86.1.3 displays the chi-square
statistics and p-values of individual score tests (adjusted for LogBUN) for the remaining eight variables. The
score chi-square for a given variable is the value of the likelihood score test for testing the significance of the
variable in the presence of LogBUN. The variable HGB is selected because it has the highest chi-square value
(4.3468), and it is significant (p = 0.0371) at the SLENTRY=0.25 level.

Output 86.1.3 Score Tests Adjusted for the Variable LogBUN

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

HGB 1 4.3468 0.0371

Platelet 1 2.0183 0.1554

Age 1 0.7159 0.3975

LogWBC 1 0.0704 0.7908

Frac 1 1.0354 0.3089

LogPBM 1 1.0334 0.3094

Protein 1 0.5214 0.4703

SCalc 1 1.4150 0.2342



Example 86.1: Stepwise Regression F 6977

Output 86.1.3 continued

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

9.3164 8 0.3163

Output 86.1.4 displays the fitted model containing both LogBUN and HGB. Based on the Wald statistics,
neither LogBUN nor HGB is removed from the model.

Output 86.1.4 Second Model in the Stepwise Selection Process

Step 2. Effect HGB is entered. The model contains the following effects:Step 2. Effect HGB is entered. The model contains the following effects:

LogBUN HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 297.767

AIC 309.716 301.767

SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.9493 2 0.0025

Score 12.7252 2 0.0017

Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336

HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

Output 86.1.5 shows Step 3 of the selection process, in which the variable SCalc is added, resulting in the
model with LogBUN, HGB, and SCalc as the explanatory variables. Note that SCalc has the smallest Wald
chi-square statistic, and it is not significant (p = 0.1782) at the SLSTAY=0.15 level.

Output 86.1.5 Third Model in the Stepwise Regression

Step 3. Effect SCalc is entered. The model contains the following effects:Step 3. Effect SCalc is entered. The model contains the following effects:

LogBUN HGB SCalc

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 86.1.5 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 296.078

AIC 309.716 302.078

SBC 309.716 307.692

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13.6377 3 0.0034

Score 15.3053 3 0.0016

Wald 14.4542 3 0.0023

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.63593 0.62359 6.8822 0.0087 5.134

HGB 1 -0.12643 0.05868 4.6419 0.0312 0.881

SCalc 1 0.13286 0.09868 1.8127 0.1782 1.142

The variable SCalc is then removed from the model in a step-down phase in Step 4 (Output 86.1.6). The
removal of SCalc brings the stepwise selection process to a stop in order to avoid repeatedly entering and
removing the same variable.

Output 86.1.6 Final Model in the Stepwise Regression

Step 4. Effect SCalc is removed. The model contains the following effects:Step 4. Effect SCalc is removed. The model contains the following effects:

LogBUN HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 309.716 297.767

AIC 309.716 301.767

SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 11.9493 2 0.0025

Score 12.7252 2 0.0017

Wald 12.1900 2 0.0023
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Output 86.1.6 continued

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336

HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

Note: Model building terminates because the effect to be entered is the effect that was removed in the last step.

The procedure also displays a summary table of the steps in the stepwise selection process, as shown in
Output 86.1.7.

Output 86.1.7 Model Selection Summary

Summary of Stepwise Selection

Effect

Step Entered Removed DF
Number

In
Score

Chi-Square
Wald

Chi-Square Pr > ChiSq

1 LogBUN 1 1 8.5164 0.0035

2 HGB 1 2 4.3468 0.0371

3 SCalc 1 3 1.8225 0.1770

4 SCalc 1 2 1.8127 0.1782

The stepwise selection process results in a model with two explanatory variables, LogBUN and HGB.

Example 86.2: Best Subset Selection
An alternative to stepwise selection of variables is best subset selection. This method uses the branch-and-
bound algorithm of Furnival and Wilson (1974) to find a specified number of best models containing one,
two, or three variables, and so on, up to the single model containing all of the explanatory variables. The
criterion used to determine the “best” subset is based on the global score chi-square statistic. For two models
A and B, each having the same number of explanatory variables, model A is considered to be better than
model B if the global score chi-square statistic for A exceeds that for B.

In the following statements, best subset selection analysis is requested by specifying the
SELECTION=SCORE option in the MODEL statement. The BEST=3 option requests the procedure
to identify only the three best models for each size. In other words, PROC PHREG will list the three models
having the highest score statistics of all the models possible for a given number of covariates.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC

Frac LogPBM Protein SCalc
/ selection=score best=3;

run;

Output 86.2.1 displays the results of this analysis. The number of explanatory variables in the model is given
in the first column, and the names of the variables are listed on the right. The models are listed in descending
order of their score chi-square values within each model size. For example, among all models containing two
explanatory variables, the model that contains the variables LogBUN and HGB has the largest score value
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(12.7252), the model that contains the variables LogBUN and Platelet has the second-largest score value
(11.1842), and the model that contains the variables LogBUN and SCalc has the third-largest score value
(9.9962).

Output 86.2.1 Best Variable Combinations

The PHREG ProcedureThe PHREG Procedure

Regression Models Selected by Score Criterion

Number of
Variables

Score
Chi-Square Variables Included in Model

1 8.5164 LogBUN

1 5.0664 HGB

1 3.1816 Platelet

2 12.7252 LogBUN HGB

2 11.1842 LogBUN Platelet

2 9.9962 LogBUN SCalc

3 15.3053 LogBUN HGB SCalc

3 13.9911 LogBUN HGB Age

3 13.5788 LogBUN HGB Frac

4 16.9873 LogBUN HGB Age SCalc

4 16.0457 LogBUN HGB Frac SCalc

4 15.7619 LogBUN HGB LogPBM SCalc

5 17.6291 LogBUN HGB Age Frac SCalc

5 17.3519 LogBUN HGB Age LogPBM SCalc

5 17.1922 LogBUN HGB Age LogWBC SCalc

6 17.9120 LogBUN HGB Age Frac LogPBM SCalc

6 17.7947 LogBUN HGB Age LogWBC Frac SCalc

6 17.7744 LogBUN HGB Platelet Age Frac SCalc

7 18.1517 LogBUN HGB Platelet Age Frac LogPBM SCalc

7 18.0568 LogBUN HGB Age LogWBC Frac LogPBM SCalc

7 18.0223 LogBUN HGB Platelet Age LogWBC Frac SCalc

8 18.3925 LogBUN HGB Platelet Age LogWBC Frac LogPBM SCalc

8 18.1636 LogBUN HGB Platelet Age Frac LogPBM Protein SCalc

8 18.1309 LogBUN HGB Platelet Age LogWBC Frac Protein SCalc

9 18.4550 LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc

Example 86.3: Modeling with Categorical Predictors
Consider the data for the Veterans Administration lung cancer trial presented in Appendix 1 of Kalbfleisch
and Prentice (1980). In this trial, males with advanced inoperable lung cancer were randomized to a standard
therapy and a test chemotherapy. The primary endpoint for the therapy comparison was time to death in days,
represented by the variable Time. Negative values of Time are censored values. The data include information
about a number of explanatory variables: Therapy (type of therapy: standard or test), Cell (type of tumor cell:
adeno, large, small, or squamous), Prior (prior therapy: 0=no, 10=yes), Age (age, in years), Duration (months
from diagnosis to randomization), and Kps (Karnofsky performance scale). A censoring indicator variable,
Censor, is created from the data, with the value 1 indicating a censored time and the value 0 indicating an
event time. The following DATA step saves the data in the data set VALung.
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proc format;
value yesno 0='no' 10='yes';

run;

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label Time='time to death in days'

Kps='Karnofsky performance scale'
Duration='months from diagnosis to randomization'
Age='age in years'
Prior='prior therapy'
Cell='cell type'
Therapy='type of treatment';

format Prior yesno.;
M=Column;
input Check $ @@;
if M>Column then M=1;
if Check='s'|Check='t' then do;

input @M Therapy $ Cell $;
delete;

end;
else do;

input @M Time Kps Duration Age Prior @@;
Status=(Time>0);
Time=abs(Time);

end;
datalines;

standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10

118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small
30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0

392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
95 80 4 34 0

standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
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test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10

test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0

140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
45 40 3 69 0 80 40 4 63 0

test large
52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

The following statements use the PHREG procedure to fit the Cox proportional hazards model to these data.
The variables Prior, Cell, and Therapy, which are categorical variables, are declared in the CLASS statement.
By default, PROC PHREG parameterizes the CLASS variables by using the reference coding with the last
category as the reference category. However, you can explicitly specify the reference category of your choice.
Here, Prior=no is chosen as the reference category for prior therapy, Cell=large is chosen as the reference
category for type of tumor cell, and Therapy=standard is chosen as the reference category for the type of
therapy. In the MODEL statement, the term Prior|Therapy is just another way of specifying the main effects
Prior, Therapy, and the Prior*Therapy interaction.

proc phreg data=VALung;
class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Cell Prior|Therapy;

run;

Coding of the CLASS variables is displayed in Output 86.3.1. There is one dummy variable for Prior and one
for Therapy, since both variables are binary. The dummy variable has a value of 0 for the reference category
(Prior=no, Therapy=standard). The variable Cell has four categories and is represented by three dummy
variables. Note that the reference category, Cell=large, has a value of 0 for all three dummy variables.
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Output 86.3.1 Reference Coding of CLASS Variables

The PHREG ProcedureThe PHREG Procedure

Class Level Information

Class Value
Design

Variables

Prior no 0

yes 1

Cell adeno 1 0 0

large 0 0 0

small 0 1 0

squamous 0 0 1

Therapy standard 0

test 1

The test results of individual model effects are shown in Output 86.3.2. There is a strong prognostic effect of
Kps on patient’s survivorship (p < 0:0001), and the survival times for patients of different Cell types differ
significantly (p = 0.0003). The Prior*Therapy interaction is marginally significant (p = 0.0416)—that is, prior
therapy might play a role in whether one treatment is more effective than the other.

Output 86.3.2 Wald Tests of Individual Effects

Joint Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Kps 1 35.5051 <.0001

Duration 1 0.1159 0.7335

Age 1 1.9772 0.1597

Cell 3 18.5339 0.0003

Prior 1 2.5296 0.1117

Therapy 1 5.2349 0.0221

Prior*Therapy 1 4.1528 0.0416

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests.  The joint test for an effect is a test that all of
the parameters associated with that effect are zero.  Such joint tests might not be equivalent to Type 3 effect tests under GLM
parameterization.

In the Cox proportional hazards model, the effects of the covariates are to act multiplicatively on the hazard
of the survival time, and therefore it is a little easier to interpret the corresponding hazard ratios than the
regression parameters. For a parameter that corresponds to a continuous variable, the hazard ratio is the ratio
of hazard rates for a increase of one unit of the variable. From Output 86.3.3, the hazard ratio estimate for
Kps is 0.968, meaning that an increase of 10 units in Karnofsky performance scale will shrink the hazard rate
by 1 � .0:968/10=28%. For a CLASS variable parameter, the hazard ratio presented in the Output 86.3.3
is the ratio of the hazard rates between the given category and the reference category. The hazard rate of
Cell=adeno is 219% that of Cell=large, the hazard rate of Cell=small is 162% that of Cell=large, and the
hazard rate of Cell=squamous is only 66% that of Cell=large. Hazard ratios for Prior and Therapy are missing
since the model contains the Prior*Therapy interaction. You can use the HAZARDRATIO statement to
obtain the hazard ratios for a main effect in the presence of interaction as shown later in this example.
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Output 86.3.3 Parameters Estimates with Reference Coding

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Kps 1 -0.03300 0.00554 35.5051 <.0001 0.968 Karnofsky performance scale

Duration 1 0.00323 0.00949 0.1159 0.7335 1.003 months from diagnosis to
randomization

Age 1 -0.01353 0.00962 1.9772 0.1597 0.987 age in years

Cell adeno 1 0.78356 0.30382 6.6512 0.0099 2.189 cell type adeno

Cell small 1 0.48230 0.26537 3.3032 0.0691 1.620 cell type small

Cell squamous 1 -0.40770 0.28363 2.0663 0.1506 0.665 cell type squamous

Prior yes 1 0.45914 0.28868 2.5296 0.1117 . prior therapy yes

Therapy test 1 0.56662 0.24765 5.2349 0.0221 . type of treatment test

Prior*Therapy yes test 1 -0.87579 0.42976 4.1528 0.0416 . prior therapy yes * type of
treatment test

The following PROC PHREG statements illustrate the use of the backward elimination process to identify
the effects that affect the survivorship of the lung cancer patients. The option SELECTION=BACKWARD is
specified to carry out the backward elimination. The option SLSTAY=0.1 specifies the significant level for
retaining the effects in the model.

proc phreg data=VALung;
class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Cell Prior|Therapy

/ selection=backward slstay=0.1;
run;

Results of the backward elimination process are summarized in Output 86.3.4. The effect Duration was
eliminated first and was followed by Age.

Output 86.3.4 Effects Eliminated from the Model

The PHREG ProcedureThe PHREG Procedure

Summary of Backward Elimination

Step
Effect
Removed DF

Number
In

Wald
Chi-Square Pr > ChiSq

Effect
Label

1 Duration 1 6 0.1159 0.7335 months from diagnosis to randomization

2 Age 1 5 2.0458 0.1526 age in years

Output 86.3.5 shows the Type 3 analysis of effects and the maximum likelihood estimates of the regression
coefficients of the model. Without controlling for Age and Duration, KPS and Cell remain significant, but the
Prior*Therapy interaction is less prominent than before (p = 0.0871) though still significant at 0.1 level.
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Output 86.3.5 Type 3 Effects and Parameter Estimates for the Selected Model

Joint Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Kps 1 35.9218 <.0001

Cell 3 17.4134 0.0006

Prior 1 2.3113 0.1284

Therapy 1 3.8030 0.0512

Prior*Therapy 1 2.9269 0.0871

Note: Under full-rank parameterizations, Type 3 effect tests are replaced by joint tests.  The joint test for an effect is a test that all of
the parameters associated with that effect are zero.  Such joint tests might not be equivalent to Type 3 effect tests under GLM
parameterization.

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Kps 1 -0.03111 0.00519 35.9218 <.0001 0.969 Karnofsky performance scale

Cell adeno 1 0.74907 0.30465 6.0457 0.0139 2.115 cell type adeno

Cell small 1 0.44265 0.26168 2.8614 0.0907 1.557 cell type small

Cell squamous 1 -0.41145 0.28309 2.1125 0.1461 0.663 cell type squamous

Prior yes 1 0.41755 0.27465 2.3113 0.1284 . prior therapy yes

Therapy test 1 0.45670 0.23419 3.8030 0.0512 . type of treatment test

Prior*Therapy yes test 1 -0.69443 0.40590 2.9269 0.0871 . prior therapy yes * type of
treatment test

Finally, the following statements refit the previous model and computes hazard ratios at settings beyond those
displayed in the “Analysis of Maximum Likelihood Estimates” table. You can use either the HAZARDRATIO
statement or the CONTRAST statement to obtain hazard ratios. Using the CONTRAST statement to compute
hazard ratios for CLASS variables can be a daunting task unless you are familiar with the parameterization
schemes (see the section “Parameterization of Model Effects” on page 385 in Chapter 19, “Shared Concepts
and Topics”), but you have control over which specific hazard ratios you want to compute. HAZARDRATIO
statements, on the other hand, are designed specifically to provide hazard ratios. They are easy to use and
you can also request both the Wald confidence limits and the profile-likelihood confidence limits; the latter is
not available for the CONTRAST statements. Three HAZARDRATIO statements are specified; each has
the CL=BOTH option to request both the Wald confidence limits and the profile-likelihood limits. The first
HAZARDRATIO statement, labeled ’H1’, estimates the hazard ratio for an increase of 10 units in the KPS;
the UNITS= option specifies the number of units increase. The second HAZARDRATIO statement, labeled
’H2’ computes the hazard ratios for comparing any pairs of tumor Cell types. The third HAZARDRATIO
statement, labeled ’H3’, compares the test therapy with the standard therapy. The DIFF=REF option specifies
that each nonreference category is compared to the reference category. The purpose of using DIFF=REF here
is to ensure that the hazard ratio is comparing the test therapy to the standard therapy instead of the other
way around. Three CONTRAST statements, labeled ’C1’, ’C2’, and ’C3’, parallel to the HAZARDRATIO
statements ’H1’, ’H2’, and ’H3’, respectively, are specified. The ESTIMATE=EXP option specifies that the
linear predictors be estimated in the exponential scale, which are precisely the hazard ratios.
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proc phreg data=VALung;
class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Cell Prior|Therapy;
hazardratio 'H1' Kps / units=10 cl=both;
hazardratio 'H2' Cell / cl=both;
hazardratio 'H3' Therapy / diff=ref cl=both;
contrast 'C1' Kps 10 / estimate=exp;
contrast 'C2' cell 1 0 0, /* adeno vs large */

cell 1 -1 0, /* adeno vs small */
cell 1 0 -1, /* adeno vs squamous */
cell 0 -1 0, /* large vs small */
cell 0 0 -1, /* large vs Squamous */
cell 0 1 -1 /* small vs squamous */
/ estimate=exp;

contrast 'C3' Prior 0 Therapy 1 Prior*Therapy 0,
Prior 0 Therapy 1 Prior*Therapy 1 / estimate=exp;

run;

Output 86.3.6 displays the results of the three HAZARDRATIO statements in separate tables. Results of the
three CONTRAST statements are shown in one table in Output 86.3.7. However, point estimates and the
Wald confidence limits for the hazard ratio agree in between the two outputs.

Output 86.3.6 Results from HAZARDRATIO Statements

The PHREG ProcedureThe PHREG Procedure

H1:
Hazard Ratios for Karnofsky performance scale

Description
Point

Estimate

95%
Wald

Confidence
Limits

95%
Profile

Likelihood
Confidence

Limits

Kps Unit=10 0.733 0.662 0.811 0.662 0.811

H2: Hazard Ratios for cell type

Description
Point

Estimate

95%
Wald

Confidence
Limits

95%
Profile

Likelihood
Confidence

Limits

Cell adeno vs large 2.115 1.164 3.843 1.162 3.855

Cell adeno vs small 1.359 0.798 2.312 0.791 2.301

Cell adeno vs squamous 3.192 1.773 5.746 1.770 5.768

Cell large vs small 0.642 0.385 1.073 0.380 1.065

Cell large vs squamous 1.509 0.866 2.628 0.863 2.634

Cell small vs squamous 2.349 1.387 3.980 1.399 4.030
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Output 86.3.6 continued

H3: Hazard Ratios for type of treatment

Description
Point

Estimate

95%
Wald

Confidence
Limits

95%
Profile

Likelihood
Confidence

Limits

Therapy test vs standard At Prior=no 1.579 0.998 2.499 0.998 2.506

Therapy test vs standard At Prior=yes 0.788 0.396 1.568 0.390 1.560

Output 86.3.7 Results from CONTRAST Statements

Contrast Estimation and Testing Results by Row

Contrast Type Row Estimate
Standard

Error Alpha
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

C1 EXP 1 0.7326 0.0380 0.05 0.6618 0.8111 35.9218 <.0001

C2 EXP 1 2.1150 0.6443 0.05 1.1641 3.8427 6.0457 0.0139

C2 EXP 2 1.3586 0.3686 0.05 0.7982 2.3122 1.2755 0.2587

C2 EXP 3 3.1916 0.9575 0.05 1.7727 5.7462 14.9629 0.0001

C2 EXP 4 0.6423 0.1681 0.05 0.3846 1.0728 2.8614 0.0907

C2 EXP 5 1.5090 0.4272 0.05 0.8664 2.6282 2.1125 0.1461

C2 EXP 6 2.3493 0.6318 0.05 1.3868 3.9797 10.0858 0.0015

C3 EXP 1 1.5789 0.3698 0.05 0.9977 2.4985 3.8030 0.0512

C3 EXP 2 0.7884 0.2766 0.05 0.3964 1.5680 0.4593 0.4980

Example 86.4: Firth’s Correction for Monotone Likelihood
In fitting the Cox regression model by maximizing the partial likelihood, the estimate of an explanatory
variable X will be infinite if the value of X at each uncensored failure time is the largest of all the values
of X in the risk set at that time (Tsiatis 1981; Bryson and Johnson 1981). You can exploit this information
to artificially create a data set that has the condition of monotone likelihood for the Cox regression. The
following DATA step modifies the Myeloma data in Example 86.1 to create a new explanatory variable,
Contrived, which has the value 1 if the observed time is less than or equal to 65 and has the value 0 otherwise.
The phenomenon of monotone likelihood will be demonstrated in the new data set Myeloma2.

data Myeloma2;
set Myeloma;
Contrived= (Time <= 65);

run;

For illustration purposes, consider a Cox model with three explanatory variables, one of which is the variable
Contrived. The following statements invoke PROC PHREG to perform the Cox regression. The IPRINT
option is specified in the MODEL statement to print the iteration history of the optimization.

proc phreg data=Myeloma2;
model Time*Vstatus(0)=LOGbun HGB Contrived / itprint;

run;
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The symptom of monotonicity is demonstrated in Output 86.4.1. The log likelihood converges to the value of
–136.56 while the coefficient for Contrived diverges. Although the Newton-Raphson optimization process
did not fail, it is obvious that convergence is questionable. A close examination of the standard errors in the
“Analysis of Maximum Likelihood Estimates” table reveals a very large value for the coefficient of Contrived.
This is very typical of a diverged estimate.

Output 86.4.1 Monotone Likelihood Behavior Displayed

The PHREG ProcedureThe PHREG Procedure

Maximum Likelihood Iteration History

Iter Ridge Log Likelihood LogBUN HGB Contrived

0 0 -154.8579914384 0.0000000000 0.000000000 0.000000000

1 0 -140.6934052686 1.9948819671 -0.084318519 1.466331269

2 0 -137.7841629416 1.6794678962 -0.109067888 2.778361123

3 0 -136.9711897754 1.7140611684 -0.111564202 3.938095086

4 0 -136.7078932606 1.7181735043 -0.112273248 5.003053568

5 0 -136.6164264879 1.7187547532 -0.112369756 6.027435769

6 0 -136.5835200895 1.7188294108 -0.112382079 7.036444978

7 0 -136.5715152788 1.7188392687 -0.112383700 8.039763533

8 0 -136.5671126045 1.7188405904 -0.112383917 9.040984886

9 0 -136.5654947987 1.7188407687 -0.112383947 10.041434266

10 0 -136.5648998913 1.7188407928 -0.112383950 11.041599592

11 0 -136.5646810709 1.7188407960 -0.112383951 12.041660414

12 0 -136.5646005760 1.7188407965 -0.112383951 13.041682789

13 0 -136.5645709642 1.7188407965 -0.112383951 14.041691020

14 0 -136.5645600707 1.7188407965 -0.112383951 15.041694049

15 0 -136.5645560632 1.7188407965 -0.112383951 16.041695162

16 0 -136.5645545889 1.7188407965 -0.112383951 17.041695572

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LogBUN 1 1.71884 0.58376 8.6697 0.0032 5.578

HGB 1 -0.11238 0.06090 3.4053 0.0650 0.894

Contrived 1 17.04170 1080 0.0002 0.9874 25183399

Next, the Firth correction was applied as shown in the following statements. Also, the profile-likelihood
confidence limits for the hazard ratios are requested by using the RISKLIMITS=PL option.

proc phreg data=Myeloma2;
model Time*Vstatus(0)=LogBUN HGB Contrived /

firth risklimits=pl itprint;
run;

PROC PHREG uses the penalized likelihood maximum to obtain a finite estimate for the coefficient of
Contrived (Output 86.4.2). The much preferred profile-likelihood confidence limits, as shown in (Heinze and
Schemper 2001), are also displayed.
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Output 86.4.2 Convergence Obtained with the Firth Correction

The PHREG ProcedureThe PHREG Procedure

Maximum Likelihood Iteration History

Iter Ridge Log Likelihood LogBUN HGB Contrived

0 0 -150.7361197494 0.0000000000 0.000000000 0.0000000000

1 0 -136.9933949142 2.0262484120 -0.086519138 1.4338859318

2 0 -134.5796594364 1.6770836974 -0.109172604 2.6221444778

3 0 -134.1572923217 1.7163408994 -0.111166227 3.4458043289

4 0 -134.1229607193 1.7209210332 -0.112007726 3.7923555412

5 0 -134.1228364805 1.7219588214 -0.112178328 3.8174197804

6 0 -134.1228355256 1.7220081673 -0.112187764 3.8151642206

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

95%
Hazard Ratio

Profile
Likelihood
Confidence

Limits

LogBUN 1 1.72201 0.58379 8.7008 0.0032 5.596 1.761 17.231

HGB 1 -0.11219 0.06059 3.4279 0.0641 0.894 0.794 1.007

Contrived 1 3.81516 1.55812 5.9955 0.0143 45.384 5.406 6005.404

Example 86.5: Conditional Logistic Regression for m:n Matching
Conditional logistic regression is used to investigate the relationship between an outcome and a set of
prognostic factors in matched case-control studies. The outcome is whether the subject is a case or a control.
If there is only one case and one control, the matching is 1:1. The m:n matching refers to the situation in
which there is a varying number of cases and controls in the matched sets. You can perform conditional
logistic regression with the PHREG procedure by using the discrete logistic model and forming a stratum for
each matched set. In addition, you need to create dummy survival times so that all the cases in a matched set
have the same event time value, and the corresponding controls are censored at later times.

Consider the following set of low infant birth-weight data extracted from Appendix 1 of Hosmer and
Lemeshow (1989). These data represent 189 women, of whom 59 had low-birth-weight babies and 130
had normal-weight babies. Under investigation are the following risk factors: weight in pounds at the last
menstrual period (LWT), presence of hypertension (HT), smoking status during pregnancy (Smoke), and
presence of uterine irritability (UI). For HT, Smoke, and UI, a value of 1 indicates a “yes” and a value of 0
indicates a “no.” The woman’s age (Age) is used as the matching variable. The SAS data set LBW contains a
subset of the data corresponding to women between the ages of 16 and 32.

data LBW;
input id Age Low LWT Smoke HT UI @@;
Time=2-Low;
datalines;

25 16 1 130 0 0 0 143 16 0 110 0 0 0
166 16 0 112 0 0 0 167 16 0 135 1 0 0
189 16 0 135 1 0 0 206 16 0 170 0 0 0
216 16 0 95 0 0 0 37 17 1 130 1 0 1
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45 17 1 110 1 0 0 68 17 1 120 1 0 0
71 17 1 120 0 0 0 83 17 1 142 0 1 0
93 17 0 103 0 0 0 113 17 0 122 1 0 0

116 17 0 113 0 0 0 117 17 0 113 0 0 0
147 17 0 119 0 0 0 148 17 0 119 0 0 0
180 17 0 120 1 0 0 49 18 1 148 0 0 0
50 18 1 110 1 0 0 89 18 0 107 1 0 1

100 18 0 100 1 0 0 101 18 0 100 1 0 0
132 18 0 90 1 0 1 133 18 0 90 1 0 1
168 18 0 229 0 0 0 205 18 0 120 1 0 0
208 18 0 120 0 0 0 23 19 1 91 1 0 1
33 19 1 102 0 0 0 34 19 1 112 1 0 1
85 19 0 182 0 0 1 96 19 0 95 0 0 0
97 19 0 150 0 0 0 124 19 0 138 1 0 0

129 19 0 189 0 0 0 135 19 0 132 0 0 0
142 19 0 115 0 0 0 181 19 0 105 0 0 0
187 19 0 235 1 1 0 192 19 0 147 1 0 0
193 19 0 147 1 0 0 197 19 0 184 1 1 0
224 19 0 120 1 0 0 27 20 1 150 1 0 0
31 20 1 125 0 0 1 40 20 1 120 1 0 0
44 20 1 80 1 0 1 47 20 1 109 0 0 0
51 20 1 121 1 0 1 60 20 1 122 1 0 0
76 20 1 105 0 0 0 87 20 0 105 1 0 0

104 20 0 120 0 0 1 146 20 0 103 0 0 0
155 20 0 169 0 0 1 160 20 0 141 0 0 1
172 20 0 121 1 0 0 177 20 0 127 0 0 0
201 20 0 120 0 0 0 211 20 0 170 1 0 0
217 20 0 158 0 0 0 20 21 1 165 1 1 0
28 21 1 200 0 0 1 30 21 1 103 0 0 0
52 21 1 100 0 0 0 84 21 1 130 1 1 0
88 21 0 108 1 0 1 91 21 0 124 0 0 0

128 21 0 185 1 0 0 131 21 0 160 0 0 0
144 21 0 110 1 0 1 186 21 0 134 0 0 0
219 21 0 115 0 0 0 42 22 1 130 1 0 1
67 22 1 130 1 0 0 92 22 0 118 0 0 0
98 22 0 95 0 1 0 137 22 0 85 1 0 0

138 22 0 120 0 1 0 140 22 0 130 1 0 0
161 22 0 158 0 0 0 162 22 0 112 1 0 0
174 22 0 131 0 0 0 184 22 0 125 0 0 0
204 22 0 169 0 0 0 220 22 0 129 0 0 0
17 23 1 97 0 0 1 59 23 1 187 1 0 0
63 23 1 120 0 0 0 69 23 1 110 1 0 0
82 23 1 94 1 0 0 130 23 0 130 0 0 0

139 23 0 128 0 0 0 149 23 0 119 0 0 0
164 23 0 115 1 0 0 173 23 0 190 0 0 0
179 23 0 123 0 0 0 182 23 0 130 0 0 0
200 23 0 110 0 0 0 18 24 1 128 0 0 0
19 24 1 132 0 1 0 29 24 1 155 1 0 0
36 24 1 138 0 0 0 61 24 1 105 1 0 0

118 24 0 90 1 0 0 136 24 0 115 0 0 0
150 24 0 110 0 0 0 156 24 0 115 0 0 0
185 24 0 133 0 0 0 196 24 0 110 0 0 0
199 24 0 110 0 0 0 225 24 0 116 0 0 0
13 25 1 105 0 1 0 15 25 1 85 0 0 1
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24 25 1 115 0 0 0 26 25 1 92 1 0 0
32 25 1 89 0 0 0 46 25 1 105 0 0 0

103 25 0 118 1 0 0 111 25 0 120 0 0 1
120 25 0 155 0 0 0 121 25 0 125 0 0 0
169 25 0 140 0 0 0 188 25 0 95 1 0 1
202 25 0 241 0 1 0 215 25 0 120 0 0 0
221 25 0 130 0 0 0 35 26 1 117 1 0 0
54 26 1 96 0 0 0 75 26 1 154 0 1 0
77 26 1 190 1 0 0 95 26 0 113 1 0 0

115 26 0 168 1 0 0 154 26 0 133 1 0 0
218 26 0 160 0 0 0 16 27 1 150 0 0 0
43 27 1 130 0 0 1 125 27 0 124 1 0 0
4 28 1 120 1 0 1 79 28 1 95 1 0 0

105 28 0 120 1 0 0 109 28 0 120 0 0 0
112 28 0 167 0 0 0 151 28 0 140 0 0 0
159 28 0 250 1 0 0 212 28 0 134 0 0 0
214 28 0 130 0 0 0 10 29 1 130 0 0 1
94 29 0 123 1 0 0 114 29 0 150 0 0 0

123 29 0 140 1 0 0 190 29 0 135 0 0 0
191 29 0 154 0 0 0 209 29 0 130 1 0 0
65 30 1 142 1 0 0 99 30 0 107 0 0 1

141 30 0 95 1 0 0 145 30 0 153 0 0 0
176 30 0 110 0 0 0 195 30 0 137 0 0 0
203 30 0 112 0 0 0 56 31 1 102 1 0 0
107 31 0 100 0 0 1 126 31 0 215 1 0 0
163 31 0 150 1 0 0 222 31 0 120 0 0 0
22 32 1 105 1 0 0 106 32 0 121 0 0 0

134 32 0 132 0 0 0 170 32 0 134 1 0 0
175 32 0 170 0 0 0 207 32 0 186 0 0 0
;

The variable Low is used to determine whether the subject is a case (Low=1, low-birth-weight baby) or a
control (Low=0, normal-weight baby). The dummy time variable Time takes the value 1 for cases and 2 for
controls.

The following statements produce a conditional logistic regression analysis of the data. The variable Time is
the response, and Low is the censoring variable. Note that the data set is created so that all the cases have
the same event time and the controls have later censored times. The matching variable Age is used in the
STRATA statement so that each unique age value defines a stratum. The variables LWT, Smoke, HT, and UI
are specified as explanatory variables. The TIES=DISCRETE option requests the discrete logistic model.

proc phreg data=LBW;
model Time*Low(0)= LWT Smoke HT UI / ties=discrete;
strata Age;

run;

The procedure displays a summary of the number of event and censored observations for each stratum. These
are the number of cases and controls for each matched set shown in Output 86.5.1.
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Output 86.5.1 Summary of Number of Case and Controls

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.LBW

Dependent Variable Time

Censoring Variable Low

Censoring Value(s) 0

Ties Handling DISCRETE

Summary of the Number of Event and
Censored Values

Stratum Age Total Event Censored
Percent

Censored

1 16 7 1 6 85.71

2 17 12 5 7 58.33

3 18 10 2 8 80.00

4 19 16 3 13 81.25

5 20 18 8 10 55.56

6 21 12 5 7 58.33

7 22 13 2 11 84.62

8 23 13 5 8 61.54

9 24 13 5 8 61.54

10 25 15 6 9 60.00

11 26 8 4 4 50.00

12 27 3 2 1 33.33

13 28 9 2 7 77.78

14 29 7 1 6 85.71

15 30 7 1 6 85.71

16 31 5 1 4 80.00

17 32 6 1 5 83.33

Total 174 54 120 68.97

Results of the conditional logistic regression analysis are shown in Output 86.5.2. Based on the Wald test for
individual variables, the variables LWT, Smoke, and HT are statistically significant while UI is marginal.

The hazard ratios, computed by exponentiating the parameter estimates, are useful in interpreting the results
of the analysis. If the hazard ratio of a prognostic factor is larger than 1, an increment in the factor increases
the hazard rate. If the hazard ratio is less than 1, an increment in the factor decreases the hazard rate. Results
indicate that women were more likely to have low-birth-weight babies if they were underweight in the last
menstrual cycle, were hypertensive, smoked during pregnancy, or suffered uterine irritability.

Output 86.5.2 Conditional Logistic Regression Analysis for the Low-Birth-Weight Study

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 86.5.2 continued

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 159.069 141.108

AIC 159.069 149.108

SBC 159.069 157.064

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 17.9613 4 0.0013

Score 17.3152 4 0.0017

Wald 15.5577 4 0.0037

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

LWT 1 -0.01498 0.00706 4.5001 0.0339 0.985

Smoke 1 0.80805 0.36797 4.8221 0.0281 2.244

HT 1 1.75143 0.73932 5.6120 0.0178 5.763

UI 1 0.88341 0.48032 3.3827 0.0659 2.419

For matched case-control studies with one case per matched set (1:n matching), the likelihood function for
the conditional logistic regression reduces to that of the Cox model for the continuous time scale. For this
situation, you can use the default TIES=BRESLOW.

Example 86.6: Model Using Time-Dependent Explanatory Variables
Time-dependent variables can be used to model the effects of subjects transferring from one treatment group
to another. One example of the need for such strategies is the Stanford heart transplant program. Patients
are accepted if physicians judge them suitable for heart transplant. Then, when a donor becomes available,
physicians choose transplant recipients according to various medical criteria. A patient’s status can be
changed during the study from waiting for a transplant to being a transplant recipient. Transplant status can
be defined by the time-dependent covariate function z D z.t/ as

z.t/ D

�
0 if the patient has not received the transplant at time t
1 if the patient has received the transplant at time t

The Stanford heart transplant data that appear in Crowley and Hu (1977) consist of 103 patients, 69 of whom
received transplants. The data are saved in a SAS data set called Heart in the following DATA step. For each
patient in the program, there is a birth date (Bir_Date), a date of acceptance (Acc_Date), and a date last seen
(Ter_Date). The survival time (Time) in days is defined as Time = Ter_Date – Acc_Date. The survival time is
said to be uncensored (Status=1) or censored (Status=0), depending on whether Ter_Date is the date of death
or the closing date of the study. The age, in years, at acceptance into the program is Acc_Age = (Acc_Date
– Bir_Date) / 365. Previous open-heart surgery for each patient is indicated by the variable PrevSurg. For
each transplant recipient, there is a date of transplant (Xpl_Date) and three measures (NMismatch, Antigen,
Mismatch) of tissue-type mismatching. The waiting period (WaitTime) in days for a transplant recipient is
calculated as WaitTime = Xpl_Date – Acc_Date, and the age (in years) at transplant is Xpl_Age = (Xpl_Date –
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Bir_Date) / 365. For those who do not receive heart transplants, the WaitTime, Xpl_Age, NMismatch, Antigen,
and Mismatch variables contain missing values.

The input data contain dates that have a two-digit year representation. The SAS option YEARCUTOFF=1900
is specified to ensure that a two-digit year xx is year 19xx.

options yearcutoff=1900;
data Heart;

input ID
@5 Bir_Date mmddyy8.
@14 Acc_Date mmddyy8.
@23 Xpl_Date mmddyy8.
@32 Ter_Date mmddyy8.
@41 Status 1.
@43 PrevSurg 1.
@45 NMismatch 1.
@47 Antigen 1.
@49 Mismatch 4.
@54 Reject 1.
@56 NotTyped $1.;

label Bir_Date ='Date of birth'
Acc_Date ='Date of acceptance'
Xpl_Date ='Date of transplant'
Ter_Date ='Date last seen'
Status = 'Dead=1 Alive=0'
PrevSurg ='Previous surgery'
NMismatch= 'No of mismatches'
Antigen = 'HLA-A2 antigen'
Mismatch ='Mismatch score'
NotTyped = 'y=not tissue-typed';

Time= Ter_Date - Acc_Date;
Acc_Age=int( (Acc_Date - Bir_Date)/365 );
if ( Xpl_Date ne .) then do;

WaitTime= Xpl_Date - Acc_Date;
Xpl_Age= int( (Xpl_Date - Bir_Date)/365 );

end;
datalines;
1 01 10 37 11 15 67 01 03 68 1 0
2 03 02 16 01 02 68 01 07 68 1 0
3 09 19 13 01 06 68 01 06 68 01 21 68 1 0 2 0 1.11 0
4 12 23 27 03 28 68 05 02 68 05 05 68 1 0 3 0 1.66 0
5 07 28 47 05 10 68 05 27 68 1 0
6 11 08 13 06 13 68 06 15 68 1 0
7 08 29 17 07 12 68 08 31 68 05 17 70 1 0 4 0 1.32 1
8 03 27 23 08 01 68 09 09 68 1 0
9 06 11 21 08 09 68 11 01 68 1 0

10 02 09 26 08 11 68 08 22 68 10 07 68 1 0 2 0 0.61 1
11 08 22 20 08 15 68 09 09 68 01 14 69 1 0 1 0 0.36 0
12 07 09 15 09 17 68 09 24 68 1 0
13 02 22 14 09 19 68 10 05 68 12 08 68 1 0 3 0 1.89 1
14 09 16 14 09 20 68 10 26 68 07 07 72 1 0 1 0 0.87 1
15 12 04 14 09 27 68 09 27 68 1 1
16 05 16 19 10 26 68 11 22 68 08 29 69 1 0 2 0 1.12 1
17 06 29 48 10 28 68 12 02 68 1 0
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18 12 27 11 11 01 68 11 20 68 12 13 68 1 0 3 0 2.05 0
19 10 04 09 11 18 68 12 24 68 1 0
20 10 19 13 01 29 69 02 15 69 02 25 69 1 0 3 1 2.76 1
21 09 29 25 02 01 69 02 08 69 11 29 71 1 0 2 0 1.13 1
22 06 05 26 03 18 69 03 29 69 05 07 69 1 0 3 0 1.38 1
23 12 02 10 04 11 69 04 13 69 04 13 71 1 0 3 0 0.96 1
24 07 07 17 04 25 69 07 16 69 11 29 69 1 0 3 1 1.62 1
25 02 06 36 04 28 69 05 22 69 04 01 74 0 0 2 0 1.06 0
26 10 18 38 05 01 69 03 01 73 0 0
27 07 21 60 05 04 69 01 21 70 1 0
28 05 30 15 06 07 69 08 16 69 08 17 69 1 0 2 0 0.47 0
29 02 06 19 07 14 69 08 17 69 1 0
30 09 20 24 08 19 69 09 03 69 12 18 71 1 0 4 0 1.58 1
31 10 04 14 08 23 69 09 07 69 1 0
32 04 02 05 08 29 69 09 14 69 11 13 69 1 0 4 0 0.69 1
33 01 01 21 11 27 69 01 16 70 04 01 74 0 0 3 0 0.91 0
34 05 24 29 12 12 69 01 03 70 04 01 74 0 0 2 0 0.38 0
35 08 04 26 01 21 70 02 01 70 1 0
36 05 01 21 04 04 70 05 19 70 07 12 70 1 0 2 0 2.09 1
37 10 24 08 04 25 70 05 13 70 06 29 70 1 0 3 1 0.87 1
38 11 14 28 05 05 70 05 09 70 05 09 70 1 0 3 0 0.87 0
39 11 12 19 05 20 70 05 21 70 07 11 70 1 0 y
40 11 30 21 05 25 70 07 04 70 04 01 74 0 1 4 0 0.75 0
41 04 30 25 08 19 70 10 15 70 04 01 74 0 1 2 0 0.98 0
42 03 13 34 08 21 70 08 23 70 1 0
43 06 01 27 10 22 70 10 23 70 1 1
44 05 02 28 11 30 70 01 08 71 1 1
45 10 30 34 01 05 71 01 05 71 02 18 71 1 0 1 0 0.0 0
46 06 01 22 01 10 71 01 11 71 10 01 73 1 1 2 0 0.81 1
47 12 28 23 02 02 71 02 22 71 04 14 71 1 0 3 0 1.38 1
48 01 23 15 02 05 71 02 13 71 1 0
49 06 21 34 02 15 71 03 22 71 04 01 74 0 1 4 0 1.35 0
50 03 28 25 02 15 71 05 08 71 10 21 73 1 1 y
51 06 29 22 03 24 71 04 24 71 01 02 72 1 0 4 1 1.08 1
52 01 24 30 04 25 71 08 04 71 1 0
53 02 27 24 07 02 71 08 11 71 01 05 72 1 0 y
54 09 16 23 07 02 71 07 04 71 1 0
55 02 24 19 08 09 71 08 18 71 10 08 71 1 0 2 0 1.51 1
56 12 05 32 09 03 71 11 08 71 04 01 74 0 0 4 0 0.98 0
57 06 08 30 09 13 71 02 08 72 1 0
58 09 17 23 09 23 71 10 13 71 08 30 72 1 1 2 1 1.82 1
59 05 12 30 09 29 71 12 15 71 04 01 74 0 1 2 0 0.19 0
60 10 29 22 11 18 71 11 20 71 01 24 72 1 0 3 0 0.66 1
61 05 12 19 12 04 71 12 05 71 1 0
62 08 01 32 12 09 71 02 15 72 1 0
63 04 15 39 12 12 71 01 07 72 04 01 74 0 0 3 1 1.93 0
64 04 09 23 02 01 72 03 04 72 09 06 73 1 1 1 0 0.12 0
65 11 19 20 03 06 72 03 17 72 05 22 72 1 0 2 0 1.12 1
66 01 02 19 03 20 72 04 20 72 1 0
67 09 03 52 03 23 72 05 18 72 01 01 73 1 0 3 0 1.02 0
68 01 10 27 04 07 72 04 09 72 06 13 72 1 0 3 1 1.68 1
69 06 05 24 06 01 72 06 10 72 04 01 74 0 0 2 0 1.20 0
70 06 17 19 06 17 72 06 21 72 07 16 72 1 0 3 1 1.68 1
71 02 22 25 07 21 72 08 20 72 04 01 74 0 0 3 0 0.97 0



6996 F Chapter 86: The PHREG Procedure

72 11 22 45 08 14 72 08 17 72 04 01 74 0 0 3 1 1.46 0
73 05 13 16 09 11 72 10 07 72 12 09 72 1 0 3 1 2.16 1
74 07 20 43 09 18 72 09 22 72 10 04 72 1 0 1 0 0.61 0
75 07 25 20 09 29 72 09 30 72 1 0
76 09 03 20 10 04 72 11 18 72 04 01 74 0 1 3 1 1.70 0
77 08 27 31 10 06 72 10 26 72 1 0
78 02 20 24 11 03 72 05 31 73 04 01 74 0 0 3 0 0.81 0
79 02 18 19 11 30 72 02 04 73 03 05 73 1 0 2 0 1.08 1
80 06 27 26 12 06 72 12 31 72 04 01 74 0 1 3 0 1.41 0
81 02 21 20 01 12 73 01 17 73 04 01 74 0 0 4 1 1.94 0
82 08 19 42 11 01 71 01 01 73 0 0
83 10 04 19 01 24 73 02 24 73 04 13 73 1 0 4 0 3.05 0
84 05 13 30 01 30 73 03 07 73 12 29 73 1 0 4 0 0.60 1
85 02 13 25 02 06 73 02 10 73 1 0
86 03 30 24 03 01 73 03 08 73 04 01 74 0 0 3 1 1.44 0
87 12 19 26 03 21 73 05 19 73 07 08 73 1 0 2 0 2.25 1
88 11 16 18 03 28 73 04 27 73 04 01 74 0 0 3 0 0.68 0
89 03 19 22 04 05 73 08 21 73 10 28 73 1 0 4 1 1.33 1
90 03 25 21 04 06 73 09 12 73 10 08 73 1 1 3 1 0.82 0
91 09 08 25 04 13 73 03 18 74 1 0
92 05 03 28 04 27 73 03 02 74 04 01 74 0 0 1 0 0.16 0
93 10 10 25 07 11 73 08 07 73 04 01 74 0 0 2 0 0.33 0
94 11 11 29 09 14 73 09 17 73 02 25 74 1 1 3 0 1.20 1
95 06 11 33 09 22 73 09 23 73 10 07 73 1 0 y
96 02 09 47 10 04 73 10 16 73 04 01 74 0 0 2 0 0.46 0
97 04 11 50 11 22 73 12 12 73 04 01 74 0 0 3 1 1.78 0
98 04 28 45 12 14 73 03 19 74 04 01 74 0 0 4 1 0.77 0
99 02 24 24 12 25 73 01 14 74 1 0

100 01 31 39 02 22 74 03 31 74 04 01 74 0 1 3 0 0.67 0
101 08 25 24 03 02 74 04 01 74 0 0
102 10 30 33 03 22 74 04 01 74 0 0
103 05 20 28 09 13 67 09 18 67 1 0
;

Crowley and Hu (1977) have presented a number of analyses to assess the effects of various explanatory
variables on the survival of patients. This example fits two of the models that they have considered.

The first model consists of two explanatory variables—the transplant status and the age at acceptance. The
transplant status (XStatus) is a time-dependent variable defined by the programming statements between the
MODEL statement and the RUN statement. The XStatus variable takes the value 1 or 0 at time t (measured
from the date of acceptance), depending on whether or not the patient has received a transplant at that time.
Note that the value of XStatus changes for subjects in each risk set (subjects still alive just before each
distinct event time); therefore, the variable cannot be created in the DATA step. The variable Acc_Age, which
is not time dependent, accounts for the possibility that pretransplant risks vary with age. The following
statements fit this model:

proc phreg data= Heart;
model Time*Status(0)= XStatus Acc_Age;
if (WaitTime = . or Time < WaitTime) then XStatus=0.;
else XStatus= 1.0;

run;

Results of this analysis are shown in Output 86.6.1. Transplantation appears to be associated with a slight
decrease in risk, although the effect is not significant (p = 0.8261). The age at acceptance as a pretransplant
risk factor adds significantly to the model (p = 0.0289). The risk increases significantly with age at acceptance.
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Output 86.6.1 Heart Transplant Study Analysis I

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.HEART

Dependent Variable Time

Censoring Variable Status Dead=1 Alive=0

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

103
103

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

103 75 28 27.18

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 596.651 591.292

AIC 596.651 595.292

SBC 596.651 599.927

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.3593 2 0.0686

Score 4.8093 2 0.0903

Wald 4.7999 2 0.0907

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

XStatus 1 -0.06720 0.30594 0.0482 0.8261 0.935

Acc_Age 1 0.03158 0.01446 4.7711 0.0289 1.032

The second model consists of three explanatory variables—the transplant status, the transplant age, and the
mismatch score. Four transplant recipients who were not typed have no Mismatch values; they are excluded
from the analysis by the use of a WHERE clause. The transplant age (XAge) and the mismatch score (XScore)
are also time dependent and are defined in a fashion similar to that of XStatus. While the patient is waiting for
a transplant, XAge and XScore have a value of 0. After the patient has migrated to the recipient population,
XAge takes on the value of Xpl_Age (transplant age for the recipient), and XScore takes on the value of
Mismatch (a measure of the degree of dissimilarity between donor and recipient). The following statements
fit this model:
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proc phreg data= Heart;
model Time*Status(0)= XStatus XAge XScore;
where NotTyped ^= 'y';
if (WaitTime = . or Time < WaitTime) then do;

XStatus=0.;
XAge=0.;
XScore= 0.;

end;
else do;

XStatus= 1.0;
XAge= Xpl_Age;
XScore= Mismatch;

end;
run;

Results of the analysis are shown in Output 86.6.2. Note that only 99 patients are included in this analysis,
instead of 103 patients as in the previous analysis, since four transplant recipients who were not typed
are excluded. The variable XAge is statistically significant (p = 0.0143), with a hazard ratio exceeding 1.
Therefore, patients who had a transplant at younger ages lived longer than those who received a transplant
later in their lives. The variable XScore has only minimal effect on the survival (p = 0.1121).

Output 86.6.2 Heart Transplant Study Analysis II

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.HEART

Dependent Variable Time

Censoring Variable Status Dead=1 Alive=0

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

99
99

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

99 71 28 28.28

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 561.680 551.874

AIC 561.680 557.874

SBC 561.680 564.662
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Output 86.6.2 continued

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.8059 3 0.0203

Score 9.0521 3 0.0286

Wald 9.0554 3 0.0286

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

XStatus 1 -3.19837 1.18746 7.2547 0.0071 0.041

XAge 1 0.05544 0.02263 6.0019 0.0143 1.057

XScore 1 0.44490 0.28001 2.5245 0.1121 1.560

Example 86.7: Time-Dependent Repeated Measurements of a Covariate
Repeated determinations can be made during the course of a study of variables thought to be related to
survival. Consider an experiment to study the dosing effect of a tumor-promoting agent. Forty-five rodents
initially exposed to a carcinogen were randomly assigned to three dose groups. After the first death of an
animal, the rodents were examined every week for the number of papillomas. Investigators were interested in
determining the effects of dose on the carcinoma incidence after adjusting for the number of papillomas.

The input data set TUMOR consists of the following 19 variables:

� ID (subject identification)

� Time (survival time of the subject)

� Dead (censoring status where 1=dead and 0=censored)

� Dose (dose of the tumor-promoting agent)

� P1–P15 (number of papillomas at the 15 times that animals died. These 15 death times are weeks 27,
34, 37, 41, 43, 45, 46, 47, 49, 50, 51, 53, 65, 67, and 71. For instance, subject 1 died at week 47; it had
no papilloma at week 27, five papillomas at week 34, six at week 37, eight at week 41, and 10 at weeks
43, 45, 46, and 47. For an animal that died before week 71, the number of papillomas is missing for
those times beyond its death.)

The following SAS statements create the data set TUMOR:

data Tumor;
infile datalines missover;
input ID Time Dead Dose P1-P15;
label ID='Subject ID';
datalines;

1 47 1 1.0 0 5 6 8 10 10 10 10
2 71 1 1.0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
3 81 0 1.0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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6 65 1 1.0 0 0 0 1 1 1 1 1 1 1 1 1 1
7 71 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 69 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 67 1 1.0 0 0 1 1 2 2 2 2 3 3 3 3 3 3

10 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 37 1 1.0 9 9 9
12 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 77 0 1.0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
14 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 81 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 54 0 2.5 0 1 1 1 2 2 2 2 2 2 2 2
17 53 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0
18 38 0 2.5 5 13 14
19 54 0 2.5 2 6 6 6 6 6 6 6 6 6 6 6
20 51 1 2.5 15 15 15 16 16 17 17 17 17 17 17
21 47 1 2.5 13 20 20 20 20 20 20 20
22 27 1 2.5 22
23 41 1 2.5 6 13 13 13
24 49 1 2.5 0 3 3 3 3 3 3 3 3
25 53 0 2.5 0 0 1 1 1 1 1 1 1 1 1 1
26 50 1 2.5 0 0 2 3 4 6 6 6 6 6
27 37 1 2.5 3 15 15
28 49 1 2.5 2 3 3 3 3 4 4 4 4
29 46 1 2.5 4 6 7 9 9 9 9
30 48 0 2.5 15 26 26 26 26 26 26 26
31 54 0 10.0 12 14 15 15 15 15 15 15 15 15 15 15
32 37 1 10.0 12 16 17
33 53 1 10.0 3 6 6 6 6 6 6 6 6 6 6 6
34 45 1 10.0 4 12 15 20 20 20
35 53 0 10.0 6 10 13 13 13 15 15 15 15 15 15 20
36 49 1 10.0 0 2 2 2 2 2 2 2 2
37 39 0 10.0 7 8 8
38 27 1 10.0 17
39 49 1 10.0 0 6 9 14 14 14 14 14 14
40 43 1 10.0 14 18 20 20 20
41 28 0 10.0 8
42 34 1 10.0 11 18
43 45 1 10.0 10 12 16 16 16 16
44 37 1 10.0 0 1 1
45 43 1 10.0 9 19 19 19 19
;

The number of papillomas (NPap) for each animal in the study was measured repeatedly over time. One
way of handling time-dependent repeated measurements in the PHREG procedure is to use programming
statements to capture the appropriate covariate values of the subjects in each risk set. In this example, NPap
is a time-dependent explanatory variable with values that are calculated by means of the programming
statements shown in the following SAS statements:

proc phreg data=Tumor;
model Time*Dead(0)=Dose NPap;
array pp{*} P1-P14;
array tt{*} t1-t15;
t1=27; t2=34; t3=37; t4=41; t5=43;
t6=45; t7=46; t8=47; t9=49; t10=50;
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t11=51; t12=53; t13=65; t14=67; t15=71;
if Time < tt[1] then NPap=0;
else if time >= tt[15] then NPap=P15;
else do i=1 to dim(pp);

if tt[i] <= Time < tt[i+1] then NPap= pp[i];
end;

run;

At each death time, the NPap value of each subject in the risk set is recalculated to reflect the actual number
of papillomas at the given death time. For instance, subject one in the data set Tumor was in the risk sets at
weeks 27 and 34; at week 27, the animal had no papilloma, while at week 34, it had five papillomas. Results
of the analysis are shown in Output 86.7.1. After the number of papillomas is adjusted for, the dose effect of
the tumor-promoting agent is not statistically significant.

Output 86.7.1 Cox Regression Analysis on the Survival of Rodents

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.TUMOR

Dependent Variable Time

Censoring Variable Dead

Censoring Value(s) 0

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

45
45

Summary of the Number of Event
and Censored Values

Total Event Censored
Percent

Censored

45 25 20 44.44

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 166.793 143.269

AIC 166.793 147.269

SBC 166.793 149.707

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 23.5243 2 <.0001

Score 28.0498 2 <.0001

Wald 21.1646 2 <.0001
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Output 86.7.1 continued

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Dose 1 0.06885 0.05620 1.5010 0.2205 1.071

NPap 1 0.11714 0.02998 15.2705 <.0001 1.124

Another way to handle time-dependent repeated measurements in the PHREG procedure is to use the counting
process style of input. Multiple records are created for each subject, one record for each distinct pattern of
the time-dependent measurements. Each record contains a T1 value and a T2 value representing the time
interval (T1,T2] during which the values of the explanatory variables remain unchanged. Each record also
contains the censoring status at T2.

One advantage of using the counting process formulation is that you can easily obtain various residuals and
influence statistics that are not available when programming statements are used to compute the values of the
time-dependent variables. On the other hand, creating multiple records for the counting process formulation
requires extra effort in data manipulation.

Consider a counting process style of input data set named Tumor1. It contains multiple observations for each
subject in the data set Tumor. In addition to variables ID, Time, Dead, and Dose, four new variables are
generated:

� T1 (left endpoint of the risk interval)

� T2 (right endpoint of the risk interval)

� NPap (number of papillomas in the time interval (T1,T2])

� Status (censoring status at T2)

For example, five observations are generated for the rodent that died at week 47 and that had no papilloma at
week 27, five papillomas at week 34, six at week 37, eight at week 41, and 10 at weeks 43, 45, 46, and 47.
The values of T1, T2, NPap, and Status for these five observations are (0,27,0,0), (27,34,5,0), (34,37,6,0),
(37,41,8,0), and (41,47,10,1). Note that the variables ID, Time, and Dead are not needed for the estimation of
the regression parameters, but they are useful for plotting the residuals.

The following SAS statements create the data set Tumor1:

data Tumor1(keep=ID Time Dead Dose T1 T2 NPap Status);
array pp{*} P1-P14;
array qq{*} P2-P15;
array tt{1:15} _temporary_

(27 34 37 41 43 45 46 47 49 50 51 53 65 67 71);
set Tumor;
T1 = 0;
T2 = 0;
Status = 0;
if ( Time = tt[1] ) then do;

T2 = tt[1];
NPap = p1;
Status = Dead;



Example 86.7: Time-Dependent Repeated Measurements of a Covariate F 7003

output;
end;
else do _i_=1 to dim(pp);

if ( tt[_i_] = Time ) then do;
T2= Time;
NPap = pp[_i_];
Status = Dead;
output;

end;
else if (tt[_i_] < Time ) then do;

if (pp[_i_] ^= qq[_i_] ) then do;
if qq[_i_] = . then T2= Time;
else T2= tt[_i_];
NPap= pp[_i_];
Status= 0;
output;
T1 = T2;

end;
end;

end;
if ( Time >= tt[15] ) then do;

T2 = Time;
NPap = P15;
Status = Dead;
output;

end;
run;

In the following SAS statements, the counting process MODEL specification is used. The DFBETA statistics
are output to a SAS data set named Out1. Note that Out1 contains multiple observations for each subject—that
is, one observation for each risk interval (T1,T2].

proc phreg data=Tumor1 noprint;
model (T1,T2)*Status(0)=Dose NPap;
output out=Out1 resmart=Mart dfbeta=db1-db2;
id ID Time Dead;

run;

The output from PROC PHREG (not shown) is identical to Output 86.7.1 except for the “Summary of the
Number of Event and Censored Values” table. The number of event observations remains unchanged between
the two specifications of PROC PHREG, but the number of censored observations differs due to the splitting
of each subject’s data into multiple observations for the counting process style of input.

Next, the MEANS procedure sums up the component statistics for each subject and outputs the results to a
SAS data set named Out2:

proc means data=Out1 noprint;
by ID Time Dead;
var Mart db1-db2;
output out=Out2 sum=Mart db_Dose db_NPap;

run;

Finally, DFBETA statistics are plotted against subject ID for easy identification of influential points:
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title 'DfBetas for Dose';
proc sgplot data=Out2;

yaxis label="DfBeta" grid;
refline 0 / axis=y;
scatter y=db_Dose x=ID;

run;
title 'DfBetas for NPap';
proc sgplot data=Out2;

yaxis label="DfBeta" grid;
refline 0 / axis=y;
scatter y=db_NPap x=ID;

run;

The plots of the DFBETA statistics are shown in Output 86.7.2 and Output 86.7.3. Subject 30 appears to have
a large influence on both the Dose and NPap coefficients. Subjects 31 and 35 have considerable influences
on the DOSE coefficient, while subjects 22 and 44 have rather large influences on the NPap coefficient.

Output 86.7.2 Plot of DFBETA Statistic for DOSE versus Subject Number
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Output 86.7.3 Plot of DFBETA Statistic for NPAP versus Subject Number

Example 86.8: Survival Curves
You might want to use your regression analysis results to predict the survivorship of subjects of specific
covariate values. The COVARIATES= data set in the BASELINE statement enables you to specify the sets of
covariate values for the prediction. On the other hand, you might want to summarize the survival experience
of an average patient for a given population. The DIRADJ option in the BASELINE statement computes the
direct adjusted survival curve that averages the estimated survival curves for patients whose covariates are
represented in the COVARIATES= data set. By using the PLOTS= option in the PROC PHREG statement,
you can use ODS Graphics to display the predicted survival curves. You can elect to output the predicted
survival curves in a SAS data set by optionally specifying the OUT= option in the BASELINE statement.
This example illustrates how to obtain the covariate-specific survival curves and the direct adjusted survival
curve by using the Myeloma data set in Example 86.1, where variables LogBUN and HGB were identified as
the most important prognostic factors. Suppose you want to compute the predicted survival curves for two
sets of covariate values: (LogBUN=1.0, HGB=10) and (LogBUN=1.8, HGB=12). These values are saved in
the data set Inrisks in the following DATA step. Also created in this data set is the variable Id, whose values
will be used in identifying the covariate sets in the survival plot.
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data Inrisks;
length Id $20;
input LogBUN HGB Id $12-31;
datalines;

1.00 10.0 logBUN=1.0 HGB=10
1.80 12.0 logBUN=1.8 HGB=12
;

The following statements plot the survival functions in Output 86.8.1 and save the survival estimates in the
data set Pred1:

ods graphics on;
proc phreg data=Myeloma plots(overlay)=survival;

model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Inrisks out=Pred1 survival=_all_/rowid=Id;

run;

The COVARIATES= option in the BASELINE statement specifies the data set that contains the set of
covariates of interest. The PLOTS= option in the PROC PHREG statement creates the survival plot. The
OVERLAY suboption overlays the two curves in the same plot. If the OVERLAY suboption is not specified,
each curve is displayed in a separate plot. The ROWID= option in the BASELINE statement specifies
that the values of the variable Id in the COVARIATES= data set be used to identify the curves in the plot.
The SURVIVAL=_ALL_ option in the BASELINE statement requests that the estimated survivor function,
standard error, and lower and upper confidence limits for the survivor function be output into the SAS data
set that is specified in the OUT= option.

The survival Plot (Output 86.8.1) contains two curves, one for each of row of covariates in the data set Inrisks.
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Output 86.8.1 Estimated Survivor Function Plot

The following statements print out the observations in the data set Pred1 for the realization LogBUN=1.00
and HGB=10.0:

proc print data=Pred1(where=(logBUN=1 and HGB=10));
run;

As shown in Output 86.8.2, 32 observations represent the survivor function for the realization LogBUN=1.00
and HGB=10.0. The first observation has survival time 0 and survivor function estimate 1.0. Each of the
remaining 31 observations represents a distinct event time in the input data set Myeloma. These observations
are presented in ascending order of the event times. Note that all the variables in the COVARIATES=InRisks
data set are included in the OUT=Pred1 data set. Likewise, you can print out the observations that represent
the survivor function for the realization LogBUN=1.80 and HGB=12.0.
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Output 86.8.2 Survivor Function Estimates for LogBUN=1.0 and HGB=10.0

Obs Id LogBUN HGB Time Survival StdErrSurvival LowerSurvival UpperSurvival

1 logBUN=1.0 HGB=10 1 10 0.00 1.00000 . . .

2 logBUN=1.0 HGB=10 1 10 1.25 0.98678 0.01043 0.96655 1.00000

3 logBUN=1.0 HGB=10 1 10 2.00 0.96559 0.01907 0.92892 1.00000

4 logBUN=1.0 HGB=10 1 10 3.00 0.95818 0.02180 0.91638 1.00000

5 logBUN=1.0 HGB=10 1 10 5.00 0.94188 0.02747 0.88955 0.99729

6 logBUN=1.0 HGB=10 1 10 6.00 0.90635 0.03796 0.83492 0.98389

7 logBUN=1.0 HGB=10 1 10 7.00 0.87742 0.04535 0.79290 0.97096

8 logBUN=1.0 HGB=10 1 10 9.00 0.86646 0.04801 0.77729 0.96585

9 logBUN=1.0 HGB=10 1 10 11.00 0.81084 0.05976 0.70178 0.93686

10 logBUN=1.0 HGB=10 1 10 13.00 0.79800 0.06238 0.68464 0.93012

11 logBUN=1.0 HGB=10 1 10 14.00 0.78384 0.06515 0.66601 0.92251

12 logBUN=1.0 HGB=10 1 10 15.00 0.76965 0.06779 0.64762 0.91467

13 logBUN=1.0 HGB=10 1 10 16.00 0.74071 0.07269 0.61110 0.89781

14 logBUN=1.0 HGB=10 1 10 17.00 0.71005 0.07760 0.57315 0.87966

15 logBUN=1.0 HGB=10 1 10 18.00 0.69392 0.07998 0.55360 0.86980

16 logBUN=1.0 HGB=10 1 10 19.00 0.66062 0.08442 0.51425 0.84865

17 logBUN=1.0 HGB=10 1 10 24.00 0.64210 0.08691 0.49248 0.83717

18 logBUN=1.0 HGB=10 1 10 25.00 0.62360 0.08921 0.47112 0.82542

19 logBUN=1.0 HGB=10 1 10 26.00 0.60523 0.09136 0.45023 0.81359

20 logBUN=1.0 HGB=10 1 10 32.00 0.58549 0.09371 0.42784 0.80122

21 logBUN=1.0 HGB=10 1 10 35.00 0.56534 0.09593 0.40539 0.78840

22 logBUN=1.0 HGB=10 1 10 37.00 0.54465 0.09816 0.38257 0.77542

23 logBUN=1.0 HGB=10 1 10 41.00 0.50178 0.10166 0.33733 0.74639

24 logBUN=1.0 HGB=10 1 10 51.00 0.47546 0.10368 0.31009 0.72901

25 logBUN=1.0 HGB=10 1 10 52.00 0.44510 0.10522 0.28006 0.70741

26 logBUN=1.0 HGB=10 1 10 54.00 0.41266 0.10689 0.24837 0.68560

27 logBUN=1.0 HGB=10 1 10 58.00 0.37465 0.10891 0.21192 0.66232

28 logBUN=1.0 HGB=10 1 10 66.00 0.33626 0.10980 0.17731 0.63772

29 logBUN=1.0 HGB=10 1 10 67.00 0.28529 0.11029 0.13372 0.60864

30 logBUN=1.0 HGB=10 1 10 88.00 0.22412 0.10928 0.08619 0.58282

31 logBUN=1.0 HGB=10 1 10 89.00 0.15864 0.10317 0.04435 0.56750

32 logBUN=1.0 HGB=10 1 10 92.00 0.09180 0.08545 0.01481 0.56907

Next, the DIRADJ option in the BASELINE statement is used to request a survival curve that represents the
survival experience of an average patient in the population in which the COVARIATES= data set is sampled.
When the DIRADJ option is specified, PROC PHREG computes the direct adjusted survival function by
averaging the predicted survival functions for the rows in the COVARIATES= data set. The following
statements plot the direct adjusted survival function in Output 86.8.3.

proc phreg data=Myeloma plots=survival;
model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Myeloma survival=_all_/diradj;

run;

When the DIRADJ option is specified in the BASELINE statement, the default COVARIATES= data set is
the input data set. For clarity, the COVARIATES=MYELOMA is specified in the BASELINE statement in
the preceding PROC PHREG call.
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Output 86.8.3 Average Survival Function for the Myeloma Data

If neither the COVARIATES= data set nor the DIRADJ option is specified in the BASELINE statement,
PROC PHREG computes a predicted survival curve based on NZ, the average values of the covariate vectors
in the input data (Neuberger et al. 1986). This curve represents the survival experience of a patient with
an average prognostic index ˇ0 NZ equal to the average prognostic index of all patients. This approach has a
couple of drawbacks: it is possible that no patient could ever have such an average index, and it does not
account for the variability in the prognostic factor from patient to patient.

The DIRADJ option is particularly useful if the model contains a categorical explanatory variable that
represents different treatments of interest. By specifying this categorical variable in the GROUP= option,
you obtain a direct adjusted survival curve for each category of the variable. In addition, you can use the
OUTDIFF= option to save all pairwise differences of these direct adjusted survival probabilities in a data
set. For illustration, consider a model that also includes the categorical variable Frac, which has a value 0
if a patient did not have a fracture at diagnosis and 1 otherwise, as an explanatory variable. The following
statements plot the adjusted survival curves in Output 86.8.4 and save the differences of the direct adjusted
survival probabilities in the data set Diff1:



7010 F Chapter 86: The PHREG Procedure

proc phreg data=Myeloma plots(overlay)=survival;
class Frac;
model Time*VStatus(0)=LogBUN HGB Frac;
baseline covariates=Myeloma outdiff=Diff1 survival=_all_/diradj group=Frac;

run;

Because the CLASS variable Frac is specified as the GROUP= variable, a separate direct adjusted survival
curve is computed for each value of the variable Frac. Each direct adjusted survival curve is the average of
the predicted survival curves for all the patients in the entire Myeloma data set with their Frac value set to
a specific constant. For example, the direct adjusted survival curve for Frac=0 (no fracture at diagnosis) is
computed as follows:

1. The value of the variable Frac is set to 0 for all observations in the Myeloma data set.

2. The survival curve for each observation in the modified data set is computed.

3. All the survival curves computed in step 2 are averaged.

Output 86.8.4 Average Survival by Fracture Status

Output 86.8.4 shows that patients without fracture at diagnosis have better survival than those with fractures.
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Differences in the survival probabilities and their standard errors are displayed in Output 86.8.5.

proc print data=Diff1;
run;

Output 86.8.5 Differences in the Survival between Fracture and Nonfracture

Obs Frac Frac2 Time SurvDiff StdErr

1 0 1 1.25 0.01074 0.01199

2 0 1 2.00 0.02653 0.02605

3 0 1 3.00 0.03165 0.03063

4 0 1 5.00 0.04191 0.03963

5 0 1 6.00 0.06115 0.05669

6 0 1 7.00 0.07416 0.06853

7 0 1 9.00 0.07854 0.07261

8 0 1 11.00 0.09669 0.09002

9 0 1 13.00 0.09998 0.09327

10 0 1 14.00 0.10319 0.09644

11 0 1 15.00 0.10611 0.09937

12 0 1 16.00 0.11117 0.10464

13 0 1 17.00 0.11532 0.10922

14 0 1 18.00 0.11704 0.11120

15 0 1 19.00 0.11969 0.11447

16 0 1 24.00 0.12072 0.11593

17 0 1 25.00 0.12145 0.11713

18 0 1 26.00 0.12189 0.11808

19 0 1 32.00 0.12208 0.11883

20 0 1 35.00 0.12197 0.11933

21 0 1 37.00 0.12155 0.11956

22 0 1 41.00 0.11983 0.11924

23 0 1 51.00 0.11821 0.11850

24 0 1 52.00 0.11580 0.11714

25 0 1 54.00 0.11262 0.11507

26 0 1 58.00 0.10824 0.11203

27 0 1 66.00 0.10301 0.10814

28 0 1 67.00 0.09451 0.10130

29 0 1 88.00 0.08248 0.09133

30 0 1 89.00 0.06847 0.08033

31 0 1 92.00 0.05038 0.06515
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Example 86.9: Analysis of Residuals
Residuals are used to investigate the lack of fit of a model to a given subject. You can obtain martingale and
deviance residuals for the Cox proportional hazards regression analysis by requesting that they be included in
the OUTPUT data set. You can plot these statistics and look for outliers.

Consider the stepwise regression analysis performed in Example 86.1. The final model included variables
LogBUN and HGB. You can generate residual statistics for this analysis by refitting the model containing
those variables and including an OUTPUT statement as in the following invocation of PROC PHREG. The
keywords XBETA, RESMART, and RESDEV identify new variables that contain the linear predictor scores
z0j Ǒ, martingale residuals, and deviance residuals. These variables are xb, mart, and dev, respectively.

proc phreg data=Myeloma noprint;
model Time*Vstatus(0)=LogBUN HGB;
output out=Outp xbeta=Xb resmart=Mart resdev=Dev;

run;

The following statements plot the residuals against the linear predictor scores:

title "Myeloma Study";
proc sgplot data=Outp;

yaxis grid;
refline 0 / axis=y;
scatter y=Mart x=Xb;

run;
proc sgplot data=Outp;

yaxis grid;
refline 0 / axis=y;
scatter y=Dev x=Xb;

run;

The resulting plots are shown in Output 86.9.1 and Output 86.9.2. The martingale residuals are skewed
because of the single event setting of the Cox model. The martingale residual plot shows an isolation
point (with linear predictor score 1.09 and martingale residual –3.37), but this observation is no longer
distinguishable in the deviance residual plot. In conclusion, there is no indication of a lack of fit of the model
to individual observations.
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Output 86.9.1 Martingale Residual Plot
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Output 86.9.2 Deviance Residual Plot

Example 86.10: Analysis of Recurrent Events Data
Recurrent events data consist of times to a number of repeated events for each sample unit—for example,
times of recurrent episodes of a disease in patients. Various ways of analyzing recurrent events data are
described in the section “Analysis of Multivariate Failure Time Data” on page 6911. The bladder cancer data
listed in Wei, Lin, and Weissfeld (1989) are used here to illustrate these methods.

The data consist of 86 patients with superficial bladder tumors, which were removed when the patients
entered the study. Of these patients, 48 were randomized into the placebo group, and 38 were randomized
into the group receiving thiotepa. Many patients had multiple recurrences of tumors during the study, and
new tumors were removed at each visit. The data set contains the first four recurrences of the tumor for each
patient, and each recurrence time was measured from the patient’s entry time into the study.

The data consist of the following eight variables:

� Trt, treatment group (1=placebo and 2=thiotepa)

� Time, follow-up time
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� Number, number of initial tumors

� Size, initial tumor size

� T1, T2, T3, and T4, times of the four potential recurrences of the bladder tumor. A patient with only
two recurrences has missing values in T3 and T4.

In the data set Bladder, four observations are created for each patient, one for each of the four potential tumor
recurrences. In addition to values of Trt, Number, and Size for the patient, each observation contains the
following variables:

� ID, patient’s identification (which is the sequence number of the subject)

� Visit, visit number (with value k for the kth potential tumor recurrence)

� TStart, time of the (k – 1) recurrence for Visit=k, or the entry time 0 if VISIT=1, or the follow-up time
if the (k – 1) recurrence does not occur

� TStop, time of the kth recurrence if Visit=k or follow-up time if the kth recurrence does not occur

� Status, event status of TStop (1=recurrence and 0=censored)

For instance, a patient with only one recurrence time at month 6 who was followed until month 10 will have
values for Visit, TStart, TStop, and Status of (1,0,6,1), (2,6,10,0), (3,10,10,0), and (4,10,10,0), respectively.
The last two observations are redundant for the intensity model and the proportional means model, but they
are important for the analysis of the marginal Cox models. If the follow-up time is beyond the time of
the fourth tumor recurrence, it is tempting to create a fifth observation with the time of the fourth tumor
recurrence as the TStart value, the follow-up time as the TStop value, and a Status value of 0. However,
Therneau and Grambsch (2000, Section 8.5) have warned against incorporating such observations into the
analysis.

The following SAS statements create the data set Bladder:

data Bladder;
keep ID TStart TStop Status Trt Number Size Visit;
retain ID TStart 0;
array tt[4] T1-T4;
infile datalines missover;
input Trt Time Number Size T1-T4;
ID + 1;
TStart=0;
do Visit=1 to 4;

if tt[Visit] = . then do;
TStop=Time;
Status=0;

end;
else do;

TStop=tt[Visit];
Status=1;

end;
output;
TStart=TStop;
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end;
if (TStart < Time) then delete;
datalines;

1 0 1 1
1 1 1 3
1 4 2 1
1 7 1 1
1 10 5 1
1 10 4 1 6
1 14 1 1
1 18 1 1
1 18 1 3 5
1 18 1 1 12 16
1 23 3 3
1 23 1 3 10 15
1 23 1 1 3 16 23
1 23 3 1 3 9 21
1 24 2 3 7 10 16 24
1 25 1 1 3 15 25
1 26 1 2
1 26 8 1 1
1 26 1 4 2 26
1 28 1 2 25
1 29 1 4
1 29 1 2
1 29 4 1
1 30 1 6 28 30
1 30 1 5 2 17 22
1 30 2 1 3 6 8 12
1 31 1 3 12 15 24
1 32 1 2
1 34 2 1
1 36 2 1
1 36 3 1 29
1 37 1 2
1 40 4 1 9 17 22 24
1 40 5 1 16 19 23 29
1 41 1 2
1 43 1 1 3
1 43 2 6 6
1 44 2 1 3 6 9
1 45 1 1 9 11 20 26
1 48 1 1 18
1 49 1 3
1 51 3 1 35
1 53 1 7 17
1 53 3 1 3 15 46 51
1 59 1 1
1 61 3 2 2 15 24 30
1 64 1 3 5 14 19 27
1 64 2 3 2 8 12 13
2 1 1 3
2 1 1 1
2 5 8 1 5
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2 9 1 2
2 10 1 1
2 13 1 1
2 14 2 6 3
2 17 5 3 1 3 5 7
2 18 5 1
2 18 1 3 17
2 19 5 1 2
2 21 1 1 17 19
2 22 1 1
2 25 1 3
2 25 1 5
2 25 1 1
2 26 1 1 6 12 13
2 27 1 1 6
2 29 2 1 2
2 36 8 3 26 35
2 38 1 1
2 39 1 1 22 23 27 32
2 39 6 1 4 16 23 27
2 40 3 1 24 26 29 40
2 41 3 2
2 41 1 1
2 43 1 1 1 27
2 44 1 1
2 44 6 1 2 20 23 27
2 45 1 2
2 46 1 4 2
2 46 1 4
2 49 3 3
2 50 1 1
2 50 4 1 4 24 47
2 54 3 4
2 54 2 1 38
2 59 1 3
;

First, consider fitting the intensity model (Andersen and Gill 1982) and the proportional means model
(Lin et al. 2000). The counting process style of input is used in the PROC PHREG specification. For the
proportional means model, inference is based on the robust sandwich covariance estimate, which is requested
by the COVS(AGGREGATE) option in the PROC PHREG statement. The COVM option is specified for
the analysis of the intensity model to use the model-based covariance estimate. Note that some of the
observations in the data set Bladder have a degenerated interval of risk. The presence of these observations
does not affect the results of the analysis since none of these observations are included in any of the risk sets.
However, the procedure will run more efficiently without these observations; consequently, in the following
SAS statements, the WHERE clause is used to eliminate these redundant observations:

title 'Intensity Model and Proportional Means Model';
proc phreg data=Bladder covm covs(aggregate);

model (TStart, TStop) * Status(0) = Trt Number Size;
id id;
where TStart < TStop;

run;
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Results of fitting the intensity model and the proportional means model are shown in Output 86.10.1 and
Output 86.10.2, respectively. The robust sandwich standard error estimate for Trt is larger than its model-based
counterpart, rendering the effect of thiotepa less significant in the proportional means model (p = 0.0747)
than in the intensity model (p = 0.0215).

Output 86.10.1 Analysis of the Intensity Model

Intensity Model and Proportional Means Model

The PHREG Procedure

Intensity Model and Proportional Means Model

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

with Model-Based Variance Estimate

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Trt 1 -0.45979 0.19996 5.2873 0.0215 0.631

Number 1 0.17165 0.04733 13.1541 0.0003 1.187

Size 1 -0.04256 0.06903 0.3801 0.5375 0.958

Output 86.10.2 Analysis of the Proportional Means Model

Analysis of Maximum Likelihood Estimates

with Sandwich Variance Estimate

Parameter DF
Parameter

Estimate
Standard

Error
StdErr

Ratio Chi-Square Pr > ChiSq
Hazard

Ratio

Trt 1 -0.45979 0.25801 1.290 3.1757 0.0747 0.631

Number 1 0.17165 0.06131 1.296 7.8373 0.0051 1.187

Size 1 -0.04256 0.07555 1.094 0.3174 0.5732 0.958

Next, consider the conditional models of Prentice, Williams, and Peterson (1981). In the PWP models, the
risk set for the (k + 1) recurrence is restricted to those patients who have experienced the first k recurrences.
For example, a patient who experienced only one recurrence is an event observation for the first recurrence;
this patient is a censored observation for the second recurrence and should not be included in the risk set for
the third or fourth recurrence. The following DATA step eliminates those observations that should not be
in the risk sets, forming a new input data set (named Bladder2) for fitting the PWP models. The variable
Gaptime, representing the gap times between successive recurrences, is also created.

data Bladder2(drop=LastStatus);
retain LastStatus;
set Bladder;
by ID;
if first.id then LastStatus=1;
if (Status=0 and LastStatus=0) then delete;
LastStatus=Status;
Gaptime=Tstop-Tstart;

run;

The following statements fit the PWP total time model. The variables Trt1, Trt2, Trt3, and Trt4 are visit-specific
variables for Trt; the variables Number1, Number2, Numvber3, and Number4 are visit-specific variables for
Number; and the variables Size1, Size2, Size3, and Size4 are visit-specific variables for Size.
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title 'PWP Total Time Model with Noncommon Effects';
proc phreg data=Bladder2;

model (TStart,Tstop) * Status(0) = Trt1-Trt4 Number1-Number4
Size1-Size4;

Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;

run;

Results of the analysis of the PWP total time model are shown in Output 86.10.3. There is no significant
treatment effect on the total time in any of the four tumor recurrences.

Output 86.10.3 Analysis of the PWP Total Time Model with Noncommon Effects

PWP Total Time Model with Noncommon Effects

The PHREG Procedure

PWP Total Time Model with Noncommon Effects

The PHREG Procedure

Summary of the Number of Event and Censored
Values

Stratum Visit Total Event Censored
Percent

Censored

1 1 85 47 38 44.71

2 2 46 29 17 36.96

3 3 27 22 5 18.52

4 4 20 14 6 30.00

Total 178 112 66 37.08

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Trt1 1 -0.51757 0.31576 2.6868 0.1012 0.596

Trt2 1 -0.45967 0.40642 1.2792 0.2581 0.631

Trt3 1 0.11700 0.67183 0.0303 0.8617 1.124

Trt4 1 -0.04059 0.79251 0.0026 0.9592 0.960

Number1 1 0.23605 0.07607 9.6287 0.0019 1.266

Number2 1 -0.02044 0.09052 0.0510 0.8213 0.980

Number3 1 0.01219 0.18208 0.0045 0.9466 1.012

Number4 1 0.18915 0.24443 0.5989 0.4390 1.208

Size1 1 0.06790 0.10125 0.4498 0.5024 1.070

Size2 1 -0.15425 0.12300 1.5728 0.2098 0.857

Size3 1 0.14891 0.26299 0.3206 0.5713 1.161

Size4 1 0.0000732 0.34297 0.0000 0.9998 1.000
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The following statements fit the PWP gap-time model:

title 'PWP Gap-Time Model with Noncommon Effects';
proc phreg data=Bladder2;

model Gaptime * Status(0) = Trt1-Trt4 Number1-Number4
Size1-Size4;

Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;

run;

Results of the analysis of the PWP gap-time model are shown in Output 86.10.4. Note that the regression
coefficients for the first tumor recurrence are the same as those of the total time model, since the total time
and the gap time are the same for the first recurrence. There is no significant treatment effect on the gap times
for any of the four tumor recurrences.

Output 86.10.4 Analysis of the PWP Gap-Time Model with Noncommon Effects

PWP Gap-Time Model with Noncommon Effects

The PHREG Procedure

PWP Gap-Time Model with Noncommon Effects

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Trt1 1 -0.51757 0.31576 2.6868 0.1012 0.596

Trt2 1 -0.25911 0.40511 0.4091 0.5224 0.772

Trt3 1 0.22105 0.54909 0.1621 0.6873 1.247

Trt4 1 -0.19498 0.64184 0.0923 0.7613 0.823

Number1 1 0.23605 0.07607 9.6287 0.0019 1.266

Number2 1 -0.00571 0.09667 0.0035 0.9529 0.994

Number3 1 0.12935 0.15970 0.6561 0.4180 1.138

Number4 1 0.42079 0.19816 4.5091 0.0337 1.523

Size1 1 0.06790 0.10125 0.4498 0.5024 1.070

Size2 1 -0.11636 0.11924 0.9524 0.3291 0.890

Size3 1 0.24995 0.23113 1.1695 0.2795 1.284

Size4 1 0.03557 0.29043 0.0150 0.9025 1.036

You can fit the PWP total time model with common effects by using the following SAS statements. However,
the analysis is not shown here.
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title2 'PWP Total Time Model with Common Effects';
proc phreg data=Bladder2;

model (tstart,tstop) * status(0) = Trt Number Size;
strata Visit;

run;

You can fit the PWP gap-time model with common effects by using the following statements. Again, the
analysis is not shown here.

title2 'PWP Gap Time Model with Common Effects';
proc phreg data=Bladder2;

model Gaptime * Status(0) = Trt Number Size;
strata Visit;

run;

Recurrent events data are a special case of multiple events data in which the recurrence times are regarded as
multivariate failure times and the marginal approach of Wei, Lin, and Weissfeld (1989) can be used. WLW
fits a Cox model to each of the component times and makes statistical inference of the regression parameters
based on a robust sandwich covariance matrix estimate. No specific correlation structure is imposed on the
multivariate failure times. For the kth marginal model, let ˇk denote the row vector of regression parameters,
let Ǒk denote the maximum likelihood estimate of ˇk , let OAk denote the covariance matrix obtained by
inverting the observed information matrix, and let Rk denote the matrix of score residuals. WLW showed
that the joint distribution of . Ǒ1; : : : ; Ǒ4/0 can be approximated by a multivariate normal distribution with
mean vector .ˇ1; : : : ;ˇ4/0 and robust covariance matrix0BBBB@

V11 V12 V13 V14
V21 V22 V23 V24
V31 V32 V33 V34
V41 V42 V43 V44

1CCCCA
with the submatrix Vij given by

Vij D OAi .R0iRj / OAj

In this example, there are four marginal proportional hazards models, one for each potential recurrence
time. Instead of fitting one model at a time, you can fit all four marginal models in one analysis by using
the STRATA statement and model-specific covariates as in the following statements. Using Visit as the
STRATA variable on the input data set Bladder, PROC PHREG simultaneously fits all four marginal models,
one for each Visit value. The COVS(AGGREGATE) option is specified to compute the robust sandwich
variance estimate by summing up the score residuals for each distinct pattern of ID value. The TEST
statement TREATMENT is used to perform the global test of no treatment effect for each tumor recurrence,
the AVERAGE option is specified to estimate the parameter for the common treatment effect, and the E
option displays the optimal weights for the common treatment effect.

title 'Wei-Lin-Weissfeld Model';
proc phreg data=Bladder covs(aggregate);

model TStop*Status(0)=Trt1-Trt4 Number1-Number4 Size1-Size4;
Trt1= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
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Trt4= Trt * (Visit=4);
Number1= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4= Number * (Visit=4);
Size1= Size * (Visit=1);
Size2= Size * (Visit=2);
Size3= Size * (Visit=3);
Size4= Size * (Visit=4);
strata Visit;
id ID;
TREATMENT: test trt1,trt2,trt3,trt4/average e;

run;

Out of the 86 patients, 47 patients have only one tumor recurrence, 29 patients have two recurrences, 22
patients have three recurrences, and 14 patients have four recurrences (Output 86.10.5). Parameter estimates
for the four marginal models are shown in Output 86.10.6. The 4 DF Wald test (Output 86.10.7) indicates
a lack of evidence of a treatment effect in any of the four recurrences (p = 0.4105). The optimal weights
for estimating the parameter of the common treatment effect are 0.67684, 0.25723, –0.07547, and 0.14140
for Trt1, Trt2, Trt3, and Trt4, respectively, which gives a parameter estimate of –0.5489 with a standard
error estimate of 0.2853. A more sensitive test for a treatment effect is the 1 DF test based on this common
parameter; however, there is still insufficient evidence for such effect at the 0.05 level (p = 0.0543).

Output 86.10.5 Summary of Bladder Tumor Recurrences in 86 Patients

Wei-Lin-Weissfeld Model

The PHREG Procedure

Wei-Lin-Weissfeld Model

The PHREG Procedure

Summary of the Number of Event and Censored
Values

Stratum Visit Total Event Censored
Percent

Censored

1 1 86 47 39 45.35

2 2 86 29 57 66.28

3 3 86 22 64 74.42

4 4 86 14 72 83.72

Total 344 112 232 67.44
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Output 86.10.6 Analysis of Marginal Cox Models

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error
StdErr

Ratio Chi-Square Pr > ChiSq
Hazard

Ratio

Trt1 1 -0.51762 0.30750 0.974 2.8336 0.0923 0.596

Trt2 1 -0.61944 0.36391 0.926 2.8975 0.0887 0.538

Trt3 1 -0.69988 0.41516 0.903 2.8419 0.0918 0.497

Trt4 1 -0.65079 0.48971 0.848 1.7661 0.1839 0.522

Number1 1 0.23599 0.07208 0.947 10.7204 0.0011 1.266

Number2 1 0.13756 0.08690 0.946 2.5059 0.1134 1.147

Number3 1 0.16984 0.10356 0.984 2.6896 0.1010 1.185

Number4 1 0.32880 0.11382 0.909 8.3453 0.0039 1.389

Size1 1 0.06789 0.08529 0.842 0.6336 0.4260 1.070

Size2 1 -0.07612 0.11812 0.881 0.4153 0.5193 0.927

Size3 1 -0.21131 0.17198 0.943 1.5097 0.2192 0.810

Size4 1 -0.20317 0.19106 0.830 1.1308 0.2876 0.816

Output 86.10.7 Tests of Treatment Effects

Wei-Lin-Weissfeld Model

The PHREG Procedure

Wei-Lin-Weissfeld Model

The PHREG Procedure

Linear Coefficients for Test TREATMENT

Parameter Row 1 Row 2 Row 3 Row 4
Average

Effect

Trt1 1 0 0 0 0.67684

Trt2 0 1 0 0 0.25723

Trt3 0 0 1 0 -0.07547

Trt4 0 0 0 1 0.14140

Number1 0 0 0 0 0.00000

Number2 0 0 0 0 0.00000

Number3 0 0 0 0 0.00000

Number4 0 0 0 0 0.00000

Size1 0 0 0 0 0.00000

Size2 0 0 0 0 0.00000

Size3 0 0 0 0 0.00000

Size4 0 0 0 0 0.00000

CONSTANT 0 0 0 0 0.00000

Test TREATMENT Results

Wald
Chi-Square DF Pr > ChiSq

3.9668 4 0.4105

Average Effect for Test
TREATMENT

Estimate
Standard

Error z-Score Pr > |z|

-0.5489 0.2853 -1.9240 0.0543
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Example 86.11: Analysis of Clustered Data
When experimental units are naturally or artificially clustered, failure times of experimental units within a
cluster are correlated. Two approaches can be taken to adjust for the intracluster correlation. In the marginal
Cox model approach, Lee, Wei, and Amato (1992) estimate the regression parameters in the Cox model by the
maximum partial likelihood estimates under an independent working assumption and use a robust sandwich
covariance matrix estimate to account for the intracluster dependence. Lin (1994) illustrates this methodology
by using a subset of data from the Diabetic Retinopathy Study (DRS). An alternative approach to account for
the within-cluster correlation is to use a shared frailty model where cluster effects are incorporated into the
model as independent and identically distributed random variables.

The following DATA step creates the data set Blind that represents 197 diabetic patients who have a high
risk of experiencing blindness in both eyes as defined by DRS criteria. One eye of each patient is treated
with laser photocoagulation. The hypothesis of interest is whether the laser treatment delays the occurrence
of blindness. Since juvenile and adult diabetes have very different courses, it is also desirable to examine
how the age of onset of diabetes might affect the time of blindness. Since there are no biological differences
between the left eye and the right eye, it is natural to assume a common baseline hazard function for the
failure times of the left and right eyes.

Each patient is a cluster that contributes two observations to the input data set, one for each eye. The
following variables are in the input data set Blind:

� ID, patient’s identification

� Time, time to blindness

� Status, blindness indicator (0:censored and 1:blind)

� Treat, treatment received (Laser or Others)

� Type, type of diabetes (Juvenile: onset at age � 20 or Adult: onset at age > 20)

proc format;
value type 0='Juvenile' 1='Adult';
value Rx 1='Laser' 0='Others';

run;

data Blind;
input ID Time Status dty trt @@;
Type= put(dty, type.);
Treat= put(trt, Rx.);
datalines;
5 46.23 0 1 1 5 46.23 0 1 0 14 42.50 0 0 1 14 31.30 1 0 0

16 42.27 0 0 1 16 42.27 0 0 0 25 20.60 0 0 1 25 20.60 0 0 0
29 38.77 0 0 1 29 0.30 1 0 0 46 65.23 0 0 1 46 54.27 1 0 0

... more lines ...

1705 8.00 0 0 1 1705 8.00 0 0 0 1717 51.60 0 1 1 1717 42.33 1 1 0
1727 49.97 0 1 1 1727 2.90 1 1 0 1746 45.90 0 0 1 1746 1.43 1 0 0
1749 41.93 0 1 1 1749 41.93 0 1 0
;
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As a preliminary analysis, PROC FREQ is used to summarize the number of eyes that developed blindness.

proc freq data=Blind;
table Treat*Status;

run;

By the end of the study, 54 eyes treated with laser photocoagulation and 101 eyes treated by other means
have developed blindness (Output 86.11.1).

Output 86.11.1 Distribution of Blindness

The FREQ ProcedureThe FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Treat by Status

Treat

Status

0 1 Total

Laser 143
36.29
72.59
59.83

54
13.71
27.41
34.84

197
50.00

Others 96
24.37
48.73
40.17

101
25.63
51.27
65.16

197
50.00

Total 239
60.66

155
39.34

394
100.00

The following statements use PROC PHREG to carry out the analysis of Lee, Wei, and Amato (1992).
The explanatory variables in this Cox model are Treat, Type, and the Treat � Type interaction. The
COVS(AGGREGATE) option is specified to compute the robust sandwich covariance matrix estimate. The
ID statement identifies the variable that represents the clusters. The HAZARDRATIO statement requests
hazard ratios for the treatments be displayed.

proc phreg data=Blind covs(aggregate);
class Treat Type;
model Time*Status(0)=Treat|Type;
id ID;
hazardratio 'Marginal Model Analysis' Treat;

run;

Results of the marginal model analysis are displayed in Output 86.11.2. The robust standard error estimates
are smaller than the model-based counterparts, since the ratio of the robust standard error estimate relative to
the model-based estimate is less than 1 for each parameter. Laser photocoagulation appears to be effective
(p = 0.0217) in delaying the occurrence of blindness, although there is also a significant interaction effect
between treatment and type of diabetes (p = 0.0053).
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Output 86.11.2 Inference Based on the Marginal Model

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error
StdErr

Ratio Chi-Square Pr > ChiSq
Hazard

Ratio Label

Treat Laser 1 -0.42467 0.18497 0.850 5.2713 0.0217 . Treat Laser

Type Adult 1 0.34084 0.19558 0.982 3.0371 0.0814 . Type Adult

Treat*Type Laser Adult 1 -0.84566 0.30353 0.865 7.7622 0.0053 . Treat Laser * Type Adult

Hazard ratio estimates of the laser treatment relative to nonlaser treatment are displayed in Output 86.11.3.
For both types of diabetes, the 95% confidence interval for the hazard ratio lies below 1. This indicates that
laser-photocoagulation treatment is more effective in delaying blindness regardless of the type of diabetes.
However, the effect is more prominent for adult-onset diabetes than for juvenile-onset diabetes since the
hazard ratio estimates for the former are less than those of the latter.

Output 86.11.3 Hazard Ratio Estimates for Marginal Model

Marginal Model Analysis: Hazard Ratios for Treat

Description
Point

Estimate

95%
Wald

Robust
Confidence

Limits

Treat Laser vs Others At Type=Adult 0.281 0.175 0.451

Treat Laser vs Others At Type=Juvenile 0.654 0.455 0.940

Next, you analyze the same data by using a shared frailty model. The following statements use PROC
PHREG to fit a shared frailty model to the Blind data set. The RANDOM statement identifies the variable ID
as the variable that represents the clusters. You must declare the cluster variable as a classification variable in
the CLASS statement.

proc phreg data=Blind;
class ID Treat Type;
model Time*Status(0)=Treat|Type;
random ID;
hazardratio 'Frailty Model Analysis' Treat;

run;

Selected results of this analysis are displayed in Output 86.11.4 to Output 86.11.6.

The “Random Class Level Information” table in Output 86.11.4 displays the 197 ID values of the patients.
You can suppress the display of this table by using the NOCLPRINT option in the RANDOM statement.
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Output 86.11.4 Unique Cluster Identification Values

The PHREG ProcedureThe PHREG Procedure

Class Level Information for Random Effects

Class Levels Values

ID 197 5 14 16 25 29 46 49 56 61 71 100 112 120 127 133 150 167 176 185 190 202 214 220 243 255 264 266 284
295 300 302 315 324 328 335 342 349 357 368 385 396 405 409 419 429 433 445 454 468 480 485 491 503
515 522 538 547 550 554 557 561 568 572 576 581 606 610 615 618 624 631 636 645 653 662 664 683 687
701 706 717 722 731 740 749 757 760 766 769 772 778 780 793 800 804 810 815 832 834 838 857 866 887
903 910 920 925 931 936 945 949 952 962 964 971 978 983 987 1002 1017 1029 1034 1037 1042 1069 1074
1098 1102 1112 1117 1126 1135 1145 1148 1167 1184 1191 1205 1213 1228 1247 1250 1253 1267 1281
1287 1293 1296 1309 1312 1317 1321 1333 1347 1361 1366 1373 1397 1410 1413 1425 1447 1461 1469
1480 1487 1491 1499 1503 1513 1524 1533 1537 1552 1554 1562 1572 1581 1585 1596 1600 1603 1619
1627 1636 1640 1643 1649 1666 1672 1683 1688 1705 1717 1727 1746 1749

The “Covariance Parameter Estimates” table in Output 86.11.5 displays the estimate and asymptotic estimated
standard error of the common variance parameter of the normal random effects.

Output 86.11.5 Variance Estimate of the Normal Random Effects

Covariance Parameter
Estimates

Cov
Parm

REML
Estimate

Standard
Error

ID 0.8308 0.2145

Output 86.11.6 displays the Wald tests for both the fixed effects and the random effects. The random effects
are statistically significant (p = 0.0042). Results of testing the fixed effects are very similar to those based on
the robust variance estimates. Laser photocoagulation appears to be effective (p = 0.0252) in delaying the
occurrence of blindness, although there is also a significant treatment by diabetes type interaction effect (p =
0.0071).

Output 86.11.6 Inference Based on the Frailty Model

Type 3 Tests

Effect
Wald

Chi-Square DF Pr > ChiSq
Adjusted

DF
Adjusted

Pr > ChiSq

Treat 4.8961 1 0.0269 0.9587 0.0252

Type 2.6395 1 0.1042 0.6795 0.0629

Treat*Type 7.1349 1 0.0076 0.9644 0.0071

ID 110.3922 . . 74.2788 0.0042

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Treat Laser 1 -0.49848 0.22528 4.8961 0.0269 . Treat Laser

Type Adult 1 0.39788 0.24490 2.6395 0.1042 . Type Adult

Treat*Type Laser Adult 1 -0.96540 0.36142 7.1349 0.0076 . Treat Laser * Type Adult

Estimates of hazard ratios of the laser treatment relative to nonlaser treatment are displayed in Output 86.11.7.
These estimates closely resemble those computed in analysis based on the marginal Cox model in Out-
put 86.11.3, which leads to the same conclusion that laser photocoagulation is effective in delaying blindness
for both types of diabetes, and more effective for the adult-onset diabetes than for juvenile-onset diabetes.
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Output 86.11.7 Hazard Ratio Estimates for Frailty Model

Frailty Model Analysis: Hazard Ratios for Treat

Description
Point

Estimate

95%
Wald

Confidence
Limits

Treat Laser vs Others At Type=Adult 0.231 0.133 0.403

Treat Laser vs Others At Type=Juvenile 0.607 0.391 0.945

Example 86.12: Model Assessment Using Cumulative Sums of Martingale
Residuals

The Mayo liver disease example of Lin, Wei, and Ying (1993) is reproduced here to illustrate the checking
of the functional form of a covariate and the assessment of the proportional hazards assumption. The data
represent 418 patients with primary biliary cirrhosis (PBC), among whom 161 had died as of the date of
data listing. A subset of the variables is saved in the SAS data set Liver. The data set contains the following
variables:

� Time, follow-up time, in years

� Status, event indicator with value 1 for death time and value 0 for censored time

� Age, age in years from birth to study registration

� Albumin, serum albumin level, in g/dl

� Bilirubin, serum bilirubin level, in mg/dl

� Edema, edema presence

� Protime, prothrombin time, in seconds

The following statements create the data set Liver:

data Liver;
input Time Status Age Albumin Bilirubin Edema Protime @@;
label Time="Follow-up Time in Years";
Time= Time / 365.25;
datalines;

400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6
1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6
3577 0 45.6893 3.85 0.7 0.0 10.6 1217 1 56.2218 2.27 0.8 1.0 11.0
3584 1 64.6461 3.87 0.8 0.0 11.0 3672 0 40.4435 3.66 0.7 0.0 10.8

... more lines ...
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989 0 35.0000 3.23 0.7 0.0 10.8 681 1 67.0000 2.96 1.2 0.0 10.9
1103 0 39.0000 3.83 0.9 0.0 11.2 1055 0 57.0000 3.42 1.6 0.0 9.9
691 0 58.0000 3.75 0.8 0.0 10.4 976 0 53.0000 3.29 0.7 0.0 10.6

;

Consider fitting a Cox model for the survival time of the PCB patients with the covariates Bilirubin,
log(Protime), log(Albumin), Age, and Edema. The log transform, which is often applied to blood chemistry
measurements, is deliberately not employed for Bilirubin. It is of interest to assess the functional form of the
variable Bilirubin in the Cox model. The specifications are as follows:

ods graphics on;
proc phreg data=Liver;

model Time*Status(0)=Bilirubin logProtime logAlbumin Age Edema;
logProtime=log(Protime);
logAlbumin=log(Albumin);
assess var=(Bilirubin) / resample seed=7548;

run;

The ASSESS statement creates a plot of the cumulative martingale residuals against the values of the
covariate Bilirubin, which is specified in the VAR= option. The RESAMPLE option computes the p-value of
a Kolmogorov-type supremum test based on a sample of 1,000 simulated residual patterns.

Parameter estimates of the model fit are shown in Output 86.12.1. The plot in Output 86.12.2 displays the
observed cumulative martingale residual process for Bilirubin together with 20 simulated realizations from
the null distribution. When ODS Graphics is enabled, this graphical display is requested by specifying the
ASSESS statement. It is obvious that the observed process is atypical compared to the simulated realizations.
Also, none of the 1,000 simulated realizations has an absolute maximum exceeding that of the observed
cumulative martingale residual process. Both the graphical and numerical results indicate that a transform is
deemed necessary for Bilirubin in the model.

Output 86.12.1 Cox Model with Bilirubin as a Covariate

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

Bilirubin 1 0.11733 0.01298 81.7567 <.0001 1.124

logProtime 1 2.77581 0.71482 15.0794 0.0001 16.052

logAlbumin 1 -3.17195 0.62945 25.3939 <.0001 0.042

Age 1 0.03779 0.00805 22.0288 <.0001 1.039

Edema 1 0.84772 0.28125 9.0850 0.0026 2.334
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Output 86.12.2 Cumulative Martingale Residuals vs Bilirubin

The cumulative martingale residual plots in Output 86.12.3 provide guidance in suggesting a more appropriate
functional form for a covariate. The four curves were created from simple forms of misspecification by using
10,000 simulated times from a exponential model with 20% censoring. The true and fitted models are shown
in Table 86.20. The following statements produce Output 86.12.3.

data sim(drop=tmp);
p = 1 / 91;
seed = 1;
do n = 1 to 10000;

x1 = rantbl( seed, p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p,
p, p, p, p, p, p, p, p, p, p );

x1 = 1 + ( x1 - 1 ) / 10;



Example 86.12: Model Assessment Using Cumulative Sums of Martingale Residuals F 7031

x2= x1 * x1;
x3= x1 * x2;
status= rantbl(seed, .8);
tmp= log(1-ranuni(seed));
t1= -exp(-log(x1)) * tmp;
t2= -exp(-.1*(x1+x2)) * tmp;
t3= -exp(-.01*(x1+x2+x3)) * tmp;
tt= -exp(-(x1>5)) * tmp;
output;

end;
run;

proc sort data=sim;
by x1;

run;

proc phreg data=sim noprint;
model t1*status(2)=x1;
output out=out1 resmart=resmart;

run;

proc phreg data=sim noprint;
model t2*status(2)=x1;
output out=out2 resmart=resmart;

run;

proc phreg data=sim noprint;
model t3*status(2)=x1 x2;
output out=out3 resmart=resmart;

run;

proc phreg data=sim noprint;
model tt*status(2)=x1;
output out=out4 resmart=resmart;

run;

data out1(keep=x1 cresid1);
retain cresid1 0;
set out1;
by x1;
cresid1 + resmart;
if last.x1 then output;

run;

data out2(keep=x1 cresid2);
retain cresid2 0;
set out2;
by x1;
cresid2 + resmart;
if last.x1 then output;

run;
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data out3(keep=x1 cresid3);
retain cresid3 0;
set out3;
by x1;
cresid3 + resmart;
if last.x1 then output;

run;

data out4(keep=x1 cresid4);
retain cresid4 0;
set out4;
by x1;
cresid4 + resmart;
if last.x1 then output;

run;

data all;
set out1;
set out2;
set out3;
set out4;

run;

proc template;
define statgraph MisSpecification;

BeginGraph;
entrytitle "Covariate Misspecification";
layout lattice / columns=2 rows=2 columndatarange=unionall;

columnaxes;
columnaxis / display=(ticks tickvalues label) label="x";
columnaxis / display=(ticks tickvalues label) label="x";

endcolumnaxes;

cell;
cellheader;

entry "(a) Data: log(X), Model: X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label="Cumulative Residual");
seriesplot y=cresid1 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

cell;
cellheader;

entry "(b) Data: X*X, Model: X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label=" ");
seriesplot y=cresid2 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;
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cell;
cellheader;

entry "(c) Data: X*X*X, Model: X*X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label="Cumulative Residual");
seriesplot y=cresid3 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

cell;
cellheader;

entry "(d) Data: I(X>5), Model: X";
endcellheader;
layout overlay / xaxisopts=(display=none)

yaxisopts=(label=" ");
seriesplot y=cresid4 x=x1 / lineattrs=GraphFit;

endlayout;
endcell;

endlayout;
EndGraph;

end;
run;

proc sgrender data=all template=MisSpecification;
run;
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Output 86.12.3 Typical Cumulative Residual Plot Patterns

Table 86.20 Model Misspecifications

Plot Data Fitted Model

(a) log(X) X
(b) fX;X2g X
(c) fX;X2; X3g fX;X2g

(d) I.X > 5/ X

The curve of observed cumulative martingale residuals in Output 86.12.2 most resembles the behavior of the
curve in plot (a) of Output 86.12.3, indicating that log(Bilirubin) might be a more appropriate term in the
model than Bilirubin.

Next, the analysis of the natural history of the PBC is repeated with log(Bilirubin) replacing Bilirubin, and the
functional form of log(Bilirubin) is assessed. Also assessed is the proportional hazards assumption for the
Cox model. The analysis is carried out by the following statements:
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proc phreg data=Liver;
model Time*Status(0)=logBilirubin logProtime logAlbumin Age Edema;
logBilirubin=log(Bilirubin);
logProtime=log(Protime);
logAlbumin=log(Albumin);
assess var=(logBilirubin) ph / crpanel resample seed=19;

run;

The SEED= option specifies a integer seed for generating random numbers. The CRPANEL option in the
ASSESS statement requests a panel of four plots. Each plot displays the observed cumulative martingale
residual process along with two simulated realizations. The PH option checks the proportional hazards
assumption of the model by plotting the observed standardized score process with 20 simulated realizations
for each covariate in the model.

Output 86.12.4 displays the parameter estimates of the fitted model. The cumulative martingale residual plots
in Output 86.12.5 and Output 86.12.6 show that the observed martingale residual process is more typical of
the simulated realizations. The p-value for the Kolmogorov-type supremum test based on 1,000 simulations
is 0.052, indicating that the log transform is a much improved functional form for Bilirubin.

Output 86.12.4 Model with log(Bilirubin) as a Covariate

The PHREG ProcedureThe PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio

logBilirubin 1 0.87072 0.08263 111.0484 <.0001 2.389

logProtime 1 2.37789 0.76674 9.6181 0.0019 10.782

logAlbumin 1 -2.53264 0.64819 15.2664 <.0001 0.079

Age 1 0.03940 0.00765 26.5306 <.0001 1.040

Edema 1 0.85934 0.27114 10.0447 0.0015 2.362
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Output 86.12.5 Panel Plot of Cumulative Martingale Residuals versus log(Bilirubin)
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Output 86.12.6 Cumulative Martingale Residuals versus log(Bilirubin)

Output 86.12.7 and Output 86.12.8 display the results of proportional hazards assumption assessment for
log(Bilirubin) and log(Protime), respectively. The latter plot reveals nonproportional hazards for log(Protime).
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Output 86.12.7 Standardized Score Process for log(Bilirubin)

[
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Output 86.12.8 Standardized Score Process for log(Protime)

Plots for log(Albumin), Age, and Edema are not shown here. The Kolmogorov-type supremum test results
for all the covariates are shown in Output 86.12.9. In addition to log(Protime), the proportional hazards
assumption appears to be violated for Edema.

Output 86.12.9 Kolmogorov-Type Supremum Tests for Proportional Hazards Assumption

Supremum Test for Proportionals Hazards
Assumption

Variable

Maximum
Absolute

Value Replications Seed
Pr >

MaxAbsVal

logBilirubin 1.0880 1000 19 0.1450

logProtime 1.7243 1000 19 0.0010

logAlbumin 0.8443 1000 19 0.4330

Age 0.7387 1000 19 0.4620

Edema 1.4350 1000 19 0.0330
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Example 86.13: Bayesian Analysis of the Cox Model
This example illustrates the use of an informative prior. Hazard ratios, which are transformations of the
regression parameters, are useful for interpreting survival models. This example also demonstrates the use of
the HAZARDRATIO statement to obtain customized hazard ratios.

Consider the VALung data set in Example 86.3. In this example, the Cox model is used for the Bayesian
analysis. The parameters are the coefficients of the continuous explanatory variables (Kps, Duration, and Age)
and the coefficients of the design variables for the categorical explanatory variables (Prior, Cell, and Therapy).
You use the CLASS statement in PROC PHREG to specify the categorical variables and their reference levels.
Using the default reference parameterization, the design variables for the categorical variables are Prioryes
(for Prior with Prior=’no’ as reference), Celladeno, Cellsmall, Cellsquamous (for Cell with Cell=’large’ as
reference), and Therapytest (for Therapy=’standard’ as reference).

Consider the explanatory variable Kps. The Karnofsky performance scale index enables patients to be
classified according to their functional impairment. The scale can range from 0 to 100—0 for dead, and 100
for a normal, healthy person with no evidence of disease. Recall that a flat prior was used for the regression
coefficient in the example in the section “Bayesian Analysis” on page 6817. A flat prior on the Kps coefficient
implies that the coefficient is as likely to be 0.1 as it is to be –100000. A coefficient of –5 means that a
decrease of 20 points in the scale increases the hazard by e�20��5(=2.68 �1043)-fold, which is a rather
unreasonable and unrealistic expectation for the effect of the Karnofsky index, much less than the value of
–100000. Suppose you have a more realistic expectation: the effect is somewhat small and is more likely to
be negative than positive, and a decrease of 20 points in the Karnofsky index will change the hazard from
0.9-fold (some minor positive effect) to 4-fold (a large negative effect). You can convert this opinion to a
more informative prior on the Kps coefficient ˇ1. Mathematically,

0:9 < e�20ˇ1 < 4

which is equivalent to

�0:0693 < ˇ1 < 0:0053

This becomes the plausible range that you believe the Kps coefficient can take. Now you can find a normal
distribution that best approximates this belief by placing the majority of the prior distribution mass within
this range. Assuming this interval is �˙ 2� , where � and � are the mean and standard deviation of the
normal prior, respectively, the hyperparameters � and � are computed as follows:

� D
�0:0693C 0:0053

2
D �0:032

� D
0:0053 � .�0:0693/

4
D 0:0186

Note that a normal prior distribution with mean –0.0320 and standard deviation 0.0186 indicates that you
believe, before looking at the data, that a decrease of 20 points in the Karnofsky index will probably change
the hazard rate by 0.9-fold to 4-fold. This does not rule out the possibility that the Kps coefficient can take a
more extreme value such as –5, but the probability of having such extreme values is very small.

Assume the prior distributions are independent for all the parameters. For the coefficient of Kps, you use a
normal prior distribution with mean –0.0320 and variance 0:01862.=0.00035). For other parameters, you
resort to using a normal prior distribution with mean 0 and variance 1E6, which is fairly noninformative.
Means and variances of these independent normal distributions are saved in the data set Prior as follows:
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proc format;
value yesno 0='no' 10='yes';

run;

data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label Time='time to death in days'

Kps='Karnofsky performance scale'
Duration='months from diagnosis to randomization'
Age='age in years'
Prior='prior therapy'
Cell='cell type'
Therapy='type of treatment';

format Prior yesno.;
M=Column;
input Check $ @@;
if M>Column then M=1;
if Check='s'|Check='t' then do;

input @M Therapy $ Cell $;
delete;

end;
else do;

input @M Time Kps Duration Age Prior @@;
Status=(Time>0);
Time=abs(Time);

end;
datalines;

standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10

118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small
30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0

139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0

392 40 4 68 0 10 40 23 67 10
standard adeno

8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
95 80 4 34 0

standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
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test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10

test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0

test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0

140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
45 40 3 69 0 80 40 4 63 0

test large
52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0

111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;

data Prior;
input _TYPE_ $ Kps Duration Age Prioryes Celladeno Cellsmall

Cellsquamous Therapytest;
datalines;
Mean -0.0320 0 0 0 0 0 0 0
Var 0.00035 1e6 1e6 1e6 1e6 1e6 1e6 1e6
run;

In the following BAYES statement, COEFFPRIOR=NORMAL(INPUT=PRIOR) specifies the normal prior
distribution for the regression coefficients whose details are contained in the data set Prior. Posterior
summaries (means, standard errors, and quantiles) and intervals (equal-tailed and HPD) are requested by the
STATISTICS= option. Autocorrelations and effective sample sizes are requested by the DIAGNOSTICS=
option as convergence diagnostics along with the trace plots (PLOTS= option) for visual analysis. For
comparisons of hazards, three HAZARDRATIO statements are specified—one for the variable Therapy, one
for the variable Age, and one for the variable Cell.

ods graphics on;
proc phreg data=VALung;

class Prior(ref='no') Cell(ref='large') Therapy(ref='standard');
model Time*Status(0) = Kps Duration Age Prior Cell Therapy;
bayes seed=1 coeffprior=normal(input=Prior) statistics=(summary interval)

diagnostics=(autocorr ess) plots=trace;
hazardratio 'Hazard Ratio Statement 1' Therapy;
hazardratio 'Hazard Ratio Statement 2' Age / unit=10;
hazardratio 'Hazard Ratio Statement 3' Cell;

run;

This analysis generates a posterior chain of 10,000 iterations after 2,000 iterations of burn-in, as depicted in
Output 86.13.1.
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Output 86.13.1 Model Information

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Model Information

Data Set WORK.VALUNG

Dependent Variable Time time to death in days

Censoring Variable Status

Censoring Value(s) 0

Model Cox

Ties Handling BRESLOW

Sampling Algorithm ARMS

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Output 86.13.2 displays the names of the parameters and their corresponding effects and categories.

Output 86.13.2 Parameter Names

Regression Parameter Information

Parameter Effect Prior Cell Therapy

Kps Kps

Duration Duration

Age Age

Prioryes Prior yes

Celladeno Cell adeno

Cellsmall Cell small

Cellsquamous Cell squamous

Therapytest Therapy test

PROC PHREG computes the maximum likelihood estimates of regression parameters (Output 86.13.3).
These estimates are used as the starting values for the simulation of posterior samples.

Output 86.13.3 Parameter Estimates

Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Kps 1 -0.0326 0.00551 -0.0434 -0.0218

Duration 1 -0.00009 0.00913 -0.0180 0.0178

Age 1 -0.00855 0.00930 -0.0268 0.00969

Prioryes 1 0.0723 0.2321 -0.3826 0.5273

Celladeno 1 0.7887 0.3027 0.1955 1.3819

Cellsmall 1 0.4569 0.2663 -0.0650 0.9787

Cellsquamous 1 -0.3996 0.2827 -0.9536 0.1544

Therapytest 1 0.2899 0.2072 -0.1162 0.6961
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Output 86.13.4 displays the independent normal prior for the analysis.

Output 86.13.4 Coefficient Prior

Independent Normal Prior for
Regression Coefficients

Parameter Mean Precision

Kps -0.032 2857.143

Duration 0 1E-6

Age 0 1E-6

Prioryes 0 1E-6

Celladeno 0 1E-6

Cellsmall 0 1E-6

Cellsquamous 0 1E-6

Therapytest 0 1E-6

Fit statistics are displayed in Output 86.13.5. These statistics are useful for variable selection.

Output 86.13.5 Fit Statistics

Fit Statistics

DIC (smaller is better) 966.260

pD (Effective Number of Parameters) 7.934

Summary statistics of the posterior samples are shown in Output 86.13.6 and Output 86.13.7. These results
are quite comparable to the classical results based on maximizing the likelihood as shown in Output 86.13.3,
since the prior distribution for the regression coefficients is relatively flat.

Output 86.13.6 Summary Statistics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Kps 10000 -0.0326 0.00523 -0.0362 -0.0326 -0.0291

Duration 10000 -0.00159 0.00954 -0.00756 -0.00093 0.00504

Age 10000 -0.00844 0.00928 -0.0147 -0.00839 -0.00220

Prioryes 10000 0.0742 0.2348 -0.0812 0.0737 0.2337

Celladeno 10000 0.7881 0.3065 0.5839 0.7876 0.9933

Cellsmall 10000 0.4639 0.2709 0.2817 0.4581 0.6417

Cellsquamous 10000 -0.4024 0.2862 -0.5927 -0.4025 -0.2106

Therapytest 10000 0.2892 0.2038 0.1528 0.2893 0.4240
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Output 86.13.7 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Kps 0.050 -0.0429 -0.0222 -0.0433 -0.0226

Duration 0.050 -0.0220 0.0156 -0.0210 0.0164

Age 0.050 -0.0263 0.00963 -0.0265 0.00941

Prioryes 0.050 -0.3936 0.5308 -0.3832 0.5384

Celladeno 0.050 0.1879 1.3920 0.1764 1.3755

Cellsmall 0.050 -0.0571 1.0167 -0.0888 0.9806

Cellsquamous 0.050 -0.9687 0.1635 -0.9641 0.1667

Therapytest 0.050 -0.1083 0.6930 -0.1284 0.6710

With autocorrelations retreating quickly to 0 (Output 86.13.8) and large effective sample sizes (Out-
put 86.13.9), both diagnostics indicate a reasonably good mixing of the Markov chain. The trace plots
in Output 86.13.10 also confirm the convergence of the Markov chain.

Output 86.13.8 Autocorrelation Diagnostics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Kps 0.1442 -0.0016 0.0096 -0.0013

Duration 0.2672 -0.0054 -0.0004 -0.0011

Age 0.1374 -0.0044 0.0129 0.0084

Prioryes 0.2507 -0.0271 -0.0012 0.0004

Celladeno 0.4160 0.0265 -0.0062 0.0190

Cellsmall 0.5055 0.0277 -0.0011 0.0271

Cellsquamous 0.3586 0.0252 -0.0044 0.0107

Therapytest 0.2063 0.0199 -0.0047 -0.0166

Output 86.13.9 Effective Sample Size Diagnostics

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Kps 7046.7 1.4191 0.7047

Duration 5790.0 1.7271 0.5790

Age 7426.1 1.3466 0.7426

Prioryes 6102.2 1.6388 0.6102

Celladeno 3673.4 2.7223 0.3673

Cellsmall 3346.4 2.9883 0.3346

Cellsquamous 4052.8 2.4674 0.4053

Therapytest 6870.8 1.4554 0.6871
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Output 86.13.10 Trace Plots
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Output 86.13.10 continued



7048 F Chapter 86: The PHREG Procedure

Output 86.13.10 continued

The first HAZARDRATIO statement compares the hazards between the standard therapy and the test therapy.
Summaries of the posterior distribution of the corresponding hazard ratio are shown in Output 86.13.11.
There is a 95% chance that the hazard ratio of standard therapy versus test therapy lies between 0.5 and 1.1.

Output 86.13.11 Hazard Ratio for Treatment

Hazard Ratio Statement 1: Hazard Ratios for type of treatment

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Therapy standard vs test 10000 0.7645 0.1573 0.6544 0.7488 0.8583 0.5001 1.1143 0.4788 1.0805

The second HAZARDRATIO statement assesses the change of hazards for an increase in Age of 10 years.
Summaries of the posterior distribution of the corresponding hazard ratio are shown in Output 86.13.12.
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Output 86.13.12 Hazard Ratio for Age

Hazard Ratio Statement 2: Hazard Ratios for age in years

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Age Unit=10 10000 0.9230 0.0859 0.8635 0.9195 0.9782 0.7685 1.1011 0.7650 1.0960

The third HAZARDRATIO statement compares the changes of hazards between two types of cells. For four
types of cells, there are six different pairs of cell comparisons. The results are shown in Output 86.13.13.

Output 86.13.13 Hazard Ratios for Cell

Hazard Ratio Statement 3: Hazard Ratios for cell type

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail

Interval
95%

HPD Interval

Cell adeno vs large 10000 2.3048 0.7224 1.7929 2.1982 2.7000 1.2067 4.0227 1.0053 3.7057

Cell adeno vs small 10000 1.4377 0.4078 1.1522 1.3841 1.6704 0.7930 2.3999 0.7309 2.2662

Cell adeno vs squamous 10000 3.4449 1.0745 2.6789 3.2941 4.0397 1.8067 5.9727 1.6303 5.5946

Cell large vs small 10000 0.6521 0.1780 0.5264 0.6325 0.7545 0.3618 1.0588 0.3331 1.0041

Cell large vs squamous 10000 1.5579 0.4548 1.2344 1.4955 1.8089 0.8492 2.6346 0.7542 2.4575

Cell small vs squamous 10000 2.4728 0.7081 1.9620 2.3663 2.8684 1.3789 4.1561 1.2787 3.9263

Example 86.14: Bayesian Analysis of Piecewise Exponential Model
This example illustrates using a piecewise exponential model in a Bayesian analysis. Consider the Rats
data set in the section “Getting Started: PHREG Procedure” on page 6813. In the following statements,
PROC PHREG is used to carry out a Bayesian analysis for the piecewise exponential model. In the BAYES
statement, the option PIECEWISE stipulates a piecewise exponential model, and PIECEWISE=HAZARD
requests that the constant hazards be modeled in the original scale. By default, eight intervals of constant
hazards are used, and the intervals are chosen such that each has roughly the same number of events.

data Rats;
label Days ='Days from Exposure to Death';
input Days Status Group @@;
datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 0 209 1 0
213 1 0 216 1 0 220 1 0 227 1 0
230 1 0 234 1 0 246 1 0 265 1 0
304 1 0 216 0 0 244 0 0 142 1 1
156 1 1 163 1 1 198 1 1 205 1 1
232 1 1 232 1 1 233 1 1 233 1 1
233 1 1 233 1 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 323 1 1 204 0 1 344 0 1
;
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proc phreg data=Rats;
model Days*Status(0)=Group;
bayes seed=1 piecewise=hazard statistics=(summary interval)

diagnostics=(autocorr geweke ess);
run;

The “Model Information” table in Output 86.14.1 shows that the piecewise exponential model is being used.

Output 86.14.1 Model Information

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Model Information

Data Set WORK.RATS

Dependent Variable Days Days from Exposure to Death

Censoring Variable Status

Censoring Value(s) 0

Model Piecewise Exponential

Sampling Algorithm ARMS

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

By default the time axis is partitioned into eight intervals of constant hazard. Output 86.14.2 details the
number of events and observations in each interval. Note that the constant hazard parameters are named
Lambda1,. . . , Lambda8. You can supply your own partition by using the INTERVALS= suboption within
the PIECEWISE=HAZARD option.

Output 86.14.2 Interval Partition

Constant Hazard Time Intervals

Interval

[Lower, Upper) N Event
Hazard
Parameter

0 176 5 5 Lambda1

176 201.5 5 5 Lambda2

201.5 218 7 5 Lambda3

218 232.5 5 5 Lambda4

232.5 233.5 4 4 Lambda5

233.5 253.5 5 4 Lambda6

253.5 288 4 4 Lambda7

288 Infty 5 4 Lambda8

The model parameters consist of the eight hazard parameters Lambda1, . . . , Lambda8, and the regression
coefficient Group. The maximum likelihood estimates are displayed in Output 86.14.3. Again, these estimates
are used as the starting values for simulation of the posterior distribution.
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Output 86.14.3 Maximum Likelihood Estimates

Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits

Lambda1 1 0.000953 0.000443 0.000084 0.00182

Lambda2 1 0.00794 0.00371 0.000672 0.0152

Lambda3 1 0.0156 0.00734 0.00120 0.0300

Lambda4 1 0.0236 0.0115 0.00112 0.0461

Lambda5 1 0.3669 0.1959 0 0.7509

Lambda6 1 0.0276 0.0148 0 0.0566

Lambda7 1 0.0262 0.0146 0 0.0548

Lambda8 1 0.0545 0.0310 0 0.1152

Group 1 -0.6223 0.3468 -1.3020 0.0573

Without using the PRIOR= suboption within the PIECEWISE=HAZARD option to specify the prior of the
hazard parameters, the default is to use the noninformative and improper prior displayed in Output 86.14.4.

Output 86.14.4 Hazard Prior

Improper Prior for
Hazards

Parameter Prior

Lambda1 1 / Lambda1

Lambda2 1 / Lambda2

Lambda3 1 / Lambda3

Lambda4 1 / Lambda4

Lambda5 1 / Lambda5

Lambda6 1 / Lambda6

Lambda7 1 / Lambda7

Lambda8 1 / Lambda8

The noninformative uniform prior is used for the regression coefficient Group (Output 86.14.5), as in the
section “Bayesian Analysis” on page 6817.

Output 86.14.5 Coefficient Prior

Uniform Prior for
Regression
Coefficients

Parameter Prior

Group Constant

Summary statistics for all model parameters are shown in Output 86.14.6 and Output 86.14.7.
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Output 86.14.6 Summary Statistics

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Lambda1 10000 0.000945 0.000444 0.000624 0.000876 0.00118

Lambda2 10000 0.00782 0.00363 0.00519 0.00724 0.00979

Lambda3 10000 0.0155 0.00735 0.0102 0.0144 0.0195

Lambda4 10000 0.0236 0.0116 0.0152 0.0217 0.0297

Lambda5 10000 0.3634 0.1965 0.2186 0.3266 0.4685

Lambda6 10000 0.0278 0.0153 0.0166 0.0249 0.0356

Lambda7 10000 0.0265 0.0151 0.0157 0.0236 0.0338

Lambda8 10000 0.0558 0.0323 0.0322 0.0488 0.0721

Group 10000 -0.6154 0.3570 -0.8569 -0.6186 -0.3788

Output 86.14.7 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Lambda1 0.050 0.000289 0.00199 0.000208 0.00182

Lambda2 0.050 0.00247 0.0165 0.00194 0.0152

Lambda3 0.050 0.00484 0.0331 0.00341 0.0301

Lambda4 0.050 0.00699 0.0515 0.00478 0.0462

Lambda5 0.050 0.0906 0.8325 0.0541 0.7469

Lambda6 0.050 0.00676 0.0654 0.00409 0.0580

Lambda7 0.050 0.00614 0.0648 0.00421 0.0569

Lambda8 0.050 0.0132 0.1368 0.00637 0.1207

Group 0.050 -1.3190 0.0893 -1.3379 0.0652

The requested diagnostics—namely, lag1, lag5, lag10, lag50 autocorrelations (Output 86.14.8), the Geweke
diagnostics (Output 86.14.9), and the effective sample size diagnostics (Output 86.14.10)—show a good
mixing of the Markov chain.
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Output 86.14.8 Autocorrelations

The PHREG Procedure

Bayesian Analysis

The PHREG Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Lambda1 0.0705 0.0015 0.0017 -0.0076

Lambda2 0.0909 0.0206 -0.0013 -0.0039

Lambda3 0.0861 -0.0072 0.0011 0.0002

Lambda4 0.1447 -0.0023 0.0081 0.0082

Lambda5 0.1086 0.0072 -0.0038 -0.0028

Lambda6 0.1281 0.0049 -0.0036 0.0048

Lambda7 0.1925 -0.0011 0.0094 -0.0011

Lambda8 0.2128 0.0322 -0.0042 -0.0045

Group 0.5638 0.0410 -0.0003 -0.0071

Output 86.14.9 Geweke Diagnostics

Geweke Diagnostics

Parameter z Pr > |z|

Lambda1 -0.0705 0.9438

Lambda2 -0.4936 0.6216

Lambda3 0.5751 0.5652

Lambda4 1.0514 0.2931

Lambda5 0.8910 0.3729

Lambda6 0.2976 0.7660

Lambda7 1.6543 0.0981

Lambda8 0.6686 0.5038

Group -1.2621 0.2069

Output 86.14.10 Effective Sample Size

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Lambda1 7775.3 1.2861 0.7775

Lambda2 6874.8 1.4546 0.6875

Lambda3 7655.7 1.3062 0.7656

Lambda4 6337.1 1.5780 0.6337

Lambda5 6563.3 1.5236 0.6563

Lambda6 6720.8 1.4879 0.6721

Lambda7 5968.7 1.6754 0.5969

Lambda8 5137.2 1.9466 0.5137

Group 2980.4 3.3553 0.2980
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Example 86.15: Analysis of Competing-Risks Data
Bone marrow transplant (BMT) is a standard treatment for acute leukemia. Klein and Moeschberger (1997)
present a set of BMT data for 137 patients, grouped into three risk categories based on their status at the time
of transplantation: acute lymphoblastic leukemia (ALL), acute myelocytic leukemia (AML) low-risk, and
AML high-risk. During the follow-up period, some patients might relapse or some patients might die while
in remission. Consider relapse to be the event of interest. Death is a competing risk because death impedes
the occurrence of leukemia relapse. The Fine and Gray (1999) model is used to compare the risk categories
on the disease-free survival.

The following DATA step creates the data set Bmt. The variable Disease represents the risk group of a
patient, which is either ALL, AML-Low Risk, or AML-High Risk. The variable T represents the disease-free
survival in days, which is the time to relapse, time to death, or censored. The variable Status has three values:
0 for censored observations, 1 for relapsed patients, and 2 for patients who die before experiencing a relapse.

proc format;
value DiseaseGroup 1='ALL'

2='AML-Low Risk'
3='AML-High Risk';

data Bmt;
input Disease T Status @@;
label T='Disease-Free Survival in Days';
format Disease DiseaseGroup.;
datalines;

1 2081 0 1 1602 0 1 1496 0 1 1462 0 1 1433 0
1 1377 0 1 1330 0 1 996 0 1 226 0 1 1199 0
1 1111 0 1 530 0 1 1182 0 1 1167 0 1 418 2
1 383 1 1 276 2 1 104 1 1 609 1 1 172 2
1 487 2 1 662 1 1 194 2 1 230 1 1 526 2
1 122 2 1 129 1 1 74 1 1 122 1 1 86 2
1 466 2 1 192 1 1 109 1 1 55 1 1 1 2
1 107 2 1 110 1 1 332 2 2 2569 0 2 2506 0
2 2409 0 2 2218 0 2 1857 0 2 1829 0 2 1562 0
2 1470 0 2 1363 0 2 1030 0 2 860 0 2 1258 0
2 2246 0 2 1870 0 2 1799 0 2 1709 0 2 1674 0
2 1568 0 2 1527 0 2 1324 0 2 957 0 2 932 0
2 847 0 2 848 0 2 1850 0 2 1843 0 2 1535 0
2 1447 0 2 1384 0 2 414 2 2 2204 2 2 1063 2
2 481 2 2 105 2 2 641 2 2 390 2 2 288 2
2 421 1 2 79 2 2 748 1 2 486 1 2 48 2
2 272 1 2 1074 2 2 381 1 2 10 2 2 53 2
2 80 2 2 35 2 2 248 1 2 704 2 2 211 1
2 219 1 2 606 1 3 2640 0 3 2430 0 3 2252 0
3 2140 0 3 2133 0 3 1238 0 3 1631 0 3 2024 0
3 1345 0 3 1136 0 3 845 0 3 422 1 3 162 2
3 84 1 3 100 1 3 2 2 3 47 1 3 242 1
3 456 1 3 268 1 3 318 2 3 32 1 3 467 1
3 47 1 3 390 1 3 183 2 3 105 2 3 115 1
3 164 2 3 93 1 3 120 1 3 80 2 3 677 2
3 64 1 3 168 2 3 74 2 3 16 2 3 157 1
3 625 1 3 48 1 3 273 1 3 63 2 3 76 1
3 113 1 3 363 2
;
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PROC PHREG enables you to plot the cumulative incidence function for each disease category, but first you
must save these three Disease values in a SAS data set, as in the following DATA step:

data Risk;
Disease=1; output;
Disease=2; output;
Disease=3; output;
format Disease DiseaseGroup.;
run;

The following statements use the PHREG procedure to fit the proportional subdistribution hazards model.
To designate relapse (Status=1) as the event of interest, you specify EVENTCODE=1 in the MODEL
statement. The HAZARDRATIO statement provides the hazard ratios for all pairs of disease groups. The
COVARIATES= option in the BASELINE statement specifies the data set that contains the covariate settings
for predicting cumulative incidence functions; and the OUT= option saves the prediction results in a SAS
data set. The PLOTS= option in the PROC PHREG statement displays the cumulative incidence curves.

ods graphics on;
proc phreg data=Bmt plots(overlay=stratum)=cif;

class Disease (order=internal ref=first);
model T*Status(0)=Disease / eventcode=1;
Hazardratio 'Pairwise' Disease / diff=pairwise;
baseline covariates=Risk out=out1 cif=_all_ / seed=191;

run;

Output 86.15.1 displays the codes of different types of observations in the input data set. Relapse is the
failure of interest with Status = 1, death is a competing failure with Status = 2, and censored observations
are those with Status = 0. Out of the 137 transplant patients, 42 have a relapse, 41 die without experiencing a
relapse, and 54 are censored (Output 86.15.2).

Output 86.15.1 Code for the Competing Failures and Censored Observations

The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.BMT

Dependent Variable T Disease-Free Survival in Days

Status Variable Status

Event of Interest 1

Competing Event 2

Censored Value 0

Output 86.15.2 Distribution of Events and Censored Observations

Summary of Failure Outcomes

Total
Event of
Interest

Competing
Event Censored

137 42 41 54
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Output 86.15.3 shows a significant effect (p = 0.0030) of Disease on the disease-free survival. With the
reference coding, the CLASS variable Disease is represented by two dummy variables. Parameter estimates
and Wald tests for individual parameters are shown in Output 86.15.3.

Output 86.15.3 Wald Test of the Disease Effect

Type 3 Tests

Effect DF
Wald

Chi-Square Pr > ChiSq

Disease 2 11.6406 0.0030

Analysis of Maximum Likelihood Estimates

Parameter DF
Parameter

Estimate
Standard

Error Chi-Square Pr > ChiSq
Hazard

Ratio Label

Disease AML-Low Risk 1 -0.80340 0.42846 3.5160 0.0608 0.448 Disease AML-Low Risk

Disease AML-High Risk 1 0.50849 0.36618 1.9283 0.1649 1.663 Disease AML-High Risk

Hazard ratio estimates of one disease group relative to another disease group are displayed in Output 86.15.4.
The hazard of relapse for the ALL patients is 2.2 times that for the AML-low risk patients, and the hazard for
the AML-high risk patients is 1.7 times that for the ALL patients. It is expected that at any given time after
the transplant, an AML high-risk patient is more likely to relapse than an ALL patient, and an ALL patient is
more likely to relapse than an AML low-risk patient. Such ordering of probabilities is revealed in the plot of
the cumulative incidence functions in Output 86.15.5.

Output 86.15.4 Pairwise Comparison of Disease Group

Pairwise: Hazard Ratios for Disease

Description
Point

Estimate

95%
Wald

Confidence
Limits

Disease ALL vs AML-Low Risk 2.233 0.964 5.171

Disease AML-Low Risk vs ALL 0.448 0.193 1.037

Disease ALL vs AML-High Risk 0.601 0.293 1.233

Disease AML-High Risk vs ALL 1.663 0.811 3.408

Disease AML-Low Risk vs AML-High Risk 0.269 0.127 0.573

Disease AML-High Risk vs AML-Low Risk 3.713 1.745 7.900
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Output 86.15.5 CIF of the Three Disease Groups

You use the following statements to display the cumulative incidence prediction for the ALL (Disease=1)
risk group:

proc print data=Out1(where=(Disease=1));
title 'CIF Estimates and 95% Confidence limits for the ALL Group';

run;
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Output 86.15.6 Cumulative Incidence Prediction

CIF Estimates and 95% Confidence limits for the ALL GroupCIF Estimates and 95% Confidence limits for the ALL Group

Obs Disease T CIF StdErrCIF LowerCIF UpperCIF

1 ALL 0 0.00000 . . .

2 ALL 32 0.00727 0.007237 0.00103 0.05114

3 ALL 47 0.02183 0.014323 0.00604 0.07898

4 ALL 48 0.02922 0.017822 0.00884 0.09657

5 ALL 55 0.03663 0.019106 0.01318 0.10181

6 ALL 64 0.04405 0.019259 0.01870 0.10378

7 ALL 74 0.05151 0.019951 0.02411 0.11005

8 ALL 76 0.05897 0.025533 0.02524 0.13778

9 ALL 84 0.06646 0.025378 0.03145 0.14048

10 ALL 93 0.07400 0.025092 0.03807 0.14383

11 ALL 100 0.08158 0.030460 0.03924 0.16959

12 ALL 104 0.08920 0.029038 0.04712 0.16883

13 ALL 109 0.09682 0.033564 0.04907 0.19100

14 ALL 110 0.10443 0.035734 0.05341 0.20422

15 ALL 113 0.11205 0.041176 0.05453 0.23026

16 ALL 115 0.11972 0.037619 0.06467 0.22163

17 ALL 120 0.12742 0.036521 0.07266 0.22347

18 ALL 122 0.13518 0.042929 0.07254 0.25190

19 ALL 129 0.14293 0.041747 0.08063 0.25336

20 ALL 157 0.15068 0.046376 0.08243 0.27545

21 ALL 192 0.15848 0.051406 0.08392 0.29928

22 ALL 211 0.16628 0.058106 0.08383 0.32983

23 ALL 219 0.17404 0.056257 0.09236 0.32794

24 ALL 230 0.18185 0.053563 0.10210 0.32392

25 ALL 242 0.18967 0.065355 0.09653 0.37265

26 ALL 248 0.19753 0.057829 0.11128 0.35062

27 ALL 268 0.20535 0.054765 0.12176 0.34634

28 ALL 272 0.21322 0.058189 0.12489 0.36402

29 ALL 273 0.22105 0.061340 0.12832 0.38080

30 ALL 381 0.22893 0.061228 0.13554 0.38669

31 ALL 383 0.23677 0.062212 0.14147 0.39626

32 ALL 390 0.24461 0.063708 0.14682 0.40754

33 ALL 421 0.25250 0.070833 0.14571 0.43757

34 ALL 422 0.26035 0.063694 0.16118 0.42053

35 ALL 456 0.26825 0.067518 0.16379 0.43932

36 ALL 467 0.27621 0.073253 0.16424 0.46450

37 ALL 486 0.28422 0.066216 0.18004 0.44871

38 ALL 606 0.29233 0.067521 0.18590 0.45971

39 ALL 609 0.30039 0.079301 0.17905 0.50396

40 ALL 625 0.30845 0.067182 0.20128 0.47270

41 ALL 662 0.31657 0.070668 0.20439 0.49033

42 ALL 748 0.32469 0.082845 0.19692 0.53537

Output 86.15.6 shows the point estimate and the confidence limits for the cumulative incidence at each
distinct time when the event of interest occurred for the ALL patients. The predictions for the AML-low risk
patients and AML-high risk patients are not shown.
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Example 86.16: Concordance and ROC Curves
The concordance statistic and ROC curves are popular diagnostic tools for a logistic regression model. For a
survival model, ROC curves are time-sensitive. That is, you might have different ROC curves at different
time points. Two different ways of computing the concordance statistic are available. Each method estimates
a different measure of concordance probability.

The data set Liver, presented in Example 86.12, is used in this example to illustrate the concordance statistic
and time-dependent ROC curves. The data set consists of 418 patients who have primary biliary cirrhosis
(PBC). In the data set, the variable Time represents the follow-up time in years (which is the time from
registration to the earlier of liver transplantation, death, or study termination), the variable Status is the
censoring indicator (1 for death and 0 for censored), and the explanatory variables are Age (age in years),
Albumin (serum albumin level in g/dl), Bilirubin (serum bilirubin level in mg/dl), Edema (presence of edema),
and Protime (prothrombin time in seconds).

The following statements use the PHREG procedure to fit the Cox regression model that uses Bilirubin, Age,
and Edema as explanatory variables. The CONCORDANCE option in the PROC PHREG statement requests
that Harrell’s concordance statistics be displayed. The PLOTS=ROC option plots the time-dependent ROC
curves at time points 2, 4, 6, 8, and 10 years, which are specified in the AT= suboption in the ROCOPTIONS
option.

ods graphics on;
proc phreg data=Liver concordance plots=roc rocoptions(at=2 to 10 by 2);

model Time*Status(0)=Bilirubin Age Edema;
run;

Results of the Harrell concordance statistics are shown in Output 86.16.1. There are 34,798 concordance pairs,
8,884 discordance pairs, 2 pairs that are tied in the linear predictor, and 5 pairs that are tied in the follow-up
time, which gives a concordance estimate of 0.7966. You can specify CONCORDANCE=HARRELL(SE) to
compute the standard error of Harrell’s concordance statistic, or you can use specify CONCORDANCE=UNO
for an alternative concordance measure.

Output 86.16.1 Concordance Statistics

The PHREG ProcedureThe PHREG Procedure

Harrell's Concordance Statistic

Comparable Pairs

Source Estimate Concordance Discordance
Tied in

Predictor
Tied in

Time

Model 0.7966 34798 8884 2 5

Output 86.16.2 shows the time-dependent ROC curves at the selected years. By default, these curves are
computed by the nearest neighbors technique of Heagerty, Lumley, and Pepe (2000) and are displayed in a
panel. It appears that among the five selected years, year 4 has the largest area under the curve (AUC), year 8
has the lowest AUC, and the others are in between. If you specify the OVERLAY=INDIVIDUAL global plot
option to display individual plots, each plot also displays the area under the ROC curve.
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Output 86.16.2 ROC Plot at Selected Time Points

Time-dependent ROC curves change only at the distinct event times. You can examine the area under the
curve at all distinct event times by plotting the curve of the AUC. The following statements plot the curve
of the AUC of the fitted model and display the 95% pointwise confidence limits. The PLOTS=AUC option
in the PROC PHREG statement plots the AUC curve. The ROCOPTIONS in the PROC PHREG statement
enables you to specify the inverse probability of censoring weighting (IPCW) method to compute the ROC
curves, and the CL suboption requests pointwise confidence limits for the AUC curve.

proc phreg data=Liver plots=auc rocoptions(method=ipcw(cl seed=1234));
model Time*Status(0)=Bilirubin Age Edema;

run;

Output 86.16.3 displays the AUC curve and the 95% confidence limits for the fitted model. The AUC statistic
reaches a high of 0.92 at Year 0.21 but mostly hovers around 0.8.
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Output 86.16.3 AUC Plot with 95% Confidence Limits

Consider three submodels of the previously fitted Cox model, each of which contains two of the three
covariates: Bilirubin, Age, and Edema. You can use the Uno et al. (2011) methodology to assess the
difference of the concordance probabilities between any two submodels. In the following statements, three
ROC statements are specified, one for each submodel. The DIFF suboption in CONCORDANCE=UNO in
the PROC PHREG statement requests that all pairwise differences be calculated. The SE suboption requests
that standard error be computed for each pairwise difference, based on 100 perturbation samples as specified
by the ITER= suboption. The seed of the random generator for the perturbation resampling is set to be 1234.
The NOFIT option is specified in the MODEL statement, because there is no need to fit the specified model.

proc phreg data=Liver concordance=uno(diff se seed=1234 iter=100);
model Time*Status(0)=Bilirubin Age Edema / nofit;
roc 'Bilirubin+Age' Bilirubin Age;
roc 'Age+Edema' Age Edema;
roc 'Bilirubin+Edema' Bilirubin Edema;

run;

Output 86.16.4 displays results of the concordance analysis. It appears that the two submodels that contain
Bilirubin have a significantly larger concordance probability than the submodel without Bilirubin. In other
words, the two submodels that contain Bilirubin predict the survival outcomes better than the model without
Bilirubin.
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Output 86.16.4 Comparing Uno’s Concordance Estimates

The PHREG ProcedureThe PHREG Procedure

Differences in Uno's Concordance Statistic

Source _Source Estimate
Standard

Error Chi-Square Pr > ChiSq

Bilirubin+Age Age+Edema 0.0972 0.0232 17.57 <.0001

Bilirubin+Age Bilirubin+Edema -0.0264 0.0231 1.31 0.2529

Age+Edema Bilirubin+Edema -0.1236 0.0287 18.51 <.0001

Example 86.12 demonstrated that the log transform is a much improved functional form for Bilirubin in
a Cox regression model. It is expected that the model with Bilirubin in the log scale would have a better
discriminating power than the model with Bilirubin in the original scale. In the following statements, PROC
PHREG is used to fit the model with the log transform for Bilirubin. By using the OUTPUT statement, the
linear predictor variable is saved as the variable Y in the output data set Liver2. With Liver2 as the input data
set, PROC PHREG is called to fit the Cox model with Bilirubin in the original scale. The linear predictor
variable Y is specified in the ROC statement as the PRED= variable.

proc phreg data=Liver;
model Time*Status(0)=logBilirubin Age Edema;
logBilirubin = log(Bilirubin);
output out=Liver2 xbeta=Y;

run;
proc phreg data=Liver2 plots=roc rocoptions(at=2 to 10 by 2);

model Time*Status(0)=Bilirubin Age Edema / roclabel='Bilirubin';
roc 'logBilirubin' pred=Y;

run;

Output 86.16.5 displays the ROC curves of the two competing models. The ROC curve for the model with the
log scale for Bilirubin essentially lies above that of its counterpart with the original scale for all the selected
time points. This leads to the conclusion that the log transform for Bilirubin improves the predictive power of
the model.
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Output 86.16.5 ROC Plots to Evaluate the Log Transform for Bilirubin
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robust Wald test, 6907
ROC curves, 6928
Schwarz criterion, 6920
score test, 6870, 6873, 6907, 6908, 6960, 6961,

6975, 6976
selection methods, 6812, 6866, 6872, 6940
singular contrast matrix, 6857
singularity criterion, 6872
standard error, 6875, 6879, 6961

standard error ratio, 6961
standardized score process, 6942, 6972
step halving, 6904
strata variables, 6883
stratified analysis, 6812, 6883
summary statistics, 6967
survival distribution function, 6886
survival times, 6811, 6989, 6991
survivor function, 6811, 6836, 6879, 6886, 6932,

7005, 7007
ties, 6812, 6816, 6874, 6892, 6959, 6965
time intervals, 6966
time-dependent covariates, 6811, 6817, 6825,

6831, 6875, 6879
Type 1 testing, 6961
Type 3 testing, 6907, 6961
variance estimate, 6960
Wald test, 6884, 6907, 6908, 6910, 6960, 6961,

6992
Wei-Lin-Weissfeld model, 6911

piecewise constant baseline hazard model
PHREG procedure, 6844, 6946

Prentice-Williams-Peterson model
PHREG procedure, 6918

product-limit estimate
survival function (PHREG), 6838

programming statements
PHREG procedure, 6817, 6825, 6879, 6880

proportional hazards model
assumption (PHREG), 6816
PHREG procedure, 6811, 6874

proportional rates/means model, see rate/mean model

Raftery and Lewis diagnostics
Bayesian analysis (PHREG) procedure, 6967

rate function
PHREG procedure, 6894, 6916

rate/mean model
PHREG procedure, 6894, 6916

recurrent events
PHREG procedure, 6812, 6835, 6839, 6894

residual chi-square
PHREG procedure, 6873

residuals
deviance (PHREG), 6877, 6922, 7012
martingale (PHREG), 6878, 7012
Schoenfeld (PHREG), 6878, 6922, 6923
score (PHREG), 6878, 6923
weighted Schoenfeld (PHREG), 6879, 6924
weighted score (PHREG), 6924

response variable
PHREG procedure, 6814, 6879, 6991

ridging
PHREG procedure, 6871



risk set
PHREG procedure, 6817, 6890, 6891, 6996

risk weights
PHREG procedure, 6871

robust score test
PHREG procedure, 6907

robust Wald test
PHREG procedure, 6907

Schoenfeld residuals
PHREG procedure, 6878, 6922, 6923

Schwarz criterion
PHREG procedure, 6920

score residuals
PHREG procedure, 6878, 6923

score test
PHREG procedure, 6870, 6873, 6907, 6908,

6960, 6961, 6975, 6976
selection methods, see model selection
semiparametric model

PHREG procedure, 6811
significance level

entry (PHREG), 6872
removal (PHREG), 6873, 6978

singularity criterion
contrast matrix (PHREG), 6857
PHREG procedure, 6872

standard error
PHREG procedure, 6836, 6875, 6879, 6961

standard error ratio
PHREG procedure, 6961

standardized score process
PHREG procedure, 6942, 6972

step halving
PHREG procedure, 6904

stepwise selection
PHREG procedure, 6872, 6941, 6973

strata variables
PHREG procedure, 6883
programming statements (PHREG), 6879

stratified analysis
PHREG procedure, 6812, 6883

summary statistics
PHREG procedure, 6967

survival distribution function
PHREG procedure, 6886

survival function, see survival distribution function
survival times

PHREG procedure, 6811, 6989, 6991
survivor function

definition (PHREG), 6886
estimate (PHREG), 7007
estimates (PHREG), 6836, 6879, 6932, 7005
PHREG procedure, 6811, 6879, 6886

ties
PHREG procedure, 6812, 6816, 6874, 6892,

6959, 6965
time intervals

PHREG procedure, 6966
time-dependent covariates

PHREG procedure, 6811, 6817, 6825, 6831,
6875, 6879

Type 1 testing
PHREG procedure, 6961

Type 3 testing
PHREG procedure, 6907, 6961

variable (PHREG)
censoring, 6814

variance estimate
PHREG procedure, 6960

Wald test
PHREG procedure, 6884, 6907, 6908, 6910,

6960, 6961, 6992
Wei-Lin-Weissfeld model

PHREG procedure, 6911
weighted Schoenfeld residuals

PHREG procedure, 6879, 6924
weighted score residuals

PHREG procedure, 6924





Syntax Index

ABSFCONV= option
MODEL statement (PHREG), 6868

ABSPCONV= option
RANDOM statement, 6881

ALPHA= option
BASELINE statement (PHREG), 6837
CONTRAST statement (PHREG), 6856
HAZARDRATIO statement (PHREG), 6861
MODEL statement (PHREG), 6867
PROC PHREG statement, 6822
RANDOM statement, 6881

ASSESS statement
PHREG procedure, 6830

AT= option
HAZARDRATIO statement (PHREG), 6861

ATRISK option
PROC PHREG statement, 6823

AVERAGE option
TEST statement (PHREG), 6885

BASELINE statement
PHREG procedure, 6831

BAYES statement
PHREG procedure, 6839

BEST= option
MODEL statement (PHREG), 6868

BY statement
PHREG procedure, 6851

CL= option
HAZARDRATIO statement (PHREG), 6861

CLASS statement
PHREG procedure, 6851

CLTYPE= option
BASELINE statement (PHREG), 6837

COEFFPRIOR= option
BAYES statement(PHREG), 6839

CONCORDANCE option
PROC PHREG statement (PHREG), 6823

CONTRAST statement
PHREG procedure, 6854

CORRB option
MODEL statement (PHREG), 6868

COVARIATES= option
BASELINE statement (PHREG), 6833

COVB option
MODEL statement (PHREG), 6868

COVM option
PROC PHREG statement, 6824

COVOUT option
PROC PHREG statement, 6824

COVS option, see COVSANDWICH option
COVSANDWICH option

PROC PHREG statement, 6824
CPREFIX= option

CLASS statement (PHREG), 6852
CRPANEL option

ASSESS statement (PHREG), 6831

DATA= option
PROC PHREG statement, 6824

DESCENDING option
CLASS statement (PHREG), 6852

DETAILS option
MODEL statement (PHREG), 6868

DIAGNOSTICS= option
BAYES statement(PHREG), 6841

DIFF= option
HAZARDRATIO statement (PHREG), 6862

DIRADJ option
BASELINE statement (PHREG), 6837

DIST= option
RANDOM statement, 6881

E option
CONTRAST statement (PHREG), 6856
HAZARDRATIO statement (PHREG), 6862
TEST statement (PHREG), 6885

EFFECT statement
PHREG procedure, 6857

ENTRYTIME= option
MODEL statement (PHREG), 6868

ESTIMATE statement
PHREG procedure, 6859

ESTIMATE= option
CONTRAST statement (PHREG), 6856

EV option
PROC PHREG statement, 6824

EVENTCODE= option
MODEL statement (PHREG), 6868

FAST option
PROC PHREG statement, 6824

FCONV= option
MODEL statement (PHREG), 6869

FIRTH option
MODEL statement (PHREG), 6869

FREQ statement



PHREG procedure, 6860

GCONV= option
MODEL statement (PHREG), 6869

GROUP= option
BASELINE statement (PHREG), 6837

HAZARDRATIO statement
PHREG procedure, 6860

HIERARCHY= option
MODEL statement (PHREG), 6869

ID statement
PHREG procedure, 6863

INCLUDE= option
MODEL statement (PHREG), 6870

INEST= option
PROC PHREG statement, 6825

INITIAL= option
BAYES statement(PHREG), 6843
RANDOM statement, 6882

INITIALVARIANCE= option
RANDOM statement, 6882

ITPRINT option
MODEL statement (PHREG), 6870

keyword= option
BASELINE statement (PHREG), 6833

LPREFIX= option
CLASS statement (PHREG), 6852

LSMEANS statement
PHREG procedure, 6863

LSMESTIMATE statement
PHREG procedure, 6864

MAXITER= option
MODEL statement (PHREG), 6870

MAXSTEP= option
MODEL statement (PHREG), 6870

METHOD= option
BASELINE statement (PHREG), 6838
OUTPUT statement (PHREG), 6876
RANDOM statement, 6881

MISSING option
CLASS statement (PHREG), 6852
STRATA statement (PHREG), 6883

MODEL statement
PHREG procedure, 6865

MULTIPASS option
PROC PHREG statement, 6825

NAMELEN= option
PROC PHREG statement, 6825

NBI= option

BAYES statement(PHREG), 6844
NMC= option

BAYES statement(PHREG), 6844
NOCLPRINT option

RANDOM statement, 6881
NODESIGNPRINT option, see NODUMMYPRINT

option
NODUMMYPRINT option

MODEL statement (PHREG), 6870
NOFIT option

MODEL statement (PHREG), 6870
NOPRINT option

PROC PHREG statement, 6825
NORMALIZE option

WEIGHT statement (PHREG), 6885
NORMALSAMPLE= option

BASELINE statement (PHREG), 6838
NOSUMMARY option

PROC PHREG statement, 6825
NOTRUNCATE option

FREQ statement (PHREG), 6860
NPATHS= option

ASSESS statement (PHREG), 6831

OFFSET= option
MODEL statement (PHREG), 6871

ORDER= option
CLASS statement (PHREG), 6852

OUT= option
BASELINE statement (PHREG), 6833
OUTPUT statement (PHREG), 6876

OUTDIFF= option
BASELINE statement (PHREG), 6833

OUTEST= option
PROC PHREG statement, 6825

OUTPOST= option
BAYES statement(PHREG), 6844

OUTPUT statement
PHREG procedure, 6875

PARAM= option
CLASS statement (PHREG), 6852

PCONV= option
RANDOM statement, 6882

PH option, see PROPORTIONALHAZARDS option
PHREG procedure

ASSESS statement, 6830
BASELINE statement, 6831
BAYES statement, 6839
BY statement, 6851
CLASS statement, 6851
CONTRAST statement, 6854
EFFECT statement, 6857
ESTIMATE statement, 6859



FREQ statement, 6860
HAZARDRATIO statement, 6860
LSMEANS statement, 6863
LSMESTIMATE statement, 6864
MODEL statement, 6865
OUTPUT statement, 6875
PROC PHREG statement, 6822
programming statements, 6817
RANDOM statement, 6881
ROC statement, 6882
SLICE statement, 6883
STORE statement, 6884
syntax, 6821
TEST statement, 6884
WEIGHT statement, 6885

PHREG procedure, ASSESS statement, 6830
CRPANEL option, 6831
NPATHS= option, 6831
PROPORTIONALHAZARDS option, 6831
RESAMPLE= option, 6831
SEED= option, 6831
VAR= option, 6831

PHREG procedure, BASELINE statement, 6831
ALPHA= option, 6837
CLTYPE= option, 6837
COVARIATES= option, 6833
DIRADJ option, 6837
GROUP= option, 6837
keyword= option, 6833
METHOD= option, 6838
NORMALSAMPLE= option, 6838
OUT= option, 6833
OUTDIFF= option, 6833
ROWID= option, 6838
SEED= option, 6838
TIMELIST= option, 6833

PHREG procedure, BAYES statement, 6839
COEFFPRIOR= option, 6839
DIAGNOSTIC= option, 6841
INITIAL= option, 6843
NBI= option, 6844
NMC= option, 6844
OUTPOST= option, 6844
PIECEWISE= option, 6844
PLOTS= option, 6847
SAMPLING= option, 6849
SEED= option, 6850
STATISTICS= option, 6850
THINNING= option, 6851

PHREG procedure, BY statement, 6851
PHREG procedure, CLASS statement, 6851

CPREFIX= option, 6852
DESCENDING option, 6852
LPREFIX= option, 6852

MISSING option, 6852
ORDER= option, 6852
PARAM= option, 6852
REF= option, 6853
TRUNCATE option, 6853

PHREG procedure, CONTRAST statement, 6854
ALPHA= option, 6856
E option, 6856
ESTIMATE= option, 6856
SINGULAR= option, 6857
TEST option, 6857

PHREG procedure, EFFECT statement, 6857
PHREG procedure, ESTIMATE statement, 6859
PHREG procedure, FREQ statement, 6860

NOTRUNCATE option, 6860
PHREG procedure, HAZARDRATIO statement, 6860

ALPHA= option, 6861
AT= option, 6861
CL= option, 6861
DIFF= option, 6862
E option, 6862
PLCONV= option, 6862
PLMAXIT= option, 6862
PLSINGULAR= option, 6862
UNITS= option, 6863

PHREG procedure, ID statement, 6863
PHREG procedure, LSMEANS statement, 6863
PHREG procedure, LSMESTIMATE statement, 6864
PHREG procedure, MODEL statement, 6865

ABSFCONV= option, 6868
ALPHA= option, 6867
BEST= option, 6868
CORRB option, 6868
COVB option, 6868
DETAILS option, 6868
ENTRYTIME= option, 6868
EVENTCODE= option, 6868
FCONV= option, 6869
FIRTH option, 6869
GCONV= option, 6869
HIERARCHY= option, 6869
INCLUDE= option, 6870
ITPRINT option, 6870
MAXITER= option, 6870
MAXSTEP= option, 6870
NODESIGNPRINT option, 6870
NODUMMYPRINT= option, 6870
NOFIT option, 6870
OFFSET= option, 6871
PLCONV= option, 6871
RIDGEINIT= option, 6871
RIDGING= option, 6871
RISKLIMITS= option, 6871
ROCEPS option, 6872



ROCOPTIONS option, 6828
SELECTION= option, 6872
SEQUENTIAL option, 6872
SINGULAR= option, 6872
SLENTRY= option, 6872
SLSTAY= option, 6873
START= option, 6873
STOP= option, 6873
STOPRES option, 6873
TIES= option, 6874
TYPE1 option, 6873
TYPE3 option, 6873
XCONV= option, 6874

PHREG procedure, OUTPUT statement, 6875
METHOD= option, 6876
OUT= option, 6876

PHREG procedure, PROC PHREG statement, 6822
ALPHA= option, 6822
ATRISK option, 6823
CONCORDANCE option, 6823
COVM option, 6824
COVOUT option, 6824
COVSANDWICH option, 6824
DATA= option, 6824
EV option, 6824
FAST option, 6824
INEST= option, 6825
MULTIPASS option, 6825
NAMELEN= option, 6825
NOPRINT option, 6825
NOSUMMARY option, 6825
OUTEST= option, 6825
PLOTS= option, 6825
SIMPLE option, 6829
TAU option, 6830

PHREG procedure, RANDOM statement, 6881
ABSPCONV= option, 6881
ALPHA= option, 6881
DIST= option, 6881
INITIAL= option, 6882
INITIALVARIANCE= option, 6882
METHOD= option, 6881
NOCLPRINT option, 6881
PCONV= option, 6882
SOLUTION option, 6882

PHREG procedure, ROC statement, 6882
PHREG procedure, SLICE statement, 6884
PHREG procedure, STORE statement, 6884
PHREG procedure, STRATA statement, 6883

MISSING option, 6883
PHREG procedure, TEST statement, 6884

AVERAGE option, 6885
E option, 6885
PRINT option, 6885

PHREG procedure, WEIGHT statement, 6885
NORMALIZE option, 6885

PIECEWISE= option
BAYES statement(PHREG), 6844

PLCONV= option
HAZARDRATIO statement (PHREG), 6862
MODEL statement (PHREG), 6871

PLMAXIT= option
HAZARDRATIO statement (PHREG), 6862

PLOTS= option
BAYES statement(PHREG), 6847
PROC PHREG statement, 6825

PLSINGULAR= option
HAZARDRATIO statement (PHREG), 6862

PRINT option
TEST statement (PHREG), 6885

PROC PHREG statement
PHREG procedure, 6822

PROPORTIONALHAZARDS option
ASSESS statement (PHREG), 6831

RANDOM statement
PHREG procedure, 6881

REF= option
CLASS statement (PHREG), 6853

RESAMPLE= option
ASSESS statement (PHREG), 6831

RIDGEINIT= option
MODEL statement (PHREG), 6871

RIDGING= option
MODEL statement (PHREG), 6871

RISKLIMITS= option
MODEL statement (PHREG), 6871

ROC statement
PHREG procedure, 6882

ROCLABEL= option
MODEL statement (PHREG), 6872

ROCOPTIONS option
MODEL statement (PHREG), 6828

ROWID= option
BASELINE statement (PHREG), 6838

SAMPLING= option
BAYES statement(PHREG), 6849

SEED= option
ASSESS statement (PHREG), 6831
BASELINE statement (PHREG), 6838
BAYES statement(PHREG), 6850

SELECTION= option
MODEL statement (PHREG), 6872

SEQUENTIAL option
MODEL statement (PHREG), 6872

SIMPLE option
PROC PHREG statement, 6829



SINGULAR= option
CONTRAST statement (PHREG), 6857
MODEL statement (PHREG), 6872

SLENTRY= option
MODEL statement (PHREG), 6872

SLICE statement
PHREG procedure, 6884

SLSTAY= option
MODEL statement (PHREG), 6873

SOLUTION option
RANDOM statement, 6882

START= option
MODEL statement (PHREG), 6873

STATISTICS= option
BAYES statement(PHREG), 6850

STOP= option
MODEL statement (PHREG), 6873

STOPRES option
MODEL statement (PHREG), 6873

STORE statement
PHREG procedure, 6884

STRATA statement
PHREG procedure, 6883

TAU option
PROC PHREG statement (PHREG), 6830

TEST option
CONTRAST statement (PHREG), 6857

TEST statement
PHREG procedure, 6884

THINNING= option
BAYES statement(PHREG), 6851

TIES= option
MODEL statement (PHREG), 6874

TIMELIST= option
BASELINE statement (PHREG), 6833

TRUNCATE option
CLASS statement (PHREG), 6853

TYPE1 option
MODEL statement (PHREG), 6873

TYPE3 option
MODEL statement (PHREG), 6873

UNITS= option
HAZARDRATIO statement (PHREG), 6863

VAR= option
ASSESS statement (PHREG), 6831

WEIGHT statement
PHREG procedure, 6885

XCONV= option
MODEL statement (PHREG), 6874
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