

SAS/STAT® 13.1 User's Guide The PROBIT Procedure

This document is an individual chapter from SAS/STAT® 13.1 User's Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2013. SAS/STAT® 13.1 User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

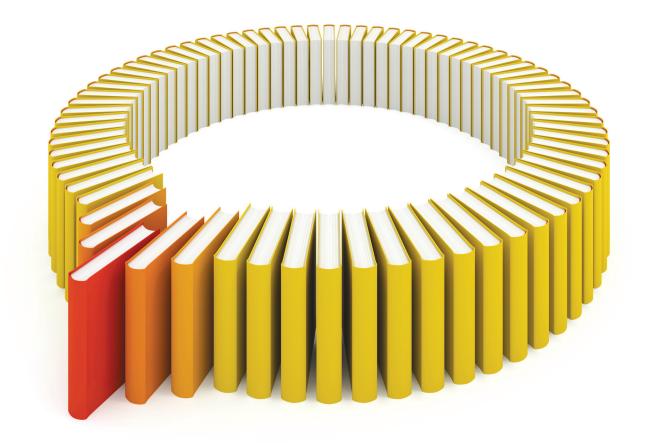
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.


SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

December 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more information about our offerings, visit **support.sas.com/bookstore** or call 1-800-727-3228.

 $SAS^{\textcircled{@}}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. @ indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

Chapter 79

The PROBIT Procedure

					4
C	Λī	1 T	Ω.	n	ГC

113	
Overview: PROBIT Procedure	6728
Getting Started: PROBIT Procedure	6729
Estimating the Natural Response Threshold Parameter	6729
Syntax: PROBIT Procedure	6733
PROC PROBIT Statement	6733
BY Statement	6739
CDFPLOT Statement	6739
CLASS Statement	6748
EFFECTPLOT Statement	6751
ESTIMATE Statement	6752
INSET Statement	6753
IPPPLOT Statement	6755
LPREDPLOT Statement	6763
LSMEANS Statement	6771
LSMESTIMATE Statement	6772
MODEL Statement	6773
OUTPUT Statement	6779
PREDPPLOT Statement	6780
SLICE Statement	6789
STORE Statement	6789
TEST Statement	6790
WEIGHT Statement	6790
Details: PROBIT Procedure	6790
Missing Values	6790
Response Level Ordering	6790
Computational Method	6792
Distributions	6793
INEST= SAS-data-set	6793
Model Specification	6794
Lack-of-Fit Tests	6794
Rescaling the Covariance Matrix	6795
Tolerance Distribution	6796
Inverse Confidence Limits	6796
OUTEST= SAS-data-set	6797
XDATA= SAS-data-set	6798
Traditional High-Resolution Graphics	6798

Displayed Output	6800
ODS Table Names	5801
ODS Graphics	5802
Examples: PROBIT Procedure	6805
Example 79.1: Dosage Levels	5805
Example 79.2: Multilevel Response	5814
Example 79.3: Logistic Regression	5820
Example 79.4: An Epidemiology Study	5822
Example 79.5: Model Postfitting Analysis	5833
References	6836

Overview: PROBIT Procedure

The PROBIT procedure calculates maximum likelihood estimates of regression parameters and the natural (or threshold) response rate for quantal response data from biological assays or other discrete event data. This includes probit, logit, ordinal logistic, and extreme value (or gompit) regression models.

Probit analysis developed from the need to analyze qualitative (dichotomous or polytomous) dependent variables within the regression framework. Many response variables are binary by nature (yes/no), while others are measured ordinally rather than continuously (degree of severity). Researchers have shown ordinary least squares (OLS) regression to be inadequate when the dependent variable is discrete (Collett 2003; Agresti 2002). Probit or logit analyses are more appropriate in this case.

The PROBIT procedure computes maximum likelihood estimates of the parameters β and C of the probit equation by using a modified Newton-Raphson algorithm. When the response Y is binary, with values 0 and 1, the probit equation is

$$p = \Pr(Y = 0) = C + (1 - C)F(x'\beta)$$

where

- β is a vector of parameter estimates
- F is a cumulative distribution function (normal, logistic, or extreme value)
- x is a vector of explanatory variables
- p is the probability of a response
- C is the natural (threshold) response rate

Notice that PROC PROBIT, by default, models the probability of the *lower* response levels. The choice of the distribution function F (normal for the probit model, logistic for the logit model, and extreme value or Gompertz for the gompit model) determines the type of analysis. For most problems, there is relatively little difference between the normal and logistic specifications of the model. Both distributions are symmetric about the value zero. The extreme value (or Gompertz) distribution, however, is not symmetric, approaching 0 on the left more slowly than it approaches 1 on the right. You can use the extreme value distribution where such asymmetry is appropriate.

For ordinal response models, the response, Y, of an individual or an experimental unit can be restricted to one of a (usually small) number, $k+1 (k \ge 1)$, of ordinal values, denoted for convenience by $1, \ldots, k, k+1$. For example, the severity of coronary disease can be classified into three response categories as 1=no disease, 2=angina pectoris, and 3=myocardial infraction. The PROBIT procedure fits a common slopes cumulative model, which is a parallel-lines regression model based on the cumulative probabilities of the response categories rather than on their individual probabilities. The cumulative model has the form

$$Pr(Y \le 1 \mid \mathbf{x}) = F(\mathbf{x}'\boldsymbol{\beta})$$

$$Pr(Y \le i \mid \mathbf{x}) = F(\alpha_i + \mathbf{x}'\boldsymbol{\beta}), \quad 2 \le i \le k$$

where $\alpha_2, \ldots, \alpha_k$ are k-1 intercept parameters. By default, the covariate vector **x** contains an overall intercept term.

You can set or estimate the natural (threshold) response rate C. Estimation of C can begin either from an initial value that you specify or from the rate observed in a control group. By default, the natural response rate is fixed at zero.

An observation in the data set analyzed by the PROBIT procedure might contain the response and explanatory values for one subject. Alternatively, it might provide the number of observed events from a number of subjects at a particular setting of the explanatory variables. In this case, PROC PROBIT models the probability of an event.

The PROBIT procedure uses ODS Graphics to create graphs as part of its output. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS." For specific information about the graphics available in the PROBIT procedure, see the section "ODS Graphics" on page 6802.

Getting Started: PROBIT Procedure

The following example illustrates how you can use the PROBIT procedure to compute the threshold response rate and regression parameter estimates for quantal response data.

Estimating the Natural Response Threshold Parameter

Suppose you want to test the effect of a drug at 12 dosage levels. You randomly divide 180 subjects into 12 groups of 15—one group for each dosage level. You then conduct the experiment and, for each subject, record the presence or absence of a positive response to the drug. You summarize the data by counting the number of subjects responding positively in each dose group. Your data set is as follows:

```
data study;
   input Dose Respond @@;
   Number = 15;
   datalines;
0    3    1.1    4    1.3    4    2.0    3    2.2   5    2.8    4
3.7    5    3.9    9    4.4    8    4.8    11    5.9    12    6.8    13;
```

The variable dose represents the amount of drug administered. The first group, receiving a dose level of 0, is the control group. The variable number represents the number of subjects in each group. All groups are equal in size; hence, number has the value 15 for all observations. The variable respond represents the number of subjects responding to the associated drug dosage.

You can model the probability of positive response as a function of dosage by using the following statements:

```
ods graphics on;
proc probit data=study log10 optc plots=(predpplot ippplot);
  model respond/number=dose;
  output out=new p=p_hat;
run;
```

The DATA= option specifies that PROC PROBIT analyze the SAS data set study. The LOG10 option replaces the first continuous independent variable (dose) with its common logarithm. The OPTC option estimates the natural response rate. When you use the LOG10 option with the OPTC option, any observations with a dose value less than or equal to zero are used in the estimation as a control group.

The PLOTS= option in the PROC PROBIT statement, together with the ODS GRAPHICS statement, requests two plots for the estimated probability values and dosage levels. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS." For specific information about the graphics available in the PROBIT procedure, see the section "ODS Graphics" on page 6802.

The MODEL statement specifies a proportional response by using the variables respond and number in *events/trials* syntax. The variable dose is the stimulus or explanatory variable.

The OUTPUT statement creates a new data set, new, that contains all the variables in the original data set, and a new variable, p_hat, that represents the predicted probabilities.

The results from this analysis are displayed in the following figures.

Figure 79.1 displays background information about the model fit. Included are the name of the input data set, the response variables used, and the number of observations, events, and trials. The last line in Figure 79.1 shows the final value of the log-likelihood function.

Figure 79.2 displays the table of parameter estimates for the model. The parameter C, which is the natural response threshold or the proportion of individuals responding at zero dose, is estimated to be 0.2409. Since both the intercept and the slope coefficient have significant p-values (0.0020, 0.0010), you can write the model for

```
Pr(\text{response}) = C + (1 - C)F(\mathbf{x}'\beta) Pr(\text{response}) = 0.2409 + 0.7591(\Phi(-4.1439 + 6.2308 \times \log_{10}(\text{dose})))
```

where Φ is the normal cumulative distribution function.

as

Finally, PROC PROBIT specifies the resulting tolerance distribution by providing the mean MU and scale parameter SIGMA as well as the covariance matrix of the distribution parameters in Figure 79.3.

Figure 79.1 Model Fitting Information for the PROBIT Procedure

The Probit Procedure	•
Model Information	
Data Set	WORK.STUDY
Events Variable	Respond
Trials Variable	Number
Number of Observations	12
Number of Events	81
Number of Trials	180
Number of Events In Control Group	3
Number of Trials In Control Group	15
Name of Distribution	Normal
Log Likelihood	-104.3945783

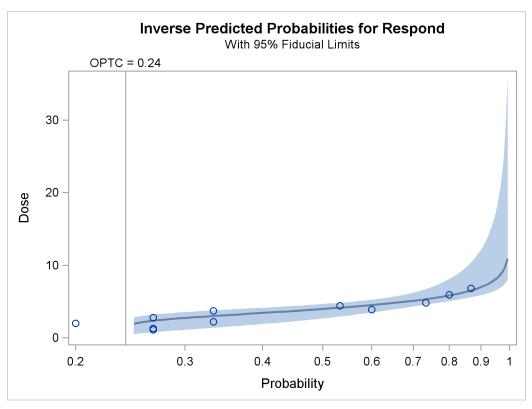
Figure 79.2 Model Parameter Estimates for the PROBIT Procedure

	ату.	SIS OI Ma	kimum Like	IIIIOOU FA	rameter E	SCIMACES	
			Standard	95% Con	fidence	Chi-	
Parameter	DF	Estimate	Error	Lim	its	Square P	r > ChiSq
Intercept	1	-4.1438	1.3415	-6.7731	-1.5146	9.54	0.0020
Log10 (Dose)	1	6.2308	1.8996	2.5076	9.9539	10.76	0.0010
C	1	0.2409	0.0523	0.1385	0.3433		

Figure 79.3 Tolerance Distribution Estimates for the PROBIT Procedure

Estimated	l Covariance	Matrix for Tolerance	Parameters
	MU	SIGMA	_c_
MU	0.001158	-0.000493	0.000954
SIGMA	-0.000493	0.002394	-0.000999
C	0.000954	-0.000999	0.002731

The PLOT=PREDPPLOT option creates the plot in Figure 79.4, showing the relationship between dosage level, observed response proportions, and estimated probability values. The dashed lines represent pointwise confidence bands for the fitted probabilities, and a reference line is plotted at the estimated threshold value of 0.24.


The PLOT=IPPPLOT option creates the plot in Figure 79.5, showing the inverse relationship between dosage level and observed response proportions/estimated probability values. The dashed lines represent pointwise fiducial limits for the predicted values of the dose variable, and a reference line is also plotted at the estimated threshold value of 0.24.

The two plot options can be put together with the PLOTS= option, as shown in the PROC PROBIT statement.

Predicted Probabilities for Respond With 95% Confidence Limits 1.0 0.8 0.6 Probability 0.4 0 0 0 0 OPTC = 0.24 0.2 0 0.0 2 3 5 6 7 Dose

Figure 79.4 Plot of Observed and Fitted Probabilities versus Dose Level

Figure 79.5 Inverse Predicted Probability Plot with Fiducial Limits

Syntax: PROBIT Procedure

The following statements are available in the PROBIT procedure:

```
PROC PROBIT < options > :
    BY variables;
   CDFPLOT < VAR=variable > < options > ;
   CLASS variables < (options) > . . . < variable < (options) > > < / options > ;
    ESTIMATE < 'label' > estimate-specification < (divisor=n) >
               <, ... < 'label' > estimate-specification < (divisor=n) >> < / options > ;
    EFFECTPLOT < plot-type < (plot-definition-options) >> </ options>;
   INSET < keyword-list > < / options > ;
   IPPPLOT < VAR=variable > < options > ;
   LPREDPLOT < VAR=variable > < options > ;
   LSMEANS < model-effects > < / options > ;
   LSMESTIMATE model-effect < 'label' > values < (divisor=n) >
                    <, ... < 'label' > values < (divisor=n) >> < / options > ;
    MODEL response < (response options) > = independents < / options > ;
    OUTPUT < OUT=SAS-data-set > < options > ;
    PREDPPLOT < VAR=variable > < options > ;
   SLICE model-effect < / options > ;
   STORE < OUT = > item-store-name < / LABEL = 'label' > ;
   TEST < model-effects > </ options > ;
   WEIGHT variable;
```

A MODEL statement is required. Only a single MODEL statement can be used with one invocation of the PROBIT procedure. If multiple MODEL statements are present, only the last one is used. Main effects and higher-order terms can be specified in the MODEL statement, as in the GLM procedure. If a CLASS statement is used, it must precede the MODEL statement.

The CDFPLOT, INSET, IPPPLOT, LPREDPLOT, and PREDPPLOT statements are used to produce graphical output. You can use any appropriate combination of the graphical statements after the MODEL statement.

The ESTIMATE, EFFECTPLOT, LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST statements are common to many procedures. Summary descriptions of functionality and syntax for these statements are also given after the PROC PROBIT statement in alphabetical order, and full documentation about them is available in Chapter 19, "Shared Concepts and Topics."

PROC PROBIT Statement

```
PROC PROBIT < options> ;
```

The PROC PROBIT statement invokes the PROBIT procedure. Table 79.1 summarizes the *options* available in the PROC PROBIT statement.

Table 79.1 PROC PROBIT Statement Options

Option	Description
COVOUT	Writes the parameter estimate covariance matrix to the OUTEST= data set
C=	Controls how the natural response is handled
DATA=	Specifies the SAS data set to be used
GOUT=	Specifies a graphics catalog in which to save graphics output
HPROB=	Specifies a minimum probability level for the Pearson's chi-square
INEST=	Specifies an input SAS data set that contains initial estimates
INVERSECL	Computes confidence limits
LACKFIT	Performs two goodness-of-fit tests
LOG	Replaces the first continuous independent variable with its natural logarithm
LOG10	Replaces the first continuous independent variable with log to the base 10
NAMELEN=	Specifies the length of effect names to be <i>n</i> characters
NOPRINT	Suppresses the display of all output including graphics
OPTC	Controls how the natural response is handled
ORDER=	Specifies the sort order for the levels of the classification variables
OUTEST=	Specifies a SAS data set to contain the parameter estimates
PLOT PLOTS	Controls the plots produced though ODS Graphics
XDATA=	Specifies an input SAS data set that contains values for all the independent variables

You can specify the following options in the PROC PROBIT statement.

COVOUT

writes the parameter estimate covariance matrix to the OUTEST= data set.

C=rate

OPTC

controls how the natural response is handled. Specify the OPTC option to request that the natural response rate C be estimated. Specify the C=rate option to set the natural response rate or to provide the initial estimate of the natural response rate. The natural response rate value must be a number between 0 and 1.

- If you specify neither the OPTC nor the C= option, a natural response rate of zero is assumed.
- If you specify both the OPTC and the C= option, the C= option should be a reasonable initial estimate of the natural response rate. For example, you could use the ratio of the number of responses to the number of subjects in a control group.
- If you specify the C= option but not the OPTC option, the natural response rate is set to the specified value and not estimated.
- If you specify the OPTC option but not the C= option, PROC PROBIT's action depends on the response variable, as follows:
 - If you specify either the LN or LOG10 option and some subjects have the first independent variable (dose) values less than or equal to zero, these subjects are treated as a control group. The initial estimate of C is then the ratio of the number of responses to the number of subjects in this group.

- If you do not specify the LN or LOG10 option or if there is no control group, then one of the following occurs:
 - If all responses are greater than zero, the initial estimate of the natural response rate is the minimal response rate (the ratio of the number of responses to the number of subjects in a dose group) across all dose levels.
 - If one or more of the responses is zero (making the response rate zero in that dose group), the initial estimate of the natural rate is the reciprocal of twice the largest number of subjects in any dose group in the experiment.

DATA=SAS-data-set

specifies the SAS data set to be used by PROC PROBIT. By default, the procedure uses the most recently created SAS data set.

GOUT=graphics-catalog

specifies a graphics catalog in which to save graphics output.

HPROB=*p*

specifies a minimum probability level for the Pearson's chi-square to indicate a good fit. The default value is 0.10. The LACKFIT option must also be specified for this option to have any effect. For Pearson's goodness-of-fit chi-square values with probability greater than the HPROB= value, the fiducial limits, if requested with the INVERSECL option, are computed by using a critical value of 1.96. For chi-square values with probability less than the value of the HPROB= option, the critical value is a 0.95 two-sided quantile value taken from the t distribution with degrees of freedom equal to $(k-1) \times m - q$, where k is the number of levels for the response variable, m is the number of different sets of independent variable values, and q is the number of parameters fit in the model. Note that the HPROB= option can also appear in the MODEL statement.

INEST=SAS-data-set

specifies an input SAS data set that contains initial estimates for all the parameters in the model. See the section "INEST= SAS-data-set" on page 6793 for a detailed description of the contents of the INEST= data set.

INVERSECL<(PROB=rates)>

computes confidence limits for the values of the first continuous independent variable (such as dose) that yield selected response rates. You can optionally specify a list of response rates as *rates*. The response rates must be between zero and one, and can be a list separated by blanks, commas, or in the form of a DO list.

For example,

```
PROB = .1 TO .9 by .1
PROB = .1 .2 .3 .4
PROB = .01, .25, .75, .9
```

are valid lists of response rates.

If the algorithm fails to converge (this can happen when *C* is nonzero), missing values are reported for the confidence limits. See the section "Inverse Confidence Limits" on page 6796 for details. Note that the INVERSECL option can also appear in the MODEL statement.

LACKFIT

performs two goodness-of-fit tests (a Pearson's chi-square test and a log-likelihood ratio chi-square test) for the fitted model.

To compute the test statistics, proper grouping of the observations into subpopulations is needed. You can use the AGGREGATE or AGGREGATE= option for this end. See the entry for the AGGREGATE and AGGREGATE= options under the MODEL statement. If neither AGGREGATE nor AGGREGATE= is specified, PROC PROBIT assumes each observation is from a separate subpopulation and computes the goodness-of-fit test statistics only for the *events/trials* syntax.

NOTE: This test is not appropriate if the data are very sparse, with only a few values at each set of the independent variable values.

If the Pearson's chi-square test statistic is significant, then the covariance estimates and standard error estimates are adjusted. See the section "Lack-of-Fit Tests" on page 6794 for a description of the tests. Note that the LACKFIT option can also appear in the MODEL statement.

LOG

LN

analyzes the data by replacing the first continuous independent variable with its natural logarithm. This variable is usually the level of some treatment such as dosage. In addition to the usual output given by the INVERSECL option, the estimated dose values and 95% fiducial limits for dose are also displayed. If you specify the OPTC option, any observations with a dose value less than or equal to zero are used in the estimation as a control group. If you do not specify the OPTC option with the LOG or LN option, then any observations with the first continuous independent variable values less than or equal to zero are ignored.

LOG₁₀

specifies an analysis like that of the LN or LOG option, except that the common logarithm (log to the base 10) of the dose value is used rather than the natural logarithm.

NAMELEN=*n*

specifies the length of effect names in tables and output data sets to be n characters, where n is a value between 20 and 200. The default length is 20 characters.

NOPRINT

suppresses the display of all output including graphics. Note that this option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 20, "Using the Output Delivery System."

OPTC

controls how the natural response is handled. See the description of the C= option on page 6734 for details.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sort order for the levels of the classification variables (which are specified in the CLASS statement). This option applies to the levels for all classification variables, except when you use the (default) ORDER=FORMATTED option with numeric classification variables that have no explicit format. In that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER=	Levels Sorted By
DATA	Order of appearance in the input data set
FORMATTED	External formatted value, except for numeric variables with no explicit format, which are sorted by their unformatted (internal) value
FREQ	Descending frequency count; levels with the most observa- tions come first in the order
INTERNAL	Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent.

This order also applies to the levels of the response variable. Response level ordering is important because PROC PROBIT always models the probability of response levels at the beginning of the ordering. See the section "Response Level Ordering" on page 6790 for further details.

For more information about sort order, see the chapter on the SORT procedure in the *Base SAS Procedures Guide* and the discussion of BY-group processing in *SAS Language Reference: Concepts*.

OUTEST=SAS-data-set

specifies a SAS data set to contain the parameter estimates and, if the COVOUT option is specified, their estimated covariances. If you omit this option, the output data set is not created. The contents of the data set are described in the section "OUTEST= SAS-data-set" on page 6797.

```
PLOT | PLOTS <=plot-request >
PLOT | PLOTS <=(plot-request < ...plot-request > )>
```

specifies options that control details of the plots created by ODS Graphics. These plots are related to a dose variable, which is identified as the first single continuous independent variable in the MODEL statement. If there are interaction terms with this variable in the model, the PROBIT procedure will not produce any plot.

You can specify more than one plot request within the parentheses after PLOTS=. For a single plot request, you can omit the parentheses.

ODS Graphics must be enabled before plots can be requested. For example:

```
proc probit plots=predplot;
  model r/n = dose;
run;
```

For more information about enabling and disabling ODS Graphics, see the section "Enabling and Disabling ODS Graphics" on page 606 in Chapter 21, "Statistical Graphics Using ODS."

The following *plot-requests* are available.

creates all appropriate plots.

CDFPLOT<(LEVEL=(character-list))>

requests the plot of predicted cumulative distribution function (CDF) of the multinomial response variable as a function of a single continuous independent variable (dose variable). This single continuous independent variable must be the first single continuous independent variable listed in the MODEL statement. You can request this plot only with a multinomial model.

The LEVEL= suboption specifies the levels of the multinomial response variable for which the CDF curves are requested. There are k-1 curves for a k-level multinomial response variable (for the highest level, it is the constant line 1). You can specify any of them to be plotted by the LEVEL= suboption.

IPPPLOT

requests the inverse plot of the predicted probability against the first single continuous variable (dose variable) in the MODEL statement for the binomial model. You can request this plot only with a binomial model. The confidence limits for the predicted values of the dose variable are the computed fiducial limits, not the inverse of the confidence limits of the predicted probabilities. See the section "Inverse Confidence Limits" on page 6796 for more details.

LPREDPLOT<(LEVEL=(character-list))>

requests the plot of the linear predictor $\mathbf{x'b}$ against the first single continuous variable (dose variable) in the MODEL statement for either the binomial model or the multinomial model. The confidence limits for the predicted values are available only for the binomial model.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which the linear predictor lines are plotted.

NONE

suppresses all plots.

PREDPPLOT<(LEVEL=(character-list))>

requests the plot of the predicted probability against the first single continuous variable (dose variable) in the MODEL statement for both the binomial model and the multinomial model. Confidence limits are available only for the binomial model.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which the linear predictor lines are plotted.

XDATA=SAS-data-set

specifies an input SAS data set that contains values for all the independent variables in the MODEL statement and variables in the CLASS statement. If there are covariates specified in a MODEL statement, you specify fixed values for the effects in the MODEL statement by the XDATA= data set when predicted values and/or fiducial limits for a single continuous variable (dose variable) are required. These specified values for the effects in the MODEL statement are also used for generating plots. See the section "XDATA= SAS-data-set" on page 6798 for a detailed description of the contents of the XDATA= data set.

BY Statement

BY variables;

You can specify a BY statement with PROC PROBIT to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the PROBIT procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CDFPLOT Statement

CDFPLOT < VAR=variable > < options > ;

The CDFPLOT statement plots the predicted cumulative distribution function (CDF) of the multinomial response variable as a function of a single continuous independent variable (dose variable). You can use this statement only after a multinomial model statement.

VAR=variable

specifies a single continuous variable (dose variable) in the independent variable list of the MODEL statement. If a VAR= *variable* is not specified, the first single continuous variable in the independent variable list of the MODEL statement is used. If such a variable does not exist in the independent variable list of the MODEL statement, an error is reported.

The predicted cumulative distribution function is defined as

$$\hat{F}_j(\mathbf{x}) = C + (1 - C)F(\hat{a}_j + \mathbf{x}'\hat{\mathbf{b}})$$

where j = 1, ..., k are the indexes of the k levels of the multinomial response variable, F is the CDF of the distribution used to model the cumulative probabilities, $\hat{\mathbf{b}}$ is the vector of estimated parameters, \mathbf{x} is the covariate vector, \hat{a}_j are estimated ordinal intercepts with $\hat{a}_1 = 0$, and C is the threshold parameter, either known or estimated from the model. Let x_1 be the covariate corresponding to the dose variable and \mathbf{x}_{-1} be the vector of the rest of the covariates. Let the corresponding estimated parameters be \hat{b}_1 and $\hat{\mathbf{b}}_{-1}$. Then

$$\hat{F}_j(\mathbf{x}) = C + (1 - C)F(\hat{a}_j + x_1\hat{b}_1 + \mathbf{x}'_{-1}\hat{\mathbf{b}}_{-1})$$

To plot \hat{F}_j as a function of x_1 , \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow the rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

options

specify the levels of the multinomial response variable for which the CDF curves are requested, and add features to the plot. There are k-1 curves for a k-level multinomial response variable (for the highest level, it is the constant line 1). You can specify any of them to be plotted by the LEVEL= option in the CDFPLOT statement. See the LEVEL= option for how to specify the levels.

An attached box on the right side of the plot is used to label these curves with the names of their levels. You can specify the color of this box by using the CLABBOX= option.

You can use options in the CDFPLOT statement to do the following:

- · superimpose specification limits
- specify the levels for which the CDF curves are requested
- specify graphical enhancements (such as color or text height)

Summary of Options

Table 79.2 through Table 79.8 summarize the *options* available in the CDFPLOT statement. The "Dictionary of Options" on page 6743 describes each option in detail.

CDF Options

Table 79.2 Options for CDFPLOT

LEVEL=(character-list)	Specifies the names of the levels for which the CDF curves are requested
NOTHRESH	Suppresses the threshold line
THRESHLABPOS=value	Specifies the position for the label of the threshold line

General Options

Table 79.3 Color Options

CAXIS=color	Specifies color for axis
CFIT=color	Specifies color for fitted curves
CFRAME=color	Specifies color for frame
CGRID=color	Specifies color for grid lines
CHREF=color	Specifies color for HREF= lines
CLABBOX=color	Specifies color for label box
CTEXT=color	Specifies color for text
CVREF=color	Specifies color for VREF= lines

Table 79.4 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=	Specifies an Annotate data set
SAS-data-set	
INBORDER	Requests a border around plot
LFIT=linetype	Specifies line style for fitted curves
LGRID=linetype	Specifies line style for grid lines
NOFRAME	Suppresses the frame around plotting areas
NOGRID	Suppresses grid lines
NOFIT	Suppresses CDF curves
NOHLABEL	Suppresses horizontal labels
NOHTICK	Suppresses horizontal ticks
NOVTICK	Suppresses vertical ticks
TURNVLABELS	Vertically strings out characters in vertical labels
WFIT=n	Specifies thickness for fitted curves
WGRID=n	Specifies thickness for grids
WREFL=n	Specifies thickness for reference lines

Table 79.5 Axis Options

HAVIS-valuat to valua?	Specifies tiels mark values for horizontal axis
HAXIS=value1 to value2	Specifies tick mark values for horizontal axis
 by value3>	
HOFFSET=value	Specifies offset for horizontal axis
HLOWER=value	Specifies lower limit on horizontal axis scale
HUPPER=value	Specifies upper limit on horizontal axis scale
NHTICK=n	Specifies number of ticks for horizontal axis
NVTICK=n	Specifies number of ticks for vertical axis
VAXIS=value1 to value2	Specifies tick mark values for vertical axis
 by value3>	
VAXISLABEL='label'	Specifies label for vertical axis
VOFFSET=value	Specifies offset for vertical axis
VLOWER=value	Specifies lower limit on vertical axis scale
VUPPER=value	Specifies upper limit on vertical axis scale
WAXIS=n	Specifies thickness for axis
-	

Table 79.6 Graphics Catalog Options

DESCRIPTION='string'	Specifies description for graphics catalog member
NAME='string'	Specifies name for plot in graphics catalog

Table 79.7 Options for Text Enhancement

FONT=font	Specifies software font for text
HEIGHT=value	Specifies height of text outside framed areas
INHEIGHT=value	Specifies height of text inside framed areas

Table 79.8 Options for Reference Lines

HREF< (INTERSECT)>	Requests horizontal reference line
=value-list	
HREFLABELS=	Specifies labels for HREF= lines
('label1',,'labeln')	
HREFLABPOS=n	Specifies vertical position of labels for HREF= lines
LHREF=linetype	Specifies line style for HREF= lines
LVREF=linetype	Specifies line style for VREF= lines
VREF<(INTERSECT)>	Requests vertical reference line
=value-list	
VREFLABELS=	Specifies labels for VREF= lines
('label1',,'labeln')	
VREFLABPOS=n	Specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of the *options* in the CDFPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set

specifies an Annotate data set, as described in *SAS/GRAPH: Reference*, that enables you to add features to the CDF plot. The ANNOTATE= data set you specify in the CDFPLOT statement is used for all plots created by the statement.

CAXIS=color

CAXES=color

specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications in an AXIS statement. The default is the first color in the device color list.

CFIT=color

specifies the color for the fitted CDF curves. The default is the first color in the device color list.

CFRAME=color

CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color

specifies the color for grid lines. The default is the first color in the device color list.

CLABBOX=color

specifies the color for the area enclosed by the label box for CDF curves. This area is not shaded by default.

CHREF=color

CH=color

specifies the color for lines requested by the HREF= option. The default is the first color in the device color list.

CTEXT=color

specifies the color for tick mark values and axis labels. The default is the color specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color

specifies the color for lines requested by the VREF= option. The default is the first color in the device color list.

DESCRIPTION="string"

DES="string"

specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The default is the variable name.

FONT=font

specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >

specifies tick mark values for the horizontal axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. If *value3* is omitted, a value of 1 is used.

Examples of HAXIS= lists follow:

```
haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10
```

HEIGHT=value

specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).

HLOWER=value

specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies *value* as the lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value

specifies offset for horizontal axis. The default value is 1.

HUPPER=value

specifies *value* as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > = value-list

requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=, and LHREF= options.

HREFLABELS='label1',...,'labeln'

HREFLABEL='label1',...,'labeln'

HREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the HREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n

specifies the vertical position of labels for HREF= lines. The following table shows valid values for *n* and the corresponding label placements.

n I abal Dlagoment

11	Labei Piacement
1	Тор
2	Staggered from top
3	Bottom
4	Staggered from bottom
5	Alternating from top
6	Alternating from bottom

INBORDER

requests a border around CDF plots.

INHEIGHT=value

Specifies height of text inside framed areas.

LEVEL=(character-list)

ORDINAL=(character-list)

specifies the names of the levels for which CDF curves are requested. Names should be quoted and separated by space. If there is no correct name provided, no CDF curve is plotted.

LFIT=linetype

specifies a line style for fitted curves. By default, fitted curves are drawn by connecting solid lines (linetype = 1).

LGRID=linetype

specifies a line style for all grid lines. *linetype* is between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2, which produces a dashed line.

LVREF=linetype

LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2, which produces a dashed line.

NAME='string'

specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu. The default is 'PROBIT'.

NHTICK=n

Specifies number of ticks for horizontal axis.

NVTICK=n

Specifies number of ticks for vertical axis.

NOFIT

suppresses the fitted CDF curves.

NOFRAME

suppresses the frame around plotting areas.

NOGRID

suppresses grid lines.

NOHLABEL

suppresses horizontal labels.

NOHTICK

suppresses horizontal tick marks.

NOTHRESH

suppresses the threshold line.

NOVLABEL

suppresses vertical labels.

TURNVLABELS

vertically strings out characters in vertical labels.

NOVTICK

suppresses vertical tick marks.

THRESHLABPOS=n

specifies the horizontal position of labels for the threshold line. The following table shows valid values for *n* and the corresponding label placements.

n	Label Placement
1	Left
2	Right

VAXIS=value1 to value2 < by value3 >

specifies tick mark values for the vertical axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. This method of specification of tick marks is not valid for logarithmic axes. If *value3* is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

```
vaxis = 0 to 10
vaxis = 0 to 2 by .1
```

VAXISLABEL='string'

specifies a label for the vertical axis.

VLOWER=value

specifies the lower limit on the vertical axis scale. The VLOWER= option specifies *value* as the lower vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

VOFFSET=value

specifies the offset for the vertical axis.

VREF=value-list

requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and VREFLABELS= options.

```
VREFLABELS='label1',...,'labeln'
```

VREFLABEL='label1',...,'labeln'

VREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the VREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n

specifies the horizontal position of labels for VREF= lines. The following table shows valid values for n and the corresponding label placements.

n	Label Placement
1	Left
2	Right

VUPPER=value

specifies the upper limit on the vertical axis scale. The VUPPER= option specifies *value* as the upper vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

WAXIS=n

specifies line thickness for axes and frame. The default value is 1.

WFIT=n

specifies line thickness for fitted curves. The default value is 1.

WGRID=n

specifies line thickness for grids. The default value is 1.

WREFL=n

specifies line thickness for reference lines. The default value is 1.

CLASS Statement

CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual variable *options* or as *global-options*. You can specify *options* for each variable by enclosing the options in parentheses after the variable name. You can also specify *global-options* for the CLASS statement by placing them after a slash (/). *Global-options* are applied to all the variables specified in the CLASS statement. If you specify more than one CLASS statement, the *global-options* specified in any one CLASS statement apply to all CLASS statements. However, individual CLASS variable *options* override the *global-options*. You can specify the following values for either an *option* or a *global-option*:

CPREFIX=n

specifies that, at most, the first n characters of a CLASS variable name be used in creating names for the corresponding design variables. The default is $32 - \min(32, \max(2, f))$, where f is the formatted length of the CLASS variable.

DESCENDING

DESC

reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options are specified, PROC PROBIT orders the categories according to the ORDER= option and then reverses that order.

LPREFIX=n

specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the corresponding design variables. The default is $256 - \min(256, \max(2, f))$, where f is the formatted length of the CLASS variable.

MISSING

treats missing values (., ._, .A, ..., .Z for numeric variables and blanks for character variables) as valid values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sort order for the levels of classification variables. This ordering determines which parameters in the model correspond to each level in the data, so the ORDER= option can be useful when you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED

and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered by their internal values.

The following table shows how PROC PROBIT interprets values of the ORDER= option.

Value of ORDER=	Levels Sorted By	
DATA FORMATTED	Order of appearance in the input data set External formatted values, except for numeric	
	variables with no explicit format, which are sorted by their unformatted (internal) values	
FREQ	Descending frequency count; levels with more observations come earlier in the order	
INTERNAL	Unformatted value	

For more information about sort order, see the chapter on the SORT procedure in the *Base SAS Procedures Guide* and the discussion of BY-group processing in *SAS Language Reference: Concepts*.

PARAM=*keyword*

specifies the parameterization method for the classification variable or variables. You can specify any of the *keywords* shown in the following table; Design matrix columns are created from CLASS variables according to the corresponding coding schemes:

Value of PARAM=	Coding	
EFFECT	Effect coding	
GLM	Less-than-full-rank reference cell coding (this <i>keyword</i> can be used only in a global option)	
ORDINAL THERMOMETER	Cumulative parameterization for an ordinal CLASS variable	
POLYNOMIAL POLY	Polynomial coding	
REFERENCE REF	Reference cell coding	
ORTHEFFECT	Orthogonalizes PARAM=EFFECT coding	
ORTHORDINAL ORTHOTHERM	Orthogonalizes PARAM=ORDINAL coding	
ORTHPOLY	Orthogonalizes PARAM=POLYNOMIAL coding	
ORTHREF	Orthogonalizes PARAM=REFERENCE coding	

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM parameterization through the order of levels.

If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used. See

the section "Other Parameterizations" on page 391 in Chapter 19, "Shared Concepts and Topics," for further details.

REF='level' | keyword

specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonalizations. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the *level* of the variable to use as the reference level. Specify the formatted value of the variable if a format is assigned. For a global or individual variable REF= option, you can use one of the following *keywords*. The default is REF=LAST.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

TRUNCATE< =n>

specifies the length *n* of CLASS variable values to use in determining CLASS variable levels. The default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without the length *n*, the first 16 characters of the formatted values are used. When formatted values are longer than 16 characters, you can use this option to revert to the levels as determined in releases before SAS 9. The TRUNCATE option is available only as a global option.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization. See the section "Other Parameterizations" on page 391 in Chapter 19, "Shared Concepts and Topics," for examples and further details.

Class Variable Parameterization with Unbalanced Designs

PROC PROBIT initially parameterizes the CLASS variables by looking at the levels of the variables across the complete data set. If you have an *unbalanced* replication of levels across variables or BY groups, then the design matrix and the parameter interpretation might be different from what you expect. For instance, suppose you have a model with one CLASS variable A with three levels (1, 2, and 3), and another CLASS variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A within the second level of B is not a differential effect. In particular, the design looks like the following:

]	Design Matrix		
		A(E	A(B=1)		3=2)
B	A	A1	A2	A1	A2
1	1	1	0	0	0
1	2	0	1	0	0
1	3	-1	-1	0	0
2	1	0	0	1	0
2	2	0	0	0	1

PROC PROBIT detects linear dependency among the last two design variables and sets the parameter for A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded. The REFERENCE or GLM parameterization might be more appropriate for such problems.

EFFECTPLOT Statement

EFFECTPLOT < plot-type < (plot-definition-options) >> </ options>;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and enhancing the displays. Table 79.9 describes the available *plot-types* and their *plot-definition-options*.

Table 79.9 Plot-Types and Plot-Definition-Options

Plot-Type and Description	Plot-Definition-Options
BOX Displays a box plot of continuous response data at each level of a CLASS effect, with predicted values superimposed and connected by a line. This is an alternative to the INTERACTION <i>plot-type</i> .	PLOTBY= variable or CLASS effect X= CLASS variable or effect
CONTOUR Displays a contour plot of predicted values against two continuous covariates	PLOTBY= variable or CLASS effect X= continuous variable Y= continuous variable
FIT Displays a curve of predicted values versus a continuous variable	PLOTBY= variable or CLASS effect X= continuous variable
INTERACTION Displays a plot of predicted values (possibly with error bars) versus the levels of a CLASS effect. The predicted values are connected with lines and can be grouped by the levels of another CLASS effect.	PLOTBY= variable or CLASS effect SLICEBY= variable or CLASS effect X= CLASS variable or effect
MOSAIC Displays a mosaic plot of predicted values by using up to three CLASS effects	PLOTBY= variable or CLASS effect X= CLASS effects

Table 79.9 continued

Plot-Type and Description	Plot-Definition-Options	
SLICEFIT		
Displays a curve of predicted values versus a	PLOTBY= variable or CLASS effect	
continuous variable, grouped by the levels of a	SLICEBY= variable or CLASS effect	
CLASS effect	X= continuous variable	

For full details about the syntax and options of the EFFECTPLOT statement, see the section "EFFECTPLOT Statement" on page 416 in Chapter 19, "Shared Concepts and Topics."

ESTIMATE Statement

```
ESTIMATE <'label' > estimate-specification < (divisor=n) > <, ... <'label' > estimate-specification < (divisor=n) >> </options > ;
```

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are formed as linear estimable functions of the form $L\beta$. You can perform hypothesis tests for the estimable functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 79.10 summarizes the *options* available in the ESTIMATE statement.

Table 79.10 ESTIMATE Statement Options

Option	Description	
Construction and Con	nputation of Estimable Functions	
DIVISOR=	Specifies a list of values to divide the coefficients	
NOFILL	Suppresses the automatic fill-in of coefficients for higher-order effects	
SINGULAR=	Tunes the estimability checking difference	
Degrees of Freedom and p-values		
ADJUST=	Determines the method for multiple comparison adjustment of estimates	
ALPHA= α	Determines the confidence level $(1 - \alpha)$	
LOWER	Performs one-sided, lower-tailed inference	
STEPDOWN	Adjusts multiplicity-corrected <i>p</i> -values further in a step-down fashion	
TESTVALUE=	Specifies values under the null hypothesis for tests	
UPPER	Performs one-sided, upper-tailed inference	

Table 79.10 continued

Option	Description
Statistical Output	
CL	Constructs confidence limits
CORR	Displays the correlation matrix of estimates
COV	Displays the covariance matrix of estimates
E	Prints the L matrix
JOINT	Produces a joint F or chi-square test for the estimable functions
SEED=	Specifies the seed for computations that depend on random numbers

For details about the syntax of the ESTIMATE statement, see the section "ESTIMATE Statement" on page 444 in Chapter 19, "Shared Concepts and Topics."

INSET Statement

```
INSET < keyword-list> </ options>;
```

The box or table of summary information produced on plots made with the CDFPLOT, IPPPLOT, LPRED-PLOT, or PREDPPLOT statement is called an *inset*. You can use the INSET statement to customize both the information that is printed in the inset box and the appearance of the inset box. To supply the information that is displayed in the inset box, you specify *keywords* corresponding to the information you want shown. For example, the following statements produce a predicted probability plot with the number of trials, the number of events, the name of the distribution, and the estimated optimum natural threshold in the inset.

```
proc probit data=epidemic;
  model r/n = dose;
  predpplot;
  inset nobs ntrials nevents dist optc;
run;
```

By default, inset entries are identified with appropriate labels. However, you can provide a customized label by specifying the *keyword* for that entry followed by the equal sign (=) and the label in quotes. For example, the following INSET statement produces an inset containing the number of observations and the name of the distribution, labeled "Sample Size" and "Distribution" in the inset.

```
inset nobs='Sample Size' dist='Distribution';
```

If you specify a keyword that does not apply to the plot you are creating, then the keyword is ignored.

The *options* control the appearance of the box.

If you specify more than one INSET statement, only the first one is used.

Keywords Used in the INSET Statement

Table 79.11 and Table 79.12 list *keywords* available in the INSET statement to display summary statistics, distribution parameters, and distribution fitting information.

 Table 79.11
 Summary Statistics

NOBS	Number of observations
NTRIALS	Number of trials
NEVENTS	Number of events
C	User-input threshold
OPTC	Estimated natural threshold
NRESPLEV	Number of levels of the response variable

Table 79.12 General Information

CONFIDENCE	Confidence coefficient for all confidence intervals
DIST	Name of the distribution

Options Used in the INSET Statement

Table 79.13 and Table 79.14 list the *options* available in the INSET statement.

Table 79.13 Color and Pattern Options

CFILL=color	Specifies color for filling box
CFILLH=color	Specifies color for filling box header
CFRAME=color	Specifies color for frame
CHEADER=color	Specifies color for text in header
CTEXT=color	Specifies color for text

Table 79.14 General Appearance Options

FONT=font	Specifies software font for text
HEIGHT=value	Specifies height of text
HEADER="quoted-string"	Specifies text for header or box title
NOFRAME	Omits frame around box
POS= value	
<data percent="" =""></data>	Determines the position of the inset. The <i>value</i> can be a compass point (N, NE, E, SE, S, SW, W, NW) or a pair of coordinates (x, y) enclosed in parentheses. The coordinates can be specified in axis percentage units or axis data units.
REFPOINT= name	Specifies the reference point for an inset that is positioned by a pair of coordinates with the POS= option. You use the REFPOINT= option in conjunction with the POS= coordinates. The REFPOINT= option specifies which corner of the inset frame you have specified with coordinates (x, y), and it can take the value of BR (bottom right), BL (bottom left), TR (top right), or TL (top left). The default is REFPOINT=BL. If the inset position is specified as a compass point, then the REFPOINT= option is ignored.

IPPPLOT Statement

IPPPLOT < variable > < options > ;

The IPPPLOT statement plots the inverse of the predicted probability (IPP) against a single continuous variable (dose variable) in the MODEL statement for the binomial model. You can only use this statement after a binomial model statement. The confidence limits for the predicted values of the dose variable are the computed fiducial limits, not the inverse of the confidence limits of the predicted probabilities. See the section "Inverse Confidence Limits" on page 6796 for more details.

VAR= variable

specifies a single continuous variable (dose variable) in the independent variable list of the MODEL statement. If a VAR= variable is not specified, the first single continuous variable in the independent variable list of the MODEL statement is used. If such a variable does not exist in the independent variable list of the MODEL statement, an error is reported.

For the binomial model, the response variable is a probability. An estimate of the dose level \hat{x}_1 needed for a response of p is given by

$$\hat{x}_1 = (F^{-1}(p) - \mathbf{x}'_{-1}\hat{\mathbf{b}}_{-1})/\hat{b}_1$$

where F is the cumulative distribution function used to model the probability, \mathbf{x}_{-1} is the vector of the rest of the covariates, $\hat{\mathbf{b}}_{-1}$ is the vector of the estimated parameters corresponding to \mathbf{x}_{-1} , and \hat{b}_1 is the estimated parameter for the dose variable of interest.

To plot \hat{x}_1 as a function of p, \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow the rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

options

add features to the plot.

You can use *options* in the IPPPLOT statement to do the following:

- superimpose specification limits
- suppress or add the observed data points on the plot
- suppress or add the fiducial limits on the plot
- specify graphical enhancements (such as color or text height)

Summary of Options

Table 79.15 through Table 79.21 summarize the *options* available in the IPPPLOT statement. The "Dictionary of Options" on page 6758 describes each option in detail.

IPP Options

Table 79.15 Plot Layout Options for IPPPLOT

NOCONF	Suppresses fiducial limits
NODATA	Suppresses observed data points on the plot
NOTHRESH	Suppresses the threshold line
THRESHLABPOS=value	Specifies the position for the label of the threshold line

General Options

Table 79.16 Color Options

CAXIS=color	Specifies color for axis
CFIT=color	Specifies color for fitted curves
CFRAME=color	Specifies color for frame
CGRID=color	Specifies color for grid lines
CHREF=color	Specifies color for HREF= lines
CTEXT=color	Specifies color for text
CVREF=color	Specifies color for VREF= lines

Table 79.17 Options to Enhance Plots Produced on Graphics Devices

SAS-data-set	
INBORDER Requests a border around plot	
LFIT=linetype Specifies line style for fitted curves and confidence limit	S
LGRID= <i>linetype</i> Specifies line style for grid lines	
NOFRAME Suppresses the frame around plotting areas	
NOGRID Suppresses grid lines	
NOFIT Suppresses fitted curves	
NOHLABEL Suppresses horizontal labels	
NOHTICK Suppresses horizontal ticks	
NOVTICK Suppresses vertical ticks	
TURNVLABELS Vertically strings out characters in vertical labels	
WFIT= <i>n</i> Specifies thickness for fitted curves	
WGRID=n Specifies thickness for grids	
WREFL=n Specifies thickness for reference lines	

Table 79.18 Axis Options

Specifies tick mark values for horizontal axis
Specifies offset for horizontal axis
Specifies lower limit on horizontal axis scale
Specifies upper limit on horizontal axis scale
Specifies number of ticks for horizontal axis
Specifies number of ticks for vertical axis
Specifies tick mark values for vertical axis
Specifies label for vertical axis
•
Specifies offset for vertical axis
Specifies lower limit on vertical axis scale
Specifies upper limit on vertical axis scale
Specifies thickness for axis

Table 79.19 Options for Reference Lines

HREF<(INTERSECT)> =value-list	Requests horizontal reference line
HREFLABELS= ('label1',,'labeln')	Specifies labels for HREF= lines
HREFLABPOS=n	Specifies vertical position of labels for HREF= lines
LHREF=linetype	Specifies line style for HREF= lines
LVREF=linetype	Specifies line style for VREF= lines
VREF<(INTERSECT)> =value-list	Requests vertical reference line
VREFLABELS= ('label1',,'labeln')	Specifies labels for VREF= lines
VREFLABPOS=n	Specifies horizontal position of labels for VREF= lines

Table 79.20 Graphics Catalog Options

DESCRIPTION='string'	Specifies description for graphics catalog member
NAME='string'	Specifies name for plot in graphics catalog

Table 79.21 Options for Text Enhancement

FONT=font	Specifies software font for text
HEIGHT=value	Specifies height of text used outside framed areas
INHEIGHT=value	Specifies height of text inside framed areas

Dictionary of Options

The following entries provide detailed descriptions of the options in the IPPPLOT statement.

ANNOTATE=SAS-data-set

ANNO=*SAS*-data-set

specifies an Annotate data set, as described in SAS/GRAPH: Reference, that enables you to add features to the IPP plot. The ANNOTATE= data set you specify in the IPPPLOT statement is used for all plots created by the statement.

CAXIS=color

CAXES=color

specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications in an AXIS statement. The default is the first color in the device color list.

CFIT=color

specifies the color for the fitted IPP curves. The default is the first color in the device color list.

CFRAME=color

CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color

specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color

specifies the color for lines requested by the HREF= option. The default is the first color in the device color list.

CTEXT=color

specifies the color for tick mark values and axis labels. The default is the color specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color

specifies the color for lines requested by the VREF= option. The default is the first color in the device color list.

DESCRIPTION='string'

DES='string'

specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The default is the variable name.

FONT=font

specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >

specifies tick mark values for the horizontal axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. If *value3* is omitted, a value of 1 is used.

Examples of HAXIS= lists follow:

```
haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10
```

HEIGHT=value

specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).

HLOWER=value

specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies *value* as the lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value

specifies offset for horizontal axis. The default value is 1.

HUPPER=value

specifies *value* as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > = value-list

requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=, and LHREF= options.

HREFLABELS='label1',...,'labeln'

HREFLABEL='label1',...,'labeln'

HREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the HREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n

specifies the vertical position of labels for HREF= lines. The following table shows valid values for *n* and the corresponding label placements.

n	Label Placement
1	Тор
2	Staggered from top
3	Bottom
4	Staggered from bottom
5	Alternating from top
6	Alternating from bottom

INBORDER

requests a border around IPP plots.

INHEIGHT=value

Specifies height of text inside framed areas.

LFIT=linetype

specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by connecting solid lines (linetype = 1) and confidence limits are drawn by connecting dashed lines (linetype = 3).

LGRID=linetype

specifies a line style for all grid lines. The value for *linetype* must be between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2, which produces a dashed line.

LVREF=linetype

LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2, which produces a dashed line.

NAME='string'

specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu. The default is 'PROBIT'.

NHTICK=n

Specifies number of ticks for horizontal axis.

NVTICK=n

Specifies number of ticks for vertical axis.

NOCONF

suppresses fiducial limits from the plot.

NODATA

suppresses observed data points from the plot.

NOFIT

suppresses the fitted IPP curves.

NOFRAME

suppresses the frame around plotting areas.

NOGRID

suppresses grid lines.

NOHLABEL

suppresses horizontal labels.

NOHTICK

suppresses horizontal tick marks.

NOTHRESH

suppresses the threshold line.

NOVLABEL

suppresses vertical labels.

TURNVLABELS

vertically strings out characters in vertical labels.

NOVTICK

suppresses vertical tick marks.

THRESHLABPOS=n

specifies the vertical position of labels for the threshold line. The following table shows valid values for *n* and the corresponding label placements.

n	Label Placement
1	Тор
2	Bottom

VAXIS=value1 to value2 < by value3 >

specifies tick mark values for the vertical axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. This method of specification of tick marks is not valid for logarithmic axes. If *value3* is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

```
vaxis = 0 to 10
vaxis = 0 to 2 by .1
```

VAXISLABEL='string'

specifies a label for the vertical axis.

VLOWER=value

specifies the lower limit on the vertical axis scale. The VLOWER= option specifies *value* as the lower vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

VOFFSET=value

specifies the offset for the vertical axis.

VREF=*value-list*

requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and VREFLABELS= options.

```
VREFLABELS='label1',...,'labeln'
VREFLABEL='label1',...,'labeln'
VREFLAB='label1',...,'labeln'
```

specifies labels for the lines requested by the VREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n

specifies the horizontal position of labels for VREF= lines. The following table shows valid values for n and the corresponding label placements.

n	Label Placement
1	Left
2	Right

VUPPER=value

specifies the upper limit on the vertical axis scale. The VUPPER= option specifies *value* as the upper vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

WAXIS=n

specifies line thickness for axes and frame. The default value is 1.

WFIT=n

specifies line thickness for fitted curves. The default value is 1.

WGRID=n

specifies line thickness for grids. The default value is 1.

WREFL=n

specifies line thickness for reference lines. The default value is 1.

LPREDPLOT Statement

LPREDPLOT < **VAR**=*variable* > < *options* > ;

The LPREDPLOT statement plots the linear predictor (LPRED) $\mathbf{x}'\mathbf{b}$ against a single continuous variable (dose variable) in the MODEL statement for either the binomial model or the multinomial model. The confidence limits for the predicted values are available only for the binomial model.

VAR= variable

specifies a single continuous variable (dose variable) in the independent variable list of the MODEL statement for which the linear predictor plot is plotted. If a VAR= variable is not specified, the first single continuous variable in the independent variable list of the MODEL statement is used. If such a variable does not exist in the independent variable list of the MODEL statement, an error is reported.

Let x_1 be the covariate of the dose variable, \mathbf{x}_{-1} be the vector of the rest of the covariates, $\hat{\mathbf{b}}_{-1}$ be the vector of estimated parameters corresponding to \mathbf{x}_{-1} , and \hat{b}_1 be the estimated parameter for the dose variable of interest.

To plot $\hat{\mathbf{x}}'\mathbf{b}$ as a function of x_1 , \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow these rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

options

add features to the plot.

For the multinomial model, you can use the LEVEL= option to specify the levels for which the linear predictor lines are plotted. The lines are labeled by the names of their levels in the middle.

You can use *options* in the LPREDPLOT statement to do the following:

- superimpose specification limits
- suppress or add the observed data points on the plot for the binomial model
- suppress or add the confidence limits for the binomial model
- specify the levels for which the linear predictor lines are requested for the multinomial model
- specify graphical enhancements (such as color or text height)

Summary of Options

Table 79.22 through Table 79.28 list all *options* by function. The "Dictionary of Options" on page 6766 describes each option in detail.

LPRED Options

 Table 79.22
 Plot Layout Options for LPREDPLOT

LEVEL=(character-list)	Specifies the names of the levels for which the linear predictor lines are requested (only for the multinomial model)
NOCONF	Suppresses fiducial limits (only for the binomial model)
NODATA	Suppresses observed data points on the plot (only for the binomial model)
NOTHRESH	Suppresses the threshold line
THRESHLABPOS=value	Specifies the position for the label of the threshold line

General Options

Table 79.23 Color Options

CAXIS=color	Specifies color for axis
CFIT=color	Specifies color for fitted curves
CFRAME=color	Specifies color for frame
CGRID=color	Specifies color for grid lines
CHREF=color	Specifies color for HREF= lines
CTEXT=color	Specifies color for text
CVREF=color	Specifies color for VREF= lines

Table 79.24 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=	Specifies an Annotate data set
SAS-data-set	
INBORDER	Requests a border around plot
LFIT=linetype	Specifies line style for fitted curves and confidence limits
LGRID=linetype	Specifies line style for grid lines
NOFRAME	Suppresses the frame around plotting areas
NOGRID	Suppresses grid lines
NOFIT	Suppresses fitted curves
NOHLABEL	Suppresses horizontal labels
NOHTICK	Suppresses horizontal ticks
NOVTICK	Suppresses vertical ticks
TURNVLABELS	Vertically strings out characters in vertical labels
WFIT=n	Specifies thickness for fitted curves
WGRID=n	Specifies thickness for grids
WREFL=n	Specifies thickness for reference lines

Table 79.25 Axis Options

HAXIS=value1 to value2 < by value3 >	Specifies tick mark values for horizontal axis
HOFFSET=value	Specifies offset for horizontal axis
HLOWER=value	Specifies lower limit on horizontal axis scale
HUPPER=value	Specifies upper limit on horizontal axis scale
NHTICK=n	Specifies number of ticks for horizontal axis
NVTICK=n	Specifies number of ticks for vertical axis
VAXIS=value1 to value2 < by value3 >	Specifies tick mark values for vertical axis
VAXISLABEL='label'	Specifies label for vertical axis
VOFFSET=value	Specifies offset for vertical axis
VLOWER=value	Specifies lower limit on vertical axis scale
VUPPER=value	Specifies upper limit on vertical axis scale
WAXIS=n	Specifies thickness for axis

Table 79.26 Graphics Catalog Options

DESCRIPTION='string'	Specifies description for graphics catalog member
NAME='string'	Specifies name for plot in graphics catalog

Table 79.27 Options for Text Enhancement

FONT=font	Specifies software font for text
HEIGHT=value	Specifies height of text used outside framed areas
INHEIGHT=value	Specifies height of text inside framed areas

Table 79.28 Options for Reference Lines

HREF<(INTERSECT)> =value-list	Requests horizontal reference line
HREFLABELS= ('label1',,'labeln')	Specifies labels for HREF= lines
HREFLABPOS=n	Specifies vertical position of labels for HREF= lines
LHREF=linetype	Specifies line style for HREF= lines
LVREF=linetype	Specifies line style for VREF= lines
VREF<(INTERSECT)> =value-list	Requests vertical reference line
VREFLABELS= ('label1',,'labeln')	Specifies labels for VREF= lines
VREFLABPOS=n	Specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of the *options* in the LPREDPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set

specifies an Annotate data set, as described in *SAS/GRAPH: Reference*, that enables you to add features to the LPRED plot. The ANNOTATE= data set you specify in the LPREDPLOT statement is used for all plots created by the statement.

CAXIS=color

CAXES=color

specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications in an AXIS statement. The default is the first color in the device color list.

CFIT=color

specifies the color for the fitted LPRED lines. The default is the first color in the device color list.

CFRAME=color

CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color

specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color

specifies the color for lines requested by the HREF= option. The default is the first color in the device color list.

CTEXT=color

specifies the color for tick mark values and axis labels. The default is the color specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color

specifies the color for lines requested by the VREF= option. The default is the first color in the device color list.

DESCRIPTION='string'

DES='string'

specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The default is the variable name.

FONT=font

specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >

specifies tick mark values for the horizontal axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. If *value3* is omitted, a value of 1 is used.

Examples of HAXIS= lists follow:

```
haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10
```

HEIGHT=value

specifies the height of text used outside framed areas. The default value is 3.846 (in percentage).

HLOWER=value

specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies *value* as the lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value

specifies offset for horizontal axis. The default value is 1.

HUPPER=value

specifies *value* as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > = value-list

requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=, and LHREF= options.

HREFLABELS='label1',...,'labeln'

HREFLABEL='label1',...,'labeln'

HREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the HREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n

specifies the vertical position of labels for HREF= lines. The following table shows valid values for n and the corresponding label placements.

n	Label Placement
1	Тор
2	Staggered from top
3	Bottom
4	Staggered from bottom
5	Alternating from top
6	Alternating from bottom

INBORDER

requests a border around LPRED plots.

INHEIGHT=value

Specifies height of text inside framed areas.

LEVEL=(character-list)

ORDINAL=(character-list)

specifies the names of the levels for which linear predictor lines are requested. Names should be quoted and separated by space. If there is no correct name provided, no LPRED line is plotted.

LFIT=linetype

specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by connecting solid lines (linetype = 1) and confidence limits are drawn by connecting dashed lines (linetype = 3).

LGRID=linetype

specifies a line style for all grid lines. The value for *linetype* is between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2, which produces a dashed line.

LVREF=linetype

LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2, which produces a dashed line.

NAME='string'

specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu. The default is 'PROBIT'.

NHTICK=n

Specifies number of ticks for horizontal axis.

NVTICK=n

Specifies number of ticks for vertical axis.

NOCONF

suppresses confidence limits from the plot. This works only for the binomial model. Confidence limits are not plotted for the multinomial model.

NODATA

suppresses observed data points from the plot. This works only for the binomial model. Data points are not plotted for the multinomial model.

NOFIT

suppresses the fitted LPRED lines.

NOFRAME

suppresses the frame around plotting areas.

NOGRID

suppresses grid lines.

NOHLABEL

suppresses horizontal labels.

NOHTICK

suppresses horizontal tick marks.

NOTHRESH

suppresses the threshold line.

NOVLABEL

suppresses vertical labels.

NOVTICK

suppresses vertical tick marks.

TURNVLABELS

vertically strings out characters in vertical labels.

THRESHLABPOS=n

specifies the horizontal position of labels for the threshold line. The following table shows valid values for *n* and the corresponding label placements.

n	Label Placement
1	Left
2	Right

VAXIS=value1 to value2 < by value3 >

specifies tick mark values for the vertical axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. This method of specification of tick marks is not valid for logarithmic axes. If *value3* is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

```
vaxis = 0 to 10
vaxis = 0 to 2 by .1
```

VAXISLABEL='string'

specifies a label for the vertical axis.

VLOWER=value

specifies the lower limit on the vertical axis scale. The VLOWER= option specifies *value* as the lower vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

VOFFSET=value

specifies the offset for the vertical axis.

VREF=value-list

requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and VREFLABELS= options.

VREFLABELS='label1',...,'labeln'

VREFLABEL='label1',...,'labeln'

VREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the VREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n

specifies the horizontal position of labels for VREF= lines. The following table shows valid values for n and the corresponding label placements.

n	Label Placement
1	Left
2	Right

VUPPER=number

specifies the upper limit on the vertical axis scale. The VUPPER= option specifies *number* as the upper vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

WAXIS=n

specifies line thickness for axes and frame. The default value is 1.

WFIT=n

specifies line thickness for fitted lines. The default value is 1.

WGRID=n

specifies line thickness for grids. The default value is 1.

WREFL=n

specifies line thickness for reference lines. The default value is 1.

LSMEANS Statement

LSMEANS < model-effects > </ options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means are *predicted population margins*—that is, they estimate the marginal means over a balanced population. In a sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 79.29 summarizes the *options* available in the LSMEANS statement.

Table 79.29 LSMEANS Statement Options

Option	Description	
Construction and C	Construction and Computation of LS-Means	
AT	Modifies the covariate value in computing LS-means	
BYLEVEL	Computes separate margins	
DIFF	Requests differences of LS-means	
OM=	Specifies the weighting scheme for LS-means computation as de-	
	termined by the input data set	
SINGULAR=	Tunes estimability checking	
Degrees of Freedom	n and p-values	
ADJUST=	Determines the method for multiple-comparison adjustment of LS-	
	means differences	
ALPHA=α	Determines the confidence level $(1 - \alpha)$	
STEPDOWN	Adjusts multiple-comparison p-values further in a step-down	
	fashion	
Statistical Output		
CL	Constructs confidence limits for means and mean differences	
CORR	Displays the correlation matrix of LS-means	
COV	Displays the covariance matrix of LS-means	
E	Prints the L matrix	
LINES	Produces a "Lines" display for pairwise LS-means differences	
MEANS	Prints the LS-means	
PLOTS=	Requests graphs of means and mean comparisons	
SEED=	Specifies the seed for computations that depend on random numbers	
SELD-	specifies the seed for computations that depend on fandoin number	

For details about the syntax of the LSMEANS statement, see the section "LSMEANS Statement" on page 460 in Chapter 19, "Shared Concepts and Topics."

LSMESTIMATE Statement

```
LSMESTIMATE model-effect < 'label' > values < divisor=n>
              <, ... < 'label' > values < divisor=n > >
```

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least squares means.

Table 79.30 summarizes the *options* available in the LSMESTIMATE statement.

Table 79.30 LSMESTIMATE Statement Options

Option	Description
Construction and Co	omputation of LS-Means
AT	Modifies covariate values in computing LS-means
BYLEVEL	Computes separate margins
DIVISOR=	Specifies a list of values to divide the coefficients
OM=	Specifies the weighting scheme for LS-means computation as de-
	termined by a data set
SINGULAR=	Tunes estimability checking
Degrees of Freedom	and p-values
ADJUST=	Determines the method for multiple-comparison adjustment of LS-
	means differences
ALPHA= α	Determines the confidence level $(1 - \alpha)$
LOWER	Performs one-sided, lower-tailed inference
STEPDOWN	Adjusts multiple-comparison p-values further in a step-down fash-
	ion
TESTVALUE=	Specifies values under the null hypothesis for tests
UPPER	Performs one-sided, upper-tailed inference
Statistical Output	
CL	Constructs confidence limits for means and mean differences
CORR	Displays the correlation matrix of LS-means
COV	Displays the covariance matrix of LS-means
E	Prints the L matrix
ELSM	Prints the K matrix
JOINT	Produces a joint F or chi-square test for the LS-means and LS-
	means differences
SEED=	Specifies the seed for computations that depend on random numbers

For details about the syntax of the LSMESTIMATE statement, see the section "LSMESTIMATE Statement" on page 476 in Chapter 19, "Shared Concepts and Topics."

MODEL Statement

```
< label: > MODEL response< (response_options) > = effects </options>;
< label: > MODEL events/trials = effects </options>;
```

The MODEL statement names the variables used as the response and the independent variables. Additionally, you can specify the distribution used to model the response, as well as other options. Only a single MODEL statement can be used with one invocation of the PROBIT procedure. If multiple MODEL statements are present, only the last is used. Main effects and interaction terms can be specified in the MODEL statement, as in the GLM procedure.

The optional *label*, which must be a valid SAS name, is used to label output from the matching MODEL statement.

The *response* can be a single variable with a value that is used to indicate the level of the observed response. For example, the response might be a variable called Symptoms that takes on the values 'None,' 'Mild,' or 'Severe.' Note that, for dichotomous response variables, the probability of the lower sorted value is modeled by default (see the section "Details: PROBIT Procedure" on page 6790). Because the model fit by the PROBIT procedure requires ordered response levels, you might need to use either the ORDER=DATA option in the PROC PROBIT statement or a numeric coding of the response to get the desired ordering of levels.

Alternatively, the response can be specified as a pair of variable names separated by a slash (/). The value of the first variable, *events*, is the number of positive responses (or events). The value of the second variable, *trials*, is the number of trials. Both variables must be numeric and nonnegative, and the ratio of the first variable value to the second variable value must be between 0 and 1, inclusive. For example, the variables might be hits, a variable containing the number of hits for a baseball player, and AtBats, a variable containing the number of times at bat. A model for hitting proportion (batting average) as a function of age could be specified as

model hits/AtBats=age;

The *effects* following the equal sign are the covariates in the model. Higher-order effects, such as interactions and nested terms, are allowed in the list, as in the GLM procedure. Variable names and combinations of variable names representing higher-order terms are allowed to appear in this list. Classification variables can be used as effects, and indicator variables are generated for the class levels. If you do not specify any covariates following the equal sign, an intercept-only model is fit.

Table 79.31 summarizes the *options* available in the MODEL statement.

Table 79.31 MODEL Statement Options

Option	Description
AGGREGATE	Specifies the subpopulations
ALPHA=	Sets the significance level
CONVERGE=	Specifies the convergence criterion
CORRB	Displays the estimated correlation matrix
COVB	Displays the estimated covariance matrix
DESCENDING	Reverses the order of the response categories
DISTRIBUTION=	Specifies the cumulative distribution function
EVENT=	Specifies the event category for the binary response model
HPROB=	Specifies a minimum probability level
INITIAL=	Sets initial values for the parameters
INTERCEPT=	Initializes the intercept parameter
INVERSECL	Computes confidence limits
ITPRINT	Displays the iteration history, the final evaluation of the gradient, and the
	second derivative matrix
LACKFIT	Performs two goodness-of-fit tests
MAXITER=	Specifies the maximum number of iterations
NOINT	Fits a model with no intercept parameter
ORDER=	Specifies the sort order for the levels of the response variable
REFERENCE=	Specifies the reference category for the binary response model

Table 79.31 continued

Option	Description
SCALE= SINGULAR=	Specifies the method for estimating the dispersion parameter Specifies the singularity criterion

Response Variable Options

DESCENDING | DESC

reverses the order of the response categories. If both the DESCENDING and ORDER= options are specified, PROC PROBIT orders the response categories according to the ORDER= option and then reverses that order. See the section "Response Level Ordering" on page 6790 for more detail.

EVENT='category' | keyword

specifies the event category for the binary response model. PROC PROBIT models the probability of the event category. The EVENT= option has no effect when there are more than two response categories. You can specify the value (formatted if a format is applied) of the event category in quotation marks, or you can specify one of the following *keywords*.

FIRST

designates the first ordered category as the event.

LAST

designates the last ordered category as the event.

By default, EVENT=FIRST.

One of the most common sets of response levels is {0,1}, where 1 represents the event for which the probability is to be modeled. Consider the example where Y takes the values 1 and 0 for event and nonevent, respectively, and Exposure is the explanatory variable. To specify the value 1 as the event category, use the following MODEL statement:

model Y(event='1') = Exposure;

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sort order for the levels of the response variable. The following table displays the available ORDER= options:

ORDER=	Levels Sorted By
DATA FORMATTED	order of appearance in the input data set external formatted value, except for numeric variables with no explicit format, which are sorted
FREQ	by their unformatted (internal) value descending frequency count; levels with the most observations come first in the order
INTERNAL	unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered by their internal values.

For more information about sort order, see the chapter on the SORT procedure in the *Base SAS Procedures Guide* and the discussion of BY-group processing in *SAS Language Reference: Concepts*.

REFERENCE='category' | keyword

REF='category' | keyword

specifies the reference category for the binary response model. Specifying one response category as the reference is the same as specifying the other response category as the event category. You can specify the value (formatted if a format is applied) of the reference category in quotation marks, or you can specify one of the following *keywords*:

FIRST designates the first ordered category as the reference.

LAST designates the last ordered category as the reference.

By default, REF=LAST.

Model Options

The following options are available in the MODEL statement.

AGGREGATE

AGGREGATE=variable-list

specifies the subpopulations on which the Pearson's chi-square test statistic and the log-likelihood ratio chi-square test statistic (deviance) are calculated if the LACKFIT option is specified. See the section "Rescaling the Covariance Matrix" on page 6795 for details of Pearson's chi-square and deviance calculations.

Observations with common values in the given list of variables are regarded as coming from the same subpopulation. Variables in the list can be any variables in the input data set. Specifying the AGGREGATE option is equivalent to specifying the AGGREGATE= option with a variable list that includes all independent variables in the MODEL statement. The PROBIT procedure sorts the input data set according to the variables specified in this list. Information for the sorted data set is reported in the "Response-Covariate Profile" table.

The deviance and Pearson's goodness-of-fit statistics are calculated if the LACKFIT option is specified in the MODEL statement. The calculated results are reported in the "Goodness-of-Fit" table. If the Pearson's chi-square test is significant with the test level specified by the HPROB= option, the fiducial limits, if required with the INVERSECL option in the MODEL statement, are modified (see the section "Inverse Confidence Limits" on page 6796 for details). Also, the covariance matrix is rescaled by the dispersion parameter when the SCALE= option is specified.

ALPHA=value

sets the significance level for the confidence intervals for regression parameters, fiducial limits for the predicted values, and confidence intervals for the predicted probabilities. The value must be between 0 and 1. The default value is ALPHA=0.05.

CONVERGE=value

specifies the convergence criterion. Convergence is declared when the maximum change in the parameter estimates between Newton-Raphson steps is less than the value specified. The change is a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is an absolute change.

By default, CONVERGE=1.0E-8.

CORRB

displays the estimated correlation matrix of the parameter estimates.

COVB

displays the estimated covariance matrix of the parameter estimates.

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type

specifies the cumulative distribution function used to model the response probabilities. The distributions are described in the section "Details: PROBIT Procedure" on page 6790. Valid values for *distribution-type* are as follows:

NORMAL the normal distribution for the probit model

LOGISTIC the logistic distribution for the logit model

EXTREME | GOMPERTZ the extreme value, or Gompertz distribution for the gompit model

By default, DISTRIBUTION=NORMAL.

HPROB=₽

specifies a minimum probability level for the Pearson's chi-square to indicate a good fit. The default value is 0.10. The LACKFIT option must also be specified for this option to have any effect. For Pearson's goodness-of-fit chi-square values with probability greater than the HPROB= value, the fiducial limits, if requested with the INVERSECL option, are computed by using a critical value of 1.96. For chi-square values with probability less than the value of the HPROB= option, the critical value is a 0.95 two-sided quantile value taken from the t distribution with degrees of freedom equal to $(k-1) \times m - q$, where k is the number of levels for the response variable, m is the number of different sets of independent variable values, and q is the number of parameters fit in the model. If you specify the HPROB= option in both the PROC PROBIT and MODEL statements, the MODEL statement option takes precedence.

INITIAL=values

sets initial values for the parameters in the model other than the intercept. The values must be given in the order in which the variables are listed in the MODEL statement. If some of the independent variables listed in the MODEL statement are classification variables, then there must be as many values given for that variable as there are classification levels minus 1. The INITIAL option can be specified as follows.

Type of List	Specification
List separated by blanks	initial=3 4 5
List separated by commas	initial=3,4,5

By default, all parameters have initial estimates of zero.

NOTE: The INITIAL= option is overwritten by the INEST= option in the PROC PROBIT statement.

INTERCEPT=value

initializes the intercept parameter to *value*. By default, INTERCEPT=0.

INVERSECL<(PROB=rates)>

computes confidence limits for the values of the first continuous independent variable (such as dose) that yield selected response rates. You can optionally specify a list of response rates as *rates*. The response rates must be between zero and one; they can be a list separated by blanks, commas, or in the form of a DO list. For example, the following expressions are all valid lists of response rates:

```
PROB = .1 TO .9 by .1
PROB = .1 .2 .3 .4
PROB = .01, .25, .75, .9
```

If the algorithm fails to converge (this can happen when C is nonzero), missing values are reported for the confidence limits. See the section "Inverse Confidence Limits" on page 6796 for details.

ITPRINT

displays the iteration history, the final evaluation of the gradient, and the second derivative matrix (Hessian).

LACKFIT

performs two goodness-of-fit tests (a Pearson's chi-square test and a log-likelihood ratio chi-square test) for the fitted model.

To compute the test statistics, proper grouping of the observations into subpopulations is needed. You can use the AGGREGATE or AGGREGATE= option for this purpose. See the entry for the AGGREGATE and AGGREGATE= options under the MODEL statement. If neither AGGREGATE nor AGGREGATE= is specified, PROC PROBIT assumes each observation is from a separate subpopulation and computes the goodness-of-fit test statistics only for the *events/trials* syntax.

NOTE: This test is not appropriate if the data are very sparse, with only a few values at each set of the independent variable values.

If the Pearson's chi-square test statistic is significant, then the covariance estimates and standard error estimates are adjusted. See the section "Lack-of-Fit Tests" on page 6794 for a description of the tests. Note that the LACKFIT option can also appear in the PROC PROBIT statement. See the section "PROC PROBIT Statement" on page 6733 for details.

MAXITER=value

MAXIT=value

specifies the maximum number of iterations to be performed in estimating the parameters. By default, MAXITER=50.

NOINT

fits a model with no intercept parameter. If the INTERCEPT= option is also specified, the intercept is fixed at the specified value; otherwise, it is set to zero. This is most useful when the response is binary. When the response has k levels, then k-1 intercept parameters are fit. The NOINT option sets the intercept parameter corresponding to the lowest response level equal to zero. A Lagrange multiplier, or score, test for the restricted model is computed when the NOINT option is specified.

SCALE=scale

enables you to specify the method for estimating the dispersion parameter. To correct for overdispersion or underdispersion, the covariance matrix is multiplied by the estimate of the dispersion parameter. Valid values for *scale* are as follows:

D | **DEVIANCE** specifies that the dispersion parameter be estimated by the deviance divided

by its degrees of freedom.

P | PEARSON specifies that the dispersion parameter be estimated by the Pearson's chi-

square statistic divided by its degrees of freedom. This is set as the default

method for estimating the dispersion parameter.

You can use the AGGREGATE= option to define the subpopulations for calculating the Pearson's chi-square statistic and the deviance.

The "Goodness-of-Fit" table includes the Pearson's chi-square statistic, the deviance, their degrees of freedom, the ratio of each statistic divided by its degrees of freedom, and the corresponding *p*-value.

SINGULAR=value

specifies the singularity criterion for determining linear dependencies in the set of independent variables. The sum of squares and crossproducts matrix of the independent variables is formed and swept. If the relative size of a pivot becomes less than the value specified, then the variable corresponding to the pivot is considered to be linearly dependent on the previous set of variables considered. By default, *value*=1E-12.

OUTPUT Statement

OUTPUT < **OUT=**SAS-data-set keyword=name . . . keyword=name> ;

The OUTPUT statement creates a new SAS data set containing all variables in the input data set and, optionally, the fitted probabilities, the estimate of $\mathbf{x}'\boldsymbol{\beta}$, and the estimate of its standard error. Estimates of the probabilities, $\mathbf{x}'\boldsymbol{\beta}$, and the standard errors are computed for observations with missing response values as long as the values of all the explanatory variables are nonmissing. This enables you to compute these statistics for additional settings of the explanatory variables that are of interest but for which responses are not observed.

You can specify multiple OUTPUT statements. Each OUTPUT statement creates a new data set and applies only to the preceding MODEL statement. If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

Details on the specifications in the OUTPUT statement are as follows:

keyword=name

specifies the statistics to include in the output data set and assigns names to the new variables that contain the statistics. Specify a *keyword* for each desired statistic (see the following list of *keywords*), an equal sign, and the variable to contain the statistic.

The *keywords* allowed and the statistics they represent are as follows:

PROB | P cumulative probability estimates

$$p = C + (1 - C)F(a_i + \mathbf{x}'\boldsymbol{\beta})$$

STD standard error estimates of $a_i + \mathbf{x'b}$

XBETA estimates of $a_i + x'\beta$

OUT=*SAS-data-set* names the output data set. By default, the new data set is named by using the DATA*n* convention.

When the *single variable response* syntax is used, the _LEVEL_ variable is added to the output data set, and there are k-1 output observations for each input observation, where k is the number of response levels. There is no observation output corresponding to the highest response level. For each of the k-1 observations, the PROB variable contains the fitted probability of obtaining a response level up to the level indicated by the _LEVEL_ variable, the XBETA variable contains $a_j + \mathbf{x}'\mathbf{b}$, where j references the levels ($a_1 = 0$), and the STD variable contains the standard error estimate of the XBETA variable. See the section "Details: PROBIT Procedure" on page 6790 for the formulas for the parameterizations.

PREDPPLOT Statement

PREDPPLOT < VAR=variable > < options > ;

The PREDPPLOT statement plots the predicted probability against a single continuous variable (dose variable) in the MODEL statement for both the binomial model and the multinomial model. Confidence limits are available only for the binomial model. An attached box on the right side of the plot is used to label predicted probability curves with the names of their levels for the multinomial model. You can specify the color of this box by using the CLABBOX= option.

VAR=variable

specifies a single continuous variable (dose variable) in the independent variable list of the MODEL statement. If a VAR= variable is not specified, the first single continuous variable in the independent variable list of the MODEL statement is used. If such a variable does not exist in the independent variable list of the MODEL statement, an error is reported.

The predicted probability is

$$\hat{p} = C + (1 - C)F(\mathbf{x}'\hat{\mathbf{b}})$$

for the binomial model and

$$\hat{p}_1 = C + (1 - C)F(\mathbf{x}'\hat{\mathbf{b}})
\hat{p}_j = (1 - C)(F(\hat{a}_j + \mathbf{x}'\hat{\mathbf{b}}) - F(\hat{a}_{j-1} + \mathbf{x}'\hat{\mathbf{b}})) \quad j = 2, \dots, k-1
\hat{p}_k = (1 - C)(1 - F(\hat{a}_{k-1} + \mathbf{x}'\hat{\mathbf{b}}))$$

for the multinomial model with k response levels, where F is the cumulative distribution function used to model the probability, \mathbf{x}' is the vector of the covariates, \hat{a}_j are the estimated ordinal intercepts with $\hat{a}_1 = 0$, C is the threshold parameter, either known or estimated from the model, and $\hat{\mathbf{b}}'$ is the vector of estimated parameters.

To plot \hat{p} (or \hat{p}_j) as a function of a continuous variable x_1 , the remaining covariates \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow these rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

options

enable you to plot the observed data and add features to the plot.

You can use options in the PREDPPLOT statement to do the following:

- superimpose specification limits
- suppress or add observed data points for the binomial model
- suppress or add confidence limits for the binomial model
- specify the levels for which predicted probability curves are requested for the multinomial model
- specify graphical enhancements (such as color or text height)

Summary of Options

Table 79.32 through Table 79.38 list all *options* by function. The "Dictionary of Options" on page 6784 describes each option in detail.

PREDPPLOT Options

Table 79.32 Plot Layout Options for PREDPPLOT

LEVEL=(character-list)	Specifies the names of the levels for which the predicted proba-
	bility curves are requested (only for the multinomial model)
NOCONF	Suppresses confidence limits
NODATA	Suppresses observed data points on the plot
NOTHRESH	Suppresses the threshold line
THRESHLABPOS=value	Specifies the position for the label of the threshold line

General Options

Table 79.33 Color Options

CAXIS=color	Specifies color for the axes
CFIT=color	Specifies color for fitted curves
CFRAME=color	Specifies color for frame
CGRID=color	Specifies color for grid lines
CHREF=color	Specifies color for HREF= lines
CLABBOX=color	Specifies color for label box
CTEXT=color	Specifies color for text
CVREF=color	Specifies color for VREF= lines

Table 79.34 Options to Enhance Plots Produced on Graphics Devices

ANNOTATE=	Specifies an Annotate data set
SAS-data-set	
INBORDER	Requests a border around plot
LFIT=linetype	Specifies line style for fitted curves and confidence limits
LGRID=linetype	Specifies line style for grid lines
NOFRAME	Suppresses the frame around plotting areas
NOGRID	Suppresses grid lines
NOFIT	Suppresses fitted curves
NOHLABEL	Suppresses horizontal labels
NOHTICK	Suppresses horizontal ticks
NOVTICK	Suppresses vertical ticks
TURNVLABELS	Vertically strings out characters in vertical labels
WFIT=n	Specifies thickness for fitted curves
WGRID=n	Specifies thickness for grids
WREFL=n	Specifies thickness for reference lines

Table 79.35 Axis Options

HAXIS=value1 to value2	Specifies tick mark values for horizontal axis
 by value3>	
HOFFSET=value	Specifies offset for horizontal axis
HLOWER=value	Specifies lower limit on horizontal axis scale
HUPPER=value	Specifies upper limit on horizontal axis scale
NHTICK=n	Specifies number of ticks for horizontal axis
NVTICK=n	Specifies number of ticks for vertical axis
VAXIS=value1 to value2 < by value3 >	Specifies tick mark values for vertical axis
VAXISLABEL='label'	Specifies label for vertical axis
VOFFSET=value	Specifies offset for vertical axis
VLOWER=value	Specifies lower limit on vertical axis scale
VUPPER=value	Specifies upper limit on vertical axis scale
WAXIS=n	Specifies thickness for axis

Table 79.36 Graphics Catalog Options

DESCRIPTION='string'	Specifies description for graphics catalog member
NAME='string'	Specifies name for plot in graphics catalog

Table 79.37 Options for Text Enhancement

FONT=font	Specifies software font for text
HEIGHT=value	Specifies height of text used outside framed areas
INHEIGHT=value	Specifies height of text inside framed areas

Table 79.38 Options for Reference Lines

HREF<(INTERSECT)>	Requests horizontal reference line
=value-list HREFLABELS=	Specifies labels for HREF= lines
('label1',,'labeln')	
HREFLABPOS=n	Specifies vertical position of labels for HREF= lines
LHREF=linetype	Specifies line style for HREF= lines
LVREF=linetype	Specifies line style for VREF= lines
VREF<(INTERSECT)> =value-list	Requests vertical reference line
VREFLABELS= ('label1',,'labeln')	Specifies labels for VREF= lines
VREFLABPOS=n	Specifies horizontal position of labels for VREF= lines

Dictionary of Options

The following entries provide detailed descriptions of the *options* in the PREDPPLOT statement.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set

specifies an Annotate data set, as described in *SAS/GRAPH: Reference*, that enables you to add features to the predicted probability plot. The ANNOTATE= data set you specify in the PREDPPLOT statement is used for all plots created by the statement.

CAXIS=color

CAXES=color

specifies the color used for the axes and tick marks. This option overrides any COLOR= specifications in an AXIS statement. The default is the first color in the device color list.

CFIT=color

specifies the color for the fitted predicted probability curves. The default is the first color in the device color list.

CFRAME=color

CFR=color

specifies the color for the area enclosed by the axes and frame. This area is not shaded by default.

CGRID=color

specifies the color for grid lines. The default is the first color in the device color list.

CHREF=color

CH=color

specifies the color for lines requested by the HREF= option. The default is the first color in the device color list.

CTEXT=color

specifies the color for tick mark values and axis labels. The default is the color specified for the CTEXT= option in the most recent GOPTIONS statement.

CVREF=color

CV=color

specifies the color for lines requested by the VREF= option. The default is the first color in the device color list.

DESCRIPTION='string'

DES='string'

specifies a description, up to 40 characters, that appears in the PROC GREPLAY master menu. The default is the variable name.

FONT=font

specifies a software font for reference line and axis labels. You can also specify fonts for axis labels in an AXIS statement. The FONT= font takes precedence over the FTEXT= font specified in the most recent GOPTIONS statement. Hardware characters are used by default.

HAXIS=value1 to value2 < by value3 >

specifies tick mark values for the horizontal axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. If *value3* is omitted, a value of 1 is used.

Examples of HAXIS= lists follow:

```
haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10
```

HEIGHT=value

specifies the height of text used outside framed areas.

HLOWER=value

specifies the lower limit on the horizontal axis scale. The HLOWER= option specifies *value* as the lower horizontal axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HOFFSET=value

specifies the offset for the horizontal axis. The default value is 1.

HUPPER=value

specifies *value* as the upper horizontal axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the HAXIS= option is used.

HREF < (INTERSECT) > = value-list

requests reference lines perpendicular to the horizontal axis. If (INTERSECT) is specified, a second reference line perpendicular to the vertical axis is drawn that intersects the fit line at the same point as the horizontal axis reference line. If a horizontal axis reference line label is specified, the intersecting vertical axis reference line is labeled with the vertical axis value. See also the CHREF=, HREFLABELS=, and LHREF= options.

HREFLABELS='label1',...,'labeln'

HREFLABEL='label1',...,'labeln'

HREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the HREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

HREFLABPOS=n

specifies the vertical position of labels for HREF= lines. The following table shows valid values for n and the corresponding label placements.

n	Label Placement	
1	Тор	
2	Staggered from top	
3	Bottom	
4	Staggered from bottom	
5	Alternating from top	
6	Alternating from bottom	

INBORDER

requests a border around predicted probability plots.

INHEIGHT=value

Specifies height of text inside framed areas.

LEVEL=(character-list)

ORDINAL= (character-list)

specifies the names of the levels for which predicted probability curves are requested. Names should be quoted and separated by space. If there is no correct name provided, no fitted probability curve is plotted.

LFIT=linetype

specifies a line style for fitted curves and confidence limits. By default, fitted curves are drawn by connecting solid lines (linetype = 1) and confidence limits are drawn by connecting dashed lines (linetype = 3).

LGRID=linetype

specifies a line style for all grid lines. The value for *linetype* is between 1 and 46. The default is 35.

LHREF=linetype

LH=linetype

specifies the line type for lines requested by the HREF= option. The default is 2, which produces a dashed line.

LVREF=linetype

LV=linetype

specifies the line type for lines requested by the VREF= option. The default is 2, which produces a dashed line.

NAME='string'

specifies a name for the plot, up to eight characters, that appears in the PROC GREPLAY master menu. The default is 'PROBIT'.

NHTICK=n

Specifies number of ticks for horizontal axis.

NVTICK=n

Specifies number of ticks for vertical axis.

NOCONF

suppresses confidence limits from the plot. This works only for the binomial model. Confidence limits are not plotted for the multinomial model.

NODATA

suppresses observed data points from the plot. This works only for the binomial model. The data points are not plotted for the multinomial model.

NOFIT

suppresses the fitted predicted probability curves.

NOFRAME

suppresses the frame around plotting areas.

NOGRID

suppresses grid lines.

NOHLABEL

suppresses horizontal labels.

NOHTICK

suppresses horizontal tick marks.

NOTHRESH

suppresses the threshold line.

NOVLABEL

suppresses vertical labels.

NOVTICK

suppresses vertical tick marks.

TURNVLABELS

vertically strings out characters in vertical labels.

THRESHLABPOS=n

specifies the horizontal position of labels for the threshold line. The following table shows valid values for *n* and the corresponding label placements.

n	Label Placement
1	Left
2	Right

VAXIS=value1 to value2 < by value3 >

specifies tick mark values for the vertical axis; *value1*, *value2*, and *value3* must be numeric, and *value1* must be less than *value2*. The lower tick mark is *value1*. Tick marks are drawn at increments of *value3*. The last tick mark is the greatest value that does not exceed *value2*. This method of specification of tick marks is not valid for logarithmic axes. If *value3* is omitted, a value of 1 is used.

Examples of VAXIS= lists follow:

```
vaxis = 0 to 10
vaxis = 0 to 2 by .1
```

VAXISLABEL='string'

specifies a label for the vertical axis.

VLOWER=value

specifies the lower limit on the vertical axis scale. The VLOWER= option specifies *value* as the lower vertical axis tick mark. The tick mark interval and the upper axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

VOFFSET=value

specifies the offset for the vertical axis.

VREF=*value-list*

requests reference lines perpendicular to the vertical axis. If (INTERSECT) is specified, a second reference line perpendicular to the horizontal axis is drawn that intersects the fit line at the same point as the vertical axis reference line. If a vertical axis reference line label is specified, the intersecting horizontal axis reference line is labeled with the horizontal axis value. See also the CVREF=, LVREF=, and VREFLABELS= options.

```
VREFLABELS='label1',...,'labeln'
```

VREFLABEL='label1',...,'labeln'

VREFLAB='label1',...,'labeln'

specifies labels for the lines requested by the VREF= option. The number of labels must equal the number of lines. Enclose each label in quotes. Labels can be up to 16 characters.

VREFLABPOS=n

specifies the horizontal position of labels for VREF= lines. The following table shows valid values for n and the corresponding label placements.

n	Label Placement		
1	Left		
2	Right		

VUPPER=value

specifies the upper limit on the vertical axis scale. The VUPPER= option specifies *value* as the upper vertical axis tick mark. The tick mark interval and the lower axis limit are determined automatically. This option has no effect if the VAXIS= option is used.

WAXIS=n

specifies line thickness for axes and frame. The default value is 1.

WFIT=n

specifies line thickness for fitted curves. The default value is 1.

WGRID=n

specifies line thickness for grids. The default value is 1.

WREFL=n

specifies line thickness for reference lines. The default value is 1.

SLICE Statement

SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same *options* as the LSMEANS statement, which are summarized in Table 19.21. For details about the syntax of the SLICE statement, see the section "SLICE Statement" on page 505 in Chapter 19, "Shared Concepts and Topics."

STORE Statement

STORE < OUT = > item-store-name < / LABEL = 'label' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The resulting item store has a binary file format that cannot be modified. The contents of the item store can be processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section "STORE Statement" on page 508 in Chapter 19, "Shared Concepts and Topics."

TEST < model-effects > </ options > ;

The TEST statement enables you to perform chi-square tests for model effects that test Type I, Type II, or Type III hypotheses. By default, the Type III tests are performed. For more information, see Chapter 19, "Shared Concepts and Topics."

WEIGHT Statement

WEIGHT variable;

A WEIGHT statement can be used with PROC PROBIT to weight each observation by the value of the variable specified. The contribution of each observation to the likelihood function is multiplied by the value of the weight variable. Observations with zero, negative, or missing weights are not used in model estimation.

Details: PROBIT Procedure

Missing Values

PROC PROBIT does not use any observations having missing values for any of the independent variables, the response variables, or the weight variable. If only the response variables are missing, statistics requested in the OUTPUT statement are computed.

Response Level Ordering

For binary response data, PROC PROBIT fits the following model by default:

$$\Phi^{-1}\left(\frac{p-C}{1-C}\right) = \mathbf{x}'\boldsymbol{\beta}$$

where p is the probability of the response level identified as the first level in the "Response Profile" table in the output and Φ is the normal cumulative distribution function. By default, the covariate vector \mathbf{x} contains an intercept term. This is sometimes called Abbot's formula.

Because of the symmetry of the normal (and logistic) distribution, the effect of reversing the order of the two response values is to change the signs of β in the preceding equation.

By default, response levels appear in ascending, sorted order (that is, the lowest level appears first, and then the next lowest, and so on). There are a number of ways that you can control the sort order of the response categories and, therefore, which level is assigned the first ordered level. One of the most common sets of response levels is $\{0,1\}$, with 1 representing the event with the probability that is to be modeled.

Consider the example where Y takes the values 1 and 0 for event and nonevent, respectively, and EXPOSURE is the explanatory variable. By default, PROC PROBIT assigns the first ordered level to response level 0, causing the probability of the nonevent to be modeled. There are several ways to change this.

Besides recoding the variable Y, you can do the following:

• Explicitly state which response level is to be modeled by using the response variable option EVENT= in the MODEL statement:

```
model Y(event='1') = Exposure;
```

• Specify the nonevent category for the response variable in the response variable option REF= in the **MODEL** statement:

```
model Y(ref='0') = Exposure;
```

 Specify the response variable option DESCENDING in the MODEL statement to assign the lowest ordered value to Y=1:

```
model Y(descending) = Exposure;
```

 Assign a format to Y such that the first formatted value (when the formatted values are put in sorted order) corresponds to the event. For the following example, Y=0 could be assigned formatted value 'nonevent' and Y=1 could be assigned formatted value 'event.' Since ORDER=FORMATTED by default, Y=1 becomes the first ordered level. See Example 79.3 for an illustration of this method.

```
proc format;
   value disease 1='event' 0='nonevent';
run:
proc probit;
   model y=exposure;
   format y disease.;
run;
```

 Arrange the input data set so that Y=1 appears first and use the ORDER=DATA option in the PROC PROBIT statement. Because ORDER=DATA sorts levels in order of their appearance in the data set, Y=1 becomes the first ordered level. Note that this option causes classification variables to be sorted by their order of appearance in the data set, also.

Computational Method

The log-likelihood function is maximized by means of a ridge-stabilized Newton-Raphson algorithm. Initial regression parameter estimates are set to zero. The INITIAL= and INTERCEPT= options in the MODEL statement can be used to give nonzero initial estimates.

The log-likelihood function, L, is computed as

$$L = \sum_{i} w_i \ln(p_i)$$

where the sum is over the observations in the data set, w_i is the weight for the ith observation, and p_i is the modeled probability of the observed response. In the case of the events/trials syntax in the MODEL statement, each observation contributes two terms corresponding to the probability of the event and the probability of its complement:

$$L = \sum_{i} w_{i} [r_{i} \ln(p_{i}) + (n_{i} - r_{i}) \ln(1 - p_{i})]$$

where r_i is the number of events and n_i is the number of trials for observation i. This log-likelihood function differs from the log-likelihood function for a binomial or multinomial distribution by additive terms consisting of the log of binomial or multinomial coefficients. These terms are parameter-independent and do not affect the model estimation or the standard errors and tests.

The estimated covariance matrix, V, of the parameter estimates is computed as the negative inverse of the information matrix of second derivatives of L with respect to the parameters evaluated at the final parameter estimates. Thus, the estimated covariance matrix is derived from the observed information matrix rather than the expected information matrix (these are generally not the same). The standard error estimates for the parameter estimates are taken as the square roots of the corresponding diagonal elements of V.

If convergence of the maximum likelihood estimates is attained, a Type III chi-square test statistic is computed for each effect, testing whether there is any contribution from any of the levels of the effect. This statistic is computed as a quadratic form in the appropriate parameter estimates by using the corresponding submatrix of the asymptotic covariance matrix estimate. See Chapter 44, "The GLM Procedure," and Chapter 15, "The Four Types of Estimable Functions," for more information about Type III estimable functions.

The asymptotic covariance matrix is computed as the inverse of the observed information matrix. Note that if the NOINT option is specified and classification variables are used, the first classification variable contains a contribution from an intercept term. The results are displayed in an ODS table named "Type3Analysis".

Chi-square tests for individual parameters are Wald tests based on the observed information matrix and the parameter estimates. If an effect has a single degree of freedom in the parameter estimates table, the chi-square test for this parameter is equivalent to the Type III test for this effect.

Prior to SAS 8.2, a multiple-degrees-of-freedom statistic was computed for each effect to test for contribution from any level of the effect. In general, the Type III test statistic in a main-effect-only model (no interaction terms) will be equal to the previously computed effect statistic, unless there are collinearities among the effects. If there are collinearities, the Type III statistic will adjust for them, and the value of the Type III statistic and the number of degrees of freedom might not be equal to those of the previous effect statistic.

The theory behind these tests assumes large samples. If the samples are not large, it might be better to base the tests on log-likelihood ratios. These changes in log likelihood can be obtained by fitting the model twice, once with all the parameters of interest and once leaving out the parameters to be tested. See Cox and Oakes (1984) for a discussion of the merits of some possible test methods.

If some of the independent variables are perfectly correlated with the response pattern, then the theoretical parameter estimates can be infinite. Although fitted probabilities of 0 and 1 are not especially pathological, infinite parameter estimates are required to yield these probabilities. Due to the finite precision of computer arithmetic, the actual parameter estimates are not infinite. Indeed, since the tails of the distributions allowed in the PROBIT procedure become small rapidly, an argument to the cumulative distribution function of around 20 becomes effectively infinite. In the case of such parameter estimates, the standard error estimates and the corresponding chi-square tests are not trustworthy.

Distributions

The distributions, F(x), allowed in the PROBIT procedure are specified with the DISTRIBUTION= option in the MODEL statement. The cumulative distribution functions for the available distributions are

Cumulative Distribution Function	Distribution
$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz$ $\frac{1}{1+e^{-x}}$ $1 - e^{-e^x}$	Normal
$\frac{1}{1+e^{-x}}$	Logistic
$1 - e^{-e^x}$	Extreme value or Gompertz

The variances of these three distributions are not all equal to 1, and their means are not all equal to zero. Their means and variances are shown in the following table, where γ is the Euler constant.

Distribution	Mean	Variance
Normal	0	1
Logistic	0	$\pi^{2}/3$
Extreme value or Gompertz	$-\gamma$	$\pi^{2}/6$

When comparing parameter estimates by using different distributions, you need to take into account the different scalings and, for the extreme value (or Gompertz) distribution, a possible shift in location. For example, if the fitted probabilities are in the neighborhood of 0.1 to 0.9, then the parameter estimates from the logistic model should be about $\pi/\sqrt{3}$ larger than the estimates from the probit model.

INEST= SAS-data-set

The INEST= data set names a SAS data set that specifies initial estimates for all the parameters in the model.

The INEST= data set must contain the intercept variables (named Intercept for binary response model and Intercept, Intercept3, and so forth, for multinomial response models) and all independent variables in the MODEL statement.

If BY processing is used, the INEST= data set should also include the BY variables, and there must be at least one observation for each BY group. If there is more than one observation in a BY group, the first one read is used for that BY group.

If the INEST= data set also contains the _TYPE_ variable, only observations with the _TYPE_ value "PARMS" are used as starting values. Combining the INEST= data set and the option MAXIT= in the MODEL statement, partial scoring can be done, such as predicting on a validation data set by using the model built from a training data set.

You can specify starting values for the iterative algorithm in the INEST= data set. This data set overwrites the INITIAL= option in the MODEL statement, which is a little difficult to use for models with multilevel interaction effects. The INEST= data set has the same structure as the "OUTEST= SAS-data-set" on page 6797, but it is not required to have all the variables or observations that appear in the OUTEST= data set. One simple use of the INEST= option is passing the previous OUTEST= data set directly to the next model as an INEST= data set, assuming that the two models have the same parameterization.

Model Specification

For a two-level response, the probability that the lesser response occurs is modeled by the probit equation as

$$p = C + (1 - C)F(\mathbf{x}'\mathbf{b})$$

The probability of the other (complementary) event is 1 - p.

For a multilevel response with outcomes labeled l_i for i = 1, 2, ..., k, the probability, p_j , of observing level l_i is as follows:

$$p_{1} = C + (1 - C)F(\mathbf{x'b})$$

$$p_{2} = (1 - C) (F(a_{2} + \mathbf{x'b}) - F(\mathbf{x'b}))$$

$$\vdots$$

$$p_{j} = (1 - C) (F(a_{j} + \mathbf{x'b}) - F(a_{j-1} + \mathbf{x'b}))$$

$$\vdots$$

$$p_{k} = (1 - C)(1 - F(a_{k-1} + \mathbf{x'b}))$$

Thus, for a k-level response, there are k-2 additional parameters, $a_2, a_3, \ldots, a_{k-1}$, estimated. These parameters are denoted by Interceptj, $j=2,3,\ldots,k-1$, in the output.

An intercept parameter is always added to the set of independent variables as the first term in the model unless the NOINT option is specified in the MODEL statement. If a classification variable taking on k levels is used as one of the independent variables, a set of k indicator variables is generated to model the effect of this variable. Because of the presence of the intercept term, there are at most k-1 degrees of freedom for this effect in the model.

Lack-of-Fit Tests

Two goodness-of-fit tests can be requested from the PROBIT procedure: a Pearson's chi-square test and a log-likelihood ratio chi-square test.

To compute the test statistics, you can use the AGGREGATE or AGGREGATE= option grouping the observations into subpopulations. If neither AGGREGATE nor AGGREGATE= is specified, PROC PROBIT assumes that each observation is from a separate subpopulation and computes the goodness-of-fit test statistics only for the *events/trials* syntax.

If the Pearson's goodness-of-fit chi-square test is requested and the *p*-value for the test is too small, variances and covariances are adjusted by a heterogeneity factor (the goodness-of-fit chi-square divided by its degrees of freedom) and a critical value from the *t* distribution is used to compute the fiducial limits. The Pearson's chi-square test statistic is computed as

$$\chi_P^2 = \sum_{i=1}^m \sum_{j=1}^k \frac{(r_{ij} - n_i \, \hat{p}_{ij})^2}{n_i \, \hat{p}_{ij}}$$

where the sum on i is over grouping, the sum on j is over levels of response, r_{ij} is the frequency of response level j for the ith grouping, n_i is the total frequency for the ith grouping, and \hat{p}_{ij} is the fitted probability for the jth level at the jth grouping.

The likelihood ratio chi-square test statistic is computed as

$$\chi_D^2 = 2\sum_{i=1}^m \sum_{j=1}^k r_{ij} \ln \left(\frac{r_{ij}}{n_i \, \hat{p}_{ij}} \right)$$

This quantity is sometimes called the deviance. If the modeled probabilities fit the data, these statistics should be approximately distributed as chi-square with degrees of freedom equal to $(k-1) \times m - q$, where k is the number of levels of the multinomial or binomial response, m is the number of sets of independent variable values (covariate patterns), and q is the number of parameters fit in the model.

In order for the Pearson's statistic and the deviance to be distributed as chi-square, there must be sufficient replication within the groupings. When this is not true, the data are sparse, and the *p*-values for these statistics are not valid and should be ignored. Similarly, these statistics, divided by their degrees of freedom, cannot serve as indicators of overdispersion. A large difference between the Pearson's statistic and the deviance provides some evidence that the data are too sparse to use either statistic.

Rescaling the Covariance Matrix

One way of correcting overdispersion is to multiply the covariance matrix by a dispersion parameter. You can supply the value of the dispersion parameter directly, or you can estimate the dispersion parameter based on either the Pearson's chi-square statistic or the deviance for the fitted model.

The Pearson's chi-square statistic χ_P^2 and the deviance χ_D^2 are defined in the section "Lack-of-Fit Tests" on page 6794. If the SCALE= option is specified in the MODEL statement, the dispersion parameter is estimated by

$$\widehat{\sigma}^2 = \left\{ \begin{array}{ll} \chi_P^2/(m(k-1)-q) & \text{SCALE=PEARSON} \\ \chi_D^2/(m(k-1)-q) & \text{SCALE=DEVIANCE} \\ (\textit{constant})^2 & \text{SCALE=}\textit{constant} \end{array} \right.$$

In order for the Pearson's statistic and the deviance to be distributed as chi-square, there must be sufficient replication within the subpopulations. When this is not true, the data are sparse, and the *p*-values for these

statistics are not valid and should be ignored. Similarly, these statistics, divided by their degrees of freedom, cannot serve as indicators of overdispersion. A large difference between the Pearson's statistic and the deviance provides some evidence that the data are too sparse to use either statistic.

You can use the AGGREGATE (or AGGREGATE=) option to define the subpopulation profiles. If you do not specify this option, each observation is regarded as coming from a separate subpopulation. For *events/trials* syntax, each observation represents *n* Bernoulli trials, where *n* is the value of the *trials* variable; for *single-trial* syntax, each observation represents a single trial. Without the AGGREGATE (or AGGREGATE=) option, the Pearson's chi-square statistic and the deviance are calculated only for *events/trials* syntax.

Note that the parameter estimates are not changed by this method. However, their standard errors are adjusted for overdispersion, affecting their significance tests.

Tolerance Distribution

For a single independent variable, such as a dosage level, the models for the probabilities can be justified on the basis of a population with mean μ and scale parameter σ of tolerances for the subjects. Then, given a dose x, the probability, P, of observing a response in a particular subject is the probability that the subject's tolerance is less than the dose or

$$P = F\left(\frac{x - \mu}{\sigma}\right)$$

Thus, in this case, the intercept parameter, b_0 , and the regression parameter, b_1 , are related to μ and σ by

$$b_0 = -\frac{\mu}{\sigma}, \ b_1 = \frac{1}{\sigma}$$

NOTE: The parameter σ is not equal to the standard deviation of the population of tolerances for the logistic and extreme value distributions.

Inverse Confidence Limits

In bioassay problems, estimates of the values of the independent variables that yield a desired response are often needed. For instance, the value yielding a 50% response rate (called the ED50 or LD50) is often used. The INVERSECL option requests that confidence limits be computed for the value of the independent variable that yields a specified response. These limits are computed only for the first continuous variable effect in the model. The other variables are set either at their mean values if they are continuous or at the reference (last) level if they are discrete variables. For a discussion of inverse confidence limits, see Hubert, Bohidar, and Peace (1988).

For the PROBIT procedure, the response variable is a probability. An estimate of the first continuous variable value needed to achieve a response of p is given by

$$\hat{x}_1 = \frac{1}{h_1} \left(F^{-1}(p) - \mathbf{x}^{*'} \mathbf{b}^* \right)$$

where F is the cumulative distribution function used to model the probability, \mathbf{x}^* is the vector of independent variables excluding the first one, which can be specified by the XDATA= option described in the section "XDATA= SAS-data-set" on page 6798, \mathbf{b}^* is the vector of parameter estimates excluding the first one, and

 b_1 is the estimated regression coefficient for the independent variable of interest. This estimate assumes that there is no natural response rate (C=0). When C is nonzero, the quantiles and confidence limits for the independent variable correspond to the adjusted probability C + (1 - C)p, rather than to p. As a result, an estimate of the value yielding response rate p is associated with the (p-C)/(1-C) quantile. For example, if C=0.1 then an estimate of the LD50 is found corresponding to the 0.44 quantile. This value can be thought of as yielding 50% of the variable's effect, but a 44% response rate. For both binary and ordinal models, the INVERSECL option provides estimates of the value of x_1 , which yields Pr(first response level) = p, for various values of p.

This estimator is given as a ratio of random variables, such as r = a/b. Confidence limits for this ratio can be computed by using Fieller's theorem. A brief description of this theorem follows. See Finney (1971) for a more complete description of Fieller's theorem.

If the random variables a and b are thought to be distributed as jointly normal, then for any fixed value r the following probability statement holds if z is an $\alpha/2$ quantile from the standard normal distribution and \mathbf{V} is the variance-covariance matrix of a and b:

$$\Pr\left((a-rb)^2>z^2(V_{aa}-2rV_{ab}+r^2V_{bb})\right)=\alpha$$

Usually the inequality can be solved for r to yield a confidence interval. The PROBIT procedure uses a value of 1.96 for z, corresponding to an α value of 0.05, unless the goodness-of-fit p-value is less than the specified value of the HPROB= option. When this happens, the covariance matrix is scaled by the heterogeneity factor, and a t distribution quantile is used for z.

It is possible for the roots of the equation for r to be imaginary or for the confidence interval to be all points outside of an interval. In these cases, the limits are set to missing by the PROBIT procedure.

Although the normal and logistic distribution give comparable fitted values of *p* if the empirically observed proportions are not too extreme, they can give appreciably different values when extrapolated into the tails. Correspondingly, the estimates of the confidence limits and dose values can be different for the two distributions even when they agree quite well in the body of the data. Extrapolation outside of the range of the actual data is often sensitive to model assumptions, and caution is advised if extrapolation is necessary.

OUTEST= SAS-data-set

The OUTEST= data set contains parameter estimates and the log likelihood for the model. You can specify a label in the MODEL statement to distinguish between the estimates for different models used by the PROBIT procedure. If you specify the COVOUT option, the OUTEST= data set also contains the estimated covariance matrix of the parameter estimates.

The OUTEST= data set contains each variable used as a dependent or independent variable in any MODEL statement. One observation consists of parameter values for the model with the dependent variable having the value -1. If you specify the COVOUT option, there are additional observations containing the rows of the estimated covariance matrix. For these observations, the dependent variable contains the parameter estimate for the corresponding row variable. The following variables are also added to the data set:

MODEL a character variable containing the label of the MODEL statement, if present, or blank otherwise

NAME a character variable containing the name of the dependent variable for the parameter estimates observations or the name of the row for the covariance matrix estimates

TYPE a character variable containing the type of the observation, either PARMS for parameter

estimates or COV for covariance estimates

DIST a character variable containing the name of the distribution modeled

LNLIKE a numeric variable containing the last computed value of the log likelihood

C a numeric variable containing the estimated threshold parameter

INTERCEPT a numeric variable containing the intercept parameter estimates and covariances

Any BY variables specified are also added to the OUTEST= data set.

XDATA= SAS-data-set

The XDATA= data set is used for specifying values for the effects in the MODEL statement when predicted values and/or fiducial limits for a single continuous variable (dose variable) are required. It is also used for plots specified by the CDFPLOT, IPPPLOT, LPREDPLOT, and PREDPPLOT statement.

The XDATA= data names a SAS data set that contains user input values for all the independent variables in the MODEL statement and the variables in the CLASS statement. The XDATA= data set has the same structure as the DATA= data set but is not required to have all the variables or observations that appear in the DATA= data set.

The XDATA= data set must contain all the independent variables in the MODEL statement and variables in the CLASS statement. Even though variables in the CLASS statement are not used in the MODEL statement, valid values are required for these variables in the XDATA= data set. Missing values are not allowed. For independent variables in the MODEL statement, although the dose variable's value is not used in the computing of predicted values and/or fiducial limits for the dose variable, missing values are not allowed in the XDATA= data set for any of the independent variables. Missing values are allowed for the dependent variables and other variables if they are included in the XDATA= data set and not listed in the CLASS statement.

If BY processing is used, the XDATA= data set should also include the BY variables, and there must be at least one valid observation for each BY group. If there is more than one valid observation in one BY group, the last one read is used for that BY group.

If there is no XDATA= data set in the PROC PROBIT statement, by default, the PROBIT procedure will use overall mean for effects containing continuous variable (or variables) and the highest level of a single classification variable as reference level. The rules are summarized as follows:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

Traditional High-Resolution Graphics

This section provides examples of using syntax available with the traditional high-resolution plots. A more modern alternative is to use ODS Graphics. See the section "ODS Graphics" on page 6802 for details.

There are four plot statements that you can use to request traditional high-resolution plots: CDFPLOT, IPPPLOT, LPREDPLOT, and PREDPPLOT. Some of these statements apply only to either the binomial model or the multinomial model. Table 79.39 shows the availability of these statements for different models.

Statement	Binomial	Multinomial
CDFPLOT	No	Yes
IPPPLOT	Yes	No
LPREDPLOT	Yes	Yes
PREDPPLOT	Yes	Yes

Table 79.39 Plot Statement Availability

The following example uses the data set study in the section "Estimating the Natural Response Threshold Parameter" on page 6729 to illustrate how to create high-resolution plots for the binomial model:

```
proc probit data=study log10 optc;
  model respond/number=dose;
   predpplot var=dose cfit=blue; inset;
   lpredplot var=dose cfit=blue; inset;
   ippplot var=dose cfit=blue; inset/pos=se;
```

All plot statements must follow the MODEL statement. The VAR= option specifies a continuous independent variable (dose variable) against which the predicted probability or the linear predictor is plotted. The INSET statement requests the inset box with summary information. See the section "INSET Statement" on page 6753 for more details.

The PREDPPLOT statement creates a plot that shows the relationship between dosage level, observed response proportions, and estimated probability values. See the section "PREDPPLOT Statement" on page 6780 for more details. The IPPPLOT statement creates a similar plot. See the section "IPPPLOT Statement" on page 6755 for details about this plot. The LPREDPLOT statement creates a linear predictor plot, which is described in the section "LPREDPLOT Statement" on page 6763.

The following example uses the data set multi from Example 79.2 to illustrate how to create high-resolution plots for the multinomial model:

```
proc probit data=multi order=data;
   class prep symptoms;
   model symptoms=prep ldose;
   cdfplot var=ldose level=("None" "Mild" "Severe")
             cfit=blue cframe=ligr noconf;
   lpredplot var=ldose level=("None" "Mild" "Severe")
             cfit=blue cframe=ligr;
   predpplot var=ldose level=("None" "Mild" "Severe")
             cfit=blue cframe=ligr;
   weight n;
run;
```

The CDFPLOT statement creates a plot that shows the relationship between the cumulative response probabilities and the dose levels. The multinomial model plots are similar to those with the binomial model. If you request the iteration history (ITPRINT), PROC PROBIT displays the following:

- the current value of the log likelihood
- the ridging parameter for the modified Newton-Raphson optimization process
- the current estimate of the parameters
- the current estimate of the parameter C for a natural (threshold) model
- the values of the gradient and the Hessian on the last iteration

If you include classification variables, PROC PROBIT displays the following:

- the numbers of levels for each classification variable
- the (ordered) values of the levels
- the number of observations used

After the model is fit, PROC PROBIT displays the following:

- the name of the input data set
- the name of the dependent variables
- the number of observations used
- the number of events and the number of trials
- the final value of the log-likelihood function
- the parameter estimates
- the standard error estimates of the parameter estimates
- approximate chi-square test statistics for the test

If you specify the COVB or CORRB options, PROC PROBIT displays the following:

- the estimated covariance matrix for the parameter estimates
- the estimated correlation matrix for the parameter estimates

If you specify the LACKFIT option, PROC PROBIT displays the following:

• a count of the number of levels of the response and the number of distinct sets of independent variables

- a goodness-of-fit test based on the Pearson's chi-square
- a goodness-of-fit test based on the likelihood-ratio chi-square

If you specify only one independent variable, the normal distribution is used to model the probabilities, and the response is binary, then PROC PROBIT displays the following:

- the mean MU of the stimulus tolerance
- the scale parameter SIGMA of the stimulus tolerance
- the covariance matrix for MU, SIGMA, and the natural response parameter C

If you specify the INVERSECL options, PROC PROBIT also displays the following:

• the estimated dose along with the 95% fiducial limits for probability levels 0.01 to 0.10, 0.15 to 0.85 by 0.05, and 0.90 to 0.99

ODS Table Names

PROC PROBIT assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table 79.40 ODS Tables Produced by PROC PROBIT

ODS Table Name	Description	Statement	Option
ClassLevels	Classification variable levels	CLASS	Default
ConvergenceStatus	Convergence status	MODEL	Default
CorrB	Parameter estimate correlation matrix	MODEL	CORRB
CovB	Parameter estimate covariance matrix	MODEL	COVB
CovTolerance	Covariance matrix for location and scale	MODEL	Default
GoodnessOfFit	Goodness-of-fit tests	MODEL	LACKFIT
Heterogeneity	Heterogeneity correction	MODEL	LACKFIT
IterHistory	Iteration history	MODEL	ITPRINT
LagrangeStatistics	Lagrange statistics	MODEL	NOINT
LastGrad	Last evaluation of the gradient	MODEL	ITPRINT
LastHess	Last evaluation of the Hessian	MODEL	ITPRINT
LogProbitAnalysis	Probit analysis for log dose	MODEL	INVERSECL
ModelInfo	Model information	MODEL	Default
MuSigma	Location and scale	MODEL	Default
NObs	Observations summary	PROC	Default
ParameterEstimates	Parameter estimates	MODEL	Default
ParmInfo	Parameter indices	MODEL	Default
ProbitAnalysis	Probit analysis for linear dose	MODEL	INVERSECL
ResponseLevels	Response-covariate profile	MODEL	LACKFIT
ResponseProfiles	Counts for ordinal data	MODEL	Default
Type3Analysis	Type III tests	MODEL	Default

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described in detail in Chapter 21, "Statistical Graphics Using ODS."

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section "Enabling and Disabling ODS Graphics" on page 606 in Chapter 21, "Statistical Graphics Using ODS."

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section "A Primer on ODS Statistical Graphics" on page 605 in Chapter 21, "Statistical Graphics Using ODS."

These ODS graphs are controlled by the PLOTS= option in the PROC PROBIT statement. You can specify more than one graph request with the PLOTS= option. Table 79.41 summarizes these requests.

Option	Plot
ALL	All appropriate plots
CDFPLOT	Estimated cumulative probability
IPPPLOT	Inverse predicted probability
LPREDPLOT	Linear predictor
NONE	No plot
PREDPPLOT	Predicted probability

Table 79.41 Options for Plots

The following subsections provide information about these graphs.

ODS Graph Names

PROC PROBIT assigns a name to each graph it creates using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 79.42.

ODS Graph Name	Plot Description	Statement	PLOTS= Option
CDFPlot	Estimated cumulative probability	PROC	CDFPLOT
IPPPlot	Inverse predicted probability	PROC	IPPPLOT
LPredPlot	Linear predictor	PROC	LPREDPLOT
PredPPlot	Predicted probability	PROC	PREDPPLOT

Table 79.42 Graphs Produced by PROC PROBIT

CDF Plot

For a multinomial model, the predicted cumulative distribution function is defined as

$$\hat{F}_j(\mathbf{x}) = C + (1 - C)F(\hat{a}_j + \mathbf{x}'\hat{\mathbf{b}})$$

where j = 1, ..., k are the indexes of the k levels of the multinomial response variable, F is the CDF of the distribution used to model the cumulative probabilities, $\hat{\mathbf{b}}$ is the vector of estimated parameters, \mathbf{x} is the covariate vector, \hat{a}_j are estimated ordinal intercepts with $\hat{a}_1 = 0$, and C is the threshold parameter, either known or estimated from the model. Let x_1 be the covariate corresponding to the dose variable and \mathbf{x}_{-1} be the vector of the rest of the covariates. Let the corresponding estimated parameters be \hat{b}_1 and $\hat{\mathbf{b}}_{-1}$. Then

$$\hat{F}_{i}(\mathbf{x}) = C + (1 - C)F(\hat{a}_{i} + x_{1}\hat{b}_{1} + \mathbf{x}'_{-1}\hat{\mathbf{b}}_{-1})$$

To plot \hat{F}_j as a function of x_1 , x_{-1} must be specified. You can use the XDATA= option to provide the values of x_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow these rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

The LEVEL= suboption specify the levels of the multinomial response variable for which the CDF curves are requested. There are k-1 curves for a k-level multinomial response variable (for the highest level, it is the constant line 1). You can specify any of them to be plotted by the LEVEL= suboption. See the plot in Output 79.2.6 for an example.

Inverse Predicted Probability Plot

For the binomial model, the response variable is a probability. An estimate of the dose level \hat{x}_1 needed for a response of p is given by

$$\hat{x}_1 = (F^{-1}(p) - \mathbf{x}'_{-1}\hat{\mathbf{b}}_{-1})/\hat{b}_1$$

where F is the cumulative distribution function used to model the probability, \mathbf{x}_{-1} is the vector of the rest of the covariates, $\hat{\mathbf{b}}_{-1}$ is the vector of the estimated parameters corresponding to \mathbf{x}_{-1} , and \hat{b}_1 is the estimated parameter for the dose variable of interest.

To plot \hat{x}_1 as a function of p, \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow these rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

Output 79.4.12 in Example 79.4 shows an inverse predicted probability plot.

Linear Predictor Plot

For both binomial models and multinomial models, the linear predictor $\mathbf{x}'\mathbf{b}$ can be plotted against the first single continuous variable (dose variable) in the MODEL statement.

Let x_1 be the covariate of the dose variable, \mathbf{x}_{-1} be the vector of the rest of the covariates, $\hat{\mathbf{b}}_{-1}$ be the vector of estimated parameters corresponding to \mathbf{x}_{-1} , and \hat{b}_1 be the estimated parameter for the dose variable of interest

To plot $\hat{\mathbf{x}}'\mathbf{b}$ as a function of x_1 , \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow these rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which the linear predictor lines are plotted.

The confidence limits for the predicted values are only available for the binomial model. Output 79.4.13 in Example 79.4 shows a linear predictor plot for a binomial model.

Predicted Probability Plot

The predicted probability is

$$\hat{p} = C + (1 - C)F(\mathbf{x}'\hat{\mathbf{b}})$$

for the binomial model and

$$\hat{p}_1 = C + (1 - C)F(\mathbf{x}'\hat{\mathbf{b}})
\hat{p}_j = (1 - C)(F(\hat{a}_j + \mathbf{x}'\hat{\mathbf{b}}) - F(\hat{a}_{j-1} + \mathbf{x}'\hat{\mathbf{b}})), \quad j = 2, \dots, k-1
\hat{p}_k = (1 - C)(1 - F(\hat{a}_{k-1} + \mathbf{x}'\hat{\mathbf{b}}))$$

for the multinomial model with k response levels, where F is the cumulative distribution function used to model the probability, \mathbf{x}' is the vector of the covariates, \hat{a}_j are the estimated ordinal intercepts with $\hat{a}_1 = 0$, C is the threshold parameter, either known or estimated from the model, and $\hat{\mathbf{b}}'$ is the vector of estimated parameters.

To plot \hat{p} (or \hat{p}_j) as a function of a continuous variable x_1 , the remaining covariates \mathbf{x}_{-1} must be specified. You can use the XDATA= option to provide the values of \mathbf{x}_{-1} (see the XDATA= option in the PROC PROBIT statement for details), or use the default values that follow these rules:

- If the effect contains a continuous variable (or variables), the overall mean of this effect is used.
- If the effect is a single classification variable, the highest level of the variable is used.

For the multinomial model, you can use the LEVEL= suboption to specify the levels for which the linear predictor lines are plotted.

Confidence limits are plotted only for the binomial model. Output 79.1.7 in Example 79.1 shows a predicted probability plot for a binomial model; and Output 79.2.3 in Example 79.2 shows a predicted probability plot for a multinomial model.

Examples: PROBIT Procedure

Example 79.1: Dosage Levels

In this example, Dose is a variable representing the level of a stimulus, N represents the number of subjects tested at each level of the stimulus, and Response is the number of subjects responding to that level of the stimulus. Both probit and logit response models are fit to the data. The LOG10 option in the PROC PROBIT statement requests that the log base 10 of Dose is used as the independent variable. Specifically, for a given level of Dose, the probability p of a positive response is modeled as

```
p = \Pr(\mathsf{Response}) = F(b_0 + b_1 \times \log_{10}(\mathsf{Dose}))
```

The probabilities are estimated first by using the normal distribution function (the default) and then by using the logistic distribution function. Note that, in this model specification, the natural rate is assumed to be zero.

The LACKFIT option specifies lack-of-fit tests and the INVERSECL option specifies inverse confidence limits.

In the DATA step that reads the data, a number of observations are generated that have a missing value for the response. Although the PROBIT procedure does not use the observations with the missing values to fit the model, it does give predicted values for all nonmissing sets of independent variables. These data points fill in the plot of fitted and observed values in the logistic model displayed in Output 79.1.7. The plot, requested with the PLOT=PREDPPLOT option, displays the estimated logistic cumulative distribution function and the observed response rates.

The following statements produce Output 79.1.1:

```
data a;
  infile cards eof=eof;
  input Dose N Response @@;
  Observed= Response/N;
  output;
  return;
eof: do Dose=0.5 to 7.5 by 0.25;
      output;
  end;
  datalines;
1 10 1 2 12 2 3 10 4 4 10 5
5 12 8 6 10 8 7 10 10
:
```

	Output 7	9.1.1 Probit Analys	sis with Norma	l Distribution	
		The Probit	Procedure		
	Iter	ation History for	Parameter E	stimates	
Iter	Ridge	Loglikelihood	Interce	pt Log1	O(Dose)
0	0	-51.292891		0	0
1	0	-37.881166	-1.3558170	08 2.63	5206083
2	0	-37.286169	-1.7649391	71 3.340	8954936
3		-37.280389	-1.8121478	63 3.417	2391614
4	0	-37.280388 -37.280388	-1.8127049	62 3.41	8117919
5		-37.280388	-1.8127049	62 3.41	8117919
		Model Info	rmation		
	Dat	a Set		WORK.A	
		nts Variable		sponse	
		als Variable	Re	sponse N	
		als valiable ber of Observatio		N 7	
		ber of Observation ber of Events	iis	38	
		ber of Events ber of Trials		74	
			ı		
		e of Distribution Likelihood			
		luation of the Ne			
	Last Lva			e drautent	
		Intercept	Log10 (Dose)		
		3.4349069E-7	-2.09809E-8		
	Last Ev	aluation of the N	egative of t	he Hessian	
		I	ntercept L	og10 (Dose)	
	Interce	pt 36.0	05280383 20	.152675982	
	Log10 (D	•	52675982 13		
		Goodness-of-	Fit Tests		
Statistic		Valu	e DF	Value/DF	Pr > ChiSq
			_		
Pearson Ch	i-Square	3.649	7 5	0.7299	0.6009

Output 79.1.1 continued

Re	esponse-Covariate	Profile		
Res	ponse Levels	2		
Numl	oer of Covariate V	alues 7		
Analysis of Ma	aximum Likelihood	Parameter I	Estimates	
	Standard 95% C	onfidence	Chi-	
Parameter DF Estimate	e Error L	imits	Square P	r > ChiSq
Intercept 1 -1.812	7 0.4493 -2.693	4 -0.9320	16.27	<.0001
Log10 (Dose) 1 3.418	1 0.7455 1.956	9 4.8794	21.02	<.0001
Probit Mode	l in Terms of Tole	rance Dist	ribution	
	MU	SIGMA		
	0.53032254 0.2	9255866		
	stimated Covarianc			
:	for Tolerance Para	meters		
	MU	5	SIGMA	
MU	0.002418	-0.00	00409	
SIGMA	-0.000409	0.00		

The *p*-values in the goodness-of-fit table of 0.6009 for the Pearson's chi-square and 0.4616 for the likelihood ratio chi-square indicate an adequate fit for the model fit with the normal distribution.

Tolerance distribution parameter estimates for the normal distribution indicate a mean tolerance for the population of 0.5303.

Output 79.1.2 displays probit analysis with the logarithm of dose levels. The LD50 (ED50 for log dose) is 0.5303, the dose corresponding to a probability of 0.5. This is the same as the mean tolerance for the normal distribution.

Output 79.1.2 Probit Analysis with Normal Distribution

The Probit Procedure						
1	Probit Analysis on I	og10 (Dose)				
Probability	Log10 (Dose)	95% Fiduci	al Limits			
0.01	-0.15027	-0.69518	0.07710			
0.02	-0.07052	-0.55766	0.13475			
0.03	-0.01992	-0.47064	0.17156			
0.04	0.01814	-0.40534	0.19941			
0.05	0.04911	-0.35233	0.22218			
0.06	0.07546	-0.30731	0.24165			
0.07	0.09857	-0.26793	0.25881			
0.08	0.11926	-0.23273	0.27425			
0.09	0.13807	-0.20080	0.28837			
0.10	0.15539	-0.17147	0.30142			
0.15	0.22710	-0.05086	0.35631			
0.20	0.28410	0.04369	0.40124			
0.25	0.33299	0.12343	0.44116			
0.30	0.37690	0.19348	0.47857			
0.35	0.41759	0.25658	0.51504			
0.40	0.45620	0.31429	0.55182			
0.45	0.49356	0.36754	0.58999			
0.50	0.53032	0.41693	0.63057			
0.55	0.56709	0.46296	0.67451			
0.60	0.60444	0.50618	0.72271			
0.65	0.64305	0.54734	0.77603			
0.70	0.68374	0.58745	0.83550			
0.75	0.72765	0.62776	0.90265			
0.80	0.77655	0.66999	0.98008			
0.85	0.83354	0.71675	1.07279			
0.90	0.90525	0.77313	1.19191			
0.91	0.92257	0.78646	1.22098			
0.92	0.94139	0.80083	1.25265			
0.93	0.96208	0.81653	1.28759			
0.94	0.98519	0.83394	1.32672			
0.95	1.01154	0.85367	1.37149			
0.96	1.04250	0.87669	1.42424			
0.97	1.08056	0.90480	1.48928			
0.98	1.13116	0.94189	1.57602			
0.99	1.21092	0.99987	1.71321			

Output 79.1.3 displays probit analysis with dose levels. The ED50 for dose is 3.39 with a 95% confidence interval of (2.61, 4.27).

Output 79.1.3 Probit Analysis with Normal Distribution

	The Probit	Procedure				
Probit Analysis on Dose						
Probability	Dose	95% Fiduci	al Limits			
0.01	0.70750	0.20175	1.19427			
0.02	0.85012	0.27691	1.36380			
0.03	0.95517	0.33834	1.48444			
0.04	1.04266	0.39324	1.58274			
0.05	1.11971	0.44429	1.66793			
0.06	1.18976	0.49282	1.74443			
0.07	1.25478	0.53960	1.81473			
0.08	1.31600	0.58515	1.88042			
0.09	1.37427	0.62980	1.94252			
0.10	1.43019	0.67380	2.00181			
0.15	1.68696	0.88950	2.27147			
0.20	1.92353	1.10584	2.51906			
0.25	2.15276	1.32870	2.76161			
0.30	2.38180	1.56128	3.01000			
0.35	2.61573	1.80543	3.27374			
0.40	2.85893	2.06200	3.56306			
0.45	3.11573	2.33098	3.89038			
0.50	3.39096	2.61175	4.27138			
0.55	3.69051	2.90374	4.72619			
0.60	4.02199	3.20759	5.28090			
0.65	4.39594	3.52651	5.97077			
0.70	4.82770	3.86765	6.84706			
0.75	5.34134	4.24385	7.99189			
0.80	5.97787	4.67724	9.55169			
0.85	6.81617	5.20900	11.82480			
0.90	8.03992	5.93105	15.55653			
0.91	8.36704	6.11584	16.63320			
0.92	8.73752	6.32165	17.89163			
0.93	9.16385	6.55431	19.39034			
0.94	9.66463	6.82245	21.21881			
0.95	10.26925	7.13949	23.52275			
0.96	11.02811	7.52816	26.56066			
0.97	12.03830	8.03149	30.85201			
0.98	13.52585	8.74763	37.67206			
0.99	16.25233	9.99709	51.66627			

The following statements request probit analysis of dosage levels with the logistic distribution:

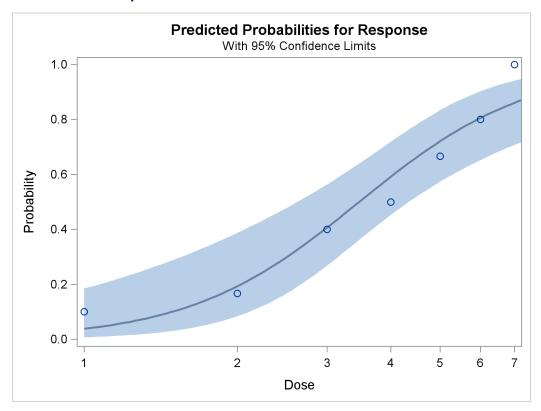
```
proc probit log10 plot=predpplot;
  model Response/N=Dose / d=logistic inversecl;
  output out=B p=Prob std=std xbeta=xbeta;
run:
```

The regression parameter estimates in Output 79.1.4 for the logistic model of -3.22 and 5.97 are approximately $\pi/\sqrt{3}$ times as large as those for the normal model.

Output 79.1.4 Probit Analysis with Logistic Distribution

			The Prob	oit Proced	lure		
			Model I	Informatio	on		
		Data Set	.		WOR	K.B	
		Events V	Variable		Respo	nse	
		Trials V	Variable			N	
		Number o	of Observa	tions		7	
		Number o	of Events				
			of Trials				
			Distribut		_		
		Log Like	elihood		-37.11065	336	
An	alys	sis of Ma	kimum Like	elihood Pa	ırameter E	stimates	
			Standard	95% Con	fidence	Chi-	
Parameter	DF	Estimate	Error	Lim	nits	Square P	r > ChiSq
Intercept	1	-3.2246	0.8861	-4.9613	-1.4880	13.24	0.0003

Output 79.1.5 and Output 79.1.6 show that both the ED50 and the LD50 are similar to those for the normal model.


Output 79.1.5 Probit Analysis with Logistic Distribution

	The Probit Proc	edure							
E	Probit Analysis on Log10(Dose)								
	_								
Probability	Log10 (Dose)	95% Fiducia	al Limits						
0.01	-0.22955	-0.97441	0.04234						
0.02	-0.11175	-0.75158	0.12404						
0.03	-0.04212	-0.62018	0.17265						
0.04	0.00780	-0.52618	0.20771						
0.05	0.04693	-0.45265	0.23533						
0.06	0.07925	-0.39205	0.25826						
0.07	0.10686	-0.34037	0.27796						
0.08	0.13103	-0.29521	0.29530						
0.09	0.15259	-0.25502	0.31085						
0.10	0.17209	-0.21875	0.32498						
0.15	0.24958	-0.07552	0.38207						
0.20	0.30792	0.03092	0.42645						
0.25	0.35611	0.11742	0.46451						
0.30	0.39820	0.19143	0.49932						
0.35	0.43644	0.25684	0.53275						
0.40	0.47221	0.31588	0.56619						
0.45	0.50651	0.36986	0.60089						
0.50	0.54013	0.41957	0.63807						
0.55	0.57374	0.46559	0.67894						
0.60	0.60804	0.50846	0.72474						
0.65	0.64381	0.54896	0.77673						
0.70	0.68205	0.58815	0.83637						
0.75	0.72414	0.62752	0.90582						
0.80	0.77233	0.66915	0.98876						
0.85	0.83067	0.71631	1.09242						
0.90	0.90816	0.77562	1.23343						
0.91	0.92766	0.79014	1.26931						
0.92	0.94922	0.80607	1.30912						
0.93	0.97339	0.82378	1.35391						
0.94	1.00100	0.84384	1.40523						
0.95	1.03332	0.86713	1.46546						
0.96	1.07245	0.89511	1.53864						
0.97	1.12237	0.93053	1.63228						
0.98	1.19200	0.97952	1.76329						
0.99	1.30980	1.06166	1.98569						

Output 79.1.6 Probit Analysis with Logistic Distribution

	The Probit	Procedure						
Probit Analysis on Dose								
	_							
Probability	Dose	95% Fiduci	al Limits					
0.01	0.58945	0.10607	1.10241					
0.02	0.77312	0.17718	1.33058					
0.03	0.90757	0.23978	1.48817					
0.04	1.01813	0.29773	1.61327					
0.05	1.11413	0.35266	1.71922					
0.06	1.20018	0.40546	1.81244					
0.07	1.27896	0.45670	1.89654					
0.08	1.35218	0.50675	1.97379					
0.09	1.42100	0.55588	2.04572					
0.10	1.48625	0.60430	2.11339					
0.15	1.77656	0.84038	2.41030					
0.20	2.03199	1.07379	2.66961					
0.25	2.27043	1.31046	2.91416					
0.30	2.50152	1.55393	3.15736					
0.35	2.73172	1.80652	3.40996					
0.40	2.96627	2.06957	3.68292					
0.45	3.21006	2.34345	3.98927					
0.50	3.46837	2.62768	4.34578					
0.55	3.74746	2.92138	4.77466					
0.60	4.05546	3.22451	5.30573					
0.65	4.40366	3.53961	5.98041					
0.70	4.80891	3.87391	6.86079					
0.75	5.29836	4.24155	8.05044					
0.80	5.92009	4.66820	9.74455					
0.85	6.77126	5.20365	12.37149					
0.90	8.09391	5.96508	17.11715					
0.91	8.46559	6.16800	18.59129					
0.92	8.89644	6.39837	20.37592					
0.93	9.40575	6.66469	22.58957					
0.94	10.02317	6.97977	25.42292					
0.95	10.79732	7.36428	29.20549					
0.96	11.81534	7.85438	34.56521					
0.97	13.25466	7.85438 8.52173	42.88232					
0.97	15.55972	9.53941	57.98207					
0.98	20.40815	11.52549	96.75820					
0.99	20.40013	11.52549	30.73020					

The PLOT=PREDPPLOT option together with the ODS GRAPHICS statement creates the plot of observed and fitted probabilities in Output 79.1.7. The dashed line represent pointwise confidence bands for the probabilities.

Output 79.1.7 Plot of Observed and Fitted Probabilities

Example 79.2: Multilevel Response

In this example, two preparations, a standard preparation and a test preparation, are each given at several dose levels to groups of insects. The symptoms are recorded for each insect within each group, and two multilevel probit models are fit. Because the natural sort order of the three levels is not the same as the response order, the ORDER=DATA option is specified in the PROC PROBIT statement to get the desired order. The following statements fit two models:

```
data multi;
   input Prep $ Dose Symptoms $ N;
   LDose=log10(Dose);
   if Prep='test' then PrepDose=LDose;
   else PrepDose=0;
   datalines;
stand
          10
                  None
                              33
stand
          10
                  Mild
                               7
                              10
stand
          10
                  Severe
          20
                  None
                              17
stand
stand
          20
                  Mild
                              13
          20
                  Severe
                              17
stand
stand
          30
                  None
                              14
          30
                  Mild
                               3
stand
          30
                              28
stand
                  Severe
                               9
          40
                  None
stand
          40
                  Mild
                               8
stand
stand
          40
                  Severe
                              32
test
          10
                  None
                              44
                               6
          10
                  Mild
test
                               0
test
          10
                  Severe
          20
                              32
test
                  None
test
          20
                  Mild
                              10
test
          20
                  Severe
                              12
          30
                  None
                              23
test
                               7
          30
test
                  Mild
          30
                  Severe
                              21
test
test
          40
                  None
                              16
test
          40
                  Mild
                               6
          40
                  Severe
                              19
test
proc probit order=data data=multi;
   class Prep Symptoms;
   nonpara: model Symptoms=Prep LDose PrepDose / lackfit;
   weight N;
run;
proc probit order=data data=multi;
   class Prep Symptoms;
   parallel: model Symptoms=Prep LDose / lackfit;
   weight N;
run;
```

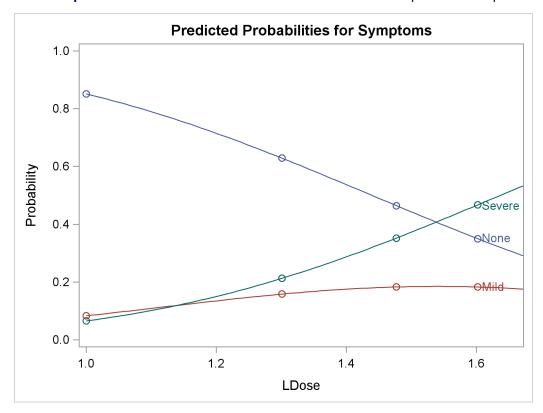
Results of these two models are shown in Output 79.2.1 and Output 79.2.2. The first model allows for nonparallelism between the dose response curves for the two preparations by inclusion of an interaction between Prep and LDose. The interaction term is labeled PrepDose in the "Analysis of Parameter Estimates" table. The results of this first model indicate that the parameter for the interaction term is not significant, having a Wald chi-square of 0.73. Also, since the first model is a generalization of the second, a likelihood ratio test statistic for this same parameter can be obtained by multiplying the difference in log likelihoods between the two models by 2. The value obtained, $2 \times (-345.94 - (-346.31))$, is 0.73. This is in close agreement with the Wald chi-square from the first model. The lack-of-fit test statistics for the two models do not indicate a problem with either fit.

Output 79.2.1 Multilevel Response: Nonparallel Analysis

			Th	e Probit	Procedure	:			
			M	odel Info	rmation				
Data Set WORK.MULTI									
		De	pendent V	ariable		Symptoms	•		
		₩e	ight Vari	able.		N	ſ		
		Nυ	mber of C	bservatio	ns	23			
		Na	me of Dis	tribution		Normal			
		Lo	g Likelih	ood					
			Clas	s Level I	nformatio	on			
	1	Name	.	Levels	Values				
	1	Prep	•	2	stand t	est			
	:	Symp	otoms	3	None Mi	lld Severe	1		
	Anal	ysis	of Maxim	num Likeli	hood Para	ameter Est	imates		
				Standard	95% Cor	nfidence	Chi-		
Parameter		DF	Estimate	Error	Lin	nits	Square P	r > ChiSq	
Intercept									
Intercept2		1	0.4684	0.0559	0.3589	0.5780	70.19	<.0001	
Prep	stand	1	-1.2573	0.8190	-2.8624	0.3479	2.36	0.1247	
Prep									
				0.3909					
PrepDose		1	-0 5072	0 5945	-1 6724	0 6580	0.73	0.3935	

Output 79.2.2 Multilevel Response: Parallel Analysis

			T	he Probit	Procedure	•		
			1	Model Info	rmation			
		Da	ata Set		W	ORK.MULTI		
		D€	ependent '	Variable		Symptoms	}	
		₩e	eight Var	iable		N	Ī	
		Nι	umber of (Observatio	ns	23	}	
				stribution				
		Lo	g Likeli	hood	-3	46.306141		
			Cla	ss Level I	nformatio	on		
	1	Name	è	Levels	Values			
	J	rep)	2	stand t	est		
	:	Symp	otoms			.ld Severe	•	
	•			mum Likeli Standard	95% Con	fidence	Chi-	
Parameter		DF	Estimate	Error	Lim	nits	Square	Pr > ChiSq
Intercept		1	3.4148	0.4126	2.6061	4.2235	68.50	<.0001
Intercept2		1	0.4678	0.0558	0.3584	0.5772	70.19	<.0001
								<.0001
-								
Prep	test	U	0.0000	•	•	•		•

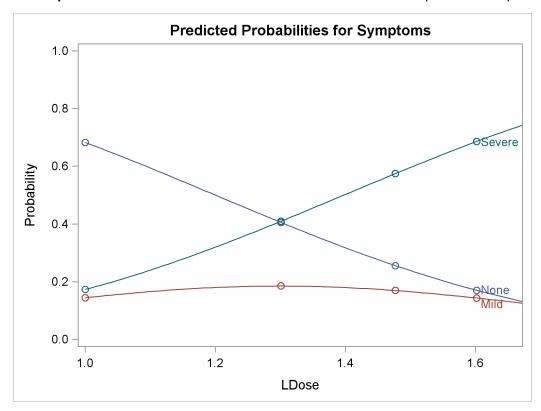

The negative coefficient associated with LDose indicates that the probability of having no symptoms (Symptoms='None') or no or mild symptoms (Symptoms='None' or Symptoms='Mild') decreases as LDose increases; that is, the probability of a severe symptom increases with LDose. This association is apparent for both treatment groups.

The negative coefficient associated with the standard treatment group (Prep = stand) indicates that the standard treatment is associated with more severe symptoms across all Ldose values.

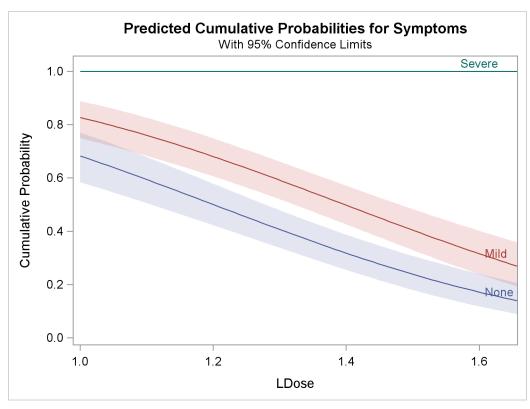
The following statements use the PLOTS= option to create the plot shown in Output 79.2.3 and Output 79.2.4. Output 79.2.3 is the plot of the probabilities of the response taking on individual levels as a function of LDose. Since there are two covariates, LDose and Prep, the value of the classification variable Prep is fixed at the highest level, test. Instead of individual response level probabilities, the CDFPLOT option creates the plot of the cumulative response probabilities with confidence limits shown in Output 79.2.4.

```
proc probit data=multi order=data
            plots=(predpplot(level=("None" "Mild" "Severe"))
                   cdfplot(level=("None" "Mild" "Severe")));
   class Prep Symptoms;
   parallel: model Symptoms=Prep LDose / lackfit;
   weight N;
run;
```

Output 79.2.3 Plot of Predicted Probabilities for the Test Preparation Group


Predicted Cumulative Probabilities for Symptoms With 95% Confidence Limits Severe 1.0 0.8 **Cumulative Probability** 0.6 0.4 None 0.2 0.0 1.0 1.2 1.4 1.6 **LDose**

Output 79.2.4 Plot of Predicted Cumulative Probabilities for the Test Preparation Group


The following statements use the XDATA= data set to create plots of predicted probabilities and cumulative probabilities with Prep set to the stand level. The resulting plots are shown in Output 79.2.5 and Output 79.2.6.

```
data xrow;
   input Prep $ Dose Symptoms $ N;
   LDose=log10(Dose);
   datalines;
stand
          40
                  Severe
                              32
run;
proc probit data=multi order=data xdata=xrow
            plots=(predpplot(level=("None" "Mild" "Severe"))
                   cdfplot(level=("None" "Mild" "Severe")));
   class Prep Symptoms;
   parallel: model Symptoms=Prep LDose / lackfit;
   weight N;
run;
```

Output 79.2.5 Plot of Predicted Probabilities for the Standard Preparation Group

Output 79.2.6 Plot of Predicted Cumulative Probabilities for the Standard Preparation Group

Example 79.3: Logistic Regression

In this example, a series of people are asked whether or not they would subscribe to a new newspaper. For each person, the variables sex (Female, Male), age, and subs (1=yes,0=no) are recorded. The PROBIT procedure is used to fit a logistic regression model to the probability of a positive response (subscribing) as a function of the variables sex and age. Specifically, the probability of subscribing is modeled as

```
p = \Pr(\mathsf{subs} = 1) = F(b_0 + b_1 \times \mathsf{sex} + b_2 \times \mathsf{age})
```

where F is the cumulative logistic distribution function.

By default, the PROBIT procedure models the probability of the lower response level for binary data. One way to model Pr(subs = 1) is to format the response variable so that the formatted value corresponding to subs=1 is the lower level. The following statements format the values of subs as 1 = 'accept' and 0 = 'reject', so that PROBIT models Pr(accept) = Pr(subs = 1). They produce Output 79.3.1.

```
data news;
  input sex $ age subs @@;
  datalines;
Female 35 0 Male
                         44
                              0
Male
        45 1 Female
                         47
                              1
       51 0 Female
                         47
Female
                              0
Male
        54 1 Male
                         47
                              1
Female
       35 0 Female
                        34
Female
        48
             0 Female
                        56
                              1
Male
        46
             1 Female
                         59
                              1
Female
        46 1 Male
                         59
                              1
Male
        38 1 Female 39 0
Male
        49 1 Male
                        42
                              1
Male
        50
             1 Female
                         45
Female
        47 0 Female
                        30
                              1
       39 0 Female
                        51
Female
             0 Female
        45
                         43
                              1
Female
        39
             1
                         31
Male
               Male
       39 0 Male
                         34 0
Female
Female
       52 1 Female
                        46 0
        58
             1 Female
                       50
                              1
Male
Female
        32 0 Female
                         52
                              1
        35 0 Female
Female
                         51
proc format;
  value subscrib 1 = 'accept' 0 = 'reject';
run;
proc probit data=news;
  class subs sex;
  model subs=sex age / d=logistic itprint;
  format subs subscrib.;
run:
```

Output 79.3.1 Logistic Regression of Subscription Status

			The Pro	bit Procedu	re		
		Iteratio	n History	y for Paramet	ter Es	stimates	
Iter	Ridge	Loglikelih	ood	Intercept		sexFemale	age
0	0	-27.725	887	0		0	0
1	0	-20.142	2 6 59 –3	3.634567629	-1.	648455751	0.1051634384
2	0	-19.52	245 -5	5.254865196	-2.	234724956	0.1506493473
3	0	-19.490		5.728485385		409827238	0.1639621828
4	0	-19.490	303 -	-5.76187293	-2.	422349862	0.1649007124
5	0	-19.490		-5.7620267		422407743	0.1649050312
6	0	-19.490	303	-5.7620267	-2.	422407743	0.1649050312
			Model	Information			
		Data Se			MODE	C.NEWS	
			nt Variak	10	WORF	subs	
		-	of Observ			40	
			Distribu		Too	gistic	
			elihood		19.490		
		-					
			Class Lev	vel Informat:	ion		
		Name	Leve	els Values	s		
		subs		2 accept	t reje	ect	
		sex		2 Female			
		Last Evaluat	ion of th	ne Negative o	of the	Gradient	
		Inter	cept	sexFemale		age	
		-5.95557	E-12 8.7	768324E-10	-1.6	3367E-8	
		Last Evaluat	ion of th	ne Negative o	of the	e Hessian	
			Intercept	sexFema	ale	age	
	In	tercept 6.4	597397447	4.60422182	284 2	292.04051848	
		xFemale 4.6				216.20829515	

292.04051848 216.20829515 13487.329973

age

Output 79.3.1 continued

				um Likelih				
				Standard	95% Con	fidence	Chi-	
Parameter		DF	Estimate	Error	Lim	its	Square P	r > ChiSq
Intercept		1	-5.7620	2.7635	-11.1783	-0.3458	4.35	0.0371
sex	Female	1	-2.4224	0.9559	-4.2959	-0.5489	6.42	0.0113
sex	Male	0	0.0000					
age		1	0.1649	0.0652	0.0371	0.2927	6.40	0.0114

Output 79.3.1 shows that there appears to be an effect due to both the variables sex and age. The positive coefficient for age indicates that older people are more likely to subscribe than younger people. The negative coefficient for sex indicates that females are less likely to subscribe than males.

Example 79.4: An Epidemiology Study

The data in this example, which are from an epidemiology study, consist of five variables: the number, r, of individuals surviving after an epidemic, out of n treated, for combinations of medicine dosage (dose), treatment (treat = A, B), and sex (sex = 0(Female), 1(Male)).

To see whether the two treatments have different effects on male and female individual survival rates, the interaction term between the two variables treat and sex is included in the model.

The following invocation of PROC PROBIT fits the binary probit model to the grouped data:

```
data epidemic;
  input treat$ dose n r sex @@;
  label dose = Dose;
  datalines;
 2.17 142 142 0 A .57 132 47
 1.68 128 105 1 A 1.08 126 100 0
  1.79 125 118 0 B 1.66 117 115
 1.49 127 114 0 B 1.17 51 44 1
  2.00 127 126 0 B .80 129 100 1
data xval;
  input treat $ dose sex;
  datalines;
В
  2. 1
```

The results of this analysis are shown in the outputs that follow.

Output 79.4.1 displays the table of level information for *all* classification variables in the CLASS statement.

Output 79.4.1 Class Level Information

The	Probit Proc	edure
Class	Level Infor	mation
Name	Levels	Values
treat	2	A B
sex	2	0 1

Output 79.4.2 displays the table of parameter information for the effects in the MODEL statement.

Output 79.4.2 Parameter Information

Par	ameter Inform	ation	
Parameter	Effect	treat	sex
Intercept	Intercept		
dose	dose		
treatA	treat	A	
treatB	treat	В	
sex0	sex		0
sex1	sex		1
treatAsex0	treat*sex	A	0
treatAsex1	treat*sex	A	1
treatBsex0	treat*sex	В	0
treatBsex1	treat*sex	В	1

Output 79.4.3 displays background information about the model fit. Included are the name of the input data set, the response variables used, the numbers of observations, events, and trials, the type of distribution, and the final value of the log-likelihood function.

Output 79.4.3 Model Information

The Probit Pro	ocedure	
Model Informa	ation	
Data Set	WORK.EPIDEMIC	
Events Variable	r	
Trials Variable	n	
Number of Observations	10	
Number of Events	1011	
Number of Trials	1204	
Name of Distribution	Normal	
Log Likelihood	-387.2467391	

Output 79.4.4 displays the table of goodness-of-fit tests requested with the LACKFIT option in the PROC PROBIT statement. Two goodness-of-fit statistics, the Pearson's chi-square statistic and the likelihood ratio chi-square statistic, are computed. The grouping method for computing these statistics can be specified by the AGGREGATE= option. The details can be found in the AGGREGATE= option, and an example can be found in the second part of this example. By default, the PROBIT procedure uses the covariates in the MODEL statement to do grouping. Observations with the same values of the covariates in the MODEL statement are grouped into cells and the two statistics are computed according to these cells. The total number of cells and the number of levels for the response variable are reported next in the "Response-Covariate Profile."

In this example, neither the Pearson's chi-square nor the log-likelihood ratio chi-square tests are significant at the 0.1 level, which is the default test level used by the PROBIT procedure. That means that the model, which includes the interaction of treat and sex, is suitable for this epidemiology data set. (Further investigation shows that models without the interaction of treat and sex are not acceptable by either test.)

Output 79.4.4 Goodness-of-Fit Tests and Response-Covariate Profile

		Goodness-of-Fit T	ests		
Statist:	ic	Value	DF	Value/DF	Pr > ChiSq
Pearson	Chi-Square	4.9317	4	1.2329	0.2944
L.R.	Chi-Square	5.7079	4	1.4270	0.2220
		Response-Covariate	Profile	1	
		Response Levels		2	
		Number of Covariate Va	lues	10	

Output 79.4.5 displays the Type III test results for all effects specified in the MODEL statement, which include the degrees of freedom for the effect, the Wald Chi-Square test statistic, and the *p*-value.

Output 79.4.5 Type III Tests

	Туре	III Ana	lysis of Effec	ets	
			Wald		
Effe	ect	DF	Chi-Square	Pr > ChiSq	
dose	9	1	42.1691	<.0001	
trea	at	1	16.1421	<.0001	
sex		1	1.7710	0.1833	
trea	at*sex	1	13.9343	0.0002	

Output 79.4.6 displays the table of parameter estimates for the model. The PROBIT procedure displays information for all the parameters of an effect. Degenerate parameters are indicated by 0 degree of freedom. Confidence intervals are computed for all parameters with nonzero degrees of freedom, including the natural threshold C if the OPTC option is specified in the PROC PROBIT statement. The confidence level can be specified by the ALPHA= option in the MODEL statement. The default confidence level is 95%.

Output 79.4.6 Analysis of Parameter Estimates

				Standard	95% Con	fidence	Chi-	
Parameter		DI	F Estimate	Error	Lim	nits	Square 1	Pr > ChiSq
Intercept		:	1 -0.8871	0.3632	-1.5991	-0.1752	5.96	0.0146
dose		:	1 1.6774	0.2583	1.1711	2.1837	42.17	<.0001
treat	A	:	1 -1.2537	0.2616	-1.7664	-0.7410	22.97	<.0001
treat	В	(0.0000					
sex	0		1 -0.4633	0.2289	-0.9119	-0.0147	4.10	0.0429
sex	1	(0.0000					
treat*sex	A	0	1 1.2899	0.3456	0.6126	1.9672	13.93	0.0002
treat*sex	A	1	0.0000					
treat*sex	В	0	0.0000					
treat*sex	В	1	0.0000					
C_			1 0.2735	0.0946	0.0881	0.4589		

From Table 79.4.6, you can see the following results:

- The variable dose has a significant positive effect on the survival rate.
- Individuals under treatment A have a lower survival rate.
- Male individuals have a higher survival rate.
- Female individuals under treatment A have a higher survival rate.

Output 79.4.7 and Output 79.4.8 display tables of estimated covariance matrix and estimated correlation matrix for estimated parameters with a nonzero degree of freedom, respectively. They are computed by the inverse of the Hessian matrix of the estimated parameters.

Output 79.4.7 Estimated Covariance Matrix

		Estimated Cova	riance Matrix		
	Intercept	dose	treatA	sex0	treatAsex0
Intercept	0.131944	-0.087353	0.053551	0.030285	-0.067056
dose	-0.087353	0.066723	-0.047506	-0.034081	0.058620
treatA	0.053551	-0.047506	0.068425	0.036063	-0.075323
sex0	0.030285	-0.034081	0.036063	0.052383	-0.063599
treatAsex0	-0.067056	0.058620	-0.075323	-0.063599	0.119408
c	-0.028073	0.018196	-0.017084	-0.008088	0.019134
		Estimated Cova	ariance Matrix _C_		
		Intercept	-0.028073		
		dose	0.018196		
		treatA	-0.017084		
		sex0	-0.008088		
		treatAsex0	0.019134		
		c	0.008948		

Output 79.4.8 Estimated Correlation Matrix

		Estimated Corre	elation Matrix		
	Intercept	dose	treatA	sex0	treatAsex0
Intercept	1.000000	-0.930998	0.563595	0.364284	-0.534227
dose	-0.930998	1.000000	-0.703083	-0.576477	0.656744
treatA	0.563595	-0.703083	1.000000	0.602359	-0.833299
sex0	0.364284	-0.576477	0.602359	1.000000	-0.804154
treatAsex0	-0.534227	0.656744	-0.833299	-0.804154	1.000000
c	-0.817027	0.744699	-0.690420	-0.373565	0.585364
		Estimated Corre	elation Matrix		
			c		
		Intercept	-0.817027		
		dose	0.744699		
		treatA	-0.690420		
		sex0	-0.373565		
		treatAsex0	0.585364		
		C	1.000000		

Output 79.4.9 displays the computed values and fiducial limits for the first single continuous variable dose in the MODEL statement, given the probability levels, without the effect of the natural threshold, and when the option INSERSECL in the MODEL statement is specified. If there is no single continuous variable in the MODEL specification but the INVERSECL option is specified, an error is reported.

Output 79.4.9 Probit Analysis on Dose

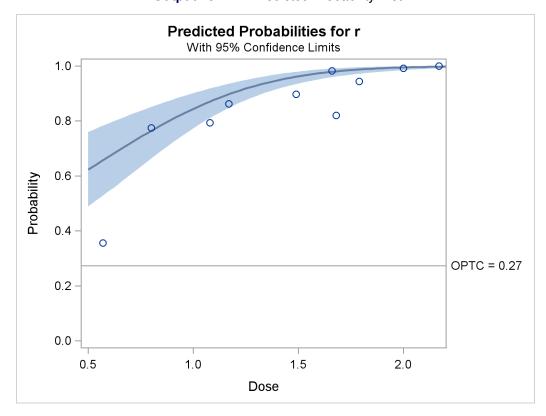
	The Probit	Procedure	
	Probit Analys	is on dose	
	_		
Probability	dose	95% Fiduci	al Limits
0.01	-0.85801	-1.81301	-0.33743
0.02	-0.69549	-1.58167	-0.21116
0.03	-0.59238	-1.43501	-0.13093
0.04	-0.51482	-1.32476	-0.07050
0.05	-0.45172	-1.23513	-0.02130
0.06	-0.39802	-1.15888	0.02063
0.07	-0.35093	-1.09206	0.05742
0.08	-0.30877	-1.03226	0.09039
0.09	-0.27043	-0.97790	0.12040
0.10	-0.23513	-0.92788	0.14805
0.15	-0.08900	-0.72107	0.26278
0.20	0.02714	-0.55706	0.35434
0.25	0.12678	-0.41669	0.43322
0.30	0.21625	-0.29095	0.50437
0.35	0.29917	-0.17477	0.57064
0.40	0.37785	-0.06487	0.63387
0.45	0.45397	0.04104	0.69546
0.50	0.52888	0.14481	0.75654
0.55	0.60380	0.24800	0.81819
0.60	0.67992	0.35213	0.88157
0.65	0.75860	0.45879	0.94803
0.70	0.84151	0.56985	1.01942
0.75	0.93099	0.68770	1.09847
0.80	1.03063	0.81571	1.18970
0.85	1.14677	0.95926	1.30171
0.90	1.29290	1.12867	1.45386
0.91	1.32819	1.16747	1.49273
0.92	1.36654	1.20867	1.53590
0.93	1.40870	1.25284	1.58450
0.94	1.45579	1.30084	1.64012
0.95	1.50949	1.35397	1.70515
0.96	1.57258	1.41443	1.78353
0.97	1.65015	1.48626	1.88238
0.98	1.75326	1.57833	2.01720
0.99	1.91577	1.71776	2.23537

If the XDATA= option is used to input a data set for the independent variables in the MODEL statement, the PROBIT procedure uses these values for the independent variables other than the single continuous variable. Missing values are not permitted in the XDATA= data set for the independent variables, although the value for the single continuous variable is not used in the computing of the fiducial limits. A suitable valid value should be given. In the data set xval created by the SAS statements on page 6822, dose = 2. Only one observation from the XDATA= data set is used to produce a probit analysis table for a combination of classification variable levels. If more than one observation is present in the XDATA= data set, only the last observation is used.

See the section "XDATA= SAS-data-set" on page 6798 for the default values for those effects other than the single continuous variable, for which the fiducial limits are computed.

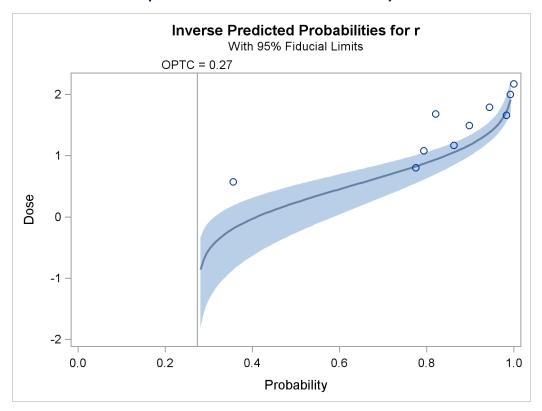
In this example, there are two classification variables, treat and sex. Fiducial limits for the dose variable are computed for the highest level of the classification variables, treat = B and sex = 1, which is the default specification. Since these are the default values, you would get the same values and fiducial limits if you did not specify the XDATA= option in this example. The confidence level for the fiducial limits can be specified by the ALPHA= option in the MODEL statement. The default level is 95%.

If a LOG10 or LOG option is used in the PROC PROBIT statement, the values and the fiducial limits are computed for both the single continuous variable and its logarithm.

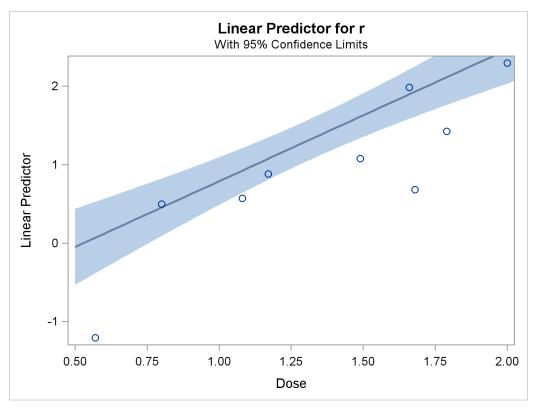

Output 79.4.10 displays the OUTEST= data set. All parameters for an effect are included. The name of a parameter is generated by combining the variable names and levels in the effect. The maximum length of a parameter name is 32.

Output 79.4.10 Outest Data Set for Epidemiology Study

Obs	_MODEL_	_NAME_	_TYPE_	_DIST_	-	STATU	s_	_LN	LIKE_	. 1	r	Intercept
1		r	PARMS	Normal	0	Conve	rged	-38	7.247	-1.00	0000	-0.88714
2		Intercept	COV	Normal	0	Conve	rged	-38	7.247	-0.88	3714	0.13194
3		dose	COV	Normal	0	Conve	rged	-38	7.247	1.6	7739	-0.08735
4		treatA	COV	Normal	0	Conve	rged	-38	7.247	-1.2	5367	0.05355
5		treatB	COV	Normal	0	Conve	rged	-38	7.247	0.00	0000	0.00000
6		sex0	COV	Normal	0	Conve	rged	-38	7.247	-0.4	6329	0.03029
7		sex1	COV	Normal	0	Conve	rged	-38	7.247	0.00	0000	0.00000
8		treatAsex0	COV	Normal	0	Conve	rged	-38	7.247	1.28	3991	-0.06706
9		treatAsex1	COV	Normal			-				0000	0.00000
10		treatBsex0	COV	Normal	0	Conve	rged	-38	7.247	0.00	0000	0.00000
11		treatBsex1	COV	Normal	0	Conve	rged	-38	7.247	0.00	0000	0.00000
12		_c_	COV	Normal	0	Conve	rged	-38	7.247	0.2	7347	-0.02807
Obs	dose	treatA	reat B	sex0			treat			treat		
ODS	dose	treatA	ь	sexu	se	XI	Asex(JA	sexı	Bsex0	bsex	:1 _C_
1	1.67739	-1.25367	0 -	0.46329		0 1	.289	91	0	0	0	0.27347
2	-0.08735	0.05355	0	0.03029		0 -0	.0670	06	0	0	0	-0.02807
3	0.06672	-0.04751	0 -	0.03408		0 0	.058	62	0	0	0	0.01820
4	-0.04751	0.06843	0	0.03606		0 -0	.075	32	0	0	0	-0.01708
5	0.00000	0.00000	0	0.00000		0 0	.000	00	0	0	0	0.0000
6	-0.03408	0.03606	0	0.05238		0 -0	.063	60	0	0	0	-0.00809
7	0.00000	0.0000	0	0.00000		0 0	.000	00	0	0	0	0.0000
8	0.05862	-0.07532	0 -	0.06360		0 0	.1194	41	0	0	0	0.01913
9	0.00000	0.0000	0	0.00000		0 0	.000	00	0	0	0	0.0000
10	0.00000	0.0000	0	0.00000		0 0	.000	00	0	0	0	0.0000
10			0	0.00000		0 0	.000	าก	0	0	0	0.0000
11	0.00000	0.00000	U	0.00000					U	U	•	0.0000


The plots in the following three outputs, Output 79.4.11, Output 79.4.12, and Output 79.4.13, are generated by the PLOTS= option. The first plot, specified with the PREDPPLOT option, is the plot of the predicted probability against the first single continuous variable dose in the MODEL statement. You can specify values of other independent variables in the MODEL statement by using an XDATA= data set or by using the default values.

The second plot, specified with the IPPPLOT option, is the inverse of the predicted probability plot with the fiducial limits. It should be pointed out that the fiducial limits are *not* just the inverse of the confidence limits in the predicted probability plot; see the section "Inverse Confidence Limits" on page 6796 for the computation of these limits. The third plot, specified with the LPREDPLOT option, is the plot of the linear predictor \mathbf{x}'_{\star} against the first single continuous variable with the Wald confidence intervals.



Output 79.4.11 Predicted Probability Plot

Output 79.4.12 Inverse Predicted Probability Plot

Output 79.4.13 Linear Predictor Plot

When you combine the INEST= data set and the MAXIT= option in the MODEL statement, the PROBIT procedure can do prediction, if the parameterizations for the models used for the training data and the validation data are exactly the same. The following SAS statements show an example:

```
data validate;
  input treat $ dose sex n r group @@;
  datalines;
  2.0 0 44 43 1 B 2.0
                          1 54 52
 1.5 1 36 32 3 B 1.5
                           0
                             45 40
                                    4
  2.0 0 66 64 5 A 2.0 1
                             89 89
                                    6
  1.5 1 45 39 7 A 1.5 0
                             66 60 8
  2.0 0 44 44 1
                   B 2.0 1 54 54 2
  1.5 1 36 30 3
                   B 1.5 0
                             45 41 4
  2.0 0 66 65 5
                   A 2.0 1 89 88 6
  1.5 1 45 38 7
                   A 1.5 0
                             66 59 8
proc probit optc data=validate inest=out1;
  class treat sex;
  model r/n = dose treat sex sex*treat / maxit = 0;
  output out = out3 p =p;
run;
proc probit optc lackfit data=validate inest=out1;
  class treat sex;
  model r/n = dose treat sex sex*treat / aggregate = group;
  output out = out4 p =p;
run;
```

After the first invocation of PROC PROBIT, you have the estimated parameters and their covariance matrix in the data set OUTEST = Out1, and the fitted probabilities for the training data set epidemic in the data set OUTPUT = Out2. See Output 79.4.10 for the data set Out1 and Output 79.4.14 for the data set Out2.

The validation data are collected in data set validate. The second invocation of PROC PROBIT simply passes the estimated parameters from the training data set epidemic to the validation data set validate for prediction. The predicted probabilities are stored in the data set OUTPUT = Out3 (see Output 79.4.15). The third invocation of PROC PROBIT passes the estimated parameters as initial values for a new fit of the validation data set with the same model. Predicted probabilities are stored in the data set OUTPUT = Out4 (see Output 79.4.16). Goodness-of-fit tests are computed based on the cells grouped by the AGGREGATE= group variable. Results are shown in Output 79.4.17.

Obs	treat	dose	n	r	sex	р
1	A	2.17	142	142	0	0.99272
2	A	0.57	132	47	1	0.35925
3	A	1.68	128	105	1	0.81899
4	A	1.08	126	100	0	0.77517
5	A	1.79	125	118	0	0.96682
6	В	1.66	117	115	1	0.97901
7	В	1.49	127	114	0	0.90896
8	В	1.17	51	44	1	0.89749
9	В	2.00	127	126	0	0.98364
10	В	0.80	129	100	1	0.76414

Output 79.4.14 Out2

Output 79.4.15 Out3

Obs	treat	dose	sex	n	r	group	Р
1	В	2.0	0	44	43	1	0.98364
2	В	2.0	1	54	52	2	0.99506
3	В	1.5	1	36	32	3	0.96247
4	В	1.5	0	45	40	4	0.91145
5	A	2.0	0	66	64	5	0.98500
6	A	2.0	1	89	89	6	0.91835
7	A	1.5	1	45	39	7	0.74300
8	A	1.5	0	66	60	8	0.91666
9	В	2.0	0	44	44	1	0.98364
10	В	2.0	1	54	54	2	0.99506
11	В	1.5	1	36	30	3	0.96247
12	В	1.5	0	45	41	4	0.91145
13	A	2.0	0	66	65	5	0.98500
14	A	2.0	1	89	88	6	0.91835
15	A	1.5	1	45	38	7	0.74300
16	A	1.5	0	66	59	8	0.91666

0	utni	ıŧ	79	4 1	6	Out4
u	ulbi	uι	13		U	Out

Obs	treat	dose	sex	n	r	group	p
1	В	2.0	0	44	43	1	0.98954
2	В	2.0	1	54	52	2	0.98262
3	В	1.5	1	36	32	3	0.86187
4	В	1.5	0	45	40	4	0.90095
5	A	2.0	0	66	64	5	0.98768
6	A	2.0	1	89	89	6	0.98614
7	A	1.5	1	45	39	7	0.88075
8	A	1.5	0	66	60	8	0.88964
9	В	2.0	0	44	44	1	0.98954
10	В	2.0	1	54	54	2	0.98262
11	В	1.5	1	36	30	3	0.86187
12	В	1.5	0	45	41	4	0.90095
13	A	2.0	0	66	65	5	0.98768
14	A	2.0	1	89	88	6	0.98614
15	A	1.5	1	45	38	7	0.88075
16	A	1.5	0	66	59	8	0.88964

Output 79.4.17 Goodness-of-Fit Table

	The Probit Proce	edure		
	Goodness-of-Fit T	l'ests		
Statistic	Value	DF	Value/DF	Pr > ChiSq
Pearson Chi-Square	2.8101	2	1.4050	0.2454
L.R. Chi-Square	2.8080	2	1.4040	0.2456

Example 79.5: Model Postfitting Analysis

Recall the previous example of an epidemic study, in which the treat*sex interaction is statistically significant. Suppose you want to know whether such an effect is the same at different levels of the two categorical variables.

The following SAS statements fit a probit model and use the SLICE statement to request analysis of the two-way interaction term treat*sex:

```
proc probit data=epidemic;
  class treat sex;
  model r/n = dose treat sex treat*sex;
  slice treat*sex / diff;
  effectplot;
run;
```

Output 79.5.1 displays the test results for the interaction effect. As you can see, the difference between the two treatments is not significant among females.

Output 79.5.1 Tests Conditional on treat*sex

The Probit Procedure

Chi-Square Test for treat*sex Least Squares Means Slice

Num

Slice DF Chi-Square Pr > ChiSq

treat A 1 18.52 <.0001

Chi-Square Test for treat*sex Least Squares Means Slice

Num

Slice DF Chi-Square Pr > ChiSq

treat B 1 2.65 0.1035

Chi-Square Test for treat*sex Least Squares Means Slice

Num

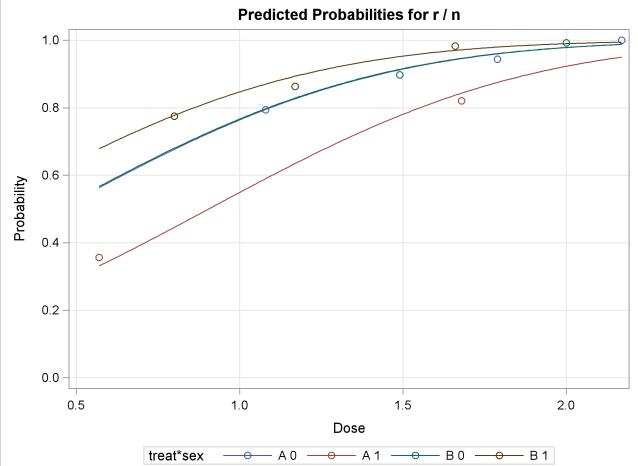
Slice DF Chi-Square Pr > ChiSq

sex 0 1 0.00 0.9579

Chi-Square Test for treat*sex Least Squares Means Slice

Num

Slice DF Chi-Square Pr > ChiSq


sex 1 1 47.43 <.0001

The DIFF option computes effect differences between groups within the same slice. Results are displayed in Output 79.5.2.

Output 79.5.2 Effect Differences Conditional on treat*sex

	Simple	Difference	es of treat*se	x Least Sq	uares Means			
			5	Standard				
Slice	sex	_sex	Estimate	Error	z Value	Pr > z		
treat A	0	1	0.5957	0.1384	4.30	<.0001		
	Simple	Difference	s of treat*se	ex Least Sq	uares Means			
			2	Standard				
Slice	sex	_sex	Estimate	Error	z Value	Pr > z		
treat B	0	1	-0.2956	0.1816	-1.63	0.1035		
	Simple Differences of treat*sex Least Squares Means							
				Standard				
Slice t	treat	_treat	Estimate	Error	z Value	Pr > z		
sex 0	A	В	-0.00899	0.1702	-0.05	0.9579		
	Simple	Difference	es of treat*se	ex Least Sq	uares Means			
				Standard				
Slice t	treat	_treat	Estimate	Error	z Value	Pr > z		
sex 1	A	В	-0.9003	0.1307	-6.89	<.0001		

The EFFECTPLOT statement produces a predicted probability plot for dose by the four groups that are formed by the treat*sex interaction. The plot is displayed in Output 79.5.3. The two overlapping curves represent the two treatment groups for females, suggesting no treatment effect. It appears that males tend to respond to the two treatments differently: those on treatment B have a better survival rate, and those on treatment A have a worse chance of survival.

Output 79.5.3 Predicted Probability versus Dose Level by treat*sex

References

Agresti, A. (2002), Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

Collett, D. (2003), Modelling Binary Data, 2nd Edition, London: Chapman & Hall.

Cox, D. R. and Oakes, D. (1984), Analysis of Survival Data, London: Chapman & Hall.

Finney, D. J. (1971), *Probit Analysis*, 3rd Edition, Cambridge: Cambridge University Press.

Hubert, J. J., Bohidar, N. R., and Peace, K. E. (1988), "Assessment of Pharmacological Activity," in K. E. Peace, ed., Biopharmaceutical Statistics for Drug Development, 83-145, New York: Marcel Dekker.

Subject Index

annotating	IPPPLOT
CDF plots, 6743	PROBIT procedure, 6755
IPP plots, 6758	
LPRED plots, 6766	lack of fit tests, 6736, 6794
predicted probability plots, 6784	likelihood function, 6792
producted procedurity proces, 6761	likelihood ratio chi-square test, 6792, 6794
biological assay data, 6728, 6796	log-likelihood function
•	PROBIT procedure, 6792
CDF plots	logistic distribution, 6728
annotating, 6743	PROBIT procedure, 6793
axes, color, 6743	logistic regression, 6728
font, specifying, 6744	LPRED plots
options summarized by function, 6740, 6764	annotating, 6766
reference lines, options, 6744–6747	axes, color, 6766
threshold lines, options, 6746	font, specifying, 6767
CDFPLOT	reference lines, options, 6767–6771
PROBIT procedure, 6739	threshold lines, options, 6770
cumulative distribution function, 6728	LPREDPLOT
0.0000000000000000000000000000000000000	
deviance	PROBIT procedure, 6763
PROBIT procedure, 6779, 6795	missing values
dispersion parameter	PROBIT procedure, 6790
PROBIT procedure, 6795	multilevel response, 6794
distributions	mutinever response, 0774
Gompertz, 6728	natural response rate, 6728, 6736
logistic, 6728	Newton-Raphson algorithm
normal, 6728	PROBIT procedure, 6792
	normal distribution, 6728
extreme value distribution	PROBIT procedure, 6793
PROBIT procedure, 6793	Thobar procedure, 6775
1	ODS Graphics names
fiducial limits, 6735, 6736, 6794	PROBIT procedure, 6802
	options summary
Gompertz distribution, 6728	ESTIMATE statement, 6752
graphics catalog, specifying	output table names
PROBIT procedure, 6735	PROBIT procedure, 6801
	overdispersion
information matrix, 6792	PROBIT procedure, 6779
INSET	Thosair procedure, 6779
PROBIT procedure, 6753	Pearson's chi-square
inverse confidence limits	PROBIT procedure, 6776, 6779, 6795
PROBIT procedure, 6735, 6796	Pearson's chi-square test, 6735, 6794
IPP plots	predicted probability plots
annotating, 6758	annotating, 6784
axes, color, 6758	axes, color, 6784
font, specifying, 6759	font, specifying, 6785
options summarized by function, 6756	options summarized by function, 6781
reference lines, options, 6759–6763	reference lines, options, 6784–6786, 6788
threshold lines, options, 6762	threshold lines, options, 6787
•	uneshold files, options, 0/6/

```
PREDPPLOT
    PROBIT procedure, 6780
probit analysis
    insets, 6753
probit equation, 6728, 6794
PROBIT procedure
    Abbot's formula, 6790
    binary response data, 6728, 6729, 6794
    CDFPLOT, 6739
    deviance, 6779, 6795
    deviance statistic, 6795
    dispersion parameter, 6795
    extreme value distribution, 6793
    goodness-of-fit, 6776, 6779
    goodness-of-fit tests, 6735, 6736, 6776, 6794
    INSET, 6753
    inverse confidence limits, 6796
    IPPPLOT, 6755
    log-likelihood function, 6792
    logistic distribution, 6793
    LPREDPLOT, 6763
    maximum likelihood estimates, 6728
    missing values, 6790
    models, 6794
    multilevel response data, 6728, 6729, 6794
    natural response rate, 6729
    Newton-Raphson algorithm, 6792
    normal distribution, 6793
    ODS Graphics names, 6802
    output table names, 6801
    overdispersion, 6779
    Pearson's chi-square, 6776, 6779, 6795
    PREDPPLOT, 6780
    response level ordering, 6775
    subpopulation, 6776, 6779, 6796
    threshold response rate, 6729
    tolerance distribution, 6796
PROBIT procedure
    ordering of effects, 6736
quantal response data, 6728
response level ordering
    PROBIT procedure, 6775
subpopulation
    PROBIT procedure, 6776, 6779, 6796
threshold response rate, 6728
Wald test
    PROBIT procedure, 6792
```

Syntax Index

AGGREGATE= option	PROC PROBIT statement, 6736
MODEL statement (PROBIT), 6776	LOG10 option
	PROC PROBIT statement, 6736
BY statement	LPREDPLOT statement
PROBIT procedure, 6739	options summarized by function, 6764 PROBIT procedure, 6763
CDFPLOT statement, see PROBIT procedure,	LPREFIX= option
CDFPLOT statement, see PROBIT	CLASS statement (PROBIT), 6748
procedure, CDFPLOT statement	LSMEANS statement
options summarized by function, 6740	PROBIT procedure, 6771
PROBIT procedure, 6739	LSMESTIMATE statement
CLASS statement	PROBIT procedure, 6772
PROBIT procedure, 6748	PROBIT procedure, 0772
COVOUT option	MISSING option
PROC PROBIT statement, 6734	CLASS statement (PROBIT), 6748
CPREFIX= option	CLASS statement (1 RODI1), 0740
CLASS statement (PROBIT), 6748	NAMELEN= option
DATA= option	PROC PROBIT statement, 6736
PROC PROBIT statement, 6735	NOPRINT option
•	PROC PROBIT statement, 6736
DESCENDING option CLASS statement (PROPIT) 6748	OPTC
CLASS statement (PROBIT), 6748	OPTC option
MODEL statement, 6775	PROC PROBIT statement, 6734, 6736
EFFECTPLOT statement	options (DDODATE) (7.40
PROBIT procedure, 6751	CDFPLOT statement (PROBIT), 6740
ESTIMATE statement	IPPPLOT statement (PROBIT), 6756
	LPREDPLOT statement (PROBIT), 6764
PROBIT procedure, 6752 EVENT= option	PREDPPLOT statement (PROBIT), 6781
÷	ORDER= option
MODEL statement, 6775	CLASS statement (PROBIT), 6748
GOUT= option	MODEL statement, 6775
PROC PROBIT statement, 6735	PROC PROBIT statement, 6736
1 ROC 1 RODI1 statement, 0733	OUTEST= option
HPROB= option	PROC PROBIT statement, 6737
PROC PROBIT statement, 6735	
The efficient, ever	PARAM= option
INEST= option	CLASS statement (PROBIT), 6749
PROC PROBIT statement, 6735	PLOT= option
INSET statement	PROC PROBIT statement, 6737
PROBIT procedure, 6753	PREDPPLOT statement
INVERSECL option	options summarized by function, 6781
PROC PROBIT statement, 6735	PROBIT procedure, 6780
IPPPLOT statement	PROBIT, 6728
options summarized by function, 6756	PROBIT procedure, 6728
PROBIT procedure, 6755	syntax, 6733
TRODIT procedure, 0735	PROBIT procedure, BY statement, 6739
LACKFIT option	PROBIT procedure, CDFPLOT statement, 6739
PROC PROBIT statement, 6736	ANNOTATE= option, 6743
LOG option	CAXIS= option, 6743
1	

CFIT= option, 6743	PROBIT procedure, IPPLOT statement
CFRAME= option, 6743	INHEIGHT= option, 6760
CGRID= option, 6743	PROBIT procedure, IPPPLOT statement, 6755
CHREF= option, 6744	ANNOTATE= option, 6758
CLABBOX= option, 6743	CAXIS= option, 6758
CTEXT= option, 6744	CFIT= option, 6759
CVREF= option, 6744	CFRAME= option, 6759
DESCRIPTION= option, 6744	CGRID= option, 6759
FONT= option, 6744	CHREF= option, 6759
HAXIS= option, 6744	CTEXT= option, 6759
HEIGHT= option, 6744	CVREF= option, 6759
HLOWER= option, 6744	DESCRIPTION= option, 6759
HOFFSET= option, 6744	FONT= option, 6759
HREF= option, 6745	HAXIS= option, 6759
HREFLABELS= option, 6745	HEIGHT= option, 6759
HREFLABPOS= option, 6745	HLOWER= option, 6760
HUPPER= option, 6744	HOFFSET= option, 6760
<u> -</u>	<u>*</u>
INBORDER option, 6745	HREF= option, 6760
INHEIGHT= option, 6745	HREFLABELS= option, 6760
LEVEL option, 6745	HREFLABPOS= option, 6760
LFIT option, 6745	HUPPER= option, 6760
LGRID option, 6745	INBORDER option, 6760
LHREF= option, 6745	LFIT option, 6760
LVREF= option, 6746	LGRID option, 6761
NAME= option, 6746	LHREF= option, 6761
NHTICK= option, 6746, 6761	LVREF= option, 6761
NOFIT option, 6746	NAME= option, 6761
NOFRAME option, 6746	NOCONF option, 6761
NOGRID option, 6746	NODATA option, 6761
NOHLABEL option, 6746	NOFIT option, 6761
NOHTICK option, 6746	NOFRAME option, 6761
NOTHRESH option, 6746	NOGRID option, 6761
NOVLABEL option, 6746	NOHLABEL option, 6761
NOVTICK option, 6746	NOHTICK option, 6761
NVTICK= option, 6746, 6761	NOTHRESH option, 6761
options, 6740	NOVLABEL option, 6761
THRESHLABPOS= option, 6746	NOVTICK option, 6762
TURNVLABELS option, 6746	options, 6756
VAR= option, 6739	THRESHLABPOS= option, 6762
VAXIS= option, 6747	TURNVLABELS option, 6762
VAXISLABEL= option, 6747	VAR= option, 6755
VLOWER= option, 6747	VAXIS= option, 6762
VREF= option, 6747	VAXISLABEL= option, 6762
VREFLABELS= option, 6747	VLOWER= option, 6762
VREFLABPOS= option, 6747	VREF= option, 6762
VUPPER= option, 6747	VREFLABELS= option, 6762
WAXIS= option, 6748	VREFLABPOS= option, 6763
WFIT= option, 6748	VUPPER= option, 6763
•	<u> •</u>
WGRID= option, 6748	WAXIS= option, 6763
WREFL= option, 6748	WFIT= option, 6763
PROBIT procedure, CDFPPLOT statement	WGRID= option, 6763
VOFFSET= option, 6747	WREFL= option, 6763
PROBIT procedure, INSET statement, 6753	PROBIT procedure, IPPPPLOT statement
keywords, 6753	VOFFSET= option, 6762

PROBIT procedure, LPPLOT statement	WGRID= option, 6771
INHEIGHT= option, 6768	WREFL= option, 6771
NHTICK= option, 6769	PROBIT procedure, MODEL statement, 6773
NVTICK= option, 6769	AGGREGATE= option, 6776
PROBIT procedure, LPREDPLOT statement, 6763	ALPHA= option, 6776
ANNOTATE= option, 6766	CONVERGE option, 6777
CAXIS= option, 6766	CORRB option, 6777
CFIT= option, 6766	COVB option, 6777
CFRAME= option, 6766	DESCENDING option, 6775
CGRID= option, 6767	DISTRIBUTION= option, 6777
CHREF= option, 6767	EVENT= option, 6775
CTEXT= option, 6767	HPROB= option, 6777
CVREF= option, 6767	INITIAL option, 6777
DESCRIPTION= option, 6767	INTERCEPT= option, 6778
FONT= option, 6767	INVERSECL option, 6778
HAXIS= option, 6767	ITPRINT option, 6778
HEIGHT= option, 6767	LACKFIT option, 6778
HLOWER= option, 6767	MAXITER= option, 6778
HOFFSET= option, 6767	NOINT option, 6779
HREF= option, 6768	ORDER= option, 6775
HREFLABELS= option, 6768	REFERENCE= option, 6776
HREFLABPOS= option, 6768	SCALE= option, 6779
HUPPER= option, 6768	SINGULAR= option, 6779
INBORDER option, 6768	PROBIT procedure, OUTPUT statement, 6779
LEVEL option, 6768	PROBIT procedure, PREDPLOT statement
LFIT option, 6768	INHEIGHT= option, 6786
LGRID option, 6768	LEVEL option, 6786
LHREF= option, 6769	NHTICK= option, 6787
LVREF= option, 6769	NVTICK= option, 6787 NVTICK= option, 6787
NAME= option, 6769	PROBIT procedure, PREDPPLOT statement, 6780
<u> </u>	ANNOTATE= option, 6784
NOCONF option, 6769	* '
NODATA option, 6769	CAXIS= option, 6784
NOFIT option, 6769	CFIT= option, 6784
NOCRID artism, 6760	CFRAME= option, 6784
NOGRID option, 6769	CGRID= option, 6784
NOHLABEL option, 6769	CHREF= option, 6784
NOHTICK option, 6769	CTEXT= option, 6785
NOTHRESH option, 6769	CVREF= option, 6785
NOVLABEL option, 6769	DESCRIPTION= option, 6785
NOVTICK option, 6770	FONT= option, 6785
options, 6764	HAXIS= option, 6785
THRESHLABPOS= option, 6770	HEIGHT= option, 6785
TURNVLABELS option, 6770	HLOWER= option, 6785
VAR= option, 6763	HOFFSET= option, 6785
VAXIS= option, 6770	HREF= option, 6785
VAXISLABEL= option, 6770	HREFLABELS= option, 6786
VLOWER= option, 6770	HREFLABPOS= option, 6786
VOFFSET= option, 6770	HUPPER= option, 6785
VREF= option, 6770	INBORDER option, 6786
VREFLABELS= option, 6771	LFIT option, 6786
VREFLABPOS= option, 6771	LGRID option, 6786
VUPPER= option, 6771	LHREF= option, 6786
WAXIS= option, 6771	LVREF= option, 6786
WFIT= option, 6771	NAME= option, 6787

NOCONF option, 6787	PROBIT procedure, ESTIMATE statement, 6752
NODATA option, 6787	PROBIT procedure, LSMEANS statement, 6771
NOFIT option, 6787	PROBIT procedure, LSMESTIMATE statement, 6772
NOFRAME option, 6787	PROBIT procedure, PROC PROBIT statement
NOGRID option, 6787	ORDER= option, 6736
NOHLABEL option, 6787	PROBIT procedure, SLICE statement, 6789
NOHTICK option, 6787	PROBIT procedure, STORE statement, 6789
NOTHRESH option, 6787	PROC PROBIT statement, see PROBIT procedure
NOVLABEL option, 6787	•
NOVTICK option, 6787	REF= option
options, 6781	CLASS statement (PROBIT), 6750
THRESHLABPOS= option, 6787	REFERENCE= option
TURNVLABELS option, 6787	MODEL statement, 6776
VAR= option, 6780	
VAXIS= option, 6788	SCALE= option
VAXISLABEL= option, 6788	MODEL statement (PROBIT), 6779
VLOWER= option, 6788	SLICE statement
VOFFSET= option, 6788	PROBIT procedure, 6789
VREF= option, 6788	STORE statement
VREFLABELS= option, 6788	PROBIT procedure, 6789
•	•
VREFLABPOS= option, 6788	TEST statement
VUPPER= option, 6789	LIFEREG procedure, 6790
WAXIS= option, 6789	TRUNCATE option
WFIT= option, 6789	CLASS statement (PROBIT), 6750
WGRID= option, 6789	` ''
WREFL= option, 6789	VAR= option
PROBIT procedure, PROC PROBIT statement, 6733	CDFPLOT statement (PROBIT), 6739
COVOUT option, 6734	IPPPLOT statement (PROBIT), 6755
DATA= option, 6735	LPREDPLOT statement (PROBIT), 6763
GOUT= option, 6735	PREDPPLOT statement (PROBIT), 6780
HPROB= option, 6735	·
INEST= option, 6735	XDATA= option
INVERSECL option, 6735	PROC PROBIT statement, 6738
LACKFIT option, 6736	
LOG option, 6736	
LOG10 option, 6736	
NAMELEN= option, 6736	
NOPRINT option, 6736	
OPTC option, 6734, 6736	
OUTEST= option, 6737	
PLOT= option, 6737	
XDATA= option, 6738	
PROBIT procedure, TEST statement, 6790	
PROBIT procedure, WEIGHT statement, 6790	
PROBIT procedure, CLASS statement, 6748	
CPREFIX= option, 6748	
DESCENDING option, 6748	
LPREFIX= option, 6748	
MISSING option, 6748	
ORDER= option, 6748	
PARAM= option, 6749	
REF= option, 6750	
TRUNCATE option, 6750	
PROBIT procedure. EFFECTPLOT statement, 6751	