

SAS/STAT® 12.3 User's Guide The SURVEYSELECT Procedure (Chapter)

This document is an individual chapter from SAS/STAT® 12.3 User's Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2013. SAS/STAT® 12.3 User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

July 2013

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at **support.sas.com/bookstore** or call 1-800-727-3228.

 $SAS^{@}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. @ indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Chapter 95

The SURVEYSELECT Procedure

\sim		4		
•	on	tο	n	tc
				L

Contents	
Overview: SURVEYSELECT Procedure	8020
Getting Started: SURVEYSELECT Procedure	8021
Simple Random Sampling	8022
Stratified Sampling	8024
Stratified Sampling with Control Sorting	8028
Syntax: SURVEYSELECT Procedure	8029
PROC SURVEYSELECT Statement	8029
CONTROL Statement	8048
FREQ Statement	8048
ID Statement	8049
SAMPLINGUNIT CLUSTER Statement	8049
SIZE Statement	8050
STRATA Statement	8051
Details: SURVEYSELECT Procedure	8056
Missing Values	8056
Sorting by CONTROL Variables	8057
Random Number Generation	8058
Sample Selection Methods	8058
Simple Random Sampling	8059
Unrestricted Random Sampling	8059
Systematic Random Sampling	8060
Sequential Random Sampling	8060
Bernoulli Sampling	8061
Poisson Sampling	8062
PPS Sampling without Replacement	8062
PPS Sampling with Replacement	8064
PPS Systematic Sampling	8064
PPS Sequential Sampling	8064
Brewer's PPS Method	8066
Murthy's PPS Method	8066
Sampford's PPS Method	8067
Sample Size Allocation	8067
Proportional Allocation	8068
Optimal Allocation	8068
Neyman Allocation	8069
Specifying the Margin of Error	8069

	Secondary Input Data Set	8071
	Sample Output Data Set	8072
	Allocation Output Data Set	8075
	Displayed Output	8076
	ODS Table Names	8079
Exam	ples: SURVEYSELECT Procedure	8080
	Example 95.1: Replicated Sampling	8080
	Example 95.2: PPS Selection of Two Units per Stratum	8083
	Example 95.3: PPS (Dollar-Unit) Sampling	8086
	Example 95.4: Proportional Allocation	8089
Refere	ences	8092

Overview: SURVEYSELECT Procedure

The SURVEYSELECT procedure provides a variety of methods for selecting probability-based random samples. The procedure can select a simple random sample or can sample according to a complex multistage sample design that includes stratification, clustering, and unequal probabilities of selection. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences from the sample to the survey population.

To select a sample with PROC SURVEYSELECT, you input a SAS data set that contains the sampling frame, which is the list of units from which the sample is to be selected. The sampling units can be individual observations or groups of observations (clusters). You also specify the selection method, the desired sample size or sampling rate, and other selection parameters. PROC SURVEYSELECT selects the sample and produces an output data set that contains the selected units, their selection probabilities, and their sampling weights. When you select a sample in multiple stages, you invoke the procedure separately for each stage of selection, inputting the frame and selection parameters for each current stage.

PROC SURVEYSELECT provides methods for both equal probability sampling and probability proportional to size (PPS) sampling. In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of being selected for the sample. In PPS sampling, a unit's selection probability is proportional to its size measure. For details about probability sampling methods, see Lohr (2010); Kish (1965, 1987); Kalton (1983); Cochran (1977).

PROC SURVEYSELECT provides the following equal probability sampling methods:

- simple random sampling (without replacement)
- unrestricted random sampling (with replacement)
- systematic random sampling
- sequential random sampling
- Bernoulli sampling

This procedure also provides Poisson sampling and the following probability proportional to size (PPS) sampling methods:

- PPS sampling without replacement
- PPS sampling with replacement
- PPS systematic sampling
- PPS algorithms for selecting two units per stratum
- sequential PPS sampling with minimum replacement

The procedure uses fast, efficient algorithms for these sample selection methods. Thus, it performs well even for large input data sets or sampling frames.

PROC SURVEYSELECT can perform stratified sampling by selecting samples independently within strata, which are nonoverlapping subgroups of the survey population. Stratification controls the distribution of the sample size in the strata. It is widely used in practice toward meeting a variety of survey objectives. For example, with stratification you can ensure adequate sample sizes for subgroups of interest, including small subgroups, or you can use stratification toward improving the precision of the overall estimates. When you use a systematic or sequential selection method, PROC SURVEYSELECT can also sort by control variables within strata for the additional control of implicit stratification.

For stratified sampling, PROC SURVEYSELECT provides survey design methods to allocate the total sample size among the strata. Available allocation methods include proportional, Neyman, and optimal allocation. Optimal allocation maximizes the estimation precision within the available resources, taking into account stratum sizes, costs, and variances.

PROC SURVEYSELECT provides replicated sampling, where the total sample is composed of a set of replicates, and each replicate is selected in the same way. You can use replicated sampling to study variable nonsampling errors, such as variability in the results obtained by different interviewers. You can also use replication to estimate standard errors for combined sample estimates and to perform a variety of other resampling and simulation tasks.

Getting Started: SURVEYSELECT Procedure

In this example, an Internet service provider conducts a customer satisfaction survey. The survey population consists of the company's current subscribers. The company plans to select a sample of customers from this population, interview the selected customers, and then make inferences about the entire survey population from the sample data.

The SAS data set Customers contains the sampling frame, which is the list of units in the survey population. The sample of customers will be selected from this sampling frame. The data set Customers is constructed from the company's customer database. It contains one observation for each customer, with a total of 13,471 observations.

The following PROC PRINT statements display the first 10 observations of the data set Customers and produce Figure 95.1:

```
title1 'Customer Satisfaction Survey';
title2 'First 10 Observations';
proc print data=Customers(obs=10);
run;
```

Figure 95.1 Customers Data Set (First 10 Observations)

	Customer Sat	isfaction	Survey	
	First 10	Observati	ons.	
Obs	CustomerID	State	Туре	Usage
1	416-87-4322	AL	New	839
2	288-13-9763	GA	Old	224
3	339-00-8654	GA	Old	2451
4	118-98-0542	GA	New	349
5	421-67-0342	FL	New	562
6	623-18-9201	sc	New	68
7	324-55-0324	FL	Old	137
8	832-90-2397	AL	Old	1563
9	586-45-0178	GA	New	615
10	801-24-5317	sc	New	728

In the SAS data set Customers, the variable CustomerID uniquely identifies each customer. The variable State contains the state of the customer's address. The company has customers in four states: Georgia (GA), Alabama (AL), Florida (FL), and South Carolina (SC). The variable Type equals 'Old' if the customer has subscribed to the service for more than one year; otherwise, the variable Type equals 'New'. The variable Usage contains the customer's average monthly service usage, in minutes.

The following sections illustrate the use of PROC SURVEYSELECT for probability sampling with three different designs for the customer satisfaction survey. All three designs are one-stage, with customers as the sampling units. The first design is simple random sampling without stratification. In the second design, customers are stratified by state and type, and the sample is selected by simple random sampling within strata. In the third design, customers are sorted within strata by usage, and the sample is selected by systematic random sampling within strata.

Simple Random Sampling

The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set by using simple random sampling:

The PROC SURVEYSELECT statement invokes the procedure. The DATA= option names the SAS data set Customers as the input data set from which to select the sample. The METHOD=SRS option specifies simple random sampling as the sample selection method. In simple random sampling, each unit has an equal probability of selection, and sampling is without replacement. Without-replacement sampling means that a unit cannot be selected more than once. The N= option specifies a sample size of 100 customers. The OUT= option stores the sample in the SAS data set named SampleSRS.

Figure 95.2 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A sample of 100 customers is selected from the data set Customers by simple random sampling. With simple random sampling and no stratification in the sample design, the selection probability is the same for all units in the sample. In this sample, the selection probability for each customer equals 0.007423, which is the sample size (100) divided by the population size (13,471). The sampling weight equals 134.71 for each customer in the sample, where the weight is the inverse of the selection probability. If you specify the STATS option, PROC SURVEYSELECT includes the selection probabilities and sampling weights in the output data set. (This information is always included in the output data set for more complex designs.)

The random number seed is 39647. PROC SURVEYSELECT uses this number as the initial seed for random number generation. Because the SEED= option is not specified in the PROC SURVEYSELECT statement, the seed value is obtained by using the time of day from the computer's clock. You can specify SEED=39647 to reproduce this sample.

Figure 95.2 Sample Selection Summary

```
Customer Satisfaction Survey
         Simple Random Sampling
       The SURVEYSELECT Procedure
Selection Method
                   Simple Random Sampling
                           CUSTOMERS
  Input Data Set
  Random Number Seed
                               39647
  Sample Size
                                 100
  Selection Probability
                            0.007423
  Sampling Weight
                              134.71
  Output Data Set
                           SAMPLESRS
```

The sample of 100 customers is stored in the SAS data set SampleSRS. PROC SURVEYSELECT does not display this output data set. The following PROC PRINT statements display the first 20 observations of SampleSRS:

```
title1 'Customer Satisfaction Survey';
title2 'Sample of 100 Customers, Selected by SRS';
title3 '(First 20 Observations)';
proc print data=SampleSRS(obs=20);
run:
```

Figure 95.3 displays the first 20 observations of the output data set SampleSRS, which contains the sample of customers. This data set includes all the variables from the DATA= input data set Customers. If you do not want to include all variables, you can use the ID statement to specify which variables to copy from the input data set to the output (sample) data set.

Figure 95.3 Customer Sample (First 20 Observations)

	Customer Sa	tisfactio	n Survev			
Sample of 100 Customers, Selected by SRS						
(First 20 Observations)						
Obs	CustomerID	State	Type	Usage		
1	017-27-4096	GA	New	168		
2	026-37-3895	AL	New	59		
3	038-54-9276	GA	New	785		
4	046-40-3131	FL	New	60		
5	070-37-6924	GA	New	524		
6	100-58-3342	FL	New	302		
7	107-61-9029	AL	New	235		
8	110-95-0432	FL	New	12		
9	112-81-9251	sc	New	347		
10	137-33-0478	GA	New	551		
11	143-83-4677	AL	New	203		
12	147-19-9164	GA	New	172		
13	159-51-0606	FL	New	102		
14	164-14-7799	GA	Old	388		
15	165-05-7323	sc	New	606		
16	174-69-3566	AL	Old	111		
17	177-69-6934	FL	New	202		
18	181-58-3508	AL	Old	261		
19	207-41-8446	AL	Old	183		
20	207-64-7308	GA	New	193		

Stratified Sampling

In this section, stratification is added to the sample design for the customer satisfaction survey. The sampling frame, which is the list of all customers, is stratified by State and Type. This divides the sampling frame into nonoverlapping subgroups formed from the values of the State and Type variables. Samples are then selected independently within the strata.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following PROC SORT statements sort the Customers data set by the stratification variables State and Type:

```
proc sort data=Customers;
   by State Type;
run;
```

The following PROC FREQ statements display the crosstabulation of the Customers data set by State and Type:

```
title1 'Customer Satisfaction Survey';
title2 'Strata of Customers';
proc freq data=Customers;
   tables State*Type;
run;
```

Figure 95.4 presents the table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a total of eight strata.

Figure 95.4 Stratification of Customers by State and Type

Cust	omer Satis	faction S	urvey
1	Strata of	Customers	
	The FREQ	Procedure	
	ine ing	rroccaure	
T	able of St	ate by Ty	pe
State	Туре		
Frequenc	уl		
Percent	1		
Row Pct	T		
	New	•	•
AL	-+ 1238	+ 706	-
		5.24	
		36.32	
	14.43	14.43	l
	-+ 2170	-	-
	•	1 10.17	•
	•	38.70	•
	•	28.01	•
	-+ 3488		
GA	•	1 14.40	•
	•	35.74	•
	•	39.66	•
sc		+	
3C		875 6.50	
		34.19	
		17.89	
	•	+	•
Total		4891	
	63.69	36.31	100.00

The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set according to the stratified sample design:

The STRATA statement names the stratification variables State and Type. In the PROC SURVEYSELECT statement, the METHOD=SRS option specifies simple random sampling. The N= option specifies a sample size of 15 customers for each stratum. If you want to specify different sample sizes for different strata, you can use the N=SAS-data-set option to name a secondary data set that contains the stratum sample sizes. The SEED= option specifies 1953 as the initial seed for random number generation.

Figure 95.5 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A total of 120 customers are selected.

Figure 95.5 Sample Selection Summary

```
Customer Satisfaction Survey
          Stratified Sampling
       The SURVEYSELECT Procedure
Selection Method
                   Simple Random Sampling
Strata Variables
                                     State
                                      Type
  Input Data Set
                             CUSTOMERS
  Random Number Seed
                                  1953
  Stratum Sample Size
                                    15
  Number of Strata
                                     8
  Total Sample Size
                                   120
  Output Data Set
                          SAMPLESTRATA
```

The following PROC PRINT statements display the first 30 observations of the output data set SampleStrata:

```
title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Stratified Design';
title3 '(First 30 Observations)';
proc print data=SampleStrata(obs=30);
run;
```

Figure 95.6 displays the first 30 observations of the output data set SampleStrata, which contains the sample of 120 customers, 15 customers from each of the eight strata. The variable SelectionProb contains the selection probability for each customer in the sample. Because customers are selected with equal probability within strata in this design, the selection probability equals the stratum sample size (15) divided by the stratum population size. The selection probabilities differ from stratum to stratum because the stratum population sizes differ. The selection probability for each customer in the first stratum (State='AL' and Type='New') is 0.012116, and the selection probability for customers in the second stratum is 0.021246. The variable SamplingWeight contains the sampling weights, which are computed as inverse selection probabilities.

Figure 95.6 Customer Sample (First 30 Observations)

Customer Satisfaction Survey
Sample Selected by Stratified Design
(First 30 Observations)

					Selection	Sampling
0bs	State	Type	CustomerID	Usage	Prob	Weight
1	AL	New	015-57-9903	26	0.012116	82.5333
2	AL	New	052-18-5029	576	0.012116	82.5333
3	AL	New	064-72-0145	88	0.012116	82.5333
4	AL	New	291-22-2497	1221	0.012116	82.5333
5	AL	New	305-62-6833	187	0.012116	82.5333
6	AL	New	309-63-9722	534	0.012116	82.5333
7	AL	New	413-76-0209	435	0.012116	82.5333
8	AL	New	492-18-7867	70	0.012116	82.5333
9	AL	New	508-16-8324	189	0.012116	82.5333
10	AL	New	561-82-0366	392	0.012116	82.5333
11	AL	New	685-24-1718	74	0.012116	82.5333
12	AL	New	800-20-2155	21	0.012116	82.5333
13	AL	New	857-94-2672	77	0.012116	82.5333
14	AL	New	918-29-9618	540	0.012116	82.5333
15	AL	New	963-93-4916	33	0.012116	82.5333
16	AL	Old	000-88-0484	401	0.021246	47.0667
17	AL	Old	005-80-0241	114	0.021246	47.0667
18	AL	Old	171-99-9085	210	0.021246	47.0667
19	AL	Old	182-45-1938	160	0.021246	47.0667
20	AL	Old	208-99-1105	60	0.021246	47.0667
21	AL	Old	229-48-6213	1169	0.021246	47.0667
22	AL	Old	265-55-4763	1370	0.021246	47.0667
23	AL	Old	467-73-7465	14	0.021246	47.0667
24	AL	Old	509-38-7128	173	0.021246	47.0667
25	AL	Old	601-71-3629	142	0.021246	47.0667
26	AL	Old	603-40-7787	302	0.021246	47.0667
27	AL	Old	702-39-0977	270	0.021246	47.0667
28	AL	Old	861-79-5340	101	0.021246	47.0667
29	AL	Old	908-20-0603	340	0.021246	47.0667
30	AL	Old	937-69-9106	182	0.021246	47.0667

Stratified Sampling with Control Sorting

The next sample design for the customer satisfaction survey uses stratification by State and also control sorting by Type and Usage within State. After stratification and control sorting, customers are selected by systematic random sampling within strata. Selection by systematic sampling, together with control sorting before selection, spreads the sample uniformly over the range of type and usage values within each stratum (state). The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set according to this design:

The STRATA statement names the stratification variable State. The CONTROL statement names the control variables Type and Usage. In the PROC SURVEYSELECT statement, the METHOD=SYS option requests systematic random sampling. The RATE= option specifies a sampling rate of 2% for each stratum. The SEED= option specifies the initial seed for random number generation.

Figure 95.7 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A sample of 271 customers is selected by using systematic random sampling within strata determined by State. The sampling frame Customers is sorted by control variables Type and Usage within strata. The type of sorting is serpentine, which is the default when SORT=NEST is not specified. See the section "Sorting by CONTROL Variables" on page 8057 for a description of serpentine sorting. The sorted data set replaces the input data set. (To leave the input data set unsorted and store the sorted input data in another data set, use the OUTSORT= option.) The output data set SampleControl contains the sample of customers.

Figure 95.7 Sample Selection Summary

```
Customer Satisfaction Survey
    Stratified Sampling with Control Sorting
           The SURVEYSELECT Procedure
Selection Method
                     Systematic Random Sampling
Strata Variable
                                          State
Control Variables
                                           Type
                                          Usage
Control Sorting
                                     Serpentine
     Input Data Set
                                  CUSTOMERS
     Random Number Seed
                                       1234
                                       0.02
     Stratum Sampling Rate
     Number of Strata
                                          4
                                        270
     Total Sample Size
                              SAMPLECONTROL
     Output Data Set
```

Syntax: SURVEYSELECT Procedure

The following statements are available in the SURVEYSELECT procedure:

```
PROC SURVEYSELECT options;

CONTROL variables;

FREQ variable;

ID variables;

SAMPLINGUNIT | CLUSTER variables </ options >;

SIZE variable;

STRATA variables </ options >;
```

The PROC SURVEYSELECT statement invokes the SURVEYSELECT procedure. Optionally, it identifies input and output data sets. It also specifies the selection method, the sample size, and other sample design parameters. The PROC SURVEYSELECT statement is required.

The SIZE statement identifies the variable that contains the size measures of the sampling units. This statement is required for any probability proportional to size (PPS) selection method unless you specify the PPS option in the SAMPLINGUNIT statement.

The remaining statements are optional. The STRATA statement identifies a variable or set of variables that stratify the input data set. When you specify a STRATA statement, PROC SURVEYSELECT selects samples independently from the strata that are formed by the STRATA variables. The STRATA statement also provides options to allocate the total sample size among the strata.

The SAMPLINGUNIT statement identifies a variable or set of variables that group the input data set observations into sampling units (clusters). Sampling units are nested within strata. When you specify a SAMPLINGUNIT statement, PROC SURVEYSELECT selects clusters instead of individual observations.

The CONTROL statement identifies variables for ordering units within strata. It can be used for systematic and sequential sampling methods. The ID statement identifies variables to copy from the input data set to the output data set of selected units.

The FREQ statement identifies a variable that contains the frequency of occurrence for each observation. The FREQ statement is available only for sample allocation when no sample is selected, which you can request by specifying the ALLOC= and NOSAMPLE options in the STRATA statement.

The rest of this section gives detailed syntax information for the CONTROL, FREQ, ID, SAMPLINGUNIT, SIZE, and STRATA statements in alphabetical order after the description of the PROC SURVEYSELECT statement.

PROC SURVEYSELECT Statement

PROC SURVEYSELECT options;

The PROC SURVEYSELECT statement invokes the SURVEYSELECT procedure. Optionally, it identifies input and output data sets. If you do not name a DATA= input data set, the procedure selects the sample from the most recently created SAS data set. If you do not name an OUT= output data set to contain the sample of selected units, the procedure still creates an output data set and names it according to the DATAn convention.

The PROC SURVEYSELECT statement also specifies the sample selection method, the sample size, and other sample design parameters.

If you do not specify a selection method, PROC SURVEYSELECT uses simple random sampling (METHOD=SRS) by default unless you specify a SIZE statement or the PPS option in the SAMPLINGUNIT statement. If you do specify a SIZE statement (or the PPS option), PROC SURVEYSELECT uses probability proportional to size selection without replacement (METHOD=PPS) by default. See the description of the METHOD= option for more information.

You must specify the sample size or sampling rate except when you request Poisson sampling (METHOD=POISSON), request a method that selects two units from each stratum (METHOD=PPS_BREWER or METHOD=PPS_MURTHY), or specify the MARGIN= option in the STRATA statement for sample allocation. You can use the SAMPSIZE=*n* option to specify the sample size, or you can use the SAMPSIZE=*SAS-data-set* option to name a secondary input data set that contains stratum sample sizes.

You can also provide stratum sampling rates, minimum size measures, maximum size measures, and certainty size measures in the secondary input data set. See the descriptions of the SAMPSIZE=, SAMPRATE=, MINSIZE=, MAXSIZE=, CERTSIZE=, and CERTSIZE=P= options for more information. You can name only one secondary input data set in each invocation of the procedure. See the section "Secondary Input Data Set" on page 8071 for details.

Table 95.1 summarizes the *options* available in the PROC SURVEYSELECT statement. Descriptions of the *options* follow in alphabetical order.

Table 95.1 PROC SURVEYSELECT Statement Options

Option	Description
Input and Outp	ut Data Sets
DATA=	Names the input SAS data set
OUT=	Names the output SAS data set that contains the sample
OUTSORT=	Names an output SAS data set that stores the sorted input data set
Selection Metho	od .
METHOD=	Specifies the sample selection method
Sample Size	
SAMPSIZE=	Specifies the sample size
SELECTALL	Selects all stratum units when the sample size exceeds the total
Sampling Rate	
SAMPRATE=	Specifies the sampling rate
NMIN=	Specifies the minimum stratum sample size
NMAX=	Specifies the maximum stratum sample size
Replicated Sam	pling
REPS=	Specifies the number of sample replicates
Size Measures	
MINSIZE=	Specifies the minimum size measure
MAXSIZE=	Specifies the maximum size measure
CERTSIZE=	Specifies the certainty size measure
CERTSIZE=P=	Specifies the certainty proportion

Table 95.1 continued

Option	Description
Control Sorting	
SORT=	Specifies the type of sorting
Random Numbe	er Generation
SEED=	Specifies the initial seed
RANUNI	Requests the RANUNI random number generator
Displayed Outp	ut
NOPRINT	Suppresses the display of all output
OUT= Data Set	Contents
JTPROBS	Includes joint probabilities of selection
OUTALL	Includes all observations from the DATA= input data set
OUTHITS	Includes a distinct copy of each selected unit
OUTSEED	Includes the initial seed for each stratum
OUTSIZE	Includes additional design and sampling frame information
STATS	Includes selection probabilities and sampling weights

You can specify the following *options* in the PROC SURVEYSELECT statement:

CERTSIZE

requests certainty selection, where the certainty size values are provided in the secondary input data set. Use the CERTSIZE option when you have already named the secondary data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 8071 for details.

The CERTSIZE option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. The CERTSIZE option is not available with the SAMPLINGUNIT statement.

In certainty selection, PROC SURVEYSELECT automatically selects all sampling units that have size measures greater than or equal to the stratum certainty size values. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method that is specified in the METHOD= option.

You provide the stratum certainty size values in the secondary input data set variable _CERTSIZE_. Each certainty size value must be a positive number. The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you want to specify a single certainty size value for all strata, you can use the CERTSIZE=certain option.

CERTSIZE=certain

specifies the certainty size value, which must be a positive number. PROC SURVEYSELECT automatically selects all sampling units that have size measures greater than or equal to the value *certain*. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method that is specified in the METHOD= option.

The CERTSIZE= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. The CERTSIZE= option is not available with the SAMPLINGUNIT statement.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you request a stratified sample design with the STRATA statement and specify the CERTSIZE=certain option, PROC SURVEYSELECT uses the value certain for all strata. If you do not want to use the same certainty size for all strata, use the CERTSIZE=SAS-data-set option to specify a certainty size value for each stratum.

CERTSIZE=SAS-data-set

names a SAS data set that contains certainty size values for the strata. PROC SURVEYSELECT automatically selects all sampling units that have size measures greater than or equal to the stratum certainty size values. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method that is specified in the METHOD= option.

The CERTSIZE= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. The CERTSIZE= option is not available with the SAMPLINGUNIT statement.

You provide the stratum certainty size values in the CERTSIZE= data set variable _CERTSIZE_. Each certainty size value must be a positive number. The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

The CERTSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the CERTSIZE= data set as in the DATA= data set. The CERTSIZE= data set must include a variable named _CERTSIZE_ that contains the certainty size value for each stratum. The CERTSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single certainty size value for all strata, you can use the CERTSIZE=certain option.

CERTSIZE=P

requests certainty proportion selection, where the stratum certainty proportions are provided in the secondary input data set. Use the CERTSIZE=P option when you have already named the secondary data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 8071 for details.

The CERTSIZE=P option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. The CERTSIZE=P option it not available with the SAMPLINGUNIT statement.

In certainty proportion selection, PROC SURVEYSELECT automatically selects all sampling units that have size measures greater than or equal to the stratum certainty proportion of the total stratum size. The procedure repeats this process with the remaining units until no more certainty units are selected. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method that is specified in the METHOD= option.

You provide the stratum certainty proportions in the secondary input data set variable _CERTP_. Each certainty proportion must be a positive number. You can specify a proportion value as a number between 0 and 1. Or you can specify a proportion value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you want to specify a single certainty proportion for all strata, you can use the CERTSIZE=P=p option.

CERTSIZE=P=p

specifies the certainty proportion. PROC SURVEYSELECT automatically selects all sampling units that have size measures greater than or equal to the proportion *p* of the total stratum size. The procedure repeats this process with the remaining units until no more certainty units are selected. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method that is specified in the METHOD= option.

The CERTSIZE=P= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. The CERTSIZE=P= option is not available with the SAMPLINGUNIT statement.

The value of the certainty proportion p must be a positive number. You can specify p as a number between 0 and 1. Or you can specify p in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

If you request a stratified sample design with the STRATA statement and specify the CERTSIZE=P=*p* option, PROC SURVEYSELECT uses the certainty proportion *p* for all strata. If you do not want to use the same certainty proportion for all strata, use the CERTSIZE=P=*SAS-data-set* option to specify a certainty proportion for each stratum.

CERTSIZE=P=SAS-data-set

names a SAS data set that contains certainty proportions for the strata. PROC SURVEYSELECT automatically selects all sampling units with size measures greater than or equal to the certainty proportion of the total stratum size. The procedure repeats this process with the remaining units until no more certainty units are selected. After identifying the certainty units, PROC SURVEYSELECT selects the remainder of the sample according to the method that is specified in the METHOD= option.

The CERTSIZE=P= option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. The CERTSIZE=P= option is not available with the SAMPLINGUNIT statement.

You provide the stratum certainty proportions in the CERTSIZE=P= data set variable _CERTP_. Each certainty proportion must be a positive number. You can specify a proportion value as a number between 0 and 1. Or you can specify a proportion value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

The variable Certain in the OUT= data set identifies the certainty selections, which have selection probabilities equal to 1.

The CERTSIZE=P= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the CERTSIZE=P= data set as in the DATA= data set. The CERTSIZE=P= data set must include a variable named _CERTP_ that contains the certainty proportion for each stratum. The CERTSIZE=P= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single certainty proportion for all strata, you can use the CERTSIZE=P=p option.

DATA=SAS-data-set

names the SAS data set from which PROC SURVEYSELECT selects the sample. If you omit the DATA= option, the procedure uses the most recently created SAS data set. In sampling terminology, the input data set is the *sampling frame* (the list of units from which the sample is selected).

By default, the procedure uses input data set observations as sampling units and selects a sample of these units. Alternatively, you can use the SAMPLINGUNIT statement to define sampling units as groups of observations (clusters).

JTPROBS

includes joint probabilities of selection in the OUT= output data set. This option is available for the following probability proportional to size selection methods: METHOD=PPS, METHOD=PPS_SAMPFORD, and METHOD=PPS_WR. By default, PROC SURVEYSELECT outputs joint selection probabilities for METHOD=PPS_BREWER and METHOD=PPS_MURTHY, which select two units per stratum.

For details about computation of joint selection probabilities for a particular sampling method, see the method description in the section "Sample Selection Methods" on page 8058. For more information about the contents of the output data set, see the section "Sample Output Data Set" on page 8072.

MAXSIZE

requests adjustment of size measures according to the stratum maximum size values provided in the secondary input data set. Use the MAXSIZE option when you have already named the secondary input data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 8071 for details.

The MAXSIZE option is available when you use size measures for any PPS selection method and also include a STRATA statement. You provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

You provide the stratum maximum size values in the secondary input data set variable _MAXSIZE_. Each maximum size value must be a positive number.

When a size measure exceeds the specified maximum value for its stratum, PROC SURVEYSELECT adjusts the size measure downward to equal the maximum size value. If your sampling units are individual observations, the variable AdjustedSize in the OUT= data set contains the adjusted size measures.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), then the procedure applies the MAXSIZE adjustment to the sampling unit size. The sampling unit size equals the number of observations in the sampling unit if you specify the PPS option, or the sum of the observation size measures if you specify a SIZE statement. The output data set variable UnitSize contains the adjusted sampling unit size measures.

If you want to specify a single maximum size value for all strata, you can use the MAXSIZE=max option.

MAXSIZE=max

specifies the maximum size value. The value of *max* must be a positive number.

When a size measure exceeds the value *max*, PROC SURVEYSELECT adjusts the size measure downward to equal *max*. If your sampling units are individual observations, the variable AdjustedSize in the OUT= data set contains the adjusted size measures.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), then the procedure applies the MAXSIZE adjustment to the sampling unit size. The sampling unit size equals the number of observations in the sampling unit if you specify the PPS option, or the sum of the observation size measures if you specify a SIZE statement. The output data set variable UnitSize contains the adjusted sampling unit size measures.

The MAXSIZE=max option is available when you use size measures for any PPS selection method. You provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

If you request a stratified sample design with the STRATA statement and specify the MAXSIZE=max option, PROC SURVEYSELECT uses the maximum size max for all strata. If you do not want to use the same maximum size for all strata, use the MAXSIZE=SAS-data-set option to specify a maximum size value for each stratum.

MAXSIZE=SAS-data-set

names a SAS data set that contains maximum size values for the strata. You provide the stratum maximum size values in the MAXSIZE= data set variable _MAXSIZE_. Each maximum size value must be a positive number.

The MAXSIZE=SAS-data-set option is available when you use size measures for any PPS selection method and also include a STRATA statement. You provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

When a size measure exceeds the maximum size value for its stratum, PROC SURVEYSELECT adjusts the size measure downward to equal the maximum size value. If your sampling units are individual observations, the variable AdjustedSize in the OUT= data set contains the adjusted size measures.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), then the procedure applies the MAXSIZE adjustment to the sampling unit size. The sampling unit size equals the number of observations in the sampling unit if you specify the PPS option, or the sum of the observation size measures if you specify a SIZE statement. The output data set variable UnitSize contains the adjusted sampling unit size measures.

The MAXSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the MAXSIZE= data set as in the DATA= data set. The MAXSIZE= data set must include a variable named _MAXSIZE_ that contains the maximum size value for each stratum. The MAXSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single maximum size value for all strata, you can use the MAXSIZE=max option.

METHOD=name

M=name

specifies the method for sample selection.

If you do not specify the METHOD= option, PROC SURVEYSELECT uses simple random sampling (METHOD=SRS) by default unless you specify a SIZE statement or the PPS option in the SAMPLIN-GUNIT statement. If you do specify a SIZE statement (or the PPS option), PROC SURVEYSELECT uses probability proportional to size selection without replacement (METHOD=PPS) by default.

The following values are available for the METHOD= option:

BERNOULLI

requests Bernoulli sampling, which consists of N independent selection trials, each with constant inclusion probability π , where N is the total number of sampling units in the stratum or data set. The sample size is not fixed but is a random variable. See the section "Bernoulli Sampling" on page 8061 for details.

When you specify METHOD=BERNOULLI, you must provide the sampling rate (inclusion probability π) by using the SAMPRATE= option. For stratified sampling (which you request with the STRATA statement), you can specify the same sampling rate for each stratum with the SAMPRATE=r option. Or you can specify different sampling rates for different strata by using the SAMPRATE=(values) or SAMPRATE=SAS-data-set option.

Because Bernoulli sampling is based on a specified inclusion probability instead of a fixed sample size, METHOD=BERNOULLI does not use the SAMPSIZE= option. Also, the ALLOC= option in the STRATA statement (which allocates the total sample size among strata) is not available with METHOD=BERNOULLI.

POISSON

requests Poisson sampling. A generalization of Bernoulli sampling, Poisson sampling consists of N independent selection trials with a separate inclusion probability specified for each unit, where N is the total number of sampling units in the stratum or data set. The sample size is not fixed but is a random variable. See the section "Poisson Sampling" on page 8062 for details.

You must provide inclusion probabilities for Poisson sampling in the SIZE variable. The probability values should be between 0 and 1. If a value of the SIZE variable is missing, nonpositive, or greater than 1, PROC SURVEYSELECT omits the observation from sample selection.

Because Poisson sampling is based on specified inclusion probabilities instead of a fixed sample size, METHOD=POISSON does not use the SAMPSIZE= option. Also, the ALLOC= option in the STRATA statement (which allocates the total sample size among strata) is not available with METHOD=POISSON.

The SAMPLINGUNIT statement is not available with METHOD=POISSON.

When METHOD=POISSON is specified with the SAMPRATE= option and without a SIZE statement, PROC SURVEYSELECT uses METHOD=BERNOULLI.

PPS

requests selection with probability proportional to size and without replacement. See the section "PPS Sampling without Replacement" on page 8062 for details. If you specify METHOD=PPS, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

PPS_BREWER | BREWER

requests selection according to Brewer's method. Brewer's method selects two units from each stratum with probability proportional to size and without replacement. See the section "Brewer's PPS Method" on page 8066 for details. If you specify METHOD=PPS_BREWER, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement. You do not need to specify the sample size with the SAMPSIZE= option because Brewer's method selects two units from each stratum.

PPS MURTHY | MURTHY

requests selection according to Murthy's method. Murthy's method selects two units from each stratum with probability proportional to size and without replacement. See the section "Murthy's PPS Method" on page 8066 for details. If you specify METHOD=PPS_MURTHY, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement. You do not need to specify the sample size with the SAMPSIZE= option because Murthy's method selects two units from each stratum.

PPS SAMPFORD | SAMPFORD

requests selection according to Sampford's method. Sampford's method selects units with probability proportional to size and without replacement. See the section "Sampford's PPS Method" on page 8067 for details. If you specify METHOD=PPS_SAMPFORD, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

PPS_SEQ | CHROMY

requests sequential selection with probability proportional to size and with minimum replacement. This method is also known as Chromy's method. See the section "PPS Sequential Sampling" on page 8064 for details. If you specify METHOD=PPS_SEQ, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

PPS SYS

requests systematic selection with probability proportional to size. See the section "PPS Systematic Sampling" on page 8064 for details. If you specify METHOD=PPS_SYS, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

PPS WR

requests selection with probability proportional to size and with replacement. See the section "PPS Sampling with Replacement" on page 8064 for details. If you specify METHOD=PPS_WR, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

SEQ

requests sequential selection according to Chromy's method. If you specify METHOD=SEQ and do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses sequential zoned selection with equal probability and without replacement. See the section "Sequential Random Sampling" on page 8060 for details.

If you specify METHOD=SEQ and also specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses METHOD=PPS_SEQ, which is sequential selection with probability proportional to size and with minimum replacement. See the section "PPS Sequential Sampling" on page 8064 for more information.

SRS

requests simple random sampling, which is selection with equal probability and without replacement. See the section "Simple Random Sampling" on page 8059 for details. METHOD=SRS is the default if you do not specify the METHOD= option and also do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement).

requests systematic random sampling. If you specify METHOD=SYS and do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses systematic selection with equal probability. See the section "Systematic Random Sampling" on page 8060 for more information.

If you specify METHOD=SYS and also specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses METHOD=PPS_SYS, which is systematic selection with probability proportional to size. See the section "PPS Systematic Sampling" on page 8064 for details.

URS

requests unrestricted random sampling, which is selection with equal probability and with replacement. See the section "Unrestricted Random Sampling" on page 8059 for details.

MINSIZE

requests adjustment of size measures according to the stratum minimum size values provided in the secondary input data set. Use the MINSIZE option when you have already named the secondary input data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 8071 for details.

The MINSIZE option is available when you use size measures for any PPS selection method and also include a STRATA statement. You provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

You provide the stratum minimum size values in the secondary input data set variable _MINSIZE_. Each minimum size value must be a positive number.

When a size measure is less than the specified minimum value for its stratum, PROC SURVEYSELECT adjusts the size measure upward to equal the minimum size value. If your sampling units are individual observations, the variable AdjustedSize in the OUT= data set contains the adjusted size measures.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), then the procedure applies the MINSIZE adjustment to the sampling unit size. The sampling unit size equals the number of observations in the sampling unit if you specify the PPS option, or the sum of the observation size measures if you specify a SIZE statement. The output data set variable UnitSize contains the adjusted sampling unit size measures.

If you want to specify a single minimum size value for all strata, you can use the MINSIZE=min option.

MINSIZE=min

specifies the minimum size value. The value of *min* must be a positive number.

When a size measure is less than the value *min*, PROC SURVEYSELECT adjusts the size measure upward to equal *min*. If your sampling units are individual observations, the variable AdjustedSize in the OUT= data set contains the adjusted size measures.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), then the procedure applies the MINSIZE adjustment to the sampling unit size. The sampling unit size equals the number of observations in the sampling unit if you specify the PPS option, or the sum of the observation size

measures if you specify a SIZE statement. The output data set variable UnitSize contains the adjusted sampling unit size measures.

The MINSIZE=*min* option is available when you use size measures for any PPS selection method. You provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

If you request a stratified sample design with the STRATA statement and specify the MINSIZE=min option, PROC SURVEYSELECT uses the minimum size min for all strata. If you do not want to use the same minimum size for all strata, use the MINSIZE=SAS-data-set option to specify a minimum size value for each stratum.

MINSIZE=SAS-data-set

names a SAS data set that contains minimum size values for the strata. You provide the stratum minimum size values in the MINSIZE= data set variable _MINSIZE_. Each minimum size value must be a positive number.

The MINSIZE=SAS-data-set option is available when you use size measures for any PPS selection method and also include a STRATA statement. You provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

When a size measure is less than the minimum size value for its stratum, PROC SURVEYSELECT adjusts the size measure upward to equal the minimum size measure. If your sampling units are individual observations, the variable AdjustedSize in the OUT= data set contains the adjusted size measures.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), then the procedure applies the MINSIZE adjustment to the sampling unit size. The sampling unit size equals the number of observations in the sampling unit if you specify the PPS option, or the sum of the observation size measures if you specify a SIZE statement. The output data set variable UnitSize contains the adjusted sampling unit size measures.

The MINSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the MINSIZE= data set as in the DATA= data set. The MINSIZE= data set must include a variable named _MINSIZE_ that contains the minimum size measure for each stratum. The MINSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

If you want to specify a single minimum size value for all strata, you can use the MINSIZE=min option.

NMAX=n

specifies the maximum stratum sample size n for the SAMPRATE= option. When you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the total number of units in the stratum by the specified sampling rate. If this sample size is greater than the value NMAX=n, then PROC SURVEYSELECT selects only n units.

The maximum sample size *n* must be a positive integer. The NMAX= option is available only with the SAMPRATE= option, which can be used with equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). The NMAX= option is not available with METHOD=BERNOULLI, where the SAMPRATE= option specifies the constant inclusion probability.

NMIN=n

specifies the minimum stratum sample size *n* for the SAMPRATE= option. When you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the total number of units in the stratum by the specified sampling rate. If this sample size is less than the value NMIN=*n*, then PROC SURVEYSELECT selects *n* units.

The minimum sample size *n* must be a positive integer. The NMIN= option is available only with the SAMPRATE= option, which can be used with equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). The NMIN= option is not available with METHOD=BERNOULLI, where the SAMPRATE= option specifies the constant inclusion probability.

NOPRINT

suppresses the display of all output. You can use the NOPRINT option when you want only to create an output data set. Note that this option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 20, "Using the Output Delivery System."

OUT=SAS-data-set

names the output data set that contains the sample. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

The output data set contains the units that are selected for the sample, in addition to design information and selection statistics, depending on the selection method and output options that you request. See descriptions of the options JTPROBS, OUTALL, OUTHITS, OUTSEED, OUTSIZE, and STATS, which specify information to include in the output data set. See the section "Sample Output Data Set" on page 8072 for details about the contents of the output data set.

By default, the output data set contains only those units that are selected for the sample. To include all observations from the input data set in the output data set, use the OUTALL option.

By default, the output data set includes one copy of each selected unit, even when a unit is selected more than once, which can occur when you use with-replacement or with-minimum-replacement selection methods. For with-replacement or with-minimum-replacement selection methods, the output data set includes a variable NumberHits that records the number of hits (selections) for each unit. To include a distinct copy of each selection in the output data set when the same unit is selected more than once, use the OUTHITS option.

If you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYFREQ allocates the total sample size among the strata but does not select the sample. In this case, the OUT= data set contains the allocated sample sizes. See the section "Allocation Output Data Set" on page 8075 for details.

OUTALL

includes all observations from the DATA= input data set in the OUT= output data set. By default, the output data set includes only those units selected for the sample. When you specify the OUTALL option, the output data set includes all observations from the input data set and also contains a variable that indicates each observation's selection status. The variable Selected equals 1 for an observation that is selected for the sample, and equals 0 for an observation that is not selected. For information about the contents of the output data set, see the section "Sample Output Data Set" on page 8072.

The OUTALL option is available for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). The OUTALL option is also available for METHOD=POISSON.

OUTHITS

includes a distinct copy of each selected unit in the OUT= output data set when the same sampling unit is selected more than once. By default, the output data set contains a single copy of each unit selected, even when a unit is selected more than once, and the variable NumberHits records the number of hits (selections) for each unit. If you specify the OUTHITS option, the output data set contains m copies of a sampling unit for which NumberHits equals m. For example, with the OUTHITS option a unit that is selected three times is represented by three copies in the output data set.

A sampling unit can be selected more than once by with-replacement and with-minimum-replacement selection methods, which include METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ. The OUTHITS option is available for these selection methods.

See the section "Sample Output Data Set" on page 8072 for details about the contents of the output data set.

OUTSEED

includes the initial seed for each stratum in the OUT= output data set. The variable InitialSeed contains the stratum initial seeds. See the section "Sample Output Data Set" on page 8072 for details about the contents of the output data set.

To reproduce the same sample for any stratum in a subsequent execution of PROC SURVEYSELECT, you can specify the same stratum initial seed with the SEED=*SAS-data-set* option, along with the same sample selection parameters. See the section "Random Number Generation" on page 8058 for more information.

The "Sample Selection Summary" table displays the initial random number seed for the entire sample selection, which is the same as the initial seed for the first stratum when the design is stratified. To reproduce the entire sample, you can specify this same seed value in the SEED= option, along with the same sample selection parameters.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. In previous releases, PROC SURVEYSELECT used the RANUNI random number generator, which you can now request by specifying the RANUNI option. To reproduce samples that PROC SURVEYSELECT selected in releases prior to SAS/STAT 12.1, specify the RANUNI option with the SEED= option (for the same input data set and sample selection parameters).

OUTSIZE

includes additional design and sampling frame information in the OUT= output data set.

If you use a STRATA statement, the OUTSIZE option provides stratum-level values in the output data set. Otherwise, the OUTSIZE option provides overall values.

The OUTSIZE option includes the sample size or sampling rate in the output data set, depending on whether you specify the SAMPSIZE= option or the SAMPRATE= option, respectively. For PPS selection methods, the OUTSIZE option includes the total size measure in the output data set. If you do not provide size measures, or if you specify a SAMPLINGUNIT statement, the OUTSIZE option includes the total number of sampling units.

If you request size measure adjustment or certainty selection, the OUTSIZE option includes the following information in the output data set: the minimum size measure if you specify the MINSIZE= option, the maximum size measure if you specify the MAXSIZE= option, the certainty size measure if you specify the CERTSIZE= option, and the certainty proportion if you specify the CERTSIZE=P= option.

For METHOD=BERNOULLI, the OUTSIZE option includes the following information in the output data set: total number of sampling units, selection probability (sampling rate), expected sample size, and actual sample size. See the section "Bernoulli Sampling" on page 8061 for descriptions of these statistics.

For more information about the contents of the output data set, see the section "Sample Output Data Set" on page 8072.

OUTSORT=SAS-data-set

names an output data set to store the sorted input data set. This option is available when you specify a CONTROL statement to sort the DATA= input data set for systematic or sequential selection methods (METHOD=SYS, METHOD=PPS SYS, METHOD=SEQ, and METHOD=PPS SEQ).

If you specify CONTROL variables but do not name an output data set with the OUTSORT= option, then the sorted data set replaces the input data set.

RANUNI

requests uniform random number generation by the method of Fishman and Moore (1982), which PROC SURVEYSELECT used in releases prior to SAS/STAT 12.1. This is the same random number generator that the RANUNI function provides.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. Developed by Matsumoto and Nishimura (1998), the Mersenne-Twister random number generator has a very long period and good statistical properties. This is the random number generator that the RAND function provides for the uniform distribution.

See the section "Random Number Generation" on page 8058 for details, and see SAS Functions and CALL Routines: Reference for information about the RANUNI and RAND functions.

You can specify the RANUNI option with the SEED= option to reproduce samples that PROC SURVEYSELECT selected in releases prior to SAS/STAT 12.1. To reproduce a sample by using the RANUNI and SEED= options, you must also specify the same input data set and sample selection parameters.

REPS=nreps

specifies the number of sample replicates. The value of *nreps* must be a positive integer.

When you specify the REPS= option, PROC SURVEYSELECT selects *nreps* independent samples, each with the same sample size or sampling rate and the same sample design that you request. The variable Replicate in the OUT= data set contains the sample replicate number.

You can use replicated sampling to provide a simple method of variance estimation for any form of statistic, and also to evaluate variable nonsampling errors such as interviewer differences. For information about replicated sampling, see Lohr (2010); Wolter (2007); Kish (1965, 1987); Kalton (1983). You can also use the REPS= option to perform a variety of other resampling and simulation tasks. See Cassell (2007) for more information.

SAMPRATE=r

RATE=r

specifies the sampling rate, which is the proportion of units to select for the sample. The sampling rate r must be a positive number. You can specify r as a number between 0 and 1. Or you can specify

r in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

The SAMPRATE= option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the inverse of the sampling rate r as the selection interval. See the section "Systematic Random Sampling" on page 8060 for details. For Bernoulli sampling (METHOD=BERNOULLI), PROC SURVEYSELECT uses the sampling rate r as the inclusion probability. See the section "Bernoulli Sampling" on page 8061 for details. For the other equal probability selection methods, PROC SURVEYSELECT converts the sampling rate r to the sample size before selection by multiplying the total number of units in the stratum or frame by the sampling rate and rounding up to the nearest integer.

If you request a stratified sample design with the STRATA statement and specify the SAMPRATE=r option, PROC SURVEYSELECT uses the sampling rate r for each stratum. If you do not want to use the same sampling rate for each stratum, use the SAMPRATE=(values) option or the SAMPRATE=SAS-data-set option to specify a sampling rate for each stratum.

SAMPRATE=(values)

RATE=(values)

specifies stratum sampling rates, where the stratum sampling rate is the proportion of units to select from the stratum. You can separate *values* with blanks or commas. The number of SAMPRATE= values must equal the number of strata in the input data set.

List the stratum sampling rate values in the order in which the strata appear in the input data set. When you use the SAMPRATE=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

Each stratum sampling rate value must be a nonnegative. You can specify a rate value as a number between 0 and 1. Or you can specify a rate value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

To select a sample from a stratum, the value of the stratum sampling rate must be positive. If you specify a stratum sampling rate of 0, then PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

The SAMPRATE= option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the inverse of the stratum sampling rate as the stratum selection interval. See the section "Systematic Random Sampling" on page 8060 for details. For Bernoulli sampling (METHOD=BERNOULLI), PROC SURVEYSELECT uses the stratum sampling rate as the inclusion probability for the stratum. See the section "Bernoulli Sampling" on page 8061 for details. For the other equal probability selection methods, PROC SURVEYSELECT converts the stratum sampling rate to the stratum sample size before selection by multiplying the total number of units in the stratum by the sampling rate and rounding up to the nearest integer.

SAMPRATE=SAS-data-set

RATE=SAS-data-set

names a SAS data set that contains stratum sampling rates, where the stratum sampling rate is the proportion of units to select from the stratum. The SAMPRATE= data set should include a variable _RATE_ that contains the stratum sampling rates.

Each sampling rate value must be a nonnegative number. You can specify a rate value as a number between 0 and 1. Or you can specify a rate value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

To select a sample from a stratum, the value of the stratum sampling rate must be positive. If you specify a stratum sampling rate of 0, then PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

The SAMPRATE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the SAMPRATE= data set as in the DATA= data set.

The SAMPRATE= option is available only for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). For systematic random sampling (METHOD=SYS), PROC SURVEYSELECT uses the inverse of the stratum sampling rate as the stratum selection interval. See the section "Systematic Random Sampling" on page 8060 for details. For Bernoulli sampling (METHOD=BERNOULLI), PROC SURVEYSELECT uses the stratum sampling rate as the inclusion probability for the stratum. See the section "Bernoulli Sampling" on page 8061 for details. For the other equal probability selection methods, PROC SURVEYSELECT converts the stratum sampling rate to the stratum sample size before selection by multiplying the total number of units in the stratum by the sampling rate and rounding up to the nearest integer.

SAMPSIZE=n

N=n

specifies the sample size, which is the number of units to select for the sample. The sample size n must be a positive integer. For selection methods that select without replacement, the sample size n must not exceed the number of units in the input data set.

If you do not specify a SAMPLINGUNIT statement, then your sampling units are observations, and PROC SURVEYSELECT selects *n* observations. If you use a SAMPLINGUNIT statement to define sampling units as groups of observations (clusters), then the procedure selects *n* clusters.

If you specify the SAMPSIZE=*n* option and request stratified selection with the STRATA statement, PROC SURVEYSELECT selects *n* units from each stratum unless you also specify the ALLOC= option in the STRATA statement to allocate the total sample size among the strata.

If you specify the ALLOC= option in the STRATA statement and the SAMPSIZE=*n* option, PROC SURVEYSELECT allocates the total sample size *n* among the strata according to the allocation method that you request. See the section "Sample Size Allocation" on page 8067 for details. If you specify the MARGIN= option with the ALLOC= option in the STRATA statement, PROC SURVEYSELECT determines the stratum sample sizes that provide the requested margin of error for the allocation. Therefore, you cannot use the SAMPSIZE= option with the MARGIN= option.

For methods that select without replacement, the sample size *n* must not exceed the number of units in any stratum. If you do not want to select the same number of units from each stratum, use the SAMPSIZE=(*values*) option or the SAMPSIZE=*SAS-data-set* option to specify a sample size for each stratum.

For without-replacement selection methods, by default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units available in the stratum. If you specify the SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the number of units in the stratum.

SAMPSIZE=(values)

N=(values)

specifies stratum sample sizes, where the stratum sample size is the number of units to select from the stratum. You can separate *values* with blanks or commas. The number of SAMPSIZE= values must equal the number of strata in the input data set.

List the stratum sample size values in the order in which the strata appear in the input data set. When you use the SAMPSIZE=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

Each stratum sample size value must be a nonnegative integer. To select a sample from a stratum, the value of the stratum sample size must be positive. If you specify a stratum sample size of 0, then PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

For without-replacement selection methods, by default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units available in the stratum. If you specify the SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the number of units in the stratum.

SAMPSIZE=SAS-data-set

N=SAS-data-set

names a SAS data set that contains stratum sample sizes, where the stratum sample size is the number of units to select from the stratum. The SAMPSIZE= input data set should include a variable named _NSIZE_ or SampleSize that contains the stratum sample sizes.

Each stratum sample size value must be a nonnegative integer. To select a sample from a stratum, the value of the stratum sample size must be positive. If you specify a stratum sample size of 0, then PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

The SAMPSIZE= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the SAMPSIZE= data set as in the DATA= data set. The SAMPSIZE= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

For without-replacement selection methods, by default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units available in the stratum. If you specify the SELECTALL option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the number of units in the stratum.

SEED

indicates that stratum-level initial seeds are included in the secondary input data set. Use the SEED option when you have already named the secondary input data set in another option, such as the SAMPSIZE=SAS-data-set option. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

You provide the stratum initial seeds in the secondary input data set variable named _SEED_ or InitialSeed. The initial seeds must be positive integers.

See the description of the SEED=*SAS-data-set* option for more information about initial seeds for random number generation.

SEED=number

specifies the initial seed for random number generation. The SEED= value must be a positive integer. If you do not specify the SEED= option, or if the SEED= value is negative or 0, PROC SURVEYSELECT uses the time of day from the computer's clock to obtain the initial seed. See the section "Random Number Generation" on page 8058 for more information.

If you request a stratified sample design with the STRATA statement, you can use the SEED=SAS-data-set option to specify an initial seed for each stratum. Otherwise, PROC SURVEYSELECT generates random numbers continuously across strata from the random number stream initialized by the SEED= value.

You can use the OUTSEED option to include the stratum initial seeds in the output data set.

Whether or not you specify the SEED= option, PROC SURVEYSELECT displays the value of the initial seed in the "Sample Selection Summary" table. If you need to reproduce the same sample in a subsequent execution of PROC SURVEYSELECT, you can specify this same seed value in the SEED= option, along with the same sample selection parameters, and PROC SURVEYSELECT will reproduce the sample.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. In previous releases, PROC SURVEYSELECT used the RANUNI random number generator, which you can now request by specifying the RANUNI option. To reproduce samples that PROC SURVEYSELECT selected in releases prior to SAS/STAT 12.1, use the RANUNI option with the SEED= option (for the same input data set and sample selection parameters).

SEED=SAS-data-set

names a SAS data set that contains initial seeds for the strata. You provide the stratum seeds in the SEED= input data set variable _SEED_ or InitialSeed.

The initial seed values must be positive integers. If the initial seed value for the first stratum is not a positive integer, PROC SURVEYSELECT uses the time of day from the computer's clock to obtain the initial seed. If the initial seed value for a subsequent stratum is not a positive integer, PROC SURVEYSELECT continues to use the random number stream already initialized by the seed for the previous stratum. See the section "Sample Selection Methods" on page 8058 for more information.

The SEED= input data set should contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the SEED= data set as in the DATA= data set. The SEED= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

You can use the OUTSEED option to include the stratum initial seeds in the output data set.

Whether or not you specify the SEED= option, PROC SURVEYSELECT displays the value of the initial seed in the "Sample Selection Summary" table. If you need to reproduce the same sample in a subsequent execution of PROC SURVEYSELECT, you can specify this same seed value in the SEED= option, along with the same sample selection parameters, and PROC SURVEYSELECT will reproduce the sample.

If you specify initial seeds by strata with the SEED=SAS-data-set option, you can reproduce the same sample in a subsequent execution of PROC SURVEYSELECT by specifying these same stratum initial seeds, along with the same sample selection parameters. If you need to reproduce the same sample for only a subset of the strata, you can use the same initial seeds for those strata in the subset.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. In previous releases, PROC SURVEYSELECT used the RANUNI random number generator, which you can now request by specifying the RANUNI option. To reproduce samples that PROC SURVEYSELECT selected in releases prior to SAS/STAT 12.1, use the RANUNI option with the SEED= option (for the same input data set and sample selection parameters).

SELECTALL

requests that PROC SURVEYSELECT select all stratum units when the stratum sample size exceeds the total number of units in the stratum. By default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units in the stratum, unless you are using a with-replacement selection method.

The SELECTALL option is available for the following without-replacement selection methods: METHOD=SRS, METHOD=SYS, METHOD=SEO, METHOD=PPS, and METHOD=PPS SAMPFORD.

The SELECTALL option is not available for with-replacement selection methods, with-minimum-replacement methods, or those PPS methods that select two units per stratum.

SORT=NEST | SERP

specifies the type of sorting by CONTROL variables. The option SORT=NEST requests nested sorting, and SORT=SERP requests hierarchic serpentine sorting. The default is SORT=SERP. See the section "Sorting by CONTROL Variables" on page 8057 for descriptions of serpentine and nested sorting. Where there is only one CONTROL variable, the two types of sorting are equivalent.

The SORT= option is available when you specify a CONTROL statement for systematic or sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ). When you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL variables within strata before selecting the sample.

The SORT= option and the CONTROL statement are not available with a SAMPLINGUNIT statement. See the descriptions of the CONTROL and SAMPLINGUNIT statements for more information.

When you specify a CONTROL statement, you can also use the OUTSORT= option to name an output data set that contains the sorted input data set. Otherwise, if you do not specify the OUTSORT= option, the sorted data set replaces the input data set.

STATS

includes the selection probability and sampling weight in the OUT= output data set for equal probability selection methods when you do not specify a STRATA statement. By default, the output data set does not include these values for equal probability selection methods unless you specify a STRATA statement. The STATS option applies to the following selection methods: METHOD=SRS, METHOD=SYS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI.

In addition to the selection probability and sampling weight, the STATS option includes the following statistics in the output data set for METHOD=BERNOULLI: total number of sampling units, expected sample size, actual sample size, and adjusted sampling weight. See the section "Bernoulli Sampling" on page 8061 for more information.

For PPS selection methods, the output data set contains selection probabilities and sampling weights by default. The STATS option has no effect for PPS methods.

For more information about the contents of the output data set, see the section "Sample Output Data Set" on page 8072.

CONTROL Statement

CONTROL variables;

The CONTROL statement names variables for sorting the input data set before sample selection. The CONTROL variables can be character or numeric. If you also specify a STRATA statement, PROC SURVEYSELECT sorts by CONTROL variables within strata.

Control sorting is available for systematic and sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ). Ordering the sampling units before systematic or sequential selection can provide additional control over the distribution of the sample.

Control sorting is not available when you use a SAMPLINGUNIT statement, which defines groups of observations as units (clusters) for sample selection. See the description of the SAMPLINGUNIT statement for information about ordering clusters before systematic or sequential selection.

By default (or if you specify the SORT=SERP option in the PROC SURVEYSELECT statement), PROC SURVEYSELECT uses hierarchic serpentine sorting by the CONTROL variables. If you specify the SORT=NEST option, the procedure uses nested sorting. For more information about serpentine and nested sorting, see the section "Sorting by CONTROL Variables" on page 8057.

You can use the OUTSORT= option in the PROC SURVEYSELECT statement to name an output data set that contains the sorted input data set. If you do not specify the OUTSORT= option when you use the CONTROL statement, then the sorted data set replaces the input data set.

FREQ Statement

FREQ variable;

The FREQ statement names a numeric variable that contains the frequency of occurrence of each observation. If you use a FREQ statement, PROC SURVEYSELECT assumes that an observation represents *n* observations, where *n* is the value of the FREQ variable for the observation. The FREQ statement is not available when you specify a SAMPLINGUNIT statement.

The FREQ statement is available only for sample allocation when no sample is selected, which you can request by specifying the ALLOC= and NOSAMPLE options in the STRATA statement. The ALLOC= option requests allocation of the total sample size among the strata, and the NOSAMPLE option requests that no sample be selected after allocation. When you specify the NOSAMPLE option, the procedure computes stratum sample sizes according to the allocation method that you request, but does not select the

sample. See the sections "Allocation Options" on page 8052 and "Sample Size Allocation" on page 8067 for details.

The sum of the FREQ variable values (frequencies) represents the total number of sampling units. The sum of the frequencies in a stratum represents the total number of sampling units in the stratum. When you use a FREQ statement, the sample size allocation is based on the expanded total and stratum frequencies.

Values of the FREQ variable must be nonmissing and nonnegative. If a value of the FREQ variable is 0, PROC SURVEYSELECT ignores the observation. If a value of the FREQ variable is not an integer, PROC SURVEYSELECT uses only the integer portion as the frequency of the observation.

ID Statement

ID variables;

The ID statement names one or more variables from the DATA= input data set to include in the OUT= output data set of selected units. If there is no ID statement, PROC SURVEYSELECT includes all variables from the input data set in the output data set. The ID variables can be either character or numeric.

SAMPLINGUNIT | CLUSTER Statement

SAMPLINGUNIT | CLUSTER variables < / options > ;

The SAMPLINGUNIT statement names variables that identify the sampling units as groups of observations (clusters). The combinations of categories of SAMPLINGUNIT variables define the sampling units. If there is a STRATA statement, sampling units are nested within strata.

When you use a SAMPLINGUNIT statement to define units (clusters), PROC SURVEYSELECT selects a sample of these units by using the selection method and design parameters that you specify in the PROC SURVEYSELECT statement. If you do not use a SAMPLINGUNIT statement, then PROC SURVEYSELECT uses the input data set observations as sampling units by default.

The SAMPLINGUNIT variables are one or more variables in the DATA= input data set. These variables can be either character or numeric. The formatted values of the SAMPLINGUNIT variables determine the SAMPLINGUNIT variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the *Base SAS Procedures Guide* and the FORMAT statement and SAS formats in *SAS Formats and Informats: Reference* for more information.

You can use a SAMPLINGUNIT statement with any equal probability selection method or PPS selection method. The SAMPLINGUNIT statement is not available for Poisson sampling (METHOD=POISSON).

If you specify the PPS option in the SAMPLINGUNIT statement and do not specify a SIZE statement, then the procedure computes sampling unit size as the number of observations in the sampling unit. If you specify a SIZE statement with a SAMPLINGUNIT statement, then the procedure computes sampling unit size by summing the size measures of all observations in the sampling unit.

By default, PROC SURVEYSELECT sorts the input data set by the SAMPLINGUNIT variables within strata before sample selection. This groups the observations into sampling units and orders the sampling units by the SAMPLINGUNIT variables. If you do not want the procedure to sort the input data set by the SAMPLINGUNIT variables, then specify the PRESORTED option in the SAMPLINGUNIT statement. By

Note that the SAMPLINGUNIT statement defines groups of observations (clusters) to use as sampling units, and PROC SURVEYSELECT selects a sample of these units. When you use a SAMPLINGUNIT statement, PROC SURVEYSELECT does not select samples of observations from within the sampling units (clusters). To select independent samples within groups, use the STRATA statement.

You can specify the following *options* in the SAMPLINGUNIT statement after a slash (/):

PPS

computes a sampling unit's size measure as the number of observations in the sampling unit. The procedure then uses these size measures to select a sample according to the PPS selection method that you specify with the METHOD= option in the PROC SURVEYSELECT statement.

This option has no effect when you specify a SIZE statement. When you specify a SIZE statement, the procedure computes sampling unit size by summing the size measures of all observations that belong to the sampling unit.

PRESORTED

requests that PROC SURVEYSELECT not sort the input data set by the SAMPLINGUNIT variables within strata. By default, the procedure sorts the input data set by the SAMPLINGUNIT variables, which groups the observations into sampling units and orders the units by the SAMPLINGUNIT variables.

The PRESORTED option enables you to provide the order of the sampling units. For systematic and sequential selection methods, ordering provides additional control over the distribution of the sample and gives some benefits of proportionate stratification. Systematic and sequential methods include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ. See the descriptions of these methods in the section "Sample Selection Methods" on page 8058 for more information.

When you specify the PRESORTED option, the procedure treats the sampling unit groups as NOTSORTED. Like the BY statement option NOTSORTED, this does not mean that the data are unsorted by the SAMPLINGUNIT variables, but rather that the data are arranged in groups (according to values of the SAMPLINGUNIT variables) and that these groups are not necessarily in alphabetical or increasing numeric order. For more information about the BY statement NOTSORTED option, see *SAS Language Reference: Concepts*.

SIZE Statement

SIZE variable:

The SIZE statement names one and only one variable that contains size measures that are used for PPS selection. The SIZE variable must be numeric.

If you specify a SAMPLINGUNIT statement with a SIZE statement, the procedure computes a sampling unit's size by summing the size measures of all observations that belong to the sampling unit. Alternatively, if you specify the PPS option in the SAMPLINGUNIT statement and do not use a SIZE statement, the procedure computes sampling unit size as the number of observations in the sampling unit.

When the value of a sampling unit's size measure is missing or nonpositive, that sampling unit is excluded from the sample selection. See the section "Missing Values" on page 8056 for more information.

You can adjust the size measure values by using the MAXSIZE= option, the MINSIZE= option, or both of these options in the PROC SURVEYSELECT statement.

All PPS selection methods require size measures, which you can provide by specifying a SIZE statement (or by specifying the PPS option in the SAMPLINGUNIT statement). PPS selection methods include the following: METHOD=PPS, METHOD=PPS_BREWER, METHOD=PPS_MURTHY, METHOD=PPS_SAMPFORD, METHOD=PPS_SEQ, METHOD=PPS_SYS, and METHOD=PPS_WR. For details about how size measures are used in sample selection, see the descriptions of PPS selection methods in the section "Sample Selection Methods" on page 8058.

Note that a sampling unit's size measure, which you provide for PPS selection by specifying a SIZE statement, is not the same as the *sample size*. The sample size is the number of units to select for the sample; you specify the sample size with the SAMPSIZE= option in the PROC SURVEYSELECT statement.

For METHOD=POISSON, the variable that is specified in the SIZE statement provides inclusion probabilities for Poisson sampling. See the section "Poisson Sampling" on page 8062 for details. When the value of the SIZE variable is missing, nonpositive, or greater than 1, the sampling unit is not included in the sample selection.

STRATA Statement

STRATA variables </ options>;

The STRATA statement names variables that partition the input data set into nonoverlapping subgroups (strata). The combinations of levels of STRATA variables define the strata. PROC SURVEYSELECT then selects independent samples from these strata, according to the selection method and design parameters that you specify in the PROC SURVEYSELECT statement. For information about the use of stratification in sample design, see Lohr (2010); Kalton (1983); Kish (1965, 1987); Cochran (1977).

The STRATA variables are one or more variables in the DATA= input data set. These variables can be either character or numeric, but the procedure treats them as categorical variables. The formatted values of the STRATA variables determine the STRATA variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the *Base SAS Procedures Guide* and the FORMAT statement and SAS formats in *SAS Formats and Informats: Reference*.

The STRATA variables function much like BY variables, and PROC SURVEYSELECT expects the input data set to be sorted in order of the STRATA variables.

If you specify a CONTROL statement, or if you specify METHOD=PPS, the input data set must be sorted in ascending order by the STRATA variables. This means you cannot use the STRATA option NOTSORTED or DESCENDING when you specify a CONTROL statement or METHOD=PPS.

If your input data set is not sorted by the STRATA variables in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with the STRATA variables in a BY statement.
- Specify the NOTSORTED or DESCENDING option in the STRATA statement (when you do not specify a CONTROL statement or METHOD=PPS). The NOTSORTED option does not mean that the

data are unsorted but rather that the data are arranged in groups (according to values of the STRATA variables) and that these groups are not necessarily in alphabetical or increasing numeric order.

• Create an index on the STRATA variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

Allocation Options

The STRATA options request allocation of the total sample size among the strata. You can use the ALLOC= option to specify the allocation method. Available allocation methods include proportional allocation (ALLOC=PROP), optimal allocation (ALLOC=OPTIMAL), and Neyman allocation (ALLOC=NEYMAN). See the section "Sample Size Allocation" on page 8067 for details about these methods.

Instead of requesting that PROC SURVEYSELECT compute the sample allocation, you can provide the allocation proportions by using the ALLOC=(values) option or the ALLOC=SAS-data-set option. Then PROC SURVEYSELECT allocates the total sample size among the strata according to the proportions that you provide. Allocation proportions are relative stratum sample sizes, n_h/n , where n_h is the stratum h sample size and n is the total sample size.

You can use the SAMPSIZE= option in the PROC SURVEYSELECT statement to specify the total sample size to be allocated among the strata. Alternatively, you can specify the desired margin of error in the MARGIN= option, and the procedure determines the stratum sample sizes that are required to achieve that margin. See the section "Specifying the Margin of Error" on page 8069 for details.

When you request sample allocation, by default PROC SURVEYSELECT computes the allocation of the total sample size among the strata and then selects the sample. If you specify the NOSAMPLE option, the procedure computes the allocation but does not select the sample. In this case the OUT= output data set contains the stratum sample sizes that are computed according to the specified allocation method. See the section "Allocation Output Data Set" on page 8075 for details.

You can use the ALLOC= option with any selection method except METHOD=PPS BREWER and METHOD=PPS MURTHY, which select two units from each stratum.

Table 95.2 summarizes the options available in the STRATA statement. Descriptions of the options follow in alphabetical order.

Option	Description
ALLOC=name	Specifies the allocation method
ALLOC=(values)	Provides allocation proportions
ALLOCMIN=	Specifies the minimum sample size per stratum
ALPHA=	Specifies the confidence level
COST=	Provides stratum costs
MARGIN=	Specifies the margin of error
NOSAMPLE	Allocates but does not select the sample
STATS	Displays additional allocation statistics
VAR=	Provides stratum variances

Table 95.2 STRATA Statement Options for Sample Allocation

You can specify the following *options* in the STRATA statement after a slash (/):

ALLOC=name

specifies the method for allocating the total sample size among the strata. The following values for *name* are available:

PROPORTIONAL | PROP

requests proportional allocation, which allocates the total sample size in proportion to the stratum sizes, where the stratum size is the number of sampling units in the stratum. See the section "Proportional Allocation" on page 8068 for details.

OPTIMAL | OPT

requests optimal allocation, which allocates the total sample size among the strata in proportion to stratum sizes, stratum variances, and stratum costs. See the section "Optimal Allocation" on page 8068 for more information. If you specify ALLOC=OPTIMAL, you must provide the stratum variances with the VAR=(values), VAR=SAS-data-set, or VAR option. You must provide the stratum costs with the COST=(values), COST=SAS-data-set, or COST option.

NEYMAN

requests Neyman allocation, which allocates the total sample size among the strata in proportion to the stratum sizes and variances. See the section "Neyman Allocation" on page 8069 for more information. If you specify ALLOC=NEYMAN, you must provide the stratum variances with the VAR=(values), VAR=SAS-data-set, or VAR option.

ALLOC=(values)

lists stratum allocation proportions. You can separate values with blanks or commas.

Each allocation proportion specifies the percent of the total sample size to allocate to the corresponding stratum. The number of ALLOC= values must equal the number of strata in the input data set. The sum of the allocation proportions must equal 1.

Each allocation proportion must be a positive number. You can specify each value as a number between 0 and 1. Or you can specify a value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

List the allocation proportions in the order in which the strata appear in the input data set. If you use the ALLOC=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

ALLOC=SAS-data-set

names a SAS data set that contains stratum allocation proportions. You provide the stratum allocation proportions in the ALLOC= data set variable _ALLOC_.

Each allocation proportion specifies the percent of the total sample size to allocate to the corresponding stratum. The sum of the allocation proportions must equal 1.

Each allocation proportion must be a positive number. You can specify the value as a number between 0 and 1. Or you can specify the value in percentage form as a number between 1 and 100, and PROC SURVEYSELECT converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

The ALLOC= data set should contain all the STRATA variables, with the same type and length as in the DATA= input data set. The STRATA groups should appear in the same order in the ALLOC= data set as in the DATA= data set. The ALLOC= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary data set in each invocation of the procedure.

ALLOCMIN=n

specifies the minimum sample size to allocate to a stratum. When you specify ALLOCMIN=*n*, PROC SURVEYSELECT allocates at least *n* sampling units to each stratum. If you do not specify the ALLOCMIN= option, PROC SURVEYSELECT allocates at least one sampling unit to each stratum by default.

The minimum stratum sample size n must be a positive integer. The ALLOCMIN value n times the number of strata should not exceed the total sample size to be allocated. For without-replacement selection methods, the ALLOCMIN value should not exceed the number of sampling units in any stratum.

$ALPHA=\alpha$

specifies the level of the confidence interval for the MARGIN= determination of stratum sample sizes. See the section "Specifying the Margin of Error" on page 8069 for details.

The value of α must be between 0 and 1; the default is 0.05. A confidence level of α produces a $100(1-\alpha)\%$ confidence interval. The default of ALPHA=0.05 produces a 95% confidence interval.

COST

indicates that stratum costs are included in the secondary input data set. Use the COST option when you have already named the secondary input data set in another option, such as the VAR=SAS-data-set option. You provide the stratum costs in the secondary input data set variable COST.

A stratum cost represents the per-unit cost (the survey cost of a single unit in the stratum). Each stratum cost must be a positive number. Cost values are required if you specify the ALLOC=OPTIMAL option.

COST=(values)

specifies stratum costs, which are required if you specify the ALLOC=OPTIMAL option. You can separate *values* with blanks or commas.

A stratum cost represents the per-unit cost (the survey cost of a single unit in the stratum). Each stratum cost must be a positive number.

The number of COST= values must equal the number of strata in the input data set. List the stratum costs in the order in which the strata appear in the input data set. If you use the COST=*values* option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

COST=SAS-data-set

names a SAS data set that contains the stratum costs. You provide the stratum costs in the COST= data set variable _COST_.

A stratum cost represents the per-unit cost (the survey cost of a single unit in the stratum). Each stratum cost must be a positive number. Stratum costs are required if you specify the ALLOC=OPTIMAL option.

The COST= data set should contain all the STRATA variables, with the same type and length as in the DATA= input data set. The STRATA groups should appear in the same order in the COST= data set as in the DATA= data set. The COST= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

MARGIN=value

specifies the desired margin of error for estimating the overall mean from the stratified sample. When you specify the MARGIN= option, PROC SURVEYSELECT determines the stratum sample sizes required to achieve this margin for the allocation method or proportions that you specify in the ALLOC= option. See the section "Specifying the Margin of Error" on page 8069 for details.

The MARGIN= value must be a positive number. When you specify the MARGIN= option, you must also provide the stratum variances in the VAR=(values), VAR=SAS-data-set, or VAR option.

You can use the ALPHA= option to set the level of the confidence interval that the MARGIN= computation uses. The default of ALPHA=0.05 specifies a 95% confidence interval.

You can request the MARGIN= option for any allocation method (proportional, optimal, or Neyman) or for allocation proportions that you provide (ALLOC=(values) or ALLOC=SAS-data-set). When you use the MARGIN= option, you cannot specify a total sample size in the SAMPSIZE= option in the PROC SURVEYSELECT statement.

NOSAMPLE

requests that PROC SURVEYSELECT allocate the total sample size among the strata but not select the sample. When you specify the NOSAMPLE option, the OUT= output data set contains the stratum sample sizes that PROC SURVEYSELECT computes. See the section "Allocation Output Data Set" on page 8075 for details.

STATS

displays statistics for the sample allocation. If you specify the MARGIN= option, the STATS option displays the expected margin of error for the allocation. See the section "Specifying the Margin of Error" on page 8069 for details. If you request ALLOC=OPTIMAL or ALLOC=NEYMAN without the MARGIN= option, the STATS option displays the expected variance, which is computed from the stratum variances that you provide and the allocated stratum sample sizes. If you request ALLOC=OPTIMAL, the STATS option also displays the total stratum cost, which is computed from the stratum costs that you provide and the allocated stratum sample sizes.

VAR

indicates that stratum variances are included in the secondary input data set. Use the VAR option when you have already named the secondary input data set in another option, such as the COST=SAS-data-set option. You provide the stratum variances in the secondary input data set variable _VAR_.

Each stratum variance must be a positive number. Stratum variances are required if you specify the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= option.

VAR=(values)

lists stratum variances, which are required if you specify the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= option. You can separate *values* with blanks or commas.

Each stratum variance must be a positive number. The number of VAR= values must equal the number of strata in the input data set. List the stratum variances in the order in which the strata appear in the

input data set. If you use the VAR=(*values*) option, the input data set must be sorted by the STRATA variables in ascending order. You cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

VAR=SAS-data-set

names a SAS data set that contains the stratum variances. You provide the stratum variances in the VAR= data set variable _VAR_.

Each stratum variance must be a positive number. Stratum variances are required if you specify the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= option.

The VAR= data set should contain all the STRATA variables, with the same type and length as in the DATA= input data set. The STRATA groups should appear in the same order in the VAR= data set as in the DATA= data set. The VAR= data set is a secondary input data set. See the section "Secondary Input Data Set" on page 8071 for details. You can name only one secondary input data set in each invocation of the procedure.

Details: SURVEYSELECT Procedure

Missing Values

PROC SURVEYSELECT treats missing values of STRATA and SAMPLINGUNIT variables like any other STRATA or SAMPLINGUNIT variable value. The missing values form a separate, valid variable level.

When you use a FREQ statement for sample size allocation, all values of the frequency variable must be nonmissing. If there is a missing or nonpositive frequency, PROC SURVEYSELECT does not perform the allocation.

When you specify a SIZE variable, any sampling units that have missing or nonpositive size measures are excluded from the sample selection. The procedure provides a log note that reports the number of observations omitted due to missing or nonpositive size measures.

If you do not use a SAMPLINGUNIT statement with the SIZE statement, your sampling units are input data set observations, and observations that have missing or nonpositive size measures are excluded from the sample selection. If you do use a SAMPLINGUNIT statement with the SIZE statement, the procedure computes sampling unit size by summing the size measures of all observations in the unit. When summing the observation size measures, the procedure omits any observations that have missing or nonpositive size measures. If the size of an entire sampling unit is missing or nonpositive, the procedure excludes that unit from the sample selection. When a sampling unit is selected, the output data set includes all observations that belong to the selected unit, regardless of whether an observation's size measure is missing.

If you provide stratum-level design or allocation information in a secondary input data set, the variable values should be nonmissing. For example, if a stratum value of _NSIZE_ (or SampleSize) in the SAMPSIZE= secondary input data set is missing or negative, PROC SURVEYSELECT cannot select a sample from the stratum. The procedure gives an error message and skips the stratum. Similarly, if other secondary data

set variables have missing values for a stratum, a sample cannot be selected from the stratum. These variables include _NRATE_, _MINSIZE_, _MAXSIZE_, _CERTSIZE_, and _CERTP_. Additionally, if any of the sample allocation variables in the secondary input data set have missing or nonpositive values, PROC SURVEYSELECT cannot compute the sample allocation. Variables that provide information for allocation include _ALLOC_, _VAR_, and _COST_. See the section "Secondary Input Data Set" on page 8071 for details.

Sorting by CONTROL Variables

If you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL variables before selecting the sample. If you also specify a STRATA statement, the procedure sorts by CONTROL variables within strata. Sorting by CONTROL variables is available for systematic and sequential selection methods, which include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ. Sorting provides additional control over the distribution of the sample and gives some benefits of proportionate stratification.

Control sorting is not available when you use a SAMPLINGUNIT statement, which defines groups of observations as units (clusters) for sample selection. See the description of the SAMPLINGUNIT statement for information about ordering clusters before systematic or sequential selection.

When you specify a CONTROL statement, the sorted data set replaces the input data set by default. Alternatively, you can use the OUTSORT= option to name an output data set that contains the sorted input data set.

PROC SURVEYSELECT provides two types of sorting: hierarchic serpentine sorting and nested sorting. By default (or if you specify the SORT=SERP option), the procedure uses serpentine sorting. If you specify the SORT=NEST option, then the procedure sorts by the CONTROL variables according to nested sorting. These two types of sorting are equivalent when there is only one CONTROL variable.

If you request nested sorting, PROC SURVEYSELECT sorts observations in the same order as PROC SORT does for an ascending sort by the CONTROL variables. See the chapter "The SORT Procedure" in the *Base SAS Procedures Guide* for more information. PROC SURVEYSELECT sorts within strata if you also specify a STRATA statement. The procedure first arranges the input observations in ascending order of the first CONTROL variable. Then within each level of the first control variable, the procedure arranges the observations in ascending order of the second CONTROL variable. This continues for all CONTROL variables that are specified.

In hierarchic serpentine sorting, PROC SURVEYSELECT sorts by the first CONTROL variable in ascending order. Then within the first level of the first CONTROL variable, the procedure sorts by the second CONTROL variable in ascending order. Within the second level of the first CONTROL variable, the procedure sorts by the second CONTROL variable in descending order. Sorting by the second CONTROL variable continues to alternate between ascending and descending sorting throughout all levels of the first CONTROL variable. If there is a third CONTROL variable, the procedure sorts by that variable within levels formed from the first two CONTROL variables, again alternating between ascending and descending sorting. This continues for all CONTROL variables that are specified. This sorting algorithm minimizes the change from one observation to the next with respect to the CONTROL variable values, thus making nearby observations more similar. For more information about serpentine sorting, see Chromy (1979) and Williams and Chromy (1980).

Random Number Generation

The probability sampling methods provided by PROC SURVEYSELECT use random numbers in their selection algorithms, as described in the following sections and in the references cited. PROC SURVEYSELECT uses a uniform random number function to generate streams of pseudo-random numbers from an initial starting point, or seed. You can use the SEED= option to specify the initial seed. If you do not specify the SEED= option, PROC SURVEYSELECT uses the time of day from the computer's clock to obtain the initial seed. See the description of the SEED= option for details about specifying initial seeds for strata, storing stratum seeds in the output data set, and reproducing samples.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. The Mersenne-Twister generator (Matsumoto and Nishimura 1998) has a very long period $(2^{19937} - 1)$ and very good statistical properties. The algorithm is a twisted generalized feedback shift register. This is the same random number generator that the RAND function provides for the uniform distribution. See SAS Functions and CALL Routines: Reference for more information.

In previous releases, PROC SURVEYSELECT used the RANUNI random number generator, which you can now request by specifying the RANUNI option. This uniform random number generator is based on the method of Fishman and Moore (1982), which uses a prime modulus multiplicative generator with modulus 2³¹ and multiplier 397,204,094. This is the same uniform random number generator that the RANUNI function provides. For more information about the RANUNI function, see SAS Functions and CALL Routines: Reference.

To reproduce samples that PROC SURVEYSELECT selected in releases prior to SAS/STAT 12.1, you can use the RANUNI option with the SEED= option (for the same input data set and selection parameters).

Sample Selection Methods

PROC SURVEYSELECT provides a variety of methods for selecting probability-based random samples. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences from the sample to the survey population. For more information about probability sampling, see Lohr (2010); Kish (1965, 1987); Kalton (1983); Cochran (1977).

In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of being selected for the sample. PROC SURVEYSELECT provides the following methods that select units with equal probability: simple random sampling, unrestricted random sampling, systematic random sampling, sequential random sampling, and Bernoulli sampling. In simple random sampling, units are selected without replacement, which means that a unit cannot be selected more than once. Both systematic and sequential equal probability sampling are also without replacement. In unrestricted random sampling, units are selected with replacement, which means that a unit can be selected more than once. In withreplacement sampling, the *number of hits* refers to the number of times a unit is selected.

In probability proportional to size (PPS) sampling, a unit's selection probability is proportional to its size measure. PROC SURVEYSELECT provides the following methods that select units with probability proportional to size (PPS): PPS sampling without replacement, PPS sampling with replacement, PPS systematic sampling, PPS sequential sampling, Brewer's method, Murthy's method, and Sampford's method. PPS sampling is often used in cluster sampling, where you select clusters (or groups of sampling units) of varying size in the first stage of selection. For example, clusters might be schools, hospitals, or geographical areas, and the final sampling units might be students, patients, or citizens. Cluster sampling can provide efficiencies in frame construction and other survey operations. For more information, see Lohr (2010); Kalton (1983); Kish (1965), in addition to the other references cited in the following sections.

The following sections give detailed descriptions of the sample selection methods available in PROC SURVEYSELECT. In these sections, n_h denotes the sample size (the number of units in the sample) for stratum h, and N_h denotes the population size (number of units in the population) for stratum h, for h = 1, 2, ..., H. When the sample design is not stratified, n denotes the sample size, and N denotes the population size. For PPS sampling, M_{hi} represents the size measure for unit i in stratum h, M_h is the total of all size measures for the population of stratum h, and $Z_{hi} = M_{hi}/M_h$ is the relative size of unit i in stratum h.

Simple Random Sampling

The method of simple random sampling (METHOD=SRS) selects units with equal probability and without replacement. Each possible sample of n different units out of N has the same probability of being selected. The selection probability for each individual unit equals n/N. When you request stratified sampling with a STRATA statement, PROC SURVEYSELECT selects samples independently within strata. The selection probability for a unit in stratum h equals n_h/N_h for stratified simple random sampling.

By default, PROC SURVEYSELECT uses Floyd's ordered hash table algorithm for simple random sampling. This algorithm is fast, efficient, and appropriate for large data sets. See Bentley and Floyd (1987) and Bentley and Knuth (1986) for details.

If there is not enough memory available for Floyd's algorithm, PROC SURVEYSELECT switches to the sequential algorithm of Fan, Muller, and Rezucha (1962), which requires less memory but might require more time to select the sample. When PROC SURVEYSELECT uses the alternative sequential algorithm, it writes a note to the log. To request the sequential algorithm, even if enough memory is available for Floyd's algorithm, you can specify METHOD=SRS2 in the PROC SURVEYSELECT statement.

Unrestricted Random Sampling

The method of unrestricted random sampling (METHOD=URS) selects units with equal probability and with replacement. Because units are selected with replacement, a unit can be selected for the sample more than once. The expected number of hits (selections) for each unit equals n/N when sampling without stratification. For stratified sampling, the expected number of hits for a unit in stratum h equals n/N_h . Note that the expected number of hits exceeds 1 when the sample size n is greater than the population size N.

For unrestricted random sampling, by default, the output data set contains a single copy of each unit selected, even when a unit is selected more than once, and the variable NumberHits records the number of hits (selections) for each unit. If you specify the OUTHITS option, the output data set contains m copies of a sampling unit for which NumberHits equals m. For example, with the OUTHITS option a unit that is selected three times is represented by three copies in the output data set. For information about the contents of the output data set, see the section "Sample Output Data Set" on page 8072.

The method of systematic random sampling (METHOD=SYS) selects units at a fixed interval throughout the sampling frame or stratum after a random start. If you specify the sample size (or the stratum sample sizes) with the SAMPSIZE= option, PROC SURVEYSELECT uses a fractional interval to provide exactly the specified sample size. The interval equals N/n, or N_h/n_h for stratified sampling. The selection probability for each unit equals n/N, or n_h/N_h for stratified sampling. If you specify the sampling rate (or the stratum sampling rates) with the SAMPRATE= option, PROC SURVEYSELECT uses the inverse of the rate as the interval for systematic selection. The selection probability for each unit equals the specified rate.

Systematic random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum at equal intervals, thus providing implicit stratification. You can use the CONTROL statement to order the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the observations in the order in which they appear in the input data set.

Sequential Random Sampling

If you specify the METHOD=SEQ option and do not include a SIZE statement, PROC SURVEYSELECT uses the equal probability version of Chromy's method for sequential random sampling. This method selects units sequentially with equal probability and without replacement. See Chromy (1979) and Williams and Chromy (1980) for details. See the section "PPS Sequential Sampling" on page 8064 for a description of Chromy's PPS selection method.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum. You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine ordering for sorting. If you specify the SORT=NEST option, the procedure uses nested sorting. See the section "Sorting by CONTROL Variables" on page 8057 for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the input data set.

Following Chromy's method of sequential selection, PROC SURVEYSELECT randomly chooses a starting unit from the entire stratum (or frame, if the design is not stratified). With this unit as the first one, the procedure treats the stratum units as a closed loop. This is done so that all pairwise (joint) selection probabilities are positive and an unbiased variance estimator can be obtained. The procedure numbers units sequentially from the random start to the end of the stratum and then continues from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, PROC SURVEYSELECT accumulates the expected number of selections (hits), where the expected number of selections $E(S_{hi})$ equals n_h/N_h for all units i in stratum h. The procedure computes

$$I_{hi} = \operatorname{Int}\left(\sum_{j=1}^{l} \operatorname{E}(S_{hj})\right) = \operatorname{Int}(in_h/N_h)$$

$$F_{hi} = \operatorname{Frac}\left(\sum_{i=1}^{i} \operatorname{E}(S_{hj})\right) = \operatorname{Frac}(i n_h/N_h)$$

where $Int(\cdot)$ denotes the integer part of the number, and $Frac(\cdot)$ denotes the fractional part.

Considering each unit sequentially, Chromy's method determines whether unit i is selected by comparing the total number of selections for the first (i-1) units,

$$T_{h(i-1)} = \sum_{j=1}^{i-1} S_{hj}$$

with the value of $I_{h(i-1)}$.

If $T_{h(i-1)} = I_{h(i-1)}$, Chromy's method determines whether or not unit i is selected as follows. If $F_{hi} = 0$ or $F_{h(i-1)} > F_{hi}$, then unit i is selected with certainty. Otherwise, unit i is selected with probability

$$(F_{hi} - F_{h(i-1)})/(1 - F_{h(i-1)})$$

If $T_{h(i-1)} = (I_{h(i-1)} + 1)$, Chromy's method determines whether or not unit *i* is selected as follows. If $F_{hi} = 0$ or $F_{hi} > F_{h(i-1)}$, then the unit is not selected. Otherwise, unit *i* is selected with probability

$$F_{hi}/F_{h(i-1)}$$

Bernoulli Sampling

Bernoulli sampling, which you request by specifying the METHOD=BERNOULLI option, is an equal probability selection method for which the total sample size is not fixed. PROC SURVEYSELECT performs an independent random selection trial for each of the N sampling units in the input data set by using the constant inclusion probability (sampling rate) that you specify. You can specify a single value of the inclusion probability π to use for all N sampling units, or you can specify separate stratum-level values of π_h to use for the N_h units in each stratum.

You provide the inclusion probability (or probabilities) by specifying the SAMPRATE= option. For stratified sampling (which you request with the STRATA statement), you can specify the same sampling rate for each stratum by using the SAMPRATE=*r* option. Or you can specify different sampling rates for different strata by using the SAMPRATE=(values) or SAMPRATE=SAS-data-set option.

In Bernoulli sampling, the sample size n (number of units selected) is not fixed; it is a random variable that has a binomial distribution with parameters N and π . The possible values of n range from 0 to N. The expected value of the sample size is πN (or $\pi_h N_h$ for stratified sampling), and the variance of the sample size is $\pi (1 - \pi) N$.

For Bernoulli sampling, the selection probability is the inclusion probability that you specify by using the SAMPRATE= option. PROC SURVEYSELECT computes the sampling weight as the inverse of the selection probability, which is $1/\pi$. For Bernoulli sampling, the procedure also computes an adjusted sampling weight as the ratio of the total number of sampling units to the actual sample size, N/n (or N_h/n_h for stratified sampling). The joint selection probability for any two distinct units is π^2 . See Särndal, Swensson, and Wretman (1992) for more information.

You can specify the STATS option to include the following information in the OUT= output data set for METHOD=BERNOULLI: total number of sampling units, selection probability, expected sample size, actual sample size, sampling weight, and adjusted sampling weight.

Poisson Sampling

Poisson sampling, which you request by specifying the METHOD=POISSON option, is an unequal probability sampling method for which the total sample size is not fixed. A generalization of Bernoulli sampling, Poisson sampling also consists of independent random selection trials for the *N* sampling units in the input data set, but the sampling units can have different inclusion probabilities. You provide inclusion probabilities for Poisson sampling in the variable that you specify in the SIZE statement.

The expected value of the sample size for Poisson sampling is $\sum_i \pi_i$, where π_i is the inclusion probability for sampling unit *i*. The variance of the sample size is $\sum_i \pi_i (1 - \pi_i)$.

For Poisson sampling, the selection probability for unit i is the inclusion probability π_i that you specify by using the SIZE statement. PROC SURVEYSELECT computes the sampling weight for unit i as the inverse of the selection probability, which is $1/\pi_i$. The joint selection probability for any two distinct units i and j is $\pi_i \pi_j$ for Poisson sampling. See Särndal, Swensson, and Wretman (1992) for more information.

PPS Sampling without Replacement

If you specify the METHOD=PPS option, PROC SURVEYSELECT selects units with probability proportional to size and without replacement. The selection probability for unit i in stratum h equals $n_h Z_{hi}$, where n_h is the sample size for stratum h, and Z_{hi} is the relative size of unit i in stratum h. The relative size equals M_{hi}/M_{h} , which is the ratio of the size measure for unit i in stratum h (M_{hi}) to the total of all size measures for stratum h (M_{hi}).

Because selection probabilities cannot exceed 1, the relative size for each unit must not exceed $1/n_h$ for METHOD=PPS. This requirement can be expressed as $Z_{hi} \leq 1/n_h$, or equivalently, $M_{hi} \leq M_h./n_h$. If your size measures do not meet this requirement, you can adjust the size measures by using the MAXSIZE= or MINSIZE= option. Or you can request certainty selection for the larger units by using the CERTSIZE= or CERTSIZE=P= option. Alternatively, you can use a selection method that does not have this relative size restriction, such as PPS with minimum replacement (METHOD=PPS_SEQ).

PROC SURVEYSELECT uses the Hanurav-Vijayan algorithm for PPS selection without replacement. Hanurav (1967) introduced this algorithm for the selection of two units per stratum, and Vijayan (1968) generalized it for the selection of more than two units. The algorithm enables computation of joint selection probabilities and provides joint selection probability values that usually ensure nonnegativity and stability of the Sen-Yates-Grundy variance estimator. For details, see Fox (1989); Golmant (1990); Watts (1991).

Notation in the remainder of this section drops the stratum subscript h for simplicity, but selection is still done independently within strata if you specify a stratified design. For a stratified design, n now denotes the sample size for the current stratum, N denotes the stratum population size, and M_i denotes the size measure for unit i in the stratum. If the design is not stratified, this notation applies to the entire sampling frame.

According to the Hanurav-Vijayan algorithm, PROC SURVEYSELECT first orders units within the stratum in ascending order by size measure, so that $M_1 \leq M_2 \leq \ldots \leq M_N$. Then the procedure selects the PPS sample of n observations as follows:

1. The procedure randomly chooses one of the integers $1, 2, \ldots, n$ with probability $\theta_1, \theta_2, \ldots, \theta_n$, where

$$\theta_i = n(Z_{N-n+i+1} - Z_{N-n+i})(T + iZ_{N-n+1})/T$$

where $Z_i = M_i/M$ and

$$T = \sum_{j=1}^{N-n} Z_j$$

By definition, $Z_{N+1} = 1/n$ to ensure that $\sum_{i=1}^{n} \theta_i = 1$.

- 2. If i is the integer selected in step 1, the procedure includes the last (n i) units of the stratum in the sample, where the units are ordered by size measure as described previously. The procedure then selects the remaining i units according to steps 3 through 6.
- 3. The procedure defines new normed size measures for the remaining (N n + i) stratum units that were not selected in steps 1 and 2:

$$Z_j^* = \begin{cases} Z_j/(T + iZ_{N-n+1}) & \text{for } j = 1, \dots, N-n+1 \\ Z_{N-n+1}/(T + iZ_{N-n+1}) & \text{for } j = N-n+2, \dots, N-n+i \end{cases}$$

4. The procedure selects the next unit from the first (N - n + 1) stratum units with probability proportional to $a_i(1)$, where

$$a_1(1) = iZ_1^*$$

 $a_j(1) = iZ_j^* \prod_{k=1}^{j-1} (1 - (i-1) P_k)$ for $j = 2, ..., N-n+1$

and

$$P_k = M_k/(M_{k+1} + M_{k+2} + \dots + M_{N-n+i})$$

5. If stratum unit j_1 is the unit selected in step 4, then the procedure selects the next unit from units $(j_1 + 1)$ through (N - n + 2) with probability proportional to $a_j(2, j_1)$, where

$$a_{j_1+1}(2, j_1) = (i-1)Z_{j_1+1}^*$$

$$a_j(2, j_1) = (i-1)Z_j^* \prod_{k=j_1+1}^{j-1} (1-(i-2)P_k)$$
 for $j = j_1 + 2, \dots, N-n+2$

6. The procedure repeats step 5 until all *n* sample units are selected.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for all pairs of selected units in each stratum. The joint selection probability for units i and j in the stratum equals

$$P_{(ij)} = \sum_{r=1}^{n} \theta_r K_{ij}^{(r)}$$

where

$$K_{ij} = \begin{cases} 1 & N - n + r < i \le N - 1 \\ rZ_{N-n+1}/(T + rZ_{N-n+1}) & N - n < i \le N - n + r, \quad j > N - n + r \\ rZ_{i}/(T + rZ_{N-n+1}) & 1 \le i \le N - n, \quad j > N - n + r \\ \pi_{ij}^{(r)} & j \le N - n + r \end{cases}$$

$$\pi_{ij}^{(r)} = \frac{r(r-1)}{2} P_i Z_j \prod_{k=1}^{i-1} (1 - P_k)$$

$$P_k = M_k/(M_{k+1} + M_{k+2} + \dots + M_{N-n+r})$$

PPS Sampling with Replacement

If you specify the METHOD=PPS_WR option, PROC SURVEYSELECT selects units with probability proportional to size and with replacement. The procedure makes n_h independent random selections from the stratum of N_h units, selecting with probability $Z_{hi} = M_{hi}/M_h$. Because units are selected with replacement, a unit can be selected for the sample more than once. The expected number of hits (selections) for unit i in stratum h equals $n_h Z_{hi}$. If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint expected number of hits for all pairs of selected units in each stratum. The joint expected number of hits for units i and j in stratum h equals

$$P_{h(ij)} = \begin{cases} n_h(n_h - 1) Z_{hi} Z_{hj} & \text{for } j \neq i \\ n_h(n_h - 1) Z_{hi} Z_{hi} / 2 & \text{for } j = i \end{cases}$$

PPS Systematic Sampling

If you specify the METHOD=PPS_SYS option, PROC SURVEYSELECT selects units by systematic random sampling with probability proportional to size. Systematic sampling selects units at a fixed interval throughout the stratum or sampling frame after a random start. PROC SURVEYSELECT uses a fractional interval to provide exactly the specified sample size. The interval equals M_h . $/n_h$ for stratified sampling and M/n for sampling without stratification. Depending on the sample size and the values of the size measures, it might be possible for a unit to be selected more than once. The expected number of hits (selections) for unit i in stratum h equals $n_h M_{hi}/M_h$. = $n_h Z_{hi}$. See Cochran (1977, pp. 265–266) and Madow (1949) for details.

Systematic random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum at equal intervals, thus providing implicit stratification. You can use the CONTROL statement to order the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the observations in the order in which they appear in the input data set.

PPS Sequential Sampling

If you specify the METHOD=PPS_SEQ option, PROC SURVEYSELECT uses Chromy's method of sequential random sampling. See Chromy (1979) and Williams and Chromy (1980) for details. Chromy's method selects units sequentially with probability proportional to size and with minimum replacement. Selection with minimum replacement means that the actual number of hits for a unit can equal the integer part of the expected number of hits for that unit, or the next largest integer. This can be compared to selection without replacement, where each unit can be selected only once, so the number of hits can equal 0 or 1. The other alternative is selection with replacement, where there is no restriction on the number of hits for each unit, so the number of hits can equal $0, 1, \dots, n_h$, where n_h is the stratum sample size.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum. You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic

serpentine ordering to sort the sampling frame by the CONTROL variables within strata. If you specify the SORT=NEST option, the procedure uses nested sorting. See the section "Sorting by CONTROL Variables" on page 8057 for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the input data set.

According to Chromy's method of sequential selection, PROC SURVEYSELECT first chooses a starting unit randomly from the entire stratum, with probability proportional to size. The procedure uses this unit as the first one and treats the stratum observations as a closed loop. This is done so that all pairwise (joint) expected number of hits are positive and an unbiased variance estimator can be obtained. The procedure numbers observations sequentially from the random start to the end of the stratum and then continues from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, Chromy's method partitions the ordered stratum sampling frame into n_h zones of equal size. There is one selection from each zone and a total of n_h hits (selections), although fewer than n_h distinct units might be selected. Beginning with the random start, the procedure accumulates the expected number of hits and computes

$$E(S_{hi}) = n_h Z_{hi}$$

$$I_{hi} = \operatorname{Int}\left(\sum_{i=1}^{i} \operatorname{E}(S_{hj})\right)$$

$$F_{hi} = \operatorname{Frac}\left(\sum_{j=1}^{i} \operatorname{E}(S_{hj})\right)$$

where $E(S_{hi})$ represents the expected number of hits for unit i in stratum h, $Int(\cdot)$ denotes the integer part of the number, and $Frac(\cdot)$ denotes the fractional part.

Considering each unit sequentially, Chromy's method determines the actual number of hits for unit i by comparing the total number of hits for the first (i-1) units,

$$T_{h(i-1)} = \sum_{j=1}^{i-1} S_{hj}$$

with the value of $I_{h(i-1)}$.

If $T_{h(i-1)} = I_{h(i-1)}$, Chromy's method determines the total number of hits for the first i units as follows. If $F_{hi} = 0$ or $F_{h(i-1)} > F_{hi}$, then $T_{hi} = I_{hi}$. Otherwise, $T_{hi} = I_{hi} + 1$ with probability

$$(F_{hi} - F_{h(i-1)})/(1 - F_{h(i-1)})$$

And the number of hits for unit *i* equals $T_{hi} - T_{h(i-1)}$.

If $T_{h(i-1)} = (I_{h(i-1)} + 1)$, Chromy's method determines the total number of hits for the first i units as follows. If $F_{hi} = 0$, then $T_{hi} = I_{hi}$. If $F_{hi} > F_{h(i-1)}$, then $T_{hi} = I_{hi} + 1$. Otherwise, $T_{hi} = I_{hi} + 1$ with probability

$$F_{hi}/F_{h(i-1)}$$

Brewer's PPS Method

Brewer's method (METHOD=PPS_BREWER) selects two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit i in stratum h equals $2M_{hi}/M_{h.}=2Z_{hi}$. (Because selection probabilities cannot exceed 1, the relative size for each unit, Z_{hi} , must not exceed 1/2.)

Brewer's algorithm first selects a unit with probability

$$\frac{Z_{hi}(1-Z_{hi})}{D_h(1-2Z_{hi})}$$

where

$$D_h = \sum_{i=1}^{N_h} \frac{Z_{hi}(1 - Z_{hi})}{1 - 2Z_{hi}}$$

Then a second unit is selected from the remaining units with probability

$$\frac{Z_{hj}}{1 - Z_{hi}}$$

where unit i is the first unit selected. The joint selection probability for units i and j in stratum h equals

$$P_{h(ij)} = \frac{2Z_{hi}Z_{hj}}{D_h} \left(\frac{1 - Z_{hi} - Z_{hj}}{(1 - 2Z_{hi})(1 - 2Z_{hj})} \right)$$

See Cochran (1977, pp. 261–263) and Brewer (1963) for details. Brewer's method yields the same selection probabilities and joint selection probabilities as Durbin's method. See Cochran (1977) and Durbin (1967) for details.

Murthy's PPS Method

Murthy's method (METHOD=PPS_MURTHY) selects two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit i in stratum h equals

$$P_{hi} = Z_{hi} (1 + K_h - (Z_{hi}/(1 - Z_{hi})))$$

where $Z_{hi} = M_{hi}/M_h$. and

$$K_h = \sum_{j=1}^{N_h} (Z_{hj}/(1-Z_{hj}))$$

Murthy's algorithm first selects a unit with probability Z_{hi} . Then a second unit is selected from the remaining units with probability $Z_{hj}/(1-Z_{hi})$, where unit i is the first unit selected. The joint selection probability for units i and j in stratum h equals

$$P_{h(ij)} = Z_{hi} Z_{hj} \left(\frac{2 - Z_{hi} - Z_{hj}}{(1 - Z_{hi})(1 - Z_{hj})} \right)$$

See Cochran (1977, pp. 263–265) and Murthy (1957) for details.

Sampford's PPS Method

Sampford's method (METHOD=PPS_SAMPFORD) is an extension of Brewer's method that selects more than two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit i in stratum h equals $n_h M_{hi}/M_h = n_h Z_{hi}$. (Because selection probabilities cannot exceed 1, the relative size for each unit, Z_{hi} , must not exceed $1/n_h$.)

Sampford's method first selects a unit from stratum h with probability Z_{hi} . Then subsequent units are selected with probability proportional to

$$\lambda_{hi} = Z_{hi} / (1 - n_h Z_{hi})$$

and with replacement. If the same unit appears more than once in the sample of size n_h , then Sampford's algorithm rejects that sample and selects a new sample. The sample is accepted if it contains n_h distinct units.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for all pairs of selected units in each stratum. The joint selection probability for units i and j in stratum h equals

$$P_{h(ij)} = K_h \lambda_{hi} \lambda_{hj} \sum_{t=2}^{n_h} \left(\left[t - n_h \left(Z_{hi} + Z_{hj} \right) \right] L_{h,(n_h-t)}(i\bar{j}) \right) / n_h^{t-2}$$

where

$$K_h = 1 / \sum_{t=1}^{n_h} (t L_{h,(n_h-t)} / n_h^t)$$

$$L_{h,m} = \sum_{S_h(m)} \lambda_{hi_1} \lambda_{hi_2} \cdots \lambda_{hi_m}$$

and $S_h(m)$ denotes all possible samples of size m, for $m=1,2,\ldots,N_h$. The sum $L_{h,m}(\bar{ij})$ is defined similarly to $L_{h,m}$ but sums over all possible samples of size m that do not include units i and j. See Cochran (1977, pp. 262–263) and Sampford (1967) for details.

Sample Size Allocation

If you specify the ALLOC= option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata according to the method that you request. PROC SURVEYSELECT provides proportional allocation (ALLOC=PROP), optimal allocation (ALLOC=OPTIMAL), and Neyman allocation (ALLOC=NEYMAN). For more information about these allocation methods, see Lohr (2010); Kish (1965); Cochran (1977). You can also directly provide the allocation proportions by using the ALLOC=(values) option or the ALLOC=SAS-data-set option. Then PROC SURVEYSELECT allocates the sample size among the strata according to the proportions that you provide. Allocation proportions are the relative stratum sample sizes, n_h/n , where n_h is the sample size for stratum h and n is the total sample size.

You can use the SAMPSIZE=n option in the PROC SURVEYSELECT statement to specify the total sample size to allocate among the strata. Or you can specify the desired margin of error in the MARGIN= option in the STRATA statement, and PROC SURVEYSELECT computes the stratum sample sizes necessary to achieve that margin of error for the allocation method that you request. See the section "Specifying the Margin of Error" on page 8069 for details.

Proportional Allocation

When you specify the ALLOC=PROP option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to the stratum sizes, where the stratum size is the number of sampling units in the stratum. The allocation proportion of the total sample size for stratum *h* equals

$$f_h^* = N_h/N$$

where N_h is the number of sampling units in stratum h and N is the total number of sampling units for all strata. If you specify the total sample size n in the SAMPSIZE= option in the PROC SURVEYSELECT statement, the procedure computes the target sample size for stratum h as

$$n_h^* = f_h^* \times n$$

The target sample size values, n_h^* , might not be integers, but the stratum sample sizes are required to be integers. PROC SURVEYSELECT uses a rounding algorithm to convert the n_h^* to integer values n_h and maintain the requested total sample size n. The rounding algorithm includes the restriction that all values of n_h must be at least 1, so that at least one unit is selected from each stratum. If you specify a minimum stratum sample size n_{min} in the ALLOCMIN= option in the STRATA statement, then all values of n_h are required to be at least n_{min} . For without-replacement selection methods, PROC SURVEYSELECT also requires that each stratum sample size must not exceed the total number of sampling units in the stratum, $n_h \le N_h$. If a target stratum sample size exceeds the number of units in the stratum, PROC SURVEYSELECT allocates the maximum number of units, N_h , to the stratum, and then allocates the remaining total sample size proportionally among the remaining strata.

PROC SURVEYSELECT provides the target allocation proportions f_h^* in the output data set variable AllocProportion. The variable ActualProportion contains the actual proportions for the allocated sample sizes n_h . For stratum h, the actual proportion is computed as

$$f_h = n_h/n$$

where n_h is the allocated sample size for stratum h and n is the total sample size. The actual proportions f_h can differ from the target allocation proportions f_h^* due to rounding, the requirement that $n_h \ge 1$ (or $n_h \ge n_{min}$), and the requirement that $n_h \le N_h$ for without-replacement selection methods.

Optimal Allocation

When you specify the ALLOC=OPTIMAL option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to stratum sizes, stratum costs, and stratum variances. You provide the stratum costs and variances by using the COST= and VAR= options, respectively.

Optimal allocation minimizes the overall variance for a specified cost, or equivalently minimizes the overall cost for a specified variance. For details, see Lohr (2010); Cochran (1977); Kish (1965). For optimal allocation, PROC SURVEYSELECT computes the proportion of the total sample size for stratum h as

$$f_h^* = \frac{N_h S_h}{\sqrt{C_h}} / \sum_{i=1}^H \frac{N_i S_i}{\sqrt{C_i}}$$

where N_h is the number of sampling units in stratum h, S_h is the standard deviation within stratum h, C_h is the unit cost within stratum h, and H is the total number of strata.

If you specify the total sample size *n* in the SAMPSIZE= option in the PROC SURVEYSELECT statement, the procedure computes the target sample size for stratum *h* as

$$n_h^* = f_h^* \times n$$

As described in the section "Proportional Allocation" on page 8068, the values of n_h^* are converted to integer sample sizes n_h by using a rounding algorithm that requires the sum of the stratum sample sizes to equal n. The final stratum sample sizes n_h are also required to be at least 1, or at least n_{min} if you specify a minimum stratum sample size in the ALLOCMIN= option in the STRATA statement. For without-replacement selection methods, the final sample sizes cannot exceed the stratum sizes.

Neyman Allocation

When you specify the ALLOC=NEYMAN option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to stratum sizes and stratum variances. Neyman allocation is a special case of optimal allocation (described in the section "Optimal Allocation" on page 8068), where the costs per unit are the same for all strata. For Neyman allocation, the proportion of the total sample size for stratum *h* is computed as

$$f_h^* = N_h S_h / \sum_{i=1}^H N_i S_i$$

If you specify the total sample size n in the SAMPSIZE= option in the PROC SURVEYSELECT statement, the procedure computes the target sample size for stratum h as $n_h^* = f_h^* \times n$. The n_h^* are converted to integer sample sizes n_h by using a rounding algorithm that requires the sum of the stratum sizes to equal n. The final sample sizes n_h are required to be at least 1, or at least n_{min} if you specify a minimum sample size in the ALLOCMIN= option in the STRATA statement. For without-replacement selection methods, the final sample sizes must not exceed the stratum sizes.

Specifying the Margin of Error

Instead of specifying the total sample size to allocate among the strata, you can specify the desired margin of error for estimating the overall mean from the stratified sample. Based on the requested allocation method and the stratum variances that you provide, PROC SURVEYSELECT computes the stratum sample sizes that are required to achieve this margin of error. You specify the margin of error in the MARGIN= option in the STRATA statement, and you provide stratum variances in the VAR= option. You can use the MARGIN= option with any allocation method (proportional, optimal, or Neyman) or with allocation proportions that you provide (ALLOC=(values) or ALLOC=SAS-data-set).

The margin of error e is the half-width of the $100(1 - \alpha)\%$ confidence interval for the overall mean based on the stratified sample,

$$e = z_{\alpha/2} \times \sqrt{\operatorname{Var}(\bar{y}_{str})}$$

where $Var(\bar{y}_{str})$ is the variance of the estimate of the mean from the stratified sample and $z_{\alpha/2}$ is the $100(1-\alpha/2)$ percentile of the standard normal distribution. You can specify the value of α in the ALPHA= option in the STRATA statement. By default, PROC SURVEYSELECT uses a 95% confidence interval (ALPHA=0.05).

For the specified margin of error e, PROC SURVEYSELECT computes the target stratum sample sizes n_h^* for without-replacement selection methods as

$$n_h^* = f_h^* \left(\sum_{i=1}^H N_i^2 S_i^2 / f_i^* \right) / \left((eN/z_{\alpha/2})^2 + \sum_{i=1}^H N_i S_i^2 \right)$$

where N_i is the number of sampling units in stratum i, S_i^2 is the variance within stratum i, N is the total number of sampling units for all strata, and H is the total number of strata.

The values of f_h^* are the stratum allocation proportions, which PROC SURVEYSELECT computes according to the allocation method that you request. See the sections "Proportional Allocation" on page 8068, "Optimal Allocation" on page 8068, and "Neyman Allocation" on page 8069 for details.

For with-replacement selection methods, PROC SURVEYSELECT computes the target stratum sample sizes as

$$n_h^* = f_h^* \left(\sum_{i=1}^H N_i^2 S_i^2 / f_i^* \right) / \left(eN/z_{\alpha/2} \right)^2$$

See Lohr (2010, p. 91), Cochran (1977, Chapter 5), and Arkin (1984, Chapter 10) for more information.

The target sample size values n_h^* might not be integers, but the stratum sample sizes are required to be integers. PROC SURVEYSELECT rounds all fractional target sample sizes up to integer sample sizes. If you specify a minimum stratum sample size n_{min} in the ALLOCMIN= option in the STRATA statement, then all stratum sample sizes n_h are required to be at least n_{min} .

For without-replacement selection methods, a stratum sample size cannot exceed the number of units in the stratum. If a target stratum sample size does exceed the number of units in the stratum, the procedure sets $n_h = N_h$ for that stratum, removes the stratum from the variance computation (because it contributes nothing to the sampling error), revises the allocation proportions f_h^* for the remaining strata, and computes the stratum sample sizes again. If a stratum sample size equals the number of units in its stratum, the procedure also removes that stratum from the variance computation and revises the sample sizes for the remaining strata. See Cochran (1977, p. 104) and Arkin (1984, p. 176) for details.

When you specify the STATS option with the MARGIN= option in the STRATA statement, PROC SURVEYSELECT displays the expected margin of error for the sample allocation. The expected margin of error (for the overall mean based on the stratified sample) is computed from the stratum sizes (N_i) , the stratum variances that you provide (S_i^2) , and the allocated stratum sample sizes that the procedure computes (n_i) . For without-replacement selection methods, the expected margin of error is

$$e = z_{\alpha/2} \times \frac{1}{N} \sqrt{\sum_{i=1}^{H} \frac{N_i^2 S_i^2}{n_i} (1 - \frac{n_i}{N})}$$

For with-replacement selection methods, the expected margin of error is

$$e = z_{\alpha/2} \times \frac{1}{N} \sqrt{\sum_{i=1}^{H} \frac{N_i^2 S_i^2}{n_i}}$$

The expected margin of error should be less than or equal to the value specified in the MARGIN= option. Any difference between the expected margin and the specified value is due to rounding the target stratum sample sizes up to integer values and increasing stratum sample sizes to equal the required minimum value (ALLOCMIN=).

Secondary Input Data Set

The primary input data set for PROC SURVEYSELECT is the DATA= data set, which contains the list of units from which the sample is selected. You can use a secondary input data set to provide stratum-level design and selection information, such as sample sizes or rates, certainty size values, or stratum costs. This secondary input data set is sometimes called the SAMPSIZE= input data set. You can provide stratum sample sizes in the _NSIZE_ (or SampleSize) variable in the SAMPSIZE= data set.

The secondary input data set must contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the secondary data set as in the DATA= data set. You can name only one secondary data set in each invocation of the procedure.

You must name the secondary input data set in the appropriate PROC SURVEYSELECT or STRATA option, and use the designated variable name to provide the stratum-level values. For example, if you want to provide stratum-level costs for sample allocation, you name the secondary data set in the COST=SAS-data-set option in the STRATA statement. The data set must include the stratum costs in a variable named _COST_. You can use the secondary input data set for more than one option if it is appropriate for your design. For example, the secondary data set can include both stratum costs and stratum variances, which are required for optimal allocation (ALLOC=OPTIMAL).

Instead of using a separate secondary input data set, you can include secondary information in the DATA= data set along with the sampling frame. When you include secondary information in the DATA= data set, name the DATA= data set in the appropriate options, and include the required variables in the DATA= data set.

Table 95.3 lists the available secondary data set variables, together with their descriptions and the corresponding options.

Variable	Description	Statement	Option
ALLOC	Allocation proportion	STRATA	ALLOC=
CERTP	Certainty proportion	PROC	CERTSIZE=P=
CERTSIZE	Certainty size	PROC	CERTSIZE=
COST	Cost	STRATA	COST=
MAXSIZE	Maximum size	PROC	MAXSIZE=
MINSIZE	Minimum size	PROC	MINSIZE=
NSIZE	Sample size	PROC	SAMPSIZE=
RATE	Sampling rate	PROC	SAMPRATE=
SEED	Random number seed	PROC	SEED=
VAR	Variance	STRATA	VAR=

Table 95.3 PROC SURVEYSELECT Secondary Data Set Variables

Sample Output Data Set

PROC SURVEYSELECT selects a sample and creates a SAS data set that contains the sample of selected units, unless you specify the NOSAMPLE option in the STRATA statement. If you specify the NOSAMPLE option, PROC SURVEYSELECT allocates the total sample size among the strata but does not select the sample. When you specify the NOSAMPLE option, the output data set contains the allocated sample sizes. See the section "Allocation Output Data Set" on page 8075 for details.

You can specify the name of the sample output data set in the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

The output data set contains the units that are selected for the sample. These units are either observations or groups of observations (clusters) that you define by specifying the SAMPLINGUNIT statement. If you do not specify the SAMPLINGUNIT statement to define units (clusters), then PROC SURVEYSELECT uses observations as sampling units by default.

By default, the output data set contains only those units that are selected for the sample. But if you specify the OUTALL option, the output data set includes all observations from the input data set and also contains a variable that indicates each observation's selection status. The variable Selected equals 1 for an observation selected for the sample, and equals 0 for an observation not selected. The OUTALL option is available for equal probability selection methods.

By default, the output data set contains a single copy of each selected unit, even if the unit is selected more than once, and the variable NumberHits records the number of hits (selections) for each unit. A unit can be selected more than once if you use a with-replacement or with-minimum-replacement selection method (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, or METHOD=PPS_SEQ). If you specify the OUTHITS option, the output data set includes a distinct copy of each selected unit in the output data set. For example, with the OUTHITS option a unit that is selected three times is represented by three copies in the output data set.

The output data set also contains design information and selection statistics, depending on the selection method and output options you specify. The output data set can include the following variables:

- Selected, which indicates whether or not the observation is selected for the sample. This variable is included if you specify the OUTALL option. Selected equals 1 for an observation that is selected for the sample, or 0 for an observation that is not selected.
- STRATA variables, which you specify in the STRATA statement.
- Replicate, which is the sample replicate number. This variable is included when you request replicated sampling with the REPS= option.
- SAMPLINGUNIT (CLUSTER) variables, which you specify in the SAMPLINGUNIT statement.
- ID variables, which you name in the ID statement.
- CONTROL variables, which you specify in the CONTROL statement.

- Zone, which is the selection zone. This variable is included for METHOD=PPS_SEQ.
- SIZE variable, which you specify in the SIZE statement.
- AdjustedSize, which is the adjusted size measure. This variable is included if you request adjusted sizes with the MINSIZE= or MAXSIZE= option when your sampling units are observations.
- UnitSize, which is the sampling unit (or cluster) size measure. This variable is included if you specify the SAMPLINGUNIT statement.
- Certain, which indicates certainty selection. This variable is included if you specify the CERTSIZE= or CERTSIZE=P= option. Certain equals 1 for units that are included with certainty because their size measures exceed the certainty size value or the certainty proportion; otherwise, Certain equals 0.
- NumberHits, which is the number of hits (selections). This variable is included for selection methods that are with replacement or with minimum replacement (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEO).

The output data set includes the following variables if you request a PPS selection method or if you specify the STATS option in the PROC SURVEYSELECT statement for other methods:

- ExpectedHits, which is the expected number of hits (selections). This variable is included for selection methods that are with replacement or with minimum replacement, where the same unit can be selected more than once (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ).
- SelectionProb, which is the probability of selection. This variable is included for selection methods that are without replacement.
- SamplingWeight, which is the sampling weight. This variable equals the inverse of ExpectedHits or SelectionProb.

If you specify the STATS or OUTSIZE option for METHOD=BERNOULLI, the output data set contains the following variables. If you specify a STRATA statement, the output data set includes stratum-level values of these variables; otherwise, the output data set includes overall values.

- Total, which is the total number of sampling units
- SelectionProb, which is the selection probability that you specify by using the SAMPRATE= option
- ExpectedN, which is the expected value of the sample size
- SampleSize, which is the actual sample size

If you specify the STATS option for METHOD=BERNOULLI, the output data set also contains the following variable:

• AdjSamplingWeight, which is the adjusted sampling weight

For METHOD=PPS_BREWER and METHOD=PPS_MURTHY, which select two units from each stratum with probability proportional to size, the output data set contains the following variable:

• JtSelectionProb, which is the joint probability of selection for the two units selected from the stratum.

If you specify the JTPROBS option to compute joint probabilities of selection for METHOD=PPS or METHOD=PPS_SAMPFORD, then the output data set contains the following variables:

- Unit, which is an identification variable that numbers the selected units sequentially within each stratum.
- JtProb_1, JtProb_2, JtProb_3, ..., where the variable JtProb_1 contains the joint probability of selection for the current unit and unit 1. Similarly, JtProb_2 contains the joint probability of selection for the current unit and unit 2, and so on.

If you specify the JTPROBS option for METHOD=PPS_WR, then the output data set contains the following variables:

- Unit, which is an identification variable that numbers the selected units sequentially within each stratum.
- JtHits_1, JtHits_2, JtHits_3, ..., where the variable JtHits_1 contains the joint expected number of hits for the current unit and unit 1. Similarly, JtHits_2 contains the joint expected number of hits for the current unit and unit 2, and so on.

If you specify the OUTSIZE option, the output data set contains the following variables. If you specify a STRATA statement, the output data set includes stratum-level values of these variables; otherwise, the output data set includes overall values.

- MinimumSize, which is the minimum size measure specified with the MINSIZE= option. This variable is included if you specify the MINSIZE= option.
- MaximumSize, which is the maximum size measure specified with the MAXSIZE= option. This variable is included if you specify the MAXSIZE= option.
- CertaintySize, which is the certainty size measure specified with the CERTSIZE= option. This variable is included if you specify the CERTSIZE= option.
- CertaintyProp, which is the certainty proportion specified with the CERTSIZE=P= option. This variable is included if you specify the CERTSIZE=P= option.
- Total, which is the total number of sampling units in the stratum. This variable is included if there is no SIZE statement, or if you specify a SAMPLINGUNIT statement.
- TotalSize, which is the total of size measures in the stratum. This variable is included if there is a SIZE statement, or if you specify the PPS option in the SAMPLINGUNIT statement.

- TotalAdjSize, which is the total of adjusted size measures in the stratum. This variable is included if you request adjusted sizes with the MAXSIZE= or MINSIZE= option.
- SamplingRate, which is the sampling rate. This variable is included if you specify the SAMPRATE= option.
- SampleSize, which is the sample size. This variable is included if you specify the SAMPSIZE= option, or if you specify METHOD=PPS_BREWER or METHOD=PPS_MURTHY, which selects two units from each stratum.

If you specify the OUTSEED option, the output data set contains the following variable:

• InitialSeed, which is the initial seed for the stratum.

If you specify the ALLOC= option in the STRATA statement, the output data set contains the following variables:

- Total, which is the total number of sampling units in the stratum.
- Variance, which is the stratum variance. This variable is included if you specify the VAR, VAR=(*values*), or VAR=*SAS-data-set* option for the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= allocation option.
- Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(values), or COST=SAS-data-set option for ALLOC=OPTIMAL.
- AllocProportion, which is the target allocation proportion (the proportion of the total sample size to allocate to the stratum). PROC SURVEYSELECT computes this proportion by using the specified allocation method.
- SampleSize, which is the sample size allocated to the stratum.
- ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion equals the allocated stratum sample size divided by the total sample size. This value can differ from the target AllocProportion due to rounding and other restrictions. See the section "Sample Size Allocation" on page 8067 for details.

Allocation Output Data Set

When you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata but does not select the sample. In this case, the OUT= data set contains the allocated sample sizes.

You can specify the name of the allocation output data set with the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

The allocation output data set contains one observation for each stratum. The data set can include the following variables:

- STRATA variables, which you specify in the STRATA statement.
- Total, which is the total number of sampling units in the stratum.
- Variance, which is the stratum variance. This variable is included if you specify the VAR, VAR=(values), or VAR=SAS-data-set option for the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= allocation option.
- Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(values), or COST=SAS-data-set option for ALLOC=OPTIMAL.
- AllocProportion, which is the target allocation proportion (the proportion of the total sample size to allocate to the stratum). PROC SURVEYSELECT computes this proportion by using the specified allocation method.
- SampleSize, which is the sample size allocated to the stratum.
- ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion equals the allocated stratum sample size divided by the total sample size. This value can differ from the target AllocProportion due to rounding and other restrictions. See the section "Sample Size Allocation" on page 8067 for details.

Displayed Output

By default, PROC SURVEYSELECT displays two tables that summarize the sample selection: the "Sample Selection Method" table and the "Sample Selection Summary" table.

If you request sample allocation but no sample selection, PROC SURVEYSELECT displays two tables that summarize the allocation: the "Sample Allocation Method" table and the "Sample Allocation Summary" table.

You can suppress display of these tables by specifying the NOPRINT option.

PROC SURVEYSELECT creates an output data set that contains the units that are selected for the sample. Or if you request sample allocation but no sample selection, PROC SURVEYSELECT creates an output data set that contains the sample size allocation results. (See the sections "Sample Output Data Set" on page 8072 and "Allocation Output Data Set" on page 8075 for information about these output data sets.) The procedure does not display the output data set that it creates. Use PROC PRINT, PROC REPORT, or any other SAS reporting tool to display the output data set.

PROC SURVEYSELECT displays the following information in the "Sample Selection Method" table:

- Selection Method
- Sampling Unit Variables, if you specify a SAMPLINGUNIT statement
- Size Measure variable, if you specify a SIZE statement

- Size Measure: Number of Observations, if you specify the PPS option in the SAMPLINGUNIT statement and do not specify a SIZE statement
- Minimum Size Measure, if you specify the MINSIZE= option
- Maximum Size Measure, if you specify the MAXSIZE= option
- Certainty Size Measure, if you specify the CERTSIZE= option
- Certainty Proportion, if you specify the CERTSIZE=P= option
- Strata Variables, if you specify a STRATA statement
- Control Variables, if you specify a CONTROL statement
- Control Sorting (Serpentine or Nested), if you specify a CONTROL statement
- Allocation (Proportional, Neyman, Optimal, or Input), if you specify the ALLOC= option in the STRATA statement
- Margin of Error, if you specify the MARGIN= option in the STRATA statement
- Confidence Level, if you specify the ALPHA= option in the STRATA statement

PROC SURVEYSELECT displays the following information in the "Sample Selection Summary" table:

- Input Data Set name
- Sorted Data Set name, if you specify the OUTSORT= option
- Random Number Seed
- Sample Size or Stratum Sample Size, if you specify the SAMPSIZE=*n* option
- Sample Size Data Set, if you specify the SAMPSIZE=SAS-data-set option
- Sampling Rate or Stratum Sampling Rate, if you specify the SAMPRATE=*r* option for METHOD=SRS, METHOD=URS, METHOD=SYS, or METHOD=SEQ.
- Selection Probability or Stratum Selection Probability, if you specify the SAMPRATE=*r* option for METHOD=BERNOULLI
- Sampling Rate Data Set, if you specify the SAMPRATE=SAS-data-set option
- Minimum Sample Size or Stratum Minimum Sample Size, if you specify the NMIN= option with the SAMPRATE= option
- Maximum Sample Size or Stratum Maximum Sample Size, if you specify the NMAX= option with the SAMPRATE= option
- Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA statement
- Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement

- Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement
- Selection Probability, if you specify METHOD=SRS, METHOD=SYS, or METHOD=SEQ and do not specify a SIZE statement or a STRATA statement
- Expected Number of Hits, if you specify METHOD=URS and do not specify a STRATA statement
- Total Number of Units, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a STRATA statement
- Expected Sample Size, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a STRATA statement
- Sample Size, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a STRATA statement
- Sampling Weight, if you specify an equal probability selection method (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, or METHOD=BERNOULLI) and do not specify a STRATA statement
- Adjusted Sampling Weight, if you specify METHOD=BERNOULLI and do not specify a STRATA statement
- Number of Strata, if you specify a STRATA statement
- Stratum Minimum Sample Size, if you specify the ALLOCMIN= option in the STRATA statement
- Number of Replicates, if you specify the REPS= option
- Total Sample Size, if you specify a STRATA statement or the REPS= option
- Expected Margin of Error, if you specify the STATS option with the MARGIN= option in the STRATA statement
- Expected Variance, if you specify the STATS option without the MARGIN= option in the STRATA statement for ALLOC=OPTIMAL or ALLOC=NEYMAN
- Total Stratum Costs, if you specify the STATS option with ALLOC=OPTIMAL in the STRATA statement
- Output Data Set name

If you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total sample among the strata but does not select the sample. When you specify the NOSAMPLE option, PROC SURVEYSELECT displays the "Sample Allocation Method" table and the "Sample Allocation Summary" table. The "Sample Allocation Method" table includes the following information:

- Allocation (Proportional, Neyman, Optimal, or Input)
- Margin of Error, if you specify the MARGIN= option in the STRATA statement
- Confidence Level, if you specify the ALPHA= option in the STRATA statement
- Sampling Unit Variables, if you specify a SAMPLINGUNIT statement

- Strata Variables
- Frequency Variable
- Selection Method, if you specify the METHOD= option

PROC SURVEYSELECT displays the following information in the "Sample Allocation Summary" table.

- Input Data Set name
- Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA statement
- Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement
- Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement
- Number of Strata
- Stratum Minimum Sample Size, if you specify the ALLOCMIN= option in the STRATA statement
- Total Sample Size
- Expected Margin of Error, if you specify the STATS option with the MARGIN= option in the STRATA statement
- Expected Variance, if you specify the STATS option without the MARGIN= option in the STRATA statement for ALLOC=OPTIMAL or ALLOC=NEYMAN
- Total Stratum Costs, if you specify the STATS option with ALLOC=OPTIMAL in the STRATA statement
- Allocation Output Data Set name

ODS Table Names

PROC SURVEYSELECT assigns a name to each table that it creates. You can use these names to refer to tables when you use the Output Delivery System (ODS) to select tables and create output data sets. For more information about ODS, see Chapter 20, "Using the Output Delivery System." Table 95.4 lists the table names.

Table 95.4	ODS Tables Produced b	v PROC SURVEYSELECT
-------------------	-----------------------	---------------------

ODS Table Name	Description	Statement	Option
Method	Sample selection method	PROC	Default
Method	Sample allocation method	STRATA	NOSAMPLE
Summary	Sample selection summary	PROC	Default
Summary	Sample allocation summary	STRATA	NOSAMPLE

Examples: SURVEYSELECT Procedure

Example 95.1: Replicated Sampling

This example uses the Customers data set from the section "Getting Started: SURVEYSELECT Procedure" on page 8021. The data set Customers contains an Internet service provider's current subscribers, and the service provider wants to select a sample from this population for a customer satisfaction survey.

This example illustrates replicated sampling, which selects multiple samples from the survey population according to the same design. You can use replicated sampling to provide a simple method of variance estimation, or to evaluate variable nonsampling errors such as interviewer differences. For information about replicated sampling, see Lohr (2010); Wolter (2007); Kish (1965, 1987); Kalton (1983).

This design includes four replicates, each with a sample size of 50 customers. The sampling frame is stratified by State and sorted by Type and Usage within strata. Customers are selected by sequential random sampling with equal probability within strata. The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set by using this design:

```
title1 'Customer Satisfaction Survey';
title2 'Replicated Sampling';
proc surveyselect data=Customers method=seq n=(8 12 20 10)
                  reps=4 seed=40070 ranuni out=SampleRep;
   strata State;
   control Type Usage;
```

The STRATA statement names the stratification variable State. The CONTROL statement names the control variables Type and Usage.

In the PROC SURVEYSELECT statement, the METHOD=SEQ option requests sequential random sampling. The REPS= option specifies four replicates of this sample. The N=(8 12 20 10) option lists the stratum sample sizes for each replicate. The N= option lists the stratum sample sizes in the same order as the strata appear in the Customers data set, which has been sorted by State. The sample size of eight customers corresponds to the first stratum, State = 'AL'. The sample size 12 corresponds to the next stratum, State = 'FL', and so on.

The SEED= option specifies 40070 as the initial seed for random number generation. The RANUNI option requests random number generation by the RANUNI generator, which PROC SURVEYSELECT used in releases prior to SAS/STAT 12.1. (Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default.) You can specify the RANUNI option with the SEED= option to reproduce samples that PROC SURVEYSELECT selected in releases prior to SAS/STAT 12.1. To reproduce a sample by using the RANUNI and SEED= options, you must also specify the same input data set and sample selection parameters.

Output 95.1.1 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A total of 200 customers is selected in four replicates. PROC SURVEYSELECT selects each replicate by using sequential random sampling within strata determined by State. The sampling frame Customers is sorted by the control variables Type and Usage within strata, according to hierarchic serpentine sorting. The output data set SampleRep contains the sample.

Output 95.1.1 Sample Selection Summary

```
Customer Satisfaction Survey
             Replicated Sampling
           The SURVEYSELECT Procedure
Selection Method
                    Sequential Random Sampling
                        With Equal Probability
Strata Variable
                                         State
Control Variables
                                          Type
                                         Usage
Control Sorting
                                     Serpentine
                               CUSTOMERS
       Input Data Set
       Random Number Seed
                                   40070
       Number of Strata
                                       4
       Number of Replicates
                                        4
       Total Sample Size
                                      200
       Output Data Set
                               SAMPLEREP
```

The following PROC PRINT statements display the selected customers for the first stratum, State = 'AL', from the output data set SampleRep:

```
title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Replicated Design';
title3 '(First Stratum)';
proc print data=SampleRep;
   where State = 'AL';
run;
```

Output 95.1.2 displays the 32 sample customers of the first stratum (State = 'AL') from the output data set SampleRep, which includes the entire sample of 200 customers. The variable SelectionProb contains the selection probability, and SamplingWeight contains the sampling weight. Because customers are selected with equal probability within strata in this design, all customers in the same stratum have the same selection probability. These selection probabilities and sampling weights apply to a single replicate, and the variable Replicate contains the sample replicate number.

Customer Satisfaction Survey
Sample Selected by Replicated Design
(First Stratum)

Output 95.1.2 Customer Sample (First Stratum)

				_		Selection	Sampling
Obs	State	Replicate	CustomerID	Type	Usage	Prob	Weight
1	AL	1	882-37-7496	New	572	.004115226	243
2	AL	1	581-32-5534	New	863	.004115226	243
3	AL	1	980-29-2898	Old	571	.004115226	243
4	AL	1	172-56-4743	Old	128	.004115226	243
5	AL	1	998-55-5227	Old	35	.004115226	243
6	AL	1	625-44-3396	New	60	.004115226	243
7	AL	1	627-48-2509	New	114	.004115226	243
8	AL	1	257-66-6558	New	172	.004115226	243
9	AL	2	622-83-1680	New	22	.004115226	243
10	AL	2	343-57-1186	New	53	.004115226	243
11	AL	2	976-05-3796	New	110	.004115226	243
12	AL	2	859-74-0652	New	303	.004115226	243
13	AL	2	476-48-1066	New	839	.004115226	243
14	AL	2	109-27-8914	Old	2102	.004115226	243
15	AL	2	743-25-0298	Old	376	.004115226	243
16	AL	2	722-08-2215	Old	105	.004115226	243
17	AL	3	668-57-7696	New	200	.004115226	243
18	AL	3	300-72-0129	New	471	.004115226	243
19	AL	3	073-60-0765	New	656	.004115226	243
20	AL	3	526-87-0258	Old	672	.004115226	243
21	AL	3	726-61-0387	Old	150	.004115226	243
22	AL	3	632-29-9020	Old	51	.004115226	243
23	AL	3	417-17-8378	New	56	.004115226	243
24	AL	3	091-26-2366	New	93	.004115226	243
25	AL	4	336-04-1288	New	419	.004115226	243
26	AL	4	827-04-7407	New	650	.004115226	243
27	AL	4	317-70-6496	Old	452	.004115226	243
28	AL	4	002-38-4582	Old	206	.004115226	243
29	AL	4	181-83-3990	Old	33	.004115226	243
30	AL	4	675-34-7393	New	47	.004115226	243
31	AL	4	228-07-6671	New	65	.004115226	243
32	AL	4	298-46-2434	New	161	.004115226	243

Example 95.2: PPS Selection of Two Units per Stratum

This example describes hospital selection for a survey by using PROC SURVEYSELECT. A state health agency plans to conduct a statewide survey of a variety of different hospital services. The agency plans to select a probability sample of individual discharge records within hospitals by using a two-stage sample design. First-stage units are hospitals, and second-stage units are patient discharges during the study period. Hospitals are stratified first according to geographic region and then by rural/urban type and size of hospital. Two hospitals are selected from each stratum with probability proportional to size.

The data set HospitalFrame contains all hospitals in the first geographical region of the state:

```
data HospitalFrame;
  input Hospital$ Type$ SizeMeasure @@;
  if (SizeMeasure < 20) then Size='Small ';</pre>
     else if (SizeMeasure < 50) then Size='Medium';
     else Size='Large ';
  datalines;
034 Rural 0.870 107 Rural 1.316
079 Rural 2.127 223 Rural 3.960
236 Rural 5.279 165 Rural 5.893
086 Rural 0.501 141 Rural 11.528
042 Urban 3.104 124 Urban 4.033
006 Urban 4.249 261 Urban 4.376
195 Urban 5.024 190 Urban 10.373
038 Urban 17.125
                  083 Urban 40.382
259 Urban 44.942 129 Urban 46.702
133 Urban 46.992 218 Urban 48.231
026 Urban 61.460
                  058 Urban 65.931
119 Urban 66.352
```

In the SAS data set HospitalFrame, the variable Hospital identifies the hospital. The variable Type equals 'Urban' if the hospital is located in an urban area, and 'Rural' otherwise. The variable SizeMeasure contains the hospital's size measure, which is constructed from past data on service utilization for the hospital together with the desired sampling rates for each service. This size measure reflects the amount of relevant survey information expected from the hospital. See Drummond et al. (1982) for details about this type of size measure. The variable Size equals 'Small', 'Medium', or 'Large', depending on the value of the hospital's size measure.

The following PROC PRINT statements display the data set Hospital Frame and produce Output 95.2.1:

```
title1 'Hospital Utilization Survey';
title2 'Sampling Frame, Region 1';
proc print data=HospitalFrame;
run;
```

Output 95.2.1 Sampling Frame

	Vocnita	1 11+ilies+	ion Currou					
	Hospital Utilization Survey Sampling Frame, Region 1							
	Sampling Flame, Region 1							
			Size					
Obs	Hospital	Type	Measure	Size				
1	034	Rural	0.870	Small				
2	107	Rural	1.316	Small				
3	079	Rural	2.127	Small				
4	223	Rural	3.960	Small				
5	236	Rural	5.279	Small				
6	165	Rural	5.893	Small				
7	086	Rural	0.501	Small				
8	141	Rural	11.528	Small				
9	042	Urban	3.104	Small				
10	124	Urban	4.033	Small				
11	006	Urban	4.249	Small				
12	261	Urban	4.376	Small				
13	195	Urban	5.024	Small				
14	190	Urban	10.373	Small				
15	038	Urban	17.125	Small				
16	083	Urban	40.382	Medium				
17	259	Urban	44.942	Medium				
18	129	Urban	46.702	Medium				
19	133	Urban	46.992	Medium				
20	218	Urban	48.231	Medium				
21	026	Urban	61.460	Large				
22	058	Urban	65.931	Large				
23	119	Urban	66.352	Large				

The following PROC SURVEYSELECT statements select a probability sample of hospitals from the HospitalFrame data set by using a stratified design with PPS selection of two units from each stratum:

The STRATA statement names the stratification variables Type and Size. The NOTSORTED option specifies that observations with the same STRATA variable values are grouped together but are not necessarily sorted in alphabetical or increasing numerical order. In the HospitalFrame data set, Size = 'Small' precedes Size = 'Medium'.

In the PROC SURVEYSELECT statement, the METHOD=PPS_BREWER option requests sample selection by Brewer's method, which selects two units per stratum with probability proportional to size. The SEED= option specifies 48702 as the initial seed for random number generation. The SIZE statement names SizeMeasure as the size measure variable. It is not necessary to specify the sample size with the N= option, because Brewer's method always selects two units from each stratum.

Output 95.2.2 displays the output from PROC SURVEYSELECT. A total of eight hospitals were selected from the four strata. The data set SampleHospitals contains the selected hospitals.

Output 95.2.2 Sample Selection Summary

```
Hospital Utilization Survey
      Stratified PPS Sampling
      The SURVEYSELECT Procedure
Selection Method Brewer's PPS Method
Size Measure SizeMeasure
Strata Variables
                              Type
                              Size
                    HOSPITALFRAME
Input Data Set
Random Number Seed
                      48702
Stratum Sample Size
                                2
Number of Strata
                                 4
Total Sample Size
                                 8
Output Data Set SAMPLEHOSPITALS
```

The following PROC PRINT statements display the sample hospitals and produce Output 95.2.3:

```
title1 'Hospital Utilization Survey';
title2 'Sample Selected by Stratified PPS Design';
proc print data=SampleHospitals;
run;
```

Output 95.2.3 Sample Hospitals

		Sam	-	Utilizatio	on Survey ified PPS Dea	zian	
		Jann	ore perected	a by Scrac.	rred FF5 De.	31911	
	_			Size	Selection	Sampling	Jt Selection
Obs	Type	Size	Hospital	Measure	Prob	Weight	Prob
1	Rural	Small	165	5.893	0.37447	2.67046	0.22465
2	Rural	Small	141	11.528	0.73254	1.36511	0.22465
3	Urban	Small	006	4.249	0.17600	5.68181	0.01454
4	Urban	Small	195	5.024	0.20810	4.80533	0.01454
5	Urban	Medium	129	46.702	0.41102	2.43297	0.11211
6	Urban	Medium	218	48.231	0.42448	2.35584	0.11211
7	Urban	Large	058	65.931	0.68060	1.46929	0.36555
8	Urban	Large	119	66.352	0.68495	1.45996	0.36555

The variable SelectionProb contains the selection probability for each hospital in the sample. The variable JtSelectionProb contains the joint probability of selection for the two sample hospitals in the same stratum. The variable SamplingWeight contains the sampling weight component for this first stage of the design. The final-stage weight components, which correspond to patient record selection within hospitals, can be multiplied by the hospital weight components to obtain the overall sampling weights.

Example 95.3: PPS (Dollar-Unit) Sampling

A small company wants to audit employee travel expenses in an effort to improve the expense reporting procedure and possibly reduce expenses. The company does not have resources to examine all expense reports and wants to use statistical sampling to objectively select expense reports for audit.

The data set TravelExpense contains the dollar amount of all employee travel expense transactions during the past month:

```
data TravelExpense;
  input ID$ Amount @@;
  if (Amount < 500) then Level='1 Low';
     else if (Amount > 1500) then Level='3_High';
     else Level='2_Avg ';
  datalines;
110 237.18 002 567.89
                        234 118.50
    74.38 411 1287.23 782 258.10
743
216 325.36 174 218.38 568 1670.80
302 134.71 285 2020.70
                         314 47.80
                         425 780.10
139 1183.45 775 330.54
506 895.80 239 620.10
                         011 420.18
672 979.66 142 810.25
                        738 670.85
192 314.58
          243
                87.50
                        263 1893.40
496 753.30 332 540.65 486 2580.35
614 230.56 654 185.60 308 688.43
784 505.14 017 205.48 162 650.42
289 1348.34 691 30.50
                        545 2214.80
517 940.35 382 217.85
                         024 142.90
478 806.90 107 560.72
```

In the SAS data set TravelExpense, the variable ID identifies the travel expense report. The variable Amount contains the dollar amount of the reported expense. The variable Level equals '1_Low', '2_Avg', or '3_High', depending on the value of Amount.

In the sample design for this audit, expense reports are stratified by Level. This ensures that each of these expense levels is included in the sample and also permits a disproportionate allocation of the sample, selecting proportionately more of the expense reports from the higher levels. Within strata, the sample of expense reports is selected with probability proportional to the amount of the expense, thus giving a greater chance of selection to larger expenses. In auditing terms, this is known as monetary-unit sampling. See Wilburn (1984) for details.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following PROC SORT statements sort the TravelExpense data set by the stratification variable Level.

```
proc sort data=TravelExpense;
  by Level;
run;
```

Output 95.3.1 displays the sampling frame data set TravelExpense, which contains 41 observations.

Output 95.3.1 Sampling Frame

			4
	Travel	L Expense Au	dit
Obs	ID	Amount	Level
1	110	237.18	1_Low
2	234	118.50	1_Low
3	743	74.38	1_Low
4	782	258.10	1_Low
5	216	325.36	1_Low
6	174	218.38	1_Low
7	302	134.71	1_Low
8	314	47.80	1_Low
9	775	330.54	1_Low
10	011	420.18	1_Low
11	192	314.58	1_Low
12	243	87.50	1_Low
13	614	230.56	1_Low
14	654	185.60	1_Low
15	017	205.48	1_Low
16 17	691 382	30.50 217.85	1_Low 1_Low
17	362 024	142.90	1_Low
19	002	567.89	2_Avg
20	411	1287.23	2_Avg
21	139	1183.45	2_Avg 2_Avg
22	425	780.10	2_Avg
23	506	895.80	2_Avg
24	239	620.10	2_Avg
25	672	979.66	2_Avg
26	142	810.25	2_Avg
27	738	670.85	2_Avg
28	496	753.30	2_Avg
29	332	540.65	
30	308	688.43	
31	784	505.14	2_Avg
32	162	650.42	2_Avg
33	289	1348.34	2_Avg
34	517	940.35	2_Avg
35	478	806.90	2_Avg
36	107	560.72	2_Avg
37	568	1670.80	3_High
38	285	2020.70	3_High
39	263	1893.40	3_High
40	486	2580.35	3_High
41	545	2214.80	3_High

The following PROC SURVEYSELECT statements select a probability sample of expense reports from the TravelExpense data set by using the stratified design with PPS selection within strata:

The STRATA statement names the stratification variable Level. The SIZE statement specifies the size measure variable Amount. In the PROC SURVEYSELECT statement, the METHOD=PPS option requests sample selection with probability proportional to size and without replacement. The N=(6 10 4) option specifies the stratum sample sizes, listing the sample sizes in the same order as the strata appear in the TravelExpense data set. The sample size of 6 corresponds to the first stratum, Level = '1_Low'; the sample size of 10 corresponds to the second stratum, Level = '2_Avg'; and 4 corresponds to the last stratum, Level = '3_High'. The SEED= option specifies 47279 as the initial seed for random number generation.

Output 95.3.2 displays the output from PROC SURVEYSELECT. A total of 20 expense reports are selected for audit. The data set AuditSample contains the sample of travel expense reports.

Output 95.3.2 Sample Selection Summary

```
Travel Expense Audit
  Stratified PPS (Dollar-Unit) Sampling
        The SURVEYSELECT Procedure
Selection Method PPS, Without Replacement
Size Measure
                                  Amount
Strata Variable
                                   Level
   Input Data Set
                     TRAVELEXPENSE
   Random Number Seed
                       47279
   Number of Strata
                                  3
   Total Sample Size
                                 20
   Output Data Set
                         AUDITSAMPLE
```

The following PROC PRINT statements display the audit sample, which is shown in Output 95.3.3:

```
title1 'Travel Expense Audit';
title2 'Sample Selected by Stratified PPS Design';
proc print data=AuditSample;
run;
```

Output 95.3.3 Audit Sample

		Trav	el Expense	Audit	
	Sample	Selecte	d by Strati	fied PPS Desi	gn
				Selection	Sampling
Obs	Level	ID	Amount	Prob	Weight
1	1_Low	024	142.90	0.23949	4.17553
2	1_Low	614	230.56	0.38640	2.58797
3	1_Low	110	237.18	0.39750	2.51574
4	1_Low	782	258.10	0.43256	2.31183
5	1_Low	192	314.58	0.52721	1.89676
6	1_Low	216	325.36	0.54528	1.83392
7	2_Avg	332	540.65	0.37057	2.69853
8	2_Avg	239	620.10	0.42503	2.35278
9	2_Avg	162	650.42	0.44581	2.24310
10	2_Avg	738	670.85	0.45981	2.17479
11	2_Avg	506	895.80	0.61400	1.62866
12	2_Avg	517	940.35	0.64454	1.55151
13	2_Avg	672	979.66	0.67148	1.48925
14	2_Avg	139	1183.45	0.81116	1.23280
15	2_Avg	411	1287.23	0.88229	1.13341
16	2_Avg	289	1348.34	0.92418	1.08204
17	3_High	568	1670.80	0.64385	1.55316
18	3_High	263	1893.40	0.72963	1.37056
19	3_High	285	2020.70	0.77869	1.28421
20	3_High	545	2214.80	0.85348	1.17167

Example 95.4: Proportional Allocation

This example uses the Customers data set from the section "Getting Started: SURVEYSELECT Procedure" on page 8021. The data set Customers contains an Internet service provider's current subscribers, and the service provider wants to select a sample from this population for a customer satisfaction survey. This example illustrates proportional allocation, which allocates the total sample size among the strata in proportion to the strata sizes.

The section "Getting Started: SURVEYSELECT Procedure" on page 8021 gives an example of stratified sampling, where the list of customers is stratified by State and Type. Figure 95.4 displays the strata in a table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a total of eight strata. A sample of 15 customers was selected from each stratum by using the following PROC SURVEYSELECT statements:

```
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=15
                  seed=1953 out=SampleStrata;
   strata State Type;
run;
```

The STRATA statement names the stratification variables State and Type. In the PROC SURVEYSELECT statement, the N= option specifies a sample size of 15 customers for each stratum.

Instead of specifying the number of customers to select from each stratum, you can specify the total sample size and request allocation of the total sample size among the strata. The following PROC SURVEYSELECT statements request proportional allocation, which allocates the total sample size in proportion to the stratum sizes:

The STRATA statement names the stratification variables State and Type. In the STRATA statement, the ALLOC=PROP option requests proportional allocation. The NOSAMPLE option requests that no sample be selected after the procedure computes the sample size allocation. In the PROC SURVEYSELECT statement, the N= option specifies a total sample size of 1000 customers to be allocated among the strata.

Output 95.4.1 displays the output from PROC SURVEYSELECT, which summarizes the sample allocation. The total sample size of 1000 is allocated among the eight strata by using proportional allocation. The allocated sample sizes are stored in the SAS data set SampleSizes.

Output 95.4.1 Proportional Allocation Summary

```
Customer Satisfaction Survey
         Proportional Allocation
        The SURVEYSELECT Procedure
     Allocation
                        Proportional
     Strata Variables
                                State
                                 Type
Input Data Set
                                CUSTOMERS
Number of Strata
                                        8
Total Sample Size
                                     1000
Allocation Output Data Set
                              SAMPLESIZES
```

The following PROC PRINT statements display the allocation output data set SampleSizes, which is shown in Output 95.4.2:

```
title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc print data=SampleSizes;
run;
```

Output 95.4.2 Stratum Sample Sizes

Customer Satisfaction Survey Proportional Allocation						
Alloc Sample Actual						
Obs	State	Type	Total	Proportion	Size	Proportion
1	AL	New	1238	0.09190	92	0.092
2	AL	Old	706	0.05241	52	0.052
3	FL	New	2170	0.16109	161	0.161
4	FL	Old	1370	0.10170	102	0.102
5	GA	New	3488	0.25893	259	0.259
6	GA	Old	1940	0.14401	144	0.144
7	sc	New	1684	0.12501	125	0.125
8	sc	Old	875	0.06495	65	0.065

The output data set SampleSizes includes one observation for each of the eight strata, which are identified by the stratification variables State and Type. The variable Total contains the number of sampling units in the stratum, and the variable AllocProportion contains the proportion of the total sample size to allocate to the stratum. The variable SampleSize contains the allocated stratum sample size. For the first stratum (State='AL' and Type='New'), the total number of sampling units is 1238 customers, the allocation proportion is 0.09190, and the allocated sample size is 92 customers. The sum of the allocated sample sizes equals the requested total sample size of 1000 customers.

The output data set also includes the variable Actual Proportion, which contains actual stratum proportions of the total sample size. The actual proportion for a stratum equals the stratum sample size divided by the total sample size. For the first stratum (State='AL' and Type='New'), the actual proportion is 0.092, while the allocation proportion is 0.09190. The target sample sizes computed from the allocation proportions are often not integers, and PROC SURVEYSELECT uses a rounding algorithm to obtain integer sample sizes and maintain the requested total sample size. Due to rounding and other restrictions, the actual proportions can differ from the target allocation proportions. See the section "Sample Size Allocation" on page 8067 for details.

If you want to use the allocated sample sizes in a later invocation of PROC SURVEYSELECT, you can name the allocation data set in the N=SAS-data-set option, as shown in the following PROC SURVEYSELECT statements:

```
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=SampleSizes
                  seed=1953 out=SampleStrata;
   strata State Type;
run;
```

References

- Arkin, H. (1984), Handbook of Sampling for Auditing and Accounting, New York: McGraw-Hill.
- Bentley, J. L. and Floyd, R. (1987), "A Sample of Brilliance," Communications of the Association for Computing Machinery, 30, 754–757.
- Bentley, J. L. and Knuth, D. (1986), "Literate Programming," Communications of the Association for Computing Machinery, 29, 364–369.
- Brewer, K. W. R. (1963), "A Model of Systematic Sampling with Unequal Probabilities," Australian Journal of Statistics, 5, 93–105.
- Cassell, D. L. (2007), "Don't Be Loopy: Re-Sampling and Simulation the SAS Way," in *Proceedings of the* SAS Global Forum 2007 Conference, Cary, NC: SAS Institute Inc., available at http://www2.sas. com/proceedings/forum2007/183-2007.pdf.
- Chromy, J. R. (1979), "Sequential Sample Selection Methods," Proceedings of the American Statistical Association, Survey Research Methods Section, 401–406.
- Cochran, W. G. (1977), Sampling Techniques, Third Edition, New York: John Wiley & Sons.
- Drummond, D., Lessler, J., Watts, D., and Williams, S. (1982), "A Design for Achieving Prespecified Levels of Representation for Multiple Domains in Health Record Samples," Proceedings of the Fourth Conference on Health Survey Research Methods.
- Durbin, J. (1967), "Design of Multi-Stage Surveys for the Estimation of Sampling Errors," Applied Statistics, 16, 152–164.
- Fan, C. T., Muller, M. E., and Rezucha, I. (1962), "Development of Sampling Plans by Using Sequential (Item by Item) Selection Techniques and Digital Computers," Journal of the American Statistical Association, 57, 387-402.
- Fishman, G. S. and Moore, L. R. (1982), "A Statistical Evaluation of Multiplicative Congruential Generators with Modulus $(2^{31} - 1)$," Journal of the American Statistical Association, 77, 129–136.
- Fox, D. R. (1989), "Computer Selection of Size-Biased Samples," The American Statistician, 43, 168–171.
- Golmant, J. (1990), "Correction: Computer Selection of Size-Biased Samples," *The American Statistician*, 44, 194.
- Hanuray, T. V. (1967), "Optimum Utilization of Auxiliary Information: π_{ns} Sampling of Two Units from a Stratum," Journal of the Royal Statistical Society, Series B, 29, 374–391.
- Kalton, G. (1983), *Introduction to Survey Sampling*, Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-035, Beverly Hills: Sage Publications.
- Kish, L. (1965), Survey Sampling, New York: John Wiley & Sons.
- Kish, L. (1987), Statistical Design for Research, New York: John Wiley & Sons.
- Lohr, S. L. (2010), Sampling: Design and Analysis, Second Edition, Boston: Brooks/Cole.

- Madow, W. G. (1949), "On the Theory of Systematic Sampling, II," *Annals of Mathematical Statistics*, 20, 333–354.
- Matsumoto, M. and Nishimura, T. (1998), "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator," *ACM Transactions on Modeling and Computer Simulation*, 8, 3–30.
- McLeod, A. I. and Bellhouse, D. R. (1983), "A Convenient Algorithm for Drawing a Simple Random Sample," *Applied Statistics*, 32, 182–183.
- Murthy, M. N. (1957), "Ordered and Unordered Estimators in Sampling without Replacement," *Sankhyā*, 18, 379–390.
- Murthy, M. N. (1967), Sampling Theory and Methods, Calcutta, India: Statistical Publishing Society.
- Sampford, M. R. (1967), "On Sampling without Replacement with Unequal Probabilities of Selection," *Biometrika*, 54, 499–513.
- Särndal, C. E., Swensson, B., and Wretman, J. (1992), *Model Assisted Survey Sampling*, New York: Springer-Verlag.
- Vijayan, K. (1968), "An Exact π_{ps} Sampling Scheme: Generalization of a Method of Hanurav," *Journal of the Royal Statistical Society, Series B*, 30, 556–566.
- Watts, D. L. (1991), "Correction: Computer Selection of Size-Biased Samples," *The American Statistician*, 45, 172.
- Wilburn, A. J. (1984), Practical Statistical Sampling for Auditors, New York: Marcel Dekker.
- Williams, R. L. and Chromy, J. R. (1980), "SAS Sample Selection Macros," in *Proceedings of the Fifth Annual SAS Users Group International Conference*, Cary, NC: SAS Institute Inc.
- Wolter, K. M. (2007), Introduction to Variance Estimation, Second Edition, New York: Springer.

Subject Index

allocation	PPS sampling
of sample size (SURVEYSELECT), 8021, 8052,	SURVEYSELECT procedure, 8020, 8050, 8058
8067	PPS sampling, with replacement SURVEYSELECT procedure, 8064
Bernoulli sampling	PPS sampling, without replacement
SURVEYSELECT procedure, 8061	
Brewer's selection method	SURVEYSELECT procedure, 8062
SURVEYSELECT procedure, 8066, 8083	PPS sequential sampling SURVEYSELECT procedure, 8064
Serit Eliseee Procedure, coco, coco	•
Chromy's selection method	PPS systematic sampling
SURVEYSELECT procedure, 8060, 8064	SURVEYSELECT procedure, 8064
cluster sampling	probability sampling
SURVEYSELECT procedure, 8049, 8058	SURVEYSELECT procedure, 8020
clusters	proportional allocation
SURVEYSELECT procedure, 8020, 8049	SURVEYSELECT procedure, 8053, 8068, 8089
control sorting	random sampling
SURVEYSELECT procedure, 8028, 8048, 8057,	SURVEYSELECT procedure, 8020
8080	replicated sampling
	SURVEYSELECT procedure, 8021, 8042, 8080
dollar-unit sampling	replication, see replicated sampling
SURVEYSELECT procedure, 8086	r e
	Sampford's selection method
Hanurav-Vijayan selection method	SURVEYSELECT procedure, 8067
SURVEYSELECT procedure, 8062	sample
	SURVEYSELECT procedure, 8020
initial seed	sample allocation
SURVEYSELECT procedure, 8046	SURVEYSELECT procedure, 8021, 8052, 8067
joint selection probabilities	sample design
SURVEYSELECT procedure, 8034	SURVEYSELECT procedure, 8020
SCRVETSELECT procedure, 8034	sample selection
margin of error	SURVEYSELECT procedure, 8020
SURVEYSELECT procedure, 8069	sample selection methods
missing values	SURVEYSELECT procedure, 8035, 8058
SURVEYSELECT procedure, 8056	sample size
multistage sampling	SURVEYSELECT procedure, 8044
SURVEYSELECT procedure, 8020	sample size allocation
Murthy's selection method	SURVEYSELECT procedure, 8021, 8052, 8067
SURVEYSELECT procedure, 8066	sampling
5011, 21522201 procedure, 6000	SURVEYSELECT procedure, 8020
Neyman allocation	sampling frame
SURVEYSELECT procedure, 8053, 8069	SURVEYSELECT procedure, 8020, 8034
•	sampling rate
optimal allocation	SURVEYSELECT procedure, 8042
SURVEYSELECT procedure, 8053, 8068	sampling units
	SURVEYSELECT procedure, 8020, 8049, 8059
Poisson sampling	sampling weights
SURVEYSELECT procedure, 8062	SURVEYSELECT procedure, 8023
population	sampling with replacement
SURVEYSELECT procedure, 8020	SURVEYSELECT procedure, 8058

sampling without replacement SURVEYSELECT procedure, 8058 seed initial (SURVEYSELECT), 8046 sequential random sampling SURVEYSELECT procedure, 8060, 8080 serpentine sorting SURVEYSELECT procedure, 8057 simple random sampling SURVEYSELECT procedure, 8022, 8059 size measures PPS sampling (SURVEYSELECT), 8050, 8083 strata SURVEYSELECT procedure, 8021, 8024, 8051 stratification, see stratified sampling stratified sampling SURVEYSELECT procedure, 8021, 8024, 8051 survey sampling sample selection (SURVEYSELECT), 8020 SURVEYSELECT procedure, 8020 survey weights, see sampling weights SURVEYSELECT procedure, 8020 allocation, 8052, 8067 allocation output data set, 8075 Bernoulli sampling, 8061 Brewer's selection method, 8066, 8083 certainty size measure, 8031 certainty size proportion, 8033 Chromy's selection method, 8060, 8064 cluster sampling, 8049 control sorting, 8028, 8048, 8057, 8080 displayed output, 8076 dollar-unit sampling, 8086 Hanurav-Vijayan selection method, 8062 initial seed, 8046 introductory example, 8021 joint selection probabilities, 8034 margin of error, 8069 maximum size measure, 8034 minimum size measure, 8038 missing values, 8056 Murthy's selection method, 8066 nested sorting, 8057 Neyman allocation, 8053, 8069 ODS table names, 8079 optimal allocation, 8053, 8068 output data sets, 8072, 8075 Poisson sampling, 8062 PPS sampling, with replacement, 8064 PPS sampling, without replacement, 8062 PPS sequential sampling, 8064 PPS systematic sampling, 8064 proportional allocation, 8053, 8068, 8089 replicated sampling, 8021, 8042, 8080

Sampford's selection method, 8067 sample output data set, 8072 sample selection methods, 8035, 8058 sample size, 8044 sample size allocation, 8021, 8052, 8067 sampling rate, 8042 sampling units, 8049 secondary input data set, 8071 sequential random sampling, 8060, 8080 serpentine sorting, 8057 simple random sampling, 8022, 8059 size measures, 8050, 8083 strata, 8024, 8051 stratified sampling, 8021, 8024, 8051 systematic random sampling, 8028, 8060 unrestricted random sampling, 8059 with-replacement sampling, 8058 without-replacement sampling, 8058 systematic random sampling SURVEYSELECT procedure, 8028, 8060

unrestricted random sampling SURVEYSELECT procedure, 8059

weighting, see also sampling weights weights, see sampling weights with-replacement sampling SURVEYSELECT procedure, 8058 without-replacement sampling SURVEYSELECT procedure, 8058

Syntax Index

ALLOC= option	PROC SURVEYSELECT statement, 8036
STRATA statement (SURVEYSELECT), 8053	METHOD=PPS_BREWER option
ALLOC=NEYMAN option	PROC SURVEYSELECT statement, 8036
STRATA statement (SURVEYSELECT), 8053	METHOD=PPS_MURTHY option
ALLOC=OPTIMAL option	PROC SURVEYSELECT statement, 8037
STRATA statement (SURVEYSELECT), 8053	METHOD=PPS_SAMPFORD option
ALLOC=PROPORTIONAL option	PROC SURVEYSELECT statement, 8037
STRATA statement (SURVEYSELECT), 8053	METHOD=PPS_SEQ option
ALLOCMIN= option	PROC SURVEYSELECT statement, 8037
STRATA statement (SURVEYSELECT), 8054	METHOD=PPS_SYS option
ALPHA= option	PROC SURVEYSELECT statement, 8037
STRATA statement (SURVEYSELECT), 8054	METHOD=PPS_WR option
	PROC SURVEYSELECT statement, 8037
CERTSIZE= option	METHOD=SEQ option
PROC SURVEYSELECT statement, 8031	PROC SURVEYSELECT statement, 8037
CERTSIZE=P= option	METHOD=SRS option
PROC SURVEYSELECT statement, 8033	PROC SURVEYSELECT statement, 8037
CLUSTER statement	METHOD=SYS option
SURVEYSELECT procedure, 8049	PROC SURVEYSELECT statement, 8038
CONTROL statement	METHOD=URS option
SURVEYSELECT procedure, 8048	PROC SURVEYSELECT statement, 8038
COST= option	MINSIZE= option
STRATA statement (SURVEYSELECT), 8054	PROC SURVEYSELECT statement, 8038
DATA= option	NIMAN
PROC SURVEYSELECT statement, 8034	NMAX= option
TROC SORVE I SELECT SELECTION, 5034	PROC SURVEYSELECT statement, 8039
FREQ statement	NMIN= option PROC SURVEYSELECT statement, 8040
SURVEYSELECT procedure, 8048	NOPRINT option
,	PROC SURVEYSELECT statement, 8040
ID statement	NOSAMPLE option
SURVEYSELECT procedure, 8049	STRATA statement (SURVEYSELECT), 8055
	STRATA statement (SORVETSELECT), 8033
JTPROBS option	OUT= option
PROC SURVEYSELECT statement, 8034	PROC SURVEYSELECT statement, 8040
MADCINI— antion	OUTALL option
MARGIN= option STRATA statement (SURVEYSELECT), 8055	PROC SURVEYSELECT statement, 8040
	OUTHITS option
MAXSIZE= option PROC SURVEYSELECT statement 8024	PROC SURVEYSELECT statement, 8041
PROC SURVEYSELECT statement, 8034 METHOD= option	OUTSEED option
PROC SURVEYSELECT statement, 8035	PROC SURVEYSELECT statement, 8041
METHOD=BERNOULLI option	OUTSIZE option
PROC SURVEYSELECT statement, 8036	PROC SURVEYSELECT statement, 8041
METHOD=CHROMY option	OUTSORT= option
PROC SURVEYSELECT statement, 8037	PROC SURVEYSELECT statement, 8042
METHOD=POISSON option	
PROC SURVEYSELECT statement, 8036	PPS option
METHOD=PPS option	SAMPLINGUNIT statement
THE THOD-ITS OPHOR	(SURVEYSELECT), 8050

PRESORTED option	METHOD=PPS_SYS option, 8037
SAMPLINGUNIT statement	METHOD=PPS_WR option, 8037
(SURVEYSELECT), 8050	METHOD=SEQ option, 8037
PROC SURVEYSELECT statement, 8029, see	METHOD=SRS option, 8037
SURVEYSELECT procedure	METHOD=SYS option, 8038
	METHOD=URS option, 8038
RANUNI option	MINSIZE= option, 8038
PROC SURVEYSELECT statement, 8042	NMAX= option, 8039
REPS= option	NMIN= option, 8040
PROC SURVEYSELECT statement, 8042	NOPRINT option, 8040
	OUT= option, 8040
SAMPLINGUNIT statement	OUTALL option, 8040
SURVEYSELECT procedure, 8049	OUTHITS option, 8041
SAMPRATE= option	OUTSEED option, 8041
PROC SURVEYSELECT statement, 8042	OUTSIZE option, 8041
SAMPSIZE= option	OUTSORT= option, 8042
PROC SURVEYSELECT statement, 8044	RANUNI option, 8042
SEED= option	REPS= option, 8042
PROC SURVEYSELECT statement, 8046	SAMPRATE= option, 8042
SELECTALL option	SAMPSIZE= option, 8044
PROC SURVEYSELECT statement, 8047	SEED= option, 8046
SIZE statement	SELECTALL option, 8047
SURVEYSELECT procedure, 8050	SORT= option, 8047
SORT= option	STATS option, 8047
PROC SURVEYSELECT statement, 8047	SURVEYSELECT procedure, SAMPLINGUNIT
STATS option	statement, 8049
PROC SURVEYSELECT statement, 8047	PPS option, 8050
STRATA statement (SURVEYSELECT), 8055	PRESORTED option, 8050
STRATA statement	SURVEYSELECT procedure, SIZE statement, 8050
SURVEYSELECT procedure, 8051	SURVEYSELECT procedure, STEATA statement,
SURVEYSELECT procedure	8051
syntax, 8029	
SURVEYSELECT procedure, CLUSTER statement,	ALLOC= option, 8053 ALLOC=NEYMAN option, 8053
8049	<u>*</u>
SURVEYSELECT procedure, CONTROL statement,	ALLOC=OPTIMAL option, 8053 ALLOC=PROPORTIONAL option, 8053
8048	1
SURVEYSELECT procedure, FREQ statement, 8048	ALDIA - option, 8054
SURVEYSELECT procedure, ID statement, 8049	ALPHA= option, 8054
SURVEYSELECT procedure, PROC	COST= option, 8054
SURVEYSELECT statement, 8029	MARGIN= option, 8055
CERTSIZE= option, 8031	NOSAMPLE option, 8055
CERTSIZE=P= option, 8033	STATS option, 8055
DATA= option, 8034	VAR= option, 8055
JTPROBS option, 8034	VAR= option
MAXSIZE= option, 8034	STRATA statement (SURVEYSELECT), 8055
METHOD= option, 8035	STRATA statement (SORVETSELECT), 8033
METHOD=BERNOULLI option, 8036	
METHOD=CHROMY option, 8037	
METHOD=POISSON option, 8036	
METHOD=PPS option, 8036	
METHOD=PPS_BREWER option, 8036	
METHOD=PPS_MURTHY option, 8037	
METHOD=PPS_SAMPFORD option, 8037	
METHOD=PPS_SEQ option, 8037	

Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS* Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS® Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF free on the Web.
- Hard-copy books.

support.sas.com/publishing

SAS® Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

support.sas.com/spn

Sas THE POWER TO KNOW