SAS/QC® 15.1
User’s Guide
The PARETO Procedure
Overview: PARETO Procedure

The PARETO procedure creates Pareto charts, which display the relative frequencies of quality-related problems in a process or operation. The frequencies are represented by bars that are ordered in decreasing magnitude. Thus, you can use a Pareto chart to decide which subset of problems you should solve first or which problem areas deserve the most attention.

Pareto charts provide a tool for visualizing the Pareto principle,¹ which states that a small subset of problems tend to occur much more frequently than the remaining problems. In Japanese industry, the Pareto chart is one of the “seven basic QC tools” that are heavily used by workers and engineers. Ishikawa (1976) discusses how to construct and interpret a Pareto chart. Examples of Pareto charts are also given by Kume (1985) and Wadsworth, Stephens, and Godfrey (1986).

You can use the PARETO procedure to do the following:

- construct Pareto charts from unsorted raw data (for example, a set of quality problems that have not been classified into categories) or from a set of distinct categories and corresponding frequencies
- construct Pareto charts that are based on the percentage of occurrence of each problem, the frequency (number of occurrences), or a weighted frequency (such as frequency that is weighted by the cost of each problem)
- add a curve that indicates the cumulative percentage across categories
- construct side-by-side Pareto charts or stacked Pareto charts
- construct comparative Pareto charts, which enable you to compare the Pareto frequencies across the levels of one or two classification variables. For example, you can compare the frequencies of problems that occur on three different machines for five consecutive days.
- highlight the “vital few” and the “useful many”² categories by using different colors for bars that correspond to the n most frequently occurring categories or the m least frequently occurring categories.
- restrict the number of categories that are displayed to the n most frequently occurring categories
- create charts whose bars are oriented vertically or horizontally
- highlight special categories by using different colors for specific bars
- display sample sizes and other statistics on Pareto charts
- label the bars with their frequency values

¹Both the chart and the principle are named after Vilfredo Pareto (1848–1923), an Italian economist and sociologist. His first work, *Cours d’Économie Politique* (1895–1897), applied what is now termed the *Pareto distribution* to the study of income size.

²Juran originally referred to these categories as the “trivial many”; however, because all problems merit attention, the term “useful many” is preferred (Burr 1990).
• create charts as ODS Graphics output or as traditional graphics
• annotate traditional graphics charts
• save traditional graphics output in a graphics catalog for subsequent replay
• save information that is associated with the categories (such as the frequencies) in an output data set
• create variations on traditional Pareto charts, as described by Wilkinson (2006)

A Pareto chart has three axes, whose display depends on whether the Pareto chart is a traditional vertical Pareto or a horizontal bar chart. A horizontal bar chart that is produced by the PARETO procedure is essentially a vertical Pareto chart that is rotated 90 degrees clockwise. Table 16.1 shows how the three axes are displayed on the two types of Pareto charts.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Displayed on a Vertical Pareto Chart</th>
<th>Displayed on a Horizontal Pareto Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category axis</td>
<td>Horizontally at the bottom of the chart</td>
<td>Vertically at the left side of the chart</td>
</tr>
<tr>
<td>Frequency axis</td>
<td>On the left (also called the primary vertical axis)</td>
<td>At the top of the chart (also called the primary horizontal axis)</td>
</tr>
<tr>
<td>Cumulative percentage axis</td>
<td>On the right (also called the secondary vertical axis)</td>
<td>At the bottom of the chart (also called the secondary horizontal axis)</td>
</tr>
</tbody>
</table>

Getting Started: PARETO Procedure

Creating a Pareto Chart from Raw Data

NOTE: See *Basic Pareto Chart from Raw Data* in the SAS/QC Sample Library.

In the fabrication of integrated circuits, common causes of failures include improper doping, corrosion, surface contamination, silicon defects, metallization, and oxide defects. The causes of 31 failures were recorded in a SAS data set called `Failure1`:

```sas
data Failure1;
  length Cause $ 16;
  label Cause = 'Cause of Failure';
  input Cause & $;
  datalines;
  Corrosion
  Oxide Defect
  Contamination
  Oxide Defect
  Oxide Defect
  Miscellaneous
  Oxide Defect
```

Each of the 31 observations corresponds to a different circuit, and the value of Cause provides the cause for the failure. These are raw data in the sense that more than one observation has the same value of Cause and that the observations are not sorted by Cause. The following statements produce a basic Pareto chart for the failures:

```plaintext
ods graphics on;
proc pareto data=Failure1;
   vbar Cause;
run;
```

The PROC PARETO statement (referred to as the PROC statement) invokes the PARETO procedure and identifies the input data set. You specify one or more process variables to be analyzed in the VBAR statement. The ODS GRAPHICS ON statement that is specified before the PROC statement enables ODS Graphics, so the Pareto chart is created using ODS Graphics instead of traditional graphics.

The Pareto chart is shown in Figure 16.1.
PROC PARETO has classified the values of Cause into seven distinct categories. The bars represent the percentage of failures in each category, and they are arranged in decreasing order. Thus, the most frequently occurring category is 'Contamination', which accounts for 45% of the failures. The Pareto curve indicates the cumulative percentage of failures from left to right; for example, 'Contamination' and 'Oxide Defect' together account for 71% of the failures.

If there is insufficient space to label the bars along the category axis, PROC PARETO numbers the bars from left to right and adds a legend to identify the categories, as in Figure 16.1. A category legend is likely to be introduced in the following cases:

- The number of categories is large.
- The category labels are lengthy. Category labels can be up to 64 characters.
- You specify a large text height. In traditional graphics output, you can specify the text height in the HEIGHT= option in the HBAR or VBAR statement or in the HTEXT= option in a GOPTIONS statement.
The following statements suppress the category legend by specifying the CATLEGEND=OFF option:

```plaintext
proc pareto data=Failure1;
  vbar Cause / catlegend=off;
run;
```

A slash (/) is used to separate the process variable `Cause` from the options that are specified in the `VBAR` statement. The resulting chart is shown in Figure 16.2.

Figure 16.2 Pareto Chart with Category Legend Suppressed

Because the category legend is turned off, PROC PARETO displays the category labels at an angle so that they do not collide.
Creating a Pareto Chart from Frequency Data

NOTE: See Basic Pareto Chart from Frequency Data in the SAS/QC Sample Library.

In some situations, a count (frequency) is available for each category, or you can compress a large data set by creating a frequency variable for the categories before applying the PARETO procedure.

For example, you can use the FREQ procedure to obtain the compressed data set Failure2 from the data set Failure1:

```sas
proc freq data=Failure1;
    tables Cause / noprint out=Failure2;
run;
```

A listing of Failure2 is shown in Figure 16.3.

Figure 16.3 Data Set Failure2, Which Is Created by Using PROC FREQ

<table>
<thead>
<tr>
<th>Obs</th>
<th>Cause</th>
<th>COUNT</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contamination</td>
<td>14</td>
<td>45.1613</td>
</tr>
<tr>
<td>2</td>
<td>Corrosion</td>
<td>2</td>
<td>6.4516</td>
</tr>
<tr>
<td>3</td>
<td>Doping</td>
<td>1</td>
<td>3.2258</td>
</tr>
<tr>
<td>4</td>
<td>Metallization</td>
<td>2</td>
<td>6.4516</td>
</tr>
<tr>
<td>5</td>
<td>Miscellaneous</td>
<td>3</td>
<td>9.6774</td>
</tr>
<tr>
<td>6</td>
<td>Oxide Defect</td>
<td>8</td>
<td>25.8065</td>
</tr>
<tr>
<td>7</td>
<td>Silicon Defect</td>
<td>1</td>
<td>3.2258</td>
</tr>
</tbody>
</table>

The following statements produce a horizontal Pareto chart for the data in Failure2:

```sas
title 'Analysis of Integrated Circuit Failures';
proc pareto data=Failure2;
    hbar Cause / freq = Count
                     scale = count
                     last = 'Miscellaneous'
                     nlegend = 'Total Circuits'
                     odstitle = title1
                     markers;
run;
```

The frequency variable Count is specified in the FREQ= option. Specifying SCALE=COUNT requests a frequency scale for the frequency axis (at the top of the chart). Specifying LAST='Miscellaneous' causes the 'Miscellaneous' category to be displayed last regardless of its frequency. The NLEGEND= option adds a sample size legend labeled “Total Circuits.” Specifying ODSTITLE=TITLE replaces the default graph title with the title that is specified in the TITLE statement. The MARKERS option places markers at the points on the cumulative percentage curve.

The chart is displayed in Figure 16.4.
Note that in a horizontal Pareto chart categories are listed in decreasing frequency order from top to bottom on the category axis.

There are two sets of tied categories in this example: 'Corrosion' and 'Metallization' each occur twice, and 'Doping' and 'Silicon Defect' each occur once. PROC PARETO displays tied categories alphabetically in order of their formatted values. Thus, 'Corrosion' appears before 'Metallization', and 'Doping' appears before 'Silicon Defect' in Figure 16.4. This is simply a convention, and no practical significance should be attached to the order in which tied categories are arranged.

Restricting the Number of Pareto Categories

NOTE: See Pareto Chart with Restricted Number of Categories in the SAS/QC Sample Library.

Unlike the previous examples, some applications involve too many categories to display on a chart. The solution presented here is to create a restricted Pareto chart that displays only the most frequently occurring categories.
The following statements create a Pareto chart for the five most frequently occurring levels of Cause in the data set Failure2 (which is listed in Figure 16.3):

```plaintext
proc pareto data=Failure2;
  vbar Cause / freq = Count
               scale = count
               maxncat = 5;
run;
```

The MAXNCAT= option specifies the number of categories to be displayed. The chart, shown in Figure 16.5, does not display the categories 'Doping' and 'Silicon Defect'.

![Figure 16.5 Restricted Pareto Chart](image)

You can also display the most frequently occurring categories and merge the remaining categories into a single other category that is represented by a bar. You can specify the name for the new category with the OTHER= option. If, in addition, you specify that name in the LAST= option, the category is positioned at the bottom of the chart. The following statements illustrate both options:
title 'Integrated Circuit Manufacturing Problems';
proc pareto data=Failure2;
 vbar Cause / freq = Count
 scale = count
 maxncat = 5
 other = 'Others'
 last = 'Others'
 odstitle = title1;
run;

The chart is shown in Figure 16.6.

Figure 16.6 Restricted Pareto Chart with *Other* Category

The number of categories displayed is five, which is the number specified in the MAXNCAT= option. The first four categories are the four most frequently occurring problems in Failure2, and the fifth category merges the remaining problems.
Note that 'Corrosion' and 'Metallization' both have a frequency of two. When the MAXNCAT= option is applied to categories with tied frequencies, PROC PARETO breaks the tie by using the order of the formatted values. Thus 'Corrosion' is displayed, whereas 'Metallization' is merged into the 'Other' category. The MAXNCAT= and related options are described in the section “Restricted Pareto Charts” on page 1120.

Displaying Summary Statistics on a Pareto Chart

NOTE: See *Displaying Summary Statistics on a Pareto Chart* in the SAS/QC Sample Library.

You can use an INSET statement to add a box or table (referred to as an inset) of summary statistics on a Pareto chart. The following statements generate a chart from the Failure2 data set and limit the number of categories to five:

```plaintext
data Failure2;
  length Cause $ 16 ;
  label Cause = 'Cause of Failure' ;
  input Cause $ 1-16 Count;
  datalines;
  Contamination  14
  Corrosion      2
  Doping         1
  Metallization  2
  Miscellaneous  3
  Oxide Defect   8
  Silicon Defect 1
;

title 'Integrated Circuit Failures';
proc pareto data=Failure2;
  vbar Cause /
    freq   = Count
    maxncat = 5
    odstitle = title;
  inset n nexcl;
run;
```

An INSET statement produces an inset on the chart that is created by the preceding HBAR or VBAR chart statement. You specify inset keywords to request summary statistics, and the statistics appear in the order in which you specify the keywords. The keyword N displays the number of categories that are displayed in the chart; the keyword NEXCL displays the number of categories that are excluded. A complete list of keywords available with the INSET statement is provided in the section “INSET Statement Keywords” on page 1088.

The resulting chart is displayed in Figure 16.7.
Syntax: PARETO Procedure

The following statements are available in the PARETO procedure:

```
PROC PARETO <options> ;
   BY variables ;
   HBAR (variable-list) < / options> ;
   VBAR (variable-list) < / options> ;
   INSET keyword-list < / options> ;
```

You must specify the PROC PARETO statement and at least one HBAR or VBAR chart statement. A chart statement specifies the process variables that you want to analyze and produces a Pareto chart for each. You can specify any number of chart statements, and all other statements are optional.

The following statements request a vertical Pareto chart for the process variable `Reason` from the data set `Failures`. When the process `variable-list` contains only one variable, you do not need to enclose it in parentheses.
The following sections describe the PROC PARETO statement and then describe the other statements in alphabetical order.

PROC PARETO Statement

PROC PARETO < options > ;

The PROC PARETO statement invokes the PARETO procedure. Table 16.2 summarizes the options available in the PROC PARETO statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Option</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input SAS data set</td>
</tr>
<tr>
<td>Traditional Graphics Options</td>
<td></td>
</tr>
<tr>
<td>ANNOTATE=</td>
<td>Specifies the annotation data set for the frequency axis</td>
</tr>
<tr>
<td>ANNOTATE2=</td>
<td>Specifies the annotation data set for the cumulative percentage axis</td>
</tr>
<tr>
<td>GOUT=</td>
<td>Specifies the graphics catalog for saving traditional graphics output</td>
</tr>
<tr>
<td>Legacy Line Printer Chart Options</td>
<td></td>
</tr>
<tr>
<td>FORMCHAR=</td>
<td>Specifies the formatting characters that are used to construct line printer charts</td>
</tr>
<tr>
<td>LINEPRINTER</td>
<td>Creates line printer charts</td>
</tr>
</tbody>
</table>

You can specify the following options:

ANNOTATE=SAS-data-set

ANNO=SAS-data-set

specifies an input data set that contains annotation variables as described in SAS/GRAPH: Reference. You can use SAS-data-set to customize traditional graphics charts with features such as labels that explain critical categories. The ANNOTATE= data set is associated with the frequency axis. If the annotation is based on data coordinates, you must use the same units as the frequency axis uses. Features provided in this data set are added to every chart that PROC PARETO produces in its current run. This option has no effect when ODS Graphics is enabled.

ANNOTATE2=SAS-data-set

ANNO2=SAS-data-set

specifies an input data set that contains annotation variables as described in SAS/GRAPH: Reference. You can use SAS-data-set to customize traditional graphics charts with features such as labels that explain critical categories. The ANNOTATE2= data set is associated with the cumulative percentage axis. If the annotation is based on data coordinates, you must use the same units as the cumulative percentage axis uses. Features provided in this data set are added to every chart that PROC PARETO produces in its current run. This option has no effect when ODS Graphics is enabled.
Chapter 16: The PARETO Procedure

`DATA=SAS-data-set`
specifies an input data set that contains the process variables and related variables. If you do not specify a DATA= data set, PROC PARETO uses the most recently created data set.

`FORMCHAR='string'`
specifies a list of corner characters and other special characters that enhance the appearance of legacy line printer charts.

If your device supports the ASCII symbol set (1 or 2), use the following list:

```
formchar = 'B3,C4,DA,C2,BF,C3,C5,B4,C0,C1,D9'X
```

The FORMCHAR= option overrides (but does not alter) the FORMCHAR= option that is specified in an OPTIONS statement such as in the following statement:

```
options formchar = 'B3,C4,DA,C2,BF,C3,C5,B4,C0,C1,D9'X;
```

You can place the OPTIONS statement at the top of your SAS program or in an AUTOEXEC.SAS file. The FORMCHAR= has no effect unless you specify LINEPRINTER option.

`GOUT=graphics-catalog`
specifies the graphics catalog in which to save traditional graphics output. This option has no effect when ODS Graphics is enabled.

`LINEPRINTER`
requests that legacy line printer charts be produced. The HBAR statement does not produce line printer output, so you cannot use an HBAR statement when you specify the LINEPRINTER option.

BY Statement

`BY variables;`

You can specify a BY statement in PROC PARETO to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement in the PARETO procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in *SAS Language Reference: Concepts*. For more information about the DATASETS procedure, see the discussion in the *Base SAS Procedures Guide*.
The HBAR statement creates a Pareto chart that uses horizontal bars to represent the frequencies of problems in a process or operation. The HBAR statement does not produce line printer charts, so you cannot specify it when you specify the LINEPRINTER option in the PROC PARETO statement.

A horizontal Pareto chart has a vertical category axis. The frequency axis appears at the top of the chart and measures the lengths of the bars on the chart. The cumulative percentage axis is at the bottom of the chart and measures the cumulative percentage curve.

The HBAR statement produces two types of output for Pareto charts:

- It produces ODS Graphics output if ODS Graphics is enabled (for example, by specifying the ODS GRAPHICS ON statement prior to the PROC statement).
- Otherwise, it produces traditional graphics if SAS/GRAPH is licensed.

For more information about producing these different types of graphs, see Chapter 4, “SAS/QC Graphics.”

The variable-list specifies the process variables to be analyzed. PROC PARETO creates a chart for each variable, and the values of each variable determine the Pareto categories for that chart. If variable-list contains only one process variable, you do not need to enclose it in parentheses.

The variables can be numeric or character, and the maximum length of a character variable is 64. Formatted values determine the categories and are displayed in labels and legends. The maximum format length is 64.

Table 16.3 lists the HBAR statement options by function. For complete descriptions, see the section “Dictionary of HBAR and VBAR Statement Options” on page 1097.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Processing Options</td>
<td></td>
</tr>
<tr>
<td>FREQ=</td>
<td>Specifies the frequency variable</td>
</tr>
<tr>
<td>MISSING</td>
<td>Requests that missing values of the process variable be treated as a Pareto category</td>
</tr>
<tr>
<td>MISSING1</td>
<td>Requests that missing values of the first CLASS= variable be analyzed as a level</td>
</tr>
<tr>
<td>MISSING2</td>
<td>Requests that missing values of the second CLASS= variable be analyzed as a level</td>
</tr>
<tr>
<td>OUT=</td>
<td>Creates an output data set that saves the information that is displayed in the Pareto chart</td>
</tr>
<tr>
<td>WEIGHT=</td>
<td>Specifies weight variables used to weight frequencies</td>
</tr>
<tr>
<td>Options for Restricting the Number of Categories</td>
<td></td>
</tr>
<tr>
<td>LOTHER=</td>
<td>Specifies a label for the OTHER= bar</td>
</tr>
<tr>
<td>MAXCMPCT=</td>
<td>Displays only the categories whose cumulative percentage is less than the specified percentage</td>
</tr>
</tbody>
</table>
Table 16.3 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MAXNCAT=</code></td>
<td>Displays only the categories that have the n highest values</td>
</tr>
<tr>
<td><code>MINPCT=</code></td>
<td>Displays only the categories whose percentages are greater than the specified percentage</td>
</tr>
<tr>
<td><code>OTHER=</code></td>
<td>Merges all categories that are not displayed</td>
</tr>
<tr>
<td><code>OTHERCVAL=</code></td>
<td>Specifies an OUT= data set character variable value for the OTHER= category</td>
</tr>
<tr>
<td><code>OTHERNVAL=</code></td>
<td>Specifies an OUT= data set numeric variable value for the OTHER= category</td>
</tr>
</tbody>
</table>

Options for Displaying Bars

- `BARLABEL=` Displays labels for bars
- `BARS=` Specifies a variable that groups bars for a display by using ODS style colors
- `CHIGH(n)` Specifies color for bars that have the n highest values
- `CLOW(n)` Specifies color for bars that have the n lowest values
- `LABOTHER=` Specifies a label for the OTHER= category
- `LAST=` Specifies the bottommost category

Options for the Cumulative Percentage Curve

- `ANCHOR=` Specifies the corner of topmost bar to which the curve is anchored
- `CMPCTLABEL` Labels curve points with their values
- `NOCURVE` Suppresses the cumulative percentage curve
- `NOCUMLABEL` Suppresses the cumulative percentage axis label
- `NOCUMTICK` Suppresses the cumulative percentage axis tick marks and tick mark labels

Options for Comparative Pareto Charts

- `CLASS=` Specifies classification variables
- `CLASSKEY=` Specifies the key cell
- `CPROP` Requests proportion-of-frequency bars
- `INTERTILE=` Specifies the distance in screen percentage units between tiles
- `MISSING1` Requests that missing values of the first CLASS= variable be analyzed as a level
- `MISSING2` Requests that missing values of the second CLASS= variable be analyzed as a level
- `NCOLS=` Specifies the number of columns
- `NOKEYMOVE` Suppresses the placement of the key cell in the top left corner
- `NROWS=` Specifies the number of rows
- `ORDER1=` Specifies the order in which values of the first CLASS= variable are displayed
- `ORDER2=` Specifies the order in which values of the second CLASS= variable are displayed
Table 16.3 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options for Controlling Axes</td>
<td></td>
</tr>
<tr>
<td>AXISFACTOR=</td>
<td>Specifies the distance factor between the longest bar and the right frame</td>
</tr>
<tr>
<td>FREQAXIS=</td>
<td>Specifies tick mark values for the frequency axis</td>
</tr>
<tr>
<td>FREQAXISLABEL=</td>
<td>Labels the frequency axis</td>
</tr>
<tr>
<td>CUMAXIS=</td>
<td>Specifies tick mark values for the cumulative percentage axis</td>
</tr>
<tr>
<td>CUMAXISLABEL=</td>
<td>Specifies a label for the cumulative percentage axis</td>
</tr>
<tr>
<td>FREQOFFSET=</td>
<td>Specifies the frequency axis offset in screen percentage units</td>
</tr>
<tr>
<td>GRID</td>
<td>Adds a grid that corresponds to the frequency axis</td>
</tr>
<tr>
<td>GRID2</td>
<td>Adds a grid that corresponds to the cumulative percentage axis</td>
</tr>
<tr>
<td>NOCHART</td>
<td>Suppresses the Pareto chart</td>
</tr>
<tr>
<td>NOFREQLABEL</td>
<td>Suppresses the frequency axis label</td>
</tr>
<tr>
<td>NOCUMLABEL</td>
<td>Suppresses the cumulative percentage axis label</td>
</tr>
<tr>
<td>NOFREQTICK</td>
<td>Suppresses tick marks and tick mark labels for the frequency axis</td>
</tr>
<tr>
<td>NOCUMTICK</td>
<td>Suppresses tick marks and tick mark labels for the cumulative percentage axis</td>
</tr>
<tr>
<td>NOCATLABEL</td>
<td>Suppresses the category axis label</td>
</tr>
<tr>
<td>SCALE=</td>
<td>Specifies the units in which the frequency axis is scaled</td>
</tr>
<tr>
<td>CATOFFSET=</td>
<td>Specifies the category axis offset in screen percentage units</td>
</tr>
<tr>
<td>Options for Reference Lines</td>
<td></td>
</tr>
<tr>
<td>CATREF=</td>
<td>Requests reference lines perpendicular to the category axis</td>
</tr>
<tr>
<td>CATREFLABELS=</td>
<td>Specifies labels for CATREF= lines</td>
</tr>
<tr>
<td>CUMREF=</td>
<td>Requests reference lines perpendicular to the cumulative percentage axis</td>
</tr>
<tr>
<td>CUMREFLABELS=</td>
<td>Specifies labels for CUMREF= lines</td>
</tr>
<tr>
<td>FREQREF=</td>
<td>Requests reference lines perpendicular to the frequency axis</td>
</tr>
<tr>
<td>FREQREFLABELS=</td>
<td>Specifies labels for FREQREF= lines</td>
</tr>
<tr>
<td>HREFLABPOS=</td>
<td>Specifies the position of FREQREFLABELS= and CUMREFLABELS= labels</td>
</tr>
<tr>
<td>VREFLABPOS=</td>
<td>Specifies the position of CATREFLABELS= labels</td>
</tr>
<tr>
<td>Options for Displaying Legends</td>
<td></td>
</tr>
<tr>
<td>BARLEGEND=</td>
<td>Displays a legend for the BARS=, CBARS=, or PBARS= options</td>
</tr>
<tr>
<td>BARLEGLABEL=</td>
<td>Displays a label for the BARLEGEND= legend</td>
</tr>
<tr>
<td>CATLEGLABEL=</td>
<td>Specifies a label for the Pareto categories legend</td>
</tr>
<tr>
<td>CFRAMENLEG</td>
<td>Frames the sample size legend</td>
</tr>
<tr>
<td>HLLEGLABEL=</td>
<td>Displays a label for the legend that describes colors and patterns of the highest or lowest bars</td>
</tr>
<tr>
<td>NLEGENDE</td>
<td>Requests a sample size legend</td>
</tr>
<tr>
<td>NOHLLEG</td>
<td>Suppresses the legend that describes colors and patterns of the highest and lowest bars</td>
</tr>
</tbody>
</table>
Table 16.3 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options for ODS Graphics Output</td>
<td></td>
</tr>
<tr>
<td>CATLEGEND=</td>
<td>Controls the display of the Pareto categories legend</td>
</tr>
<tr>
<td>CHARTTYPE=</td>
<td>Specifies the type of Pareto chart to be produced</td>
</tr>
<tr>
<td>MARKERS</td>
<td>Requests markers on the cumulative percentage curve</td>
</tr>
<tr>
<td>ODSFOOTNOTE=</td>
<td>Specifies a footnote to be displayed on the chart</td>
</tr>
<tr>
<td>ODSFOOTNOTE2=</td>
<td>Specifies a secondary footnote to be displayed on the chart</td>
</tr>
<tr>
<td>ODSSTITLE=</td>
<td>Specifies a title to be displayed on the chart</td>
</tr>
<tr>
<td>ODSSTITLE2=</td>
<td>Specifies a secondary title to be displayed on the chart</td>
</tr>
<tr>
<td>URL=</td>
<td>Specifies a variable whose values are URLs to be associated with bars</td>
</tr>
<tr>
<td>Options for Traditional Graphics</td>
<td></td>
</tr>
<tr>
<td>ANGLE=</td>
<td>Rotates category axis tick mark labels</td>
</tr>
<tr>
<td>ANNOKEY</td>
<td>Applies annotation only to the key cell</td>
</tr>
<tr>
<td>ANNOTATE=</td>
<td>Specifies an annotation data set that uses frequency axis data units</td>
</tr>
<tr>
<td>ANNOTATE2=</td>
<td>Specifies an annotation data set that uses cumulative percentage axis data units</td>
</tr>
<tr>
<td>BARLABPOS=</td>
<td>Specifies the position of BARLABEL= labels</td>
</tr>
<tr>
<td>BARWIDTH=</td>
<td>Specifies the width (vertical dimension) of the bars in screen percentage units</td>
</tr>
<tr>
<td>CAXIS=</td>
<td>Specifies the axis color</td>
</tr>
<tr>
<td>CAXIS2=</td>
<td>Specifies the color for the cumulative percentage axis and tick marks</td>
</tr>
<tr>
<td>CBARLINE=</td>
<td>Specifies the color for bar outlines</td>
</tr>
<tr>
<td>CBARS=</td>
<td>Specifies the color for bars</td>
</tr>
<tr>
<td>CCATREF=</td>
<td>Specifies the color for CATREF= lines</td>
</tr>
<tr>
<td>CCONNECT=</td>
<td>Specifies the color for the curve</td>
</tr>
<tr>
<td>CCUMREF=</td>
<td>Specifies the color for CUMREF= lines</td>
</tr>
<tr>
<td>CFRAME=</td>
<td>Specifies the color for the area enclosed by axes and frame</td>
</tr>
<tr>
<td>CFRAMESIDE=</td>
<td>Specifies the frame color for row labels</td>
</tr>
<tr>
<td>CFRAMETOP=</td>
<td>Specifies the frame color for column labels</td>
</tr>
<tr>
<td>CFRQREF=</td>
<td>Specifies the color for FREQREF= lines</td>
</tr>
<tr>
<td>CGRID=</td>
<td>Specifies the color for frequency axis grid lines</td>
</tr>
<tr>
<td>CGRID2=</td>
<td>Specifies the color for cumulative percentage axis grid lines</td>
</tr>
<tr>
<td>CLIPREF</td>
<td>Draws reference lines behind bars</td>
</tr>
<tr>
<td>COTHER=</td>
<td>Specifies the color for OTHER= bar</td>
</tr>
<tr>
<td>CTEXT=</td>
<td>Specifies the color for text</td>
</tr>
<tr>
<td>CTEXTSIDE=</td>
<td>Specifies the color for row labels</td>
</tr>
<tr>
<td>CTEXTTTOP=</td>
<td>Specifies the color for column labels</td>
</tr>
<tr>
<td>CTILES=</td>
<td>Specifies the colors for tile backgrounds</td>
</tr>
<tr>
<td>DESCRIPTION=</td>
<td>Specifies a description of the Pareto chart’s GRSEG catalog entry</td>
</tr>
<tr>
<td>FONT=</td>
<td>Specifies the font for text</td>
</tr>
</tbody>
</table>
INSET Statement

INSET keyword-list < / options > ;

The INSET statement enables you to enhance a Pareto chart by adding a box or table (called an *inset*) of summary statistics directly to the graph. An inset can display statistics that are calculated by the PARETO procedure or arbitrary values that are provided in a SAS data set.

An INSET statement must follow a chart statement, and it produces an inset on that chart. More than one INSET statement can apply to the same chart statement. When the chart statement produces a comparative chart, an associated INSET statement produces an inset in every cell of the chart. Statistics that are displayed in the inset of a cell are computed from the data that are associated with that cell.

NOTE: When ODS Graphics is enabled, only one INSET statement can be associated with a comparative Pareto chart. Insets are not available with legacy line printer charts, so the INSET statement is not applicable when you specify the LINEPRINTER option in the PROC PARETO statement.

Table 16.3 *(continued)*

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONTREF</td>
<td>Draws reference lines in front of bars</td>
</tr>
<tr>
<td>HEIGHT=</td>
<td>Specifies the text height in screen percentage units</td>
</tr>
<tr>
<td>HTML=</td>
<td>Specifies a variable whose values create links that are associated with bars in traditional graphics output</td>
</tr>
<tr>
<td>INFONT=</td>
<td>Specifies the font for text inside the frame</td>
</tr>
<tr>
<td>INHEIGHT=</td>
<td>Specifies the text height in screen percentage units for text inside the frame</td>
</tr>
<tr>
<td>INTERBAR=</td>
<td>Specifies the distance between bars in screen percentage units</td>
</tr>
<tr>
<td>LCATREF=</td>
<td>Specifies the line type for CATREF= lines</td>
</tr>
<tr>
<td>LCUMREF=</td>
<td>Specifies the line type for CUMREF= lines</td>
</tr>
<tr>
<td>LREQREF=</td>
<td>Specifies the line type for FREQREF= lines</td>
</tr>
<tr>
<td>LGGRID=</td>
<td>Specifies the line type for frequency axis grid lines</td>
</tr>
<tr>
<td>LGGRID2=</td>
<td>Specifies the line type for cumulative percentage axis grid lines</td>
</tr>
<tr>
<td>NAME=</td>
<td>Specifies the name of the Pareto chart’s GRSEG catalog entry</td>
</tr>
<tr>
<td>NOFRAME</td>
<td>Suppresses the axis frame</td>
</tr>
<tr>
<td>PBARS=</td>
<td>Specifies the pattern for the bars</td>
</tr>
<tr>
<td>PHIGH(n)=</td>
<td>Specifies the pattern for bars that have the n highest values</td>
</tr>
<tr>
<td>PLOW(n)=</td>
<td>Specifies the pattern for bars that have the n lowest values</td>
</tr>
<tr>
<td>POTHER=</td>
<td>Specifies the pattern for the OTHER= bar</td>
</tr>
<tr>
<td>TILELEGEND=</td>
<td>Specifies a legend for the CTILES= colors</td>
</tr>
<tr>
<td>TILELEGLABEL=</td>
<td>Specifies label for TILELEGEND= legend</td>
</tr>
<tr>
<td>WAXIS=</td>
<td>Specifies the width in pixels for the axes and frame</td>
</tr>
<tr>
<td>WBARLINE=</td>
<td>Specifies the width for bar outlines</td>
</tr>
<tr>
<td>WGRID=</td>
<td>Specifies the width of frequency axis grid lines</td>
</tr>
<tr>
<td>WGRID2=</td>
<td>Specifies the width of cumulative percentage axis grid lines</td>
</tr>
</tbody>
</table>
The `keyword-list` can include any of the keywords listed in Table 16.4. Statistics are displayed in the order in which the keywords are specified. Each `keyword-list` entry has the following form:

```plaintext
keyword <='label'> <(format)> 
```

By default, inset statistics are identified with appropriate labels, and numeric values are printed using appropriate formats. However, you can provide customized labels and formats. You provide a customized label by specifying the `keyword` for that statistic followed by an equal sign (=) and the label in quotation marks. Labels can have up to 24 characters. You provide the numeric format in parentheses after the `keyword`. If you specify both a label and a format for a statistic, the label must appear before the format. See Example 16.10.

Note the difference between `keywords` and `options`: `keywords` specify the information to be displayed in an inset, whereas `options` control the appearance of the inset. You can use `options` in the INSET statement to do the following:

- specify the position of the inset
- specify a header for the inset
- specify enhancements for traditional graphics, such as background colors, text colors, text height, text font, and drop shadows

Table 16.5 lists available INSET statement `options`.

The following statements produce a vertical Pareto chart with insets in the upper left (northwest) and upper right (northeast) corners, and a horizontal comparative Pareto chart with insets in each cell.

```plaintext
proc pareto data=Failure3;
  vbar Cause / maxncat = 5 other = 'Others';
  inset nothercat / position = nw;
  inset nother / position = ne;
  hbar Cause / class = Stage;
  inset n;
run;
```

INSET Statement Keywords

Table 16.4 lists the `keywords` available in the INSET statement.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA=SAS-data-set</td>
<td>Reads (label, value) pairs from a SAS data set</td>
</tr>
<tr>
<td>N</td>
<td>Specifies the sample size</td>
</tr>
<tr>
<td>NEXCL</td>
<td>Specifies the number of observations excluded from a restricted Pareto chart</td>
</tr>
<tr>
<td>NOTHER</td>
<td>Specifies the number of observations in the OTHER= category</td>
</tr>
<tr>
<td>NOTHERCAT</td>
<td>Specifies the number of categories merged to form the OTHER= category</td>
</tr>
<tr>
<td>SUMWGTS</td>
<td>Specifies the sum of weighted frequencies across all categories</td>
</tr>
</tbody>
</table>
The NOTHERCAT and NOTHER statistics are 0 if the OTHER= option is not specified. The NEXCL statistic is 0 if the OTHER= option is specified.

All INSET keywords request a single statistic in an inset, except for the DATA= keyword. The DATA= keyword specifies a SAS data set that contains (label, value) pairs to be displayed in an inset. The data set must contain the variables _LABEL_ (a character variable whose values provide labels for inset entries) and _VALUE_ (which can be character or numeric and provides values displayed in the inset). The label and value from each observation in the DATA= data set occupy one line in the inset. Example 16.11 illustrates the use of the DATA= keyword.

INSET Statement Options

Figure 16.8 illustrates the terms that are used in this section.

![Inset Terms](image)

Table 16.5 lists the options available in the INSET statement.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Options</td>
<td></td>
</tr>
<tr>
<td>FORMAT=</td>
<td>Specifies the format for numeric values in the inset</td>
</tr>
<tr>
<td>HEADER=</td>
<td>Specifies the header text</td>
</tr>
<tr>
<td>NOFRAME</td>
<td>Suppresses the frame around the inset</td>
</tr>
<tr>
<td>POSITION=</td>
<td>Specifies the position of the inset</td>
</tr>
<tr>
<td>Options for ODS Graphics Output</td>
<td></td>
</tr>
<tr>
<td>CFILL</td>
<td>Specifies the color of the inset background</td>
</tr>
<tr>
<td>GUTTER=</td>
<td>Specifies the gutter width for an inset in the top or bottom margin</td>
</tr>
<tr>
<td>NCOLS=</td>
<td>Specifies the number of columns for an inset in the top or bottom margin</td>
</tr>
</tbody>
</table>
Table 16.5 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options for Traditional Graphics</td>
<td></td>
</tr>
<tr>
<td>CFILL=</td>
<td>Specifies the color of the inset background</td>
</tr>
<tr>
<td>CFILLH=</td>
<td>Specifies the color of the header background</td>
</tr>
<tr>
<td>CFRAME=</td>
<td>Specifies the color of the frame</td>
</tr>
<tr>
<td>CHEADER=</td>
<td>Specifies the color of the header text</td>
</tr>
<tr>
<td>CSHADOW=</td>
<td>Specifies the color of the drop shadow</td>
</tr>
<tr>
<td>CTEXT=</td>
<td>Specifies the color of the inset text</td>
</tr>
<tr>
<td>DATA</td>
<td>Specifies that POSITION=(x,y) coordinates are in data units</td>
</tr>
<tr>
<td>FONT=</td>
<td>Specifies the text font</td>
</tr>
<tr>
<td>HEIGHT=</td>
<td>Specifies the height of the inset text</td>
</tr>
<tr>
<td>REFPOINT=</td>
<td>Specifies the reference point of an inset that is positioned by POSITION=(x,y) coordinates</td>
</tr>
</tbody>
</table>

The following entries provide detailed descriptions of options in the INSET statement.

General Options

You can specify the following options when you use either ODS Graphics or traditional graphics:

FORMAT=format

specifies a format for all the values that are displayed in an inset. If you specify a format for a particular statistic, then that format overrides the format you specify in this option.

HEADER='string'

specifies the header text. The string cannot exceed 40 characters. If you do not specify this option, no header line appears in the inset.

NOFRAME

suppresses the frame drawn around the inset.

POSITION=position

POS=position

determines the position of the inset. The position can be a compass point keyword (N, NE, E, SE, S, SW, W, or NW), a margin keyword (TM, RM, BM, or LM), or a pair of coordinates (x,y). You can specify coordinates in axis percentage units or axis data units. For more information, see the section “Positioning Insets” on page 1123. By default, POSITION=NW, which positions the inset in the upper left (northwest) corner of the display.

NOTE: You cannot use the POSITION= option to specify coordinates when producing ODS Graphics output.

ODS Graphics Options

You can specify the following options when you use ODS Graphics:
INSET Statement ✦ 1091

CFILL

CFILL=BLANK

specifies the color of the inset background. If you do not specify this option, the inset background is transparent. This means that items that are overlapped by the inset (such as Pareto bars or the cumulative percentage curve) show through the inset. If you specify this option without an argument, the background is opaque and its color is specified by the Color attribute of the GraphBackground style element in the current ODS style. If you specify CFILL=BLANK, the background is opaque and its color is specified by the Color attribute of the GraphWalls style element in the current ODS style.

GUTTER=value

specifies the gutter width in screen percentage units for an inset that is located in the top or bottom margin. The gutter is the space between columns of values in an inset.

NCOLS=n

specifies the number of columns of (label, value) pairs that are displayed in an inset that is located in the top or bottom margin.

Traditional Graphics Options

You can specify the following **options** when you produce traditional graphics.

CFILL=color | BLANK

specifies the color of the inset background (including the header background if you do not specify the CFILLH= option). If you specify CFILL=BLANK, the background color is determined by the Color attribute of the GraphWalls style element in the current ODS style. If you do not specify this option, the inset background is transparent. This means that items overlapped by the inset (such as Pareto bars or the cumulative percentage curve) show through the inset.

CFILLH=color

specifies the color of the header background. If you do not specify this option, the CFILL= color is used.

CFRAME=color

specifies the color of the inset frame. The default color is specified by the ContrastColor attribute of the GraphBorderLines style element in the current ODS style.

CHEADER=color

specifies the color of the header text. If you do not specify this option, the CTEXT= color is used.

CSHADOW=color

specifies the color of the drop shadow. See **Output 16.11.1** for an example. If you do not specify this option, a drop shadow is not displayed.

CTEXT=color

specifies the color of the text. The default **color** is specified by the Color attribute of the GraphValueText style element in the current ODS style.
DATA
 specifies that data coordinates be used in positioning the inset with the POSITION= option. You can specify this option only when you specify POSITION=(x,y), and you must include it immediately after the coordinates (x,y). For more information, see the section “Using Coordinates to Position Insets” on page 1125. See Figure 16.11 for an example.

FONT=
 specifies the font of the text. The default font is determined by the FontFamily, FontStyle, and FontWeight attributes of the GraphValueText style element in the current ODS style.

HEIGHT=
 specifies the height of the text in the inset. The default value is specified by the FontSize attribute of the GraphValueText style element in the current ODS style.

REFPOINT=BR | BL | TR | TL
 specifies the reference point for an inset that is positioned by a pair of coordinates (x,y), which are specified in the POSITION= option. The REFPOINT= option specifies which corner of the inset frame you want positioned at coordinates (x,y). The keywords BL, BR, TL, and TR represent bottom left, bottom right, top left, and top right, respectively. See Figure 16.12 for an example. By default, REFPOINT=BL.

 If you specify the position of the inset as a compass point or margin keyword, this option is ignored. For more information, see “Using Coordinates to Position Insets” on page 1125.

VBAR Statement

VBAR (variable-list)< / options > ;

The VBAR statement creates a Pareto chart in which vertical bars represent the frequencies of problems in a process or operation. A vertical Pareto chart has a horizontal category axis. The frequency axis is oriented vertically on the left side of the chart and measures the lengths of the bars on the chart. The cumulative percentage axis is on the right of the chart and measures the cumulative percentage curve.

The VBAR statement produces three types of output for Pareto charts:

- It produces ODS Graphics output if ODS Graphics is enabled (for example, by specifying the ODS GRAPHICS ON statement prior to the PROC statement).
- Otherwise, it produces traditional graphics by default if SAS/GRAPH is licensed.
- It produces legacy line printer charts when you specify the LINEPRINTER option in the PROC statement.

For more information about producing these different types of graphs, see Chapter 4, “SAS/QC Graphics.”

The variable-list specifies the process variables to be analyzed. A chart is created for each variable, and the values of each variable determine the Pareto categories for that chart. If variable-list contains only one process variable, you do not need to enclose it in parentheses.
The variables can be numeric or character, and the maximum length of a character variable is 64. Formatted values are used to determine the categories and are displayed in labels and legends. The maximum format length is 64.

Table 16.6 lists the VBAR statement options by function. For complete descriptions, see the section “Dictionary of HBAR and VBAR Statement Options” on page 1097.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Processing Options</td>
<td></td>
</tr>
<tr>
<td>FREQ=</td>
<td>Specifies the frequency variable</td>
</tr>
<tr>
<td>MISSING</td>
<td>Requests that missing values of the process variable be treated as a Pareto category</td>
</tr>
<tr>
<td>MISSING1</td>
<td>Requests that missing values of the first CLASS= variable be analyzed as a level</td>
</tr>
<tr>
<td>MISSING2</td>
<td>Requests that missing values of the second CLASS= variable be analyzed as a level</td>
</tr>
<tr>
<td>OUT=</td>
<td>Creates an output data set that saves the information that is displayed in the Pareto chart</td>
</tr>
<tr>
<td>WEIGHT=</td>
<td>Specifies weight variables that are used to weight frequencies</td>
</tr>
<tr>
<td>Options for Restricting the Number of Categories</td>
<td></td>
</tr>
<tr>
<td>LOTHER=</td>
<td>Specifies a label for the OTHER= bar</td>
</tr>
<tr>
<td>MAXCMPCT=</td>
<td>Displays only the categories whose cumulative percentage is less than the specified percentage</td>
</tr>
<tr>
<td>MAXNCAT=</td>
<td>Displays only the categories that have the n highest values</td>
</tr>
<tr>
<td>MINPCT=</td>
<td>Displays only the categories that have percentages greater than the specified percentage</td>
</tr>
<tr>
<td>OTHER=</td>
<td>Merges all categories that are not displayed</td>
</tr>
<tr>
<td>OTHERCV AL=</td>
<td>Specifies an OUT= data set character variable value for the OTHER= category</td>
</tr>
<tr>
<td>OTHERNV AL=</td>
<td>Specifies an OUT= data set numeric variable value for the OTHER= category</td>
</tr>
<tr>
<td>Options for Displaying Bars</td>
<td></td>
</tr>
<tr>
<td>BARLABEL=</td>
<td>Displays labels for bars</td>
</tr>
<tr>
<td>BARS=</td>
<td>Specifies a variable that groups bars for a display by using ODS style colors</td>
</tr>
<tr>
<td>CHIGH(n)</td>
<td>Specifies the color for bars that have the n highest values</td>
</tr>
<tr>
<td>CLOW(n)</td>
<td>Specifies the color for bars that have the n lowest values</td>
</tr>
<tr>
<td>LABOTHER=</td>
<td>Specifies a label for the OTHER= category</td>
</tr>
<tr>
<td>LAST=</td>
<td>Specifies the bottommost category</td>
</tr>
<tr>
<td>Options for the Cumulative Percent Curve</td>
<td></td>
</tr>
<tr>
<td>ANCHOR=</td>
<td>Specifies the corner of the topmost bar to which the curve is anchored</td>
</tr>
<tr>
<td>CMPCTLABEL</td>
<td>Labels curve points with their values</td>
</tr>
<tr>
<td>NOCURVE</td>
<td>Suppresses the cumulative percentage curve</td>
</tr>
</tbody>
</table>
Options for Comparative Pareto Charts
- **CLASS=**: Specifies classification variables
- **CLASSKEY=**: Specifies the key cell
- **CPROP**: Requests proportion-of-frequency bars
- **INTERTILE=**: Specifies the distance in screen percentage units between tiles
- **MISSING1**: Requests that missing values of the first CLASS= variable be analyzed as a level
- **MISSING2**: Requests that missing values of the second CLASS= variable be analyzed as a level
- **NCOLS=**: Specifies the number of columns
- **NOKEYMOVE**: Suppresses the placement of the key cell in the top left corner
- **NROWS=**: Specifies the number of rows
- **ORDER1=**: Specifies the order in which values of the first CLASS= variable are displayed
- **ORDER2=**: Specifies the order in which values of the second CLASS= variable are displayed

Options for Controlling Axes
- **AXISFACTOR=**: Specifies the distance factor between the longest bar and the top frame
- **FREQAXIS=**: Specifies tick mark values for the frequency axis
- **FREQAXISLABEL=**: Labels the frequency axis
- **CUMAXIS=**: Specifies tick mark values for the cumulative percentage axis
- **CUMAXISLABEL=**: Specifies a label for the cumulative percentage axis
- **FREQOFFSET=**: Specifies the frequency axis offset in screen percentage units
- **GRID**: Adds a grid that corresponds to the frequency axis
- **GRID2**: Adds a grid that corresponds to the cumulative percentage axis
- **NOCHART**: Suppresses the Pareto chart
- **NOFREQLABEL**: Suppresses the frequency axis label
- **NOCUMLABEL**: Suppresses the cumulative percentage axis label
- **NOFREQTICK**: Suppresses tick marks and tick mark labels for the frequency axis
- **NOCUMTICK**: Suppresses tick marks and tick mark labels for the cumulative percentage axis
- **NOCATLABEL**: Suppresses the category axis label
- **SCALE=**: Specifies units in which the frequency axis is scaled
- **CATOFFSET=**: Specifies the category axis offset in screen percentage units

Options for Reference Lines
- **CATREF=**: Requests reference lines perpendicular to the category axis
- **CATREFLABELS=**: Specifies labels for CATREF= lines

Table 16.6 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCUMLABEL</td>
<td>Suppresses the cumulative percentage axis label</td>
</tr>
<tr>
<td>NOCUMTICK</td>
<td>Suppresses cumulative percentage axis tick marks and tick mark labels</td>
</tr>
</tbody>
</table>

Options for Controlling Axes
- **AXISFACTOR=**: Specifies the distance factor between the longest bar and the top frame
- **FREQAXIS=**: Specifies tick mark values for the frequency axis
- **FREQAXISLABEL=**: Labels the frequency axis
- **CUMAXIS=**: Specifies tick mark values for the cumulative percentage axis
- **CUMAXISLABEL=**: Specifies a label for the cumulative percentage axis
- **FREQOFFSET=**: Specifies the frequency axis offset in screen percentage units
- **GRID**: Adds a grid that corresponds to the frequency axis
- **GRID2**: Adds a grid that corresponds to the cumulative percentage axis
- **NOCHART**: Suppresses the Pareto chart
- **NOFREQLABEL**: Suppresses the frequency axis label
- **NOCUMLABEL**: Suppresses the cumulative percentage axis label
- **NOFREQTICK**: Suppresses tick marks and tick mark labels for the frequency axis
- **NOCUMTICK**: Suppresses tick marks and tick mark labels for the cumulative percentage axis
- **NOCATLABEL**: Suppresses the category axis label
- **SCALE=**: Specifies units in which the frequency axis is scaled
- **CATOFFSET=**: Specifies the category axis offset in screen percentage units

Options for Reference Lines
- **CATREF=**: Requests reference lines perpendicular to the category axis
- **CATREFLABELS=**: Specifies labels for CATREF= lines
Table 16.6 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMREF=</td>
<td>Requests reference lines perpendicular to the cumulative percentage axis</td>
</tr>
<tr>
<td>CUMREFLABELS=</td>
<td>Specifies labels for CUMREF= lines</td>
</tr>
<tr>
<td>FREQREF=</td>
<td>Requests reference lines perpendicular to the frequency axis</td>
</tr>
<tr>
<td>FREQREFLABELS=</td>
<td>Specifies labels for FREQREF= lines</td>
</tr>
<tr>
<td>HREFLABPOS=</td>
<td>Specifies the position of FREQREFLABELS= and CUMREFLABELS= labels</td>
</tr>
<tr>
<td>VREFLABPOS=</td>
<td>Specifies the position of CATREFLABELS= labels</td>
</tr>
</tbody>
</table>

Options for Displaying Legends

- **BARLEGEND=** Displays a legend for the BARS=, CBARS=, or PBARS= options
- **BARLEGLABEL=** Displays a label for BARLEGEND= legend
- **CATLEGLABEL=** Specifies a label for the Pareto categories legend
- **CFRAMENLEG** Frames the sample size legend
- **HLLEGLABEL=** Displays a label for the legend that describes colors and patterns of the highest and lowest bars
- **NLEGEND=** Requests a sample size legend
- **NOHLLEG** Suppresses the legend that describes colors and patterns of the highest and lowest bars

Options for ODS Graphics Output

- **CATLEGEND=** Controls the display of the Pareto categories legend
- **CHARTTYPE=** Specifies the type of Pareto chart produced
- **MARKERS** Requests markers on the cumulative percentage curve
- **ODSFOOTNOTE=** Specifies a footnote to be displayed on the chart
- **ODSFOOTNOTE2=** Specifies a secondary footnote to be displayed on the chart
- **ODSTITLE=** Specifies a title to be displayed on the chart
- **ODSTITLE2=** Specifies a secondary title to be displayed on the chart
- **URL=** Specifies a variable whose values are URLs to be associated with bars

Options for Traditional Graphics

- **ANGLE=** Rotates the category axis tick mark labels
- **ANNOKEY** Applies annotation only to the key cell
- **ANNOTATE=** Specifies an annotation data set that uses frequency axis data units
- **ANNOTATE2=** Specifies an annotation data set that uses cumulative percentage axis data units
- **BARLABPOS=** Specifies the position of the BARLABEL= labels
- **BARWIDTH=** Specifies the width (horizontal dimension) of the bars in screen percentage units
- **CAXIS=** Specifies the axis color
- **CAXIS2=** Specifies the color for the cumulative percentage axis and tick marks
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBARLINE=</td>
<td>Specifies the color for bar outlines</td>
</tr>
<tr>
<td>CBARS=</td>
<td>Specifies the color for bars</td>
</tr>
<tr>
<td>CCATREF=</td>
<td>Specifies the color for CATREF= lines</td>
</tr>
<tr>
<td>CCONNECT=</td>
<td>Specifies the color for the curve</td>
</tr>
<tr>
<td>CCUMREF=</td>
<td>Specifies the color for CUMREF= lines</td>
</tr>
<tr>
<td>CFRAKEME=</td>
<td>Specifies the color for the area that is enclosed by axes and frame</td>
</tr>
<tr>
<td>CFRAMESIDE=</td>
<td>Specifies the frame color for row labels</td>
</tr>
<tr>
<td>CFRAKEMETOP=</td>
<td>Specifies the frame color for column labels</td>
</tr>
<tr>
<td>CFREQREF=</td>
<td>Specifies the color for FREQREF= lines</td>
</tr>
<tr>
<td>CGRID=</td>
<td>Specifies the color for the frequency axis grid lines</td>
</tr>
<tr>
<td>CGRID2=</td>
<td>Specifies the color for the cumulative percentage axis grid lines</td>
</tr>
<tr>
<td>CLIPREF=</td>
<td>Draws reference lines behind bars</td>
</tr>
<tr>
<td>COTHER=</td>
<td>Specifies the color for the OTHER= bar</td>
</tr>
<tr>
<td>CTEXT=</td>
<td>Specifies the color for text</td>
</tr>
<tr>
<td>CTEXTSIDE=</td>
<td>Specifies the color for row labels</td>
</tr>
<tr>
<td>CTEXTTOP=</td>
<td>Specifies the color for column labels</td>
</tr>
<tr>
<td>CTILES=</td>
<td>Specifies the colors for tile backgrounds</td>
</tr>
<tr>
<td>DESCRIPTION=</td>
<td>Specifies a description of the Pareto chart’s GRSEG catalog entry</td>
</tr>
<tr>
<td>FONT=</td>
<td>Specifies the text font</td>
</tr>
<tr>
<td>FRONTREF=</td>
<td>Draws reference lines in front of bars</td>
</tr>
<tr>
<td>HEIGHT=</td>
<td>Specifies the text height in screen percentage units</td>
</tr>
<tr>
<td>HTML=</td>
<td>Specifies a variable whose values create links that are associated with bars in traditional graphics output</td>
</tr>
<tr>
<td>INFONT=</td>
<td>Specifies the font for text inside frame</td>
</tr>
<tr>
<td>INHEIGHT=</td>
<td>Specifies the text height in screen percentage units for text inside the frame</td>
</tr>
<tr>
<td>INTERBAR=</td>
<td>Specifies the distance between bars in screen percentage units</td>
</tr>
<tr>
<td>LCATREF=</td>
<td>Specifies the line type for the CATREF= lines</td>
</tr>
<tr>
<td>LCUMREF=</td>
<td>Specifies the line type for the CUMREF= lines</td>
</tr>
<tr>
<td>LFREQREF=</td>
<td>Specifies the line type for the FREQREF= lines</td>
</tr>
<tr>
<td>LGRID=</td>
<td>Specifies the line type for the frequency axis grid lines</td>
</tr>
<tr>
<td>LGRID2=</td>
<td>Specifies the line type for the cumulative percentage axis grid lines</td>
</tr>
<tr>
<td>NAME=</td>
<td>Specifies the name of the Pareto chart’s GRSEG catalog entry</td>
</tr>
<tr>
<td>NOFRAME=</td>
<td>Suppresses the axis frame</td>
</tr>
<tr>
<td>PBARS=</td>
<td>Specifies a pattern for the bars</td>
</tr>
<tr>
<td>PHIGH(n)=</td>
<td>Specifies the pattern for the bars that have the n highest values</td>
</tr>
<tr>
<td>PLOW(n)=</td>
<td>Specifies the pattern for the bars that have the n lowest values</td>
</tr>
<tr>
<td>POTHER=</td>
<td>Specifies the pattern for the OTHER= bar</td>
</tr>
<tr>
<td>TILELEGEND=</td>
<td>Specifies a legend for the CTILES= colors</td>
</tr>
<tr>
<td>TILELEGLABEL=</td>
<td>Specifies the label for the TILELEGEND= legend</td>
</tr>
</tbody>
</table>
Table 16.6 (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURNVLABEL</td>
<td>Turns and strings vertically the characters in the frequency and cumulative percentage axis labels</td>
</tr>
<tr>
<td>WAXIS=</td>
<td>Specifies the width in pixels for the axes and frame</td>
</tr>
<tr>
<td>WBARLINE=</td>
<td>Specifies the width for bar outlines</td>
</tr>
<tr>
<td>WGRID=</td>
<td>Specifies the width of frequency axis grid lines</td>
</tr>
<tr>
<td>WGRID2=</td>
<td>Specifies the width of cumulative percentage axis grid lines</td>
</tr>
</tbody>
</table>

Options for Legacy Line Printer Charts

CONNECTCHAR=	Specifies the plot character for the cumulative percentage curve segments
HREFCHAR=	Specifies the plot character for category reference lines
VREFCHAR=	Specifies the plot character for frequency and cumulative percentage reference lines
SYMBOLCHAR=	Specifies the plot character for points on the cumulative percentage curve

Dictionary of HBAR and VBAR Statement Options

This section provides detailed descriptions of *options* you can specify after the slash (/) in the HBAR and VBAR statements. For example, to request that the frequency axis of a vertical Pareto chart be scaled by counts, use the SCALE= option as follows:

```plaintext
proc pareto data=failure;
  vbar cause / scale = count;
run;
```

This section consists of the following subsections:

- The section “General Options” on page 1098 contains descriptions of general Pareto chart options.
- The section “Options for Traditional Graphics” on page 1112 describes options that apply only when traditional graphics output is produced, as when ODS Graphics is disabled.
- The section “Options for Legacy Line Printer Charts” on page 1119 contains descriptions of options that apply only to legacy line printer charts, which are produced by VBAR statements when you specify the LINEPRINTER option in the PROC PARETO statement.

NOTE: The terminology used in the option descriptions describes vertical Pareto charts. For example, the “tallest” bar is the one that extends farthest along the frequency axis, whether it is oriented vertically or horizontally.
General Options

You can specify the following general options:

ANCHOR=keyword

specifies where the Pareto curve is anchored to the first bar on the chart. Table 16.7 describes the position keywords available in the HBAR and VBAR statements.

Table 16.7 ANCHOR= Option Keywords

<table>
<thead>
<tr>
<th>HBAR Keyword</th>
<th>Anchoring Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>Bottom right corner (default)</td>
</tr>
<tr>
<td>LC</td>
<td>Left center</td>
</tr>
<tr>
<td>RC</td>
<td>Right center</td>
</tr>
<tr>
<td>TL</td>
<td>Top left corner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VBAR Keyword</th>
<th>Anchoring Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Bottom center</td>
</tr>
<tr>
<td>BL</td>
<td>Bottom left corner</td>
</tr>
<tr>
<td>TC</td>
<td>Top center</td>
</tr>
<tr>
<td>TR</td>
<td>Top right corner (default)</td>
</tr>
</tbody>
</table>

See Output 16.2.1 for an illustration.

AXISFACTOR=value

specifies a factor used in scaling the frequency axis. This factor determines (approximately) the ratio of the length of the axis to the length of the tallest bar, and it is used to provide space for the cumulative percentage curve. The value must be greater than or equal to 1.

By default, the factor is chosen so that the curve is anchored at the top right corner of the first bar (see also the ANCHOR= option). However, if anchoring to the top of the first bar causes the bars to be flattened excessively, a smaller default factor is used.

This option is not applicable if the cumulative percentage curve is suppressed by the NOCURVE option.

BARLABEL=CMPCT | COUNT | VALUE | (variable-list)

requests that a label be displayed for each bar. You can specify the following values:

CMPCT specifies that the label indicates the cumulative percentage that is associated with that bar. An alternative to BARLABEL=CMPCT is the CMPCTLABEL option, which labels points on the cumulative percentage curve with their values.

COUNT specifies that the label displays the count for the bar, regardless of the SCALE= option setting.

VALUE specifies that the label indicates the height of the bar in the units used by the frequency axis. The units are determined by the SCALE= option setting. See Example 16.8 for an illustration.
Dictionary of HBAR and VBAR Statement Options

(\texttt{variable-list}) specifies that the label displays the values of one or more variables from the input data set. If a format is associated with a variable, then the formatted value is displayed. Values can be up to 32 characters long. The variable values must be consistent within observations that correspond to a particular Pareto category. The variables are saved in the \texttt{OUT=} data set. If you specify more than one process variable in the chart statement, you can specify more than one variable in \texttt{variable-list}. The \texttt{BARLABEL=} and process variables are matched by their positions in their respective variable lists.

The space in horizontal Pareto charts might be insufficient to display long bar labels. You can specify the \texttt{AXISFACTOR=} option to increase the available space beyond the bars. If you are producing traditional graphics, you can use the \texttt{BARTLABPOS=} option to specify how labels are positioned relative to the bars.

\texttt{BARLEGEND=}(\texttt{variable-list}) requests that a legend be added to the chart to explain colors for bars that are specified in the \texttt{BARS=} or \texttt{CBARS=} option, or patterns for bars that are specified in the \texttt{PBARS=} option. The \texttt{variable-list} must be enclosed in parentheses even if only one \texttt{variable} is specified. See Output 16.4.1 for an illustration.

The values of the variables in \texttt{variable-list} provide the explanatory labels used in the legend. If a format is associated with the variable, then the formatted value is displayed. Values can be up to 32 characters long.

This option is not applicable unless you specify one or more of the \texttt{BARS=}?, \texttt{CBARS=}?, or \texttt{PBARS=} options. In the \texttt{DATA=} data set, the values of the \texttt{BARLEGEND=} variable must be identical in observations for which the value of the \texttt{BARS=}?, \texttt{CBARS=}?, or \texttt{PBARS=} variable (or the combination of the \texttt{CBARS=} and \texttt{PBARS=} values) is the same. This ensures that the legend derived from the \texttt{BARLEGEND=} variable is consistent.

If you specify more than one process variable in a chart statement and a corresponding list of \texttt{BARS=}?, \texttt{CBARS=}?, or \texttt{PBARS=} variables, you can specify a list of \texttt{BARLEGEND=} variables. The number of variables in \texttt{variable-list} should be less than or equal to the number of process variables. The lists of variables are matched so that the first variable in \texttt{variable-list} is applied to the first process variable and the first \texttt{BARS=}?, \texttt{CBARS=}?, or \texttt{PBARS=} variable; the second variable in \texttt{variable-list} is applied to the second process variable and the second \texttt{BARS=}?, \texttt{CBARS=}?, or \texttt{PBARS=} variable; and so forth. If the process variable list is longer than \texttt{variable-list}, the charts for the extra process variables do not display a bar legend.

\texttt{BARLEGLABEL=}'\texttt{label}' specifies the \texttt{label} to be displayed to the left of the legend that is created by the \texttt{BARLEGEND=} option. See Output 16.4.1 for an illustration.

The \texttt{BARLEGLABEL=} option is applicable only in conjunction with \texttt{BARS=}?, \texttt{CBARS=}?, or \texttt{PBARS=} variables. The \texttt{label} can be up to 16 characters and must be enclosed in quotation marks.

If you do not specify a \texttt{label}, the \texttt{BARLEGEND=} variable label is displayed (unless the label is longer than 16 characters, in which case the variable name is displayed). If you do not specify the \texttt{BARLEGLABEL=} option and no label is associated with the \texttt{BARLEGEND=} variable, no legend label is displayed.
BARS=(variable-list)
uses different colors to group bars of the Pareto chart for display. Bars that correspond to the same value of a variable in variable-list are assigned the same color from the ODS style. You cannot specify the BARS= option in conjunction with the CHIGH(n) or CLOW(n) options.

If you specify more than one process variable, you can specify more than one variable in variable-list. The number of variables in variable-list should be less than or equal to the number of process variables. The two lists of variables are paired in order of their specification. If a BARS= variable is not provided for a process variable, the bars for that chart are filled with the default color from the ODS style.

CATLEGEND=AUTO | OFF | ON
specifies whether a category legend is created for ODS Graphics output. You can specify the following values:

AUTO creates a category legend only when the labels would be too crowded on the category axis.
OFF suppresses the category legend.
ON creates a category legend.

By default, CATLEGEND=AUTO. This option is ignored if ODS Graphics is not enabled.

CATLEGLABEL='label'
specifies a label for the category legend. A category legend is created when there is insufficient space to label the categories along the category axis or when requested in the CATLEGEND= option. The label can be up to 16 characters and must be enclosed in quotation marks. The default label is “Categories:”.
See Example 16.3 for an illustration. This option is ignored when no category legend is produced.

CATOFFSET=value
specifies the length of the offset at both ends of the category axis (in screen percentage units). You can eliminate the offset by specifying CATOFFSET=0.

CATREF='value-list'
specifies where reference lines perpendicular to the Pareto category axis are to appear on the chart. Character values can be up to 64 characters and must be enclosed in quotation marks. The values must be values of the process variable regardless of whether the bars are numbered and a category legend is introduced.

CATREFLABELS='label1'...'labeln'
specifies labels for the lines that are requested in the CATREF= option. The number of labels must equal the number of lines requested. Labels can be up to 16 characters and must be enclosed in quotation marks.

CFRAMENLEG
CFRAMENLEG=EMPTY
CFRAMENLEG=color
displays a frame around the sample size legend that is requested in the NLEGEND option. You can specify this option in the following ways:
popup_text:Dictionary of HBAR and VBAR Statement Options

(no argument) fills the frame with the background color that is specified by the Color attribute of the GraphBackground style element in the current ODS style.

EMPTY produces a frame that has a transparent background.

color produces a frame whose background is *color* when you are producing traditional graphics.

CHARTTYPE=CUMULATIVE | INTERVALS< (interval-options) > | STANDARD

specifies the type of Pareto chart to be produced. This option is supported only for ODS Graphics output. You can specify the following options:

- **CUMULATIVE** creates a cumulative Pareto bar chart.
- **INTERVALS< (interval-options) >** creates a Pareto dot plot that includes acceptance intervals, which are computed using simulation. You can specify the following *interval-options* for computing acceptance intervals:
 - **ALPHA=value** specifies the significance level for the acceptance intervals. By default, ALPHA=0.05.
 - **NSAMPLES=n** specifies the number of random samples used in the simulation. By default, NSAMPLES=2000.
 - **SEED=n** specifies the seed value for the random number generator that is used in the simulation. By default, or when you specify n<=0, a seed value is generated by using the system clock.
- **STANDARD** creates a traditional Pareto chart.

By default, CHARTTYPE=STANDARD.

Wilkinson (2006) describes the advantages of the cumulative Pareto bar chart and the Pareto dot plot that includes acceptance intervals. See Example 16.9 for examples of these alternative Pareto charts.

CHIGH(n)

CHIGH(n)=color highlights the bars that have the n highest frequencies by filling them with a contrasting color from the ODS style. When producing traditional graphics output, you can specify CHIGH(n)=color to select a specific color. You cannot use the CHIGH(n) option in conjunction with a BARS= or CBARS= variable, but you can use it together with the CLOW(n) and CBARS=color options. See Output 16.3.1 for an illustration.

CLASS=variable

CLASS=(variable1 variable2) creates a comparative Pareto chart by using the levels of the *variable* and *variable2*. If you specify two *variables*, then you must enclose in parentheses. See Example 16.1 and Example 16.2.

If you specify a single *variable*, the observations in the input data set are classified by the formatted values (levels) of the *variable*. A Pareto chart is created for the process variable values in each level,
and these component charts (referred to as cells) are arranged in an array. The cells are labeled with
the class levels, and uniform horizontal and vertical axes are used to facilitate comparisons.

If you specify two variables, the observations in the input data set are cross-classified by the values
(levels) of the variables. A Pareto chart is created for the process variable values in each cell of the
cross-classification, and these charts are arranged in a matrix. The levels of the first variable label the
rows, and the levels of the second variable label the columns. Uniform horizontal and vertical axes are
used to facilitate comparisons.

The variables can be numeric or character. The maximum length of a character variable is 32. If
a format is associated with a variable, the formatted values determine the levels. Only the first 32
characters of the formatted values are used to determine the levels. You can specify whether missing
values are treated as a level by using the MISSING1 and MISSING2 options.

In traditional graphics output, only the level values are displayed in row and column headers. If a label
is associated with a variable, the label is displayed in a second header that spans the row or column
headers.

CLASSKEY='value'
CLASSKEY=('value1' 'value2')
specifies the key cell in a comparative Pareto chart, which is created when you specify the CLASS=
option. The key cell is defined as the cell in which the Pareto bars are arranged in decreasing order.
This order then determines the uniform category axis used for all the cells.

If you specify CLASS=variable, you can specify CLASSKEY='value' to identify the key cell as the
level for which the variable is equal to value. The value can have up to 32 characters, and you must
specify a formatted value. By default, the levels are sorted as specified by the ORDER1= option, and
the key cell is the level that occurs first in this order. The cells are displayed in this order from top to
bottom (or left to right, depending on the NCOLS= and NROWS= values), and consequently the key
cell is displayed at the top or at the left. The cell you specify in the CLASSKEY= option is displayed
at the top or at the left unless you also specify the NOKEYMOVE option.

If you specify CLASS=(variable1 variable2), you can specify CLASSKEY=('value1' 'value2') to
identify the key cell as the level for which variable1 is equal to value1 and variable2 is equal to value2.
Here, value1 and value2 must be formatted values, and they must be enclosed in quotation marks. By
default, the levels of variable1 are sorted in the order determined by the ORDER1= option, and then
within each of these levels, the levels of variable2 are sorted in the order determined by the ORDER2=
option. The default key cell is the combination of levels of variable1 and variable2 that occurs first in
this order. The cells are displayed in order of variable1 from top to bottom and in order of variable2
from left to right. Consequently, the default key cell is displayed in the upper left corner. The cell you
specify in the CLASSKEY= option is displayed in the upper left corner unless you also specify the
NOKEYMOVE option.

For an example of the use of the CLASSKEY= option, see Output 16.1.3.

CLOW(n)
CLOW(n)= color
highlights the bars that have the n lowest frequencies by filling them with a contrasting color from the
ODS style. When producing traditional graphics output, you can specify CLOW(n)=color to select a
specific color. You cannot use the CLOW(n)= option in conjunction with a CBARS= variable, but you
can use it together with the CBARS=color and CHIGH(n) options.
CMPCTLABEL
labels points on the cumulative percentage curve with their values. By default, the points are not labeled.

CPROP
CPROP=EMPTY
CPROP=color

requests that a proportion-of-frequency bar of the specified color be displayed horizontally across the top of each tile in a comparative Pareto chart. You can specify the following values:

(no argument) creates bars that are filled with a color from the ODS style.

EMPTY produces empty bars in traditional graphics output.

color produces bars that are filled with color in traditional graphics output.

The length of the bar relative to the width of the tile indicates the proportion of the total frequency count in the chart that is represented by the tile. You can use the bars to visualize the distribution of frequency count by tile. See Output 16.1.4 for an illustration.

The CPROP= option provides a graphical alternative to the NLEGEND option, which displays the actual count. The CPROP= option is applicable only with comparative Pareto charts.

CUMAXIS=value-list
specifies tick mark values for the cumulative percentage axis. The values must be equally spaced and in increasing order, and the first value must be 0. You must scale the values in percentage units, and the last value must be greater than or equal to 100.

CUMAXISLABEL='label'
specifies a label, up to 40 characters, for the cumulative percentage axis. The default label is “Cumulative Percent” or “Cm Pct,” depending on the space available.

CUMREF=value-list
requests reference lines perpendicular to the cumulative percentage axis at the specified values. You must specify the values in cumulative percentage units.

CUMREFLABELS='label1' . . . 'labeln'
specifies labels for the lines that are requested in the CUMREF= option. The number of labels must equal the number of lines requested. Enclose the labels in quotation marks. Labels can be up to 16 characters.

FREQ=variable
specifies a frequency variable whose values provide the counts (numbers of occurrences) of the values of the process variable. Specifying a frequency variable is equivalent to replicating the observations in the input data set. The variable must be a numeric variable that has nonnegative integer values. See “Creating a Pareto Chart from Frequency Data” on page 1075 for an illustration. If you specify more than one process variable in the chart statement, the variable values are used with each process variable. If you do not specify this option, each value of the process variable is counted exactly once.
FREQAXIS=\textit{value-list}

specifies tick mark values for the frequency axis. The values must be equally spaced and in increasing order, and the first value must be 0. You must scale the values in the same units as the bars (see the SCALE= option), and the last value must be greater than or equal to the height of the largest bar.

FREQAXISLABEL=’\textit{label}’

specifies a label, up to 40 characters, for the frequency axis. If a WEIGHT= variable is specified, its label is the default frequency axis label. Otherwise, the default label depends on the value of the SCALE= option.

FREQOFFSET=\textit{value}

specifies the length in screen percentage units of the offset at the upper end of the frequency axis.

FREQREF=\textit{value-list}

specifies where reference lines perpendicular to the frequency axis are to appear on the chart. You must specify the values in the same units that are used to scale the frequency axis. By default, the frequency axis is scaled in percentage units, but you can specify other units in the SCALE= option. See Output 16.2.3 for an illustration.

FREQREFLABELS=’\textit{label1}’…’\textit{labeln}’

specifies labels for the lines that are requested in the FREQREF= option. The number of labels must equal the number of lines requested. Enclose the labels in quotation marks. Labels can be up to 16 characters.

GRID

adds a grid that corresponds to the frequency axis to the Pareto chart. Grid lines are positioned at tick marks on the frequency axis. The lines are useful for comparing the heights of the bars.

GRID2

adds a grid that corresponds to the cumulative percentage axis to the Pareto chart. Grid lines are positioned at tick marks on the cumulative percentage axis. The lines are useful for reading the cumulative percentage curve.

HLLEGLABEL=’\textit{label}’

specifies a label for the legend that is automatically created when you use a combination of the CHIGH(\textit{n}), CLOW(\textit{n}), PHIGH(\textit{n}), and PLOW(\textit{n}) options. See Output 16.3.1 for an illustration. The label can be up to 16 characters and must be enclosed in quotation marks. The default label is “Bars:”.

HREFLABPOS=n

specifies the vertical position of labels for reference lines that are associated with horizontal axes, which are specified in the FREQREF= and CUMREF= options in an HBAR statement or the CATREF= option in a VBAR statement. The available positions are described in the following table.

<table>
<thead>
<tr>
<th>\textit{n}</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Along top of chart</td>
</tr>
<tr>
<td>2</td>
<td>Staggered from top to bottom of chart</td>
</tr>
<tr>
<td>3</td>
<td>Along bottom of chart</td>
</tr>
<tr>
<td>4</td>
<td>Staggered from bottom to top of chart</td>
</tr>
</tbody>
</table>

By default, HREFLABPOS=1. **Note:** HREFLABPOS=2 and HREFLABPOS=4 are not supported for ODS Graphics output.
INTERTILE=value
specifies the distance in horizontal screen percentage units between tiles (cells) in a comparative Pareto chart. When ODS Graphics is enabled, the default value is 2%. In traditional graphics, the tiles are contiguous by default. See Output 16.1.3 for an illustration.

LABOTHER='other-label'
is used in conjunction with the BARLABEL=(variable) option and specifies a label for the ‘other’ category that is optionally specified in the OTHER= option.

LAST='category'
requests that the bar that corresponds to category be displayed last (at the bottom of a horizontal chart or the right end of a vertical chart) regardless of the frequency that is associated with this category. The category must be a formatted value of the process variable and must be enclosed in quotation marks. The category can be up to 64 characters. See Figure 16.6 for an illustration.

LOOTHER='label'
specifies a label for the bar that is defined in the OTHER= option. This label appears in the legend that is specified in the BARLEGEND= option. The label must be enclosed in quotation marks and can be up to 32 characters. The default is the value that is specified in the OTHER= option. The LOOTHER= option is applicable only when a BARLEGEND= variable is specified.

MARKERS
requests that the points on the cumulative percentage curve be plotted with markers in ODS Graphics output. You can use a SYMBOL statement to plot the points in traditional graphics output.

MAXCMPCT=percent
requests that only the Pareto categories that have the highest frequency counts be displayed, where the sum of their corresponding percentages is less than or equal to percent. For example, if you specify the following statements, the chart displays only the most frequently occurring categories that account for no more than 90% of the total frequency:

```
proc pareto data=failure;
  vbar cause / maxcmpct = 90;
```

You can use the OTHER= option in conjunction with the MAXCMPCT= option to create and display a new category that combines categories that are not selected by the MAXCMPCT= option. For example, if you specify the following statements, the chart displays the categories that account for no more than 90% of the total frequency, together with a category labeled “Others” that merges the remaining categories:

```
proc pareto data=failure;
  vbar cause / maxcmpct = 90
    other      = 'Others';
```

The MAXCMPCT= option is an alternative to the MINPCT= and MAXNCAT= options.
MAXNCAT=n requests that only the Pareto categories with the n highest frequencies be displayed. For example, if you specify the following statements, the chart displays only the categories that have the 20 highest frequencies:

```plaintext
proc pareto data=failure;
  vbar cause / maxncat = 20;
```

If the total number of categories is less than 20, all the categories are displayed.

You can use the OTHER= option in conjunction with the MAXNCAT= option to create and display a new category that combines categories that are not selected by the MAXNCAT= option. For example, if you specify the following statements, the chart displays the categories that have the 19 highest frequencies, together with a category labeled “Others” that merges the remaining categories:

```plaintext
proc pareto data=failure;
  vbar cause / maxncat = 20
  other= 'Others';
```

See Figure 16.6 for another illustration.

The MAXNCAT= option is an alternative to the MINPCT= and MAXCMPCT= options.

MINPCT=percent requests that only the Pareto categories whose frequency percentages are greater than or equal to percent be displayed. For example, if you specify the following statements, the chart displays only categories that have at least 5% of the total frequency:

```plaintext
proc pareto data=failure;
  vbar cause / minpct = 5;
```

You can use the OTHER= option in conjunction with the MINPCT= option to create and display a new category that combines categories that are not selected by the MINPCT= option. The merged category that is created by the OTHER= option is displayed even if its total percentage is less than percent. For example, if you specify the following statements, the chart displays the categories whose percentages are greater than or equal to 5%, together with a category labeled “Others” that merges the remaining categories:

```plaintext
proc pareto data=failure;
  vbar cause / minpct = 5
  other = 'Others';
```

The MINPCT= option is an alternative to the MAXNCAT= and MAXCMPCT= options.

MISSING requests that missing values of the process variable be treated as a Pareto category that is represented with a bar on the chart. If the process variable is a character variable, a missing value is defined as a blank internal (unformatted) value. If the process variable is numeric, a missing value is defined as any of the SAS missing values. If you do not specify this option, missing values are excluded from the analysis.
MISSING1
requests that missing values of the first CLASS= variable be treated as a level of the CLASS= variable. If the first CLASS= variable is a character variable, a missing value is defined as a blank internal (unformatted) value. If the first CLASS= variable is numeric, a missing value is defined as any of the SAS missing values. If you do not specify this option, observations in the DATA= data set for which the first CLASS= variable is missing are excluded from the analysis.

MISSING2
requests that missing values of the second CLASS= variable be treated as a level of the CLASS= variable. If the second CLASS= variable is a character variable, a missing value is defined as a blank internal (unformatted) value. If the second CLASS= variable is numeric, a missing value is defined as any of the SAS missing values. If you do not specify this option, observations in the DATA= data set for which the second CLASS= variable is missing are excluded from the analysis.

NCOLS=n
NCOL=n
specifies the number of columns in a comparative Pareto chart. You can use this option in conjunction with the NROWS= option. See Output 16.2.3 and Output 16.2.4 for an illustration. By default, NCOLS=1 and NROWS=2 if one CLASS= variable is specified, and NCOLS=2 and NROWS=2 if two CLASS= variables are specified.

NLEGEND

NLEGEND=’label’

NLEGEND=(variable)
requests a sample size legend and specifies its form. You can specify the following values:

(no argument) requests a sample size legend and specifies its form as N=n, where n is the total count for the Pareto categories. In a comparative Pareto chart, a legend is displayed in each tile, and n is the total count for that particular cell. See Output 16.2.1 for an illustration.

’label’ requests a sample size legend and specifies its form as label=n, where n is the total count for the Pareto categories. The label can be up to 32 characters and must be enclosed in quotation marks. For an illustration, see Figure 16.4 or Output 16.1.4.

(variable) requests a sample size legend that is the value of variable from the DATA= data set. The formatted length of variable cannot exceed 32. If a format is associated with variable, then the formatted value is displayed. This option is intended for use with comparative Pareto charts and enables you to display a customized legend inside each tile (this legend does not need to provide a total count). It is assumed that the values of variable are identical for all observations in a particular class.

By default, the legend is placed in the upper left corner of the chart. If you specify the NOCURVE option, the legend is placed in the upper right corner of the chart. You can use the CFRAMENLEG= option to frame the sample size legend. No sample size legend is displayed if you do not specify an NLEGEND option.
NOCATLABEL
suppresses the category axis label. This option is useful for avoiding clutter where the meaning of the
category axis is apparent from the labels for the Pareto categories. See Output 16.2.2 for an illustration.

NOCHART
suppresses the creation of a Pareto chart. This option is useful when you are simply creating an output
data set.

NOCUMLABEL
suppresses the cumulative percentage axis label. This option is useful for avoiding clutter on compara-
tive Pareto charts.

NOCUMTICK
suppresses the cumulative percentage axis label, tick marks, and tick mark labels.

NOCURVE
suppresses the cumulative percentage curve and the cumulative percentage axis. Compare Output 16.2.1
and Output 16.2.2 for an illustration.

NOFREQLABEL
suppresses the frequency axis label.

NOFREQTICK
suppresses the frequency axis label, tick marks, and tick mark labels.

NOHLLEG
suppresses the legend that is generated by the CHIGH(n)=, CLOW(n)=, PHIGH(n)=, and PLOW(n)=
options.

NOKEYMOVE
suppresses the rearrangement of cells within a comparative Pareto chart that occurs when you use the
CLASSKEY= option. By default, the key cell appears in the top left corner of a comparative Pareto
chart.

NROWS=n
NROW=n
specifies the number of rows in a comparative Pareto chart. You can use the NROWS= option in
conjunction with the NCOLS= option. See Output 16.2.3 and Output 16.2.4 for an illustration. By
default, NROWS=2.

ODSFOOTNOTE=FOOTNOTE | FOOTNOTE1 | ‘string’
adds a footnote to ODS Graphics output. You can specify the following values:

FOOTNOTE (or FOOTNOTE1) uses the value of the SAS FOOTNOTE statement as the graph
footnote.

‘string’ uses string as the footnote. The quoted string can contain either of the follow-
ing escaped characters, which are replaced with the appropriate values from the analysis:
Dictionary of HBAR and VBAR Statement Options

\n is replaced by the process variable name.
\l is replaced by the process variable label (or name if the process variable has no label).

ODSFOTNOTE2=FOOTNOTE2 | \texttt{string}
adds a secondary footnote to ODS Graphics output. You can specify the following values:

- **FOOTNOTE2** uses the value of the SAS FOOTNOTE2 statement as the secondary graph footnote.
- **\texttt{string}** uses \texttt{string} as the secondary footnote. The quoted \texttt{string} can contain any of the following escaped characters, which are replaced with the appropriate values from the analysis:
 \n is replaced by the process variable name.
 \l is replaced by the process variable label (or name if the process variable has no label).

ODSTITLE=TITLE | TITLE1 | NONE | DEFAULT | LABELFMT | \texttt{string}
specifies a title for ODS Graphics output. You can specify the following values:

- **TITLE** (or **TITLE1**) uses the value of the SAS TITLE statement as the graph title.
- **NONE** suppresses all titles from the graph.
- **DEFAULT** uses the default ODS Graphics title (a descriptive title that consists of the plot type and the process variable name).
- **LABELFMT** uses the default ODS Graphics title, but substitutes the process variable label for the process variable name.
- **\texttt{string}** uses \texttt{string} as the graph title. The quoted \texttt{string} can contain the following escaped characters, which are replaced with the appropriate values from the analysis:
 \n is replaced by the process variable name.
 \l is replaced by the process variable label (or name if the process variable has no label).

ODSTITLE2=TITLE2 | \texttt{string}
specifies a secondary title for ODS Graphics output. You can specify the following values:

- **TITLE2** uses the value of the SAS TITLE2 statement as the secondary graph title.
- **\texttt{string}** uses \texttt{string} as the graph title. The quoted \texttt{string} can contain the following escaped characters, which are replaced with the appropriate values from the analysis:
 \n is replaced by the process variable name.
 \l is replaced by the process variable label (or name if the process variable has no label).
ORDER1=DATA | FORMATTED | FREQ | INTERNAL
specifies the display order for the values of the first CLASS= variable. The levels of the first CLASS= variable are always constructed using the formatted values of the variable, and the formatted values are always used to label the rows (columns) of a comparative Pareto chart. You can specify the following values:

DATA displays the rows (columns) from top to bottom (left to right) in the order in which the values of the first CLASS= variable first appear in the input data set.

FORMATTED displays the rows (columns) from top to bottom (left to right) in increasing order of the formatted values of the first CLASS= variable. For example, suppose you use a numeric CLASS= variable called Day (with values 1, 2, and 3) to create a one-way comparative Pareto chart. Also suppose you use the FORMAT procedure to associate the formatted values 1 = ‘Wednesday’, 2 = ‘Thursday’, and 3 = ‘Friday’ with Day. If you specify ORDER1=FORMATTED, the rows appear in alphabetical order ('Friday', 'Thursday', 'Wednesday') from top to bottom.

FREQ displays the rows (columns) from top to bottom (left to right) in order of decreasing frequency count. If two or more classes have the same frequency count, the order is determined by the formatted values.

INTERNAL displays the rows (columns) from top to bottom (left to right) in increasing order of the internal (unformatted) values of the first CLASS= variable. If there are two or more distinct internal values that have the same formatted value, the order is determined by the internal value that occurs first in the input data set. In the previous example with variable Day, if you specify ORDER1=INTERNAL, the rows of the comparative chart appear in chronological order ('Wednesday', 'Thursday', 'Friday') from top to bottom.

By default, ORDER1=INTERNAL.

ORDER2=INTERNAL | FORMATTED | DATA | FREQ
specifies the display order for the values of the second CLASS= variable. The levels of the second CLASS= variable are always constructed using the formatted values of the variable, and the formatted values are always used to label the columns of a two-way comparative Pareto chart.

The PARETO procedure determines the layout of a two-way comparative Pareto chart by first using the ORDER1= option to obtain the order of the rows from top to bottom (recall that ORDER1=INTERNAL by default). Then the ORDER2= option is applied to the observations that correspond to the first row to obtain the order of the columns from left to right. If any columns remain unordered (that is, the categories are unbalanced), the ORDER2= option is applied to the observations in the second row, and so on until all the columns have been ordered.

The values of the ORDER2= option are interpreted as described for the ORDER1= option. By default, ORDER2=INTERNAL.

OTHER='category'
specifies a new category that merges all categories that are not selected in the MAXNCAT=, MINPCT=, or MAXCMPCT= options. See the section “Restricting the Number of Pareto Categories” on page 1076 for an illustration.

The category should be specified as a formatted value of the process variable. The category can be up to 32 characters and must be enclosed in quotation marks. If you specify an OUT= data set, you
should also specify an internal value that corresponds to *category* by specifying the **OTHERCVAL=** option or the **OTHERNVAL=** option.

The **OTHER=** option is not applicable unless you specify the **MAXNCAT=**, **MINPCT=**, or **MAXCM-PCT=** option. You can use the **OTHER=**, **LOTHER=**, **POTHER=**, **OTHERCVAL=**, and **OTHERN-VAL=** options with the **OTHER=** option.

OTHERCVAL='value'
specifies the internal (unformatted) *value* for a character process variable in the **OUT=** data set that corresponds to the category that is specified in the **OTHER=** option. The *value* can be up to 64 characters and must be enclosed in quotation marks.

The **OTHERCVAL=** option is not applicable unless you specify the **OTHER=** and **OUT=** options. If you specify the **OTHER=** option but not the **OTHERCVAL=** option, the value specified in the **OTHER=** option is written to the **OUT=** data set.

OTHERNVAL=value
specifies the internal (unformatted) *value* for a numeric process variable in the **OUT=** data set that corresponds to the category that is specified in the **OTHER=** option. The **OTHERNVAL=** option is not applicable unless you specify the **OTHER=** and **OUT=** options. If you specify the **OTHER=** option but not the **OTHERNVAL=** option, a missing value is written to the **OUT=** data set.

OUT=SAS-data-set
creates an output data set that contains the information that is displayed in the Pareto chart. This data set is useful if you want to create a report to accompany your chart. See Example 16.8 for an illustration.

SCALE=COUNT | FREQUENCY | PERCENT | WEIGHT
specifies the scale for the frequency axis. You can specify the following values:

- **COUNT** or **FREQUENCY** specifies that the scale is counts. See Output 16.1.4 for an illustration. This option is ignored if you specify the **WEIGHT=** option.
- **PERCENT** specifies that the scale is the percentage of the total frequency or, if you specify the **WEIGHT=** option, the percentage of the total weight.
- **WEIGHT** scales the vertical axis in the same units as the variable you specify in the **WEIGHT=** option. This option applies only if you specify the **WEIGHT=** option.

By default, **SCALE=PERCENT**. See Output 16.8.1 for an example.

NOTE: Regardless of the value you specify for the **SCALE=** option, the cumulative percentage axis is scaled in cumulative percentage units.

URL=variable
specifies URLs as values of the specified character *variable* (or formatted values of a numeric *variable*). These URLs are associated with bars on the Pareto chart when ODS Graphics output is directed into HTML. The value of *variable* should be the same for each observation that has a particular value of the process variable. The **URL=** option is not supported for traditional graphics output.
Chapter 16: The PARETO Procedure

VREFLABPOS=n
specifies the vertical positioning of the labels for reference lines that are associated with vertical axes, which are specified in the CATREF= option in an HBAR statement or in the FREQREF= and CUMREF= options in a VBAR statement. If you specify VREFLABPOS=1, the labels are positioned at the left of the chart; if you specify VREFLABPOS=2, the labels are positioned at the right. By default, VREFLABPOS=1.

WEIGHT=variable-list
specifies weight variables that are used to construct weighted Pareto charts. Variables in the variable-list are paired with the process variables in order of specification. The WEIGHT= variables must be numeric, and their values must be nonnegative (noninteger values are permitted). If a WEIGHT= variable is not provided for a process variable, the weights applied to that process variable are assumed to be 1. See “Weighted Pareto Charts” on page 1120 for computational details.

A WEIGHT= variable is particularly useful for carrying out a Pareto analysis based on cost rather than frequency of occurrence. See Example 16.8 for an illustration.

Options for Traditional Graphics

You can specify the following options only when traditional graphics are produced. The PARETO procedure produces traditional graphics when ODS Graphics is disabled and SAS/GRAPH is licensed.

ANGLE=value
specifies an angle in degrees for rotating the labels on the category axis. The value is the angle between the baseline of the label and the category axis. See Output 16.1.1 and Output 16.1.2 for an illustration. The value must be greater than or equal to –90 and less than 90. The default value is 0.

ANNOKEY
applies the annotation requested in the ANNOTATE= and ANNOTATE2= options only to the key cell in a comparative Pareto chart. By default, annotation is applied to all of the cells.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set
specifies an input data set that contains annotation variables as described in SAS/GRAPH: Reference. You can use the SAS-data-set to customize the Pareto charts that are produced by a single HBAR or VBAR statement. (A data set that is specified in the ANNOTATE= option in the PROC PARETO statement customizes charts that are produced by all HBAR and VBAR charts.) The SAS-data-set is associated with the frequency axis. If the annotation is based on data coordinates, you must use the same units as the frequency axis.

ANNOTATE2=SAS-data-set
ANNO2=SAS-data-set
specifies an input data set that contains annotation variables as described in SAS/GRAPH: Reference. You can use the SAS-data-set to customize the Pareto charts that are produced by a single HBAR or VBAR statement. (A data set that is specified in the ANNOTATE2= option in the PROC PARETO statement customizes charts that are produced by all HBAR and VBAR charts.) The SAS-data-set is associated with the cumulative percentage axis. If the annotation is based on data coordinates, you must use the same units as the cumulative percentage axis.
BARLABPOS=keyword

specifies the position for labels that are requested in the **BARLABEL=** option.

You can specify the following *keywords* in an HBAR statement:

- **HBAR**
 displays the label right-justified on the bar. If the label is longer than the bar, it is left-justified at the base of the bar.
- **HFIT**
 right-justifies the label on the bar. If the label is longer than the bar, the label is displayed to the right of the bar.
- **HLJUST**
 left-justifies the label at the base of the bar.
- **HRIGHT**
 displays the label to the right of the bar. If there is insufficient space for the label to the right of the bar, the label is right-justified at the right edge of the frame.
- **HRJUST**
 right-justifies the label at the right edge of the frame.

The default for an HBAR statement is **BARLABPOS=HRIGHT**.

You can specify the following *keywords* in a VBAR statement:

- **HCENTER**
 centers the label horizontally above the bar. If the centered label would extend outside the frame, the label is left-justified or right-justified at the edge of the frame.
- **HLJUST**
 left-justifies the label horizontally above the bar. The label is truncated if necessary.
- **VBAR**
 displays the label vertically on the bar. If the label is longer than the bar, it extends above the bar.
- **VFIT**
 displays the label vertically on or above the bar, depending on the available space. If the label is longer than the bar, it is displayed just below the top edge of the frame.

The default for a VBAR statement is to center the labels horizontally above the bars, with a reduction in text height if necessary. Reduction is not applied when the **BARLABPOS=** option is specified.

BARWIDTH=value

specifies the width of the bars in screen percentage units. By default, the bars are made as wide as possible.

CAXIS=color
CAXES=color
CA=color

specifies the color for the axis lines and tick marks. The default color is specified by the ContrastColor attribute of the GraphAxisLines style element in the current ODS style. If the NOGSTYLE option is in effect, *color* is also used for bar outlines and grid lines, unless overridden by the **CBARLINE=**, **CGRID=**, or **GRID2=** option.

CAXIS2=color

specifies the color for the tick mark labels and axis label that are associated with the cumulative percentage axis. By default, the color specified in the **CTEXT=** option (or its default) is used.
CBARLINE=\texttt{color}
specifies the color for bar outlines. The default color is specified by the ContrastColor attribute of the GraphOutlines style element in the current ODS style.

CBARS=\texttt{color}
\texttt{CBARS=(variable-list)}
specifies how the bars of the Pareto chart are colored. You can specify the following values:

\begin{itemize}
 \item \texttt{color} uses a single color for all the bars. You can use this option in conjunction with the CHIGH\texttt{(n)} and CLOW\texttt{(n)} options.
 \item \texttt{variable-list} uses a distinct color for each bar (or combination of bars). The colors are specified as values of variables in the \texttt{variable-list}. Each variable must be a character variable. You can use the special value \texttt{\'EMPTY\'} to indicate that a bar is not to be colored. Note that \texttt{variable-list} must be enclosed in parentheses. You cannot specify a \texttt{variable-list} conjunction with the CHIGH\texttt{(n)} or CLOW\texttt{(n)} option.
\end{itemize}

If you specify more than one process variable, you can specify more than one CBARS= variable. The number of CBARS= variables should be less than or equal to the number of process variables. The two lists of variables are paired in order of specification.

If no CBARS= color or variable is specified for a process variable, the bars for its chart are displayed in the default color, which is determined by the Color attribute of the GraphData1 style element in the current ODS style.

If you specify one or more CBARS= variables, you can also use the BARLEGEND= option to add a legend to the chart that explains the significance of each color. Furthermore, you can use the PBARS= option to specify patterns in conjunction with the CBARS= option.

CCATREF=\texttt{color}
specifies the color for reference lines that are requested in the CATREF= option. The default color is specified by the ContrastColor attribute of the GraphReference style element in the current ODS style.

CCONNECT=\texttt{color}
specifies the color for the line segments that connect the points on the cumulative percentage curve. The default color is determined by the ContrastColor attribute of the GraphDataDefault style element in the current ODS style. You can specify the color for the points on the cumulative percentage curve in SYMBOL statement COLOR= option.

CCUMREF=\texttt{color}
specifies the color for reference lines that are requested in the CUMREF= option. The default color is specified by the ContrastColor attribute of the GraphReference style element in the current ODS style.

CFRAME=\texttt{color}
specifies the color for filling the area that is enclosed by the axes and the frame. The default color is specified by the Color attribute of the GraphWalls style element in the current ODS style. You cannot use the CFRAME= option in conjunction with the NOFRAME option or the CTILES= option.

CFRAMESIDE=\texttt{color}
specifies the color for filling the frame area for the row labels, which are displayed along the left side of a comparative Pareto chart. If a label is associated with the classification variable, \texttt{color} is also used to fill the frame area for this label. By default, the frame is transparent.
CFRAMETOP=color
specifies the color for filling the frame area for the column labels, which are displayed across the top of a comparative Pareto chart. If a label is associated with the classification variable, color is also used to fill the frame area for this label. By default, the frame is transparent.

CFREQREF=color
specifies the color for reference lines that are requested in the FREQREF= option. The default color is specified by the ContrastColor attribute of the GraphReference style element in the current ODS style.

CGRID=color
specifies the color for frequency axis grid lines. If you specify this option, you do not need to specify the GRID option. The default color is specified by the ContrastColor attribute of the GraphGridLines style element in the current ODS style.

CGRID2=color
specifies the color for cumulative percentage axis grid lines. If you specify this option, you do not need to specify the GRID2 option. The default color is specified by the ContrastColor attribute of the GraphGridLines style element in the current ODS style.

CLIPREF
draws reference lines that are requested in the CATREF=, CUMREF=, and FREQREF= options behind the bars on the Pareto chart. When the GSTYLE option is in effect, reference lines are drawn in front of the bars by default.

COTHER=color
specifies the color for the bar that is defined by the OTHER= option. By default the CFRAMETOP=color is used. The COTHER= option is not applicable unless a BARS= or CBARS= variable is specified.

CTEXT=color
CT=color
specifies the color for text, such as tick mark labels, axis labels, and legends. The default color is specified by the Color attribute of a style element in the current ODS style. Axis labels use the GraphLabelText style element, and all other text uses the GraphValueText style element.

CTEXTSIDE=color
specifies the color for row labels, which are displayed along the left side of a comparative Pareto chart. If you do not specify a color, the color specified in the CTEXT= option is used. If neither option is specified, the color is determined by the Color attribute of the GraphValueText style element in the current ODS style.

CTEXTTOP=color
specifies the color for column labels, which are displayed across the top of a comparative Pareto chart. If you do not specify a color, the color specified in the CTEXT= option is used. If neither option is specified, the color is determined by the Color attribute of the GraphValueText style element in the current ODS style.

CTILES=(variable)
specifies a character variable whose values are the fill colors for the tiles in a comparative Pareto chart. This option generalizes the CFRAMETOP=color option, which provides a single color for all of the tiles. The variable must be enclosed in parentheses. The values of the variable must be identical for all
observations that have the same level of the CLASS= variables. You can use the same color to fill more than one tile. You can use the special value 'EMPTY' to indicate that a tile is not to be filled.

You cannot use the CTILES= option in conjunction with the NOFRAME or CFRAME= options. You can use the TILELEGEND= option in conjunction with the CTILES= option to add an explanatory legend for the CTILES= colors at the bottom of the chart. See Output 16.5.1 for an illustration.

DESCRIPTION='string'
DES='string'
specifies a description, up to 256 characters long, for the GRSEG catalog entry for a traditional graphics chart.

FONT=font
specifies a font for text that is used in labels and legends. The default font is determined by the FontFamily, FontStyle, and FontWeight attributes of a style element in the current ODS style; axis labels use the GraphLabelText style element and all other text uses the GraphValueText style element.

FRONTREF
draws reference lines that are requested in the CATREF=, FREQREF=, and CUMREF= options in front of the bars on the Pareto chart. When the NOGSTYLE option is in effect, reference lines are drawn behind the bars by default and can be obscured by them.

HEIGHT=value
specifies the height in screen percentage units of text for labels and legends. This option takes precedence over the GOPTONS HTEXT= option. The default value is specified by the FontSize attribute of the a style element in the current ODS style; axis labels use the GraphLabelText style element and all other text uses the GraphValueText style element.

HTML=variable
specifies a variable whose values create links that are associated with Pareto bars when traditional graphics output is directed into HTML. You can specify a character variable or a formatted numeric variable. The value of the HTML= variable should be the same for each observation that has a particular value of the process variable.

INFONT=font
specifies a font for bar labels, cumulative percentage curve labels, and sample size legends. This option takes precedence over the FONT= option and the FTEXT= option in the GOPTIONS statement. The default font is determined by the FontFamily, FontStyle, and FontWeight attributes of the GraphValueText style element in the current ODS style.

INHEIGHT=value
specifies the height in screen percentage units of bar labels, cumulative percentage curve labels, and sample size legends. This option takes precedence over the HEIGHT= option and the HTEXT= option in a GOPTIONS statement. The default value is specified by the FontSize attribute of the GraphValueText style element in the current ODS style.

INTERBAR=value
specifies the distance in screen percentage units between bars on the chart. By default, the bars are contiguous.
LCATREF= line-type
specifies the line type for reference lines that are requested in the CATREF= option. The default line type is specified by the LineStyle attribute of the GraphReference style element in the current ODS style.

LCUMREF= line-type
specifies the line type for reference lines that are requested in the CUMREF= option. The default line type is specified by the LineStyle attribute of the GraphReference style element in the current ODS style.

LFREQREF= line-type
specifies the line type for lines that are requested in the FREQREF= option. The default line type is specified by the LineStyle attribute of the GraphReference style element in the current ODS style.

LGRID= line-type
specifies the line type for frequency axis grid lines. If you specify this option, you do not need to specify the GRID option. The default line type is specified by the LineStyle attribute of the GraphGridLines style element in the current ODS style.

LGRID2= line-type
specifies the line type for cumulative percentage axis grid lines. If you specify this option, you do not need to specify the GRID2 option. The default line type is specified by the LineStyle attribute of the GraphGridLines style element in the current ODS style.

NAME='string'
specifies the name of the GRSEG catalog entry for a traditional graphics chart, and the name of the graphics output file if one is created. The name can be up to 256 characters long, but the GRSEG name is truncated to eight characters. The default name is “PARETO”.

NOFRAME
suppresses the frame that is drawn around the chart by default. You cannot specify the NOFRAME option in conjunction with the CFRAME= or TILES= options.

PBARS= pattern
PBARS= (variable-list)
specifies pattern fills for the bars. You can specify the following values:

 pattern uses a single pattern for all the bars. You can use this approach in conjunction with the PHIGH(\text{n})= and PLOW(\text{n})= options.

 variable-list uses a distinct pattern for each bar (or combination of bars). You provide the patterns as values of variables in the variable-list. For example, you might use the solid pattern (‘S’) to indicate severe problems and the empty pattern (‘E’) for all other problems. Each variable must be a character variable of length eight, and the variable-list must be enclosed in parentheses. You cannot specify a variable-list in conjunction with the PHIGH(\text{n})= and PLOW(\text{n})= options.

If you specify more than one process variable in the chart statement, you can provide more than one variable in the variable-list. The number of variables in the variable-list should be less than or equal to the number of process variables. The two lists of variables are paired in order of specification. If a variable is not
provided in the variable-list for a process variable, the bars for that chart are not filled.

If you specify a variable-list, you can also use the BARLEGEND= option to add a legend to the chart that explains the significance of each pattern.

You can use the CBARS= option to specify colors in conjunction with the PBARS= option.

PHIGH(n)=pattern

specifies the pattern for the bars that have the n highest values. You cannot specify this option in conjunction with a PBARS=variable-list, but you can specify this option together with the PLOW(n)= and PBARS=pattern options.

PLOW(n)=pattern

specifies the pattern for the bars that have the n lowest values. You cannot specify this option in conjunction with a PBARS=variable-list, but you can use this option together with the PHIGH(n)= and PBARS=pattern options.

POTHER=pattern

specifies the pattern for the bar that is defined by the OTHER= option. This option applies only if you specify a PBARS=variable-list.

TILELEGEND(variable)

specifies a variable that is used to add a legend for CTILES= colors. The variable can have a formatted length less than or equal to 32. If a format is associated with the variable, then the formatted value is displayed. You must specify the TILELEGEND= option in conjunction with the CTILES= option. If you specify the CTILES= option but do not specify the TILELEGEND= option, a color legend is not displayed.

The values of the CTILES= and TILELEGEND= variables should be consistent for all observations that have the same level of the CLASS= variables. The value of the TILELEGEND= variable is used to identify the corresponding color value of the CTILES= variable in the legend. See Output 16.5.1 for an illustration.

TILELEGLABEL='label'

specifies a label for the legend that is created when you specify a TILELEGEND= variable. The label can be up to 16 characters and must be enclosed in quotation marks. The default is “Tiles:”. See Output 16.5.1 for an illustration.

TURNVLABEL

TURNVLABELS

turns and strings out vertically the characters in the labels for the frequency and cumulative percentage axes. The TURNVLABELS option is valid only in a VBAR statement.

WAXIS=n

specifies the line thickness (in pixels) for the axes and frame. This thickness is also used for bar outlines and grid lines, unless overridden by the WBARLINE=, WGRID=, or WGRID2= option. The default line thickness is specified by the LineThickness attribute of the GraphAxisLines style element in the current ODS style.
Details: PARETO Procedure

Terminology

Basic Pareto Charts

A basic Pareto chart (see Figure 16.1) analyzes the unique values of a process variable. These values are called Pareto categories or levels, and they usually represent problems that are encountered during some phase of a manufacturing or service activity.

A basic vertical Pareto chart (as produced by the PARETO procedure’s VBAR statement) has one horizontal axis and two vertical axes:

\[
\text{WBARLINE}=n
\]

specifies the width for bar outlines. The default outline thickness is specified by the LineThickness attribute of the GraphOutlines style element in the current ODS style.

\[
\text{WGRID}=n
\]

specifies the width of the frequency axis grid lines. If you specify this option, the GRID option is not required. The default line thickness is specified by the LineThickness attribute of the GraphGridLines style element in the current ODS style.

\[
\text{WGRID2}=n
\]

specifies the width of the cumulative percentage axis grid lines. If you specify this option, the GRID2 option is not required. The default line thickness is specified by the LineThickness attribute of the GraphGridLines style element in the current ODS style.

Options for Legacy Line Printer Charts

\textbf{NOTE:} The HBAR statement does not produce legacy line printer charts, so the following options apply only to the VBAR statement.

\[
\text{CONNECTCHAR}='\text{character}'
\]

\[
\text{CCHAR}='\text{character}'
\]

specifies the plot character for line segments that connect points on the cumulative percentage curve. The default character is a plus sign (+).

\[
\text{HREFCHAR}='\text{character}'
\]

specifies the plot character used to form the lines that are requested in the CATREF= option. The default character is a vertical bar (|).

\[
\text{SYMBOLCHAR}='\text{character}'
\]

specifies the plot character for points on the cumulative percentage curve. The default character is an asterisk (*).

\[
\text{VREFCHAR}='\text{character}'
\]

specifies the character to be used to form the lines that are requested in the FREQREF= and CUMREF= options. The default character is a dash (-).
Chapter 16: The PARETO Procedure

- The category axis is displayed horizontally at the bottom of the chart and lists the Pareto categories.
- The frequency axis (or primary vertical axis) is displayed on the left. The relative frequency of each Pareto category is represented by a vertical bar whose height is measured on the frequency axis. You can use the SCALE= option to scale this axis in percentage, count, or weight units.
- The cumulative percentage axis (or secondary vertical axis) is displayed on the right. This axis is scaled in cumulative percentage units and is used to read the cumulative percentage curve. The height of each point on the curve represents the percentage of the total frequency that is accounted for by the Pareto categories to the left of the point.

A horizontal Pareto chart (as produced by the HBAR statement), is essentially a vertical Pareto chart rotated 90 degrees clockwise. The category axis is displayed vertically on the left. Categories appear in order of decreasing relative frequency from top to bottom. The frequency axis appears at the top of the chart and the cumulative percentage axis appears at the bottom. The relative frequencies of the Pareto categories are represented by horizontal bars. A point on the cumulative percentage curve represents the percentage of the total frequency that is accounted for by the Pareto categories above that point.

NOTE: For the sake of brevity, in this chapter the term height refers to the size of a bar as measured along the frequency axis, whether the Pareto chart is oriented vertically or horizontally.

Restricted Pareto Charts

A restricted Pareto chart (see Figure 16.6) displays only the \(n \) most frequently occurring categories in a data set that contains \(N \) categories, where \(N > n \). The remaining \(N - n \) categories are dropped or are merged into a single “other” category that is created when you specify the OTHER= option. The MAXCMPCT=, MAXNCAT=, and MINPCT= options provide alternative methods for specifying \(n \). See the entries for these options in the section “Dictionary of HBAR and VBAR Statement Options” on page 1097.

Weighted Pareto Charts

A weighted Pareto chart (see Example 16.8) displays bars whose heights represent the weighted frequencies of the categories. Typical weights are the cost of repair or the loss incurred by the customer.

The weight \(W_i \) for the \(i \)th Pareto category is computed as

\[
W_i = \sum_{u \in C_i} w(u) f(u)
\]

where \(C_i \) is the set of observations that make up the \(i \)th category, \(w(u) \) is the value of the weight variable in the \(u \)th observation, and \(f(u) \) is the value of the frequency variable in the \(u \)th observation (taking \(f(u) = 1 \) if a FREQ= variable is not specified). If SCALE=WEIGHT is specified, the height of the bar for the \(i \)th category is \(W_i \). If SCALE=PERCENT is specified, the height of this bar is

\[
\frac{100W_i}{\sum_{j=1}^{N} W_j}
\]

where \(N \) is the total number of categories.
Comparative Pareto Charts

A *comparative Pareto chart* combines two or more Pareto charts for the same process variable. The component charts are displayed with uniform axes to facilitate comparison. The observations that are represented by a component chart are called a *cell*. The framed areas for the component charts are called *tiles*.

In a *one-way comparative Pareto chart*, each component chart corresponds to a different level of a single classification variable, which is specified in the `CLASS=` option. The component charts are arranged in a stack or a row, as illustrated in Output 16.1.3, Output 16.1.4, Output 16.2.2, and Output 16.2.3. In a *two-way comparative Pareto chart*, each component chart corresponds to a different combination of levels of two classification variables, which are specified in the `CLASS=` option. The component charts are arranged in a matrix, as illustrated in Output 16.2.4.

Every comparative Pareto chart has a *key cell*, in which the bars are in decreasing order and whose order is imposed on all the other cells to achieve a uniform category axis. By default, the key cell is the cell in the upper left corner, but you can use the `CLASSKEY=` option to designate any other cell as the key cell. If you designate another cell as the key cell, the rows and columns of the comparative chart are rearranged so that the key cell appears in the upper left. However, if you require the rows and columns in a particular order, you can specify the `NOKEYMOVE` option in conjunction with the `CLASSKEY=` option to suppress the rearrangement.

You can use the `NROWS=` and `NCOLS=` options to specify the numbers of rows and columns in a comparative Pareto chart. By default, `NROWS=2` and `NCOLS=1` for a one-way comparison and `NROWS=2` and `NCOLS=2` for a two-way comparison. There is no upper limit to the number of rows or columns that you can specify, but in practice the limit is determined by the area of the graphical display. If the numbers of classification variable levels exceed the `NROWS=` and `NCOLS=` values, the chart is created on multiple panels or pages.

If the same set of Pareto categories does not occur in each cell of a comparative Pareto chart, the categories are said to be *unbalanced*. In this case, PROC PARETO uses the following convention to construct the uniform category axis. First, the categories that occur in the key cell are arranged on the category axis from left to right (top to bottom for a horizontal chart) and sorted in decreasing order of frequency, with tied levels arranged in order of their formatted values. The categories not in the key cell are assigned frequencies of 0 in the key cell, and they are arranged at the right (bottom) of the category axis, where they are ordered by their formatted values. This arrangement is simply a convention of the PARETO procedure and should not be interpreted to mean that one category is more important than another.

Whether the categories in the input data set are balanced or not, the categories in the `OUT=` data set are always balanced. PROC PARETO balances this data set by assigning values of 0 to the `_COUNT_` and `_PCT_` variables as necessary.

Unbalanced categories present a special problem when the `MAXNCAT=` option is used to restrict the number of categories that are displayed on the chart. For example, suppose that you specify `MAXNCAT=12` and there are 15 categories in all, 10 of which occur in the key cell. Because there is no unambiguous method for selecting two of the remaining five categories to complete the restricted list, the PARETO procedure reduces the restricted list to the categories that occur in the key cell and displays only those 10 categories. A warning message is issued in the SAS log.
Labels for Chart Features

Table 16.8 summarizes the methods for labeling the features of Pareto charts.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Method for Specifying Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titles</td>
<td>TITLEn statements, ODSSTYLE= option, ODSSTYLE2= option</td>
</tr>
<tr>
<td>Footnotes</td>
<td>FOOTNOTEn statements, ODSFOOTNOTE= option, ODSFOOTNOTE2= option</td>
</tr>
<tr>
<td>Category axis</td>
<td>Process variable label</td>
</tr>
<tr>
<td>Frequency axis</td>
<td>FREQAXISLABEL= option</td>
</tr>
<tr>
<td>Cumulative percentage axis</td>
<td>CUMAXISLABEL= option</td>
</tr>
<tr>
<td>Bars</td>
<td>BARLABEL= option</td>
</tr>
<tr>
<td>Points on cumulative percentage curve</td>
<td>CMPCTLABEL= option</td>
</tr>
<tr>
<td>Rows and columns</td>
<td>CLASS= variable labels</td>
</tr>
<tr>
<td>Cells</td>
<td>NLEGEND option or NLEGEND= variable</td>
</tr>
<tr>
<td>Category legend</td>
<td>CATLEGLABEL= option</td>
</tr>
<tr>
<td>High/low bar legend</td>
<td>HLLEGLABEL= option</td>
</tr>
<tr>
<td>Bar color legend</td>
<td>BARLEGLABEL= option</td>
</tr>
<tr>
<td>Tile legend</td>
<td>TILELEGLABEL= option</td>
</tr>
<tr>
<td>Annotation</td>
<td>ANNOTATE= and ANNOTATE2= data sets</td>
</tr>
</tbody>
</table>

Scaling the Cumulative Percentage Curve

Pareto charts shown in textbooks usually scale the cumulative percentage curve so that it is anchored at the top right corner of the leftmost bar. The upper end of the frequency axis is then extended to accommodate the curve. For an illustration, see Figure 16.1. By default, the PARETO procedure uses the top right corner as the anchor position on a vertical chart and the bottom right corner of the topmost bar as the anchor position on a horizontal chart. You can override the default by specifying the ANCHOR= option.

This method of scaling is not feasible if the number of categories is very large and if the Pareto distribution is uniform. In this case, the bars are excessively compressed relative to the curve. Conversely, this method excessively compresses the curve relative to the bars when you use a count scale for the frequency axis in a comparative Pareto chart and the tallest bar does not occur in the key cell. In either situation, PROC PARETO overrides the textbook scaling method and balances the scales of the bars and the curve.

You can use the AXISFACTOR= option to specify the extent to which the frequency axis should be extended. Alternatively, you can extend the frequency axis by using the FREQAXIS= option to specify the tick mark values for the axis.

Another scaling anomaly is illustrated by the comparative Pareto chart in Output 16.1.4. There, the cumulative percentage curve in the bottom chart is not anchored because a uniform count scale is combined with different sample sizes in the two cells.
Positioning Insets

This section provides details about three different methods of positioning insets using the POSITION= option. You can use the POSITION= option to specify the following:

- compass points
- keywords for margin positions
- coordinates in data units or percentage axis units

Using Compass Points to Position Insets

NOTE: See Positioning Insets in Pareto Charts in the SAS/QC Sample Library.

You can specify the eight compass points N, NE, E, SE, S, SW, W, and NW as keywords for the POSITION= option. The following statements create the display in Figure 16.9, which demonstrates all eight compass positions. The default is NW.

```sas
proc pareto data=Failure3;
   vbar Cause / freq = Counts
       odstitle = "Insets at Compass Point Positions"
       nocurve
   ;
   inset n / cfill header='NW' pos=nw;
   inset n / cfill header='N ' pos=n ;
   inset n / cfill header='NE' pos=ne;
   inset n / cfill header='E ' pos=e ;
   inset n / cfill header='SE' pos=se;
   inset n / cfill header='S ' pos=s ;
   inset n / cfill header='SW' pos=sw;
   inset n / cfill header='W ' pos=w ;
run;
```
Positioning Insets in the Margins

You can also use the margin keywords LM, RM, TM, or BM in the INSET statement to position an inset in one of the four margins that surround the plot area, as illustrated in Figure 16.10.
For an example of an inset placed in the right margin, see Output 16.11.1. You might want to place an inset in a margin if it contains a large number of entries (for example the contents of a data set that is specified in the DATA= keyword). If you attempt to display a lengthy inset in the interior of the plot, the inset is likely to collide with the data display.

Insets that are associated with a comparative Pareto chart cannot be positioned in the margins.

Using Coordinates to Position Insets

When you produce traditional graphics, you can also specify the position of the inset with coordinates by specifying POSITION=(x, y). The coordinates can be specified in axis percentage units (the default) or in axis data units.

Data Unit Coordinates

If you specify the DATA option immediately following the coordinates, the inset is positioned using axis data units. Data units along the category axis are based on category numbers. Categories are numbered from left to right (VBAR chart) or top to bottom (HBAR chart), starting with 1.

NOTE: See Positioning Insets in Pareto Charts in the SAS/QC Sample Library.

For example, the following statements produce the Pareto chart that is displayed in Figure 16.11:

```sas
ods graphics off;
title 'Integrated Circuit Failures';
proc pareto data=Failure3;
  vbar Cause / freq = Counts;
inset n / header = 'Position=(3,60)'
```

![Figure 16.10: Positioning Insets in the Margins](image)

- TM
- LM
- Plot Area
- RM
- BM
The `HEIGHT=` option in the `INSET` statement specifies the text height that is used to display the statistics in the inset.

The bottom left corner of the inset is lined up with the tick mark for the third category on the horizontal axis and at 60 on the vertical axis. By default, the specified coordinates determine the position of the bottom left corner of the inset. You can change this reference point by specifying the `REFPOINT=` option, as shown in the next section.

Figure 16.11 Inset Positioned Using Data Unit Coordinates

Axis Percentage Unit Coordinates

NOTE: See *Positioning Insets in Pareto Charts* in the SAS/QC Sample Library.

If you do not use the `DATA` option, the inset is positioned using axis percentage units. The coordinates of the bottom left corner of the display are (0, 0), and the coordinates of the upper right corner are (100, 100). For example, the following statements create a Pareto chart that has two insets, both positioned using coordinates in axis percentage units.
The chart is shown in Figure 16.12. Notice that the REFPOINT= option is used to determine which corner of the inset is to be placed at the coordinates that are specified in the POSITION= option. The first inset has REFPOINT=TL, so the top left corner of the inset is positioned 5% of the way across the horizontal axis and 25% of the way up the vertical axis. The second inset has REFPOINT=TR, so the top right corner of the inset is positioned 95% of the way across the horizontal axis and 95% of the way up the vertical axis. Coordinates in axis percentage units must be between 0 and 100.

Figure 16.12 Inset Positioned Using Axis Percentage Unit Coordinates
Creating Output Data Sets

The OUT= data set saves the information that is displayed on a Pareto chart. If you specify CLASS= variables, the OUT= data set contains one block of observations for each combination of levels of the CLASS= variables, and each block contains an observation for each Pareto category. The observations are sorted in the order in which the categories are displayed on the chart. The following variables from a DATA= data set are saved in an OUT= data set:

- process variables
- CLASS= variables
- BY variables
- WEIGHT= variables
- the CTILES= variable
- the TILELEGEND= variable
- the NLEGEND= variable
- BARS= or CBARS= variables
- PBARS= variables
- BARLEGEND= variables

In addition, the OUT= data set contains the following variables that are created during the analysis:

- _COUNT_, which saves the frequency count for each Pareto category
- _WCOUNT_, which saves the weighted count for each category. This variable is created only when you specify the WEIGHT= option.
- _PCT_, which saves the percentage of the total count for each category. If you specify the WEIGHT= option, the variable _PCT_ saves the percentage of the total weighted count.
- _CMPCT_, which saves the cumulative percentage for each category

See Output 16.8.2 for an example of an OUT= data set.

If you specify the MAXNCAT=, MAXCMPCT=, or MINPCT= option, the OUT= data set saves only the categories that are displayed on the chart. If you create an OTHER= category that merges the remaining categories, an additional observation is saved with the new category. Because the OTHER= value is defined as a formatted value of the process variable, you should also specify a corresponding internal value, as follows:

- If the process variable is a character variable, specify the internal value in the OTHERCVAL= option. If you do not specify this value, the OTHER= value is saved as the internal value.
- If the process variable is a numeric variable, specify the internal value in the OTHERNVAL= option. If you do not specify this value, an internal missing value is saved.
ODS Graphics

Before you create ODS Graphics output, ODS Graphics must be enabled (for example, by using the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” (Chapter 21, SAS/STAT User’s Guide).

The appearance of a graph that ODS Graphics produces is determined by the style that is associated with the ODS destination where the graph is produced. HBAR and VBAR statement options that control the appearance of traditional graphics (listed in the section “Options for Traditional Graphics” on page 1112) are ignored for ODS Graphics output.

When ODS Graphics is in effect, the PARETO procedure assigns a name to graphs it creates. You can use this name to refer to the graph when using ODS. The name is listed in Table 16.9.

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParetoChart</td>
<td>Pareto chart</td>
</tr>
</tbody>
</table>

Constructing Effective Pareto Charts

The following are recommendations for improving the visual clarity of Pareto charts:

- Decide carefully how the bars should be scaled. The default percentage scale is not always the best choice. For example, a count scale might be more appropriate in a comparative Pareto chart where the total count per cell varies widely from cell to cell and where you want to compare Pareto distributions on an absolute scale rather than a relative scale. You can request a count scale by specifying SCALE=COUNT. In other situations, it might be more appropriate to use a weighted percentage scale or a weighted count scale (specify a WEIGHT= variable and either SCALE=PERCENT or SCALE=WEIGHT).

- Use a weight variable if the counts are dependent on a factor (such as exposure or opportunity) that varies from one category to another. For example, suppose you are creating a Pareto chart for the number of medical claims that are categorized by the job titles of company employees who submit them. The counts can be weighted to adjust for the fact that there are more individuals in some jobs than in others and for the fact that some jobs might be associated with greater health risks than others.

- Use the NOCURVE option to eliminate the cumulative percentage curve in situations where the curve reveals little information about the data. In general, the bars should be more prominent than the curve.

- Maximize the space used for the bars by eliminating unnecessary labels and visual clutter. This is particularly important for comparative Pareto charts. The NOCATLABEL, NOFREQLABEL, and NOCUMLABEL options are useful for this purpose. You can also use the NOFREQTICK and NOCUMTICK options to eliminate tick marks and tick mark labels on the frequency and cumulative percentage axes.
• Make legends more informative by specifying legend labels.

• Avoid filling bars with multiple types of cross-hatched patterns; solid color fills are less distracting. Use color sparingly to emphasize important features (such as the “vital few” categories), and choose bar colors that provide good visual discrimination.

• If you are working with a large data set that involves many categories, limit the number of categories that are displayed to achieve visual clarity.

• If your application involves classification effects, construct more than one Pareto chart for the data by using various combinations of classification variables. (This approach is illustrated in Example 16.2).

• Provide reference lines on comparative Pareto charts to aid visual comparison.

See to Chapter 2 of Cleveland (1985) for a general discussion of the principles of statistical graphics.

Missing Values

By default, observations that have missing values of a process variable are not processed. If you specify the MISSING option, then missing values are treated as a Pareto category.

Likewise, observations that have missing values of the CLASS= variables are not processed by default. Missing values of the first CLASS= variable are treated as a level if the MISSING1 option is specified, and missing values of the second CLASS= variable are treated as a level if the MISSING2 option is specified.

Role of Variable Formats

The categories of a Pareto chart are always determined using formatted values of the process variable, and the format is used to label the categories.

On the chart, the categories are displayed in decreasing order of frequency. If multiple categories have the same count, the tied categories are displayed in order of their formatted values.

When you create a comparative Pareto chart, the formatted levels of the CLASS= variables are used to group the data into cells. There is a cell for each level of the CLASS= variable in a one-way comparative chart, and there is a cell for each combination of levels of the CLASS= variables in a two-way comparative chart.

You can specify the order of the rows and columns that correspond to the classification levels by specifying the ORDER1= and ORDER2= options. The default value of these options is INTERNAL, which means that the order is determined by the internal values of the CLASS= variables. It is possible for a particular formatted value to correspond to more than one internal value. To resolve this ambiguity, the internal value that determines the position of the row or column is the value that occurs first in the input data set.

Other values that you can specify for the ORDER1= and ORDER2= options are FORMATTED, FREQ, and DATA.
Large Data Sets

Although there is no limit to the number of observations that can be read from an input data set, the maximum number of Pareto categories that can be read is 32,767. This limit is a practical issue only if you are creating a restricted Pareto chart from a large data set, because the number of categories that can be displayed is limited by the resolution of your graphical display. The number of categories that can be read is limited by the amount of memory available, because the levels are stored in memory. If you run out of memory, you should first reduce the data by using the FREQ procedure.

Examples: PARETO Procedure

Example 16.1: Creating Before-and-After Pareto Charts

NOTE: See Before & After Pareto Charts Using a BY Variable in the SAS/QC Sample Library.

During the manufacture of a metal-oxide semiconductor (MOS) capacitor, causes of failures were recorded before and after a tube in the diffusion furnace was cleaned. This information was saved in a SAS data set named Failure3:

data Failure3;
 length Cause $ 16 Stage $ 16;
 label Cause = 'Cause of Failure';
 input Stage $ Cause $ Counts;
datalines;
Before Cleaning Contamination 14
Before Cleaning Corrosion 2
Before Cleaning Doping 1
Before Cleaning Metallization 2
Before Cleaning Miscellaneous 3
Before Cleaning Oxide Defect 8
Before Cleaning Silicon Defect 1
After Cleaning Doping 0
After Cleaning Corrosion 2
After Cleaning Metallization 4
After Cleaning Miscellaneous 2
After Cleaning Oxide Defect 1
After Cleaning Contamination 12
After Cleaning Silicon Defect 2
;

To compare distribution of failures before and after cleaning, you can use the BY statement to create two separate Pareto charts, one for the observations in which Stage is equal to 'Before Cleaning' and one for the observations in which Stage is equal to 'After Cleaning':

proc sort data=Failure3;
 by Stage;
run;

title 'Pareto Effect of Furnace Tube';
proc pareto data=Failure3;
 vbar Cause / freq = Counts
 odstitle = title;
 by Stage;
run;

The SORT procedure sorts the observations in order of the values of Stage. It is not necessary to sort by the values of Cause because this is done by the PARETO procedure. The two charts, displayed in Output 16.1.1 and Output 16.1.2, reveal a reduction in oxide defects after the tube was cleaned. This is a relative reduction, because the frequency axes are scaled in percentage units. Note that the 'After Cleaning’ chart is produced first, based on alphabetical sorting of BY groups.

Output 16.1.1 “After” Analysis Using Stage as a BY Variable
Example 16.1: Creating Before-and-After Pareto Charts

Output 16.1.2 “Before” Analysis Using Stage as a BY Variable

In general, it is difficult to compare Pareto charts that are created by using BY processing because their axes are not necessarily uniform. A better approach is to construct a comparative Pareto chart, as illustrated by the following statements:

```sas
title 'Comparison of Integrated Circuit Failures';
proc pareto data=Failure3;
  vbar Cause / class = Stage
     freq = Counts
     scale = percent
     intertile = 5.0
     classkey = 'Before Cleaning'
     odstitle = title;
run;
```

The CLASS= option designates Stage as a classification variable, and this directs PROC PARETO to create the one-way comparative Pareto chart shown in Output 16.1.3, which displays a component chart for each level of Stage. The INTERTILE= option separates the cells with an offset of 5 screen percentage units.
Chapter 16: The PARETO Procedure

Output 16.1.3 Before-and-After Analysis That Uses a Comparative Pareto Chart

In a comparative Pareto chart, there is always one special cell, called the *key cell*, in which the bars are displayed in decreasing order, and whose order determines the uniform category axis that is used for all the cells. The key cell is positioned at the top of the chart. Here, the key cell is the set of observations for which *Stage* equals 'Before Cleaning', as specified by the CLASSKEY= option. By default, the levels are sorted in the order determined by the ORDER1= option, and the key cell is the level that occurs first in this order.

In many applications, it can be more revealing to base comparisons on counts rather than percentages. The following statements construct a chart that has a frequency scale:

```plaintext
  title 'Comparison of Integrated Circuit Failures';
  proc pareto data=Failure3;
    vbar Cause / class = Stage
             freq   = Counts
             scale  = count
             nlegend = 'Total Circuits'
             classkey = 'Before Cleaning'
             odstitle = title
cframenleg
cprop;
run;
```

In a comparative Pareto chart, there is always one special cell, called the *key cell*, in which the bars are displayed in decreasing order, and whose order determines the uniform category axis that is used for all the cells. The key cell is positioned at the top of the chart. Here, the key cell is the set of observations for which *Stage* equals 'Before Cleaning', as specified by the CLASSKEY= option. By default, the levels are sorted in the order determined by the ORDER1= option, and the key cell is the level that occurs first in this order.

In many applications, it can be more revealing to base comparisons on counts rather than percentages. The following statements construct a chart that has a frequency scale:

```plaintext
  title 'Comparison of Integrated Circuit Failures';
  proc pareto data=Failure3;
    vbar Cause / class = Stage
             freq   = Counts
             scale  = count
             nlegend = 'Total Circuits'
             classkey = 'Before Cleaning'
             odstitle = title
cframenleg
cprop;
run;
```
Example 16.2: Creating Two-Way Comparative Pareto Charts

Specifying SCALE=COUNT scales the frequency axis in count units. The NLEGEND= option adds a sample size legend, and the CFRAMENLEG option frames the legend. The CPROP option adds bars that indicate the proportion of total frequency represented by each cell.

The chart is shown in Output 16.1.4.

Output 16.1.4 Before-and-After Analysis Using Comparative Pareto Chart

Note that the lower cumulative percentage curve in Output 16.1.4 is not anchored to the first bar. This is a consequence of the uniform frequency scale and of the fact that the number of observations in each cell is not the same.

Example 16.2: Creating Two-Way Comparative Pareto Charts

NOTE: See Basic and Comparative Pareto Charts in the SAS/QC Sample Library.

During the manufacture of a MOS capacitor, different cleaning processes were used by two manufacturing systems operating in parallel. Process A used a standard cleaning solution, and Process B used a different cleaning mixture that contained less particulate matter. The failure causes that were observed with each process for five consecutive days were recorded and saved in a SAS data set called Failure4:
data Failure4;
 length Process $ 9 Cause $ 16;
 label Cause = 'Cause of Failure';
 input Process $ Day $ Cause $ Counts;
 datalines;
 Process A March 1 Contamination 15
 Process A March 1 Corrosion 2
 Process A March 1 Doping 1
 Process A March 1 Metallization 2
 Process A March 1 Miscellaneous 3
 Process A March 1 Oxide Defect 8
 Process A March 1 Silicon Defect 1
 Process A March 2 Contamination 16
 Process A March 2 Corrosion 3
 Process A March 2 Doping 1
 Process A March 2 Metallization 3
 Process A March 2 Miscellaneous 1
 Process A March 2 Oxide Defect 9
 Process A March 2 Silicon Defect 2
 Process A March 3 Contamination 20
 Process A March 3 Corrosion 1
 Process A March 3 Doping 1
 Process A March 3 Metallization 0
 Process A March 3 Miscellaneous 3
 Process A March 3 Oxide Defect 7
 Process A March 3 Silicon Defect 2
 Process A March 4 Contamination 12
 Process A March 4 Corrosion 1
 Process A March 4 Doping 1
 Process A March 4 Metallization 0
 Process A March 4 Miscellaneous 0
 Process A March 4 Oxide Defect 10
 Process A March 4 Silicon Defect 1
 Process A March 5 Contamination 23
 Process A March 5 Corrosion 1
 Process A March 5 Doping 1
 Process A March 5 Metallization 0
 Process A March 5 Miscellaneous 1
 Process A March 5 Oxide Defect 8
 Process A March 5 Silicon Defect 2
 Process B March 1 Contamination 8
 Process B March 1 Corrosion 2
 Process B March 1 Doping 1
 Process B March 1 Metallization 4
 Process B March 1 Miscellaneous 2
 Process B March 1 Oxide Defect 10
 Process B March 1 Silicon Defect 3
 Process B March 2 Contamination 9
 Process B March 2 Corrosion 0
 Process B March 2 Doping 1
 Process B March 2 Metallization 2
 Process B March 2 Miscellaneous 4
 Process B March 2 Oxide Defect 9

Example 16.2: Creating Two-Way Comparative Pareto Charts

In addition to the process variable \textit{Cause}, this data set has two classification variables: \textit{Process} and \textit{Day}. The variable \textit{Counts} is a frequency variable.

This example creates a series of displays that progressively use more of the classification information.

Basic Pareto Chart

The following statements create the first display, which analyzes the process variable without taking into account the classification variables:

```plaintext
title 'Pareto Analysis of Capacitor Failures';
proc pareto data=Failure4;
  vbar Cause / freq = Counts
    last = 'Miscellaneous'
    scale = count
    anchor = bl
    odstitle = title
    nlegend;
run;
```

The chart, shown in Output 16.2.1, indicates that contamination is the most frequently occurring problem.
Output 16.2.1 Pareto Analysis without Classification Variables

The ANCHOR=BL option anchors the cumulative percentage curve at the bottom left (BL) of the first bar. The NLEGEND option adds a sample size legend.

One-Way Comparative Pareto Chart for Process

The following statements specify Process as a classification variable to create a comparative Pareto chart, which is displayed in Output 16.2.2:

```plaintext
proc pareto data=Failure4;
  vbar Cause / class = Process
                freq = Counts
                last = 'Miscellaneous'
                scale = count
                odstitle = title
                nocurve
                nlegend;
run;
```
Output 16.2.2 One-Way Comparative Pareto Analysis with CLASS=Process

Each cell corresponds to a level of the CLASS= variable (Process). By default, the cells are arranged from top to bottom in alphabetical order of the formatted values of Process, and the key cell is the top cell. The main difference in the two cells is a decrease in contamination when Process B is used.

The NOCURVE option suppresses the cumulative percentage curve, along with the cumulative percentage axis.

One-Way Comparative Pareto Chart for Day

The following statements specify Day as a classification variable:

```
title 'Pareto Analysis by Day';
proc pareto data=Failure4;
  vbar Cause / class = Day
                  freq = Counts
                  last = 'Miscellaneous'
                  scale = count
                  catleglabel = 'Failure Causes:'
                  odstitle = title
                  nrows = 1
```
The NROWS= and NCOLS= options display the cells in a side-by-side arrangement. The FREQREF= option adds reference lines perpendicular to the frequency axis. The NOCATLABEL option suppresses the category axis labels, and the CATLEGLABEL= option incorporates that information into the category legend label. The chart is displayed in Output 16.2.3.

Output 16.2.3 One-Way Comparative Pareto Analysis with CLASS=Day

By default, the key cell is the leftmost cell. There were no failures due to metallization starting on March 3 (in fact, process controls to reduce this problem were introduced on this day).

Two-Way Comparative Pareto Chart for Process and Day

The following statements specify both Process and Day as CLASS= variables to create a two-way comparative Pareto chart:
Example 16.2: Creating Two-Way Comparative Pareto Charts

```
title 'Pareto Analysis by Process and Day';
proc pareto data=Failure4;
  vbar Cause / class = ( Process Day )
     freq = Counts
     nrows = 2
     ncols = 5
     last = 'Miscellaneous'
     scale = count
     catleglabel = 'Failure Causes:'
     odstitle = title
     nocatlabel
     nocurve
     nlegend;
run;
```

The chart is displayed in Output 16.2.4.

Output 16.2.4 Two-Way Comparative Pareto Analysis for Process and Day

The cells are arranged in a matrix whose rows correspond to levels of the first CLASS= variable (Process) and whose columns correspond to levels of the second CLASS= variable (Day). The dimensions of the matrix are specified in the NROWS= and NCOLS= options. The key cell is in the upper left corner.

The chart reveals continuous improvement when Process B is used.
Example 16.3: Highlighting the “Vital Few”

NOTE: See Highlighting the “Vital Few” in the SAS/QC Sample Library.

This example is a continuation of Example 16.2.

In some applications you might want to use colors and patterns to highlight the bars that correspond to the most frequently occurring categories, which are referred to as the “vital few.”

The following statements highlight the two most frequently occurring categories in each cell of the comparative Pareto chart shown in Output 16.2.4:

```sas
title 'Which Problems Occur Most Often?';
proc pareto data=Failure4;
  vbar Cause / class = ( Process Day )
     freq = Counts
     nrows = 2
     ncols = 5
     last = 'Miscellaneous'
     scale = count
     chigh(2)
     hlleglabel = 'Severity:'
     catleglabel = 'Failure Causes:'
     odstitle = title
     nocatlabel
     nocurve
     nlegend;
run;
```

Specifying CHIGH(2) causes the two highest bars in each cell to be filled with a contrasting color from the ODS style. The new chart is displayed in Output 16.3.1. In all but two of the cells, the two vital problems are 'Contamination' and 'Oxide Defect'.

You can also highlight the “trivial many” categories (also referred to as the “useful many”) with the CLOW(m) option. You can use these options in conjunction with the CHIGH(n) and BARS= options. For more information, see the entries for these options in the “Dictionary of HBAR and VBAR Statement Options” on page 1097.
Example 16.4: Highlighting Combinations of Categories

NOTE: See Highlighting Specific Pareto Categories in the SAS/QC Sample Library.

In some applications, it is useful to classify the categories into groups that are not necessarily related to frequency. This example, which is a continuation of Example 16.2, shows how you use a bar legend to display this classification.

Suppose that contamination and metallization are high-priority problems, oxide defect is a medium-priority problem, and all other categories are low-priority problems. Begin by adding this information to the data set Failure4 as follows:
data Failure4;
 length Priority $ 16;
 set Failure4;
 if Cause = 'Contamination' or Cause = 'Metallization' then
 Priority = 'High';
 else
 if Cause = 'Oxide Defect' then
 Priority = 'Medium';
 else
 Priority = 'Low';
 run;

The variable Priority indicates the priority that is associated with a defect cause.

The following statements specify Priority in both the BARS= and BARLEGEND= options:

 title 'Which Problems Take Priority?';
 proc pareto data=Failure4;
 vbar Cause / class = (Process Day) freq = Counts nrows = 2 ncols = 5 last = 'Miscellaneous' scale = count bars = (Priority) barlegend = (Priority) barleglabel = 'Priority:' catleglabel = 'Failure Causes:' odstitle = title nocatlabel nocurve nlegend;
 run;

Colors from the ODS style are assigned to the bars based on levels of the BARS= variable. The chart is displayed in Output 16.4.1. The levels of the BARLEGEND= variable are the values that are displayed in the legend labeled “Priority:” at the bottom of the chart.

In general, when you specify BARS= and BARLEGEND= variables, their values must be consistent and unambiguous. Each observation that has a particular value of the process variable should have the same BARS= or BARLEGEND= variable value. For more information, see the entries for the BARS= and BARLEGEND= options in “Dictionary of HBAR and VBAR Statement Options” on page 1097.
Output 16.4.1 Highlighting Selected Subsets of Categories

<table>
<thead>
<tr>
<th>Which Problems Take Priority?</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1</td>
</tr>
<tr>
<td>N = 32</td>
</tr>
</tbody>
</table>

Failure Causes: 1 Contamination 2 Oxide Defect 3 Corrosion 4 Metallization 5 Doping 6 Silicon Defect 7 Miscellaneous

Priority:
- High
- Medium
- Low

Example 16.5: Highlighting Combinations of Cells

NOTE: See *Highlighting Tiles in a Comparative Pareto Chart* in the SAS/QC Sample Library.

This example is a continuation of Example 16.4.

In some applications that involve comparative Pareto charts, it is useful to classify the cells into groups. This example shows how you can use traditional graphics to display this type of classification by coloring the cells (also called tiles) and adding a legend.

Suppose you want to enhance Output 16.4.1 by highlighting the two cells for which Process=‘Process B’ and Day=‘March 4’ and ‘March 5’ to emphasize the improvement displayed in those cells. Begin by adding a tile color variable (Tilecol) and a tile legend variable (Tileleg) to the data set Failure4 as follows:
data Failure4;
 length Tilecol $ 8 Tileleg $ 16;
 set Failure4;
 if (Process='Process B') and (Day='March 4' or Day='March 5')
 then do; Tilecol='ywh'; Tileleg = 'Improvement'; end;
 else do; Tilecol='ligr'; Tileleg = 'Status Quo'; end;
run;

The following statements specify Tilecol as a CTILES= variable and Tileleg as a TILELEGEND= variable. Note that the variable names are enclosed in parentheses.

ods graphics off;
 title 'Where Did Improvement Occur?';
 proc pareto data=Failure4;
 vbar Cause / class = (Process Day)
 freq = Counts
 nrows = 2
 ncols = 5
 last = 'Miscellaneous'
 scale = count
 catleglabel = 'Failure Causes:'
 /* options for highlighting bars: */
 bars = (Priority)
 barlegend = (Priority)
 barleglabel = 'Priority:'
 /* options for highlighting tiles: */
 ctiles = (Tilecol)
 tilelegend = (Tileleg)
 tileleglabel = 'Condition:'
 intertile = 1.0
 cframeside = ligr
 cframetop = ligr
 nocatlabel
 nocurve;
 run;

The ODS GRAPHICS OFF statement before the PROC statement disables ODS Graphics, so the Pareto chart is produced using traditional graphics. The CTILES=, TILELEGEND=, CFRAMESIDE=, and CFRAMETOP= options are valid only for traditional graphics output. See the section “Options for Traditional Graphics” on page 1112 for descriptions of options specific to traditional graphics.

In the chart, shown in Output 16.5.1, the values that are displayed in the legend labeled “Condition:” are the levels of the TILELEGEND= variable.
PROC PARETO sequentially assigns colors from a list defined by the ODS style to the levels of the BARS= variable. The first color is associated with the first value of Priority, and so on. When traditional graphics is enabled, you can use the CBARS= option to assign specific colors to Pareto categories. The following statements assign explicit color values to the variable PriorityColor:

```plaintext
data Failure4;
  length PriorityColor $ 8;
  set Failure4;
  if Priority = 'High'
    then PriorityColor = 'CXD05B5B';
  else
    if Priority = 'Medium'
      then PriorityColor = 'CX6F7EB3';
    else
      PriorityColor = 'CX66A5A0';
run;
```

Example 16.5: Highlighting Combinations of Cells

Output 16.5.1 Highlighting Specific Tiles

Where Did Improvement Occur?

<table>
<thead>
<tr>
<th>Process A</th>
<th>March 1</th>
<th>March 2</th>
<th>March 3</th>
<th>March 4</th>
<th>March 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Failure Causes: 1 Contamination 2 Oxide Defect 3 Corrosion 4 Metallization 5 Doping 6 Silicon Defect 7 Miscellaneous

Priority: High Improvement Status Quo Low Medium
Output 16.5.2 shows the chart that is produced by replacing the BARS= option with CBARS=PriorityColor. The high-priority problems are represented by red bars, and the low-priority problems are represented by green bars.

Output 16.5.2 Assigning Specific Bar Colors

Example 16.6: Ordering Rows and Columns in a Comparative Pareto Chart

NOTE: See Ordering Rows and Columns in a Comparative Chart in the SAS/QC Sample Library.

This example illustrates methods for controlling the order of rows and columns in a comparative Pareto chart.

The following statements create a data set named Failure5:

```
proc format;
  value procfmt 1 = 'Process A'
                 2 = 'Process B';
  value dayfmt 1 = 'Monday'
               2 = 'Tuesday'
               3 = 'Wednesday'
               4 = 'Thursday'
               5 = 'Friday';
run;
```
data Failure5;
 length Cause $16;
 format Process procfmt. Day dayfmt.;
 label Cause = 'Cause of Failure'
 Process = 'Cleaning Method'
 Day = 'Day of Manufacture';
 input Process Day Cause $16. Counts @@;
 datalines;
1 1 Contamination 15 1 1 Corrosion 2
1 1 Doping 1 1 1 Metallization 2
1 1 Miscellaneous 3 1 1 Oxide Defect 8
1 1 Silicon Defect 1 1 2 Contamination 16
1 2 Corrosion 3 1 2 Doping 1
1 2 Metallization 3 1 2 Miscellaneous 1
1 2 Oxide Defect 9 1 2 Silicon Defect 2
1 3 Contamination 20 1 3 Corrosion 1
1 3 Doping 1 1 3 Metallization 0
1 3 Miscellaneous 3 1 3 Oxide Defect 7
1 3 Silicon Defect 2 1 4 Contamination 12
1 4 Corrosion 1 1 4 Doping 1
1 4 Metallization 0 1 4 Miscellaneous 0
1 4 Oxide Defect 10 1 4 Silicon Defect 1
1 5 Contamination 23 1 5 Corrosion 1
1 5 Doping 1 1 5 Metallization 0
1 5 Miscellaneous 1 1 5 Oxide Defect 8
1 5 Silicon Defect 2 2 1 Contamination 8
2 1 Corrosion 2 2 1 Doping 1
2 1 Metallization 4 2 1 Miscellaneous 2
2 1 Oxide Defect 10 2 1 Silicon Defect 3
2 2 Contamination 9 2 2 Corrosion 0
2 2 Doping 1 2 2 Metallization 2
2 2 Miscellaneous 4 2 2 Oxide Defect 9
2 2 Silicon Defect 2 2 3 Contamination 4
2 3 Corrosion 1 2 3 Doping 1
2 3 Metallization 0 2 3 Miscellaneous 0
2 3 Oxide Defect 10 2 3 Silicon Defect 1
2 4 Contamination 2 2 4 Corrosion 2
2 4 Doping 1 2 4 Metallization 0
2 4 Miscellaneous 3 2 4 Oxide Defect 7
2 4 Silicon Defect 1 2 5 Contamination 1
2 5 Corrosion 3 2 5 Doping 1
2 5 Metallization 0 2 5 Miscellaneous 1
2 5 Oxide Defect 8 2 5 Silicon Defect 2
;

Note that Failure5 is similar to the data set Failure4, which is created in Example 16.2. Here, the classification variables Process and Day are numeric formatted variables, and the formatted values of Day are 'Monday' through 'Friday'. In Example 16.2, Process and Day are character variables, and the values of Day are 'March 1' through 'March 5'.

The following statements create a two-way comparative Pareto chart for Cause; in this chart the rows represent levels of Process, and the columns represent levels of Day:

```sas
title 'Pareto Analysis by Process and Day';
proc pareto data=Failure5;
   vbar Cause / class = ( Process Day )
       freq = Counts
       nrows = 2
       ncols = 5
       last = 'Miscellaneous'
       scale = count
       catleqlabel = 'Failure Causes:'
       nocatlabel
       nocurve
       nlegend;
run;
```

The chart is shown in Output 16.6.1. The levels of the classification variables are determined by their formatted values. The default order in which the rows and columns are displayed is determined by the internal values of the classification variables, and consequently the columns appear in the order of the days of the week.

If Day had been defined as a character variable with values 'Monday' through 'Friday', the columns in Output 16.6.1 would have appeared in alphabetical order.

You can override the default order by specifying the ORDER1= or ORDER2= option (or both).
Example 16.7: Merging Columns in a Comparative Pareto Chart

NOTE: See *Merging Columns in a Comparative Pareto Chart* in the SAS/QC Sample Library.

This example is a continuation of Example 16.4 and illustrates a method for merging the columns in a comparative Pareto chart.

Suppose that controls for metallization were introduced on Wednesday. To show the effect of the controls, the columns for 'Monday' and 'Tuesday' are to be merged into a column labeled 'Before Controls', and the remaining columns are to be merged into a column labeled 'After Controls'. The following statements introduce a format named 'cntlfmt' that merges the levels of Day:

```sas
proc format;
  value cntlfmt 1-2 = 'Before Controls'
                 3-5 = 'After Controls';
```
The following statements create the chart shown in Output 16.7.1:

```plaintext
proc pareto data=Failure5;
  vbar Cause / class = ( Process Day )
     freq    = Counts
     last    = 'Miscellaneous'
     scale   = count
     catleglabel = 'Failure Causes:'
     nocatlabel
     nocurve
     nlegend;
  format Day cntlfmt. ;
  label Day = 'Status of Controls for Metallization';
run;
```

Output 16.7.1 Merging Classification Levels

The levels of Day are determined by its formatted values, 'Before Controls' and 'After Controls'. By default, the order in which the columns are displayed is determined by the internal values. In this example, there are multiple distinct internal values for each level, and PROC PARETO uses the internal value that occurs first in the input data set.
Example 16.8: Creating Weighted Pareto Charts

NOTE: See Pareto Analysis Based on Cost in the SAS/QC Sample Library.

In many applications, you can quantify the priority or severity of a problem by using a measure such as the cost of repair or the loss to the customer expressed in man-hours. This example shows how to analyze such data by using a weighted Pareto chart that incorporates the cost.

Suppose that the cost associated with each of the problems in data set Failure5 (see Example 16.6) has been determined and that the costs have been converted to a relative scale. The following statements add the cost information to the data set:

```sas
data Failure5;
  length Analysis $ 16;
  label Analysis = 'Basis for Analysis';
  set Failure5;
  Analysis = 'Cost';
  if Cause = 'Contamination' then Cost = 3.0;
  else if Cause = 'Metallization' then Cost = 8.5;
  else if Cause = 'Oxide Defect' then Cost = 9.5;
  else if Cause = 'Corrosion' then Cost = 2.5;
  else if Cause = 'Doping' then Cost = 3.6;
  else if Cause = 'Silicon Defect' then Cost = 3.4;
  else Cost = 1.0;
  output;
  Analysis = 'Frequency';
  Cost = 1.0;
  output;
run;
```

The classification variable Analysis has two levels, 'Cost' and 'Frequency'. For Analysis='Cost', the value of Cost is the relative cost, and for Analysis='Frequency', the value of Cost is one.

The following statements use Analysis as the classification variable to create a one-way comparative Pareto chart in which the cells are weighted Pareto charts that use Cost as the weight variable:

```sas
ods graphics off;
goptions vsize=4.25 in htext=2.8 pct htitle=3.2 pct;
title 'Pareto Analysis By Cost and Frequency';
proc pareto data=Failure5;
  vbar Cause / class = ( Analysis ) freq = Counts weight = Cost barlabel = value out = Summary intertile = 1.0;
run;
```

The display is shown in Output 16.8.1.
Within each cell, the height of a bar is the frequency of the category multiplied by the value of Cost, expressed as a percentage of the total across all categories. Thus, for the cell in which Analysis is equal to 'Frequency', the bars simply indicate the frequencies expressed in percentage units. This display shows that the most commonly occurring problem (contamination) is not the most expensive problem (oxide defect). The output data set Summary is listed in Output 16.8.2.
Example 16.9: Creating Alternative Pareto Charts

NOTE: See Alternative Pareto Charts in the SAS/QC Sample Library.

This example uses the Failure1 data set of integrated circuit fabrication failures from the section “Creating a Pareto Chart from Raw Data” on page 1071. The following statements use the CHARTTYPE= option to produce a standard Pareto chart, a cumulative Pareto bar chart, and a Pareto dot plot that includes acceptance intervals for the data:

```sas
proc pareto data=Failure1;
  vbar Cause;
  vbar Cause / charttype=cumulative;
  vbar Cause / charttype=intervals;
run;
```

NOTE: ODS Graphics must be enabled for you to use the CHARTTYPE= option.
Output 16.9.1 shows the standard Pareto chart that the first VBAR statement produces.

Output 16.9.1 Standard Pareto Chart

Pareto Analysis of Cause

<table>
<thead>
<tr>
<th>Causes of Failure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination</td>
<td>40%</td>
</tr>
<tr>
<td>Oxide Defect</td>
<td>20%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>10%</td>
</tr>
<tr>
<td>Corrosion</td>
<td>5%</td>
</tr>
<tr>
<td>Metallization</td>
<td>4%</td>
</tr>
<tr>
<td>Doping</td>
<td>3%</td>
</tr>
<tr>
<td>Silicon Defect</td>
<td>2%</td>
</tr>
</tbody>
</table>

Cumulative Percent
Output 16.9.2 shows the cumulative Pareto bar chart that the second VBAR statement produces.

Output 16.9.2 Cumulative Pareto Bar Chart

![Cumulative Pareto Bar Chart]

<table>
<thead>
<tr>
<th>Categories</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination</td>
<td>Oxide Defect</td>
<td>Miscellaneous</td>
<td>Corrosion</td>
<td>Metallization</td>
<td>Doping</td>
<td>Silicon Defect</td>
<td></td>
</tr>
</tbody>
</table>
Output 16.9.3 shows the Pareto dot plot and acceptance intervals that the third VBAR statement produces.

Output 16.9.3 Pareto Dot Plot and Acceptance Intervals

Output 16.9.3 shows that the most frequently occurring problem, Contamination, occurs more frequently than the first-ranked cause from a random sample of seven uniformly distributed causes. This result indicates that addressing contamination problems should be given a high priority.

Example 16.10: Customizing Inset Labels and Formatting Values

NOTE: See Customizing Inset Labels and Formatting Values in the SAS/QC Sample Library.

When you add an inset to a Pareto chart, by default each inset statistic is identified by an appropriate label and its value is displayed using an appropriate format. However, you might want to provide your own labels and formats. For example, in Figure 16.7 the default label used for the N statistic is not very descriptive. The following statements produce a comparative Pareto chart whose insets display longer labels for both statistics. A format that uses one decimal place is also specified for each statistic. (These are integer values—the decimals are added only to demonstrate this feature.) Note that a single INSET statement produces an inset in each cell of the comparative Pareto chart.
Example 16.10: Customizing Inset Labels and Formatting Values

```
proc pareto data=Failure3;
  vbar Cause /
    class    = Stage
    freq     = Counts
    maxncat  = 5
    classkey = 'Before Cleaning';
inset n  = 'Observations Shown' (4.1)
           nexcl='Observations Excluded' (3.1);
run;
```

The resulting chart is displayed in Output 16.10.1.

You can provide your own label by specifying the keyword for that statistic followed by an equal sign (=) and the label in quotation marks. The label can have up to 24 characters.

The format 4.1 specified in parentheses after the N keyword displays the statistics by using a field width of four and one decimal place. In general, you can specify any numeric SAS format in parentheses after an inset keyword. You can also use the FORMAT= option to specify a format to be used for all the statistics in the INSET statement. For more information about SAS formats, see SAS Formats and Informats: Reference.

NOTE: If you specify both a label and a format for a statistic, the label must appear before the format.

Output 16.10.1 Customizing Labels and Formatting Values in an Inset
Example 16.11: Specifying Inset Headers and Positions

NOTE: See Specifying Inset Headers and Positions in the SAS/QC Sample Library.

By default, the first INSET statement that is specified after a chart statement displays an inset in the upper left corner of the chart. You can control the inset position by specifying the POSITION= option. In addition, you can display a header at the top of the inset by specifying the HEADER= option. The following statements create a data set to be used with the INSET DATA= keyword and produce the horizontal Pareto chart shown in Output 16.11.1:

```sas
data location;
    length _LABEL_ $ 10 _VALUE_ $ 12;
    input _LABEL_ _VALUE_;
datalines;
Plant  Santa Clara
Line   1;

title 'Integrated Circuit Failures';
proc pareto data=Failure3;
    hbar Cause /
        freq  = Counts
        maxncat = 5
        odstitle = title;
    inset data = location n nexcl /
        position = rm
        header = 'Count Summary';
run;
```

The header (in this case, “Count Summary”) can be up to 40 characters. The POSITION=RM option is specified to position the inset in the right margin so that it does not interfere with features of the chart. For more information about positioning, see the section “Positioning Insets” on page 1123.

INSET statement options, such as the POSITION= and HEADER= options, are specified after the slash (/). For more information about INSET statement options, see the section “INSET Statement Options” on page 1089.

Note that the contents of the data set location appear before other statistics in the inset. The position of the DATA= keyword in the keyword list determines the position of the data set’s contents in the inset.
Output 16.11.1 Adding a Header and Repositioning the Inset

Integrated Circuit Failures

<table>
<thead>
<tr>
<th>Cause of Failure</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination</td>
<td>50</td>
</tr>
<tr>
<td>Oxide Defect</td>
<td>20</td>
</tr>
<tr>
<td>Metallization</td>
<td>10</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5</td>
</tr>
<tr>
<td>Corrosion</td>
<td>0</td>
</tr>
</tbody>
</table>

Count Summary

<table>
<thead>
<tr>
<th>Plant</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Clara</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>Excluded Obs</td>
<td>4</td>
</tr>
</tbody>
</table>
Example 16.12: Managing a Large Number of Categories

NOTE: See Managing a Large Number of Categories in the SAS/QC Sample Library.

The Centers for Disease Control publish a variety of public health statistics. The numbers of deaths in 2010 in the United States that were caused by various types of cancer are recorded in the SAS data set CancerDeaths2010:

```sas
data CancerDeaths2010;
  length Type $ 45;
  input Type & @47 Deaths comma7.;
datalines;
  Lip, oral cavity and pharynx 8,474
  Esophagus 14,490
  Stomach 11,390
  Colon, rectum and anus 52,622
  Liver and intrahepatic bile ducts 20,305
  Pancreas 36,888
  Larynx 3,691
  Trachea, bronchus and lung 158,318
  Skin 9,154
  Breast 41,435
  Cervix 3,939
  Uterus 8,402
  Ovary 14,572
  Prostate 28,561
  Kidney and renal pelvis 13,219
  Bladder 14,731
  Meninges, brain, other central nervous system 14,164
  Hodgkin's disease 1,231
  Non-Hodgkin's lymphoma 20,294
  Leukemia 22,569
  Multiple myeloma and immunoproliferative 11,428
  Other lymphoid, hematopoietic and related 68
  All other and unspecified 64,798
;```

The following statements produce a Pareto chart for the data in CancerDeaths2010:

```sas
proc pareto data=CancerDeaths2010;
 vbar Type / freq = Deaths;
run;
```

The resulting Pareto chart is shown in Output 16.12.1.
Example 16.12: Managing a Large Number of Categories

Output 16.12.1 Cancer Deaths Pareto Chart with Default Width

Note that PROC PARETO has labeled the category axis tick marks with numbers and produced a corresponding category legend. This is done by default when there is not enough room to use category names as tick labels on the category axis. Unfortunately, because some of the category names are long, the legend has room for only one column of entries and therefore occupies an inordinate amount of space. Among the alternatives for addressing this problem are the following:

- replacing the original category names with shorter ones
- increasing the space available for the graph

You can implement the second alternative by specifying the WIDTH= option in the ODS GRAPHICS statement prior to invoking the procedure. (The ODS GRAPHICS statement is documented in the SAS Output Delivery System: User's Guide.) Output 16.12.2 shows the Pareto chart that is produced after the graph width is increased.
In a standard Pareto chart, the cumulative percentage curve is anchored at the top of the first category bar. In Output 16.12.2 PROC PARETO has automatically relaxed that rule to avoid excessive compression of the bars. You can use the FREQAXIS= option to specify that the frequency axis extend to 100%, which restores the anchoring of the curve. (For more information about scaling the frequency and cumulative percentage axes, see the section “Scaling the Cumulative Percentage Curve” on page 1122.)

Note also in Output 16.12.2 that the category 'All other and unspecified' has the second highest frequency. To better indicate the specific types of cancer responsible for the most deaths, you can use the LAST= option to display the 'All other and unspecified' category last.

The following statements incorporate these changes and add other enhancements to the chart:

```plaintext
ods graphics / width=800px;
title 'U.S. Cancer Deaths in 2010 by Type';
proc pareto data=CancerDeaths2010;
vbar Type / freq = Deaths
 barlabel = value
 last = 'All other and unspecified'
nocatlabel
```
Example 16.12: Managing a Large Number of Categories

```
catleglabel = 'Cancer Type'
freqaxis = 0 to 100 by 10
nlegend = 'Total Cancer Deaths'
odstitle = title
out = CSummary;
run;
```

The BARLABEL= option labels each bar with its value in frequency axis units, which in this case is the percentage of cancer deaths that were caused by that type of cancer. The NOCATLABEL option saves some space by eliminating the category axis label, and the CATLEGLABEL= option produces a more informative label for the category legend. The NLEGEND= option displays the total sample size with an appropriate label. The ODSTITLE= option replaces the default graph title with the one specified in the TITLE statement. The OUT= option saves a summary of the Pareto chart in the data set CSummary.

The improved Pareto chart is shown in Output 16.12.3, and a listing of CSummary is shown in Output 16.12.4.

**Output 16.12.3** Improved Pareto Chart of 2010 Cancer Deaths
The Pareto chart in Output 16.12.3 has 23 categories, some of which account for only a small percentage of the total deaths. Often only a relatively few categories that have the highest frequencies are of interest. The PARETO procedure provides options for limiting the number of categories that are displayed on a chart. For an example of restricting the number of categories by using the MAXNCAT= and OTHER= options, see the section “Restricting the Number of Pareto Categories” on page 1076.

The original CancerDeaths2010 data set appears to have been summarized in advance, with the 'All other and unspecified' category containing the total count for unspecified cancers plus those types that account for fewer deaths than the 22 distinct types that are shown in Output 16.12.3. The 'All other and unspecified' category has the second highest frequency, accounting for 11.3% of all deaths.

The chart statement options that limit the number of categories to be displayed omit or merge low-frequency categories. In this case, it is more useful to merge the low-frequency categories into the existing 'All other and unspecified' category. The following DATA step merges each type that accounts for less than 2% of cancer deaths into the 'All other and unspecified' category:

```plaintext
data CSummary;
 set CSummary;
 if _PCT_ < 2.0 then Type='All other and unspecified';
run;
```

The modified CSummary data set is shown in Output 16.12.5.
Example 16.12: Managing a Large Number of Categories

Output 16.12.5 Modified CSummary Data Set

<table>
<thead>
<tr>
<th>U.S. Cancer Deaths in 2010 by Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

Note that although CSummary contains frequency data, it can contain multiple observations that have the same category value. The following statements create a Pareto chart from the modified CSummary data set:

```sas
proc pareto data=CSummary;
 vbar Type / freq = _COUNT_
 last = 'All other and unspecified'
 barlabel = value
 nocatlabel
 catleglabel = 'Cancer Type'
 freqaxis = 0 to 100 by 10
 odstitle = title;
 inset n='Total Cancer Deaths:'(comma7.) / noframe;
run;
```

Note that the sample size legend in Output 16.12.3 displays the sample size as an unformatted integer. By using an INSET statement instead of the NLEGEND= option, you can specify a format for the sample size. (For a complete description of the INSET statement, see the section “INSET Statement” on page 1087.) The resulting chart is shown in Output 16.12.6.
Output 16.12.6 shows that 21.3% of deaths are assigned to 'All other and unspecified' and that the bar frequencies sum to 100%.
References


Subject Index

axes, Pareto charts, 1098, 1113
classification variables, Pareto charts, 1121, 1130
coloring Pareto charts, see Pareto charts, coloring
cumulative percentage curve, see Pareto charts, cumulative percentage curve
frequency data, Pareto charts, 1075, 1076
graphical output, Pareto charts, 1082
HBar charts
   options summarized by function, 1083
   syntax, 1083
insets
   background color, 1091
   background color of header, 1091
   displaying summary statistics, example, 1079
   drop shadow color, 1091
   formatting values, example, 1158
   frame color, 1091
   header text color, 1091
   header text, specifying, 1090, 1160
   labels, example, 1158
   positioning, details, 1123–1126, 1128
   positioning, example, 1160
   positioning, options, 1090, 1092
   summary statistics grouped by function, 1088
   suppressing frame, 1090
   text color, 1091
one-way comparative Pareto charts, see Pareto charts, comparative
output data set, Pareto charts, 1128
Pareto charts
   “trivial many”, 1070, 1142
   “useful many”, 1070, 1142
   “vital few”, 1070, 1142
   avoiding clutter, 1129
   axes, 1098, 1104, 1113
   before-and-after, 1131–1133, 1135
   classification variables, 1121, 1130
   examples, advanced, 1131
   examples, introductory, 1071
   graphics catalog, 1082
   grids, 1104
   highlighting, 1142–1146
   labeling chart features, 1122
   large data sets, 1131
   levels, 1119
   many categories, 1162
   merging columns, example, 1151
   missing values, 1106, 1107, 1130
   options summarized by function, 1081
   output data set, 1128
   overview, 1070
   Pareto curve, 1073
   Pareto, Vilfredo, 1070
   process variables, 1072, 1119, 1130
   reading frequency data, 1075, 1076
   reading raw data, 1071, 1072, 1074
   reference lines, 1115
   restricting number of categories, 1076, 1079
   saving information, 1128
   scaling bars, 1111, 1129
   seven basic QC tools, 1070
   side-by-side, 1070
   stacked, 1070
   syntax, 1080
   tied categories, 1076, 1079
   using raw data, example, 1071, 1072, 1074
   vertical axis, 1120
   visual clarity, 1129
Pareto charts, alternative
   example, 1155
Pareto charts, categories, 1073, 1119
   legend, 1074
   maximum number of, 1131
   restricting number of, 1076, 1079, 1105, 1106
   ties, 1076, 1079
   unbalanced, 1121
Pareto charts, classification variables
   examples, 1131, 1135
Pareto charts, coloring
   axes, 1113
   bar outlines, 1114
   bars, 1114
   cumulative percentage axis, 1113
   cumulative percentage curve, 1114
   grid lines, 1115
   highest bars, 1101
   labels, 1114
   lowest bars, 1102
   recommendations, 1130
   reference lines, 1114, 1115
Pareto charts, comparative, 1070, 1121
  cells, 1121
  classification variables, 1133
  classification variables, examples, 1131, 1135
  creating, 1101
  frequency proportion bars, 1103
  key cell, 1102, 1121, 1134, 1141
  merging columns, 1151
  one-way, 1121
  one-way, example, 1139
  ordering values, 1110
  rows and columns, ordering, 1110
  tiles, 1121, 1145
  two-way, 1121
  two-way, examples, 1135, 1140, 1142, 1143, 1145, 1148, 1151
  unbalanced categories, 1110, 1121
  weighted charts, 1153
Pareto charts, cumulative percentage curve, 1073, 1108, 1120
  anchoring, 1137, 1138
  coloring, 1114
  enhancing, 1093
  scaling, 1122
  suppressing, 1129, 1139, 1140
Pareto charts, grid lines
  width, 1119
Pareto charts, legends
  bar legends, 1099
  category legend labels, 1100
  highest and lowest bars legend labels, 1104
  sample size legends, 1100, 1107
  tile legends, 1118
Pareto charts, other category, 1110, 1111
  coloring, 1115
  labeling, 1105
  pattern, 1118
Pareto charts, other category, 1076, 1079
Pareto charts, restricted, 1076, 1079, 1106, 1120, 1131
  large data sets, 1131
Pareto charts, weighted, 1120
  example, 1153
Pareto curve, 1073
Pareto principle, 1070
Pareto, Vilfredo, 1070
process variables, Pareto charts, 1072, 1119, 1130
restricted Pareto charts, see Pareto charts, restricted
seven basic QC tools, 1070
side-by-side Pareto charts, 1070
stacked Pareto charts, 1070
VBAR charts
  options summarized by function, 1093
  syntax, 1092
weighted Pareto charts, 1120
Syntax Index

ANCHOR= option
  PARETO procedure, 1098
ANGLE= option
  PARETO procedure, 1112
ANNOKEY option
  PARETO procedure, 1112
ANNOTATE2= data set
  PARETO procedure, 1081
ANNOTATE= data set
  PARETO procedure, 1081
AXISFACTOR option
  PARETO procedure, 1098
BARLABEL= option
  PARETO procedure, 1098
BARLABPOS= option
  PARETO procedure, 1113
BARLEGEND= option
  PARETO procedure, 1099
BARLEGLABEL= option
  PARETO procedure, 1099
BARS= option
  PARETO procedure, 1100
BARWIDTH= option
  PARETO procedure, 1113
BY statement
  PARETO procedure, 1082
CATLEGEND= option
  PARETO procedure, 1100
CATLEGLABEL= option
  PARETO procedure, 1100
CATOFFSET= option
  PARETO procedure, 1100
CATREF= option
  PARETO procedure, 1100
CATREFLABELS= option
  PARETO procedure, 1100
CAXIS2= option
  PARETO procedure, 1113
CAXIS= option
  PARETO procedure, 1113
CBARLINE= option
  PARETO procedure, 1114
CBARS= option
  PARETO procedure, 1114
CCONNECT= option
  PARETO procedure, 1114
CCUMREF= option
  PARETO procedure, 1114
CFRAME= option
  PARETO procedure, 1114
CFRAMESIDE= option
  PARETO procedure, 1100
CFRAME= option
  PARETO procedure, 1114
CGRID= option
  PARETO procedure, 1115
CGRID2= option
  PARETO procedure, 1115
CFRAMESIDE= option
  PARETO procedure, 1114
CFREQREF= option
  PARETO procedure, 1115
CLIPREF option
  PARETO procedure, 1115
CHIGH(\(n\))= option
  PARETO procedure, 1101
CLASS= option
  PARETO procedure, 1101
CLASSKEY= option
  PARETO procedure, 1101
CLIPREF option
  PARETO procedure, 1115
CLOW(\(n\))= option
  PARETO procedure, 1102
CMPCETLABEL option
  PARETO procedure, 1103
CONNECTCHAR= option
  PARETO procedure, 1119
COTHER= option
  PARETO procedure, 1115
CPROP= option
  PARETO procedure, 1103
CTEXT= option
  PARETO procedure, 1115
CTEXTSIDE= option
  PARETO procedure, 1115
CTEXTTTOP= option
  PARETO procedure, 1115
CTILES= option
  PARETO procedure, 1115
CUMAXIS= option
  PARETO procedure, 1103
CUMAXISLABEL= option
  PARETO procedure, 1115
CUMREF= option
  PARETO procedure, 1103
PARETO procedure, 1103
CUMREFLABELS= option
PARETO procedure, 1103

DATA= data set
PARETO procedure, 1082
DESCRIPTION= option
PARETO procedure, 1116

FONT= option
PARETO procedure, 1116
FORMCHAR= option
PARETO procedure, 1082
FREQ= option
PARETO procedure, 1103
FREQAXIS= option
PARETO procedure, 1104
FREQAXISLABEL= option
PARETO procedure, 1104
FREQOFFSET= option
PARETO procedure, 1104
FREQREF= option
PARETO procedure, 1104
FREQREFLABELS= option
PARETO procedure, 1104

GOUT= option
PARETO procedure, 1082
GRID option
PARETO procedure, 1104
GRID2 option
PARETO procedure, 1104

HEIGHT= option
PARETO procedure, 1116
HLLEGLABEL= option
PARETO procedure, 1104
HREFCHAR= option
PARETO procedure, 1119
HREFLABPOS= option
PARETO procedure, 1104
HTML= option
PARETO procedure, 1116

INFONT= option
PARETO procedure, 1116
INHEIGHT= option
PARETO procedure, 1116
INSET statement
keywords summarized by function, 1088
list of options, 1089
syntax, 1087
INTERBAR= option
PARETO procedure, 1116
INTERTILE= option
PARETO procedure, 1105
LABOTHER= option
PARETO procedure, 1105
LAST= option
PARETO procedure, 1105
LCATREF= option
PARETO procedure, 1117
LFREQREF= option
PARETO procedure, 1117
LGRID2= option
PARETO procedure, 1117
LGRID= option
PARETO procedure, 1117
LINEPRINTER option
PARETO procedure, 1082
LOOTHER= option
PARETO procedure, 1105
MARKERS option
PARETO procedure, 1105
MAXCMPCT= option
PARETO procedure, 1105
MAXNCAT= option
PARETO procedure, 1106
MINPCT= option
PARETO procedure, 1106
MISSING option
PARETO procedure, 1106
MISSING1 option
PARETO procedure, 1107
MISSING2 option
PARETO procedure, 1107
NAME= option
PARETO procedure, 1117
NCOLS= option
PARETO procedure, 1107
NLEGEND= option
PARETO procedure, 1107
NOCATLABEL option
PARETO procedure, 1108
NOCHART option
PARETO procedure, 1108
NOCUMLABEL option
PARETO procedure, 1108
NOCURVE option
PARETO procedure, 1108
NOFRAME option
PARETO procedure, 1117
NOFREQLABEL option
PARETO procedure, 1108
NOFREQTICK option
PARETO procedure, 1108
NOHLLEG option
PARETO procedure, 1108
PARETO procedure, 1108
NOKEYMOVE option
     PARETO procedure, 1108
NOVTICK2 option
     PARETO procedure, 1108
NROWS= option
     PARETO procedure, 1108
ODSFOOTNOTE option
     PARETO procedure, 1108
ODSFOOTNOTE2 option
     PARETO procedure, 1109
ODSTITLE option
     PARETO procedure, 1109
ODSTITLE2 option
     PARETO procedure, 1109
ORDER1= option
     PARETO procedure, 1110
ORDER2= option
     PARETO procedure, 1110
OTHER= option
     PARETO procedure, 1110
OTHERCVAL= option
     PARETO procedure, 1111
OTHERVAL= option
     PARETO procedure, 1111
OUT= data set
     PARETO procedure, 1111
PARETO procedure, 1080
     examples, advanced, 1131
     examples, introductory, 1071
     options summarized by function, 1081
     overview, 1070
     syntax, 1080
PARETO procedure, BY statement, 1082, 1131, 1132
PARETO procedure, HBAR statement
ANCHOR= option, 1098
ANGLE= option, 1112
ANNOKEY option, 1112
ANNOTATE2= data set, 1112
ANNOTATE= data set, 1112
AXISFACTOR= option, 1098
BARLABEL= option, 1098
BARLABPPOS= option, 1113
BARLEGEND= option, 1099
BARLEGLABEL= option, 1099
BARS= option, 1100
BARWIDTH= option, 1113
CATLEGEND= option, 1100
CATLEGLABEL= option, 1100
CATOFFSET= option, 1100
CATREF= option, 1100
CATREFLABELS= option, 1100
CAXIS2= option, 1113
CAXIS= option, 1113
CBARLINE= option, 1114
CBARS= option, 1114
CCATREF= option, 1114
CCONNECT= option, 1114
CCUMREF= option, 1114
CFRAME= option, 1114
CFRAMESLEG= option, 1100
CFRAMESIDE= option, 1114
CFRAMETOP= option, 1115
CFREQREF= option, 1115
CGRID2= option, 1115
CGRID= option, 1115
CHARTTYPE= option, 1101, 1155
CHIGH(n)= option, 1101
CLASS= option, 1101
CLASSKEY= option, 1102
CLIPREF option, 1115
CLOW(n)= option, 1102
CMPLABEL option, 1103
COTHER= option, 1115
CPROF= option, 1103
CTEXT= option, 1115
CTEXTSIDE= option, 1115
CTEXTTOP= option, 1115
CTILES= option, 1115
CUMAXIS= option, 1103
CUMAXISLABEL= option, 1103
CUMREF= option, 1103
CUMREFLABELS= option, 1103
DESCRIPTION= option, 1116
FONT= option, 1116
FREQ= option, 1075, 1076, 1103
FREQAXIS= option, 1104
FREQAXISLABEL= option, 1104
FREQOFFSET= option, 1104
FREQREF= option, 1104
FREQREFLABELS= option, 1104
FRONTREF option, 1116
GRID option, 1104
GRID2 option, 1104
HAXIS2= option, 1103
HAXIS2LABEL= option, 1103
HEIGHT= option, 1116
HLEGEND= option, 1103
HLLEGENDLABEL= option, 1104
HREFLABPOS= option, 1104
HTML= option, 1116
INFONT= option, 1116
INHEIGHT= option, 1116
INTERBAR= option, 1116
INTERTILE= option, 1105
LABOTHER= option, 1105
LAST= option, 1075, 1076, 1105
LCATREF= option, 1117
LCUMREF= option, 1117
LFREQREF= option, 1117
LGRID2= option, 1117
LGRID= option, 1117
LOTHER= option, 1105
MARKERS option, 1075, 1076, 1105
MAXCMPCT= option, 1105
MAXNCAT= option, 1076, 1079, 1106
MINPCT= option, 1106
MISSING option, 1106
MISSING1 option, 1107
MISSING2 option, 1107
NAME= option, 1117
NCOLS= option, 1107
NLEGEND option, 1107
NLEGEND= option, 1075, 1076, 1107
NOCATLABEL option, 1108
NOCHART option, 1108
NOCUMLABEL option, 1108
NOCUMTICK option, 1108
NOCURVE option, 1108
NOFRAME option, 1117
NOFRAME option, 1090
POSITION= option, 1090, 1123–1125
REFPOINT= option, 1092
PARETO procedure, PROC PARETO statement, 1081
ANNOTATE2= data set, 1081
FORMAT= option, 1082
GOUT= option, 1082
LINEPRINTER option, 1082
PARETO procedure, VBAR statement
ANCHOR= option, 1098, 1122, 1137, 1138
ANGLE= option, 1112
ANNOKEY option, 1112
AXISFACTOR= option, 1098, 1122
BARLABEL= option, 1098
BARLABPOS= option, 1113
BARLEGEND= option, 1099, 1144, 1145
BARLEGEND= option, 1099
BARLEGEND= option, 1100, 1145
BARLABEL= option, 1100
BARLABEL= option, 1100, 1138, 1139
CATLEGEND= option, 1100
CATLEGEND= option, 1100, 1138, 1139
CATOFFSET= option, 1100
CATREF= option, 1100
CATREFLABELS= option, 1100
CATLEGLABEL= option, 1114
CBARLINE= option, 1114
CBARS= option, 1114, 1137, 1144
CFLEGLABEL= option, 1114
CFRAMESIDE= option, 1114
CFRAME= option, 1114
CFRAME= option, 1114
CGRID2= option, 1115
CGRID2= option, 1115
CGRID= option, 1115
CHAR TT YPE= option, 1101, 1155
CHIGH( n ) option, 1143
CHIGH( n )= option, 1142
CHIGH( n )= option, 1101
CLASS= option, 1101, 1130, 1133, 1138–1141
CLASSKEY= option, 1102, 1133
CLIPREF option, 1115
CLOW( n )= option, 1142
CLOW( n )= option, 1102
CMPCTLABEL option, 1098, 1103
CONNECTCHAR= option, 1119
CO THER= option, 1115
CPROP= option, 1135
CPROP= option, 1103
CTEXT= option, 1115
CTEXTSIDE= option, 1115
CTEXTTOP= option, 1115
CTILES= option, 1115, 1145, 1146
CUMAXIS= option, 1103
CUMAXISLABEL= option, 1103
CUMREF= option, 1103
CUMREFLABELS= option, 1103
DESCRIPTION= option, 1116
FONT= option, 1116
FREQ= option, 1103
FREQAXIS= option, 1104
FREQAXISLABEL= option, 1104
FREQOFFSET= option, 1104
FREQREF= option, 1104, 1140
FREQREFLABELS= option, 1104
OUT= data set, 1128
OUT= option, 1111
PBARS= option, 1117
PBARS= option
PHIGH( n ) option, 1143
PHIGH( n )= option, 1142
PHIGH( n )= option, 1118
PLOW( n )= option, 1118
POTHER= option, 1118
SCALE= option, 1111, 1129, 1135
SYMBOLCHAR= option, 1119
syntax, 1092
TILELEGEND= option, 1118, 1145, 1146
TILELEGEND= option, 1118
TURNVLABEL option, 1118
URL= option, 1111
VAXIS2= option, 1103
VAXIS2LABEL= option, 1103
VREFCHAR= option, 1119
VREFCHAR= option
VREFLABPOS= option, 1112
VREFLABPOS= option, 1112
W AXIS= option, 1118
WEIGHT= option, 1112, 1153, 1154
WEIGHT= option, 1112
WGRID2= option, 1119
WGRID2= option
PBARS= option
MINPCT= option, 1106
MISSING option, 1106, 1130
MISSING1 option, 1107, 1130
MISSING2 option, 1107, 1130
NAME= option, 1117
NCOLS= option, 1107, 1121, 1140, 1141
NLEGEND option, 1107, 1137, 1138
NLEGEND= option, 1107, 1135
NOCATLABEL option, 1108, 1138, 1139
NOCHART option, 1108
NOCUMLABEL option, 1108
NOCUMTICK option, 1108
NOCURVE option, 1108, 1129, 1138, 1139
NOFRAME option, 1117
NOFREQLABEL option, 1108
NOFREQTICK option, 1108
NOHLLEG option, 1108
NOKEYMOVE option, 1108
NROWS= option, 1108, 1121, 1139–1141
ODSFOOTNOTE2= option, 1109
ODSFOOTNOTE= option, 1108
ODSTITLE2= option, 1109
ODSTITLE= option, 1109
OUT= data set, 1128
OUT= option, 1111
PBARS= option, 1117
PBARS= option
PHIGH( n ) option, 1143
PHIGH( n )= option, 1142
PHIGH( n )= option, 1118
PLOW( n )= option, 1118
POTHER= option, 1118
SCALE= option, 1111, 1129, 1135
SYMBOLCHAR= option, 1119
syntax, 1092
TILELEGEND= option, 1118, 1145, 1146
TILELEGEND= option, 1118
TURNVLABEL option, 1118
URL= option, 1111
VAXIS2= option, 1103
VAXIS2LABEL= option, 1103
VREFCHAR= option, 1119
VREFCHAR= option
VREFLABPOS= option, 1112
VREFLABPOS= option, 1112
W AXIS= option, 1118
WEIGHT= option, 1112, 1153, 1154
WEIGHT= option, 1112
WGRID2= option, 1119
WGRID2= option
PBARS= option
PHIGH(n)= option
   PARETO procedure, 1118
PLOW(n)= option
   PARETO procedure, 1118
POTHER= option
   PARETO procedure, 1118
PROC PARETO statement, 1081, see PARETO procedure

SCALE= option
   PARETO procedure, 1111
SYMBOLCHAR= option
   PARETO procedure, 1119
TILELEGEND= option
   PARETO procedure, 1118
TILELEGLABEL= option
   PARETO procedure, 1118
TURNVLABEL option
   PARETO procedure, 1118
URL= option
   PARETO procedure, 1111
VREFCHAR= option
   PARETO procedure, 1119
VREFLABPOS= option
   PARETO procedure, 1112
W AXIS= option
   PARETO procedure, 1118
WBARLINE= option
   PARETO procedure, 1119
WEIGHT= option
   PARETO procedure, 1112
WGRID2= option
   PARETO procedure, 1119
WGRID= option
   PARETO procedure, 1119