
SAS/QC® 14.2 User’s Guide
The FACTEX Procedure

This document is an individual chapter from SAS/QC® 14.2 User’s Guide.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS/QC® 14.2 User’s Guide. Cary, NC:
SAS Institute Inc.

SAS/QC® 14.2 User’s Guide

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Chapter 8

The FACTEX Procedure

Contents
Overview: FACTEX Procedure . 618

Features . 619
Getting Started: FACTEX procedure . 620

Example of a Two-Level Full Factorial Design . 620
Example of a Full Factorial Design in Two Blocks 622
Example of a Half-Fraction Factorial Design . 624
Using the FACTEX Procedure Interactively . 626

Syntax: FACTEX Procedure . 627
Summary of Functions . 627
PROC FACTEX Statement . 629
BLOCKS Statement . 630
EXAMINE Statement . 632
FACTORS Statement . 634
MODEL Statement . 634
OUTPUT Statement . 636
SIZE Statement . 639
UNITEFFECT Statement . 640

Details: FACTEX Procedure . 641
Theory of Orthogonal Designs . 641

Overview . 641
Structure of General Factorial Designs . 641
Suitable Confounding Rules . 642
Searching for Confounding Rules . 644
Speeding Up the Search . 645
General Recommendations . 646

Design Details . 646
Types of Factors . 646
Specifying Effects in the MODEL Statement 647
Factor Variable Characteristics in the Output Data Set 648

Statistical Details . 648
Resolution . 648
Randomization . 649
Replication . 650
Confounding Rules . 652
Alias Structure . 652
Minimum Aberration . 653

618 F Chapter 8: The FACTEX Procedure

MaxClear Designs . 654
Split-Plot Designs . 654

Summary of Designs . 655
Output . 657
ODS Tables . 657

Examples: FACTEX Procedure . 658
Example 8.1: Completely Randomized Design . 658
Example 8.2: Resolution 4 Augmented Design . 659
Example 8.3: Factorial Design with Center Points 662
Example 8.4: Fold-Over Design . 663
Example 8.5: Randomized Complete Block Design 665
Example 8.6: Two-Level Design with Design Replication and Point Replication . . . 666
Example 8.7: Mixed-Level Design Using Design Replication and Point Replication . . 669
Example 8.8: Mixed-Level Design Using Pseudofactors 671
Example 8.9: Mixed-Level Design by Collapsing Factors 672
Example 8.10: Design That Uses a Hyper-Graeco-Latin Square 673
Example 8.11: Resolution 4 Design with Minimum Aberration 675
Example 8.12: Replicated Blocked Design with Partial Confounding 677
Example 8.13: Incomplete Block Design . 680
Example 8.14: Design with Inner Array and Outer Array 683
Example 8.15: Fractional Factorial Split-Plot Designs 687
Example 8.16: Design for a Three-Step Process . 691
Example 8.17: Strip-Split-Split-Plot Design . 694
Example 8.18: Design and Analysis of a Complete Factorial Experiment 696

References . 698

Overview: FACTEX Procedure
The FACTEX procedure constructs orthogonal factorial experimental designs. These designs can be either
full or fractional factorial designs, and they can be with or without blocks. You can also construct designs
for experiments that have multiple stages, such as split-plot designs(Huang, Chen, and Voelkel 1998) and
split-lot designs (Butler 2004). After you have constructed a design by using the FACTEX procedure and run
the experiment, you can analyze the results by using a variety of SAS procedures including the GLM and
REG procedures.

Factorial experiments are useful for studying the effects of various factors on a response. Texts that discuss
experimental design include Box, Hunter, and Hunter (1978), Cochran and Cox (1957), Montgomery (1991),
and Wu and Hamada (2000). For more information about the general mathematical theory of orthogonal
factorial designs, see Bose (1947).

NOTE: For two-level designs, instead of using PROC FACTEX directly, a more appropriate tool might
be the ADX Interface for Design of Experiments. The ADX Interface is designed primarily for engineers
and researchers who require a point-and-click solution for the entire experimental process, from building
the designs through determining significant effects to optimization and reporting. ADX gives you most

Features F 619

of the two-level designs provided by the FACTEX procedure in a system that integrates construction and
analysis of designs, without the need for programming. In addition to two-level designs for standard models
(with and without blocking), ADX makes it easy to use PROC FACTEX to construct designs for estimating
particular effects of interest. Moreover, ADX also uses the OPTEX procedure to construct two-level designs
of nonstandard sizes. For more information, see Getting Started with the SAS ADX Interface for Design of
Experiments.

Features
There is no inherent limit to the number of factors and the size of the design that you can construct with
the FACTEX procedure. Instead of looking up designs in an internal table, the FACTEX procedure uses a
general algorithm to search for the construction rules for a specified design.

You can use the FACTEX procedure to generate designs such as the following:

� factorial designs, such as 23 designs, with and without blocking

� fractional factorial designs, such as 24�1
IV , with and without blocking

� split-plot and fractional split-plot designs

� three-level designs, with and without blocking

� mixed-level factorial designs, such as 4 � 3 designs, with and without blocking

� randomized complete block design

� factorial designs with outer arrays

� hyper-Graeco-Latin square designs

You can also create more complex designs, such as incomplete block designs, by using the FACTEX procedure
in conjunction with the DATA step.

You can save the design constructed by the FACTEX procedure in a SAS data set. After you have run your
experiment, you can add the values of the response variable and use the GLM procedure to perform analysis
of variance and to study significance of effects.

The FACTEX procedure is an interactive procedure. After specifying an initial design, you can submit
additional statements without reinvoking the procedure. After you have constructed a design, you can do the
following:

� print the design points

� examine the alias structure for the design

� modify the design by changing its size, changing the use of blocking, or specifying the effects of
interest in the model again

� output the design to a data set

620 F Chapter 8: The FACTEX Procedure

� examine the confounding rules that generate the design

� randomize the design

� replicate the design

� recode the design from standard values (such as˙1) to values appropriate for your situation

� find another design

Getting Started: FACTEX procedure

Example of a Two-Level Full Factorial Design
NOTE: See Two-Level Full Factorial Design in the SAS/QC Sample Library.

This example introduces the basic syntax of the FACTEX procedure.

An experimenter is interested in studying the effects of three factors—cutting speed (Speed), feed rate
(FeedRate), and tool angle (Angle)—on the surface finish of a metallic part and decides to run a complete
factorial experiment that has two levels for each factor as follows:

Factor Low Level High Level

Cutting speed 300 500
Feed rate 20 30
Tool angle 6 8

This is a 23 factorial design—in other words, a complete factorial experiment that has three factors, each at
two levels. Hence the experiment has eight runs. Because complete factorial designs have full resolution, all
the main effects and interaction terms can be estimated. For a definition of the design resolution, see the
section “Resolution” on page 648.

The following statements create the required design:

proc factex;
factors Speed FeedRate Angle;
examine design;

run;

These statements invoke the FACTEX procedure, list factor names, and display the generated design points.
By default, the FACTEX procedure assumes that the size of the design is a full factorial and that each factor
has only two levels.

After you submit the preceding statements, you see the following messages in the SAS log:

NOTE: No design size specified.

Default is a full replicate in 8 runs.

NOTE: Design has 8 runs, full resolution.

Example of a Two-Level Full Factorial Design F 621

The output is shown in Figure 8.1. The two factor levels are represented by the coded values –1 and +1.

Figure 8.1 23 Factorial Design

The FACTEX ProcedureThe FACTEX Procedure

Design Points

Experiment
Number Speed FeedRate Angle

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

6 1 -1 1

7 1 1 -1

8 1 1 1

If you prefer to work with the actual (decoded) values of the factors, you can specify these values in an
OUTPUT OUT= statement, as follows:

proc factex;
factors Speed FeedRate Angle;
output out=SavedDesign

Speed nvals=(300 500)
FeedRate nvals=(20 30)
Angle nvals=(6 8);

run;
proc print;
run;

The OUTPUT statement in PROC FACTEX recodes the factor levels and saves the constructed design in the
SavedDesign data set. Because the levels in this example are of numeric type, you use the NVALS= option to
list the factor levels. Optionally, you can use the CVALS= option for levels of character type (see the section
“Example of a Full Factorial Design in Two Blocks” on page 622). The design is saved in a user-specified
output data set (SavedDesign), as verified by the following message in the SAS log:

NOTE: The data set WORK.SAVEDDESIGN has 8 observations

and 3 variables.

Figure 8.2 shows a listing of the data set SavedDesign.

Figure 8.2 23 Factorial Design after Decoding

Obs Speed FeedRate Angle

1 300 20 6

2 300 20 8

3 300 30 6

4 300 30 8

5 500 20 6

6 500 20 8

7 500 30 6

8 500 30 8

622 F Chapter 8: The FACTEX Procedure

Although small complete factorial designs are not difficult to create manually, you can easily extend this
example to construct a design that has many factors.

Example of a Full Factorial Design in Two Blocks
NOTE: See Full Factorial Design in Two Blocks in the SAS/QC Sample Library.

The previous example illustrates a complete factorial experiment that involves eight runs and three factors:
cutting speed (Speed), feed rate (FeedRate), and tool angle (Angle).

Now, suppose two machines (A and B) are used to complete the experiment, with four runs being performed
on each machine. Because the particular machine might affect the part finish, you should consider machine
as a block factor and account for the block effect in assigning the runs to machines.

The following statements construct a blocked design:

proc factex;
factors Speed FeedRate Angle;
blocks nblocks=2;
model resolution=max;
examine design;

run;

The FACTORS statement in PROC FACTEX specifies three factors of a 23 factorial. The BLOCKS statement
specifies that the number of blocks is 2. The RESOLUTION=MAX option in the MODEL statement specifies
a design with the highest resolution—that is, the best design in a general sense. Optionally, if you know
the resolution of the design, you can replace RESOLUTION=MAX with RESOLUTION=r , where r is the
resolution number. For information about resolution, see the section “Resolution” on page 648.

By default, the FACTEX procedure assumes that the size of the design is a full factorial and that each factor
has two levels.

After you submit the preceding statements, you see the following messages in the SAS log:

NOTE: No design size specified.
Default is a full replicate in 8 runs.

NOTE: Design has 8 runs in 2 blocks of size 4,
resolution = 6.

The output is shown in Figure 8.3. By default, the name for the block variable is BLOCK, its levels are 1 and
2, and the default factor levels for a two-level design are –1 and 1.

Example of a Full Factorial Design in Two Blocks F 623

Figure 8.3 23 Factorial Design in Two Blocks before Decoding

The FACTEX ProcedureThe FACTEX Procedure

Design Points

Experiment
Number Speed FeedRate Angle Block

1 -1 -1 -1 1

2 -1 -1 1 2

3 -1 1 -1 2

4 -1 1 1 1

5 1 -1 -1 2

6 1 -1 1 1

7 1 1 -1 1

8 1 1 1 2

You can rename the block variable and use actual levels for the block variable that is appropriate for your
situation as follows:

proc factex;
factors Speed FeedRate Angle;
blocks nblocks=2;
model resolution=max;
output out=BlockDesign

Speed nvals=(300 500)
FeedRate nvals=(20 30)
Angle nvals=(6 8)
blockname=Machine cvals=('A' 'B');

run;

proc print;
run;

Figure 8.4 shows the listing of the design that is saved in the data set BlockDesign.

Figure 8.4 23 Factorial Design in Two Blocks after Decoding

Obs Machine Speed FeedRate Angle

1 A 300 20 6

2 A 300 30 8

3 A 500 20 8

4 A 500 30 6

5 B 300 20 8

6 B 300 30 6

7 B 500 20 6

8 B 500 30 8

624 F Chapter 8: The FACTEX Procedure

Example of a Half-Fraction Factorial Design
NOTE: See Half-Fraction Factorial Design in the SAS/QC Sample Library.

Often you do not have the resources for a full factorial design. In this case, a fractional factorial design is a
reasonable alternative, provided that the effects of interest can be estimated.

Box, Hunter, and Hunter (1978) describe a fractional factorial design for studying a chemical reaction to
determine what percentage of the chemicals responded in a reactor. The researchers identified the following
five treatment factors that were thought to influence the percentage of reactant:

� the feed rate of the chemicals (FeedRate), ranging from 10 to 15 liters per minute

� the percentage of the catalyst (Catalyst), ranging from 1% to 2%

� the agitation rate of the reactor (AgitRate), ranging from 100 to 120 revolutions per minute

� the temperature (Temperature), ranging from 140 to 180 degrees Celsius

� the concentration (Concentration), ranging from 3% to 6%

The complete 25 factorial design requires 32 runs, but the experimenter can afford only 16 runs.

Suppose that all main effects and two-factor interactions are to be estimated. An appropriate design for this
situation is a design of resolution 5 (denoted as 25�1

V), in which no main effect or two-factor interaction
is aliased with any other main effect or two-factor interaction but in which two-factor interactions are
aliased with three-factor interactions. This design loses the ability to estimate interactions between three or
more factors, but this is usually not a serious loss. For more information about resolution, see the section
“Resolution” on page 648.

You can use the following statements to construct a 16-run factorial design that has five factors and resolution
5:

proc factex;
factors FeedRate Catalyst AgitRate Temperature Concentration;
size design=16;
model resolution=5;
output out=Reaction FeedRate nvals=(10 15)

Catalyst nvals=(1 2)
AgitRate nvals=(100 120)
Temperature nvals=(140 180)
Concentration nvals=(3 6);

run;
proc print;
run;

Example of a Half-Fraction Factorial Design F 625

The design is saved in the Reaction data set and shown in Figure 8.5.

Figure 8.5 Half-Fraction of a 25 Design for Reactors

Obs FeedRate Catalyst AgitRate Temperature Concentration

1 10 1 100 140 6

2 10 1 100 180 3

3 10 1 120 140 3

4 10 1 120 180 6

5 10 2 100 140 3

6 10 2 100 180 6

7 10 2 120 140 6

8 10 2 120 180 3

9 15 1 100 140 3

10 15 1 100 180 6

11 15 1 120 140 6

12 15 1 120 180 3

13 15 2 100 140 6

14 15 2 100 180 3

15 15 2 120 140 3

16 15 2 120 180 6

The use of a half-fraction causes some interaction terms to be confounded with each other. You can use the
ALIASING option in the EXAMINE statement to determine which interaction terms are aliased, as follows:

proc factex;
factors FeedRate Catalyst AgitRate Temperature Concentration;
size design=16;
model resolution=5;
examine aliasing;

run;

The alias structure summarizes the estimability of all main effects and two- and three-factor interactions.
Figure 8.6 indicates that each of the three-factor interactions is confounded with a two-factor interaction.
Thus, if a particular three-factor interaction is believed to be significant, the aliased two-factor interaction
cannot be estimated with this half-fraction design.

626 F Chapter 8: The FACTEX Procedure

Figure 8.6 Alias Structure of Reactor Design

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

FeedRate

Catalyst

AgitRate

Temperature

Concentration

FeedRate*Catalyst = AgitRate*Temperature*Concentration

FeedRate*AgitRate = Catalyst*Temperature*Concentration

FeedRate*Temperature = Catalyst*AgitRate*Concentration

FeedRate*Concentration = Catalyst*AgitRate*Temperature

Catalyst*AgitRate = FeedRate*Temperature*Concentration

Catalyst*Temperature = FeedRate*AgitRate*Concentration

Catalyst*Concentration = FeedRate*AgitRate*Temperature

AgitRate*Temperature = FeedRate*Catalyst*Concentration

AgitRate*Concentration = FeedRate*Catalyst*Temperature

Temperature*Concentration = FeedRate*Catalyst*AgitRate

When you submit the preceding statements, the following message is displayed in the SAS log:

NOTE: Design has 16 runs, resolution = 5.

This message confirms that the design exists. If you specify a factorial design that does not exist, an error
message is displayed in the SAS log. For example, suppose that you replaced the MODEL statement in the
preceding example with the following statement:

model resolution=6;

Since the maximum resolution of a 25�1 design is 5, the following message appears in the SAS log:

ERROR: No such design exists.

In general, it is good practice to check the SAS log to see if a design exists.

Using the FACTEX Procedure Interactively
By using the FACTEX procedure interactively, you can quickly explore many design possibilities. The
following steps provide one strategy for interactive use:

1 Invoke the procedure by using the PROC FACTEX statement, and use a FACTORS statement to identify
factors in the design.

2 For a design that involves blocking, use the BLOCKS and MODEL statements. You might want to use the
optimization features for the BLOCKS statement.

3 For a fractional replicate of a design, use the SIZE and MODEL statements to specify the characteristics
of the design. If the design involves blocking, use a BLOCKS statement too. If you are unsure of the size
of the design or of the number of blocks, use the optimization features for either the BLOCKS statement
or the SIZE statement.

Syntax: FACTEX Procedure F 627

4 Enter a RUN statement and check the SAS log to see if the design exists. If a design exists, go on to the
next step; otherwise, modify the characteristics that are specified in the SIZE, BLOCKS, and MODEL
statements.

5 Examine the alias structure of the design. If it is not appropriate for your situation, go back to step 2 and
search for another design.

6 After you have repeated steps 2, 3, and 4 and found an acceptable design, use the OUTPUT statement to
save the design. You can optionally recode factor values, recode and rename the block factor, and create
new factors by using output-value settings.

Syntax: FACTEX Procedure
The following statements are available in the FACTEX procedure. Items within angle brackets (<>) are
optional.

PROC FACTEX < options > ;
FACTORS factor-names < / option > ;
SIZE size-specification ;
MODEL model-specification < / < MINABS < (d) > > < MAXCLEAR < (d) > > > ;
BLOCKS block-specification ;
UNITEFFECT unit-effect / < WHOLE=(whole-unit-effects) > < SUB=(subunit-effects) > ;
EXAMINE < options > ;
OUTPUT OUT=SAS-data-set < options > ;

To generate a design and save it in a data set, you use at least the PROC FACTEX, FACTORS, and OUTPUT
statements. The FACTORS statement should immediately follow the PROC FACTEX statement. You use the
MODEL and SIZE statements for designs that are less than a full replicate (for example, fractional factorial
designs). You can use the BLOCKS statement for designs that involve blocking. The EXAMINE statement
can be used as needed.

The following sections summarize which statements and options you use for various functions, describe the
PROC FACTEX statement, and then describe the other statements in alphabetical order.

Summary of Functions
Table 8.1 to Table 8.4 classify the statements and options in PROC FACTEX by function.

Table 8.1 Summary of Options for Specifying the Design

Function Statement Option

Factor Specification
Factor names FACTORS factor1 : : : factorf

Number of levels FACTORS factor1 : : : factorf / NLEV=q

628 F Chapter 8: The FACTEX Procedure

Table 8.1 continued

Function Statement Option

Design Size Specification (one of the following)
Number of runs SIZE DESIGN=n
Fraction of one full replicate SIZE FRACTION=h
Number of run-indexing factors SIZE NRUNFACS=m
Minimum number of runs SIZE DESIGN=MINIMUM

or FRACTION=MAXIMUM
or NRUNFACS=MINIMUM

Block Specification (one of the following)

Number of blocks BLOCKS NBLOCKS=b
Block size BLOCKS SIZE=k
Number of block pseudofactors BLOCKS NBLKFACS=s
Minimum block size BLOCKS NBLOCKS=MAXIMUM

or SIZE=MINIMUM
or NBLKFACS=MAXIMUM

Model Specification (one of the following)

Estimated effects MODEL ESTIMATE=(effects)
Estimated effects and MODEL ESTIMATE=(effects)
nonnegligible effects NONNEG=(nonnegligible-effects)
Design resolution number MODEL RESOLUTION=r
Design with highest resolution MODEL RESOLUTION=MAXIMUM
Minimum aberration design MODEL EST=(. . .) <NONNEG=(. . .)> or RES=. . .
(up to d th-order interactions) / MINABS<(d)>

Table 8.2 Summary of Options for Searching the Design

Function Statement Option

Search for the Design
Allow maximum time of t seconds PROC FACTEX SECONDS=t or TIME=t
Limit the design searches PROC FACTEX NOCHECK

Table 8.3 Summary of Options for Replicating and Randomizing
the Design

Function Statement Option

Replication
Replicate entire design c times OUTPUT OUT=SAS-data-set DESIGNREP=c
Replicate design for each point OUTPUT OUT=SAS-data-set DESIGNREP=SAS-data-set
in the data set
Replicate each point in design OUTPUT OUT=SAS-data-set POINTREP=p

PROC FACTEX Statement F 629

Table 8.3 continued

Function Statement Option

p times
Replicate data set for each point OUTPUT OUT=SAS-data-set POINTREP=SAS-data-set
in the design

Randomization
Randomize the design OUTPUT OUT=SAS-data-set RANDOMIZE
Randomize the design but not the OUTPUT OUT=SAS-data-set RANDOMIZE NOVALRAN
assignment of factor levels
Specify the seed number OUTPUT OUT=SAS-data-set RANDOMIZE .u/

Table 8.4 Summary of Options for Examining and Saving the
Design

Function Statement Option

List the Design
Coded factor and block levels EXAMINE DESIGN
List the Design Characteristics
Alias structure EXAMINE ALIASING<(d)>
(up to d th-order interactions)
Confounding rules EXAMINE CONFOUNDING
Save the Design
Coded factor levels OUTPUT OUT=SAS-data-set
Decoded factor levels OUTPUT OUT=SAS-data-set factor-name
(numeric type) NVALS=(level1 : : : levelq)
Decoded factor levels OUTPUT OUT=SAS-data-set factor-name
(character type) CVALS=('level1' . . . 'levelq')
Block variable name OUTPUT OUT=SAS-data-set BLOCKNAME=block-name
Decoded block levels OUTPUT OUT=SAS-data-set BLOCKNAME=block-name
(numeric type) NVALS=(level1 . . . levelb)
Decoded block levels OUTPUT OUT=SAS-data-set BLOCKNAME=block-name
(character type) CVALS=('level1' . . . 'levelq')

PROC FACTEX Statement
PROC FACTEX < options > ;

The PROC FACTEX statement invokes the FACTEX procedure. You can specify the following options:

630 F Chapter 8: The FACTEX Procedure

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 20 and 200 characters. By default, NAMELEN=20.

NOCHECK
suppresses a technique for limiting the amount of search required to find a design. The technique
dramatically reduces the search time by pruning branches of the search tree that are unlikely to contain
the specified design, but in rare cases it can keep the FACTEX procedure from finding a design that
does in fact exist. The NOCHECK option turns off this technique at the potential cost of an increase in
run time. (However, the run time is always bounded by the TIME= option or its default value.) For
more information about the NOCHECK option, see the section “Speeding Up the Search” on page 645.

TIME=t

SECONDS=t
specifies the maximum number of seconds to spend on the search. By default, TIME=60.

BLOCKS Statement
BLOCKS block-specification ;

The BLOCKS statement specifies the blocks or split-plot units in the design. (By default, the FACTEX
procedure constructs designs that do not contain blocks.) If you use the BLOCKS statement, you also need
to use the MODEL statement or SIZE statement. In particular, if you use the BLOCKS statement and your
design is a fractional factorial design, you must use the MODEL statement.

You can specify one, and only one, of the following block-specifications (the simplest explicit block-
specifications are NBLOCKS=b to specify the number of blocks in the design and SIZE=k to specify the
number of runs in each block):

NBLKFACS=s
specifies the number of block pseudofactors for the design. The design contains a different block for
each possible combination of the levels of the block pseudofactors. Values of s are the integers 1, 2,
and so on. For more information, see the section “Block Size Restrictions” on page 632.

If each factor in the design has q levels, then NBLKFACS=s specifies a design with qs blocks. The
size of each block depends on the number of runs in the design, as specified in the SIZE statement. If
the design has n runs, then each block has n=qs runs.

The following statement requests a two-level factorial design arranged in eight (23) blocks:

blocks nblkfacs=3;

For more information about pseudofactors, see the section “Types of Factors” on page 646.

NBLOCKS=b
specifies the number of blocks in the design. The values of b must be a power of q, the number of
levels of each factor in the design. For more information, see the section “Block Size Restrictions” on
page 632. The size of each block depends on the number of runs in the design, as specified in the SIZE
statement. If the design has n runs, then each block has n=b runs. For an illustration of this option, see
the section “Example of a Full Factorial Design in Two Blocks” on page 622.

BLOCKS Statement F 631

The following statement specifies a design arranged in four blocks:

blocks nblocks=4;

SIZE=k
specifies the number of runs (k) per block in the design. The value k must be a power of q, the number
of levels for each factor in the design. The number of blocks depends on the number of runs in the
design, as specified in the SIZE statement. If the design has n runs, then it has n=k blocks.

NOTE: Do not confuse the SIZE= option in the BLOCKS statement with the SIZE statement, which
you use to specify the overall size of the design. For more information about the SIZE statement, see
the section “SIZE Statement” on page 639.

The following statement specifies blocks of size two:

blocks size=2;

NBLKFACS=MAXIMUM

NBLOCKS=MAXIMUM

SIZE=MINIMUM
constructs a blocked design that has the minimum number of runs per block, given all the other
characteristics of the design. In other words, the block size is optimized. You cannot specify this option
if you specify the DESIGN=MINIMUM option (or either of its aliases, FRACTION=MAXIMUM and
NRUNFRACS=MINIMUM) in the SIZE statement.

UNITS=(unit-factor = number-of-levels < unit-factor = number-of-levels . . . >)
specifies one or more unit factors that index the runs of the experiment, where the number-of-levels
for each unit-factor must be a power of the number of levels specified in the FACTORS statement (2
by default). The product of all the number-of-levels must be less than the size of the experiment, as
specified in the SIZE statement.

Unit factors are not involved in the model structure of the design. Instead, you use a UNITS= blocks
specification in conjunction with one or more UNITEFFECT statements to constrain how the factor
levels can change across the runs of the experiment.

The following statement specifies two unit factors:

blocks units=(Unit1=4 Unit2=8);

For more information about how to use the UNITS= option and the UNITEFFECT statement to
construct split-plot designs, see the section “Split-Plot Designs” on page 654.

Equivalent BLOCK Specifications
The three explicit block-specifications (NBLKFACS=s, NBLOCKS=b, and SIZE=k)are related to each other,
as demonstrated by the following example.

Suppose you want to construct a design for 11 two-level factors in 128 runs in blocks of size 8. Because
128=24 D 128=16 D 8, the three equivalent block specifications are as follows:

blocks nblkfacs=4;
blocks nblocks=16;
blocks size=8;

632 F Chapter 8: The FACTEX Procedure

Block Size Restrictions
The number of blocks and the number of runs in each block must be less than the total number of runs in the
design. Hence, the block size is restricted as follows:

� If you use SIZE=k or NBLOCKS=b, the numbers you specify for k and b must be less than or equal to
the size of the design, as specified in the SIZE statement. Or, if you do not use a SIZE statement, k and
b must be less than or equal to the number of runs for a full replication of all possible combinations of
the factors.

For example, you cannot specify a design arranged in 8 blocks (NBLOCKS=8) for a 23 design.
Likewise, you cannot construct a design with block size greater than 8 (SIZE=8).

� If you use NBLKFACS=s, the value of s can be no greater than the number of run-indexing factors,
which give the number of runs needed to index the design. For more information, see the sections
“Types of Factors” on page 646 and “Theory of Orthogonal Designs” on page 641.

EXAMINE Statement
EXAMINE < options > ;

The EXAMINE statement specifies the characteristics of the design that are to be listed in the output. The
options are remembered by the procedure; once specified, they remain in effect until you submit a new
EXAMINE statement with different options or until you turn off all options by submitting the statement with
no options as follows:

examine;

You can specify the following options:

ABERRATION

AB
displays the design’s aberration vector, which summarizes the confounded interactions. For more
information, sSee the section “Minimum Aberration” on page 653.

ALIASING < (< d > < UNITS < = ONE | ALL > >) >

A < (< d > < UNITS < = ONE | ALL > >) >
displays the design’s alias structure, which identifies effects that are confounded with one another and
are thus indistinguishable.

You can specify the following suboptions in parentheses:

d
displays the alias structure with effects up to and including order d . For example, the following
statement requests aliases for up to fourth-order effects (for example, A*B*C*D):

examine aliasing(4);

Each line of the alias structure is displayed in the following form for as many effects as are
aliased with one another:

effect = effect = . . . = effect

EXAMINE Statement F 633

The default value for d is determined automatically from the model as follows:

� If you use RESOLUTION=r in the MODEL statement to specify the model, then d is the
integer part of .r C 1/=2.
� If you use ESTIMATE=effects in the MODEL statement specify the model, then d is the

larger of the following, where main effects have order 1, two-factor interactions have order
2, and so on:

– one plus the largest order of an effect to be estimated
– the largest order of an effect considered to be nonnegligible

UNITS

UNITS=ONE
displays the first unit effect with which each treatment effect is aliased. Specifying this suboption
can give you information about which error stratum can be used to estimate the background
error variance for each estimable treatment effect. This option applies only when unit-effects are
specified in the UNITEFFECTS statement.

UNITS=ALL
displays all unit effects with which each treatment effect is aliased. This suboption is useful when
unit effects are nested, as they typically are in complex split-plot designs, because treatment
effects can be aliased with more than one unit effect. This option applies only when unit-effects
are specified in the UNITEFFECTS statement.

For more information about aliasing, see the section “Alias Structure” on page 652.

CONFOUNDING

C
displays the confounding rules that are used to construct the design. For the definition of confounding
rules, see the sections “Confounding Rules” on page 652 and “Suitable Confounding Rules” on
page 642.

DESIGN

D
displays the points in the design in standard order with the factor levels coded. For a description of the
randomization and coding rules, see the section “OUTPUT Statement” on page 636.

SUMMARY < (< d >) >

S < (< d >) >
displays the design’s modeling summary, which summarizes how many interactions of each order
are estimable and how many are clearly estimable (that is, unaliased with any other interactions of
interest).

You can specify d in parentheses to display a modeling summary that accounts for effects up to and
including order d . The default value for d is determined automatically from the model as it is for the
ALIASING option.

634 F Chapter 8: The FACTEX Procedure

FACTORS Statement
FACTORS factor . . . factor < / option > ;

The FACTORS statement starts the construction of a new design by naming the factors in the design. The
FACTORS statement clears all previous specifications for the design (number of runs, block size, and so on);
use it when you want to start a new design.

NOTE: If you want to specify the FACTORS statement, it must be the first statement following the PROC
FACTEX statement.

You must specify the following argument:

factor . . . factor
names the factors in the design. You must specify at least one factor . These names must be valid SAS
variable names. For more information, see the section “Types of Factors” on page 646.

You can also specify the following option:

NLEV=q
specifies the number of levels for each factor in the design. The value of q must be an integer greater
than or equal to 2. In order to construct a design that involves either fractionation or blocking, q must
be either a prime number or an integer power of a prime number. For the reason behind this restriction,
see the section “Structure of General Factorial Designs” on page 641. By default, NLEV=2.

MODEL Statement
MODEL model-specification < / < MINABS < (d) > > < MAXCLEAR < (d) > > > ;

The MODEL statement provides the model for the construction of the factorial design. You can specify the
model either directly by specifying the effects to be estimated in the ESTIMATE= option or indirectly by
specifying the resolution of the design in the RESOLUTION= option.

NOTE: If you create a fractional factorial design or if you create a design that involves blocking, the MODEL
statement is required.

You must specify one, and only one, of the following model-specifications:

ESTIMATE=(effects) < option >

EST=(effects) < option >

E =(effects) < option >
identifies the effects that you want to estimate with the design. To specify effects, simply list the names
of main effects, and use asterisks to join terms in interactions. The effects must be enclosed within
parentheses. For more information, see the section “Specifying Effects in the MODEL Statement” on
page 647.

You can specify the following option:

MODEL Statement F 635

NONNEGLIGIBLE=(nonnegligible-effects)

NONNEG =(nonnegligible-effects)

N =(nonnegligible-effects)
identifies nonnegligible effects. These are the effects whose magnitudes are unknown but that
you do not necessarily want to estimate with the design and that you do not want to be aliased
with the effects. The nonnegligible-effects must be enclosed within parentheses.

For example, suppose that you want to construct a fraction of a 24 design in order to estimate the
main effects of the four factors. To specify the model, simply list the main effects in the ESTIMATE=
option, since these are the effects of interest. Furthermore, if you consider the two-factor interactions
to be significant but you are not interested in estimating them, then list these interactions in the
NONNEGLIGIBLE= option.

Example 8.8 uses the ESTIMATE= option. For more information about how the FACTEX procedure
interprets the model and derives an appropriate confounding scheme, see the section “Theory of
Orthogonal Designs” on page 641.

RESOLUTION=r | MAXIMUM

RES= r | MAXIMUM

R= r | MAXIMUM
specifies the resolution of the design. You can specify one of the following values:

r is a positive integer greater than or equal to 3, which is interpreted as follows:

� If r is odd, then the effects of interest are taken to be those of order .r � 1/=2
or less.

� If r is even, then the effects of interest are taken to be those of order .r � 2/=2
or less, and the nonnegligible effects are taken to be those of order r=2 or less.

MAXIMUM searches for a design that has the highest resolution and satisfies the SIZE statement
requirements.

For more information about design resolution, see the section “Resolution” on page 648. For an
example that uses the RESOLUTION=r option, see the section “Example of a Half-Fraction Factorial
Design” on page 624. For an example that uses the RESOLUTION=MAX option, see the section
“Example of a Full Factorial Design in Two Blocks” on page 622.

You can also specify the following options in the MODEL statement:

MAXCLEAR < (d) >
searches for a design that maximizes the number of clear interactions. Clear interactions are interactions
that are not aliased with any other effects that are either required to be estimable or assumed to be
nonnegligible. Specifying (d) after the MAXCLEAR option requests a search for a maximum-clarity
design that involves interactions up to order d . The default value for d is determined automatically
from the model (as it is for the ALIASING option in the EXAMINE statement) as follows:

� If you use RESOLUTION=r in the MODEL statement to specify the model, then d is the integer
part of .r C 1/=2.

� If you use ESTIMATE=effects in the MODEL statement to specify the model, then d is the larger
of the following, where main effects have order 1, two-factor interactions have order 2, and so on:

636 F Chapter 8: The FACTEX Procedure

– one plus the largest order of an effect to be estimated
– the largest order of an effect considered to be nonnegligible

For more information about MaxClear designs, see the section “MaxClear Designs” on page 654.

MINABS < (d) >
searches for a design that has minimum aberration. Specifying (d) after the MINABS option requests
a search for a minimum aberration design that involves interactions up to order d . The default value
for d is determined automatically from the model as follows:

� If you use RESOLUTION=r in the MODEL statement to specify the model, then d D r C 2.
� If you use ESTIMATE=effects in the MODEL statement to specify the model, then d is the larger

of the following, where main effects have order 1, two-factor interactions have order 2, and so on:

– three plus twice the largest order of an effect to be estimated
– one plus twice the largest order of an effect considered to be nonnegligible

For more information, see the section “Minimum Aberration” on page 653. For an example of the
MINABS option, see Example 8.11.

Examples of the MODEL Statement
Suppose you use the following FACTORS statement to specify a design, where the number of factors f can
be replaced with a number:

factors x1-xf;

Then Table 8.5 lists equivalent ways to specify common models.

Table 8.5 Equivalent of Model Specifications

RESOLUTION= Option ESTIMATE= and NONNEGLIGIBILE= Options

model res=3 model est=(x1-x+f);

model res=4 model est=(x1-x+ f) nonneg=(x1|x2|x3|+...+|x+f+@2);

model res=5 model est=(x1|x2|x3|+...+|x+ f+@2);

The RESOLUTION= specification is more concise than the ESTIMATE= specification and is also more
efficient in an algorithmic sense. To decrease the time required to find a design, particularly for designs that
have a large number of factors, you should specify your model by using the RESOLUTION= option rather
than listing the effects in the ESTIMATE= option. For more information about interpreting the resolution
number, see the section “Resolution” on page 648.

OUTPUT Statement
OUTPUT OUT= SAS-data-set < options > ;

The OUTPUT statement saves a design in an output data set. Optionally, you can use the OUTPUT statement
to modify the design by specifying values to be output for factors, creating new factors, randomizing the
design, and replicating the design.

You must specify the following argument:

OUTPUT Statement F 637

OUT=SAS-data-set
names the output data set in which the design is saved.

You can also specify the following options:

variable-specification < NVALS=(level1 level2 . . . levelq) >

variable-specification < CVALS=('level1' 'level2 ' . . . 'levelq') >
names and optionally recodes the values for design factors, block factors, or derived factors. If you
rename and recode a factor, the type and length of the new variable are determined by whether you use
the CVALS= option (the new variable is a character variable with length equal to the longest string) or
the NVALS= option (the new variable is a numeric variable).

Specify one of the following as the variable-specification:

factor-name
names the design factors to be recoded by the CVALS= or NVALS= option.

BLOCKNAME=block-name
gives a new name (block-name) for the block factor and optionally recodes its values. If the
design uses blocking, the output data set automatically contains a block variable named Block,
for which the default values are 1; 2; : : : ; b for a design that has b blocks. You can rename the
block variable and optionally recode the block levels from the default levels to levels that are
appropriate for your situation.

For example, for a design arranged in four blocks, suppose that the block variable is the day of
the week (Day) and that the four block levels of character type are Mon, Tue, Wed, and Thu. You
can use the following statement to rename the block variable, recode the block levels, and save
the design in a SAS data set named Recode:

output out=recode blockname=Day cvals=('Mon''Tue''Wed''Thu');

[design-factors]= derived-factor
creates derived factors that are based on the joint values of a set of the design factors, where
design-factors names factors that are currently in the design and derived-factor names the
new derived factor. The design-factors are combined to create the new derived factor. The
derived-factor must not be used in the design.

Each distinct combination of levels of the design factors corresponds to a single level for the
derived factor. Thus, when you create a derived factor from k design factors, each with q levels,
the derived factor has qk levels. Derived factors are useful when you create mixed-level designs;
see Example 8.8. For more information about how the levels of design factors are mapped into
levels of the derived factor, see the section “Structure of General Factorial Designs” on page 641.

If you create a derived factor but do not use the NVALS= or CVALS= option to assign levels to
the derived factor, the FACTEX procedure assigns the values 0; 1; : : : ; qk � 1, where the derived
factor is created from k design factors, each with q levels. In general, the CVALS= or NVALS=
list for a derived factor must contain qk values.

The following statement is an example of creating a derived factor and then renaming the levels
of the factor:

638 F Chapter 8: The FACTEX Procedure

output out=new [A1 A2]=A cvals=('A' 'B' 'C' 'D');

This statement converts two 2-level factors (A1 and A2) into one 4-level factor (A), which has the
levels A, B, C, and D.

You can also specify one of the following options after the variable-specification:

NVALS=(level1 level2 . . . levelq)
lists new numeric levels for the design factors and maps level1 to the lowest level for the factor,
level2 to the next lowest level, and so on.

CVALS=('level1' 'level2 ' . . . 'levelq')
lists new character levels for the design factors and maps 'level1' to the lowest level for the factor,
'level2 ' to the next lowest level, and so on. Each string can be up to 40 characters long. The
length of the new variable is equal to the longest string.

By default, the output data set contains a variable for each factor in the design. These variables are
coded with standard values, as follows:

� For factors that have two levels (q = 2), the values are –1 and +1.

� For factors that have three levels (q = 3), the values are –1, 0, and +1.

� For factors with q levels (q > 3), the values are 0; 1; 2; : : : ; q � 1.

You can recode the levels of the factor from the standard levels to levels that are appropriate for your
situation. For example, suppose you want to recode a three-level factorial design from the standard
levels –1, 0, and +1 to the actual levels. Suppose the factors are pressure (Pressure) with character
levels, agitation rate (Rate) with numeric levels, and temperature (Temperature) with numeric levels.
You can use the following statement to recode the factor levels and save the design in a SAS data set
named Recode:

output out=recode Pressure cvals=('low' 'medium' 'high')
Rate nvals=(20 40 60)
Temperature cvals=(100 150 200);

For more information about recoding a factor, see the section “Factor Variable Characteristics in the
Output Data Set” on page 648.

DESIGNREP=c | SAS-data-set
replicates the entire design. Specify one of the following values:

c replicates the design c times, where c is an integer.

SAS-data-set replicates the design once for each point in the SAS-data-set . The OUT= data set
contains the variables in the SAS-data-set in addition to the design variables. In
mathematical notation, the OUT= data set is the direct product of the SAS-data-set
and the design. If the design is a and the SAS-data-set is b, then the OUT= data
set is b˝ a, where˝ denotes the direct product.

For more information, see the section “Replication” on page 650. For illustrations of the difference
between the DESIGNREP= and POINTREP= options, see Example 8.6 and Example 8.7.

SIZE Statement F 639

POINTREP=p | SAS-data-set
replicates each point of the design. Specify one of the following values:

p replicates each design point p times, where p is an integer.

SAS-data-set replicates the SAS-data-set once for each point in the design. The OUT= data set
contains the variables in the SAS-data-set in addition to the design variables. In
mathematical notation, the OUT= data set is the direct product of the design and
the SAS-data-set . If the design is a and the SAS-data-set is b, then the OUT= data
set is a˝ b, where˝ denotes the direct product.

For more information, see the section “Replication” on page 650. For illustrations of the difference
between the POINTREP= and DESIGNREP= options, see Example 8.6 and Example 8.7.

RANDOMIZE < (u) > < NOVALRAN >
randomizes the design. You can specify the following options:

(u)
specifies an integer to use as a seed to start the pseudorandom number generator for randomizing
the design. The value of u must be enclosed in parentheses and be specified as the first option
after the keyword RANDOMIZE. If you do not specify u or if you specify a value less than or
equal to 0, the seed is generated from reading the time of day from the computer’s clock.

NOVALRAN
prevents the randomization of theoretical factor levels to actual levels. The randomization of run
order is still performed.

For more information, see the section “Randomization” on page 649.

SIZE Statement
SIZE size-specification ;

The SIZE statement specifies the size of the design, which is the number of runs in the design. The SIZE
statement is required for designs of less than a full replicate (for example, fractional factorial designs). By
default, the design consists of one full replication of all possible combinations of the factors.

You can specify one, and only one, of the following size-specifications (the simplest explicit size-
specifications are DESIGN=n to specify the number of runs (n) in the design and FRACTION=h to specify
1=h):

DESIGN=n
specifies the actual number of runs in the design. The number of runs must be a power of the number
of levels q for the factors in the design. (See the NLEV= option.) If the last FACTORS statement does
not contain the NLEV= option, then q = 2 by default, and as a result, n must be a power of 2. For an
example, see Example 8.1.

640 F Chapter 8: The FACTEX Procedure

FRACTION=h
specifies the fraction of one full replication of all possible combinations of the factors. For example,
FRACTION=2 specifies a half-fraction, FRACTION=4 specifies a quarter-fraction, and so on. In
general, FRACTION=h specifies a design with 1=h of the runs in a full replicate. If the design has f
factors, each with q levels, then the size of the design is qf =h. If you use FRACTION=h, h must be a
power of q. See Example 8.4.

NRUNFACS=m
specifies the number of run-indexing factors in the design. The design contains one run for each
possible combination of the levels of the run-indexing factors. Run-indexing factors are the first m
factors for a design in qm runs. All possible combinations of the levels of the run-indexing factors
occur in the design. As a result, if each factor has q levels, the number of runs in the design is qm. For
more information about run-indexing factors, see the sections “Types of Factors” on page 646 and
“Structure of General Factorial Designs” on page 641.

DESIGN=MINIMUM

FRACTION=MAXIMUM

NRUNFACS=MINIMUM
constructs a design that has the minimum number of runs (no larger than one full replicate) given all of
the other characteristics of the design. In other words, the design size is optimized. You cannot specify
this option if you specify NBLKFACS=MAXIMUM (or any of its aliases, NBLOCKS=MAXIMUM
or SIZE=MINIMUM) in the BLOCKS statement.

The three explicit size-specifications (DESIGN=n, FRACTION=h, and NRUNFRACS=m) are related to each
other, as demonstrated by the following example. Suppose you want to construct a design for 11 two-level
factors in 128 runs. Since 128 D 211=16 D 27, the three equivalent size specifications for this design are as
follows:

size design=128;
size fraction=16;
size nrunfacs=7;

UNITEFFECT Statement
UNITEFFECT unit-effect / < WHOLE=(whole-unit-effects) > < SUB=(subunit-effects) > ;

You use the UNITEFFECT statement to specify constraints on how the factor levels can change across the
runs of the experiment. Such constraints are known as randomization restrictions. UNITEFFECT statements
are used in conjunction with a UNITS= option in the BLOCKS statement, which defines unit factors that
index the runs of the experiment.

You must specify a unit-effect , which is an interaction between unit-factors that are specified in the UNITS=
option in the BLOCKS statement. Specify the unit-effect as follows:

unit-factor * . . . * unit-factor

The unit-effect defines a partition of the runs on which to apply whole-unit and subunit effects of the factors
that are named in the FACTORS statement.

In addition, you can specify the following options after a slash (/):

Details: FACTEX Procedure F 641

WHOLE=whole-unit-effects
typically defines a necessary feature of how the experiment must be designed, and are thus known as
“design constraints.” You must enclose the whole-unit-effects in parentheses.

SUB=subunit-effects
indicates which unit mean contrasts will be used to compute the subunit-effects and which random
error terms will be used to test them. Thus, the subunit-effects are known as “model constraints.” You
must enclose the subunit-effects in parentheses.

For more information, see the section “Specifying Effects in the MODEL Statement” on page 647.

Suppose you have specified units in the BLOCKS statement as follows:

blocks units=(WholePlot=4);

Then the following statement illustrates how to specify unit effects that correspond to these units:

uniteffect WholePlot / whole=(x1-x3) sub=(x4-x6);

For more information about how to use the UNITS= option and the UNITEFFECT statement to construct
split-plot designs, see the section “Split-Plot Designs” on page 654.

Details: FACTEX Procedure

Theory of Orthogonal Designs

Overview

This section provides the mathematical and statistical background for designs that are constructed by the
FACTEX procedure; it also outlines the search algorithm that is used to find suitable construction rules. The
material in this section is general and theoretical; you do not need to read this section in order to use the
procedure for constructing most common experimental designs. On the other hand, you might want to read
this section for the following reasons:

� to understand the general structure of designs that can be constructed with the FACTEX procedure

� to construct designs for factors that have more than two levels, especially if interactions are involved

� to improve the search that the procedure uses when it constructs complicated designs that involve many
factors

Structure of General Factorial Designs

The FACTEX procedure constructs a fractional design for q-level factors by using the Galois field (also
called the finite field) of size q. This system has q elements and two operations + and �, which satisfy the
usual mathematical axioms for addition and multiplication. When q is a prime number, finite field arithmetic
is equivalent to regular integer arithmetic modulo q. When q = 2, addition of the two elements of the finite
field is equivalent to multiplication of the integers +1 and –1. Because designs for factors that have levels +1

642 F Chapter 8: The FACTEX Procedure

and –1 are the factorial designs most commonly covered in textbooks, the arithmetic for fractional factorial
designs is usually shown in multiplicative form. However, throughout this section a more general notation is
used.

A design for q-level factors in qm runs constructed by the FACTEX procedure has the following general form:
The first m factors are taken to index the runs in the design, with one run for each different combination of
the levels of these factors, where the levels run from 0 to q – 1. These factors are called run-indexing factors.
For a particular run, the value F of any other factor in the design is derived from the levels P1; P2; : : : ; Pm

of the run-indexing factors by means of confounding rules. These rules are of the general form

F D r1P1 C r2P2 C : : :C rmPm

where all the arithmetic is performed in the finite field of size q. The linear combination on the right-hand side
of the preceding equation is called a generalized interaction between the run-indexing factors. A generalized
interaction is part of the statistical interaction between the factors that have nonzero coefficients in the linear
combination. The factor F is said to be confounded (aliased) with this generalized interaction; two terms are
confounded when the levels they take in the design yield identical partitions of the runs, so that their effects
cannot be distinguished. The confounding rules characterize the design, and the problem of constructing the
design reduces to finding suitable confounding rules.

Suitable Confounding Rules

Design Factors
This section explains how the criteria for a design can be reduced to prescribing that certain generalized
interactions are not to be “confounded with zero.”

Suitable confounding rules depend on the effects you want to estimate with the design. For example, if you
want to estimate the main effects of both A and B, the following rule is inappropriate:

A D B

With this rule, the levels of A and B are the same in every run of the design, and the main effects of the two
factors cannot be estimated independently of one another. Thus, the first criterion for a suitable confounding
rule is that no two effects you want to estimate should be confounded with each other.

Furthermore, an effect you want to estimate should not be confounded with an effect that is nonnegligible.
For example, if the interaction between C and D is nonnegligible and you want to estimate the main effect of
A, the following confounding rule is inappropriate:

A D C CD

(Recall that this section uses a general linear form for confounding rules instead of the usual multiplicative
form. For factors that have levels +1 and –1, the preceding rule is equivalent to A D C �D.)

Another kind of confounding involves confounding with zero. If a factor or a generalized interaction F has
the same value in every run of the design, then F is confounded with zero. Such confounding is denoted as

0 D F

Theory of Orthogonal Designs F 643

Interactions can be estimated by the design if and only if they are not confounded with zero. Consequently,
another criterion for a suitable confounding rule is that no effect that you want to estimate can be confounded
with zero. The confounding rule for two main effects is

A D B

This rule can be written as a generalized interaction confounded with zero:

0 D �AC B

The right-hand side of the preceding equation is part of the interaction between A and B. Thus, for any
two effects to be unconfounded, it is equivalent to prescribe that no part of their generalized interaction be
confounded with zero.

It is not enough to make sure that only the confounding rules themselves satisfy these restrictions. The
consequences of the confounding rules must also satisfy the restrictions. For example, suppose you want to
make sure that main effects are not confounded with two-factor interactions and suppose that the confounding
rule for factor E is

E D AC B C C CD

Then the following rule cannot be used for factor F:

F D AC B C C

Even though the rule for F does not confound F with a two-factor interaction, this rule forces a generalized
interaction between E and F to be aliased with the main effect of D, because

E � F D .AC B C C CD/ � .AC B C C/ D D

Block Factors
If your design involves blocks, additional confounding criteria need to be considered. Blocks are introduced
into designs by means of block pseudofactors. (For more information, see the section “Types of Factors” on
page 646.) A design for q-level factors in qs blocks contains s block pseudofactors. Denoting the levels
of these factors for any particular run by B1; B2; : : : ; Bs , the index of the block in which the run occurs is
determined by

B1 C qB2 C q
2B3 C : : :C q

s�1Bs

For each block to occur in the design, every possible combination of block pseudofactors must occur. This
can happen only if all main effects and interactions between the block factors are estimable, which leads
to yet another criterion for the confounding rules. Moreover, the effects you want to estimate cannot be
confounded with blocks. In general, the following restrictions exist:

� No generalized block pseudofactors can be confounded with zero.

� No generalized interactions between block pseudofactors and effects you want to estimate can be
confounded with zero.

644 F Chapter 8: The FACTEX Procedure

General Criteria
The criteria for an orthogonally confounded qk design reduce to requiring that no generalized interactions in
a certain set M can be confounded with zero. (For a definition of generalized interaction, see the section
“Structure of General Factorial Designs” on page 641.) This section presents the general definition of M.
First, define the following three sets:

E the set of effects that you want to estimate

N the set of effects that you do not want to estimate but that have unknown nonzero
magnitudes (referred to as nonnegligible effects)

B the set of all generalized interactions between block pseudofactors

Furthermore, for any two sets of effects A and B, denote by A � B the set of all generalized interactions
between the effects in A and the effects in B.

Then the general rules for creating the set of effects M that are not to be confounded with zero are as follows:

� Put E in M. This ensures that all effects in E are estimable.

� Put E � E in M. This ensures that all pairs of effects in E are not confounded with each other.

� Put E �N in M. This ensures that effects in E are not confounded with effects in N .

� Put B in M. This ensures that all qs blocks occur in the design.

� Put E � B in M. This ensures that effects in E are not confounded with blocks.

Searching for Confounding Rules

The goal in constructing a design, then, is to find confounding rules that do not confound with zero any of
the effects in the set M defined previously. This section describes the sequential search that the FACTEX
procedure performs to accomplish this goal.

First, construct the set C1 of candidates for the first confounding rule, taking into account the set M of
effects not to be confounded with zero. If C1 is empty, then no design is possible; otherwise, choose one of
the candidates r1 2 C1 for the first confounding rule and construct the set C2 of candidates for the second
confounding rule, taking both M and r1 into account. If C2 is empty, choose another candidate from C1;
otherwise, choose one of the candidates rules r2 2 C2 and go on to the third rule. The search continues either
until it succeeds in finding a rule for every factor that is not a run-indexing factor or until the search fails
because the set C1 is exhausted.

The algorithm used by the FACTEX procedure to select confounding rules is essentially a depth-first tree
search. Imagine a tree structure in which the branches connected to the root node correspond to the candidates
C1. Traversing one of these branches corresponds to choosing the corresponding rule r1 from C1. The
branches attached to the node at the next level correspond to the candidates for the second rule if r1 is
specified. In general, each node at level i of the tree corresponds to a set of feasible choices for rules
r1; : : : ; ri , and the rest of the tree above this node corresponds to the set of all possible feasible choices for
the rest of the rules.

Theory of Orthogonal Designs F 645

Speeding Up the Search

For designs that contain many factors or blocks, the tree of candidate confounding rules can be very large and
the search can take a very long time. In these cases, the FACTEX procedure spends a lot of time exploring
sets of rules that are essentially the same and that all result in failure. A technique for pruning the search
tree (Figure 8.7) is as follows. Suppose that for some selection ri for rule i, all the branches for the next
rule eventually result in failure. Then any other selection r 0i is immediately declared a failure if the resulting
number of candidates is the same as for the failed rule ri . The search goes on to the next selection for rule i.

This method of pruning is not perfect; it might prune a branch of the search tree that would have resulted in a
success. In mathematical terms, candidate sets Ci are not necessarily isomorphic because they have the same
size. You can use the NOCHECK option in the PROC FACTEX statement to turn off the pruning. When the
NOCHECK option is specified, the FACTEX procedure searches the entire tree of feasible confounding rules
and will find a design if one exists and given enough time. The default value for the TIME= option in the
PROC FACTEX statement limits the search time to one minute.

Figure 8.7 Search Tree

On the other hand, the NOCHECK option is rarely needed to produce a design that has a particular resolution.
For example, consider all possible blocked and unblocked two-level designs that have minimum resolution
for 20 or fewer factors and 128 or fewer runs. Of the nearly 400 different designs, the NOCHECK option is
required to find a design in only nine cases. In one case (seven factors in 128 runs and blocks of size 2), the
NOCHECK option is actually unable to find a design in the default time of 60 seconds, whereas the default
search has no trouble finding a design.

646 F Chapter 8: The FACTEX Procedure

General Recommendations

Choosing appropriate confounding rules can be difficult, especially if the set M is complicated. Even if a
design is found that satisfies the model specification, it is a good idea to examine the alias structure to make
sure that you understand the alias structure that the confounding rules generate. To do so, use the ALIAS
option in the EXAMINE statement.

For more information about the general mathematical theory of orthogonal factorial designs, see Bose (1947).

Design Details

Types of Factors

The factors of a design are variables that an experimenter can set at several values. In general, experiments
are performed to study the effects of different levels of the factors on the response of interest. For example,
consider an experiment to maximize the percentage of raw material that responds to a chemical reaction. The
factors might include the reaction temperature and the feed rate of the chemicals, whereas the response is the
yield rate. Factors of different types are used in different ways in constructing a design. This section defines
the different types of factors.

Block factors are unavoidable factors that are known to affect the response, but in a relatively uninteresting
way. For example, in the chemical experiment, the technician operating the equipment might have a noticeable
effect on the yield of the process. Although the operator effect might be unavoidable, it is usually not very
interesting. On the other hand, factors whose effects are directly of interest are called design factors. One
goal in designing an experiment is to avoid mixing up (confounding) the effects of the design factors with the
effects of any block factors.

When you construct a design by orthogonal confounding, all factors formally have the same number of levels
q, where q is a prime number or a power of a prime number. Usually, q D 2 and the factor levels are chosen
to represent high and low values.

However, this does not mean, for example, that a design for 2-level factors is restricted to no more than two
blocks. Instead, the values of several 2-level factors can be used to index the values of a single factor that has
more than two levels. For example, the values of three 2-level factors (P1, P2, and P3) can be used to index
the values of an 8-level factor (F), as follows:

P1 P2 P3 F

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

The factors Pi are used only to derive the levels of the factor F; thus, they are called pseudofactors. F
is called a derived factor. In general, k q-level pseudofactors give rise to a single qk-level derived factor.

Design Details F 647

Block factors can be derived factors, and their associated formal factors (the Pi factors) are called block
pseudofactors.

The method for constructing an orthogonally confounded design for q-level factors in qm runs distinguishes
between the first m factors and the remaining factors. Each of the qm different combinations of the first m
factors occurs once in the design in an order similar to the preceding table. For this reason, the first m factors
are called the run-indexing factors.

Table 8.6 summarizes the different types of factors discussed in this section.

Table 8.6 Types of Factors

Block factor Unavoidable factor whose effect is not of direct interest
Block pseudofactor Pseudofactor that is used to derive levels of a block factor
Derived factor Factor whose levels are derived from pseudofactors
Design factor Factor whose effect is of direct interest
Pseudofactor Formal factor combined to derive the levels of a real factor
Run-indexing factors The first m design factors, whose qm combinations index the runs in the design

Specifying Effects in the MODEL Statement

The FACTEX procedure accepts models that contain terms for main effects and interactions. Main effects are
specified by writing variable names by themselves:

A B C

Interactions are specified by joining variable names with asterisks:

A*B B*C A*B*C

In addition, the bar operator (|) simplifies specification for interactions. The @ operator, used in combination
with the bar operator, further simplifies specification of interactions. For example, two ways of writing the
complete set of effects for a model with up to three-factor interactions are as follows:

model estimate=(A B C A*B A*C B*C A*B*C);

model estimate=(A|B|C);

When the bar (|) is used, the right- and left-hand sides become effects and their cross becomes an interaction effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules given by Searle (1971). For
example, A|B|C is evaluated as follows:

A | B | C ! { A | B } | C
! { A B A*B } | C
! A B A*B C A*C B*C A*B*C

You can also specify the maximum number of variables involved in any effect that results from bar evaluation by
specifying the number, preceded by an @ sign, at the end of the bar effect. For example, the specification A|B|C@2
results in only those effects that contain two or fewer factors. In this case, the effects A, B, A*B, C, A*C, and B*C are
generated.

648 F Chapter 8: The FACTEX Procedure

Factor Variable Characteristics in the Output Data Set

When you use the OUTPUT statement to save a design in a data set and you rename and recode a factor, the type and
length of the new variable are determined by whether you use the NVALS= options or the CVALS= option. A factor
variable whose values are coded by using the NVALS= specification is of numeric type. A factor variable whose values
are coded by using the CVALS= option is of character type, and the length of the variable is set to the length of the
longest character string; shorter strings are padded with trailing blanks.

For example, consider the following specifications:

cvals=('String 1' 'A longer string')
cvals=('String 1' 'String 2')

The first value in the first CVALS= specification is padded with seven trailing blanks. One consequence is that it no
longer matches the 'String 1' of the second specification. To match two such values (for example, when you merge two
designs), use the TRIM function in the DATA step (see SAS Functions and CALL Routines: Reference).

Statistical Details

Resolution

The resolution (r) of a design indicates which effects can be estimated free of other effects. The resolution of a design
is generally defined as the smallest order1 of the interactions that are confounded with zero. Since having an effect of
order nCm confounded with zero is equivalent to having an effect of order n confounded with an effect of order m, the
resolution can be interpreted as follows:

� If r is odd, then effects of order e D .r � 1/=2 or less can be estimated free of each other. However, at least some
of the effects of order e are confounded with interactions of order e + 1. A design of odd resolution is appropriate
when effects of interest are those of order e or less, and those of order e + 1 or higher are all negligible.

� If r is even, then effects of order e D .r � 2/=2 or less can be estimated free of each other and are also free
of interactions of order e + 1. A design of even resolution is appropriate when effects of order e or less are of
interest, effects of order e + 1 are not negligible, and effects of order e + 2 or higher are negligible. If the design
uses blocking, interactions of order e + 1 or higher might be confounded with blocks.

In particular, for resolution 5 designs, all main effects and two-factor interactions can be estimated free of each other.
For resolution 4 designs, all main effects can be estimated free of each other and free of two-factor interactions, but
some two-factor interactions are confounded with each other or with blocks (or with both). For resolution 3 designs, all
main effects can be estimated free of each other, but some of them are confounded with two-factor interactions.

In general, higher resolutions require larger designs. Resolution 3 designs are popular because they handle relatively
many factors in a minimal number of runs. However, they offer no protection against interactions. If resources are
available, you should use a resolution 5 design so that all main effects and two-factor interactions are independently
estimable. If a resolution 5 design is too large, you should use a design of resolution 4, which ensures estimability of
main effects free of any two-factor interactions. In this case, if data from the initial design reveal significant effects
associated with confounded two-factor interactions, further experiments can be run to distinguish between effects that
are confounded with each other in the design. See Example 8.2.

1The order of an effect is the number of factors involved in it. For example, main effects have order one, two-factor interactions
have order two, and so on.

Statistical Details F 649

Many references on fractional factorial designs use roman numerals to denote resolution of a design: III, IV, V, and so
on. A common notation for an orthogonally confounded design of resolution r for k q-level factors in qk�p runs is

qk�p
r

For example, 25�1
V denotes a design for five 2-level factors in 16 runs that permits estimation of all main effects and

two-factor interactions. This chapter uses arabic numerals for resolution because they correspond directly to the value
you can specify in the RESOLUTION= option in the MODEL statement.

Randomization

In many experiments, proper randomization is crucial to the validity of the conclusions. Randomization neutralizes the
effects of systematic biases that might be involved in implementing the design and provides a basis for the assumptions
underlying the analysis. For a discussion, see Kempthorne (1975).

The way in which randomization is handled depends on whether the design involves blocking:

� For designs that do not have block factors, proper randomization consists of randomly permuting the overall
order of the runs and randomly assigning the actual levels of each factor to the theoretical levels it has for the
purpose of constructing the design.

� For designs that have block factors, proper randomization calls for first performing separate random permutations
for the runs within each block, and then randomly permuting the order in which the blocks are run.

For example, suppose you generate a full factorial design for three 2-level factors A, B, and C, in eight runs. Randomiz-
ing this design involves the following steps:

1. Randomly permute the order of the runs:

Runs: f1; 2; 3; 4; 5; 6; 7; 8g ! f3; 8; 1; 2; 4; 7; 6; 5g

2. Randomly assign the actual levels to the theoretical levels for each factor:

Factor A levels: f0; 1g ! f1;�1g

Factor B levels: f0; 1g ! f1;�1g

Factor C levels: f0; 1g ! f�1; 1g

Thus, the effect of the randomization is to transform the original design, as follows:

Run A B C

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

�!

Run A B C

3 1 –1 –1
8 –1 –1 1
1 1 1 –1
2 1 1 1
4 1 –1 1
7 –1 –1 –1
6 –1 1 1
5 –1 1 –1

650 F Chapter 8: The FACTEX Procedure

If the original design is in two blocks, then the first step is replaced with the following two steps:

1. Randomly permute the order of the runs within each block:

Block 1 runs: f1; 2; 3; 4g ! f4; 1; 2; 3g

Block 2 runs: f5; 6; 7; 8g ! f8; 7; 6; 5g

2. Randomly permute the order of the blocks:

Block levels: f1; 2g ! f2; 1g

The resulting transformation is shown in the following:

Run Block A B C

1 1 0 0 0
2 1 0 1 1
3 1 1 0 1
4 1 1 1 0
5 2 0 0 1
6 2 0 1 0
7 2 1 0 0
8 2 1 1 1

�!

Run Block A B C

8 2 –1 –1 1
7 2 –1 1 –1
6 2 1 –1 –1
5 2 1 1 1
4 1 –1 –1 –1
1 1 1 1 –1
2 1 1 –1 1
3 1 –1 1 1

If you use the RANDOMIZE option in the OUTPUT statement, the output data set contains a randomized design. In
some cases, it is appropriate to randomize the run order but not the assignment of theoretical factor levels to actual
levels. In these cases, specify both the NOVALRAN and RANDOMIZE options in the OUTPUT statement.

Replication

In quality improvement applications, it is often important to analyze both the mean response of a process and the
variability around the mean. To study variability with an experimental design, you must take several measurements of
the response for each different combination of the factors of interest; that is, you must replicate the design runs.

Replicating a Fixed Number of Times
A simple method of replication is to take a specified number of measurements for each combination of factor levels in
the basic design. You can replicate runs in the design by specifying numbers for the POINTREP= and DESIGNREP=
options in the OUTPUT statement. For example, the following code constructs a full 22 design and uses both of these
options to replicate the design three times:

proc factex;
factors A B;
output out=one pointrep =3;

run;
output out=two designrep=3;

run;

The output data sets One and Two have the same 12 runs, but they are in different orders. In the data set One, the
POINTREP= option causes all three replications of each run to occur together, as shown in Figure 8.8.

Statistical Details F 651

Figure 8.8 Four-Run Design Replicated Using the POINTREP= Option

OBS A B

1 �1 �1

2 �1 �1

3 �1 �1

9=; Three replicates of run 1

4 �1 1

5 �1 1

6 �1 1

9=; Three replicates of run 2

7 1 �1

8 1 �1

9 1 �1

9=; Three replicates of run 3

10 1 1

11 1 1

12 1 1

9=; Three replicates of run 4

On the other hand, in the data set Two, the DESIGNREP= option causes all four runs of the design to occur together
three times, as shown in Figure 8.9.

Figure 8.9 Four-Run Design Replicated Using the DESIGNREP= Option

OBS A B

Replicate 1

8̂̂<̂
:̂
1 �1 �1

2 �1 1

3 1 �1

4 1 1

Replicate 2

8̂̂<̂
:̂
5 �1 �1

6 �1 1

7 1 �1

8 1 1

Replicate 3

8̂̂<̂
:̂

9 �1 �1

10 �1 1

11 1 �1

12 1 1

Replicating with an Outer Array
Another method of design replication considers the range of environmental conditions over which the process should
maintain consistency. This method distinguishes between control factors and noise factors. Control factors are factors
that are under the control of the designer or the process engineer. Noise factors cause the performance of a product
to vary when the nominal values of the control variables are fixed (noise factors are controllable for the purposes
of experimenting with the process). Typical noise factors are variations in the manufacturing environment or the

652 F Chapter 8: The FACTEX Procedure

customer’s environment that are due to temperature or humidity. The object of experimentation is to find the best
settings for the control factors for a variety of settings for the noise factors. In other words, the goal is to develop a
process that runs well in a variety of environments. For further discussion, see Dehnad (1989) and Phadke (1989).

To achieve this goal, a collection of environmental conditions (settings for the noise factors) is determined. This
collection is called the outer array. Each run in the control factor design (inner array) is replicated within each of these
environments. The mean and variance of the process over the outer array are computed for each run in the inner array.
Either the outer array or the inner array might consist of all possible different settings for the associated factors, or they
might be fractions of all possible settings.

You can replicate designs in this way by specifying SAS-data-set names for the POINTREP= and DESIGNREP=
options in the OUTPUT statement. If you construct a design for your control factors and you want to run a noise factor
design for each run in the control factor design, specify the SAS-data-set that holds the noise factor design (that is, the
outer array) in the POINTREP= option in the OUTPUT statement. See Example 8.14.

Confounding Rules

Confounding rules determine the values of factors in terms of the values of the run-indexing factors for a design. (For a
discussion of run-indexing factors, see “Types of Factors” on page 646.) The FACTEX procedure uses these rules to
construct designs. The confounding rules also determine the alias structure of the design. To display the confounding
rules for a design, use the CONFOUNDING option in the EXAMINE statement.

For 2-level factors, the rules are displayed in a multiplicative notation that uses the default values of –1 and +1 for the
factors. For example, the following confounding rule means that the level of factor X8 is derived as the product of the
levels of factors X1 through X7 for each run in the design:

X8 = X1*X2*X3*X4*X5*X6*X7

X8 always has a value of –1 or +1 because these are the values of X1 through X7. For factors with q > 2 levels,
confounding rules are printed in an additive notation and the arithmetic is performed in the Galois field of size q. For
example, in a design for 3-level factors, the following confounding rule means that the level of factor F is computed by
adding the levels of B and D and two times the levels of C and E, all modulo 3:

F = B + (2*C) + D + (2*E)

Note that if q is not a prime number, Galois field arithmetic is not equivalent to arithmetic modulo q.

Blocks are introduced into designs by using block pseudofactors. The confounding rule for the ith block pseudofactor
has [B i] on the left-hand side.

For more information about how confounding rules are constructed, see the section “Suitable Confounding Rules” on
page 642.

Alias Structure

The alias structure of a design identifies which effects are confounded (aliased) with each other in the design. The alias
structure and confounding rules are different: the confounding rules are used to construct the design, whereas the alias
structure is a result of using a particular set of confounding rules. To display the alias structure for a design, use the
ALIAS option in the EXAMINE statement.

Examining the alias structure is important because aliased effects cannot be estimated separately from each other. When
several effects are listed as equal, the effects are all jointly aliased with one another and form an alias chain or alias
string. For example, the following string is an alias chain that shows the relationship between four 2-factor interactions:

Statistical Details F 653

Temperature*Moisture=HoldPress*Gage=Thickness*Screw=BoostPress*Time

If you want separate estimates of Temperature*Moisture and Thickness*Screw (for example), a design that uses this
alias chain would not be acceptable. Designs of even resolution 2k contain one or more such chains of confounded
k-factor interactions.

By default, the FACTEX procedure displays alias chains that contain effects up to a certain order d , where main effects
are order 1, two-factor interactions are order 2, and so on. You can specify the value of d in the ALIASING option, or
you can use the default that is calculated by the procedure. Alias chains that are confounded with blocks are displayed
with [B] on the left-hand side.

Minimum Aberration

As discussed in the section “Speeding Up the Search” on page 645, the FACTEX procedure uses a tree search algorithm
to find the confounding rules of a design that matches the size and resolution you specify. There might be more than
one solution set of confounding rules, and usually the FACTEX procedure chooses the first one it finds. However,
designs that have the same resolution can still have important differences; to deal with these differences, Fries and
Hunter (1980) introduced the concept of aberration in confounded fractional factorial designs. This section defines
aberration and discusses how to request minimum aberration designs with the FACTEX procedure.

Recall that a design has resolution r if r is the smallest order of the interactions that are confounded with zero. The
idea behind minimum aberration is that the preferred design is a resolution r design that confounds as few r th-order
interactions as possible. Technically, the aberration of a design is the vector k D fk1; k2; : : :g, where ki is the number
of ith-order interactions that are confounded with zero. A design that has aberration k has minimum aberration if k � k0

for any other design that has aberration k0, in the sense that ki < k
0
i for the first i for which ki ¤ k

0
i .

For example, consider the resolution 4 design for seven 2-level factors in 32 runs (27�2
IV) discussed in Example 8.11.

By specifying 5 for the order d for the ALIASING option, you can see how many fourth- and fifth-order interactions
are confounded with zero. By default, the FACTEX procedure constructs a design that confounds two fourth-order
interactions and no fifth-order interactions with zero.

0 = A*B*F*G = C*D*E*G

Thus, part of the aberration for this design is

fk3; k4; k5; : : :g D f0; 2; 0; : : :g

On the other hand, the MINABS option constructs a design that confounds only one fourth-order interaction and two
fifth-order interactions with zero, as follows:

0 = C*D*E*F = A*B*C*F*G = A*B*D*E*G

Thus, part of the aberration for this design is

fk03; k
0
4; k
0
5; : : :g D f0; 1; 2; : : :g

Because the two aberrations first differ for k4 and k04 and because k04 < k4, the aberration for the second design is less
than the aberration for the first design.

The definition of aberration requires evaluating the number of ith-order interactions that are confounded with zero for
all i � k, where k is the number of factors. Because there are qk generalized interactions between k q-level factors,
this evaluation can be prohibitive when there are many factors. Moreover, it is unnecessary if you are interested only

654 F Chapter 8: The FACTEX Procedure

in small-order interactions, as is usually the case. Therefore, when you specify the MINABS option, by default, the
FACTEX procedure evaluates the aberration only up to order d , where d is the same as the default maximum order
for listing the aliasing (see the specifications for the EXAMINE statement in the section “EXAMINE Statement” on
page 632). You can set d to any level by specifying (d) as the first argument after the MINABS option.

The discussion so far has dealt only with fractional unblocked designs, but one more point to consider is the definition
of aberration for block designs. Define a vector, b D b1; b2; : : :, similar to the aberration vector k, except that bi is the
number of ith-order interactions that are confounded with blocks. A block design with k and b has minimum aberration
if the following are true:

� k is minimum

� among all designs with minimum k, b is minimum

MaxClear Designs

As discussed in the section “Alias Structure” on page 652, the alias structure for a factorial design can tell you important
information about which effects are confounded and hence cannot be estimated separately from one another. In some
cases, you cannot avoid the fact that some potentially active effects are aliased; for example, in resolution 4 designs,
some two-factor interactions are aliased with each other and hence cannot be jointly estimated. In this case, you might
want a design that has as many two-factor interactions as possible unaliased with any other interaction—that is, as many
clear two-factor interactions as possible. This is known as the MaxClear design, and you can use the MAXCLEAR
option in the MODEL statement to request it.

To explore how well a particular design performs on the MaxClear criterion, you can use the ALIASING option in the
EXAMINE statement to examine the alias structure. Clear interactions are interactions that are displayed by themselves,
with no other interactions in their alias chain. Alternatively, the SUMMARY option in the EXAMINE statement
displays the total number of interactions up to a certain order d , how many of those are unaliased with interactions of
lower order and are thus in a sense estimable, and how many are unaliased with any interactions of order d or lower and
are thus clear.

Obviously, whether an interaction is clear depends on what other effects are considered to be potentially of interest.
For a particular design, the default order d for considering interaction clarity is the same as the default order d of
interactions that are included in the alias structure. As with the alias structure, you can specify an alternative value of d
in the MAXCLEAR option in the MODEL statement or in the SUMMARY option in the EXAMINE statement.

Split-Plot Designs

As discussed in the section “Structure of General Factorial Designs” on page 641, for a design that has q-level factors
in qm runs, the FACTEX procedure usually treats the first m factors of the design as the run-indexing factors, and
computes the levels of all other factors as linear combinations of these over the Galois field of order q. However,
when you restrict the design’s randomization by using the BLOCKS UNITS= option and UNITEFFECT statement to
specify unit-factors and unit-effects, PROC FACTEX instead computes the levels of all factors (including the first m) in
terms of underlying plot-indexing pseudofactors that are distinct from the factors named in the FACTORS statement.
These plot-indexing pseudofactors are denoted [i], for i = 1, . . . , m, and they are associated with unit-factors as follows.
Suppose the BLOCK UNIT= specification has the form

blocks units=(Stage1=n1 Stage2=n2 : : :);

where n1 D q
k1 , n2 D q

k2 , . . . Then the first unit factor, Stage1, is identified with all possible interactions between
the first k1 plot-indexing pseudofactors, the second with the next k2 pseudofactors, and so on. If you save a split-plot
design to a data set by using the OUTPUT statement, then the plot-indexing pseudofactors are also included in the data
set with names _1_, _2_, . . . , up to the base-q logarithm of the number of runs.

The whole-plot and subplot constraints that are specified in the UNITEFFECT statement define the relation between
the plot-indexing pseudofactors that correspond to the specified unit-effect and the factor effects that are specified in the
WHOLE= and SUB= options. In particular, with a BLOCK UNIT= specification of the previous form, a UNITEFFECT

Summary of Designs F 655

statement of the following form means that the Stage-1-effects should be aliased only with interactions between the
first k1 plot-indexing pseudofactors:

uniteffect Stage1 / whole=(Stage-1-effects);

In contrast, a UNITEFFECT statement of the following form means that the Stage-2-effects should not be aliased with
interactions between the first k1 C k2 plot-indexing pseudofactors:

uniteffect Stage1*Stage2 / sub=(Stage-2-effects);

Summary of Designs
Table 8.7 summarizes basic design types that you can construct with the FACTEX procedure by providing example
code for each type.

Table 8.7 Basic Designs Constructed by the FACTEX Procedure

Design Type Example Statements

A full factorial design in three factors,
each at two levels coded as –1 and +1.

proc factex;
factors Pressure Temperature Time;
examine design;

run;

A full factorial design in three factors,
each at three levels coded as –1, 0, and
+1.

proc factex;
factors Pressure Temperature Time / nlev= 3;
examine design;

run;

A full factorial design in three factors,
each at two levels. The entire design
is replicated twice, and the design with
recoded factor levels is saved in a SAS
data set.

proc factex;
factors Pressure Temperature Time;
output out= SavedDesign designrep= 2

Pressure cvals=('low' 'high')
Temperature nvals=(200 300)
Time nvals=(10 20);

run;

A full factorial design in three factors,
each at two levels coded as –1 and +1.
Each run in the design is replicated three
times, and the replicated design is ran-
domized and saved in a SAS data set.

proc factex;
factors Pressure Temperature Time;
output out= SavedDesign

pointrep= 3 randomize;
run;

656 F Chapter 8: The FACTEX Procedure

Table 8.7 continued

Design Type Example Statements

A full factorial design in three control
factors, each at two levels coded as –1
and +1. A noise factor design (outer
array) is read from a SAS data set and
replicated for each run in the control fac-
tor design (inner array), and the product
design is saved in a SAS data set.

proc factex;
factors+ Pressure Temperature Time;

output out =+ SavedDesign
pointrep=+ OutArray;

run;

A full factorial blocked design in three
factors, each at two levels coded as –
1 and +1. The design is arranged in
two blocks and saved in a SAS data set.
By default, the block variable is named
BLOCK and the two block levels are
numbered 1 and 2.

proc factex;
factors Pressure Temperature Time;
blocks nblocks= 2;
output out= SavedDesign;

run;

A full factorial blocked design in three
factors, each at two levels coded as –1
and +1. Each block contains four runs;
the block variable is renamed and the
block levels of character type are re-
coded. The design is saved in a SAS
data set.

proc factex;
factors Pressure Temperature Time;
blocks size= 4;
output out= SavedDesign

blockname= Machine cvals=('A' 'B');
run;

A fractional factorial design of resolu-
tion 4 in four factors, each at two levels
coded as –1 and +1. The size of the de-
sign is eight runs.

proc factex;
factors Pressure Temperature Time Catalyst;
size design= 8;
model resolution= 4;
examine design;

run;

A one-half fraction of a factorial design
in four factors, each at two levels coded
as –1 and +1. The design is of maximum
resolution. The design points, the alias
structure, and the confounding rules are
listed.

proc factex;
factors Pressure Temperature Time Catalyst;
size fraction= 2;
model resolution=maximum;
examine design aliasing confounding;

run;

ODS Tables F 657

Table 8.7 continued

Design Type Example Statements

A one-quarter fraction of a factorial de-
sign in six factors, each at two levels
coded as –1 and +1. Main effects are
estimated, and some two-factor interac-
tions are considered nonnegligible. The
design is saved in a SAS data set.

proc factex;
factors x1-x6;
size fraction= 4;
model estimate=(x1 x2 x3 x4 x5 x6)

nonneg =(x1*x5 x1*x6 x5*x6);
output out = SavedDesign;

run;

Output
By default, the FACTEX procedure does not display any output. For each design that it constructs, the procedure
displays a message in the SAS log that provides the following information:

� the number of runs in the design

� the number of blocks and the block size, if appropriate

� the maximum resolution of the design

The DESIGN option in the EXAMINE statement displays the coded runs in the design that uses standard values, as
described in the section “OUTPUT Statement” on page 636. The CONFOUNDING option in the EXAMINE statement
displays the confounding rules that are used to construct the design. The ALIAS option in the EXAMINE statement
displays the aliasing structure for the design.

When you specify the OUTPUT statement, the FACTEX procedure also creates output data sets. Because PROC
FACTEX is interactive, you can use many OUTPUT statements in a single run of the FACTEX procedure to produce
many output data sets if you separate them with RUN statements.

ODS Tables
The following table summarizes the ODS tables that you can request with the PROC FACTEX statement.

Table 8.8 ODS Tables Produced in PROC FACTEX

ODS Table Name Description Statement Option

DesignPoints Design points EXAMINE DESIGN
FactorRules Treatment factor confounding rules EXAMINE CONFOUNDING
BlockRules Block factor confounding rules EXAMINE CONFOUNDING
Aliasing Alias structure EXAMINE ALIASING

658 F Chapter 8: The FACTEX Procedure

Examples: FACTEX Procedure

Example 8.1: Completely Randomized Design
NOTE: See A Completely Randomized Design in the SAS/QC Sample Library.

An experimenter wants to study the effect of cutting speed (Speed) on the surface finish of a component. He considers
testing the components at five levels of cutting speed (100, 125, 150, 175, and 200) and decides to test five components
at each level.

A single-factor completely randomized design that has five levels and 25 runs is used. The following statements
generate the required design:

proc factex;
factors Speed / nlev=5;
size design=25;
output out=SurfaceExperiment randomize(713)

Speed nvals=(100 125 150 175 200);
run;
proc print data=SurfaceExperiment;
run;

The RANDOMIZE option in the OUTPUT statement randomizes the run order; the random seed (713 here) is optional.
The design, which is saved in the data set SurfaceExperiment, is displayed in Output 8.1.1.

Example 8.2: Resolution 4 Augmented Design F 659

Output 8.1.1 A Completely Randomized Design

Obs Speed

1 200

2 175

3 200

4 125

5 100

6 150

7 175

8 125

9 100

10 100

11 100

12 200

13 125

14 125

15 150

16 175

17 175

18 150

19 175

20 150

21 200

22 125

23 200

24 150

25 100

If you are working through this example on your computer, you might find a different run order in your output because
your computer uses a different seed value for the random number generator. You can specify a seed value in the
RANDOMIZE option.

Example 8.2: Resolution 4 Augmented Design
NOTE: See Resolution IV Augmented Design in the SAS/QC Sample Library.

Box, Hunter, and Hunter (1978) describe an injection molding experiment that involves eight 2-level factors: mold
temperature (Temp), moisture content (Moisture), holding pressure (HoldPress), cavity thickness (Thick), booster
pressure (BoostPress), cycle time (Time), screw speed (Speed), and gate size (Gate).

The design used has 16 runs and is of resolution 4; it is often denoted as 28�4
IV . You can generate this design, shown in

Output 8.2.1, with the following statements:

proc factex;
factors Temp Moisture HoldPress Thick

BoostPress Time Speed Gate;
size design=16;
model resolution=4;
examine design aliasing;

run;

660 F Chapter 8: The FACTEX Procedure

The FACTORS statement lists the factor names. The DESIGN=16 option in the SIZE statement specifies the design
size. The RESOLUTION=4 specifies the resolution of the design. The EXAMINE statement lists points and aliasing.

Output 8.2.1 A 28�4
IV Design

The FACTEX ProcedureThe FACTEX Procedure

Design Points

Experiment
Number Temp Moisture HoldPress Thick BoostPress Time Speed Gate

1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 1 1 1 1 -1

3 -1 -1 1 -1 1 1 -1 1

4 -1 -1 1 1 -1 -1 1 1

5 -1 1 -1 -1 1 -1 1 1

6 -1 1 -1 1 -1 1 -1 1

7 -1 1 1 -1 -1 1 1 -1

8 -1 1 1 1 1 -1 -1 -1

9 1 -1 -1 -1 -1 1 1 1

10 1 -1 -1 1 1 -1 -1 1

11 1 -1 1 -1 1 -1 1 -1

12 1 -1 1 1 -1 1 -1 -1

13 1 1 -1 -1 1 1 -1 -1

14 1 1 -1 1 -1 -1 1 -1

15 1 1 1 -1 -1 -1 -1 1

16 1 1 1 1 1 1 1 1

The alias structure is shown in Output 8.2.2.

Output 8.2.2 Alias Structure for a 28�4
IV Design

Aliasing Structure

Temp

Moisture

HoldPress

Thick

BoostPress

Time

Speed

Gate

Temp*Moisture = HoldPress*Gate = Thick*Speed = BoostPress*Time

Temp*HoldPress = Moisture*Gate = Thick*Time = BoostPress*Speed

Temp*Thick = Moisture*Speed = HoldPress*Time = BoostPress*Gate

Temp*BoostPress = Moisture*Time = HoldPress*Speed = Thick*Gate

Temp*Time = Moisture*BoostPress = HoldPress*Thick = Speed*Gate

Temp*Speed = Moisture*Thick = HoldPress*BoostPress = Time*Gate

Temp*Gate = Moisture*HoldPress = Thick*BoostPress = Time*Speed

Example 8.2: Resolution 4 Augmented Design F 661

Subsequent analysis of the data collected for the design suggests that HoldPress and BoostPress have statistically
significant effects. There also seems to be a significant effect associated with the sum of the aliased two-factor interac-
tions Temp*BoostPress, Moisture*Time, HoldPress*Speed, and Thick*Gate. This chain of confounded interactions is
identified in Output 8.2.2.

A few runs can be added to the design to distinguish between the effects that are caused by these four interactions. You
simply need a design in which these four effects are estimable, regardless of all other main effects and interactions. For
example, the following statements generate a suitable set of runs:

proc factex nocheck;
factors Temp Moisture HoldPress Thick

BoostPress Time Speed Gate;
model estimate=(Temp*BoostPress

Moisture*Time
HoldPress*Speed
Thick*Gate);

size design=min;
examine design aliasing(2);

run;

The DESIGN=MIN option directs PROC FACTEX to search for the smallest design that allows all four interactions to
be estimated. Eight runs are required: see Output 8.2.3.

Output 8.2.3 Additional Runs to Resolve Ambiguities

The FACTEX ProcedureThe FACTEX Procedure

Design Points

Experiment
Number Temp Moisture HoldPress Thick BoostPress Time Speed Gate

1 -1 -1 -1 -1 -1 -1 -1 1

2 -1 -1 1 1 1 1 1 -1

3 -1 1 -1 1 1 1 1 -1

4 -1 1 1 -1 -1 -1 -1 1

5 1 -1 -1 1 1 1 1 1

6 1 -1 1 -1 -1 -1 -1 -1

7 1 1 -1 -1 -1 -1 -1 -1

8 1 1 1 1 1 1 1 1

Output 8.2.4 shows the alias structure of the additional eight runs. Note that the following alias chain of interest from
the original design is broken:

Temp*BoostPress=Moisture*Time=HoldPress*Speed=Thick*Gate

In this new set of runs, these four interactions are aliased with main effects and with other two-factor interactions, but
they are unaliased with each other. Therefore, when these four runs are added to the original 16 runs, the main effects
of the eight factors plus the four 2-factor interactions that were originally aliased with each other can all be estimated
with the 20 runs.

662 F Chapter 8: The FACTEX Procedure

Output 8.2.4 Alias Structure of the Additional Experiment

Aliasing Structure

0 = Thick*BoostPress = Thick*Time = Thick*Speed = BoostPress*Time = BoostPress*Speed

= Time*Speed

Temp = Thick*Gate = BoostPress*Gate = Time*Gate = Speed*Gate

Moisture = HoldPress*Gate

HoldPress = Moisture*Gate

Thick = BoostPress = Time = Speed = Temp*Gate

Gate = Temp*Thick = Temp*BoostPress = Temp*Time = Temp*Speed = Moisture*HoldPress

Temp*Moisture = HoldPress*Thick = HoldPress*BoostPress = HoldPress*Time = HoldPress*Speed

Temp*HoldPress = Moisture*Thick = Moisture*BoostPress = Moisture*Time = Moisture*Speed

Example 8.3: Factorial Design with Center Points
NOTE: See A Factorial Design with Center Points in the SAS/QC Sample Library.

Factorial designs that involve two levels are the most popular experimental designs. For two-level designs, it is assumed
that the response is close to linear over the range of the factor levels. To check for curvature and to obtain an independent
estimate of error, you can replicate points at the center of a two-level design. Adding center points to the design does
not affect the estimates of factorial effects.

To construct a design that has center points, you first create a data set that has factorial points by using the FACTEX
procedure and then augment it with center points by using a simple DATA step. This example illustrates this technique.

A researcher is studying the effect of three 2-level factors—current (Current), voltage (Voltage), and time (Time)—by
conducting an experiment that uses a complete factorial design. The researcher is interested in studying the overall
curvature over the range of factor levels by adding four center points.

You can construct this design in two stages. First, create the basic 23 design with the following statements:

proc factex;
factors Current Voltage Time;
output out=Factorial

Current nvals=(12 28)
Voltage nvals=(100 200)
Time nvals=(50 60);

run;

Next, create the center points and append to the basic design as follows:

data Center(drop=i);
do i = 1 to 4;

Current = 20;
Voltage = 150;
Time = 55;
output;

end;
data CPDesign;

set Factorial Center;
run;
proc print data=CPDesign;
run;

Example 8.4: Fold-Over Design F 663

The design, which is saved in the data set CPDesign, is displayed in Output 8.3.1. Observations 1 to 8 are the factorial
points, and observations 9 to 12 are the center points.

Output 8.3.1 A 23 Design with Four Center Points

Obs Current Voltage Time

1 12 100 50

2 12 100 60

3 12 200 50

4 12 200 60

5 28 100 50

6 28 100 60

7 28 200 50

8 28 200 60

9 20 150 55

10 20 150 55

11 20 150 55

12 20 150 55

Example 8.4: Fold-Over Design
NOTE: See A Fold-Over Design in the SAS/QC Sample Library.

Folding over a fractional factorial design is a method for breaking the links between aliased effects in a design. Folding
over a design means adding a new fraction that is identical to the original fraction except that the signs of all the factors
are reversed. The new fraction is called a fold-over design. Combining a fold-over design with the original fraction
converts a design of odd resolution r into a design of resolution r + 1. (This is not true if the original design has even
resolution.) For example, folding over a resolution 3 design yields a resolution 4 design. You can use the FACTEX
procedure to construct the original design fraction and a DATA step to generate the fold-over design.

Consider a 1
8

fraction of a 26 factorial design that has factors A, B, C, D, E, and F. The following statements construct a
26�3
III design:

proc factex;
factors A B C D E F;
size fraction=8;
model resolution=3;
examine aliasing;
output out=Original;

run;

title 'Original Design';
proc print data=Original;
run;

The option FRACTION=8 in the SIZE statement specifies a 1
8

fraction of a complete factorial—that is, 8 (= 1
8
26). The

design, which is saved in the data set Original, is displayed in Output 8.4.1.

664 F Chapter 8: The FACTEX Procedure

Output 8.4.1 A 26�3
III Design

Original DesignOriginal Design

Obs A B C D E F

1 -1 -1 -1 -1 1 1

2 -1 -1 1 1 -1 -1

3 -1 1 -1 1 -1 1

4 -1 1 1 -1 1 -1

5 1 -1 -1 1 1 -1

6 1 -1 1 -1 -1 1

7 1 1 -1 -1 -1 -1

8 1 1 1 1 1 1

Because the design is of resolution 3, the alias structure in Output 8.4.2 indicates that all the main effects are confounded
with the two-factor interactions.

Output 8.4.2 Alias Structure for a 26�3
III Design

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A = C*F = D*E

B = C*E = D*F

C = A*F = B*E

D = A*E = B*F

E = A*D = B*C

F = A*C = B*D

A*B = C*D = E*F

To separate the main effects and the two-factor interactions, augment the original design with a 1/8 fraction in which
the signs of all the factors are reversed. The combined design (original design and fold-over design) of resolution 4
breaks the alias links between the main effects and the two-factor interactions. The fold-over design can be created by
using the following DATA step:

data FoldOver;
set Original;
A=-A; B=-B; C=-C;
D=-D; E=-E; F=-F;

run;
title 'Fold-Over Design';
proc print data=FoldOver;
run;

Here, the DATA step creates the fold-over fraction by reversing the signs of the values of the factors in the original
fraction. The fold-over design is displayed in Output 8.4.3.

Example 8.5: Randomized Complete Block Design F 665

Output 8.4.3 A 26�3
III Design with Signs Reversed

Fold-Over DesignFold-Over Design

Obs A B C D E F

1 1 1 1 1 -1 -1

2 1 1 -1 -1 1 1

3 1 -1 1 -1 1 -1

4 1 -1 -1 1 -1 1

5 -1 1 1 -1 -1 1

6 -1 1 -1 1 1 -1

7 -1 -1 1 1 1 1

8 -1 -1 -1 -1 -1 -1

Example 8.5: Randomized Complete Block Design
NOTE: See A Randomized Complete Block Design in the SAS/QC Sample Library.

In a randomized complete block design (RCBD), each level of a “treatment” appears once in each block, and each
block contains all the treatments. The order of treatments is randomized separately for each block. You can use the
FACTEX procedure to create RCBDs.

Suppose you want to construct an RCBD that has six treatments in four blocks. To test each treatment once in each
block, you need 24 experimental units. The following statements construct the randomized complete block design that
is shown in Output 8.5.1:

proc factex;
factors Block / nlev=4;
output out=Blocks Block nvals=(1 2 3 4) randomize(12345);

run;
factors Treatment / nlev=6;
output out=RCBD

designrep=Blocks
randomize(54321)
Treatment cvals=('A' 'B' 'C' 'D' 'E' 'F');

run;
quit;
proc print data=RCBD;
run;

Note that the order of the runs within each block is randomized and that the blocks (1, 2, 3, and 4) are in a random order.

666 F Chapter 8: The FACTEX Procedure

Output 8.5.1 A Randomized Complete Block Design

Obs Block Treatment

1 3 F

2 3 D

3 3 C

4 3 A

5 3 B

6 3 E

7 2 C

8 2 D

9 2 F

10 2 B

11 2 E

12 2 A

13 1 C

14 1 F

15 1 B

16 1 E

17 1 A

18 1 D

19 4 A

20 4 D

21 4 C

22 4 F

23 4 E

24 4 B

Example 8.6: Two-Level Design with Design Replication and Point Replication
NOTE: See A Two-Level Design with Replication in the SAS/QC Sample Library.

You can replicate a design to obtain an independent estimate of experimental error or to estimate effects more precisely.
There are two ways you can replicate a design with the FACTEX procedure: you can replicate the entire design by
using the DESIGNREP= option, or you can replicate each point in the design by using the POINTREP= option. The
following example illustrates the difference.

A process engineer is conducting an experiment to study the shrinkage of an injection-molded plastic component. The
engineer chooses to determine the effect of the following four factors, each at two levels: holding pressure (Pressure),
molding temperature (Temperature), cooling time (Time), and injection velocity (Velocity).

Example 8.6: Two-Level Design with Design Replication and Point Replication F 667

The design used is a half-fraction of a 24 factorial design, denoted as 24�1
IV . The following statements construct the

design:

proc factex;
factors Pressure Temperature Time Velocity;
size fraction=2;
model res=max;
output out=Unreplicated;

run;
proc print data=Unreplicated;
run;

The design, saved in the data set Unreplicated), is shown in Output 8.6.1.

Output 8.6.1 Unreplicated Design

Obs Pressure Temperature Time Velocity

1 -1 -1 -1 -1

2 -1 -1 1 1

3 -1 1 -1 1

4 -1 1 1 -1

5 1 -1 -1 1

6 1 -1 1 -1

7 1 1 -1 -1

8 1 1 1 1

To obtain a more precise estimate of the experimental error, the engineer decides to replicate the entire design three
times. The following statements generate a 24�1

IV design with three replicates in 24 runs:

proc factex;
factors Pressure Temperature Time Velocity;
size fraction=2;
model res=max;
output out=Replicated designrep=3;

run;
proc print data=Replicated;
run;

The design, which is saved in the data set Replicated, is displayed in Output 8.6.2.

668 F Chapter 8: The FACTEX Procedure

Output 8.6.2 Design Replication

Obs Pressure Temperature Time Velocity

1 -1 -1 -1 -1

2 -1 -1 1 1

3 -1 1 -1 1

4 -1 1 1 -1

5 1 -1 -1 1

6 1 -1 1 -1

7 1 1 -1 -1

8 1 1 1 1

9 -1 -1 -1 -1

10 -1 -1 1 1

11 -1 1 -1 1

12 -1 1 1 -1

13 1 -1 -1 1

14 1 -1 1 -1

15 1 1 -1 -1

16 1 1 1 1

17 -1 -1 -1 -1

18 -1 -1 1 1

19 -1 1 -1 1

20 -1 1 1 -1

21 1 -1 -1 1

22 1 -1 1 -1

23 1 1 -1 -1

24 1 1 1 1

The first replicate contains observations 1 to 8, the second replicate contains observations 9 to 16, and the third replicate
contains observations 17 to 24.

Now, instead of replicating the entire design, suppose the engineer decides to replicate each run in the design three
times. The following statements construct a 24�1

IV design in 24 runs with point replication:

proc factex;
factors Pressure Temperature Time Velocity;
size fraction=2;
model res=max;
output out=PointReplicated pointrep=3;

run;
proc print data=PointReplicated;
run;

The design, which is saved in the data set PointReplicated, is displayed in Output 8.6.3. The first design point is
replicated three times (observations 1–3), the second design point is replicated three times (observations 4–6), and so
on.

Example 8.7: Mixed-Level Design Using Design Replication and Point Replication F 669

Output 8.6.3 Point Replication

Obs Pressure Temperature Time Velocity

1 -1 -1 -1 -1

2 -1 -1 -1 -1

3 -1 -1 -1 -1

4 -1 -1 1 1

5 -1 -1 1 1

6 -1 -1 1 1

7 -1 1 -1 1

8 -1 1 -1 1

9 -1 1 -1 1

10 -1 1 1 -1

11 -1 1 1 -1

12 -1 1 1 -1

13 1 -1 -1 1

14 1 -1 -1 1

15 1 -1 -1 1

16 1 -1 1 -1

17 1 -1 1 -1

18 1 -1 1 -1

19 1 1 -1 -1

20 1 1 -1 -1

21 1 1 -1 -1

22 1 1 1 1

23 1 1 1 1

24 1 1 1 1

Note the difference in the arrangement of the designs created by using design replication (Output 8.6.2) and point
replication (Output 8.6.3). In design replication, the original design is replicated a specified number of times; but in
point replication, each run in the original design is replicated a specified number of times. For more information about
design replication, see the section “Replication” on page 650.

Example 8.7: Mixed-Level Design Using Design Replication and Point
Replication

NOTE: See A Mixed-Level Design Using Replication in the SAS/QC Sample Library.

Orthogonal factorial designs are most commonly used at the initial stages of experimentation. At these stages, it is best
to experiment with as few levels of each factor as possible in order to minimize the number of runs required. Thus,
these designs usually involve only two levels of each factor. Occasionally some factors naturally have more than two
levels of interest—different types of seed, for example.

You can create designs for factors that have different numbers of levels simply by taking the crossproduct of component
designs in which the factors all have the same numbers of levels—that is, replicating every run of one design for each
run of the other. (See Example 8.14.) All estimable effects in each component design, in addition to all generalized
interactions between estimable effects in different component designs, are estimable in the crossproduct (Chakravarti
1956, sec. 3).

This example illustrates how you can construct a mixed-level design by using the POINTREP= option or the DESIGN-
REP= option in the OUTPUT statement to take the crossproduct between two designs.

670 F Chapter 8: The FACTEX Procedure

Suppose you want to construct a mixed-level factorial design for two 2-level factors (A and B) and one 3-level factor
(C) with 12 runs. The following SAS statements use design replication to produce a complete 3 � 22 factorial design:

proc factex;
factors A B;
output out=ab;

run;
factors C / nlev=3;
output out=DesignReplicated designrep=ab;

run;
proc print data=DesignReplicated;
run;

Output 8.7.1 lists the mixed-level design that is saved in the data set DesignReplicated.

Output 8.7.1 3 � 22 Mixed-Level Design Using Design Replication

Obs A B C

1 -1 -1 -1

2 -1 -1 0

3 -1 -1 1

4 -1 1 -1

5 -1 1 0

6 -1 1 1

7 1 -1 -1

8 1 -1 0

9 1 -1 1

10 1 1 -1

11 1 1 0

12 1 1 1

You can also create a mixed-level design for the preceding factors by using the point replication feature of the FACTEX
procedure. The following SAS statements use point replication to produce a complete 22 � 3 factorial design:

proc factex;
factors A B;
output out=ab;

run;
factors C / nlev=3;
output out=PointReplicated pointrep=ab;

run;
proc print data=PointReplicated;
run;

Output 8.7.2 lists the mixed-level design that is saved in the data set PointReplicated.

Example 8.8: Mixed-Level Design Using Pseudofactors F 671

Output 8.7.2 22 � 3 Mixed-Level Design Using Point Replication

Obs C A B

1 -1 -1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 0 -1 -1

6 0 -1 1

7 0 1 -1

8 0 1 1

9 1 -1 -1

10 1 -1 1

11 1 1 -1

12 1 1 1

Note the difference between the designs in Output 8.7.1 and Output 8.7.2. In design replication, the mixed-level design
is given by AB ˝ C, whereas for point replication the mixed-level design is given by C ˝ AB, where ˝ denotes the
direct product. In design replication, you can view the DESIGNREP= data set as nested outside the design; in point
replication, you can view the POINTREP= data set as nested inside the design.

Example 8.8: Mixed-Level Design Using Pseudofactors
NOTE: See Mixed-Level Designs Using Pseudofactors in the SAS/QC Sample Library.

If the numbers of levels for the factors of the mixed-level design are all powers of the same prime power q, you can
construct the design by using pseudofactors, where the levels of k q-level pseudofactors are associated with the levels of
a single derived factor that has qk levels. For more information, see Chakravarti (1956, sec. 5) and the section “Types
of Factors” on page 646.

For example, the following statements create a design for one 4-level factor (A) and three 2-level factors (B, C, and D)
in 16 runs (a half replicate):

proc factex;
factors A1 A2 B C D;
model estimate =(B C D A1|A2)

nonnegligible=(B|C|D@2 A1|A2|B A1|A2|C A1|A2|D);
size design=16;
output out=DesignA [A1 A2]=A cvals = ('A' 'B' 'C' 'D');

run;
proc print;

var A B C D;
run;

The levels of two 2-level pseudofactors (A1 and A2) are used to represent the four levels of A. Hence, the three degrees
of freedom associated with A are produced by the main effects of A1 and A2 and their interaction A1*A2, and you can
thus refer to (A1|A2) as the main effect of A.

The MODEL statement specifies that the main effects of all factors are to be estimable and that all the two-factor
interactions between B, C, and D, in addition to the interactions between each of these and (A1|A2), are to be
nonnegligible. As a result, the mixed-level design has resolution 4. The design is saved in the data set DesignA,
combining the levels of the two pseudofactors, A1 and A2, to obtain the levels of the 4-level factor A. The data set
DesignA is listed in Output 8.8.1.

672 F Chapter 8: The FACTEX Procedure

Output 8.8.1 4 � 23 Design of Resolution 4 in 16 Runs

Obs A B C D

1 A -1 -1 1

2 A -1 1 -1

3 A 1 -1 -1

4 A 1 1 1

5 C -1 -1 -1

6 C -1 1 1

7 C 1 -1 1

8 C 1 1 -1

9 B -1 -1 -1

10 B -1 1 1

11 B 1 -1 1

12 B 1 1 -1

13 D -1 -1 1

14 D -1 1 -1

15 D 1 -1 -1

16 D 1 1 1

Example 8.9: Mixed-Level Design by Collapsing Factors
NOTE: See Mixed-Level Design with Collapsing Factors in the SAS/QC Sample Library.

You can construct a mixed-level design by collapsing factors—that is, by replacing a factor that has n levels by a
factor that has m levels, where m < n. Orthogonality is retained in the sense that estimates of different effects are
uncorrelated, although not all estimates have equal variance (Chakravarti 1956, sec. 6). This method has been used by
Addelman (1962) to derive main effects plans for factors that have mixed numbers of levels and by Margolin (1967) to
construct plans that consider two-factor interactions.

You can use the value specification in the NVALS= option in the OUTPUT statement as a convenient tool for collapsing
factors. For example, the following statements create a 27-run design for two 2-level factors (x1 and x2) and two 3-level
factors (x3 and x4) such that all main effects and two-factor interactions are uncorrelated:

proc factex;
factors x1-x4 / nlev = 3;
size design=27;
model r=4;
output out=MixedLevel x1 nvals=(-1 1 -1)

x2 nvals=(-1 1 -1);
run;
proc print data=MixedLevel;
run;

The mixed-level design is a three-quarter fraction with resolution 5 (Margolin 1967, sec. 6). The design is displayed in
Output 8.9.1.

Example 8.10: Design That Uses a Hyper-Graeco-Latin Square F 673

Output 8.9.1 22 � 32 Design of Resolution V in 27 Runs

Obs x1 x2 x3 x4

1 -1 -1 -1 -1

2 -1 -1 0 1

3 -1 -1 1 0

4 -1 1 -1 1

5 -1 1 0 0

6 -1 1 1 -1

7 -1 -1 -1 0

8 -1 -1 0 -1

9 -1 -1 1 1

10 1 -1 -1 1

11 1 -1 0 0

12 1 -1 1 -1

13 1 1 -1 0

14 1 1 0 -1

15 1 1 1 1

16 1 -1 -1 -1

17 1 -1 0 1

18 1 -1 1 0

19 -1 -1 -1 0

20 -1 -1 0 -1

21 -1 -1 1 1

22 -1 1 -1 -1

23 -1 1 0 1

24 -1 1 1 0

25 -1 -1 -1 1

26 -1 -1 0 0

27 -1 -1 1 -1

Example 8.10: Design That Uses a Hyper-Graeco-Latin Square
NOTE: See Hyper-Graeco-Latin Square in the SAS/QC Sample Library.

A q � q Latin square is an arrangement of q symbols, each repeated q times in a square whose sides have length q such
that each symbol appears exactly once in each row and once in each column. Such arrangements are useful as designs
for row-and-column experiments, where it is necessary to balance the effects of two q-level factors simultaneously.

A Graeco-Latin square is actually a pair of Latin squares; when superimposed, each symbol in one square occurs
exactly once with each symbol in the other square. The following is an example of a 5 � 5 Graeco-Latin square, where
Latin letters are used for the symbols of one square and Greek letters are used for the symbols of the other square:

A˛ Bˇ C Dı E�

B Cı D� E˛ Aˇ

C� D˛ Eˇ A Bı

Dˇ E Aı B� C˛

Eı A� B˛ Cˇ D

674 F Chapter 8: The FACTEX Procedure

Whenever q is a power of a prime number, you can construct up to q – 1 squares, each with q symbols that are balanced
over all the other factors. The result is called a hyper-Graeco-Latin square or a complete set of mutually orthogonal
Latin squares. Such arrangements can be useful as designs (Williams 1949), or they can be used to construct other
designs.

When q is a prime power, hyper-Graeco-Latin squares are straightforward to construct with the FACTEX procedure.
This is because a complete set of q – 1 mutually orthogonal q � q Latin squares is equivalent to a resolution 3 design
for q + 1 q-level factors in q2 runs, where two of the factors index rows and columns and each of the remaining factors
indexes the treatments of one of the squares.

For example, the following statements generate a complete set of three mutually orthogonal 4 � 4 Latin squares, with
rows indexed by the factor Row, columns indexed by the factor Column, and the treatment factors in the respective
squares indexed by t1, t2, and t3. The first step is to construct a resolution 3 design for five 4-level factors in 16 runs.

proc factex;
factors Row Column t1-t3 / nlev=4;
size design=16;
model resolution=3;
output out=OrthArray t1 cvals=('A' 'B' 'C' 'D')

t2 cvals=('A' 'B' 'C' 'D')
t3 cvals=('A' 'B' 'C' 'D');

run;

data _null_;
array t{3} $ t1-t3;
array s{4} $ s1-s4; /* Buffer for holding each row */
file print; /* Direct printing to output screen */
do square=1 to 3;

put "Square " square ":";
n = 1;
do r=1 to 4;

do c=1 to 4;
set OrthArray point=n; n=n+1;
s{c}=t{square};

end;
put " " s1-s4;

end;
put;

end;
stop;

run;

In most cases, the form that appears in the output data set OrthArray is the most useful. The form that usually appears
in textbooks is displayed in Output 8.10.1, which can be produced by using a simple DATA step (not shown here).

Example 8.11: Resolution 4 Design with Minimum Aberration F 675

Output 8.10.1 Hyper-Graeco-Latin Square

Square 1 :
 A D B C
 D A C B
 B C A D
 C B D A

Square 2 :
 A D B C
 C B D A
 D A C B
 B C A D

Square 3 :
 A D B C
 B C A D
 C B D A
 D A C B

Example 8.11: Resolution 4 Design with Minimum Aberration
NOTE: See A Res IV Design with Minimum Aberration in the SAS/QC Sample Library.

If a design has resolution 4, then you can simultaneously estimate all main effects and some two-factor interactions.
However, not all resolution 4 designs are equivalent; you might be able to estimate more two-factor interactions with
some than with others. Among all resolution 4 designs, a design that has the maximum number of estimable two-factor
interactions is said to have minimum aberration.

For example, if you use the FACTEX procedure to generate a resolution 4 design for seven 2-level factors in 32 runs,
you can estimate all main effects and 15 of the 21 two-factor interactions by using the design that is created by default.
The following statements create this design and display its alias structure in Output 8.11.1:

proc factex;
factors A B C D E F G;
model resolution=4;
size design=32;
examine aliasing;

run;

676 F Chapter 8: The FACTEX Procedure

Output 8.11.1 Alias Structure for Default 27�2
IV Design

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A

B

C

D

E

F

G

A*B = F*G

A*C

A*D

A*E

A*F = B*G

A*G = B*F

B*C

B*D

B*E

C*D = E*G

C*E = D*G

C*F

C*G = D*E

D*F

E*F

In contrast, the resolution 4 design shown in Table 12.15 of Box, Hunter, and Hunter (1978) is a minimum aberration
design that permits estimation of 18 two-factor interactions, three more than can be estimated with the default design.
The FACTEX procedure constructs the minimum aberration design if you specify the MINABS option in the MODEL
statement, as in the following statements:

proc factex;
factors A B C D E F G;
model resolution=4 / minabs;
size design=32;
examine aliasing;

run;

The alias structure for the resulting design is shown in Output 8.11.2.

Example 8.12: Replicated Blocked Design with Partial Confounding F 677

Output 8.11.2 Alias Structure for Minimum Aberration 27�2
IV Design

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A

B

C

D

E

F

G

A*B

A*C

A*D

A*E

A*F

A*G

B*C

B*D

B*E

B*F

B*G

C*D = E*F

C*E = D*F

C*F = D*E

C*G

D*G

E*G

F*G

All the designs listed in Table 12.15 of Box, Hunter, and Hunter (1978) have minimum aberration. For most of these
cases, the default design constructed by the FACTEX procedure has minimum aberration—that is, the MINABS option
is not required. This is important because the MINABS option forces the FACTEX procedure to check many more
designs, and the search can therefore take longer to run. You can limit the search time by specifying the TIME= option
in the PROC FACTEX statement. In five of the cases (210�6

III , 27�2
IV , 28�3

IV , 29�4
IV , and 210�3

V), the MINABS option is
required to construct a design that has minimum aberration, and in two cases (29�5

III , 29�3
IV), the NOCHECK option

is also required. If the FACTEX procedure is given sufficient time to run, specifying both the MINABS option and
the NOCHECK option always results in a minimum aberration design. However, with the default search time of
60 seconds, there are three cases (210�5

IV , 210�4
IV , and 211�5

IV) for which the FACTEX procedure is unable to find the
minimum aberration design, even with both the MINABS and NOCHECK options specified.

Example 8.12: Replicated Blocked Design with Partial Confounding
NOTE: See Replicated Blocked Design with Confounding in the SAS/QC Sample Library.

In an unreplicated blocked design, the interaction effect that is confounded with the block effect cannot be estimated.
You can replicate the experiment so that a different interaction effect is confounded in each replicate. This enables you
to obtain information about an interaction effect from the replicates in which it is not confounded.

678 F Chapter 8: The FACTEX Procedure

For example, consider a 23 design with factors A, B, and C arranged in two blocks. Suppose you decide to run four
replicates of the design. By constructing the design sequentially, you can choose the effects to be estimated in each
replicate depending on the interaction that is confounded with the block effect in the other replicates.

In the first replicate, you specify only that the main effects are to be estimable. The following statements generate an
eight-run 2-level design arranged in two blocks:

proc factex;
factors A B C;
blocks nblocks=2;
model est=(A B C);
examine confounding aliasing;
output out=Rep1 blockname=block nvals=(1 2);

run;

The alias structure and the confounding scheme are listed in Output 8.12.1. The highest-order interaction A*B*C is
confounded with the block effect. The design, with recoded block levels, is saved in a data set named Rep1.

Output 8.12.1 Confounding Rule and Alias Structure for Replicate 1

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A

B

C

A*B

A*C

B*C

If you were to analyze this replicate by itself, you could not determine whether an effect is due to A*B*C or due to the
block effect. You can construct a second replicate that confounds a different interaction effect with the block effect.
Because the FACTEX procedure is interactive, simply submit the following statements to generate the second replicate:

model est=(A B C A*B*C);
output out=Rep2

blockname=block nvals=(3 4);
run;

The alias structure and the confounding scheme for the second replicate are listed in Output 8.12.2. The interaction
A*B*C is free of any aliases, but now the two-factor interaction B*C is confounded with the block effect.

Output 8.12.2 Confounding Rule and Alias Structure for Replicate 2

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A

B

C

A*B

A*C

[B] = B*C

A*B*C

Example 8.12: Replicated Blocked Design with Partial Confounding F 679

To estimate the interaction B*C by using the third replicate, submit the following statements (immediately after the
preceding statements):

model est=(A B C A*B*C B*C);
output out=Rep3 blockname=block nvals=(5 6);

run;

The alias structure and confounding rules are shown in Output 8.12.3. The interaction B*C is free of aliases, but the
interaction A*C is confounded with the block effect.

Output 8.12.3 Confounding Rule and Alias Structure for Replicate 3

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A

B

C

A*B

[B] = A*C

B*C

A*B*C

Finally, to estimate the interaction effect A*C by using the fourth replicate, submit the following statements:

model est=(A B C A*B*C B*C A*C);
output out=Rep4 blockname=block nvals=(7 8);

run;

The alias structure and confounding rules are displayed in Output 8.12.4.

Output 8.12.4 Confounding Rule and Alias Structure for Replicate 4

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

A

B

C

[B] = A*B

A*C

B*C

A*B*C

When combined, these four replicates provide full information about the main effects and three-quarter information
about each of the interactions. The following statements combine the four replicates:

data Combine;
set Rep1 Rep2 Rep3 Rep4;

run;
proc print data=Combine;
run;

The final design is saved in the data set Combine. A partial listing of this data set is shown in Output 8.12.5.

680 F Chapter 8: The FACTEX Procedure

Output 8.12.5 Combined Design

Obs block A B C

1 1 -1 -1 -1

2 1 -1 1 1

3 1 1 -1 1

4 1 1 1 -1

5 2 -1 -1 1

6 2 -1 1 -1

7 2 1 -1 -1

8 2 1 1 1

9 3 -1 -1 1

10 3 -1 1 -1

11 3 1 -1 1

12 3 1 1 -1

13 4 -1 -1 -1

14 4 -1 1 1

15 4 1 -1 -1

16 4 1 1 1

17 5 -1 -1 1

18 5 -1 1 1

19 5 1 -1 -1

20 5 1 1 -1

21 6 -1 -1 -1

22 6 -1 1 -1

23 6 1 -1 1

24 6 1 1 1

25 7 -1 1 -1

26 7 -1 1 1

27 7 1 -1 -1

28 7 1 -1 1

29 8 -1 -1 -1

30 8 -1 -1 1

31 8 1 1 -1

32 8 1 1 1

Example 8.13: Incomplete Block Design
NOTE: See Incomplete Block Design in the SAS/QC Sample Library.

Several important series of balanced incomplete block designs can be derived from orthogonal factorial designs. One
is the series of balanced lattices of Yates (1936); see page 396 of Cochran and Cox (1957). In a balanced lattice, the
number of treatments v must be the square of a power of a prime number: v D q2; q D pk , where p is a prime number.
These designs are based on a complete set of q – 1 mutually orthogonal q � q Latin squares, which is equivalent to a
resolution 3 design for q + 1 q-level factors in q2 runs.

The balanced lattice designs include q + 1 replicates of the treatments. They are constructed by associating each
treatment with a run in the factorial design, each replicate with one of the factors, and each block with one of the q
values of that factor. For example, the treatments in Block 3 within Replicate 2 are those treatments that are associated
with runs for which factor 2 is set at value 3.

Example 8.13: Incomplete Block Design F 681

The following statements use this method to construct a balanced lattice design for 16 treatments in five replicates of
four blocks each. The construction procedure is based on a resolution 3 design for five 4-level factors in 16 runs.

proc factex;
factors x1-x5 / nlev=4;
size design=16;
model r=3;
output out=a;

run;

In the following DATA step, the incomplete block design is built by using the design that PROC FACTEX saved in the
data set a:

data b;
keep Rep Block Plot t;
array x{5} x1-x5;
do Rep = 1 to 5;

do Block = 1 to 4;
Plot = 0;
do n = 1 to 16;

set a point=n;
if (x{rep}=Block-1) then do;

t = n;
Plot = Plot + 1;
output;

end;
end;

end;
end;
stop;

run;

For each block within each replicate, the program loops through the run numbers in the factorial design and chooses
those whose Repth factor is equal to Block–1. These run numbers are the treatments that go into the particular block.

The design is printed by using a DATA step. Each block of each replicate is built into the variables S1, S2, S3, and S4,
and each block is printed with a PUT statement.

data _null_;
array s{4} s1-s4;
file print;
n = 1;
do r = 1 to 5;

put "Replication " r 1.0 ":";
do b = 1 to 4;

do p = 1 to 4;
set b point=n;
s{Plot} = t;
n = n+1;

end;
put " Block " b 1.0 ":" (s1-s4) (3.0);

end;
put;

end;
stop;

run;

682 F Chapter 8: The FACTEX Procedure

The ARRAY statement creates a buffer for holding each block, and the FILE statement directs the printing to output
screen. The design is displayed in Output 8.13.1.

Output 8.13.1 A Balanced Lattice

Replication 1:
 Block 1: 1 2 3 4
 Block 2: 5 6 7 8
 Block 3: 9 10 11 12
 Block 4: 13 14 15 16

Replication 2:
 Block 1: 1 5 9 13
 Block 2: 2 6 10 14
 Block 3: 3 7 11 15
 Block 4: 4 8 12 16

Replication 3:
 Block 1: 1 6 11 16
 Block 2: 3 8 9 14
 Block 3: 4 7 10 13
 Block 4: 2 5 12 15

Replication 4:
 Block 1: 1 8 10 15
 Block 2: 3 6 12 13
 Block 3: 4 5 11 14
 Block 4: 2 7 9 16

Replication 5:
 Block 1: 1 7 12 14
 Block 2: 3 5 10 16
 Block 3: 4 6 9 15
 Block 4: 2 8 11 13

You can use the PLAN procedure to randomize the block design, as shown by the following statements:

proc plan seed=54321;
factors Rep=5 Block=4 Plot=4 / noprint;
output data=b out=c;

run;
proc sort;

by Rep Block Plot;
run;

The variable Plot indexes the plots within each block. For a general discussion of randomizing block designs, see
SAS/STAT User’s Guide.

Finally, substitute set c for set b in the preceding DATA step. Running this DATA step creates the randomized
design displayed in Output 8.13.2.

Example 8.14: Design with Inner Array and Outer Array F 683

Output 8.13.2 Randomized Design

Replication 1:
 Block 1: 15 5 2 12
 Block 2: 3 8 9 14
 Block 3: 16 1 11 6
 Block 4: 7 10 13 4

Replication 2:
 Block 1: 2 4 3 1
 Block 2: 5 7 8 6
 Block 3: 9 11 10 12
 Block 4: 15 16 13 14

Replication 3:
 Block 1: 2 13 8 11
 Block 2: 14 12 7 1
 Block 3: 15 4 9 6
 Block 4: 5 16 3 10

Replication 4:
 Block 1: 13 1 5 9
 Block 2: 14 2 10 6
 Block 3: 11 15 3 7
 Block 4: 16 12 4 8

Replication 5:
 Block 1: 2 16 7 9
 Block 2: 15 10 8 1
 Block 3: 3 12 6 13
 Block 4: 5 11 14 4

Example 8.14: Design with Inner Array and Outer Array
NOTE: See A Problem In Quality Improvement in the SAS/QC Sample Library.

Byrne and Taguchi (1986) report the use of a fractional factorial design to investigate fitting an elastomeric connector
to a nylon tube as tightly as possible. Their experiment applies the design philosophy of Genichi Taguchi, which
distinguishes between control factors and noise factors. Control factors are typically those that the engineer is able to
set under real conditions, while noise factors vary uncontrollably in practice (though within a predictable range).

The experimental layout consists of two designs, one for the control factors and one for the noise factors. The design for
the control factors is called the inner array, and the design for noise factors is called the outer array. The outer array is
replicated for each of the runs in the inner array, and a performance measure (“signal-to-noise ratio”) is computed over
the replicate. The performance measure thus reflects variation due to changes in the noise factors. You can construct
such a crossproduct design by using the replication options in the OUTPUT statement of the FACTEX procedure, as
shown in this example.

Researchers identified the following four control factors that were thought to influence the amount of force required to
pull the connector off the tube:

� interference (Interference), defined as the difference between the outer width of the tubing and the inner width
of the connector

� connector wall thickness (ConnectorWall)

684 F Chapter 8: The FACTEX Procedure

� depth of insertion (InsertDepth) of the tubing into the connector

� amount of adhesive (Glue) in the connector before dipping

Researchers also identified the following three noise factors related to the assembly:

� amount of time (Time) allowed for assembly

� temperature (Temperature)

� relative humidity (Humidity)

Three levels were selected for each of the control factors, and two levels were selected for each of the noise factors.

The following statements construct the 72-run design used by Byrne and Taguchi (1986). First, an eight-run outer array
for the three noise factors is created and saved in the data set OuterArray.

proc factex;
factors Time Temperature Humidity;
output out=OuterArray Time nvals=(24 120)

Temperature nvals=(72 150)
Humidity nvals=(0.25 0.75);

run;

Next, a nine-run inner array (design of resolution 3) is chosen for the control factors. The POINTREP= option in the
OUTPUT statement replicates the eight-run outer array in the data set OuterArray for each of the nine runs in the inner
array, and the final design (which contains 72 runs) is saved in the data set Design.

proc factex;
factors Interference ConnectorWall InsertDepth Glue /

nlev=3;
size design=9;
model resolution=3;
output out=Design pointrep=OuterArray

Interference cvals=('Low' 'Medium' 'High')
ConnectorWall cvals=('Thin' 'Medium' 'Thick')
InsertDepth cvals=('Shallow' 'Deep' 'Medium')
Glue cvals=('Low' 'High' 'Medium');

run;

The final design is listed in Output 8.14.1. Main effects of each factor can be estimated free of each other, but they are
confounded with two-factor interactions.

Example 8.14: Design with Inner Array and Outer Array F 685

Output 8.14.1 Design for Control Factor and Noise Factors

Obs Interference ConnectorWall InsertDepth Glue Time Temperature Humidity

1 Low Thin Shallow Low 24 72 0.25

2 Low Thin Shallow Low 24 72 0.75

3 Low Thin Shallow Low 24 150 0.25

4 Low Thin Shallow Low 24 150 0.75

5 Low Thin Shallow Low 120 72 0.25

6 Low Thin Shallow Low 120 72 0.75

7 Low Thin Shallow Low 120 150 0.25

8 Low Thin Shallow Low 120 150 0.75

9 Low Medium Medium Medium 24 72 0.25

10 Low Medium Medium Medium 24 72 0.75

11 Low Medium Medium Medium 24 150 0.25

12 Low Medium Medium Medium 24 150 0.75

13 Low Medium Medium Medium 120 72 0.25

14 Low Medium Medium Medium 120 72 0.75

15 Low Medium Medium Medium 120 150 0.25

16 Low Medium Medium Medium 120 150 0.75

17 Low Thick Deep High 24 72 0.25

18 Low Thick Deep High 24 72 0.75

19 Low Thick Deep High 24 150 0.25

20 Low Thick Deep High 24 150 0.75

21 Low Thick Deep High 120 72 0.25

22 Low Thick Deep High 120 72 0.75

23 Low Thick Deep High 120 150 0.25

24 Low Thick Deep High 120 150 0.75

25 Medium Thin Medium High 24 72 0.25

26 Medium Thin Medium High 24 72 0.75

27 Medium Thin Medium High 24 150 0.25

28 Medium Thin Medium High 24 150 0.75

29 Medium Thin Medium High 120 72 0.25

30 Medium Thin Medium High 120 72 0.75

31 Medium Thin Medium High 120 150 0.25

32 Medium Thin Medium High 120 150 0.75

33 Medium Medium Deep Low 24 72 0.25

34 Medium Medium Deep Low 24 72 0.75

35 Medium Medium Deep Low 24 150 0.25

36 Medium Medium Deep Low 24 150 0.75

37 Medium Medium Deep Low 120 72 0.25

38 Medium Medium Deep Low 120 72 0.75

39 Medium Medium Deep Low 120 150 0.25

40 Medium Medium Deep Low 120 150 0.75

41 Medium Thick Shallow Medium 24 72 0.25

42 Medium Thick Shallow Medium 24 72 0.75

43 Medium Thick Shallow Medium 24 150 0.25

44 Medium Thick Shallow Medium 24 150 0.75

45 Medium Thick Shallow Medium 120 72 0.25

46 Medium Thick Shallow Medium 120 72 0.75

47 Medium Thick Shallow Medium 120 150 0.25

48 Medium Thick Shallow Medium 120 150 0.75

686 F Chapter 8: The FACTEX Procedure

Output 8.14.1 continued

Obs Interference ConnectorWall InsertDepth Glue Time Temperature Humidity

49 High Thin Deep Medium 24 72 0.25

50 High Thin Deep Medium 24 72 0.75

Obs Interference ConnectorWall InsertDepth Glue Time Temperature Humidity

51 High Thin Deep Medium 24 150 0.25

52 High Thin Deep Medium 24 150 0.75

53 High Thin Deep Medium 120 72 0.25

54 High Thin Deep Medium 120 72 0.75

55 High Thin Deep Medium 120 150 0.25

56 High Thin Deep Medium 120 150 0.75

57 High Medium Shallow High 24 72 0.25

58 High Medium Shallow High 24 72 0.75

59 High Medium Shallow High 24 150 0.25

60 High Medium Shallow High 24 150 0.75

61 High Medium Shallow High 120 72 0.25

62 High Medium Shallow High 120 72 0.75

63 High Medium Shallow High 120 150 0.25

64 High Medium Shallow High 120 150 0.75

65 High Thick Medium Low 24 72 0.25

66 High Thick Medium Low 24 72 0.75

67 High Thick Medium Low 24 150 0.25

68 High Thick Medium Low 24 150 0.75

69 High Thick Medium Low 120 72 0.25

70 High Thick Medium Low 120 72 0.75

71 High Thick Medium Low 120 150 0.25

72 High Thick Medium Low 120 150 0.75

Note that the levels of InsertDepth and Glue are listed in the OUTPUT statement in a nonstandard order so that the
design produced by the FACTEX procedure matches the design of Byrne and Taguchi (1986). The order of assignment
of levels does not affect the properties of the resulting design. Furthermore, the design can be randomized by specifying
the RANDOMIZE option in the OUTPUT statement.

Byrne and Taguchi (1986) indicate that a smaller outer array with only four runs would have been sufficient. You can
generate this design (not shown here) by modifying the statements in this example; specifically, add the following SIZE
and MODEL statements:

size design=4;
model resolution=3;

In their analysis of the data from the experiment based on the smaller design, Byrne and Taguchi (1986) note several
interesting interactions between control and noise factors. However, because the inner array is of resolution 3, it
is impossible to say whether interesting interactions exist between the control factors. In other words, you cannot
determine whether an effect is due to an interaction or to the main effect with which it is confounded.

One alternative is to begin with a design of resolution 4. Two-factor interactions remain confounded with one another,
but they are free of main effects. Moreover, further experimentation can be carried out to distinguish between
confounded interactions that seem important. To determine the optimal size of this design, submit the following
statements interactively:

Example 8.15: Fractional Factorial Split-Plot Designs F 687

proc factex;
factors Interference ConnectorWall InsertDepth Glue /

nlev=3;
model resolution=4;
size design=minimum;

run;

This causes the following message to appear in the SAS log:

NOTE: Design has 27 runs, resolution = 4.

In other words, the smallest resolution 4 design for four 3-level factors has 27 runs, which together with the eight-run
outer array requires 216 runs. Even the smaller four-run outer array requires 108 runs. Both of these designs are
substantially larger than the design originally reported, but the larger designs protect against the effects of unsuspected
interactions.

A second alternative is to begin with only two levels of the control factors. Further experimentation can then be directed
toward exploring the effects of factors that are determined to be important in this initial stage of experimentation.
Submit the following additional statements (NLEV=2 is the default in the FACTORS statement):

factors Interference ConnectorWall InsertDepth Glue;
model resolution=4;
size design=minimum;

run;

This causes the following message to appear in the SAS log:

NOTE: Design has 8 runs, resolution = 4.

Thus, as few as eight runs can be used for the inner array. This design is amenable to blocking, whereas the proposed
nine-run design is not. Blocking is an important consideration whenever experimental conditions can vary over the
course of conducting the experiment.

Now, submit the following statements:

size design=8;
blocks size=minimum;

run;

This causes the following message to appear in the SAS log:

NOTE: Design has 8 runs in 4 blocks of size 2,
resolution = 4.

Thus the experiment can be run in blocks as small as two runs.

Example 8.15: Fractional Factorial Split-Plot Designs
NOTE: See Fractional Factorial Split-Plot Design in the SAS/QC Sample Library.

In split-plot designs, not all factor levels can change from plot to plot. In the simplest split-plot structure, runs are
grouped into whole plots; certain factors (whole-plot factors) are applied to all plots in the whole plot, and others
(subplot factors) are applied to individual plots within a whole plot. Split-plot designs are very common in chemical
and process industries, where factors of interest are often applied at different stages of the production process and the
final measurements of interest are made on the finished product. In this case, the different stages of production might
give rise to multiple whole-plot effects.

688 F Chapter 8: The FACTEX Procedure

Suppose you are designing an experiment to measure six factors that affect characteristics of metal wires that are
sheathed with a certain material. Three of the factors (W1, W2, W3) apply to how the wires themselves are made, and
the other three (S1, S2, S3) apply to the sheathing material. You propose to first prepare eight different batches of wire,
making two wires from each batch, and then to prepare the sheathing material for each wire individually. This describes
a standard split-plot experiment, in which batches of wires form whole plots and sheathed wires form subplots. The
following code constructs a resolution 4 design for this experiment, specifying the Wire unit effect in the BLOCKS
statement, and then in the UNITEFFECT statement specifying that W1, W2, and W3 should be constant within Wire
and that S1, S2, and S3 should change within Wire. The resulting design is printed, sorted by Wire.

proc factex;
factors W1 W2 W3

S1 S2 S3;
size design=16;
blocks units=(Wire=8);
model r=4;
uniteffect Wire / whole=(W1 W2 W3)

sub =(S1 S2 S3);
examine aliasing(units);
output out=WireExperiment1;

run;

proc sort data=WireExperiment1;
by Wire W1-W3 S1-S3;

run;
proc print data=WireExperiment1;
run;

Output 8.15.1 shows the aliasing structure for the design, which indicates that the main effects of the wire factors
are indeed estimated on the Wire whole plots and the main effects of the sheath factors are estimated on the subplots.
Interestingly, some of the sheath factor interactions are also confounded with whole plots.

Output 8.15.1 A Split-Plot Design

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

Units

Wire W1

Wire W2

Wire W3

Wire W1*W2 = S1*S2

Wire W1*W3 = S1*S3

Wire W2*W3 = S2*S3

Residual S1

Residual S2

Residual S3

Residual W1*S1 = W2*S2 = W3*S3

Residual W1*S2 = W2*S1

Residual W1*S3 = W3*S1

Residual W2*S3 = W3*S2

The final design is listed in Output 8.15.2. Notice that the factors W1, W2, and W3 are constant within Wire, whereas
S1, S2, and S3 change within Wire.

Example 8.15: Fractional Factorial Split-Plot Designs F 689

Output 8.15.2 A Split-Plot Design

Obs _1_ _2_ _3_ _4_ W1 W2 W3 S1 S2 S3 Wire

1 -1 -1 -1 1 -1 1 1 -1 1 1 1

2 -1 -1 -1 -1 -1 1 1 1 -1 -1 1

3 -1 -1 1 -1 1 -1 -1 -1 1 1 2

4 -1 -1 1 1 1 -1 -1 1 -1 -1 2

5 -1 1 -1 -1 1 -1 1 -1 1 -1 3

6 -1 1 -1 1 1 -1 1 1 -1 1 3

7 -1 1 1 1 -1 1 -1 -1 1 -1 4

8 -1 1 1 -1 -1 1 -1 1 -1 1 4

9 1 -1 -1 -1 1 1 -1 -1 -1 1 5

10 1 -1 -1 1 1 1 -1 1 1 -1 5

11 1 -1 1 1 -1 -1 1 -1 -1 1 6

12 1 -1 1 -1 -1 -1 1 1 1 -1 6

13 1 1 -1 1 -1 -1 -1 -1 -1 -1 7

14 1 1 -1 -1 -1 -1 -1 1 1 1 7

15 1 1 1 -1 1 1 1 -1 -1 -1 8

16 1 1 1 1 1 1 1 1 1 1 8

To see why the Wire factors are constant within wire and the sheath factors change, examine the confounding rules for
the design. The following statements produce the table of confounding rules listed in Output 8.15.3:

proc factex;
factors W1 W2 W3

S1 S2 S3;
size design=16;
blocks units=(Wire=8);
model r=4;
uniteffect Wire / whole=(W1 W2 W3)

sub =(S1 S2 S3);
examine confounding;

run;

Output 8.15.3 Split-Plot Confounding Rules

The FACTEX ProcedureThe FACTEX Procedure

Factor Confounding
Rules

W1 = [1]*[2]*[3]

W2 = [2]*[3]

W3 = [1]*[3]

S1 = [1]*[2]*[3]*[4]

S2 = [2]*[3]*[4]

S3 = [1]*[3]*[4]

The terms [i] on the right-hand side of these rules denote plot-indexing pseudofactors, as discussed in the section
“Split-Plot Designs” on page 654. Note that the wire factors W1, W2, and W3 are confounded only with interactions
between the first three pseudofactors, the ones identified with the eight levels of the Wire unit factor. This guarantees
that these factors are constant within levels of Wire. By contrast, the confounding rules for the sheath factors S1, S2,
and S3 each involve the fourth pseudofactor, so they must change within levels of Wire.

690 F Chapter 8: The FACTEX Procedure

There are only eight different combinations of the sheath factors, but the previous design requires you to produce
batches of sheath material 16 times, once for each of the two wires to be made from each wire batch. If instead you
propose to make just four batches of sheath material and apply part of each batch to parts of different batches of wires,
the design becomes a row-column design instead of a split-plot design. Furthermore, suppose that the number of batches
rather than the size of each batch is the main cost, so that you can prepare eight batches of wire and four batches of
sheathing material in sufficient quantity to make 64 different sheathed wires. Because there can be only four different
combinations of the three sheathing factors, each sheathing factor interaction is aliased with a main effect, and thus the
design necessarily has resolution 3. All other interactions are estimable free of main effects. The following statements
create the design and display the two unit effects with their respective whole-unit factor levels:

proc factex;
factors W1 W2 W3

S1 S2 S3;
size design=64;
blocks units=(Wire=8 Sheath=4);
model r=3;
uniteffect Wire / whole=(W1 W2 W3);
uniteffect Sheath / whole=(S1 S2 S3);
examine aliasing(units);
output out=WireExperiment2;

proc freq data=WireExperiment2;
table Wire *W1*W2*W3 / list nocum nopct;
table Sheath*S1*S2*S3 / list nocum nopct;

run;

The results, listed in Output 8.15.4 and Output 8.15.5, indicate that W1, W2, and W3 are constant within Wire and S1,
S2, and S3 are constant within Sheath.

Output 8.15.4 A Split-Lot Design: Wire Units

The FREQ ProcedureThe FREQ Procedure

Wire W1 W2 W3 Frequency

1 -1 1 1 8

2 1 -1 -1 8

3 1 -1 1 8

4 -1 1 -1 8

5 1 1 -1 8

6 -1 -1 1 8

7 -1 -1 -1 8

8 1 1 1 8

Output 8.15.5 A Split-Lot Design: Sheath Units

The FREQ ProcedureThe FREQ Procedure

Sheath S1 S2 S3 Frequency

1 1 -1 -1 16

2 -1 1 -1 16

3 -1 -1 1 16

4 1 1 1 16

Example 8.16: Design for a Three-Step Process F 691

Example 8.16: Design for a Three-Step Process
NOTE: See A Design for a Three-Step Process in the SAS/QC Sample Library.

Ramirez and Weisz (2009) discuss an experiment on a multistep milling process that has 16 processing factors, with
a single factor applied at the first stage, seven more factors at the second stage, and eight more at the final stage.
The experiment involves eight first-stage runs, eight second-stage runs within each of those, and again, two to four
third-stage runs within each of those, for a total of 128 to 256 total experimental units. This example explores several
different ways to design this experiment, depending on what types of effects are most important.

The following statements request a design of maximum resolution for this split-plot structure.

%let F1 = Z;
%let F2 = A B C D E F G;
%let F3 = P Q R S T U V W;
proc factex;

factors &F1 &F2 &F3;
model r=max;
size design=128;
blocks units=(Step1=8 Step2=8);
uniteffect Step1 / whole=(&F1) sub=(&F2 &F3);
uniteffect Step1*Step2 / whole=(&F2) sub=(&F3);
examine aliasing(units) summary;

quit;

The factors are listed in macro variables, for ease in specifying them in UNITEFFECT statements. The BLOCKS
statement defines the unit factors for the first two processing stages, with eight runs of each. The two UNITEFFECT
statements then use these unit factors to specify which unit effects correspond to which factors. Finally, the EXAMINE
statement requests that the aliasing structure and the overall modeling summary be displayed to see how many effects
of different orders are estimable and clear. The UNITS suboption of the ALIASING option includes the unit effect
confounding for each alias string in the alias structure.

The resulting design has resolution 4, which means that main effects are clear of two-factor interactions but interactions
are aliased with each other. Output 8.16.1 shows which interactions are aliased and also shows which units are used to
estimate them. Note that several interactions between Step2 and Step3 factors are estimated with Step2 units.

692 F Chapter 8: The FACTEX Procedure

Output 8.16.1 Aliasing for Default 128-Run Three-Step Design

The FACTEX ProcedureThe FACTEX Procedure

Aliasing Structure

Units

Step1 Z

Step1 A*B = C*D = E*F = P*Q = R*S = T*U = V*W

Step1 A*C = B*D = E*G = P*R = Q*S = T*V = U*W

Step1 A*D = B*C = F*G = P*S = Q*R = T*W = U*V

Step1*Step2 A

Step1*Step2 B

Step1*Step2 C

Step1*Step2 D

Step1*Step2 E

Step1*Step2 F

Step1*Step2 G

Step1*Step2 Z*A

Step1*Step2 Z*B

Step1*Step2 Z*C

Step1*Step2 Z*D

Step1*Step2 Z*E

Step1*Step2 Z*F

Step1*Step2 Z*G

Step1*Step2 A*E = B*F = C*G = P*T = Q*U = R*V = S*W

Step1*Step2 A*F = B*E = D*G = P*U = Q*T = R*W = S*V

Step1*Step2 A*G = C*E = D*F = P*V = Q*W = R*T = S*U

Step1*Step2 B*G = C*F = D*E = P*W = Q*V = R*U = S*T

Residual P

Residual Q

Residual R

Residual S

Residual T

Residual U

Residual V

Residual W

Residual Z*P

Residual Z*Q

Residual Z*R

Residual Z*S

Residual Z*T

Residual Z*U

Residual Z*V

Residual Z*W

Residual A*P = B*Q = C*R = D*S = E*T = F*U = G*V

Residual A*Q = B*P = C*S = D*R = E*U = F*T = G*W

Residual A*R = B*S = C*P = D*Q = E*V = F*W = G*T

Residual A*S = B*R = C*Q = D*P = E*W = F*V = G*U

Residual A*T = B*U = C*V = D*W = E*P = F*Q = G*R

Residual A*U = B*T = C*W = D*V = E*Q = F*P = G*S

Example 8.16: Design for a Three-Step Process F 693

Output 8.16.1 continued

The FACTEX Procedure

Aliasing Structure

Units

Residual A*V = B*W = C*T = D*U = E*R = F*S = G*P

Residual A*W = B*V = C*U = D*T = E*S = F*R = G*Q

As Output 8.16.2 shows, only 30/120 = 25% of the two-factor interactions (2FI) are estimable and only 15/120 = 13%
of them are clear.

Output 8.16.2 Modeling Summary for Default 128-Run Three-Step Design

Modeling Summary

Effects

Main 2FI

Total 16 120

Estimable 16 30

Clear 16 15

If simply protecting the main-effects estimates against potential two-factor interactions is sufficient, then this design
suffices. However, if you want to estimate as many of the two-factor interactions as possible, then you should look
for a MaxClear design. The following statements use the MAXCLEAR option in the MODEL statement to request
a MaxClear design, and they also use the ORDER=RANDOM(RESTART) option in the PROC FACTEX statement
to improve the chances that the best design is found. For more information about MaxClear designs, see the section
“MaxClear Designs” on page 654.

%let F1 = Z;
%let F2 = A B C D E F G;
%let F3 = P Q R S T U V W;
proc factex order=random(restart seed=1);

factors &F1 &F2 &F3;
model r=max / maxclear;
size design=128;
blocks units=(Step1=8 Step2=8);
uniteffect Step1 / whole=(&F1) sub=(&F2 &F3);
uniteffect Step1*Step2 / whole=(&F2) sub=(&F3);
examine summary;

quit;

The modeling summary results for the MaxClear design are shown in Output 8.16.3. Now 87/120 = 73% of the 2FI are
estimable and 69/120 = 58% of them clear.

Output 8.16.3 Modeling Summary for MaxClear 128-Run Three-Step Design

The FACTEX ProcedureThe FACTEX Procedure

Modeling Summary

Effects

Main 2FI

Total 16 120

Estimable 16 87

Clear 16 69

694 F Chapter 8: The FACTEX Procedure

This is a great improvement over the default design, but more than 128 runs are necessary if complete estimability of all
two-factor interactions is required. The following statements construct a design in 256 runs, effectively doubling the
number of third-stage runs from two to four:

%let F1 = Z;
%let F2 = A B C D E F G;
%let F3 = P Q R S T U V W;
proc factex;

factors &F1 &F2 &F3;
model r=max;
size design=256;
blocks units=(Step1=8 Step2=8);
uniteffect Step1 / whole=(&F1) sub=(&F2 &F3);
uniteffect Step1*Step2 / whole=(&F2) sub=(&F3);
examine aliasing(units);

quit;

The aliasing structure (not shown) shows that the resulting design has resolution 5, which means that all main effects
and two factor interactions are estimable free of each other. Even though the required 256 runs mean that this is a
relatively large experiment, they are still only a tiny fraction of the 65,536 runs required for a complete factorial design.

Example 8.17: Strip-Split-Split-Plot Design
NOTE: See A Strip-Split-Split-Plot Design in the SAS/QC Sample Library.

Suppose you are designing an experiment for a three-step process that runs on different machines. One way to model
this is with a row � column strip-split-split-plot structure, with one type of unit, Machine, crossed with a process that
has a split-split-plot structure. The following statements create a resolution 4 design in 11 factors for this situation,
with one Machine factor (MSetting) and three, three, and five whole plot, split-plot, and split-split-plot process factors,
respectively. The statements also request that the design’s aliasing structure and modeling summary be displayed, with
the unit effect confounding for each alias string included in the alias structure.

%let FR = X11-X13;
%let FC = X21-X23;
%let FX = X31-X35;
proc factex;

factors MSetting &FR &FC &FX;
model r=4;
blocks units=(Machine=2 Step1=8 Step2=4 Step3=2);
uniteffect Machine / whole=(MSetting);
uniteffect Step1 / whole=(&FR) sub=(&FC &FX);
uniteffect Step1*Step2 / whole=(&FC) sub=(&FX);
uniteffect Step1*Step2*Step3 / whole=(&FX);
size design=128;
examine aliasing(units) summary;

run;

The UNITEFFECT statements define a triply nested split-plot structure for the process on each machine, including the
Step1*Step2*Step3 split-split units for the process, in order to ensure that process effects are crossed with Machine.

As Output 8.17.1 shows, 36/66 = 55% of the 2FI are estimable and 21/66 = 32% of them are clear. The aliasing structure
(not shown) indicates that the main effect of MSetting is the only thing that is estimated with the Machine units; all
interactions between MSetting and the process factors are estimated with the experimental units, labeled “Residual” in
the alias structure.

Example 8.17: Strip-Split-Split-Plot Design F 695

Output 8.17.1 A Strip-Split-Split-Plot Design

The FACTEX ProcedureThe FACTEX Procedure

Modeling Summary

Effects

Main 2FI

Total 12 66

Estimable 12 36

Clear 12 21

If simply protecting the main-effects estimates against potential two-factor interactions is the reason for requiring
a resolution 4 design, then the design of Output 8.17.1 suffices. However, if you want to estimate as many of the
two-factor interactions as possible, then you should use the MAXCLEAR option in the MODEL statement to construct
a MaxClear design, as shown in the following statements:

%let FR = X11-X13;
%let FC = X21-X23;
%let FX = X31-X35;
proc factex order=random(restart seed=230501);

factors MSetting &FR &FC &FX;
model r=4 / maxclear;
blocks units=(Machine=2 Step1=8 Step2=4 Step3=2);
uniteffect Machine / whole=(MSetting);
uniteffect Step1 / whole=(&FR) sub=(&FC &FX);
uniteffect Step1*Step2 / whole=(&FC) sub=(&FX);
uniteffect Step1*Step2*Step3 / whole=(&FX);
size design=128;
examine summary;

run;

As Output 8.17.2 shows, now 55/66 = 83% of the 2FI are estimable and 45/66 = 68% of them are clear—more than
twice as many clear interactions as before.

Output 8.17.2 A Strip-Split-Split-Plot Design

The FACTEX ProcedureThe FACTEX Procedure

Modeling Summary

Effects

Main 2FI

Total 12 66

Estimable 12 55

Clear 12 45

For more information about MaxClear designs, see the section “MaxClear Designs” on page 654.

696 F Chapter 8: The FACTEX Procedure

Example 8.18: Design and Analysis of a Complete Factorial Experiment
NOTE: See Complete Factorial Experiment in the SAS/QC Sample Library.

Yin and Jillie (1987) describe an experiment on a nitride etch process for a single-wafer plasma etcher. The experiment
has four factors: cathode power (Power), gas flow (Flow), reactor chamber pressure (Pressure), and electrode gap (Gap).
A single replicate of a 24 design is run, and the etch rate (Rate) is measured. You can use the following statements to
construct a 16-run design in the four factors:

proc factex;
factors Power Flow Pressure Gap;
output out=EtcherDesign

Power nvals=(0.80 1.20)
Flow nvals=(4.50 550)
Pressure nvals=(125 200)
Gap nvals=(275 325);

run;

The design that includes the actual (decoded) factor levels is saved in the data set EtcherDesign. The experiment that
uses the 16-run design is performed, and the etch rate is measured. The following DATA step updates the data set
EtcherDesign with the values of Rate:

data EtcherDesign;
set EtcherDesign;
input Rate @@;
datalines;
550 669 604 650 633 642 601 635
1037 749 1052 868 1075 860 1063 729
;

title 'Nitride Etch Process Experiment';
proc print;
run;

The data set EtcherDesign is listed in Output 8.18.1.

Example 8.18: Design and Analysis of a Complete Factorial Experiment F 697

Output 8.18.1 A 24 Design with Responses

Nitride Etch Process ExperimentNitride Etch Process Experiment

Obs Power Flow Pressure Gap Rate

1 0.8 4.5 125 275 550

2 0.8 4.5 125 325 669

3 0.8 4.5 200 275 604

4 0.8 4.5 200 325 650

5 0.8 550.0 125 275 633

6 0.8 550.0 125 325 642

7 0.8 550.0 200 275 601

8 0.8 550.0 200 325 635

9 1.2 4.5 125 275 1037

10 1.2 4.5 125 325 749

11 1.2 4.5 200 275 1052

12 1.2 4.5 200 325 868

13 1.2 550.0 125 275 1075

14 1.2 550.0 125 325 860

15 1.2 550.0 200 275 1063

16 1.2 550.0 200 325 729

To perform an analysis of variance on the responses, you can use the GLM procedure, as follows:

proc glm data=EtcherDesign;
class Power Flow Pressure Gap;
model rate=Power|Flow|Pressure|Gap@2 / ss1;

run;

The factors are listed in both the CLASS and MODEL statements, and the response as a function of the factors is
modeled by using the MODEL statement. The MODEL statement requests Type I sum of squares (SS1) and lists all
effects that contain two or fewer factors. It is assumed that three-factor and higher interactions are not significant.

Part of the output from the GLM procedure is shown in Output 8.18.2. The main effect of the factors Power and Gap
and the interaction between Power and Gap are significant (their p-values are less than 0.01).

Output 8.18.2 Analysis of Variance for the Nitride Etch Process Experiment

Nitride Etch Process Experiment

The GLM Procedure

Dependent Variable: Rate

Nitride Etch Process Experiment

The GLM Procedure

Dependent Variable: Rate

Source DF Type I SS Mean Square F Value Pr > F

Power 1 374850.0625 374850.0625 183.99 <.0001

Flow 1 217.5625 217.5625 0.11 0.7571

Power*Flow 1 18.0625 18.0625 0.01 0.9286

Pressure 1 10.5625 10.5625 0.01 0.9454

Power*Pressure 1 1.5625 1.5625 0.00 0.9790

Flow*Pressure 1 7700.0625 7700.0625 3.78 0.1095

Gap 1 41310.5625 41310.5625 20.28 0.0064

Power*Gap 1 94402.5625 94402.5625 46.34 0.0010

Flow*Gap 1 2475.0625 2475.0625 1.21 0.3206

Pressure*Gap 1 248.0625 248.0625 0.12 0.7414

698 F Chapter 8: The FACTEX Procedure

References

Addelman, S. (1962). “Orthogonal Main-Effects Plans for Asymmetrical Factorial Experiments.” Technometrics
4:21–46.

Bose, R. C. (1947). “Mathematical Theory of the Symmetrical Factorial Design.” Sankhy Na 8:107–166.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters. New York: John Wiley & Sons.

Butler, N. A. (2004). “Construction of Two-Level Split-Plot Fractional Factorial Designs for Multistage Processes.”
Technometrics 46:445–451.

Byrne, D. M., and Taguchi, S. (1986). “The Taguchi Approach to Parameter Designs.” Quality Congress Transactions
177:168–177.

Chakravarti, I. M. (1956). “Fractional Replication in Asymmetrical Factorial Designs and Partially Balanced Arrays.”
Sankhy Na 17:143–164.

Cochran, W. G., and Cox, G. M. (1957). Experimental Designs. 2nd ed. New York: John Wiley & Sons.

Dehnad, K., ed. (1989). Quality Control, Robust Design, and Taguchi Method. Pacific Grove, CA: Wadsworth &
Brooks/Cole.

Fries, A., and Hunter, W. G. (1980). “Minimum Aberration 2k�p Designs.” Technometrics 22:601–608.

Huang, P., Chen, D., and Voelkel, J. O. (1998). “Minimum-Aberration Two-Level Split-Plot Designs.” Technometrics
40:314–326.

Kempthorne, O. (1975). The Design and Analysis of Experiments. Huntington, NY: Robert E. Krieger Publishing.

Margolin, B. H. (1967). “Systematic Methods of Analyzing 2n � 3m Factorial Experiments with Applications.”
Technometrics 11:431–444.

Montgomery, D. C. (1991). Design and Analysis of Experiments. 3rd ed. New York: John Wiley & Sons.

Phadke, M. (1989). Quality Engineering Using Robust Design. Englewood Cliffs, NJ: Prentice-Hall.

Ramirez, J. G., and Weisz, J. T. (2009). “Designing Multi-step Fractional Factorial Split-Plots: A Combined JMP and
SAS User Application.” In Proceedings of the SAS Global Forum 2009 Conference. Cary, NC: SAS Institute Inc.
http://support.sas.com/resources/papers/proceedings09/254-2009.pdf.

Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.

Williams, E. J. (1949). “Experimental Designs Balanced for the Estimation of Residual Effects of Treatments.”
Australian Journal of Scientific Research, Series A 2:149–168.

Wu, C. F. J., and Hamada, M. (2000). Experiments: Planning, Analysis, and Parameter Design Optimization. New
York: John Wiley & Sons.

Yates, F. (1936). “Incomplete Randomized Blocks.” Annals of Eugenics 7:121–140.

Yin, G. Z., and Jillie, D. W. (1987). “Orthogonal Design for Process Optimization and Its Application in Plasma
Etching.” Solid State Technology 30:127–132.

http://support.sas.com/resources/papers/proceedings09/254-2009.pdf

Subject Index

aberration of a design, see minimum aberration
alias structure

breaking links, example, 663, 665
details, 652
example, 659, 660, 662, 677–679
syntax, 632

analysis of variance, 697
augment, factorial design

example, 659, 663

balanced lattice, 680
block designs

balanced lattice, examples, 680
randomized complete, examples, 665

block specification, FACTEX procedure
block pseudofactors, 630
block size restrictions, 632
number of blocks, 630
runs per block, 631

blocking, FACTEX procedure
block pseudofactor, 643
blocking factor, 643
example, 687
incomplete block design, example, 680
randomization, 649
rename block variable, 637

center points, example, 662
coding, FACTEX procedure

block factor, 637
design factor, 637

collapsing factors, example, 672
confounding rules

compare with alias structure, 652
design factors, 642
details, 652
example, 677
MaxClear designs, 654
minimum aberration, 653
notation, 652
orthogonally confounded, 644
partial confounding, example, 677
run-indexing factors, 642
searching, 644
split-plot designs, 654
syntax, 632, 633
unconfounded effects, 643

control factor design, 651, 652
control factors, 651, 652

control factors, example, 683
curvature, check for, example, 662

derived factors, FACTEX procedure
creating, 637
example, 671

design characteristics, FACTEX procedure
alias structure, 652
confounding rules, 652
design listing, 633

design size specification, FACTEX procedure
fraction, 640
minimum runs, 640
number of runs, 639
run indexing factors, 640
syntax, 639

design, factorial, see factorial designs

effect length, FACTEX procedure
limit, 630

examine design, FACTEX procedure, see design
characteristics, FACTEX procedure

examples, FACTEX procedure
advanced, 658
alias links breaking, 659
center points, 662
collapsing factors, 672
completely randomized, 658
derived factors, 671
design replication, 666, 669
fold-over design, 663
full factorial, 620
full factorial in blocks, 622
getting started, 620
half-fraction factorial, 624
hyper-Graeco-Latin square, 673
incomplete block design, 680
minimum aberration, 675
mixed-level, 669, 671
partial confounding, 677
point replication, 666, 669
pseudofactors, 671
randomized complete block design, 665
RCBD, 665
replication, 666, 669
resolution 3 design, 663
resolution 4, 675
resolution 4, augmented, 659
resolution III design, 663

resolution IV, 675
resolution IV, augmented, 659
sequential construction, 677

FACTEX procedure
block specification, 630
block specification options, summary, 627
design factor levels, 634
design size options, summary, 627
design size specification, 639
design specification options, summary, 627
examining design characteristics, 632
factor specification options, summary, 627
features, 619
getting started examples, 620
invoking, 629
listing design factors, 634
model specification, 634
model specification options, summary, 627
output, 636
overview, 618
randomization, 639
replication, 638
resolution, 635
split-plot designs, 654
summary of functions, 627
syntax, 627
unit-effect specification, 640
units specification, 631
using interactively, 626

factorial designs, see examples, FACTEX procedure
balanced lattice, 680
efficiency, 636
fractional factorial, MaxClear designs, 654
fractional factorial, minimum aberration, 653
fractional factorial, theory, 641
mixed-level, 637
orthogonal, 669
replicate, 638
resolution, 635
split-plot designs, 654

factors, FACTEX procedure
block factor, 643, 646
block pseudofactor, 643, 647, 652
derived factor, 646
design factor, 646
design factor coding, 637
design factor levels, 634
design factor names, 634
pseudofactor, 646
run-indexing factor, 642, 647, 652
types, 646

fold-over design, example, 663

GLM procedure, 697, 698

Graeco-Latin square, 674

hyper-Graeco-Latin square, example, 673

independent estimate of error, examples, 662, 666
inner array, 652, 683
interaction, FACTEX procedure

alias structure, 652
between control and noise factors, 686
confounding, 642
examples, 677, 696, 697
generalized, 642, 644, 669
minimum aberration, 653
minimum aberration, example, 675
nonnegligible, 642
resolution, 648
specify terms, 634, 647

main effect, 642, 643, 647, 648
main effect, examples, 677–679, 696, 697
MaxClear designs, 654
minimum aberration

aberration vector, 653
blocked design, 654
example, 675
limitation, 677

minimum aberration, 653
mixed-level, factorial design

construction, examples, 669–673
derived factors, 637

model specification, FACTEX procedure
directly, 634
estimated effects, 634
indirectly, 634
maximum clarity, 635
minimum aberration, 636
nonnegligible effects, 634
resolution, 635
resolution, maximum, 635
specifying effects, 647

mutually orthogonal Latin square, 674, 680

noise factors, 651, 683

ODS tables
FACTEX procedure, 657

orthogonal confounding, 646, 647
orthogonal design

theory, 641
outer array, 652, 683
output, FACTEX procedure

code design factor levels, 637
decode block factor levels, 637
decode design factor levels, 637
details, 657

options, 637
output data set, 636, 657
rename block variable, 637

partial confounding, example, 677
PLAN procedure, 682
pseudofactors, example, 671

randomization, FACTEX procedure
blocking, 649
details, 649
example, 658, 665
prevent, 639, 650
seed, 639, 665

randomized complete block, example, 665
randomized treatments, example, 665
replication, FACTEX procedure

data set, 638, 639
design point, 639
design replication, 650, 652
details, 650
entire design, 638
example, 666, 669
fixed number of times, 650
inner array, 652
number of times, 638, 639
outer array, 652
point replication, 650, 652

resolution, FACTEX procedure
comparison, 648
definition, 648
example, 624, 659, 675
MaxClear designs, 654
minimum aberration, 653
number, 648
numbering scheme, 649
syntax, 635

response, factorial design, 646, 697

search design, FACTEX procedure
confounding rules, 644
limit, 630
maximum time, 630
speeding, 645

signal-to-noise ratio, 683
size specification, see design size specification,

FACTEX procedure
split-plot designs, 654, 687

Type I sum of squares, 697

Syntax Index

BLOCKS statement, FACTEX procedure, see
FACTEX procedure, BLOCKS statement

syntax, 630

EXAMINE statement, FACTEX procedure, see
FACTEX procedure, EXAMINE statement

syntax, 632

FACTEX procedure, 627
getting started, 620
overview, 618
summary of functions, 627
syntax, 627

FACTEX procedure, BLOCKS statement
NBLKFACS= option, 630
NBLKFACS=MAXIMUM option, 631
NBLOCKS= option, 630
NBLOCKS= option, examples, 622, 677
NBLOCKS=MAXIMUM option, 631
SIZE= option, 631
SIZE=MINIMUM option, 631
UNITS= option, 631

FACTEX procedure, EXAMINE statement
ALIASING option, 632
ALIASING option, example, 625
CONFOUNDING option, 632, 633
DESIGN option, 633
DESIGN option, example, 620
SUMMARY option, 633

FACTEX procedure, FACTORS statement
example, 620
NLEV= option, 634

FACTEX procedure, MODEL statement
ESTIMATE= option, 634
ESTIMATE= option, examples, 661, 678
MAXCLEAR option, 635
MINABS option, 636, 653
MINABS option, example, 676
MINABS option, limitation, 677
NONNEGLIGIBLE= option, 634
RESOLUTION= option, 635
RESOLUTION= option, examples, 624, 659, 663
RESOLUTION=MAX option, 635
RESOLUTION=MAX option, examples, 622,

667, 668
FACTEX procedure, OUTPUT statement

CVALS= option, 637, 638, 648
CVALS= option, example, 665
decode design factors, 637

derived factors, 637
derived factors, examples, 671, 673
DESIGNREP= option, 638
DESIGNREP= option, examples, 666–671
NOVALRAN option, 639
NVALS= option, 637, 638, 648
NVALS= option, example, 665
OUT= option, 637
OUT= option, example, 665
POINTREP= option, 639
POINTREP= option, examples, 666–671
RANDOMIZE= option, 639
RANDOMIZE= option, examples, 658, 665
RANDOMIZE= option, NOVALRAN option, 639
RANDOMIZE= option, seed, 639
recode block factor, 637
recode block factor levels, examples, 623, 665
recode design factor levels, examples, 621, 624,

665
FACTEX procedure, PROC FACTEX statement

example, 620
NAMELEN option, 630
NOCHECK option, 630, 645, 677
ODS tables, 657
SECONDS= option, 630
TIME= option, 630, 677

FACTEX procedure, SIZE statement
DESIGN= option, 639
DESIGN= option, examples, 624, 659
DESIGN=MINIMUM option, 640
FRACTION= option, 640
FRACTION=MAXIMUM option, 640
NRUNFACS= option, 640
NRUNFACS=MINIMUM option, 640

FACTEX procedure, UNITEFFECT statement
syntax, 640

FACTORS statement, FACTEX procedure, see
FACTEX procedure, FACTORS statement

syntax, 634

MODEL statement, FACTEX procedure, see FACTEX
procedure, MODEL statement

syntax, 634

OUTPUT statement, FACTEX procedure, see
FACTEX procedure, OUTPUT statement

syntax, 636

PROC FACTEX statement, see FACTEX procedure,
PROC FACTEX statement

syntax, 629

SIZE statement, FACTEX procedure, see FACTEX
procedure, SIZE statement

syntax, 639

UNITEFFECT statement, FACTEX procedure, see
FACTEX procedure, UNITEFFECT
statement

	The FACTEX Procedure
	Overview: FACTEX Procedure
	Features

	Getting Started: FACTEX procedure
	Example of a Two-Level Full Factorial Design
	Example of a Full Factorial Design in Two Blocks
	Example of a Half-Fraction Factorial Design
	Using the FACTEX Procedure Interactively

	Syntax: FACTEX Procedure
	Summary of Functions
	PROC FACTEX Statement
	BLOCKS Statement
	EXAMINE Statement
	FACTORS Statement
	MODEL Statement
	OUTPUT Statement
	SIZE Statement
	UNITEFFECT Statement

	Details: FACTEX Procedure
	Theory of Orthogonal Designs
	Design Details
	Statistical Details
	Summary of Designs
	Output
	ODS Tables

	Examples: FACTEX Procedure
	Example 8.1: Completely Randomized Design
	Example 8.2: Resolution 4 Augmented Design
	Example 8.3: Factorial Design with Center Points
	Example 8.4: Fold-Over Design
	Example 8.5: Randomized Complete Block Design
	Example 8.6: Two-Level Design with Design Replication and Point Replication
	Example 8.7: Mixed-Level Design Using Design Replication and Point Replication
	Example 8.8: Mixed-Level Design Using Pseudofactors
	Example 8.9: Mixed-Level Design by Collapsing Factors
	Example 8.10: Design That Uses a Hyper-Graeco-Latin Square
	Example 8.11: Resolution 4 Design with Minimum Aberration
	Example 8.12: Replicated Blocked Design with Partial Confounding
	Example 8.13: Incomplete Block Design
	Example 8.14: Design with Inner Array and Outer Array
	Example 8.15: Fractional Factorial Split-Plot Designs
	Example 8.16: Design for a Three-Step Process
	Example 8.17: Strip-Split-Split-Plot Design
	Example 8.18: Design and Analysis of a Complete Factorial Experiment

	References

	Subject Index
	Syntax Index

