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Overview: RELIABILITY Procedure
The RELIABILITY procedure provides tools for reliability and survival data analysis and for recurrent events
data analysis. You can use this procedure to

� construct probability plots and fitted life distributions with left-censored, right-censored, and interval-
censored lifetime data

� fit regression models, including accelerated life test models, to combinations of left-censored, right-
censored, and interval-censored data

� analyze recurrence data from repairable systems

These tools benefit reliability engineers and industrial statisticians working with product life data and system
repair data. They also aid workers in other fields, such as medical research, pharmaceuticals, social sciences,
and business, where survival and recurrence data are analyzed.

Most practical problems in reliability data analysis involve right-censored, left-censored, or interval-censored
data. The RELIABILITY procedure provides probability plots of uncensored, right-censored, interval-
censored, and arbitrarily censored data.
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Features of the RELIABILITY procedure include

� probability plotting and parameter estimation for the common life distributions: Weibull, three-
parameter Weibull, exponential, extreme value, normal, lognormal, logistic, and log-logistic. The data
can be complete, right censored, or interval censored.

� maximum likelihood estimates of distribution parameters, percentiles, and reliability functions

� both asymptotic normal and likelihood ratio confidence intervals for distribution parameters and
percentiles. Asymptotic normal confidence intervals for the reliability function are also available.

� estimation of distribution parameters by least squares fitting to the probability plot

� Weibayes analysis, where there are no failures and where the data analyst specifies a value for the
Weibull shape parameter

� estimates of the resulting distribution when specified failure modes are eliminated

� plots of the data and the fitted relation for life versus stress in the analysis of accelerated life test data

� fitting of regression models to life data, where the life distribution location parameter is a linear
function of covariates. The fitting yields maximum likelihood estimates of parameters of a regression
model with a Weibull, exponential, extreme value, normal, lognormal, logistic and log-logistic, or
generalized gamma distribution. The data can be complete, right censored, left censored, or interval
censored. For example, accelerated life test data can be modeled with such a regression model.

� nonparametric estimates and plots of the mean cumulative function for cost or number of recurrences
and associated confidence intervals from data with exact or interval recurrence ages

� maximum likelihood estimation of the parameters of parametric models for recurrent events data

� horizontal plots of failure times for recurrent events data

Some of the features provided in the RELIABILITY procedure are available in other SAS procedures.

� You can construct probability plots of life data with the CAPABILITY procedure; however, the
CAPABILITY procedure is intended for process capability analysis rather than reliability analysis, and
the data must be complete (that is, uncensored).

� The LIFEREG procedure fits regression models with life distributions such as the Weibull, lognormal,
and log-logistic to left-, right-, and interval-censored data. The RELIABILITY procedure fits the same
distributions and regression models as the LIFEREG procedure and, in addition, provides a graphical
display of life data in probability plots.

Lawless (2003), Meeker and Escobar (1998), Nelson (1982, 1990), Abernethy (2006), and Tobias and
Trindade (1995) provide many examples taken from diverse fields and describe the analyses provided by the
RELIABILITY procedure.

The features of the procedure that deal with the nonparametric analysis of recurrent events data from
repairable systems are based on the work of Doganaksoy and Nelson (1998), Nelson (1988, 1995, 2002), and
Nelson and Doganaksoy (1989), who provide examples of repair data analysis. Meeker and Escobar (1998),
Rigdon and Basu (2000), Cook and Lawless (2007), Abernethy (2006), Tobias and Trindade (1995), Crowder
et al. (1991), and US Army (2000) provide details of parametric models for recurrent events data.
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Getting Started: RELIABILITY Procedure
This section introduces the RELIABILITY procedure with examples that illustrate some of the analyses that
it performs.

Analysis of Right-Censored Data from a Single Population
The Weibull distribution is used in a wide variety of reliability analysis applications. This example illustrates
the use of the Weibull distribution to model product life data from a single population. The following
statements create a SAS data set containing observed and right-censored lifetimes of 70 diesel engine fans
(Nelson 1982, p. 318):

data fan;
input Lifetime censor @@;
Lifetime = Lifetime/1000;
label lifetime='Fan Life (1000s of Hours)';
datalines;

450 0 460 1 1150 0 1150 0 1560 1
1600 0 1660 1 1850 1 1850 1 1850 1
1850 1 1850 1 2030 1 2030 1 2030 1
2070 0 2070 0 2080 0 2200 1 3000 1
3000 1 3000 1 3000 1 3100 0 3200 1
3450 0 3750 1 3750 1 4150 1 4150 1
4150 1 4150 1 4300 1 4300 1 4300 1
4300 1 4600 0 4850 1 4850 1 4850 1
4850 1 5000 1 5000 1 5000 1 6100 1
6100 0 6100 1 6100 1 6300 1 6450 1
6450 1 6700 1 7450 1 7800 1 7800 1
8100 1 8100 1 8200 1 8500 1 8500 1
8500 1 8750 1 8750 0 8750 1 9400 1
9900 1 10100 1 10100 1 10100 1 11500 1
;

Some of the fans had not failed at the time the data were collected, and the unfailed units have right-censored
lifetimes. The variable Lifetime represents either a failure time or a censoring time in thousands of hours.
The variable Censor is equal to 0 if the value of Lifetime is a failure time, and it is equal to 1 if the value is a
censoring time.

If ODS Graphics is disabled, graphical output is created using traditional graphics; otherwise, ODS Graphics
is used. The following statements use the RELIABILITY procedure to produce the traditional graphical
output shown in Figure 17.1:

ODS Graphics OFF;
proc reliability data=fan;

distribution Weibull;
pplot lifetime*censor( 1 ) / covb ;

run;
ODS Graphics ON;
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The DISTRIBUTION statement specifies the Weibull distribution for probability plotting and maximum
likelihood (ML) parameter estimation. The PROBPLOT statement produces a probability plot for the variable
Lifetime and specifies that the value of 1 for the variable Censor denotes censored observations. You can
specify any value, or group of values, for the censor-variable (in this case, Censor) to indicate censoring
times. The option COVB requests the ML parameter estimate covariance matrix.

The graphical output, displayed in Figure 17.1, consists of a probability plot of the data, an ML fitted
distribution line, and confidence intervals for the percentile (lifetime) values. An inset box containing
summary statistics, Weibull scale and shape estimates, and other information is displayed on the plot by
default. The locations of the right-censored data values are plotted as plus signs in an area at the top of the
plot.

Figure 17.1 Weibull Probability Plot for Engine Fan Data (Traditional Graphics)

If ODS Graphics is enabled, you can create the probability plot by using ODS Graphics. The following SAS
statements use ODS Graphics to create the probability plot shown in Figure 17.1:

proc reliability data=fan;
distribution Weibull;
pplot lifetime*censor( 1 ) / covb;

run;

The plot is shown in Figure 17.2.
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Figure 17.2 Weibull Probability Plot for Engine Fan Data (ODS Graphics)

The tabular output produced by the preceding SAS statements is shown in Figure 17.3 and Figure 17.4. This
consists of summary data, fit information, parameter estimates, distribution percentile estimates, standard
errors, and confidence intervals for all estimated quantities.

Figure 17.3 Tabular Output for the Fan Data Analysis

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information

Input Data Set WORK.FAN

Analysis Variable Lifetime Fan Life (1000s of Hours)

Censor Variable censor

Distribution Weibull

Estimation Method Maximum Likelihood

Confidence Coefficient 95%

Observations Used 70

Algorithm converged.
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Figure 17.3 continued

Summary of Fit

Observations Used 70

Uncensored Values 12

Right Censored Values 58

Maximum Loglikelihood -42.248

Weibull Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

EV Location 3.2694 0.4659 2.3563 4.1826

EV Scale 0.9448 0.2394 0.5749 1.5526

Weibull Scale 26.2968 12.2514 10.5521 65.5344

Weibull Shape 1.0584 0.2683 0.6441 1.7394

Other Weibull Distribution
Parameters

Parameter Value

Mean 25.7156

Mode 1.7039

Median 18.6002

Standard Deviation 24.3066

Estimated Covariance Matrix
Weibull Parameters

EV Location EV Scale

EV Location 0.21705 0.09044

EV Scale 0.09044 0.05733

Estimated Covariance Matrix
Weibull Parameters

Weibull
Scale

Weibull
Shape

Weibull Scale 150.09724 -2.66446

Weibull Shape -2.66446 0.07196
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Figure 17.4 Percentile Estimates for the Fan Data

Weibull Percentile Estimates

Asymptotic Normal

95% Confidence Limits

Percent Estimate
Standard

Error Lower Upper

0.1 0.03852697 0.05027782 0.002985 0.49726229

0.2 0.07419554 0.08481353 0.00789519 0.69725757

0.5 0.17658807 0.16443381 0.02846732 1.09540855

1 0.34072273 0.2635302 0.07482449 1.55152389

2 0.65900116 0.40845639 0.19556981 2.22060107

5 1.58925244 0.68465855 0.68311002 3.69738878

10 3.13724079 0.99379006 1.68620756 5.83693255

20 6.37467675 1.74261908 3.73051433 10.8930029

30 9.92885165 3.00353842 5.48788931 17.9635721

40 13.9407124 4.85766683 7.04177638 27.5986417

50 18.6002319 7.40416922 8.52475116 40.5840149

60 24.2121441 10.8733301 10.0408557 58.3842593

70 31.3378076 15.750336 11.7018888 83.9230489

80 41.2254517 23.1787018 13.6956839 124.092954

90 57.8253251 36.9266698 16.5405275 202.156081

95 74.1471722 51.6127806 18.9489625 290.137423

99 111.307797 88.1380261 23.5781482 525.462197

99.9 163.265082 144.264145 28.8905203 922.637827

Weibull Analysis Comparing Groups of Data
This example illustrates probability plotting and distribution fitting for data grouped by the levels of a special
group-variable. The data are from an accelerated life test of an insulating fluid and are the times to electrical
breakdown of the fluid under different high voltage levels. Each voltage level defines a subset of data for
which a separate analysis and Weibull plot are produced. These data are the 26kV, 30kV, 34kV, and 38kV
groups of the data provided by Nelson (1990, p. 129). The following statements create a SAS data set
containing the lifetimes and voltages:
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data fluid;
input Time voltage $ @@;
datalines;

5.79 26kv 1579.52 26kv
2323.7 26kv 7.74 30kv
17.05 30kv 20.46 30kv
21.02 30kv 22.66 30kv
43.4 30kv 47.3 30kv
139.07 30kv 144.12 30kv
175.88 30kv 194.90 30kv
0.19 34kv .78 34kv
0.96 34kv 1.31 34kv
2.78 34kv 3.16 34kv
4.15 34kv 4.67 34kv
4.85 34kv 6.50 34kv
7.35 34kv 8.01 34kv
8.27 34kv 12.06 34kv
31.75 34kv 32.52 34kv
33.91 34kv 36.71 34kv
72.89 34kv .09 38kv
0.39 38kv .47 38kv
0.73 38kv .74 38kv
1.13 38kv 1.40 38kv
2.38 38kv
;

The variable Time provides the time to breakdown in minutes, and the variable Voltage provides the voltage
level at which the test was conducted. These data are not censored.

The RELIABILITY procedure plots the data for the different voltage levels on the same Weibull probability
plot, fits a separate distribution to the data at each voltage level, and superimposes distribution lines on the
plot.

The following statements produce the probability plot shown in Figure 17.5 for the variable Time at each
level of the group-variable Voltage:

proc reliability data=fluid;
distribution Weibull;
pplot time=voltage / overlay

noconf;
run;

The input data set FLUID is specified by the DATA= option in the PROC RELIABILITY statement. The
PROBPLOT statement option OVERLAY specifies that plots for the groups are to be overlaid rather than
displayed separately. The option NOCONF specifies that no confidence bands are to be plotted, since these
can interfere with one another on overlaid plots; confidence bands are displayed by default.
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Figure 17.5 Weibull Probability Plot for the Insulating Fluid Data

A summary table that contains information for all groups is displayed. In addition, information identical to
that shown in Figure 17.3 is tabulated for each level of voltage. The summary table for all groups and the
tables for the 26kV group are shown in Figure 17.6 and Figure 17.7.

Figure 17.6 Partial Listing of the Tabular Output for the Insulating Fluid Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information - All Groups

Input Data Set WORK.FLUID

Analysis Variable Time

Distribution Weibull

Estimation Method Maximum Likelihood

Confidence Coefficient 95%

Observations Used 41

The RELIABILITY ProcedureThe RELIABILITY Procedure

Algorithm converged for group 26kv.
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Figure 17.6 continued

Summary of Fit

Group

Observations Used 3 26kv

Uncensored Values 3 26kv

Maximum Loglikelihood -6.845551 26kv

Figure 17.7 Partial Listing of the Tabular Output for the Insulating Fluid Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information - All Groups

Input Data Set WORK.FLUID

Analysis Variable Time

Distribution Weibull

Estimation Method Maximum Likelihood

Confidence Coefficient 95%

Observations Used 41

Weibull Parameter Estimates

Asymptotic Normal

95%
Confidence Limits

Parameter Estimate
Standard

Error Lower Upper Group

EV Location 6.8625 1.1040 4.6986 9.0264 26kv

EV Scale 1.8342 0.9611 0.6568 5.1226 26kv

Weibull Scale 955.7467 1055.1862 109.7941 8319.6794 26kv

Weibull Shape 0.5452 0.2857 0.1952 1.5226 26kv

Other Weibull Distribution
Parameters

Parameter Value Group

Mean 1649.4882 26kv

Mode 0.0000 26kv

Median 487.9547 26kv

Standard Deviation 3279.0212 26kv
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Figure 17.7 continued

Weibull Percentile Estimates

Asymptotic Normal

95% Confidence Limits

Percent Estimate
Standard

Error Lower Upper Group

0.1 0.00300636 0.02113841 3.11203E-9 2904.27046 26kv

0.2 0.01072998 0.06838144 4.03597E-8 2852.65767 26kv

0.5 0.0577713 0.31803193 1.19079E-6 2802.78862 26kv

1 0.20695478 1.00385021 0.00001538 2784.16263 26kv

2 0.74484901 3.12705686 0.00019885 2790.0941 26kv

5 4.1142692 13.7388263 0.00591379 2862.3304 26kv

10 15.406565 41.4763373 0.07873508 3014.69497 26kv

20 61.0231127 125.020566 1.10053199 3383.65475 26kv

30 144.246801 242.203982 5.36856883 3875.73303 26kv

40 278.770459 398.048692 16.9761581 4577.77125 26kv

50 487.954708 610.02855 42.0948552 5656.26835 26kv

60 814.147288 920.537706 88.770543 7466.84412 26kv

70 1343.42243 1433.97868 165.818889 10884.0666 26kv

80 2287.87124 2445.52431 281.5628 18590.3635 26kv

90 4412.96962 5148.34986 448.419608 43428.7452 26kv

95 7150.89745 9248.2654 566.892142 90202.9338 26kv

99 15735.8513 24666.0388 728.831025 339745.437 26kv

99.9 33104.172 62018.1074 841.826189 1301796.28 26kv

Analysis of Accelerated Life Test Data
The following example illustrates the analysis of an accelerated life test for Class B electrical motor insulation.
The data are provided by Nelson (1990, p. 243). Forty insulation specimens were tested at four temperatures:
150ı, 170ı, 190ı, and 220ıC. The purpose of the test is to estimate the median life of the insulation at the
design operating temperature of 130ıC.

The following SAS program creates the data listed in Figure 17.8. Ten specimens of the insulation were tested
at each test temperature. The variable Time provides a specimen time to failure or a censoring time, in hours.
The variable Censor is equal to 1 if the value of the variable Time is a right-censoring time and is equal to 0
if the value is a failure time. Some censor times and failure times are identical at some of the temperatures.
Rather than repeating identical observations in the input data set, the variable Count provides the number of
specimens with identical times and temperatures. The variable Temp provides the test temperature in degrees
centigrade. The variable Cntrsl is a control variable specifying that percentiles are to be computed only for
the first value of Temp (130ıC). The value of Temp in the first observation (130ıC) does not correspond to
a test temperature. The missing values in the first observation cause the observation to be excluded from
the model fit, and the value of 1 for the variable Cntrl causes percentiles corresponding to a temperature of
130ıC to be computed.



Analysis of Accelerated Life Test Data F 1203

data classb;
input hours temp count censor;
if _n_ = 1 then cntrl=1;
else cntrl=0;
label hours='Hours';
datalines;
. 130 . .

8064 150 10 1
1764 170 1 0
2772 170 1 0
3444 170 1 0
3542 170 1 0
3780 170 1 0
4860 170 1 0
5196 170 1 0
5448 170 3 1
408 190 2 0

1344 190 2 0
1440 190 1 0
1680 190 5 1
408 220 2 0
504 220 3 0
528 220 5 1

;

Figure 17.8 Listing of the Class B Insulation Data

Obs hours temp count censor cntrl

1 . 130 . . 1

2 8064 150 10 1 0

3 1764 170 1 0 0

4 2772 170 1 0 0

5 3444 170 1 0 0

6 3542 170 1 0 0

7 3780 170 1 0 0

8 4860 170 1 0 0

9 5196 170 1 0 0

10 5448 170 3 1 0

11 408 190 2 0 0

12 1344 190 2 0 0

13 1440 190 1 0 0

14 1680 190 5 1 0

15 408 220 2 0 0

16 504 220 3 0 0

17 528 220 5 1 0
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An Arrhenius-lognormal model is fitted to the data in this example. In other words, the failure times follow
a lognormal (base 10) distribution, and the lognormal location parameter � depends on the centigrade
temperature Temp through the Arrhenius relationship

�.x/ D ˇ0 C ˇ1x

where

x D
1000

TempC 273:15

is 1000 times the reciprocal absolute temperature. The lognormal (base e) distribution is also available.

The following SAS statements fit the Arrhenius-lognormal model, and they display the fitted model distribu-
tions side-by-side on the probability and the relation plots shown in Figure 17.9:

proc reliability;
distribution lognormal10;
freq count;
model hours*censor(1) = temp /

relation = arr
obstats(quantile = .1 .5 .9 control = cntrl);

rplot hours*censor(1) = temp /
pplot
fit = model
noconf
relation = arr
plotdata
plotfit 10 50 90
lupper = 1.e5
slower = 120;

run;

The PROC RELIABILITY statement invokes the procedure and specifies CLASSB as the input data set. The
DISTRIBUTION statement specifies that the lognormal (base 10) distribution is to be used for maximum
likelihood parameter estimation and probability plotting. The FREQ statement specifies that the variable
Count is to be used as a frequency variable; that is, if Count=n, then there are n specimens with the time and
temperature specified in the observation.
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The MODEL statement fits a linear regression equation for the distribution location parameter as a function of
independent variables. In this case, the MODEL statement also transforms the independent variable through
the Arrhenius relationship. The dependent variable is specified as Time. A value of 1 for the variable Censor
indicates that the corresponding value of Time is a right-censored observation; otherwise, the value is a failure
time. The temperature variable Temp is specified as the independent variable in the model. The MODEL
statement option RELATION=ARR specifies the Arrhenius relationship.

The option OBSTATS requests statistics computed for each observation in the input data set. The options in
parentheses following OBSTATS indicate which statistics are to be computed. In this case, QUANTILE=.1
.5 .9 specifies that quantiles of the fitted distribution are to be computed for the value of the variable Temp
at each observation. The CONTROL= option requests quantiles only for those observations in which the
variable Cntrl has a value of 1. This eliminates unnecessary quantiles in the OBSTATS table since, in this
case, only the quantiles at the design temperature of 130ıC are of interest.

The RPLOT, or RELATIONPLOT, statement displays a plot of the lifetime data and the fitted model. The
dependent variable Time, the independent variable Temp, and the censoring indicator Censor are the same
as in the MODEL statement. The option FIT=MODEL specifies that the model fitted with the preceding
MODEL statement is to be used for probability plotting and in the relation plot. The option RELATION=ARR
specifies an Arrhenius scale for the horizontal axis of the relation plot. The PPLOT option specifies that a
probability plot is to be displayed alongside the relation plot. The type of probability plot is determined by the
distribution named in the DISTRIBUTION statement, in this case, a lognormal (base 10) distribution. Weibull,
extreme value, lognormal (base e), normal, log-logistic, and logistic distributions are also available. The
NOCONF option suppresses the default percentile confidence bands on the probability plot. The PLOTDATA
option specifies that the failure times are to be plotted on the relation plot. The PLOTFIT option specifies
that the 10th, 50th, and 90th percentiles of the fitted relationship are to be plotted on the relation plot. The
options LUPPER and SLOWER specify an upper limit on the life axis scale and a lower limit on the stress
(temperature) axis scale in the plots.

The plots produced by the preceding statements are shown in Figure 17.9. The plot on the left is an overlaid
lognormal probability plot of the data and the fitted model. The plot on the right is a relation plot showing the
data and the fitted relation. The fitted straight lines are percentiles of the fitted distribution at each temperature.
An Arrhenius relation fitted to the data, plotted on an Arrhenius plot, yields straight percentile lines.

Since all the data at 150ıC are right censored, there are no failures corresponding to 150ıC on the probability
plot. However, the fitted distribution at 150ıC is plotted on the probability plot.
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Figure 17.9 Probability and Relation Plots for the Class B Insulation Data

The tabular output requested with the MODEL statement is shown in Figure 17.10. The “Model Information”
table provides general information about the data and model. The “Summary of Fit” table shows the number
of observations used, the number of failures and of censored values (accounting for the frequency count), and
the maximum log likelihood for the fitted model.

The “Lognormal Parameter Estimates” table contains the Arrhenius-lognormal model parameter estimates,
their standard errors, and confidence interval estimates. In this table, INTERCEPT is the maximum likelihood
estimate of ˇ0, TEMP is the estimate of ˇ1, and Scale is the estimate of the lognormal scale parameter, � .

Figure 17.10 MODEL Statement Output for the Class B Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information

Input Data Set WORK.CLASSB

Analysis Variable hours Hours

Relation Arrhenius( temp )

Censor Variable censor

Frequency Variable count

Distribution Lognormal (Base 10)
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Figure 17.10 continued

Algorithm converged.

Summary of Fit

Observations Used 16

Uncensored Values 17

Right Censored Values 23

Missing Observations 1

Maximum Loglikelihood -12.96533

Lognormal Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept -6.0182 0.9467 -7.8737 -4.1628

temp 4.3103 0.4366 3.4546 5.1660

Scale 0.2592 0.0473 0.1812 0.3708

Observation Statistics

Hours censor temp count Prob Pcntl Stderr Lower Upper

. . 130 . 0.1000 21937.658 6959.151 11780.636 40851.857

. . 130 . 0.5000 47135.132 16125.548 24106.685 92162.016

. . 130 . 0.9000 101274.29 42061.1 44872.401 228569.92

The “Observation Statistics” table provides the estimates of the fitted distribution quantiles, their standard
errors, and the confidence limits. These are given only for the value of 130ıC, as specified with the
CONTROL= option in the MODEL statement. The predicted median life at 130ıC corresponds to a quantile
of 0.5, and it is approximately 47,135 hours.

In addition to the MODEL statement output in Figure 17.10, the RELIABILITY procedure produces tabular
output for each temperature that is identical to the output produced with the PROBPLOT statement. This
output is not shown.

Weibull Analysis of Interval Data with Common Inspection Schedule
Table 17.1 shows data for 167 identical turbine parts provided by Nelson (1982, p. 415). The parts were
inspected at certain times to determine which parts had cracked since the last inspection. The times at which
parts develop cracks are to be fitted with a Weibull distribution.
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Table 17.1 Turbine Part Cracking Data

Inspection (Months) Number

Start End Cracked Cumulative

0 6.12 5 5
6.12 19.92 16 21
19.92 29.64 12 33
29.64 35.40 18 51
35.40 39.72 18 69
39.72 45.24 2 71
45.24 52.32 6 77
52.32 63.48 17 94
63.48 Survived 73 167

Table 17.1 shows the time in months of each inspection period and the number of cracked parts found in each
period. These data are said to be interval censored since only the time interval in which failures occurred is
known, not the exact failure times. Seventy-three parts had not cracked at the last inspection, which took
place at 63.48 months. These 73 lifetimes are right censored, since the lifetimes are known only to be greater
than 63.48 months.

The interval data in this example are read from a SAS data set with a special structure. All units must have a
common inspection schedule. This type of interval data is called readout data. The following SAS program
creates the SAS data set named CRACKS, shown in Figure 17.11, and provides the data in Table 17.1 with
this structure:

data cracks;
input Time units fail;
datalines;

6.12 167 5
19.92 162 16
29.64 146 12
35.4 134 18
39.72 116 18
45.24 98 2
52.32 96 6
63.48 90 17
;

The variable Time is the inspection time—that is, the upper endpoint of each interval. The variable Units is
the number of unfailed units at the beginning of each interval, and the variable Fail is the number of units
with cracks at the inspection time.
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Figure 17.11 Listing of the Turbine Part Cracking Data

Obs Time units fail

1 6.12 167 5

2 19.92 162 16

3 29.64 146 12

4 35.40 134 18

5 39.72 116 18

6 45.24 98 2

7 52.32 96 6

8 63.48 90 17

The following statements use the RELIABILITY procedure to produce the probability plot in Figure 17.12
for the data in the data set CRACKS:

proc reliability data=cracks;
freq fail;
nenter units;
distribution Weibull;
probplot time / readout

ppout
pconfplt
noconf;

run;

The FREQ statement specifies that the variable Fail provides the number of failures in each interval. The
NENTER statement specifies that the variable Units provides the number of unfailed units at the beginning of
each interval. The DISTRIBUTION statement specifies that the Weibull distribution be used for parameter
estimation and probability plotting. The PROBPLOT statement requests a probability plot of the data.

The PROBPLOT statement option READOUT indicates that the data in the CRACKS data set are readout
(or interval) data. The option PCONFPLT specifies that confidence intervals for the cumulative probability
of failure be plotted. The confidence intervals for the cumulative probability are based on the binomial
distribution for time intervals until right censoring occurs. For time intervals after right censoring occurs, the
binomial distribution is not valid, and a normal approximation is used to compute confidence intervals.

The option NOCONF suppresses the display of confidence intervals for distribution percentiles in the
probability plot.
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Figure 17.12 Weibull Probability Plot for the Part Cracking Data

A listing of the tabular output produced by the preceding SAS statements is shown in Figure 17.13 and
Figure 17.14. By default, the specified Weibull distribution is fitted by maximum likelihood. The line plotted
on the probability plot and the tabular output summarize this fit. For interval data, the estimated cumulative
probabilities and associated confidence intervals are tabulated. In addition, general fit information, parameter
estimates, percentile estimates, standard errors, and confidence intervals are tabulated.

Figure 17.13 Partial Listing of the Tabular Output for the Part Cracking Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information

Input Data Set WORK.CRACKS

Analysis Variable Time

Frequency Variable fail

NENTER Variable units

Distribution Weibull

Estimation Method Maximum Likelihood

Confidence Coefficient 95%

Observations Used 8
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Figure 17.13 continued

Cumulative Probability Estimates

Pointwise
95%

Confidence
Limits

Lower
Lifetime

Upper
Lifetime

Cumulative
Probability Lower Upper

Standard
Error

. 6.12 0.0299 0.0125 0.0699 0.0132

6.12 19.92 0.1257 0.0834 0.1852 0.0257

19.92 29.64 0.1976 0.1440 0.2649 0.0308

29.64 35.4 0.3054 0.2403 0.3793 0.0356

35.4 39.72 0.4132 0.3410 0.4893 0.0381

39.72 45.24 0.4251 0.3524 0.5013 0.0383

45.24 52.32 0.4611 0.3869 0.5370 0.0386

52.32 63.48 0.5629 0.4868 0.6361 0.0384

Algorithm converged.

Summary of Fit

Observations Used 8

Right Censored Values 73

Left Censored Values 5

Interval Censored Values 89

Maximum Loglikelihood -309.6684

Figure 17.14 Partial Listing of the Tabular Output for the Part Cracking Data

Weibull Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

EV Location 4.2724 0.0744 4.1265 4.4182

EV Scale 0.6732 0.0664 0.5549 0.8168

Weibull Scale 71.6904 5.3335 61.9634 82.9444

Weibull Shape 1.4854 0.1465 1.2242 1.8022

Other Weibull Distribution
Parameters

Parameter Value

Mean 64.7966

Mode 33.7622

Median 56.0144

Standard Deviation 44.3943
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Figure 17.14 continued

Weibull Percentile Estimates

Asymptotic Normal

95% Confidence Limits

Percent Estimate
Standard

Error Lower Upper

0.1 0.68534385 0.29999861 0.29060848 1.61625083

0.2 1.09324674 0.42889777 0.50673224 2.3586193

0.5 2.02798319 0.67429625 1.05692279 3.8912169

1 3.23938972 0.93123832 1.84401909 5.69063837

2 5.18330703 1.2581604 3.22101028 8.34106988

5 9.70579945 1.78869256 6.76335893 13.9283666

10 15.7577991 2.22445157 11.9491109 20.7804776

20 26.1159906 2.6327383 21.4337103 31.821134

30 35.8126238 2.90557264 30.547517 41.9852137

40 45.6100472 3.27409792 39.6239146 52.5005271

50 56.0143651 3.89410377 48.8792027 64.1910859

60 67.5928125 4.90210777 58.6364803 77.917165

70 81.2334227 6.46932648 69.4938134 94.9562075

80 98.7644937 8.95137184 82.6900902 117.963654

90 125.694556 13.5078386 101.821995 155.164133

95 150.057755 18.2060035 118.300075 190.340791

99 200.437864 29.1957544 150.658574 266.66479

99.9 263.348102 44.7205513 188.791789 367.347666

In this example, the number of unfailed units at the beginning of an interval minus the number failing in the
interval is equal to the number of unfailed units entering the next interval. This is not always the case since
some unfailed units might be removed from the test at the end of an interval, for reasons unrelated to failure;
that is, they might be right censored. The special structure of the input SAS data set required for interval data
enables the RELIABILITY procedure to analyze this more general case.

Lognormal Analysis with Arbitrary Censoring
This example illustrates analyzing data that have more general censoring than in the previous example. The
data can be a combination of exact failure times, left censored, right censored, and interval censored data.
The intervals can be overlapping, unlike in the previous example, where the interval endpoints had to be the
same for all units.

Table 17.2 shows data from Nelson (1982, p. 409), analyzed by Meeker and Escobar (1998, p. 135). Each of
435 turbine wheels was inspected once to determine whether a crack had developed in the wheel or not. The
inspection time (in 100s of hours), the number inspected at the time that had cracked, and the number not
cracked are shown in the table. The quantity of interest is the time for a crack to develop.
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Table 17.2 Turbine Wheel Cracking Data

Inspection Time Number Number
(100 hours) Cracked Not Cracked

4 0 39
10 4 49
14 2 31
18 7 66
22 5 25
26 9 30
30 9 33
34 6 7
38 22 12
42 21 19
46 21 15

These data consist only of left and right censored lifetimes. If a unit exhibits a crack at an inspection time,
the unit is left censored at the time; if a unit has not developed a crack, it is right censored at the time. For
example, there are 4 left-censored lifetimes and 49 right-censored lifetimes at 1000 hours.

The following statements create a SAS data set named TURBINE that contains the data in the format
necessary for analysis by the RELIABILITY procedure:

data turbine;
label t1 = 'Time of Cracking (Hours x 100 )';
input t1 t2 f;
datalines;

. 4 0
4 . 39
. 10 4
10 . 49
. 14 2
14 . 31
. 18 7
18 . 66
. 22 5
22 . 25
. 26 9
26 . 30
. 30 9
30 . 33
. 34 6
34 . 7
. 38 22
38 . 12
. 42 21
42 . 19
. 46 21
46 . 15
;



1214 F Chapter 17: The RELIABILITY Procedure

The variables T1 and T2 represent the inspection times and determine whether the observation is right or
left censored. If T1 is missing (.), then T2 represents a left-censoring time; if T2 is missing, T1 represents a
right-censoring time. The variable F is the number of units that were found to be cracked for left-censored
observations, or not cracked for right-censored observations at an inspection time.

The following statements use the RELIABILITY procedure to produce the probability plot in Figure 17.15
for the data in the data set TURBINE:

proc reliability data = turbine;
distribution lognormal;
freq f;
pplot ( t1 t2 ) / maxitem = 5000

ppout;
run;

The DISTRIBUTION statement specifies that a lognormal probability plot be created. The FREQ statement
identifies the frequency variable F. The option MAXITEM=5000 specifies that the iterative algorithm that
computes the points on the probability plot takes a maximum of 5000 iterations. The algorithm does not
converge for these data in the default 1000 iterations, so the maximum number of iterations needs to be
increased for convergence. The option PPOUT specifies that a table of the cumulative probabilities plotted
on the probability plot be printed, along with standard errors and confidence limits.

The tabular output for the maximum likelihood lognormal fit for these data is shown in Figure 17.16.
Figure 17.15 shows the resulting lognormal probability plot with the computed cumulative probability
estimates and the lognormal fit line.
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Figure 17.15 Lognormal Probability Plot for the Turbine Wheel Data

Figure 17.16 Partial Listing of the Tabular Output for the Turbine Wheel Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information

Input Data Set WORK.TURBINE

Analysis Variable t1 Time of Cracking (Hours x 100 )

Analysis Variable t2

Frequency Variable f

Distribution Lognormal (Base e)

Estimation Method Maximum Likelihood

Confidence Coefficient 95%

Observations Used 21
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Figure 17.16 continued

Cumulative Probability Estimates

Pointwise
95%

Confidence
Limits

Lower
Lifetime

Upper
Lifetime

Cumulative
Probability Lower Upper

Standard
Error

. 4 0.0000 0.0000 0.0000 0.0000

10 10 0.0698 0.0264 0.1720 0.0337

14 14 0.0698 0.0177 0.2384 0.0473

18 18 0.0959 0.0464 0.1878 0.0345

22 22 0.1667 0.0711 0.3432 0.0680

26 26 0.2222 0.1195 0.3757 0.0657

30 30 0.2222 0.1203 0.3738 0.0650

34 34 0.4615 0.2236 0.7184 0.1383

38 38 0.5809 0.4085 0.7356 0.0865

42 42 0.5809 0.4280 0.7198 0.0766

46 46 0.5836 0.4195 0.7311 0.0822

Algorithm converged.

Summary of Fit

Observations Used 21

Uncensored Values 0

Right Censored Values 326

Left Censored Values 106

Maximum Loglikelihood -190.7315

Lognormal Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

Location 3.6999 0.0708 3.5611 3.8387

Scale 0.7199 0.0887 0.5655 0.9165

Other Lognormal
Distribution Parameters

Parameter Value

Mean 52.4062

Mode 24.0870

Median 40.4436

Standard Deviation 43.1855
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Regression Modeling
This example is an illustration of a Weibull regression model that uses a load accelerated life test of rolling
bearings, with data provided by Nelson (1990, p. 305). Bearings are tested at four different loads, and
lifetimes in 106 of revolutions are measured. The data are shown in Table 17.3. An outlier identified by
Nelson (1990) is omitted.

Table 17.3 Bearing Lifetime Data

Load Life (106 Revolutions)

0.87 1.67 2.2 2.51 3.00 3.90 4.70 7.53 14.7 27.76 37.4
0.99 0.80 1.0 1.37 2.25 2.95 3.70 6.07 6.65 7.05 7.37
1.09 0.18 0.2 0.24 0.26 0.32 0.32 0.42 0.44 0.88
1.18 0.073 0.098 0.117 0.135 0.175 0.262 0.270 0.350 0.386 0.456

These data are modeled with a Weibull regression model in which the independent variable is the logarithm
of the load. The model is

�i D ˇ0 C ˇ1xi

where �i is the location parameter of the extreme value distribution and

xi D log.load/

for the ith bearing. The following statements create a SAS data set containing the loads, log loads, and
bearing lifetimes:

data bearing;
input load Life @@;
lload = log(load);
datalines;

.87 1.67 .87 2.2 .87 2.51 .87 3.0 .87 3.9

.87 4.7 .87 7.53 .87 14.7 .87 27.76 .87 37.4

.99 .8 .99 1.0 .99 1.37 .99 2.25 .99 2.95

.99 3.7 .99 6.07 .99 6.65 .99 7.05 .99 7.37
1.09 .18 1.09 .2 1.09 .24 1.09 .26 1.09 .32
1.09 .32 1.09 .42 1.09 .44 1.09 .88 1.18 .073
1.18 .098 1.18 .117 1.18 .135 1.18 .175 1.18 .262
1.18 .270 1.18 .350 1.18 .386 1.18 .456
;

Figure 17.17 shows a listing of the bearing data.



1218 F Chapter 17: The RELIABILITY Procedure

Figure 17.17 Listing of the Bearing Data

Obs load Life lload

1 0.87 1.670 -0.13926

2 0.87 2.200 -0.13926

3 0.87 2.510 -0.13926

4 0.87 3.000 -0.13926

5 0.87 3.900 -0.13926

6 0.87 4.700 -0.13926

7 0.87 7.530 -0.13926

8 0.87 14.700 -0.13926

9 0.87 27.760 -0.13926

10 0.87 37.400 -0.13926

11 0.99 0.800 -0.01005

12 0.99 1.000 -0.01005

13 0.99 1.370 -0.01005

14 0.99 2.250 -0.01005

15 0.99 2.950 -0.01005

16 0.99 3.700 -0.01005

17 0.99 6.070 -0.01005

18 0.99 6.650 -0.01005

19 0.99 7.050 -0.01005

20 0.99 7.370 -0.01005

21 1.09 0.180 0.08618

22 1.09 0.200 0.08618

23 1.09 0.240 0.08618

24 1.09 0.260 0.08618

25 1.09 0.320 0.08618

26 1.09 0.320 0.08618

27 1.09 0.420 0.08618

28 1.09 0.440 0.08618

29 1.09 0.880 0.08618

30 1.18 0.073 0.16551

31 1.18 0.098 0.16551

32 1.18 0.117 0.16551

33 1.18 0.135 0.16551

34 1.18 0.175 0.16551

35 1.18 0.262 0.16551

36 1.18 0.270 0.16551

37 1.18 0.350 0.16551

38 1.18 0.386 0.16551

39 1.18 0.456 0.16551
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The following statements fit the regression model by maximum likelihood that uses the Weibull distribution:

ods output modobstats = Residual;
proc reliability data=bearing;

distribution Weibull;
model life = lload / covb

corrb
obstats
;

run;

The PROC RELIABILITY statement invokes the procedure and identifies BEARING as the input data set.
The DISTRIBUTION statement specifies the Weibull distribution for model fitting. The MODEL statement
specifies the regression model, identifying Life as the variable that provides the response values (the lifetimes)
and Lload as the independent variable (the log loads). The MODEL statement option COVB requests the
regression parameter covariance matrix, and the CORRB option requests the correlation matrix. The option
OBSTATS requests a table that contains residuals, predicted values, and other statistics. The ODS OUTPUT
statement creates a SAS data set named RESIDUAL that contains the table created by the OBSTATS option.

Figure 17.18 shows the tabular output produced by the RELIABILITY procedure. The “Weibull Parameter
Estimates” table contains parameter estimates, their standard errors, and 95% confidence intervals. In this
table, INTERCEPT corresponds to ˇ0, LLOAD corresponds to ˇ1, and SHAPE corresponds to the Weibull
shape parameter. Figure 17.19 shows a listing of the output data set RESIDUAL.

Figure 17.18 Analysis Results for the Bearing Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information

Input Data Set WORK.BEARING

Analysis Variable Life

Distribution Weibull

Parameter
Information

Parameter Effect

Prm1 Intercept

Prm2 lload

Prm3 EV Scale

Algorithm converged.

Summary of Fit

Observations Used 39

Uncensored Values 39

Maximum Loglikelihood -51.77737
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Figure 17.18 continued

Weibull Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept 0.8323 0.1410 0.5560 1.1086

lload -13.8529 1.2333 -16.2703 -11.4356

EV Scale 0.8043 0.0999 0.6304 1.0260

Weibull Shape 1.2434 0.1545 0.9746 1.5862

Estimated Covariance Matrix
Weibull Parameters

Prm1 Prm2 Prm3

Prm1 0.01987 -0.04374 -0.00492

Prm2 -0.04374 1.52113 0.01578

Prm3 -0.00492 0.01578 0.00999

Estimated Correlation Matrix
Weibull Parameters

Prm1 Prm2 Prm3

Prm1 1.0000 -0.2516 -0.3491

Prm2 -0.2516 1.0000 0.1281

Prm3 -0.3491 0.1281 1.0000
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Figure 17.19 Listing of Data Set Residual

Obs Life lload Xbeta Surv Resid SRESID Aresid

1 1.67 -0.139262 2.7614742 0.9407681 -2.248651 -2.795921 -2.795921

2 2.2 -0.139262 2.7614742 0.9175782 -1.973017 -2.453205 -2.453205

3 2.51 -0.139262 2.7614742 0.9036277 -1.841191 -2.289296 -2.289296

4 3 -0.139262 2.7614742 0.8811799 -1.662862 -2.067565 -2.067565

5 3.9 -0.139262 2.7614742 0.8392186 -1.400498 -1.741347 -1.741347

6 4.7 -0.139262 2.7614742 0.8016738 -1.213912 -1.50935 -1.50935

7 7.53 -0.139262 2.7614742 0.6721971 -0.742579 -0.923306 -0.923306

8 14.7 -0.139262 2.7614742 0.4015113 -0.073627 -0.091546 -0.091546

9 27.76 -0.139262 2.7614742 0.1337746 0.562122 0.6989298 0.6989298

10 37.4 -0.139262 2.7614742 0.0542547 0.8601965 1.069549 1.069549

11 0.8 -0.01005 0.971511 0.7973909 -1.194655 -1.485407 -1.485407

12 1 -0.01005 0.971511 0.741702 -0.971511 -1.207955 -1.207955

13 1.37 -0.01005 0.971511 0.6427726 -0.6567 -0.816526 -0.816526

14 2.25 -0.01005 0.971511 0.4408692 -0.160581 -0.199663 -0.199663

15 2.95 -0.01005 0.971511 0.3175927 0.1102941 0.1371372 0.1371372

16 3.7 -0.01005 0.971511 0.2186832 0.3368218 0.4187966 0.4187966

17 6.07 -0.01005 0.971511 0.0600164 0.8318476 1.0343005 1.0343005

18 6.65 -0.01005 0.971511 0.0428027 0.9231058 1.147769 1.147769

19 7.05 -0.01005 0.971511 0.0337583 0.9815166 1.2203956 1.2203956

20 7.37 -0.01005 0.971511 0.0278531 1.0259067 1.2755892 1.2755892

21 0.18 0.0861777 -0.361531 0.8303684 -1.353268 -1.682623 -1.682623

22 0.2 0.0861777 -0.361531 0.809042 -1.247907 -1.55162 -1.55162

23 0.24 0.0861777 -0.361531 0.7665749 -1.065586 -1.324925 -1.324925

24 0.26 0.0861777 -0.361531 0.7455451 -0.985543 -1.225402 -1.225402

25 0.32 0.0861777 -0.361531 0.6837688 -0.777904 -0.967228 -0.967228

26 0.32 0.0861777 -0.361531 0.6837688 -0.777904 -0.967228 -0.967228

27 0.42 0.0861777 -0.361531 0.5868036 -0.50597 -0.629112 -0.629112

28 0.44 0.0861777 -0.361531 0.5684693 -0.45945 -0.57127 -0.57127

29 0.88 0.0861777 -0.361531 0.2625812 0.2336973 0.290574 0.290574

30 0.073 0.1655144 -1.460578 0.7887184 -1.156718 -1.438237 -1.438237

31 0.098 0.1655144 -1.460578 0.7101313 -0.86221 -1.072052 -1.072052

32 0.117 0.1655144 -1.460578 0.6526714 -0.685003 -0.851717 -0.851717

33 0.135 0.1655144 -1.460578 0.6006317 -0.541902 -0.673789 -0.673789

34 0.175 0.1655144 -1.460578 0.4946523 -0.282391 -0.351119 -0.351119

35 0.262 0.1655144 -1.460578 0.3126729 0.1211675 0.1506569 0.1506569

36 0.27 0.1655144 -1.460578 0.2991233 0.1512449 0.1880546 0.1880546

37 0.35 0.1655144 -1.460578 0.1889073 0.4107561 0.5107249 0.5107249

38 0.386 0.1655144 -1.460578 0.1522503 0.5086604 0.6324568 0.6324568

39 0.456 0.1655144 -1.460578 0.0987061 0.6753158 0.8396724 0.8396724

The value of the lifetime Life and the log load Lload are included in this data set, as well as statistics computed
from the fitted model. The variable Xbeta is the value of the linear predictor

x0 Ǒ D Ǒ0 C Lload Ǒ1
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for each observation. The variable Surv contains the value of the reliability function, the variable Sresid
contains the standardized residual, and the variable Aresid contains a residual adjusted for right-censored
observations. Since there are no censored values in these data, Sresid is equal to Aresid for all the bearings.
See Table 17.32 and Table 17.33 for other statistics that are available in the OBSTATS table and data set. See
the section “Regression Model Statistics Computed for Each Observation for Lifetime Data” on page 1358
for a description of the residuals and other statistics.

If the fitted regression model is adequate, the standardized residuals have a standard extreme value distribution.
You can check the residuals by using the RELIABILITY procedure and the RESIDUAL data set to create an
extreme value probability plot of the residuals.

The following statements create the plot in Figure 17.20:

proc reliability data=residual;
distribution ev;
probplot sresid;

run;

Figure 17.20 Extreme Value Probability Plot for the Standardized Residuals

Although the estimated location is near zero and the estimated scale is near one, the plot reveals systematic
curvature, indicating that the Weibull regression model might be inadequate.
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Regression Model with Nonconstant Scale
Nelson (1990, p. 272) and Meeker and Escobar (1998, p. 439) analyzed data from a strain-controlled fatigue
test on 26 specimens of a type of superalloy. The following SAS statements create a SAS data set containing
for each specimen the level of pseudo-stress (Pstress), the number of cycles (in thousands) (Kcycles) until
failure or removal from the test, and a variable to indicate whether a specimen failed (F) or was right censored
(C) (Status):

data alloy;
input pstress kCycles status$ @@;
cen = ( status = 'C' );
datalines;

80.3 211.629 F 99.8 43.331 F
80.6 200.027 F 100.1 12.076 F
80.8 57.923 C 100.5 13.181 F
84.3 155.000 F 113.0 18.067 F
85.2 13.949 F 114.8 21.300 F
85.6 112.968 C 116.4 15.616 F
85.8 152.680 F 118.0 13.030 F
86.4 156.725 F 118.4 8.489 F
86.7 138.114 C 118.6 12.434 F
87.2 56.723 F 120.4 9.750 F
87.3 121.075 F 142.5 11.865 F
89.7 122.372 C 144.5 6.705 F
91.3 112.002 F 145.9 5.733 F
;

The following statements fit a Weibull regression model with the number of cycles to failure as the response
variable:

ods output ModObstats = Resids;
proc reliability data = alloy;

distribution Weibull;
model kcycles*cen(1) = pstress pstress*pstress / Relation = Pow Obstats;
logscale pstress;
rplot kcycles*cen(1) = pstress / fit=regression

relation = pow
plotfit 10 50 90
slower=60 supper=160
lupper=500;

label pstress = "Pseudo-Stress";
label kcycles = "Thousands of Cycles";

run;

The data set RESIDS contains standardized residuals created with the ODS OUTPUT statement. The
MODEL statement specifies a model quadratic in the log of pseudo-stress for the extreme value location
parameter. The quadratic model in pseudo-stress PSTRESS is specified in the MODEL statement, and the
RELATION=POW option specifies that the log transformation be applied to Pstress in the MODEL statement
and the LOGSCALE statement. The LOGSCALE statement specifies the log of the scale parameter as a linear
function of the log of Pstress. The RPLOT statement specifies a plot of the data and the fitted regression
model versus the variable Pstress. The FIT=REGRESSION option specifies plotting the regression model
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fitted with the preceding MODEL statement. The RELATION=POW option specifies a log stress axis. The
PLOTFIT option specifies plotting the 10th, 50th, and 90th percentiles of the regression model at each stress
level. The SLOWER, SUPPER, and LUPPER options control limits on the stress and lifetime axes.

Figure 17.21 displays the parameter estimates from the fitted regression model. Parameter estimates for
both the model for the location parameter and the scale parameter models are shown. Standard errors and
confidence limits for all parameter estimates are included.

Figure 17.21 Parameter Estimates for Fitted Regression Model

The RELIABILITY ProcedureThe RELIABILITY Procedure

Weibull Parameter Estimates

Asymptotic Normal

95%
Confidence Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept 243.1680 58.1777 129.1418 357.1943

pstress -96.5240 24.7558 -145.0445 -48.0035

pstress*pstress 9.6653 2.6299 4.5107 14.8198

Log-Scale Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept 4.4666 4.1745 -3.7152 12.6484

pstress -1.1757 0.8950 -2.9299 0.5784

Figure 17.22 displays the plot of the data and fitted regression model.
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Figure 17.22 Superalloy Fatigue Data with Fitted Regression Model

The following SAS statements create an extreme values probability plot of standardized residuals from the
regression model shown in Figure 17.23:

proc reliability data = Resids;
distribution ev;
pplot sresid*cen(1) / nofit;

run;
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Figure 17.23 Residuals for Superalloy Fatigue Data Regression Model

Regression Model with Two Independent Variables
Meeker and Escobar (1998, p. 447) analyzed data from an accelerated test on the lifetimes of glass capacitors
as a function of operating voltage and temperature. The following SAS statements create a SAS data set
containing the data. There are four lifetimes for each of eight combinations and four censored observations
after the fourth failure for each combination:
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data glass;
input Temp Voltage @;
do i = 1 to 4;

cen = 0;
input Hours @; output;

end;
do i = 1 to 4;

cen = 1;
output;

end;
datalines;

170 200 439 904 1092 1105
170 250 572 690 904 1090
170 300 315 315 439 628
170 350 258 258 347 588
180 200 959 1065 1065 1087
180 250 216 315 455 473
180 300 241 315 332 380
180 350 241 241 435 455
;

The following statements analyze the capacitor data. The MODEL statement fits a regression model with
Temp and Voltage as independent variables. Parameter estimates from the fitted regression model are shown
in Figure 17.24. An interaction term between Temp and Voltage is included. The PPLOT statement creates
a Weibull probability plot shown in Figure 17.25 with all temperature-voltage combinations overlaid on
the same plot. The regression model fit is also plotted. The RPLOT statement creates the plot shown in
Figure 17.26 of the data and Weibull distribution percentiles from the regression model as a function of
voltage for values of temperature of 150, 170, and 180:

proc reliability data = glass;
distribution Weibull;
model Hours*cen(1) = temp voltage temp * voltage;
pplot Hours*cen(1) = ( temp voltage ) / fit = model

overlay
noconf
lupper = 2000;

run;

proc reliability data = glass;
distribution Weibull;
model Hours*cen(1) = temp voltage temp * voltage;
rplot Hours*cen(1) = voltage / fit = regression(temp = 150, 170, 180)

plotfit;
run;
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Figure 17.24 Parameter Estimates for Fitted Regression Model

The RELIABILITY ProcedureThe RELIABILITY Procedure

Weibull Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept 9.4135 10.5402 -11.2449 30.0719

Temp -0.0062 0.0598 -0.1235 0.1110

Voltage 0.0086 0.0374 -0.0648 0.0820

Temp*Voltage -0.0001 0.0002 -0.0005 0.0003

EV Scale 0.3624 0.0553 0.2687 0.4887

Weibull Shape 2.7593 0.4210 2.0461 3.7209

Figure 17.25 Probability Plot for Glass Capacitor Regression Model
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Figure 17.26 Plot of Data and Fitted Weibull Percentiles for Glass Capacitor Regression Model
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Weibull Probability Plot for Two Combined Failure Modes
Doganaksoy, Hahn, and Meeker (2002) analyzed failure data for the dielectric insulation of generator armature
bars. A sample of 58 segments of bars were subjected to a high voltage stress test. Based on examination of
the sample after the test, failures were attributed to one of two modes:

� Mode D (degradation failure): degradation of the organic material. Such failures usually occur later in
life.

� Mode E (early failure): insulation defects due to a processing problem. These failures tend to occur
early in life.

The following SAS statements create a SAS data set that contains the failure data:

data Voltage;
input Hours Mode$ @@;
if Mode = 'Cen' then Status = 1;
else Status = 0;
datalines;

2 E 3 E 5 E 8 E 13 Cen 21 E
28 E 31 E 31 Cen 52 Cen 53 Cen 64 E
67 Cen 69 E 76 E 78 Cen 104 E 113 Cen
119 E 135 Cen 144 E 157 Cen 160 E 168 D
179 Cen 191 D 203 D 211 D 221 E 226 D
236 E 241 Cen 257 Cen 261 D 264 D 278 D
282 E 284 D 286 D 298 D 303 E 314 D
317 D 318 D 320 D 327 D 328 D 328 D
348 D 348 Cen 350 D 360 D 369 D 377 D
387 D 392 D 412 D 446 D
;

The variable Hours represents the number of hours until a failure, or the number of hours on test if the
sample unit did not fail. The variable Mode represents the failure mode: D for degradation failure, E for early
failures, or Cen if the unit did not fail (i.e., is right-censored). The computed variable Status is a numeric
indicator for censored observations.

The following statements fit a Weibull distribution to the individual failure modes (D and E), and compute
the failure distribution with both modes acting:

proc reliability data=Voltage;
distribution Weibull;
pplot Hours*Status(1) / pref(intersect) = 10

preflabel = ('10th Percentile')
survtime = 100 200 300 400 500 1000
lupper = 500;

fmode combine = Mode( 'D' 'E' );
run;
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Figure 17.27 contains estimates of the combined failure mode survival function at the times specified with
the SURVTIME= option in the PPLOT statement.

Figure 17.27 Survival Function Estimates for Combined Failure Modes

The RELIABILITY ProcedureThe RELIABILITY Procedure

Combined Failure Modes

Weibull Distribution Function Estimates

With 95% Asymptotic Normal Confidence Limits

X Pr(<X) Lower Upper Pr(>X) Lower Upper

100.00 0.1898 0.1172 0.2926 0.8102 0.7074 0.8828

200.00 0.3115 0.2139 0.4292 0.6885 0.5708 0.7861

300.00 0.5866 0.4621 0.7010 0.4134 0.2990 0.5379

400.00 0.9405 0.8476 0.9782 0.0595 0.0218 0.1524

500.00 0.9998 0.9711 1.0000 0.0002 0.0000 0.0289

1000.00 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Figure 17.28 shows Weibull parameter estimates for the two individual failure modes.

Figure 17.28 Parameter Estimates for Individual Failure Modes

Individual Failure Mode

Weibull Parameter Estimates

Asymptotic Normal

95%
Confidence Limits

Parameter Estimate
Standard

Error Lower Upper Mode

EV Location 5.8415 0.0350 5.7730 5.9100 D

EV Scale 0.1785 0.0254 0.1350 0.2360 D

Weibull Scale 344.2966 12.0394 321.4903 368.7208 D

Weibull Shape 5.6020 0.7985 4.2365 7.4076 D

EV Location 7.0649 0.5109 6.0637 8.0662 E

EV Scale 1.5739 0.3415 1.0287 2.4080 E

Weibull Scale 1170.1832 597.7903 429.9480 3184.8703 E

Weibull Shape 0.6354 0.1379 0.4153 0.9721 E
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Figure 17.29 is a Weibull probability plot of the failure probability distribution with the two failure modes
combined, along with approximate pointwise 95% confidence limits. A reference line at the 10% point on the
probability axis intersecting the distribution curve shows the tenth percentile of lifetimes when both modes
act to be about 34 hours.

Figure 17.29 Weibull Plot for Failure Modes D and E

The following SAS statements create the Weibull probability plot in Figure 17.30:

proc reliability data=Voltage;
distribution Weibull;
pplot Hours*Status(1) / pref(intersect) = 10

preflabel = ('10th Percentile')
survtime = 100 200 300 400 500 1000
noconf
lupper = 500;

fmode combine = Mode( 'D' 'E' ) / plotmodes;
run;

The PLOTMODES option in the FMODE statement cause the Weibull fits for the individual failure modes to
be included on the probability plot. The combined failure mode curve is almost the same as the fit curve
for mode E for lifetimes less than 100 hours, and slightly greater than the fit curve for mode D for lifetimes
greater than 100 hours.
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Figure 17.30 Weibull Plot for Failure Modes D and E with Individual Modes

Analysis of Recurrence Data on Repairs
This example illustrates analysis of recurrence data from repairable systems. Repair data analysis differs
from life data analysis, where units fail only once. As a repairable system ages, it accumulates repairs and
costs of repairs. The RELIABILITY procedure provides a nonparametric estimate and plot of the mean
cumulative function (MCF) for the number or cost of repairs for a population of repairable systems.

The nonparametric estimate of the MCF, the variance of the MCF estimate, and confidence limits for the
MCF estimate are based on the work of Nelson (1995). The MCF, also written as M.t/, is defined by Nelson
(1995) to be the population mean of the distribution of the cumulative number or cost of repairs at age t. The
method does not assume any underlying structure for the repair process.

The SAS statements that follow create the listing of the SAS data set VALVE shown in Figure 17.31, which
contains repair histories of 41 diesel engines in a fleet (Nelson 1995). The valve seats in these engines wear
out and must be replaced. The variable Id is a unique identifier for individual engines. The variable Days
provides the engine age in days. The value of the variable Value is 1 if the age is a valve seat replacement age
or -1 if the age is the end of history, or censoring age, for the engine.
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data valve;
input id Days value @@;
label Days = 'Time of Replacement (Days)';
datalines;

251 761 -1 252 759 -1 327 98 1 327 667 -1
328 326 1 328 653 1 328 653 1 328 667 -1
329 665 -1 330 84 1 330 667 -1 331 87 1
331 663 -1 389 646 1 389 653 -1 390 92 1
390 653 -1 391 651 -1 392 258 1 392 328 1
392 377 1 392 621 1 392 650 -1 393 61 1
393 539 1 393 648 -1 394 254 1 394 276 1
394 298 1 394 640 1 394 644 -1 395 76 1
395 538 1 395 642 -1 396 635 1 396 641 -1
397 349 1 397 404 1 397 561 1 397 649 -1
398 631 -1 399 596 -1 400 120 1 400 479 1
400 614 -1 401 323 1 401 449 1 401 582 -1
402 139 1 402 139 1 402 589 -1 403 593 -1
404 573 1 404 589 -1 405 165 1 405 408 1
405 604 1 405 606 -1 406 249 1 406 594 -1
407 344 1 407 497 1 407 613 -1 408 265 1
408 586 1 408 595 -1 409 166 1 409 206 1
409 348 1 409 389 -1 410 601 -1 411 410 1
411 581 1 411 601 -1 412 611 -1 413 608 -1
414 587 -1 415 367 1 415 603 -1 416 202 1
416 563 1 416 570 1 416 585 -1 417 587 -1
418 578 -1 419 578 -1 420 586 -1 421 585 -1
422 582 -1
;

Figure 17.31 Partial Listing of the Valve Seat Data

Obs id Days value

1 251 761 -1

2 252 759 -1

3 327 98 1

4 327 667 -1

5 328 326 1

6 328 653 1

7 328 653 1

8 328 667 -1

9 329 665 -1

10 330 84 1

11 330 667 -1

12 331 87 1

13 331 663 -1

14 389 646 1

15 389 653 -1

16 390 92 1

17 390 653 -1

18 391 651 -1

19 392 258 1

20 392 328 1
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The following statements produce the graphical displays in Figure 17.32 and Figure 17.33.

proc reliability;
unitid id;
mcfplot Days*value(-1) / nocenprint eventplot;

run;

The UNITID statement specifies that the variable Id uniquely identifies each system. The MCFPLOT
statement requests a plot of the MCF estimates as a function of the age variable Days, and it specifies -1
as the value of the variable Value, which identifies the end of history for each engine (system). The option
NOCENPRINT specifies that only failure times, and not censoring times, be printed in the tabular output.
The option EVENTPLOT requests a horizontal plot of failure times for each system.

In Figure 17.32, the MCF estimates and confidence limits are plotted versus system age in days. The
end-of-history ages are plotted in an area at the top of the plot. Except for the last few points, the plot is
essentially a straight line, suggesting a constant replacement rate. Consequently, the prediction of future
replacements of valve seats can be based on a fitted line in this case.

In Figure 17.33, a horizontal line for each system is drawn. Failures are marked by solid circles, and each
line terminates at the censoring time for that system.

Figure 17.32 Mean Cumulative Function for the Number of Repairs



1236 F Chapter 17: The RELIABILITY Procedure

Figure 17.33 Recurrent Events Plot for the Valve Seat Data

A partial listing of the tabular output is shown in Figure 17.34 and Figure 17.35. It contains a summary of the
repair data, estimates of the MCF, the Nelson (1995) standard errors, and confidence intervals for the MCF.

Figure 17.34 Partial Listing of the Output for the Valve Seat Data

Recurrence Data Summary

Input Data Set WORK.VALVE

Observations Used 89

Number of Units 41

Number of Events 48
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Figure 17.35 Partial Listing of the Output for the Valve Seat Data

Recurrence Data Analysis

95%
Confidence

Limits

Age
Sample

MCF
Standard

Error Lower Upper
Unit
ID

61.00 0.024 0.024 -0.023 0.072 393

76.00 0.049 0.034 -0.017 0.115 395

84.00 0.073 0.041 -0.007 0.153 330

87.00 0.098 0.046 0.007 0.188 331

92.00 0.122 0.051 0.022 0.222 390

98.00 0.146 0.055 0.038 0.255 327

120.00 0.171 0.059 0.056 0.286 400

139.00 0.195 0.062 0.074 0.316 402

139.00 0.220 0.073 0.076 0.363 402

165.00 0.244 0.075 0.096 0.392 405

166.00 0.268 0.077 0.117 0.420 409

202.00 0.293 0.079 0.138 0.447 416

206.00 0.317 0.088 0.146 0.489 409

249.00 0.341 0.089 0.168 0.515 406

254.00 0.366 0.090 0.190 0.542 394

258.00 0.390 0.090 0.213 0.568 392

265.00 0.415 0.091 0.236 0.593 408

276.00 0.439 0.098 0.247 0.631 394

298.00 0.463 0.110 0.249 0.678 394

323.00 0.488 0.110 0.273 0.703 401

326.00 0.512 0.110 0.297 0.727 328

328.00 0.537 0.115 0.311 0.762 392

344.00 0.561 0.115 0.336 0.786 407

348.00 0.585 0.124 0.342 0.829 409

349.00 0.610 0.124 0.367 0.852 397

367.00 0.634 0.123 0.393 0.876 415

377.00 0.659 0.132 0.400 0.917 392

404.00 0.684 0.136 0.417 0.950 397

408.00 0.709 0.140 0.435 0.983 405

410.00 0.734 0.139 0.461 1.006 411

449.00 0.759 0.143 0.479 1.038 401

479.00 0.784 0.146 0.497 1.070 400

497.00 0.809 0.149 0.516 1.101 407

538.00 0.834 0.152 0.535 1.132 395

539.00 0.859 0.155 0.554 1.163 393

561.00 0.884 0.162 0.567 1.201 397

563.00 0.909 0.164 0.587 1.230 416

570.00 0.934 0.170 0.600 1.267 416

573.00 0.959 0.169 0.627 1.290 404

581.00 0.985 0.171 0.649 1.320 411

586.00 1.014 0.174 0.674 1.355 408

604.00 1.060 0.185 0.697 1.422 405

621.00 1.119 0.208 0.712 1.525 392

635.00 1.181 0.207 0.776 1.587 396
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Figure 17.35 continued

Recurrence Data Analysis

95%
Confidence

Limits

Age
Sample

MCF
Standard

Error Lower Upper
Unit
ID

640.00 1.244 0.226 0.800 1.687 394

646.00 1.320 0.229 0.873 1.768 389

653.00 1.432 0.252 0.937 1.926 328

653.00 1.543 0.312 0.932 2.154 328

Parametric modeling of the repair process requires more assumptions than nonparametric modeling, and
considerable work has been done in this area. Ascher and Feingold (1984), Tobias and Trindade (1995),
Crowder et al. (1991), Meeker and Escobar (1998), Cook and Lawless (2007), Abernethy (2006), and Rigdon
and Basu (2000) describe parametric models for repair processes. Repairs are sometimes modeled as a
nonhomogeneous Poisson process, and the RELIABILITY procedure provides several forms of Poisson
process models for recurrent events data. See the section “Parametric Models for Recurrent Events Data” on
page 1369 for details about the Poisson process models that the RELIABILITY procedure provides.

A nonparametric MCF plot might be a first step in modeling a repair process, and, in many cases, provide the
required answers without further analysis. An estimate of the MCF for a sample of systems aids engineers in
determining the repair rate at any age and the increase or decrease of repair rate with population age. The
estimate is also useful for predicting the number of future repairs.

Comparison of Two Samples of Repair Data
Nelson (2002) and Doganaksoy and Nelson (1998) show how the difference of MCFs from two samples can
be used to compare the populations from which they are drawn. The RELIABILITY procedure provides
Doganaksoy and Nelson’s confidence intervals for the pointwise difference of the two MCFs, which can be
used to assess whether the difference is statistically significant.

Doganaksoy and Nelson (1998) give an example of two samples of locomotives with braking grids from two
different production batches. Figure 17.36 contains a listing of the data. The variable ID is a unique identifier
for individual locomotives. The variable Days provides the locomotive age in days. The variable Value is 1 if
the age corresponds to a braking grid replacement or -1 if the age corresponds to the locomotive’s latest age
(the current end of its history). The variable Sample is a group variable that identifies the grid production
batch.
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data Grids;
if _N_ < 40 then Sample = 'Sample1';
else Sample = 'Sample2';
input ID$ Days Value @@;
datalines;

S1-01 462 1 S1-01 730 -1 S1-02 364 1 S1-02 391 1
S1-02 548 1 S1-02 724 -1 S1-03 302 1 S1-03 444 1
S1-03 500 1 S1-03 730 -1 S1-04 250 1 S1-04 730 -1
S1-05 500 1 S1-05 724 -1 S1-06 88 1 S1-06 724 -1
S1-07 272 1 S1-07 421 1 S1-07 552 1 S1-07 625 1
S1-07 719 -1 S1-08 481 1 S1-08 710 -1 S1-09 431 1
S1-09 710 -1 S1-10 367 1 S1-10 710 -1 S1-11 635 1
S1-11 650 1 S1-11 708 -1 S1-12 402 1 S1-12 700 -1
S1-13 33 1 S1-13 687 -1 S1-14 287 1 S1-14 687 -1
S1-15 317 1 S1-15 498 1 S1-15 657 -1 S2-01 203 1
S2-01 211 1 S2-01 277 1 S2-01 373 1 S2-01 511 -1
S2-02 293 1 S2-02 503 -1 S2-03 173 1 S2-03 470 -1
S2-04 242 1 S2-04 464 -1 S2-05 39 1 S2-05 464 -1
S2-06 91 1 S2-06 462 -1 S2-07 119 1 S2-07 148 1
S2-07 306 1 S2-07 461 -1 S2-08 382 1 S2-08 460 -1
S2-09 250 1 S2-09 434 -1 S2-10 192 1 S2-10 448 -1
S2-11 369 1 S2-11 448 -1 S2-12 22 1 S2-12 447 -1
S2-13 54 1 S2-13 441 -1 S2-14 194 1 S2-14 432 -1
S2-15 61 1 S2-15 419 -1 S2-16 19 1 S2-16 185 1
S2-16 419 -1 S2-17 187 1 S2-17 416 -1 S2-18 93 1
S2-18 205 1 S2-18 264 1 S2-18 415 -1
;

Figure 17.36 Partial Listing of the Braking Grids Data

Obs Sample ID Days Value

1 Sample1 S1-01 462 1

2 Sample1 S1-01 730 -1

3 Sample1 S1-02 364 1

4 Sample1 S1-02 391 1

5 Sample1 S1-02 548 1

6 Sample1 S1-02 724 -1

7 Sample1 S1-03 302 1

8 Sample1 S1-03 444 1

9 Sample1 S1-03 500 1

10 Sample1 S1-03 730 -1

11 Sample1 S1-04 250 1

12 Sample1 S1-04 730 -1

13 Sample1 S1-05 500 1

14 Sample1 S1-05 724 -1

15 Sample1 S1-06 88 1

16 Sample1 S1-06 724 -1

17 Sample1 S1-07 272 1

18 Sample1 S1-07 421 1

19 Sample1 S1-07 552 1

20 Sample1 S1-07 625 1
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The following statements request the Nelson (1995) nonparametric estimate and confidence limits for the
difference of the MCF functions shown in Figure 17.37 for the braking grids:

proc reliability data=Grids;
unitid ID;
mcfplot Days*Value(-1) = Sample / mcfdiff;

run;

The MCFPLOT statement requests a plot of each MCF estimate as a function of age (provided by Days), and
it specifies that the end of history for each system is identified by Value equal to -1. The variable Sample
identifies the two samples of braking grids. The option MCFDIFF requests that the difference between the
MCFs of the two groups given in the variable Sample be computed and plotted. Confidence limits for the
MCF difference are also computed and plotted. The UNITID statement specifies that the variable Id uniquely
identify each system.

Figure 17.37 shows the plot of the MCF difference function and pointwise 95% confidence intervals. Since
the pointwise confidence limits do not include zero for some system ages, the difference between the two
populations is statistically significant. A listing of the tabular output is shown in Figure 17.38. It contains a
summary of the repair data for the two samples, estimates, standard errors, and confidence intervals for the
MCF difference. A statistical test for different MCFs is also computed and is displayed in the table “Tests for
Equality of Mean Functions.” The tests also indicate a significant difference between the two samples.
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Figure 17.37 Mean Cumulative Function Difference

Figure 17.38 Listing of the Output for the Braking Grids Data

MCF Difference Data Summary

Input Data Set WORK.GRIDS

Group 1 Sample1

Observations Used 39

Number of Units 15

Number of Events 24

Group 2 Sample2

Observations Used 44

Number of Units 18

Number of Events 26
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Figure 17.38 continued

Sample MCF Differences

95%
Confidence

Limits

Age
MCF

Difference
Standard

Error Lower Upper Unit ID

19.00 -0.056 0.054 -0.161 0.050 S2-16

22.00 -0.111 0.074 -0.256 0.034 S2-12

33.00 -0.044 0.098 -0.237 0.148 S1-13

39.00 -0.100 0.109 -0.313 0.113 S2-05

54.00 -0.156 0.117 -0.385 0.074 S2-13

61.00 -0.211 0.124 -0.453 0.031 S2-15

88.00 -0.144 0.137 -0.414 0.125 S1-06

91.00 -0.200 0.142 -0.478 0.078 S2-06

93.00 -0.256 0.145 -0.539 0.028 S2-18

119.00 -0.311 0.146 -0.598 -0.024 S2-07

148.00 -0.367 0.167 -0.693 -0.040 S2-07

173.00 -0.422 0.166 -0.748 -0.097 S2-03

185.00 -0.478 0.182 -0.835 -0.120 S2-16

187.00 -0.533 0.180 -0.886 -0.181 S2-17

192.00 -0.589 0.177 -0.935 -0.243 S2-10

194.00 -0.644 0.172 -0.982 -0.307 S2-14

203.00 -0.700 0.167 -1.027 -0.373 S2-01

205.00 -0.756 0.178 -1.105 -0.407 S2-18

211.00 -0.811 0.188 -1.179 -0.443 S2-01

242.00 -0.867 0.180 -1.219 -0.514 S2-04

250.00 -0.856 0.179 -1.207 -0.504 S1-04,S2-09

264.00 -0.911 0.202 -1.307 -0.515 S2-18

272.00 -0.844 0.208 -1.252 -0.437 S1-07

277.00 -0.900 0.227 -1.345 -0.455 S2-01

287.00 -0.833 0.231 -1.286 -0.380 S1-14

293.00 -0.889 0.222 -1.323 -0.455 S2-02

302.00 -0.822 0.224 -1.262 -0.383 S1-03

306.00 -0.878 0.241 -1.350 -0.406 S2-07

317.00 -0.811 0.242 -1.286 -0.337 S1-15

364.00 -0.744 0.242 -1.219 -0.270 S1-02

367.00 -0.678 0.241 -1.150 -0.206 S1-10

369.00 -0.733 0.230 -1.185 -0.282 S2-11

373.00 -0.789 0.257 -1.293 -0.284 S2-01

382.00 -0.844 0.246 -1.327 -0.362 S2-08

391.00 -0.778 0.261 -1.290 -0.266 S1-02

402.00 -0.711 0.258 -1.217 -0.206 S1-12

421.00 -0.644 0.270 -1.174 -0.115 S1-07

431.00 -0.578 0.265 -1.097 -0.059 S1-09

444.00 -0.511 0.275 -1.049 0.027 S1-03

462.00 -0.444 0.267 -0.968 0.079 S1-01

481.00 -0.378 0.258 -0.883 0.128 S1-08

498.00 -0.311 0.265 -0.830 0.208 S1-15

500.00 -0.244 0.253 -0.741 0.252 S1-05

500.00 -0.178 0.275 -0.716 0.360 S1-03
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Figure 17.38 continued

Tests for Equality of Mean Cumulative Functions

Weight
Function Statistic Variance Chi-Square DF

Pr > Chi
Square

Constant -3.673285 4.556053 2.961560 1 0.0853

Linear -4.435032 1.424770 13.805393 1 0.0002

You can fit a parametric model that uses Sample as a classification variable. This results in a model with
a common shape parameter for the two groups but with different scale parameters. Suppose you want
estimates of the parametric mean and intensity functions at values of the time variable 500, 600, 700, 800,
900, and 1,000 days for each of the two groups. The following statements create a new input data set that
has observations for the desired prediction times appended to it. The additional observations are not used
in the analysis, because the censoring variable Value is set to missing for those observations. Values of the
mean and intensity function are computed, however, in the table that is produced by specifying the OBSTATS
option in the MODEL statement.

The following statements create the new data set by appending observations to the original Grids data set:

data Predict;
Control=1;
if _N_ < 7 then Sample = 'Sample1';
else Sample = 'Sample2';

input ID$ Days Value;
cards;

9999 500 .
9999 600 .
9999 700 .
9999 800 .
9999 900 .
9999 1000 .
9999 500 .
9999 600 .
9999 700 .
9999 800 .
9999 900 .
9999 1000 .
;

data Grids;
set Predict Grids;

run;

The following statements fit a nonhomogeneous Poisson process with a power law mean function that uses
Sample as a two-level covariate. The OBSTATS option requests that predicted values be computed for
values of the variable Control equal to 1. The MCFPLOT statement plots the fitted model as well as the
nonparametric estimates of the MCF. Parametric confidence limits are displayed by default.
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proc reliability data=Grids;
unitid ID;
distribution nhpp(pow);
class Sample;
model Days*Value(-1) = Sample /obstats(control=Control);
mcfplot Days*Value(-1) = Sample /fit=model overlay;

run;

Figure 17.39 Predicted Mean and Intensity Function for the Braking Grids Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Observation Statistics

Days Value Sample ID Xbeta Shape MCF MCF_Lower MCF_Upper

500 . Sample1 9999 464.04648 1.1050556 1.0859585 0.7176451 1.6432995

600 . Sample1 9999 464.04648 1.1050556 1.3283512 0.8874029 1.9884054

700 . Sample1 9999 464.04648 1.1050556 1.5750445 1.0556772 2.3499278

800 . Sample1 9999 464.04648 1.1050556 1.8254803 1.2215469 2.7279987

900 . Sample1 9999 464.04648 1.1050556 2.0792348 1.3846219 3.1223089

1000 . Sample1 9999 464.04648 1.1050556 2.3359745 1.5448083 3.5323327

500 . Sample2 9999 323.23791 1.1050556 1.6193855 1.1012136 2.3813813

600 . Sample2 9999 323.23791 1.1050556 1.9808425 1.335699 2.9375905

700 . Sample2 9999 323.23791 1.1050556 2.3487125 1.5633048 3.5287107

800 . Sample2 9999 323.23791 1.1050556 2.7221634 1.7845232 4.1524669

900 . Sample2 9999 323.23791 1.1050556 3.100563 2.0000301 4.8066733

1000 . Sample2 9999 323.23791 1.1050556 3.4834144 2.2104841 5.4893747

Observation Statistics

Days MCF_StdErr Intensity Int_Lower Int_Upper Int_StdErr

500 0.2295199 0.0024001 0.0015543 0.0037061 0.000532

600 0.2733977 0.0024465 0.0015458 0.0038719 0.0005731

700 0.3215248 0.0024864 0.0015325 0.0040343 0.000614

800 0.3741606 0.0025216 0.0015171 0.0041911 0.0006537

900 0.4313142 0.002553 0.0015011 0.0043418 0.0006917

1000 0.4928631 0.0025814 0.0014852 0.0044866 0.000728

500 0.3186232 0.003579 0.0021872 0.0058566 0.0008993

600 0.3982653 0.0036482 0.0021492 0.0061928 0.0009849

700 0.4878045 0.0037078 0.0021124 0.006508 0.0010643

800 0.5864921 0.0037602 0.002078 0.0068042 0.0011378

900 0.6935604 0.003807 0.002046 0.0070837 0.0012061

1000 0.8083117 0.0038494 0.0020164 0.0073484 0.0012699
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Figure 17.40 Fitted Model

The predicted values of the mean and intensity functions at the desired values of Days, with standard errors
and confidence limits, are shown in Figure 17.39.

A plot of the fitted mean function, along with nonparametric estimates for the two samples, is shown in
Figure 17.40.

Analysis of Interval Age Recurrence Data
You can analyze recurrence data when the recurrence ages are grouped into intervals, instead of being exact
ages. Figure 17.41 shows a listing of a SAS data set containing field data on replacements of defrost controls
in 22,914 refrigerators, whose ages are grouped by months in service. Nelson (2002, problem 5.2, chapter 5)
presents these data. Grouping the control data on the 22,914 refrigerators into age intervals enables you
to represent the data by 29 data records, instead of requiring a single data record for each refrigerator, as
required for exact recurrence data.



1246 F Chapter 17: The RELIABILITY Procedure

The variables Lower and Upper are the lower and upper monthly interval endpoints, Recurrences is the
number of defrost control replacements in each month, and Censored is the number of refrigerator histories
censored in each month—that is, the number with current age in the monthly interval. Data are entered as
shown in Figure 17.41.

Figure 17.41 Listing of the Defrost Controls Data

Obs Lower Upper Recurrences Censored

1 0 1 83 0

2 1 2 35 0

3 2 3 23 0

4 3 4 15 0

5 4 5 22 0

6 5 6 16 3

7 6 7 13 36

8 7 8 12 24

9 8 9 15 29

10 9 10 15 37

11 10 11 24 40

12 11 12 12 20041

13 12 13 7 14

14 13 14 11 17

15 14 15 15 13

16 15 16 6 28

17 16 17 8 22

18 17 18 9 27

19 18 19 9 64

20 19 20 5 94

21 20 21 6 119

22 21 22 6 118

23 22 23 6 138

24 23 24 5 1188

25 24 25 7 17

26 25 26 5 28

27 26 27 5 99

28 27 28 6 128

29 28 29 3 590

The following SAS statements create the plot of the sample MCF of defrost control replacement shown in
Figure 17.42 and the tabular listing in Figure 17.43:

proc reliability data=defrost;
mcfplot ( interval = Lower Upper

recurrences = Recurrences
censor = Censored ) / plotsymbol = X

vaxis = 0 to .12 by .04
interpolate = join;

run;

Pointwise confidence limits are included on the plot and in the tabular listing. These limits are approximate,
and are usually shorter than the correct limits, which have not been developed for interval data.
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Here, INTERVAL = LOWER UPPER specifies the input data set variables Lower and Upper as the age interval
endpoints. The variable Recurrences identifies the number of recurrences (defrost control replacements) in
each time interval, and Censored identifies the number of units censored in each interval (number in an age
interval or removed from the sample in an age interval).

Figure 17.42 MCF Plot for the Defrost Controls

Figure 17.43 Listing of the Output for the Defrost Controls Data

Recurrence Data Summary

Input Data Set WORK.DEFROST

Observations Used 29

Number of Units 22914

Number of Events 404
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Figure 17.43 continued

Recurrence Data Analysis

Endpoints
Naive 95%

Confidence Limits

Lower Upper
Sample

MCF
Standard

Error Lower Upper

0.00 1.00 0.004 0.000 0.003 0.004

1.00 2.00 0.005 0.000 0.004 0.006

2.00 3.00 0.006 0.001 0.005 0.007

3.00 4.00 0.007 0.001 0.006 0.008

4.00 5.00 0.008 0.001 0.007 0.009

5.00 6.00 0.008 0.001 0.007 0.010

6.00 7.00 0.009 0.001 0.008 0.010

7.00 8.00 0.010 0.001 0.008 0.011

8.00 9.00 0.010 0.001 0.009 0.012

9.00 10.00 0.011 0.001 0.010 0.012

10.00 11.00 0.012 0.001 0.011 0.013

11.00 12.00 0.013 0.001 0.011 0.014

12.00 13.00 0.015 0.001 0.013 0.018

13.00 14.00 0.020 0.002 0.016 0.023

14.00 15.00 0.025 0.002 0.021 0.030

15.00 16.00 0.027 0.002 0.023 0.032

16.00 17.00 0.031 0.003 0.025 0.036

17.00 18.00 0.034 0.003 0.028 0.040

18.00 19.00 0.038 0.003 0.031 0.044

19.00 20.00 0.040 0.003 0.033 0.046

20.00 21.00 0.042 0.003 0.035 0.049

21.00 22.00 0.045 0.004 0.038 0.052

22.00 23.00 0.048 0.004 0.040 0.055

23.00 24.00 0.051 0.004 0.043 0.059

24.00 25.00 0.059 0.005 0.049 0.069

25.00 26.00 0.065 0.006 0.054 0.077

26.00 27.00 0.072 0.006 0.059 0.084

27.00 28.00 0.081 0.007 0.066 0.096

* 28.00 29.00 0.091 0.010 0.072 0.110

* The estimate and limits for this interval may not be appropriate.

The last interval is always marked with a footnote indicating that estimates for the last interval may be biased
since censoring ages often are not uniformly spread over that interval.

Analysis of Binomial Data
This example illustrates the analysis of binomial proportions of capacitor failures from nine circuit boards.
The data are given by Nelson (1982, p. 451). The following statements create and list a SAS data set named
BINEX containing the data:
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data binex;
input board sample fail;
datalines;

1 84 2
2 72 3
3 72 5
4 119 19
5 538 21
6 51 2
7 517 9
8 462 18
9 143 2
;

Figure 17.44 displays a listing of the data. The variable Board identifies the circuit board, the variable Sample
provides the number of capacitors on the boards, and the variable Fail provides the number of capacitors
failing on the boards.

Figure 17.44 Listing of the Capacitor Data

Obs board sample fail

1 1 84 2

2 2 72 3

3 3 72 5

4 4 119 19

5 5 538 21

6 6 51 2

7 7 517 9

8 8 462 18

9 9 143 2

The following statements analyze the proportion of capacitors failing:

proc reliability data=Binex;
distribution binomial;
analyze fail(sample) = board / predict(1000)

tolerance(.05);
run;

The DISTRIBUTION statement specifies the binomial distribution. The analysis requested with the ANA-
LYZE statement consists of tabular output only. Graphical output is not available for the binomial distribution.
The variable Fail provides the number of capacitors failing on each board, the variable Sample provides the
sample size (number of capacitors) for each board, and the variable Board identifies the individual boards.
The statement option PREDICT(1000) requests the predicted number of capacitors failing and prediction
limits in a future sample of size 1000. The option TOLERANCE(.05) requests the sample size required to
estimate the binomial proportion to within 0.05. Figure 17.45 displays the results of the analysis.

The “Pooled Data Analysis” table displays the estimated binomial probability and exact binomial confidence
limits when data from all boards are pooled. The chi-square value and p-value for a test of equality of the
binomial probabilities for all of the boards are also shown. In this case, the p-value is less than 0.05, so you
reject the test of equality at the 0.05 level.
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The “Predicted Values and Limits” table provides the predicted failure count and prediction limits for the
number of capacitors that would fail in a future sample of size 1000 for the pooled data, as requested with the
PREDICT(1000) option. The “Sample Size for Estimation” table gives the sample size required to estimate
the binomial probability to within 0.05 for the pooled data, as requested with the TOLERANCE(.05) option.

The “Estimates by Group” table supplies the estimated binomial probability, confidence limits, and the
contribution to the total chi-square for each board. The pooled values are shown in the last line of the table.

The “Predicted Values by Group” table gives the predicted counts in a future sample of size 1000, prediction
limits, and the sample size required to estimate the binomial probability to within the tolerance of 0.05 for
each board. Values for the pooled data are shown in the last line of the table.

Figure 17.45 Analysis of the Capacitor Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Model Information - All Groups

Input Data Set WORK.BINEX

Events Variable fail

Trials Variable sample

Distribution Binomial

Confidence Coefficient 95%

Observations Used 9

Binomial Data Analysis

Pooled Events 81.0000

Pooled Trials 2058.0000

Estimate of Proportion 0.0394

Lower Limit For Proportion 0.0314

Upper Limit For Proportion 0.0487

ChiSquare 56.8504

Pr>ChiSquare 0.0000

Predicted Value and Limits

Sample Size For Prediction 1000.0000

Predicted Count 39.3586

Lower Prediction Limit 24.8424

Upper Prediction Limit 56.3237

Sample Size For Estimation

Tolerance 0.0500

Sample Size For Tolerance 58.0975
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Figure 17.45 continued

Estimates By Group

95%
Confidence

Limits

Group Events Trials Prop Lower Upper X2

1 2 84 0.0238 0.0029 0.0834 0.5371

2 3 72 0.0417 0.0087 0.1170 0.0101

3 5 72 0.0694 0.0229 0.1547 1.7237

4 19 119 0.1597 0.0990 0.2381 45.5528

5 21 538 0.0390 0.0243 0.0590 0.0015

6 2 51 0.0392 0.0048 0.1346 0.0000

7 9 517 0.0174 0.0080 0.0328 6.5884

8 18 462 0.0390 0.0233 0.0609 0.0019

9 2 143 0.0140 0.0017 0.0496 2.4348

Pooled 81 2058 0.0394 0.0314 0.0487 56.8504

Predicted/Tolerance Values By Group

95%
Prediction Limits

Group
Predicted

Count Lower Upper
Tolerance

Sample Size

1 23.81 1.5476 88.5824 35.71

2 41.67 6.9416 124.6142 61.36

3 69.44 20.4052 165.3499 99.30

4 159.66 91.9722 254.5444 206.17

5 39.03 20.1599 64.7140 57.64

6 39.22 3.3970 144.2494 57.90

7 17.41 5.3506 36.7531 26.28

8 38.96 19.3343 66.3850 57.53

9 13.99 0.3851 53.0715 21.19

Pooled 39.36 24.8424 56.3237 58.10

Three-Parameter Weibull
Meeker and Escobar (1998) give an example of the number of cycles to fatigue failure of specimens of a
certain alloy. The first 67 specimens experienced failure, and the last five specimens had no failure at 300,000
cycles. The following statements create a SAS data set named Alloy that contains the number of cycles (in
thousands) to failure or end of test for the specimens:
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data Alloy;
input kCycles@@;
Cen = _n_ > 67;
label kCycles = 'Fatigue Life in Thousands of Cycles';
datalines;

94 96 99 99 104 108 112 114 117 117
118 121 121 123 129 131 133 135 136 139
139 140 141 141 143 144 149 149 152 153
159 159 159 159 162 168 168 169 170 170
171 172 173 176 177 180 180 184 187 188
189 190 196 197 203 205 211 213 224 226
227 256 257 269 271 274 291 300 300 300
300 300
;

The following SAS statements fit a three-parameter Weibull distribution to the specimen lifetimes, in
thousands of cycles. The PROFILE option requests a profile likelihood plot for the threshold parameter. ODS
Graphics must be enabled to create a profile likelihood plot with the PROFILE option.

proc Reliability data=Alloy;
distribution Weibull3;
Pplot kCycles*Cen(1) / Profile(noconf range=(50,100)) LifeUpper=500;

run;

Figure 17.46 shows the maximum likelihood estimates of the Weibull threshold, shape and scale parameters,
and the corresponding extreme value location and scale parameter estimates.

Figure 17.46 Three-Parameter Weibull Parameter Estimates

The RELIABILITY ProcedureThe RELIABILITY Procedure

Three-Parameter Weibull Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

EV Location 4.5354 0.1009 4.3377 4.7332

EV Scale 0.7575 0.0898 0.6005 0.9556

Weibull Scale 93.2642 9.4082 76.5329 113.6531

Weibull Shape 1.3202 0.1565 1.0465 1.6654

Weibull Threshold 92.9928 1.9516 89.1676 96.8179
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A probability plot of the failure lifetimes and the fitted three-parameter Weibull distribution is shown in
Figure 17.47.

Figure 17.47 Three-Parameter Weibull Probability Plot

A profile likelihood plot for the threshold parameter is shown in Figure 17.48. The threshold value at the
maximum log likelihood corresponds to the maximum likelihood estimate of the threshold parameter.
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Figure 17.48 Profile Likelihood for Three-Parameter Weibull Threshold

Parametric Model for Recurrent Events Data
The following SAS statements fit a non-homogeneous Poisson process with a power intensity function model
to the valve seat data described in the section “Analysis of Recurrence Data on Repairs” on page 1233. The
FIT=MODEL option in the MCFPLOT statement requests that the fitted model be plotted on the plot with
the nonparametric mean cumulative function estimates.

proc reliability data=Valve;
unitid id;
distribution Nhpp(Pow);
model Days*Value(-1);
mcfplot Days*Value(-1) / Fit=Model Noconf;

run;

The model parameter estimates are shown in Figure 17.49.
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Figure 17.49 Power Model Parameter Estimates for the Valve Seat Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

NHPP-Power Parameter Estimates

Asymptotic
Normal

95%
Confidence Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept 553.6430 57.8636 451.0941 679.5048

Shape 1.3996 0.2005 1.0570 1.8533

Figure 17.50 displays a plot of nonparametric estimates of the mean cumulative function and the fitted model
mean function. The parametric model matches the data well except at the upper end of the range of repair
times, where the parametric model does not capture the rapid increase in the number of replacements of the
valve seats. For this reason, the parametric model might not be appropriate for predicting future repairs of the
engines.

Figure 17.50 Mean Cumulative Function Plot for the Valve Seat Data
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Figure 17.51 shows the parametric model intensity function. The intensity function increases with time,
indicating an increasing rate of repairs. This is consistent with the parameter estimates in Figure 17.49, where
a shape parameter significantly greater than 1 indicates an increasing failure rate.

Figure 17.51 Intensity Function Plot for the Valve Seat Data

Parametric Model for Interval Recurrent Events Data
Byar (1980) provides data for recurrences of bladder tumors in patients in a clinical trial. Figure 17.52 is a
partial listing of data for 86 patients, of which 48 were given a placebo and 38 were treated with the drug
Thiotepa. The data are here grouped into one month intervals.
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Figure 17.52 Partial Listing of the Bladder Tumor Data

Obs Group Age Age1 N R

1 Placebo 0 1 48 0

2 Placebo 1 2 47 0

3 Placebo 2 3 46 1

4 Placebo 3 4 46 4

5 Placebo 4 5 46 7

6 Placebo 5 6 45 0

7 Placebo 6 7 45 2

8 Placebo 7 8 45 4

9 Placebo 8 9 44 1

10 Placebo 9 10 44 2

11 Placebo 10 11 44 4

12 Placebo 11 12 42 2

13 Placebo 12 13 42 1

14 Placebo 13 14 42 4

15 Placebo 14 15 42 1

16 Placebo 15 16 41 1

17 Placebo 16 17 41 5

18 Placebo 17 18 41 4

19 Placebo 18 19 41 4

20 Placebo 19 20 38 1

The following SAS statements fit a non-homogeneous Poisson process model with a power intensity function
to the interval recurrence data. Some patients were lost to follow-up in each month, so the number of patients
observed changes from month to month. The variable N provides the number of patients available at the
beginning of each month and assumed to be observed throughout the month. The variable R is the number
of recurrences of tumors in each month. Age represents the number of months after randomization into the
trial (starting with month 0), and Age1=Age+1 is the end of a month. The variable Group represents the
treatment, either Placebo or Thiotepa. The MODEL statement requests a maximum likelihood fit of the
model with Group as a classification variable. The MCFPLOT statement requests a plot of the fitted model
and nonparametric estimates of the mean cumulative function for each group.

proc reliability data=Tumor;
distribution nhpp(pow);
freq R;
nenter N;
class Group;
model (Age Age1) = Group;
mcfplot(Age Age1) = Group / fit=Model;

run;

The resulting maximum likelihood parameter estimates are shown in Figure 17.53.
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Figure 17.53 Power Model Parameter Estimates for the Bladder Tumor Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

NHPP-Power Parameter Estimates

Asymptotic
Normal

95%
Confidence

Limits

Parameter Estimate
Standard

Error Lower Upper

Intercept 23.5802 3.1567 17.3932 29.7671

Group Placebo -4.3826 3.4873 -11.2175 2.4523

Group Thiotepa 0.0000 0.0000 0.0000 0.0000

Shape 1.1682 0.0960 0.9945 1.3723

Nonparametric estimates of the mean cumulative function are plotted as points, and the fitted model is plotted
as the solid line in Figure 17.54. Pointwise parametric confidence intervals are plotted by default when the
fit=Model option is used.

Figure 17.54 Mean Cumulative Function Plot for the Bladder Tumor Data
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Syntax: RELIABILITY Procedure

Primary Statements
The following are the primary statements that control the RELIABILITY procedure:

PROC RELIABILITY < options > ;
< label: >ANALYZE variable <�censor-variable(values) > < =group-variables >

< / options > ;
< label: >MCFPLOT variable � cost/censor-variable(values) < =group-variables >

< / options > ;
MODEL variable <�censor-variable(values) > < =independent-variables >

< / options > ;
< label: >PROBPLOT variable <�censor-variable(values) > < =group-variables >

< / options > ;
< label: >RELATIONPLOT variable <�censor-variable(values) > < =group-variables >

< / options > ;

The PROC RELIABILITY statement invokes the procedure.

The plot statements ( PROBPLOT, RELATIONPLOT, and MCFPLOT) create graphical displays. Each of
the plot statements has options that control the content and appearance of the plots they create. The default
settings provide the best plots for many purposes; however, if you want to control specific details of the plots,
such as axis limits or background colors, then you need to specify the options.

In addition to graphical output, each plot statement provides analysis results in tabular form. The tabular
output also can be controlled with statement options.

The MODEL and ANALYZE statements produce only tabular analysis output, not graphical displays.

You can specify one or more of the plot and ANALYZE statements. If you specify more than one MODEL
statement, only the last one specified is used.

Secondary Statements
You can specify the following statements in conjunction with the primary statements listed previously. These
statements are used to modify the behavior of the primary statements or to specify additional variables.
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BY variables ;
CLASS variables ;
DISTRIBUTION distribution-name ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
ESTIMATE < ‘label’ > estimate-specification < / options > ;
FMODE keyword = variable(’value1’ . . . ’valuen’) ;
FREQ variable ;
INSET keyword-list < / options > ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect < ‘label’ > values < divisor=n > < , . . . < ‘label’ > values < divisor=n > >

< / options > ;
MAKE ’table’ OUT=SAS-data-set < options > ;
NENTER variable ;
NLOPTIONS < options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL=‘label’ > ;
TEST < model-effects > < / options > ;
UNITID variable ;

The EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE, SLICE, STORE, and TEST statements
are used to provide further analysis of regression models that are fit by using a MODEL statement and
are common to many SAS/STAT procedures. Summary descriptions of functionality and syntax for these
statements appear after the PROC RELIABILITY statement in alphabetical order, and full documentation
about them is available in Chapter 19, “Shared Concepts and Topics” (SAS/STAT User’s Guide).

You can use the STORE statement to store the results of fitting a regression model with a MODEL statement
for later analysis with the SAS/STAT procedure PROC PLM, if you have SAS/STAT software installed at
your site.

The BY statement specifies variables in the input data set that are used for BY processing. A separate analysis
is performed for each group of observations defined by the levels of the BY variables. The input data set
must be sorted in order of the BY variables.

The CLASS statement specifies variables in the input data set that serve as indicator, dummy, or classification
variables in the MODEL statement.

The DISTRIBUTION statement specifies a probability distribution name for those statements that require a
probability distribution for proper operation (the ANALYZE, PROBPLOT, MODEL, and RELATIONPLOT
statements). If you do not specify a distribution with the DISTRIBUTION statement, the normal distribution
is used.

The FMODE statement specifies what failure-mode data to include in the analysis of data. Use this statement
in conjunction with the ANALYZE, MODEL, PROBPLOT, or RELATIONPLOT statement.

The FREQ statement specifies a variable that provides frequency counts for each observation in the input
data set.

The INSET statement specifies what information is printed in the inset box created by the PROBPLOT or
MCFPLOT statement. The INSET statement also controls the appearance of the inset box.

The MAKE statement creates a SAS data set from any of the tables produced by the procedure. You specify a
table and a SAS data set name for the data set you want to create. There is a unique table name that identifies
each table printed; see the tables in the section “MAKE Statement” on page 1279.
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The NENTER statement specifies interval-censored data having a special structure; these data are called
readout data. Use the NENTER statement in conjunction with the FREQ statement.

The NLOPTIONS statement enables you to control aspects of the nonlinear optimizations used for maximum
likelihood estimation of the parameters of the three-parameter Weibull distribution in the ANALYZE and
PROBPLOT statements, and of parametric models for recurrent events data in the MODEL statement.

The UNITID statement specifies a variable in the input data set that is used to identify each individual unit in
an MCFPLOT statement.

Graphical Enhancement Statements
You can use the TITLE, FOOTNOTE, and NOTE statements to enhance printed output. If you are creating
plots, you can also use the LEGEND and SYMBOL statements to enhance your plots. For details, see the
SAS/GRAPH documentation and the section for the plot statement that you are using.

PROC RELIABILITY Statement
PROC RELIABILITY < options > ;

The PROC RELIABILITY statement invokes the procedure. You can specify the following options.

DATA=SAS-data-set
specifies an input data set

GOUT=graphics-catalog
specifies a catalog for saving graphical output

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 20 and 200 characters. The default length is 20 characters.

ANALYZE Statement
< label: >ANALYZE variable <�censor-variable(values) > < =group-variables > < / options > ;

< label: >ANALYZE (variable1 variable2) < =group-variables > < / options > ;

< label: >ANALYZE variable1(variable2) < =group-variables > < / options > ;

You use the ANALYZE statement to estimate the parameters of the probability distribution specified in the
DISTRIBUTION statement without producing any graphical output. The ANALYZE statement performs
the same analysis as the PROBPLOT statement, but it does not produce any plots. In addition, you can use
the ANALYZE statement to analyze data with the binomial and Poisson distributions. The third format for
the preceding ANALYZE statement applies only to Poisson and binomial data. You can use any number
of ANALYZE statements after a PROC RELIABILITY statement; each ANALYZE statement produces a
separate analysis. You can specify an optional label to distinguish between multiple ANALYZE statements
in the output.
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You must specify one variable. If your data are right censored, you must specify a censor-variable and, in
parentheses, the values of the censor-variable that correspond to censored data values.

If you are using the binomial or Poisson distributions, you must specify variable1 to represent a binomial
or Poisson count and variable2 to provide an exposure measure for the Poisson distribution or the binomial
sample size for the binomial distribution.

You can optionally specify one or two group-variables. The ANALYZE statement produces an analysis for
each level combination of the group-variable values. The observations in a given level are referred to as a
cell.

The elements of the ANALYZE statement are described as follows.

variable
represents the data for which an analysis is to be produced. A variable must be a numeric variable in
the input data set.

censor-variable(values)
indicates which observations in the input data set are right censored. You specify the values of censor-
variable that represent censored observations by placing those values in parentheses after the variable
name. If your data are not right censored, then you omit the specification of censor-variable; otherwise,
censor-variable must be a numeric variable in the input data set.

(variable1 variable2)
is another method of specifying the data. You can use this syntax in a situation where uncensored,
interval-censored, left-censored, and right-censored values occur in the same set of data. Table 17.31
shows how you use this syntax to specify different types of censoring by using combinations of missing
and nonmissing values. See the section “Lognormal Analysis with Arbitrary Censoring” on page 1212
for an example of using this syntax to create a probability plot.

variable1
represents the count data for which a Poisson or binomial analysis is to be produced. A variable1 must
be a numeric variable in the input data set.

variable2
provides either an exposure measure for a Poisson analysis or a binomial number of trials for a binomial
analysis. A variable2 must be a numeric variable in the input data set.

group-variables
are one or two group variables. If no group variables are specified, a single analysis is produced. The
group-variables can be numeric or character variables in the input data set.

Note that the parentheses surrounding the textitgroup-variables are needed only if two group variables
are specified.

options
control the features of the analysis. All options are specified after a slash (/) in the ANALYZE
statement.
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Summary of Options

The following tables summarize the options available in the ANALYZE statement. You can specify one or
more of these options to control the parameter estimation and provide optional analyses.

Table 17.4 Analysis Options for Distributions Other Than
Poisson or Binomial

Option Option Description

CONFIDENCE=number Specifies the confidence coefficient for all con-
fidence intervals. Specify a number between 0
and 1. The default value is 0.95.

CONVERGE=number Specifies the convergence criterion for max-
imum likelihood fit. See the section “Maxi-
mum Likelihood Estimation” on page 1342 for
details.

CONVH=number Specifies the convergence criterion for the rel-
ative Hessian convergence criterion. See the
section “Maximum Likelihood Estimation” on
page 1342 for details.

CORRB Requests the parameter correlation matrix.
COVB Requests the parameter covariance matrix.
FITTYPE | FIT= fit-specification Specifies the method of estimating distribu-

tion parameters. The available fit-specifications
and their meanings are shown in the following
table.

Fit Specification Definition

LSYX Least squares fit to the probability
plot. The probability axis is the
dependent variable.

LSXY Least squares fit to the probabil-
ity plot. The lifetime axis is the
dependent variable.

MLE Maximum likelihood (default).
NONE No fit is computed.
WEIBAYES
< (CONFIDENCE | CONF=number ) > Weibayes fit. number is the

confidence coefficient for the
Weibayes fit and is between 0 and
1. The default is 0.95.
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Table 17.4 Analysis Options for Distributions Other Than
Poisson or Binomial (continued)

Option Option Description

INEST | IN=SAS-data-set Specifies a SAS data set that can contain initial
values, equality constraints, upper bounds, or
lower bounds for the scale, shape, and thresh-
old parameters in a three-parameter Weibull
model for lifetime data. Applies only to three-
parameter Weibull models. See the section “IN-
EST Data Set for the Three-Parameter Weibull”
on page 1344 for details.

ITPRINT Requests the iteration history for maximum
likelihood fit.

ITPRINTEM Requests the iteration history for the Turnbull
algorithm.

LRCL Requests likelihood ratio confidence intervals
for distribution parameters.

LRCLPER Requests likelihood ratio confidence intervals
for distribution percentiles.

LRCLSURV Requests likelihood ratio confidence inter-
vals for survival and cumulative distribution
functions at times specified with the SURV-
TIME=number-list option.

LOCATION=number < LINIT > Specifies fixed or initial value of location
parameter.

MAKEHAM=number < MKINIT > Specifies the fixed or initial value of the Make-
ham parameter for the three-parameter Gom-
pertz distribution.

MAXIT=number Specifies the maximum number of iterations
allowed for maximum likelihood fit.

MAXITEREM |
MAXITEM=number1 < ,number2 > number1 specifies the maximum number of

iterations allowed for Turnbull algorithm. Iter-
ation history is printed in increments of num-
ber2 if requested with ITPRINTEM. See the
section “Interval-Censored Data” on page 1335
for details.

NOPCTILES Suppresses computation of percentiles.
NOPOLISH Suppresses the setting of small interval proba-

bilities to 0 in the Turnbull algorithm. See the
section “Interval-Censored Data” on page 1335
for details.
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Table 17.4 Analysis Options for Distributions Other Than
Poisson or Binomial (continued)

Option Option Description

PCTLIST=number-list Specifies a list of percentages for which to com-
pute percentile estimates. number-list must
be a list of numbers separated by blanks or
commas. Each number in the list must be be-
tween 0 and 100. If this option is not specified,
percentiles are computed for a standard list of
percentages.

PPOS=plotting-position Specifies the plotting-position type used to com-
pute nonparametric estimates of the probability
distribution function. See the section “Proba-
bility Plotting” on page 1331 for details. The
available plotting-position types are shown in
the following table.

Plotting Position Type

EXPRANK Expected ranks
MEDRANK Median ranks
MEDRANK1 Median ranks (exact formula)
KM Kaplan-Meier
MKM Modified Kaplan-Meier (default)
NA | NELSONAALEN Nelson-Aalen

PPOUT Requests a table of cumulative probabilities.
PRINTPROBS Print intervals and associated probabilities for

the Turnbull algorithm.
PROBLIST=number-list Specifies a list of initial values for Turnbull

algorithm. See the section “Interval-Censored
Data” on page 1335 for details.

PSTABLE=number Specifies stable parameterization. The num-
ber must be between 0 and 1. See the section
“Stable Parameters” on page 1347 for further
information.

READOUT Analyzes readout data.
SCALE=number < SCINIT > Specifies the fixed or initial value of scale

parameter.
SHAPE=number < SHINIT > Specifies the fixed or initial value of shape

parameter.
SINGULAR=number Specifies the singularity criterion for matrix

inversion.
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Table 17.4 Analysis Options for Distributions Other Than
Poisson or Binomial (continued)

Option Option Description

SURVTIME=number-list Requests that the survival function, cumulative
distribution function, and confidence limits be
computed for values in number-list . See the
section “Reliability Function” on page 1352
for details.

THRESHOLD=number Specifies a fixed threshold parameter. See Ta-
ble 17.57 for the distributions with a threshold
parameter.

TOLLIKE=number Specifies the criterion for convergence in the
Turnbull algorithm. The default is 10�8.
See the section “Interval-Censored Data” on
page 1335 for details.

TOLPROB=number Specifies the criterion for setting interval proba-
bility to 0 in the Turnbull algorithm. Default is
10�6. See the section “Interval-Censored Data”
on page 1335 for details.

WALDCL | NORMALCL Requests Wald type confidence intervals for
distribution parameters. See Table 17.68 and
Table 17.74 for details about the computation
of Wald confidence intervals. Wald confidence
intervals are provided by default, but this option
can be combined with LRCL to obtain both
types of intervals.

Table 17.5 Analysis Options for Poisson and Binomial
Distributions

Option Option Description

CONFIDENCE=number Specifies the confidence coefficient for all con-
fidence intervals. Specify a number between 0
and 1. The default value is 0.95.

PREDICT(number ) Requests predicted counts for exposure num-
ber for Poisson or sample size number for
binomial.

TOLERANCE(number ) Requests exposure for Poisson or sample size
for binomial to estimate Poisson rate or bino-
mial probability within number with probabil-
ity given by the CONFIDENCE= option.
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BY Statement
BY variables ;

You can specify a BY statement with PROC RELIABILITY to obtain separate analyses of observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the RELIABILITY
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement
CLASS variable-names< / options > ;

The CLASS statement specifies variables in the input data set that serve as indicator, dummy, or classification
variables in the MODEL statement. If a CLASS variable is specified as an independent variable in the
MODEL statement, the RELIABILITY procedure automatically generates an indicator variable for each level
of the CLASS variable. The indicator variables generated are used as independent variables in the regression
model specified in the MODEL statement. An indicator variable for a level of a CLASS variable is a variable
equal to 1 for those observations corresponding to the level and equal to 0 for all other observations.

You can specify the following option in the CLASS statement.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. If you
specify TRUNCATE without the length n, the first 16 characters of the formatted values are used.
When formatted values are longer than 16 characters, you can use this option to revert to the levels as
determined in releases before SAS 9. The default is to use the full formatted length of the CLASS
variable.
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DISTRIBUTION Statement
DISTRIBUTION probability distribution-name ;

The ANALYZE, PROBPLOT, RELATIONPLOT, and MODEL statements require you to specify the
probability distribution that describes your data. You can specify a probability distribution for lifetime data
by using the DISTRIBUTION statement anywhere after the PROC RELIABILITY statement and before the
RUN statement. If you do not specify a distribution in a DISTRIBUTION statement, the normal distribution
is assumed. In addition, you can specify a parametric non-homogeneous Poisson process model for recurrent
events data in a DISTRIBUTION statement. The probability distribution for lifetime data or the model for
recurrent events data specified determines the distribution for which parameters are estimated from your data.
The valid distributions and the statements to which they apply are shown in Table 17.6 and Table 17.7.

Table 17.6 Probability Distributions for Lifetime Data

Distribution Distribution-Name Specified Statement

Binomial BINOMIAL ANALYZE
Exponential EXPONENTIAL ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Extreme value EXTREME | EV ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Generalized gamma GAMMA MODEL
Gompertz GOMPERTZ | G2 ANALYZE, PROBPLOT
Three-parameter Gompertz GOMPERTZ3 | G3 ANALYZE, PROBPLOT
Logistic LOGISTIC | LOGIT ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Log-logistic LLOGISTIC | LLOGIT ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Lognormal (base e) LOGNORMAL | LNORM ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Lognormal (base 10) LOGNORMAL10 | LNORM10 ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Normal NORMAL ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Poisson POISSON ANALYZE
Weibull WEIBULL | W2 ANALYZE, PROBPLOT,

RELATIONPLOT, MODEL
Three-parameter Weibull WEIBULL3 | W3 ANALYZE, PROBPLOT
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Table 17.7 Poisson Process Models for Recurrence Data

NHPP Model Distribution-Name Specified Statement

Homogeneous HPP MODEL
Crow-AMSAA NHPP(CA) | NHPP(CROWAMSAA) MODEL
Log-linear NHPP(LOG) | NHPP(LOGLINEAR) MODEL
Power NHPP(POW) | NHPP(POWER) MODEL
Proportional intensity NHPP(PROP) | NHPP(PROPORTIONAL) MODEL

EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 17.8 describes the available plot-types and their plot-definition-options.

Table 17.8 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates.

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable.

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values using up to
three CLASS effects.

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable grouped by the levels of a
CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable
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For full details about the syntax and options of the EFFECTPLOT statement, see the section “EFFECTPLOT
Statement” (Chapter 19, SAS/STAT User’s Guide) in Chapter 19, “Shared Concepts and Topics” (SAS/STAT
User’s Guide).

ESTIMATE Statement
ESTIMATE < 'label ' > estimate-specification < (divisor=n) >

< , . . . < 'label ' > estimate-specification < (divisor=n) > >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are
formed as linear estimable functions of the form Lˇ. You can perform hypothesis tests for the estimable
functions, construct confidence limits, and obtain specific nonlinear transformations.

Table 17.9 summarizes the options available in the ESTIMATE statement.

Table 17.9 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
NOFILL Suppresses the automatic fill-in of coefficients for higher-order

effects
SINGULAR= Tunes the estimability checking difference

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple comparison adjustment of

estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down

fashion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits
CORR Displays the correlation matrix of estimates
COV Displays the covariance matrix of estimates
E Prints the L matrix
JOINT Produces a joint F or chi-square test for the estimable functions
PLOTS= Requests ODS statistical graphics if the analysis is sampling-based
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data



FMODE Statement F 1271

Table 17.9 continued

Option Description

EXP Exponentiates and displays estimates
ILINK Computes and displays estimates and standard errors on the inverse

linked scale

For details about the syntax of the ESTIMATE statement, see the section “ESTIMATE Statement” (Chapter 19,
SAS/STAT User’s Guide) in Chapter 19, “Shared Concepts and Topics” (SAS/STAT User’s Guide).

FMODE Statement
FMODE keyword=variable (’value1’ . . . ’valuen’) < / options > ;

Use the FMODE statement with data that have failures attributable to multiple causes (failure modes). You
can analyze data by either keeping, eliminating, or combining specific failure modes with the FMODE
statement. Use this statement with the KEEP or ELIMINATE keyword in conjunction with the ANALYZE,
MODEL, PROBPLOT, or RELATIONPLOT statement. Use this statement with the COMBINE keyword
with the ANALYZE or PROBPLOT statement. You can place an FMODE statement anywhere after the
PROC RELIABILITY statement and before the RUN statement.

If you specify the keyword KEEP, the life distribution for only the identified failure modes is estimated,
with all other failure modes treated as right-censored data. If you specify the keyword ELIMINATE, the life
distribution that results if the failure modes identified are completely eliminated is estimated. The keyword
ELIMINATE causes the failure modes identified to be treated as right-censored data and causes a single
life distribution to be estimated for the remaining data. If you specify the keyword COMBINE, the data are
analyzed with all the specified failure modes combined acting. See the section “Weibull Probability Plot for
Two Combined Failure Modes” on page 1230 for an example of a Weibull plot of data with two combined
failure modes. The failure mode for an observation in the input data set is identified by the value of variable,
where variable is any numeric or character variable in the input data set. You must identify a failure mode
for each observation that is not right-censored. You specify failure modes to keep, eliminate, or combine by
listing variable values (value1 . . . valuen) in parentheses after the failure mode variable name. The list of
variable values must have entries separated by blanks or commas. You can specify the following options
after the slash (/). These options will affect the analysis only when you use the COMBINE keyword.

Table 17.10 FMODE Statement Options

Option Description

LEGEND= Specifies a LEGEND statement for individual mode fit lines.

NOLEGEND Suppresses legend for individual mode fit lines.

PLOTMODES Plots individual failure distribution lines on probability plot.
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FREQ Statement
FREQ variable-name ;

The FREQ statement specifies a variable that provides frequency counts for each observation in the input
data set. If n is the value of the FREQ variable in the input data set for an observation, then that observation
is weighted by n. The log-likelihood function for maximum likelihood estimation is multiplied by n. If n is
not an integer, the integer part of n is used in creating probability plots.

You can also use the FREQ statement in conjunction with the NENTER statement to specify interval-censored
data having a special structure; these data are called readout data. The FREQ statement specifies a variable
in the input data set that determines the number of units failing in each interval. See the section “Weibull
Analysis of Interval Data with Common Inspection Schedule” on page 1207 for an example that uses the
FREQ statement with readout data.

You can also use the FREQ statement in conjunction with the NENTER statement to specify recurrent events
data when the event times are grouped into intervals, rather than being observed exactly. The FREQ statement
specifies a variable in the input data set that determines the number of events in each interval.

You can use the FREQ statement with the MCFPLOT and MODEL statements for exact age data to provide
frequency counts for entire recurrence histories. If n is the value of the FREQ variable at a censor time, the
history of recurrences for the corresponding system is replicated independently n times. Values of the FREQ
variable at times other than censor times are not used; they can be any value or missing without affecting the
analysis.

INSET Statement
INSET keyword-list < / options > ;

The box or table of summary information produced on plots made with the PROBPLOT or MCFPLOT
statement is called an inset. You can use the INSET statement to customize the appearance of the inset
box and the information that is printed in the inset box. To supply the information that is displayed in the
inset box, you specify a keyword that corresponds to the information you want shown. For example, the
following statements produce a Weibull plot with the sample size, the number of failures, and the Weibull
mean displayed in the inset:

proc reliability data=fan;
distribution Weibull;
pplot lifetime*censor(1);
inset n nfail weibull(mean);

run;

By default, inset entries are identified with appropriate labels. However, you can provide a customized label
by specifying the keyword for that entry followed by the equal sign (=) and the label in quotes. For example,
the following INSET statement produces an inset that contains the sample size and Weibull mean, labeled
“Sample Size” and “Weibull Mean” in the inset:
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inset n='Sample Size' weibull(mean='Weibull Mean');

If you specify a keyword that does not apply to the plot you are creating, then the keyword is ignored.

The options control the appearance of the box.

If you specify more than one INSET statement, only the last one is used.

Keywords Used in the INSET Statement

Table 17.11 through Table 17.13 list keywords available in the INSET statement to display summary statistics,
distribution parameters, and distribution fitting information.

Table 17.11 Summary Statistics

Keyword Description

N Sample size

NFAIL Number of failures for probability plots.

NEVENTS Number of events or repairs for MCF plots.

NEVENTS1 Number of events or repairs in the first group
for MCF difference plots.

NEVENTS2 Number of events or repairs in the second
group for MCF difference plots.

NUNITS Number of units or systems for MCF plots.

NUNITS1 Number of units or systems in the first group
for MCF difference plots.

NUNITS2 Number of units or systems in the second
group for MCF difference plots.

Table 17.12 General Information

Keyword Description

CONFIDENCE Confidence coefficient for all confidence in-
tervals or for the Weibayes fit

FIT Method used to estimate distribution parame-
ters for probability plots

RSQUARE R square for least squares distribution fit to
probability plots

Distribution parameters are specified as distribution-name(distribution-parameters). The following table lists
the keywords available.
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Table 17.13 Distribution Parameters

Keyword Secondary Description
Keyword

EXPONENTIAL SCALE Scale parameter
THRESHOLD Threshold parameter
MEAN Expected value

EXTREME | EV LOCATION Location parameter
SCALE Scale parameter
MEAN Expected value

GOMPERTZ | GOMP SCALE Scale parameter
SHAPE Shape parameter
MEAN Expected value

GOMPERTZ3 | GOMP3 SCALE Scale parameter
SHAPE Shape parameter
MAKEHAM Makeham mortality component
MEAN Expected value

LOGISTIC | LOGIT LOCATION Location parameter
SCALE Scale parameter
MEAN Expected value

LOGLOGISTIC | LLOGIT LOCATION Location parameter
SCALE Scale parameter
THRESHOLD Threshold parameter
MEAN Expected value

LOGNORMAL LOCATION Location parameter
SCALE Scale parameter
THRESHOLD Threshold parameter
MEAN Expected value

LOGNORMAL10 LOCATION Location parameter
SCALE Scale parameter
THRESHOLD Threshold parameter
MEAN Expected value

NORMAL LOCATION Location parameter
SCALE Scale parameter
MEAN Expected value

WEIBULL SCALE Scale parameter
SHAPE Shape parameter
THRESHOLD Threshold parameter
MEAN Expected value
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Options Used in the INSET Statement

Table 17.14 through Table 17.17 list INSET statement options that control the appearance of the inset box.

Table 17.14 lists options that control the appearance of the box when you use traditional graphics.

Table 17.14 General Appearance Options (Traditional Graphics)

Option Option Description

HEADER=’quoted-string’ Specifies text for header or box title.
NOFRAME Omits frame around box.
POS=value
< DATA | PERCENT > Determines the position of the inset. The value can be a

compass point (N, NE, E, SE, S, SW, W, NW) or a pair of
coordinates .x; y/ enclosed in parentheses. The coordinates
can be specified in axis percent units or axis data units.

REFPOINT=name Specifies the reference point for an inset that is positioned by
a pair of coordinates with the POS= option. You use the REF-
POINT= option in conjunction with the POS= coordinates.
name specifies which corner of the inset frame you have
specified with coordinates .x; y/; it can take the value of BR
(bottom right), BL (bottom left), TR (top right), or TL (top
left). The default is REFPOINT=BL. If the inset position is
specified as a compass point, then the REFPOINT= option
is ignored.

Table 17.15 lists options that control the appearance of the box when you use ODS Graphics.

Table 17.15 General Appearance Options (ODS Graphics)

Option Option Description

HEADER=’quoted-string’ Specifies text for header or box title.
NOFRAME Omits frame around box.
POS=value Determines the position of the inset. The value can be a

compass point (N, NE, E, SE, S, SW, W, NW).

Table 17.16 lists options that control the appearance of the text within the box when you use traditional
graphics. These options are not available if ODS Graphics is enabled.

Table 17.16 Text Enhancement Options (Traditional Graphics)

Option Option Description

FONT=font Software font for text

HEIGHT=value Height of text
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Table 17.17 lists options that control the colors and patterns used in the box when you use traditional graphics.
These options are not available if ODS Graphics is enabled.

Table 17.17 Color and Pattern Options (Traditional Graphics)

Option Option Description

CFILL=color Color for filling box

CFILLH=color Color for filling box header

CFRAME=color Color for frame

CHEADER=color Color for text in header

CTEXT=color Color for text

LOGSCALE Statement
LOGSCALE effect-list < /options > ;

You use the LOGSCALE statement to model the logarithm of the distribution scale parameter as a function
of explanatory variables. A MODEL statement must also be present to specify the model for the distribution
location parameter. effect-list is a list of variables in the input data set representing the values of the indepen-
dent variables in the model for each observation, and combinations of variables representing interaction terms.
It can contain any variables or combination of variables in the input data set. It can contain the same variables
as the MODEL statement, or it can contain different variables. The variables in the effect-list can be any
combination of indicator variables named in a CLASS statement and continuous variables. The coefficients
of the explanatory variables are estimated by maximum likelihood.

Table 17.18 lists the options available for the LOGSCALE statement.

Table 17.18 LOGSCALE Statement Options

Option Option Description

INITIAL=number-list Specifies initial values for log-scale regression
parameters other than the intercept term.

INTERCEPT=number < INTINIT > Specifies an initial or fixed value of the in-
tercept parameter, depending on whether IN-
TINIT is present.

LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.
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Table 17.19 summarizes the options available in the LSMEANS statement.

Table 17.19 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as

determined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of

LS-means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Produces a “Lines” display for pairwise LS-means differences
MEANS Prints the LS-means
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” (Chapter 19,
SAS/STAT User’s Guide).
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LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 17.20 summarizes the options available in the LSMESTIMATE statement.

Table 17.20 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as

determined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJUST= Determines the method for multiple-comparison adjustment of

LS-means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and

LS-means differences
PLOTS= Requests graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions with multinomial

data
EXP Exponentiates and displays LS-means estimates
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Table 17.20 continued

Option Description

ILINK Computes and displays estimates and standard errors of LS-means
(but not differences) on the inverse linked scale

For details about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE Statement”
(Chapter 19, SAS/STAT User’s Guide) in Chapter 19, “Shared Concepts and Topics” (SAS/STAT User’s
Guide).

MAKE Statement
MAKE ’table’ OUT=SAS-data-set< SAS-data-set options > ;

The MAKE statement creates a SAS data set from any of the tables produced by the RELIABILITY procedure.
You can specify SAS data set options in parentheses after the data set name. You can specify one MAKE
statement for each table that you want to save to a SAS data set.

The ODS statement also creates SAS data sets from tables, in addition to providing an extensive and
flexible method of controlling output created by the RELIABILITY procedure. The ODS statement is
the recommended method of controlling procedure output; however, the MAKE statement is provided for
compatibility with earlier releases of the SAS System.

The valid values for table are shown in the section “ODS Table Names” on page 1376, organized by the
RELIABILITY procedure statement that produces the tabular output. The table names are not case sensitive,
but they must be enclosed in single quotes.

MCFPLOT Statement
< label: >MCFPLOT variable�cost/censor-variable(values) < =group-variables > < / options > ;

< label: >MCFPLOT (< INTERVAL= >variable1 variable2 < RECURRENCES= > variable3 < CENSOR= >
variable4 ) < =group-variables > < / options > ;

< label: >MCFPLOT (variable1 variable2) < =group-variables > < / options > ;

You can specify any number of MCFPLOT statements after a PROC RELIABILITY statement. Each
MCFPLOT statement creates a separate MCF plot and associated analysis. See the section “Analysis of
Recurrence Data on Repairs” on page 1233, the section “Comparison of Two Samples of Repair Data” on
page 1238, and the section “Analysis of Interval Age Recurrence Data” on page 1245 for examples that use
the MCFPLOT statement. You can specify an optional label to distinguish between multiple MCFPLOT
statements in the output.

To create a plot of the mean cumulative function for cost or number of repairs with exact age data, you specify
a variable that represents the times of repairs. You must also specify a cost/censor-variable and the values,
in parentheses, of the cost/censor-variable that correspond to end-of-history data values (also referred to as
censored data values).
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To create a plot of the mean cumulative function for cost or number of repairs with interval age data, you
specify variable1 variable2 that represents the age intervals. You must also specify either variable3 that
represents the number of recurrences in the intervals and variable4 that represents the number censored in the
intervals, or a FREQ statement that represents the number of recurrent events in the intervals and a NENTER
statement that represents the number of units observed in the intervals.

You can optionally specify one or two group-variables (also referred to as classification variables). The
MCFPLOT statement displays a component plot for each level of the group-variables. The observations in a
given level are called a cell.

For exact data, you must also specify a unit-identification variable in conjunction with the MCFPLOT
statement to identify the individual unit name for each instance of repair or end of history on the unit. Specify
the unit-identification variable in the UNITID statement.

Add the EVENTPLOT option to any MCFPLOT statement to obtain a horizontal plot of failure and censoring
times for each system.

The elements of the MCFPLOT statement are described as follows.

variable
represents the time of repair. A variable must be a numeric variable in the input data set.

variable1 variable2
represents time intervals for grouped data. variable1 and variable2 must be numeric variables in the
input data set.

variable3
represents the number of recurrences in an interval. A variable3 must be a numeric variable in the
input data set.

variable4
represents the number censored in an interval. A variable4 must be a numeric variable in the input data
set.

cost/censor-variable(values)
indicates the cost of each repair or the number of repairs. This variable also indicates which observations
in the input data set are end-of-history (censored) data points. You specify the values of cost/censor-
variable that represent censored observations by placing those values in parentheses after the variable
name. A cost/censor-variable must be a numeric variable in the input data set.

group-variables
are one or two group variables. If no group variables are specified, a single plot is produced. The
group-variables can be any numeric or character variables in the input data set. For exact data, if
a single group variable is specified, and the group variable has two levels, then a statistical test for
equality of the groups represented by the two levels is computed and displayed in the “Tests for
Equality of Mean Functions” table. Refer to “Comparison of Two Groups of Recurrent Events Data”
on page 1369 for more details.

Note that the parentheses surrounding the group-variables are needed only if two group variables are
specified.
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options
control the features of the mean cumulative function plot. All options are specified after a slash (/)
in the MCFPLOT statement. The “Summary of Options” section, which follows, lists all options by
function.

Summary of Options

Table 17.21 lists available analysis options.

Table 17.21 Analysis Options

Option Option Description

CONFIDENCE=number Specifies the confidence coefficient for all con-
fidence intervals. Specify a number between 0
and 1. The default value is 0.95.

EVENTPLOT < (SORT=sort-order ) > Specifies a separate horizontal plot of failure
and censoring times for each system. The fol-
lowing sort orders are available:

Sort Order Definition

ASCENDINGTIME sorts by increasing censoring
times (default)

DESCENDINGTIME sorts by decreasing censoring
times

ASCENDINGFORMATTED sorts alphabetically by system
name or label

DESCENDINGFORMATTED sorts alphabetically in reverse by
system name or label

INDINC Requests variance estimates of the MCF using
the Nelson (2002) estimator under the indepen-
dent increments assumption.

LOGINTERVALS Requests that confidence intervals be com-
puted based on the asymptotic normality of
log(MCF). This is appropriate only when the
MCF estimate is positive, so does not apply to
MCF differences or when negative costs are
specified.

MCFDIFF Requests a plot of differences of MCFS of two
groups specified by a single group variable.

NOVARIANCE Suppresses MCF variance computation.
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Table 17.21 Analysis Options (continued)

Option Option Description

VARIANCE=variance-specification Specifies the method of variance calculation.
The following methods are available.

Method Definition

INDINC The method of Nelson (2002) as-
suming independent increments

LAWLESS | VARMETHOD2 The method of Lawless and
Nadeau (1995) (the default
method)

NELSON The method of Nelson (2002)
POISSON Poisson process method

Table 17.22 lists plot layout options that are available when you use traditional graphics.

Table 17.22 Plot Layout Options for Traditional Graphics

Option Option Description

CENBIN Plots censored data as frequency counts rather
than as individual points.

CENSYMBOL=symbol | (symbol-list) Specifies symbols for censored values. symbol
is one of the symbol names (plus, star, square,
diamond, triangle, hash, paw, point, dot, circle)
or a letter (A–Z). If you are creating overlaid
plots for groups of data, you can specify differ-
ent symbols for the groups with a list of sym-
bols or letters, separated by blanks, enclosed
in parentheses. If no CENSYMBOL option is
specified, the symbol used for censored values
is the same as for repairs.

HOFFSET=value Specifies offset for horizontal axis.
INBORDER Requests a border around MCF plots.
INTERPOLATE=JOIN | STEP | NONE Requests that symbols in an MCF plot be con-

nected with a straight line, step function, or not
connected.

INTERTILE=value Specifies the distance between tiles.
MCFLEGEND=legend-statement-name |
NONE

Identifies a legend statement to specify legend
for overlaid MCF plots.

MISSING1 Requests that missing values of first GROUP=
variable be treated as a level of the variable.
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Table 17.22 Plot Layout Options (continued)

Option Option Description

MISSING2 Requests that missing values of second
GROUP= variable be treated as a level of the
variable.

NCOLS=n Specifies the number of columns plotted on a
page.

NOCENPLOT Suppresses plotting of censored data points.
NOCONF Suppresses plotting of confidence intervals.
NOFRAME Suppresses the frame around the plotting area.
NOINSET Suppresses the inset.
NOLEGEND Suppresses the legend for overlaid MCF plots.
NROWS=n Specifies the number of rows plotted on a page.
ORDER1=DATA | FORMATTED |
FREQ | INTERNAL Specifies display order for values of the first

GROUP= variable.
ORDER2=DATA | FORMATTED |
FREQ | INTERNAL Specifies display order for values of the second

GROUP= variable.
OVERLAY Requests that plots with group variables be

overlaid on a single page.
PLOTSYMBOL=symbol | (symbol-list) Specifies symbols that represent events in an

MCF plot.
PLOTCOLOR=color | (color-list) Specifies colors of symbols that represent

events in an MCF plot.
TURNVLABELS Vertically strings out characters in labels for

vertical axis.
VOFFSET=value Specifies length of offset at upper end of verti-

cal axis.

Table 17.23 lists plot layout options available when you use ODS Graphics.

Table 17.23 Plot Layout Options for ODS Graphics

Option Option Description

DUANE Requests that a Duane plot be created in ad-
dition to an MCF plot. If you specify the
FIT=MODEL option, the fitted parametric
model is included in the Duane plot. See the
section “Duane Plots” on page 1375 for a de-
scription of Duane plots.
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Table 17.23 Plot Layout Options (continued)

Option Option Description

FIT=MODEL Requests that a parametric cumulative mean
function fit with a MODEL statement be plot-
ted on the same plot with nonparametric esti-
mates of the MCF. This option is valid only
if the response specification in the MCFPLOT
statement matches the response specification in
the MODEL statement. If this option is spec-
ified, the fit parametric intensity function is
plotted on a separate graph.

INTERPOLATE=JOIN | STEP | NONE Requests that symbols in an MCF plot be con-
nected with a straight line, step function, or not
connected.

MISSING1 Requests that missing values of first GROUP=
variable be treated as a level of the variable.

MISSING2 Requests that missing values of second
GROUP= variable be treated as a level of the
variable.

NCOLS=n Specifies the number of columns plotted on a
page.

NOCENPLOT Suppresses plotting of censored data points.
NOCONF Suppresses plotting of confidence intervals.
NOINSET Suppresses the inset.
NROWS=n Specifies the number of rows plotted on a page.
ORDER1=DATA | FORMATTED |
FREQ | INTERNAL Specifies the display order for values of the first

GROUP= variable.
ORDER2=DATA | FORMATTED |
FREQ | INTERNAL Specifies the display order for values of the

second GROUP= variable.
OVERLAY Requests that plots with group variables be

overlaid on a single page.

Table 17.24 lists reference line options that are available when you use traditional graphics.

Table 17.24 Reference Line Options for Traditional Graphics

Option Option Description

HREF=value-list Specifies reference lines perpendicular to hori-
zontal axis.

HREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for HREF= lines.
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Table 17.24 Reference Line Options (continued)

Option Option Description

HREFLABPOS=n Specifies the vertical position of labels for
HREF= lines. The valid values for n and the
corresponding label placements are shown in
the following table:

n Label Placement

1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

LHREF=linetype Specifies the line style for HREF= lines.
LVREF=linetype Specifies the line style for VREF= lines.
VREF=value-list Specifies reference lines perpendicular to verti-

cal axis.
VREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for VREF= lines.
VREFLABPOS=n Specifies the horizontal position of labels for

VREF= lines. The valid values for n and the
corresponding label placements are shown in
the following table:

n Label Placement

1 Left
2 Right

Table 17.25 lists reference line options that are available when you use ODS Graphics.

Table 17.25 Reference Line Options for ODS Graphics

Option Option Description

LREF< (INTERSECT) >=value-list Specifies reference lines perpendicular to the
lifetime axis. If (INTERSECT) is specified, a
second reference line is drawn perpendicular
to the MCF axis and intersects the fit line at
the same point as the lifetime axis reference
line. If a lifetime axis reference line label is
specified, the intersecting MCF axis reference
line is labeled with the MCF axis value.

LREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for LREF= lines.
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Table 17.25 Reference Line Options (continued)

Option Option Description

MREF< (INTERSECT) >=value-list Specifies reference lines perpendicular to the
MCF axis. If (INTERSECT) is specified, a
second reference line is drawn perpendicular to
the lifetime axis and intersects the fit line at the
same point as the MCF axis reference line. If
an MCF axis reference line label is specified,
the intersecting lifetime axis reference line is
labeled with the lifetime axis value.

MREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for MREF= lines.

Table 17.26 lists the options that control the appearance of the text when you use traditional graphics. These
options are not available if ODS Graphics is enabled.

Table 17.26 Text Enhancement Options

Option Option Description

FONT=font Software font for text.
HEIGHT=value Height of text used outside framed areas.
INFONT=font Software font for text inside framed areas.
INHEIGHT=value Height of text inside framed areas.

Table 17.27 lists options to control the appearance of the axes when you use traditional graphics.

Table 17.27 Axis Options for Traditional Graphics

Option Option Description

HAXIS=value1 TO value2< BY value3 > Specifies tick mark values for the horizontal
axis. value1, value2, and value3 must be nu-
meric, and value1 must be less than value2.
The lower tick mark is value1. Tick marks
are drawn at increments of value3. The last
tick mark is the greatest value that does not
exceed value2. If value3 is omitted, a value
of 1 is used. This method of specification of
tick marks is not valid for logarithmic axes.
Examples of HAXIS= lists follow:

haxis = 0 to 10
haxis = 2 to 10 by 2
haxis = 0 to 200 by 10
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Table 17.27 Axis Options (continued)

Option Option Description
HLOWER=number Specifies the lower limit on the horizontal axis

scale. The HLOWER= option specifies number
as the lower horizontal axis tick mark. The
tick mark interval and the upper axis limit are
determined automatically. This option has no
effect if the HAXIS option is used.

HUPPER=number Specifies the upper limit on the horizontal axis
scale. The HUPPER= option specifies number
as the upper horizontal axis tick mark. The
tick mark interval and the lower axis limit are
determined automatically. This option has no
effect if the HAXIS= option is used.

LGRID=number Specifies a line style for all grid lines. number
is between 1 and 46 and specifies a linestyle
for grids.

LOGLOG Requests log scales on both axes.
MINORLOGGRID Adds a minor grid for log axes.
NOGRID Suppresses grid lines.
NOHLABEL Suppresses label for horizontal axis.
NOVLABEL Suppresses label for vertical axis.
NOVTICK Suppresses tick marks and tick mark labels for

vertical axis.
NOHTICK Suppresses tick marks and tick mark labels for

horizontal axis.
NHTICK=number Specifies the number of tick intervals for the

horizontal axis. This option has no effect if the
HAXIS= option is used.

NVTICK=number Specifies the number of tick intervals for the
vertical axis. This option has no effect if the
VAXIS= option is used.
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Table 17.27 Axis Options (continued)

Option Option Description

VAXIS=value1 TO value2< BY value3 > Specifies tick mark values for the vertical axis.
value1, value2, and value3 must be numeric,
and value1 must be less than value2. The lower
tick mark is value1. Tick marks are drawn at
increments of value3. The last tick mark is
the greatest value that does not exceed value2.
This method of specification of tick marks is
not valid for logarithmic axes. If value3 is
omitted, a value of 1 is used.

vaxis = 0 to 10
vaxis = 0 to 2 by .1

VAXISLABEL=’string’ Specifies a label for the vertical axis
VLOWER=number Specifies the lower limit on the vertical axis

scale. The VLOWER= option specifies num-
ber as the lower vertical axis tick mark. The
tick mark interval and the upper axis limit are
determined automatically. This option has no
effect if the VAXIS= option is used.

VUPPER=number Specifies the upper limit on the vertical axis
scale. The VUPPER= option specifies number
as the upper vertical axis tick mark. The tick
mark interval and the lower axis limit are deter-
mined automatically. This option has no effect
if the VAXIS= option is used.

WAXIS=n Specifies the line thickness for axes and frame.

Table 17.28 lists options that control the appearance of the axes when you use ODS Graphics.

Table 17.28 Axis Options for ODS Graphics

Option Option Description

HLOWER=number Specifies the lower limit on the horizontal axis
scale. The HLOWER= option specifies number
as the lower horizontal axis tick mark. The
tick mark interval and the upper axis limit are
determined automatically. This option has no
effect if the HAXIS option is used.
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Table 17.28 Axis Options (continued)

Option Option Description

HUPPER=number Specifies the upper limit on the horizontal axis
scale. The HUPPER= option specifies number
as the upper horizontal axis tick mark. The
tick mark interval and the lower axis limit are
determined automatically. This option has no
effect if the HAXIS= option is used.

LOGLOG Requests log scales on both axes.
MINORLOGGRID Adds a minor grid for log axes.
NOGRID Suppresses grid lines.
VLOWER=number Specifies the lower limit on the vertical axis

scale. The VLOWER= option specifies num-
ber as the lower vertical axis tick mark. The
tick mark interval and the upper axis limit are
determined automatically. This option has no
effect if the VAXIS= option is used.

VUPPER=number Specifies the upper limit on the vertical axis
scale. The VUPPER= option specifies number
as the upper vertical axis tick mark. The tick
mark interval and the lower axis limit are deter-
mined automatically. This option has no effect
if the VAXIS= option is used.

Table 17.29 lists options that control colors and patterns used in the graph when you use traditional graphics.
These options are not available if ODS Graphics is enabled.

Table 17.29 Color and Pattern Options

Option Option Description

CAXIS=color Color for axis.
CCENSOR=color Color for filling censor plot area.
CENCOLOR=color Color for censor symbol.
CFRAME=color Color for frame.
CFRAMESIDE=color Color for filling frame for row labels.
CFRAMETOP=color Color for filling frame for column labels.
CGRID=color Color for grid lines.
CHREF=color Color for HREF= lines.
CTEXT=color Color for text.
CVREF=color Color for VREF= lines.
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Table 17.30 lists options that control the use of a graphics catalog to store graphs if you use traditional
graphics. These options are not available if ODS Graphics is enabled.

Table 17.30 Graphics Catalog Options

Option Option Description

DESCRIPTION=’string’ Description for graphics catalog member.
NAME=’string’ Name for plot in graphics catalog.

MODEL Statement
MODEL variable <�censor-variable(values) > < =effect-list > < / options > ;

MODEL (variable1 variable2) < =effect-list > < / options > ;

You use the MODEL statement to fit regression models, where life is modeled as a function of explanatory
variables.

You can use only one MODEL statement after a PROC RELIABILITY statement. If you specify more than
one MODEL statement, only the last is used.

The MODEL statement does not produce any plots, but it enables you to analyze more complicated regression
models than the ANALYZE, PROBPLOT, or RELATIONPLOT statement does. The probability distribution
specified in the DISTRIBUTION statement is used in the analysis. The following are examples of MODEL
statements:

model time = temp voltage;
model life*censor(1) = voltage width;

See the section “Analysis of Accelerated Life Test Data” on page 1202 and the section “Regression Modeling”
on page 1217 for examples that use the MODEL statement to fit regression models.

If your data are right censored lifetime data, you must specify a censor-variable and, in parentheses, the
values of the censor-variable that correspond to censored data values.

If your data are recurrent events data with exact event times, you must specify a censor-variable and, in
parentheses, the values of the censor-variable that correspond to the end-of-service times for each unit
under observation. In this case, you must also specify a UNITID statement to identify the specific unit that
corresponds to each observation.

If your lifetime data contain any interval-censored or left-censored values, you must specify variable1 and
variable2 in parentheses to provide the endpoints of the interval for each observation.

If your data are recurrent events data, and event times are not known exactly, but are known only to have
occurred in intervals, you must specify variable1 and variable2 in parentheses to provide the endpoints of the
interval for each observation. In this case, you must also specify a variable that determines the number of
events observed in each interval with a FREQ statement, and a variable that determines the number of units
under observation in each interval with a NENTER statement.
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The independent variables in your regression model are specified in the effect-list . The effect-list is any
combination of continuous variables, classification variables, and interaction effects.

See the section “Regression Models” on page 1345 for further information on specifying the independent
variables.

The elements of the MODEL statement are described as follows.

variable
is the dependent, or response, variable. The variable must be a numeric variable in the input data set.

censor-variable(values)
for lifetime data, indicates which observations in the input data set are right censored. You specify the
values of censor-variable that represent censored observations by placing those values in parentheses
after the variable name. If your data are not right censored, then you can omit the specification of a
censor-variable; otherwise, censor-variable must be a numeric variable in the input data set.

If your data are recurrent events data and exact event times are known, then you must specify censor-
variable. If censor-variable is equal to one of the values, then the value of variable is the end of
observation time for a unit. Otherwise, you use censor-variable to assign a cost to the event that occurs
at the value of variable. If all events have unit cost, then censor-variable should be set to one for all
observations that do not correspond to end of observation times. The censor-variable plays the same
role as the cost/censor-variable in the MCFPLOT statement in this case.

(variable1 variable2)
is another method of specifying the dependent variable in a regression model for lifetime data. You can
use this syntax in a situation where uncensored, interval-censored, left-censored, and right-censored
values occur in the same set of data. Table 17.31 shows how you use this syntax to specify different
types of censoring by using combinations of missing and nonmissing values.

Table 17.31 Specifying Censored Values

Variable1 Variable2 Type of Censoring

Nonmissing Nonmissing Uncensored if variable1 = variable2
Nonmissing Nonmissing Interval censored if variable1 < variable2
Nonmissing Missing Right censored at variable1
Missing Nonmissing Left censored at variable2
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For example, if T1 and T2 represent time in hours in the input data set

OBS T1 T2

1 . 6
2 6 12
3 12 24
4 24 .
5 24 24

then the statement

model (t1 t2);

specifies a model in which observation 1 is left censored at 6 hours, observation 2 is interval censored
in the interval (6, 12), observation 3 is interval censored in (12,24), observation 4 is right censored at
24 hours, and observation 5 is an uncensored lifetime of 24 hours.

You can also use this method to specify a model for recurrent events data when exact recurrence
times are not known. In this case, events are observed to have occurred in intervals specified by
(variable1 variable2). The values of the variable specified in a FREQ statement determine the number
of events that occurred in each interval, and the values of the variable specified in a NENTER statement
determine the number of units under observation in each interval.

effect-list
is a list of variables in the input data set representing the values of the independent variables in the
model for each observation, and combinations of variables representing interaction terms. If a variable
in the effect-list is also listed in a CLASS statement, an indicator variable is generated for each level
of the variable. An indicator variable for a particular level is equal to 1 for observations with that
level, and equal to 0 for all other observations. This type of variable is called a classification variable.
Classification variables can be either character or numeric. If a variable is not listed in a CLASS
statement, it is assumed to be a continuous variable, and it must be numeric.

options
control how the model is fit and what output is produced. All options are specified after a slash (/)
in the MODEL statement. The “Summary of Options” section, which follows, lists all options by
function.
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Summary of Options

Table 17.32 Model Statement Options

Option Option Description

CONFIDENCE=number Specifies the confidence coefficient for all con-
fidence intervals. Specify a number between 0
and 1. The default value is 0.95.

CONVERGE=number Specifies the convergence criterion for max-
imum likelihood fit. See the section “Maxi-
mum Likelihood Estimation” on page 1342 for
details.

CONVH=number Specifies the convergence criterion for the rel-
ative Hessian convergence criterion. See the
section “Maximum Likelihood Estimation” on
page 1342 for details.

CORRB Requests parameter correlation matrix.

COVB Requests parameter covariance matrix.

HPPTEST Applies only to models for recurrent events
data. This option requests a likelihood ratio
test for a homogeneous Poisson process.

INEST | IN=SAS-data-set Applies only to models for recurrent events
data. This option specifies a SAS data set that
can contain initial values, equality constraints,
upper bounds, or lower bounds for the intercept
and shape parameters in a model for recurrents
events data. See the section “INEST Data Set
for Recurrent Events Models” on page 1374 for
details.

INITIAL=number list Specifies initial values for regression parame-
ters other than the location (intercept) term.

ITPRINT Requests the iteration history for maximum
likelihood fit.

LRCL Requests likelihood ratio confidence intervals
for distribution parameters.

LOCATION=number < LINIT > Specifies the fixed or initial value of the loca-
tion, or intercept parameter.

MAXIT=number Specifies the maximum number of iterations
allowed for maximum likelihood fit.
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Table 17.32 Model Statement Options (continued)

Option Option Description

OBSTATS Requests a table that contains the XBETA,
SURV, SRESID, and ADJRESID statistics in
Table 17.33 or the XBETA, MCF, and INTEN-
SITY statistics in Table 17.34. The table also
contains the dependent and independent vari-
ables in the model. You can use this option
to compute statistics such as survival function
estimates for lifetime data or mean function es-
timates for recurrent events data for dependent
variable values not included in the analysis. Re-
fer to “Comparison of Two Samples of Repair
Data” on page 1238 for an example of comput-
ing predicted values for recurrent events data.

OBSTATS(statistics) Requests a table that contains the model vari-
ables and the statistics in the specified list of
statistics. Available statistics are shown in Ta-
ble 17.33.

ORDER=DATA | FORMATTED |
FREQ | INTERNAL Specifies the sort order for values of the classi-

fication variables in the effect-list .

PSTABLE=number Specifies stable parameterization. The number
must be between zero and one. See the section
“Stable Parameters” on page 1347 for further
information.

READOUT Analyzes data in readout structure. The FREQ
statement must be used to specify the num-
ber of units that fail in each interval, and the
NENTER statement must be used to specify
the number of unfailed units that enter each
interval.
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Table 17.32 Model Statement Options (continued)

Option Option Description

RELATION=transformation-keyword
RELATION=(transformation-
keyword1< , >transformation-keyword2)

Specifies the type of relationship between
independent and dependent variables. In
the first form, the transformation specified
is applied to the first continuous indepen-
dent variable in the model. In the second
form, the transformations specified within
parentheses are applied to the first two con-
tinuous independent variables in the model,
in the order listed. transformation-keyword ,
transformation-keyword1, and transformation-
keyword2 can be any of the transformations
listed in the following table. See Table 17.67
for definitions of the transformations.

Transformation Keyword Type of Transformation

ARRHENIUS Arrhenius (Nelson parameteriza-
tion)

ARRHENIUS2 Arrhenius (activation energy)
POWER Logarithmic
LINEAR Linear
LOGISTIC Logistic

SCALE=number < SCINIT > Specifies a fixed or initial value of scale
parameter.

SHAPE=number < SHINIT > Specifies a fixed or initial value of shape
parameter.

SINGULAR=number Specifies the singularity criterion for matrix
inversion.

THRESHOLD=number Specifies a fixed threshold parameter. See Ta-
ble 17.57 for the distributions with a threshold
parameter.

TREND=trend-test keyword | (trend-test
keywords)

Applies only to models for recurrent events
data. This option requests one or more tests of
trend for a Poisson process. TREND=LRHPP
is equivalent to the HPPTEST option. See the
section “Tests of Trend” on page 1373 for more
information about the tests. The available tests
are shown in the following table.
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Table 17.32 Model Statement Options (continued)

Option Option Description

Trend-Test Keyword Description of Test

MH | HDBK | MIL-HDBK Military handbook test
LA | LAPLACE Laplace’s test
LR | LEWIS-ROBINSON Lewis-Robinson test
LRHPP | LIKELIHOOD Likelihood ratio tset
ALL All available tests

WALDCL | NORMALCL Requests Wald type confidence intervals for
distribution parameters. See Table 17.68 and
Table 17.74 for details about the computation
of Wald confidence intervals. Wald confidence
intervals are provided by default, but this option
can be combined with LRCL to obtain both
types of intervals.

Table 17.33 Available Statistics Computed for Each Observation
with the OBSTATS Option for LIfetime Data

Option Option Description

CENSOR Is a variable that indicates the type of censoring
for each observation in the input data set. The
possible values for CENSOR and their interpre-
tations are listed in the following table.

Type of Response CENSOR Variable Value

Uncensored 0
Right-censored 1
Left-censored 2
Interval-censored 3

CONTROL=variable Specifies a control variable in the input data
set that allows the computation of statistics for
a subset of observations in the input data set.
If the value of variable is 1, the statistics are
computed for that observation. If the value
of the control variable is not equal to 1, the
statistics are not computed for that observation.
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Table 17.33 Available Statistics Computed for Each Observation
with the OBSTATS Option (continued)

Option Option Description

QUANTILES | QUANTILE |
Q=number-list Requests distribution quantiles for each num-

ber in number-list for each observation. The
numbers must be between 0 and 1. Estimated
quantile standard errors, and upper and lower
confidence limits are also tabulated.

XBETA Specifies the linear predictor.

SURVIVAL | SURV Specifies the fitted survival function, evaluated
at the value of the dependent variable.

RESID Specifies the raw residual.

SRESID Specifies the standardized residual.

GRESID Specifies the modified Cox-Snell residual.

DRESID Specifies the deviance residual.

ADJRESID Specifies the adjusted standardized residuals.
These are adjusted for right-censored obser-
vations by adding the median of the lifetime
greater than the right-censored values to the
residuals.

RESIDADJ=number Specifies the adjustment to be added to Cox-
Snell residual for right-censored data values.
The default of number is 1.0, the mean of the
standard exponential distribution.

RESIDALPHA | RALPHA=number Specifies that the number�100% percentile
residual lifetime be used to adjust right-
censored standardized residuals. The number
must be between 0 and 1. The default value is
0.5, which corresponds to the median.

Table 17.34 Available Statistics Computed for Each Observation
with the OBSTATS Option for Recurrent Events
Data

Option Option Description

CONTROL=variable Specifies a control variable in the input data
set that allows the computation of statistics for
a subset of observations in the input data set.
If the value of variable is 1, the statistics are
computed for that observation. If the value of
variable is not equal to 1, the statistics are not
computed for that observation.
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Table 17.34 Available Statistics Computed for Each Observation
with the OBSTATS Option (continued)

Option Option Description

MCF Specifies the mean function, which is evalu-
ated at the value of time for each observation.
Standard errors and confidence limits are also
computed.

INTENSITY Specifies the intensity function, which is evalu-
ated at the value of time for each observation.
Standard errors and confidence limits are also
computed.

XBETA Specifies the linear predictor.

NENTER Statement
NENTER variable ;

Use the NENTER statement in conjunction with the FREQ statement to specify interval-censored lifetime
data having a special structure; these data are called readout data. The NENTER statement specifies a
variable in the input data set that determines the number of unfailed units entering each interval. See the
section “Weibull Analysis of Interval Data with Common Inspection Schedule” on page 1207 for an example
that uses the NENTER statement with readout data.

You can also use the NENTER statement in conjunction with the FREQ statement to specify recurrent events
data when the event times are grouped into intervals, rather than being observed exactly. The NENTER
statement specifies a variable in the input data set that determines the number of units observed in each
interval.

NLOPTIONS Statement
NLOPTIONS < options > ;

You use the NLOPTIONS statement to control aspects of the optimization system that is used to compute
maximum likelihood estimates of the parameters of the three-parameter Weibull distribution with an ANA-
LYZE or PROBPLOT statement, and of the parameters of models for recurrent events data with a MODEL
statement. The syntax and options of the NLOPTIONS statement are described in Chapter 19, “Shared
Concepts and Topics” (SAS/STAT User’s Guide).
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PROBPLOT Statement
< label: >PROBPLOT variable <�censor-variable(values) > < =group-variables > < / options > ;

< label: >PROBPLOT (variable1 variable2) < =group-variables > < / options > ;

You use the PROBPLOT statement to create a probability plot from complete, left-censored, right-censored,
or interval-censored data.

You can specify the keyword PPLOT as an alias for PROBPLOT. You can specify any number of PROBPLOT
statements after a PROC RELIABILITY statement. Each PROBPLOT statement creates a probability plot
and an associated analysis. The probability distribution used in creating the probability plot and performing
the analysis is determined by the DISTRIBUTION statement. You can specify an optional label to distinguish
between multiple PROBPLOT statements in the output.

See the section “Analysis of Right-Censored Data from a Single Population” on page 1194 and the section
“Weibull Analysis Comparing Groups of Data” on page 1198 for examples that create probability plots with
the PROBPLOT statement.

To create a probability plot, you must specify one variable. If your data are right censored, you must specify
a censor-variable and, in parentheses, the values of the censor-variable that correspond to censored data
values.

You can optionally specify one or two group-variables (also referred to as classification variables). The
PROBPLOT statement displays a probability plot for each level of the group-variables. The observations in a
given level are called a cell.

The elements of the PROBPLOT statement are described as follows.

variable
represents the data for which a probability plot is to be produced. The variable must be a numeric
variable in the input data set.

censor-variable(values)
indicates which observations in the input data set are right censored. You specify the values of censor-
variable that represent censored observations by placing those values in parentheses after the variable
name. If your data are not right censored, then you can omit the specification of censor-variable;
otherwise, censor-variable must be a numeric variable in the input data set.

(variable1 variable2)
is another method of specifying the data for which a probability plot is to be produced. You can use
this syntax in a situation where uncensored, interval-censored, left-censored, and right-censored values
occur in the same set of data. Table 17.31 shows how you use this syntax to specify different types
of censoring by using combinations of missing and nonmissing values. See the section “Lognormal
Analysis with Arbitrary Censoring” on page 1212 for an example that uses this syntax to create a
probability plot.

group-variables
are one or two group variables. If no group variables are specified, a single probability plot is produced.
The group-variables can be numeric or character variables in the input data set.

Note that the parentheses surrounding the group-variables are needed only if two group variables are
specified.
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options
control the features of the probability plot. All options are specified after the slash (/) in the PROBPLOT
statement. See the section “Summary of Options” on page 1300, which follows, for a list of all options
by function.

Summary of Options

Table 17.35 lists analysis options that are available when you use either traditional graphics or ODS Graphics.

Table 17.35 Analysis Options

Option Option Description

CONFIDENCE=number Specifies the confidence coefficient for all confidence
intervals. The number must be between 0 and 1. The
default value is 0.95

CONVERGE=number Specifies the convergence criterion for maximum like-
lihood fit. See the section “Maximum Likelihood
Estimation” on page 1342 for details.

CONVH=number Specifies the convergence criterion for the relative
Hessian convergence criterion. See the section “Maxi-
mum Likelihood Estimation” on page 1342 for details.

CORRB Requests the parameter correlation matrix.
COVB Requests the parameter covariance matrix.
FITTYPE | FIT= fit-specification Specifies the method of estimating distribution pa-

rameters. The available fit-specifications and their
meanings are shown in the following table.

Fit Specification Definition

LSYX Least squares fit to the probability
plot. The probability axis is the
dependent variable.

LSXY Least squares fit to the probabil-
ity plot. The lifetime axis is the
dependent variable.

MLE Maximum likelihood (default).
MODEL Use the fit from the preceding

MODEL statement.
NONE No fit is computed.
WEIBAYES
< (CONFIDENCE | CONF=number ) >

Weibayes fit. number is the
confidence coefficient for the
Weibayes fit and is between 0 and
1. The default is 0.95.
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Table 17.35 Analysis Options (continued)

Option Option Description

INEST | IN=SAS-data-set Specifies a SAS data set that can contain initial values,
equality constraints, upper bounds, or lower bounds
for the scale, shape, and threshold parameters in a
three-parameter Weibull model for lifetime data, and
applies only to three-parameter Weibull models. See
the section “INEST Data Set for the Three-Parameter
Weibull” on page 1344 for details.

ITPRINT Requests the iteration history for maximum likelihood
fit.

ITPRINTEM Requests the iteration history for the Turnbull
algorithm.

LRCL Requests likelihood ratio confidence intervals for dis-
tribution parameters.

LRCLPER Requests likelihood ratio confidence intervals for dis-
tribution percentiles.

LRCLSURV Requests likelihood ratio confidence intervals for sur-
vival and cumulative distribution functions at times
specified with the SURVTIME=number-list option.

LOCATION=number < LINIT > Specifies a fixed or initial value of location parameter.
MAKEHAM=number < MKINIT > Specifies the fixed or initial value of the Make-

ham parameter for the three-parameter Gompertz
distribution.

MAXIT=number Specifies the maximum number of iterations allowed
for a maximum likelihood fit.

MAXITEM=number1 < ,number2 > number1 Specifies the maximum number of iterations
allowed for the Turnbull algorithm. Iteration history
will be printed in increments of number2 if an itera-
tion history is requested with ITPRINTEM. See the
section “Interval-Censored Data” on page 1335 for
details.

NOPCTILES Suppresses computation of percentiles for standard
list of percentage points.

NOPOLISH Suppresses the setting of small interval probabilities to
0 in the Turnbull algorithm. See the section “Interval-
Censored Data” on page 1335 for details.
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Table 17.35 Analysis Options (continued)

Option Option Description

NPINTERVALS=interval-type Specifies the type of nonparametric confidence inter-
val displayed in a probability plot. The available types
of intervals are listed in the following table.

Interval Type Definition

POINTWISE | POINT Pointwise confidence intervals for
the CDF. See the section “Point-
wise Confidence Intervals” on
page 1341 for details.

SIMULTANEOUS |
SIMUL< number1, number2 > Simultaneous confidence inter-

vals for the CDF. number1 and
number2 are constants that con-
trol the time interval for which
simultaneous intervals are com-
puted. The default time intervals
are the lowest and highest times
corresponding to failures in the
case of right-censored data, or
to the lowest and highest inter-
vals for which probabilities are
computed for interval-censored
data. See the section “Simulta-
neous Confidence Intervals” on
page 1341 for details.

PCTLIST=number-list Specifies a list of percentages for which to compute
percentile estimates. The number-list must be a list
of numbers separated by blanks or commas. Each
number in the list must be between 0 and 100. If this
option is not specified, percentiles are computed for a
standard list of percentages.
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Table 17.35 Analysis Options (continued)

Option Option Description

PINTERVALS=interval-type Specifies the type of parametric pointwise confidence
interval displayed in a probability plot. The available
types of intervals are listed in the following table. The
default type is PROBABILITY, pointwise confidence
intervals on cumulative failure probability.

Interval Type Definition

LIKELIHOOD | LRCI Likelihood ratio confidence inter-
vals

PERCENTILES | PER Pointwise parametric confidence
intervals for the percentiles of the
fitted CDF

PROBABILITY | CDF Pointwise parametric confidence
intervals for the cumulative fail-
ure probabilities. See the sec-
tion “Reliability Function” on
page 1352 for details.

PPOS=plotting-position Specifies the plotting-position type used to compute
nonparametric estimates of the probability distribution
function. See the section “Probability Plotting” on
page 1331 for details. The plotting position types
available are shown in the following table.

Plotting Position Type

EXPRANK Expected ranks
MEDRANK Median ranks
MEDRANK1 Median ranks (exact formula)
KM Kaplan-Meier
MKM Modified Kaplan-Meier (default)
NA | NELSONAALEN Nelson-Aalen
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Table 17.35 Analysis Options (continued)

Option Option Description

PPOUT Requests a table of nonparametric cumulative proba-
bilities in the printed output.

PRINTPROBS Specifies that intervals and associated probabilities
for the Turnbull algorithm be printed.

PROBLIST=number-list Specifies a list of initial values for Turnbull algo-
rithm. See the section “Interval-Censored Data” on
page 1335 for details.

PSTABLE=number Specifies a stable parameterization. The number must
be between 0 and 1. See the section “Stable Parame-
ters” on page 1347 for further information.

READOUT Specifies the data have the readout structure.
SCALE=number < SCINIT > Specifies a fixed or initial value of the scale parameter.
SHAPE=number < SHINIT > Specifies a fixed or initial value of the shape

parameter.
SINGULAR=number Specifies the singularity criterion for matrix inversion.
SURVTIME=number-list Requests that the survival function, cumulative distri-

bution function, and confidence limits be computed
for values in number-list . See the section “Reliability
Function” on page 1352 for details.

THRESHOLD=number Specifies a fixed threshold parameter. See Table 17.57
for the distributions with a threshold parameter.

TOLLIKE=number Specifies the criterion for convergence in the Turn-
bull algorithm. The default is 10�8. See the section
“Interval-Censored Data” on page 1335 for details.

TOLPROB=number Specifies the criterion for setting interval probabili-
ties to 0 in the Turnbull algorithm. The default is
10�6. See the section “Interval-Censored Data” on
page 1335 for details.

Table 17.36 lists analysis options that are available when ODS Graphics is enabled.

Table 17.36 Analysis Options for ODS Graphics

Option Option Description

PROFILE< (options) > Requests a profile log-likelihood plot of the threshold
parameter for a three-parameter Weibull distribution.
The options listed in the following table are available;
they are specified by enclosing them in parentheses
after the PROFILE option.
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Table 17.36 Analysis Options (continued)

Option Option Description

Profile Option Option Description

NOCONF Specifies that a reference line on
the vertical, log-likelihood axis
not be drawn. If this option is
not specified, a reference line is
drawn at a log-likelihood value
that corresponds to the profile
likelihood confidence limits on
the horizontal axis.

NPROFILE=n Specifies that the profile log like-
lihood be computed and plotted
at n threshold points. If this op-
tion is not specified, the profile
log likelihood is computed and
plotted at 100 points.

RANGE=(value1, value2) Specifies the range of threshold
values for which the profile log
likelihood is computed and plot-
ted as (value1, value2). If this
option is not specified, the range
of threshold values for which the
profile log likelihood is computed
is from 0 to the minimum failure
time.

Table 17.37 lists plot layout options that are available when you use traditional graphics.

Table 17.37 Probability Plot Layout Options for Traditional
Graphics

Option Option Description

CENBIN Specifies that censored data be plotted as frequency
counts rather than as individual points.

CENSYMBOL=
symbol | (symbol-list) Specifies symbols for censored values. The symbol is

one of the symbol names (plus, star, square, diamond,
triangle, hash, paw, point, dot, circle) or a letter (A–
Z). For overlaid plots for groups of data, you can
specify different symbols for the groups with a list of
symbols or letters, separated by blanks, enclosed in
parentheses. If no CENSYMBOL option is specified,
the symbol used for censored values is the same as
the symbol used for failures.
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Table 17.37 Probability Plot Layout Options (continued)

Option Option Description

HOFFSET=value Specifies the offset for the horizontal axis.
INBORDER Requests a border around probability plots.
INTERTILE=value Specifies the distance between tiles.
LFIT=linetype | (linetype list)) Specifies line styles for fit lines and confidence curves

in a probability plot. The linetype list is a list of
numbers from 1 to 46 representing different linetypes;
they can be separated by blanks or commas or can be
a list in the form n1 to n2 < by n3 >.

MISSING1 Requests that missing values of the first GROUP=
variable be treated as a level of the variable.

MISSING2 Requests that missing values of the second GROUP=
variable be treated as a level of the variable.

NCOLS=n Specifies that n columns be plotted on a page.
NOCENPLOT Suppresses the plotting of censored data points.
NOCONF Suppresses the plotting of percentile confidence

curves.
NOFIT Suppresses the plotting of fit line and percentile confi-

dence curves.
NOFRAME Suppresses the frame around the plotting area.
NOINSET Suppresses the inset.
NOPPLEGEND Suppresses the legend for overlaid probability plots
NOPPOS Suppresses plotting of symbols for failures in a proba-

bility plot.
NROWS=n Specifies that n rows be plotted on a page.
ORDER1=DATA | FORMATTED |
FREQ | INTERNAL

Specifies display order for values of the first GROUP=
variable.

ORDER2=DATA | FORMATTED |
FREQ | INTERNAL

Specifies the display order for values of the second
GROUP= variable.

OVERLAY Requests overlaid plots for group variables.
PCONFPLT Plots confidence intervals on probabilities for readout

data.
PPLEGEND = legend-statement-
name
| NONE Identifies LEGENDn statement to specify a legend for

overlaid probability plots.
PPOSSYMBOL=symbol | (symbol-
list)

Specifies symbols to represent failures on a probability
plot.

ROTATE Requests probability plots with the probability scale
on the horizontal axis.

SHOWMULTIPLES Requests that the count be displayed for multiple over-
laying symbols.
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Table 17.37 Probability Plot Layout Options (continued)

Option Option Description

TURNVLABELS Vertically strings out characters in labels for the verti-
cal axis.

VOFFSET=value Specifies value as the length of the offset at the upper
end of the vertical axis.

WFIT=n Specifies the line width for the fit line and confidence
curves.

Table 17.38 lists plot layout options that are available when you use ODS graphics.

Table 17.38 Probability Plot Layout Options for ODS Graphics

Option Option Description

MISSING1 Requests that missing values of first GROUP= vari-
able be treated as a level of the variable.

MISSING2 Requests that missing values of second GROUP= vari-
able be treated as a level of the variable.

NCOLS=n Specifies that n columns be plotted on a page.
NOCENPLOT Suppresses plotting of censored data points.
NOCONF Suppresses plotting of percentile confidence curves.
NOFIT Suppresses plotting of the fit line and percentile confi-

dence curves.
NOINSET Suppresses the inset.
NOPPLEGEND Suppresses the legend for overlaid probability plots.
NOPPOS Suppresses plotting of symbols for failures in a proba-

bility plot.
NROWS=n Specifies that n rows be plotted on a page.
ORDER1=DATA | FORMATTED |
FREQ | INTERNAL Specifies the display order for values of the first

GROUP= variable.
ORDER2=DATA | FORMATTED |
FREQ | INTERNAL Specifies the display order for values of the second

GROUP= variable.
OVERLAY Requests overlaid plots for group variables.
PCONFPLT Plots confidence intervals on probabilities for readout

data.
ROTATE Requests probability plots with the probability scale

on the horizontal axis.
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Table 17.39 lists reference line options that are available when you use traditional graphics.

Table 17.39 Reference Line Options for Traditional Graphics

Option Option Description

HREF < (INTERSECT) >=value-list Requests reference lines perpendicular to horizon-
tal axis. If (INTERSECT) is specified, a second
reference line perpendicular to the vertical axis is
drawn that intersects the fit line at the same point
as the horizontal axis reference line. If a horizontal
axis reference line label is specified, the intersect-
ing vertical axis reference line is labeled with the
vertical axis value.

HREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for HREF= lines.
HREFLABPOS=n Specifies vertical position of labels for HREF=

lines. The valid values for n and the corresponding
label placements are shown in the following table:

n Label Placement

1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

LHREF=linetype Specifies the line style for HREF= lines.
LVREF=linetype Specifies the line style for VREF= lines.
VREF < (INTERSECT) >=value-list Specifies reference lines perpendicular to vertical

axis. If (INTERSECT) is specified, a second ref-
erence line perpendicular to the horizontal axis is
drawn that intersects the fit line at the same point
as the vertical axis reference line. If a vertical axis
reference line label is specified, the intersecting
horizontal axis reference line is labeled with the
horizontal axis value.

VREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for VREF= lines.
VREFLABPOS=n Specifies horizontal position of labels for VREF=

lines. The valid values for n and the corresponding
label placements are shown in the following table:

n Label Placement

1 Left
2 Right
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Table 17.40 lists reference line options that are available when you use ODS graphics.

Table 17.40 Reference Line Options for ODS Graphics

Option Option Description

LREF < (INTERSECT) >=value-list Requests reference lines perpendicular to the life-
time axis. If (INTERSECT) is specified, a second
reference line is drawn perpendicular to the prob-
ability axis and intersects the fit line at the same
point as the lifetime axis reference line. If a life-
time axis reference line label is specified, the in-
tersecting probability axis reference line is labeled
with the probability axis value.

LREFLABELS =( ’label1’ . . . ’labeln’) Specifies labels for LREF= lines.
PREF < (INTERSECT) >=value-list Specifies reference lines perpendicular to the prob-

ability axis. If (INTERSECT) is specified, a sec-
ond reference line is drawn perpendicular to the
lifetime axis and intersects the fit line at the same
point as the probability axis reference line. If a
probability axis reference line label is specified,
the intersecting lifetime axis reference line is la-
beled with the lifetime axis value.

PREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for PREF= lines.

Table 17.41 lists options that control the appearance of the text when you use traditional graphics. These
options are not available if ODS Graphics is enabled.

Table 17.41 Text Enhancement Options

Option Option Description

FONT=font Specifies a software font for text.
HEIGHT=value Specifies the height of text used outside framed

areas.
INFONT=font Specifies a software font for text inside framed

areas.
INHEIGHT=value Specifies the height of text inside framed areas.
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Table 17.42 lists options that control the appearance of the axes when you use traditional graphics.

Table 17.42 Axis Options for Traditional Graphics

Option Option Description

LAXIS=value1 to value2< by value3 > Specifies tick mark values for the lifetime axis.
value1, value2, and value3 must be numeric,
and value1 must be less than value2. The
lower tick mark is value1. Tick marks are
drawn at increments of value3. The last tick
mark is the greatest value that does not ex-
ceed value2. If value3 is omitted, a value of
1 is used. This method of specification of tick
marks is not valid for logarithmic axes. Exam-
ples of LAXIS= lists are

laxis = -1 to 10
laxis = 0 to 200 by 10

LGRID=number Specifies a line style for all grid lines. The
number is between 1 and 46 and specifies a
linestyle for grids.

LIFELOWER | LLOWER=number Specifies the lower limit on the lifetime axis
scale. The LLOWER option specifies number
as the lower lifetime axis tick mark. The tick
interval and the upper lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

LIFEUPPER | LUPPER=number Specifies the upper limit on the lifetime axis
scale. The LUPPER option specifies number
as the upper lifetime axis tick mark. The tick
interval and the lower lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

MPGRID Adds a minor grid for the probability axis.
MINORLOGGRID Adds a minor grid for log axes.
NOGRID Suppresses grid lines.
NOLLABEL Suppresses label for life, or analysis variable,

axis.
NOLTICK Suppresses tick marks and tick mark labels for

lifetime or analysis variable axis.
NOPLABEL Suppresses label for probability axis.
NOPTICK Suppresses tick marks and tick mark labels for

the probability axis.
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Table 17.42 Axis Options (continued)

Option Option Description

NTICK=number Specifies the number of tick intervals for the
lifetime axis. This option has no effect if the
LAXIS option is used.

PCTLOWER | PLOWER=number Specifies the lower limit on probability axis
scale.

PCTUPPER | PUPPER=number Specifies the upper limit on probability axis
scale.

PAXISLABEL=‘string’ Specifies a label for the probability axis.
WAXIS=n Specifies the line thickness for axes and frame.

Table 17.43 lists options that control the appearance of the axes when you use ODS Graphics.

Table 17.43 Axis Options for ODS Graphics

Option Option Description

LAXIS=value1 to value2< by value3 > Specifies tick mark values for the lifetime axis.
value1, value2, and value3 must be numeric,
and value1 must be less than value2. The
lower tick mark is value1. Tick marks are
drawn at increments of value3. The last tick
mark is the greatest value that does not ex-
ceed value2. If value3 is omitted, a value of
1 is used. This method of specification of tick
marks is not valid for logarithmic axes. Exam-
ples of LAXIS= lists are

laxis = -1 to 10
laxis = 0 to 200 by 10

LIFELOWER | LLOWER=number Specifies the lower limit on the lifetime axis
scale. The LLOWER option specifies number
as the lower lifetime axis tick mark. The tick
interval and the upper lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

LIFEUPPER | LUPPER=number Specifies the upper limit on the lifetime axis
scale. The LUPPER option specifies number
as the upper lifetime axis tick mark. The tick
interval and the lower lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

MINORLOGGRID Adds a minor grid for log axes.
NOGRID Suppresses grid lines.
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Table 17.43 Axis Options (continued)

Option Option Description

PCTLOWER | PLOWER=number Specifies the lower limit on probability axis
scale.

PCTUPPER | PUPPER=number Specifies the upper limit on probability axis
scale.

PAXISLABEL=‘string’ Specifies a label for the probability axis.

Table 17.44 lists options that control colors and patterns used in the graph when you use traditional graphics.
These options are not available if ODS Graphics is enabled.

Table 17.44 Color and Pattern Options

Option Option Description

CAXIS=color Color for axis
CCENSOR=color Color for filling censor plot area
CENCOLOR=color Color for censor symbol
CFIT=color | (color list) color for fit lines and confidence curves in a

probability plot
CFRAME=color Color for frame
CFRAMESIDE=color Color for filling frame for row labels
CFRAMETOP=color Color for filling frame for column labels
CGRID=color Color for grid lines
CHREF=color Color for HREF= lines
CTEXT=color Color for text
CVREF=color Color for VREF= lines
PPOSCOLOR=color | (color list) Colors of symbols that represent failures on a

probability plot

Table 17.45 lists options that control the use of a graphics catalog to store graphs if you use traditional
graphics. These options are not available if ODS Graphics is enabled.

Table 17.45 Graphics Catalog Options

Option Option Description

DESCRIPTION=‘string’ Description for graphics catalog member
NAME=‘string’ Name for plot in graphics catalog
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RELATIONPLOT Statement
< label: >RELATIONPLOT variable <�censor-variable(values) > < =group-variable >

< / options > ;

< label: >RELATIONPLOT (variable1 variable2) < =group-variable > < / options > ;

You use the RELATIONPLOT statement to create life-stress relation plots. A life-stress relation plot is a
graphical tool for the analysis of data from accelerated life tests. The plot is a display of the relationship
between life and stress, such as temperature or voltage. You can also use the RELATIONPLOT statement to
display a probability plot alongside the relation plot. See Figure 17.9 for an example of a relation plot.

You can specify the keyword RPLOT as an alias for RELATIONPLOT. You can use any number of RE-
LATIONPLOT statements after a PROC RELIABILITY statement. You can specify an optional label to
distinguish between multiple RELATIONPLOT statements in the output.

See the section “Analysis of Accelerated Life Test Data” on page 1202 for an example that uses the
RELATIONPLOT statement.

To create a life-stress relation plot, you must specify one variable. If your data are right censored, you must
specify a censor-variable and, in parentheses, the values of the censor-variable that correspond to censored
data values. You must specify one group-variable to represent the values of stress. The group-variable must
be a numeric variable.

The RELATIONPLOT statement plots the uncensored values of your data given by variable versus the
values of the group-variable. You can optionally display a boxplot of the values of the data. You can also
plot percentiles of the distribution fitted to the data. The RELATIONPLOT statement produces the same
tabular output as the PROBPLOT statement, and all the analysis options are the same as for the PROBPLOT
statement.

The elements of the RELATIONPLOT statement are described as follows.

variable
represents the data for which a plot is to be produced. The variable must be a numeric variable in the
input data set.

censor-variable(values)
indicates which observations in the input data set are right censored. You specify the values of censor-
variable that represent censored observations by placing those values in parentheses after the variable
name. If your data are not right censored, then you omit the specification of censor-variable; otherwise,
censor-variable must be a numeric variable in the input data set.
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(variable1 variable2)
is another method of specifying the data for which a life-stress plot is to be produced. You can use this
syntax in a situation where uncensored, interval-censored, left-censored, and right-censored values
occur in the same set of data. Table 17.31 shows how you use this syntax to specify different types
of censoring by using combinations of missing and nonmissing values. See the section “Lognormal
Analysis with Arbitrary Censoring” on page 1212 for an example that uses this syntax to create a
probability plot.

group-variable
is a group variable. The group-variable must be a numeric variable in the input data set.

options
control the features of the relation plot. All options are specified after the slash (/) in the RELATION-
PLOT statement. The “Summary of Options” section, which follows, lists all options by function.

The only type of relation plot currently available for interval data is the type in which percentiles of the
fitted distribution are plotted at each stress level.

Summary of Options

Table 17.46 Analysis Options

Option Option Description

CONFIDENCE=number Specifies the confidence coefficient for all confi-
dence intervals. The number must be between 0
and 1. The default value is 0.95.

CONVERGE=number Specifies the convergence criterion for maximum
likelihood fit. See the section “Maximum Likeli-
hood Estimation” on page 1342 for details.

CONVH=number Specifies the convergence criterion for the relative
Hessian convergence criterion. See the section
“Maximum Likelihood Estimation” on page 1342
for details.

CORRB Requests the parameter correlation matrix.
COVB Requests the parameter covariance matrix.
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Table 17.46 Analysis Options (continued)

Option Option Description

FITTYPE | FIT= fit-specification Specifies the method of estimating distribution pa-
rameters. The available fit-specifications and their
meanings are shown in the following table.

Fit Specification Definition

LSYX Least squares fit to the probability
plot. The probability axis is the
dependent variable.

LSXY Least squares fit to the probabil-
ity plot. The lifetime axis is the
dependent variable.

MLE Maximum likelihood (default).
MODEL Use the fit from the preceding

MODEL statement
NONE No fit is computed.
REGRESSION< (variable=number-list) > Use the fit from the preceding

MODEL statement. Nonlinear re-
lations and percentiles from mod-
els that use two independent vari-
ables can be plotted. variable
is a second independent variable
in the MODEL statement, and
number-list is a list of values of
the second independent variable
for which to plot the percentiles
as a function of the first indepen-
dent variable.

WEIBAYES
< (CONFIDENCE | CONF=number ) >

Weibayes fit. number is the
confidence coefficient for the
Weibayes fit and is between 0 and
1. The default is 0.95.

ITPRINT Requests the iteration history for the maximum
likelihood fit.

LRCL Requests likelihood ratio confidence intervals for
distribution parameters.

LRCLPER Requests likelihood ratio confidence intervals for
distribution percentiles.

LOCATION=number < LINIT > Specifies a fixed or initial value of the location
parameter.

MAXIT=number Specifies the maximum number of iterations al-
lowed for a maximum likelihood fit.
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Table 17.46 Analysis Options (continued)

Option Option Description

NOPCTILES Suppresses computation of percentiles.
PCTLIST=number-list Specifies a list of percentages for which to com-

pute percentile estimates. The number-list must be
a list of numbers separated by blanks or commas.
Each number in the list must be between 0 and
100. If this option is not specified, percentiles are
computed for a standard list of percentages.

PPOS=plotting-position Specifies the plotting-position type used to com-
pute nonparametric estimates of the probability
distribution function. See the section “Probability
Plotting” on page 1331 for details. The plotting
position types available are shown in the following
table.

Plotting Position Type

EXPRANK Expected ranks
MEDRANK Median ranks
MEDRANK1 Median ranks (exact formula)
KM Kaplan-Meier
MKM Modified Kaplan-Meier (default)
NA | NELSONAALEN Nelson-Aalen

PPOUT Requests a table of nonparametric cumulative prob-
abilities in the printed output.

PSTABLE=number Specifies a stable parameterization. The num-
ber must be between zero and one. See the sec-
tion “Stable Parameters” on page 1347 for further
information.
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Table 17.46 Analysis Options (continued)

Option Option Description

RELATION=transformation-keyword Specifies the type of relationship between inde-
pendent (stress) and dependent (lifetime) variables.
The transformation specified is applied to the in-
dependent (stress) variable in the model. This
determines the horizontal scale used in the relation
plot. transformation-keyword can be any of the
transformations listed in the following table. See
Table 17.67 for definitions of the transformations.

Transformation Keyword Type of Transformation

ARRHENIUS Arrhenius (Nelson parameteriza-
tion)

ARRHENIUS2 Arrhenius (activation energy)
POWER Logarithmic
LINEAR Linear
LOGISTIC Logistic

READOUT Specifies the data has the readout structure.
SCALE=number < SCINIT > Specifies a fixed or initial value of scale parameter.
SHAPE=number < SHINIT > Specifies a fixed or initial value of shape parameter.
SINGULAR=number Specifies the singularity criterion for matrix

inversion.
SURVTIME=number-list Requests that survival function be computed for

values in number-list . See the section “Reliability
Function” on page 1352 for details.

THRESHOLD=number Specifies a fixed threshold parameter. See Ta-
ble 17.57 for the distributions with a threshold
parameter.

variable=number-list Enables creation of plots of percentiles from a re-
gression model when two independent variables
are used in a MODEL statement effect-list . The
FIT=REGRESSION option must be used with this
option. Percentile plots are created for each value
of the independent variable in the number-list .
number-list is a list of numeric values separated
by blanks or commas, or in the form of a list n1 to
n2 < by n3 >.
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Table 17.47 lists plot layout options that are available when you use traditional graphics.

Table 17.47 Plot Layout Options for Traditional Graphics

Option Option Description

CENSYMBOL=symbol | (symbol-list) Specifies symbols for censored values. The
symbol is one of the symbol names (plus, star,
square, diamond, triangle, hash, paw, point,
dot, circle) or a letter (A–Z). If you are creat-
ing overlaid plots for groups of data, you can
specify different symbols for the groups with a
list of symbols or letters, separated by blanks,
enclosed in parentheses. If no CENSYMBOL
option is specified, the symbol used for cen-
sored values is the same as for failures.

HOFFSET=value Specifies an offset for horizontal axis.
INBORDER Requests a border around plots.
LBOXES=number Specifies a line style for boxplots.
LFIT=linetype | (linetype-list)) Specifies line styles for fit lines and confidence

curves in a probability plot. The linetype-list
is a list of numbers from 1 to 46 representing
different linetypes; the numbers can be sepa-
rated by blanks or commas or can be a list in
the form n1 to n2 < by n3 >.

LPLOTFIT=linetype | (linetype-list)) Specifies line styles for percentile lines.
linetype-list is a list of numbers that represent
different linetypes; the numbers can be sepa-
rated by blanks or commas or can be a list in
the form n1 to n2 < by n3 >.

NOCENPLOT Suppresses plotting of censored data points.
NOCONF Suppresses plotting of percentile confidence

curves.
NOFIT Suppresses plotting of fit line and percentile

confidence curves.
NOFRAME Suppresses the frame around the plotting area.
NOPPLEGEND Suppresses the legend for overlaid probability

plots.
NOPPOS Suppresses plotting of symbols for failures in a

probability plot.
NORPLEGEND Suppresses the legend for the relation plot.
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Table 17.47 Plot Layout Options (continued)

Option Option Description

PINTERVALS=interval-type Specifies the type of parametric pointwise con-
fidence interval displayed in a probability plot.
The available types of intervals are listed in
the following table. The default type is PROB-
ABILITY, pointwise confidence intervals on
cumulative failure probability.

Interval Type Definition

LIKELIHOOD | LRCI Likelihood ratio confidence inter-
vals

PERCENTILES | PER Pointwise parametric confidence
intervals for the percentiles of the
fitted CDF

PROBABILITY | CDF Pointwise parametric confidence
intervals for the cumulative fail-
ure probabilities. See the sec-
tion “Reliability Function” on
page 1352 for details.

PLOTDATA < DATA | MEDI-
ANS | BOXES >

Requests that the data be plotted on the rela-
tionplot and specifies the representation of the
data populations to be plotted.

PLOTFIT < number-list > Specifies that percentiles of the fitted distribu-
tion be plotted on the relation plot. The optional
number-list is a list of percentiles (between 0
and 100); if not specified, the 50th percentile
(median) is plotted.

PPLEGEND = legend-statement-name
| NONE Identifies a LEGENDn statement to specify leg-

end for overlaid probability plots.
PPLOT Places a probability plot on the same page as

the relation plot.
RCENSYMBOL=symbol | (symbol-list) Specifies symbols that represent right-censored

and left-censored observations in a relation
plot. The symbol is one of the symbol names
(plus, star, square, diamond, triangle, hash, paw,
point, dot, circle) or a letter (A–Z).

RPLEGEND = legend-statement-name
| NONE Identifies a LEGENDn statement to specify leg-

end for the relation plot.
SHOWMULTIPLES Displays the count for multiple overlaying

symbols.
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Table 17.47 Plot Layout Options (continued)

Option Option Description

TURNVLABELS Vertically strings out characters in labels for
vertical axis.

VOFFSET=value Specifies length of offset at upper end of verti-
cal axis.

WFIT=linetype Specifies line width for fit line and confidence
curves.

Table 17.48 lists plot layout options that are available when you use ODS graphics.

Table 17.48 Plot Layout Options for ODS Graphics

Option Option Description

NOCENPLOT Suppresses plotting of censored data points.
NOCONF Suppresses plotting of percentile confidence

curves.
NOFIT Suppresses plotting of fit line and percentile

confidence curves.
NOPPOS Suppresses plotting of symbols for failures in a

probability plot.
PINTERVALS=interval-type Specifies the type of parametric pointwise con-

fidence interval displayed in a probability plot.
The available types of intervals are listed in
the following table. The default type is PROB-
ABILITY, pointwise confidence intervals on
cumulative failure probability.

Interval Type Definition

LIKELIHOOD | LRCI Likelihood ratio confidence inter-
vals

PERCENTILES | PER Pointwise parametric confidence
intervals for the percentiles of the
fitted CDF

PROBABILITY | CDF Pointwise parametric confidence
intervals for the cumulative fail-
ure probabilities. See the sec-
tion “Reliability Function” on
page 1352 for details.

PLOTDATA Requests that the data be plotted on the
relationplot.
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Table 17.48 Plot Layout Options (continued)

Option Option Description

PLOTFIT < number-list > Specifies that percentiles of the fitted distribu-
tion be plotted on the relation plot. The optional
number-list is a list of percentiles (between 0
and 100); if not specified, the 50th percentile
(median) is plotted.

PPLOT Places a probability plot on the same page as
the relation plot.

Table 17.49 lists reference line options that are available when you use traditional graphics.

Table 17.49 Reference Line Options for Traditional Graphics

Option Option Description

HREF < (INTERSECT) >=value-list Requests reference lines perpendicular to hor-
izontal axis. If (INTERSECT) is specified, a
second reference line perpendicular to the verti-
cal axis is drawn that intersects the fit line at the
same point as the horizontal axis reference line.
If a horizontal axis reference line label is speci-
fied, the intersecting vertical axis reference line
is labeled with the vertical axis value.

HREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for HREF= lines.
HREFLABPOS=n Specifies the vertical position of labels for

HREF= lines. The valid values for n and the
corresponding label placements are shown in
the following table:

n Label Placement

1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom
5 Alternating from top
6 Alternating from bottom

LHREF=linetype Specifies a line style for HREF= lines.
LSREF=linetype Specifies a line style for SREF= lines.
LVREF=linetype Specifies a line style for VREF= lines.
SREF=value-list Specifies reference lines perpendicular to hori-

zontal stress axis.
SREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for SREF= lines
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Table 17.49 Reference Line Options (continued)

Option Option Description

SREFLABPOS=n Specifies horizontal position of labels for
SREF= lines. The valid values for n and the
corresponding label placements are shown in
the following table:

n Label Placement

1 Top
2 Staggered from top
3 Bottom
4 Staggered from bottom

VREF < (INTERSECT) >=value-list Requests reference lines perpendicular to verti-
cal axis. If (INTERSECT) is specified, a sec-
ond reference line perpendicular to the horizon-
tal axis is drawn that intersects the fit line at the
same point as the vertical axis reference line. If
a vertical axis reference line label is specified,
the intersecting horizontal axis reference line
is labeled with the horizontal axis value.

VREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for VREF= lines.
VREFLABPOS=n Specifies the horizontal position of labels for

VREF= lines. The valid values for n and the
corresponding label placements are shown in
the following table:

n Label Placement

1 Left
2 Right

Table 17.50 lists reference line options that are available when you use ODS graphics.

Table 17.50 Reference Line Options for ODS Graphics

Option Option Description

LREF < (INTERSECT) >=value-list Requests reference lines perpendicular to life-
time axis. If (INTERSECT) is specified, a sec-
ond reference line is drawn perpendicular to
the stress axis (and the probability axis if appli-
cable), and it intersects the fit line at the same
point as the lifetime axis reference line. If a life-
time axis reference line label is specified, the in-
tersecting stress/probability axis reference line
is labeled with the stress/probability axis value.

LREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for LREF= lines.



RELATIONPLOT Statement F 1323

Table 17.50 Reference Line Options (continued)

Option Option Description

PREF < (INTERSECT) >=value-list Requests reference lines perpendicular to prob-
ability axis, if a probability plot is specified
with the PPLOT option. If (INTERSECT) is
specified, a second reference line is drawn per-
pendicular to the lifetime axis and intersects the
fit line at the same point as the probability axis
reference line. If a probability axis reference
line label is specified, the intersecting lifetime
axis reference line is labeled with the lifetime
axis value.

PREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for PREF= lines.
SREF < (INTERSECT) >=value-list Specifies reference lines perpendicular to the

stress axis. If (INTERSECT) is specified, a
second reference line is drawn perpendicular
to the lifetime axis and intersects the fit line at
the same point as the stress axis reference line.
If a stress axis reference line label is specified,
the intersecting lifetime axis reference line is
labeled with the lifetime axis value.

SREFLABELS=( ’label1’ . . . ’labeln’) Specifies labels for SREF= lines.

Table 17.51 lists options that control the appearance of the text when you use traditional graphics. These
options are not available if ODS Graphics is enabled.

Table 17.51 Text Enhancement Options

Option Option Description

FONT=font Specifies a software font for text.
HEIGHT=value Specifies the height of text used outside framed

areas.
INFONT=font Specifies a software font for text inside framed

areas.
INHEIGHT=value Specifies the height of text inside framed areas.

Table 17.52 lists options that control the appearance of the axes when you use traditional graphics.
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Table 17.52 Axis Options for Traditional Graphics

Option Option Description

LAXIS=value1 TO value2< BY value3 > Specifies tick mark values for the lifetime axis.
value1, value2, and value3 must be numeric,
and value1 must be less than value2. The
lower tick mark is value1. Tick marks are
drawn at increments of value3. The last tick
mark is the greatest value that does not ex-
ceed value2. If value3 is omitted, a value of
1 is used. This method of specification of tick
marks is not valid for logarithmic axes. Exam-
ples of LAXIS= lists are

laxis = -1 to 10
laxis = 0 to 200 by 10

LGRID=number Specifies a line style for all grid lines. The
number is between 1 and 46 and specifies a
linestyle for grids.

LIFELOWER | LLOWER=number Specifies the lower limit on the lifetime axis
scale. The LLOWER option specifies number
as the lower lifetime axis tick mark. The tick
interval and the upper lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

LIFEUPPER | LUPPER=number Specifies the upper limit on the lifetime axis
scale. The LUPPER option specifies number
as the upper lifetime axis tick mark. The tick
interval and the lower lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

MPGRID Adds a minor grid for the probability axis.
MINORLOGGRID Adds a minor grid for log axes.
NOGRID Suppresses grid lines.
NOLLABEL Suppresses the label for the lifetime axis.
NOLTICK Suppresses tick marks and tick mark labels for

lifetime or analysis variable axis.
NOPLABEL Suppresses the label for the probability axis.
NOPTICK Suppresses tick marks and tick mark labels for

probability axis.
NOSLABEL Suppresses the label for the stress axis.
NOSTICK Suppresses tick marks and tick mark labels for

stress axis.
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Table 17.52 Axis Options (continued)

Option Option Description

NSTRESSTICK=number Specifies the number of tick intervals for stress
axis for relation plot.

NTICK=number Specifies the number of tick intervals for the
lifetime axis. This option has no effect if the
LAXIS option is used.

PCTLOWER | PLOWER=number Specifies the lower limit on the probability axis
scale.

PCTUPPER | PUPPER=number Specifies the upper limit on the probability axis
scale.

STRESSLOWER | SLOWER=number Specifies the lower limit on the stress axis scale.
STRESSUPPER | SUPPER=number Specifies the upper limit on the stress axis scale.
PAXISLABEL=‘string’ Specifies a label for the probability axis.
WAXIS=n Specifies the line thickness for axes and frame.

Table 17.53 lists options that control the appearance of the axes when you use ODS Graphics.

Table 17.53 Axis Options for ODS Graphics

Option Option Description

LIFELOWER | LLOWER=number Specifies the lower limit on the lifetime axis
scale. The LLOWER option specifies number
as the lower lifetime axis tick mark. The tick
interval and the upper lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

LIFEUPPER | LUPPER=number Specifies the upper limit on the lifetime axis
scale. The LUPPER option specifies number
as the upper lifetime axis tick mark. The tick
interval and the lower lifetime axis limit are
determined automatically. This option has no
effect if the LAXIS option is used.

NOGRID Suppresses grid lines.
PCTLOWER | PLOWER=number Specifies lower the limit on the probability axis

scale.
PCTUPPER | PUPPER=number Specifies upper the limit on the probability axis

scale.
STRESSLOWER | SLOWER=number Specifies the lower limit on the stress axis scale.
STRESSUPPER | SUPPER=number Specifies the upper limit on the stress axis scale.
PAXISLABEL=‘string’ Specifies a label for the probability axis.
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Table 17.54 lists options that control the use of a graphics catalog to store graphs if you use traditional
graphics. These options are not available if ODS Graphics is enabled.

Table 17.54 Graphics Catalog Options

Option Option Description

DESCRIPTION=‘string’ Description for graphics catalog member
NAME=‘string’ Name for plot in graphics catalog

Table 17.55 lists options that control colors and patterns used in the graph when you use traditional graphics.
These options are not available if ODS Graphics is enabled.

Table 17.55 Color and Pattern Options

Option Option Description

CAXIS=color Color for axis
CBOXES=color Color for box frame for boxplots
CBOXFILL=color Color for filling boxes for boxplots
CCENSOR=color Color for filling censor plot area
CENCOLOR=color Color for censor symbol
CFIT=color | (color-list) color for fit lines and confidence curves in a

probability plot
CFRAME=color Color for frame
CGRID=color Color for grid lines
CHREF=color Color for HREF= lines
CPLOTFIT=color | (color-list) colors for percentile lines
CSREF=color Color for SREF= lines
CTEXT=color Color for text
CVREF=color Color for VREF= lines
RCENCOLOR=color | (color-list) Colors for the symbols representing uncen-

sored, right-censored, and left-censored obser-
vations in a relation plot

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

The SLICE statement uses the same options as the LSMEANS statement, which are summarized in Ta-
ble 19.21 (SAS/STAT User’s Guide). For details about the syntax of the SLICE statement, see the section
“SLICE Statement” (Chapter 19, SAS/STAT User’s Guide).
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STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure. For details about the syntax of the STORE statement, see the section
“STORE Statement” (Chapter 19, SAS/STAT User’s Guide).

TEST Statement
TEST < model-effects > < / options > ;

The TEST statement enables you to perform F tests for model effects that test Type I, Type II, or Type III
hypotheses. See Chapter 15, “The Four Types of Estimable Functions” (SAS/STAT User’s Guide), for details
about the construction of Type I, II, and III estimable functions.

Table 17.56 summarizes the options available in the TEST statement.

Table 17.56 TEST Statement Options

Option Description

CHISQ Requests chi-square tests
DDF= Specifies denominator degrees of freedom for fixed effects
E Requests Type I, Type II, and Type III coefficients
E1 Requests Type I coefficients
E2 Requests Type II coefficients
E3 Requests Type III coefficients
HTYPE= Indicates the type of hypothesis test to perform
INTERCEPT Adds a row that corresponds to the overall intercept

For details about the syntax of the TEST statement, see the section “TEST Statement” (Chapter 19, SAS/STAT
User’s Guide) in Chapter 19, “Shared Concepts and Topics” (SAS/STAT User’s Guide).

UNITID Statement
UNITID variable ;

The UNITID statement names a variable in the input data set that is used to identify each individual unit in an
MCFPLOT statement. The value of the UNITID variable for an observation corresponds to the name of the
unit in the study for which a repair or end of history has occurred. See the section “Analysis of Recurrence
Data on Repairs” on page 1233 for an example that uses the UNITID statement with the MCFPLOT statement.
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Details: RELIABILITY Procedure

Abbreviations and Notation
The following abbreviations and notation are used in this section:

CDF Cumulative distribution function: F.x/ D P rfX � xg
log Base e logarithm
log10 Base 10 logarithm
Reliability or R.x/ D P rfX > xg

survivor function
xp p � 100% percentile: P rfX � xpg D p

Types of Lifetime Data
This section describes various types of data that you can analyze with the RELIABILITY procedure.

Lifetime data for which the values of all sample units are observed are called complete data. This means that
the failure times are observed for all units.

Many practical problems in life data analysis involve data for which some units are unfailed. The failure time
for an unfailed unit is known only to be greater than the last running time. This type of data is said to be
right censored, and the censoring time is used in the analysis of the data. Data for which censoring times are
intermixed with failure times are sometimes called multiply censored or progressively censored.

Failure times may be known only to be less than some value. This type of data is called left censored.

Another common situation is where the failure times of units are not known exactly, but time intervals that
contain the failure times are known. This type of data is called interval censored.

Interval-censored data for which all units share common interval endpoints are called readout, inspection, or
grouped data.

Arbitrarily censored data can contain a combination of failures, right-, left-, and interval-censored data.

Probability Distributions
This section describes the probability distributions available in the RELIABILITY procedure for probability
plotting and parameter estimation.

PROBPLOT and RELATIONPLOT Statements

Probability plots can be constructed for each of the probability distributions in Table 17.57.

For all distributions other than the three-parameter Weibull, estimates of two distribution parameters (location
and scale or scale and shape) are computed by maximum likelihood or by least squares fitted to points on the
probability plot. If one of the parameters is specified as fixed, the other is estimated. In addition, you can
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specify a fixed threshold, or shift, parameter for distributions for which a threshold parameter is indicated in
Table 17.57. If you do not specify a threshold parameter, the threshold is set to 0.

For the three-parameter Weibull distribution described in Table 17.57, the scale, shape, and threshold
parameters are estimated by maximum likelihood.

You should not interpret the parameters � and � as representing the means and standard deviations for all of
the distributions in Table 17.57. The normal is the only distribution in Table 17.57 for which this is the case.

Table 17.57 Distributions and Parameters for PROBPLOT and RELATIONPLOT Statements

Parameters

Distribution Density Function Location Scale Shape Threshold

Normal 1p
2��

exp
�
�
.x��/2

2�2

�
� �

Lognormal 1p
2��.x��/

exp
�
�
.log.x��/��/2

2�2

�
� � �

Lognormal log.10/
p
2��.x��/

exp
�
�
.log10.x��/��/2

2�2

�
� � �

(base 10)

Extreme value 1
�

exp
�x��
�

�
exp

�
� exp

�x��
�

��
� �

Weibull ˇ

˛ˇ
.x � �/ˇ�1 exp

�
�

�
x��
˛

�ˇ�
˛ ˇ �

Exponential 1
˛

exp
�
�

�
x��
˛

��
˛ �

Logistic exp.x��� /

�Œ1Cexp.x��� /�
2 � �

Log-logistic
exp

�
log.x��/��

�

�
.x��/�

h
1Cexp

�
log.x��/��

�

�i2 � � �

Three-parameter Weibull ˇ

˛ˇ
.x � �/ˇ�1 exp

�
�

�
x��
˛

�ˇ�
˛ ˇ �

Gompertz ˇ
˛

exp
˚
t
˛
C ˇ � ˇ exp

�
t
˛

�	
˛ ˇ

Three-parameter Gompertz
n
ˇ
˛

exp. t
˛
/C �

˛

o
˛ ˇ �

� exp
n
�
�t
˛
C ˇ � ˇ exp. t

˛
/
o
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The threshold parameter for the three-parameter Gompertz distribution is known as the Makeham mortality
component and is labeled as such in the output. This component represents an additive risk that is constant
over time. The exponential distribution shown in Table 17.57 is a special case of the Weibull distribution
with ˇ D 1. The remaining distributions in Table 17.57 are related to one another as shown in Table 17.58.
The threshold parameter, � , is assumed to be 0 in Table 17.58.

Table 17.58 Relationship among Life Distributions

Distribution of T Parameters Distribution of Y=logT Parameters

Lognormal � � Normal � �

Weibull ˛ ˇ Extreme value � D log ˛ � D 1
ˇ

Log-logistic � � Logistic � �

MODEL Statement

All the distributions in Table 17.57 except the three-parameter Weibull and the Gompertz distributions are
available for regression model estimation by using the MODEL statement. In addition, you can fit regression
models with the generalized gamma distribution with the following probability density function f .t/:

f .t/ D
j�j

t��.��2/
.��2/.�

�2/ exp
�
��2

�
�

�
log.t/ � �

�

�
� exp

�
�

�
log.t/ � �

�

����

If a lifetime T has the generalized gamma distribution, then the logarithm of the lifetime X D log.T / has the
generalized log-gamma distribution, with the following probability density function g.x/. When the gamma
distribution is specified, the logarithms of the lifetimes are used as responses, and the generalized log-gamma
distribution is used to estimate the parameters by maximum likelihood.

g.x/ D
j�j

��.��2/
.��2/.�

�2/ exp
h
��2

�
�
�x � �

�

�
� exp

�
�
�x � �

�

���i
See Lawless (2003) and Meeker and Escobar (1998) for a description of the generalized gamma and
generalized log-gamma distributions.

When � D 1, the generalized log-gamma distribution reduces to the extreme value distribution with
parameters � and � . In this case, the log lifetimes have the extreme value distribution, or, equivalently,
the lifetimes have the Weibull distribution with parameters ˛ D exp.�/ and ˇ D 1=� . When � D 0,
the generalized log-gamma reduces to the normal distribution with parameters � and � . In this case, the
(unlogged) lifetimes have the lognormal distribution with parameters � and � . This chapter uses the notation
� for the location, � for the scale, and � for the shape parameters for the generalized log-gamma distribution.

ANALYZE Statement

You can use the ANALYZE statement to compute parameter estimates and other statistics for the distributions
in Table 17.57. In addition, you can compute estimates for the binomial and Poisson distributions. The forms
of these distributions are shown in Table 17.59.
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Table 17.59 Binomial and Poisson Distributions

Distribution Pr{Y=y} Parameter Parameter Name

Binomial
�
n
y

�
py.1 � p/n�y p binomial probability

Poisson �y

yŠ
exp.��/ � Poisson mean

Probability Plotting
Probability plots are useful tools for the display and analysis of lifetime data. See Abernethy (2006) for
examples that use probability plots in the analysis of reliability data. Probability plots use a special scale so
that a cumulative distribution function (CDF) plots as a straight line. Thus, if lifetime data are a sample from
a distribution, the CDF estimated from the data plots approximately as a straight line on a probability plot for
the distribution.

You can use the RELIABILITY procedure to construct probability plots for data that are complete, right
censored, or interval censored (in readout form) for each of the probability distributions in Table 17.57.

A random variable Y belongs to a location-scale family of distributions if its CDF F is of the form

P rfY � yg D F.y/ D G
�y � �

�

�
where � is the location parameter, and � is the scale parameter. Here, G is a CDF that cannot depend on any
unknown parameters, and G is the CDF of Y if � D 0 and � D 1. For example, if Y is a normal random
variable with mean � and standard deviation � ,

G.u/ D ˆ.u/ D

Z u

�1

1
p
2�

exp
�
�
u2

2

�
du

and

F.y/ D ˆ
�y � �

�

�
Of the distributions in Table 17.57, the normal, extreme value, and logistic distributions are location-scale
models. As shown in Table 17.58, if T has a lognormal, Weibull, or log-logistic distribution, then log.T / has
a distribution that is a location-scale model. Probability plots are constructed for lognormal, Weibull, and
log-logistic distributions by using log.T / instead of T in the plots.

Let y.1/ � y.2/ � : : : � y.n/ be ordered observations of a random sample with distribution function F.y/.
A probability plot is a plot of the points y.i/ against mi D G�1.ai /, where ai D OF .yi / is an estimate of the
CDF F.y.i// D G

�y.i/��
�

�
. The points ai are called plotting positions. The axis on which the points mis

are plotted is usually labeled with a probability scale (the scale of ai ).

If F is one of the location-scale distributions, then y is the lifetime; otherwise, the log of the lifetime is used
to transform the distribution to a location-scale model.
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If the data actually have the stated distribution, then OF � F ,

mi D G
�1. OF .yi // � G

�1
�
G
�y.i/ � �

�

��
D
y.i/ � �

�

and points .y.i/; mi / should fall approximately on a straight line.

There are several ways to compute plotting positions from failure data. These are discussed in the next two
sections.

Complete and Right-Censored Data

The censoring times must be taken into account when you compute plotting positions for right-censored
data. The RELIABILITY procedure provides several methods for computing plotting positions. These are
specified with the PPOS= option in the ANALYZE, PROBPLOT, and RELATIONPLOT statements. All of
the methods give similar results, as illustrated in the section “Expected Ranks, Kaplan-Meier, and Modified
Kaplan-Meier Methods” on page 1332, the section “Nelson-Aalen” on page 1334, and the section “Median
Ranks” on page 1334.

Expected Ranks, Kaplan-Meier, and Modified Kaplan-Meier Methods
Let y.1/ � y.2/ � : : : � y.n/ be ordered observations of a random sample including failure times and censor
times. Order the data in increasing order. Label all the data with reverse ranks ri , with r1 D n; : : : ; rn D 1.
For the failure corresponding to reverse rank ri , compute the reliability, or survivor function estimate

Ri D

�
ri

ri C 1

�
Ri�1

withR0 D 1. The expected rank plotting position is computed as ai D 1�Ri . The option PPOS=EXPRANK
specifies the expected rank plotting position.

For the Kaplan-Meier method,

Ri D

�
ri � 1

ri

�
Ri�1

The Kaplan-Meier plotting position is then computed as a0i D 1 �Ri . The option PPOS=KM specifies the
Kaplan-Meier plotting position.

For the modified Kaplan-Meier method, use

R0i D
Ri CRi�1

2

where Ri is computed from the Kaplan-Meier formula with R0 D 1. The plotting position is then computed
as a00i D 1 � R0i . The option PPOS=MKM specifies the modified Kaplan-Meier plotting position. If the
PPOS option is not specified, the modified Kaplan-Meier plotting position is used as the default method.

For complete samples, ai D i=.nC1/ for the expected rank method, a0i D i=n for the Kaplan-Meier method,
and a00i D .i � :5/=n for the modified Kaplan-Meier method. If the largest observation is a failure for the
Kaplan-Meier estimator, then Fn D 1 and the point is not plotted. These three methods are shown for the
field winding data in Table 17.60 and Table 17.61.



Probability Plotting F 1333

Table 17.60 Expected Rank Plotting Position Calculations

Ordered Reverse ri=.ri C 1/ �Ri�1 D Ri ai D 1 �Ri
Observation Rank

31.7 16 16/17 1.0000 0.9411 0.0588
39.2 15 15/16 0.9411 0.8824 0.1176
57.5 14 14/15 0.8824 0.8235 0.1765

65.0+ 13
65.8 12 12/13 0.8235 0.7602 0.2398
70.0 11 11/12 0.7602 0.6968 0.3032

75.0+ 10
75.0+ 9
87.5+ 8
88.3+ 7
94.2+ 6
101.7+ 5
105.8 4 4/5 0.6968 0.5575 0.4425

109.2+ 3
110.0 2 2/3 0.5575 0.3716 0.6284

130.0+ 1
+ Censored Times

Table 17.61 Kaplan-Meier and Modified Kaplan-Meier Plotting Position Calculations

Ordered Reverse .ri � 1/=ri �Ri�1 D Ri a0i D 1 �Ri a00i
Observation Rank

31.7 16 15/16 1.0000 0.9375 0.0625 0.0313
39.2 15 14/15 0.9375 0.8750 0.1250 0.0938
57.5 14 13/14 0.8750 0.8125 0.1875 0.1563

65.0+ 13
65.8 12 11/12 0.8125 0.7448 0.2552 0.2214
70.0 11 10/11 0.7448 0.6771 0.3229 0.2891

75.0+ 10
75.0+ 9
87.5+ 8
88.3+ 7
94.2+ 6
101.7+ 5
105.8 4 3/4 0.6771 0.5078 0.4922 0.4076

109.2+ 3
110.0 2 1/2 0.5078 0.2539 0.7461 0.6192

130.0+ 1
+ Censored Times
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Nelson-Aalen
Estimate the cumulative hazard function by

Hi D
1

ri
CHi�1

with H0 D 0. The reliability is Ri D exp.�Hi /, and the plotting position, or CDF, is a000i D 1 � Ri . You
can show that RKM < RNA for all ages. The Nelson-Aalen method is shown for the field winding data in
Table 17.62.

Table 17.62 Nelson-Aalen Plotting Position Calculations

Ordered Reverse 1=ri CHi�1 D Hi a000i D 1 � exp.�Hi /
Observation Rank

31.7 16 1/16 0.0000 0.0625 0.0606
39.2 15 1/15 0.0625 0.1292 0.1212
57.5 14 1/14 0.1292 0.2006 0.1818

65.0+ 13
65.8 12 1/12 0.2006 0.2839 0.2472
70.0 11 1/11 0.2839 0.3748 0.3126

75.0+ 10
75.0+ 9
87.5+ 8
88.3+ 7
94.2+ 6
101.7+ 5
105.8 4 1/4 0.3748 0.6248 0.4647

109.2+ 3
110.0 2 1/2 0.6248 1.1248 0.6753

130.0+ 1
+ Censored Times

Median Ranks
See Abernethy (2006) for a discussion of the methods described in this section. Let y.1/ � y.2/ � : : : � y.n/
be ordered observations of a random sample including failure times and censor times. A failure order number
ji is assigned to the ith failure: ji D ji�1C�, where j0 D 0. The increment� is initially 1 and is modified
when a censoring time is encountered in the ordered sample. The new increment is computed as

� D
.nC 1/ � previous failure order number

1C number of items beyond previous censored item

The plotting position is computed for the ith failure time as

ai D
ji � :3

nC :4

For complete samples, the failure order number ji is equal to i, the order of the failure in the sample. In
this case, the preceding equation for ai is an approximation to the median plotting position computed as
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the median of the ith-order statistic from the uniform distribution on (0, 1). In the censored case, ji is not
necessarily an integer, but the preceding equation still provides an approximation to the median plotting
position. The PPOS=MEDRANK option specifies the median rank plotting position.

For complete data, an alternative method of computing the median rank plotting position for failure i is to
compute the exact median of the distribution of the ith order statistic of a sample of size n from the uniform
distribution on (0,1). If the data are right censored, the adjusted rank ji , as defined in the preceding paragraph,
is used in place of i in the computation of the median rank. The PPOS=MEDRANK1 option specifies this
type of plotting position.

Nelson (1982, p. 148) provides the following example of multiply right-censored failure data for field
windings in electrical generators. Table 17.63 shows the data, the intermediate calculations, and the plotting
positions calculated by exact (a0i ) and approximate (ai ) median ranks.

Table 17.63 Median Rank Plotting Position Calculations

Ordered Increment Failure Order
Observation � Number ji ai a0i

31.7 1.0000 1.0000 0.04268 0.04240
39.2 1.0000 2.0000 0.1037 0.1027
57.5 1.0000 3.0000 0.1646 0.1637

65.0+ 1.0769
65.8 1.0769 4.0769 0.2303 0.2294
70.0 1.0769 5.1538 0.2960 0.2953

75.0+ 1.1846
75.0+ 1.3162
87.5+ 1.4808
88.3+ 1.6923
94.2+ 1.9744

101.7+ 2.3692
105.8 2.3692 7.5231 0.4404 0.4402

109.2+ 3.1590
110.0 3.1590 10.6821 0.6331 0.6335

130.0+ 6.3179
+ Censored Times

Interval-Censored Data

Readout Data
The RELIABILITY procedure can create probability plots for interval-censored data when all units share
common interval endpoints. This type of data is called readout data in the RELIABILITY procedure.
Estimates of the cumulative distribution function are computed at times corresponding to the interval
endpoints. Right censoring can also be accommodated if the censor times correspond to interval endpoints.
See the section “Weibull Analysis of Interval Data with Common Inspection Schedule” on page 1207 for an
example of a Weibull plot and analysis for interval data.

Table 17.64 illustrates the computational scheme used to compute the CDF estimates. The data are failure
data for microprocessors (Nelson 1990, p. 147). In Table 17.64, ti are the interval upper endpoints, in hours,
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fi is the number of units failing in interval i, and ni is the number of unfailed units at the beginning of
interval i.

Note that there is right censoring as well as interval censoring in these data. For example, two units fail in the
interval (24, 48) hours, and there are 1414 unfailed units at the beginning of the interval, 24 hours. At the
beginning of the next interval, (48, 168) hours, there are 573 unfailed units. The number of unfailed units
that are removed from the test at 48 hours is 1414 � 2 � 573 D 839 units. These are right-censored units.

The reliability at the end of interval i is computed recursively as

Ri D .1 � .fi=ni //Ri�1

with R0 D 1. The plotting position is ai D 1 �Ri .

Table 17.64 Interval-Censored Plotting Position Calculations

Interval Interval fi=ni R
0

i D Ri D ai D 1 �Ri
i Endpoint ti 1 � .fi=ni/ R

0

iRi�1

1 6 6/1423 0.99578 0.99578 .00421
2 12 2/1417 0.99859 0.99438 .00562
3 24 0/1415 1.00000 0.99438 .00562
4 48 2/1414 0.99859 0.99297 .00703
5 168 1/573 0.99825 0.99124 .00876
6 500 1/422 0.99763 0.98889 .01111
7 1000 2/272 0.99265 0.98162 .01838
8 2000 1/123 0.99187 0.97364 .02636

Arbitrarily Censored Data
The RELIABILITY procedure can create probability plots for data that consists of combinations of exact,
left-censored, right-censored, and interval-censored lifetimes. Unlike the method in the previous section,
failure intervals need not share common endpoints, although if the intervals share common endpoints, the
two methods give the same results. The RELIABILITY procedure uses an iterative algorithm developed by
Turnbull (1976) to compute a nonparametric maximum likelihood estimate of the cumulative distribution
function for the data. Since the technique is maximum likelihood, standard errors of the cumulative probability
estimates are computed from the inverse of the associated Fisher information matrix. A technique developed
by Gentleman and Geyer (1994) is used to check for convergence to the maximum likelihood estimate. Also
see Meeker and Escobar (1998, chap. 3) for more information.

Although this method applies to more general situations, where the intervals may be overlapping, the example
of the previous section will be used to illustrate the method. Table 17.65 contains the microprocessor data
of the previous section, arranged in intervals. A missing (.) lower endpoint indicates left censoring, and a
missing upper endpoint indicates right censoring. These can be thought of as semi-infinite intervals with
lower (upper) endpoint of negative (positive) infinity for left (right) censoring.
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Table 17.65 Interval-Censored Data

Lower Upper Number
Endpoint Endpoint Failed

. 6 6
6 12 2
24 48 2
24 . 1
48 168 1
48 . 839
168 500 1
168 . 150
500 1000 2
500 . 149
1000 2000 1
1000 . 147
2000 . 122

The following SAS statements compute the Turnbull estimate and create a lognormal probability plot:

data micro;
input t1 t2 f ;
datalines;

. 6 6
6 12 2
12 24 0
24 48 2
24 . 1
48 168 1
48 . 839
168 500 1
168 . 150
500 1000 2
500 . 149
1000 2000 1
1000 . 147
2000 . 122
;

proc reliability data=micro;
distribution lognormal;
freq f;
pplot ( t1 t2 ) / itprintem

printprobs
maxitem = ( 1000, 25 )
nofit
npintervals = simul
ppout;

run;



1338 F Chapter 17: The RELIABILITY Procedure

The nonparametric maximum likelihood estimate of the CDF can only increase on certain intervals, and must
remain constant between the intervals. The Turnbull algorithm first computes the intervals on which the
nonparametric maximum likelihood estimate of the CDF can increase. The algorithm then iteratively estimates
the probability associated with each interval. The ITPRINTEM option along with the PRINTPROBS option
instructs the procedure to print the intervals on which probability increases can occur and the iterative history
of the estimates of the interval probabilities. The PPOUT option requests tabular output of the estimated
CDF, standard errors, and confidence limits for each cumulative probability.

Figure 17.55 shows every 25th iteration and the last iteration for the Turnbull estimate of the CDF for
the microprocessor data. The initial estimate assigns equal probabilities to each interval. You can specify
different initial values with the PROBLIST= option. The algorithm converges in 130 iterations for this data.
Convergence is determined if the change in the loglikelihood between two successive iterations less than
�, where the default value is � D 10�8. You can specify a different value for delta with the TOLLIKE=
option. This algorithm is an example of an expectation-maximization (EM) algorithm. EM algorithms
are known to converge slowly, but the computations within each iteration for the Turnbull algorithm are
moderate. Iterations will be terminated if the algorithm does not converge after a fixed number of iterations.
The default maximum number of iterations is 1000. Some data may require more iterations for convergence.
You can specify the maximum allowed number of iterations with the MAXITEM= option in the PROBPLOT,
ANALYZE, or RPLOT statement.

Figure 17.55 Iteration History for Turnbull Estimate

The RELIABILITY ProcedureThe RELIABILITY Procedure

Iteration History for the Turnbull Estimate of the CDF

Iteration Loglikelihood (., 6) (6, 12) (24, 48) (48, 168) (168, 500) (500, 1000) (1000, 2000) (2000, .)

0 -1133.4051 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

25 -104.16622 0.00421644 0.00140548 0.00140648 0.00173338 0.00237846 0.00846094 0.04565407 0.93474475

50 -101.15151 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727679 0.01174486 0.96986811

75 -101.06641 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727127 0.00835638 0.9732621

100 -101.06534 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727125 0.00801814 0.97360037

125 -101.06533 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727125 0.00798438 0.97363413

130 -101.06533 0.00421644 0.00140548 0.00140648 0.00173293 0.00234891 0.00727125 0.007983 0.97363551

If an interval probability is smaller than a tolerance (10�6 by default) after convergence, the probability is set
to zero, the interval probabilities are renormalized so that they add to one, and iterations are restarted. Usually
the algorithm converges in just a few more iterations. You can change the default value of the tolerance with
the TOLPROB= option. You can specify the NOPOLISH option to avoid setting small probabilities to zero
and restarting the algorithm.
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If you specify the ITPRINTEM option, the table in Figure 17.56 summarizing the Turnbull estimate of the
interval probabilities is printed. The columns labeled ’Reduced Gradient’ and ’Lagrange Multiplier’ are used
in checking final convergence to the maximum likelihood estimate. The Lagrange multipliers must all be
greater than or equal to zero, or the solution is not maximum likelihood. See Gentleman and Geyer (1994)
for more details of the convergence checking.

Figure 17.56 Final Probability Estimates for Turnbull Algorithm

Lower
Lifetime

Upper
Lifetime Probability

Reduced
Gradient

Lagrange
Multiplier

. 6 0.0042 0 0

6 12 0.0014 0 0

24 48 0.0014 0 0

48 168 0.0017 0 0

168 500 0.0023 0 0

500 1000 0.0073 -7.219342E-9 0

1000 2000 0.0080 -0.037063236 0

2000 . 0.9736 0.0003038877 0

Figure 17.57 shows the final estimate of the CDF, along with standard errors and confidence limits. Fig-
ure 17.58 shows the CDF and simultaneous confidence limits plotted on a lognormal probability plot.

Figure 17.57 Final CDF Estimates for Turnbull Algorithm

Cumulative Probability Estimates

Pointwise
95%

Confidence
Limits

Lower
Lifetime

Upper
Lifetime

Cumulative
Probability Lower Upper

Standard
Error

6 6 0.0042 0.0019 0.0094 0.0017

12 24 0.0056 0.0028 0.0112 0.0020

48 48 0.0070 0.0038 0.0130 0.0022

168 168 0.0088 0.0047 0.0164 0.0028

500 500 0.0111 0.0058 0.0211 0.0037

1000 1000 0.0184 0.0094 0.0357 0.0063

2000 2000 0.0264 0.0124 0.0553 0.0101
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Figure 17.58 Lognormal Probability Plot for the Microprocessor Data

Nonparametric Confidence Intervals for Cumulative Failure Probabilities
The method used in the RELIABILITY procedure for computation of approximate pointwise and simultaneous
confidence intervals for cumulative failure probabilities relies on the Kaplan-Meier estimator of the cumulative
distribution function of failure time and approximate standard deviation of the Kaplan-Meier estimator. For
the case of arbitrarily censored data, the Turnbull algorithm, discussed previously, provides an extension of
the Kaplan-Meier estimator.

For multiply censored data, the Kaplan-Meier estimator of the cumulative distribution function at failure time
ti is OF .ti / D 1 � OS.ti /, where

OS.ti / D

iY
jD1

.1 � Opj /;

Opi D
di

ni
;
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di is the number of failures in the interval .ti�1; ti / , and ni is the number of unfailed units at the beginning
of the interval. This definition of the Kaplan-Meier estimator is equivalent to the one previously given.

An estimator of the variance vi of the Kaplan-Meier estimator OF .ti / is given by

Ovi D Œ OS.ti /�
2

iX
jD1

Opj

nj .1 � Opj /

An estimator of the standard deviation of OF .ti / is se OF D
p
Ovi .

For arbitrarily censored data, the Kaplan-Meier estimator is replaced by the nonparametric maximum
likelihood estimator computed with the Turnbull algorithm, and the approximate variance of the estimator of
F.ti / is computed from the inverse of the Fisher information matrix.

Pointwise Confidence Intervals

Approximate .1 � ˛/100% pointwise confidence intervals are computed as in Meeker and Escobar (1998,
section 3.6) as

ŒFL; FU � D

"
OF

OF C .1 � OF /w
;

OF

OF C .1 � OF /=w

#

where

w D exp

"
z1�˛=2se OF
. OF .1 � OF //

#

where zp is the pth quantile of the standard normal distribution.

Simultaneous Confidence Intervals

Approximate .1�˛/100% simultaneous confidence bands valid over the lifetime interval .ta; tb/ are computed
as the “Equal Precision” case of Nair (1984) and Meeker and Escobar (1998, section 3.8)

ŒFL; FU � D

"
OF

OF C .1 � OF /w
;

OF

OF C .1 � OF /=w

#

where

w D exp

"
ea;b;1�˛=2se OF
. OF .1 � OF //

#
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where the factor x D ea;b;1�˛=2 is the solution of

x exp.�x2=2/ log
�
.1 � a/b

.1 � b/a

�
=
p
8� D ˛=2

The time interval .ta; tb/ over which the bands are valid depends in a complicated way on the constants a
and b defined in Nair (1984), 0 < a < b < 1. a and b are chosen by default, so that the confidence bands
are valid between the lowest and highest times corresponding to failures in the case of multiply censored
data, or, to the lowest and highest intervals for which probabilities are computed for arbitrarily censored data.
You can optionally specify a and b directly with the NPINTERVALS=SIMULTANEOUS(a,b) option in the
PROBPLOT statement.

Parameter Estimation and Confidence Intervals

Maximum Likelihood Estimation

Maximum likelihood estimation of the parameters of a statistical model involves maximizing the likelihood or,
equivalently, the log likelihood with respect to the parameters. The parameter values at which the maximum
occurs are the maximum likelihood estimates of the model parameters. The likelihood is a function of the
parameters and of the data.

Let x1; x2; : : : ; xn be the observations in a random sample, including the failures and censoring times (if
the data are censored). Let f .�I x/ be the probability density of failure time, S.�I x/ D P rfX � xg be
the reliability function, and F.�I x/ D P rfX � xg be the cumulative distribution function, where � is the
vector of parameters to be estimated, � D .�1; �2; : : : ; �p/. The probability density, reliability function, and
CDF are determined by the specific distribution selected as a model for the data. The log likelihood is defined
as

L.„/ D
X
i

log.f .�I xi //C
X
i

0

log.S.�I xi //C

X
i

00

log.F.�I xi //C
X
i

000

Œlog.F.�I xui / � F.�I xli //�

where

�
P

is the sum over failed units

�
P0

is the sum over right-censored units

�
P00

is the sum over left-censored units

�
P000

is the sum over interval-censored units

and .xli ; xui / is the interval in which the ith unit is interval censored. Only the sums appropriate to the type
of censoring in the data are included when the preceding equation is used.
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The RELIABILITY procedure maximizes the log likelihood with respect to the parameters � by using
a Newton-Raphson algorithm. The Newton-Raphson algorithm is a recursive method for computing the
maximum of a function. On the rth iteration, the algorithm updates the parameter vector �r with

�rC1 D �r �H�1g

where H is the Hessian (second derivative) matrix, and g is the gradient (first derivative) vector of the
log-likelihood function, both evaluated at the current value of the parameter vector. That is,

g D Œgj � D
�
@L

@�j

�ˇ̌̌̌
�D�r

and

H D Œhij � D
�
@2L

@�i@�j

�ˇ̌̌̌
�D�r

Iteration continues until the parameter estimates converge. The convergence criterion is

j�rC1i � �ri j � c if j�rC1i j < 0:01

ˇ̌̌̌
ˇ�rC1i � �ri

�rC1i

ˇ̌̌̌
ˇ � c if j�rC1i j � 0:01

for all i D 1; 2; : : : ; p where c is the convergence criterion. The default value of c is 0.001, and it can be
specified with the CONVERGE= option in the MODEL, PROBPLOT, RELATIONPLOT, and ANALYZE
statements.

After convergence by the preceding criterion, the quantity

tc D
gH�1g

L

is computed. If tc > d then a warning is printed that the algorithm did not converge. tc is called the relative
Hessian convergence criterion. The default value of d is 0.0001. You can specify other values for d with the
CONVH= option. The relative Hessian criterion is useful in detecting the occasional case where no progress
can be made in increasing the log likelihood, yet the gradient g is not zero.

A location-scale model has a CDF of the form

F.x/ D G
�x � �

�

�
where � is the location parameter, � is the scale parameter, and G is a standardized form .� D 0; � D 1/ of
the cumulative distribution function. The parameter vector is �=(� � ). It is more convenient computationally
to maximize log likelihoods that arise from location-scale models. If you specify a distribution from
Table 17.57 that is not a location-scale model, it is transformed to a location-scale model by taking the natural
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(base e) logarithm of the response. If you specify the lognormal base 10 distribution, the logarithm (base
10) of the response is used. The Weibull, lognormal, and log-logistic distributions in Table 17.57 are not
location-scale models. Table 17.58 shows the corresponding location-scale models that result from taking the
logarithm of the response.

Maximum likelihood is the default method of estimating the location and scale parameters in the MODEL,
PROBPLOT, RELATIONPLOT, and ANALYZE statements. If the Weibull distribution is specified, the
logarithms of the responses are used to obtain maximum likelihood estimates ( O� O� ) of the location and scale
parameters of the extreme value distribution. The maximum likelihood estimates ( Ǫ , Ǒ) of the Weibull scale
and shape parameters are computed as Ǫ D exp. O�/ and Ǒ D 1= O� .

Maximum likelihood estimates for the Gompertz distributions are obtained by expressing the log-likelihood
in terms of log.˛/, log.ˇ/, and (if applicable) log.�/. After the log likelihood is maximized, parameter
estimates and their standard errors are transformed from the logarithm metric to the standard metric by using
the delta method.

Three-Parameter Weibull
The parameters of the three-parameter Weibull distribution are estimated by maximizing the log likelihood
function. The threshold parameter � must be less than the minimum failure time t0, unless ˇ D 1, in which
case, � can be equal to t0. The RELIABILITY procedure sets a default upper bound of t0 � 0:001 for the
threshold in the iterative estimation computations and a default lower bound of 0.0. You can set different
bounds by specifying an INEST data set as described in the section “INEST Data Set for the Three-Parameter
Weibull” on page 1344.

If the shape parameter ˇ is less than one, then the density function in Table 17.57 has a singularity at t D � ,
and the log likelihood is unbounded above as the threshold parameter approaches the minimum failure time
t0. For any fixed � < t0, maximum likelihood estimates of the scale and shape parameters ˛ and ˇ exist.
If Ǒ < 1 in the iterative estimation procedure, the estimate of the threshold � is set to the upper bound and
maximum likelihood estimates of ˛ and ˇ are computed.

INEST Data Set for the Three-Parameter Weibull
You can specify a SAS data set to set lower bounds, upper bounds, equality constraints, or initial values
for estimating the parameters of a three-parameter Weibull distribution by using the INEST= option in the
ANALYZE or PROBPLOT statement. The data set must contain a variable named _TYPE_ that specifies the
action that you want to take in the iterative estimation process, and some combination of variables named
_SCALE_, _SHAPE_, and _THRESHOLD_ that represent the distribution parameters. If BY processing is
used, the INEST= data set should also include the BY variables, and there must be at least one observation
for each BY group.

The possible values of _TYPE_ and corresponding actions are summarized in Table 17.66.

Table 17.66 _TYPE_ Variable Values

Value of _TYPE_ Action

LB Lower bound
UB Upper bound
EQ Equality
PARMS Initial value
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For example, you can use the INEST data set In created by using the following SAS statements to specify
bounds for data that contain the BY variable Group with three BY groups: A, B, and D. The data set In
specifies a lower bound for the threshold parameter of –100 for groups A, B, and D, and an upper bound of 3
for the threshold parameter for group D. Since the variables _Scale_ and _Shape_ are set to missing, no
action is taken for them, and these variables could be omitted from the data set.

data In;
input Group$1 _Type_$ 2-11 _Scale_ _Shape_ _Threshold_;
datalines;

A lb . . -100
B lb . . -100
D lb . . -100
D ub . . 3
;

Regression Models
You can specify a regression model by using the MODEL statement. For example, if you want to relate the
lifetimes of electronic parts in a test to Arrhenius-transformed operating temperature, then an appropriate
model might be

�i D ˇ0 C xiˇ1

where xi D 1000=.Ti C 273:15/, and Ti is the centigrade temperature at which the ith unit is tested. Here,
x0i D[ 1 xi ].

There are two types of explanatory variables: continuous variables and classification variables. Continuous
variables represent physical quantities, such as temperature or voltage, and they must be numeric. Continuous
explanatory variables are sometimes called covariates.

Classification variables identify classification levels and are declared in the CLASS statement. These are
also referred to as categorical, dummy, qualitative, discrete, or nominal variables. Classification variables
can be either character or numeric. The values of classification variables are called levels. For example, the
classification variable Batch could have levels ‘batch1’ and ‘batch2’ to identify items from two production
batches. An indicator (0-1) variable is generated for each level of a classification variable and is used as an
explanatory variable. See Nelson (1990, p. 277) for an example that uses an indicator variable in the analysis
of accelerated life test data. In a model, an explanatory variable that is not declared in a CLASS statement is
assumed to be continuous.

By default, all regression models automatically contain an intercept term; that is, the model is of the form

�i D ˇ0 C ˇ1xi1 C : : :

where ˇ0 does not have an explanatory variable multiplier. The intercept term can be excluded from the
model by specifying INTERCEPT=0 as a MODEL statement option.

For numerical stability, continuous explanatory variables are centered and scaled internally to the procedure.
This transforms the parameters ˇ in the original model to a new set of parameters. The parameter estimates ˇ
and covariances are transformed back to the original scale before reporting, so that the parameters should be
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interpreted in terms of the originally specified model. Covariates that are indicator variables—that is, those
specified in a CLASS statement—are not centered and scaled.

Initial values of the regression parameters used in the Newton-Raphson method are computed by ordinary
least squares. The parameters ˇ and the scale parameter � are jointly estimated by maximum likelihood,
taking a logarithmic transformation of the responses, if necessary, to get a location-scale model.

The generalized gamma distribution is fit using log lifetime as the response variable. The regression
parameters ˇ, the scale parameter � , and the shape parameter � are jointly estimated.

The Weibull distribution shape parameter estimate is computed as Ǒ D 1= O� , where � is the scale parameter
from the corresponding extreme value distribution. The Weibull scale parameter Ǫi D exp.x0 Ǒ/ is not
computed by the procedure. Instead, the regression parameters ˇ and the shape ˇ are reported.

In a model with one to three continuous explanatory variables x, you can use the RELATION= option
in the MODEL statement to specify a transformation that is applied to the variables before model fitting.
Table 17.67 shows the available transformations.

Table 17.67 Variable Transformations

Relation Transformed variable

ARRHENIUS (Nelson parameterization) 1000=.x C 273:15/

ARRHENIUS2 (activation energy parameterization) 11605=.x C 273:15/

POWER log.x/; x > 0
LINEAR x
LOGISTIC log

�
x
1�x

�
; 0 < x < 1

Nonconstant Scale Parameter
In some situations, it is desirable for the scale parameter to change with the values of explanatory variables.
For example, Meeker and Escobar (1998, section 17.5) present an analysis of accelerated life test data where
the spread of the data is greater at lower levels of the stress. You can use the LOGSCALE statement to specify
the scale parameter as a function of explanatory variables. You must also have a MODEL statement to specify
the location parameter. Explanatory variables can be continuous variables, indicator variables specified in
the CLASS statement, or any interaction combination. The variables can be the same as specified in the
MODEL statement, or they can be different variables. Any transformation specified with the RELATION=
MODEL statement option will be applied to the same variable appearing in the LOGSCALE statement. See
the section “Regression Model with Nonconstant Scale” on page 1223 for an example of fitting a model with
nonconstant scale parameter.

The form of the model for the scale parameter is

log.�i / D ˇ0 C ˇ1xi1 C : : :C ˇpxip

where ˇ0 is the intercept term. The intercept term can be excluded from the model by specifying INTER-
CEPT=0 as a LOGSCALE statement option.

The parameters ˇ0; ˇ1; : : : ; ˇp are estimated by maximum likelihood jointly with all the other parameters in
the model.
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Stable Parameters
The location and scale parameters .�; �/ are estimated by maximizing the likelihood function by numerical
methods, as described previously. An alternative parameterization that is likely to have better numerical
properties for heavy censoring is .�; �/, where � D �C zp� and zp is the pth quantile of the standardized
distribution. See Meeker and Escobar (1998, p. 90) and Doganaksoy and Schmee (1993) for more details on
alternate parameterizations.

By default, RELIABILITY estimates a value of zp from the data that will improve the numerical properties
of the estimation. You can also specify values of p from which the value of zp will be computed with the
PSTABLE= option in the ANALYZE, PROBPLOT, RELATIONPLOT, or MODEL statement. Note that a
value of p = 0.632 for the Weibull and extreme value and p = 0.5 for all other distributions will give zp D 0
and the parameterization will then be the usual location-scale parameterization.

All estimates and related statistics are reported in terms of the location and scale parameters .�; �/. If you
specify the ITPRINT option in the ANALYZE, PROBPLOT, or RELATIONPLOT statement, a table showing
the values of p, �, � , and the last evaluation of the gradient and Hessian for these parameters is produced.

Covariance Matrix
An estimate of the covariance matrix of the maximum likelihood estimators (MLEs) of the parameters � is
given by the inverse of the negative of the matrix of second derivatives of the log likelihood, evaluated at the
final parameter estimates:

† D Œ�ij � D �H�1 D �
�
@2L

@�i@�j

��1
�D O�

The negative of the matrix of second derivatives is called the observed Fisher information matrix. The
diagonal term �i i is an estimate of the variance of O�i . Estimates of standard errors of the MLEs are provided
by

SE�i D
p
�i i

An estimator of the correlation matrix is

R D

"
�ij

p
�i i�jj

#

The covariance matrix for the Weibull distribution parameter estimators is computed by a first-order approxi-
mation from the covariance matrix of the estimators of the corresponding extreme value parameters .�; �/
as

Var. Ǫ / D Œexp. O�/�2Var. O�/

Var. Ǒ/ D
Var. O�/
O�4

Cov. Ǫ ; Ǒ/ D �
exp. O�/
O�2

Cov. O�; O�/
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For the regression model, the variance of the Weibull shape parameter estimator Ǒ is computed from the
variance of the estimator of the extreme value scale parameter � as shown previously. The covariance of the
regression parameter estimator Ǒi and the Weibull shape parameter estimator Ǒ is computed in terms of the
covariance between Ǒi and O� as

Cov. Ǒi ; Ǒ/ D �
Cov. Ǒi ; O�/
O�2

Confidence Intervals for Distribution Parameters
Table 17.68 shows the method of computation of approximate two-sided 
 � 100% confidence limits for
distribution parameters. The default value of confidence is 
 D 0:95. Other values of confidence are specified
using the CONFIDENCE= option. In Table 17.68, K
 represents the .1C 
/=2 � 100% percentile of the
standard normal distribution, and O� and O� are the MLEs of the location and scale parameters for the normal,
extreme value, and logistic distributions. For the lognormal, Weibull, and log-logistic distributions, O� and O�
represent the MLEs of the corresponding location and scale parameters of the location-scale distribution that
results when the logarithm of the lifetime is used as the response. For the Weibull distribution, � and � are
the location and scale parameters of the extreme value distribution for the logarithm of the lifetime. SE O�
denotes the standard error of the MLE of � , computed as the square root of the appropriate diagonal element
of the inverse of the Fisher information matrix.

For the Gompertz distributions, estimation of all parameters takes place in the logarithm metric. For example,
a confidence interval for the logarithm of scale is computed as log. Ǫ /˙K
SElog. Ǫ /. The confidence interval
in the standard metric is then obtained by taking e to the power equal to each endpoint.
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Table 17.68 Confidence Limit Computation

Parameters

Distribution Location � or Scale Shape
Threshold �

Normal �L D O� �K
 .SE O�/ �L D O�= expŒK
 .SE O� /= O��
�U D O�CK
 .SE O�/ �U D O� expŒK
 .SE O� /= O��

Lognormal �L D O� �K
 .SE O�/ �L D O�= expŒK
 .SE O� /= O��
�U D O�CK
 .SE O�/ �U D O� expŒK
 .SE O� /= O��

Lognormal �L D O� �K
 .SE O�/ �L D O�= expŒK
 .SE O� /= O��
(base 10) �U D O�CK
 .SE O�/ �U D O� expŒK
 .SE O� /= O��

Extreme value �L D O� �K
 .SE O�/ �L D O�= expŒK
 .SE O� /= O��
�U D O�CK
 .SE O�/ �U D O� expŒK
 .SE O� /= O��

Weibull ˛L D expŒ O� �K
 .SE O�/� ˇL D expŒ�K
 .SE O� /= O��= O�
˛U D expŒ O�CK
 .SE O�/� ˇU D expŒK
 .SE O� /= O��= O�

Exponential ˛L D expŒ O� �K
 .SE O�/�
˛U D expŒ O�CK
 .SE O�/�

Logistic �L D O� �K
 .SE O�/ �L D O�= expŒK
 .SE O� /= O��
�U D O�CK
 .SE O�/ �U D O� expŒK
 .SE O� /= O��

Log-logistic �L D O� �K
 .SE O�/ �L D O�= expŒK
 .SE O� /= O��
�U D O�CK
 .SE O�/ �U D O� expŒK
 .SE O� /= O��

Generalized �L D O�= expŒK
 .SE O� /= O�� �L D O� �K
 .SE O�/
Gamma �U D O� expŒK
 .SE O� /= O�� �U D O�CK
 .SE O�/

Three-parameter �L D O� �K
 .SE O� / ˛L D expŒ O� �K
 .SE O�/� ˇL D expŒ�K
 .SE O� /= O��= O�
Weibull �U D O� CK
 .SE O� / ˛U D expŒ O�CK
 .SE O�/� ˇU D expŒK
 .SE O� /= O��= O�

Regression Parameters Approximate 
 � 100% confidence limits for the regression parameter ˇi are
given by

ˇiL D Ǒi �K
 .SE Ǒ
i
/

ˇiU D Ǒi CK
 .SE Ǒ
i
/
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Percentiles
The maximum likelihood estimate of the p � 100% percentile xp for the extreme value, normal, and logistic
distributions is given by

Oxp D O�C zp O�

where zp D G�1.p/, G is the standardized CDF shown in Table 17.69, and . O�; O�/ are the maximum
likelihood estimates of the location and scale parameters of the distribution. The maximum likelihood
estimate of the percentile tp for the Weibull, lognormal, and log-logistic distributions is given by

Otp D expŒ O�C zp O��

where zp D G�1.p/, and G is the standardized CDF of the location-scale model corresponding to the
logarithm of the response. For the lognormal (base 10) distribution,

Otp D 10
Œ O�Czp O��

The maximum likelihood estimate of the percentile tp for the three-parameter Weibull distribution is computed
by

Otp D O� C expŒ O�C zp O��

where zp D G�1.p/, and G is the standardized CDF of extreme value distribution.

The maximum likelihood estimate of the percentile tp for the standard Gompertz distribution is computed by

Otp D Ǫ logf1 � Ǒ�1 log.1 � p/g

Because the quantile function depends on Lambert’s W function and has no closed form, the percentile for
the three-parameter Gompertz distribution is obtained by using a bisection algorithm to solve the following
equation:

p D F.Otp/ D 1 � exp

(
Ǒ �

O� Otp

Ǫ
� Ǒ exp

�
Otp

Ǫ

�)

Table 17.69 Standardized Cumulative Distribution Functions

Location-Scale Location-Scale
Distribution Distribution CDF

Weibull Extreme value 1 � expŒ� exp.z/�

Lognormal Normal
R z
�1

1p
2�

exp
�
�
u2

2

�
du

Log-logistic Logistic exp.z/
1Cexp.z/
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Confidence Intervals The variance of the MLE of the p � 100% percentile for the normal, extreme value,
or logistic distribution is

Var. Oxp/ D Var. O�/C z2pVar. O�/C 2zpCov. O�; O�/

Two-sided approximate 100
% confidence limits for xp are

xpL D Oxp �K


q
Var. Oxp/

xpU D Oxp CK


q
Var. Oxp/

where K
 represents the 100.1C 
/=2 � 100% percentile of the standard normal distribution.

The limits for the lognormal, Weibull, or log-logistic distributions are

tpL D exp
�
Oxp �K


q
Var. Oxp/

�
tpU D exp

�
Oxp CK


q
Var. Oxp/

�
where xp refers to the percentile of the corresponding location-scale distribution (normal, extreme value, or
logistic) for the logarithm of the lifetime. For the lognormal (base 10) distribution,

tpL D 10

�
Oxp�K


p
Var. Oxp/

�

tpU D 10

�
OxpCK


p
Var. Oxp/

�

Approximate limits for the three-parameter Weibull distribution are computed as

tpL D O� C exp
�
Oxp �K


q
Var. Oxp/

�
tpU D O� C exp

�
Oxp CK


q
Var. Oxp/

�
where xp refers to the percentile of the standard extreme value distribution.

For the Gompertz distributions, confidence limits are computed as

tpL D Otp �K


q
Var.Otp/

tpU D Otp CK


q
Var.Otp/

where Var.Otp/ is calculated by the delta method. Because the quantile function has no closed form, the
derivatives that are required for the three-parameter Gompertz distribution are obtained by the numerical
method of finite differencing.
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Reliability Function
For the extreme value, normal, and logistic distributions shown in Table 17.69, the maximum likelihood
estimate of the reliability function R.x/ D PrfX > xg is given by

OR.x/ D 1 � F

�
x � O�

O�

�

For the Gompertz distributions, the MLE of the reliability function is

OR.x/ D exp

(
Ǒ �

O�x

Ǫ
� Ǒ exp

�x
Ǫ

�)

where O� D 0 for the standard, two-parameter Gompertz distribution.

The MLE of the CDF is OF .x/ D 1 � OR.x/.

Confidence Intervals Let Ou D x� O�
O�

. The approximate variance of u is

Var. Ou/ �
Var. O�/C Ou2Var. O�/C 2 OuCov. O�; O�/

O�2

Two-sided approximate 
 � 100% confidence intervals for R.x/ are computed as

RL.x/ D OR.u2/

RU .x/ D OR.u1/

where

u1 D Ou �K

p

Var. Ou/

u2 D OuCK

p

Var. Ou/

and K
 represents the .1C 
/=2 � 100% percentile of the standard normal distribution. The corresponding
limits for the CDF are

FL.x/ D 1 �RU .x/

FU .x/ D 1 �RL.x/

For the Gompertz distributions, confidence intervals for R.x/ are computed as

RL.x/ D expf� exp.u2/g

RU .x/ D expf� exp.u1/g

where Ou D logŒ� logf ORG.x/g�, RG.x/ is the Gompertz reliability function, and

u1 D Ou �K

p

Var. Ou/

u2 D OuCK

p

Var. Ou/
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The variance term Var. Ou/ is obtained by the delta method from the covariance matrix of the original parameter
estimates.

As an alternative, you can request that two-sided 
 �100% likelihood ratio confidence limits for the reliability
function and the CDF be computed by specifying the LRCLSURV option in the ANALYZE statement or the
LRCLSURV option in the PROBPLOT statement.

Limits for the Weibull, lognormal, and log-logistic reliability function R.t/ are the same as those for
the corresponding extreme value, normal, or logistic reliability R.y/, where y D log.t/. Limits for the
three-parameter Weibull use y D log.t � O�/ and the extreme value CDF.

You can create a table containing estimates of the reliability function, the CDF, and confidence limits
computed as described in this section with the SURVTIME= option in the ANALYZE statement or with the
SURVTIME= option in the PROBPLOT statement. You can plot confidence limits for the CDF on probability
plots created with the PROBPLOT statement with the PINTERVALS=CDF option in the PROBPLOT
statement. PINTERVALS=CDF is the default option for parametric confidence limits on probability plots.

Estimation with the Binomial and Poisson Distributions

In addition to estimating the parameters of the distributions in Table 17.57, you can estimate parameters,
compute confidence limits, compute predicted values and prediction limits, and compute chi-square tests for
differences in groups for the binomial and Poisson distributions by using the ANALYZE statement. Specify
either BINOMIAL or POISSON in the DISTRIBUTION statement to use one of these distributions. The
ANALYZE statement options available for the binomial and Poisson distributions are given in Table 17.5.
See the section “Analysis of Binomial Data” on page 1248 for an example of an analysis of binomial data.

Binomial Distribution
If r is the number of successes and n is the number of trials in a binomial experiment, then the maximum
likelihood estimator of the probability p in the binomial distribution in Table 17.59 is computed as

Op D r=n

Two-sided 
 � 100% confidence limits for p are computed as in Johnson, Kotz, and Kemp (1992, p. 130):

pL D
�1F Œ.1 � 
/=2I �1; �2�

�2 C �1F Œ.1 � 
/=2I �1; �2�

with �1 D 2r and �2 D 2.n � r C 1/ and

pU D
�1F Œ.1C 
/=2I �1; �2�

�2 C �1F Œ.1C 
/=2I �1; �2�

with �1 D 2.r C 1/ and �2 D 2.n � r/, where F Œ
 I �1; �2� is the 
 � 100% percentile of the F distribution
with �1 degrees of freedom in the numerator and �2 degrees of freedom in the denominator.

You can compute a sample size required to estimate p within a specified tolerance w with probability 
 .
Nelson (1982, p. 206) gives the following formula for the approximate sample size:

n � Op.1 � Op/

�
K


w

�2
where K
 is the .1C 
/=2 � 100% percentile of the standard normal distribution. The formula is based
on the normal approximation for the distribution of Op. Nelson recommends using this formula if np > 10
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and np.1 � p/ > 10. The value of 
 used for computing confidence limits is used in the sample size
computation. The default value of confidence is 
 D 0:95. Other values of confidence are specified using the
CONFIDENCE= option. You specify a tolerance of number with the TOLERANCE(number) option.

The predicted number of successes X in a future sample of size m, based on the previous estimate of p, is
computed as

OX D m.r=n/ D m Op

Two-sided approximate 
 �100/% prediction limits are computed as in Nelson (1982, p. 208). The prediction
limits are the solutions XL and XU of

XU =m D Œ.r C 1/=n�F Œ.1C 
/=2I 2.r C 1/; 2XU �

m=.XL C 1/ D .n=r/F Œ.1C 
/=2I 2.XL C 1/; 2r�

where F Œ
 I �1; �2� is the 
 � 100% percentile of the F distribution with �1 degrees of freedom in the
numerator and �2 degrees of freedom in the denominator. You request predicted values and prediction limits
for a future sample of size number with the PREDICT(number) option.

You can test groups of binomial data for equality of their binomial probability by using the ANALYZE
statement. You specify the K groups to be compared with a group variable having K levels.

Nelson (1982, p. 450) discusses a chi-square test statistic for comparing K binomial proportions for equality.
Suppose there are ri successes in ni trials for i D 1; 2; : : : ; K. The grouped estimate of the binomial
probability is

Op D
r1 C r2 C � � � C rK

n1 C n2 C � � � C nK

The chi-square test statistic for testing the hypothesis p1 D p2 D : : : D pK against pi ¤ pj for some i and
j is

Q D

KX
iD1

.ri � ni Op/
2

ni Op.1 � Op/

The statistic Q has an asymptotic chi-square distribution with K – 1 degrees of freedom. The RELIABILITY
procedure computes the contribution of each group to Q, the value of Q, and the p-value for Q based on the
limiting chi-square distribution with K – 1 degrees of freedom. If you specify the PREDICT option, predicted
values and prediction limits are computed for each group, as well as for the pooled group. The p-value is
defined as p0 D 1 � �2K�1ŒQ�, where �2K�1Œx� is the chi-square CDF with K – 1 degrees of freedom, and
Q is the observed value. A test of the hypothesis of equal binomial probabilities among the groups with
significance level ˛ is

� p0 > ˛ : do not reject the equality hypothesis

� p0 � ˛ : reject the equality hypothesis
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Poisson Distribution
You can use the ANALYZE statement to model data by using the Poisson distribution. The data consist of a
count Y of occurrences in a “length” of observation T. Observation T is typically an exposure time, but it can
have other units, such as distance. The ANALYZE statement enables you to compute the rate of occurrences,
confidence limits, and prediction limits.

An estimate of the rate � is computed as

O� D Y=T

Two-sided 
 � 100% confidence limits for � are computed as in Nelson (1982, p. 201):

�L D 0:5�
2Œ.1 � 
/=2I 2Y �=T

�U D 0:5�
2Œ.1C 
/=2I 2.Y C 1/�=T

where �2ŒıI �� is the ı � 100% percentile of the chi-square distribution with � degrees of freedom.

You can compute a length T required to estimate � within a specified tolerance w with probability 
 . Nelson
(1982, p. 202) provides the following approximate formula:

OT � O�

�
K


w

�2
where K
 is the .1C 
/=2 � 100% percentile of the standard normal distribution. The formula is based on
the normal approximation for O� and is more accurate for larger values of �T . Nelson recommends using
the formula when �T > 10. The value of 
 used for computing confidence limits is also used in the length
computation. The default value of confidence is 
 D 0:95. Other values of confidence are specified using the
CONFIDENCE= option. You specify a tolerance of number with the TOLERANCE(number) option.

The predicted future number of occurrences in a length S is

OX D .Y=T /S D O�S

Two-sided approximate 
 � 100% prediction limits are computed as in Nelson (1982, p. 203). The prediction
limits are the solutions XL and XU of

XU =S D Œ.Y C 1/=T �F Œ.1C 
/=2I 2.Y C 1/; 2XU �

S=.XL C 1/ D .T=Y /F Œ.1C 
/=2I 2.XL C 1/; 2Y �

where F Œ
 I �1; �2� is the 
 � 100% percentile of the F distribution with �1 degrees of freedom in the
numerator and �2 degrees of freedom in the denominator. You request predicted values and prediction limits
for a future exposure number with the PREDICT(number) option.
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You can compute a chi-square test statistic for comparing K Poisson rates for equality. You specify the K
groups to be compared with a group variable having K levels.

See Nelson (1982, p. 444) for more information. Suppose that there are Yi Poisson counts in lengths Ti for
i D 1; 2; : : : ; K and that the Yi are independent. The grouped estimate of the Poisson rate is

O� D
Y1 C Y2 C � � � C YK

T1 C T2 C � � � C TK

The chi-square test statistic for testing the hypothesis �1 D �2 D : : : D �K against �i ¤ �j for some i and
j is

Q D

KX
iD1

.Yi � O�Ti /
2

O�Ti

The statistic Q has an asymptotic chi-square distribution with K – 1 degrees of freedom. The RELIABILITY
procedure computes the contribution of each group to Q, the value of Q, and the p-value for Q based on the
limiting chi-square distribution with K – 1 degrees of freedom. If you specify the PREDICT option, predicted
values and prediction limits are computed for each group, as well as for the pooled group. The p-value is
defined as p0 D 1 � �2K�1ŒQ�, where �2K�1Œx� is the chi-square CDF with K – 1 degrees of freedom and Q
is the observed value. A test of the hypothesis of equal Poisson rates among the groups with significance
level ˛ is

� p0 > ˛ : accept the equality hypothesis

� p0 � ˛ : reject the equality hypothesis

Least Squares Fit to the Probability Plot

Fitting to the probability plot by least squares is an alternative to maximum likelihood estimation of the
parameters of a life distribution. Only the failure times are used. A least squares fit is computed using points
.x.i/; mi /, where mi D F�1.ai / and ai are the plotting positions as defined in the section “Probability
Plotting” on page 1331. The xi are either the lifetimes for the normal, extreme value, or logistic distributions
or the log lifetimes for the lognormal, Weibull, or log-logistic distributions. The ANALYZE, PROBPLOT,
or RELATIONPLOT statement option FITTYPE=LSXY specifies the x.i/ as the dependent variable (’y-
coordinate’) and themi as the independent variable (’x-coordinate’). You can optionally reverse the quantities
used as dependent and independent variables by specifying the FITTYPE=LSYX option.

Weibayes Estimation

Weibayes estimation is a method of performing a Weibull analysis when there are few or no failures. The
FITTYPE=WEIBAYES option requests this method. The method of Nelson (1985) is used to compute a
one-sided confidence interval for the Weibull scale parameter when the Weibull shape parameter is specified.
See Abernethy (2006) for more discussion and examples. The Weibull shape parameter ˇ is assumed to be
known and is specified to the procedure with the SHAPE=number option. Let T1; T2; : : : ; Tn be the failure
and censoring times, and let r � 0 be the number of failures in the data. If there are no failures .r D 0/, a
lower 
 � 100% confidence limit for the Weibull scale parameter ˛ is computed as

˛L D f

nX
iD1

T
ˇ
i =Œ� log.1 � 
/�g1=ˇ
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The default value of confidence is 
 D 0:95. Other values of confidence are specified using the CONFI-
DENCE= option.

If r � 1, the MLE of ˛ is given by

Ǫ D Œ

nX
iD1

T
ˇ
i =r�

1=ˇ

and a lower 
 � 100% confidence limit for the Weibull scale parameter ˛ is computed as

˛L D Ǫ Œ2r=�
2.
; 2r C 2/�1=ˇ

where �2.
; 2r C 2/ is the 
 percentile of a chi-square distribution with 2r C 2 degrees of freedom. The
procedure uses the specified value of ˇ and the computed value of ˛L to compute distribution percentiles and
the reliability function.

Estimation With Multiple Failure Modes

In many applications, units can experience multiple causes of failure, or failure modes. For example, in the
section “Weibull Probability Plot for Two Combined Failure Modes” on page 1230, insulation specimens
can experience either early failures due to manufacturing defects or degradation failures due to aging. The
FMODE statement is used to analyze this type of data. See the section “FMODE Statement” on page 1271
for the syntax of the FMODE statement. This section describes the analysis of data when units experience
multiple failure modes.

The assumptions used in the analysis are

� a cause, or mode, can be identified for each failure

� failure modes follow a series-system model; i.e., a unit fails when a failure due to one of the modes
occurs

� each failure mode has the specified lifetime distribution with different parameters

� failure modes act statistically independently

Suppose there are m failure modes, with lifetime distribution functions F1.t/; F2.t/; : : : ; Fm.t/.

If you wish to estimate the lifetime distribution of a failure mode, say mode i, acting alone, specify the
KEEP keyword in the FMODE statement. The failures from all other modes are treated as right-censored
observations, and the lifetime distribution is estimated by one of the methods described in other sections,
such as maximum likelihood. This lifetime distribution is interpreted as the distribution if the specified failure
mode is acting alone, with all other modes eliminated. You can also specify more than one mode to KEEP,
but the assumption is that all the specified modes have the same distribution.

If you specify the ELIMINATE keyword, failures due to the specified modes are treated as right censored.
The resulting distribution estimate is the failure distribution if the specified modes are eliminated.

If you specify the COMBINE keyword, the failure distribution when all the modes specified in the FMODE
statement modes act is estimated. The failure distribution Fi .t/; i D 1; 2; : : : ; m, from each individual
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mode is first estimated by treating all failures from other modes as right censored. The estimated failure
distributions are then combined to get an estimate of the lifetime distribution when all modes act,

OF .t/ D 1 �

mY
iD1

Œ1 � OFi .t/�

Pointwise approximate asymptotic normal confidence limits for F.t/ can be obtained by the delta method.
See Meeker and Escobar (1998, appendix B.2). The delta method variance of OF .t/ is, assuming independence
of failure modes,

Var. OF .t// D
mX
iD1

ŒS0.u1/S0.u2/ : : : f0.ui / : : : S0.um/�
2Var.ui /

where ui D
y� O�i
O�i

, y is t for the extreme value, normal, and logistic distributions or log.t/ for the Weibull,
lognormal or log-logistic distributions, O�i and O�i are location and scale parameter estimates for mode i,
and S0 and f0 are the standard (� D 0; � D 1) survival function and density function for the specified
distribution.

Two-sided approximate .1� ˛/100% pointwise confidence intervals are computed as in Meeker and Escobar
(1998, section 3.6) as

ŒFL; FU � D

"
OF

OF C .1 � OF /w
;

OF

OF C .1 � OF /=w

#
where

w D exp

"
z1�˛=2se OF
. OF .1 � OF //

#

where se OF D
q

Var. OF .t// and zp is the pth quantile of the standard normal distribution.

Regression Model Statistics Computed for Each Observation for Lifetime
Data
This section describes statistics that are computed for each observation when you fit a model for lifetime data.
For regression models that are fit using the MODEL statement, you can specify a variety of statistics to be
computed for each observation in the input data set. This section describes the method of computation for
each statistic. See Table 17.32 and Table 17.33 for the syntax to request these statistics.

Predicted Values

The linear predictor is

O�i D x0 Ǒ

where xi is the vector of explanatory variables for the ith observation.
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Percentiles

An estimator of the p� 100% percentile xp for the ith observation for the extreme value, normal, and logistic
distributions is

Oxi;p D x0 Ǒ C zp O�

where zp D G�1.p/, G is the standardized CDF, and � is the distribution scale parameter.

An estimator of the p�100% percentile tp for the ith observation for the Weibull, lognormal, and log-logistic
distributions is

Oti;p D expŒx0 Ǒ C zp O��

where G is the standardized CDF of the extreme value, normal, or logistic distribution that corresponds to the
logarithm of the lifetime, and � is the distribution scale parameter.

The percentile of the lognormal (base 10) distribution is

Oti;p D 10
Œx0 ǑCzp O��

where G is the CDF of the standard normal distribution.

An estimator of the p � 100% percentile tp for the ith observation for the generalized gamma distribution is

Oti;p D expŒx0 Ǒ C w�;p O��

where

w�;p D
1

�
log

�
�2

2
�2
.2=�2/;p

�
and �2

k;p
is the p � 100% percentile of the chi-square distribution with k degrees of freedom.

Standard Errors of Percentile Estimator

For the extreme value, normal, and logistic distributions, the standard error of the estimator of the p � 100%
percentile is computed as

�i;p D
p

z0†z

where

z D
�

xi
zp

�
and † is the covariance matrix of . Ǒ; O�/.

For the Weibull, lognormal, and log-logistic distributions, the standard error is computed as

�i;p D exp.xi;p/
p

z0†z

where xi;p is the percentile computed from the extreme value, normal, or logistic distribution that corresponds
to the logarithm of the lifetime. The standard error for the lognormal (base 10) distribution is computed as

�i;p D 10
xi;p
p

z0†z
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The standard error for the generalized gamma distribution percentile is computed as

�i;p D expŒx0 Ǒ C w�;p O��
p

z0†z

where

z D

24 xi
w�;p

O�
@w�;p
@�

35
† is the covariance matrix of . Ǒ; O�; O�/, ˇ is the vector of regression parameters, � is the scale parameter,
and � is the shape parameter.

Confidence Limits for Percentiles

Two-sided approximate 100
% confidence limits for xi;p for the extreme value, normal, and logistic
distributions are computed as

xL D Oxi;p �K
�i;p

xU D Oxi;p CK
�i;p

where K
 represents the 100.1C 
/=2 � 100% percentile of the standard normal distribution.

Limits for the Weibull, lognormal, and log-logistic percentiles are computed as

tL D exp.xL/
tU D exp.xU /

where xL and xU are computed from the corresponding distributions for the logarithms of the lifetimes. For
the lognormal (base 10) distribution,

tL D 10xL

tU D 10xU

Limits for the generalized gamma distribution percentiles are computed as

tL D exp
h
x0iˇ C w�;p O� �K


p
z0†z

i
tU D exp

h
x0iˇ C w�;p O� CK


p
z0†z

i
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Reliability Function

For the extreme value, normal, and logistic distributions, an estimate of the reliability function evaluated at
the response yi is computed as

R.yi / D 1 �G

 
yi � x0 Ǒ

O�

!

where G.x/ is the standardized CDF of the distribution from Table 17.69.

Estimates of the reliability function evaluated at the response ti for the Weibull, lognormal, log-logistic, and
generalized gamma distributions are computed as

R.ti / D 1 �G

 
log.ti / � x0 Ǒ

O�

!

where G.x/ is the standardized CDF of the corresponding extreme value, normal, logistic, or generalized
log-gamma distributions.

Residuals

The RELIABILITY procedure computes several different kinds of residuals. In the following equations, yi
represents the ith response value if the extreme value, normal, or logistic distributions are specified. If ti is
the ith response and if the Weibull, lognormal, log-logistic, or generalized gamma distributions are specified,
then yi represents the logarithm of the response yi D log.ti /. If the lognormal (base 10) distribution is
specified, then yi D log10.ti /.

Raw Residuals
The raw residual is computed as

rRi D yi � x0 Ǒ

Standardized Residuals
The standardized residual is computed as

rSi D
yi � x0 Ǒ

O�

Adjusted Residuals
If an observation is right censored, then the standardized residual for that observation is also right censored.
Adjusted residuals adjust censored standardized residuals upward by adding a percentile of the residual
lifetime distribution, given that the standardized residual exceeds the censoring value. The default per-
centile is the median (50th percentile), but you can, optionally, specify a 
 � 100% percentile by using the
RESIDALPHA=
 option in the MODEL statement. The 
 � 100 percentile residual life is computed as in
Joe and Proschan (1984). The adjusted residual is computed as

rAi D

�
G�1Œ1 � .1 � 
/S.ui /� for right-censored observations
ui for uncensored observations
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where G is the standard CDF,

S.u/ D 1 �G.u/

is the reliability function, and

ui D
yi � x0 Ǒ

O�

If the generalized gamma distribution is specified, the standardized CDF and reliability functions include the
estimated shape parameter O�.

Modified Cox-Snell Residuals
Let

ıi D

�
1 for uncensored observations
0 for right-censored observations

The Cox-Snell residual is defined as

rCi D � log.R.yi //

where

R.y/ D 1 �G

 
y � x0 Ǒ

O�

!

is the reliability function. The modified Cox-Snell residual is computed as in Collett (1994, p. 152):

r
0

Ci D rCi C .1 � ıi /˛

where ˛ is an adjustment factor. If the fitted model is correct, the Cox-Snell residual has approximately a
standard exponential distribution for uncensored observations. If an observation is censored, the residual
evaluated at the censoring time is not as large as the residual evaluated at the (unknown) failure time. The
adjustment factor ˛ adjusts the censored residuals upward to account for the censoring. The default is
˛ D 1:0, the mean of the standard exponential distribution. You can, optionally, specify any adjustment
factor by using the MODEL statement option RESIDADJ=˛. Another commonly used value is the median
of the standard exponential distribution, ˛ D 0:693.

Deviance Residuals
Deviance residuals are a zero-mean, symmetrized version of modified Cox-Snell residuals. Deviance residuals
are computed as in Collett (1994, p. 153):

rDi D sgn.ıi � rCi /f�2Œıi � rCi C ıi log.rCi /�g1=2

where

sgn.u/ D
�
�1 if u < 0
1 if u � 0



Regression Model Statistics Computed for Each Observation for Recurrent Events Data F 1363

Regression Model Statistics Computed for Each Observation for
Recurrent Events Data
This section describes statistics that are computed for each observation when you fit a model for recurrent
events data. For regression models that are fit using the MODEL statement, you can specify a variety of
statistics to be computed for each observation in the input data set. This section describes the method of
computation for each statistic. See Table 17.32 and Table 17.34 for the syntax to request these statistics.

Let ti be the event time in the ith observation in the input data set. The following statistics use the definitions
of the mean function M.t I �; ˇ/ and intensity function �.t I �; ˇ/ in Table 17.72, where � and ˇ are replaced
by their maximum likelihood estimates. The shape parameter ˇ is assumed to be constant for all observations.
For regression models, the scale parameter � in Table 17.72 for the ith observation is

�i D ˇ0 C ˇ1xi1 C : : :

where xi1; xi2; : : : are regression coefficients and ˇ0; ˇ1; : : : are the maximum likelihood estimates of the
regression parameters.

Predicted Values of Scale Parameter

The scale parameter that is predicted by the model for the ith observation is

O�i D x0i Ǒ

where xi is the vector of explanatory variables for the ith observation and ˇ is the vector of maximum
likelihood estimates of the regression parameters.

Mean Function

The predicted mean function is computed as M.ti ; O�i ; Ǒ/.

Confidence Limits for the Mean Function

Confidence limits for the estimated M.ti / are computed as described in the section “NHPP Model Parameter
Confidence Limit Computation” on page 1372, using ti ; O�i , and Ǒ.

Standard Error of the Mean Function

The standard error of the estimated M.ti / is computed as described in the section “NHPP Model Parameter
Confidence Limit Computation” on page 1372, using ti ; O�i , and Ǒ.

Intensity Function

The predicted intensity function is computed as �.ti ; O�i ; Ǒ/.

Confidence Limits for the Intensity Function

Confidence limits for the estimated �.ti / are computed as described in the section “NHPP Model Parameter
Confidence Limit Computation” on page 1372, using ti ; O�i , and Ǒ.
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Standard Error of the Intensity Function

The standard error of the estimated �.ti / is computed as described in the section “NHPP Model Parameter
Confidence Limit Computation” on page 1372, using ti ; O�i , and Ǒ.

Recurrence Data from Repairable Systems
Failures in a system that can be repaired are sometimes modeled as recurrence data, or recurrent events
data. When a repairable system fails, it is repaired and placed back in service. As a repairable system
ages, it accumulates a history of repairs and costs of repairs. The mean cumulative function (MCF) M.t/ is
defined as the population mean of the cumulative number (or cost) of repairs up until time t. You can use the
RELIABILITY procedure to compute and plot nonparametric estimates and plots of the MCF for the number
of repairs or the cost of repairs. The Nelson (1995) confidence limits for the MCF are also computed and
plotted. You can compute and plot estimates of the difference of two MCFs and confidence intervals. This is
useful for comparing the repair performance of two systems.

See Nelson (2002, 1995, 1988), Doganaksoy and Nelson (1998), and Nelson and Doganaksoy (1989) for
discussions and examples of nonparametric analysis of recurrence data.

You can also fit a parametric model for recurrent event data and display the resulting model on a plot, along
with nonparametric estimates of the MCF.

See Rigdon and Basu (2000), Tobias and Trindade (1995), and Meeker and Escobar (1998) for discussions of
parametric models for recurrent events data.

Nonparametric Analysis

Recurrent Events Data with Exact Ages
See the section “Analysis of Recurrence Data on Repairs” on page 1233 and the section “Comparison of Two
Samples of Repair Data” on page 1238 for examples of the analysis of recurrence data with exact ages.

Formulas for the MCF estimator OM.t/ and the variance of the estimator Var. OM.t// are given in Nelson (1995).
Table 17.70 shows a set of artificial repair data from Nelson (1988). For each system, the data consist of the
system and cost for each repair. If you want to compute the MCF for the number of repairs, rather than cost
of repairs, then you should set the cost equal to 1 for each repair. A plus sign (+) in place of a cost indicates
that the age is a censoring time. The repair history of each system ends with a censoring time.

Table 17.70 System Repair Histories for Artificial Data

Unit (Age in Months, Cost in $100)

6 (5,$3) (12,$1) (12,+)
5 (16,+)
4 (2,$1) (8,$1) (16,$2) (20,+)
3 (18,$3) (29,+)
2 (8,$2) (14,$1) (26,$1) (33,+)
1 (19,$2) (39,$2) (42,+)

Table 17.71 illustrates the calculation of the MCF estimate from the data in Table 17.70. The RELIABILITY
procedure uses the following rules for computing the MCF estimates.
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1. Order all events (repairs and censoring) by age from smallest to largest.

� If the event ages of the same or different systems are equal, the corresponding data are sorted
from the largest repair cost to the smallest. Censoring events always sort as smaller than repair
events with equal ages.

� When event ages and values of more than one system coincide, the corresponding data are sorted
from the largest system identifier to the smallest. The system IDs can be numeric or character,
but they are always sorted in ASCII order.

2. Compute the number of systems I in service at the current age as the number in service at the last
repair time minus the number of censored units in the intervening times.

3. For each repair, compute the mean cost as the cost of the current repair divided by the number in
service I.

4. Compute the MCF for each repair as the previous MCF plus the mean cost for the current repair.

Table 17.71 Calculation of MCF for Artificial Data

Number I in Mean
Event (Age,Cost) Service Cost MCF

1 (2,$1) 6 $1/6=0.17 0.17
2 (5,$3) 6 $3/6=0.50 0.67
3 (8,$2) 6 $2/6=0.33 1.00
4 (8,$1) 6 $1/6=0.17 1.17
5 (12,$1) 6 $1/6=0.17 1.33
6 (12,+) 5
7 (14,$1) 5 $1/5=0.20 1.53
8 (16,$2) 5 $2/5=0.40 1.93
9 (16,+) 4
10 (18,$3) 4 $3/4=0.75 2.68
11 (19,$2) 4 $2/4=0.50 3.18
12 (20,+) 3
13 (26,$1) 3 $1/3=0.33 3.52
14 (29,+) 2
15 (33,+) 1
16 (39,$2) 1 $2/1=2.00 5.52
17 (42,+) 0

If you specify the VARIANCE=NELSON option, the variance of the estimator of the MCF Var. OM.t// is
computed as in Nelson (1995). If the VARIANCE=LAWLESS or VARMETHOD2 option is specified, the
method of Lawless and Nadeau (1995) is used to compute the variance of the estimator of the MCF. This
method is recommended if the number of systems or events is large or if a FREQ statement is used to specify
a frequency variable. If you do not specify a variance computation method, the method of Lawless and
Nadeau (1995) is used.
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Default approximate two-sided 
 � 100% pointwise confidence limits for M.t/ are computed as

ML.t/ D OM.t/ �K

q

Var. OM.t//

MU .t/ D OM.t/CK

q

Var. OM.t//

where K
 represents the 100.1C 
/=2 percentile of the standard normal distribution.

If you specify the LOGINTERVALS option in the MCFPLOT statement, alternative confidence intervals
based on the asymptotic normality of log. OM.t//, rather than of OM.t/, are computed. Let

w D exp

264K

q

Var. OM.t//
OM.t/

375
Then the limits are computed as

ML.t/ D
OM.t/
w

MU .t/ D OM.t/ � w

These alternative limits are always positive, and can provide better coverage than the default limits when
the MCF is known to be positive, such as for counts or for positive costs. They are not appropriate for MCF
differences, and are not computed in this case.

The following SAS statements create the tabular output shown in Figure 17.59 and the plot shown in
Figure 17.60:

data Art;
input Sysid $ Time Cost;
datalines;

sys1 19 2
sys1 39 2
sys1 42 -1
sys2 8 2
sys2 14 1
sys2 26 1
sys2 33 -1
sys3 18 3
sys3 29 -1
sys4 16 2
sys4 2 1
sys4 20 -1
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sys4 8 1
sys5 16 -1
sys6 5 3
sys6 12 1
sys6 12 -1
;

proc reliability data=Art;
unitid Sysid;
mcfplot Time*Cost(-1) ;

run;

The first table in Figure 17.59 displays the input data set, the number of observations used in the analysis, the
number of systems (units), and the number of repair events. The second table displays the system age, MCF
estimate, standard error, approximate confidence limits, and system ID for each event.

Figure 17.59 PROC RELIABILITY Output for the Artificial Data

The RELIABILITY ProcedureThe RELIABILITY Procedure

Recurrence Data Summary

Input Data Set WORK.ART

Observations Used 17

Number of Units 6

Number of Events 11

Recurrence Data Analysis

95%
Confidence

Limits

Age
Sample

MCF
Standard

Error Lower Upper
Unit
ID

2.00 0.167 0.152 -0.132 0.465 sys4

5.00 0.667 0.451 -0.218 1.551 sys6

8.00 1.000 0.471 0.076 1.924 sys2

8.00 1.167 0.495 0.196 2.138 sys4

12.00 1.333 0.609 0.141 2.526 sys6

14.00 1.533 0.695 0.172 2.895 sys2

16.00 1.933 0.859 0.249 3.618 sys4

18.00 2.683 0.828 1.061 4.306 sys3

19.00 3.183 0.607 1.993 4.373 sys1

26.00 3.517 0.634 2.274 4.759 sys2

39.00 5.517 0.634 4.274 6.759 sys1
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Figure 17.60 MCF Plot for the Artificial Data

Recurrent Events Data with Ages Grouped into Intervals
Recurrence data are sometimes grouped into time intervals for convenience, or to reduce the number of data
records to be stored and analyzed. Interval recurrence data consist of the number of recurrences and the
number of censored units in each time interval.

You can use PROC RELIABILITY to compute and plot MCFs and MCF differences for interval data.
Formulas for the MCF estimator OM.t/ and the variance of the estimator Var. OM.t// for interval data, as well
as examples and interpretations, are given in Nelson (2002, chapter 5). These calculations apply only to the
number of recurrences, and not to cost.

Let N0 be the total number of units, Ri the number of recurrences in interval i, i D 1; : : : ; n, and Ci
the number of units censored into interval i. Then N0 D

Pn
iD1Ci and the number entering interval i is

Ni D Ni�1 � Ci�1 with C0 D 0. The MCF estimate for interval i is M0 D 0,

Mi D Mi�1 C
Ri

Ni � 0:5Ci

The denominator Ni � 0:5Ci approximates the number at risk in interval i, and treats the censored units as
if they were censored halfway through the interval. Since no censored units are likely to have ages lasting
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through the entire last interval, the MCF estimate for the last interval is likely to be biased. A footnote is
printed in the tabular output as a reminder of this bias for the last interval.

See the section “Analysis of Interval Age Recurrence Data” on page 1245 for an example of interval
recurrence data analysis.

Comparison of Two Groups of Recurrent Events Data
If you specify a group variable in an MCFPLOT statement, and the group variable has only two levels
representing two groups of data, then there are two ways to compare the MCFs of the two groups for equality.

If you specify the MCFDIFF option in the MCFPLOT statement, estimates of the difference between two
MCFs MDIFF.t/ D M1.t/ � M2.t/ and the variance of the estimator are computed and plotted as in
Doganaksoy and Nelson (1998). Confidence limits for the MCF difference function are computed in the
same way as for the MCF, by using the variance of the MCF difference function estimator. If the confidence
limits do not enclose zero at any time point, then the statistical hypothesis that the two MCFs are equal at all
times is rejected.

Cook and Lawless (2007, section 3.7.5) describe statistical tests based on weighted sums of sample differences
in the MCFs of the two groups. These tests, similar to log-rank tests for survival data, are computed and
displayed in the “Tests for Equality of Mean Functions” table. Two cases are computed, corresponding
to different weight functions in the test statistic. The “constant” case is powerful in cases where the two
MCFs are approximately proportional. The “linear” case is more powerful for cases where the MCFs are not
proportional, but do not cross.

These methods are not available for grouped data, as described in “Recurrent Events Data with Ages Grouped
into Intervals” on page 1368.

Parametric Models for Recurrent Events Data

The parametric models used for recurrent events data in PROC RELIABILITY are called Poisson process
models. Some important features of these models are summarized below. See, for example, Rigdon and Basu
(2000) and Meeker and Escobar (1998) for a full mathematical description of these models. See Cook and
Lawless (2007) for a general discussion of maximum likelihood estimation in Poisson processes. Abernethy
(2006) and US Army (2000) provide examples of the application of Poisson process models to system
reliability.

Let N.t/ be the number of events up to time t, and let N.a; b/ be the number of events in the interval .a; b�.
Then, for a Poisson process,

� N.0/ D 0.

� N.a; b/ and N.c; d/ are statistically independent if a < b � c < d .

� N.a; b/ is a Poisson random variable with mean M.a; b/ D M.b/ �M.a/ where M.t/ is the mean
number of failures up to time t. M.0/ D 0.

Poisson processes are characterized by their cumulative mean function M.t/, or equivalently by their intensity,
rate, or rate of occurrence of failure (ROCOF) function �.t/ D d

dt
M.t/, so that

M.a; b/ D M.b/ �M.a/ D
Z b

a

�.t/dt
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Poisson processes are parameterized through their mean and rate functions. The RELIABILITY procedure
provides the Poisson process models shown in Table 17.72.

Table 17.72 Models and Parameters for Recurrent Events Data

Model Intensity Function Mean Function

Crow-AMSAA ˇ�tˇ�1 �tˇ

Homogeneous exp.�/ exp.�/t
Log-linear exp.�C ˇt/ exp.�/

ˇ
Œexp.ˇt/ � 1�

Power ˇ
�

�
t
�

�ˇ�1 �
t
�

�ˇ
Proportional intensity exp.�/ˇtˇ�1 exp.�/tˇ

For a homogeneous Poisson process, the intensity function is a constant; that is, the rate of failures does not
change with time. For the other models, the rate function can change with time, so that a rate of failures
that increases or decreases with time can be modeled. These models are called non-homogeneous Poisson
processes.

In the RELIABILITY procedure, you specify a Poisson model with a DISTRIBUTION statement and a
MODEL statement. You must also specify additional statements, depending on whether failure times are
observed exactly, or observed to occur in time intervals. These statements are explained in the sections
“Recurrent Events Data with Exact Event Ages” on page 1374, “Recurrent Events Data with Interval Event
Ages” on page 1375, and “MODEL Statement” on page 1290. The DISTRIBUTION statement specifications
for the models described in Table 17.72 are summarized in Table 17.73.

Table 17.73 DISTRIBUTION Statement Specification for Recurrent Events Data Models

Model DISTRIBUTION Statement Value

Crow-AMSAA NHPP(CA)
Homogeneous HPP
Log-linear NHPP(LOG)
Power NHPP(POW)
Proportional intensity NHPP(PROP)

For each of the models, you can specify a regression model for the parameter � in Table 17.72 for the i th
observation as

�i D ˇ0 C ˇ1xi1 C : : :

where xi1; xi2; : : : are regression coefficients specified as described in the section “MODEL Statement” on
page 1290. The parameter ˇ0 is labeled Intercept in the printed output, and the parameter ˇ in Table 17.72 is
labeled Shape. If no regression coefficients are specified, Intercept represents the parameter � in Table 17.72.
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Model parameters are estimated by maximizing the log-likelihood function, which is equivalent to maximizing
the likelihood function. The sections “Recurrent Events Data with Exact Event Ages” on page 1374 and
“Recurrent Events Data with Interval Event Ages” on page 1375 contain descriptions of the form of the
log likelihoods for the different models. An estimate of the covariance matrix of the maximum likelihood
estimators (MLEs) of the parameters � is given by the inverse of the negative of the matrix of second
derivatives of the log likelihood, evaluated at the final parameter estimates:

† D Œ�ij � D �H�1 D �
�
@2LL

@�i@�j

��1
�D O�

The negative of the matrix of second derivatives is called the observed Fisher information matrix. The
diagonal term �i i is an estimate of the variance of O�i . Estimates of standard errors of the MLEs are provided
by

SE�i D
p
�i i

An estimator of the correlation matrix is

R D

"
�ij

p
�i i�jj

#

Wald-type confidence intervals are computed for the model parameters as described in Table 17.74. Wald
intervals use asymptotic normality of maximum likelihood estimates to compute approximate confidence
intervals. If a parameter must be greater than zero, then an approximation based on the asymptotic normality
of the logarithm of the parameter estimate is often more accurate, and the lower endpoint is strictly positive.
The intercept term ˇ0 in an intercept-only power NHPP model with no other regression parameters represents
� in Table 17.72, and is a model parameter that must be strictly positive. Also, the shape parameter for the
power and proportional intensity models, represented by ˇ in Table 17.72, must be strictly positive. In these
cases, formula 7.11 of Meeker and Escobar (1998, p. 163) is used in Table 17.74 to compute confidence
limits.

Table 17.74 shows the method of computation of approximate two-sided 
 � 100% confidence limits for
model parameters. The default value of confidence is 
 D 0:95. Other values of confidence are specified
using the CONFIDENCE= option. In Table 17.74, K
 represents the .1C 
/=2 � 100% percentile of the
standard normal distribution, and w. O�/ D expŒK
 .SE O� /=

O��.
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Table 17.74 NHPP Model Parameter Confidence Limit Computation

Parameters

Model Intercept Regression Shape
Parameters

Crow-AMSAA
Intercept-only model

Lower Ǒ
0=w. Ǒ0/ Ǒ=w. Ǒ/

Upper Ǒ
0w. Ǒ0/ Ǒw. Ǒ/

Regression model
Lower Ǒ

0 �K
 .SE Ǒ
0
/ Ǒ

i �K
 .SE Ǒ
i
/ Ǒ=w. Ǒ/

Upper Ǒ
0 CK
 .SE Ǒ

0
/ Ǒ

i CK
 .SE Ǒ
i
/ Ǒw. Ǒ/

Homogeneous
Lower Ǒ

0 �K
 .SE Ǒ
0
/ Ǒ

i �K
 .SE Ǒ
i
/

Upper Ǒ
0 CK
 .SE Ǒ

0
/ Ǒ

i CK
 .SE Ǒ
i
/

Log-linear
Lower Ǒ

0 �K
 .SE Ǒ
0
/ Ǒ

i �K
 .SE Ǒ
i
/ Ǒ �K
 .SE Ǒ/

Upper Ǒ
0 CK
 .SE Ǒ

0
/ Ǒ

i CK
 .SE Ǒ
i
/ Ǒ CK
 .SE Ǒ/

Power
Intercept-only model

Lower Ǒ
0=w. Ǒ0/ Ǒ=w. Ǒ/

Upper Ǒ
0w. Ǒ0/ Ǒw. Ǒ/

Regression model
Lower Ǒ

0 �K
 .SE Ǒ
0
/ Ǒ

i �K
 .SE Ǒ
i
/ Ǒ=w. Ǒ/

Upper Ǒ
0 CK
 .SE Ǒ

0
/ Ǒ

i CK
 .SE Ǒ
i
/ Ǒw. Ǒ/

Proportional intensity
Lower Ǒ

0 �K
 .SE Ǒ
0
/ Ǒ

i �K
 .SE Ǒ
i
/ Ǒ=w. Ǒ/

Upper Ǒ
0 CK
 .SE Ǒ

0
/ Ǒ

i CK
 .SE Ǒ
i
/ Ǒw. Ǒ/

You can request that profile likelihood confidence intervals for model parameters be computed instead of
Wald intervals with the LRCL option in the MODEL statement.

Confidence limits for the mean and intensity functions for plots that are created with the MCFPLOT statement
and for the table that is created with the OBSTATS option in the MODEL statement are computed by using
the delta method. See Meeker and Escobar (1998, Appendix B) for a full explanation of this method. If †
represents the covariance matrix of the estimates of the parameters � and ˇ in Table 17.72, then the variance
of the mean or intensity function estimate is given by

V D Œ
@g

@�

@g

@ˇ
�†Œ

@g

@�

@g

@ˇ
�0

where g D g.t I �; ˇ/ represents either the mean function or the intensity function in Table 17.72. Since both
of these functions must be positive, formula 7.11 of Meeker and Escobar (1998, p. 163) is used to compute
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confidence limits, using the standard error � D
p

V. For regression models, the full covariance matrix of all
the regression parameter estimates and the parameter ˇ is used to compute †.

Tests of Trend
For the nonhomogeneous models in Table 17.72, you can request a test for a homogeneous Poisson process
by specifying the HPPTEST option in the MODEL statement. In this case the test is a likelihood ratio test for
ˇ D 1 for the power, Crow-AMSAA, and proportional intensity models, and ˇ D 0 for the log-linear model.

You can request other tests of trend by using the TREND= option in the MODEL statement. These tests
are not available for the kind of grouped data that are described in the section “Recurrent Events Data with
Interval Event Ages” on page 1375. See Lindqvist and Doksum (2003), Kvaloy and Lindqvist (1998), and
Meeker and Escobar (1998) for a discussion of these kinds of tests.

Let there be m independent systems observed, and let ti1; ti2; : : : tini be the times of observed events for
system i. Let the last time of observation of system i be Ti , with tini � Ti . The following test statistics can
be computed. These are extended versions of trend tests for a single system, and they allow valid tests for
HPP versus NHPP even if the intensities vary from system to system.

� Military Handbook (MH)

MH D 2
mX
iD1

niX
jD1

log
�
Ti

tij

�
The asymptotic distribution of MH is the chi-square with 2

Pm
iD1 ni degrees of freedom. This test

statistic is powerful for testing HPP versus NHPP in the power law model.

� Laplace (LA)

LA D

Pm
iD1

Pni
jD1.tij �

1
2
Ti /q

1
12

Pm
iD1 niT

2
i

The asymptotic distribution of LA is the standard normal. This test statistic is powerful for testing HPP
versus NHPP in a log-linear model.

� Lewis-Robinson (LR)

Let LAi be the Laplace test statistic for system i,

LAi D

Pni
jD1.tij �

1
2
Ti /q

1
12
ni

The extended Lewis-Robinson test statistic is defined as

LR D
mX
iD1

NXi

�i
LAi

where NXi and �i are the estimated mean and standard deviation of the event interarrival times for
system i. The asymptotic distribution of LR is the standard normal. This test statistic is powerful for
testing HPP versus NHPP in a log-linear model.
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INEST Data Set for Recurrent Events Models
You can specify a SAS data set to set lower bounds, upper bounds, equality constraints, or initial values for
estimating the intercept and shape parameters of the models in Table 17.72 by using the INEST= option in
the MODEL statement. The data set must contain a variable named _TYPE_ that specifies the action that you
want to take in the iterative estimation process, and some combination of variables named _INTERCEPT_
and _SHAPE_ that represent the distribution parameters. If BY processing is used, the INEST= data set
should also include the BY variables, and there must be at least one observation for each BY group.

The possible values of _TYPE_ and corresponding actions are summarized in Table 17.75.

Table 17.75 _TYPE_ Variable Values

Value of _TYPE_ Action

LB Lower bound
UB Upper bound
EQ Equality
PARMS Initial value

For example, you can use the INEST data set In created by the following SAS statements to specify an
equality constraint for the shape parameter. The data set In specifies that the shape parameter be constrained
to be 1.5. Since the variable _Intercept_ is set to missing, no action is taken for it, and this variable could be
omitted from the data set.

data In ;
input _Type_$ 1-5 _Intercept_ _Shape_;
datalines;

eq . 1.5
;

Recurrent Events Data with Exact Event Ages
Let there be m independent systems observed, and let ti1; ti2; : : : tini be the times of observed events for
system i. Let the last time of observation of system i be Ti , with tini � Ti .

If there are no regression parameters in the model, or there are regression parameters and they are constant
for each system, then the log-likelihood function is

LL D

mX
iD1

f

niX
jD1

Œlog.�.tij /� �M.Ti /g

If there are regression parameters that can change over time for individual systems, the RELIABILITY
procedure uses the convention that a covariate value specified at a given event time takes effect immediately
after the event time; that is, the value of a covariate used at an event time is the value specified at the previous
event time. The value used at the first event time is the value specified at that event time. You can establish a
different value for the first event time by specifying a zero cost event previous to the first actual event. The
zero cost event is not used in the analysis, but it is used to establish a covariate value for the next event time.
The covariate value used at the end time Ti is the value established at the last event time.
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With these conventions, the log likelihood is

LL D

mX
iD1

f

niX
jD1

Œlog.�.tij / � .M.tij / �M.ti;j�1/� � .M.Ti / �M.tini /g

with ti0 D 0 for each i D 1; 2; : : : ; m. Note that this log likelihood reduces to the previous log likelihood if
covariate values do not change over time for each system.

In order to specify a parametric model for recurrence data with exact event times, you specify the event times,
end of observation times, and regression model, if any, with a MODEL statement, as described in the section
“MODEL Statement” on page 1290. In addition, you specify a variable that uniquely identifies each system
with a UNITID statement. See the section “Parametric Model for Recurrent Events Data” on page 1254 for
an example of fitting a parametric recurrent events model to data with exact recurrence times.

Recurrent Events Data with Interval Event Ages
If n independent and statistically identical systems are observed in the time interval .ta; tb�, then the number
r of events that occur in the interval is a Poisson random variable with mean nM.ta; tb/ D nŒM.ta/�M.tb/�,
where M.t/ is the cumulative mean function for an individual system.

Let .t0; t1�; .t1; t2�; : : : ; .tm�1; tm� be nonoverlapping time intervals for which ri events are observed among
the ni systems observed in time interval .ti�1; ti �. The parameters in the mean function M.t/ are estimated
by maximizing the log likelihood

LL D

mX
iD1

Œri log.ni /C ri log.M.ti�1; ti // � niM.ti�1; ti / � log.ri Š/�

The time intervals do not have to be of the same length, and they do not have to be adjacent, although the
preceding formula shows them as adjacent.

If you have data from groups of systems to which you are fitting a regression model (for example, to model
the effects of different manufacturing lines or different vendors), the time intervals in the different groups
do not have to coincide. The only requirement is that the data in the different groups be independent; for
example, you cannot have data from the same systems in two different groups.

In order to specify a parametric model for interval recurrence data, you specify the time intervals and
regression model, if any, with a MODEL statement, as described in the section “MODEL Statement” on
page 1290. In addition, you specify a variable that contains the number ni of systems under observation in
time interval i with an NENTER statement, and the number of events ri observed with a FREQ statement.
See the section “Parametric Model for Interval Recurrent Events Data” on page 1256 for an example of fitting
a parametric recurrent events model to data with interval recurrence times.

Duane Plots

A Duane plot is defined as a graph of the quantity H.t/ D M.t/=t versus t, where M.t/ is the MCF. The
graph axes are usually both on the log scale, so that if M.t/ is the power law type in Table 17.72, a linear
graph is produced. Duane plots are traditionally used as a visual assessment of the goodness of fit of a power
law model. You should exercise caution in using Duane plots, because even if the underlying model is a power
law process, a nonlinear Duane plot can result. See Rigdon and Basu (2000, section 4.1.1) for a discussion of
Duane plots. You can create a Duane plot by specifying the DUANE option in the MCFPLOT statement. A
scatter plot of nonparametric estimates of OH.ti / D OM.ti /=ti versus ti is created on a log-log scale, where
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OM.ti / are the nonparametric estimates of the MCF that are described in the section “Nonparametric Analysis”
on page 1364. If you specify a parametric model with the FIT=MODEL option in the MCFPLOT statement,
the corresponding parametric estimate of H.t/ is plotted on the same graph as the scatter plot.

ODS Table Names
The following tables contain the ODS table names created by the RELIABILITY Procedure, organized by
the statements that produce them.

Table 17.76 Tables Produced with the ANALYZE Statement

Table Name Description

ConvergenceStatus Convergence status
CorrMat Parameter correlation matrix
CovMat Parameter covariance matrix
DatSum Summary of fit
GradHess Last evaluation of parameters, gradient, and Hessian
IterEM Iteration history for Turnbull algorithm
IterLRParm Iteration history for likelihood ratio confidence intervals for parameters
IterLRPer Iteration history for likelihood ratio confidence intervals for percentiles
IterParms Iteration history for parameter estimates
Lagrange Lagrange multiplier statistics
NObs Observations summary
PBEst Poisson/binomial estimates by group
PBPred Poisson/binomial predicted values
PBPredTol Poisson/binomial predicted values by group
PBSum Poisson/binomial analysis summary
PBTol Poisson/binomial tolerance estimates
PctEst Percentile estimates
ParmEst Parameter estimates
ParmOther Fitted distribution mean, median, mode
PGradHess Last evaluation of parameters, gradient, and Hessian in terms of stable

parameters
ProbabilityEstimates Nonparametric cumulative distribution function estimates
RelInfo Model information
SurvEst Survival function estimates
TurnbullGrad Interval probabilities, reduced gradient, Lagrange multipliers for Turn-

bull algorithm
WCorrMat Parameter correlation matrix for Weibull distribution
WCovMat Parameter covariance matrix for Weibull distribution
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Table 17.77 Tables Produced with the MCFPLOT Statement

Table Name Description

McfDEst MCF difference estimates
McfDSum MCF difference data summary
McfEst MCF estimates
McfLogRank Tests of difference between two MCFs
McfSum MCF data summary

Table 17.78 Tables Produced with the MODEL Statement

Table Name Description

MConvergenceStatus Convergence status
ClassLevels Class level information
ModCorMat Parameter correlation matrix
ModCovMat Parameter covariance matrix
ModFitSum Summary of fit
ModInfo Model information
ModIterLRparm Iteration history for likelihood ratio confidence intervals for parameters
ModIterParms Iteration history for parameter estimates
ModLagr Lagrange multiplier statistics
ModLastGradHess Last evaluation of the gradient and Hessian
ModNObs Observations summary
ModObstats Observation statistics
ModParmInfo Parameter information
ModPrmEst Parameter estimates
RecurGoodFit Test for homogeneous Poisson process

Table 17.79 Tables Produced with PROBPLOT and
RELATIONPLOT Statements

Table Name Description

ConvergenceStatus Convergence status
CorrMat Parameter correlation matrix
CovMat Parameter covariance matrix
DatSum Summary of fit
GradHess Last evaluation of parameters, gradient, and Hessian
IterEM Iteration history for Turnbull algorithm
IterLRParm Iteration history for likelihood ratio confidence intervals for parameters
IterLRPer Iteration history for likelihood ratio confidence intervals for percentiles
IterParms Iteration history for parameter estimates
Lagrange Lagrange multiplier statistics
NObs Observations summary
PctEst Percentile estimates
ParmEst Parameter estimates
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Table 17.79 Tables Produced with PROBPLOT and
RELATIONPLOT Statements (continued)

Table Name Description

ParmOther Fitted distribution mean, median, mode
PGradHess Last evaluation of parameters, gradient, and Hessian in terms of stable

parameters
ProbabilityEstimates Nonparametric cumulative distribution function estimates
RelInfo Model information
SurvEst Survival function estimates
TurnbullGrad Interval probabilities, reduced gradient, Lagrange multipliers for Turn-

bull algorithm
WCorrMat Parameter correlation matrix for Weibull distribution
WCovMat Parameter covariance matrix for Weibull distribution

ODS Graphics
SAS/QC procedures use ODS Graphics functionality to create graphs as part of their output. ODS Graphics
is described in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled. For example:

ods graphics on;

proc reliability;
probplot y;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see Chapter 21, “Statistical Graphics
Using ODS” (SAS/STAT User’s Guide).

See Chapter 3, “SAS/QC Graphics,” for alternative methods of creating graphics with PROC RELIABILITY.
See the section “Analysis of Right-Censored Data from a Single Population” on page 1194 for an example
that uses ODS Graphics in PROC RELIABILITY to create a probability plot and the section “ODS Graph
Names” on page 1378 for ODS Graphics table names.

ODS Graph Names

If ODS Graphics is enabled (for example, with the ODS GRAPHICS ON statement), PROC RELIABILITY
creates graphs by using ODS Graphics. You can reference every graph produced through ODS Graphics with
a name. The names of the graphs that PROC RELIABILITY generates are listed in Table 17.80, along with
the required statements and options.
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Table 17.80 Graphs Produced by PROC RELIABILITY

ODS Graph Name Description Statement Option

IntensityPlot Plot of intensity function for
NHPP model

MCFPLOT Fit=MODEL

IntensityPlots Plot of intensity functions for
NHPP model for multiple groups

MCFPLOT Fit=MODEL

MCFDiffPlot Plot of mean cumulative function
differences

MCFPLOT MCFDIFF

MCFPlot Plot of mean cumulative function
plot for single population

MCFPLOT Default

MCFPlotPanel Plot of mean cumulative function
plots for multiple groups

MCFPLOT Group variable

ProbabilityPlot Probability plot for single popula-
tion

PROBPLOT Default

ProbabilityPlotFM Probability plot with failure
modes

PROBPLOT FMODE

ProbabilityPlotPanel Probability plots for multiple
groups

PROBPLOT Group variable

PercentilePlot Plot of model percentiles RELATIONPLOT Default
RecurrentEventsPlot Plot of recurrent event times MCFPLOT EVENTPLOT
RecurrentEventsPlotPanel Plots of recurrent events for mul-

tiple groups
MCFPLOT EVENTPLOT

RelationPlot Plot of model percentiles with
probability plot

RELATIONPLOT PPLOT
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