"The real voyage of discovery consists not in seeking new landscapes, but in having new eyes."

Marcel Proust
Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is licensed under its applicable third-party software license agreement. For license information about third-party software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

Technology License Notices

- **Scintilla** - Copyright © 1998-2014 by Neil Hodgson <neilh@scintilla.org>. All Rights Reserved.
 Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation.

 NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

- **Telerik RadControls** - Copyright © 2002-2012, Telerik. Usage of the included Telerik RadControls outside of JMP is not permitted.

- **Made with Natural Earth**. Free vector and raster map data @ naturalearthdata.com.

- **Packages** - Copyright © 2009-2010, Stéphane Sudre (s.sudre.free.fr). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
 Neither the name of the WhiteBox nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

- iODBC software - Copyright © 1995-2006, OpenLink Software Inc and Ke Jin (www.iobdc.org). All rights reserved.
 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
 - Neither the name of OpenLink Software Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL OPENLINK OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

- bzip2, the associated library “libbzip2”, and all documentation, are Copyright © 1996-2010, Julian R Seward. All rights reserved.
 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.

Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

- **MATLAB software** is Copyright © 1984-2012, The MathWorks, Inc. Protected by U.S. and international patents. See www.mathworks.com/patents. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.
- **libopc** is Copyright © 2011, Florian Reuter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and / or other materials provided with the distribution.
Neither the name of Florian Reuter nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

libxml2 - Except where otherwise noted in the source code (e.g. the files hash.c, list.c and the trio files, which are covered by a similar licence but with different Copyright notices) all the files are:

Copyright © 1998 - 2003 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

The software is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall Daniel Veillard be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.

Except as contained in this notice, the name of Daniel Veillard shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from him.

Regarding the decompression algorithm used for UNIX files:

The Regents of the University of California. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

- Snowball - Copyright © 2001, Dr Martin Porter, Copyright © 2002, Richard Boulton. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Get the Most from JMP®

Whether you are a first-time or a long-time user, there is always something to learn about JMP.

Visit JMP.com to find the following:

- live and recorded webcasts about how to get started with JMP
- video demos and webcasts of new features and advanced techniques
- details on registering for JMP training
- schedules for seminars being held in your area
- success stories showing how others use JMP
- a blog with tips, tricks, and stories from JMP staff
- a forum to discuss JMP with other users

http://www.jmp.com/getstarted/
Contents

Consumer Research

1 **Learn about JMP**
 Documentation and Additional Resources .. 15
 - Formatting Conventions ... 16
 - JMP Documentation ... 17
 - JMP Documentation Library ... 17
 - JMP Help ... 23
 - Additional Resources for Learning JMP ... 23
 - Tutorials ... 24
 - Sample Data Tables ... 24
 - Learn about Statistical and JSL Terms ... 24
 - Learn JMP Tips and Tricks ... 24
 - Tooltips ... 25
 - JMP User Community ... 25
 - JMPer Cable .. 25
 - JMP Books by Users ... 26
 - The JMP Starter Window ... 26
 - Technical Support .. 26

2 **Introduction to Consumer Research**
 Overview of Customer and Behavioral Research Methods 27

3 **Categorical Response Analysis**
 Analyzing Survey and Other Counting Data 29
 - Example of the Categorical Platform .. 30
 - Launch the Categorical Platform ... 31
 - Response Roles .. 31
 - Columns Roles .. 33
 - Other Launch Window Options .. 33
 - The Categorical Report ... 34
 - Categorical Platform Options .. 36
 - Report Options .. 36
 - Statistical Testing Options ... 37
 - Additional Categorical Platform Options .. 39
 - Responses Table Options .. 42
 - Comparison Letters ... 42
Multiple Correspondence Analysis

4 Identify Associations between Levels of Categorical Variables

- Example of Multiple Correspondence Analysis .. 70
- Launch the Multiple Correspondence Analysis Platform 71
- The Multiple Correspondence Analysis Report .. 73

Multiple Correspondence Analysis Platform Options

- Correspondence Analysis Options ... 75
- Show Plot .. 76
- Show Detail ... 76
- Show Adjusted Inertia ... 76
- Show Coordinates ... 77
- Show Summary Statistics ... 77
- Show Partial Contributions to Inertia ... 78
- Show Squared Cosines .. 78
- Cross Table .. 79
- Cross Table of Supplementary Rows .. 80
- Cross Table of Supplementary Columns ... 80

Additional Examples of the Multiple Correspondence Analysis Platform

- Example Using a Supplementary Variable ... 80
- Example Using a Supplementary ID ... 81

Statistical Details for the Multiple Correspondence Analysis Platform

- Details Report .. 84
- Adjusted Inertia ... 84
- Summary Statistics ... 85
5 **Multidimensional Scaling**

Visualize Proximities among a Set of Objects

- Partial Contributions to Inertia ... 85
- Multidimensional Scaling Platform Overview 88
- Example of Multidimensional Scaling .. 88
- Launch the Multidimensional Scaling Platform 90
- The Multidimensional Scaling Report .. 92
 - Multidimensional Scaling Plot ... 92
 - Shepard Diagram .. 92
 - Fit Details .. 92
- Multidimensional Scaling Platform Options 93
 - Waern Links ... 94
- Additional Example of the Multidimensional Scaling Platform 95
- Statistical Details for the Multidimensional Scaling Platform 97
 - Stress .. 97
 - Transformations .. 97
 - Attributes List Format ... 98

6 **Factor Analysis**

Identify Factors within Variables .. 99

- Factor Analysis Platform Overview .. 100
- Example of the Factor Analysis Platform .. 101
- Launch the Factor Analysis Platform .. 103
- The Factor Analysis Report ... 103
 - Model Launch ... 104
 - Rotation Methods ... 106
- Factor Analysis Platform Options .. 108
- Factor Analysis Model Fit Options ... 109

7 **Choice Models**

Fit Models for Choice Experiments .. 117

- Choice Modeling Platform Overview .. 118
- Examples of the Choice Platform .. 120
 - One Table Format with No Choice ... 120
 - Multiple Table Format ... 123
- Launch the Choice Platform ... 129
 - Launch Window for One Table, Stacked 130
 - Launch Window for Multiple Tables, Cross-Referenced 131
- Choice Model Report ... 136
 - Effect Summary ... 136
 - Parameter Estimates ... 137
 - Likelihood Ratio Tests ... 138
 - Bayesian Parameter Estimates .. 138
8 MaxDiff

Fit Models for MaxDiff Experiments ... 173

MaxDiff Modeling Platform Overview ... 174
Examples of the MaxDiff Platform ... 174

One Table Format .. 175
Multiple Table Format .. 177

Launch the MaxDiff Platform ... 181

Launch Window for One Table, Stacked ... 182
Launch Window for Multiple Tables, Cross-referenced 183

MaxDiff Model Report .. 187

Effect Summary ... 187
MaxDiff Results ... 189

Parameter Estimates ... 189
Bayesian Parameter Estimates ... 191
Likelihood Ratio Tests ... 192

MaxDiff Platform Options ... 192
Comparisons Report .. 194
Save Bayes Chain .. 195

9 Uplift Models

Model the Incremental Impact of Actions on Consumer Behavior 197

Uplift Platform Overview .. 198
Example of the Uplift Platform ... 199
Launch the Uplift Platform .. 200
The Uplift Model Report .. 201

Uplift Model Graph .. 201
Uplift Report Options .. 204
10 **Item Analysis**

Analyze Test Results by Item and Subject ... 207

- Example of Item Analysis ... 208
- Launch the Item Analysis Platform ... 211
- The Item Analysis Report ... 212
 - Characteristic Curves ... 212
 - Information Plot ... 213
 - Dual Plot ... 213
 - Parameter Estimates .. 214
- Item Analysis Platform Options ... 215
- Statistical Details for the Item Analysis Platform 215
 - Item Response Curves ... 215
 - Item Response Curve Models ... 216
 - IRT Model Assumptions .. 218
 - Fitting the IRT Model ... 219
 - Ability Formula ... 220

A References

Index

Consumer Research ... 223
This chapter includes the following information:

- book conventions
- JMP documentation
- JMP Help
- additional resources, such as the following:
 - other JMP documentation
 - tutorials
 - indexes
 - Web resources
 - technical support options
Formatting Conventions

The following conventions help you relate written material to information that you see on your screen:

- Sample data table names, column names, pathnames, filenames, file extensions, and folders appear in **Helvetica** font.
- Code appears in **Lucida Sans Typewriter** font.
- Code output appears in **Lucida Sans Typewriter italic** font and is indented farther than the preceding code.
- **Helvetica bold** formatting indicates items that you select to complete a task:
 - buttons
 - check boxes
 - commands
 - list names that are selectable
 - menus
 - options
 - tab names
 - text boxes
- The following items appear in italics:
 - words or phrases that are important or have definitions specific to JMP
 - book titles
 - variables
 - script output
- Features that are for JMP Pro only are noted with the JMP Pro icon 🍊. For an overview of JMP Pro features, visit http://www.jmp.com/software/pro/.

Note: Special information and limitations appear within a Note.

Tip: Helpful information appears within a Tip.
JMP Documentation

JMP offers documentation in various formats, from print books and Portable Document Format (PDF) to electronic books (e-books).

- Open the PDF versions from the Help > Books menu.
- All books are also combined into one PDF file, called JMP Documentation Library, for convenient searching. Open the JMP Documentation Library PDF file from the Help > Books menu.
- You can also purchase printed documentation and e-books on the SAS website: http://www.sas.com/store/search.ep?keyWords=JMP

JMP Documentation Library

The following table describes the purpose and content of each book in the JMP library.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document Purpose</th>
<th>Document Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovering JMP</td>
<td>If you are not familiar with JMP, start here.</td>
<td>Introduces you to JMP and gets you started creating and analyzing data.</td>
</tr>
<tr>
<td>Using JMP</td>
<td>Learn about JMP data tables and how to perform basic operations.</td>
<td>Covers general JMP concepts and features that span across all of JMP, including importing data, modifying columns properties, sorting data, and connecting to SAS.</td>
</tr>
<tr>
<td>Basic Analysis</td>
<td>Perform basic analysis using this document.</td>
<td>Describes these Analyze menu platforms:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fit Y by X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tabulate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Text Explorer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Covers how to perform bivariate, one-way ANOVA, and contingency analyses through Analyze > Fit Y by X. How to approximate sampling distributions using bootstrapping and how to perform parametric resampling with the Simulate platform are also included.</td>
</tr>
<tr>
<td>Document Title</td>
<td>Document Purpose</td>
<td>Document Content</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Essential Graphing</td>
<td>Find the ideal graph for your data.</td>
<td>Describes these Graph menu platforms:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Graph Builder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Overlay Plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scatterplot 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Contour Plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bubble Plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parallel Plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cell Plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Treemap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scatterplot Matrix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ternary Plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The book also covers how to create background and custom maps.</td>
</tr>
<tr>
<td>Profilers</td>
<td>Learn how to use interactive profiling tools, which</td>
<td>Covers all profilers listed in the Graph menu. Analyzing noise factors is included along with running simulations using random inputs.</td>
</tr>
<tr>
<td></td>
<td>enable you to view cross-sections of any response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>surface.</td>
<td></td>
</tr>
<tr>
<td>Design of Experiments Guide</td>
<td>Learn how to design experiments and determine</td>
<td>Covers all topics in the DOE menu and the Specialized DOE Models menu item in the Analyze > Specialized Modeling menu.</td>
</tr>
<tr>
<td></td>
<td>appropriate sample sizes.</td>
<td></td>
</tr>
<tr>
<td>Document Title</td>
<td>Document Purpose</td>
<td>Document Content</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fitting Linear Models</td>
<td>Learn about Fit Model platform and many of its personalities.</td>
<td>Describes these personalities, all available within the Analyze menu Fit Model platform:
• Standard Least Squares
• Stepwise
• Generalized Regression
• Mixed Model
• MANOVA
• Loglinear Variance
• Nominal Logistic
• Ordinal Logistic
• Generalized Linear Model</td>
</tr>
<tr>
<td>Document Title</td>
<td>Document Purpose</td>
<td>Document Content</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Predictive and Specialized Modeling</td>
<td>Learn about additional modeling techniques.</td>
<td>Describes these Analyze > Predictive Modeling menu platforms:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modeling Utilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Neural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bootstrap Forest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Boosted Tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• K Nearest Neighbors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Naive Bayes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Model Comparison</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Formula Depot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describes these Analyze > Specialized Modeling menu platforms:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fit Curve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nonlinear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gaussian Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Time Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Matched Pairs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describes these Analyze > Screening menu platforms:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Response Screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Process Screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Predictor Screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Association Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The platforms in the Analyze > Specialized Modeling > Specialized DOE Models menu are described in Design of Experiments Guide.</td>
</tr>
</tbody>
</table>
Multivariate Methods

Read about techniques for analyzing several variables simultaneously.

Describes these Analyze > Multivariate Methods menu platforms:

- Multivariate
- Principal Components
- Discriminant
- Partial Least Squares

Describes these Analyze > Clustering menu platforms:

- Hierarchical Cluster
- K Means Cluster
- Normal Mixtures
- Latent Class Analysis
- Cluster Variables

Quality and Process Methods

Read about tools for evaluating and improving processes.

Describes these Analyze > Quality and Process menu platforms:

- Control Chart Builder and individual control charts
- Measurement Systems Analysis
- Variability / Attribute Gauge Charts
- Process Capability
- Pareto Plot
- Diagram
<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document Purpose</th>
<th>Document Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability and</td>
<td>Learn to evaluate and improve reliability in a product or system and analyze</td>
<td>Describes these Analyze > Reliability and Survival menu platforms:</td>
</tr>
<tr>
<td>Survival Methods</td>
<td>survival data for people and products.</td>
<td>• Life Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fit Life by X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cumulative Damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recurrence Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Degradation and Destructive Degradation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reliability Forecast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reliability Growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reliability Block Diagram</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repairable Systems Simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fit Parametric Survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fit Proportional Hazards</td>
</tr>
<tr>
<td>Consumer Research</td>
<td>Learn about methods for studying consumer preferences and using that insight</td>
<td>Describes these Analyze > Consumer Research menu platforms:</td>
</tr>
<tr>
<td></td>
<td>to create better products and services.</td>
<td>• Categorical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple Correspondence Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multidimensional Scaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Factor Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Choice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MaxDiff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uplift</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Item Analysis</td>
</tr>
<tr>
<td>Scripting Guide</td>
<td>Learn about taking advantage of the powerful JMP Scripting Language (JSL).</td>
<td>Covers a variety of topics, such as writing and debugging scripts, manipulating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data tables, constructing display boxes, and creating JMP applications.</td>
</tr>
</tbody>
</table>
Chapter 1
Learn about JMP
Consumer Research

Additional Resources for Learning JMP

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document Purpose</th>
<th>Document Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSL Syntax Reference</td>
<td>Read about many JSL functions on functions and their arguments, and messages that you send to objects and display boxes.</td>
<td>Includes syntax, examples, and notes for JSL commands.</td>
</tr>
</tbody>
</table>

Note: The Books menu also contains two reference cards that can be printed: The Menu Card describes JMP menus, and the Quick Reference describes JMP keyboard shortcuts.

JMP Help

JMP Help is an abbreviated version of the documentation library that provides targeted information. You can open JMP Help in several ways:

- On Windows, press the F1 key to open the Help system window.
- Get help on a specific part of a data table or report window. Select the Help tool from the Tools menu and then click anywhere in a data table or report window to see the Help for that area.
- Within a JMP window, click the Help button.
- Search the Help at http://jmp.com/support/help/ (English only).

Additional Resources for Learning JMP

In addition to JMP documentation and JMP Help, you can also learn about JMP using the following resources:

- Tutorials (see “Tutorials” on page 24)
- Sample data (see “Sample Data Tables” on page 24)
- Indexes (see “Learn about Statistical and JSL Terms” on page 24)
- Tip of the Day (see “Learn JMP Tips and Tricks” on page 24)
- Web resources (see “JMP User Community” on page 25)
- JMPer Cable technical publication (see “JMPer Cable” on page 25)
- Books about JMP (see “JMP Books by Users” on page 26)
- JMP Starter (see “The JMP Starter Window” on page 26)
Tutorials

You can access JMP tutorials by selecting Help > Tutorials. The first item on the Tutorials menu is Tutorials Directory. This opens a new window with all the tutorials grouped by category.

If you are not familiar with JMP, then start with the Beginners Tutorial. It steps you through the JMP interface and explains the basics of using JMP.

The rest of the tutorials help you with specific aspects of JMP, such as designing an experiment and comparing a sample mean to a constant.

Sample Data Tables

All of the examples in the JMP documentation suite use sample data. Select Help > Sample Data Library to open the sample data directory.

To view an alphabetized list of sample data tables or view sample data within categories, select Help > Sample Data.

Sample data tables are installed in the following directory:

On Windows: C:\Program Files\SAS\JMP\13\Samples\Data
On Macintosh: \Library\Application Support\JMP\13\Samples\Data

In JMP Pro, sample data is installed in the JMPPRO (rather than JMP) directory. In JMP Shrinkwrap, sample data is installed in the JMPSW directory.

To view examples using sample data, select Help > Sample Data and navigate to the Teaching Resources section. To learn more about the teaching resources, visit http://jmp.com/tools.

Learn about Statistical and JSL Terms

The Help menu contains the following indexes:

Statistics Index Provides definitions of statistical terms.

Scripting Index Lets you search for information about JSL functions, objects, and display boxes. You can also edit and run sample scripts from the Scripting Index.

Learn JMP Tips and Tricks

When you first start JMP, you see the Tip of the Day window. This window provides tips for using JMP.
To turn off the Tip of the Day, clear the **Show tips at startup** check box. To view it again, select **Help > Tip of the Day**. Or, you can turn it off using the Preferences window. See the *Using JMP* book for details.

Tooltips

JMP provides descriptive tooltips when you place your cursor over items, such as the following:

- Menu or toolbar options
- Labels in graphs
- Text results in the report window (move your cursor in a circle to reveal)
- Files or windows in the Home Window
- Code in the Script Editor

Tip: On Windows, you can hide tooltips in the JMP Preferences. Select **File > Preferences > General** and then deselect **Show menu tips**. This option is not available on Macintosh.

JMP User Community

The JMP User Community provides a range of options to help you learn more about JMP and connect with other JMP users. The learning library of one-page guides, tutorials, and demos is a good place to start. And you can continue your education by registering for a variety of JMP training courses.

Other resources include a discussion forum, sample data and script file exchange, webcasts, and social networking groups.

To access JMP resources on the website, select **Help > JMP User Community** or visit https://community.jmp.com/.

JMPer Cable

The JMPer Cable is a yearly technical publication targeted to users of JMP. The JMPer Cable is available on the JMP website:

http://www.jmp.com/about/newsletters/jmpercable/
JMP Books by Users

Additional books about using JMP that are written by JMP users are available on the JMP website:

The JMP Starter Window

The JMP Starter window is a good place to begin if you are not familiar with JMP or data analysis. Options are categorized and described, and you launch them by clicking a button. The JMP Starter window covers many of the options found in the Analyze, Graph, Tables, and File menus. The window also lists JMP Pro features and platforms.

- To open the JMP Starter window, select View (Window on the Macintosh) > JMP Starter.
- To display the JMP Starter automatically when you open JMP on Windows, select File > Preferences > General, and then select JMP Starter from the Initial JMP Window list. On Macintosh, select JMP > Preferences > Initial JMP Starter Window.

Technical Support

JMP technical support is provided by statisticians and engineers educated in SAS and JMP, many of whom have graduate degrees in statistics or other technical disciplines.

Many technical support options are provided at http://www.jmp.com/support, including the technical support phone number.
JMP provides a full suite of tools for analyzing consumer and behavioral research data. You collect information about how customers use products or services, how satisfied they are with your offerings, and what new features they might desire. The resulting insights let you create better products and services, happier customers, and more revenue for your organization. Tools for analyzing these consumer research activities are located in the Consumer Research menu. Use the following platforms to analyze your data:

- The Categorical platform enables you to tabulate, plot, and compare categorical responses in your data, including multiple response data. You can use this platform to analyze data from surveys and other categorical response data, such as defect records and study participant demographics. Using the Categorical platform, you can analyze responses from data that are organized in many different ways. For more information, see Chapter 3, “Categorical Response Analysis”.

- The Multiple Correspondence Analysis (MCA) platform takes multiple categorical variables and seeks to identify associations between levels of those variables. MCA is frequently used in the social sciences particularly in France and Japan. It can be used in survey analysis to identify question agreement. For more information, see Chapter 4, “Multiple Correspondence Analysis”.

- The Multidimensional Scaling (MDS) platform enables you to create a visual representation of the pattern of proximities (similarities, dissimilarities, or distances) among a set of objects. For more information, see Chapter 5, “Multidimensional Scaling”.

- The Factor Analysis platform enables you to construct factors from a larger set of observed variables. These factors are expressed as linear combinations of a subset of the observed variables. Factor analysis enables you to explore the number of factors that are explained by a set of measured, observed variables, and the strength of the relationship between factors and variables. For more information, see Chapter 6, “Factor Analysis”.

- The Choice platform is designed for use in market research experiments, where the ultimate goal is to discover the preference structure of consumers. Then, this information is used to design products or services that have the attributes most desired by consumers. For more information, see Chapter 7, “Choice Models”.

- The MaxDiff platform is an alternative to using standard preference scales to determine the relative importance of items being rated. A MaxDiff model forces respondents to report their most and least preferred options, thereby forcing respondents to rank options in terms of preference. For more information, see Chapter 8, “MaxDiff”.

• The Uplift platform enables you to maximize the impact of your marketing budget by sending offers only to individuals who are likely to respond favorably, even when you have large data sets and many possible behavioral or demographic predictors. You can use uplift models to make such predictions. This method has been developed to help optimize marketing decisions, define personalized medicine protocols, or, more generally, to identify characteristics of individuals who are likely to respond to some action. For more information, see Chapter 9, “Uplift Models”.

• The Item Analysis platform enables you to fit item response theory models. The Item Response Theory (IRT) method is used for the analysis and scoring of measurement instruments such as tests and questionnaires. IRT uses a system of models to relate a trait or ability to an individual’s probability of endorsing or correctly responding to an item. IRT can be used to study standardized tests, cognitive development, and consumer preferences. For more information, see Chapter 10, “Item Analysis”.
The Categorical platform enables you to tabulate, plot, and compare categorical response data, including multiple response data. You can use this platform to analyze data from surveys and other categorical response data, such as defect records and study participant demographics. With the Categorical platform you can analyze responses from a rich variety of organizations of data. The Categorical launch window enables you to specify analyses as well as data formats.

Figure 3.1 Categorical Analysis Example
Example of the Categorical Platform

This example uses the Consumer Preferences.jmp sample data table, which contains survey data on people’s attitudes and opinions, and questions concerning oral hygiene. You can use the categorical platform to compare the response to a question by age groups.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select I am working on my career and click Responses on the Simple tab.
4. Select Age Group and click X, Grouping Category.
5. Click OK.
6. Click the Categorical red triangle and select Crosstab Transposed.
7. Click the Categorical red triangle and select Test Response Homogeneity.

Figure 3.2 Question Responses by Age Group

The question had two possible responses: Agree and Disagree. There are seven age groups of respondents with 43 to 113 respondents per group. The youngest age group (25 - 29) was the largest group surveyed with 113 responses. The highest positive response rate was 84.1% in the youngest age group. The share chart displays the share of respondents who agree or disagree with the question for each age group. As age increases, the portion of respondents who agree with the question decreases. Thus, the older respondents tend to be working on their careers less than the younger respondents.
Tip: Colors on the charts can be defined by using the Value Colors column property. See the Column Info Window chapter in Using JMP.

Launch the Categorical Platform

Launch the Categorical platform by selecting Analyze > Consumer Research > Categorical.

Figure 3.3 Categorical Platform Launch Window

Response Roles

The launch window includes tabs for three specific types (or categories) of response roles (Simple, Related, and Multiple) and a Structured tab where you can create custom data summaries. The response role corresponds to the type of responses you want to analyze. Options on each tab correspond to how the responses are organized in your data table.

Simple Tab

The Simple tab contains an option for the analysis of results that are contained in a single column.
Responses Adds one or more columns to your analysis. If multiple columns are selected, the
categorical report contains a report for each individual column.

Related Tab

The Related tab contains options for the analysis of a set of related columns.

Aligned Responses Summarizes data from multiple responses with the same response levels
in a single report. This option is useful for survey data when you have many questions
with the same set of responses. You can quickly summarize and compare response trends
for all of the questions at once.

Repeated Measures Summarizes data from multiple columns where each column contains
responses made at different time points. When an individual responds at multiple time
points, the samples are called overlapping. When there are overlapping samples, the Kish
correction is used. See Kish (1965, section 12.4).

Rater Agreement Summarizes data from multiple columns where each column is a rating for
the same question, but by different individuals (raters).

Multiple Tab

The Multiple tab contains options for the analysis of multiple responses recorded in one or
more columns. A set of multiple responses could be from a survey where the response set
allows for more than one choice (check all that apply questions). Another source of multiple
responses is defect data where an item can have multiple defects. The options on the multiple
tab are specific to how the data are organized in your data table.

Multiple Response Summarizes data from multiple columns where each column contains one
response. The number of columns selected is the maximum number of responses for a
single row. There can be many blanks in the columns.

Multiple Response by ID Summarizes data from a single column of responses with a second
column containing an ID for the subject or part. This data structure can be thought of as a
stacked format.

Multiple Delimited Summarizes data from a single column that contains multiple responses
separated by a comma, semicolon, or tab.

Indicator Group Summarizes multiple responses that are stored in indicator columns. The
data table has a column for each possible response, and each column is an indicator (for
example, 0 and 1).

Response Frequencies Summarizes multiple responses that are stored in columns with
frequency counts. This data format is the summarized version of the Indicator Group
format.

Free Text Summarizes text data. The Free Text option launches a Text Explorer report inside
the Categorical report window. See the Text Explorer chapter in the Basic Analysis book.
Structured Tab

The Structured tab enables you to construct custom tables of summary statistics.

- Create side-by-side, crossed, and nested data summaries with the interactive table builder. The Structured table considers the innermost terms on the side of the table as responses and all other terms as grouping factors.
- Create multiple tables in a single the launch window.
- Use delimited multiple response columns when the column modeling type is set to Multiple Response. For more information about column modeling types, see “The Column Info Window” in the Using JMP book.

See “Example of a Structured Report” on page 66.

Tip: Use the Structured tab to test for response homogeneity with multiple response data.

Columns Roles

The following roles are available:

X, Grouping Category Assigns a column as a grouping category. The responses are summarized for each group. If more than one grouping column is used, then by default the tabulation is nested (the Combinations Grouping Option). Use the Grouping Option to change the summarization.

Sample Size Assigns a column to define the number of individual units in the group to which that frequency is applicable, for multiple response roles with summarized data. For example, a Freq column might indicate 50 defects, where the sample size variable would reflect the defects for a batch of 100 units.

Freq Assigns a frequency variable to this role. This option is useful if your data are summarized.

ID Assigns a column that identifies the respondent. This option is required only when Multiple Response by ID is selected, and it is not used if entered for other response types.

By Produces a separate report for each level of the By variable. If more than one By variable is assigned, a separate report is produced for each possible combination of the levels of the By variables.

Other Launch Window Options

Additional options are located in the lower left of the launch window. Alternatively, these options can be selected from the Categorical red triangle menu after you click OK in the launch window.
Grouping Option Defines how to use grouping variables in your analysis when more than
one grouping column is specified.

Combinations Analyzes the response for combinations of the grouping variables. The
first column in the grouping list is the outermost group.

Each Individually Analyzes the response for each grouping variable individually.

Both Provides reports for combinations of the grouping variables as well as for each
grouping variable individually.

Unique Occurrences within ID Counts unique response levels within a subject. An ID variable
must be specified.

Count Missing Responses Includes missing values as categories in the Crosstab table and
charts. The missing values are excluded from statistical comparisons. Missing values can
be either empty cells or a defined missing code in the Missing Value Codes column
property. If a column contains only missing values, the missing values are counted
regardless of this option.

Order Response Levels High to Low Orders the responses from high to low. (The default
ordering is low to high.) This option applies only to the response, not to grouping
categories.

Tip: Use the Value Ordering column property to define a specific category ordering. See
the Column Info Window chapter in *Using JMP*.

Shorten Labels Shortens value labels by removing prefixes and suffixes that are common to
all labels.

Note: This option applies only to value labels, not column names.

Include Responses Not in Data Includes categories with no responses in the report. The
categories with no responses must be specified in the Value Labels column property. This
option applies only to responses. Grouping categories include only categories with
responses.

The Categorical Report

The initial Categorical report shows a cross tabulation and a share chart for each set of
responses selected. If you used the Structured tab, the initial report shows only a cross
tabulation.
The upper left corner of the table lists the items (Freq, Share, and Rate) that are included in each cell of the table. These items can be removed using the options in the red triangle menu.

- The Frequency count (Freq) is provided for each category with the total frequency (Total Responses) at the right of the table. When there are multiple responses, the summary columns at the right of the table also include the number of cases or the number of rows (Total Cases) and the number of responders (Total Cases Responding).

- The Share of Responses (Share) is determined by dividing each count by the total number of responses. The number represents the percent of the response among all the responses in the sample (frequency divided by response total). This is either a row percentage or a column percentage for transposed tables.

- The Rate (excluding missing values) is the frequency of response divided by the total cases responding.

In Figure 3.4, the number of responses and cases for each age group are displayed. Consider the first row of the table with the results for those in the 25 through 29 age group.
In the first cell of the table there are 37 responses. This is the frequency of the respondents, aged 25 - 29, who floss after they wake up.

There are 143 total responses for the 25 - 29 age group. Of the 143 responses, 25.9% (37/143) is the share who Floss After Waking Up. In other words, 25.9% of the times that 25 through 29-year-olds floss was after they wake up.

Of the 113 total cases (respondents) in the 25 through 29 group, 32.7% (37/113) is the rate who responded that they floss after they wake up. In other words, 32.7% of 25 through 29-year-olds floss after they wake up.

Because the number of responses (143) is greater than the number of cases responding (104), there are respondents in the 25 through 29 group who selected more than one response.

Because the total number of cases (113) is greater than the total cases responding (104), there were nine responders in the 25 through 29 group who did not answer this question.

Categorical Platform Options

The Categorical red triangle menu contains options that enable you to customize the report according to your needs. The options that are available in a particular report are determined by the response roles, use of grouping categories, and options selected in the launch window.

Report Options

Frequencies Shows or hides the frequency in the Crosstab table. The frequency is the count of the responses in each category.

Share of Responses (Share) Shows or hides the share of responses in the Crosstab table. The share of responses is the percent of responses in each category.

Rate Per Case (Rate) (Available only for multiple responses.) Shows or hides rate per case in the Crosstab table. The rate per cases is the percent of responses in each category based on the total number of cases (regardless of if they were a respondent).

Rate per Case Responding (Available only for multiple responses.) Shows or hides rate per case responding in the Crosstab table. The rate per case responding s is the percent of responses in each category based on the cases that responded.

Share Chart Shows or hides a divided bar chart. The bar length is proportional to the percentage of responses for each type. The column on the right shows the number of responses in each grouping category. If no grouping category is used, the column on the right shows the total number of responses.

Tip: You can change the colors in the share chart using the Value Colors column property. See the Column Info Window chapter in *Using JMP*.
Frequency Chart Shows or hides a Frequency Chart. The bars reflect the frequency of responses within each group. The scale is consistent across the chart. The gray bars at the far right are the total number of responses in each grouping category.

Tip: You can change the colors in the frequency chart using the Value Colors column property. See the Column Info Window chapter in *Using JMP*.

Transposed Freq Chart Shows or hides a transposed Frequency Chart. The bars reflect the frequency of responses within each group. The responses are the rows and the grouping levels are the columns in chart. The totals for each grouping level are represented by gray bars in the bottom row of the chart.

Crosstab Shows or hides the Crosstab table. The Crosstab table displays the response categories as column headings, and displays the grouping levels (when used) as row labels. The upper left cell of the table shows the labels for the items in each cell of the table (Freq, Share, and Rate). If the report contains a transposed Crosstab table, this option removes the transposed Crosstab table from the report.

Crosstab Transposed Shows or hides a transpose of the Crosstab table. The transposed Crosstab table displays the response categories as row labels, and displays the grouping levels (when used) as column headings. The upper left cell of the table shows the labels for the items in each cell of the table (Freq, Share, and Rate). If the report contains a Crosstab table, this option removes the Crosstab table from the report.

Statistical Testing Options

The statistical testing options that are available depend on the response roles and the use of grouping variables in the analysis. Options include tests of response homogeneity, association, relative risk, and agreement.

Test Multiple Response (Available only for multiple response data with one or more grouping categories.) See “Example of the Multiple Response Test” on page 47. Contains the following tests for independence of responses across each grouping category:

- **Count Test, Poisson** Shows or hides a test of independence of rates that uses Poisson regression. The frequency per unit is modeled by the sample categorical variable. The result is a likelihood ratio chi-square test of whether the rate of each individual response differs across grouping levels.

- **Homogeneity Test, Binomial** Shows or hides the likelihood ratio chi-square test of independence for each individual response level. Each response category has a binomial distribution (selected or not selected).

Test Response Homogeneity (Available for a single response variable (simple or aligned) with one or more grouping categories. Available for multiple responses with one or more grouping within the Structured tab.) Shows or hides a report that contains tests for response homogeneity that depend on your approach:
For independence of responses across grouping categories, likelihood ratio and Pearson chi-square tests are provided. See “Example of the Test for Response Homogeneity” on page 46.

For analysis of multiple responses within the Structured tab, a Rao-Scott Chi-square test is provided.

Cell Chisq Shows or hides p-values for each cell in the table for a chi-square test of independence. A small p-value indicates a cell with an observed value that is larger or smaller than expected under the assumption that the rows are independent of the columns. The p-values are colored and shaded according to whether the count is larger or smaller than expected. See “Example of the Cell Chisq Test” on page 49.

Compare Each Sample (Available only for single responses with one or more grouping variables.) Shows or hides a report that contains pairwise likelihood ratio and Pearson chi-square tests for independence of responses across levels of a grouping variable. See “Example of Compare Each Sample with Comparison Letters” on page 50.

Compare Each Cell (Available only for single and multiple responses with one or more grouping variables.) Shows or hides pairwise likelihood ratio chi-square, for independence of each level of the response versus all other levels combined across levels of a grouping variable. When a response has only two levels, Pearson chi-square and Fisher’s exact tests are also provided. See “Example of Compare Each Cell with Comparison Letters” on page 52.

Relative Risk (Available when the grouping variable has two levels and either the response has two levels or is a multiple response and the Unique occurrences within ID option has been selected.) Shows or hides the relative risks for a two-level grouping variable for each level of the response. See “Example of Conditional Association and Relative Risk” on page 55.

Conditional Association (Available only when the Unique occurrences within ID option has been selected.) Shows or hides the conditional probability of one response level given a second response level. See “Example of Conditional Association and Relative Risk” on page 55.

Agreement Statistic (Available only for Rater Agreement responses.) Shows or hides the Kappa coefficient of agreement and the Bowker test of symmetry. See “Example of Rater Agreement” on page 57.

Transition Report (Available only for Repeated Measures responses.) Shows or hides transition counts and rates matrices for changes in responses across time. See “Example of Repeated Measures” on page 58.

Test Options Options available in this menu depend on your selected analysis.

ChiSquare Test Choices Specifies which chi-square tests of homogeneity are calculated for single responses. You can choose between Both LR and Pearson, LR Only, or Pearson Only, where LR refers to likelihood ratio.
Show Warnings Shows small sample size warnings for chi-square tests.

Order by Significance Reorders the reports so that the most significant reports are at the top.

Hide Nonsignificant Suppresses reports that are non-significant.

Additional Categorical Platform Options

Total Responses Shows or hides the sum of the frequency counts for the response in Crosstab tables and share charts. The total is across each grouping category, when a grouping variable is used.

Response Levels Shows or hides the categories for the response column in Crosstab tables and share charts.

Show Supercategories (Available only when one or more Supercategories is defined.) Shows or hides columns for supercategories in the Crosstab table and the Frequency Chart. For more information about supercategories, see “Supercategories” on page 43.

Tip: This option shows or hides the Supercategories. To hide the individual categories within the supercategory, use the Hide option in the Supercategories column property. Alternately, use the Response Levels option to hide all response levels so that only Supercategories remain unhidden.

Total Cases (Available only for multiple response columns.) Shows or hides a column in the Crosstab table that contains the number of cases (subjects) in each group.

Total Cases Responding (Available only for multiple response columns.) Shows or hides a column in the Crosstab table that contains the number of cases (subjects) who responded at least once. People who did not respond at all are not included. The total cases responding is less than or equal to the total cases.

Mean Score Shows or hides a column in the Crosstab table and share chart that contains the overall mean of the response or the mean for each grouping category. The mean is calculated based on a numerical value assigned to each response category.

– For numeric categories, the numeric value is the actual value.

– For non-numeric categories the value is the value assigned to the categories by the Value Scores column property.

– For categories without value scores, the value is based on a default assignment of 1 to the number of categories.

See “Example of Mean Score with Comparison Letters” on page 64.

Mean Score Comparisons Shows or hides the Compare Means column in the Crosstab table. This column compares the mean scores across grouping categories using the unpooled Satterthwaite t test for pairwise comparisons. See SAS Institute (2009). The results of the
comparison are shown using letters. For more information about comparison letters, see “Comparison Letters” on page 42. For more information about specifying comparison groups, see “Example of User-Specified Comparison with Comparison Letters” on page 54.

Std Dev Score Shows or hides a column in the Crosstab table that contains the overall standard deviation of the response or the standard deviation of each grouping category.

Order by Mean Score (Appears only when there are more than one response and there are no grouping variables in the analyses.) Orders the response reports by the mean score.

Save Tables Saves specific portions of the reports to a new data table. Each option creates an individual data table for each report. The options available in this menu depend on your selected analysis.

Note: Supercategories are not included in the new tables.

Save Frequencies Saves the frequency counts from the Crosstab table to a new data table.

Save Share of Responses Saves the share of responses from the Crosstab table to a new data table.

Save Rate Per Case Saves the rates per case from the Crosstab table to a new data table.

Save Transposed Frequencies Saves the transposed frequency counts from the Crosstab table to a new data table.

Save Transposed Share of Responses Saves the transposed share of responses from the Crosstab table to a new data table.

Save Transposed Rate Per Case Saves the transposed rates per case from the Crosstab table to a new data table.

Save Test Rates Saves the results of the Test Multiple Response option to a new data table.

Save Test Homogeneity Saves the results of the Test Response Homogeneity option to a new data table.

Save Mean Scores Saves the mean scores for each sample group to a new data table.

Save tTests and pValues Save t tests and p-values from the Mean Score Comparisons report to a new data table.

Save Excel File Creates a Microsoft Excel spreadsheet with the structure of the Crosstab format report. The option maps all of the tables to one sheet, with the response categories as rows, the sample levels as columns, sharing the headings for sample levels across multiple tables. When there are multiple elements in each table cell, you have the option to make them multiple or single cells in Microsoft Excel.
Filter Shows or hides the local data filter that enables you to filter the data used in a specific report. Sample levels that contain no responses are always hidden. To show the filtered headings in reports, select Include Responses Not in Data in the launch window. You can also select the Set Preferences red triangle menu and then select Include Responses Not in Data.

Contents Summary Shows or hides a Contents Summary report at the top of the Categorical report. The Contents Summary collects all of the tests and mean scores into a summary with links to the associated report.

Show Columns Used in Report Shows or hides Columns Used in Report information. This option affects only columns that have an SPSS or SAS Name or SPSS or SAS Label column property. When you import survey data from SAS or SPSS, the Name and Label column properties are automatically added to your JMP table. You can add a SAS or SPSS Name or Label column property using the Other column property. For example, if you use the SAS or SPSS Name column property to store a survey question, the column name can be a short name.

Format Elements Enables you to specify formats for Frequencies, Shares and Rates, and how zeros are displayed. By default, Frequencies are Fixed Dec format with 7 Width and 0 Decimals and Shares and Rates are Percent format with 6 Width and 1 Decimal.

Arrange in Rows Arranges the reports across the page instead of down the page. Enter the number of reports that you want to view across the window.

Set Preferences Enables you to set preferences for future launches of the Categorical platform in the current JMP session as well as in future JMP sessions. For more information, refer to “Set Preferences” on page 45.

Category Options Contains options (Grouping Option, Count Missing Responses, Order Response Levels High to Low, Shorten Labels, and Include Responses Not in Data) that are also presented on the launch window. If these options are selected here, the platform updates with the new setting. For more information about the Category Options, see “Other Launch Window Options” on page 33.

Force Crosstab Shading Forces shading on Crosstab reports even if the preference is set to no shading. If this option is not selected, the Crosstab reports are shaded according to the current setting of the Shade Alternate Table Rows preference.

Relaunch Dialog Enables you to return to the launch window and edit the specifications for an analysis.

See the JMP Reports chapter in the Using JMP book for more information about the following options:

Local Data Filter Shows or hides the local data filter that enables you to filter the data used in a specific report.
Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.

Responses Table Options

Show Letters Shows or hides the column letter IDs in the Crosstab table. These letters are used in many of the tests of homogeneity and are displayed automatically for those tests.

Specify Comparison Groups Enables you to specify specific comparison groups for tests of homogeneity. Use group comparison letters separated by a slash to represent each group. Separate multiple groups by commas. For example, to test A with E, B with D, and C with F, specify the groups as “A/E, B/D, C/F”. A Compare Each Cell report is provided for the defined comparison groups. See “Example of User-Specified Comparison with Comparison Letters” on page 54.

Remove Removes the report from the report window.

Caution: The Remove option cannot be undone.

Comparison Letters

The Compare Each Cell, Compare Each Sample, and Mean Score Comparisons options use letters to identify sample levels. For more than 26 levels, numbers are appended to the letters. The letters are shown in the sample level headings of the Crosstab table when a comparison option is turned on.
If two sample levels are significantly different, the letter of the sample level with a smaller share of responses is placed into the comparison cell of the other level. An Uppercase letter indicates a stronger difference between levels than a lowercase letter. The default alpha level (significance level) for an uppercase letter is 0.05 and 0.10 for a lowercase letter. In Figure 3.5 the B indicates that there is a difference in the country of origin for Sporty and Family cars at the 0.05 significance level. The B is in the row for Family cars because the total responses for Family cars (155) is greater than the total for Sporty cars (100). The c in the Sporty row indicates that there is a difference at the 0.10 level between the country of origin when comparing Sporty to Work cars. The c is in the Sporty row because the total responses (100) is greater than the total responses (48) for Work cars.

Warnings for small counts are also included in the comparison cells. One asterisk indicates that the level has fewer than 100 responses and two asterisks indicate fewer than 30 responses. In Figure 3.5, notice that the row for Work has 48 total responses and is labeled with a single asterisk. You can change the alpha levels and warning counts in the Categorical platform preferences. For details about changing preferences, see “Set Preferences” on page 45.

See “Example of Compare Each Sample with Comparison Letters” on page 50, “Example of Compare Each Cell with Comparison Letters” on page 52, and “Example of Mean Score with Comparison Letters” on page 64.

Supercategories

The term supercategories refers to the aggregation of response categories. For example, when using a five-point rating scale, you might want to know the percent of responses in the top two ratings (top two boxes). Such a grouping of responses can be defined using the Supercategories column property.
Supercategories add additional columns to Crosstab tables and Frequency Charts. Share Charts do not show supercategories, and supercategories are not applied to grouping columns.

To create a supercategory, follow these steps:

1. Select a column in your data table that contains categories that you would like to aggregate.
2. Select Cols > Column Info.
3. Click Column Properties and select Supercategories.
4. (Optional) To change the default name of the supercategory, enter a Supercategory Name.
5. Select one or more categories from the Column’s Categories list.
6. Click Add.
7. (Optional) Select the supercategory and click the Supercategories red triangle menu for additional options.

Supercategories Options

The following options are available in the Supercategories red triangle menu in the Column Properties window:

- **Hide** Hides categories within a supercategory in the Crosstab table and frequency chart.

 Tip: If you want the flexibility to show or hide the individual categories in your reports, then do not use the Hide option. Use the Response Level option in the Categorical red triangle menu.

- **Net** (Available only for a multiple response column.) Prevents individual respondents from being counted twice when they appear in more than one supercategory.

- **Add Mean** Includes mean statistics in the report.

- **Add Std Dev** Includes standard deviation statistics in the report.

- **Add All** Includes total responses in the report. By default, the Total Responses column is always included.

Note: Supercategories are supported for all response effects except Repeated Measures and Rater Agreement. When responses do not have a natural score, the Mean and Std Dev options are not supported.
Set Preferences

The Categorical red triangle menu has a Set Preferences option to enable you to specify settings and preferences.

Figure 3.6 Set Preferences Window

Select the Set box for the options that you want to set. Select the option box if you want the option to appear by default, or deselect the option box if you do not want the option to appear by default. To submit the changes that you make to the platform preferences, select the Submit Platform Preferences box. To save the change that you make as a preference script, select the Create Platform Preference Script box. When the Categorical platform is launched, the preferences associated with the current preference set are used to create the Categorical report.

Note: Running the script submits the preferences to the platform preferences. You can use the platform preference script to share a preference set among multiple users, or to save the settings for specific projects.
Additional Examples of the Categorical Platform

This section contains the following examples:

- “Example of the Test for Response Homogeneity” on page 46
- “Example of the Multiple Response Test” on page 47
- “Example of the Cell Chisq Test” on page 49
- “Example of Compare Each Sample with Comparison Letters” on page 50
- “Example of Compare Each Cell with Comparison Letters” on page 52
- “Example of User-Specified Comparison with Comparison Letters” on page 54
- “Example of Conditional Association and Relative Risk” on page 55
- “Example of Rater Agreement” on page 57
- “Example of Repeated Measures” on page 58
- “Examples of the Multiple Response Tab” on page 59
- “Example of Mean Score with Comparison Letters” on page 64
- “Example of a Structured Report” on page 66

Example of the Test for Response Homogeneity

This example uses the Car Poll.jmp sample data table, which contains data collected from car polls. The data include demographics about the individuals polled and information about the cars that they own. You want to explore the relationship between marital status and origin of car. You also want to test for the homogeneity of the responses. That is, you want to test to see whether the distribution of the origin of cars is the same for married and single respondents.

There are two versions of this test, the Pearson and the Likelihood Ratio, both provide chi-square statistics and p-values.

1. Select Help > Sample Data Library and open Car Poll.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select country and click Responses on the Simple tab.
4. Select marital status and click X, Grouping Category.
5. Click OK.
6. Click the Categorical red triangle and select Test Response Homogeneity.
Figure 3.7 Test Response Homogeneity

The Share Chart indicates that the married group is evenly split between ownership of American and Japanese cars. In the single group, Japanese cars are the most frequently owned. The test for response homogeneity has a significance of about 0.08. Therefore, the difference in response probabilities across marital status is not statistically significant at an alpha level of 0.05.

Example of the Multiple Response Test

This example uses the Consumer Preferences.jmp sample data table, which contains survey data on people’s attitudes and opinions, as well as questions concerning oral hygiene. You can use the Test Multiple Response option to test if the response rates for each brushing time (Brush Delimited) is the same across groups (Brush). The groups are defined by the frequency that responders brush their teeth.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select Brush Delimited and click Multiple Delimited on the Multiple tab.
4. Select Brush and click X, Grouping Category .
5. Click OK.
6. Click the Categorical red triangle and select Test Multiple Response > Count Test, Poisson.
The p-values show that the response rates for After Meal, Before Sleep, and Other are significantly different across brushing groups. Wake is not significantly different across brushing groups. From the Crosstab table, you can see that most people brush their teeth when they wake up regardless of how frequently they brush their teeth.

7. Click the Categorical red triangle menu and select Test Multiple Response > Homogeneity Test, Binomial.

The Homogeneity Test, Binomial option always produces a larger test statistic (and therefore a smaller p-value) than the Count Test, Poisson option. The binomial distribution compares not only the rate at which the response occurred (the number of people who
reported that they brush upon waking) but also the rate at which the response did not occur (the number of people who did not report that they brush upon waking).

In this example, the proportion of responders for each response (After Meal, Before Sleep, Wake, and Other) differ across the age groups. The \(p \)-value for each response is less than 0.05.

Note: JMP detects a multiple response column by the Multiple Response modeling type or the Multiple Response column property.

Example of the Cell Chisq Test

This example uses the Consumer Preferences.jmp sample data table, which contains survey data on people’s attitudes and opinions, as well as questions concerning oral hygiene. You explore the distribution of responses to the statement “I am working on my career” across age groups.

1. Select **Help > Sample Data Library** and open Consumer Preferences.jmp.
2. Select **Analyze > Consumer Research > Categorical**.
3. Select I am working on my career and click **Responses** on the Simple tab.
4. Select Age Group and click X, **Grouping Category**.
5. Click **OK**.
6. Click the Categorical red triangle and select **Crosstab Transposed**.
7. Click the Categorical red triangle and select **Cell Chisq**.

Figure 3.10 Cell Chisq
Small \(p \)-values indicate that there is a significant difference between the observed cell count and the expected cell count. The \(p \)-values are colored by significance level from dark red for cells with significantly higher counts than expected to dark blue for cells with significantly lower counts than expected. The expected cell count is based on the observed row and column totals.

For example, the expected number of responses in the 25 through 29-year-old group who agree is \((287*113)/448 = 72.4\); the observed value was 95. This observed value, with a \(p \)-value of 0.00788, is significantly larger than the expected value. The number of responses in the 25 through 29 group who agree with “I am working on my career” is higher than expected were the response to this question was independent of age.

Example of Compare Each Sample with Comparison Letters

This example uses the Consumer Preferences.jmp sample data table, which contains survey data on people’s attitudes and opinions, as well as questions concerning oral hygiene. You explore the distribution of responses to the statement “I am working on my career” between each age group.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select I am working on my career and click Responses on the Simple tab.
4. Select Age Group and click X, Grouping Category.
5. Click OK.
6. Click the Categorical red triangle and select Compare Each Sample.
The Crosstab table summarizes the statement “I am working on my career” across age groups. The cells of the table contain the frequency (count) and share (percent) of those who agree or disagree with the statement for each age group. In addition, the Crosstab includes comparison letters. Each group is labeled with a letter in a column to the right of the group label. The comparison column uses the letters to interpret the outcome of the statistical test of independence between groups.

The Compare Each Sample outline provides p-values from the pairwise Pearson and Chi-square likelihood ratio chi-square tests. The p-values are reported in symmetric matrices labeled by the comparison letters.

For this example we make the following observations:

- The comparison column for the 25 - 29 group contains all letters b - g. Thus, the 25 - 29 group has significantly different response rates to the statement “I am working on my career” as compared to all other groups. Because the letter b is lowercase, the difference between the 25 - 29 group and the 30 - 34 group is significant at the 0.10 level. All other letters are uppercase indicating differences significant at the 0.05 level.

- The >54 group, denoted by letter G, is significantly different from the 30 - 34 group, denoted by B. The letter for the comparison is in the cell for group G because group G has a higher share of responders (71 versus 68) than group B.

- The single asterisks in the comparison cells are small sample size warnings. A single asterisk indicates that a group has more than 30 but fewer than 100 responses.
• A double asterisk, not observed in this example, would indicate a group size of fewer than 30.

Example of Compare Each Cell with Comparison Letters

This example uses the Consumer Preferences.jmp sample data table, which contains survey data on people’s attitudes and opinions, as well as questions concerning oral hygiene. You explore the distribution of the responses to the statement “I am working on my career” between employee tenure groups.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select Job Satisfaction and on the Simple tab click Responses.
4. Select Employee Tenure and click X, Grouping Category.
5. Click OK.
6. Click the Categorical red triangle menu and select Compare Each Cell.
The p-values for pairwise Pearson Chi-square, likelihood ratio chi-square, and Fisher’s exact tests for independence are provided in tables. The tables are labeled by comparison letters. The comparison letters are shown in the Crosstab table to the right of the group labels. Response rates that differ by groups are indicated with a comparison letter in the Crosstab table cells.

Employees with fewer than 5 years of tenure are somewhat satisfied at a greater rate than those with 20 years of tenure. This finding is noted by the letter d in the Somewhat satisfied cell in the first row of the Crosstab table. In addition, these same employees are Extremely satisfied at a higher rate than group D as noted by the letter a in the Extremely satisfied cell of
the last row of the Crosstab table. The letters are placed in the cell with the higher share of responses.

Example of User-Specified Comparison with Comparison Letters

This example uses the Consumer Preferences.jmp sample data table, which contains survey data on people’s attitudes and opinions, as well as questions concerning oral hygiene. You define specific comparison groups across which to compare the responses to the statement “I am working on my career”.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select Job Satisfaction and on the Simple tab click Responses.
4. Select Employee Tenure and click X, Grouping Category.
5. Click OK.
6. Click the Responses red triangle menu and select Show Letters.
7. Click the Responses red triangle menu and select Specify Comparison Groups.
8. Enter A/B, B/C, C/D.
9. Click the Categorical red triangle menu and select Test Response Homogeneity.
Figure 3.13 Specify Comparison Example

The test of response homogeneity compares Group A to B, Group B to C and Group C to D. Group B (5 to 10 years) agrees with the statement “I am working on my career” more often than those in group C (10 to 20 years). This difference in agreement rates is statistically significant as the Pearson p-value is 0.0136.

Example of Conditional Association and Relative Risk

This example uses the AdverseR.jmp sample data table, which contains adverse reactions from a clinical trial. Use this data to explore the conditional association of adverse events and then the relative risk of the events in the treatment group as compared to the control.

1. Select Help > Sample Data Library and open AdverseR.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select ADVERSE REACTION and on the Multiple tab click Multiple Response by ID.
4. Select TREATMENT GROUP and click X, Grouping Category.
5. Select PATIENT ID and click ID.
6. Select Unique Occurrences within ID and click OK.
7. Click the Categorical red triangle menu and select **Conditional Association**.

Figure 3.14 Conditional Association Report (Partial Report)

The conditional association matrix provides the conditional probability of one adverse reaction given the presence of another reaction. The probabilities are across all groups. The probability of abnormal vision given that a patient has abdominal pain is 0.0323.

Tip: Place your pointer on the heat map for conditional probabilities.

8. Click the Categorical red triangle menu and select **Relative Risk**.

9. Select PBO in the window and click **OK**.

10. Right-click the Relative Risk Report in the window and select **Sort by Column**.

11. Select Relative Risk and click **OK**.
The Relative Risk option computes relative risks for different responses as the ratio of the risk for each level of the grouping variable. The default relative risk report lists the response name, the risk (rate) for each level of the grouping variable, a plot of the relative risk with 95% confidence intervals, and the relative risk estimate. Here you can compare the relative risk of the adverse reactions by treatment group. The relative risk of an infection is 5.7 times greater for PBO relative to ST_DRUG. However, the confidence interval is very wide and includes a relative risk of 1.0. A relative risk of 1.0 occurs when the risk is equal for each level of the grouping variable.

Right-click and select **Columns > Lower 95%** and **Columns > Upper 95%** to add 95% confidence intervals on the relative risk estimates to the report table.

Example of Rater Agreement

This example uses the Attribute Gauge.jmp sample data, which has the ratings (0/1) from three operators rating 50 parts 3 times.

1. Select **Help > Sample Data Library** and open Attribute Gauge.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select A, B, and C.
4. On the Related tab, click Rater Agreement.
5. Click OK.

Figure 3.16 Rater Agreement Report

The rater agreement is strong as shown by the Kappa statistics. The Kappa statistic can take on a value between 0 (no agreement) to 1.0 (perfect agreement). The details section provides 2x2 tables for each pair of raters. The Bowker test of symmetry tests the null hypothesis that cell proportions are symmetric for all pairs of cells ($p_{ij} = p_{ji}$ for all i, j). Here p-values for the Bowker test are all greater than 0.05, which supports symmetry between raters.

Example of Repeated Measures

This example uses the Presidential Elections.jmp sample data table, which contains United States presidential election results for each state from 1980 through 2012. Use this data to explore Repeated Measures where we consider the election results the repeated measures.

1. Select Help > Sample Data Library and open Presidential Elections.jmp.
2. Select Analyze > Consumer Research > Categorical.
5. Click OK.

Figure 3.17 Repeated Measures Transition Report

Between 1980 and 1984, there were 5 Democratic states that transitioned to Republican states. In 1980, they voted democratic but voted Republican in 1984. Between 2008 and 2012, there were two Democratic states that transitioned to Republican. All other states voted the same way in both the 2008 and 2012 elections.

Examples of the Multiple Response Tab

The following examples use sample data tables that contain the same information organized in different data table layouts. The data come from testing a fabrication line on three different occasions under two different conditions. Each set of operating conditions (or batch) yielded 50 units for inspection. Inspectors recorded seven types of defects. Each unit could have zero, one, or more than one defect. A unit could have more than one defect of the same kind.
Multiple Response

The Failure3MultipleField.jmp sample data table has a row for each unit and multiple columns for defects, where defects are entered one per column. In this example, there are three columns for defects. Thus, any one unit had at most three defects.

1. Select Help > Sample Data Library and open Quality Control/Failure3MultipleField.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select Failure1, Failure2, and Failure3.
4. On the Multiple tab, click Multiple Response.
5. Select clean and date and click X, Grouping Category.
6. Click OK.

Figure 3.18 Multiple Response Report

The Crosstab table has a row for each batch and a column for each defect type. The frequency, share, and rate of each defect within each batch are shown in the table cells. For example, for the batch after cleaning on OCT 1, there were 12 contamination defects representing 12/23 or 52.2% of defects for that batch. The 12 contamination defects were from 50 units. Therefore, the rate per unit was 24%.
Multiple Response by ID

The Failure3ID.jmp sample data table has a row for each defect type within each batch, a column for the number of each defect type, and an ID column for each batch.

Figure 3.19 Failure3ID Data Table (Partial Table)

1. Select Help > Sample Data Library and open Quality Control/Failure3ID.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select failure and click Multiple Response by ID on the Multiple tab.
4. Select clean and date and click X, Grouping Category.
5. Select SampleSize and click Sample Size.
6. Select N and click Freq.
7. Select ID and click ID.
8. Click OK.

The resulting report is the same as the report shown in Figure 3.18.

Multiple Delimited

The Failures3Delimited.jmp sample data table has a row for each unit with a single column in which the defects are recorded, delimited by a comma. Note in the partial data table, shown in Figure 3.20, that some units did not have any observed defects, so the failureS column is empty.
Categorical Response Analysis

Chapter 3

Additional Examples of the Categorical Platform Consumer Research

Figure 3.20 Failure3Delimited.jmp Data Table (Partial Table)

1. Select Help > Sample Data Library and open Quality Control/ Failures3Delimited.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select failureS and click Multiple Delimited on the Multiple tab.
4. Select clean and date and click X, Grouping Category.
5. Click OK.

When you click OK, you get the report in Figure 3.18

Note: If more than one delimited column is specified, separate analyses are produced for each column.

Indicator Group

The Failures3Indicators.jmp sample data table has a row for each unit and indicator columns for each defect type. The data entry in each defect columns is a 0 if that defect was not observed and a 1 if the defect was observed for the unit.

Figure 3.21 Faliure3Indicators.jmp Data Table (Partial Table)

1. Select Help > Sample Data Library and open Quality Control/Failures3Indicators.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select contamination, corrosion, doping, metallization, miscellaneous, oxide defect, and silicon defect and click Indicator Group on the Multiple tab.
4. Select clean and date and click X, Grouping Category.
5. Click OK.
When you click **OK**, you get the report in Figure 3.18.

Response Frequencies

The Failure3Freq.jmp sample data table has a row for each batch, columns for each defect type, and a column for the batch size. The data entries in the defect columns are the frequency of occurrence of the defect in the batch.

Figure 3.22 Failure3Freq.jmp Data Table

1. Select **Help > Sample Data Library** and open Quality Control/Failure3Freq.jmp.
2. Select **Analyze > Consumer Research > Categorical**.
3. Select the frequency variables (contamination, corrosion, doping, metallization, miscellaneous, oxide defect, silicon defect).
4. On the Multiple tab, click **Response Frequencies**.
5. Select clean and date and click **X, Grouping Category**.
6. Select Sample Size and click **Sample Size**.
7. Click **OK**.
Figure 3.23 Defect Rate Output

The resulting output is the same as that in Figure 3.18 with the exception of the Total Cases Responding column in the Crosstab table. Here, the defect data was summarized. From the summarized table, there is no record of the number of units with zero defects. Thus, the Total Cases Responding is the full batch size of 50 for each batch.

Example of Mean Score with Comparison Letters

This example uses the Consumer Preferences.jmp sample data table to explore the relationship between employee tenure and having school age children. The Employee Tenure column is a numeric column with values 1, 2, 3, and 4. These values have been assigned Value Labels using the Value Labels column property. To evaluate a mean employee tenure using the mean score option in the categorical platform, you need to assign Value Scores to the column values. For more information about column properties, refer to The Column Info Window chapter in the Using JMP book.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. In the data table, right-click the Employee Tenure column heading and select Column Properties > Value Scores.
3. Enter 1 for Value and 3 for Score and click Add.
4. Enter 2 for Value and 7.5 for Score and click Add.
5. Enter 3 for Value and 15 for Score and click Add.
6. Enter 4 for Value and 25 for Score and click Add.
7. Click OK.
8. Select Analyze > Consumer Research > Categorical.
9. Select Employee Tenure and click Responses on the Simple tab.
10. Select School Age Children and click \textit{X, Grouping Category}.
11. Click OK.
12. Click the Categorical red triangle and select \textit{Mean Score}.
13. Click the Categorical red triangle and select \textit{Mean Score Comparison}.

\textbf{Figure 3.24} Categorical Report with Mean Scores

The mean employee tenure for those with school age children is 10.17 and 9.53 for those without school age children. The means are not statistically different as the Compare Means column in the Crosstab table is empty. If there was a difference, a letter would indicate the difference.

\textbf{Tip}: Be aware of how your data is recorded when using the mean score option. If your data is recorded as coded numeric data with value labels, the mean value calculations are based on the numeric data. If the numeric data does not have meaning, use \textbf{Value Scores} to assign meaningful data values to the response levels.
Example of a Structured Report

This example uses the Consumer Preferences.jmp sample data table to compare job satisfaction and salary against gender by age group and position tenure to explore using the Structured tab.

1. Select Help > Sample Data Library and open Consumer Preferences.jmp.
2. Select Analyze > Consumer Research > Categorical.
3. Select the Structured tab.
4. Drag Gender to the green drop zone at the Top of the table on the Structured tab.
5. Drag Age Group to the green drop zone just below Gender.
6. Drag Position Tenure to the green drop zone at the Top of the table next to Gender.
7. Drag Job Satisfaction to the green drop zone at the Side of the table.
8. Drag Salary Group to the green drop zone at the Side of the table under Job Satisfaction.

Figure 3.25 Structured Tab Report Setup

9. Click Add=>.
10. Click OK.
11. Click the Categorical red triangle and select Test Response Homogeneity.
Figure 3.26 Structured Tab Report Example

<table>
<thead>
<tr>
<th>Job Satisfaction</th>
<th>Gender</th>
<th>Age Group</th>
<th>Position Tenure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all satisfied</td>
<td>M</td>
<td>25-29</td>
<td>30-34</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

The structured tab report contains the table that you specified in the structured tab. The tests for response homogeneity are for each combination of grouping variables. We see that, for males, there is no difference in job satisfaction across age groups (Pearson p-value = 0.9703). For women, there is a difference in job satisfaction across age groups (Pearson p-value = 0.0149). The middle aged women tend to be the least satisfied with their jobs. Share and frequency charts can be added to your report to visualize your results.

Statistical Details for the Categorical Platform

Rao-Scott Correction

The Rao-Scott correction is applied to the test of response homogeneity for multiple responses. See Lavassani et al. (2009). The test of response homogeneity for multiple responses is available only for the structured tab.

In the case of a multiple response, you can have overlapping samples, meaning a single subject can provide more than one response. The Pearson chi-square test is not appropriate for multiple responses, because the multiple responses violate the Pearson chi-square test assumption of independence. In addition, expected values calculated using the marginal totals are influenced by the multiple responses because the totals are larger than if multiple responses were not allowed.
Rao-Scott chi-square statistic is defined as follows:

\[\chi_C^2 = \frac{\chi^2}{\delta} \]

where

\[\chi^2 \] is the standard Pearson Chi-squared statistic and \(\delta \) is the correction factor defined by

\[\delta = 1 - \frac{m_{++}}{n_+ C} \]

where

\(m_{++} \) is the total count of the multiple responses

\(n_+ \) is the total number of subjects and

\(C \) is the number of response levels (number of columns in the Crosstab table).

The degrees of freedom is \((R-1)C\) or the number of rows minus 1 times the number of columns.
Multiple Correspondence Analysis (MCA) takes multiple categorical variables and seeks to identify associations between levels of those variables. MCA extends correspondence analysis from two variables to many. It can be thought of as analogous to principal component analysis for quantitative variables. Similar to other multivariate methods, it is a dimension reducing method; it represents the data as points in 2- or 3-dimensional space.

Multiple correspondence analysis is frequently used in the social sciences particularly in France and Japan. It can be used in survey analysis to identify question agreement. It is also used in consumer research to identify potential markets for products. Microarray studies in genetics also use MCA to identify potential relationships between genes.

Figure 4.1 Multiple Correspondence Analysis
Example of Multiple Correspondence Analysis

This example uses the Car Poll.jmp sample data table, which contains data collected from car polls. The data include aspects about the individuals polled, such as sex, marital status, and age. The data also include aspects about the car that they own, such as the country of origin, the size, and the type. You want to explore relationships between sex, marital status, country and size of car to identify consumer preferences.

1. Select Help > Sample Data Library and open Car Poll.jmp.
2. Select Analyze > Consumer Research > Multiple Correspondence Analysis.
3. Select sex, marital status, country, and size and click Y, Response.

 In MCA, usually all columns are considered responses rather than some being responses and others explanatory.
4. Click OK.

Figure 4.2 Completed Multiple Correspondence Analysis Launch Window

The Multiple Correspondence Analysis report is shown in Figure 4.3. Note that some of the outlines are closed because of space considerations.

The Variable Summary report provides a concise view of the analysis completed.

The Correspondence Analysis report shows the cloud of categories of the four variables as projected onto the two principal axes. From this cloud, you can see that Americans have a strong association with the large car size while Japanese are highly associated with the small car size. Also, males are strongly associated with the small car type and females are associated with the medium car size. This information could be used in market research to identify target audiences for advertisements.
Launch the Multiple Correspondence Analysis Platform

Launch the Multiple Correspondence Analysis platform by selecting **Analyze > Consumer Research > Multiple Correspondence Analysis**.
Figure 4.4 Multiple Correspondence Analysis Launch Window

![Multiple Correspondence Analysis Launch Window]

Y, Response Assigns the categorical columns to be analyzed. In MCA, you are generally interested in the associations between variables, but there are not explicit “explanatory” and “response” variables.

X, Factor Assigns the categorical columns to be used as factor, or explanatory, variables.

Z, Supplementary Variable Assigns the columns to be used as supplementary variables. These variables are those you are interested in identifying associations with but not include in the calculations.

Supplementary ID Assigns the column that identifies rows to be used as supplementary. A supplementary ID column usually has 1s and 0s. The rows associated with ID 0 are treated as supplementary rows. The Supplementary ID column is ignored if there are levels of the X or Y variables present in the supplementary rows that are not present in the non-supplementary rows.

Note: Only one of the Supplementary ID and Z, Supplementary Variable roles can be specified at one time.

Freq Assigns a frequency variable to this role. This is useful if your data are summarized.

By Produces a separate report for each level of the By variable. If more than one By variable is assigned, a separate report is produced for each possible combination of the levels of the By variables.

Note: The Multiple Correspondence Analysis platform handles missing values differently than many other JMP platforms. The analysis uses all nonmissing pairs of cells in a row. It does not remove entire rows from the computation.
The Multiple Correspondence Analysis Report

The initial Multiple Correspondence Analysis report shows the variable summary, correspondence analysis plot, and details of the dimensions of the data in order of importance. From the plot of the cloud of categories or individuals, you can identify associations that exist within the data. The details provide information about whether the two dimensions shown in the plot are sufficient to understand the relationships within the table.

The Variable Summary shows the columns used in the analysis and the roles that you selected in the launch window. If you select the Show Controls check box, a list of the columns in the data table appears to the left. You can change the columns in the analysis either by selecting a column and clicking Add Y, Add X, Add Z, or Add ID. Or you can drag the column to the header in the variable summary table. This enables you to modify the analysis without returning to the launch window.

Figure 4.5 Multiple Correspondence Analysis Report with Show Controls Selected
Multiple Correspondence Analysis Platform Options

The Multiple Correspondence Analysis red triangle menu options give you the ability to customize reports according to your needs. The reports available are determined by the type of analysis that you conduct.

Correspondence Analysis Provides correspondence analysis reports. These reports give the plots, details, coordinates, and summary statistics. See “Additional Examples of the Multiple Correspondence Analysis Platform” on page 80.

Cross Table Provides the Burt table or contingency table as appropriate for variable roles selected. See “Cross Table” on page 79.

Cross Table of Supplementary Rows Provides a contingency table of the supplementary variable(s) versus the response variable(s). This table appears by default only if a supplementary variable has been specified in the launch window.

Cross Table of Supplementary Columns Provides a contingency table of the X, Factor variable(s) versus the supplementary variable(s). This table appears by default only if a factor variable and a supplementary variable have been specified in the launch window.

Mosaic Plot Displays a mosaic bar chart for each nominal or ordinal response variable. A mosaic plot is a stacked bar chart where each segment is proportional to its group’s frequency count. This option is available if only one Y and only one X variable are selected.

Tests for Independence Provides the tests for independence whether there is association between the row and column variables. There are two versions of this test, the Pearson form and the Likelihood Ratio form, both with chi-square statistics. This option is available only when there is one Y variable and one X variable.

See the JMP Reports chapter in the *Using JMP* book for more information about the following options:

Local Data Filter Shows or hides the local data filter that enables you to filter the data used in a specific report.

Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.
The reports available under Correspondence Analysis are determined by the type of analysis that you conduct. Several of these reports are shown by default.

Show Plot Shows the two-dimensional cloud of categories in the plane described by the first two principal axes. This plot appears by default.

Show Detail Provides the details of the analysis including the singular values, inertias, ChiSquare statistics, percent, and cumulative percent. This report appears by default. See “Show Detail” on page 76.

Show Adjusted Inertia Provides reports of the Benzecri and Greenacre adjusted inertia. See Benzecri (1979) and Greenacre (1984). This option is not available when there are one or more X variables. See “Show Adjusted Inertia” on page 76.

Show Coordinates Provides a report of up to the first three principal coordinates for the categories in the analysis, as appropriate. See “Show Coordinates” on page 77.

Show Summary Statistics Provides a report of the summary statistics, Quality, Mass, and Inertia, for each category in the analysis. See “Show Summary Statistics” on page 77.

Show Partial Contributions to Inertia Provides a report of the contribution of each category to the inertia for each of up to the first three dimensions. See “Show Partial Contributions to Inertia” on page 78.

Show Squared Cosines Provides a report of the squared cosines of each category for each of up to the first three dimensions. The report includes a bar chart that shows, for each level of each Y variable, the squared cosine values for each of up to the first three dimensions. See “Show Squared Cosines” on page 78.

Cochran’s Q Test (Available only when all of the Y variables have the same set of only two levels and the X variable has a unique value for each row.) Provides Cochran’s Q statistic, which tests that the marginal probability of a specific response is unchanged across the Y variables. Cochran’s Q statistic is a generalization of McNemar’s statistic for more than two response variables. See Agresti (2002).

3D Correspondence Analysis Shows the three-dimensional cloud of categories of the Y, X, and Z variables in the space described by the first three principal axes. This option is not available if there are less than three dimensions.

Save Coordinates Saves the principal coordinates to one or more JMP data tables. Column coordinates, row coordinates, supplementary column coordinates, and supplementary row coordinates are saved to separate JMP data tables. You can choose how many columns to save.

Save Coordinate Formula Saves formula columns to the data table for the principal coordinates in multiple dimensions. The value for each observation is the average of the
coordinates for the Y variables scaled by the singular value for each dimension. You can choose how many columns to save.

Show Plot

The plot displays a projection of the cloud of categories or individuals onto the plane described by the first two principal axes. The distance scale is the same in all directions. You can toggle the dimensions shown in the plot using the Select Dimension controls below the plot. The first control defines the horizontal axis of the plot, and the second control defines the vertical axis of the plot. Click the arrow button to cycle through the dimensions shown in the plot. Below the Select Dimension controls, you can specify if the size of the points in the plot should be proportional to the count of observations corresponding to each point.

Note: Selecting a point in the correspondence analysis plot also selects the corresponding rows in other tables in the report window. However, rows in the data table are not selected. To select all of the points in the plot associated with a particular variable, select the name of the variable in the plot legend.

Show Detail

Shows the table of singular values.

Singular Value Shows the singular values in the singular value decomposition of the contingency table or Burt table. For the formula, see “Details Report” on page 84.

Inertia Lists the square of the singular values, reflecting the relative variation accounted for in the canonical dimensions.

ChiSquare Lists the portion of the overall Chi-square for the Burt or contingency table represented by the dimension.

Percent Portion of inertia with respect to the total inertia.

Cumulative Percent Shows the cumulative portion of inertia. If the first two singular values capture the bulk of the inertia, then the 2-D correspondence analysis plot is sufficient to show the relationships in the table.

Show Adjusted Inertia

The principal inertias of a Burt table in MCA are the eigenvalues. The problem with these inertias is that they provide a pessimistic indication of fit. Benzécri proposed an inertia adjustment. Greenacre argued that the Benzécri adjustment overestimates the quality of fit and proposed an alternate adjustment. Both adjustments are calculated for your reference. See “Adjusted Inertia” on page 84.
Inertia Lists the square of the singular values, reflecting the relative variation accounted for in the canonical dimensions.

Adjusted Inertia Lists the adjusted inertia according to either the Benzécri or Greenacre adjustment.

Percent Portion of adjusted inertia with respect to the total inertia.

Cumulative Percent Shows the cumulative portion of adjusted inertia. If the first two singular values capture the bulk of the inertia, then the 2-D correspondence analysis plot is sufficient to show the relationships in the table.

Show Coordinates

Shows the Column Coordinates table or the Row and Column Coordinates tables.

X Lists the columns specified as X, Factor variables.

Y Lists the columns specified as Y, Response variables.

Z Lists the columns specified as Z, Supplementary Variables.

Category Lists the levels of the X, Y, or Z variables.

Dimension 1, Dimension 2, Dimension 3 For each level or each response, lists its coordinate along the indicated principal axis. By default, the tables show coordinates for up to the first three dimensions. Coordinate columns for additional dimensions are hidden. To show these optional columns, right-click in a table and select the dimension columns from the Columns submenu.

Note: If there are columns specified as X, Factor variables, the Coordinates report displays tables of both X and Y with the same report headings. If a Z, Supplementary Variable is specified, the coordinates are listed below the X and Y coordinates as applicable.

Show Summary Statistics

Shows the Summary Statistics for the Column Points table or the Summary Statistics for the Row and Column Points tables. The Y table gives Quality, Mass, and Inertia for each level of each response, called a column point. The X table gives Quality, Mass, and Inertia for each level of the X, Factor variables. See “Summary Statistics” on page 85.

X Lists the columns specified as X, Factor variables.

Y Lists the columns specified as Y, Response variables.

Category Lists the levels of the X or Y variables.

Quality(dim=2) Lists the quality of the representation of the level by the solution.
Multiple Correspondence Analysis

Chapter 4

Multiple Correspondence Analysis Platform Options Consumer Research

Mass Lists the row frequency for the level of the response divided by the total frequency. In the Burt table, this is the Total % for each row.

Inertia Lists the proportion of the total inertia accounted for by the level of the response. The inertia values sum to one across the levels and their responses.

Note: If there are columns specified as X, Factor variables, the Summary Statistics report displays tables of both X and Y with the same report headings.

Show Partial Contributions to Inertia

Shows the Partial Contributions to Inertia for the Column Points table or the Partial Contributions to Inertia for the Row and Column Points tables. Also shows the Plot of Partial Contributions to Inertia for the Column Points. This is a bar chart that shows, for each level of each Y variable, its partial contributions to each of the dimensions shown in the table.

X Lists the columns specified as X, Factor variables.

Y Lists the columns specified as Y, Response variables.

Category Lists the levels of the X or Y variables.

Dimension 1, Dimension 2, Dimension 3 Lists the contribution of the response or factor level to the inertia of the indicated dimension. By default, the tables show columns for up to the first three dimensions. Additional columns are hidden. To show these optional columns, right-click on a table and select the dimension columns from the *Columns* submenu.

Each level of each response contributes to the inertia of each dimension. The partial contributions within each dimension sum to 1.

Note: If there are columns specified as X, Factor variables, the Partial Contributions to Inertia report displays tables of both X and Y with the same report headings. See “Partial Contributions to Inertia” on page 85.

Show Squared Cosines

Shows the Squared Cosines for the Column Points table or the Squared Cosines for the Row and Column Points. Also shows the Plot of Squared Cosines for the Column Points. This is a bar chart that shows, for each level of each Y variable, the squared cosine values for each of up to the first three dimensions shown.

X Lists the columns specified as X, Factor variables.

Y Lists the columns specified as Y, Response variables.

Category Lists the levels of the X or Y variables.
Dimension 1, Dimension 2, Dimension 3 Lists the quality of the representation of the level by the indicated dimension. By default, the tables show results for up to the first three dimensions. Additional columns are hidden. To show these optional columns, right-click on a table and select the dimension columns from the **Columns** submenu.

The values indicate the quality of each point for the indicated dimension. The squared cosine can be interpreted as the squared correlation of the point with the dimension. The sum of the squared cosines of the first two dimensions equals \(ext{Quality(dim=2)}\) in the Summary Statistics report. See “Summary Statistics” on page 85.

Note: If there are columns specified as X, Factor variables, the Squared Cosines report displays tables of both X and Y with the same report headings.

Cross Table

The Burt table is the basis of the multiple correspondence analysis. It is a partitioned symmetric table of all pairs of categorical variables. The diagonal partitions are diagonal matrices (a cross-table of a variable with itself). The off-diagonal partitions are ordinary contingency tables. When you select multiple Y, Response columns with no X, Factor columns, the Burt table is created. If you select any X, Factor columns, a traditional contingency table is created instead of a Burt table.

The red triangle menu for the Burt or contingency table contains options of statistics to display in the table.

- **Count** Cell frequency, margin total frequencies, and grand total (total sample size). This appears by default.
- **Total %** Percent of cell counts and margin totals to the grand total. This appears by default.
- **Cell Chi Square** Chi-square values computed for each cell as \((O - E)^2 / E\).
- **Col %** Percent of each cell count to its column total.
- **Row %** Percent of each cell count to its row total.
- **Expected** Expected frequency \((E)\) of each cell under the assumption of independence. Computed as the product of the corresponding row total and column total divided by the grand total.
- **Deviation** Observed cell frequency \((O)\) minus the expected cell frequency \((E)\).
- **Col Cum** Cumulative column total.
- **Col Cum %** Cumulative column percentage.
- **Row Cum** Cumulative row total.
- **Row Cum %** Cumulative row percentage.
- **Make Into Data Table** Creates one data table for each statistic shown in the table.
Cross Table of Supplementary Rows

When a Z, Supplementary column is selected, a contingency table with the supplementary column levels as the rows and the response column levels as the columns is created. The red triangle menu contains the same options as the Burt Table.

Cross Table of Supplementary Columns

When an X, Factor column and a Z, Supplementary column are selected, a contingency table with the X, Factor levels as rows and the Supplementary levels as columns is created. The red triangle menu contains the same options as the Burt Table.

Additional Examples of the Multiple Correspondence Analysis Platform

Example Using a Supplementary Variable

This example uses the Car Poll.jmp sample data table, which contains data collected from car polls. The data include aspects about the individuals polled, such as sex, marital status, and age. The data also include aspects about the car that they own, such as the country of origin, the size, and the type. You want to explore relationships between sex, country, and size of car to identify consumer preferences.

1. Select Help > Sample Data Library and open Car Poll.jmp.
2. Select Analyze > Consumer Research > Multiple Correspondence Analysis.
3. Select country and size and click Y, Response.
4. Select marital status and click Z, Supplementary Variable.
5. Click OK.

Unlike in the first example, this analysis does not use marital status in the calculations. Marital status is plotted after the calculations are complete.

You see from the plot strong relationships between Japanese and Small cars as well as American and Large cars. The two marital statuses are plotted in a different color. Single people seem to prefer smaller cars a bit more than married people.
Example Using a Supplementary ID

The United States census allows for examining population growth over the last century. The US Regional Population.jmp sample data table contains populations of the 50 US states grouped into regions for each of the census years from 1920 to 2010. Alaska and Hawaii are treated as supplementary regions because they were not states during the entire time, and they are not part of the contiguous United States. You are interested in whether the population growth in these two states differs from the rest of the US.

1. Select Help > Sample Data Library and open US Regional Population.jmp.
2. Select Analyze > Consumer Research > Multiple Correspondence Analysis.
3. Select Year and click Y, Response.
4. Select Region and click X, Factor.
5. Select ID and click Supplementary ID.
7. Click OK.

The Details report shows that the association between years and regions is almost entirely explained by the first dimension. The plot shows that years are in the correct order on the first dimension. This ordering occurs naturally through the correspondence analysis; there is no information about the order provided to the analysis.

Notice that the ordering of the regions reflects the population shift from the Midwest to the Northeast to the South and finally to the Mountain and West.

Alaska and Hawaii were not used in the computation of the analysis but are plotted based on the results. Their growth pattern is most similar to the Pacific states. Alaska’s growth is even more extreme than the Pacific region.
Figure 4.7 MCA with Supplementary ID Report

Statistical Details for the Multiple Correspondence Analysis Platform

This section contains statistical details for the Multiple Correspondence Analysis.
Details Report

When a simple Correspondence Analysis is performed, the report lists the singular values of the following equation:

\[D_r^{-0.5} (P - rc') D_c^{-0.5} = UD_u V' \]

where:
- \(P \) is the matrix of counts divided by the total frequency
- \(r \) and \(c \) are the row and column sums of \(P \)
- the \(D \) matrices are diagonal matrices of the values of \(r \) and \(c \)

When Multiple Correspondence Analysis is performed, the singular value decomposition extends to:

\[D^{-0.5} \left(\frac{C}{Q^2 n} - D11D \right) D^{-0.5} = UD_u V' \]

where:
- \(D = \left(\frac{1}{m} \right) \text{diag}(D_1, D_2, ..., D_Q) \)
- \(C \) is the Burt table.
- \(Q \) is the number of categorical variables
- \(n \) is the number of observations
- \(1 \) is a column vector of ones

Adjusted Inertia

The usual principal inertias of a Burt table constructed from \(m \) categorical variables in MCA are the eigenvalues \(u_k \) from \(D_u^2 \). These inertias provide a pessimistic indication of fit. Benzécri (1979) proposed the following inertia adjustment; it is also described by Greenacre (1984, p. 145):

\[\left(\frac{m}{m-1} \right)^2 \left(u_k - \frac{1}{m} \right)^2 \text{ for } u_k > \frac{1}{m} \]

This adjustment computes the percent of adjusted inertia relative to the sum of the adjusted inertias for all inertias greater than \(1/m \).

Greenacre (1994, p. 156) argues that the Benzécri adjustment overestimates the quality of fit. Greenacre proposes instead to compute the percentage of adjusted inertia relative to:
Chapter 4
Multiple Correspondence Analysis

Consumer Research Statistical Details for the Multiple Correspondence Analysis Platform

\[\frac{m}{m-1}\left(\text{trace}(D_u^4) - \frac{n_c - m}{m^2} \right) \]

for all inertias greater than 1/m, where \(\text{trace}(D_u^4) \) is the sum of squared inertias and \(n_c \) is the total number of categories across the \(m \) variables.

Summary Statistics

Quality is the ratio of the squared distance of a point from the origin in the space defined by the specified number of dimensions to the distance from the origin in the space with the maximum number of dimensions. For the Chi-Square metric, a point’s quality in a given dimension can be obtained from the cosine that its vector makes with the vector that defines the dimension. Quality is also equal to the ratio of the sum of inertias in the specified dimensions to the sum of the inertias in all dimensions. Quality indicates how well the point is represented in the lower-dimensional space.

Mass is the proportion of row or column total frequency to the total frequency.

Inertia is analogous to variance in principal component analysis. The overall inertia is the total Pearson Chi-square for a two-way frequency table divided by the sum of all observations in the table.

Relative inertia is the proportion of the contribution of the point to the overall inertia. In the summary statistics table, the relative inertia is listed in the column labeled Inertia.

Partial Contributions to Inertia

The contribution of a row or column to the inertia of a dimension is calculated as:

\[\text{contribution} = \frac{\text{mass} \times \text{coordinate}^2}{\text{dimension inertia}} \]
Multidimensional Scaling (MDS) is a technique that is used to create a visual representation of the pattern of proximities (similarities, dissimilarities, or distances) among a set of objects. For example, given a matrix of distances between cities, MDS can be used to generate a map of the cities in two dimensions.

Multidimensional Scaling is frequently used in consumer research where researchers have measures of perceptions about brands, tastes, or other product attributes. MDS is applicable to many other areas where one is interested in visualizing the proximity of objects based on a set of attributes or proximities.

Figure 5.1 Multidimensional Scaling Example
Multidimensional Scaling Platform Overview

The Multidimensional Scaling platform generates a plot of proximities among a set of objects. This plot can be used to visually explore structure in a data set. MDS is a multivariate technique that is used to visualize the patterns of proximities (distances, similarities) among a set of objects in a small number of dimensions. MDS is applied to a distance matrix. The coordinates for the MDS plot are obtained by minimizing a stress function (the difference between the actual and predicted proximities).

The term distance can refer to a measure of physical distance, such as between cities. More often distance is a subjective assessment rather than a precise measurement. Proximities can measure perceived similarities between brands of a product, correlations of crime rates, or economic similarities for a sample of countries. Distance can also be called proximity or similarity (dissimilarity). If the data are given as an attribute list, then a distance matrix is first constructed from the correlation structure of the attribute list.

For more information about multidimensional scaling, see Borg and Groenen (2005) or Jackson (2003).

Example of Multidimensional Scaling

This example uses the Flight Distances.jmp sample data table, which is a distance matrix of flight distances between 28 US cities. You can use MDS to construct a map of the cities in two dimensions that is based on the pairwise distances in the data table.

1. Select Help > Sample Data Library and open Flight Distances.jmp.
Figure 5.2 Completed Multidimensional Scaling Launch Window

4. Click OK.
5. Select the Flight Distances data table.
6. Right-click on the column Cities and select Label/Unlabel.
7. Select Rows > Row Selection > Select all Rows.
8. Select Rows > Label/Unlabel.
9. Select the Multidimensional Scaling Plot.
10. Click on the Flip Vertical button.
11. Click on the Flip Horizontal button.

The Flip Vertical and Flip Horizontal buttons enable you to change the orientation of the MDS Plot. The MDS results are invariant to orientation. When the results have a known orientation, such as physical locations, then you might want to rotate or flip your plot.
Launch the Multidimensional Scaling Platform

Launch the Multidimensional Scaling Platform by selecting Analyze > Consumer Research > Multidimensional Scaling.
Chapter 5

Multidimensional Scaling

Launch the Multidimensional Scaling Platform

Figure 5.4 Multidimensional Scaling Launch Window

Y, Columns The columns to be analyzed. These must have a Numeric data type.

By A column or columns whose levels define separate analyses. For each level of the specified column, the corresponding rows are analyzed using the other variables that you have specified. The results are presented in separate reports. If more than one By variable is assigned, a separate report is produced for each possible combination of the levels of the By variables.

Note: When using a distance matrix, the By variable requires a full matrix for each level of the By variable.

Data Format MDS supports two data formats:

- **Distance Matrix** A full symmetric or lower triangular matrix where the number of rows equals the number of columns). The diagonal entries can either be zeros or missing.

- **Attribute List** A set of columns that contain measures of a quality or characteristic of an object. The objects are typically named in a column. The object column is not used in the analysis but rather is used as a label for the data points on the MDS plot.

Transformation Supported transformations are Ratio, Interval, and Ordinal.

- **None** No transformation used.

- **Ratio** Data has an ordering from smallest to largest, the differences between values have meaning, and the scale has a true zero. Used to scale the MDS plot.

- **Interval** Data has an ordering from smallest to largest and the differences between values have meaning. Used to scale and shift the MDS plot.

- **Ordinal** Data has an ordering from smallest to largest. Used for ordinal data.

Set Dimensions The number of dimensions for the visual representation of the proximities among your objects. Typically, two or three dimensions are used. With greater than three dimensions, the visualization becomes complex.
The Multidimensional Scaling Report

The initial Multidimensional Scaling report shows these reports: Multidimensional Scaling Plot, the Shepard Diagram, and the Fit Details. If you specify three or more dimensions for the fit in the launch window, then the Multidimensional Scaling Plot provides controls for selecting the dimensions that you view.

Objects that are close together on the MDS plot share similar attributes. Adding labels and colors to the plot can help in the identification of similar groups. The Shepard diagram and summary of fit statistics provide measures of how well the MDS plot represents the proximities of the objects.

Multidimensional Scaling Plot

The MDS plot displays the multidimensional scaling in two dimensions. Below the plot are two buttons to flip the axis either in the vertical or horizontal direction. The MDS solution can be reflected, rotated, or translated without changing the inter-point proximities. The rotating or reflection of the axes is most common when working with geographical objects that have a known map orientation.

If more than two dimensions were used in the analysis, then you can toggle the dimensions shown in the plot using the Select Dimension controls below the plot. The first control defines the horizontal axis of the plot, and the second control defines the vertical axis of the plot.

Shepard Diagram

The Shepard plot is a plot of the actual or transformed proximities versus the predicted proximities. The plot indicates how well the Multidimensional Scaling Plot reflects the actual proximities. The Shepard is analogous to an Actual by Predicted plot. Ideally the points fall on the \(Y = X \) line, which is shown in red.

Fit Details

The Fit Details provides statistics that summarize how well the MDS proximities match the actual proximities as well as details about transformations when used.

Stress The value of the stress function (Stress1) that was minimized in the fitting procedure. Stress can be between 0 and 1 with lower values indicating a better fit.
RSquare The R^2 value for linear fit of the actual or transformed proximities versus the predicted proximities.

Slope If a ratio or interval transformation was used, the slope for the transformation is provided. It is the slope of the linear regression of the actual against transformed proximities.

Intercept If an interval transformation was used, the intercept for the transformation is provided. It is the intercept of the linear regression of the actual against transformed proximities.

Multidimensional Scaling Platform Options

The Multidimensional Scaling red triangle menu options give you the ability to customize reports according to your needs. The options available are determined by the type of data and the number of dimensions that you use for your analysis.

MDS Plot Shows or hides the MDS Plot.

Diagnostics Provides diagnostics for the MDS.

Shepard Diagram Shows a plot of actual proximity (or transformed proximity if a transformation is used) versus the predicted proximity. This report appears by default. See “Shepard Diagram”.

Waern Links Displays the Waern links on the MDS plot. Controls for the portion (smallest or largest) are available when this option is selected. See “Waern Links”.

Show Coordinates Provides a report of the solution coordinates. These are the coordinates of the points on the Multidimensional Scaling Plot. The report shows the coordinates of up to three dimensions. Right-click in the report and select Columns to add additional dimensions to the report. The maximum number of dimensions is the number of dimensions set in the launch window.

Show Proximity Provides a report of the proximities. The original and derived proximities (distances) are provided between each pair of objects. The pairs are identified in the From and To object columns. If a transformation was used, the transformed proximities are also included in the table.

Save Proximity (Available only if Attribute List is the data format.) Saves the distance matrix to the data table.

3D Plot (Available only if three or more dimensions are specified for Set Dimensions in the launch window.) Shows a 3-D plot of the first three dimensions.

Save Coordinates Saves the solution coordinates to the data table in separate columns.

See the JMP Reports chapter in the Using JMP book for more information about the following options:
Local Data Filter Shows or hides the local data filter that enables you to filter the data used in a specific report.

Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.

Waern Links

Waern links provide a visual check of the MDS results by comparing actual proximities to predicted proximities. The links join points on the Multidimensional Scaling Plot based on their actual proximities. The objects with the smallest (largest) proximities are connected. A typical scenario to consider is the smallest 33% of the proximities between objects. If the MDS Plot is a good representation of the proximities, then the links for the smallest actual proximities should connect the closest objects in the plot. If a link for a small proximity stretches across the plot connecting distant objects, then the MDS fit would be questioned.

Waern Link Controls

There is a list from which you can choose to show the Smallest Portion or the Largest Portion of links on the plot. The portion of links shown is controlled by entering a value in the box or by using the slider. Figure 5.5 shows Waern links for the Teeth.jmp data table for the 33% smallest portion.

For more information about Waern links, see Waern (1972).
Chapter 5
Consumer Research

Additional Example of the Multidimensional Scaling Platform

This example uses the Teeth.jmp sample data table, which is an attribute list of the counts of eight teeth types in 32 mammals. You can use MDS to explore the similarities of mammals based on their teeth. An interval transformation is used to illustrate the output from that transformation. The data do have an ordering that has a meaning (two teeth are twice as many as four teeth). One might explore other transformations such as the ordinal transformation.

1. Select Help > Sample Data Library and open Teeth.jmp.
2. Right-click on the column MAMMAL and select Label/Unlabel.
3. Select Rows > Row Selection > Select all Rows.
5. Select Top incisors through Bottom molars and click Y, Columns.
7. Select Transformation > Interval.
8. Click OK.
The Shepard Diagram and the Fit Details indicate that the MDS Plot is a good representation of similarities of animals due to similarities in their teeth. The Stress statistics of 0.075 is low and the R^2 fit of the transformed versus predicted proximities is high at 0.97. In addition, the Fit Details provides the intercept and slope for the transformation of the actual proximities.
Statistical Details for the Multidimensional Scaling Platform

JMP uses a quasi Newton optimization method to minimize the Stress function to determine the MDS coordinates. This minimization leads to a set of coordinates in a predetermined number of dimensions that minimize the derived proximity measures for each pairwise set of the dimensions. When the data is ordinal, then monotonic regression is used. Otherwise, standard least squares regression is used.

Stress

The following notation is used to define Stress:

- **I** - The number of dimensions specified for the fit
- **i, j** - indexes for the number of objects
- **d_{ij}** - the distance between objects i and j
- **δ_{ij}** - the derived distance between objects i and j
- **f(δ_{rs})** - transformation function for the distance

The Stress function is given by

\[
\text{Stress} = \left[\frac{\sum_{i<j} [f(δ_{ij}) - d_{ij}]^2}{\sum_{i<j} d_{ij}^2} \right]^{1/2}
\]

This measure of stress is also known as Kruskal’s Stress, Type I, or simply Stress1.

Transformations

The section uses the notation described in “Stress” on page 97. Transformations are used to scale the actual proximities. Transformations would be considered to improve the MDS representation of the actual proximities by taking into account specific structures in the data. The parameters in the transformation functions become additional parameters in the minimization algorithm.

Ratio Transformation

For ratio data:

\[f(δ_{rs}) = bδ_{rs} \]
Interval Transformation

For interval data:

\[f(\delta_{rs}) = a + b\delta_{rs} \]

Ordinal Transformation

For ordinal data the data is not transformed, rather the algorithm uses monotone regression rather than least squares regression.

Attributes List Format

When the data is in the attributes list format, it is converted to a distance matrix and then MDS is applied. The distance matrix is determined by the correlation structure of the data.

For an advanced example of MDS, see the San Francisco Crime Distances.jmp sample data table and the source script for that table.
Factor analysis seeks to describe a collection of observed variables in terms of a smaller collection of (unobservable) latent variables, or factors. Factor analysis is also known as common factor analysis and exploratory factor analysis. These factors are defined as linear combinations of the observed variables. They are constructed to explain variation that is common to the observed variables. A primary goal of factor analysis is to achieve a meaningful interpretation of the observed variables through the factors. Another goal is to reduce the number of variables.

Factor analysis is used in many areas, and is of particular value in psychology, sociology, and education. In these areas, factor analysis is used to understand how manifest behavior can be interpreted in terms of underlying patterns and structures. For example, measures of participation in outdoor activities, hobbies, exercise, and travel, might all relate to a factor that can be described as “active versus inactive personality type”. Factor analysis attempts to explain correlations among the observed variables in terms of the factor. In particular, it enables you to determine how much of the variance in each observable variable is accounted for by the factors that you have identified. It also tells you how much of the variance in all the variables is accounted for by each factor.

Use factor analysis when you need to explore or interpret underlying patterns and structure in your data. Also consider using it to summarize the information in your variables using a smaller number of latent variables.

Figure 6.1 Rotated Factor Loading
Factor Analysis Platform Overview

Factor analysis models a set of observable variables in terms of a smaller number of unobservable factors. These factors account for the correlation or covariance between the observed variables. Once the factors are extracted, you perform factor rotation in order to obtain a meaningful interpretation of the factors.

Consider a situation where you have ten observed variables, X_1, X_2, \ldots, X_{10}. Suppose that you want to model these ten variables in terms of two latent factors, F_1 and F_2. For convenience, it is assumed that the factors are uncorrelated and that each has mean zero and variance one. The model that you want to derive is of the form:

$$X_i = \beta_{i0} + \beta_{i1}F_1 + \beta_{i2}F_2 + \epsilon_i$$

It follows that $\text{Var}(X_i) = \beta_{i1}^2 + \beta_{i2}^2 + \text{Var}(\epsilon_i)$. The portion of the variance of X_i that is attributable to the factors, the common variance or **communality**, is $\beta_{i1}^2 + \beta_{i2}^2$. The remaining variance, $\text{Var}(\epsilon_i)$, is the specific variance, and is considered to be unique to X_i.

The Factor Analysis platform provides a Scree Plot for the eigenvalues of the correlation or covariance matrix. You can use this as a guide in determining the number of factors to extract. Alternatively, you can accept the platform’s suggestion of setting the number of factors equal to the number of eigenvalues that exceed one.

The platform provides two factoring methods for estimating the parameters of this model: Principal Components and Maximum Likelihood.

JMP provides two options for estimating the proportion of variance contributed by common factors for each variable. These Prior Communality options impose assumptions on the diagonal of the correlation (or covariance) matrix. The Principal Components option treats the correlation matrix, which has ones on its diagonal (or the covariance matrix with variances on its diagonal), as the structure to be analyzed. The Common Factor Analysis option sets the diagonal entries to values that reflect the proportion of the variation that is shared with other variables.

To support interpretability of the extracted factors, you rotate the factor structure. The Factor Analysis platform provides a variety of rotation methods that encompass both orthogonal and oblique rotations.

In contrast with factor analysis, which looks at common variance, principal component analysis accounts for the total variance of the observed variables. See the Principal Components chapter in the *Multivariate Methods* book.
Example of the Factor Analysis Platform

To view an example Factor Analysis report for a data table for two factors:

1. Select Help > Sample Data Library and open Solubility.jmp.
2. Select Analyze > Consumer Research > Factor Analysis.
 The Factor Analysis launch window appears.
3. Select all of the continuous columns and click Y, Columns.
4. Keep the default Estimation Method and Variance Scaling.
5. Click OK.
 The initial Factor Analysis report appears.

Figure 6.2 Initial Factor Analysis Report

6. For the Model Launch, select the following options:
 – Factoring Method as Maximum Likelihood
 – Prior Communality as Common Factor Analysis
 – Number of factors = 2
 – Rotation Method as Varimax
7. After all selections are made, click Go.
 The Factor Analysis report appears.
The report lists the communality estimates, variance, significance tests, rotated factor loadings, and a factor loading plot. Note that in the Factor Loading Plot, Factor 1 relates to the Carbon Tetrachloride-Chloroform-Benzene-Hexane cluster of variables, and Factor 2 relates to the Ether–1-Octanol cluster of variables. See “Factor Analysis Model Fit Options” on page 109 for details of the information shown in the report.
Launch the Factor Analysis Platform

Launch the Factor Analysis platform by selecting Analyze > Consumer Research > Factor Analysis.

Figure 6.4 Factor Analysis Launch Window

Y, Columns Lists the continuous columns to be analyzed.

Weight Enables you to weight the analysis to account for pre-summarized data.

Freq Identifies a column whose numeric values assign a frequency to each row in the analysis.

By Creates a Factor Analysis report for each value specified by the By column so that you can perform separate analyses for each group.

Estimation Method Lists different methods for fitting the model. For details about the methods, see the Multivariate chapter in the Multivariate Methods book.

Variance Scaling Lists the scaling methods for performing the factor analysis based on Correlations (the same as Principal Components), Covariances, or Unscaled.

The Factor Analysis Report

The initial Factor Analysis report shows Eigenvalues and the Scree Plot. The Eigenvalues are obtained from a principal components analysis. The Scree Plot graphs these eigenvalues. The number of factors that JMP suggests in the Model Launch equals the number of eigenvalues that exceed 1.0.

Alternatively, you can use the scree plot to guide your initial choice for number of factors. The number of eigenvalues that appear before the scree plot levels out can provide an upper bound on the number of factors.
In the example shown in Figure 6.5, the Scree Plot begins to level out after the second eigenvalue. The Eigenvalues table indicates that the first eigenvalue accounts for 79.75% of the variation and the second eigenvalue accounts for 15.75%. Therefore, the first two eigenvalues account for 95.50% of the total variation. The third eigenvalue only explains 2.33% of the variation, and the contributions from the remaining eigenvalues are negligible. Although the Number of factors box is initially set to 1, this analysis suggests that it is appropriate to extract 2 factors.

Model Launch

To configure the Factor Analysis model, use the Model Launch section at the bottom of the Factor Analysis Report (Figure 6.6).
Figure 6.6 Model Launch

The Model Launch section enables you to configure the following options:

1. **Factoring method** - the method for extracting factors.
 - The **Principal Components** method is a computationally efficient method, but it does not allow for hypothesis testing.
 - The **Maximum Likelihood** method has desirable properties and enables you to test hypotheses about the number of common factors.

 Note: The **Maximum Likelihood** method requires a positive definite correlation matrix. If your correlation matrix is not positive definite, select the **Principal Components** method.

2. **Prior Communality** - the method for estimating the proportion of variance contributed by common factors for each variable.
 - **Principal Components (diagonals = 1)** sets all communalities equal to 1, indicating that 100% of each variable’s variance is shared with the other variables. Using this option with Factoring Method set to **Principal Components** results in principal component analysis.
 - **Common Factor Analysis (diagonals = SMC)** sets the communalities equal to squared multiple correlation (SMC) coefficients. For a given variable, the SMC is the RSquare for a regression of that variable on all other variables.

3. The **Number of factors** (or principal components) determined by eigenvalues greater than or equal to 1.0 or from the scree plot where the graph begins to level out.

 Note: Alternatively, the **Kaiser criterion** retains those factors with eigenvalues greater than 1.0. In our example, only factor 1 would be retained for analysis.
4. The **Rotation method** to align the factor directions with the original variables for ease of interpretation. The default value is **Varimax**. See “Rotation Methods” on page 106 for a description of the available selections.

5. Click **Go** to generate the Factor Analysis report.

Depending on the selected Variance Scaling, the appropriate factor analysis results appear. See “Factor Analysis Model Fit Options” on page 109 for details about the contents of the report. The Factor Analysis on Correlations and Factor Analysis on Unscaled reports show the same information.

Rotation Methods

Rotations align the directions of the factors with the original variables so that the factors are more interpretable. You hope for clusters of variables that are highly correlated to define the rotated factors.

After the initial extraction, the factors are uncorrelated with each other. If the factors are rotated by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated by an oblique transformation, the rotated factors become correlated. Oblique rotations often produce more useful patterns than do orthogonal rotations. However, a consequence of correlated factors is that there is no single unambiguous measure of the importance of a factor in explaining a variable.

Orthogonal Rotation Methods

Table 6.1 lists the available orthogonal (that is, uncorrelated) rotation methods.

Table 6.1 Orthogonal Rotation Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>SAS PROC FACTOR Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varimax</td>
<td>ROTATE=ORTHOMAX with GAMMA = 1</td>
</tr>
<tr>
<td>Note:</td>
<td>This is the default selection.</td>
</tr>
<tr>
<td>Biquartimax</td>
<td>ROTATE=ORTHOMAX with GAMMA = 0.5</td>
</tr>
<tr>
<td>Equamax</td>
<td>ROTATE=ORTHOMAX with GAMMA = number of factors/2</td>
</tr>
<tr>
<td>Factorparsimax</td>
<td>ROTATE=ORTHOMAX with GAMMA = number of variables</td>
</tr>
</tbody>
</table>
Table 6.1 Orthogonal Rotation Methods (Continued)

<table>
<thead>
<tr>
<th>Method</th>
<th>SAS PROC FACTOR Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthomax</td>
<td>ROTATE=ORTHOMAX</td>
</tr>
<tr>
<td></td>
<td>Or</td>
</tr>
<tr>
<td></td>
<td>ROTATE=ORTHOMAX(p), where p is the orthomax weight or the GAMMA = value.</td>
</tr>
<tr>
<td></td>
<td>Note: The default p value is 1 unless specified otherwise in the GAMMA = option. For additional information about orthomax weight, see the SAS documentation, “Simplicity Functions for Rotations.”</td>
</tr>
<tr>
<td>Parsimax</td>
<td>ROTATE=ORTHOMAX with GAMMA = (\frac{(nvar(nfact - 1))}{(nvar + nfact - 2)})</td>
</tr>
<tr>
<td>Quartimax</td>
<td>ROTATE=ORTHOMAX with GAMMA=0</td>
</tr>
</tbody>
</table>

Table 6.2 lists the available oblique (that is, correlated) rotation methods.

Table 6.2 Oblique Rotation Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>SAS PROC FACTOR Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biquartimin</td>
<td>ROTATE=OBLIMIN(.5)</td>
</tr>
<tr>
<td></td>
<td>Or</td>
</tr>
<tr>
<td></td>
<td>ROTATE=OBLIMIN with TAU=.5</td>
</tr>
<tr>
<td>Covarim</td>
<td>ROTATE=OBLIMIN(1)</td>
</tr>
<tr>
<td></td>
<td>Or</td>
</tr>
<tr>
<td></td>
<td>ROTATE=OBLIMIN with TAU=1</td>
</tr>
<tr>
<td>Obbiquartimax</td>
<td>ROTATE=OBBIQUARTIMAX</td>
</tr>
<tr>
<td>Obequamax</td>
<td>ROTATE=OBEQUAMAX</td>
</tr>
<tr>
<td>Obfactorparsimax</td>
<td>ROTATE=OBFACOTORPARSIMAX</td>
</tr>
</tbody>
</table>
Factor Analysis Platform Options

The following options are accessed by clicking the Factor Analysis red triangle menu in the report window:

Eigenvalues A table that indicates the total number of factors extracted based on the eigenvalues (that is, the amount of variance contributed by each factor). The table includes the percent of the total variance contributed by that factor, a bar chart illustrating the percent contribution, and the cumulative percent contributed by each successive factor. The number of eigenvalues greater than or equal to 1.0 can be taken as the number of sufficient factors for analysis.

Scree Plot A plot of the eigenvalues versus the number of components (or factors). The plot can be used to determine the number of factors that contribute to the maximum amount of variance. The point at which the plotted line levels out can be taken as the number of sufficient factors for analysis. See Figure 6.2 on page 101 for an example of scree plots.

See the JMP Reports chapter in the *Using JMP* book for more information about the following options:

Local Data Filter Shows or hides the local data filter that enables you to filter the data used in a specific report.

Table 6.2 Oblique Rotation Methods (Continued)

<table>
<thead>
<tr>
<th>Method</th>
<th>SAS PROC FACTOR Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblimin</td>
<td>ROTATE=OBLIMIN, where the default p value is zero, unless specified otherwise in the TAU= option.</td>
</tr>
<tr>
<td></td>
<td>ROTATE=OBLIMIN(p) specifies p as the oblimin weight or the TAU= value.</td>
</tr>
<tr>
<td></td>
<td>Note: For additional information about oblimin weight, see the SAS documentation, “Simplicity Functions for Rotations.”</td>
</tr>
<tr>
<td>Obparsimax</td>
<td>ROTATE=OBPARSIMAX</td>
</tr>
<tr>
<td>Obquartimax</td>
<td>ROTATE=OBQUARTIMAX</td>
</tr>
<tr>
<td>Obvarimax</td>
<td>ROTATE=OBVARIMAX</td>
</tr>
<tr>
<td>Quartimin</td>
<td>ROTATE=OBLIMIN(0) or ROTATE=OBLIMIN with TAU=0</td>
</tr>
<tr>
<td>Promax</td>
<td>ROTATE=PROMAX</td>
</tr>
</tbody>
</table>

Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.

Factor Analysis Model Fit Options

After submitting the Model Launch, the model results appear. The following options are available from the Factor Analysis report’s red triangle menu.

Prior Communality An initial estimate of the communality for each variable. For a given variable, this estimate is the squared multiple correlation coefficient (SMC), or RSquare, for a regression of that variable on all other variables.

Note: The Prior Communality Estimates table only appears if the Common Factor Analysis (diagonals = SMC) option is selected.

Figure 6.7 Prior Communality Estimates

Eigenvalues Shows the eigenvalues of the reduced correlation matrix and the percent of the common variance for which they account. The reduced correlation matrix is the correlation matrix with its diagonal entries replaced by the communality estimates. The eigenvalues indicate the common variance explained by the factors. The Cum Percent can exceed 100% because the reduced correlation matrix is not necessarily positive definite and can have negative eigenvalues.

Note that the table indicates the number of factors retained for analysis.

The Eigenvalues option is available only when the Prior Communality option is set to Common Factor Analysis (diagonals = SMC). The communality estimates are the SMC (square multiple correlation) values.

Figure 6.8 indicates that the first two factors account for 100% of the common variance. This pattern suggests that you might not need more than two factors to model your data.
Figure 6.8 Eigenvalues of the Reduced Correlation Matrix

<table>
<thead>
<tr>
<th>Number</th>
<th>Eigenvalue</th>
<th>Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.041133</td>
<td>86.233</td>
<td>86.233</td>
</tr>
<tr>
<td>2</td>
<td>0.166212</td>
<td>13.767</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.071811</td>
<td>5.958</td>
<td>100.291</td>
</tr>
<tr>
<td>4</td>
<td>0.0236</td>
<td>0.202</td>
<td>100.493</td>
</tr>
<tr>
<td>5</td>
<td>-0.2677</td>
<td>-2.222</td>
<td>100.033</td>
</tr>
<tr>
<td>6</td>
<td>-0.0470</td>
<td>-0.385</td>
<td>100.000</td>
</tr>
</tbody>
</table>

2 factors will be retained by the number of factor criterion.

Unrotated Factor Loading Shows the factor loading matrix before rotation. Factor loadings measure the influence of a common factor on a variable. Because the unrotated factors are orthogonal, the factor loading matrix is the matrix of correlations between the variables and the factors. The closer the absolute value of a loading is to 1, the stronger the effect of the factor on the variable.

Use the slider and value to **Suppress Absolute Loading Values Less Than** the specified value in the table. Suppressed values appear dimmed according to the setting specified by **Dim Text**.

Use the **Dim Text** slider and value to control the table’s font transparency gradient for factor values less in absolute value than the specified **Suppress Absolute Loading Values Less Than** value.

Note: The **Suppress Absolute Loading Values Less Than** value and **Dim Text** value are the same values used in the Rotated Factor Loading table. Changes to one loading table’s settings changes the settings in the other loading table.

Figure 6.9 Unrotated Factor Loading

Note: The Unrotated Factor Loading matrix is re-ordered so that variables associated with the same factor appear next to each other.

Rotation Matrix Shows the calculations used for rotating the factor loading plot and the factor loading matrix.
Figure 6.10 Rotation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Octanol</td>
<td>0.84800</td>
<td>0.53000</td>
</tr>
<tr>
<td>Ether</td>
<td>-0.53000</td>
<td>0.84800</td>
</tr>
</tbody>
</table>

Target Matrix Shows the matrix to which the varimax factor pattern is rotated. This option is available only for the Promax rotation.

Figure 6.11 Target Matrix

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Octanol</td>
<td>0.060672</td>
<td>0.914571</td>
</tr>
<tr>
<td>Ether</td>
<td>0.03628</td>
<td>1.00000</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.940404</td>
<td>0.034572</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.827012</td>
<td>0.100628</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>1.000000</td>
<td>0.034643</td>
</tr>
<tr>
<td>Hexane</td>
<td>0.975109</td>
<td>0.034782</td>
</tr>
</tbody>
</table>

Factor Structure Shows the matrix of correlations between variables and common factors. This option is available only for oblique rotations.

Figure 6.12 Factor Structure

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Octanol</td>
<td>0.6261049</td>
<td>0.9767863</td>
</tr>
<tr>
<td>Ether</td>
<td>0.5481838</td>
<td>0.9566717</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.9420460</td>
<td>0.5546378</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.9770336</td>
<td>0.6834367</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.9861517</td>
<td>0.5681459</td>
</tr>
<tr>
<td>Hexane</td>
<td>0.9460839</td>
<td>0.5649445</td>
</tr>
</tbody>
</table>

Final Communality Estimates Estimates of the communalities after the factor model has been fit. When the factors are orthogonal, the final communality estimate for a variable equals the sum of the squared loadings for that variable.

Figure 6.13 Final Communality Estimates

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Octanol</td>
<td>0.05938</td>
<td></td>
</tr>
<tr>
<td>Ether</td>
<td>0.01584</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.08756</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.96530</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>0.97647</td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>0.89922</td>
<td></td>
</tr>
</tbody>
</table>

Standard Score Coefficients Lists the multipliers used to convert factor values when saving rotated components as factors to the source data table.
Figure 6.14 Standard Score Coefficients

Variance Explained by Each Factor Gives the variance, percent, and cumulative percent, of common variance explained by each rotated factor.

Figure 6.15 Variance Explained by Each Factor

Significance Test If you select Maximum Likelihood as the factoring method, the results of two Chi-square tests are provided.

The first test is for H_0: No common factors. This null hypothesis indicates that none of the common factors are sufficient to explain the intercorrelations among the variables. This test is Bartlett’s Test for Sphericity, whose null hypothesis is that the correlation matrix of the factors is an identity matrix (Bartlett, 1954).

The second test is for H_0: N factors are sufficient, where N is the specified number of factors. Rejection of this null hypothesis indicates that more factors might be required to explain the intercorrelations among the variables (Bartlett, 1954).

The tests in Figure 6.16 indicate that the common factors already included in the model explain some of the intercorrelations, but that more factors are needed.

Note: The Significance Test table only appears if the Maximum Likelihood factoring method option is selected.

Figure 6.16 Significance Test
Rotated Factor Loading Shows the factor loading matrix after rotation. If the rotation is orthogonal, these values are the correlations between the variables and the rotated factors.

Use the slider and value to Suppress Absolute Loading Values Less Than the specified value in the table. Suppressed values appear dimmed according to the setting specified by Dim Text.

Use the Dim Text slider and value to control the table’s font transparency gradient for factor values less in absolute value than the specified Suppress Absolute Loading Values Less Than value.

Note: The Suppress Absolute Loading Values Less Than value and Dim Text value are the same values used in the Unrotated Factor Loading table. Changes to one loading table’s settings changes the settings in the other loading table.

Figure 6.17 Rotated Factor Loading

Note: The Rotated Factor Loading matrix is re-ordered so that variables associated with the same factor appear next to each other.

Factor Loading Plot The plot of the rotated loading factors.
Note that in the Factor Loading Plot, Factor 1 relates to the Carbon Tetrachloride-Chloroform-Benzene-Hexane cluster of variables, and Factor 2 relates to the Ether–1-Octanol cluster of variables. See the matrix of “Rotated Factor Loading” on page 113 for details.

Score Plot The Score Plot graphs each factor’s calculated values in relation to the other adjusting each value for the mean and standard deviation.

Figure 6.18 Factor Loading Plot

Figure 6.19 Score Plot
Score Plot with Imputation Imputes any missing values and creates a score plot. This option is available only if there are missing values.

Display Options Enables you to show or hide arrows on all plots that can display arrows.

Save Rotated Components Saves the rotated components to the data table, with a formula for computing the components. The formula cannot evaluate rows with missing values.

Save Rotated Components with Imputation Imputes missing values, and saves the rotated components to the data table. The column contains a formula for doing the imputation, and computing the rotated components. This option appears after the Factor Analysis option is used, and if there are missing values.

Remove Fit Removes the fit model results from the Factor Analysis Fit Model report. This option enables you to change the Model Launch configuration for a new report.
Use the Choice platform to analyze the results of choice experiments conducted in the course of market research, in order to discover which product or service attributes your potential customers prefer. You can use this information to design products or services that have the attributes that your customers most desire.

The Choice platform enables you to do the following:

- Use information about subject traits as well as product attributes.
- Analyze choice experiments where respondents were allowed to select “none of these”.
- Integrate data from one, two, or three sources.
- Use the integrated profiler to understand, visualize, and optimize the response (utility) surface.
- Obtain subject-level scores for segmenting or clustering your data.
- Estimate subject-specific coefficients using a Bayesian approach.
- Use bias-corrected maximum likelihood estimators (Firth, 1993).

Figure 7.1 Choice Platform Utility Profiler
Choice Modeling Platform Overview

Choice modeling, pioneered by McFadden (1974), is a powerful analytic method used to estimate the probability of individuals making a particular choice from presented alternatives. Choice modeling is also called conjoint choice modeling, discrete choice analysis, and conditional logistic regression.

A choice experiment studies customer preferences for a set of product or process (in the case of a service) attributes. Respondents are presented sets of product attributes, called profiles. Each respondent is shown a small set of profiles, called a choice set, and asked to select the preference that he or she most prefers. Each respondent is usually presented with several choice sets. Use the Choice platform to analyze the results of a choice experiment.

Note: You can design your choice experiment using the Choice Design platform. See the Discrete Choice Design chapter in Design of Experiments Guide.

Because customers vary in how they value attributes, many market researchers view market segmentation as an important step in analyzing choice experiments. Otherwise, you risk designing a product or process that pleases the “average” customer, who does not actually exist, and ignoring the preferences of market segments that do exist.

For background on choice modeling, see Louviere et al. (2015), Train (2009), and Rossi et al. (2006).

The Choice Platform

The Choice Modeling platform uses a form of conditional logistic regression to estimate the probability that a configuration is preferred. Unlike simple logistic regression, choice modeling uses a linear model to model choices based on response attributes and not solely upon subject characteristics. In choice modeling, a respondent might choose between two cars that are described by a combination of ten attributes, such as price, passenger load, number of cup holders, color, GPS device, gas mileage, anti-theft system, removable-seats, number of safety features, and insurance cost.

The Choice platform allows respondents to not make a choice from among a set of profiles. The no choice option is treated as a product with a single attribute (“Select none of these”) that respondents are allowed to select. The parameter estimate for the No Choice attribute can then be interpreted in many ways, depending on the assumptions of the model. The Choice platform also enables you to obtain subject-level information, which can be useful in segmenting preference patterns.

You can obtain bias-corrected maximum likelihood estimators as described by Firth (1993). This method has been shown to produce better estimates and tests than MLEs without bias correction. In addition, bias-corrected MLEs improve separation problems that tend to occur

Note: The Choice platform is not appropriate to use for fitting models that involve ranking, scoring, or nested hierarchical choices. You can use PROC MDC in SAS/ETS for these analyses.

Choice Designs in Developing Products and Services

Although customer satisfaction surveys can disclose what is wrong with a product or service, they fail to identify consumer preferences with regard to specific product attributes. When engineers design a product, they routinely make hundreds or thousands of small design decisions. If customer testing is feasible and test subjects (prospective customers) are available, you can use choice experiments to guide some design decisions.

Decreases in survey deployment, modeling, and prototyping costs facilitate the customer evaluation of many attributes and alternatives as a product is designed. Choice modeling can be used in Six Sigma programs to improve consumer products, or, more generally, to make the products that people want. Choice experiments obtain data on customer preferences, and choice modeling analysis reveals such preferences.

Segmentation

Market researchers sometimes want to analyze the preference structure for each subject separately in order to see whether there are groups of subjects that behave differently. However, there are usually not enough data to do this with ordinary estimates. If there are sufficient data, you can specify the subject identifier as a “By groups” in the Response Data or you could introduce a subject identifier as a subject-side model term. This approach, however, is costly if the number of subjects is large.

If there are not sufficient data to specify “By groups,” you can segment in JMP by clustering subjects using the Save Gradients by Subject option. The option creates a new data table containing the average Hessian-scaled gradient on each parameter for each subject. For an example, see “Example of Segmentation” on page 154. For details about the gradient values, see “Gradients” on page 172.

In JMP Pro, you can request that the Choice platform use a Hierarchical Bayes approach in order to facilitate market segmentation. Bayesian modeling provides subject-specific estimates of model parameters (also called part-worths) in choice models that can be analyzed through hierarchical clustering or some other type of cluster analysis to reveal market segments.
Examples of the Choice Platform

One Table Format with No Choice

In a study of pizza preferences, each respondent is presented with four choice sets, each containing two profiles. Some respondents do not express a preference for either profile. The data are presented in a one-table format. When a respondent does not express a preference, the respondent’s choice indicator is entered as missing.

1. Select Help > Sample Data Library and open Pizza Combined No Choice.jmp.
 Choice sets are defined by the combination of Subject and Trial. Notice that there are missing values in the Indicator column for some choice sets.

2. Select Analyze > Consumer Research > Choice.
 The One Table, Stacked data format is the default.

3. Click Select Data Table.

4. Select Pizza Combined No Choice and click OK.

5. Complete the launch window as follows:
 – Select Indicator and click Response Indicator.
 – Select Subject and click Subject ID.
 – Select Trial and click Choice Set ID.
 – Select Crust, Cheese, and Topping and click Add in the Construct Profile Effects panel.
 – Select Gender and click Add in the Construct Subject Effects (Optional) panel.
Figure 7.2 Completed Launch Window

6. Check the box next to **Respondent is allowed to select “None” or “No Choice”**.
7. Click **Run Model**.
Figures 7.3 Report Showing No Choice as an Effect

The Effect Summary report shows the effects in order of significance. **Cheese** is the most significant effect, followed by the No Choice Indicator, which is treated as a model effect. The subject effect interactions **Gender** * Topping and **Gender** * Crust are also significant, indicating that preferences for Topping and Crust depend on **Gender** market segments.

To get some insight on the nature of the No Choice responses, select and view those choice sets that resulted in No Choice.

8. In the data table, right-click in a cell in the **Indicator** column where the response is missing and select **Select Matching Cells**.

9. In the Rows panel, right-click **Selected** and select **Data View**.
In the table in Figure 7.4, consider the profiles in the first seven choice sets, which are defined by the Subject and Trial combinations in rows 1 to 14. The only difference within each choice set is the Cheese. There is an indication that some respondents might not be able to detect the difference in cheeses. However, the analysis takes the No Choice Indicator into account and concludes that, despite this behavior, Cheese is significant.

To see how to further analyze data of this type, see “Find Optimal Profiles” on page 127.

Multiple Table Format

In this example, you examine pizza choices where three attributes, with two levels each, are presented to the subjects.

This example uses three data tables: Pizza Profiles.jmp, Pizza Responses.jmp, and Pizza Subjects.jmp.

 - The profile data table, Pizza Profiles.jmp, lists all the pizza choice combinations that you want to present to the subjects. Each choice combination is given an ID.
 - The responses data table, Pizza Responses.jmp, contains the design and results. For the experiment, each subject is given four choice sets, where each choice set consists of two choice profiles (Choice1 and Choice2). The subject selects a preference (Choice) for each choice set. For information about how to construct a choice design, see the Discrete Choice Designs chapter in the Design of Experiments Guide. Notice that each value in the Choice column is an ID value in the Profile data table that contains the attribute information.
The subjects data table, Pizza Subjects.jmp, includes a Subject ID column and a single characteristic of the subject, Gender. Each value of Subject in the Pizza Subjects.jmp data table corresponds to values in the Subject column in the Pizza Responses.jmp data table.

2. Select Analyze > Consumer Research > Choice to open the launch window.

Note: This can be done from any of the three open data tables.

3. From the Data Format menu, select Multiple Tables, Cross-Referenced.

There are three separate sections, one for each of the data sources.

4. Click Select Data Table under Profile Data.

A Profile Data Table window appears, which prompts you to specify the data table for the profile data.

5. Select Pizza Profiles.jmp and click OK.

6. Select ID and click Profile ID.

7. Select Crust, Cheese, and Topping and click Add.

Figure 7.5 Profile Data

8. Click the disclosure icon next to Response Data to open the outline and click Select Data Table.

9. Select Pizza Responses.jmp and click OK.

10. Do the following:

 – Select Choice and click Profile ID Chosen.
- Select Choice1 and Choice2 and click Profile ID Choices.
- Select Subject and select Subject ID.

Figure 7.6 Response Data Window

Choice1 and Choice2 are the profiles presented to a subject in each of four choice sets. The Choice column contains the chosen preference between Choice1 and Choice2.

11. Click the disclosure icon next to Subject Data to open the outline and click Select Data Table.

12. Select Pizza Subjects.jmp and click OK.

13. Select Subject and click Subject ID.

14. Select Gender and click Add.

Figure 7.7 Subject Data Window
Six effects are entered into the model. The effects Crust, Cheese, and Topping are product attributes. The interaction effects, Gender*Crust, Gender*Cheese, and Gender*Topping are subject-effect interactions with the attributes. These interaction effects enable you to construct products that meet market-segment preferences.

Note: For Choice models, subject effects cannot be entered as main effects. They only appear as interaction terms.

The Effect Summary and Likelihood Ratio Tests reports show strong interactions between Gender and Crust and between Gender and Topping. Notice that the main effects of Crust and Topping are not significant. If you had not included subject-level effects, you might have overlooked important information relative to market segmentation.
Find Optimal Profiles

Next, you use the Utility Profiler to explore your results and find optimal settings for the attributes.

1. Click the Choice Model red triangle and select **Utility Profiler**.

The Subject Terms menu beneath the profiler indicates that it is showing results for females.

2. Click the red triangle next to Utility Profiler and select **Optimization and Desirability > Desirability Functions**.

Figure 7.9 Utility Profiler with Desirability Function

A desirability function that maximizes utility is added to the profiler. See the Profiler chapter in the *Profilers* book.

3. Click the red triangle next to Utility Profiler and select **Optimization and Desirability > Maximize Desirability**.
The optimal settings for females are a thin crust, Mozzarella cheese, and no topping.

4. From the Subject Terms menu, select M.

The optimal settings for males are a thick crust, Mozzarella cheese, and a Pepperoni topping.

In this example, understanding the preferences of gender-defined market segments enables you to provide two pizza choices that appeal to two segments of customers.
Launch the Choice Platform

Launch the Choice platform by selecting Analyze > Consumer Research > Choice.

Your data for the Choice platform can be combined in a single data table or it can reside in two or three separate data tables. When the Choice window opens, the first menu item asks you to specify the Data Format.

One Table, Stacked

For this format, the data are combined into a single data table. There is a row for every profile presented to a subject and an indicator of whether that profile was selected.

For an example of data in the one-table format, see “One Table Format with No Choice” on page 120. For details, see “Launch Window for One Table, Stacked” on page 130.

Multiple Tables, Cross-referenced

For this format, the data are stored in two or three separate tables: a Profile Data and Response Data table are required and a Subject Data table is optional. The Choice Launch Window contains three sections, each corresponding to a different data table. You can expand or collapse each section of the launch window, as needed.

For an example of data in the multiple-tables format, see “Multiple Table Format” on page 123. For details, see “Launch Window for Multiple Tables, Cross-Referenced” on page 131.
Launch Window for One Table, Stacked

Figure 7.12 Launch Window for One Table, Stacked Data Format

Select Data Table Select or open the data table that contains the combined data. Select Other to open a file that is not already open.

Response Indicator A column that contains values that indicate the preferred choice. A 1 indicates the preferred profile and a 0 indicates the other profiles. If respondents are given an option to select no preference, enter missing values for choice sets where no preference is indicated. See “Respondent is allowed to select “None” or “No Choice”” on page 131.

Subject ID An identifier for the study participant.

Choice Set ID An identifier for the choice set presented to the subject for a given preference determination.

Grouping A column which, when used with the Choice Set ID column, uniquely designates each choice set. For example, if a choice set has Choice Set ID = 1 for Survey = A, and another choice set has Choice Set ID = 1 for Survey = B, then Survey should be used as a Grouping column.

Construct Profile Effects Add effects constructed from the attributes in the profiles.

For information about the Construct Profile Effects panel, see the Construct Model Effects section in the Model Specification chapter of the *Fitting Linear Models* book.

Construct Subject Effects (Optional) Add effects constructed from subject-related factors.

For information about the Construct Subject Effects panel, see the Construct Model Effects section in the Model Specification chapter of the *Fitting Linear Models* book.
Firth Bias-adjusted Estimates Computes bias-corrected MLEs that produce better estimates and tests than MLEs without bias correction. These estimates also improve separation problems that tend to occur in logistic-type models. Refer to Heinze and Schemper (2002) for a discussion of the separation problem in logistic regression.

Number of Bayesian Iterations (Applicable only if Hierarchical Bayes is selected.) The total number of iterations of the adaptive Bayes algorithm used to estimate subject-specific parameters. This number includes a burn-in period of iterations that are discarded. The number of burn-in iterations is equal to half of the Number of Bayesian Iterations specified on the launch window.

Respondent is allowed to select “None” or “No Choice” Enters a No Choice Indicator into the model for response rows containing missing values. For the One Table, Stacked data format, the No Choice rows must contain (numeric) missing values in the Response Indicator column. The option appears at the bottom of the launch window.

Launch Window for Multiple Tables, Cross-Referenced

Figure 7.13 Launch Window for Multiple Tables, Cross-Referenced Data Format

Figure 7.13 shows the launch window for Multiple Tables, using Pizza Profiles.jmp as the Profile table.

In the case of Multiple Tables, Cross-referenced, the launch window has three sections:
Profile Data

The profile data table describes the attributes associated with each choice. Each attribute defines a column in the data table. There is a row for each profile. A column in the table contains a unique identifier for each profile. Figure 7.14 shows the Pizza Profiles.jmp data table and a completed Profile Data panel.

Figure 7.14 Profile Data Table and Completed Profile Data Outline

Select Data Table Select or open the data table that contains the profile data. Select Other to open a file that is not already open.

Profile ID Identifier for each row of attribute combinations (profile). If the Profile ID column does not uniquely identify each row in the profile data table, you need to add Grouping.
columns. Add **Grouping** columns until the combination of **Grouping** and **Profile ID** columns uniquely identify the row, or profile.

Grouping A column which, when used with the Choice Set ID column, uniquely designates each choice set. For example, if **Profile ID** = 1 for **Survey** = A, and a different **Profile ID** = 1 for **Survey** = B, then **Survey** would be used as a **Grouping** column.

Construct Profile Effects Add effects constructed from the attributes in the profiles.

For information about the Construct Profile Effects panel, see the Construct Model Effects section in the Model Specification chapter of the *Fitting Linear Models* book.

Firth Bias-adjusted Estimates Computes bias-corrected MLEs that produce better estimates and tests than MLEs without bias correction. These estimates also improve separation problems that tend to occur in logistic-type models. Refer to Heinze and Schemper (2002) for a discussion of the separation problem in logistic regression.

Hierarchical Bayes Uses a Bayesian approach to estimate subject-specific parameters. See “Bayesian Parameter Estimates” on page 138.

Number of Bayesian Iterations (Applicable only if Hierarchical Bayes is selected.) The total number of iterations of the adaptive Bayes algorithm used to estimate subject effects. This number includes a burn-in period of iterations that are discarded. The number of burn-in iterations is equal to half of the Number of Bayesian Iterations specified on the launch window.

Response Data

The response data table includes a subject identifier column, columns that list the profile identifiers for the profiles in each choice set, and a column containing the preferred profile identifier. There is a row for each subject and choice set. Grouping variables can be used to distinguish choice sets when the data contain more than one group of choice sets. Figure 7.15 shows the *Pizza Responses.jmp* data table and a completed Response Data panel.

Grouping variables can be used to align choice indices when more than one group is contained within the data.
Select Data Table
Select or open the data table that contains the profile data. Select Other to open a file that is not already open.

Profile ID Chosen
The Profile ID from the Profile data table that represents the subject’s selected profile.

Grouping
A column which, when used with the Profile ID Chosen column, uniquely designates each choice set.

Profile ID Choices
The Profile IDs of the set of possible profiles.

Subject ID
An identifier for the study participant.

Freq
A column containing frequencies. If n is the value of the Freq variable for a given row, then that row is used in computations n times. If it is less than 1 or missing, then JMP does not use it to calculate any analyses.
Weight A column containing a weight for each observation in the data table. The weight is included in analyses only when its value is greater than zero.

By A column whose levels define separate analyses. For each level of the specified column, the corresponding rows are analyzed as a separate analysis on a separate table. The results are presented in separate reports. If more than one By variable is assigned, a separate analysis is produced for each possible combination of the levels of the By variables.

Respondent is allowed to select “None” or “No Choice” Enters a No Choice Indicator into the model for response rows containing missing values. For the Multiple Tables, Cross-Referenced data format, the No Choice rows must contain (categorical) missing values in the Profile ID Chosen column in the Response Data table. The option appears at the bottom of the Response Data panel.

Subject Data

The subject data table is optional and depends on whether you want to model subject effects. The table contains a column with the subject identifier used in the response table, and columns for attributes or characteristics of the subjects. You can put subject data in the response data table, but you should specify the subject effects in the Subject Data outline. Figure 7.16 shows the Pizza Subjects.jmp data table and a completed Subject Data panel.

Figure 7.16 Subject Data Table and Completed Subject Data Outline

Select Data Table Select or open the data table that contains the subject data. Select Other to open a file that is not already open.

Subject ID Unique identifier for the subject.
Choice Model Report

Unless Hierarchical Bayes is selected on the launch window, the Choice Model report consists of the following:

- “Effect Summary” on page 136
- “Parameter Estimates” on page 137
- “Likelihood Ratio Tests” on page 138

Note: The Effect Summary and Likelihood Ratio Tests reports appear by default only if the data set is small enough for them to be calculated in a reasonable amount of time. If they do not appear, select Likelihood Ratio Tests from the red triangle menu to make both appear.

If Hierarchical Bayes is selected on the launch window, the following report appears:

- “Bayesian Parameter Estimates” on page 138

Effect Summary

The Effect Summary report appears if your model contains more than one effect and if it can be calculated quickly. (If the report does not appear, select Likelihood Ratio Tests from the red triangle menu to make both reports appear.) It lists the effects estimated by the model and gives a plot of the LogWorth (or FDR LogWorth) values for these effects. The report also provides controls that enable you to add or remove effects from the model. The model fit report updates automatically based on the changes made in the Effects Summary report. For details, see the Effect Summary Report section in the Standard Least Squares Report and Options chapter in the Fitting Linear Models book.

The Effect Summary report does not appear when Bayesian Subject Effects is checked in the launch window. This is because likelihood ratio tests are not conducted in this case.

Effect Summary Table Columns

The Effect Summary table contains the following columns:

- **Source** Lists the model effects, sorted by ascending \(p \)-values.
- **LogWorth** Shows the LogWorth for each model effect, defined as \(-\log_{10}(p\text{-value})\). This transformation adjusts \(p \)-values to provide an appropriate scale for graphing. A value that exceeds 2 is significant at the 0.01 level (because \(-\log_{10}(0.01) = 2\)).
FDR LogWorth Shows the False Discovery Rate LogWorth for each model effect, defined as $-\log_{10}(\text{FDR PValue})$. This is the best statistic for plotting and assessing significance. Select the FDR check box to replace the LogWorth column with the FDR LogWorth column.

Bar Chart Shows a bar chart of the LogWorth (or FDR LogWorth) values. The graph has dashed vertical lines at integer values and a blue reference line at 2.

PValue Shows the p-value for each model effect. This is the p-value corresponding to the significance test displayed in the Likelihood Ratio Tests report.

FDR PValue Shows the False Discovery Rate p-value for each model effect calculated using the Benjamini-Hochberg technique. This technique adjusts the p-values to control the false discovery rate for multiple tests. Select the FDR check box to replace the PValue column with the FDR PValue column.

For details about the FDR correction, see Benjamini and Hochberg, 1995. For details about the false discovery rate, see the Response Screening chapter in the Predictive and Specialized Modeling book or Westfall et al. (2011).

Effect Summary Table Options

The options below the summary table enable you to add and remove effects:

Remove Removes the selected effects from the model. To remove one or more effects, select the rows corresponding to the effects and click the Remove button.

Add Profile Effect Opens a panel that contains a list of all columns in the data table for the OneTable, Stacked data format, and for the columns in the Profile Data table for the Multiple Tables, Cross-Referenced data format. Select columns that you want to add to the model, and then click Add below the column selection list to add the columns to the model. Click Close to close the panel.

Add Subject Effect Opens a panel that contains a list of all columns in the data table for the OneTable, Stacked data format, and for the columns in the Subject Data table for the Multiple Tables, Cross-Referenced data format. Select columns that you want to add to the model, and then click Add below the column selection list to add the columns to the model. Click Close to close the panel.

Parameter Estimates

The Parameter Estimates report gives estimates and standard errors of the coefficients of utility associated with the effects listed in the Term column. The coefficients associated with attributes are sometimes referred to as part-worths. When the Firth Bias-Adjusted Estimates option is selected in the launch window, the parameter estimates are based on the Firth bias-corrected maximum likelihood estimators. These estimates considered to be more accurate than MLEs without bias correction. For details about utility, see “Utility and Probabilities” on page 171.
Comparison Criteria

The following fit statistics are shown as part of the report and can be used to compare models: AICc (corrected Akaike’s Information Criterion), BIC (Bayesian Information Criterion), \(-2 \times \text{LogLikelihood}\), and \(-2 \times \text{Firth LogLikelihood}\). For details and formulas, see the section Likelihood, AICc, and BIC in the Statistical Details appendix of the *Fitting Linear Models* book.

The \(-2 \times \text{Firth LogLikelihood}\) fit statistic is included in the report when the Firth Bias-Adjusted Estimates option is selected in the launch window. Note that this option is checked by default. The decision to use or not use the Firth Bias-Adjusted Estimates does not affect the AICc score or the \(-2 \times \text{LogLikelihood}\) results.

Note: For each of these statistics, a smaller value indicates a better fit.

Likelihood Ratio Tests

The Likelihood Ratio Test report appears by default if the model is fit in less than five seconds. If the report does not appear, you can select the Likelihood Ratio Tests option from the Choice Model red triangle menu. The report gives the following:

- **Source** Lists the effects in the model.
- **L-R ChiSquare** The value of the likelihood ratio ChiSquare statistic for a test of the corresponding effect.
- **DF** The degrees of freedom for the ChiSquare test.
- **Prob>ChiSq** The \(p\)-value for the ChiSquare test.
- **Bar Graph** Shows a bar chart of the L-R ChiSquare values.

Bayesian Parameter Estimates

(Appears only if Hierarchical Bayes is selected on the launch window.) The Bayesian Parameter Estimates report gives results for model effects. The estimates are based on a Hierarchical Bayes fit that integrates the subject-level covariates into the likelihood function and estimates their effects on the parameters directly. The subject-level covariates are estimated using a Bayesian procedure combined with the Metropolis-Hastings algorithm. See Train (2001). Posterior means and variances are calculated for each model effect. The algorithm also provides subject-specific estimates of the model effect parameters. See “Save Subject Estimates” on page 142.

During the estimation process, each individual is assigned his or her own vector of parameter estimates, essentially treating the estimates as random effects and covariates. The vector of coefficients for an individual is assumed to come from a multivariate normal distribution with arbitrary mean and covariance matrix. The likelihood function for the utility parameters for a
given subject is based on a multinominal logit model for each subject’s preference within a choice set, given the attributes in the choice set. The prior distribution for a given subject’s vector of coefficients is normal with mean equal to zero and a diagonal covariance matrix with the same variance for each subject. The covariance matrix is assumed to come from an inverse Wishart distribution with a scale matrix that is diagonal with equal diagonal entries.

For each subject, a number of burn-in iterations at the beginning of the chain is discarded. By default, this number is equal to half of the Number of Bayesian Iterations specified on the launch window.

Figure 7.17 Bayesian Parameter Estimates Report

<table>
<thead>
<tr>
<th>Term</th>
<th>Posterior Mean</th>
<th>Posterior Std Dev</th>
<th>Subject Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crust(Thick)</td>
<td>0.12241156</td>
<td>0.2270467796</td>
<td>0.771729275</td>
</tr>
<tr>
<td>Cheese(Jack)</td>
<td>-2.4768104</td>
<td>0.5845527681</td>
<td>0.6746528415</td>
</tr>
<tr>
<td>Topping(Pepperoni)</td>
<td>-0.40059962</td>
<td>0.2524594761</td>
<td>0.6955971534</td>
</tr>
</tbody>
</table>

Term The model term.

Posterior Mean The parameter estimate for the term’s coefficient. For each iteration after the burn-in period, the mean of the subject-specific coefficient estimates is computed. The Posterior Mean is the average of these means.

Tip: Select the red-triangle option Save Bayes Chain to see the individual estimates for each iteration.

Posterior Std Dev The standard deviation of the means of the subject-specific estimates over the iterations after burn-in.

Subject Std Dev The standard deviation of the subject-specific estimates.

Tip: Select the red-triangle option Save Subject Estimates to see the individual estimates.

Total Iterations The total number of iterations performed, including the burn-in period.

Burn-In Iterations The number of burn-in iterations. This number is equal to half of the Number of Bayesian Iterations specified on the launch window.

Number of Respondents The number of subjects.

Avg Log Likelihood After Burn-In The average of the log-likelihood function, computed on values obtained after the burn-in period.
Choice Platform Options

The Choice Modeling platform has many available options. To access these options, select the Choice Model red triangle menu.

Note: When you use Hierarchical Bayes, the subject-level estimates are based on Monte Carlo sampling. For this reason, results obtained for the options below will vary from run to run.

Likelihood Ratio Tests See “Likelihood Ratio Tests” on page 138.

Show MLE Parameter Estimates (Available only if Hierarchical Bayes is selected on the launch window.) Shows non-Firth maximum likelihood estimates and standard errors for the coefficients of model terms. These estimates are used as starting values for the Hierarchical Bayes algorithm.

Joint Factor Tests (Not available if Hierarchical Bayes is selected on the launch window.) Tests each factor in the model by constructing a likelihood ratio test for all the effects involving that factor. For more information about Joint Factor Tests, see the Standard Least Squares Report and Options chapter in the *Fitting Linear Models* book.

Confidence Intervals If Hierarchical Bayes was not selected, shows a confidence interval for each parameter in the Parameter Estimates report.

If you selected Hierarchical Bayes, the confidence intervals appear in the Bayesian Parameter Estimates report. The intervals are constructed assuming a normal distribution and are based on the Posterior Mean and Posterior Std Dev.

Correlation of Estimates If Hierarchical Bayes was not selected, shows the correlations between the maximum likelihood parameter estimates.

If you selected Hierarchical Bayes, shows the correlation matrix for the posterior means of the parameter estimates. The correlations are calculated from the iterations after burn-in. The posterior means from each iteration after burn-in are treated as if they are columns in a data table. The Correlation of Estimates table is obtained by calculating the correlation matrix for these columns.

Effect Marginals Shows marginal probabilities and marginal utilities for each main effect in the model. The marginal probability is the probability that an individual selects attribute A over B with all other attributes at their mean or default levels.

In Figure 7.18, the marginal probability of any subject choosing a pizza with mozzarella cheese, thick crust and pepperoni, over that same pizza with Monterey Jack cheese instead of mozzarella, is 0.9470.
Figure 7.18 Example of Marginal Effects

Utility Profiler Shows the predicted utility for different factor settings. The utility is the value predicted by the linear model. See “Find Optimal Profiles” on page 127 for an example of the Utility Profiler. For details about utility, see “Utility and Probabilities” on page 171. For details about the Utility Profiler options, see the Prediction Profiler Options section in the Profiler chapter of the Profilers book.

Probability Profiler Allows you to compare choice probabilities among a number of potential products. This predicted probability is defined as \(\frac{\exp(U)}{\exp(U) + \exp(U_b)} \), where \(U \) is the utility for the current settings and \(U_b \) is the utility for the baseline settings. This implies that the probability for the baseline settings is 0.5. For details, see “Utility and Probabilities” on page 171.

Multiple Choice Profiler Provides the number of probability profilers that you specify. This enables you to set each profiler to the settings of a given profile so that you can compare the probabilities of choosing each profile relative to the others. See “Multiple Choice Comparisons” on page 152 for an example of using the Multiple Choice Profiler. For details about the Multiple Choice Profiler options, see the Prediction Profiler Options section in the Profiler chapter of the Profilers book.

Comparisons Performs comparisons between specific alternative choice profiles. Enables you to select the factors and the values that you want to compare. You can compare specific configurations, including comparing all settings on the left or right by selecting the Any check boxes. If you have subject effects, you can select the levels of the subject effects to compare. Using Any does not compare all combinations across features, but rather all combinations of comparisons, one feature at a time, using the left settings as the settings for the other factors.
Choice Models
Choice Platform Options

Chapter 7
Consumer Research

Figure 7.19 Utility Comparisons Window

![Utility Comparisons Window](image)

Willingness to Pay Requires that your data table contains a continuous price column. Calculates how much a price must change allowing for the new feature settings to produce the same predicted outcome. The result is calculated using the Baseline settings for each background setting.

Save Utility Formula Creates a new data table that contains a formula column for utility. The new data table contains a row for each subject and profile combination, and columns for the profiles and the subject effects.

Save Gradients by Subject Constructs a new table that has a row for each subject containing the average (Hessian-scaled-gradient) steps for the likelihood function on each parameter. This corresponds to using a Lagrangian multiplier test for separating that subject from the remaining subjects. These values can later be clustered, using the built-in-script, to indicate unique market segments represented in the data. For more details, see “Gradients” on page 172. For an example, see “Example of Segmentation” on page 154.

Save Subject Estimates (Available only if Hierarchical Bayes is selected.) Creates a table where each row contains the subject-specific parameter estimates for each effect. The distribution of subject-specific parameter effects for each effect is centered at the estimate for the term given in the Bayesian Parameter Estimates report. The Subject Acceptance Rate gives the rate of acceptance for draws of new parameter estimates during the Metropolis-Hastings step. Generally, an acceptance rate of 0.20 is considered to be good. See “Bayesian Parameter Estimates” on page 138.

Save Bayes Chain (Available only if Hierarchical Bayes is selected.) Creates a table that gives information about the chain of iterations used in computing subject-specific Bayesian estimates. See “Save Bayes Chain” on page 145.

Model Dialog Shows the Choice launch window, which can be used to modify and re-fit the model. You can specify new data sets, new IDs, and new model effects.

See the JMP Reports chapter in the *Using JMP* book for more information about the following options:
Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.

Willingness to Pay

The term *willingness to pay* refers to the price that a customer is willing to pay for new features, calculated to match a customer’s utility for baseline features. For example, suppose that a customer is willing to pay $1,000 for a computer with a 40 GB hard drive. Willingness to Pay for an 80 GB hard drive is calculated by setting the Hard drive feature to 80 GB and then solving for the price that delivers the same utility as the $1000 40 GB hard drive.

Willingness to Pay Launch Window Options

When you select the Willingness to Pay option, the Willingness to Pay launch window is shown. The launch window in Figure 7.20 is obtained by selecting the Willingness to Pay option in the report that results from running the *Choice* data table script in *Laptop Profile.jmp*.

Factor The variables from the analysis. These can be product features or subject-specific attributes.

Baseline The baseline setting for each factor. If the factor is categorical, select the baseline value from a list. If the factor is numeric, enter the baseline value.

Role The type of factor. You can choose from the following list:

- **Feature Factor** A product or service feature from the experiment that you want to price.
- **Price Factor** A price factor in the experiment. The price factor must be continuous, and there can only be one specified price factor for each Willingness to Pay analysis.
- **Background Constant** A factor that you want to hold constant in the Willingness to Pay calculation. Generally, these are subject-specific variables.
- **Background Variable** A factor that you want to hold constant, at each of its levels, in the Willingness to Pay calculation. Generally, these are subject-level factors. Specifying a subject factor as a Background Variable rather than a Background Constant provides Willingness to Pay estimates for all levels of the variable.

Include baseline settings in report table Adds the baseline settings with a price change of zero to the Willingness to Pay report.
Tip: If you make an output table, use this option to display all the baseline settings as well as the attribute settings.

Output data table also Creates a data table containing the Willingness to Pay report.

Figure 7.20 Willingness to Pay Launch Window

![Willingness to Pay Launch Window](image)

Once you complete your first Willingness to Pay calculation, the platform remembers the baseline values and assigned roles that you selected. This enables you to do multiple Willingness to Pay comparisons without having to re-enter the baseline information. If there is no factor called Price, but there is a continuous factor used in the analysis, the continuous factor is automatically assigned as the Price factor in the Willingness to Pay window. Common cost variables that are not prices in the traditional sense include factors such as travel time or distance.

Willingness to Pay Report

The Willingness to Pay report displays the baseline value for each factor, as well as baseline utility values. For each factor, the report shows the feature setting, estimated price change, and new price. If there are no interaction or second-order effects, standard errors and confidence intervals are also shown. These are calculated using the delta method.
Chapter 7
Choice Models

Consumer Research

Additional Examples

Figure 7.21 Willingness to Pay Report

<table>
<thead>
<tr>
<th>Factor</th>
<th>Baseline Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disk</td>
<td>40 GB</td>
</tr>
<tr>
<td>Speed</td>
<td>1.5 GHz</td>
</tr>
<tr>
<td>Battery Life</td>
<td>4 hours</td>
</tr>
<tr>
<td>Price</td>
<td>1000</td>
</tr>
</tbody>
</table>

| Baseline Utility | -3.4736 |

<table>
<thead>
<tr>
<th>Factor</th>
<th>Feature Setting</th>
<th>Price Change</th>
<th>Std Error</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
<th>New Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disk</td>
<td>80 GB</td>
<td>$959.67</td>
<td>$31.743</td>
<td>$211.47</td>
<td>$1,707.87</td>
<td>$1,956.76</td>
</tr>
<tr>
<td>Speed</td>
<td>2.0 GHz</td>
<td>$496.86</td>
<td>$218.515</td>
<td>$68.58</td>
<td>$925.14</td>
<td>$1,496.86</td>
</tr>
<tr>
<td>Battery Life</td>
<td>6 hours</td>
<td>$387.88</td>
<td>$191.088</td>
<td>$13.35</td>
<td>$762.40</td>
<td>$1,387.88</td>
</tr>
</tbody>
</table>

Standard deviations for Price Change calculated by Delta method.

Save Bayes Chain

You can use the Bayes Chain data table to determine whether your estimates have stabilized. The table that is created has a number of rows equal to the Number of Bayesian Iterations (specified on the launch window) plus one. The first row, Iteration 1, gives the starting values. The following rows show the results of the iterations, in order. The columns are arranged as follows:

- **Iteration** Gives the iteration number, where the first row shows starting values.
- **Log Likelihood** The log-likelihood of the model for that iteration. You can plot the Log Likelihood against Iteration to view behavior over the burn-in and tuning periods.
- **Adaptive Sigma for <model effect>** Gives the estimate of the square root of the diagonal entries of the inverse Wishart distribution scale matrix for the corresponding effect.
- **Acceptance for <model effect>** Gives the sampling acceptance rate for the corresponding effect.
- **Mean of <model effect>** Gives the estimated mean for the corresponding effect.
- **Variance of <model effect>** Gives the estimated variance for the corresponding effect.

Additional Examples

This section contains the following examples:

- “Example of Making Design Decisions” on page 146
- “Example of Segmentation” on page 154
- “Example of Logistic Regression Using the Choice Platform” on page 158
- “Example of Logistic Regression for Matched Case-Control Studies” on page 161
Example of Making Design Decisions

You can use the Choice Modeling platform to determine the relative importance of product attributes. Even if the attributes of a particular product that are important to the consumer are known, information about preference trade-offs with regard to these attributes might be unknown. By gaining such information, a market researcher or product designer is able to incorporate product features that represent the optimal trade-off from the perspective of the consumer. This example illustrates the advantages of this approach to product design.

It is already known that four attributes are important for laptop design: hard-disk size, processor speed, battery life, and selling price. The data gathered for this study are used to determine which of four laptop attributes (Hard Disk, Speed, Battery Life, and Price) are most important. It also assesses whether there are Gender or Job effects associated with these attributes.

This example has the following sections:

- “Complete the Launch Window” on page 146
- “Analyze the Model” on page 148
- “Comparisons to Baseline” on page 150
- “Multiple Choice Comparisons” on page 152

Complete the Launch Window

1. Select Help > Sample Data Library and open Laptop Runs.jmp.

2. Click the green triangle next to the Open Profile and Subject Tables script.
 The script opens the Laptop Profile.jmp and Laptop Subjects.jmp data tables.

 Note: This can be done from any of the three open data tables.

4. From the Data Format list, select Multiple Tables, Cross-Referenced.

5. Click Select Data Table under Profile Data and select Laptop Profile.jmp. Select Choice ID and click Profile ID.

7. Select Survey and Choice Set and click **Grouping**.

Figure 7.22 Profile Data Window for Laptop Study

8. Open the **Response Data** outline.

9. From the **Select Data Table** list, select Laptop Runs.jmp.

10. Complete the Response Data table as follows:
 - Select Response and click **Profile ID Chosen**.
 - Select Choice1 and Choice2 and click **Profile ID Choices**.
 - Select Survey and Choice Set and click **Grouping**
 - Select Person and click **Subject ID**. The Response Data window is shown in Figure 7.23.
11. Open the **Subject Data** outline.
12. From the **Select Data Table** list, select Laptop Subjects.jmp.
13. Select Person and click **Subject ID**.
14. Select Gender click **Add**.

 The Subject Data window is shown in Figure 7.24.

Figure 7.24 Subject Data Window for Laptop Study

Analyze the Model

1. Click **Run Model**.
Figure 7.25 Laptop Effect Summary

The Effect Summary report shows that Hard Disk is the most significant effect. You can reduce the model by removing terms with a p-value greater than 0.15. This process should be done one term at a time. Here, Gender*Speed is the least significant effect, with a p-value of 0.625.

2. In the Effect Summary report, select Gender*Speed and click Remove.

Figure 7.26 Laptop Results
Once Gender*Speed is removed from the model, all effects have a p-value of 0.15 or less. Therefore, you use this as your final model.

3. Click the Choice Model red triangle and select **Utility Profiler**.

Figure 7.27 Laptop Profiler Results for Females

![Utility Profiler](image)

Tip: If your utility profiler does not look like Figure 7.27, click the red triangle next to Utility Profiler and select **Appearance > Adapt Y Axis**.

4. From the list next to Subject Terms, select M.

Figure 7.28 Laptop Profiler Results for Males in Development

![Utility Profiler](image)

The interaction effect between Gender and Hard Disk is highly significant, with a p-value of 0.0033. See **Figure 7.26** on page 149. In the Utility Profilers, check the slope for Hard Disk for both levels of Gender. You see that the slope is steeper for females than for males.

Comparisons to Baseline

Suppose you are developing a new product. You want to explore the likelihood that a customer selects the new product over the old product, or over a competitor’s product. Use the Probability Profiler to compare profiles to a baseline profile.
In this example, your company is currently producing laptops with 40 GB hard drives, 1.5 GHz processors, and 6-hour battery life, that cost $1,000. You are looking for a way to make your product more desirable by changing as few factors as possible. You set the current product configuration as the baseline. JMP adjusts the probabilities so that the probability of preference for the baseline configuration is 0.5. Then you compare the probabilities of other configurations to the baseline probability.

1. Do one of the following:
 - Follow the steps in “Complete the Launch Window” on page 146. Then complete step 1 and step 2 in “Analyze the Model” on page 148.
 - In the Laptop Runs. jmp sample data table, click the green triangle next to the Choice Reduced Model script.

2. Click the Choice Model red triangle and select Probability Profiler.
 Note that the Probability Profiler is for Gender = F. You can change this later.

3. Using the menus and text box below the profiler, in the Baseline area, specify the Baseline settings as 40 GB, 1.5 GHz, 6 hours, and 1000.

4. Now set these as the values in the Probability Profiler. To set the Price at $1000, click $1242 above Price under the rightmost profiler cell, and type 1000. Then click outside the text box.

Figure 7.29 Probability Profiler with Text Entry Area for Price

This configuration has probability 0.5.

5. In the Probability Profiler, move the slider for HardDisk to 80 GB.
 Notice that, with this change, the probability is relatively insensitive to increases in Price.

6. Click the $1000 label above the Price cell in the profiler, type $1,200, and click outside the text box.
An increase in Hard Disk size from 40 GB to 80 GB and an increase in price to $1200 coincides with an increased probability of preference, from 0.50 to 0.90 for females. Change the Gender effect in the Baseline to M. The probability of preference is 0.71.

Multiple Choice Comparisons

Use the Multiple Choice Profiler to compare product profiles.

- You currently produce a low-end laptop with a small hard drive, a slow processor, and low battery life. You charge $1000.
- Company A produces a product with a fast processor speed and high battery life at a reasonable price of $1200.
- Company B makes the biggest hard drives with the fastest speed, but at a high price of $1500 and low battery life.

You want to gain market share by increasing only one area of performance, and price.

1. Do one of the following:
 - Follow the steps in “Complete the Launch Window” on page 146. Then complete step 1 and step 2 in “Analyze the Model” on page 148.
 - In the Laptop Runs.jmp sample data table, click the green triangle next to the Choice Reduced Model script.
2. Click the Choice Model red triangle and select **Multiple Choice Profiler**.
 A window appears, asking for the number of alternative choices to profile. Accept the default number of 3.
3. Click **OK**.
 Three Alternative profilers appear. Notice that the profilers are set for Gender = F.
Each factor in each profiler is set to its default values. Alternative 1 indicates the product that you want to develop. Alternative 2 indicates Company A’s product. Alternative 3 indicates Company B’s product.

4. For Alternative 1, set Hard Disk to 40 GB, Speed to 1.5 GHz, Battery Life to 4 hours, and Price to $1,000.

5. For Alternative 2, set Hard Disk to 40 GB, Speed to 2.0 GHz, Battery Life to 6 hours, and Price to $1,200.

6. For Alternative 3, set Hard Disk to 80 GB, Speed to 2.0 GHz, Battery Life to 4 hours, and Price to $1,500.

Figure 7.31 Multiple Choice Profiler for Females
You can see that Company B has the greatest Share of 0.5630. It is obvious that with your company’s settings, very few females buy your product.

You want to increase your market share by upgrading your company’s laptop in one of the performance areas while increasing price. The slope of the line in Alternative 1’s Hard Disk profile suggests increasing hard disk space increases market share the most.

7. For Alternative 1, set Hard Disk to 80 GB and Price to $1,200.

Figure 7.32 Multiple Choice Profiler with Improved Laptop

By increasing hard disk space, you can increase the price of your laptop and expect a market share among females of about 43%. This share exceeds that of Company B’s high-performance laptop and is much better than the market share with the initial low-end settings seen in Figure 7.31.

Explore the settings that increase your market share for males. If you increase both Hard Disk size and Speed, you can capture a 44% market share among males.

Example of Segmentation

In this example, you attempt to identify market segments for pizza preferences.

To see how to complete the launch window for this example, see step 1 to step 15 in the example “Multiple Table Format” on page 123. Otherwise, follow the instructions below.

Define Clusters

1. Select Help > Sample Data Library and open Pizza Responses.jmp.
2. Click the green triangle next to the Choice script.
3. Click the Choice Model red triangle and select Save Gradients by Subject.
 A data table appears with gradient forces saved for each main effect and subject interaction.
4. Click the green triangle next to the **Hierarchical Cluster** script.

The script runs a hierarchical cluster analysis on all columns in the gradient table, except for Subject. Click on either diamond to see that the rows have been placed into three clusters.

5. Click the red triangle next to Hierarchical Clustering and select **Save Clusters**.
A new column called Cluster is added to the data table containing the gradients. Each subject has been assigned a Cluster value that is associated with other subjects having similar gradient forces. See the Hierarchical Cluster platform chapter in the *Multivariate Methods* book for a discussion of other Hierarchical Clustering options.

You can delete the gradient columns because they were used only to obtain the clusters.

6. Select all columns except Subject and Cluster. Right-click on the selected columns and select **Delete Columns**.

7. Click the green triangle next to the **Merge Data Back** script (Figure 7.33).

 The cluster information is merged into the Subject data table. The columns in the Subject data table are now Subject, Gender, and Cluster, as shown in Figure 7.35.

Figure 7.35 Subject Data with Cluster Column

![Subject Data with Cluster Column](image)

This table can now be used for further analysis.

Explore the Clusters

1. Click the icon to the left of the Cluster variable in the columns panel and select **Ordinal**.
2. Select **Analyze > Fit Y by X**.
3. Select Gender and click **Y, Response**.
4. Select Cluster and click **X, Factor**.
5. Click **OK**.
You see the following:

- Cluster 1 is evenly divided between males and females
- Cluster 2 consists of only females
- Cluster 3 consists of only males

If desired, you could now refit and analyze the model with the addition of the Cluster variable.
Example of Logistic Regression Using the Choice Platform

Use the Choice Platform

1. Select Help > Sample Data Library and open Lung Cancer Responses.jmp.
 Notice this data table has only one column (Lung Cancer) with two rows (Cancer and NoCancer).
2. Select Analyze > Consumer Research > Choice
3. Select Multiple Tables, Cross-Referenced from the list next to Data Format.
4. Click Select Data Table, select Lung Cancer Responses.jmp, and click OK.
5. Select Lung Cancer and click Profile ID.
7. Uncheck the Firth Bias-Adjusted Estimates box.

Figure 7.37 Completed Profile Data Panel

8. Open the Response Data outline.
9. Click Select Data Table, select Lung Cancer Choice.jmp, and click OK.
10. Do the following:
 - Select Lung Cancer and click Profile ID Chosen.
 - Select Choice1 and Choice2 and click Profile ID Choices.
 - Select Count and click Freq.
11. Open the **Subject Data** outline.

12. Click **Select Data Table**, select Lung Cancer Choice.jmp, and click **OK**.

13. Select **Smoker** and click **Add**.

14. Click **Run Model**.
Figure 7.40 Choice Modeling Logistic Regression Results

Use the Fit Model Platform

1. Select **Help > Sample Data Library** and open Lung Cancer.jmp.
2. Select **Analyze > Fit Model**.

 Because the data table contains a model script, the Model Specification window is automatically completed. The **Nominal Logistic** personality is selected.
3. Click **Run**.
Notice that the likelihood ratio chi-square test for Smoker*Lung Cancer in the Choice model matches the likelihood ratio chi-square test for Smoker in the Logistic model. The reports shown in Figure 7.40 and Figure 7.41 support the conclusion that smoking has a strong effect on developing lung cancer. See the Logistic Regression chapter in the Fitting Linear Models book for more details.

Example of Logistic Regression for Matched Case-Control Studies

This section provides an example using the Choice platform to perform logistic regression on the results of a study of endometrial cancer with 63 matched pairs. The data are from the Los Angeles Study of the Endometrial Cancer Data in Breslow and Day (1980) and the SAS/STAT(R) 9.2 User’s Guide, Second Edition (2006). The goal of the case-control analysis was to determine the relative risk for gallbladder disease, controlling for the effect of hypertension. The Outcome of 1 indicates the presence of endometrial cancer, and 0 indicates the control. Gallbladder and Hypertension data indicators are also 0 or 1.

For details about performing logistic regression using the Choice platform, see “Logistic Regression” on page 171.

1. Select Help > Sample Data Library and open Endometrial Cancer.jmp.
2. Select Analyze > Consumer Research > Choice.
3. Check that the Data Format selected is One-Table, Stacked.
4. Click the Select Data Table button.
5. Select Endometrial Cancer as the profile data table. Click OK.
6. Select Outcome and click Response Indicator.
7. Select Pair and click Grouping.
8. Select Gallbladder and Hypertension and click Add in the Construct Profile Effects window.
10. Click Run Model.
11. Click the Choice Model red triangle and select Utility Profiler.

The report is shown in Figure 7.42.

Figure 7.42 Logistic Regression on Endometrial Cancer Data

<table>
<thead>
<tr>
<th>Source</th>
<th>LogWorth</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder</td>
<td>1.274</td>
<td>0.05317</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.453</td>
<td>0.35214</td>
</tr>
</tbody>
</table>

Likelihood Ratio tests are given for each factor. Note that Gallbladder is nearly significant at the 0.05 level \((p\text{-value} = 0.0532) \). Use the Utility Profiler to visualize the impact of the factors on the response.
Example of Transforming Data to Two Analysis Tables

Consider the data from Daganzo, found in Daganzo Trip.jmp. This data set contains the travel time for three transportation alternatives and the preferred transportation alternative for each subject.

Add Choice Mode and Subjects

1. Select Help > Sample Data Library and open the Daganzo Trip.jmp data table.

 A partial listing of the data set is shown in Figure 7.43.

 Figure 7.43 Partial Daganzo Travel Time Table for Three Alternatives

<table>
<thead>
<tr>
<th></th>
<th>Subway</th>
<th>Bus</th>
<th>Car</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.481</td>
<td>16.166</td>
<td>23.80</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>15.123</td>
<td>11.373</td>
<td>14.182</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>19.469</td>
<td>8.922</td>
<td>20.819</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>18.847</td>
<td>15.649</td>
<td>21.28</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>12.578</td>
<td>10.871</td>
<td>18.335</td>
<td>2</td>
</tr>
</tbody>
</table>

 Each Choice number listed must first be converted to one of the travel mode names. This transformation is easily done by using the Choose function in the formula editor, as follows.

2. Select Cols > New Columns.

3. Specify the Column Name as Choice Mode and the modeling type as Nominal.

4. Click the Column Properties and select Formula.

5. Click Conditional in the functions list, select Choose, and press the comma key twice to obtain additional arguments for the function.

6. Click Choice for the Choose expression (expr), and double click each clause entry box to enter “Subway”, “Bus”, and “Car” (with the quotation marks) as shown in Figure 7.44.

 Figure 7.44 Choose Function for Choice Mode Column of Daganzo Data

7. Click OK in the Formula Editor window.

8. Click OK in the New Column window.

 The new Choice Mode column appears in the data table. Because each row contains a choice made by each subject, another column containing a sequence of numbers should be created to identify the subjects.
10. Specify the Column Name as Subject.
11. Click Missing/Empty next to Initialize Data and select Sequence Data.
12. Click OK.

A partial listing of the modified table is shown in Figure 7.45.

Figure 7.45 Daganzo Data with New Choice Mode and Subject Columns

<table>
<thead>
<tr>
<th>Subject</th>
<th>Subway</th>
<th>Bus</th>
<th>Car</th>
<th>Choice</th>
<th>Choice Mode</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.481</td>
<td>16.196</td>
<td>23.89</td>
<td>2</td>
<td>Bus</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15.123</td>
<td>11.373</td>
<td>14.102</td>
<td>2</td>
<td>Bus</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>19.480</td>
<td>9.922</td>
<td>20.810</td>
<td>2</td>
<td>Bus</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>18.847</td>
<td>15.649</td>
<td>21.28</td>
<td>2</td>
<td>Bus</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>12.570</td>
<td>10.671</td>
<td>16.335</td>
<td>2</td>
<td>Bus</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>11.513</td>
<td>20.582</td>
<td>27.838</td>
<td>1</td>
<td>Subway</td>
<td>6</td>
</tr>
</tbody>
</table>

Stack the Data

In order to construct the Profile data, each alternative needs to be expressed in a separate row.

1. Select Tables > Stack.
2. Select Subway, Bus, and Car and click Stack Columns.
3. For the Output table name, type Stacked Daganzo. Type Travel Time for the Stacked Data Column and Mode for the Source Label Column.

The resulting Stack window is shown in Figure 7.46.

Figure 7.46 Stack Operation for Daganzo Data

4. Click OK.
A partial view of the resulting table is shown in Figure 7.47.

Figure 7.47 Partial Stacked Daganzo Table

<table>
<thead>
<tr>
<th>Choice</th>
<th>Choice Mode</th>
<th>Subject</th>
<th>Mode</th>
<th>Travel Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Subway</td>
<td>16.481</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>Bus</td>
<td>16.196</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>Car</td>
<td>23.68</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Subway</td>
<td>15.123</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>Bus</td>
<td>11.373</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>Car</td>
<td>14.182</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>Subway</td>
<td>19.469</td>
</tr>
</tbody>
</table>

Make the Profile Data Table

For the Profile Data Table, you need the **Subject**, **Mode**, and **Travel Time** columns.

1. Select the **Subject**, **Mode**, and **Travel Time** columns and select **Tables > Subset**.
2. Select **All Rows** and **Selected Columns** and click **OK**.

A partial data table is shown in Figure 7.48. Note the default table name is Subset of Stacked Daganzo.

Figure 7.48 Partial Subset Table of Stacked Daganzo Data

<table>
<thead>
<tr>
<th>Subject</th>
<th>Mode</th>
<th>Travel Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subway</td>
<td>16.481</td>
</tr>
<tr>
<td>2</td>
<td>Bus</td>
<td>16.196</td>
</tr>
<tr>
<td>3</td>
<td>Car</td>
<td>23.68</td>
</tr>
<tr>
<td>4</td>
<td>Subway</td>
<td>15.123</td>
</tr>
<tr>
<td>5</td>
<td>Bus</td>
<td>11.373</td>
</tr>
<tr>
<td>6</td>
<td>Car</td>
<td>14.182</td>
</tr>
<tr>
<td>7</td>
<td>Subway</td>
<td>19.469</td>
</tr>
</tbody>
</table>

Make the Response Data Table

For the Response Data Table, you need the **Subject** and **Choice Mode** columns, but you also need a column for each possible choice.

3. With the Daganzo Trip.jmp data table open, select the **Subject** and **Choice Mode** columns.
4. Select **Tables > Subset**.
5. Select **All Rows** and **Selected Columns** and click **OK**.

Note that the default table name is Subset of Daganzo Trip.

6. Select **Cols > New Columns**.
7. For the Column prefix, type **Choice**.
8. Select **Character** and **Nominal**.
9. Type 3 next to Number of columns to add.
10. Click OK.

 The columns Choice 1, Choice 2, and Choice 3 have been added.

11. Type “Bus” (without quotation marks) in the first row of Choice 1. Right-click the cell and select Fill > Fill to end of table.

12. Type “Subway” (without quotation marks) in the first row of Choice 2. Right-click the cell and select Fill > Fill to end of table.

13. Type “Car” (without quotation marks) in the first row of Choice 3. Right-click the cell and select Fill > Fill to end of table.

 The resulting table is shown in Figure 7.49.

Figure 7.49 Partial Subset Table of Daganzo Data with Choice Set

<table>
<thead>
<tr>
<th></th>
<th>Choice Mode</th>
<th>Subject</th>
<th>Choice 1</th>
<th>Choice 2</th>
<th>Choice 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bus</td>
<td>1</td>
<td>Bus</td>
<td>Subway</td>
<td>Car</td>
</tr>
<tr>
<td>2</td>
<td>Bus</td>
<td>2</td>
<td>Bus</td>
<td>Subway</td>
<td>Car</td>
</tr>
<tr>
<td>3</td>
<td>Bus</td>
<td>3</td>
<td>Bus</td>
<td>Subway</td>
<td>Car</td>
</tr>
<tr>
<td>4</td>
<td>Bus</td>
<td>4</td>
<td>Bus</td>
<td>Subway</td>
<td>Car</td>
</tr>
<tr>
<td>5</td>
<td>Bus</td>
<td>5</td>
<td>Bus</td>
<td>Subway</td>
<td>Car</td>
</tr>
<tr>
<td>6</td>
<td>Subway</td>
<td>6</td>
<td>Subway</td>
<td>Subway</td>
<td>Car</td>
</tr>
<tr>
<td>7</td>
<td>Subway</td>
<td>7</td>
<td>Bus</td>
<td>Subway</td>
<td>Car</td>
</tr>
</tbody>
</table>

Fit the Model

Now that you have separated the original Daganzo Trip.jmp table into two separate tables, you can run the Choice Platform.

1. Select Analyze > Consumer Research > Choice.
2. From the Data Format list, select Multiple Tables, Cross-Reference.
3. Specify the model, as shown in Figure 7.50.
4. Click **Run Model**.

The resulting parameter estimate now expresses the utility coefficient for **Travel Time** and is shown in Figure 7.51.

Figure 7.50 Choice Dialog Box for Subset of Daganzo Data
Figure 7.51 Parameter Estimate for Travel Time of Daganzo Data

The negative coefficient implies that increased travel time has a negative effect on consumer utility or satisfaction. The likelihood ratio test result indicates that the Choice model with the effect of Travel Time is significant.

Example of Transforming Data to One Analysis Table

Rather than creating two or three tables, it can be more practical to transform the data so that only one table is used. For the one-table format, the subject effect is added as in the previous example. A response indicator column is added instead of using three different columns for the choice sets (Choice 1, Choice 2, Choice 3). The transformation for the one-table scenario includes the following steps.

1. Create or open Stacked Daganzo.jmp from the “Stack the Data” steps shown in “Example of Transforming Data to Two Analysis Tables” on page 163.
2. Select Cols > New Columns.
3. Type Response as the Column Name.
4. Click Column Properties and select Formula.
5. Select Conditional in the functions list and then select If.
6. Select the column Choice Mode for the expression (expr).
7. Enter “=” and select Mode.
8. Type 1 for the Then Clause and 0 for the Else Clause.
9. Click OK in the Formula Editor window. Click OK in the New Column window.

The completed formula should look like Figure 7.52.

Figure 7.52 Formula for Response Indicator for Stacked Daganzo Data
10. Select the Subject, Travel Time, and Response columns and then select **Tables > Subset**.

11. Select **All Rows** and **Selected Columns** and click **OK**.

 A partial listing of the new data table is shown in Figure 7.53.

Figure 7.53 Partial Table of Stacked Daganzo Data Subset

<table>
<thead>
<tr>
<th></th>
<th>Subject</th>
<th>Travel Time</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16.481</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>16.196</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>23.89</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>15.123</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>11.373</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>14.182</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>19.488</td>
<td>0</td>
</tr>
</tbody>
</table>

12. Select **Analyze > Consumer Research > Choice** to open the launch window and specify the model as shown in Figure 7.54.

Figure 7.54 Choice Dialog Box for Subset of Stacked Daganzo Data for One-Table Analysis

13. Click **Run Model**.
Figure 7.55 Parameter Estimate for Travel Time of Daganzo Data from One-Table Analysis

Notice that the result is identical to that obtained for the two-table model, shown earlier in Figure 7.51.

This chapter illustrates the use of the Choice Modeling platform with simple examples. This platform can also be used for more complex models, such as those involving more complicated transformations and interaction terms.

Technical Details

This section contains information about the following topics:

- “Special Data Table Rules” on page 170
- “Utility and Probabilities” on page 171
- “Gradients” on page 172

Special Data Table Rules

Default Choice Set

If in every trial, you can choose any of the response profiles, you can omit the Profile ID Choices selection under Pick Role Variables in the Response Data section of the Choice launch window. The Choice Model platform then assumes that all choice profiles are available on each run.

Subject Data with Response Data

If you have subject data in the Response data table, select this table as the Select Data Table under the Subject Data. In this case, a Subject ID column does not need to be specified. In fact, it is not used. It is generally assumed that the subject data repeats consistently in multiple runs for each subject.
Logistic Regression

Ordinary logistic regression can be performed with the Choice Modeling platform.

Note: The Fit Y by X and Fit Model platforms are more convenient to use than the Choice Modeling platform for logistic regression modeling. This section is used only to demonstrate that the Choice Modeling platform can be used for logistic regression, if desired.

If your data are already in the choice-model format, you might want to use the steps given below for logistic regression analysis. However, three steps are needed:

- Create a trivial Profile data table with a row for each response level.
- Put the explanatory variables into the Response data.
- Specify the Response data table, again, for the Subject data table.

For examples of conducting Logistic Regression using the Choice Platform, see “Example of Logistic Regression Using the Choice Platform” on page 158 and “Example of Logistic Regression for Matched Case-Control Studies” on page 161.

Utility and Probabilities

Parameter estimates from the choice model identify consumer utility, or marginal utilities in the case of a linear utility function. Utility is the level of satisfaction consumers receive from products with specific attributes and is determined from the parameter estimates in the model.

The choice statistical model is expressed as follows:

\[P_{jk} = \frac{\exp(\beta'(X[k] \otimes Z[j]))}{\sum_{l=1}^{m} \exp(\beta'(X[k] \otimes Z[l]))} \]

where:
- \(\otimes \) is the Kronecker rowwise product
- the numerator calculates for the \(j'th \) alternative actually chosen
- the denominator sums over the \(m \) choices presented to the subject for that trial
Gradients

The gradient values that you obtain when you select the Save Gradients by Subject option are the subject-aggregated Newton-Raphson steps from the optimization used to produce the estimates. At the estimates, the total gradient is zero, and $\Delta = H^{-1}g = 0$, where g is the total gradient of the log-likelihood evaluated at the MLE, and H^{-1} is the inverse Hessian function or the inverse of the negative of the second partial derivative of the log-likelihood.

But, the disaggregation of Δ results in the following:

$$\Delta = \sum_{ij} \Delta_{ij} = \sum H^{-1}g_{ij} = 0,$$

Here i is the subject index, j is the choice response index for each subject, Δ_{ij} are the partial Newton-Raphson steps for each run, and g_{ij} is the gradient of the log-likelihood by run.

The mean gradient step for each subject is then calculated as follows:

$$\bar{\Delta}_i = \sum_j \frac{\Delta_{ij}}{n_i},$$

where n_i is the number of runs per subject. These $\bar{\Delta}_i$ are related to the force that subject i is applying to the parameters. If groups of subjects have truly different preference structures, these forces are strong, and they can be used to cluster the subjects. The $\bar{\Delta}_i$ are the gradient forces that are saved. You can then cluster these values using the Clustering platform.
MaxDiff (maximum difference scaling) as an alternative to standard preference scales to determine the relative importance of items being rated. MaxDiff forces respondents to report their most and least preferred options. This often results in rankings that are more definitive than rankings obtained using standard preference scales.

The MaxDiff platform enables you to do the following:

- Use information about subject traits as well as product attributes.
- Integrate data from one, two, or three sources.
- Obtain subject-level scores for segmenting or clustering your data.
- Estimate subject-specific coefficients using a Bayesian approach.
- Use bias-corrected maximum likelihood estimators (Firth, 1993).

Figure 8.1 MaxDiff All Comparisons Report
MaxDiff Modeling Platform Overview

MaxDiff, also known as *best-worst scaling* (BWS), is a choice-based measurement method. Rather than asking a respondent to report one favorite choice among several alternative profiles, MaxDiff asks a respondent to report both a *best* and a *worst* choice. The MaxDiff approach can provide more information about preferences than an approach where a respondent reports only a favorite choice. For background on MaxDiff studies, see Louviere et al. (2015). For background on choice modeling, see Louviere et al. (2015), Train (2009), and Rossi et al. (2006).

MaxDiff analysis uses the framework of random utility theory. A choice is assumed to have an underlying value, or *utility*, to respondents. The MaxDiff platform estimates these utilities. The MaxDiff platform also estimates the probabilities that a choice is preferred over other choices. This is done using conditional logistic regression. See McFadden (1974).

Note: One-factor MaxDiff studies can be designed using the MaxDiff Design platform. See the MaxDiff Design chapter in the *Design of Experiments Guide*.

Segmentation and Bayesian Subject-Level Effects

Market researchers sometimes want to analyze the preference structure for each subject separately in order to see whether there are groups of subjects that behave differently. If there are sufficient data, you can specify “By groups” in the Response Data or you could introduce a Subject identifier as a subject-side model term. This approach, however, is costly if the number of subjects is large. Other segmentation techniques discussed in the literature include Bayesian and mixture methods.

If there are not sufficient data to specify “By groups,” you can segment in JMP by clustering subjects using response data and the *Save Gradients by Subject* option. The option creates a new data table containing the average Hessian-scaled gradient on each parameter for each subject. For an example, see “Example of Segmentation” on page 154 in the “Choice Models” chapter. For details about the gradient values, see “Gradients” on page 172 in the “Choice Models” chapter.

MaxDiff also provides a Hierarchical Bayesian approach to estimating subject-level effects. This approach can be useful in market segmentation.

Examples of the MaxDiff Platform

Thirty respondents participated in a MaxDiff study to compare seven flavors of potato chips. Each choice set consisted of three profiles (potato chip flavors). For each choice set, a respondent’s favorite choice was recorded as 1 and his or her least favorite choice was recorded as -1. Intermediate choices were recorded as 0.
The MaxDiff platform can analyze data that is presented in a one-table format or in a multiple-table format. In the multiple table format, information about responses, choice sets, and subjects is saved in different data tables. In the one-table format, that information is contained in a single data table.

- “One Table Format” on page 175 shows how to analyze a subset of the available data in a one-table format. Note that you could add additional profile and subject data to the single table for a more complete analysis.

- “Multiple Table Format” on page 177 shows how to bring together information from different tables into one MaxDiff analysis.

One Table Format

1. Select Help > Sample Data Library and open Potato Chip Combined.jmp.
2. Select Analyze > Consumer Research > MaxDiff.
 Note that the default Data Format is set to One Table, Stacked.
3. Click Select Data Table.
4. Select Potato Chip Combined and click OK.
5. Assign roles to columns as follows. The completed launch dialog is shown in Figure 8.2.
 - Select Response and click Response Indicator.
 - Select Respondent and click Subject ID.
 - Select Choice Set ID and click Choice Set ID.
 - Select ProfileID and click Add in the Construct Profile Effects panel.
Note that the setting for Worst choice changed to -1 when you specified the Response column as the Response Indicator variable.

6. Click Run Model.

The report indicates that Profile ID is significant, indicating that preferences for the various chip types differ significantly. The highest Marginal Utility is for Barbecue chips. The estimated probability that Barbecue chips are preferred to other chip types is 0.2895.

7. Click the red triangle next to MaxDiff Model and select All Levels Comparison Report.
Each comparison is the difference in estimated utilities between the chip type labeling the row and the chip type labeling the column. Small p-values are colored with an intense blue or red color, depending on the sign of the difference. For example, based on the blue colors across the Gyro row, you can see that Gyro chips have significantly lower utility than all other chip types. Barbecue chips have higher utility than all other chip types, though they do not differ significantly from Southern Barbecue chips.

Note: Because the All Comparisons Report p-values are not corrected for multiple comparisons, use them as a guide.

Multiple Table Format

This version of the potato chip study uses three data tables: Potato Chip Profiles.jmp, Potato Chip Responses.jmp, and Potato Chip Subjects.jmp. Although you can always arrange your data into a single table, a multi-table approach can be more convenient than a one-table
analysis when you have additional profile and subject variables that you want to include in your analysis.

Complete the Launch Window

1. Select Help > Sample Data Library and open the Potato Chip Responses.jmp sample data table.

Note: If you prefer not to follow the steps for completing the launch window, click the green triangle next to the MaxDiff for Flavor script. Then proceed to “Explore the Model” on page 180.

2. Click the green triangle next to the Open Profile and Subject Tables script.
 - The profile data table, Potato Chip Profiles.jmp, lists all the potato chip types in the study (Flavor) along with information on the country of origin (Product Of). Each choice has a Profile ID.
 - The subjects data table, Potato Chip Subjects.jmp, lists the respondents. It also gives additional information about each respondent: Citizenship and Gender.
 - The responses data table, Potato Chip Responses.jmp, lists the respondents. For each respondent, the Survey ID and Choice Set ID for each set of profiles is listed, along with the Profile ID values for each choice set. The table also contains response data in the Best Profile and Worst Profile columns.

3. From any of the three data tables, select Analyze > Consumer Research > MaxDiff.

4. From the Data Format list, select Multiple Tables, Cross-referenced.
 There are three separate outlines, one for each of the data sources.

5. Click Select Data Table under Profile Data.
 A Profile Data Table window appears, which prompts you to specify the data table for the profile data.

6. Select Potato Chip Profiles.jmp and click OK.
 The columns from this table appear in the Select Columns.

7. Select Profile ID from the Select Columns list and click Profile ID under Pick Role Variables.

8. Select Flavor and click Add under Construct Model Effects.
 Note that Product Of is another profile effect that you could add to the effects list.
Chapter 8
Consumer Research

MaxDiff
Examples of the MaxDiff Platform

Figure 8.5 Complete Profile Data Outline

9. Open the Response Data outline. Click Select Data Table.
10. Select Potato Chip Responses.jmp and click OK.
11. Assign roles to columns as follows. The completed launch dialog is shown in Figure 8.6.
 – Select Best Profile and click Best Choice.
 – Select Worst Profile and click Worst Choice.
 – Select Choice 1, Choice 2, and Choice 3 and click Profile ID Choices.
 – Select Respondent and click Subject ID.

Figure 8.6 Completed Response Data Outline
12. Open the Subject Data outline. Click **Select Data Table**.
13. Select Potato Chip Subjects.jmp and click **OK**.
14. Select Respondent and click **Subject ID**.
15. Select Citizenship and Gender and click **Add** under **Construct Model Effects**.

Figure 8.7 Completed Subject Data Outline

Explore the Model

1. Click **Run Model**.
The Effect Summary report in Figure 8.8 shows the terms in the model and gives \(p \)-values for their significance. Notice that Flavor is a profile effect, and that each of Citizenship*Flavor and Gender*Flavor is an interaction of a subject and a profile effect.

The Likelihood Ratio Tests report indicates that Flavor is significant.

Launch the MaxDiff Platform

Launch the MaxDiff platform by selecting **Analyze > Consumer Research > MaxDiff**.

Your data for the MaxDiff platform can be combined in a single data table or it can reside in two or three separate data tables. When the Choice window opens, specify whether you are using one or several data tables by selecting from the Data Format list.

One Table, Stacked

For this format, the data are combined into a single data table with a row for every profile presented to a subject and an indicator for the best and worst choices in that profile.

For an example of data in the one-table format, see “One Table Format” on page 175. For details, see “Launch Window for One Table, Stacked” on page 182.
Multiple Tables, Cross-referenced

Your data can reside in two or three separate tables: a Profile Data and Response Data table are required, and a Subject Data table is optional. The MaxDiff Launch Window contains three sections, each corresponding to a different data table. You can expand or collapse each section of the launch window, as needed.

For an example of data in the multiple-tables format, see “Multiple Table Format” on page 177. For details, see “Launch Window for Multiple Tables, Cross-referenced” on page 183.

Launch Window for One Table, Stacked

Figure 8.9 shows the one-table launch window populated using Potato Chip Combined.jmp.

Figure 8.9 Launch Window for One Table, Stacked Data Format

- **Select Data Table** Select or open the data table that contains the combined data. Select Other to open a file that is not already open.

- **Response Indicator** A column containing the preference data. Use two of the values 1, -1, and 0 for the Best and Worst choices, and the third value for profiles that are not Best or Worst. Unless you specify a different coding using the menus next to Best and Worst in the lower left portion of the window, a 1 will indicate the Best choice and a -1 the Worst choice.

- **Subject ID** An identifier for the study participant.

- **Choice Set ID** An identifier for the set of profiles presented to the subject for a given preference determination.
Grouping A column which, when used with the Choice Set ID, uniquely designates each choice set. For example, if a choice set has Choice Set ID = 1 for Survey = A, and another choice set has Choice Set ID = 1 for Survey = B, then Survey should be used as a Grouping column.

Construct Profile Effects Add effects constructed from the attributes for the profiles.

For information about the Construct Profile Effects panel, see the Construct Model Effects section in the Model Specification chapter of the Fitting Linear Models book.

Construct Subject Effects (Optional) Add effects constructed from subject-related factors.

For information about the Construct Subject Effects panel, see the Construct Model Effects section in the Model Specification chapter of the Fitting Linear Models book.

Firth Bias-adjusted Estimates Computes bias-corrected MLEs that produce better estimates and tests than MLEs without bias correction. These estimates also improve separation problems that tend to occur in logistic-type models. Refer to Heinze and Schemper (2002) for a discussion of the separation problem in logistic regression.

Hierarchical Bayes Uses a Bayesian approach to estimate subject-specific parameters. See “Bayesian Parameter Estimates” on page 191.

Number of Bayesian Iterations (Applicable only if Hierarchical Bayes is selected.) The total number of iterations of the adaptive Bayes algorithm used to estimate subject effects. This number includes a burn-in period of iterations that are discarded. The number of burn-in iterations is equal to half of the Number of Bayesian Iterations specified on the launch window.

Launch Window for Multiple Tables, Cross-referenced

Figure 8.10 shows the multiple-table launch window, with the Profile Data outline populated using Potato Chip Profile.jmp.
In the case of Multiple Tables, Cross-referenced, the launch window has three sections:

- **“Profile Data”** on page 184
- **“Response Data”** on page 185
- **“Subject Data”** on page 186

Profile Data

The profile data table describes the attributes associated with each choice. Each choice can comprise many different attributes, and each attribute is listed as a column in the data table. There is a row for each possible choice, and each possible choice contains a unique ID.

Select Data Table Select or open the data table that contains the profile data. Select Other to open a file that is not already open.

Profile ID Identifier for each row of choice combinations. If the Profile ID column does not uniquely identify each row in the profile data table, you need to add Grouping columns. Add Grouping columns until the combination of Grouping and Profile ID columns uniquely identifies the row, or profile.

Grouping A column which, when used with the Choice Set ID column, uniquely designates each choice set. For example, if Profile ID = 1 for Survey = A, and a different Profile ID = 1 for Survey = B, then Survey would be used as a Grouping column.

Construct Profile Effects Add effects constructed from the attributes in the profiles.

For information about the Construct Profile Effects panel, see the Construct Model Effects section in the Model Specification chapter of the *Fitting Linear Models* book.
Firth Bias-adjusted Estimates Computes bias-corrected MLEs that produce better estimates and tests than MLEs without bias correction. These estimates also improve separation problems that tend to occur in logistic-type models. Refer to Heinze and Schemper (2002) for a discussion of the separation problem in logistic regression.

Hierarchical Bayes Uses a Bayesian approach to estimate subject-specific parameters. See “Bayesian Parameter Estimates” on page 191.

Number of Bayesian Iterations (Applicable only if Hierarchical Bayes is selected.) The total number of iterations of the adaptive Bayes algorithm used to estimate subject effects. This number includes a burn-in period of iterations that are discarded. The number of burn-in iterations is equal to half of the Number of Bayesian Iterations specified on the launch window.

Response Data

Figure 8.11 shows the Response Data outline populated using Potato Chip Responses.jmp.

Figure 8.11 Response Data Outline

The response data table contains the study results. It gives the choice set IDs for each trial as well as the profiles selected as best and worst by the subject. The Response data are linked to the Profile data through the choice set columns and the choice response column. Grouping variables can be used to align choice indices when more than one group is contained within the data.

Select Data Table Select or open the data table that contains the profile data. Select Other to open a file that is not already open.

Best Choice The Response table column containing the Profile ID of the profile that the subject designated as Best.
Worst Choice The Response table column containing the Profile ID of the profile that the subject designated as Worst.

Profile ID Choices The columns that contain the Profile IDs of the set of possible choices for each choice set.

Grouping A column which, when used with the Profile ID Chosen column, uniquely designates each choice set.

Subject ID A unique identifier for the study participant.

Freq A column containing frequencies. If n is the value of the Freq variable for a given row, then that row is used in computations n times. If it is less than 1 or missing, then JMP does not use it to calculate any analyses.

Weight A column containing a weight for each observation in the data table. The weight is included in analyses only when its value is greater than zero.

By A column whose levels define separate analyses. For each level of the specified column, the corresponding rows are analyzed as a separate analysis on a separate table. The results are presented in separate reports. If more than one By variable is assigned, a separate analysis is produced for each possible combination of the levels of the By variables.

Subject Data

Figure 8.12 shows the Subject Data outline populated using Potato Chip Subjects.jmp.

Figure 8.12 Subject Data Outline

Note: A subject data table is optional, depending on whether subject effects are to be modeled.

The subject data table contains the Subject ID and one or more columns of attributes or characteristics for each subject. The subject data table contains the same number of rows as
subjects and has an identifier column that matches a similar column in the Response data table.

Note: You can include subject data in the response data table, but you need to specify subject effects in the Subject Data outline.

Select Data Table Select or open the data table that contains the subject data. Select Other to open a file that is not already open.

Subject ID Unique identifier for the subject.

Construct Model Effects Add effects constructed from columns in the subject data table.

For information about the Construct Model Effects panel, see the Construct Model Effects section in the Model Specification chapter of the *Fitting Linear Models* book.

MaxDiff Model Report

The MaxDiff Model window shows some of the following reports by default, depending on your selections in the launch window:

- “Effect Summary” on page 187
- “MaxDiff Results” on page 189
- “Parameter Estimates” on page 189
- “Bayesian Parameter Estimates” on page 191
- “Likelihood Ratio Tests” on page 192

For descriptions of the platform options, see “MaxDiff Platform Options” on page 192.

Effect Summary

The Effect Summary report appears if your model contains more than one effect. It lists the effects estimated by the model and gives a plot of the LogWorth (or FDR LogWorth) values for these effects. The report also provides controls that enable you to add or remove effects from the model. The model fit report updates automatically based on the changes made in the Effects Summary report. For details, see the Effect Summary Report section in the Standard Least Squares Report and Options chapter in the *Fitting Linear Models* book.

The Effect Summary report does not appear when Bayesian Subject Effects is checked in the launch window. This is because likelihood ratio tests are not conducted in this case.

Figure 8.13 shows the Effect Summary report obtained by running the script MaxDiff for Flavor in Potato Chip Responses.jmp.
Effect Summary Table Columns

The Effect Summary table contains the following columns:

Source Lists the model effects, sorted by ascending \(p \)-values.

LogWorth Shows the LogWorth for each model effect, defined as \(-\log_{10}(p\text{-value})\). This transformation adjusts \(p \)-values to provide an appropriate scale for graphing. A value that exceeds 2 is significant at the 0.01 level (because \(-\log_{10}(0.01) = 2\)).

FDR LogWorth Shows the False Discovery Rate LogWorth for each model effect, defined as \(-\log_{10}(\text{FDR PValue})\). This is the best statistic for plotting and assessing significance. Select the FDR check box to replace the LogWorth column with the FDR LogWorth column.

Bar Graph Shows a bar graph of the LogWorth (or FDR LogWorth) values. The graph has dashed vertical lines at integer values and a blue reference line at 2.

PValue Shows the \(p \)-value for each model effect. This is the \(p \)-value corresponding to the significance test displayed in the Likelihood Ratio Tests report.

FDR PValue Shows the False Discovery Rate \(p \)-value for each model effect calculated using the Benjamini-Hochberg technique. This technique adjusts the \(p \)-values to control the false discovery rate for multiple tests. Select the FDR check box to replace the PValue column with the FDR PValue column.

For details about the FDR correction, see Benjamini and Hochberg, 1995. For details about the false discovery rate, see the Response Screening chapter in the Predictive and Specialized Modeling book or Westfall et al. (2011).

Effect Summary Table Options

The options below the summary table enable you to add and remove effects:

Remove Removes the selected effects from the model. To remove one or more effects, select the rows corresponding to the effects and click the Remove button.

Add Profile Effect Opens a panel that contains a list of all columns in the data table for the OneTable, Stacked data format, and for the columns in the Profile Data table for the Multiple Tables, Cross-Referenced data format. Select columns that you want to add to the model, and then click Add below the column selection list to add the columns to the model. Click Close to close the panel.
Add Subject Effect Opens a panel that contains a list of all columns in the data table for the OneTable, Stacked data format, and for the columns in the Subject Data table for the Multiple Tables, Cross-Referenced data format. Select columns that you want to add to the model, and then click Add below the column selection list to add the columns to the model. Click Close to close the panel.

MaxDiff Results

Figure 8.14 shows the MaxDiff Results report obtained by running the script MaxDiff for Flavor in Potato Chip Responses.jmp.

Figure 8.14 MaxDiff Results Report

For each Profile effect specified in the launch window, the following are displayed:

Marginal Utility An indicator of the perceived value of the corresponding level of the effect. Larger values suggest that the feature is of greater value.

Marginal Probability The estimated probability that a subject expresses a preference for the corresponding level of the effect over all other levels. For each effect, the marginal probabilities sum to one.

Bar Graph Shows a bar graph of the marginal probabilities.

Effect Column Gives the name of the effect and a list of its levels. The levels define the features to which the Marginal Utility and Marginal Probability estimates apply.

Parameter Estimates

This report gives details about parameter estimates, fit criteria, and the fitting algorithm.

Figure 8.15 shows the Parameter Estimates report obtained by running the script MaxDiff for Flavor in Potato Chip Responses.jmp.
Figure 8.15 Parameter Estimates Report

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavor[All Dressed]</td>
<td>-0.15616234</td>
<td>0.227718561</td>
</tr>
<tr>
<td>Flavor[Barbecue]</td>
<td>0.222100261</td>
<td>0.2978972284</td>
</tr>
<tr>
<td>Flavor[Biscuits and Gravy]</td>
<td>0.165967998</td>
<td>0.2249770601</td>
</tr>
<tr>
<td>Flavor[Dill Pickle]</td>
<td>-0.17366528</td>
<td>0.215566801</td>
</tr>
<tr>
<td>Flavor[Gyro]</td>
<td>-1.12925099</td>
<td>0.282701652</td>
</tr>
<tr>
<td>Flavor[Ketchup]</td>
<td>-0.473089361</td>
<td>0.2319400323</td>
</tr>
<tr>
<td>Flavor[Reuben]</td>
<td>-0.501273081</td>
<td>0.2294079836</td>
</tr>
<tr>
<td>Flavor[Sour Cream and Onion]</td>
<td>0.211155573</td>
<td>0.2450961368</td>
</tr>
<tr>
<td>Flavor[Southern Barbecue]</td>
<td>0.701493458</td>
<td>0.269532771</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[All Dressed]</td>
<td>-0.04368106</td>
<td>0.2239442590</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Barbecue]</td>
<td>-0.161801967</td>
<td>0.2978036763</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Biscuits and Gravy]</td>
<td>0.057341722</td>
<td>0.2233320212</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Dill Pickle]</td>
<td>-0.098251991</td>
<td>0.2188890544</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Gyro]</td>
<td>0.432257276</td>
<td>0.2907051874</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Ketchup]</td>
<td>-0.380356261</td>
<td>0.2349720398</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Reuben]</td>
<td>-0.346779397</td>
<td>0.2342654217</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Sour Cream and Onion]</td>
<td>0.568782501</td>
<td>0.2355499883</td>
</tr>
<tr>
<td>Citizenship[Canadian]*Flavor[Southern Barbecue]</td>
<td>-0.007125322</td>
<td>0.2720513772</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[All Dressed]</td>
<td>-0.269555351</td>
<td>0.2101617008</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Barbecue]</td>
<td>0.308814102</td>
<td>0.2961568976</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Biscuits and Gravy]</td>
<td>0.001184621</td>
<td>0.2245284106</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Dill Pickle]</td>
<td>-0.116401793</td>
<td>0.2115935199</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Gyro]</td>
<td>0.045388275</td>
<td>0.2950758222</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Ketchup]</td>
<td>-0.073175522</td>
<td>0.2135462565</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Reuben]</td>
<td>0.207800546</td>
<td>0.2272996637</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Sour Cream and Onion]</td>
<td>0.273334287</td>
<td>0.2337547848</td>
</tr>
<tr>
<td>Gender[Female]*Flavor[Southern Barbecue]</td>
<td>0.075707295</td>
<td>0.2627395035</td>
</tr>
</tbody>
</table>

Term Lists the terms in the model.

Estimate An estimate of the parameter associated with the corresponding term. In discrete choice experiments, parameter estimates are sometimes referred to as *part-worths*. Each part-worth is the coefficient of utility associated with the given term. By default, these estimates are based on the Firth bias-corrected maximum likelihood estimators and therefore are considered to be more accurate than MLEs without bias correction.

Std Error An estimate of the standard deviation of the parameter estimate.

Comparison Criteria

The following fit statistics are shown as part of the report and can be used to compare models: AICc (corrected Akaike’s Information Criterion), BIC (Bayesian Information Criterion), \(-2\)LogLikelihood, and \(-2\)Firth LogLikelihood. See the Statistical Details appendix in the *Fitting Linear Models* book for details on the first three of these measures.

The \(-2\)Firth LogLikelihood value is included in the report only when the Firth Bias-adjusted Estimates check box is checked in the launch window. This option is checked by default.

For each of these statistics, a smaller value indicates a better fit.
Bayesian Parameter Estimates

(Appears only if Hierarchical Bayes is selected on the launch window.) The Bayesian Parameter Estimates report gives results for model effects. The estimates are based on a Hierarchical Bayes fit that integrates the subject-level covariates into the likelihood function and estimates their effects on the parameters directly. The subject-level covariates are estimated using a version of the algorithm described in Train (2001), which incorporates Adaptive Bayes and Metropolis-Hastings approaches. Posterior means and variances are calculated for each model effect. The algorithm also provides subject-specific estimates of the model effect parameters. See “Save Subject Estimates” on page 194.

During the estimation process, each individual is assigned his or her own vector of parameter estimates, essentially treating the estimates as random effects and covariates. The vector of coefficients for an individual is assumed to come from a multivariate normal distribution with arbitrary mean and covariance matrix. The likelihood function for the utility parameters for a given subject is based on a multinominal logit model for each subject’s preference within a choice set, given the attributes in the choice set. The prior distribution for a given subject’s vector of coefficients is normal with mean equal to zero and a diagonal covariance matrix with the same variance for each subject. The covariance matrix is assumed to come from an inverse Wishart distribution with a scale matrix that is diagonal with equal diagonal entries.

For each subject, a number of burn-in iterations at the beginning of the chain is discarded. By default, this number is equal to half of the Number of Bayesian Iterations specified on the launch window.

Figure 8.16 Bayesian Parameter Estimates Report

<table>
<thead>
<tr>
<th>Term</th>
<th>Posterior Mean</th>
<th>Posterior Std Dev</th>
<th>Subject Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Off(Canada)</td>
<td>-0.341779602</td>
<td>0.1655807233</td>
<td>0.2006830509</td>
</tr>
<tr>
<td>Citizenship(Canadian) * Product Off(Canada)</td>
<td>-0.021887377</td>
<td>0.1665704836</td>
<td>0.1752016641</td>
</tr>
<tr>
<td>Gender[Female] * Product Off(Canada)</td>
<td>-0.312611454</td>
<td>0.1699325105</td>
<td>0.1747635982</td>
</tr>
</tbody>
</table>

Term The model term.

Posterior Mean The parameter estimate for the term’s coefficient. For each iteration after the burn-in period, the mean of the subject-specific coefficient estimates is computed. The Posterior Mean is the average of these means.

Tip: Select the red-triangle option Save Bayes Chain to see the individual estimates for each iteration.

Posterior Std Dev The standard deviation of the means of the subject-specific estimates over the iterations after burn-in.
Subject Std Dev The standard deviation of the subject-specific estimates around the posterior mean.

Tip: Select the red-triangle option Save Subject Estimates to see the individual estimates.

Total Iterations The total number of iterations performed, including the burn-in period.

Burn-In Iterations The number of burn-in iterations, which are discarded. This number is equal to half of the Number of Bayesian Iterations specified on the launch window.

Number of Respondents The number of subjects

Avg Log Likelihood After Burn-In The average of the log-likelihood function, computed on values obtained after the burn-in period.

Likelihood Ratio Tests

Figure 8.17 shows the Likelihood Ratio Tests report obtained by running the script **MaxDiff for Flavor** in **Potato Chip Responses.jmp**.

Figure 8.17 Likelihood Ratio Tests

<table>
<thead>
<tr>
<th>Source</th>
<th>L-R ChiSquare</th>
<th>DF</th>
<th>Prob>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavor</td>
<td>66.757</td>
<td>9</td>
<td><.0001*</td>
</tr>
<tr>
<td>Citizenship*Flavor</td>
<td>14.509</td>
<td>9</td>
<td>0.1023</td>
</tr>
<tr>
<td>Gender*Flavor</td>
<td>9.480</td>
<td>9</td>
<td>0.3442</td>
</tr>
</tbody>
</table>

Source Lists the effects in the model.

L-R ChiSquare The value of the likelihood ratio ChiSquare statistic for a test of the corresponding effect.

DF The degrees of freedom for the ChiSquare test.

Prob>ChiSq The p-value for the ChiSquare test.

Bar Graph Shows a bar graph of the L-R ChiSquare values.

MaxDiff Platform Options

Show MLE Parameter Estimates (Available only if Hierarchical Bayes is selected on the launch window.) Shows non-Firth maximum likelihood estimates and standard errors for the coefficients of model terms. These estimates are used as starting values for the Hierarchical Bayes algorithm.

Joint Factor Tests (Not available if Hierarchical Bayes is selected on the launch window.) Tests each factor in the model by constructing a likelihood ratio test for all the effects.
involving that factor. For more information about Joint Factor Tests, see the Standard Least Squares Report and Options chapter in the *Fitting Linear Models* book.

Confidence Intervals If Hierarchical Bayes was not selected, shows a confidence interval for each parameter in the Parameter Estimates report.

If you selected Hierarchical Bayes, the confidence intervals appear in the Bayesian Parameter Estimates report. The intervals are constructed assuming a normal distribution and are based on the Posterior Mean and Posterior Std Dev.

Correlation of Estimates If Hierarchical Bayes was not selected, shows the correlations between the maximum likelihood parameter estimates.

If you selected Hierarchical Bayes, shows the correlation matrix for the posterior means of the parameter estimates. The correlations are calculated from the iterations after burn-in. The posterior means from each iteration after burn-in are treated as if they are columns in a data table. The Correlation of Estimates table is obtained by calculating the correlation matrix for these columns.

Comparisons Performs comparisons between specific alternative choice profiles. Enables you to select factor values and the values that you want to compare. You can compare specific configurations, including comparing all settings on the left or right by selecting the **Any** check boxes. Using **Any** does not compare all combinations across features, but rather all combinations of comparisons, one feature at a time, using the left settings as the settings for the other factors. See “Comparisons Report” on page 194.

All Levels Comparison Report Shows the All Levels Comparison Report, which contains a table with information on all pairwise comparisons of profiles. If you are modeling subject effects, you must specify a combination of subject effects and the table is specific to that combination of subject effects. Each cell of the table shows the difference in utilities for the row level and column level, the standard error of the difference, and a Wald p-value for a test of no difference.

Caution: The p-values are not corrected for multiple comparisons. Use these results as a guide.

The Wald p-values are colored. A saturated blue (respectively, red) color indicates that the Difference (Row - Column) is negative (respectively positive). The intensity of the red and blue coloring indicates the degree of significance, with a highly saturated red or blue meaning that the difference is highly significant.

Save Utility Formula Creates a new data table that contains a formula column for utility. The new data table contains a row for each subject and profile combination, and columns for the profiles and the subject effects.

Save Gradients by Subject Constructs a new table that has a row for each subject containing the average (Hessian-scaled-gradient) steps for the likelihood function on each parameter. This corresponds to using a Lagrangian multiplier test for separating that subject from the
remaining subjects. These values can later be clustered, using the built-in-script, to indicate unique market segments represented in the data. For more details, see “Example of Segmentation” on page 154 in the “Choice Models” chapter.

Save Subject Estimates (Available only if Hierarchical Bayes is selected.) Creates a table where each row contains the subject-specific parameter estimates for each effect. The distribution of subject-specific parameter effects for each effect is centered at the estimate for the term given in the Bayesian Parameter Estimates report. The Subject Acceptance Rate gives the rate of acceptance for draws of new parameter estimates during the Metropolis-Hastings step. Generally, an acceptance rate of 0.20 is considered to be good. See “Bayesian Parameter Estimates” on page 191.

Save Bayes Chain (Available only if Hierarchical Bayes is selected.) Creates a table that gives information on the chain of iterations used in computing subject-specific Bayesian estimates. See “Save Bayes Chain” on page 195.

Model Dialog Shows the MaxDiff launch window that resulted in the current analysis, which can be used to modify and re-fit the model. You can specify new data sets, new IDs, and new model effects.

See the JMP Reports chapter in the *Using JMP* book for more information about the following options:

Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.

Comparisons Report

The Comparisons report is shown when you specify pairwise comparisons. It contains the following columns:

Factor Shows the levels of the subject factors that you specified.

Compared 1 Shows the factor and levels for the profile variables in the first component of the comparison.

Compared 2 Shows the factor and levels for the profile variables in the second component of the comparison.

Utility 1 Shows the estimated utility of the first component for the subjects specified in the Factor column.
Utility 2 Shows the estimated utility of the second component for the subjects specified in the Factor column.

Probability 1 Shows the predicted probability that the first component is preferred to the second for the subjects specified in the Factor column.

Probability 2 Shows the predicted probability that the second component is preferred to the first for the subjects specified in the Factor column.

Odds Ratio 1 Probability 1 divided by Probability 2.

Odds Ratio 2 Probability 2 divided by Probability 1.

Comparison Difference Utility 1 minus Utility 2.

Standard Deviation The sample standard error of the estimated Comparison Difference.

Save Bayes Chain

You can use the Bayes Chain data table to determine if your estimates have stabilized. The table that is created has a number of rows equal to the Number of Bayesian Iterations (specified on the launch window) plus one. The first row, Iteration 1, gives the starting values. The following rows show the results of the iterations, in order. The columns are arranged as follows:

Iteration Gives the iteration number, where the first row shows starting values.

Log Likelihood The log-likelihood of the model for that iteration. You can plot the Log Likelihood against Iteration to view behavior over the burn-in and tuning periods.

Adaptive Sigma for <model effect> Gives the estimate of the square root of the diagonal entries of the inverse Wishart distribution scale matrix for the corresponding effect.

Acceptance for <model effect> Gives the sampling acceptance rate for the corresponding effect.

Mean of <model effect> Gives the estimated mean for the corresponding effect.

Variance of <model effect> Gives the estimated variance for the corresponding effect.
Many features in this platform are available only in JMP Pro and noted with this icon.

Use uplift modeling to optimize marketing decisions, to define personalized medicine protocols, or, more generally, to identify characteristics of individuals who are likely to respond to an intervention. Also known as incremental modeling, true lift modeling, or net modeling, uplift modeling differs from traditional modeling techniques in that it finds the interactions between a treatment and other variables. It directs focus to individuals who are likely to react positively to an action or treatment.

Figure 9.1 Example of Uplift for a Hair Product Marketing Campaign
Use the Uplift platform to model the incremental impact of an action, or treatment, on individuals. An uplift model helps identify groups of individuals who are most likely to respond to the action. Identification of these groups leads to efficient and targeted decisions that optimize resource allocation and impact on the individual. (See Radcliffe and Surry, 2011.)

The Uplift platform fits partition models. While traditional partition models find splits to optimize a prediction, uplift models find splits to maximize a treatment difference.

The uplift partition model accounts for the fact that some individuals receive the treatment, while others do not. It does this by fitting a linear model to each possible (binary) split. A continuous response is modeled as a linear function of the split, the treatment, and the interaction of the split and treatment. A categorical response is expressed as a logistic function of the split, the treatment, and the interaction of the split and treatment. In both cases, the interaction term measures the difference in uplift between the groups of individuals in the two splits.

The criterion used by the Uplift platform in defining splits is the significance of the test for interaction over all possible splits. However, predictor selection based solely on p-values introduces bias favoring predictors with many levels. For this reason, JMP adjusts p-values to account for the number of levels. (See the paper “Monte Carlo Calibration of Distributions of Partition Statistics” on the JMP website.) The splits in the Uplift platform are determined by maximizing the adjusted p-values for t tests of the interaction effects. The logworth for each adjusted p-value, namely $-\log_{10}(\text{adj } p\text{-value})$, is reported.
The Hair Care Product.jmp sample data table results from a marketing campaign designed to increase purchases of a hair coloring product targeting both genders. For purposes of designing the study and tracking purchases, 126,184 “club card” members of a major beauty supply chain were identified. Approximately half of these members were randomly selected and sent a promotional offer for the product. Purchases of the product over a subsequent three-month period by all club card members were tracked.

The data table shows a Promotion column, indicating whether the member received promotional material. The column Purchase indicates whether the member purchased the product over the test period. For each member, the following information was assembled: Gender, Age, Hair Color (natural), U.S. Region, and Residence (whether the member is located in an urban area). Also shown is a Validation column consisting of about 33% of the subjects.

For a categorical response, the Uplift platform interprets the first level in its value ordering as the response of interest. This is why the column Purchase has the Value Ordering column property. This property ensures that “Yes” responses are first in the ordering.

1. Select Help > Sample Data Library and open Hair Care Product.jmp.
2. Select Analyze > Consumer Research > Uplift.
3. From the Select Columns list:
 - Select Promotion and click Treatment.
 - Select Purchase and click Y, Response.
 - Select Gender, Age, Hair Color, U.S. Region, and Residence, and click X, Factor.
 - Select Validation and click Validation.
4. Click OK.
5. Below the Graph in the report that appears, click Go.

Based on the validation set, the optimal Number of Splits is determined to be three. The Graph is shown in Figure 9.2. Note that the vertical scale has been modified in order to show the detail.
The graph indicates that uplift in purchases occurs for females with black, red, or brown hair and for younger females (Age < 42) with blond hair. For older blond-haired women (Age ≥ 42) and males, the promotion has a negative effect.

Launch the Uplift Platform

To launch the Uplift platform, select Analyze > Consumer Research > Uplift. Figure 9.3 shows a launch window for the Hair Care Product.jmp sample data table. The columns that you enter for Y, Response, and X, Factor can be continuous or categorical. In typical usage, the Treatment column is categorical, and often has only two levels. If your Treatment column contains more than two levels, the first level is treated as Treatment1 and the remaining levels are combined in Treatment2.
You can specify your own Validation column, or designate a random portion of your data to be selected as a Validation Portion. If you click the Validation button with no columns selected in the Select Columns list, you can add a validation column to your data table. For more information about the Make Validation Column utility, see the Modeling Utilities chapter in the *Predictive and Specialized Modeling* book.

The following options are also available:

Informative Missing If selected, enables missing value categorization for categorical predictors and informative treatment of missing values for continuous predictors.

Ordinal Restricts Order If selected, restricts consideration of splits to those that preserve the ordering.

The Uplift Model Report

The report opens by showing the Graph and the initial node of the Tree, as well as controls for splitting.

Uplift Model Graph

The graph represents the response on the vertical axis. The horizontal axis corresponds to observations, arranged by nodes. For each node, a black horizontal line shows the mean response. Within each split, there is a subsplit for treatment shown by a red or blue line. These lines indicate the mean responses for each of the two treatment groups within the split. The value ordering of the treatment column determines the placement order of these lines. As nodes are split, the graph updates to show the splits beneath the horizontal axis. Vertical lines divide the splits.
Beneath the graph are the control buttons: **Split**, **Prune**, and **Go**. The Go button only appears if there is a validation set. Also shown is the name of the Treatment column and its two levels, called Treatment1 and Treatment2. If more than two levels are specified for the Treatment column, all but the first level are treated as a single level and combined into Treatment2.

To the right of the Treatment column information is a report showing summary values relating to prediction. (Keep in mind that prediction is not the objective in uplift modeling.) The report updates as splitting occurs. If a validation set is used, values are shown for both the training and the validation sets.

RSquare The RSquare for the regression model associated with the tree. Note that the regression model includes interactions with the treatment column. An RSquare closer to 1 indicates a better fit to the data than does an RSquare closer to 0.

Note: A low RSquare value suggests that there may be variables not in the model that account for the unexplained variation. However, if your data are subject to a large amount of inherent variation, even a useful uplift model may have a low RSquare value.

RMSE The root mean square error (RMSE) for the regression model associated with the tree. RMSE is only given for continuous responses. For more details, see the *Fitting Linear Models* book.

N The number of observations.

Number of Splits The number of times splitting has occurred.

AICc The Corrected Akaike Information Criterion (AICc), computed using the associated regression model. AICc is only given for continuous responses. For more details, see the Statistical Details appendix in the *Fitting Linear Models* book.

Uplift Decision Tree

The decision tree shows the splits used to model uplift. See Figure 9.4 for an example using the Hair Care Product.jmp sample data table. Each node contains the following information:

Treatment The name of the treatment column is shown, with its two levels.

Rate Only appears for two-level categorical responses. For each treatment level, the proportion of subjects in this node who responded.

Mean Only appears for continuous responses. For each treatment level, the mean response for subjects in this node.

Count The number of subjects in this node in the specified treatment level.

t Ratio The t ratio for the test for a difference in response across the levels of Treatment for subjects in this node. If the response is categorical, it is treated as continuous (values 0 and 1) for this test.
Trt Diff The difference in response means across the levels of Treatment. This is the uplift, assuming that:

- The first level in the treatment column’s value ordering represents the treatment.
- The response is defined so that larger values reflect greater impact.

LogWorth The value of the logworth for the subsequent split based on the given node.

Figure 9.4 Nodes for First Split

<table>
<thead>
<tr>
<th>Term</th>
<th>LogWorth</th>
<th>F Ratio</th>
<th>Gamma</th>
<th>Cut Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender(Female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promotion</td>
<td>Rate</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.0077</td>
<td>28687</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.0218</td>
<td>28763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t Ratio</td>
<td>14.014</td>
<td>0.01406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trt Diff</td>
<td>-0.277</td>
<td>-0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender(Male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promotion</td>
<td>Rate</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.0073</td>
<td>13483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.0070</td>
<td>13361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t Ratio</td>
<td>14.014</td>
<td>0.01406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trt Diff</td>
<td>-0.277</td>
<td>-0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Rows</td>
<td>Promotion</td>
<td>Rate</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.0076</td>
<td>42170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.0170</td>
<td>42364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t Ratio</td>
<td>12.491</td>
<td>0.00945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trt Diff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogWorth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Candidates Report

Each node also contains a Candidates report. This report gives the following information:

Term The model term.

LogWorth The maximum logworth over all possible splits for the given term. The logworth corresponding to a split is \(-\log_{10}\) of the adjusted \(p\)-value.

F Ratio When the response is continuous, this is the F Ratio associated with the interaction term in a linear regression model. The regression model specifies the response as a linear function of the treatment, the binary split, and their interaction. When the response is categorical, this is the ChiSquare value for the interaction term in a nominal logistic model.

Gamma When the response is continuous, this is the coefficient of the interaction term in the linear regression model used in computing the \(F\) ratio. When the response is categorical, this is an estimate of the interaction constructed from Firth-adjusted log-odds ratios.

Cut Point If the term is continuous, this is the point that defines the split. If the term is categorical, this describes the first (left) node.
Uplift Report Options

With the exception of the options described below, all of the red triangle options for the Uplift report are described in the documentation for the Partition platform. For details about these options, see the Partition Models chapter in the *Predictive and Specialized Modeling* book.

Minimum Size Split

This option presents a window where you enter a number or a fractional portion of the total sample size to define the minimum size split allowed. To specify a number, enter a value greater than or equal to 1. To specify a fraction of the sample size, enter a value less than 1. The default value for the Uplift platform is set to 25 or the floor of the number of rows divided by 2,000, whichever value is greater.

Column Uplift Contributions

This table and plot address a column’s contribution to the uplift tree structure. A column’s contribution is computed as the sum of the F Ratio values associated with its splits. Recall that these values measure the significance of the treatment-by-split interaction term in the linear regression model.

Uplift Graph

Consider the observations in the training set. Define uplift for an observation as the difference between the predicted probabilities or means across the levels of Treatment for the observation’s terminal node. These uplift values are sorted in descending order. On its vertical axis, the Uplift Graph shows the uplift values. On its horizontal axis, the graph shows the proportion of observations with each uplift value.

See Figure 9.5 for an example of an Uplift Graph for the Hair Care Product.jmp sample data table after three splits. Note that, for two groups of subjects (males and non-blond women in the Age ≥ 42 group), the promotion has a negative effect.

The horizontal lines shown on the Uplift Graph delineate the graph for the validation set. Specifically, the decision tree is evaluated for the validation set and the Uplift Graph is constructed from the estimated uplifts.
Save Columns

Save Difference Saves the estimated difference in mean responses across levels of Treatment for the observation’s node. This is the estimated uplift.

Save Difference Formula Saves the formula for the Difference, or uplift.

Publish Difference Formula Creates the difference formula and saves it as a formula column script in the Formula Depot platform. If a Formula Depot report is not open, this option creates a Formula Depot report. See the Formula Depot chapter in the *Predictive and Specialized Modeling* book.
The Item Analysis platform enables you to fit item response theory models. The Item Response Theory (IRT) method is used for the analysis and scoring of measurement instruments such as tests and questionnaires. Item response theory uses a system of models to relate a trait or ability to an individual’s probability of endorsing or correctly responding to an item. Frequently, the trait or ability of interest is not directly measurable and is therefore called latent. IRT can be used to study standardized tests, cognitive development, and consumer preferences. IRT is an alternative method to classical test theory (CTT) where the focus is on the total observed score rather than the item scores.

The Item Analysis platform implements the IRT method with the following outcomes:

- Measurement instruments are scored at the item level, providing insight into the contributions of each item on the latent response.
- Scores for both the responders and the items are produced on the same scale.
- Respondent and item scores are shown on a single plot.
- Item characteristic curves are shown. These curves can be used to explore the relationship between items and respondent’s underlying trait or ability.

For more information about item response theory, see de Ayala (2009).

Figure 10.1 Item Analysis Characteristic Plot
Example of Item Analysis

This example uses the MathScienceTest.jmp sample data table, which is a subset of the data from the Third International Mathematics and Science Study (TIMSS) conducted in 1996. The data table contains scores (1 = correct or 0 = incorrect) for 1263 subjects on 14 questions. You examine the first four questions to understand the relationship between questions and respondent’s mathematical ability. The questions on the test are the items that are used to measure the latent mathematical ability. Fit a 2PL model to this data.

2. Select Analyze > Consumer Research > Item Analysis.
3. Select Q1 through Q4, click Y, Test Items and click OK.
Figure 10.2 Item Response Report

From the dual plot you note that Q4 is the easiest of the four questions to answer as it has the lowest difficulty score at -1.78. Q3 is the hardest with a difficulty score of 0.46. Most of the respondents fall in the middle to lower end of the ability scale as shown by the data points in the center part of the graph. In the histogram, you can see that roughly 40% of the respondents fall slightly above zero on the ability scale.

Note: Individuals with all incorrect or all correct answers are not included in the analysis. For more information, see “Fitting the IRT Model” on page 219.
4. Click on the gray Characteristic Curves report disclosure icon to open.
5. Click the Item Analysis red triangle menu, and select **Number of Plots Across**.
6. Enter 2 and click **OK**.
7. Click on the gray Information Plot report disclosure icon to open.

Figure 10.3 Item Response Example

Q1 has a flat characteristic curve and a flat information curve. This suggests that Q1 does not provide much information to discriminate respondents’ mathematical ability. The characteristic curve for Q2 is steep, which indicates that Q2 is useful for discriminating respondent ability. The vertical line in each plot is at the inflection point for the characteristic curve. This vertical line is the ability level at which the respondent has a 50% probability of answering the specified question correctly.

The information plot indicates that together the four questions analyzed provide the most information about ability levels between about -1 and 0. Including more questions of higher difficulty in the model could broaden the information curve.
Launch the Item Analysis Platform

Launch the Item Analysis platform by selecting Analyze > Consumer Research > Item Analysis.

Figure 10.4 Item Analysis Launch Window

Y, Test Items Assigns two or more columns to be analyzed. The columns must be numeric, continuous, and contain only 0s and 1s.

Tip: Use Cols > Recode if you need to recode your data to 0s and 1s. See the Enter and Edit Data chapter in the Discovering JMP book.

Freq Assigns a frequency variable to this role. This is useful if your data are summarized.

By Produces a separate report for each level of the By variable. If more than one By variable is assigned, a separate report is produced for each possible combination of the levels of the By variable.

Model Specifies the desired model from the following options:

- Logistic 2PL The 2-parameter logistic model.
- Logistic 3PL The 3-parameter logistic model.
- Logistic 1PL The 1-parameter logistic model with a Rasch parameterization.

Logistic 3PL Model Details

If you select Logistic 3PL for Model, you are prompted to enter a penalty for the guessing parameters after you click OK. For a 3PL model, the default value of the penalty is zero. However, you can enter a non-zero penalty for the c parameters (the guessing for each item). This penalty is similar to the type of penalty parameter that you would use in ridge
regression. The penalty is on the variance of the estimated guessing parameters. The use of the penalty has the following benefits:

- Stabilizes the estimation of model parameters.
- Speeds up computations.
- Reduces the variability of the guessing parameter across items at the expense of some bias.

Large values of the penalty force the guessing parameters to zero while smaller values help reduce the variability of the guessing parameter across items. A value of zero can be used for no penalty.

The Item Analysis Report

The initial Item Analysis report shows the Dual Plot and the Parameter Estimates reports. Item characteristic curves and the overall information plot are in reports that are initially closed.

Characteristic Curves

The Characteristic Curves report contains an item characteristic curve (ICC) for each item that you specified in the launch window.

The item characteristic curve plots the probability of answering an item correctly versus ability. Ability is measured on a standardized scale, so a respondent with ability equal to 0 is a respondent of average ability. Data points for the observed probability of correct answers for fixed ability levels are plotted. Comparing the fitted characteristic curve to the data points provides a visual measure of goodness of fit of the model for each individual item. In addition, the characteristic plots have a background information curve and a vertical line at the characteristic curve inflection point. The background information curve is a plot of the slope of the item characteristic curve, which is maximized at the inflection point.

Figure 10.5 Item Characteristic Curve
Tip: You can adjust the number of characteristic curves that appear in each row of the report using the Number of Plots Across option in the Item Analysis red triangle menu.

Information Plot

The Information Plot report contains a plot of the overall information curve, which is constructed by summing the individual item information curves. The information plot provides insight into the appropriate ability levels that the test is able to measure. Figure 10.6 describes a test with items that are appropriate for assessing individuals with average to low levels of the ability more so than individuals with high levels of ability.

Figure 10.6 Information Plot

![Information Plot](image)

Dual Plot

The Dual Plot report contains a plot that shows item difficulty and subject ability in one plot. Difficulty and ability use a common standardized scale shown on the y-axis. The items are plotted by their difficulty on the left side of the plot. The subjects are plotted to the right with data points and a histogram. The dual plot enables you to relate the difficulty of each item to the ability of each respondent.
The Parameter Estimates report contains a table of estimated parameters for each item. The parameters provided depend on the model used in your analysis (1PL, 2PL, or 3PL).

Item The test item.

Difficulty The b parameter or the measure of the difficulty of the item. A histogram of the difficulty parameters is shown beside the difficulty estimates.

Discrimination (Available only for 2PL and 3PL models.) The a parameter or the measure of the item discrimination. A histogram of the discrimination parameters is shown beside the discrimination estimates.

Threshold (Available only for 3PL models.) The c parameter or a measure of guessing.
Item Analysis Platform Options

Number of Plots Across Enables you to specify how many ICC plots to display in each row of plots in the Characteristic Curve report. The default is one ICC plot per row.

Save Ability Formula Saves the ability formula to a new column in the data table. See the JMP Reports chapter in the *Using JMP* book for more information about the following options:

Redo Contains options that enable you to repeat or relaunch the analysis. In platforms that support the feature, the Automatic Recalc option immediately reflects the changes that you make to the data table in the corresponding report window.

Save Script Contains options that enable you to save a script that reproduces the report to several destinations.

Save By-Group Script Contains options that enable you to save a script that reproduces the platform report for all levels of a By variable to several destinations. Available only when a By variable is specified in the launch window.

Statistical Details for the Item Analysis Platform

Item response theory (IRT) uses a series of equations to relate items to an unobserved (latent) trait or ability. Items, or questions, are indicators of an underlying latent construct that cannot be directly observed. At the time of data collection, both the subject abilities and the item characteristics are unknown.

Item Response Curves

Item response curves (item characteristic curves) are used to describe the relationship between the ability, defined on an *ability* scale, and each item. An item response curve plots the probability of correctly answering an item against different levels of ability. An item with perfect discrimination has a 0% probability of correct answers for respondents with ability below a threshold and a 100% probability of a correct response for subjects with ability above the threshold (Figure 10.8).
A typical relationship between the probability of correctly answering an item and ability is an S-shaped function with lower and upper asymptotes. As a respondent’s ability increases, their probability of correctly answering the item increases to 100%. The shape of the curve for a specific item is related to the difficulty and discriminatory properties of the item.

Figure 10.9 Typical Item Response Curve

Item Response Curve Models

One-, two-, and three-parameter logistic models can be used to model the item response curves. The three-parameter logistic (3PL) model is defined as follows.

\[P(\theta) = c + \frac{1-c}{1 + e^{-a(\theta-b)}} \]

- \(P(\theta) \) is the probability of answering the item correctly for an ability level \(\theta \). For more information about fitting the item response theory model, see “Fitting the IRT Model” on page 219.
- The \(a \) parameter defines the steepness of the curve at its inflection point. It provides an estimate of the discriminatory power of the item.
- The \(b \) parameter defines the location of the inflection point on the Ability axis. It provides an estimate of the difficulty of an item.
• The c parameter is the lower asymptote. It provides an estimate of the probability that an item is answered correctly by guessing.

• For the 2PL model, the c parameter is set to 0.

$$P(\theta) = \frac{1}{1 + e^{-(a)(\theta-b)}}$$

• For the 1PL model, the c parameter is set to 0 and the a parameter is set to 1. This parameterization is also known as the Rasch model (Rasch, 1980).

$$P(\theta) = \frac{1}{1 + e^{-(\theta-b)}}$$

The a Parameter: Item Discrimination

In the 2PL and 3PL models, the a parameter, or the steepness of the curve at its inflection point, provides a measure of the discriminatory power of an item. The discriminatory power, or discrimination, of an item refers to how well an item can distinguish between respondents with low ability levels versus those with high ability levels. A steep item response curve indicates that the item has strong discrimination. Respondents with low ability levels have a low probability of a correct response to the item while respondents with high ability have a high probability of a correct response. Items whose curves are relatively flat have low discrimination. Items with low discrimination are candidates to be dropped from the measurement instrument.

Figure 10.10 Logistic Model for Several Values of a

![Logistic Model for Several Values of a](image)

The b Parameter: Item Difficulty

The b parameter, or the location of the inflection point with respect to ability, provides a measure of item difficulty. Item response curves with inflection points farther to the right on the ability scale are indicative of items that are more difficult to answer than items with inflection points to the left. In the 1PL and 2PL models, the b parameter provides an estimate of the ability level required for a 50% probability of correctly answering the item.
Figure 10.11 Logistic Curve for Several Values of b

The c Parameter: Guessing

In the 3PL model, the c parameter, or the lower asymptote of the item response curve, provides a measure of the guessing parameter. A nonzero lower asymptote represents the nonzero probability of a person with a very low ability level answering an item correctly.

Figure 10.12 Logistic Model for Several Values of c

IRT Model Assumptions

The 2PL model is the default model in the Item Analysis platform. The 1PL model is appropriate when you can assume that all items have equal discriminating power. When this assumption is not appropriate, the 2PL or 3PL model should be used. The 2PL model has greater numerical stability than the 3PL model, especially for small data sets. Additionally, in the 2PL model, b can be interpreted as the ability level required for a 50% chance of a responder answering an item correctly.

The IRT model assumes that the underlying trait is unidimensional. That is, there is a single underlying latent construct. If there are several traits that have complex interactions with each other being measured, then a unidimensional model is not appropriate. The IRT model is appropriate for continuous latent variables. For a categorical latent variable, you should consider a latent class model. See the Latent Class Analysis chapter in the *Multivariate Methods* book. IRT models are assumed to be item-invariant. Item-invariance means that $P(\theta)$ is interpreted as the probability of a correct response for a set of individuals with ability level θ.
If a large group of individuals with equal ability levels answered the item, $P(\theta)$ predicts the proportion who would answer the item correctly. This implies that IRT models would have the same parameters regardless of the group of subjects tested. Additionally, the IRT model assumes local independence, which means that once the latent construct has been accounted for, the items are independent of one another.

Fitting the IRT Model

The IRT model is fit using Marginal Maximum Likelihood estimation (MMLE). MMLE is an alternative method to Joint Maximum Likelihood estimation (JLE). MMLE treats the subjects as random effects. The items and abilities are related as conditional probabilities as follows:

$$p(x|\theta, \vartheta) = \prod_{j=1}^{L} p_j(\theta)^{x_j}(1 - p_j(\theta))^{1-x_j}$$

where $p(x|\theta, \vartheta)$ is the probability of a response vector x given the subject ability θ and the vector of item parameters ϑ. The number of item parameters depends on the model used (1PL, 2PL, or 3PL).

MMLE integrates out the subject effects using Gaussian quadrature to obtain item parameter estimates. The probability of response vector x is as follows:

$$p(x) = \int_{-\infty}^{\infty} p(x|\theta, \vartheta) g(\theta|\nu) d\theta$$

where $g(\theta|\nu)$ is the distribution of the subjects and ν is a vector of the population location and scale parameters. The normal distribution with mean 0 and standard deviation 1 is used for $g(\theta|\nu)$ in JMP.

Note: A missing value for a test question is treated as an incorrect response. Individuals with all incorrect or all correct answers are not included in the analysis.

The MMLE procedure for fitting the IRT model can be compared to fitting a random effects model in two stages. The ability parameters are treated as random effects with variance of 1. In the first step, these random effects are integrated out using Gaussian quadrature. The item parameters are treated as fixed effects that are estimated using ML from the marginal likelihood with the ability parameters integrated out. The ability parameters are in essence best linear unbiased predictions that are estimated using the full unintegrated (joint) likelihood, treating the item parameters as known and held fixed at the values obtained in the first stage.
There are 2^L patterns of responses for L items. The ability level for each pattern can be calculated by finding the ability level with the highest probability for the response pattern by applying the following until θ converges:

$$
\theta_{i}^{t+1} = \theta_{i}^{t} - \frac{X_{i} - \sum_{j=1}^{L} p_{ij}(t)}{L} - \sum_{j=1}^{L} p_{ij}(t)(1 - p_{ij}(t))
$$

where:

- θ maximizes the likelihood of obtaining the response pattern
- t is the number of iterations
- L is the number of items
- X_i is the observed score
- p_{ij} is the probability of a correct response on the j^{th} item by the i^{th} person based on the item parameters.

Ability Formula

The Save Ability Formula option from the Item Analysis red triangle menu saves the ability formula to a new column in the data table. This formula can be used to score additional subjects added to the data table or it can be copied to a new table to score a new set of subjects.

The function saved to the data table is called the IRT Ability function. The item parameter estimates are stored in a matrix in this function.
References

Index

Consumer Research

A

All Levels Comparison Report, MaxDiff 193

B

best-worst scaling 174
Burt table, Multiple Correspondence Analysis 79
By variable 103

C

Categorical Platform 29
 Free Text 32
 Launch Window 31
 Report 34
 Structured 33
 Supercategories 46
Choice modeling 117–170
Choice platform
 Effect Marginals 140
 Joint Factor Tests 140
 No Choice option 131, 135
 Profile data 132
 Save Gradients by Subject 119, 142, 174
 Save Utility Formula 142
 segmentation 119, 174
 Subject data 135
 Willingness to Pay 142
classical test theory 207
Common Factor Analysis 105
common factor analysis 99
Comparisons with Letters 39, 46
Comparisons, MaxDiff 193
Confidence Intervals, MaxDiff 193
Correlation of Estimates, MaxDiff 193
Correspondence Analysis Options 75
Cross Table options, Multiple Correspondence Analysis 74

E

Effect Marginals, Choice platform 140
Eigenvalues 108
exploratory factor analysis 99

F

Factor Analysis platform
 By variable 103
 Freq variable 103
 Weight variable 103
Freq variable 103

I

IRT 28, 207
Item Analysis Platform 211
 options 215
 report 212
item characteristic curve 212
Item Response Theory 28, 207

J

Joint Factor Tests
 MaxDiff 192
Joint Factor Tests, Choice platform 140

L

latent trait 207
Likelihood Ratio Tests 140

M

MaxDiff
 All Levels Comparison Report 193
best-worst scaling 174
Correlation of Estimates 193
pizza choice example 174–176
Profile Data 184
Response Data 185
Save Gradients by Subject 193
Save Utility Formula 193
MaxDiff, Joint Factor Tests 192
Multiple Correspondence Analysis
 Burt table 79
 Cross Table options 74
 launch window options 71
 platform options 74
 Supplementary ID variable 72
 Tests for Independence 74

N
No Choice option, Choice platform 131, 135
Number of factors 105

O
oblique transformation 106
orthogonal transformation 106

P
pizza choice example 154–157
pizza choice example, MaxDiff 174–176
Principal Components 105
Profile data, Choice platform 132
Profile Data, MaxDiff 184

R
Response Data, MaxDiff 185
Rotation method 106

S
Save Gradients by Subject, Choice
 platform 119, 142, 174
Save Gradients by Subject, MaxDiff 193
Save Utility Formula, Choice platform 142
Save Utility Formula, MaxDiff 193
Scree Plot 108
Subject data, Choice platform 135
Supplementary ID variable, Multiple
 Correspondence Analysis 72

T
Test Each Response 37
Test Response Homogeneity 37
Tests for Independence, Multiple
 Correspondence Analysis 74

U
Uplift Model 197
 overview 198
 platform 200
 report 201
 report options 204

W-Z
Weight variable 103
Willingness to Pay, Choice platform 142