SAS® High-Performance Analytics Infrastructure 1.8
Installation and Configuration Guide
Contents

Accessibility Features of the SAS Intelligence Platform Deployment Tools .. vii
Recommended Reading ... ix

Chapter 1 • Introduction to Deploying the SAS High-Performance Analytics Infrastructure .. 1
What is the SAS High-Performance Analytics Infrastructure? .. 2
What Is Covered in This Document? ... 3
Deploying the SAS High-Performance Analytics Infrastructure .. 4

Chapter 2 • Preparing Your System to Deploy the SAS High-Performance Analytics Infrastructure ... 9
SAS High-Performance Analytics Infrastructure
Deployment Process Overview .. 10
System Settings for the SAS High-Performance Analytics Infrastructure .. 10
List the Machines in the Cluster or Appliance .. 11
Review Passwordless Secure Shell Requirements .. 13
Preparing to Install SAS High-Performance Computing Management Console .. 13
Preparing to Install and Configure SAS High-Performance Deployment of Hadoop .. 15
Preparing to Deploy the SAS High-Performance Analytics Environment ... 19
Pre-installation Ports Checklist for SAS ... 20

Chapter 3 • Deploying SAS High-Performance Computing Management Console .. 23
SAS High-Performance Analytics Infrastructure
Deployment Process Overview .. 24
Benefits of SAS High-Performance Computing Management Console .. 24
Overview of Deploying SAS High-Performance Computing Management Console .. 25
What is Asymmetric Mode? .. 69
Process Overview for Deploying in Asymmetric Mode 70
Preparing Your Data Provider 71
Deploy the SAS High-Performance Analytics
Environment in Asymmetric Mode 75

Appendix 2 • Updating the SAS High-Performance Analytics Infrastructure 79
Overview of Updating the SAS High-Performance
Analytics Infrastructure .. 79
Update SAS High-Performance Computing Management Console . 80
Update SAS High-Performance Deployment of Hadoop 80
Update the SAS High-Performance Analytics Environment ... 81

Appendix 3 • SAS High-Performance Analytics Infrastructure Command Reference 83

Glossary ... 85
Index ... 93
Contents
Overview

For this release, the SAS 9.3 Intelligence Platform deployment tools have not been tested for compliance with U.S. Section 508 standards and W3C web content accessibility guidelines. If you have specific questions about the accessibility of SAS products, send them to accessibility@sas.com or call SAS Technical Support.
Accessibility / Accessibility Features
Recommended Reading

Here is the recommended reading list for this title:

* Recommended Reading

 For a complete list of SAS books, go to support.sas.com/bookstore. If you have questions about which titles you need, please contact a SAS Book Sales Representative:

 SAS Books
 SAS Campus Drive
 Cary, NC 27513-2414
 Phone: 1-800-727-3228
 Fax: 1-919-677-8166
 E-mail: sasbook@sas.com
 Web address: support.sas.com/bookstore
Introduction to Deploying the SAS High-Performance Analytics Infrastructure

What is the SAS High-Performance Analytics Infrastructure?
What Is Covered in This Document?

Deploying the SAS High-Performance Analytics Infrastructure

- Overview of Deploying the SAS High-Performance Analytics Infrastructure
- Step 1: Review Additional Documentation
- Step 2: Prepare Your System
- Step 3: Create a SAS Software Depot
- Step 4: (Optional) Deploy SAS High-Performance Computing Management Console
- Step 5: (Optional) Install and Configure SAS High-Performance Deployment of Hadoop
- Step 6: Deploy the SAS High-Performance Analytics Environment
- Step 7: Configure Your Data Storage
What is the SAS High-Performance Analytics Infrastructure?

The SAS High-Performance Analytics infrastructure consists of tools for analytic tasks in a high-performance environment that is characterized by massively parallel processing (MPP) and symmetric multiprocessing (SMP) on a distributed database system.

The SAS High-Performance Analytics appliance provides a massively parallel computing environment supported by Message Passing Interface (MPI) combined with either a massively parallel distributed database management system (Teradata or EMC Greenplum) or a Hadoop Distributed File System on a x64-Linux platform.

The SAS High-Performance Analytics infrastructure consists of the following components:

- SAS High-Performance Analytics environment
- SAS High-Performance Deployment of Hadoop
- (Optional) SAS High-Performance Computing Management Console

Figure 1.1 SAS High-Performance Analytics Infrastructure on a Supported Data Appliance
Various SAS solutions use the SAS High-Performance Analytics infrastructure. These solutions include the following:

- SAS High-Performance Analytics Server
- SAS High-Performance Risk
- SAS Visual Analytics

What Is Covered in This Document?

This document covers tasks that are required after you and your SAS representative have decided what software you need and on what machines you will install the software. At this point, you can begin performing some pre-installation tasks, such as creating a SAS Software Depot if your site already does not have one and setting up the operating system user accounts that you will need.

By the end of this document, you will have deployed the SAS High-Performance Analytics environment, SAS High-Performance Computing Management Console, and SAS High-Performance Deployment of Hadoop (if your SAS solution relies on Hadoop).
You will then be ready to deploy your SAS solution (such as SAS Visual Analytics, SAS High-Performance Risk, and SAS High-Performance Analytics Server) on top of the SAS High-Performance Analytics infrastructure. For more information, see the documentation for your respective SAS solution.

Deploying the SAS High-Performance Analytics Infrastructure

Overview of Deploying the SAS High-Performance Analytics Infrastructure

The following list summarizes the steps required to install and configure the SAS High-Performance Analytics infrastructure:

1. Review additional documentation.
2. Prepare your system.
3. Create a SAS Software Depot.
4. (Optional) Deploy SAS High-Performance Computing Management Console.
5. (Optional) Install and configure SAS High-Performance Deployment of Hadoop.
6. Deploy the SAS High-Performance Analytics environment.
7. Configure your data storage.

The following sections provide a brief description of each of these tasks. Subsequent chapters in the guide provide the step-by-step instructions that you will need to perform them.

Step 1: Review Additional Documentation

It is very important to review all the different documents associated with deploying your SAS software. There can be late-breaking information, or instructions specific to a particular configuration might be too narrow for inclusion in this document.
Your review should include these documents:

- **QuickStart Guide**

 This document is shipped with your SAS software. Follow its instructions.

 The QuickStart Guides are also available at http://support.sas.com/documentation/installcenter/93/unx/index.html

- **software order e-mail (SOE)**

 This e-mail is sent to your site to announce the software and detail the order. It also enumerates the initial installation steps and, for SAS 9.3, contains instructions for using Electronic Software Delivery (ESD), if applicable. The SID file also contains your site’s SAS license (SETINIT).

- **SAS order information (SOI)**

 After you download your order to an existing SAS Software Depot, you can use the SAS order information (SOI) file to determine what products were in your order and when the order was placed. The SOI is in your SAS Software Depot in `install_doc/order-number/soi.html`.

- **SAS Software Summary**

 In the same depot location as the SOI, the SAS software summary is a more detailed list of the software that is included in your order. Unlike the SAS order information sheet, which lists only the software that you have specifically ordered, this document also describes the included software that supports your order. The software summary is in your SAS Software Depot in `install_doc/order-number/ordersummary.html`.

- **system requirements**

 Refer to the system requirements for your SAS solution, available at http://support.sas.com/resources/sysreq/index.html.

- **SAS Notes**

Step 2: Prepare Your System

Preparing your system includes tasks such as creating a list of machine names in your grid hosts file. Setting up passwordless SSH is required, as well as considering system umask settings. You must determine which operating system users you will require to install, configure, and run the SAS High-Performance Analytics infrastructure. Also, you will need to designate ports for the various SAS components that you are deploying.

For more information, see Chapter 2, “Preparing Your System to Deploy the SAS High-Performance Analytics Infrastructure,” on page 9.

Step 3: Create a SAS Software Depot

Create a SAS Software Depot, which is a special file system used to deploy your SAS software. The depot contains the SAS Deployment Wizard—the program used to install and initially configure most SAS software—one or more deployment plans, a SAS installation data file, order data, and product data.

Note: If you have elected to receive SAS through Electronic Software Delivery, a SAS Software Depot is automatically created for you.

Step 4: (Optional) Deploy SAS High-Performance Computing Management Console

SAS High-Performance Computing Management Console is an optional web application tool that eases the administrative burden on multiple machines in a distributed computing environment.

When you are creating operating system accounts and passwordless SSH on all machines in the cluster or on blades across the appliance, the management console enables you to perform these tasks from one location.
You can also manage CPU and memory resources across the cluster through management console support for CGroups that is built in to Linux.

For more information, see Chapter 3, “Deploying SAS High-Performance Computing Management Console,” on page 23.

Step 5: (Optional) Install and Configure SAS High-Performance Deployment of Hadoop

If your site is using Hadoop, then you will install and configure SAS High-Performance Deployment of Hadoop, which consists of a NameNode and DataNodes. The product is installed by a self-extracting shell script.

For more information, see Chapter 4, “Installing and Configuring SAS High-Performance Deployment of Hadoop,” on page 39.

Step 6: Deploy the SAS High-Performance Analytics Environment

The SAS High-Performance Analytics environment consists of a root node and worker nodes. The product is installed by a self-extracting shell script.

The root node is deployed on the grid host. A worker node is installed on each remaining machine in the cluster or database appliance.

For more information, see Chapter 5, “Deploying the SAS High-Performance Analytics Environment,” on page 49.

Step 7: Configure Your Data Storage

Depending on which data provider you plan to use with SAS, there are certain configuration tasks that you will need to complete on the Hadoop machine cluster or the Greenplum or Teradata appliance.

For more information, see Chapter 6, “Configuring Your Data Storage,” on page 57.
Preparing Your System to Deploy the SAS High-Performance Analytics Infrastructure

SAS High-Performance Analytics Infrastructure Deployment Process Overview ... 10
System Settings for the SAS High-Performance Analytics Infrastructure .. 10
List the Machines in the Cluster or Appliance .. 11
Review Passwordless Secure Shell Requirements ... 13
Preparing to Install SAS High-Performance Computing Management Console ... 13
User Account Considerations for SAS High-Performance Computing Management Console .. 13
Management Console Requirements .. 14
Preparing to Install and Configure SAS High-Performance Deployment of Hadoop ... 15
User Accounts for SAS High-Performance Deployment of Hadoop .. 15
Modify the sudoers File ... 16
Install a Java Runtime Environment ... 17
Plan for Hadoop Directories ... 17

Preparing to Deploy the SAS High-Performance Analytics Environment

User Accounts for the SAS High-Performance Analytics Environment
Consider Umask Settings

Pre-installation Ports Checklist for SAS

SAS High-Performance Analytics Infrastructure Deployment Process Overview

Setting up operating system users is the second of seven steps required to install and configure the SAS High-Performance Analytics infrastructure.

1. Review additional documentation.

2. Prepare your system.

3. Create a SAS Software Depot.

4. (Optional) Deploy SAS High-Performance Computing Management Console.

5. (Optional) Install and configure SAS High-Performance Deployment of Hadoop.

6. Deploy the SAS High-Performance Analytics environment.

7. Configure your data storage.

System Settings for the SAS High-Performance Analytics Infrastructure

Understand the system requirements for a successful SAS High-Performance Analytics infrastructure deployment before you begin. The lists that follow offer recommended settings for the analytics infrastructure:
- Modify `/etc/ssh/sshd_config` with the following setting:

 MaxStartups 1000

- Modify `/etc/security/limits.conf` with the following settings:

 - soft nproc 65536
 - hard nproc 65536
 - soft nofile 350000
 - hard nofile 350000

- Modify `/etc/security/limits.d/90-nproc.conf` with the following setting:

 soft nproc 65536

- Modify `/etc/sysconfig/cpuspeed` with the following setting:

 GOVERNOR=performance

- The SAS High-Performance Analytics components require approximately 580 MB of disk space. SAS High-Performance Deployment of Hadoop requires approximately 300 MB of disk space for the software. This estimate does not include the disk space that is needed for storing data that is added to Hadoop Distributed File System (HDFS) for use by the SAS High-Performance Analytics environment.

 For more information, refer to the system requirements for your SAS solution, available at http://support.sas.com/resources/sysreq/index.html.

List the Machines in the Cluster or Appliance

Before the SAS High-Performance Analytics infrastructure can be installed on the machines in the cluster, you must create a file that lists all of the host names of the machines in the cluster.

On blade 0, known as the Master Server (Greenplum) or the Managed Server (Teradata), create an `/etc/gridhosts` file for use by SAS High-Performance Computing Management Console, SAS High-Performance Deployment of Hadoop, and
the SAS High-Performance Analytic environment. (The grid hosts file is copied to the other machines in the cluster during the installation process.) If additional machines are used outside of the cluster for the SAS solution server, the SAS middle tier, or SAS High-Performance Computing Management Console, then these machines must each contain a copy of `/etc/gridhosts`. For more information, see “Deploying SAS High-Performance Computing Management Console” on page 24 before you start the installation.

You can use short names or fully qualified domain names so long as the host names in the file resolve to IP addresses. The long and short host names for each node must be resolvable from each node in the environment. The host names listed in the file must be in the same DNS domain and sub-domain. These host names are used for Message Passing Interface (MPI) communication and SAS High-Performance Deployment of Hadoop network communication.

The root node is listed first. This is also the machine that is configured as the following, depending on your data provider:

- SAS High-Performance Deployment of Hadoop: NameNode (blade 0)
- Greenplum Data Computing Appliance: Master Server
- Teradata: Managed Server

The following lines are an example of the file contents:

```
grid001
grid002
grid003
grid004
...
```

Review Passwordless Secure Shell Requirements

Passwordless Secure Shell (SSH) is required on all machines in the cluster or on the data appliance for the following user accounts:

- root user account
 The root account must run SAS High-Performance Computing Management Console and the simultaneous commands (for example, `simsh`, and `simcp`). For more information about management console user accounts, see “Preparing to Install SAS High-Performance Computing Management Console” on page 13.

- Hadoop user account
 For more information about Hadoop user accounts, see “Preparing to Install and Configure SAS High-Performance Deployment of Hadoop” on page 15.

- SAS High-Performance Analytics environment user account
 For more information about the environment’s user accounts, see “Preparing to Deploy the SAS High-Performance Analytics Environment” on page 19.

Preparing to Install SAS High-Performance Computing Management Console

User Account Considerations for SAS High-Performance Computing Management Console

SAS High-Performance Computing Management Console is installed from an RPM package and must be installed and configured with the root user ID. The root user
account must have passwordless secure shell (SSH) access between all the machines in the cluster. The console includes a web server. The web server is started with the root user ID, and it runs as the root user ID.

The reason that the web server for the console must run as the root user ID is that the console can be used to add, modify, and delete operating system user accounts from the local passwords database (/etc/passwd and /etc/shadow). Only the root user ID has Read and Write access to these files.

Be aware that you do not need to log on to the console with the root user ID. In fact, the console is typically configured to use console user accounts. Administrators can log on to the console with a console user account that is managed by the console itself and does not have any representation in the local passwords database or whatever security provider the operating system is configured to use.

Management Console Requirements

Before you install SAS High-Performance Computing Management Console, make sure that you have performed the following tasks:

- Make sure that the Korn shell is installed.
- Make sure that the Perl extension perl-Net-SSLeay is installed.
- For PAM authentication, make sure that the Authen::PAM PERL module is installed.
- Create the list of all the cluster machines in the /etc/gridhosts file. You can use short names or fully qualified domain names so long as the host names in the file resolve to IP addresses. These host names are used for Message Passing Interface (MPI) communication and Hadoop network communication. For more information, see “List the Machines in the Cluster or Appliance” on page 11.
- Locate the software.

Make sure that your SAS Software Depot has been created. (For more information, see “Creating a SAS Software Depot” in the SAS Intelligence Platform: Installation and Configuration Guide, available at http://support.sas.com/documentation/cdl/en/biig/62611/HTML/default/p03intellplatform00installgd.htm.)
Preparing to Install and Configure SAS High-Performance Deployment of Hadoop

User Accounts for SAS High-Performance Deployment of Hadoop

The account with which you deploy Hadoop must have passwordless secure shell (SSH) access between all the machines in the cluster.

TIP Although the Hadoop installation program can run as any user, you might find it easier to run `hadoopInstall` as root so that it can set permissions and ownership of the Hadoop data directories for the user account that runs Hadoop.

An operating system user ID is required to run the Hadoop applications on the machines in the cluster. This user ID must exist on all the machines in the cluster and must be configured for passwordless SSH.

The SAS High-Performance Deployment of Hadoop installation program checks to see whether the user account and group that you specify is present. If this user account and group is not present, then the program creates the user account and group on each machine in the cluster before installing SAS High-Performance Deployment of Hadoop. If you do not already have an account that meets the requirements, you can use SAS High-Performance Computing Management Console to add the appropriate user ID.

As a convention, this document uses an account and group named `hadoop` when describing how to deploy and run SAS High-Performance Deployment of Hadoop.

Note: To properly run Hadoop, you must make certain modifications to the `/etc/sudoers` file on each machine in the cluster. For more information, see “Modify the sudoers File” on page 16.

If your site has a requirement for a reserved UID and GID for the Hadoop user account, then create the user and group on each machine before continuing with the installation.
Note: We recommend that you install SAS High-Performance Computing Management Console before setting up the user accounts that you will need for the rest of the SAS High-Performance Analytics infrastructure. The console enables you to easily manage user accounts across the machines of a cluster. For more information, see “Create the First User Account and Propagate the SSH Key” on page 34.

SAS High-Performance Deployment of Hadoop is installed from a TAR.GZ file. An installation and configuration program, hadoopInstall, is available after the archive is extracted.

SAS High-Performance Deployment of Hadoop includes a security feature that sets file system ownership and permissions for the files that are used as blocks in the Hadoop Distributed File System (HDFS). The files are subject to the owner, group, and other mode permissions that are commonly understood for POSIX file systems. The files are also subject to the umask setting for the user that writes the blocks. Because the owner and group (and possibly the mode) are changed on the files, the user ID that is used to run the Hadoop server process must have Read (and Write) permission to the files.

The permission mode on files is set either through the user’s umask setting or as a data set option when users use the SAS Data in HDFS engine to distribute data in HDFS.

Modify the sudoers File

In order to format the Hadoop NameNode (discussed later in this document) and to properly run Hadoop, you must make certain modifications to the /etc/sudoers file on each machine in the cluster.

If you are running Hadoop as root, make sure that the following lines are present in the /etc/sudoers file:

```
Defaults:root !requiretty
root ALL=NOPASSWD:/bin/mkdir,/bin/chmod,/bin/chown,/bin/ln,/bin/rm
```

Or:

```
root ALL=(ALL) ALL
```

If you are running Hadoop as a non-root user, make sure that the following lines are present in the /etc/sudoers file:

```
Defaults:non-root-user-ID !requiretty
```
non-root-user-ID ALL=NOPASSWD:/bin/mkdir,/bin/chmod,/bin/chown,/bin/ln,/bin/rm

TIP You can issue a single `simcp` command to propagate one sudoers file across all machines in the cluster. The `simcp` and `simsh` commands are available with SAS High-Performance Computing Management Console. For more information, see Appendix 3, “SAS High-Performance Analytics Infrastructure Command Reference,” on page 83.

Install a Java Runtime Environment

SAS High-Performance Deployment of Hadoop requires a Java Runtime Environment (JRE) or Java Development Kit (JDK) on every machine in the cluster. The path to the Java executable must be the same on all of the machines in the cluster. If this requirement is already met, make a note of the path and proceed to installing SAS High-Performance Deployment of Hadoop.

If the requirement is not met, then install a JRE or JDK on the machine that is used as the grid host. If you have installed SAS High-Performance Computing Management Console, then you can use the `simsh` and `simcp` commands to copy the files to the other machines in the cluster.

Example Code 2.1
Sample Simsh and Simcp Commands

```
/opt/webmin/utilbin/simsh mkdir /opt/java
/opt/webmin/utilbin/simcp /opt/java/jdk1.6.0_31 /opt/java
```

For information about the supported Java version, see http://wiki.apache.org/hadoop/HadoopJavaVersions. SAS High-Performance Deployment of Hadoop uses the Apache Hadoop 0.23.1 version.

Plan for Hadoop Directories

There are four directory locations that must be planned for in order to ensure a smooth installation and configuration of SAS High-Performance Deployment of Hadoop. These directories are the `hadoop-name` directory, `hadoop-data` directory, `hadoop-local` directory, and `hadoop-system` directory. The directory locations must be the same on all machines in the cluster. These directories must reside on local storage.
The SAS High-Performance Deployment of Hadoop configuration prompts you for those directory locations. You create the parent `hadoop` directory on the NameNode machine. The remaining subdirectories on the NameNode and all of the Hadoop directories on the DataNodes are created for you by the installation script.

The following table identifies the default location for the directories:

Table 2.1 Default SAS High-Performance Deployment of Hadoop Directory Locations

<table>
<thead>
<tr>
<th>Default Directory Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/hadoop/hadoop-name</code></td>
<td>The <code>hadoop-name</code> directory is the location on the file system where the NameNode stores the namespace and transactions logs persistently. This location is formatted by Hadoop during the configuration stage.</td>
</tr>
<tr>
<td><code>/hadoop/hadoop-data</code></td>
<td>The <code>hadoop-data</code> directory is the location on the file system where the DataNodes store data in blocks.</td>
</tr>
<tr>
<td><code>/hadoop/hadoop-local</code></td>
<td>The <code>hadoop-local</code> directory is the location on the file system where temporary MapReduce data is written. MapReduce is not used by the SAS High-Performance Analytics environment, but specifying a location is a requirement of Hadoop.</td>
</tr>
<tr>
<td><code>/hadoop/hadoop-system</code></td>
<td>The <code>hadoop-system</code> directory is the location on the file system where the MapReduce framework writes system files. MapReduce is not used by the SAS High-Performance Analytics environment, but specifying a location is a requirement of Hadoop.</td>
</tr>
</tbody>
</table>
Preparing to Deploy the SAS High-Performance Analytics Environment

User Accounts for the SAS High-Performance Analytics Environment

This topic describes the user account requirements for deploying and running the SAS High-Performance Analytics environment:

- Installation and configuration must be run with the same user account.
- The installer account must have passwordless secure shell (SSH) access between all the machines in the cluster.

Note: We recommend that you install SAS High-Performance Computing Management Console before setting up the user accounts that you will need for the rest of the SAS High-Performance Analytics infrastructure. The console enables you to easily manage user accounts across the machines of a cluster. For more information, see “User Account Considerations for SAS High-Performance Computing Management Console” on page 13.

The SAS High-Performance Analytics environment uses a shell script installer. You can use a SAS installer account to install this software if the user account meets the following requirements:

- The SAS installer account has Write access to the directory that you want to use and Write permission to the same directory path on every machine in the cluster.
- The SAS installer account is configured for passwordless SSH on all the machines in the cluster.

The root user ID can be used to install the SAS High-Performance Analytics environment, but it is not a requirement. When users start a process on the machines in the cluster with SAS software, the process runs under the user ID that starts the process.
Consider Umask Settings

The SAS High-Performance Analytics environment installation script (described in a later section) prompts you for a umask setting. Its default is no setting.

If you do not enter any umask setting, then jobs, servers, and so on, that use the analytics environment create files with the user’s pre-existing umask set on the operating system. If you set a value for umask, then that umask is used and overrides each user’s system umask setting.

Entering a value of 027 ensures that only users in the same operating system group can read these files.

Note: Remember that the account used to run the LASRMonitor process (by default, sas) must be able to read the table and server files in /opt/VADP/var and any other related subdirectories.

For more information about using umask, refer to your Linux documentation.

Pre-installation Ports Checklist for SAS

While you are creating operating system user accounts and groups, you need to review the set of ports that SAS will use by default. If any of these ports is unavailable, select an alternate port, and record the new port on the ports pre-installation checklist that follows.

The following checklist indicates what ports are used for SAS by default and gives you a place to enter the port numbers that you will actually use.

We recommend that you document each SAS port that you reserve in the following standard location on each machine: /etc/services. This practice will help to avoid port conflicts on the affected machines.

Note: These checklists are superseded by more complete and up-to-date checklists that can be found at http://support.sas.com/installcenter/plans. This website also contains a corresponding deployment plan and an architectural diagram. If you are a
SAS solutions customer, consult the pre-installation checklist provided by your SAS representative for a complete list of ports that you must designate.

Table 2.2 Pre-installation Checklist for SAS Ports

<table>
<thead>
<tr>
<th>SAS Component</th>
<th>Default Port</th>
<th>Data Direction</th>
<th>Actual Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop Service on the NameNode</td>
<td>15452</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop Service on the DataNode</td>
<td>15453</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop DataNode Address</td>
<td>50010</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop DataNode IPC Address</td>
<td>50020</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>SAS High-Performance Computing</td>
<td>10020</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Management Console server</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadoop JobTracker</td>
<td>50030</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop TaskTracker</td>
<td>50060</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop Name Node Web interface</td>
<td>50070</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop DataNode HTTP Address</td>
<td>50075</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop Secondary NameNode</td>
<td>50090</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop Name Node Backup Address</td>
<td>50100</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop Name Node Backup HTTP Address</td>
<td>50105</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop Name Node HTTPS Address</td>
<td>50470</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>Hadoop DataNode HTTPS Address</td>
<td>50475</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>SAS High-Performance Deployment of Hadoop</td>
<td>54310</td>
<td>Inbound</td>
<td></td>
</tr>
<tr>
<td>SAS High-Performance Deployment of Hadoop</td>
<td>54311</td>
<td>Inbound</td>
<td></td>
</tr>
</tbody>
</table>
Deploying SAS High-Performance Computing Management Console

SAS High-Performance Analytics Infrastructure Deployment Process Overview .. 24
Benefits of SAS High-Performance Computing Management Console .. 24
Overview of Deploying SAS High-Performance Computing Management Console 25
Install SAS High-Performance Computing Management Console ... 27
Configure SAS High-Performance Computing Management Console .. 27
Create the Installer Account and Propagate the SSH Key ... 30
Create the First User Account and Propagate the SSH Key ... 34
SAS High-Performance Analytics Infrastructure Deployment Process Overview

Installing and configuring SAS High-Performance Computing Management Console is an optional fourth of seven steps required to install and configure the SAS High-Performance Analytics infrastructure.

1. Review additional documentation.
2. Prepare your system.
3. Create a SAS Software Depot.
4. **(Optional) Deploy SAS High-Performance Computing Management Console.**
5. (Optional) Install and configure SAS High-Performance Deployment of Hadoop.
6. Deploy the SAS High-Performance Analytics environment.
7. Configure your data storage.

Benefits of SAS High-Performance Computing Management Console

Passwordless SSH is required to start and stop SAS LASR Analytic Servers and to load tables. For some SAS solutions, such as SAS High-Performance Risk and SAS High-Performance Analytic Server, passwordless SSH is required to run jobs on the machines in the cluster.

Also, users of some SAS solutions must have an operating system (external) account on all the machines in the cluster and must have the key distributed across the cluster. For more information, see “Create the First User Account and Propagate the SSH Key” on page 34.
SAS High-Performance Computing Management Console enables you to perform these tasks from one location. When you create new user accounts using SAS High-Performance Computing Management Console, the console propagates the public key across all the machines in the cluster in a single operation.

Finally, SAS High-Performance Computing Management Console enables you to easily manage distributed CPU and memory resources. The management console relies on support for the CGroups feature that is provided by the Linux kernel and CGroups libraries. For more information, see SAS High-Performance Computing Management Console: User's Guide, available at http://supporttest.unx.sas.com/documentation/solutions/hpainfrastructure/16/hpcmcug.pdf.

Overview of Deploying SAS High-Performance Computing Management Console

Deploying SAS High-Performance Computing Management Console requires installing and configuring components on a machine other than the Greenplum or Teradata appliance. In this document, the management console is deployed on the machine where the SAS Solution is deployed.
Figure 3.1 Management Console Deployed with a Data Appliance

Figure 3.2 Management Console Deployed on a Hadoop Machine Cluster
Install SAS High-Performance Computing Management Console

To install and initially configure SAS High-Performance Computing Management Console, follow these steps:

Note: For information about updating the console, see “Updating the SAS High-Performance Analytics Infrastructure” on page 79.

1. Make sure that you have reviewed all of the information contained in the section “Preparing to Install SAS High-Performance Computing Management Console” on page 13.

2. Log on to the target machine as root.

3. In your SAS Software Depot, locate the `standalone_installs/SAS_High-Performance_Management_Console/1_6/Linux_for_x64` directory.

4. Enter the following command:
   ```
   rpm -ivh sashpcmc*
   ```

5. Proceed to the topic “Configure SAS High-Performance Computing Management Console” on page 27.

Configure SAS High-Performance Computing Management Console

After installing SAS High-Performance Computing Management Console, you must configure it. This is done with the setup script.

1. Log on to the SAS Visual Analytics server and middle tier machine (blade 0) as root.
2 Run the setup script by entering the following command:

```
/opt/webmin/utilbin/setup
```

Answer the prompts that follow.

Enter the username for initial login to SAS HPC MC below. This user will have rights to everything in the SAS HPC MC and can either be an OS account or new console user. If an OS account exists for the user, then system authentication will be used. If an OS account does not exist, you will be prompted for a password.

3 Enter the user name for the initial login.

Creating sas using system authentication
Use SSL\HTTPS (yes|no)

4 If you want to use Secure Sockets Layer (SSL) when running the console, enter yes. Otherwise, enter no.

5 If you chose not to use SSL, then skip to Step 7 on page 28. Otherwise, the script prompts you to use a pre-existing certificate and key file or to create a new one.

Use existing combined certificate and key file or create a new one (file|create)?

6 Make one of two choices:

- Enter create to have the script generate the combined private key and SSL certificate file for you.

 The script displays output of the openssl command that it uses to create the private key pair for you.

- Enter file to supply the path to a valid private key pair.

 When prompted, enter the absolute path for the combined certificate and key file.

7 To start the SAS High-Performance Computing Management Console server, enter the following command from any directory:

```
service sashpcmc start
```

8 Open a web browser and, in the address field, enter the fully qualified domain name for the blade 0 host followed by port 10020.
For example: https://myserver.example.com:10020

The Login page appears.

9 Log on to SAS High-Performance Computing Management Console using the credentials that you specified in Step 2.

The Console Management page appears.
Create the Installer Account and Propagate the SSH Key

The user account needed to start and stop server instances and to load and unload tables to those servers must be configured with passwordless secure shell (SSH).

To reduce the number of operating system (external) accounts, it can be convenient to use the SAS Installer account for both of these purposes.

Implementing passwordless SSH requires that the public key be added to the authorized_keys file across all machines in the cluster. When you create user accounts using SAS High-Performance Computing Management Console, the console propagates the public key across all the machines in the cluster in a single operation.

To create an operating system account and propagate the public key, follow these steps:

1. Make sure that the SAS High-Performance Computing Management Console server is running. While logged on as the root user, enter the following command from any directory:

   ```
   service sashpcmc status
   ```

 (If you are logged on as a user other than the root user, the script returns the message `sashpcmc is stopped`.) For more information, see To start the SAS High-Performance Computing Management Console server on page 28.

2. Open a web browser and, in the address field, enter the fully qualified domain name for the blade 0 host followed by port 10020.

 For example: `http://myserver.example.com:10020`

 The Login page appears.
3 Log on to SAS High-Performance Computing Management Console. The Console Management page appears.

4 Click HPC Management. The HPC Management page appears.
5 Click **Users and Groups**.

The Users and Groups page appears.

6 Click **Create a new user**.

The Create User page appears.
Enter information for the new user, using the security policies in place at your site. Be sure to choose Yes for the following:

- **Propagate User**
- **Generate and Propagate SSH Keys**

When you are finished making your selections, click Create.

The New User Propagation page appears and lists the status of the create user command. Your task is successful if you see output similar to the following figure.
Create the First User Account and Propagate the SSH Key

Depending on their configuration, some SAS solution users must have an operating system (external) account on all the machines in the cluster. Furthermore, the public key might be distributed on each cluster machine in order for their secure shell (SSH) access to operate properly. SAS High-Performance Computing Management Console enables you to perform these two tasks from one location.

To create an operating system account and propagate the public key for SSH, follow these steps:

1. Make sure that the SAS High-Performance Computing Management Console server is running. Enter the following command from any directory:

   ```bash
   service sashpcmc status
   ```

 For more information, see To start the SAS High-Performance Computing Management Console server on page 28.
2 Open a web browser and, in the address field, enter the fully qualified domain name for the blade 0 host followed by port 10020.

For example: http://myserver.example.com:10020

The Login page appears.

3 Log on to SAS High-Performance Computing Management Console.

The Console Management page appears.

4 Click HPC Management.

The Console Management page appears.
5 Click **Users and Groups**.

The Users and Groups page appears.

6 Click **Create a new user**.

The Create User page appears.
Enter information for the new user, using the security policies in place at your site. Be sure to choose **Yes** for the following:

- **Propagate User**
- **Generate and Propagate SSH Keys**

When you are finished making your selections, click **Create**.

The New User Propagation page appears and lists the status of the create user command. Your task is successful if you see output similar to the following figure.
Chapter 3 / Deploying SAS High-Performance Computing Management Console

New User Propagation

Propagating User... sasdemo
 puberv1.0.example.com: User successfully added
tcvr004.example.com: User successfully added
tcvr005.example.com: User successfully added
tcvr006.example.com: User successfully added
tcvr007.example.com: User successfully added

Generating and Propagating Keys for user... sasdemo

Return to users and groups list
Installing and configuring SAS High-Performance Deployment of Hadoop is the fifth of seven steps required to install and configure the SAS High-Performance Analytics infrastructure.

1. Review additional documentation.
2. Prepare your system.
3. Create a SAS Software Depot.
4. (Optional) Deploy SAS High-Performance Computing Management Console.

5. (Optional) Install and configure SAS High-Performance Deployment of Hadoop

6. Deploy the SAS High-Performance Analytics environment.

7. Configure your data storage.

Overview of Installing and Configuring SAS High-Performance Deployment of Hadoop

The SAS High-Performance Analytics environment relies on a massively parallel distributed database management system (Teradata or EMC Greenplum) or a Hadoop Distributed File System.

Deploying SAS High-Performance Deployment of Hadoop requires installing and configuring components on the NameNode machine and DataNodes on the remaining machines in the cluster. In this document, the NameNode is deployed on blade 0.

Figure 4.1 Deploying the SAS High-Performance Deployment of Hadoop
Install SAS High-Performance Deployment of Hadoop

The software that is needed for SAS High-Performance Deployment of Hadoop is available from within the SAS Software Depot that was created by the site depot administrator:

`depot-installation-location/standalone_installs/
SAS_High_Performance_Hadoop_Deployment/1_6/Linux_for_x64/
sashadoop.tar.gz`

On the machine designated as the Hadoop NameNode (blade 0), follow these steps:

1. Make sure that you have reviewed all of the information contained in the section “Preparing to Install and Configure SAS High-Performance Deployment of Hadoop” on page 15.

2. Log on to the Hadoop NameNode machine (blade 0) with a user account that has the necessary permissions.
 For more information, see “User Accounts for SAS High-Performance Deployment of Hadoop” on page 15.

3. Decide where to install Hadoop, and create that directory if it does not exist.
   ```bash
   mkdir hadoop
   ```

4. Record the name of this directory, as you will need it later in the install process.

5. Copy the sashadoop.tar.gz file to a temporary location and extract it:
   ```bash
   cp sashadoop.tar.gz /tmp
   cd /tmp
   tar xzf sashadoop.tar.gz
   ```
 A directory that is named `sashadoop` is created.
6 Change directory to the `sashadoop` directory and run the `hadoopInstall` command:

```
cd sashadoop
./hadoopInstall
```

7 Respond to the prompts from the configuration program:

Table 4.1
SAS High-Performance Deployment of Hadoop Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you wish to use an existing Hadoop installation? (y/N)</td>
<td>Press Enter to perform a new installation.</td>
</tr>
<tr>
<td>Enter path to install Hadoop. The directory 'hadoop-0.23.1' will be created in the path specified.</td>
<td>Specify the directory that you created in Step 3 on page 41 and press Enter.</td>
</tr>
<tr>
<td>Enter replication factor. Default 2</td>
<td>Press Enter to accept the default or specify a preferred number of replications for blocks (0 - 10). This prompt corresponds to the <code>dfs.replication</code> property for HDFS.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Enter port number for fs.defaultFS. Default 54310</td>
<td>Press Enter for each prompt to accept the default port numbers. These ports are listed in “Pre-installation Ports Checklist for SAS” on page 20.</td>
</tr>
<tr>
<td>Enter port number for mapred.job.tracker. Default 54311</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.namenode.https-address. Default 50470</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.datanode.https.address. Default 50475</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.datanode.address. Default 50010</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.datanode.ipc.address. Default 50020</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.namenode.http-address. Default 50070</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.datanode.http.address. Default 50075</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.secondary.http.address. Default 50090</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.namenode.backup.address. Default 50100</td>
<td></td>
</tr>
<tr>
<td>Enter port number for dfs.namenode.backup.http-address. Default 50105</td>
<td></td>
</tr>
<tr>
<td>Enter port number for mapred.job.tracker.http.address. Default 50030</td>
<td></td>
</tr>
<tr>
<td>Enter port number for mapred.task.tracker.http.address. Default 50060</td>
<td></td>
</tr>
<tr>
<td>Enter port number for com.sas.lasr.hadoop.service.namenode.port. Default 15452</td>
<td></td>
</tr>
<tr>
<td>Enter port number for com.sas.lasr.hadoop.service.datanode.port. Default 15453</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Enter user that will be running the HDFS server process.</td>
<td>Specify the user name and press Enter.</td>
</tr>
</tbody>
</table>
| Enter path for JAVA_HOME directory. (Default: /usr/lib/jvm/jre) | Press Enter to accept the default JRE or specify the path to the JRE or JDK and press Enter.
Note: The configuration program does not verify that a JRE is installed at /usr/lib/jvm/jre, that is the default path for some Linux vendors. |
| Enter path for Hadoop data directory. This should be on a large drive. Default is '/hadoop/hadoop-data'. | Press Enter to accept the default values or specify the paths that you prefer to use.
Note: The data directory cannot be the root directory of a partition or mount. |
| Enter path for Hadoop system directory. Default is '/hadoop/hadoop-system'. | |
| Enter path for Hadoop local directory. Default is '/hadoop/hadoop-local'. | |
| Enter path for Hadoop name directory. Default is '/hadoop/hadoop-name'. | |
| Enter full path to machine list. The NameNode 'host' should be listed first. | Enter /etc/gridhosts. |

8 The installation program installs SAS High-Performance Deployment of Hadoop on the local host, configures several files, and then provides a prompt:

The installer can now copy '/hadoop/hadoop-0.23.1' to all the slave machines using scp, skipping the first entry. Perform copy? (YES/no)

Enter **Yes** to install SAS High-Performance Deployment of Hadoop on the other machines in the cluster.

9 Proceed to “Format the Hadoop NameNode” on page 45.
Format the Hadoop NameNode

To format the SAS High-Performance Deployment of Hadoop NameNode, follow these steps:

1. Make sure that you have modified the sudoers file on the Hadoop NameNode before proceeding.
 See “Modify the sudoers File” on page 16.

2. Change to the hadoop user account:
   ```
   su - hadoop
   ```

3. Export the HADOOP_HOME environment variable.
 For example:
   ```
   export "HADOOP_HOME=/hadoop/hadoop-0.23.1"
   ```

4. Format the NameNode:
   ```
   hadoop-install-dir/hadoop-0.23.1/bin/hadoop namenode -format
   ```

5. At the Re-format filesystem in /hadoop-install-dir/hadoop-name ? (Y or N) prompt, enter Y. A line similar to the following highlighted output indicates that the format is successful:

 Formatting using clusterid: CID-5b96061a-79f4-4264-87e0-99f351b749af
 12/11/26 12:59:34 INFO util.HostsFileReader:
 Refreshing hosts (include/exclude) list
 12/11/26 12:59:35 INFO blockmanagement.DatanodeManager:
 dfs.block.invalidate.limit=1000
 12/11/26 12:59:35 INFO util.GSet: VM type = 64-bit
 12/11/26 12:59:35 INFO util.GSet: 2% max memory = 19.33375 MB
 12/11/26 12:59:35 INFO util.GSet: capacity = 2^21 = 2097152 entries
 12/11/26 12:59:35 INFO util.GSet: recommended=2097152, actual=2097152
 12/11/26 12:59:35 INFO blockmanagement.BlockManager:
 dfs.block.access.token.enable=false
12/11/26 12:59:35 INFO blockmanagement.BlockManager: defaultReplication = 2
12/11/26 12:59:35 INFO blockmanagement.BlockManager: maxReplication = 512
12/11/26 12:59:35 INFO blockmanagement.BlockManager: minReplication = 1
12/11/26 12:59:35 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
12/11/26 12:59:35 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks = false
12/11/26 12:59:35 INFO namenode.FSNamesystem: fsOwner=root (auth:SIMPLE)
12/11/26 12:59:35 INFO namenode.FSNamesystem: supergroup=supergroup
12/11/26 12:59:35 INFO namenode.FSNamesystem: isPermissionEnabled=true
12/11/26 12:59:35 INFO namenode.NameNode: Caching file names occurring more than 10 times
12/11/26 12:59:36 INFO namenode.NNStorage: Storage directory /hadoop/hadoop-name has been successfully formatted.
12/11/26 12:59:36 INFO namenode.FSImage: Saving image file /hadoop/hadoop-name/current/fsimage.ckpt_0000000000000000000 using no compression
12/11/26 12:59:36 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
12/11/26 12:59:36 INFO namenode.NameNode: SHUTDOWN_MSG: **
12/11/26 12:59:36 INFO namenode.NameNode: SHUTDOWN_MSG: Shutting down NameNode at my_namenode.example.com/192.0.0.0
12/11/26 12:59:36 INFO namenode.NameNode: SHUTDOWN_MSG: **

6 While still using the hadoop user account, start the SAS High-Performance Deployment of Hadoop:

/hadoop-install-dir/hadoop-0.23.1/sbin/start-dfs.sh

A series of messages is printed to report the creation of log files and processes.

7 Create a directory in HDFS that permits Read and Write access for all users:

/hadoop-install-dir/hadoop-0.23.1/bin/hadoop fs -mkdir /hps
/hadoop-install-dir/hadoop-0.23.1/bin/hadoop fs -chmod 777 /hps

8 Proceed to “Validate SAS High-Performance Deployment of Hadoop” on page 47.
Validate SAS High-Performance Deployment of Hadoop

You can confirm that Hadoop is running successfully by opening a browser to \texttt{http://NameNode:50070/dfshealth.jsp}. Review the information in the cluster summary section of the page. Confirm that the number of live nodes equals the number of DataNodes and that the number of dead nodes is zero.

\textbf{Note:} It can take a few seconds for each node to start. If you do not see every node, then refresh the connection in the web interface.
Deploying the SAS High-Performance Analytics Environment

SAS High-Performance Analytics Infrastructure Deployment Process Overview ... 49

Overview of Deploying the SAS High-Performance Analytics Environment ... 50

Install the SAS High-Performance Analytics Environment ... 52

Validating the SAS High-Performance Analytics Environment Deployment .. 55

 Overview of Validating the SAS High-Performance Analytics Environment Deployment 55
 Use simsh to Validate the SAS High-Performance Analytics Deployment .. 55
 Use MPI to Validate the SAS High-Performance Analytics Environment Deployment 56

SAS High-Performance Analytics Infrastructure Deployment Process Overview

Installing and configuring the SAS High-Performance Analytics environment is the sixth of seven steps.
1. Review additional documentation.
2. Prepare your system.
3. Create a SAS Software Depot.
4. (Optional) Deploy SAS High-Performance Computing Management Console.
5. (Optional) Install and configure SAS High-Performance Deployment of Hadoop.
6. Deploy the SAS High-Performance Analytics environment.
7. Configure your data storage.

This chapter describes how to install and configure all of the components for the SAS High-Performance Analytics environment on the machines in the cluster.

Overview of Deploying the SAS High-Performance Analytics Environment

Deploying the SAS High-Performance Analytics environment requires installing and configuring components on the root node machine and on the remaining machines in the cluster. In this document, the root node is deployed on blade 0 (Hadoop), the Master Server (Greenplum), or the Teradata Managed Server (Teradata).
Figure 5.1 SAS High-Performance Analytics Environment with a Data Appliance

Figure 5.2 SAS High-Performance Analytics Environment on a Hadoop Machine Cluster
Install the SAS High-Performance Analytics Environment

The SAS High-Performance Analytics components can be installed with a shell script. Follow these steps to install with the script:

1. Make sure that you have reviewed all of the information contained in the section “Preparing to Install and Configure SAS High-Performance Deployment of Hadoop” on page 15.

2. The software that is needed for the SAS High-Performance Analytics environment is available from within the SAS Software Depot that was created by the site depot administrator: `depot-installation-location/standalone_installss/SAS_High-Performance_Node_Installation/1_6/Linux_for_x64`.

3. Copy the file TKGrid_Linux_x86_64.sh file to the `/tmp` directory of the root node of the cluster.

4. Log on to the machine that will serve as the root node of the cluster or the data appliance with a user account that has the necessary permissions.

 For more information, see “User Accounts for the SAS High-Performance Analytics Environment” on page 19.

5. Change directories to the desired installation location, such as `/opt`.

 Record the location of where you installed the analytics environment, as other configuration programs will prompt you for this path later in the deployment process.

6. Run the shell script in this directory.

 The shell script creates the `TKGrid` subdirectory and places all files under that directory.

7. Respond to the prompts from the configuration program:
Table 5.1 Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared install or replicate to each node? (Y=SHARED/n=replicated)</td>
<td>If you are installing to a local drive on each node, then select n to indicate that this is a replicated installation. If you are installing to a drive that is shared across all the nodes (for example, NFS), then choose the shared installation.</td>
</tr>
<tr>
<td>Enter additional paths to include in LD_LIBRARY_PATH, separated by colons (:)</td>
<td>If you have any external library paths that you want to be accessible to the SAS High-Performance Analytics environment, enter the paths here.</td>
</tr>
<tr>
<td>Enter additional options to mpirun.</td>
<td>Press ENTER. Do not add additional options.</td>
</tr>
</tbody>
</table>
| Enter path to use for Utility files. (default is /tmp). | SAS High-Performance Analytics applications might write scratch files. By default, these files are created in the /tmp directory. You can redirect the files to a different location by entering the path at the prompt.
 Note: If the directory that you specified does not exist, you must create it manually. |
| Enter path to Hadoop. (default is Hadoop not installed). | If your site uses Hadoop, enter the installation directory that you entered earlier in Step 3 on page 41.
 If your site does not use Hadoop, enter nothing and press the Enter or Return key.
 Note: If the directory that you specified does not exist, you must create it manually. |
<p>| Force Root Rank to run on headnode? (y/N) | If the appliance resides behind a firewall and only the root node can connect back to the client machines, select y. Otherwise, accept the default. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter full path to machine list...</td>
<td>Enter the name of the file that you created in the section “List the Machines in the Cluster or Appliance” (for example, /etc/gridhosts).</td>
</tr>
<tr>
<td>Enter maximum run time for grid jobs (in seconds).</td>
<td>If a SAS High-Performance Analytics application executes for more than the maximum allowable run time, it is automatically terminated. You can adjust that run-time limit here.</td>
</tr>
<tr>
<td>Enter value for UMASK. (default is unset.)</td>
<td>Enter a specific umask value and press ENTER. Otherwise, simply press ENTER. For more information, see “Consider Umask Settings” on page 20.</td>
</tr>
</tbody>
</table>

8 If you selected a replicated installation at the first prompt, you are now prompted to choose the technique for distributing the contents to the appliance nodes:

The install can now copy this directory to all the machines listed in 'filename' using scp, skipping the first entry.

Perform copy? (YES/no)

Press Enter if you want the installation program to perform the replication. Enter no if you are distributing the contents of the installation directory by some other technique.

9 Proceed to “Validating the SAS High-Performance Analytics Environment Deployment” on page 55.
Validating the SAS High-Performance Analytics Environment Deployment

Overview of Validating the SAS High-Performance Analytics Environment Deployment

You have at least two methods to validate your SAS High-Performance Analytics environment deployment:

- “Use simsh to Validate the SAS High-Performance Analytics Deployment” on page 55.
- “Use MPI to Validate the SAS High-Performance Analytics Environment Deployment” on page 56.

Use simsh to Validate the SAS High-Performance Analytics Deployment

To validate your SAS High-Performance Analytics environment deployment by issuing a simsh command, follow these steps:

1. Log on to the machine where SAS High-Performance Computing Management Console is installed.

2. Enter the following command:

   ```
   /HPCMC-install-dir/webmin/utilbin/simsh hostname
   ```

 This command invokes the hostname command on each machine in the cluster. The host name for each machine is printed to the screen.

 You should see a list of known hosts similar to the following:
Proceed to “Configuring Your Data Storage” on page 58.

Use MPI to Validate the SAS High-Performance Analytics Environment Deployment

To validate your SAS High-Performance Analytics environment deployment by issuing a Message Passing Interface (MPI) command, follow these steps:

1. Log on to the root node using the SAS High-Performance Analytics environment installation account.

2. Enter the following command:

   ```
   /HPA-environment-install-dir/TKGrid/mpich2-install/bin/mpirun -f /etc/gridhosts hostname
   ```

 You should see a list of known hosts similar to the following:

 myblade006.example.com
 myblade007.example.com
 myblade004.example.com
 myblade005.example.com

3. Proceed to “Configuring Your Data Storage” on page 58.
Configuring Your Data Storage

SAS High-Performance Analytics Infrastructure
- Deployment Process Overview ... 58

Overview of Configuring Your Data Storage 58

Preparing the Greenplum Database for SAS Solutions 60
- Configure the SAS/ACCESS Interface to Greenplum Software 60
- Create the SAS Protocol and Related Functions for Greenplum 61
- Recommendations for Greenplum Database Roles 62

Preparing the Teradata Database for the SAS
- High-Performance Analytics Environment 63
- Configure the SAS/ACCESS Interface to Teradata 63
- Install User-Defined Functions for Teradata 64
- Grant Privileges for Teradata Database Accounts 64

Configure SAS High-Performance Deployment of Hadoop 65

Configure the Existing Cloudera Hadoop Cluster 65
SAS High-Performance Analytics Infrastructure Deployment Process Overview

After you have deployed the SAS High-Performance Analytics infrastructure, you must configure your data storage to work with SAS.

Configuring your data storage is the last of seven deployment steps.

1. Review additional documentation.
2. Prepare your system.
3. Create a SAS Software Depot.
4. (Optional) Deploy SAS High-Performance Computing Management Console.
5. (Optional) Install and configure SAS High-Performance Deployment of Hadoop.
6. Deploy the SAS High-Performance Analytics environment.

7. Configure your data storage.

Overview of Configuring Your Data Storage

The SAS High-Performance Analytics environment relies on a massively parallel distributed database management system (Teradata or EMC Greenplum) or a Hadoop Distributed File System.

The topics that follow describe how you configure your site’s data provider for the SAS High-Performance Analytics environment.
Figure 6.1 SAS High-Performance Analytics Infrastructure on a Supported Data Appliance

Figure 6.2 SAS High-Performance Analytics Infrastructure on a Hadoop Machine Cluster
Preparing the Greenplum Database for SAS Solutions

Configure the SAS/ACCESS Interface to Greenplum Software

SAS solutions, such as SAS High-Performance Analytics Server, rely on SAS/ACCESS to communicate with the Greenplum Data Appliance.

When you deploy the SAS/ACCESS Interface to Greenplum, make sure that the following configuration steps are performed:

1. On UNIX, make sure the following is done:
 a. Set the ODBCHOME environment variable to your ODBC home directory.
 b. Set the ODBCINI environment variable to the location and name of your odbc.ini file.

 TIP You can set both the ODBCHOME and ODBCINI environment variables in the SAS sasenv_local file and affect all executions of SAS. For more information, see SAS Intelligence Platform: Data Administration Guide, available at http://support.sas.com/documentation/cdl/en/bidsag/65687/PDF/default/bidsag.pdf#page=107.

 c. Include the Greenplum ODBC drivers in your shared library path (LD_LIBRARY_PATH).
2 On Windows, make sure the following is done:

a Configure a Data Source Name (DSN) to access the Greenplum database.

b Register the SAS/ACCESS interface with the SAS system catalog.

Create the SAS Protocol and Related Functions for Greenplum

The SAS High-Performance Analytics environment interface to the Greenplum database is supported by several functions that are associated with a dedicated SAS protocol.

To enable the functionality, the database administrator (a superuser such as the gpadmin role) should perform the following steps from the PostgreSQL environment or the PgAdmin III interface on the master server:

1 Install the formatter functions:

```sql
CREATE OR REPLACE FUNCTION formatter_export(record)
  RETURNS bytea
  AS '/HPA_environment-install-dir/TKGrid/lib/gpformatter.so',
  'formatter_export'
  LANGUAGE C STABLE;
CREATE OR REPLACE FUNCTION formatter_import()
  RETURNS record
  AS '/HPA_environment-install-dir/TKGrid/lib/gpformatter.so',
  'formatter_import'
  LANGUAGE C STABLE;
```

2 Create the protocol functions and the SAS protocol:

```sql
CREATE OR REPLACE FUNCTION gpdb_to_sas() RETURNS integer
  AS '/HPA_environment-install-dir/TKGrid/lib/sas_gpext.so', 'sasprot_export'
  LANGUAGE C STABLE;
CREATE OR REPLACE FUNCTION sas_to_gpdb() RETURNS integer
  AS '/HPA_environment-install-dir/TKGrid/lib/sas_gpext.so', 'sasprot_import'
  LANGUAGE C STABLE;
CREATE TRUSTED PROTOCOL sas(readfunc='sas_to_gpdb', writefunc='gpdb_to_sas');
```
The functions must be created in a schema that is either in your schema search path or in the global pg_catalog catalog.

Each database role that executes SAS High-Performance Analytics code against the Greenplum database needs to be granted execution rights for the SAS protocol, as described in the next section.

3 These steps need to be repeated for each database that is accessed through SAS High-Performance Analytics procedures. You can define the functions on a database template from which new databases are derived.

Recommendations for Greenplum Database Roles

If multiple users access the SAS High-Performance Analytics environment on the Greenplum database, it is recommended that you set up a group role and associate the database roles for individual users with the group. The Greenplum database administrator can then associate access to the environment at the group level.

The following is one example of how you might accomplish this.

1 First, create the group.

 For example:

   ```
   CREATE GROUP sas_cust_group NOLOGIN;
   ALTER ROLE sas_cust_group CREATEEXTTABLE;
   ```

 Note: Remember that in Greenplum, only object privileges are inheritable. When granting the CREATEEXTTABLE, you are granting a system privilege. You can grant CREATEEXTTABLE to a group role, but the role must use a set role as a rolegroup first.

2 For each user, create a database role and associate it with the group.

 For example:

   ```
   CREATE ROLE megan LOGIN IN ROLE sas_cust_group PASSWORD 'megan';
   CREATE ROLE calvin LOGIN IN ROLE sas_cust_group PASSWORD 'calvin';
   ```

3 If a resource queue exists, associate the roles with the queue.
For example:

```sql
CREATE RESOURCE QUEUE sas_cust_queue WITH
(MIN_COST=10000.0 ,
ACTIVE_STATEMENTS=20,
PRIOIRITY=HIGH ,
MEMORY_LIMIT='4GB' );
```

```sql
ALTER ROLE megan RESOURCE QUEUE sas_cust_queue;
ALTER ROLE calvin RESOURCE QUEUE sas_cust_queue;
```

4. Finally, grant the database roles execution rights on the SAS High-Performance Analytics protocol.

For example:

```sql
GRANT ALL ON PROTOCOL sas TO megan;
GRANT ALL ON PROTOCOL sas TO calvin;
```

Preparing the Teradata Database for the SAS High-Performance Analytics Environment

Configure the SAS/ACCESS Interface to Teradata

SAS solutions, such as SAS High-Performance Analytics Server, rely on SAS/ACCESS to communicate with the Teradata Managed Server Cabinet.

When you deploy the SAS/ACCESS Interface to Teradata, make sure that the following configuration steps are performed:

1. To perform FastExporting, the Teradata FastExport Utility must be present on the machine where you install SAS. You must also modify the library path (UNIX) and path (Windows) environment variables.

2. To perform MultiLoading, the Teradata MultiLoad Utility must be present on the system where you install SAS. You must also modify the path environment variable.
3. To use the Teradata parallel transporter API, the API must be installed on the machine where SAS is installed. You must also modify the path environment variable.

4. On UNIX, make sure the following is done:

 a. Include the Teradata executable shared libraries in your shared library path.

 b. HP-UX users must create two symbolic links.

5. On Windows, make sure that you verify connectivity by logging on to your Teradata account with the Teradata BTEQ utility.

Install User-Defined Functions for Teradata

After deploying the SAS High-Performance Analytics environment, you must install the Teradata user-defined functions (UDFs) with the scripts provided in the RPM package.

On the Teradata Master Server (TMS), run the following command:

```
sh /HPA_environment-install-dir/TKGrid/bin/add_udfs.sh
```

You are prompted for a database account name with sufficient privileges to add user-defined functions.

Grant Privileges for Teradata Database Accounts

The database users who execute SAS High-Performance Analytics environment code on Teradata must have the following Teradata database privileges:
execute on SAS_SYSFNLIB
select on SAS_SYSFNLIB
execute function on SAS_SYSFNLIB

Configure SAS High-Performance Deployment of Hadoop

Configuration of SAS High-Performance Deployment of Hadoop is performed at installation by the Hadoop deployment program, `hadoopInstall`.

Configure the Existing Cloudera Hadoop Cluster

Use the Cloudera Manager to configure your Cloudera 4 Hadoop deployment to interoperate with the SAS High-Performance Analytics environment.

1. Log on to the Cloudera Manager as an administrator.
2. If the DataNode service is present, stop it.
3. Remove the Remove Balancer service from the cluster.
4. Add SAS JAR files to the CDH4 library path. Copy both JAR files to `/usr/lib/hadoop/lib` (default location) on all nodes.

TIP You can issue a single `simcp` command to propagate JAR files across all machines in the cluster. The `simcp` and `simsh` commands are available with SAS High-Performance Computing Management Console. For more information, see Appendix 3, “SAS High-Performance Analytics Infrastructure Command Reference,” on page 83.
Add the following to the plug-in configuration for the NameNode:
com.sas.lasr.hadoop.NameNodeService

Add the following to the plug-in configuration for DataNodes:
com.sas.lasr.hadoop.DataNodeService

Add the following lines to the advanced configuration for service-wide. These lines are placed in the HDFS Service Configuration Safety Valve property:

```xml
<property>
    <name>com.sas.lasr.service.allow.put</name>
    <value>true</value>
</property>
<property>
    <name>com.sas.lasr.hadoop.service.namenode.port</name>
    <value>15452</value>
</property>
<property>
    <name>com.sas.lasr.hadoop.service.datanode.port</name>
    <value>15453</value>
</property>
```

Add the following line to the advanced configuration for service-wide for the HDFS Service Environment Safety Valve:

"JAVA_HOME=/usr/lib/java/jdk1.7.0_07"

Restart all Cloudera Manager services.

Create and set the mode for the user directory in HDFS for testing by running the following commands as the Hadoop user. (Make sure that JAVA_HOME and HADOOP_HOME are set correctly before you run these commands.)

```bash
export JAVA_HOME=/usr/lib/java/jdk1.7.0_07
export HADOOP_HOME=/usr/lib/hadoop
```

Run the following commands to create the /user directory in HDFS:

```bash
$HADOOP_HOME/bin/hadoop fs -mkdir /user
$HADOOP_HOME/bin/hadoop fs -chmod 777 /user
```

Update and deploy the client configuration to each host in the cluster.
13 Add the following to the HDFS Client Configuration Safety Valve:

```xml
<property>
  <name>com.sas.lasr.hadoop.service.namenode.port</name>
  <value>15452</value>
</property>

<property>
  <name>com.sas.lasr.hadoop.service.datanode.port</name>
  <value>15453</value>
</property>

<property>
  <name>dfs.datanode.data.dir</name>
  <value>file:///hadoop/hadoop-data</value>
</property>
```

14 Deploy the client configuration.

15 On the NameNode, in `/etc/hadoop/conf/hadoop-env.sh` add the following line:

```
"export JAVA_HOME=/usr/lib/java/jdk1.7.0_07"
```

16 Copy `/etc/hadoop/conf/hadoop-env.sh` to every machine in the cluster.

Tip You can issue a single `simcp` command to propagate hadoop-env.sh across all machines in the cluster. The simcp and simsh commands are available with SAS High-Performance Computing Management Console. For more information, see Appendix 3, “SAS High-Performance Analytics Infrastructure Command Reference,” on page 83.
Appendix 1

Deploying the SAS High-Performance Analytics Environment in Asymmetric Mode

What is Asymmetric Mode? ... 69

Process Overview for Deploying in Asymmetric Mode 70

Preparing Your Data Provider ... 71
 Overview of Preparing Your Data Provider 71
 Prepare for Cloudera Hadoop ... 71
 Prepare for a Greenplum Data Appliance 73
 Prepare for an Oracle Exadata Appliance 73
 Prepare for a Teradata Managed Server Cabinet 74

Deploy the SAS High-Performance Analytics Environment in Asymmetric Mode .. 75

What is Asymmetric Mode?

Running the SAS High-Performance Analytics environment in asymmetric mode enables you to separate your data appliance or machine cluster from your analytics cluster. A SAS Embedded Process that resides on the data appliance is used to provide high-speed parallel data transfer between the data appliance and the analytics environment where it is processed.
Process Overview for Deploying in Asymmetric Mode

The process involved for installing and configuring the SAS High-Performance Analytics environment in asymmetric mode consists of the following steps:

1. Install and configure the SAS High-Performance Analytics environment on the analytics cluster.

 For more information, see Chapter 5, “Deploying the SAS High-Performance Analytics Environment,” on page 49.

2. Gather information about the data provider that the analytics environment (in asymmetric mode) will query.

 For more information, see “Overview of Preparing Your Data Provider” on page 71.
3 Install and configure the SAS High-Performance Analytics environment in *asymmetric mode* on the analytics cluster.

For more information, see “Deploy the SAS High-Performance Analytics Environment in Asymmetric Mode” on page 75.

Preparing Your Data Provider

Overview of Preparing Your Data Provider

Before you can install the SAS High-Performance Analytics environment in asymmetric mode, you must gather particular information about your data provider. If you are using Cloudera Hadoop, you must also complete a few configuration steps.

From the following list, choose the topic for your respective data provider:

1. “Prepare for Cloudera Hadoop” on page 71
2. “Prepare for a Greenplum Data Appliance” on page 73
3. “Prepare for an Oracle Exadata Appliance” on page 73
4. “Prepare for a Teradata Managed Server Cabinet” on page 74

Prepare for Cloudera Hadoop

Before you can install the SAS High-Performance Analytics environment in asymmetric mode to run with Cloudera Hadoop, there are certain requirements that must be met.

1. Copy the following Cloudera Hadoop JAR files into a directory on every machine in the analytics cluster:
 - `avro-1.5.4.jar`
 - `commons-cli-1.2.jar`
Appendix 1 / Deploying the SAS High-Performance Analytics Environment in Asymmetric Mode

- commons-codec-1.4.jar
- commons-configuration-1.6.jar
- commons-httpclient-3.1.jar
- commons-lang-2.5.jar
- commons-logging-1.1.1.jar
- guava-11.0.2.jar
- hadoop-auth-2.0.0-cdh4.0.1.jar
- hadoop-common-2.0.0-cdh4.0.1.jar
- hadoop-core-2.0.0-mr1-cdh4.0.1.jar
- hadoop-hdfs-2.0.0-cdh4.0.1.jar
- jackson-core-asl-1.8.8.jar
- jackson-mapper-asl-1.8.8.jar
- jsp-api-2.1.jar
- log4j-1.2.16.jar
- protobuf-java-2.4.0a.jar
- slf4j-api-1.6.1.jar
- slf4j-log4j12-1.6.1.jar

2 Record the path to the Cloudera Hadoop JAR files required by SAS in the table that follows:

Table A1.1 Record the Location of the Cloudera Hadoop JAR Files Required by SAS

<table>
<thead>
<tr>
<th>Example</th>
<th>Actual Path of the Required Cloudera Hadoop JAR Files on Your System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/opt/TKGrid_REP/Cloudera</td>
<td></td>
</tr>
</tbody>
</table>
3 Record the path to the 32-bit Java Runtime Engine (JRE) required by the SAS Threaded Kernel JNI (version 1.5 or later) in the table that follows:

Table A1.2 Record the Location of the JRE

<table>
<thead>
<tr>
<th>Example</th>
<th>Actual Path of the JRE on Your System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/opt/java/jre1.7.0_07</td>
<td></td>
</tr>
</tbody>
</table>

Prepare for a Greenplum Data Appliance

Before you can install the SAS High-Performance Analytics environment in asymmetric mode to run with a Greenplum data appliance, there are certain requirements that must be met.

1 Install the Greenplum client on every machine in your analytics cluster.
 For more information, refer to your Greenplum documentation.

2 Record the path to the Greenplum client in the table that follows:

Table A1.3 Record the Location of the Greenplum Client

<table>
<thead>
<tr>
<th>Example</th>
<th>Actual Path of the Greenplum Client on Your System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/local/greenplum-db</td>
<td></td>
</tr>
</tbody>
</table>

Prepare for an Oracle Exadata Appliance

Before you can install the SAS High-Performance Analytics environment in asymmetric mode to run with an Oracle Exadata appliance, there are certain requirements that must be met.

1 Install the Oracle client on every machine in your analytics cluster.
 For more information, refer to your Oracle documentation.
2 Record the path to the Oracle client in the table that follows. (This should be the absolute path to libclntsh.so):

Table A1.4 Record the Location of the Oracle Client

<table>
<thead>
<tr>
<th>Example</th>
<th>Actual Path of the Oracle Client on Your System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/local/ora11gr2/product/11.2.0/ client_1/lib</td>
<td></td>
</tr>
</tbody>
</table>

3 Record the value of the Oracle TNS_ADMIN environment variable in the table that follows. (Typically, this is the directory that contains the tnsnames.ora file):

Table A1.5 Record the Value of the Oracle TNS_ADMIN Environment Variable

<table>
<thead>
<tr>
<th>Example</th>
<th>Oracle TNS_ADMIN Environment Variable Value on Your System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/my_server/oracle</td>
<td></td>
</tr>
</tbody>
</table>

Prepare for a Teradata Managed Server Cabinet

Before you can install the SAS High-Performance Analytics environment in asymmetric mode to run with a Teradata Managed Server Cabinet, there are certain requirements that must be met.

1 Install the Teradata client on every machine in your analytics cluster.

For more information, refer to your Teradata documentation.

2 Record the path to the Teradata client in the table that follows. (This should be the absolute path to the directory that contains the odbc_64 subdirectory):
Table A1.6 Record the Location of the Teradata Client

<table>
<thead>
<tr>
<th>Example</th>
<th>Actual Location of the Teradata Client on Your System</th>
</tr>
</thead>
<tbody>
<tr>
<td>/opt/teradata/client/13.10</td>
<td></td>
</tr>
</tbody>
</table>

Deploy the SAS High-Performance Analytics Environment in Asymmetric Mode

The SAS High-Performance Analytics environment in asymmetric mode is deployed using a shell script. Follow these steps to install with the script:

1. Make sure that you have reviewed all of the information contained in the section “Preparing Your Data Provider” on page 71.

2. The software that is needed for the SAS High-Performance Analytics environment is available from within the SAS Software Depot that was created by the site depot administrator: `depot-installation-location/standalone_installs/SAS_High-Performance_Node_Installation/1_6/Linux_for_x64`.

3. Copy the file `TKGrid_Linux_REP_x86_64.sh` to the `/tmp` directory of the root node of the analytic cluster.

4. Log on to the machine that will serve as the root node of the cluster with a user account that has the necessary permissions.

 For more information, see “User Accounts for the SAS High-Performance Analytics Environment” on page 19.

5. Change directories to the desired installation location, such as `/opt`.

6. Run the shell script in this directory.
The shell script creates the `TKGrid_REP` subdirectory and places all files under that directory.

7 Respond to the prompts from the configuration program:

Table A1.7 Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you want to configure remote access to Teradata? (yes/NO)</td>
<td>If you are using a Teradata Managed Cabinet for your data provider, enter <code>y</code> and press Enter. Otherwise, enter <code>n</code> and press Enter.</td>
</tr>
<tr>
<td>Do you want to use Teradata client installed in <code>/opt/teradata/client/13.10</code> ? (YES/no)</td>
<td>If you have installed the Teradata client in the default path, then enter nothing and press Enter. Otherwise, enter <code>n</code> and press Enter.</td>
</tr>
<tr>
<td>Enter path of Teradata client install. i.e.: <code>/opt/teradata/client/13.10</code></td>
<td>If you chose <code>n</code> in the previous step, enter the path where the Teradata client was installed. (This path was recorded earlier in Table A1.6 on page 75.)</td>
</tr>
<tr>
<td>Do you want to configure remote access to Greenplum? (yes/NO)</td>
<td>If you are using a Greenplum Data Appliance for your data provider, enter <code>y</code> and press Enter. Otherwise, enter <code>n</code> and press Enter.</td>
</tr>
<tr>
<td>Do you want to use Greenplum client installed in <code>/usr/local/greenplum-db</code> ? (YES/no)</td>
<td>If you have installed the Greenplum client in the default path, then enter nothing and press Enter. Otherwise, enter <code>n</code> and press Enter.</td>
</tr>
<tr>
<td>Enter path of Greenplum client install. i.e.: <code>/usr/local/greenplum-db</code></td>
<td>If you chose <code>n</code> in the previous step, enter the path where the Greenplum client was installed. (This path was recorded earlier in Table A1.3 on page 73.)</td>
</tr>
<tr>
<td>Do you want to configure remote access to Hadoop? (yes/NO)</td>
<td>If you are using a Cloudera Hadoop machine cluster for your data provider, enter <code>y</code> and press Enter. Otherwise, enter <code>n</code> and press Enter.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Do you want to use the JRE installed in /opt/java/jre1.7.0_07?</td>
<td>If you want to use the JRE at the path that the install program lists, then enter nothing and press Enter. Otherwise, enter n and press Enter.</td>
</tr>
<tr>
<td>Enter path of the JRE i.e.: /opt/java/jre1.7.0_07</td>
<td>If you chose n in the previous step, enter the path where the JRE was installed. (This path was recorded earlier in Table A1.2 on page 73.)</td>
</tr>
<tr>
<td>Enter path of the directory containing the Hadoop and SAS/EP jars.</td>
<td>Enter the path where the Cloudera Hadoop JAR files required by SAS reside. (This path was recorded earlier in Table A1.1 on page 72.)</td>
</tr>
<tr>
<td>Do you want to configure remote access to Oracle? (yes/NO)</td>
<td>If you are using an ORACLE Exadata appliance for your data provider, enter y and press Enter. Otherwise, enter n and press Enter.</td>
</tr>
<tr>
<td>Enter path of Oracle client libraries. i.e.: /usr/local/ora11gr2/product/11.2.0/client_1/lib</td>
<td>Enter the path where the Oracle client libraries reside. (This path was recorded earlier in Table A1.4 on page 74.)</td>
</tr>
<tr>
<td>Enter path of TNS_ADMIN, or just enter if not needed.</td>
<td>Enter the value of the Oracle TNS_ADMIN environment variable. (This value was recorded earlier in Table A1.5 on page 74.)</td>
</tr>
<tr>
<td>Shared install or replicate to each node? (Y=SHARED/n=replicated)</td>
<td>If you are installing to a local drive on each node, then select n to indicate that this is a replicated installation. If you are installing to a drive that is shared across all the nodes (for example, NFS), then choose the shared installation.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Enter path to TKGrid install</td>
<td>Enter the absolute path to where the SAS High-Performance Analytics environment is installed. This should be the directory in which the analytics environment install program was run with <code>TKGrid</code> appended to it (for example, <code>/opt/TKGrid</code>). For more information, see Step 5 on page 52.</td>
</tr>
<tr>
<td>Enter additional paths to include in <code>LD_LIBRARY_PATH</code>, separated by colons (:)</td>
<td>If you have any external library paths that you want to be accessible to the SAS High-Performance Analytics environment, enter the paths here.</td>
</tr>
</tbody>
</table>

8 If you selected a replicated installation at the first prompt, you are now prompted to choose the technique for distributing the contents to the appliance nodes:

The install can now copy this directory to all the machines listed in 'pathname' using scp, skipping the first entry. Perform copy? (YES/no)

Press Enter if you want the installation program to perform the replication. Enter no if you are distributing the contents of the installation directory by some other technique.

9 You have finished deploying the SAS High-Performance Analytics environment in asymmetric mode. If you have not done so already, install the appropriate SAS Embedded Process on the data appliance or data machine cluster for your respective data provider.

Overview of Updating the SAS High-Performance Analytics Infrastructure

Here are some considerations for updating the SAS High-Performance Analytics infrastructure:

- Because of dependencies, if you update the SAS High-Performance Analytics environment, you must also update SAS High-Performance Deployment of Hadoop.
- Update SAS High-Performance Deployment of Hadoop first, followed by the SAS High-Performance Analytics environment.
Update SAS High-Performance Computing Management Console

To update your deployment of SAS High-Performance Computing Management Console, follow these steps:

1. Stop the server by entering the following command:

   ```
   service sashpcmc stop
   ```

2. Update the management console using the following RPM command:

   ```
   rpm -U /SAS-Software-Depot-Root-Dir/standalone_installs/
   SAS_High-Performance_Management_Console/1_6/Linux_for_x64/sashpcmc-1.6.x86_64.rpm
   ```

Update SAS High-Performance Deployment of Hadoop

To update SAS High-Performance Deployment of Hadoop, follow these steps:

1. Stop SAS High-Performance Deployment of Hadoop by running the `/hadoop/
 hadoop/sbin/stop-all.sh` command with the `hadoop` user account on the
 NameNode before you perform any action.

2. Check that there are no Java processes owned by `hadoop` running on any machine:

   ```
   ps -ef | grep hadoop
   ```

 If you find any Java processes owned by the `hadoop` user account, terminate them.

 TIP If you have High-Performance Computing Management Console installed, you can issue a single `simsh` command to simultaneously check all the machines.
in the cluster: */HPCMC-install-dir/webmin/utilbin/simsh ps -ef | grep hadoop.

3 Delete the Hadoop installation directory on every machine in the cluster:

rm -r -f /hadoop-install-dir

TIP If you have High-Performance Computing Management Console installed, you can issue a single *simsh* command to simultaneously remove the Hadoop install directories on all the machines in the cluster: */HPCMC-install-dir/webmin/utilbin/simsh rm -r -f /hadoop-install-dir.*

4 Re-install Hadoop using *hadoopInstall* as described in “Install SAS High-Performance Deployment of Hadoop” on page 41.

5 Use the *hadoop* user account to run the */hadoop/hadoop/sbin/start-all.sh* command on the NameNode.

Confirm that SAS High-Performance Deployment of Hadoop is running successfully by opening a browser to http://*namenode*:50070/dfshealth.jsp. Review the information in the cluster summary section of the page. Confirm that the number of live nodes equals the number of DataNodes and that the number of dead nodes is zero.

Update the SAS High-Performance Analytics Environment

Updating your deployment of the SAS High-Performance Analytics environment consists of deleting the deployment and reinstalling the newer version. To update the SAS High-Performance Analytics environment, follow these steps:

1 Check that there are no SAS High-Performance Analytics environment processes running on any machine:

```
ps -ef | grep TKGrid
```

If you find any TKGrid processes, terminate them.
TIP If you have High-Performance Computing Management Console installed, you can issue a single `simsh` command to simultaneously check all the machines in the cluster:

```
/HPCMC-install-dir/webmin/utilbin/simsh ps -ef | grep TKGrid.
```

2 Delete the SAS High-Performance Analytics environment installation directory on every machine in the cluster:

```
rm -r -f /HPA-environment-install-dir
```

TIP If you have High-Performance Computing Management Console installed, you can issue a single `simsh` command to simultaneously remove the environment install directories on all the machines in the cluster:

```
```

3 Re-install the SAS High-Performance Analytics environment using the shell script as described in “Install the SAS High-Performance Analytics Environment” on page 52.
Appendix 3

SAS High-Performance Analytics Infrastructure Command Reference

The `simsh` and `simcp` commands are installed with SAS High-Performance Computing Management Console. The default path to the commands is `/HPCMC-install-dir/webmin/utilbin`. Any user account that can access the commands and has passwordless secure shell configured can use them.

The `simsh` command uses secure shell to invoke the specified command on every machine that is listed in the `/etc/gridhosts` file. The following command demonstrates invoking the `hostname` command on each machine in the cluster:

```
/HPCMC-install-dir/webmin/utilbin/simsh hostname
```


The `simcp` command is used to copy a file from one machine to the other machines in the cluster. Passwordless secure shell and an `/etc/gridhosts` file are required. The following command demonstrates copying the `/etc/hosts` file to each machine in the cluster:

```
/hadoop/hadoop/bin/simcp /etc/hosts /etc
```
data set
 See SAS data set

encryption
 the act or process of converting data to a form that is unintelligible except to the intended recipients.

foundation services
 See SAS Foundation Services

grid host
 the machine to which the SAS client makes an initial connection in a SAS High-Performance Analytics application.

Hadoop Distributed File System
 a framework for managing files as blocks of equal size, which are replicated across the machines in a Hadoop cluster to provide fault tolerance.

HDFS
 See Hadoop Distributed File System

identity
 See metadata identity

Integrated Windows authentication
 a Microsoft technology that facilitates use of authentication protocols such as Kerberos. In the SAS implementation, all participating components must be in the same Windows domain or in domains that trust each other.
Internet Protocol Version 6
 See IPv6

IPv6
 a protocol that specifies the format for network addresses for all computers that are connected to the Internet. This protocol, which is the successor of Internet Protocol Version 4, uses hexadecimal notation to represent 128-bit address spaces. The format can consist of up to eight groups of four hexadecimal characters, delimited by colons, as in FE80:0000:0000:0000:0202:B3FF:FE1E:8329. As an alternative, a group of consecutive zeros could be replaced with two colons, as in FE80::0202:B3FF:FE1E:8329. Short form: IPv6

IWA
 See Integrated Windows authentication

JAR file
 a Java Archive file. The JAR file format is used for aggregating many files into one file. JAR files have the file extension .jar.

Java
 a set of technologies for creating software programs in both stand-alone environments and networked environments, and for running those programs safely. Java is an Oracle Corporation trademark.

Java Database Connectivity
 See JDBC

Java Development Kit
 See JDK

JDBC
 a standard interface for accessing SQL databases. JDBC provides uniform access to a wide range of relational databases. It also provides a common base on which higher-level tools and interfaces can be built. Short form: JDBC.
JDK
a software development environment that is available from Oracle Corporation. The JDK includes a Java Runtime Environment (JRE), a compiler, a debugger, and other tools for developing Java applets and applications. Short form: JDK.

localhost
the keyword that is used to specify the machine on which a program is executing. If a client specifies localhost as the server address, the client connects to a server that runs on the same machine.

login
a SAS copy of information about an external account. Each login includes a user ID and belongs to one SAS user or group. Most logins do not include a password.

Message Passing Interface
is a message-passing library interface specification. SAS High-Performance Analytics applications implement MPI for use in high-performance computing environments.

metadata identity
a metadata object that represents an individual user or a group of users in a SAS metadata environment. Each individual and group that accesses secured resources on a SAS Metadata Server should have a unique metadata identity within that server.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a network. The specific attributes that a metadata object includes vary depending on which metadata model is being used.

middle tier
in a SAS business intelligence system, the architectural layer in which Web applications and related services execute. The middle tier receives user requests, applies business logic and business rules, interacts with processing servers and data servers, and returns information to users.
MPI

See Message Passing Interface

object spawner

a program that instantiates object servers that are using an IOM bridge connection. The object spawner listens for incoming client requests for IOM services. When the spawner receives a request from a new client, it launches an instance of an IOM server to fulfill the request. Depending on which incoming TCP/IP port the request was made on, the spawner either invokes the administrator interface or processes a request for a UUID (Universal Unique Identifier).

planned deployment

a method of installing and configuring a SAS business intelligence system. This method requires a deployment plan that contains information about the different hosts that are included in the system and the software and SAS servers that are to be deployed on each host. The deployment plan then serves as input to the SAS Deployment Wizard.

root node

in a SAS High-Performance Analytics application, the role of the software that distributes and coordinates the workload of the worker nodes. In most deployments the root node runs on the machine that is identified as the grid host. SAS High-Performance Analytics applications assign the highest MPI rank to the root node.

SAS Application Server

a logical entity that represents the SAS server tier, which in turn comprises servers that execute code for particular tasks and metadata objects.

SAS authentication

a form of authentication in which the target SAS server is responsible for requesting or performing the authentication check. SAS servers usually meet this responsibility by asking another component (such as the server's host operating system, an LDAP provider, or the SAS Metadata Server) to perform the check. In a few cases (such as SAS internal authentication to the metadata server), the SAS server performs the check for itself. A configuration in which a SAS server trusts that another component
has pre-authenticated users (for example, Web authentication) is not part of SAS authentication.

SAS configuration directory
the location where configuration information for a SAS deployment is stored. The configuration directory contains configuration files, logs, scripts, repository files, and other items for the SAS software that is installed on the machine.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of SAS data sets: SAS data files and SAS data views.

SAS Deployment Manager
a cross-platform utility that manages SAS deployments. The SAS Deployment Manager supports functions such as updating passwords for your SAS deployment, rebuilding SAS Web applications, and removing configurations.

SAS Deployment Wizard
a cross-platform utility that installs and initially configures many SAS products. Using a SAS installation data file and, when appropriate, a deployment plan for its initial input, the wizard prompts the customer for other necessary input at the start of the session, so that there is no need to monitor the entire deployment.

SAS Foundation Services
a set of core infrastructure services that programmers can use in developing distributed applications that are integrated with the SAS platform. These services provide basic underlying functions that are common to many applications. These functions include making client connections to SAS application servers, dynamic service discovery, user authentication, profile management, session context management, metadata and content repository access, activity logging, event management, information publishing, and stored process execution.

SAS installation data file
See SID file
SAS installation directory
the location where your SAS software is installed. This location is the parent
directory to the installation directories of all SAS products. The SAS installation
directory is also referred to as SAS Home in the SAS Deployment Wizard.

SAS IOM workspace
in the IOM object hierarchy for a SAS Workspace Server, an object that represents a
single session in SAS.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories.

SAS Pooled Workspace Server
a SAS Workspace Server that is configured to use server-side pooling. In this
configuration, the SAS object spawner maintains a collection of workspace server
processes that are available for clients.

SAS Software Depot
a file system that consists of a collection of SAS installation files that represents one
or more orders. The depot is organized in a specific format that is meaningful to the
SAS Deployment Wizard, which is the tool that is used to install and initially
configure SAS. The depot contains the SAS Deployment Wizard executable, one or
more deployment plans, a SAS installation data file, order data, and product data.

SAS Stored Process Server
a SAS IOM server that is launched in order to fulfill client requests for SAS Stored
Processes.

SAS Workspace Server
a SAS IOM server that is launched in order to fulfill client requests for IOM
workspaces.
SASHDAT file
the data format used for tables that are added to HDFS by SAS. SASHDAT files are read in parallel by the server.

SASHOME directory
the file location where an instance of SAS software is installed on a computer. The location of the SASHOME directory is established at the initial installation of SAS software by the SAS Deployment Wizard. That location becomes the default installation location for any other SAS software you install on the same machine.

server context
a SAS IOM server concept that describes how SAS Application Servers manage client requests. A SAS Application Server has an awareness (or context) of how it is being used and makes decisions based on that awareness. For example, when a SAS Data Integration Studio client submits code to its SAS Application Server, the server determines what type of code is submitted and directs it to the correct physical server for processing (in this case, a SAS Workspace Server).

server description file
a file that is created by a SAS client when the LASR procedure executes to create a server. The file contains information about the machines that are used by the server. It also contains the name of the server signature file that controls access to the server.

SID file
a control file containing license information that is required in order to install SAS.

spawner
See object spawner

worker node
in a SAS High-Performance Analytics application, the role of the software that receives the workload from the root node.
workspace
 See SAS IOM workspace
Index

A
- accounts
 - See user accounts
- Authen::PAM PERL 14
- authorized_keys file 24

C
- checklists
 - pre-installation for port numbers 20

D
- databases
 - See Greenplum
 - See Teradata
- deployment
 - overview 4
- depot
 - See SAS Software Depot

E
- execution rights
 - Greenplum 62

G
- Greenplum
 - formatter functions 61
 - groups 62
 - preparation 61
 - protocol functions 61
 - roles 62
- gridhosts file 14
 - groups
 - Greenplum 62
 - setting up 10, 24, 49

I
- installation 3

K
- keys
 - See SSH public key

M
- middle tier shared key
 - propagate 34
operating system accounts
See user accounts

perl-Net-SSLeay 14
ports
designating 20
reserving for SAS 20
pre-installation checklists
for port numbers 20
privileges
Teradata 64

required user accounts 10, 24, 49
requirements, system 4
reserving ports
SAS 20
resource queues
Greenplum 62
roles
Greenplum 62

SAS High-Performance
Computing Management
Console
create user accounts 34
deployment 24
logging on 30
middle tier shared key 34
SAS High-Performance
Computing Management
Console server
starting 27
SAS Software Depot 14
SAS system accounts 10, 24, 49
SAS Visual Analytics
deploying 4
secure shell 14
JBoss Application Server
public key 30
propagate keys 34
server
SAS High-Performance
Computing Management
Console 27
SSH
See secure shell
SSH public key
JBoss Application Server 30
SSH public keys
propagate 34
SSL 27
system requirements 4

Teradata
granting privileges 64
user-defined functions for 64

SAS system accounts 10, 24, 49
setting up required accounts 10, 24, 49
user-defined functions
Teradata, for 64

user accounts 10, 24, 49
JBoss Application Server 30