RESOURCES / DOCUMENTATION
 

Binary Data Modeling

/*--------------------------------------------------------------

                    SAS Sample Library

        Name: mdcex01.sas
 Description: Example program from SAS/ETS User's Guide,
              The MDC Procedure
       Title: Binary Data Modeling
     Product: SAS/ETS Software
        Keys: multinomial discrete choice
        PROC: MDC
       Notes:

--------------------------------------------------------------*/

data smdata;
   input gpa tuce psi grade;
datalines;
2.66      20      0        0
2.89      22      0        0
3.28      24      0        0
2.92      12      0        0
4.00      21      0        1
2.86      17      0        0
2.76      17      0        0
2.87      21      0        0
3.03      25      0        0
3.92      29      0        1
2.63      20      0        0
3.32      23      0        0
3.57      23      0        0
3.26      25      0        1
3.53      26      0        0
2.74      19      0        0
2.75      25      0        0
2.83      19      0        0
3.12      23      1        0
3.16      25      1        1
2.06      22      1        0
3.62      28      1        1
2.89      14      1        0
3.51      26      1        0
3.54      24      1        1
2.83      27      1        1
3.39      17      1        1
2.67      24      1        0
3.65      21      1        1
4.00      23      1        1
3.10      21      1        0
2.39      19      1        1
;

data smdata1;
   set smdata;
   retain id 0;
   id + 1;

   /*-- first choice --*/
   choice1 = 1;
   choice2 = 0;
   decision = (grade = 0);
   gpa_2 = 0;
   tuce_2 = 0;
   psi_2 = 0;
   output;

   /*-- second choice --*/
   choice1 = 0;
   choice2 = 1;
   decision = (grade = 1);
   gpa_2 = gpa;
   tuce_2 = tuce;
   psi_2 = psi;
   output;
run;


proc print data=smdata1(obs=10);
   var decision choice2 gpa_2 tuce_2 psi_2;
   id id;
run;

/*-- Conditional Logit --*/
proc mdc data=smdata1;
   model decision = choice2 gpa_2 tuce_2 psi_2 /
            type=clogit
            nchoice=2
            covest=hess;
   id id;
run;

/*-- Multinomial Probit --*/
proc mdc data=smdata1;
   model decision = choice2 gpa_2 tuce_2 psi_2 /
            type=mprobit
            nchoice=2
            covest=hess
            unitvariance=(1 2);
   id id;
run;