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Overview: COPULA Procedure
A multivariate distribution for a random vector contains a description of both the marginal distributions
and their dependence structure. A copula approach to formulating a multivariate distribution provides a
way to isolate the description of the dependence structure from the marginal distributions. A copula is a
function that combines marginal distributions of variables into a specific multivariate distribution. All of the
one-dimensional marginals in the multivariate distribution are the cumulative distribution functions of the
factors. Copulas help perform large-scale multivariate simulation from separate models, each of which can
be fitted using different, even nonnormal, distributional specifications.

The COPULA procedure enables you to fit multivariate distributions or copulas from a given sample data set.
You can do the following:

• estimate the parameters for a specified copula type

• simulate a given copula

• plot dependent relationships among the variables

The following types of copulas are supported:

• normal copula

• t copula

• Clayton copula

• Gumbel copula

• Frank copula

Getting Started: COPULA Procedure
The following example illustrates the use of PROC COPULA. The data used are daily returns on several
major stocks. The main purpose of this example is to estimate the joint distribution of stock returns and then
simulate from this distribution a new sample of specified size.

Figure 10.1 shows the first 10 observations of the daily stock return data set.
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Figure 10.1 First 10 Observations of Daily Returns

Obs date ret_msft ret_ko ret_ibm ret_duk ret_bp

1 01/03/2008 0.004182 0.010367 0.002002 0.003503 0.019114

2 01/04/2008 -0.027960 0.001913 -0.035861 -0.000582 -0.014536

3 01/07/2008 0.006732 0.023607 -0.010671 0.025611 0.017922

4 01/08/2008 -0.033435 0.004239 -0.024610 -0.002838 -0.016049

5 01/09/2008 0.029560 0.026680 0.007301 0.010814 -0.027078

6 01/10/2008 -0.003054 0.004441 0.016414 -0.001689 -0.004395

7 01/11/2008 -0.012255 -0.027346 -0.022546 -0.012408 -0.018473

8 01/14/2008 0.013958 0.008418 0.053857 0.003427 0.001166

9 01/15/2008 -0.011318 -0.010851 -0.010689 -0.017075 -0.040925

10 01/16/2008 -0.022587 -0.015021 -0.001955 0.002316 -0.021336

The following statements fit a normal copula to the returns data (with the FIT statement) and create a new
SAS data set that contains parameter estimates of the model. The VAR statement specifies the list of variables,
which in this case are the daily returns of five large company stocks.

/* Copula estimation */
proc copula data = returns;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
fit normal / outcopula=estimates;

run;

The first table in Figure 10.2 shows some general information about the copula fitting procedure: the number
of observations, the name of the input data set, the type of model and the correlation matrix.

Figure 10.2 Copula Estimation: Fit Summary and Correlation Matrix

The COPULA ProcedureThe COPULA Procedure

Model Fit Summary

Number of Observations 603

Data Set WORK.RETURNS

Copula Type Normal

Correlation Matrix

ret_ibm ret_msft ret_bp ret_ko ret_duk

ret_ibm 1.0000 0.6232 0.5294 0.4725 0.4902

ret_msft 0.6232 1.0000 0.5229 0.5015 0.4567

ret_bp 0.5294 0.5229 1.0000 0.3980 0.4378

ret_ko 0.4725 0.5015 0.3980 1.0000 0.5283

ret_duk 0.4902 0.4567 0.4378 0.5283 1.0000
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Next, the following statements restrict the data set to only those columns that contain correlation parameter
estimates.

/* keep only correlation estimates */
data estimates;

set estimates;
keep ret_ibm ret_msft ret_bp ret_ko ret_duk;

run;

Then, in the following statements, the DEFINE statement specifies a normal copula named COP, and the
CORR= option specifies that the data set Estimates be used as the source for the model parameters. The
NDRAWS=500 option in the SIMULATE statement generates 500 observations from the normal copula. The
OUTUNIFORM= option specifies the name of SAS data set to contain the simulated sample with uniform
marginal distributions. Note that this syntax does not require the DATA= option.

/* Copula simulation of uniforms */
proc copula;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
define cop normal (corr = estimates);
simulate cop / ndraws = 500

seed = 1234
outuniform = simulated_uniforms
plots=(datatype=uniform);

run;

The simulated data is contained in the new SAS data set, Simulated_Uniforms. A scatter plot matrix of
uniform marginals contained in the data set is shown in Output 10.3.
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Figure 10.3 Simulated Data, Uniform Marginals
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The preceding sequence of PROC COPULA usage—first fit, then simulate given estimated parameters—is
a legitimate sequence but has a limitation in that the second COPULA call does not generate the sample
according to the empirical distribution of the raw data. It generates only marginally uniform series.

In the following statements, the FIT statement fits a t copula to the returns data and at the same time simulates
the sample according to empirical marginal distributions:

/* Copula estimation and simulation of returns */
proc copula data = returns;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
fit T;
simulate / ndraws = 1000

seed = 1234
out = simulated_returns;

run;

The output of the statements is similar in structure to the output displayed in Figure 10.2 with the addition of
parameter estimates and inference statistics that are specific to the copula model as shown in Figure 10.4. For
a t copula, the degrees of freedom are displayed (as in Figure 10.4); for Archimedean copulas, the parameter
“theta” is displayed; and for a normal copula, this table is not printed.

Figure 10.4 Copula Estimation: Specific Parameter Estimates

The COPULA ProcedureThe COPULA Procedure

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

DF 3.659320 0.320729 11.41 <.0001

The simulated data is contained in the new SAS data set, Simulated_Returns.

Syntax: COPULA Procedure
The COPULA procedure is controlled by the following statements:

PROC COPULA options ;
VAR variables ;
DEFINE name copula-type < ( parameter-value-options . . . ) > ;
FIT type < NAME=name > < INIT=(parameter-value-options) > / options ;
BOUNDS bound1 < , bound2 . . . > ;
SIMULATE < copula-name-list > / options ;
BY variables ;
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Functional Summary
Table 10.1 summarizes the statements and options used with the COPULA procedure.

Table 10.1 COPULA Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set COPULA DATA=
Specifies the input data set that contains the correla-
tion matrix for elliptical copulas

DEFINE CORR=

Specifies the input data set that contains the corre-
lation matrix defined in Kendall’s tau for elliptical
copulas

DEFINE KENDALL=

Specifies the input data set that contains the correla-
tion matrix defined in Spearman’s rho for elliptical
copulas

DEFINE SPEARMAN=

Specifies the degrees of freedom for t copulas DEFINE DF=
Specifies the parameter value for Archimedean cop-
ulas

DEFINE THETA=

Specifies the hierarchy for hierarchical Archimedean
copulas

DEFINE HIERARCHY=

Declaring the Role of Variables
Specifies the names of the variables to use in copula
fitting or in simulation

VAR

Specifies BY-group processing BY

Plotting Options
Prints a summary iteration listing FIT ITPRINT
Suppresses the normal printed output FIT NOPRINT
Requests all printing options FIT PRINTALL
Suppresses the correlation matrix printed output FIT NOCORR

Printing Control Options
Displays plots for fitted copulas FIT PLOTS=
Displays plots for simulated copulas SIMULATE PLOTS=

Optimization Process Control Options
Sets boundary restrictions on parameters BOUNDS
Selects the iterative minimization method to use FIT METHOD=
Sets initial values for parameters FIT INIT=

Copula Estimation Options
Specifies the marginal distribution of the individual
variables

FIT MARGINALS=
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Description Statement Option

Copula Simulation Options
Specifies the marginal distribution of the simulated
variables

SIMULATE MARGINALS=

Specifies the random sample size SIMULATE NDRAWS=
Specifies the random number generator seed SIMULATE SEED=

Output Control Options
Specifies the output data set to contain the fitted
copula values

FIT OUTCOPULA=

Specifies the output data set to contain pseudo-
samples with the uniform marginal distribution

FIT OUTPSEUDO=

Specifies the output data set to contain the random
samples from the simulation

SIMULATE OUT=

Specifies the output data set to contain the random
samples from the simulation with uniform marginal
distribution

SIMULATE OUTUNIFORM=

PROC COPULA Statement
PROC COPULA < option > ;

The PROC COPULA statement has the following option:

DATA= < libref. >SAS-data-set
specifies the input data set used to estimate parameters for the FIT statement. When the procedure is
used for simulation only, the input data set is not required to run the procedure.If you do not specify
libref, then the Work library is used. Work is the default temporary library that is automatically defined
by SAS at the beginning of each SAS session or job.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement specifies the lower and upper bounds for the parameters. You can use this statement
only when maximum likelihood estimation is used for the specified copula. Each bound is composed of
parameters, constants, and inequality operators in the following format:

operator item < operator item < operator item . . . > >

Each item is a constant, parameter, or list of parameters. Parameters associated with a regressor variable
are referred to by the name of the corresponding regressor variable. Each operator is <, >, <=, or >=. The
following example indicates that the lower and upper bounds for the parameter THETA are �5 and 10,
respectively.
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bounds -5 < THETA < 10;

If you do not specify bounds, the internal default values are used; the default values are described in the
section “Details: COPULA Procedure” on page 521. For the normal and t copulas, the correlation matrix
uses only the default parameter bounds, which are �1 and 1 for lower bound and upper bound, respectively.

BY Statement
BY variables ;

The BY statement specifies groups in which separate FIT analyses for copula are performed. The variables
must be present in the input data set and are excluded from the model fitting. The BY statement requires the
VAR statement to be present.

DEFINE Statement
DEFINE name copula-type < ( parameter-value-options ... ) > ;

The DEFINE statement specifies the relevant information of the copula used for the simulation.

name specifies the name of the copula definition, which can be used later in the SIMULATE
statement.

copula-type specifies one of the following types of the copula:

NORMAL specifies the normal copula.

T specifies the t copula.

CLAYTON specifies the Clayton copula.

GUMBEL specifies the Gumbel copula.

FRANK specifies the Frank copula.

HACCLAYTON specifies the hierarchical Clayton copula.

HACGUMBEL specifies the hierarchical Gumbel copula.

HACFRANK specifies the hierarchical Frank copula.

These copula models are also described in the section “Details: COPULA Procedure” on
page 521.

parameter-value-options
specify the input parameters used to simulate the specified copula. These options must be
appropriate for the type of copula specified. The following options are valid:

CORR=SAS-data-set
specifies the data set that contains the correlation matrix to use for elliptical copulas.
If the correlation matrix is valid but not submitted in order, then you must provide
the variable names in the first column of the matrix and these names must match
the variable names in the VAR statement. See Output 10.2.1 for an example of a



516 F Chapter 10: The COPULA Procedure

correlation matrix input in this form. If the correlation matrix is submitted in order,
the first column of variable names is not required. This option can be used for the
normal and t copulas.

KENDALL=SAS-data-set
specifies the data set that contains the correlation matrix defined in Kendall’s tau. If
the correlation matrix is valid but not submitted in order, then you must provide the
variable names in the first column of the matrix and these names must match the
variable names in the VAR statement. If the correlation matrix is submitted in order,
the first column of variable names is not required. This option can be used for the
normal and t copulas.

SPEARMAN=SAS-data-set
specifies the data set that contains the correlation matrix defined in Spearman’s rho.
If the correlation matrix is valid but not submitted in order, then you must provide
the variable names in the first column of the matrix and these names must match the
variable names in the VAR statement. If the correlation matrix is submitted in order,
the first column of variable names is not required. This option can be used for the
normal copula.

DF=value
specifies the degrees of freedom. This option can be used for the t copula.

THETA=value
specifies the parameter value for the Archimedean copulas.

HIERARCHY=(name=(HAC-specification)(THETA=value)) (Experimental )
specifies the hierarchy for hierarchical Archimedean copulas. The argument usually
consists of multiple specification lines, with each line specifying one copula in the
hierarchy. name can be user-defined symbols, with the exception of the copula at
the top of the hierarchy, which must be named ROOT. The HAC-specification is a
list of symbols that can be either defined copula names or variable names from the
VAR statement, depending on whether the element of the copula is a variable or an
inner copula in the hierarchy. For example, you can use the following code to define
a hierarchical Archimedean copula, with the hierarchy shown in Figure 10.5:

var u1-u4;
define cop hacclayton hierarchy=(
root = (c1 c2)(theta=1)
c1 = (u1 u2)(theta=3)
c2 = (u3 u4)(theta=5));

Note that as long as the specification is valid, the order of the specification lines
does not matter. In the previous example, you could first list c1 and c2, and then
define root .

The DEFINE statement is used with the SIMULATE statement.The FIT statement can also be used with
the SIMULATE statement. The results of the FIT statement can be the input of the SIMULATE statement.
Therefore, the SIMULATE statement can follow the FIT statement.If there is no FIT statement, then the
DEFINE statement must precede SIMULATE statement. However, the FIT and DEFINE statements cannot
both be used in the same procedure.
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FIT Statement
FIT type < NAME=name >< INIT=(parameter-value-options) > /options ;

The FIT statement estimates the parameters for a specified copula type.

type
specifies the type of the copula to be estimated, which is one of the following:

NORMAL fits the normal copula

T fits the t copula

CLAYTON fits the Clayton copula

GUMBEL fits the Gumbel copula

FRANK fits the Frank copula

NAME=name
specifies an identifier for the fit, which is stored as an ID variable in the OUTCOPULA= data set.

INIT=(parameter-value-options)
provides the initial values for the numerical optimization. For Archimedean copulas, the initial values of
the parameter are computed using the calibration method. The initial value for the degrees-of-freedom
parameter in the t copula is set to 2.0.

You can specify the following options after a slash (/):

METHOD=MLE | CAL
specifies the method used to estimate parameters. MLE represents canonical maximum likelihood
estimation (CMLE) or maximum likelihood estimation (MLE). CAL is the calibration method that
uses the correlation matrix (only Kendall’s tau is implemented in this procedure). For the t copula, if
METHOD=CAL, then the correlation matrix is estimated using the calibration method with Kendall’s
tau and the degrees of freedom are estimated by the MLE. For the normal copula, only MLE is
supported and METHOD=CAL is ignored. The default for all copula types is METHOD=MLE.

OUTCOPULA=SAS-data-set
specifies the name of the output data set. Each fitted copula is written to the OUTCOPULA= data set.
The data set is not created if this option is not specified.

OUTPSEUDO=SAS-data-set
specifies the output data set for saving the pseudo-samples with uniform marginal distributions. The
pseudo-samples are obtained by transforming the individual variables of the original data with the
empirical cumulative distribution functions (CDFs). The data set is not created if this option is not
specified.

MARGINALS=UNIFORM | EMPIRICAL
specifies the marginal distribution of the individual variables. If MARGINALS=UNIFORM, then
the copula is fitted with the input data without transformation. If MARGINALS=EMPIRICAL, the
marginal empirical CDF is used to transform the data and the copula is fitted using the transformed
data.
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PLOTS<(global-plot-options)> < = (specific-plot-options)>
controls the plots that are produced by the COPULA procedure. By default, PROC COPULA produces
a scatter plot matrix for variables (that is, it displays a symmetric matrix plot with the variables that are
specified in the VAR statement).

You can specify the following global-plot-options:

UNPACKPANEL | UNPACK
requests scatter plots for pairs of variables. If you specify this option, PROC COPULA displays
a scatter plot for each applicable pair of distinct variables that are specified in the VAR statement.

NVAR=ALL | n
specifies the maximum number of variables specified in the VAR statement to be displayed in the
matrix plot. The NVAR=ALL option uses all variables that are specified in the VAR statement.
By default, NVAR=5.

TAIL | CHI
requests that tail dependence plots (chi-plots) be plotted. If you specify this option with the
UNPACK option on, PROC COPULA displays a chi-plot for each applicable pair of distinct
variables that are specified in the VAR statement. If you specify this option without the UNPACK
option, PROC COPULA displays a scatter plot matrix, the lower triangular section shows regular
scatter plots between distinct pairs of variables that are specified in the VAR statement, the upper
triangular section shows chi-plots for corresponding pairs of variables.

You can specify the following specific-plot-options:

DATATYPE=ORIGINAL | UNIFORM | BOTH
requests the data type to be plotted. DATA=ORIGINAL presents the data in its original marginal
distribution; DATA=UNIFORM shows the transformed data with uniform marginal distribution;
and DATA=BOTH plots both the original and uniform data types. If MARGINALS=UNIFORM,
then the transformation is omitted and the DATA= option is ignored.

NONE
suppresses all plots.

Printing Options

ITPRINT
prints a summary iteration listing.

PRINTALL
default option.

NOCORR
suppresses the correlation matrix.

NOPRINT
suppresses all output.
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SIMULATE Statement
SIMULATE < copula-name-list >/options ;

The SIMULATE statement simulates data from a specified copula model. The copula name specification can
be either the name of a defined copula as specified by name in the DEFINE statement or the name of a fitted
copula specified in the NAME= option in the FIT statement copula specification.

MARGINALS=UNIFORM | EMPIRICAL
specifies how the marginal distributions are computed. If MARGINALS=UNIFORM, then the samples
are drawn from the copula distribution and marginal distributions are uniform.

MARGINALS=EMPIRICAL can be used to explicitly specify that the marginal distributions are
empirical CDF computed from the DATA= option in the PROC COPULA statement.

If the MARGINALS= option is not specified in the SIMULATE statement, then the marginal distribu-
tions used in the simulation depend on whether a preceding FIT statement was used: If there is no FIT
statement, the marginal distributions depend on whether the PROC COPULA statement includes a
DATA= option. If there is a preceding FIT statement, then the marginal distributions from that fit are
used. If there is no FIT statement and there is no DATA= option, then MARGINALS=UNIFORM.

OUT=SAS-data-set
specifies the output data set for the random samples from the simulation. This data set is the SAS data
set in the OUTUNIFORM= option transformed by the inverse empirical CDF. This option is useful
only when an input data exists and MARGINALS=EMPIRICAL. The data set is not created if this
option is not specified.

OUTUNIFORM=SAS-data-set
specifies the output data set for the result of the simulation in uniforms. This option can be used when
MARGINALS=UNIFORM or when MARGINALS=EMPIRICAL. If MARGINALS=EMPIRICAL,
then this option enables you to obtain the samples simulated from the joint distribution specified by
the copula, with all marginal distributions being uniform. The data is not created if this option is not
specified.

NDRAWS=integer
specifies the number of draws to generate for this simulation. The default is 100.

SEED=integer
specifies the seed for generating random numbers for the simulation. If the seed is not provided, a
random number is used as the seed.

PLOTS<(global-plot-options)> < = (specific-plot-options)>
controls the plots that are produced by the COPULA procedure. By default, the PROC COPULA
produces a scatter plot matrix for variables. You can specify any of the following global-plot-options:

UNPACKPANEL | UNPACK
requests scatter plots for pairs of variables. If you specify this option, PROC COPULA displays
a scatter plot for each applicable pair of distinct variables that are specified in the VAR statement.
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NVAR=ALL | n
specifies the maximum number of variables specified in the VAR statement to be displayed in the
matrix plot. The NVAR=ALL option uses all variables that are specified in the VAR statement.
By default, NVAR=5.

TAIL | CHI
requests that tail dependence plots (chi-plots) be plotted. If you specify this option with the
UNPACK option on, PROC COPULA displays a chi-plot for each applicable pair of distinct
variables that are specified in the VAR statement. If you specify this option without the UNPACK
option, PROC COPULA displays a scatter plot matrix, the lower triangular section shows regular
scatter plots between distinct pairs of variables that are specified in the VAR statement, the upper
triangular section shows chi-plots for corresponding pairs of variables.

You can specify the following specific-plot-options:

DATATYPE=ORIGINAL | UNIFORM | BOTH
requests the data type to be plotted. DATA=ORIGINAL presents the data in its original marginal
distribution; DATA=UNIFORM shows the transformed data with uniform marginal distribution;
and DATA=BOTH plots both the original and uniform data types. If MARGINALS=UNIFORM,
then the transformation is omitted and the DATA= option is ignored. If there is no input data,
then the simulated data can only have uniform marginal distributions; in this case, the DATA=
option is ignored.

DISTRIBUTION=PDF | CDF
requests distributional graphs for the case of two variables. DISTRIBUTION=PDF specifies that
the theoretical probability density function is provided with both a contour plot and a surface plot.
DISTRIBUTION=CDF requests the graph for the theoretical cumulative distribution function of
the copula.

NONE
suppresses all plots.

VAR Statement
VAR variables ;

The VAR statement specifies the variable names in the input data set specified by the DATA= option in the
PROC COPULA statement. The subset of variables in the data set is used for the copula models in the FIT
statement. When there is no input data set, the VAR statement creates the names of the list of variables for
the SIMULATE statement.
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Details: COPULA Procedure

Sklar’s Theorem
The copula models are tools for studying the dependence structure of multivariate distributions. The usual
joint distribution function contains the information both about the marginal behavior of the individual random
variables and about the dependence structure between the variables. The copula is introduced to decouple the
marginal properties of the random variables and the dependence structures. A m-dimensional copula is a
joint distribution function on Œ0; 1�m with all marginal distributions being standard uniform. The common
notation for a copula is C.u1; : : : ; um/.

The Sklar (1959) theorem shows the importance of copulas in modeling multivariate distributions. The first
part claims that a copula can be derived from any joint distribution functions, and the second part asserts the
opposite: that is, any copula can be combined with any set of marginal distributions to result in a multivariate
distribution function.

• Let F be a joint distribution function and Fj ; j D 1; : : : ; m be the marginal distributions. Then there
exists a copula C W Œ0; 1�m ! Œ0; 1� such that

F.x1; : : : ; xm/ D C.F1.x1/; : : : ; Fm.xm//

for all x1; : : : ; xm in Œ�1;1�. Moreover, if the margins are continuous, then C is unique; otherwise
C is uniquely determined on RanF1 � : : : � RanFm, where RanFj D Fj .Œ�1;1�/ is the range of
Fj .

• The converse is also true. That is, if C is a copula and F1; : : : ; Fm are univariate distribution functions,
then the multivariate function defined in the preceding equation is a joint distribution function with
marginal distributions Fj ; j D 1; : : : ; m.

Dependence Measures
There are three basic types of measures: linear correlation, rank correlation, and tail dependence. Linear
correlation is given by

� � corr.X; Y / D
cov.X; Y /p

var.X/
p

var.Y /

The linear correlation coefficient carries very limited information about the joint properties of the variables.
A well-known property is that uncorrelatedness does not imply independence, while independence implies
noncorrelation. In addition, there exist distinct bivariate distributions that have the same marginal distribution
and the same correlation coefficient. These results suggest that caution must be used when interpreting the
linear correlation.

Another statistical measure of dependence is called rank correlation, which is nonparametric. Kendall’s
tau, for example, is the covariance between the sign statistic X1 � QX1 and X2 � QX2, where . QX1; QX2/ is an
independent copy of .X1; X2/:

�� � EŒsign.X1 � QX1/.X2 � QX2/�
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The sign function (sometimes written as sgn) is defined by

sign.x/ D

8̂<̂
:
�1 ifx � 0
0 ifx D 0
1 ifx � 0

Spearman’s rho is the correlation between the transformed random variables:

�S .X1; X2/ � �.F1.X1/; F2.X2//

The variables are transformed by their distribution functions so that the transformed variables are uniformly
distributed on Œ0; 1�. The rank correlations depend only on the copula of the random variables and are
indifferent to the marginal distributions. Like linear correlation, the rank correlations have their limitations.
In particular, there are different copulas that result in the same rank correlation.

A third measure focuses on only part of the joint properties between the variables. Tail dependence measures
the dependence when both variables are at extreme values. Formally, they can be defined as the conditional
probabilities of quantile exceedances. There are two types of tail dependence:

• The upper tail dependence, denoted �u, is

�u.X1; X2/ � lim
q�>1�

P.X2 > F
�1
2 .q/jX1 > F

�1
1 .q//

when the limit exists �u 2 Œ0; 1�. Here F�1j is the quantile function (that is, the inverse of the CDF).

• The lower tail dependence is defined symmetrically.

Tail dependence is hard to detect by looking at a scatter plot of realizations of two random variables. One
graphical way to detect tail dependence between two variables is by creating the chi plot of those two
variables. The chi plot, as defined in Fisher and Switzer (2001), has characteristic patterns that depend on
the dependence structure between the variables. The chi plot for the random variables X and Y is a scatter
plot of the pairs .�i ; �i / for each data point .xi ; yi /. �i is a measure of the distance of the data point .xi ; yi /
from the center of the data as measured by the median values of .xi ; yi /, and �i is a correlation coefficient
between dichotomized values of X and Y . A positive �i means that xi and yi are either both large with
respect to their median values or both small. A negative �i means that xi or yi is large with respect to its
median, whereas the other value is small. Signs of tail dependence manifest as clusters of points that are
significantly far from the � axis around � values of ˙1. If X and Y are uncorrelated, the � values cluster
around the � axis.

Normal Copula
Let uj � U.0; 1/ for j D 1; : : : ; m, where U.0; 1/ represents the uniform distribution on the Œ0; 1� interval.
Let† be the correlation matrix withm.m�1/=2 parameters satisfying the positive semidefiniteness constraint.
The normal copula can be written as

C†.u1; u2; : : :um/ D ˆ†

�
ˆ�1.u1/; : : :ˆ

�1.um/
�

where ˆ is the distribution function of a standard normal random variable and ˆ† is the m-variate standard
normal distribution with mean vector 0 and covariance matrix †. That is, the distribution ˆ† is Nm.0;†/.
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Simulation

For the normal copula, the input of the simulation is the correlation matrix †. The normal copula can be
simulated by the following steps in which U D .U1; : : : ; Um/ denotes one random draw from the copula:

1. Generate a multivariate normal vector Z � N.0;†/ where † is an m-dimensional correlation matrix.

2. Transform the vector Z into U D .ˆ.Z1/; : : : ; ˆ.Zm//
T , where ˆ is the distribution function of

univariate standard normal.

The first step can be achieved by Cholesky decomposition of the correlation matrix † D LLT where L is a
lower triangular matrix with positive elements on the diagonal. If QZ � N.0; I /, then L QZ � N.0;†/.

Fitting

To fit a normal copula is to estimate the covariance matrix † from an input sample data set. Given a random
sample ui D .ui;1; : : : ; ui;m/> where i D 1; : : : ; n, the log-likelihood function is

logL.†Iu1; : : : ;un/

D

nX
tD1

log f†.ˆ�1.ut;1/; : : : ; ˆ�1.ut;m// �
nX
tD1

mX
jD1

log �.ˆ�1.ut;j //

Here f† is the joint density of the multivariate normal with mean zero and variance†, and � is the univariate
density of the standard normal distribution. Note that the second term is not related to the parameters †
and, therefore, can be ignored during the optimization. The restriction that † is a correlation matrix is
very inconvenient, and it is common practice to circumvent this problem by first assuming that † has the
covariance form. Therefore, † can be estimated by

b† D 1

n

nX
iD1

�i�
T
i

where

�i D
�
ˆ�1.ui;1/; ˆ

�1.ui;2/; : : :; ˆ
�1.ui;m/

�T
This estimate is consistent with the form of a covariance matrix but not necessarily with the form of a
correlation matrix. The approximation to the original MLE problem can be obtained using the normalizing
operator defined as follows:

�.†/ D diag.�1=211 ; : : : ; �
1=2
mm/

P.†/ D .�.†//�1†.�.†//�1

Student’s t copula
Let ‚ D f.�;†/ W � 2 .1;1/; † 2 Rm�mgand let t� be a univariate t distribution with � degrees of freedom.

The Student’s t copula can be written as

C‚.u1; u2; : : :um/ D ttt�;†

�
t�1� .u1/; t

�1
� .u2/; : : :; t

�1
� .um/

�
where ttt�;† is the multivariate Student’s t distribution with a correlation matrix † with � degrees of freedom.
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Simulation

The input parameters for the simulation are .�;†/. The t copula can be simulated by the following the two
steps:

1. Generate a multivariate vector X � tm.�; 0;†/ following the centered t distribution with � degrees of
freedom and correlation matrix †.

2. Transform the vector X into U D .t�.X1/; : : : ; t�.Xm//
T , where t� is the distribution function of

univariate t distribution with � degrees of freedom.

To simulate centered multivariate t random variables, you can use the property that X � tm.�; 0;†/ if
X D

p
�=sZ , where Z � N.0;†/ and the univariate random variable s � �2� .

Fitting

To fit a t copula is to estimate the covariance matrix† and degrees of freedom � from a given multivariate data
set. Given a random sampleuuui D .ui;1; : : : ; ui;m/

>, i D 1; : : : ; n that has uniform marginal distributions,
the log likelihood is

logL.�;†Iui;1; : : : ; ui;m/

D

nX
iD1

log g�;†.t�1� .ui;1/; : : :; t
�1
� .ui;m// �

nX
iD1

mX
jD1

log g�.t�1� .ui;j //

where � denotes the degrees of freedom of the t copula, g�;† denotes the joint density function of the centered
multivariate t distribution with parameters .�;†/, t� is the distribution function of a univariate t distribution
with � degrees of freedom, † is a correlation matrix, and g� is the density function of univariate t distribution
with � degrees of freedom.

The log likelihood can be maximized with respect to the parameters � D .�;†/ 2 ‚ using numerical
optimization. If you allow the parameters in † to be such that † is symmetric and with ones on the diagonal,
then the MLE estimate for†might not be positive semidefinite. In that case, you need to apply the adjustment
to convert the estimated matrix to positive semidefinite, as shown by McNeil, Frey, and Embrechts (2005),
Algorithm 5.55.

When the dimension of the data m increases, the numerical optimization quickly becomes infeasible. It
is common practice to estimate the correlation matrix † by calibration using Kendall’s tau. Then, using
this fixed †, the single parameter � can be estimated by MLE. By proposition 5.37 in McNeil, Frey, and
Embrechts (2005),

�� .Ui ; Uj / D
2

�
arcsin�ij

where �� is the Kendall’s tau and �ij is the off-diagonal elements of the correlation matrix † of the t copula.
Therefore, an estimate for the correlation is

O�ij D sin
�
1

2
� O��i;j

�
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where O� and O�� are the estimates of the sample correlation matrix and Kendall’s tau, respectively. However, it
is possible that the estimate of the correlation matrix O† is not positive definite. In this case, there is a standard
procedure that uses the eigenvalue decomposition to transform the correlation matrix into one that is positive
definite. Let † be a symmetric matrix with ones on the diagonal, with off-diagonal entries in Œ�1; 1�. If † is
not positive semidefinite, use Algorithm 5.55 from McNeil, Frey, and Embrechts (2005):

1. Compute the eigenvalue decomposition † D EDET , where D is a diagonal matrix that contains all
the eigenvalues and E is an orthogonal matrix that contains the eigenvectors.

2. Construct a diagonal matrix QD by replacing all negative eigenvalues in D by a small value ı > 0.

3. Compute Q† D E QDET , which is positive definite but not necessarily a correlation matrix.

4. Apply the normalizing operator P on the matrix Q† to obtain the correlation matrix desired.

The log likelihood function and its gradient function for a single observation are listed as follows, where
� D .�1; : : : ; �m/, with �j D t�1� .uj /, and g is the derivative of the log� function:

l D log.c/ D �
1

2
log.j†j/C log�

�
� Cm

2

�
C .m � 1/ log�

��
2

�
�m log�

�
� C 1

2

�
�
� Cm

2
log.1C �T†�1�=�/C

� C 1

2

mX
jD1

log

 
1C

�2j

�

!
@l

@�
D
1

2
g

�
� Cm

2

�
C
m � 1

2
g
��
2

�
�
m

2
g

�
� C 1

2

�
�
1

2
log.1C �T†�1�=�/C

� Cm

2�2
�T†�1�

1C �T†�1�=�

C
1

2

mX
jD1

log.1C �2j =�/ �
� C 1

2�2

mX
jD1

�2j

1C �2j =�

�
.� Cm/

�

�T†�1.d�=d�/

1C �T†�1�=�
C
� C 1

�

X �j .d�j =d�/

1C �2j =�

The derivative of the likelihood with respect to the correlation matrix † follows:

@l

@†
D �

1

2
.†�1/T C

� Cm

2

†�T ��T†�T =�

1C �T†�1�=�

D �
1

2
.†�1/T C

� Cm

2

†�T ��T†�T

� C �T†�1�
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Archimedean Copulas

Overview of Archimedean Copulas

Let function � W Œ0; 1�! Œ0;1/ be a strict Archimedean copula generator function and suppose its inverse
��1 is completely monotonic on Œ0;1/. A strict generator is a decreasing function � W Œ0; 1� ! Œ0;1/

that satisfies �.0/ D 1 and �.1/ D 0. A decreasing function f .t/ W Œa; b� ! .�1;1/ is completely
monotonic if it satisfies

.�1/k
dk

dtk
f .t/ � 0; k 2 N; t 2 .a; b/

An Archimedean copula is defined as follows:

C.u1; u2; : : : ; um/ D �
�1
�
�.u1/C � � � C �.um/

�
The Archimedean copulas available in the COPULA procedure are the Clayton copula, the Frank copula, and
the Gumbel copula.

Clayton Copula

Let the generator function �.u/ D ��1
�
u�� � 1

�
. A Clayton copula is defined as

C� .u1; u2; : : :; um/ D

"
mX
iD1

u��i �mC 1

#�1=�
with � > 0.

Frank Copula

Let the generator function be

�.u/ D � log
�
exp.��u/ � 1
exp.��/ � 1

�
A Frank copula is defined as

C� .u1; u2; : : :; um/ D
1

�
log

�
1C

Qm
iD1Œexp.��ui / � 1�
Œexp.��/ � 1�m�1

�
with � 2 .�1;1/nf0g for m D 2 and � > 0 for m � 3.

Gumbel Copula

Let the generator function �.u/ D .� log u/� . A Gumbel copula is defined as

C� .u1; u2; : : :; um/ D exp

8<:�
"
mX
iD1

.� log ui /�
#1=�9=;

with � > 1.
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Simulation

Suppose the generator of the Archimedean copula is �. Then the simulation method using Laplace-
Stieltjes transformation of the distribution function is given by Marshall and Olkin (1988) where QF .t/ DR1
0 e�txdF.x/:

1. Generate a random variable V with the distribution function F such that QF .t/ D ��1.t/.

2. Draw samples from independent uniform random variables X1; : : : ; Xm.

3. Return U D . QF .� log.X1/=V /; : : : QF .� log.Xm/=V //T .

The Laplace-Stieltjes transformations are as follows:

• For the Clayton copula, QF D .1C t /�1=� , and the distribution function F is associated with a Gamma
random variable with shape parameter ��1 and scale parameter one.

• For the Gumbel copula, QF D exp.�t1=� /, and F is the distribution function of the stable variable
St.��1; 1; ; 0/ with  D Œcos.�=.2�//�� .

• For the Frank copula with � > 0, QF D � logf1 � exp.�t /Œ1 � exp.��/�g=� , and F is a discrete
probability function P.V D k/ D .1 � exp.��//k=.k�/. This probability function is related to a
logarithmic random variable with parameter value 1 � e�� .

For details about simulating a random variable from a stable distribution, see Theorem 1.19 in Nolan (2010).
For details about simulating a random variable from a logarithmic series, see Chapter 10.5 in Devroye (1986).

For a Frank copula with m D 2 and � < 0, the simulation can be done through conditional distributions as
follows:

1 Draw independent v1; v2 from a uniform distribution.

2 Let u1 D v1.

3 Let u2 D �1� log
�
1C v2.1�e

�� /

v2.e
��v1�1/�e��v1

�
.

Fitting

One method to estimate the parameters is to calibrate with Kendall’s tau. The relation between the parameter
� and Kendall’s tau is summarized in the following table for the three Archimedean copulas.

Table 10.2 Calibration Using Kendall’s Tau

Copula Type � Formula for �

Clayton �=.� C 2/ 2�=.1 � �/

Gumbel 1 � 1=� 1=.1 � �/

Frank 1 � 4��1.1 �D1.�// No closed form
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In Table 10.2, D1.�/ D ��1
R �
0 t=.exp.t/ � 1/dt for � > 0, and D1.�/ D D1.�/C 0:5� for � < 0. In

addition, for the Frank copula, the formula for � has no closed form. The numerical algorithm for root finding
can be used to invert the function �.�/ to obtain � as a function of � .

Alternatively, you can use the MLE or the CMLE method to estimate the parameter � given the data
u D fui;j g and i D 1; : : : ; n; j D 1; : : : ; m. The log-likelihood function for each type of Archimedean
copula is provided in the following sections.

Fitting the Clayton Copula
For the Clayton copula, the log-likelihood function is as follows (Cherubini, Luciano, and Vecchiato 2004,
Chapter 7):

l D n

�
m log.�/C log

�
�

�
1

�
Cm

��
� log

�
�

�
1

�

���
� .� C 1/

X
i;j

log uij

�

�
1

�
Cm

�X
i

log

0@X
j

u��ij �mC 1

1A
Let g.�/ be the derivative of log.�.�//. Then the first order derivative is

dl

d�
D n

�
m

�
C g

�
1

�
Cm

�
�1

�2
� g

�
1

�

�
�1

�2

�

�

X
i;j

log.uij /C
1

�2

X
i

log

0@X
j

u��ij �mC 1

1A
�

�
1

�
Cm

�X
i

�
P
j u
��
ij log.uij /P

j u
��
ij �mC 1

The second order derivative is

d2l

d�2
D n

�
�m

�2
C g0

�
1

�
Cm

�
1

�4
C g

�
1

�
Cm

�
2

�3
� g0

�
1

�

�
1

�4
� g

�
1

�

�
2

�3

�

�
2

�3

X
i

log

0@X
j

u��ij �mC 1

1A
C

2

�2

X
i

�
P
j u
��
ij log uijP

j u
��
ij �mC 1

�

�
1

�
Cm

�X
i

8<:
P
j u
��
ij .log uij /2P

j u
��
ij �mC 1

�

 P
j u
��
ij log uijP

j u
��
ij �mC 1

!29=;
Fitting the Gumbel Copula

A different parameterization ˛ D ��1 is used for the following part, which is related to the fitting of the
Gumbel copula. For Gumbel copula, you need to compute ��1.m/. It turns out that for k D 1; 2; : : : ; m,

��1.k/.u/ D .�1/k˛ exp.�u˛/u�kC˛‰k�1.u˛/
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where ‰k�1 is a function that is described later. The copula density is given by

c D ��1.m/ .x/
Y
k

�0 .uk/

D .�1/m ˛ exp
�
�x˛

�
x�kC˛‰m�1

�
x˛
�Y
k

�0 .uk/

D .�1/m f1f2f3f4f5

where x D
P
k � .uk/, f1 D ˛, f2 D exp.�x˛/,f3 D x�kC˛,f4 D ‰m�1.x

˛/, and f5 D

.�1/m
Q
k �
0.uk/.

The log density is

l D log.c/
D log .f1/C log .f2/C log .f3/C log .f4/C log

�
.�1/m f5

�
Now the first order derivative of the log density has the decomposition

dl

d˛
D

1

c

dc

d˛
D

4X
jD1

1

fj

dfj

d˛
C
d
P
k log .��0 .uk//

d˛

Some of the terms are given by

1

f1

df1

d˛
D

1

˛

1

f2

df2

d˛
D �x˛ log .x/ � ˛x˛�1

dx

d˛

1

f3

df3

d˛
D log .x/C .�k C ˛/ x�1

dx

d˛

where

dx

d˛
D

X
.� log uk/1=˛ log .� log uk/

�
�1

˛2

�
The last term in the derivative of the dl=d˛ is

log
�
��0 .uk/

�
D log

�
1

˛
.� log uk/

1
˛
�1 1

uk

�
D � log ˛ � log .uk/C

�
1

˛
� 1

�
log .� log .uk//

d
P
k log .��0 .uk//

d˛
D

mX
kD1

�
1

˛
�
1

˛2
log .� log .uk//

D �
m

˛
�
1

˛2

mX
kD1

log .� log .uk//
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Now the only remaining term is f4, which is related to ‰m�1. Wu, Valdez, and Sherris (2007) show that
‰k.x/ satisfies a recursive equation

‰k.x/ D Œ˛.x � 1/C k�‰k�1.x/ � ˛x‰
0
k�1.x/

with ‰0.x/ D 1.

The preceding equation implies that ‰k�1.x/ is a polynomial of x and therefore can be represented as

‰k�1 .x/ D

k�1X
jD0

aj .k � 1; ˛/ x
j

In addition, its coefficient, denoted by aj .k � 1; ˛/, is a polynomial of ˛. For simplicity, use the notation
aj .˛/ � aj .m � 1; ˛/. Therefore,

f4 D ‰m�1
�
x˛
�
D

m�1X
jD0

aj .˛/ x
j˛

df4

d˛
D
d‰m�1 .x

˛/

d˛

D

m�1X
jD0

�
daj .˛/

d˛
xj˛ C aj .˛/ x

j˛ log .x/ j C aj .˛/ .j˛/ xj˛�1
dx

d˛

�

Fitting the Frank copula

For the Frank copula,

��1.k/.u/ D �
1

�
‰k�1

�
.1C e�u.e�� � 1//�1

�
When � > 0, a Frank copula has a probability density function

c D '�1.m/ .x/
Y
k

'0 .uk/

D
�1

�
‰m�1

 
1

1C e�x
�
e�� � 1

�!Y
k

'0 .uk/

where x D
P
k ' .uk/.

The log likelihood is

log c D � log .�/C log

 
‰m�1

 
1

1C e�x
�
e�� � 1

�!!CX log
�
'0 .uk/

�
Denote

y D
1

1C e�x
�
e�� � 1

�
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Then the derivative of the log likelihood is

d log c
d�

D �
1

�
C

1

‰m�1 .y/

d‰m�1

d�
C

X
k

1

'0 .uk/

d'0 .uk/

d�

The term in the last summation is

1

'0 .uk/

d'0 .uk/

d�
D

1

�
�
1 � e�uk

� h1 � e�uk C �ue�uki
The function ‰m�1 satisfies a recursive relation

‰k.x/ D x.x � 1/‰
0
k�1.x/

with ‰0.x/ D x � 1. Note that ‰m�1 is a polynomial whose coefficients do not depend on � ; therefore,

d‰m�1

d�
D

d‰m�1

dy

dy

d�

D
d‰m�1

dy

�
dy

d�
C
dy

dx

dx
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�

D
d‰m�1

dy

24 e�xe���
1C e�x

�
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��2 C e�x
�
e�� � 1

�
�
1C e�x

�
e�� � 1

��2 dxd�
35
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dx

d�
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For the case of m D 2 and � < 0, the bivariate density is

log c D log.�.1 � e�� // � �.u1 C u2/ � log..1 � e�� � .1 � e��u1/.1 � e��u2//2/

Hierarchical Archimedean Copula (HAC) (Experimental)
Adopting the notations of Savu and Trede (2010), let L denote the total level of hierarchies and let D denote
the dimension of the HAC. There are nl distinct copulas at each level l; l D 1; : : : ; L. These copulas are
indexed by .l; j /; j D 1; : : : ; nl . At each level, there are also dl variables, 0 � dl � D and

P
l dl D D. In

the first step, all the variables at the lowest level are grouped into n1 subsets, each subset being an ordinary
multivariate Archimedean copula

C1;j .u1;j / D �
�1
1;j

0@X
u1;j

�1;j .u1;j /

1A ; j D 1; : : : ; n1
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where �1;j is the generator of copula C1;j , u1;j denotes the variables that belong to copula C1;j , and the
sum

P
u1;j

is the sum over each variable in the subset u1;j . The copulas C1;j can be different Archimedean
copulas for j D 1; : : : ; n1. Then at the second level, the copulas C1;j that are derived in the first level are
aggregated as if they are individual variables. Suppose there are n2 copulas and d2 variables,

C2;j .C1;j ;u2;j / D �
�1
2;j

0@X
C1;j

�2;j .C1;j /C
X
u2;j

�2;j .u2;j /

1A
where �2;j denotes the generator of C2;j and C1;j represents the subset of copulas in C1;h; h D 1; : : : ; n1,
that is aggregated for copula C2;j for j D 1; : : : ; n2. This structure continues until at level l D L a single
copula CL;1 aggregates all the copulas at its previous level, l D L � 1.

A four-dimensional example that has total levels L D 2 and a structure shown in Figure 10.5 is defined as
follows:

C2;1.u1; u2; u3; u4/ D C2;1
�
C1;1.u1; u2/; C1;2.u3; u4/

�
D ��12;1

�
�2;1 ı �

�1
1;1

�
�1;1.u1/C �1;1.u2/

�
C �2;1 ı �

�1
1;2

�
�1;2.u3/C �1;2.u4/

��
Figure 10.5 Example Four-Dimensional Hierarchical Structure with Two Levels

Theorem 4.4 of McNeil (2008) states that the sufficient condition for a general hierarchical Archimedean
structure to be a proper copula is that all appearing nodes of the form �m;j ı �

�1
n;j have completely monotone

derivatives. This condition places certain constraints on the copula parameters. In particular, if all the copulas
in a hierarchical structure come from the Frank, Clayton, or Gumbel family, then �m;j � �n;j for all j when
m < n. Intuitively, this means that rank correlation must be increasing as you move down the hierarchical
structure.

The hierarchical Archimedean copulas available in the COPULA procedure are the hierarchical versions of
the Clayton, Frank, and Gumbel copulas.
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Simulation

A slightly modified version of the recursive algorithm from McNeil (2008) works for all valid hierarchical
structures that have Clayton, Frank, or Gumbel generators:

1. Start at l D L, and generate a random variable V with the distribution function F with Laplace
transform ��1L;1.

2. For l D L � 1; : : : ; 1, generate ul;j from its parent hierarchy. For Cl;j , recursively call this algorithm
with the proper inner generators that correspond to the copula family.

3. Return U D .��1L;1.� log.u1/=V /; : : : ; ��1L;1.� log.uD/=V //T .

Let �1 be the outer generator and �2 the nested generator, and let �1 and �2 be the respective generator
parameters. Let v be a draw from distribution function F with Laplace transform ��11 . The inner copula
generators �12.�I v/ D exp.�v�1 ı ��12 .�// and their corresponding Laplace transform distributions for the
Clayton, Frank, and Gumbel family are summarized in Table 10.3.

Table 10.3 Inner Generators and Corresponding Distributions

Copula Type �12.xI v/ Distribution with LT �12.�I v/

Clayton exp
�
v � v.1C x/�1=�2

�
Tiled stable

Gumbel exp.�vx�1=�2/ Stable
�
�1
�2
; 1;

�
v cos �1�

2�2

��2=�1
; 0

�
Frank

�
1

1�e��1

�
1 �

�
1 � .1 � e��2/ exp.�x/

��1=�2��v
No closed form

Note that when �1 D �2, the inner generators for the Clayton and Gumbel family both simplify to the generator
of the independence copula, exp.�vx/. For more information about simulating from the distribution with the
Laplace transform given by the inner generator for the Frank family, see Hofert (2011). For more information
about how to simulate from a tilted stable distribution, see McNeil (2008).

Canonical Maximum Likelihood Estimation (CMLE)
In the canonical maximum likelihood estimation (CMLE) method, it is assumed that the sample data
xxxi D .xi1; xi2; : : : ; xim/

>, i D 1; : : : ; n have been transformed into uniform variates Oui D . Oui1; : : : ; Ouim/,
i D 1; : : : ; n. One commonly used transformation is the nonparametric estimation of the CDF of the marginal
distributions, which is closely related to empirical CDF,

Oui;j D OFj;n.xi;j /

where

OFj;n.x/ D
1

nC 1

nX
iD1

IŒxi;j�x�
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The transformed data Oui;j are used as if they had uniform marginal distributions; hence, they are called
pseudo-samples. The function OFj;n is different from the standard empirical CDF in the scalar 1=.nC 1/,
which is to ensure that the transformed data cannot be on the boundary of the unit interval Œ0; 1�. It is clear
that

Oui;j D
1

nC 1
rank.xi;j /

where rank.xi;j / is the rank among i D 1; : : : ; n in increasing order.

Let c.u1; u2; : : :; umI �/ be the density function of a copula C.u1; u2; : : :; umI �/, and let � be the parameter
vector to be estimated. The parameter � is estimated by maximum likelihood:

O� D arg max
�2‚

nX
iD1

log c. Oui1; : : :; OuimI �/

Exact Maximum Likelihood Estimation (MLE)
Suppose that the marginal distributions of vector elements xxxi D .xi1; xi2; : : : ; xim/

>, i D 1; : : : ; n are
already known to be uniform. Then the parameter � is estimated by exact maximum likelihood:

O� D arg max
�2‚

nX
iD1

log c.xi1; xi2; : : : ; ximI �/

Calibration Estimation
Instead of fitting the whole distribution as in MLE methods, you can directly use empirical estimates of
distribution parameters. The unknown parameter that you want to estimate can be obtained by calibration
using Kendall’s tau. There exists a one-to-one map between the parameter at interest and Kendall’s tau.
Therefore, after you estimate the Kendall’s tau, you can use the map to compute the parameter value. For
example, the parameter matrix † in a t copula and the parameter � in Archimedean copulas can be estimated
in this manner. The most frequently used estimator of Kendall’s tau is the rank correlation coefficient:

O��
�
Xi ; Xj

�
D

�
n

2

��1 X
1�t<s�n

sign
��
xt;i � xs;i

� �
xt;j � xs;j

��
The preceding formula is analogous to its population counterpart

��
�
Xi ; Xj

�
D E

�
sign

��
Xi � QXi

� �
Xj � QXj

���
where . QXi ; QXj / has the same distribution but is independent of .Xi ; Xj /.

For Archimedean multivariate copulas there is only one parameter to estimate, � (or its function � ), although
for m variables there are m.m � 1/=2 unique pairwise correlation coefficients. Denote the map from �� to �
by � D O�.�� /. To aggregate the map, take simple arithmetic average:

O� D
2

m.m � 1/

X
1�i<j�m

O�
�
O��
�
Xi ; Xj

��
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Nonlinear Optimization Options
PROC COPULA uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks.
In the PROC COPULA statement, you can specify nonlinear optimization options that are then passed to the
NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 6, “Nonlinear Optimization
Methods.”

Displayed Output
PROC COPULA produces displayed output described in the following sections.

Optimization Start and Resulting Parameter Estimates

If you specify the ITPRINT option in the PROC COPULA statement, PROC COPULA displays two tables,
“Optimization Start Parameter Estimates” and “Optimization Results Parameter Estimates.” Each table
contains the following information for each model parameter:

• parameter number

• parameter name

• parameter estimate

• gradient of the objective function at the initial parameter values

In addition to this information, the table “Optimization Start Parameter Estimates” contains the following
columns:

• lower-bound constraint

• upper-bound constraint

The value of the objective function at the parameter values is displayed below each table.

Iteration History for Parameter Estimates

If you specify the ITPRINT option in the PROC COPULA statement, PROC COPULA displays a table
that contains the following information for each iteration. Note that some information is specific to the
model-fitting method chosen (for example, Newton-Raphson, trust region, or quasi-Newton method).

• iteration number

• number of restarts since the fitting began

• number of function calls

• number of active constraints at the current solution
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• value of the objective function (–1 times the log-likelihood value) at the current solution

• change in the objective function from previous iteration

• value of the maximum absolute gradient element

• step size (for Newton-Raphson and quasi-Newton methods)

• slope of the current search direction (for Newton-Raphson and quasi-Newton methods)

• lambda (for trust region method)

• radius value at current iteration (for trust region method)

Model Fit Summary

The “Model Fit Summary” table contains the following information:

• number of observations used

• number of missing values in data set, if any

• data set name

• type of model that was fit

• log-likelihood value at solution

• maximum absolute gradient at solution

• number of iterations

• optimization method

• value of Akaike’s information criterion (AIC) at the solution (a smaller value indicates better fit)

• value of Schwarz-Bayesian criterion (SBC) at the solution (a smaller value indicates better fit)

Under the “Model Fit Summary” is a statement about whether the algorithm successfully converged.

Parameter Estimates

The “Parameter Estimates” table contains the estimates of the model parameters. For the normal copula, this
table is not displayed because the only parameters are in the correlation matrix, which is displayed in the
“Correlation Matrix” table. For the t copula, the parameter is the number of degrees of freedom; in the table
it is called “DF.” For Archimedean copulas such as Clayton, Frank, and Gumbel, the parameter is called
“theta.”
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Correlation Matrix

The “Correlation Matrix” table contains the estimates of the model correlation matrix. This table is displayed
only for elliptical copulas such as the normal and t copulas. Row and column names come from the list of
variables defined in VAR statement.

OUTCOPULA= Data Set
The OUTCOPULA= data set consists of several rows. The first row (with _TYPE_=‘PARM’) contains the
parameter estimates in the model. For a t copula, the estimate is the number of degrees of freedom; for
Archimedean copulas, the estimate is “theta.” The second row (with _TYPE_=‘STD’) contains the standard
error for the parameter estimate in the model. These two rows do not appear for the normal copula.

If you use one of the elliptical copulas, t or normal, the rest of the data set contains the correlation matrix
estimates. The correlation matrix appears in the observations with _TYPE_=‘CORR’, and the _VARIABLE_
column contains the parameter names.

If METHOD=MLE and the nonlinear optimization subsystem is used, a _STATUS_ column is created that
contains a character variable that indicates whether the optimization process reached convergence or failed to
converge:

• 0 indicates that the convergence was reached

• 1 indicates that the maximum number of iterations allowed was exceeded

• 2 indicates a failure to improve the function value

• 3 indicates a failure to converge for one of the following reasons:

– The objective function or its derivatives could not be evaluated or improved.

– Linear constraints are dependent.

– The algorithm failed to return to feasible region.

– The number of iterations is greater than prespecified.

OUTPSEUDO=, OUT=, and OUTUNIFORM= Data Sets
The OUTPSEUDO=, OUT=, and OUTUNIF= data sets contain the same number of columns as specified in
VAR statement. The names of the columns are taken from the same VAR statement list.

ODS Table Names
PROC COPULA assigns a name to each table it creates. You can use these names to denote the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 10.4.
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Table 10.4 ODS Tables Produced in PROC COPULA

ODS Table Name Description Option

ODS Tables Created by the FIT Statement
ConvergenceStatus Convergence status Default
Correlation Correlation matrix estimates Default with el-

liptical copulas
KendallCorrelation Kendall Correlation matrix estimates Default with el-

liptical copulas
SpearmanCorrelation Spearman Correlation matrix estimates Default with nor-

mal copula
FitSummary Summary of nonlinear estimation Default
ParameterEstimates Parameter estimates Default
ConvergenceStatus Convergence status ITPRINT
InputOptions Input options ITPRINT
IterHist Iteration history ITPRINT
IterStart Optimization start ITPRINT
IterStop Optimization results ITPRINT
ParameterEstimatesResults Parameter estimates ITPRINT
ParameterEstimatesStart Parameter estimates ITPRINT
ProblemDescription Problem description ITPRINT

ODS Graph Names
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

PROC COPULA assigns a name to each graph it creates by using ODS. You can use these names to refer to
the graphs when you use ODS. The names are listed in Table 10.5.

Table 10.5 ODS Graphics Produced by PROC COPULA

ODS Graph Name Plot Description Statement PLOTS= Option

MatrixPlotOrig Matrix panel of pairwise
scatter plots of the original
data

FIT DATATYPE=BOTH,
DATATYPE=ORIGINAL

MatrixPlotUnif Matrix panel of pairwise
scatter plots of the original
data transformed into uniform
marginals

FIT DATATYPE=BOTH,
DATATYPE=UNIFORM
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Table 10.5 continued

ODS Graph Name Plot Description Statement PLOTS= Option

MatrixPlotSOrig Matrix panel of pairwise
scatter plots of the simulated
data

SIMULATE DATATYPE=BOTH,
DATATYPE=ORIGINAL

MatrixPlotSUnif Matrix panel of pairwise
scatter plots of the simulated
data transformed into uniform
marginals

SIMULATE DATATYPE=BOTH,
DATATYPE=UNIFORM

ScatterPlotOrig Pairwise scatter plots of the
original data

FIT DATATYPE=BOTH
UNPACK,
DATATYPE=ORIGINAL
UNPACK

ScatterPlotUnif Pairwise scatter plots of the
original data transformed into
uniform marginals

FIT DATATYPE=BOTH
UNPACK,
DATATYPE=UNIFORM
UNPACK

ScatterPlotSOrig Pairwise scatter plots of the
simulated data

SIMULATE DATATYPE=BOTH
UNPACK,
DATATYPE=ORIGINAL
UNPACK

ScatterPlotSUnif Pairwise scatter plots of the
simulated data transformed
into uniform marginals

SIMULATE DATATYPE=BOTH
UNPACK,
DATATYPE=UNIFORM
UNPACK

CdfContourPlot Contour plot of theoretical
bivariate CDF function

SIMULATE DISTRIBUTION=CDF

CdfSurfacePlot Surface plot of theoretical
bivariate CDF function

SIMULATE DISTRIBUTION=CDF

PdfContourPlot Contour plot of theoretical
bivariate PDF function

SIMULATE DISTRIBUTION=PDF

PdfSurfacePlot Surface plot of theoretical
bivariate PDF function

SIMULATE DISTRIBUTION=PDF

ChiPlotOrig Tail dependence plot matrix
with original data

FIT

ChiPlotUnif Tail dependence plot matrix
with original data transformed
into uniform marginals

FIT

ChiPlotSOrig Tail dependence plot matrix
with simulated data

SIMULATE

ChiPlotSUnif Tail dependence plot matrix
with simulated data
transformed into uniform
marginals

SIMULATE
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Table 10.5 continued

ODS Graph Name Plot Description Statement PLOTS= Option

ChiPlot Pairwise tail dependence plot
of the data

FIT UNPACK

ChiPlotS Pairwise tail dependence plot
of the simulated data

SIMULATE UNPACK

Examples: COPULA Procedure

Example 10.1: Copula Based VaR Estimation
Value-at-risk (VaR) has become a de facto standard in financial risk management. The purpose of this
measure is to give some quantitative insight to the riskiness of an asset portfolio. This measure is expressed
generically in the following terms: What is the probability of losing no more than given percentage of a
portfolio in a certain period of time? Or, what are the maximum possible losses at a given confidence level?
The most simple and clearly wrong answer to this question is to compute the empirical quantile of past
portfolio returns. The problem of this approach is that it does not take into account the dynamic nature of
asset returns, the possibility of changing distribution, time memory, and, most importantly, cross-sectional
dependence between individual assets in the portfolio.

This simple example of VaR computation takes into account at least cross-sectional dependence of the data.
The end result is the prediction of the next-day maximum possible loss on the portfolio of stocks.

This example uses the daily returns on large stocks such as IBM, Microsoft, British Petroleum, Coca Cola,
and Duke Energy. Output 10.1.1 shows the first 10 observations of the data.

Output 10.1.1 First 10 Observations of Daily Returns

Obs date ret_msft ret_ko ret_ibm ret_duk ret_bp

1 01/03/2008 0.004182 0.010367 0.002002 0.003503 0.019114

2 01/04/2008 -0.027960 0.001913 -0.035861 -0.000582 -0.014536

3 01/07/2008 0.006732 0.023607 -0.010671 0.025611 0.017922

4 01/08/2008 -0.033435 0.004239 -0.024610 -0.002838 -0.016049

5 01/09/2008 0.029560 0.026680 0.007301 0.010814 -0.027078

6 01/10/2008 -0.003054 0.004441 0.016414 -0.001689 -0.004395

7 01/11/2008 -0.012255 -0.027346 -0.022546 -0.012408 -0.018473

8 01/14/2008 0.013958 0.008418 0.053857 0.003427 0.001166

9 01/15/2008 -0.011318 -0.010851 -0.010689 -0.017075 -0.040925

10 01/16/2008 -0.022587 -0.015021 -0.001955 0.002316 -0.021336
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The purpose of this exercise is to estimate one-day future losses of a stock portfolio. The simplest approach
is to assume that the joint distribution of individual asset returns does not change with time. This might be
close to the truth if only a small time interval is used. Then, a copula approach is used to estimate the joint
distribution. Next, the new large sample of daily individual asset returns is simulated from the fitted joint
distribution. These assets are then combined into a portfolio and its daily returns are computed. Finally,
quantiles of simulated portfolio returns (which simply represent possible next-day losses of the portfolio) are
examined.

So the first step is to cut off a small number of past return observations as in the following SAS data step:

/* Keep only the last 250 observations of the data */
data returns;

set returns nobs=observ;
if (_N_ > observ-250);

run;

The following statements fit a t copula to the returns data and at the same time simulate the sample from the
fitted joint distribution:

/* Copula estimation and simulation of returns */
proc copula data = returns;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;

* fit T-copula to stock returns;
fit T /

marginals = empirical
method = MLE
plots = (datatype = both);

* simulate 10000 observations;

* independent in time, dependent in cross-section;
simulate /

ndraws = 10000
seed = 1234
out = simulated_returns
plots(unpack) = (datatype = original);

run;

The first line of COPULA procedure uses a VAR statement to specify the list of variables. In this example,
these are daily returns of five large-company stocks.The next statement, FIT, requires some options. First,
Student’s t copula (T) is specified. After the slash, the MARGINALS=EMPIRICAL option specifies that an
empirical distribution be fit. The choice of fitting method is MLE. The PLOTS=BOTH option requests that
both original and transformed data graphs be organized into a symmetric panel.

Then, given the estimation results, the NDRAWS= option in the SIMULATE statement simulates 10,000 new
observations for each asset return series. The SEED= option fixes the random number generator, the OUT=
option specifies the name of SAS data set to contain the simulated sample, and the PLOT= option requests
scatter plots of simulated returns in the original data scale.
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The output of these statements is shown in Output 10.1.2.

Output 10.1.2 Copula Estimation

The COPULA ProcedureThe COPULA Procedure

Model Fit Summary

Number of Observations 250

Data Set WORK.RETURNS

Copula Type T

Log Likelihood 171.52064

Maximum Absolute Gradient 7.91523E-7

Number of Iterations 9

Optimization Method Newton-Raphson

AIC -321.04128

SBC -282.30521

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

DF 6.714101 1.338752 5.02 <.0001

Correlation Matrix

ret_ibm ret_msft ret_bp ret_ko ret_duk

ret_ibm 1.0000 0.5657 0.4662 0.4548 0.4740

ret_msft 0.5657 1.0000 0.4585 0.3234 0.3658

ret_bp 0.4662 0.4585 1.0000 0.3459 0.3576

ret_ko 0.4548 0.3234 0.3459 1.0000 0.4742

ret_duk 0.4740 0.3658 0.3576 0.4742 1.0000

The first table in Output 10.1.2, “Model Fit Summary,” provides some general description of copula model
estimation. The second table, “Parameter Estimates,” provides point estimates and inference on copula
parameters. In this example the only parameter in this table is the number of degrees of freedom in
the multivariate t distribution. The last table, “Correlation Matrix,” contains estimates of copula model
parameters.

The graphical output of the preceding statements is in Output 10.1.3 and in Output 10.1.4.
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Output 10.1.3 Original Data
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Output 10.1.4 Original Data Transformed into Uniform Marginals

Note that in Output 10.1.3 the most elliptical scatter plot, between IBM and MSFT, indicates the strongest
dependence. Similarly, in Output 10.1.4 those graphs that are denser along the diagonal indicate the same
thing.

Now the equally weighted next day portfolio return is computed. Each individual return is transformed into
nominal scale first, then all returns are added up with equal weights, and the result is transformed into a net
return by subtracting one.
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/* compute equally weighted portfolio return */
data port_ret (drop = i ret);

set simulated_returns;
array returns{5} ret_ibm ret_msft ret_bp ret_ko ret_duk;
ret =0;
do i =1 to 5;

ret = ret+ 0.2*exp(returns[i]);
end;
port_ret = ret-1;

run;

The final step is to compute empirical quantiles of simulated daily portfolio return. This is done with the help
of PROC UNIVARIATE in the following statements:

/* compute descriptive statistics */
/* quantile table will give Value-at-Risk estimates for the portfolio */
proc univariate data = port_ret;

var port_ret;
run;

Output 10.1.5 shows that with 99% confidence the potential loss on an equally weighted portfolio over the
next day does not exceed 2.6% (the number in table is multiplied by 100). You can also say that there is
no more than 5% chance of losing 1.5% of the portfolio value. These percentage measures are exactly the
value-at-risk.

Output 10.1.5 Return Quantiles

The UNIVARIATE Procedure
Variable:  port_ret

The UNIVARIATE Procedure
Variable:  port_ret

Quantiles (Definition 5)

Level Quantile

100% Max 0.048144752

99% 0.026628900

95% 0.015538138

90% 0.011573970

75% Q3 0.005801588

50% Median 0.000688678

25% Q1 -0.004955586

10% -0.010637126

5% -0.014677418

1% -0.026631117

0% Min -0.052757715
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Example 10.2: Simulating Default Times
Suppose the correlation structure required for a normal copula function is already given. For example, it can
be estimated from the historic data on default times in some set of industries, but this stage is not in the scope
of this example. The correlation structure is saved in a SAS data set called Inparm. The following statements
and their output in Output 10.2.1 show that the correlation parameter is set at 0.8:

proc print data = inparm;
run;

Output 10.2.1 Copula Correlation Matrix

Obs name Y1 Y2

1 Y1 1.0 0.8

2 Y2 0.8 1.0

Now you use PROC COPULA to simulate the data. The VAR statement specifies the list of variables to
contain simulated data. The DEFINE statement assigns the name COP and specifies a normal copula that
reads the correlation matrix from the inparm data set.

The SIMULATE statement refers to the COP label defined in the VAR statement and specifies some options:
the NDRAWS= option specifies a sample size, the SEED= option specifies 1234 as the random number
generator seed, the OUTUNIFORM=NORMAL_UNIFDATA option names the output data set for the result
of simulation in uniforms, and the PLOTS= option requests the matrix of data scatter plots and marginal
distributions (DATATYPE=ORIGINAL) and theoretical cumulative distribution function contour and surface
plots (DISTRIBUTION=CDF). Theoretical distribution graphs work only for the bivariate case.

/* simulate the data from bivariate normal copula */
proc copula ;

var Y1-Y2;
define cop normal (corr=inparm);
simulate cop /

ndraws = 500
seed = 1234
outuniform = normal_unifdata
plots = (datatype = original

distribution = cdf);
run;
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The graphical output is shown in Output 10.2.2 and in Output 10.2.3.

Output 10.2.2 Simulated Data, Uniform Marginals
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Output 10.2.2 shows bivariate scatter plots of the simulated data. Also note that due to the high correlation
parameter (0.8), the scatter plots are most dense around the 45 degree line, which indicates high dependence
between the two variables.

Output 10.2.3 Joint Cumulative Distribution
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Output 10.2.3 shows the theoretical CDF contour plot. If the correlation parameter were set to 0, then
knowing copula properties you would expect perfectly parallel straight lines with the slope of –45 degrees.
On the other hand, if the parameter were set to 1, you would expect perpendicular lines with corners lying on
the diagonal.

The next DATA step transforms the variables from zero-one uniformly distributed to nonnegative exponentially
distributed with parameter 0.5. Three indicator variables are added to the data set as well. SURVIVE1
and SURVIVE2 are equal to 1 if a respective company has remained in business for more than three years.
SURVIVE is equal to 1 if both companies survived the same period together.

/* default time has exponential marginal distribution with parameter 0.5 */
data default;

set normal_unifdata;
array arr{2} Y1-Y2;
array time{2} time1-time2;
array surv{2} survive1-survive2;
lambda = 0.5;
do i=1 to 2;

time[i] = -log(1-arr[i])/lambda;
surv[i] = 0;
if (time[i] >3) then surv[i]=1;

end;
survive = 0;
if (time1 >3) && (time2 >3) then survive = 1;

run;

The first analysis step is to look at correlations between survival times of two companies. This step is
performed with the following CORR procedure:

proc corr data = default plot=matrix kendall;
var time1 time2;

run;

The output of this code is given in Output 10.2.4 and in Output 10.2.5.
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Output 10.2.4 shows some descriptive statistics and two measures of correlation: Pearson and Kendall. Both
of these measures indicate high and statistically significant dependence between life spans of two companies.

Output 10.2.4 Default Time Descriptive Statistics and Correlations

The CORR ProcedureThe CORR Procedure

2  Variables: time1    time2

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

time1 500 2.08347 2.23677 1.26496 0.00449 13.08462

time2 500 2.07547 2.19756 1.37603 0.01076 16.85567

Pearson Correlation Coefficients, N = 500
Prob > |r| under H0: Rho=0

time1 time2

time1 1.00000 0.80268
<.0001

time2 0.80268
<.0001

1.00000

Kendall Tau b Correlation Coefficients, N = 500
Prob > |tau| under H0: Tau=0

time1 time2

time1 1.00000 0.59566
<.0001

time2 0.59566
<.0001

1.00000

Output 10.2.5 shows marginal distributions and scatter plots of simulated data. Distributions are noticeably
close to exponential and scatter plots show a high degree of dependence.
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Output 10.2.5 Default Times
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The second and the last step is to empirically estimate the default probabilities of two companies. This is
done in the following FREQ procedure:

proc freq data=default;
table survive survive1-survive2;

run;

The result is shown in Output 10.2.6.

Output 10.2.6 Probabilities of Default

The FREQ ProcedureThe FREQ Procedure

survive Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 415 83.00 415 83.00

1 85 17.00 500 100.00

survive1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 374 74.80 374 74.80

1 126 25.20 500 100.00

survive2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 390 78.00 390 78.00

1 110 22.00 500 100.00

Output 10.2.6 shows that the empirical default probabilities are 75% and 78%. Assuming that these companies
are independent gives the probability estimate of both companies defaulting during the period of three years
as: 0.75*0.78=0.59 (59%). Comparing this naive estimate with the much higher actual 83% joint default
probability illustrates that neglecting the correlation between the two companies significantly underestimates
the probability of default.
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