

SAS® Customer Intelligence 360

Mobile SDK Integration with a
Xamarin App: Cookbook

SAS® Documentation
June 30, 2023

ii

Contents
Overview ... 4

What You Should Know in Order to Use This Cookbook .. 4

Roles and Responsibilities ... 5

Initial Setup ... 6

Create Xamarin Binding Libraries ... 6

Create a Xamarin App Project ... 7

Obtain the SAS Customer Intelligence 360 Mobile SDKs .. 8

Add SAS Customer Intelligence 360 Mobile SDK Libraries ... 9

Android ... 9

iOS ... 13

Basic Functionality .. 18

Configure the Cross-Platform Project ... 19

Configure Android ... 21

Configure iOS .. 25

Configure the Example Xamarin App .. 28

Cross-Platform .. 28

Android ... 31

iOS ... 32

Mobile Spot Functionality ... 33

Configure the Cross-Platform Project ... 34

Configure Android ... 36

Configure iOS .. 37

Configure the Example Xamarin App .. 38

Location Functionality ... 40

Configure the Cross-Platform Project ... 42

Configure Android ... 44

Configure iOS .. 46

Test Geofencing and Beacon Functionality .. 47

Android ... 47

iOS ... 47

Mobile Message Functionality .. 49

Configure the Cross-Platform Project ... 49

iii

Configure Android ... 53

Configure iOS .. 59

Test Push Notifications and In-App Messages .. 66

Test Push Notifications ... 66

Test In-App Messages ... 67

Access API Reference Documentation .. 67

4

Overview

SAS Customer Intelligence 360 mobile SDKs (also called SASCollector) enable you to add
support for event collection and to publish content to native Android and iOS apps. You
can use collected events to understand how your app is performing and target users for
distribution of content.

• The Android mobile SDK for SAS Customer Intelligence 360 is a self-contained Java
library in the form of a JAR file.

• The iOS mobile SDK for SAS Customer Intelligence 360 is an iOS framework that is a
directory of files in a particular structure. The directory includes headers, binaries,
and resource files.

You can use Xamarin, an open-source software development kit, to design a native
mobile application that uses only one codebase for both Android and iOS. The
programming language that is used to develop a mobile app with Xamarin is C#.

The purpose of this document is to provide guidance on how you can integrate SAS
Customer Intelligence 360 mobile SDKs for Android and iOS with a mobile app that is
built using Xamarin technology. This document shows how to create a plug-in that adds
the capabilities of SAS Customer Intelligence mobile SDKs.

In addition, there is a Mobile SDK Xamarin Sample Package (.zip) that contains a sample
Xamarin project (mobile_sdk_xamarin).

IMPORTANT The sample files and code examples are provided by SAS Institute Inc. "as
is" without warranty of any kind, either express or implied, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose.
Recipients acknowledge and agree that SAS Institute shall not be liable for any damages
whatsoever arising out of their use of this material. In addition, SAS Institute will provide
no support for the materials contained herein.

What You Should Know in Order to Use This Cookbook

This cookbook assumes that the following statements are true:

• You are familiar with SAS Customer Intelligence 360 mobile SDKs.

• You have experience with the development of Android, iOS, and Xamarin mobile
apps and the programming languages that are used to design them.

• You understand the roles and responsibilities of the individuals who work with a
mobile app, mobile in-app messages, and push notifications.

https://support.sas.com/documentation/onlinedoc/ci/ci360-mobile-sdks/mobile-sdk-xamarin.zip

5

Roles and Responsibilities

Collaboration between marketers, business analysts, and mobile app developers is
critical. To ensure success, it is important that each of the individuals in these key roles
has direct access to the required resources. A successful integration of a mobile
application with SAS Customer Intelligence 360 depends on proper configuration.

Note: In SAS Customer Intelligence 360, the individual who is working in the application
is sometimes referred to as the SAS Customer Intelligence 360 user. In the context of
delivering mobile content, this individual is typically a mobile marketer.

Here are examples of items that require collaboration:

• Mobile messaging. Firebase Cloud Messaging (FCM) for Android devices and Apple
Push Notification service (APNs) for iOS devices are used to deliver mobile messages
(push notifications and in-app messages). The mobile app developer registers the
mobile app with those services and obtains certificates and keys that a SAS
Customer Intelligence 360 user uses to register the mobile app with SAS Customer
Intelligence 360. For more information, see Register a Mobile Application in SAS
Customer Intelligence 360: Administration Guide.

• Mobile spots. The marketer and the mobile app developer work together to identify
places (referred to as spots) in the mobile app where the marketer can use SAS
Customer Intelligence 360 to deliver content. The mobile app developer must
provide the SAS Customer Intelligence 360 user with spot IDs and details such as
spot dimensions. In SAS Customer Intelligence 360, the spot ID is required to create
a task that delivers content to a specific location in the mobile app. For more
information, see Creating Mobile Spots in SAS Customer Intelligence 360: User’s
Guide.

• Custom mobile events. The mobile app developer provides a SAS Customer
Intelligence 360 user with mobile event keys and custom attributes (if any). In SAS
Customer Intelligence 360, the mobile event key is required to create custom events
that represent specific behaviors in the mobile app. These behaviors can act as
triggers for sending content to the app, or they can be used for personalization. For
more information, see Create a Custom Event for a Mobile App in SAS Customer
Intelligence 360: User’s Guide. Also see Working with Events for Android and
Working with Events for iOS in SAS Customer Intelligence 360: Developer’s Guide for
Mobile Applications.

• Geofences and beacons. The marketer or SAS Customer Intelligence 360 user can
define (and upload to SAS Customer Intelligence 360) virtual geographic boundaries
called geofences or points called beacons that can determine content that a mobile
app user receives when they enter that space. The mobile app developer codes the
mobile app (using the mobile SDKs) to include location services and monitor location

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#n0piuajouxahskn17qw09xtiyry1
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintug/mob-create-spot.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintug/events-mob-custom.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-events.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/ios-events.htm

6

events. For more information, see Upload Location Data in SAS Customer
Intelligence 360: Administration Guide. Also see Enable Location-Based Features for
iOS and Enable Location-Based Features for Android in SAS Customer Intelligence
360: Developer’s Guide for Mobile Applications.

• Session settings. The marketer defines settings for mobile app sessions so that SAS
Customer Intelligence 360 mobile SDKs know when to continue a current session or
start a new one. For more information, see Page and Session in SAS Customer
Intelligence 360: Administration Guide.

Initial Setup

The following applications are used in this cookbook:

• Visual Studio 2022 for Mac, build version 17.4. Make sure that Xamarin Android and
Xamarin iOS are included in Visual Studio. If not, rerun Visual Studio Installer to add
them. In the future, VS2022 Mac will be the shortened name for Visual Studio 2022
for Mac.

Note: Visual Studio 2022 for Windows can also be used. However, when the project
is built to run on an iOS simulator or iOS device, your Windows computer must be
paired to a Mac computer. It is therefore recommended to use a Mac for
development.

• Android Studio and Xcode. Android Studio Chipmunk 2021.2.1 and Xcode 14.1 are
used in this cookbook.

• Microsoft’s Objective Sharpie. See Creating Bindings with Objective Sharpie for
information about Sharpie. To download Sharpie, click https://aka.ms/objective-
sharpie.

Note: The Xcode version that is used to create SASCollector.framework must match
the Xcode version on the Mac where Sharpie runs. For example, if
SASCollector.framework is created with Xcode 13, and Sharpie is run on a Mac
where the Xcode version is 14, Sharpie fails.

Create Xamarin Binding Libraries

In Xamarin, the native Android Java/Kotlin library and the native iOS Objective-C/Swift
library are exposed to Xamarin apps through binding libraries. Unlike other cross-
platform mobile frameworks (such as Flutter or React Native), Xamarin automates the
process of creating binding libraries that wrap native libraries.

You can create a Xamarin project that hosts the binding libraries, and then import those
libraries in Xamarin app projects. For simplicity, this cookbook creates the binding
libraries in an existing Xamarin app project.

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0usk5vhew4rbvn1doly9x63hpn7
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/ios-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/ing-config-pagesession.htm
https://learn.microsoft.com/en-us/xamarin/cross-platform/macios/binding/objective-sharpie/
https://aka.ms/objective-sharpie
https://aka.ms/objective-sharpie

7

Create a Xamarin App Project

1. Open VS2022 Mac and select New to create a new project.

2. In the New Project window, under Multiplatform, select App, and then select any
one of the three options under Xamarin.Forms. (For this cookbook, we chose Blank
App.)

3. Click Continue.

4. Enter your app name and organization ID. Under Target platforms, select both
Android and iOS.

 Click Continue to finish creating the project.

8

The resulting project includes these folders: XamarinDemoApp,
XamarinDemoApp.Android, and XamarinDemoApp.iOS.

Here is a description of the folders:

• The XamarinDemoApp folder contains code that is platform agnostic.

• The XamarinDemoApp.Android folder contains code that is specific to Android.
The folder includesMainActivity.cs and AndroidManifest.xml. Those files are used to
initialize SASCollector and to add other SASCollector functionality, such as setting up
push notifications.

• The XamarinDemoApp.iOS folder contains code that is specific to iOS. The folder
includes AppDelegate.cs and Info.plist. Those files are used to add SASCollector
initialization and for push notification setup.

Note: Throughout this cookbook, the cross-platform project is referred to as
XamarinDemoApp, the Android project is referred to as XamarinDemoApp.Android, and
the iOS project is referred to as XamarinDemoApp.iOS.

Obtain the SAS Customer Intelligence 360 Mobile SDKs

These are the two ways to obtain SAS Customer Intelligence 360 mobile SDKs:

• A SAS Customer Intelligence 360 user can download the mobile SDKs through the
user interface for SAS Customer Intelligence 360 and deliver the SDK ZIP file
(SASCollector_<applicationID>.zip) to you to install.

The Android SDK and the iOS SDK are distributed together as a single ZIP package.

• You can access the mobile SDKs from a public repository.

o For Android, see Configure a Dependency on the Maven Repository for the
Mobile SDK in SAS Customer Intelligence 360: Developer’s Guide for Mobile
Applications.

o For iOS, see Use Swift Package Manager to Set Up the Mobile SDK in SAS
Customer Intelligence 360: Developer’s Guide for Mobile Applications.

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/p1t2i055pqd62an1pcqe6syo7b56.htm#n1xbunv723fzhan1kwd3guyniow8
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/p1t2i055pqd62an1pcqe6syo7b56.htm#n1xbunv723fzhan1kwd3guyniow8
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/p1h8jvnp7o4rvkn1w7q5ikdsmpdw.htm#p0kyb3xnqa3qygn1nydnc2lpbxw4

9

Note: A SASCollector.properties file (for Android) and a SASCollector.plist file (for
iOS) contain necessary information to successfully implement the mobile SDKs,
including the customer’s selected tenant and mobile app ID. The files are not
included in the public repository. The files must be obtained from the mobile SDK
ZIP package that is downloaded from SAS Customer Intelligence 360.

Add SAS Customer Intelligence 360 Mobile SDK Libraries

You need to create binding library projects to which you will add the SASCollector
framework (library).

Android

1. In the app project that you created, right-click the solution and then select Add =>
New Project…, as shown in the example below.

2. In the New Project window, in the left-hand pane, under Android, select Library.
Then, in the center pane, under General, select Binding Library, as shown below.

10

Click Continue to create the binding library.

Note: In this cookbook, the binding library is XamarinDemoApp.Android.Binding.
You can name the library anything that makes sense to you, for example,
SASCollector.Android.Binding.

The binding library that you create contains several folders and files. The files that
you will work with most are in the Jars folder and in the Transforms folder.

3. Locate the SASCollector.jar file that you downloaded earlier and drag it into the
Jars folder. Choose either the Copy option or the Move option, as shown below:

11

Click OK.

4. Navigate to the Transforms folder and open the Metadata.xml file. Add the
following code between <metadata> and </metadata>:

<remove-node

path="/api/package[@name='com.sas.mkt.mobile.sdk.iam']/class[@

name='LargeMessageFragmentX']" />

 <remove-node

path="/api/package[@name='com.sas.mkt.mobile.sdk.iam']/class[@

name='SmallMessageFragmentX']" />

5. Create a new file called Extension.cs directly inside
XamarinDemoApp.Android.Binding and replace its content with the following code:

namespace Com.Sas.Mkt.Mobile.Sdk.Ads

{

 public partial class DataTagParser :
 global::Java.Lang.Object

 {

 public partial class DataTag : global::Java.Lang.Object

 {

 }

 }

}

6. Right-click the binding library project and select Manage NuGet Packages....

12

7. In the NuGet Packages window, search for GoogleGson, select it from the results
list, and then click Add Package.

8. Right-click the binding library project and select either the Build option or the

Rebuild option, as shown in the figure below:

Note: The Rebuild option always builds the project, whereas the Build option might
not build the project. This might occur if there is no change since the last time you
built the project. Changes to SASCollector's public APIs affect the Metadata.xml and
Extension.cs files.

9. After the binding library is successfully built, add it as a project reference in the
XamarindDemoApp.Android project. To do this, right-click the References folder in
the XamarinDemoApp.Android project and select Add Project Reference...

10. In the References window, select the Projects tab and the select the check box next
to the XamarinDemoApp.Android.Binding project. Click Select.

13

After the binding library project is referenced by the XamarinDemoApp.Android
project, all the public classes and their public methods in SASCollector are available
in the XamarinDemoApp.Android project.

Note: Xamarin wraps the native library in the binding library and makes it available
in C# language.

11. Verify that the inclusion of the binding library in the Android project works by

running the app on an Android emulator. If there are any errors, the app does not
run.

iOS

Note: The process of creating an iOS binding library that wraps the native library is more
complex and error-prone than the process of creating the Android binding library.

1. In VS2022 Mac, right-click the app solution and select Add => New Project.

2. In the New Project window, in the left-hand pane, under iOS, select Library. Then, in
the center pane, under Unified API, select Binding Library, as shown in the figure
below.

14

Click Continue to create the binding library project. (In this cookbook, the project is
XamarinDemoApp.iOS.Binding.)

The binding library project contains several folders and files. The folder and files that
you use to add SASCollector are the Native References folder, and the
ApiDefinition.cs and Structs.cs files.

3. Open a terminal session, navigate to the SASCollector.xcframework package that
you downloaded earlier, and then find the ios-arms64 folder. Run this command:

sharpie bind -framework SASCollector.framework -n

Com.SAS.CI360

The figure below shows the path and the command:

15

Note: SASCollector.framework is found in these two places: the ios-arm64 folder
and ios-arm64_x86_64-simulator. Use the SASCollector.framework that is in the
ios-arm64 folder because the framework is built for real devices. (Xamarin iOS
must run on a real device for push notifications and mobile messages that are
available only to real devices.)

These two files are created by Sharpie: ApiDefinitions.cs and StructsAndEnums.cs.

TIP If you receive an error in Sharpie about a mismatch between
SASCollector.framework and your version of Xcode, try copying the ApiDefinition.cs
and Structs.cs files from the Mobile SDK Xamarin Sample Package ZIP file.

4. In VS2022 Mac, navigate to XamarinDemoApp.iOS.Binding. Replace the contents of

ApiDefinition.cs with the contents of the ApiDefinitions.cs file that was created by
Sharpie. Replace the contents of Structs.cs with the contents of the
StructsAndEnums.cs file that was created by Sharpie.

Note: You will make additional changes to these two files after
SASCollector.framework is added in the binding library.

5. Right-click the XamarinDemoApp.iOS.Binding project and select Add => New

Folder….

Name the folder Frameworks.

6. Find the SASCollector.framework that was used by Sharpie to generate

ApiDefinitions.cs and StructsAndEnums.cs and copy it into the Frameworks folder.

16

7. Right-click Native References and select Add Native Reference.

8. Navigate to Frameworks, select SASCollector.framework, and then click Open.

After SASCollector.framework is included in Native References, it is displayed
under it as shown below:

9. Build the binding library project. To do this, right-click
XamarinDemoApp.iOS.Binding and select either the Build
XamarinDemoApp.iOS.Binding option or the Rebuild XamarinDemoApp.iOS.Binding
option.

17

You can expect build errors. Here are several ways that you can fix them:

• Replace ApiDefinition.cs and Structs.cs with the original files from the Mobile
SDK Xamarin Sample Package ZIP file and build the project again.

Note: This option might not work if SASCollector.framework changed
significantly. For example, some of its public classes and methods might be
different from what was in the framework when you first downloaded it.

• Make changes to ApiDefinition.cs and Structs.cs. There are many corrections to
make. Here are a few common ones:

• Remove using SASCollector directives

• Remove lines that start with [Verify (…)]; for example, [Verify
(MethodToProperty)]

• Change NativeHandle to IntPtr

• As stated in step 3, if there is a mismatch between SASCollector.framework and
Xcode, copy ApiDefinition.cs and Structs.cs from the zipped project.

10. After the binding library project build succeeds, add it as a project reference in the
iOS project. To do this, under XamarinDemoApp.iOS, right-click References, and
then select Add Project Reference....

11. Click the Projects tab, select XamarinDemoApp.iOS.Binding, and then click Select.

18

12. To verify that the inclusion of the binding library in the iOS project works, run the
app on an iPhone device. If there are any errors, the app does not run.

IMPORTANT: Before you use binding libraries in a Xamarin app project, please be aware
that the exposed functionality from libraries does not work on your app until you add
SASCollector.properties to Android and SASCollector.plist files to iOS. For instructions,
see “Configure the Example Xamarin App”.

Basic Functionality

Some mobile app events, such as focus and defocus, do not need an explicit API call
exposed through an interface to make them work. The integration of SAS Customer
Intelligence mobile SDKs in the binding libraries and the Xamarin app is sufficient. The
interface and its implementation classes are covered later in this section.

Other basic functions, such as custom events, page loads, and identity, need to be
defined in the cross-platform project’s interface and then implemented in iOS and
Android projects to be used by the Xamarin app.

To define custom events, app developers work with the marketing team.

• Marketers define the custom events that are needed. Those custom events and their
attributes are created in the SAS Customer Intelligence 360 user interface.

• Developers include the custom events and their associated attributes in the app.
Then, the custom events can be leveraged by the Xamarin app without any further
code changes.

19

Note: The procedures in this section include more SASCollector public methods
(functions) than just custom events, page loads, and identity. Some methods, such as
getDeviceId, setDeviceId, can be used by developers for testing purposes. Others, such
as startMonitoringLocation, disableLocationMonitoring, are used for location-based
functionality.

Examples of how to use custom events, page loads, and identity in the code are included
in “Configure the Example Xamarin App” at the end of this section.

Configure the Cross-Platform Project

This cookbook uses the DisplayToastAsync method, which is included in this package, to
show toast messages. For example, when an identity call fails, the mobile spots delegate
methods and the mobile message delegate methods are called. If you need to show
toast messages, complete step 1. Otherwise, skip to step 2.

1. To show toast messages:

a. Right-click XamarinDemoApp and select Manage NuGet Packages.

b. In the NuGet Packages window, search for Xamarin.CommunityToolKit,
select it from the results list, and then click Add Package.

2. Right-click XamarinDemoApp and select Add => New Folder. Name the folder
Services.

3. Right-click the Services folder and select Add => New File.

4. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Interface, and enter ISDKBasicService for the name. Click Create.

20

5. In ISDKBasicService.cs, add this code:

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

namespace XamarinDemoApp.Services

{

 public interface ISDKBasicService

 {

 void NewPage(string url);

 Task Identity(string type, string value);

 Task DetachIdentity();

 void AddAppEvent(string eventName,
 Dictionary<string, string> attrs);

 void StartMonitoringLocation();

 void DisableLocationMonitoring();

 string GetDeviceId();

 void ResetDeviceId();

 string GetTagServer();

 void SetTagServer(string newServer);

 string GetTenantId();

 void SetTenantId(string newTenant);

21

 }

}

Configure Android

1. Right-click XamarinDemoApp.Android, and then select Add => New Folder. Name
the folder Services.

2. Right-click the Services folder, and then select Add => New File.

3. In the New File window, in the left-hand pane select General, in the center pane,
select Empty Class in the center pane, and enter SDKBasicService for the name.
Click Create.

4. Make the SDKBasicService class implement ISDKBasicService.

Note: The following code includes a few of the most often-used methods. For an
example of other methods implementation and namespaces inclusion, please refer
to XamarinDemoApp.Android/Services/SDKBasicService.cs in the
mobile_sdk_xamarin project example.

[assembly: Xamarin.Forms.Dependency(typeof(SDKBasicService))]

namespace XamarinDemoApp.Droid.Services

{

 public class SDKBasicService : ISDKBasicService

 {

 public void AddAppEvent(string eventName,

 Dictionary<string, string> attrs)

 {

 SASCollector.Instance.AddAppEvent(eventName,

 attrs);

22

 }

 public void NewPage(string url)

 {

 SASCollector.Instance.NewPage(url);

 }

 public async Task Identity(string type,

 string value)

 {

 await Task.Run(() =>
 SASCollector.Instance.Identity(value, type,

 new IdentityCallback(value)));

 }

 public async Task DetachIdentity()

 {

 await Task.Run(() =>
 SASCollector.Instance.DetachIdentity(

 new DetachIdentityCallback()));

 }

 public void StartMonitoringLocation()

 {

 SASCollector.Instance.StartMonitoringLocation();

 }

 public void DisableLocationMonitoring()

 {

 SASCollector.Instance.DisableLocationMonitoring();

 }
 }

}

5. The Identity method takes as an input parameter a class instance that implements
the SASCollector.IIdentityCallback interface. The DetachIdentity method takes as an
input parameter a class instance that implements the
SASCollector.IDetachIdentityCallback interface. Therefore, the two callback
interfaces are used only in these two methods.

Define two classes in SDKBasicService.cs file in the same namespace (for example,
XamarinDemoApp.Droid.Services) as shown below:

23

public class IdentityCallback : Java.Lang.Object,

SASCollector.IIdentityCallback

 {

 private string loginId;

 public IdentityCallback(string loginId)

 {

 this.loginId = loginId;

 }

 public void OnComplete(bool isSuccess)

 {

 MainThread.InvokeOnMainThreadAsync(() =>

 {

 if (isSuccess)

 {

 (App.Current as
 XamarinDemoApp.App)

 .GoToDetails(loginId);

 }

 else

 {

 (App.Current as

 XamarinDemoApp.App).DisplayToastMsg(

 "Login failed");

 }

 });

 }

 }

 public class DetachIdentityCallback : Java.Lang.Object,

 SASCollector.IDetachIdentityCallback

 {

 public void OnComplete(bool isSuccess)

 {

 MainThread.InvokeOnMainThreadAsync(() =>

 {

 if (isSuccess)

24

 {

 (App.Current as

 XamarinDemoApp.App).GoToLogin();

 }

 else

 {

 (App.Current as

 XamarinDemoApp.App).DisplayToastMsg

 ("Logout failed");

 }

 });

 }

 }

Note: The GoToDetails(), GoToLogin(), and DisplayToastMsg() methods are
implemented in the App.xaml.cs file in the cross-platform project. You can create
similar methods to achieve the same results.

6. Install Xamarin.GooglePlayServices.Basement in XamarinDemoApp.Android:

a. Right-click XamarinDemoApp.Android and select Manage NuGet Packages….

b. In the NuGet Packages window, search for Xamarin.Google.
Xamarin.GooglePlayServices.Basement is the first item in the list. Select it and
then click Add Package.

25

Configure iOS

1. Right-click XamarinDemoApp.iOS and select Add => New Folder. Name the folder
Services.

2. Right-click the Services folder and select Add => New File.

3. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Class, and enter SDKBasicService for the name. Click Create.

4. Make the SDKBasicService class implement ISDKBasicService.

Note: The following code includes a few of the most often-used methods. For
complete details about methods implementation and namespaces inclusion, please
refer to XamarinDemoApp.iOS/Services/SDKBasicService.cs in the
mobile_sdk_xamarin project example.

[assembly: Xamarin.Forms.Dependency(typeof(SDKBasicService))]

namespace XamarinDemoApp.iOS.Services

26

{

 public class SDKBasicService : ISDKBasicService

 {

 public async Task Identity(string type,

 string value)

 {

 Action<bool> completionHandler = (

 bool isSuccess) =>

 {

 MainThread.InvokeOnMainThreadAsync(() =>

 {

 if (isSuccess)

 {

 (App.Current as XamarinDemoApp.App)

 .GoToDetails(value);

 }

 else

 {

 (App.Current as XamarinDemoApp.App)

 .DisplayToastMsg(

 "Login Failed");

 }

 });

 };

 await Task.Run(

 () => SASCollector.Identity(value,
 type, completionHandler));

 }

 public async Task DetachIdentity()

 {

 Action<bool> completionHandler =

 (bool isSuccess) =>

 {

 MainThread.InvokeOnMainThreadAsync(() =>

 {

 if (isSuccess)

27

 {

 ((XamarinDemoApp.App)App.Current).GoToLogin();

 }

 else

 {

 (App.Current as XamarinDemoApp.App)

 .DisplayToastMsg(

 "Logout failed");

 }

 });

 };

 await Task.Run(() =>
 SASCollector.DetachIdentity(

 completionHandler));

 }

 public void NewPage(string url)

 {

 SASCollector.NewPage(url);

 }

 public void AddAppEvent(string eventName,
 Dictionary<string, string> attrs)

 {

 NSMutableDictionary<NSString, NSString>

 eventAttrs
 = new NSMutableDictionary<NSString, NSString>();

 if (attrs == null)

 {

 SASCollector.AddAppEvent(eventName, null);

 return;

 }

 foreach(var attr in attrs)

 {

 NSString key = NSString.FromData(attr.Key,

 NSStringEncoding.UTF8);

 NSString value =

 NSString.FromData(attr.Value,
 NSStringEncoding.UTF8);

28

 eventAttrs.Add(key, value);

 }

 SASCollector.AddAppEvent(eventName, eventAttrs);

 }

 public void StartMonitoringLocation()

 {

 SASCollector.StartMonitoringLocation();

 }

 public void DisableLocationMonitoring()

 {

 SASCollector.DisableLocationMonitoring();

 }

}

Note: The GoToDetails(),GoToLogin(), and DisplayToastMsg() methods are
implemented in the App.xaml.cs file in the cross-platform project. You can create
similar methods to achieve the same results.

Configure the Example Xamarin App

The example Xamarin app in this cookbook refers to the cross-platform project, the
Android project, and the iOS project. These are the configuration differences:

• In the cross-platform project, the presentations of the app that involve views, view
models, and the App file (which is the entry point of the Xamarin app) are
configured.

• In the Android project, MainActivity.cs and AndroidManifest.xml are configured, and
SASCollector.properties is added.

• In the iOS project, AppDelegate.cs is configured and SASCollector.plist is added.

Cross-Platform

This cookbook describes more than basic SASCollector functionality in some of its
examples. In the mobile_sdk_xamarin project example, each tabbed page shows different
areas of functionality. The following procedure assumes that the tabbed structure is
already created.

1. Right-click XamarinDemoApp, select Add => New Folder, and enter Views for the
name.

2. Right-click the Views folder and select Add => New File.

29

3. In the New File window, in the left-hand pane, select Forms, in the center pane,
select Forms ContentPage XAML, and then enter LoginPage for the name. Click
Create.

4. In the New File window, in the left-hand pane, select Forms, in the center pane,
select Forms ContentPage XAML, and then enter HomePage for the name. Click
Create.

5. In the mobile_sdk_xamarin project example, copy the contents of LoginPage and
HomePage from XamarinDemoApp/Views/LoginPage.xaml and
XamarinDemoApp/Views/HomePage.xaml. Replace the content in the
LoginPage and HomePage files that you created with the content that you copied
from the mobile_sdk_ xamarin project example.

6. Right-click XamarinDemoApp, select Add => New Folder, and enter ViewModels
for the name. Click Create.

7. Right-click the ViewModels folder and select Add => New File.

8. In the New File window, under General, select Empty Class, and name the class
BaseViewModel. Click Create.

9. Repeat steps 6 through 8 to create folders and files for LoginViewModel,
DetailsViewModel, HomeViewModel.

Note: The file names are the same as the folder names but with “Base” in front.

10. Replace the content of BaseViewModel.cs with this code:

using System;

using System.ComponentModel;

using System.Runtime.CompilerServices;

namespace XamarinDemoApp.ViewModels

{

 public class BaseViewModel : INotifyPropertyChanged

 {

30

 public event PropertyChangedEventHandler

 PropertyChanged;

 protected virtual void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {

 PropertyChangedEventHandler handler =

 PropertyChanged;

 if (handler != null)

 {

 handler(this, new

 PropertyChangedEventArgs(propertyName));

 }

 }

 }

}

11. Copy the content of LoginViewModel.cs from

XamarinDemoApp/ViewModels/LoginViewModel.cs in the
mobile_sdk_xamarin project example into the LoginViewModel.cs file that you
created. The following code shows how the Identity method is called when a logon
button is clicked:

private async void OnLoginClicked(object obj)

{

 await DependencyService.Get<ISDKBasicService>()

 .Identity(identityType, identityValue);

}

12. Copy the content of DetailsViewModel.cs from
XamarinDemoApp/ViewModels/DetailsViewModel.cs in the
mobile_sdk_xamarin project example into the DetailsViewModel.cs that you created.
The following code shows how the DetachIdentity method is called when a logoff
button is clicked:

private async void OnDetachIdentityClicked()

{

 await DependencyService.Get<ISDKBasicService>()

 .DetachIdentity();

}

13. Copy the content of HomeViewModel.cs from
XamarinDemoApp/ViewModels/HomeViewModel.cs in the mobile_sdk_xamarin

project example into the HomeViewModel.cs that you created. The following code
shows how NewPage and AddAppEvent are used:

private async void OnNewPageClicked()

31

{

 DependencyService.Get<ISDKBasicService>().NewPage(

 NewPageUrl);

 await Application.Current.MainPage.DisplayToastAsync(

 "New Page event is sent");

}

private void OnAddAppEventClicked()

{

 if (string.IsNullOrEmpty(eventName))

 {

 return;

 }

 Dictionary<string, string> eventAttributes = null;

 if (!string.IsNullOrEmpty(eventAttrKey) &&
 !string.IsNullOrEmpty(eventAttrValue))

 {

 eventAttributes = new Dictionary<string, string>()

 {

 {eventAttrKey, eventAttrValue }

 };

 }

 DependencyService.Get<ISDKBasicService>()

 .AddAppEvent(eventName, eventAttributes);

}

Android

1. Drag the SASCollector.properties file (you downloaded it earlier) into the
XamarinDemoApp.Android => Assets folder.

32

2. Right-click SASCollector.properties, select Build Action, and make sure that
AndroidAsset is selected.

3. Under XamarinDemoApp.Android => Properties, in the AndroidManifest.xml file,
add this line if it does not exist:

<uses-permission android:name="android.permission.INTERNET" />

4. Under XamarinDemoApp.Android, in the MainActivity.cs file:

a. Add these imports after the other using directives.

using Com.Sas.Mkt.Mobile.Sdk;

using Com.Sas.Mkt.Mobile.Sdk.Util;

b. In the OnCreate method, add this code after LoadApplication():

SLog.Level = SLog.All;

SASCollector.Instance.Initialize(ApplicationContext);

Note: Setting Slog.Level = Slog.All lets you view all events logs from SASCollector.

iOS

1. Drag SASCollector.plist (you downloaded it earlier) into XamarinDemoApp.iOS.

2. Right-click SASCollector.plist, select Build Action and make sure BundleResource is
selected.

33

3. Under XamarinDemoApp.iOS, find AppDelegate.cs:

a. Add this line after the other using directives:

using Com.SAS.CI360;

b. Add this code to the FinishedLaunching() method , after LoadApplication(),
to see all events logs from SASCollector:

SASLogger.SetLevel(SASLoggerLevel.All);

To see SASCollector logs, at the bottom of VS 2022 Mac, click the Application Output
tab, as shown in the following figures.

Logs in Android:

Logs in iOS:

Mobile Spot Functionality

With SAS Customer Intelligence 360, you can include personalized content, such as
advertising, in your mobile apps. In SAS Customer Intelligence 360, the location in the
mobile app where the content is delivered is called a spot.

34

SAS Customer Intelligence 360 mobile SDKs provide two types of spots: inline spots and
interstitial spots. Spots have delegate methods that are invoked at the different stages
of the life cycle of the spots. For example, when the user closes an interstitial spot, the
didClose method is called. Developers specify what action to take when a method is
called.

As with custom events, app developers work with marketers to define where to include
spots in the app and the content of those spots.

• The app developer includes the new mobile spots and the associated attributes in
the app.

• Marketers register the mobile spots in the CI360 user interface so that they can be
leveraged in campaigns without any further code changes.

• Marketing users design HTML creatives in SAS Customer Intelligence 360. Those
creatives are delivered to the mobile spots via tasks that specify the mobile app, the
spot, the target audience, and various other criteria.

Currently, the implementation of spots in Xamarin requires only the spotID parameter.
If other parameters for spots are needed, developers can follow similar procedures to
add them in the plug-in.

This section describes how to implement mobile spot features in Xamarin to be used in
the Xamarin demo app. The creation of the Xamarin spots functions is described in three
sections. The views that are created in “Configure the Cross-Platform Project” can be
used either in the XAML file of the Xamarin app, or in XAML’s code-behind cs file, as
described in “Configure the Example Xamarin App”. The real implementation of the
views is in “Configure Android” and “Configure iOS”.

Configure the Cross-Platform Project

1. Right-click XamarinDemoApp and select Add => New Folder. Name the folder
SDKMobileSpots.

2. Right-click the SDKMobileSpots folder, and then select Add => New File.

3. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Class, and enter InlineAdView for the name.Click Create.

4. Replace the boilerplate code in InlineAdView.cs with this code:

using System;

using Xamarin.Forms;

namespace XamarinDemoApp.SDKMobileSpots

35

{

 public class InlineAdView : View

 {

 public static readonly BindableProperty

 SpotIdProperty =

 BindableProperty.Create(

 propertyName: nameof(SpotId),

 returnType: typeof(string),

 declaringType: typeof(string),

 defaultValue: string.Empty

);

 public string SpotId

 {

 get { return (string)GetValue(SpotIdProperty);

}

 set { SetValue(SpotIdProperty, value); }

 }

 }

}

5. Repeat steps 2 and 3 to create InterstitialAdView.cs.

6. Replace the boilerplate code in InterstitialAdView.cs with this code:

using System;

using Xamarin.Forms;

namespace XamarinDemoApp.SDKMobileSpots

{

 public class InterstitialAdView : View

 {

 public static readonly BindableProperty

 SpotIdProperty =

 BindableProperty.Create(

 propertyName: nameof(SpotId),

 returnType: typeof(string),

 declaringType: typeof(string),

 defaultValue: string.Empty

36

);

 public string SpotId

 {

 get { return (string)GetValue(SpotIdProperty); }

 set { SetValue(SpotIdProperty, value); }

 }

 }

}

7. Repeats step 2 and 3 to create InlineAdDelegateHandler.cs and
InterstitialAdDelegateHandler.cs. Replace the boilerplate code with the code in the
mobile_sdk_xamarin project example.

The following figure shows the files that you created in SDKMobileSpots.

Configure Android

1. Right-click XamarinDemoApp.Android and select Add => New Folder. Name the
folder SDKMobileSpots.

2. Right-click the SDKMobileSpots folder, and then select Add => New File.

3. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Class. Name the class InlineAdViewRenderer, and then click
Create.

4. Repeat steps 2 and 3 to create the InterstitialAdViewRenderer class.

5. Replace the content of InlineAdViewRender.cs with the content from
XamarinDemoApp.Android/SDKMobileSpots/InlineAdViewRenderer.cs
in the mobile_sdk_xamarin project example.

6. Replace the content of InterstitialAdViewRender.cs with the content from
XamarinDemoApp.Android/SDKMobileSpots/

InterstitialAdViewRender.cs in the mobile_sdk_xamarin project example.

37

The following figure shows the files that you created in
XamarinDemoApp.Android/SDKMobileSpots.

7. Find AndroidManifest.xml in XamarinDemo.Android/Properties and add this
code in <application></application>:

<activity

android:name="com.sas.ia.android.sdk.InterstitialActivity" />

<activity

android:name="com.sas.ia.android.sdk.InterstitialWebActivity"

/>

Configure iOS

1. Right-click XamarinDemoApp.iOS, and then select Add => New Folder. Name the
folder SDKMobileSpots.

2. Right-click the SDKMobileSpots folder, and then select Add => New File.

3. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Class, and enter InlineAdViewRenderer for the name. Click Create.

4. Follow steps 2 and 3 to create InterstitialAdViewRenderer class.

5. Replace the content of InlineAdViewRender.cs with the content from
XamarinDemoApp.iOS/SDKMobileSpots/InlineAdViewRenderer.cs in the
mobile_sdk_xamarin project example.

6. Replace the content of InterstitialAdViewRender.cs with the content from
XamarinDemoApp.iOS/SDKMobileSpots/InterstitialAdViewRender.cs
in the mobile_sdk_xamarin project example.

The following figure shows the files that you created in
XamarinDemoApp.iOS/SDKMobileSpots:

38

The following notes apply to both Android and iOS.

Notes:

• Because they are related, InlineAdViewRenderer.cs and
InterstitialAdViewRender.cs both include the view renderer class and the class
that implements SASIA_AdDelegate class.

• The delegate classes InlineAdViewDelegate and InterstitialAdViewDelegate each
contain a class instance called InlineAdDelegateHandler and
InterstitialAdDelegateHandler, respectively. These delegate handlers are defined
in the cross-platform project. You can change the content of the handlers to
achieve your goal for events such as OnAdLoaded, OnAdClosed(). For
demonstration purposes, the handlers in the cookbook display toast messages
only when these events occur.

Configure the Example Xamarin App

1. Under XamarinDemoApp, right-click Views and select Add => New File.

2. In the New File window, in the left-hand pane, select Forms, in the center pane,
select Forms.ContentPage XAML, and then enter MobileSpotsPage for the
name. Click Create.

3. To set up an inline ad view and a button that opens an interstitial ad view, replace
the content of MobileSpotsPage.xaml with this code:

<?xml version="1.0" encoding="UTF-8" ?>

<ContentPage

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:mobilespot="clr-

namespace:XamarinDemoApp.SDKMobileSpots"

 x:Class="XamarinDemoApp.Views.MobileSpotsPage">

 <StackLayout Orientation="Vertical" Margin="0, 30,0,0"

Spacing="30" x:Name="ContainerLayout">

39

 <Label Text="Welcome to Mobile Spots Page"

 FontSize="26" FontAttributes="Bold"

 HorizontalOptions="CenterAndExpand"

 HorizontalTextAlignment="Center"

 VerticalOptions="Start" />

 <mobilespot:InlineAdView SpotId="your_inline_spot_id"

 HeightRequest="250"WidthRequest="250"

 HorizontalOptions="CenterAndExpand"

 BackgroundColor="LightGray"/>

 <Button HeightRequest="40" Margin="40,0"

 Clicked="InterstitialAd_Clicked"

 Text="View Interstitial Ad" />

 </StackLayout>

</ContentPage>

Note: In the code above, replace your_inline_spot_id with the inline spot ID
for your app. For this example, the name of the button that opens the interstitial ad
is called View Interstitial Ad, but you can name the button anything that
makes sense to you.

4. To render the interstitial ad view, replace the content of MobileSpotsPage.xaml.cs

with this code:

using System;

using System.Collections.Generic;

using Xamarin.Forms;

using XamarinDemoApp.SDKMobileSpots;

namespace XamarinDemoApp.Views

{

 public partial class MobileSpotsPage : ContentPage

 {

 InterstitialAdView interstitialAdView;

 public MobileSpotsPage()

 {

 InitializeComponent();

 }

 private void InterstitialAd_Clicked(

 Object sender, EventArgs args)

 {

 if (interstitialAdView != null &&

 ContainerLayout.Children.Contains(interstitialAdView))

 {

 ContainerLayout.Children.Remove(interstitialAdView);
 }

 interstitialAdView = new InterstitialAdView();

40

 interstitialAdView.SpotId = "your_spot_id";

 ContainerLayout.Children.Add(interstitialAdView);

 }

 }

}

Note: In the code above, replace your_spot_id with the interstitial spot ID for
your app.

In the example, the interstitial spot appears only when the user clicks the View
Interstitial Ad button, whereas the inline ad view is the ad (represented by an iris in
the figure below) that is shown when the user is on the mobile Spots tab, as
illustrated by the following figure:

5. Add this code between <TabBar> and </TabBar> in the AppShell.xaml file:

<ShellContent Title="Spots" Icon="spotlight.png"

 Route="MobileSpotsPage"

 ContentTemplate="{DataTemplate local:MobileSpotsPage}" />

Note: In the code sample above, spotlight.png is the image used for the Spots
tab that is shown in the figure in step 4. For this example, the image file was
downloaded and added in XamarinDemoApp.Android/Resources/drawable
folder and in XamarinDemoApp.iOS/Resources folder.

Location Functionality

Location features include precise location query (the ability to identify the local of a
mobile device), geofence registration and detection, and beacon detection.

41

Developers collaborate with marketers on when to send push notifications. If the
location of a mobile app is known, a triggered push notification can be sent when users
enter or leave geolocations, or when a beacon is discovered. For example, when a user
enters the geofence of a drugstore, the mobile app can send a push notification that
entitles the user to a discount.

A SAS Customer Intelligence 360 user creates a triggered push notification task with the
trigger set (on the Orchestration tab) to one of these mobile location options:

• Beacon Discovered

• Geofence Entered

• Geofence Exit

The SAS Customer Intelligence 360 user selects the trigger event’s attribute condition,
which is the action that triggers the event. For example, if the Geofence Entered trigger
is an airport, the event’s name might be Airport. Note that the CSV file that the
developer delivered to the SAS Customer Intelligence 360 user to upload contains the
event attributes to choose from.

To enable location features, these actions are required:

• Add startMonitoringLocation and disableLocationMonitoring. For geofences and
beacons to work, these two functions are needed from the SDK.

Note: The startMonitoringLocation and disableLocationMonitoring functions were
already added in XamarinDemoApp/Services/ISDKBasicService.cs as the
interface methods, and in
XamarinDemoApp.Android/Services/SDKBasicService.cs and
XamarinDemoApp.iOS/Services/SDKBasicService.cs as concrete
implementation in the “Basic Functionality” section of this guide.

• Request location tracking permission. A developer requests location tracking
permission from the user through the mobile app. For information, for iOS, see
Enable Location-Based Features and for Android, see Enable Location-Based
Features in SAS Customer Intelligence 360: Developer’s Guide for Mobile
Applications.

• Upload geofence and beacon data. A developer provides geofence and beacon
information in a CSV file to the SAS Customer Intelligence 360 user who uploads the
file to the mobile application that was created in SAS Customer Intelligence 360. For
information, see Upload Geofence and Beacon Data in SAS Customer Intelligence
360: Administration Guide.

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/ios-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0n4tj4hhy5jd3n1v788ikvglopz

42

The topics in this section cover how to configure startMonitoringLocation and
disableLocationMonitoring in the Xamarin demo app.

Configure the Cross-Platform Project

1. Under XamarinDemoApp =>App.xaml, find App.xaml.cs.

2. Add these using directives at the start of the file:

using Xamarin.Essentials;

using System.Threading.Tasks;

3. Add the HasStartedLocationMonitoring property and the
CheckLocationPermissionAndStartLocationService method:

public Boolean HasStartedLocationMonitoring { get; set; }

public async Task

CheckLocationPermissionAndStartLocationService()

 {

 PermissionStatus status = await

Permissions.CheckStatusAsync<Permissions.LocationAlways>();

 if (status == PermissionStatus.Denied &&

 DeviceInfo.Platform == DevicePlatform.iOS)

 {

 return;

 }

 if

(Permissions.ShouldShowRationale<Permissions.LocationAlways>()

)

 {

 await Shell.Current.DisplayAlert("Needs location

permission",

 "Location permission always is needed for enabling

geofencing and bluetooth functionality. \nPlease go to app

settings to set the permission."

 , "OK");

43

 return;

 }

 status = await

Permissions.RequestAsync<Permissions.LocationAlways>();

 if (status == PermissionStatus.Granted)

 {

 DependencyService.Get<ISDKBasicService>()

 .StartMonitoringLocation();

 HasStartedLocationMonitoring = true;

 }

 }

Note: Adding HasStartedLocationMonitoring ensures that
CheckLocationPermissionAndStartLocationService is not repeatedly called. Making
HasStartedLocationMonitoring a public property enables you to use it in other parts
of the application. CheckLocationPermissionAndStartLocationService() can also be
used in other locations outside of App.xaml.cs.

4. Add the OnStart override method after the class constructor:

protected async override void OnStart ()

{

 if (!HasStartedLocationMonitoring)

 {

 await

CheckLocationPermissionAndStartLocationService();

 }

}

Notes:
1. App.xaml.cs includes the OnResume override method. But OnResume is not

called after OnStart is called, or when the app wakes up from sleep. Because of
this, you cannot put CheckLocationPermissionsAndStartLocationService in
OnResume.

2. When the user changes location permissions for the app,
CheckLocationPermissionAndStartLocationService does not run again because
OnStart is called only once. In order for
CheckLocationPermissionAndStartLocationService to be called, the user must
close the app and restart it.

5. Create the StopLocationMonitoring public method in App.xaml.cs:

public void StopLocationMonitoring()

{

44

 if (!HasStartedLocationMonitoring)

 {

 return;

 }

 DependencyService.Get<ISDKBasicService>()

 .DisableLocationMonitoring();

 HasStartedLocationMonitoring = false;

}

6. In AppShell.xaml.cs, within the OnAppearing() method, add the following code after
base.OnAppearing():

await (App.Current as

XamarinDemoApp.App).CheckLocationPermissionAndStartLocationSer

vice();

 }

Note: This method is not used in the Xamarin demo app. You can call it anywhere
you want in your app to stop monitoring location. For example, you might include a
button which, when it is clicked, stops location monitoring.

Configure Android

1. Right-click XamarinDemoApp.Android, and then select Manage NuGet Packages.

2. In NuGet Packages window, search for
Xamarin.GooglePlayServices.Location, select it from the results list, and
then click Add Package.

3. Under XamarinDemoApp.Android => Properties, find AndroidManifest.xml.

45

4. Right-click AndroidManifest.xml, select Open With, and then select Source Code
Editor.

5. In AndroidManifest.xml:

a. Add permissions for locations:

<uses-permission android:name=

"android.permission.ACCESS_FINE_LOCATION" />

 <uses-permission android:name=

"android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission android:name=

"android.permission.ACCESS_BACKGROUND_LOCATION" />

 <uses-permission android:name=

"android.permission.FOREGROUND_SERVICE" />

 <uses-permission android:name=

"android.permission.BLUETOOTH_SCAN" />

 <uses-permission android:name=

"android.permission.BLUETOOTH" />

 <uses-permission android:name=

"android.permission.BLUETOOTH_ADMIN" />

b. In <application></application>, add this code:

<service android:name=

 "com.sas.mkt.mobile.sdk.SASCollectorIntentService">

</service>

<receiver android:name=

 "com.sas.mkt.mobile.sdk.SASCollectorBroadcastReceiver"

 android:exported = "true">

 <intent-filter>

 <action

46

 android:name="android.intent.action.BOOT_COMPLETED"

/>

 </intent-filter>

</receiver>

Configure iOS

1. Under XamarinDemoApp.iOS, find Info.plist.

2. Right-click Info.plist, select Open With, and then select Visual Studio Code if Visual
Studio Code is installed. Otherwise, select Xcode or Property List Editor.

a. If you opened Info.plist in Visual Studio Code, copy the following location
request permissions into your Info.plist file:

<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>We need to access your location for

geofence</string>
<key>NSLocationAlwaysUsageDescription</key>
<string>We need to access your location for

geofence</string>
<key>NSLocationWhenInUseUsageDescription</key>
<string>We need to access your location for

geofence</string>

b. If you opened Info.plist in Xcode or Property List Editor, click Add new entry,
then select a key from the list of properties. Enter a value for the key. The figure

47

below shows a list of keys to choose from after clicking Add new entry. (The
String value is not yet entered.)

Test Geofencing and Beacon Functionality

Create a geofence CSV file with the mobile app ID, longitude, latitude, radius, and so on.
Give the file to the SAS Customer Intelligence 360 user to upload in SAS Customer
Intelligence 360 where the mobile application is created. For information, see Upload
Geofence and Beacon Data in SAS Customer Intelligence 360: Administration Guide.

Android

1. In the Android simulator, create a few location points. Make sure some, but not all,
locations are also in the CSV file.

2. Start the example app and find a location in the simulator that is in the CSV file and
set the location. The logs from Slog should have an enter_geofence event.

3. To test leaving a geofence, choose a location that is not in the CSV file, and set the
location. The result is that an exit_geofence event is logged. Beacon events are also
included in the logs.

iOS

1. Create a starter native iOS project in Xcode. You do not need to add any code in this
project. It is used only to simulate location changes.

2. Create a GPX file in the native iOS project. In the file, make sure some of the wpts
(waypoints) have the same lat (latitude) and lon (longitude) values that are defined
in the CSV file, and others do not.

3. In Xcode, navigate to Product => Scheme => Edit Scheme.

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0n4tj4hhy5jd3n1v788ikvglopz
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0n4tj4hhy5jd3n1v788ikvglopz

48

Select Allow Location Simulation. Make sure the GPX file is in the Default Location
field. In the example below, the file name is home_work.

4. In Xcode, run the starter native project on the real device that you use to run the
Xamarin app.

5. In VS 2022 Mac, run the Xamarin demo app on the same real device.

Notes:

• After VS 2022 Mac deployed the Xamarin demo app on the device, it will
terminate immediately. However, both the native and the Xamarin apps are still
running. Since VS 2022 Mac stopped running, you cannot view SAS logs to verify
geofence related events. You need to get events logs elsewhere to confirm that
geofence works. If you can manage to have both the native and the Xamarin
apps running from Xcode and VS 2022 Mac without getting VS 2022 Mac
stopped, then you can use VS 2022 Mac to view geofence logs.

49

• When the native app is running, if a map is open, it moves from one location to
another based on the setup in the GPX file.

Mobile Message Functionality

Mobile message features include token registration, in-app messages, push
notifications, rich push notifications for iOS, and the delegate methods.

SAS Customer Intelligence 360 enables you to capture real-time impression data and
connect other SAS Customer Intelligence 360 features with mobile messages.

Push notifications can display timely offers that invite a mobile app user back into the
mobile app or into a store. For example, a mobile app user might drive to a store for
which a geofence is defined in the mobile app. When the user (more specifically, the
user’s mobile device) enters that geofence, that action can trigger the mobile app to
send a push notification that informs the user of a sale in the store.

In-app messages can display pop-up ads in the app. For example, the user might tap a
button that triggers the in-app message event. The in-app message displays ads that
might contain a link for the user to go to the website to learn more, or a button that
takes the user to another page of the app to get more information. As the message is
triggered by a SAS Customer Intelligence 360 custom event, this cannot be achieved
using third-party plug-ins.

When the user clicks one of the buttons in an in-app message or opens a push
notification, often the next action is to navigate to a particular section of your app.
Design your delegate to be as flexible as possible so that it can perform navigation
based on the link provided by the creative. This flexibility enables the SAS Customer
Intelligence 360 user to achieve the desired calls to action more easily.

Like the configuration of location functionality, mobile messages require more native
setup than Dart setup.

Note: In Xamarin, you can use the Firebase and Azure notification hub for push
notifications, but they do not provide the full functionality that SAS Customer
Intelligence 360 mobile messaging delivers.

Configure the Cross-Platform Project

1. Under XamarinDemoApp, select Services, right-click and then select Add => New
File.

2. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Class, and enter MobileMessageHandler for the name. Click Create.

50

3. Add this code to the MobileMessageHandler.cs file:

using System;

using Xamarin.CommunityToolkit.Extensions;

using Xamarin.Forms;

namespace XamarinDemoApp.Services

{

 public class MobileMessageHandler

 {

 public static async void OnMsgDismissed()

 {

 await

Application.Current.MainPage.DisplayToastAsync(

 "Mobile Message is dismissed.");

 }

 public static async void OnMsgLinkClicked(

 string url, Boolean isPushNotification)

 {

 if (String.IsNullOrEmpty(url)) {

 return;

 }

 string msg = isPushNotification ? "Push notification

link: " : "In-App Message link: ";

 await

Application.Current.MainPage.DisplayToastAsync(
 msg + url + " is clicked");

 if (url.Equals("app://diagnostics")) {

 Shell.Current.CurrentItem =

 Shell.Current.Items[0].Items[4];

51

 }

 }

 }

}

Note: The code above demonstrates the handling of user actions for mobile messages
with both a toast message and redirection to diagnostics tab. In the example project’s
AppShell.xaml file, the tabs are defined in the following code where TabBar is Items[0],
and Diagnostics page is Items[4] in TabBar.

 <TabBar>

 <ShellContent Title="Login" Icon="login.png"

 Route="LoginPage" ContentTemplate=

 "{DataTemplate local:LoginPage}" />

 <ShellContent Title="Home" Icon="home.png"

 Route="HomePage" ContentTemplate=

 "{DataTemplate local:HomePage}" />

 <ShellContent Title="Spots" Icon="spotlight.png"

 Route="MobileSpotsPage" ContentTemplate=

 "{DataTemplate local:MobileSpotsPage}" />

 <ShellContent Title="Msg" Icon="message.png"

 Route="MobileMessagesPage" ContentTemplate=

 "{DataTemplate local:MobileMessagesPage}" />

 <ShellContent Title="Diagnostics" Icon="stethoscope.png"

 Route="DiagnosticsPage" ContentTemplate=

 "{DataTemplate local:DiagnosticsPage}" />

 </TabBar>

4. Under XamarinDemoApp, right-click Views, and then select Add => New File.

5. In the New File window, in the left-hand pane, select Forms, in the center pane,
select Forms ContentPage XAML, and enter MobileMessagesPage for the name.
Click Create.

6. Under XamarinDemoApp, right-click ViewModels, and then select Add => New File.

7. In the New File window, in the left-hand pane, select General, in the center pane,
select Empty Class, and enter MobileMsgViewModel for the name. Click Create.

52

8. Replace the content of the MobileMsgViewModel.cs file with the content from
XamarinDemoApp/ViewModels/MobileMsgViewModel.cs in the
mobile_sdk_xamarin project example.

The following code shows that the SASCollector’s AddAppEvent method is called
when the small in-app and large in-app message buttons are clicked:

private void OnSmInAppEventClicked()

{

 if (string.IsNullOrEmpty(smInAppMsgEventName))

 {

 Application.Current.MainPage.DisplayToastAsync(

 "Please enter event name");

 return;

 }

 DependencyService.Get<ISDKBasicService>()

 .AddAppEvent(smInAppMsgEventName, null);

}

private void OnLgInAppEventClicked()

{

 if (string.IsNullOrEmpty(lgInAppMsgEventName))

 {

 Application.Current.MainPage.DisplayToastAsync(

 "Please enter event name");

53

 return;

 }

 DependencyService.Get<ISDKBasicService>()

 .AddAppEvent(lgInAppMsgEventName, null);

}

9. Replace the content of MobileMessagesPage.xaml with the content from
XamarinDemoApp/Views/MobileMessagesPage.xaml in the
mobile_sdk_xamarin project example.

10. In the code-behind file, MobileMessagesPage.xaml.cs, replace the boilerplate code
with this code:

using Xamarin.Forms;

using XamarinDemoApp.ViewModels;

namespace XamarinDemoApp.Views

{

 public partial class MobileMessagesPage : ContentPage
 {
 public MobileMessagesPage()

 {

 InitializeComponent();

 BindingContext = new MobileMsgViewModel();

 }

 }

}

11. Add this code between <TabBar></TabBar> in AppShell.xaml, which is in
XamarinDemoApp:

<ShellContent Title="Msg" Icon="message.png"

 Route="MobileMessagesPage"

 ContentTemplate="{DataTemplate local:MobileMessagesPage}" />

Note: You need to have message.png file in
XamarinDemoApp.Android/Resources/drawable and in
XamarinDemoApp.iOS/Resources.

Configure Android

1. In the Firebase console, create a project and add the Xamarin app’s Android package
name to the project. You can find the package name in the AndroidManifest.xml file.

2. Obtain the google-services.json file from the Firebase console, and then put it in the
Xamarin project under XamarinDemoApp.Android.

54

3. Right-click google-services.json, select Build Action, and select GoogleServicesJson.

4. From the project in the Firebase console, get the server key and give it to the SAS

Customer Intelligence 360 user. The user will add it to the SAS Customer Intelligence
360 mobile application that is created for the example project.

For information, see Mobile Application Configuration in SAS Customer Intelligence
360: Administration Guide.

5. Right-click XamarinDemoApp.Android and select Manage NuGet Packages. In the

NuGet Packages window, search for Xamarin.Firebase.Messaging, select it
from the results list, and then click Add Package.

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm

55

6. Find MainActivity.cs under XamarinDemoApp.Android.

7. Add these using directives at the start of MainActivity.cs:

using Android.Gms.Tasks;

using Android.Content;

using Firebase;

using Firebase.Messaging;

using Com.Sas.Mkt.Mobile.Sdk.Iam;

using XamarinDemoApp.Services;

Note: If you see errors, copy the using directives from
XamarinDemoApp.Android/MainActivity.cs in the mobile_sdk_xamarin

project example.

8. In the OnCreate method in MainActivity.cs, add the following code:

FirebaseApp.InitializeApp(this);

FirebaseMessaging.Instance?.GetToken()

 .AddOnSuccessListener(this,

 new FirebaseOnSuccessListener())

 .AddOnFailureListener(this,

56

 new FirebaseOnFailureListener());

SetPushChannel();

SetMobileMessageDelegate();

String notificationLink =

 Intent.GetStringExtra("notificationLink");

MobileMessageHandler.OnMsgLinkClicked(notificationLink,

 true);

Note: There are a few methods and classes that are shown in the code above that
have not been defined yet. They will be defined in the next steps.

Note: The assignment and the method call at the end of the above code take care of
handling push notifications that start the application. This happens when there are
push notifications that appear on the device, but the application has not started yet.
Clicking the push notifications takes the user to the diagnostics page.

9. If you use CI360 Android SDK 1.80.2 add this method in MainActivity class:

 protected override void OnNewIntent(Intent intent)

 {

 base.OnNewIntent(intent);

 String notificationLink =

 intent.GetStringExtra("notificationLink");

 MobileMessageHandler.OnMsgLinkClicked(notificationLink,

 true);

 }

10. If you use CI360 Android SDK 1.80.3, skip step 9 and add this method in MainActivity
class:

 protected override void OnNewIntent(Intent intent)
 {

 base.OnNewIntent(intent);

Bundle bundle = intent.Extras;

 this.Intent.PutExtras(bundle);

 String notificationLink =

 intent.GetStringExtra("notificationLink");

 MobileMessageHandler.OnMsgLinkClicked(notificationLink,

 true);

57

 }

11. If you use CI360 Android SDK 1.80.3, you also need to add this entryy in your

SASCollector.properties file:

 apprelaunch.disabled.on.notification.open=true

12. At the end of the content in MainActivity.cs, but still inside XamarinDemoApp.Droid

namespace, add these classes:

public class FirebaseOnSuccessListener : Java.Lang.Object,

IOnSuccessListener

{

 public void OnSuccess(Java.Lang.Object result)

 {

 string token = result.ToString();

 SASCollector.Instance

 .RegisterForMobileMessages(token);

 }

}

public class FirebaseOnFailureListener : Java.Lang.Object,

IOnFailureListener

{

 public void OnFailure(Java.Lang.Exception e)

 {

 Console.WriteLine(e.LocalizedMessage);

 }

}

public class MobileMessageDelegate2 : Java.Lang.Object,

ISASMobileMessagingDelegate2

{

 private Context context;

 public MobileMessageDelegate2(Context context)

 {

 this.context = context;

 }

 public void Action(string link,

 SASMobileMessagingDelegate2SASMobileMessageType

 msgType)

 {

 MobileMessageHandler.OnMsgLinkClicked(link, false);

 }

 public void Dismissed()

 {

 MobileMessageHandler.OnMsgDismissed();

58

 }

 public Intent GetNotificationIntent(string s)

 {

 Intent intent = new Intent(context as Activity,

 typeof(MainActivity));

 intent.PutExtra("notificationLink", s);

 return intent;

 }

}

13. In MainActivity class, add these methods:

private void SetPushChannel()

{

 string channelId = "XamarinPushChannel1";

 string channelName = "Xamarin Push Channel1";

 NotificationManager notificationManager =

 (NotificationManager)GetSystemService(

 NotificationService);

 NotificationChannel channel = new NotificationChannel(

 channelId, channelName,

 NotificationImportance.High);

 channel.EnableLights(true);

 channel.EnableVibration(true);

 channel.SetShowBadge(true);

 notificationManager.CreateNotificationChannel(channel);

 SASCollector.Instance.SetPushNotificationChannelId(

 channelId);

 SASCollector.Instance.SetMobileMessagingIcon(

 Resource.Drawable.spotlight);

 }

 private void SetMobileMessageDelegate()

 {

 SASCollector.Instance.MobileMessagingDelegate2 =

 new MobileMessageDelegate2(this);

 }

Note: You can change the channel name and ID to whatever you like.

14. Under XamarminDemoApp.Android => Services, create a

XamarinFirebaseMessagingService.cs file. Replace its content with this code:

using System;

using Android.App;

using Firebase.Messaging;

using Com.Sas.Mkt.Mobile.Sdk;

59

namespace XamarinDemoApp.Droid.Services

{

 [Service (Exported = false)]

 [IntentFilter(new[]

{"com.google.firebase.MESSAGING_EVENT"})]

 public class XamarinFirebaseMessagingService :

FirebaseMessagingService

 {

 public override void OnMessageReceived(

 RemoteMessage message)

 {

 base.OnMessageReceived(message);

 if (!SASCollector.Instance

 .HandleMobileMessage(message.Data))

 {

 // Handle non-SASCollector message

 }

 }

 public override void OnNewToken(string token)

 {

 base.OnNewToken(token);

 if (token != null)

 {

 SASCollector.Instance

 .RegisterForMobileMessages(token);

 }

 }

 }

}

Note: This class does not need to be registered in AndroidManifest.xml. The custom
attributes (square brackets and the content inside) that are added before the start of the
class definition ensure it is added to AndroidManifest.xml during compilation.

Configure iOS

1. Go to developer.apple.com, enable push notifications for the app, and create a PEM
file.

2. Copy the key and certificate and put them in SAS Customer Intelligence 360, where
the mobile application is created. For information, see Mobile Application
Configuration in SAS Customer Intelligence 360: Administration Guide.

3. Under XamarinDemoApp.iOS, find Info.plist and double-click to open it.

4. Info.plist might open as Source code. Make sure to change it to Application. Scroll
down to find Background Modes. Select these modes:

• Location updates

https://developer.apple.com/
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm

60

• Background fetch

• Remote notifications

• Background processing

Note: You might need to set your Apple account and signing provision while in
Info.plist.

5. Right-click XamarinDemoApp.iOS and select Manage NuGet Packages.

6. In the NuGet Packages window, search for Xamarin.Azure.NotificationHubs,
select Xamarin.Azure.NotificationHubs.iOS from the results list, and then click Add
Package.

7. Create an administrator account or log in to your existing administrator account in
the Azure portal.

8. In the Azure portal, create a Notification Hub resource, and configure it with APNS.
Get the notification hub name and connection string from Azure portal.

https://sasoffice365-my.sharepoint.com/personal/wei_wen_sas_com/Documents/portal.azure.com

61

9. Create a Constants.cs file in XamarinDemoApp.iOS and add the hub name and
connection string in the file:

using System;

namespace XamarinDemoApp.iOS

{

 public class Constants

 {

 // Azure app-specific connection string and hub path

 public const string ConnectionString =

 "your_conn_str";

 public const string NotificationHubName =

 "your_hub_name";

 }

}

Note: Replace ConnectionString and NotificationHubName with your app’s
connection string and hub name.

10. Under XamarinDemoApp.iOS, double-click AppDelegate.cs to open it.

11. In AppDelegate.cs, add these using directives at the start of the file:

using UserNotifications;

using WindowsAzure.Messaging;

using System.Diagnostics;

using XamarinDemoApp.Services;

12. Add this class to AppDelegate.cs, after the AppDelegate class definition, but inside
XamarinDemoApp.iOS namespace:

public class XamarinMobileMessagingDelegate :

SASMobileMessagingDelegate2

{

 public override void ActionWithLink(string link,

 SASMobileMessageType type)

 {

 Boolean isPushNotification =

 type == SASMobileMessageType.PushNotification;

 MobileMessageHandler.OnMsgLinkClicked(link,

 isPushNotification);

 }

62

 public override void MessageDismissed()

 {

 MobileMessageHandler.OnMsgDismissed();

 }

}

13. Add this code at the start of the AppDelegate class definition, before the
FinishedLaunching method:

private SBNotificationHub Hub { get; set; }

private XamarinMobileMessagingDelegate messagingDelegate;

14. To the AppDelegate class definition, add this override method to register for remote
notifications:

public override void

RegisteredForRemoteNotifications(UIApplication application,

NSData deviceToken)

{

 Hub = new SBNotificationHub(Constants.ConnectionString,

 Constants.NotificationHubName);

 Hub.UnregisterAll(deviceToken, (error) => {

 if (error != null)

 {

 Debug.WriteLine("Error calling Unregister: {0}",

 error.ToString());

 return; }

 NSSet tags = null; // create tags if you want

 Hub.RegisterNative(deviceToken, tags, (errorCallback)

=>{

 If (errorCallback !=null)

 Debug.WriteLine(

 “RegisterNative error: “ + errorCallback.ToString());

 });

 });

 SASCollector.RegisterForMobileMessages(deviceToken,

 () => {

 Debug.WriteLine("Registration successful");

63

 },

 () => {

 Debug.WriteLine("Registration failed");

 }

);

 }

15. Add these two methods to the AppDelegate class definition for handling when
mobile in-app messages and push notifications are received, respectively:

public override void

DidReceiveRemoteNotification(UIApplication application,

NSDictionary userInfo, Action<UIBackgroundFetchResult>

completionHandler)

{

 if (!SASCollector.HandleMobileMessage(userInfo,

 UIApplication.SharedApplication))

 {

 Console.WriteLine(

 "Handle non-SASCollector message");

 }

 completionHandler(UIBackgroundFetchResult.NoData);

}

public override void ReceivedRemoteNotification(UIApplication

application, NSDictionary userInfo)

{

 if (!SASCollector.HandleMobileMessage(

 userInfo, application))

 {

 Console.WriteLine(

 "Handle non-SASCollector message");

 }

}

16. Call RegisterForRemoteNotifications() in the FinishLaunching method in the
AppDelegate class definition:

private void RegisterForRemoteNotifications()

64

{

 if (UIDevice.CurrentDevice.CheckSystemVersion(10, 0))

 {

 UNUserNotificationCenter.Current.RequestAuthorization(

 UNAuthorizationOptions.Alert |

 UNAuthorizationOptions.Badge |

 UNAuthorizationOptions.Sound,

 (granted, error) =>

 {

 if (granted)

 InvokeOnMainThread(

 UIApplication.SharedApplication

 .RegisterForRemoteNotifications);

 });

 }

 else if (UIDevice.CurrentDevice

 .CheckSystemVersion(8, 0))

 {

 var pushSettings =

 UIUserNotificationSettings.GetSettingsForTypes(

 UIUserNotificationType.Alert |

 UIUserNotificationType.Badge |

 UIUserNotificationType.Sound,

 new NSSet());

 UIApplication.SharedApplication

 .RegisterUserNotificationSettings(

 pushSettings);

 UIApplication.SharedApplication

 .RegisterForRemoteNotifications();

 }

 else

 {

 UIRemoteNotificationType notificationTypes =

65

 UIRemoteNotificationType.Alert |

 UIRemoteNotificationType.Badge |

 UIRemoteNotificationType.Sound;

 UIApplication.SharedApplication

 .RegisterForRemoteNotificationTypes(

 notificationTypes);

 }

}

17. In the FinishedLaunching method, add this code before the return statement:

RegisterForRemoteNotifications();

messagingDelegate = new XamarinMobileMessagingDelegate();

SASCollector.SetMobileMessagingDelegate2(messagingDelegate);

18. To enable rich push notifications, right-click XamarinDemoApp (the solution folder),
select Add, and then select New Project.

19. In the New Project window, in the left-hand pane, under iOS, select Extension, in
the center pane, select Notification Service Extension, and then click Continue.

20. In the configuration window, enter a project name, and select Continue to finish
creating the extension project.

66

21. Log in to your Apple developer account. Using the bundle identifier that was created
for the extension project, create an identifier for the push notification extension
project. Then, create a provisioning profile for that extension. You can find the
bundle identifier in Info.plist.

22. While you are still logged in to your Apple developer account, create a push service
certificate for the Xamarin project. Install the certificate in your Keychain Access
application on your Mac.

23. Find NotificationService.cs in XamarinDemoAppServiceExtension, and then replace
the DidReceiveNotificationRequest method with the one in
XamarinDemoAppServiceExtension/NotificationService.cs in the
mobile_sdk_xamarin project example.

Test Push Notifications and In-App Messages

A SAS Customer Intelligence 360 user creates events, creatives, and tasks for push
notifications and in-app messages.

Test Push Notifications

1. Start the app, log in, and put the app in the background.

67

2. In SAS Customer Intelligence 360, navigate to General Settings. Under Content
Delivery, select Diagnostics. For ID type, select your device ID and click Submit Test.
You should receive a test push notification on your device.

Test In-App Messages

To test an in-app message, a mobile in-app message task must be created in SAS
Customer Intelligence 360. The task requires a trigger event. Call addAppEvent using the
event ID for the task's trigger event. The in-app message should be displayed in your
mobile app.

Access API Reference Documentation

API reference documentation is included in SASCollector_<applicationID>.zip.

1. Navigate to the Android folder or the iOS folder in the SDK ZIP file
(SASCollector_<applicationID>.zip).

2. To view the API documentation in a browser:

a. Extract the contents of SASCollector-javadoc.jar (for Android) or
iOSDocumentation.zip (for iOS) to a local directory.

b. To open API reference documentation, open index.html.

TIP For ease of use, bookmark the API reference URL in your browser.

3. Android only: To view the API documentation in Android Studio, add the
SASCollector-javadoc.jar to the app/libs folder in your Android Studio project.

Each time you upgrade to the latest SDK, remember to refer to the latest API reference.
Information about changes to the SAS Customer Intelligence mobile SDKs is available in the
SDK Change Log.

https://support.sas.com/documentation/onlinedoc/ci/sdk-change-log.htm

68

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ®
indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright © 2023, SAS Institute Inc. All rights reserved.

