Osas

THE POWER TO KNOW.

SASe Customer Intelligence 360

Mobile SDK Integration with a React
Native App: Cookbook

SAS® Documentation
March 25, 2024

Contents

OVEIVIBW ..ttt e et e e e e e s e e et et e s e s e s r b et et e e e s s sessnrbeaeeeesssesannnnaes 1
What You Should Know in Order to Use This COOKbOOKcccociiniiiiiiiiiiiicccee, 1
Roles and ReSPONSIDIILIES.........uuuiieiieei et e e s e e e e e e e e e s e s snnnereneeeaeas 2
La T LT Y] AU o TSR 3
Create a React Native Library Project. ...t 3
(@1 I d o TN o o =T X APPSR 3
Obtain the SAS Customer Intelligence 360 Mobile SDKS.........ceiieieeicciiiiieeeee e e 5
Add SAS Customer Intelligence 360 Mobile SDK Librariescccccceeeeeeieecciieeeeeee e, 6

FA g Lo [o] o I OO PP PPTOPPTRROTPROPPRO 6

10 PRSP PR PPPRPSTOPRRO 7

23 LY (ol U T Tox oY =1 L1 Y2 SRR 7
(@o T} 4 T=dU TN AN Ve [o] Lo FS PSP 8
CONFIGUIE TS ...t e e e e ettt e e e e st e e e e s eabaeeesesteeeeeansaeeeeensaeeesassaeeeanns 10
Configure React Native (TYPESCIIPL) coeccriie ettt e e e e e e e rrae e e e e araeeeeans 12
Configure the Example React NatiVe AP ...cccvreeeieiiiieierieee et ceteee e e e e e s aae e 13
Mobile SPOt FUNCEIONAIITY ..eeiiiieiiieeciiiee e e e e e s e aeeeeans 18
(O0o] o} T={ U TN\ oo [fo] T FS U URUP 19
(000 o T ={ T I YR 20
Configure React Native (TYPESCIIPL) coeiciiii et e st e e e rae e e e e araeeeeaas 22
Configure the Example React Native APP ..ottt e e e e raree e e e 23
(W or- | aTo) o I a0 g Yot o] o ¥ | 11 4V 2SS 24
(O0o] o} T={ U TN\ oo [fo] T FS U URUP 25
(0o o} i T={ U T I © NPT 26
Configure React Native (TYPESCIIPL) c.uurrrrerieeiieiiiiiieeiee e eecctrrree e e eeeetrrere e e e e e e e e seanrreneeeeens 27
Test Geofencing and Beacon FUNCLIONAIILY ...eeeeeiiiieeiiiiiieec e e 30

JA g Lo [fo] o I PRSPPI 30

TS ettt h et b e et e e b e e ea et b e e eae e e b e e ehe e e be e ehe e e beeehe e e bt e ehbeebeenaeeereeeaes 30
Mobile Message FUNCLIONATITYooviiii i et 32
(0o o} T ={ TNV o [o] T SRR 32
CONTIGUIE TOS .eteeeeeiee ettt e e e e e s e e e e e e s ee s abaaaereaeeeesessstsareeeeeseesanssrrraneeeeens 42
Configure React Native (TYPESCIIPL) c.uurrureiiiiiieiiiiieeiee et eeeerrreee e e e e e e e e seanrreneeeee s 51

T o T\ Lo S AT Tor=] AT Y F PR 51

IN-APP M ESSAZES cevvuueieeeeeiiiiiiiiiere e et erttitiiaese e e eeretttataaseeeeeeetrsrnassseeeessresnsnssssesessnnsssnnnnsseees 56
Test Push Notifications and IN-App MESSABES.......ceiiruiiiiiiriiieeieiiiiee e e e s 57
Test PUSh NOEIFICAtiONSooouiiiiiiee e e s 57
TS IN-APP IMESSAEES ettt ettt s bs s sasbsbsbsbsbsssbsssbssssssnsnsnsnsnnns 57
Integrate the React Native Library with an Existing React Native Appccocvveviviiieeeiniieeennnne 58
Access APl Reference DocUmMENtatioN........ceeviiiiieiieniienceee et 63
L7 o £) =S 64
(0o o] o1 g 00 T U T o T 1= S 64
(00T} 41U LI AY Ve [o] (o FR PSSR 64
CONFIGUIE HOS .ttt e e e st e e s et e e et ae e e e sabeeaesssaaeeeeanneeaeennsens 64
Configure React Native (TYPeSCriPL) uueuiiiie ettt e e e 65
Update with SASCollector SDK rel@aseuuiiiiieeiiiiiieeeeciiee e cecieee e esee e e e eaee e 68
NOVEMDBDEr 2023 UPAAtES . uuiiiiiiiiiieeiiieee et ee ettt e st e e e st e e e e st e e e s s saate e e s ssraeeeesnneeeesnnnens 70
(00T} 41U Z I AN Ve [o] Lo FR PSSR 70
CONFIGUIE TS ... e e e e et e e e e et e e e e e tae e e e e abaeeesessaeeeeesseeeeennsens 72
Configure React Native (TYPESCIIPL) .oeeuiiiiie et 75
MaArch 2024 UPAAtes ..eeeeeiieiiciiiiieeee e ettt e e e e rrere e e e e e s e st ee e e e e e e sennntaeaeeeeeeeeesnnnseens 79

1V FoY o1 TSI o Yo X PP PPPPRRN 79
Setting Application Verson Programmaticallycoooiieiiiieeieiieiieiicieeeeee e, 87
Optional SASMobileMessagingDelegate?cccveeveeeeiiieiiiieeeeee e eenrrereee e 95

Overview

SAS Customer Intelligence 360 mobile SDK (also called SASCollector) enables you to add
support for event collection and to publish content to native Android and iOS apps. You
can use collected events to understand how your app is performing and target users for
distribution of content.

e The Android mobile SDK for SAS Customer Intelligence 360 is a self-contained Java
library in the form of a JAR file.

e The iOS mobile SDK for SAS Customer Intelligence 360 is an iOS framework that is a
directory of files in a particular structure. The directory includes headers, binaries,
and resource files.

You can use React Native, an open-source software development kit, to design a hybrid
mobile application that uses only one codebase for both Android and iOS. The
programming languages that are used to develop a mobile app with React Native are
JavaScript or Typescript. In this document, Typescript is used.

The purpose of this document is to provide guidance on how you can integrate SAS
Customer Intelligence 360 mobile SDKs for Android and iOS with a mobile app that is
built using React Native technology. This document shows how to create a project that
adds the capabilities provided by SAS Customer Intelligence mobile SDKs.

In addition, there is a Mobile SDK React Native Package (.zip) that contains a sample
React Native project (mobile-sdk-react-native).

IMPORTANT The sample files and code examples are provided by SAS Institute Inc. "as
is" without warranty of any kind, either express or implied, including but not limited to
the implied warranties of merchantability and fitness for a particular purpose.
Recipients acknowledge and agree that SAS Institute shall not be liable for any damages
whatsoever arising out of their use of this material. In addition, SAS Institute will provide
no support for the materials contained herein.

What You Should Know in Order to Use This Cookbook

This cookbook assumes that the following statements are true:
e You are familiar with SAS Customer Intelligence 360 mobile SDKs.

e You have experience with the development of Android, iOS, and React Native mobile
apps and the programming languages that are used to design them.

e You understand the roles and responsibilities of the individuals who work with the
mobile app, mobile in-app messages, and push notifications.

https://support.sas.com/documentation/onlinedoc/ci/ci360-mobile-sdks/mobile-sdk-react-native.zip

Roles and Responsibilities

Collaboration between marketers, business analysts, and mobile app developers is
critical. To ensure success, it is important that each of the individuals in these key roles
has direct access to the required resources. A successful integration of a mobile
application with SAS Customer Intelligence 360 depends on proper configuration.

Note: In SAS Customer Intelligence 360, the individual who is working in the application
is sometimes referred to as the SAS Customer Intelligence 360 user. In the context of
delivering mobile content, this individual is typically a mobile marketer.

Here are examples of items that require collaboration:

Mobile messaging. Firebase Cloud Messaging (FCM) for Android devices and Apple
Push Notification service (APNs) for iOS devices are used to deliver mobile messages
(push notifications and in-app messages). The mobile app developer registers the
mobile app with those services and obtains certificates and keys that a SAS
Customer Intelligence 360 user uses to register the mobile app with SAS Customer
Intelligence 360. For more information, see Register a Mobile Application in SAS
Customer Intelligence 360: Administration Guide.

Mobile spots. The marketer and the mobile app developer work together to identify
places (referred to as spots) in the mobile app where the marketer can use SAS
Customer Intelligence 360 to deliver content. The mobile app developer must
provide the SAS Customer Intelligence 360 user with spot IDs and details such as
spot dimensions. In SAS Customer Intelligence 360, the spot ID is required to create
a task that delivers content to a specific location in the mobile app. For more
information, see Creating Mobile Spots in SAS Customer Intelligence 360: User’s
Guide.

Custom mobile events. The mobile app developer provides a SAS Customer
Intelligence 360 user with mobile event keys and custom attributes (if any). In SAS
Customer Intelligence 360, the mobile event key is required to create custom events
that represent specific behaviors in the mobile app. These behaviors can act as
triggers for sending content to the app, or they can be used for personalization. For
more information, see Create a Custom Event for a Mobile App in SAS Customer
Intelligence 360: User’s Guide. Also see Working with Events for iOS and Working
with Events for Android in SAS Customer Intelligence 360: Developer’s Guide for
Mobile Applications.

Geofences and beacons. The marketer or SAS Customer Intelligence 360 user can
define (and upload to SAS Customer Intelligence 360) virtual geographic boundaries
called geofences or points called beacons that can determine content that a mobile
app user receives when they enter that space. The mobile app developer codes the
mobile app (using the mobile SDK) to include location services and monitor location
events. For more information, see Upload Location Data in SAS Customer

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#n0piuajouxahskn17qw09xtiyry1
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintug/mob-create-spot.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintug/events-mob-custom.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/ios-events.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-events.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-events.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0usk5vhew4rbvn1doly9x63hpn7

Intelligence 360: Administration Guide. Also see Working with Events for Android
and Working with Events for iOS in SAS Customer Intelligence 360: Developer’s
Guide for Mobile Applications.

Session settings. The marketer defines settings for mobile app sessions so that SAS
Customer Intelligence 360 mobile SDKs know when to continue a current session or
start a new one. For more information, see Page and Session in SAS Customer
Intelligence 360: Administration Guide.

Initial Setup

The following applications are used in this cookbook:

node.js. Go to nodejs.org and download the LTS version. The version used in this
projectis 16.15.1.

Once node.js is installed, npm (Node Package Manager) is also installed. To install
react-native-cli and react-native, open a terminal session, and type:

npm install -g react-native-cliandnpm install -g react-native.
Android Studio and Xcode. Android Studio Chipmunk 2021.2.1 and Xcode 13.4.1.

Visual Studio Code (VSCode) is used for most of the development work. Go to this
link to download and install VSCode: https://code.visualstudio.com/download. In
this cookbook, VSCode version 1.70.2 is used.

Two extensions are needed in VSCode: Extension Pack for Java (v0.25.7) and Gradle
for Java (v3.12.6). Both are from Microsoft.

Create a React Native Library Project

A React Native app is built using Javascript or Typescript programming languages. React
Native does not read native Android (Java or Kotlin) and iOS (Objective-C or Swift)
languages. To enable you to use the SAS Customer Intelligence 360 mobile SDKs for
Android and iOS, the easiest approach is to build a wrapper, that is a React Native
library, around the SDKs to make them usable by React Native apps.

The React Native library works by using React’s Bridge library that contains functions for
converting native code to Javascript or Typescript, such as nativeModule, and React’s
Uimanager library for making the native views (such as inline ad view and interstitial ad
view) that are in the SAS Customer Intelligence 360 SDKs available in React Native.

Create the Project

1. Open aterminal session and navigate to the desired location for this project.

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-events.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/ios-events.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/ing-config-pagesession.htm
https://nodejs.org/en/
https://code.visualstudio.com/download

2. Use the command shown in the example below to create the project (in this
example, the project is called mobile-sdk-react-native):

npx create-react-native-library mobile-sdk-react-native

You are asked several questions. The following figure shows an example:

]OdOEHCﬂ1h395 Tests % npx create-react-native-library mobile-sdk-react-native
What is the name of the npm package? mobile-sdk-react-native
v What is the description for the package? a react native module that incoporates CI360 mobile SDKs
¢« What is the name of package author? John Doe
+ What is the email address for the package author? . John.Doe @sas.com

<« What is the URL for the package author? https://www.sas.com
v What is the URL for the repository? https://gitlab.sas.com
v What type of library do you want to develop? ' Native module
Which languages do you want to use? Java & Objective-C
Pro)ect created successfully at sdk-react tive!

Note: The URLs must be valid.

3. After the project is created, open it in VSCode. In VSCode, open an integrated
terminal and type npm install to install the required node libraries, as shown in
package.json.

In the project, these are the four folders that are used most often to build the React
Native library: android, ios, src, and example. The project structure is shown in
the figure below.

~ MOBILE-SDK-REACT-NATIVE [3 E7 O

> .circleci

> android
> example

> ios

> scripts

> src
.editorconfig
.gitattributes
.gitignore
watchmanconfig
.yarnrc
babel.config.js
CONTRIBUTING.md
lefthook.yml

fi LICENSE
mobile-sdk-react-native.podspec
package.json
README.md

{} tsconfig.build.json
tsconfig.json

yarn.lock

Here is a description of the folders:

e The androidand ios folders contain code that exposes native functionality to the
rest of the React Native app.

e The example folder contains a starter React Native app, sometimes referred to as
the example project. It can be used for testing the React Native project.

e The src folderis where the native functionality for iOS and Android is translated
into Typescript for a React Native app to use.

Obtain the SAS Customer Intelligence 360 Mobile SDKs

These are the two ways to obtain SAS Customer Intelligence 360 mobile SDKs:

e A SAS Customer Intelligence 360 user can download the mobile SDKs through the
user interface for SAS Customer Intelligence 360 and deliver the SDK ZIP file
(SASCollector_<applicationID>.zip) to you to install.

The Android SDK and the iOS SDK are distributed together as a single ZIP package.

e You can access the mobile SDKs from a public repository.

o For Android, see Configure a Dependency on the Maven Repository for the
Mobile SDK in SAS Customer Intelligence 360: Developer’s Guide for Mobile
Applications.

o ForiOs, see Use Swift Package Manager to Set Up the Mobile SDK in SAS
Customer Intelligence 360: Developer’s Guide for Mobile Applications.

Note: A SASCollector.plist file (for iOS) and a SASCollector.properties file (for
Android) contain necessary information to successfully implement the mobile SDKs,
including the customer’s selected tenant and mobile app ID. The files are not
included in the public repository. The files must be obtained from the mobile SDK
ZIP package that is downloaded from SAS Customer Intelligence 360.

Add SAS Customer Intelligence 360 Mobile SDK Libraries

You need to add the SASCollector framework (library) to the React Native project that
you created.

Android

1. Inthe React Native project (mobile-sdk-react-native), under the android folder,
create a folder called 1ibs.

2. Navigate to the folder that contains the SAS Customer Intelligence 360 mobile SDK
ZIP (SASCollector_<applicationID>.zip). Unzip SASCollector_<applicationID> and find
SASCollector.jar inside the android folder. Copy SASCollector.jar into this folder:

v android

> gradle

v libs
SASCollector.jar
> sIC
build.gradle

= gradle.properties

3. In build.gradle (in the android folder shown in the previous figure), add the
following JAR file dependency in the dependencies section:

implementation files('libs/SASCollector.jar"')

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/p1t2i055pqd62an1pcqe6syo7b56.htm#n1xbunv723fzhan1kwd3guyniow8
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/p1t2i055pqd62an1pcqe6syo7b56.htm#n1xbunv723fzhan1kwd3guyniow8
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/p1h8jvnp7o4rvkn1w7q5ikdsmpdw.htm#p0kyb3xnqa3qygn1nydnc2lpbxw4

4. Save build.gradle. In the pop-up that appears, choose YES to synchronize, as shown
below.

PILTLEY,.

A build file was modified. Do you want to synchronize the £33 X

Java classpath/configuration?

Source: Language Support for Java(TM) b... Yes Always Never

5. Verify that the build is successful by navigating to the example folder in an
integrated terminal and then typing npm run android.

I0S
1. Navigate to the folder that contains the SAS Customer Intelligence 360 mobile SDKs
ZIP file (SASCollector_<applicationID>.zip).

2. Open the i0s folder and double-click the SASCollector.zip file to unzip it to
xcframework named SASCollector.xcframework.

3. Inthe ios folder of the React Native project, add SASCollector.xcframework:

v 108

> MobileSdkReactNative.xcodeproj

> SASCollector.xcframework

4. Navigate to mobile-sdk-react-native.podspec in the top project level and add this
code after s.dependency “React-Core”:
s.vendored frameworks = 'ios/SASCollector.xcframework'

5. Inanintegrated terminal, type cd ios andthen pod install && cd

6. Verify that the build is successful by navigating to the example folder in an
integrated terminal and then typing: npm run ios.

If the build fails, you can open the example project in Xcode and run it from there to
find out what caused the failure. Opening native code in Xcode can help to activate
certain functionality. The error information can also be more meaningful in Xcode.

Basic Functionality

Some mobile app events, such as focus and defocus, do not need an explicit API call in
the React Native project to make them work. The integration of SAS Customer

Intelligence mobile SDKs and the React Native app is sufficient.

Other basic functions, such as custom events, page loads, and identity, need to be
converted to React Native functions to be used by a React Native app.

To define custom events, app developers work with the marketing team.
e Marketers define the custom events that are needed. Those custom events and their

attributes are created in the SAS Customer Intelligence 360 user interface.

e Developers include the custom events and their associated attributes in the app.
Then, the custom events can be leveraged by the React Native app without any
further code changes.

Note: The procedures in this section include more SASCollector public methods
(functions) than just custom events, page loads, and identity. Some methods, such as
getDeviceld, setDeviceld, can be used by developers for testing purposes. Others, such
as startMonitoringlLocation, disableLocationMonitoring, are used for location-based
functionality.

Examples of how to use custom events, page loads and identity in the code are included
in “Configure the Example React Native App” at the end of this section. The “Configure
Android“, “Configure i0S”, and “An implementation example that includes the exposed
methods is provided in mobile-sdk-react-native.zip. In the mobile-sdk-react-native
project example, navigate to ios/MobileSdkReactNative.mm to find them.

Detailed information about the native methods counterparts is provided in the API
reference documentation that is included in SASCollector_<applicationID>.zip. To
obtain the documentation, see “Access APl Reference Documentation”.
Configure ” sections describe how to use React Native’s nativeModules function to
expose methods from the native side, how to use React Native's
requireNativeComponent, UIManager, and so on to create React Native components
from the native side, and how to use event, event emitter and event listener to
communicate between the native side and React Native side.

Configure Android

1. Inthe React Native project, navigate to the android folder. In the android
folder, navigate to src/main /java/com/mobilesdkreactnative and find
MobileSdkReactNativeModule.java.

2. In MobileSdkReactNativeModule.java:

a. Replace the constructor with this code:

public MobileSdkReactNativeModule (

ReactApplicationContext reactContext) {

super (reactContext) ;

if(\SASCollector.getinstance().isInitialized()){
SASCollector.getInstance ()
.initialize (reactContext.getApplicationContext ()):;

}
Add these methods:

@QReactMethod
public void newPage (String uri) {
SASCollector.getInstance () .newPage (uri) ;

}

@ReactMethod
public void addAppEvent (

if (data == null) {
SASCollector.getInstance () .addAppEvent (eventKey, null);
return;

String eventKey, ReadableMap data) {
HashMap<String, Object> rawData = data.toHashMap/() ;
HashMap<String, String> convertedData

= new HashMap<> () ;
for (Map.Entry<String, Object>

entry : rawData.entrySet()) {

if (entry.getValue () instanceof String) {

convertedData.put (

entry.getKey (), (String)entry.getValue()):
}

}
SASCollector.getInstance ()

.addAppEvent (eventKey, convertedData);
}

@ReactMethod
public void identity (
String value, String type, Promise promise) {
SASCollector.getInstance ()
.identity(value, type,
new SASCollector.IdentityCallback() {
@Override
public void onComplete (boolean b) {
Log.d("Identity", "Identity called with: "

+ (b ? "success" : "failure"));
new Handler (Looper.getMainLooper ())
.post (new Runnable () {
@Override
public void run() {

promise.resolve (b) ;

@ReactMethod
public void detachIdentity(Promise promise) ({
SASCollector.getInstance ()
.detachIdentity(new SASCollector
.DetachIdentityCallback() {
@Override
public void onComplete (boolean b) {
new Handler (Looper.getMainLooper ())
.post (new Runnable () {
@Override
public void run () {
promise.resolve (b) ;

@ReactMethod
public void startMonitoringLocation () {
SASCollector.getInstance () .startMonitoringLocation () ;

}

@ReactMethod
public void disablelLocationMonitoring() {
SASCollector.getInstance () .disableLocationMonitoring() ;

}

An implementation example that includes these and other exposed methods that are
referred to later in this documentation is provided in mobile-sdk-react-native.zip. In the

mobile-sdk-react-native project example, navigate to
android/src/main/java/com/mobilesdkreactnative/

MobileSdkReactNativeModule. java to find them.

Detailed information about the native methods counterparts is provided in the API
reference documentation that is included in SASCollector_<applicationID>.zip. To
obtain the documentation, see “Access APl Reference Documentation”.

Configure iOS

1. Inthe React Native project, navigate to the ios folder. Find the
MobileSdkReactNative.h and MobileSdkReactNative.mm files:

10

2.

v i0s

> MobileSdkReactNative.xcodeproj

> SASCollector.xcframework

> views
MobileSdkReactNative.h

C+ MobileSdkReactNative.mm

In MobileSdkReactNative.h, add this import:

#import <SASCollector/SASCollector.h>

. In MobileSdkReactNative.mm, add these methods:

RCT EXPORT METHOD (newPage: (NSString*)uri) {
[SASCollector newPage:uri];

}

RCT EXPORT METHOD (addAppEvent: (NSString*)eventKey
data: (NSDictionary*)data) {
[SASCollector addAppEvent:eventKey data:datal;
}

RCT EXPORT METHOD (identity: (NSString*)value
withType: (NSString*) type
isSuccess: (RCTPromiseResolveBlock) successPromise
isFailure: (RCTPromiseRejectBlock) failurePromise) {

[SASCollector identity:value
withType:type completion:” (BOOL success) {
dispatch async(dispatch get main queue (), "{
if (success) {
successPromise ([NSNumber numberWithBool:success]) ;
} else {
failurePromise (@"Error", @"Identity failure",
nil);

RCT EXPORT METHOD (detachIdentity:

(RCTPromiseResolveBlock) successPromise
isFailure: (RCTPromiseRejectBlock) failurePromise) {
[SASCollector detachIdentity:” (BOOL success) {
dispatch async(dispatch get main queue (), "{
if (success) {
successPromise ([NSNumber numberWithBool:success]) ;

11

} else {
failurePromise (@"Error",
@"Identity detach failure", nil);

RCT EXPORT METHOD (startMonitoringLocation) {
[SASCollector startMonitoringLocation];

}

RCT EXPORT METHOD (disableLocationMonitoring) ({
[SASCollector disablelocationMonitoring];

}

An implementation example that includes the exposed methods is provided in mobile-
sdk-react-native.zip. In the mobile-sdk-react-native project example, navigate to
ios/MobileSdkReactNative.mm to find them.

Detailed information about the native methods counterparts is provided in the API
reference documentation that is included in SASCollector_<applicationID>.zip. To
obtain the documentation, see “Access APl Reference Documentation”.

Configure React Native (Typescript)

1. Inthe src folder, find index.tsx:

> android

> example

> ios

> lib

>

> scripts

v src
> __tests__
> views

S index.tsx

.editorconfig

.gitattributes

2. Inindex.tsx, add these methods:

export function newPage (uri: string) {

12

MobileSdkReactNative.newPage (uri) ;
}
export function addAppEvent (eventKey: string, data: Object) {
MobileSdkReactNative.addAppEvent (eventKey, data);
}
export async function identity(value: string, type: string) {
try {
const isSuccess: boolean =
await MobileSdkReactNative.identity(value, type):;
return isSuccess;
} catch (e: any) {
console.log(e);
return false;
}

}
export async function detachIdentity() {

try {
const isSuccess =
await MobileSdkReactNative.detachIdentity (),
return isSuccess;
} catch (e: any) {
Console.log(e);
return false;

}
}

export function startMonitoringLocation () {
MobileSdkReactNative.startMonitoringLocation () ;

}

export function disablelocationMonitoring() {
MobileSdkReactNative.disableLocationMonitoring () ;

}

An implementation example that includes these and other exported methods that are
referred to later in this documentation is provided in mobile-sdk-react-native.zip. In the
mobile-sdk-react-native project example, navigate to src/index. tsx to find them.

Detailed information about the methods is provided in the API reference
documentation that is included in SASCollector_<applicationID>.zip. To obtain the
documentation, see “Access AP| Reference Documentation”.

Configure the Example React Native App

To configure and test identity, page load, and custom event functionality in the example
React Native app:

1. Inthe example folder, add a few dependencies for navigation. Follow this React
Native documentation link to install these dependencies: React Navigation.

13

https://reactnavigation.org/docs/getting-started

Note: The latest version of react-native-safe-area-context generates errors
in iOS. Use version 73.4.1 instead.

Refer to the example folder in package.json to see the included packages.

> .bundle

> android
> ios
> node_modules

sIC

.ruby-version

F babel.config.js
Gemfile
Gemfile.lock
index.tsx
metro.config.js
package.json
react-native.config.js

yarn.lock

2. Add SASCollector.plist to iOS:

a. In Xcode, navigate to the ios folder and find
NativeSdkReactNativeExample.xcworkspace.

b. Find the SASCollector.plist file. The file is included in the mobile SDK ZIP file for
SAS Customer Intelligence 360 (SASCollector_<applicationID>.zip) in the ios
folder.

c. Drag SASCollector.plist into MobileSdkReactNativeExample target as shown
below.

MobileSdkReactNativeExample
£, home_work
MobileSdkReactNativeExample
MobileSdkReactNativeExample
> @m Fonts
£ SASCollector
N AppDelegate
AppDelegate

) Images
E Info

14

3. Add SASCollector.properties to Android:
a. InVSCode, navigate to app/src/ main and create an assets folder.

b. Find the SASCollector.properties file. (The file is in the mobile SDK ZIP file for SAS
Customer Intelligence 360 (SASCollector_<applicationID>.zip) in the android
folder.)

c. Copy SASCollector.properties and paste it in the assets folder.

v example

> .bundle
>
v android
>
>
v
S |
v src
> debug
v main
v assets

= SASCollector.properties

> java/com/example /mobile...

4. The Android SDK initialization occurs after the native Android’s MainActivity finishes
all its life cycle methods. To avoid issues (such as session not ready), the SDK’s
initialization should be added in MainApplication.

Note: The SDK only needs to be initialized once, as early as possible. Although SDK
initialization can be added to MainActivity, it is not recommended because the result
is multiple initializations.

a. Add the location of the SAS Customer Intelligence 360 mobile SDK to the Android
app’s build.gradle file. Find build.gradle as shown below:
v example
> .bundle
> .vscode

v android

> src

& build.gradle

b. Inthe dependencies section of the file, add the location of SASCollector.jar:

15

implementation files('../../../android/libs/
SASCollector.jar')

Because the SAS Customer Intelligence 360 mobile SDK’s Android initialization
needs google services and gson dependencies, add these dependencies:

implementation 'com.google.code.gson:gson:2.8.9"'
implementation 'com.google.android.gms:play-services-
location:19.0.1"

dependencies {
implementation fileTree(dir: "libs", include: ["#*.jar"

implementation "com.facebook.react:react-native:+"

implementation "androidx.swiperefreshlayout:swiperefreshlayout:1.0.0"
implementation 'com.google.code.gson:gson:2.8.9'

implementation 'com.google.android.gms:play-services—location:19.0.1"
implementation platform('com.google.firebase:firebase-bom:30.3.1")
implementation 'com.google. firebase:firebase-analytics"'
implementation 'com.google.firebase:firebase-core'

implementation 'com.google.firebase:firebase-messaging'
implementation files('../../../android/libs/SASCollector.jar"')
implementation project(':react-native-vector-icons"')

Since build.gradle is changed, you are asked to sync the project to download the
dependencies. Click Yes.

c. Find MainApplication.java in the Android project by navigating to
example/android/app/src/main/java/com/example/

mobilesdkreactnative/:

v example

> .bundle

v android
N
>
v app
N

Vv SIC

> debug

v main
> assets
v java/com/example /mobile...
> newarchitecture
MainActivity.java

MainApplication.java

Add this initialization code in the onCreate method:

16

SASCollector.getInstance() .initialize (this);

If you want to get all SASCollector’s log information, you can also add
Slog.setlLevel (Slog.ALL).

5. If the project is built for release, and you want to reduce the APK’s size, some
changes are needed in the build.gradle and proguard-rules.pro files under
example/android/app:

v example
> .bundle
>

v android

build.gradle
= debug.keystore

¥ proguard-rules.pro

a. Find def enableProguardinReleaseBuilds = false in build.gradle, and change it to
def enableProguardinReleaseBuilds = true
b. In proguard-rules.pro add this code:
-keep class com.sas.mkt.mobile.sdk.** { *; }

This completes the setup of Android for the example project.

6. In src, create a screens folder and add HomeScreen.tsx to this folder. In
HomeScreen.tsx, add this import:

import * as MobileSdk from 'mobile-sdk-react-native';

17

The code above only imports a few exposed functions. If more of these functions are
needed, add them in this import inside the curly braces.

The following code shows how to use addAppEvent :

<CustomButton
width={styles.buttonWidth}
title="Add Event"
onPress={ () => addAppEvent (
eventName, {[attributeName] : attributeValue}) }

/>

Note: CustomButton isa component thatis created in the example project.

Mobile Spot Functionality

With SAS Customer Intelligence 360, you can include personalized content, such as
advertising, in their mobile apps. In SAS Customer Intelligence 360, the location in the
mobile app where the content is delivered is called a spot.

SAS Customer Intelligence 360 mobile SDKs provide two types of spots: inline spots and
interstitial spots. Spots have delegate methods that are invoked at the different stages
of the life cycle of the spots. For example, when the user closes an interstitial spot, the
didClose method is called. Developers specify what action to take when a method is
called.

As with custom events, app developers work with marketers to define where to include
spots in the app and the content of those spots.

e The app developer includes the new mobile spots and the associated attributes in
the app.

e Marketers register the mobile spots in the CI360 user interface so that they can be
leveraged in campaigns without any further code changes.

e Marketing users design HTML creatives in SAS Customer Intelligence 360. Those
creatives are delivered to the mobile spots via tasks that specify the mobile app, the
spot, the target audience, and various other criteria.

Currently, the implementation of spots in the React Native project requires only the
spotID parameter. If other parameters of the spots are needed, developers can follow
similar procedures to add them in the project.

This section describes how to implement mobile spot features in the React Native
project example to be used in a React Native app. The creation of the React Native spots

18

functions is described in three sections: “Configure Android, “Configure i0S”, and
“Configure React Native”. In Configure React Native, the typescript component classes
are created that can be used by a React Native app to display mobile spots. Most of the
work that is involved in constructing and presenting spots is in Android and iOS.

Configure Android

1.

In the React Native project, navigate to android/src/main/java/com/
mobilesdkreactnative and create a views folder.

Inthe views folder, create InlineAdViewManager.java and
InterstitialAdViewManager.java:

~ android

> gradle
> libs
v src/main
v java/com/mobilesdkreactnative

v views

InlineAdViewManager.java

InterstitialAdViewManager.java
Constants.java

In mobile-sdk-react-native.zip, navigate to
android/src/main/java/com/mobilesdkreactnative/views. Copy the
content of the applicable sample file and add it to the files that you created.

Note: The files use some literal strings that are defined in the Constants.java file
outside of the views folder (shown in the previous figure). The files also import
UseReactContext.java, which is in mobile-sdk-react-native.zip.

Unlike iOS, Android requires that the views be explicitly added in the package. To do
this, find MobileSdkReactNativePackage.java in the android/src/main/java/
com/mobilesdkreactnative folder:

19

~ android

> gradle
> libs
s src/main
v java/com /mobilesdkreactnative
> views
Constants.java

MobileSdkReactNativeModule.java

MobileSdkReactNativePackage.java

5. Add this code in MobileSdkReactNativePackage.java:

@NonNull

@Override

public List<ViewManager> createViewManagers (
@NonNull ReactApplicationContext reactContext) {

InlineAdViewManager inlineAdViewManager =
new InlineAdViewManager (reactContext);

InterstitialAdViewManager interstitialAdViewManager =
new InterstitialAdViewManager (reactContext) ;

return Arrays.<ViewManager>asList (
inlineAdViewManager, interstitialAdViewManager) ;

Configure i0OS

1. Navigate to the ios folder and create a views folder. In the views folder, create a
few objective-C files, such as these:

AdDelegateEvent.h
AdDelegateEvent.m
InlineAdView.h
InlineAdView.m
InlineAdViewManager.h
InlineAdViewManager.m
InterstitialAdView.h
InterstitialAdView.m
InterstitialAdViewController.h
InterstitialAdViewController.m

20

InterstitialAdViewManager.h
InterstitialAdViewManager.m

v ios
> MobileSdkReactNative.xcodeproj
> SASCollector.xcframework
v views

AdDelegateEvent.h
AdDelegateEvent.m
InlineAdView.h
InlineAdView.m

InlineAdViewManager.h

InlineAdViewManager.m
InterstitialAdView.h

InterstitialAdView.m

InterstitialAdViewController.h

InterstitialAdViewController.m

InterstitialAdViewManager.h

InterstitialAdViewManager.m
Constants.h

C Constants.m

An implementation example of the classes is provided in mobile-sdk-react-native.zip.
In the mobile-sdk-react-native project example, navigate to the ios/views/ folder
to find these class files.

2. After the files are created, in the VSCode integrated terminal, go to the ios folder
and then run pod install forthe new files to be logically added to the project.

3. Some of the string constants in the files are extracted in Constants.h and
Constants.m, so create these two files, and the run pod install.

Note: In iOS, the close button for interstitial ad spots is hidden behind the status bar.
Trying to hide the status bar using React Native’s StatusBar.setHidden (true) or
<StatusBar hidden={true}/> does not work. The solution is to set
UIViewControllerBasedStatusBarAppearance to true in Info.plist under
example/ios as shown below:

21

v example \rra
> .bundle key>UISupportedInterfaceOrientations

1g>UIInterfaceOrientationPortrait
ng>UIInterfaceOrientationLandscapelLeft
ing>UIInterfaceOrientationLandscapeRight

> android
v ios
>b \rray
v MobileSdkReactNativeE... key>UIViewControllerBasedStatusBarAppearance
> Images.xcassets AL
C AppDelegate.h
G+ AppDelegate.mm
A Info.plist

Configure React Native (Typescript)
1. Inthe src folder, create a views folder.

2. Inthe views folder, create InlineAdView.tsx and InterstitialAdView.tsx.
' SIC
> __tests__
v Views

InlineAdView.tsx

InterstitialAdView.tsx

Constants.tsx

index.tsx

An implementation example of the ad views is provided in mobile-sdk-react-
native.zip. In the mobile-sdk-react-native project example, navigate to src/views
and copy the content of InlineAdView.tsx and InterstitialAdView.tsx to the files that
you created.

3. Outside the views folder, create Constants.tsx (as shown in the previous figure).
The file contains a few string constants that correspond to those in iOS and Android.

An implementation example of the Constants.tsx is provided in mobile-sdk-react-
native.zip. In the mobile-sdk-react-native project example, navigate to the src
folder and copy the content of Constants.tsx to the file that you created.

4. Inindex.tsx (shown in the previous figure), add these imports:

import InlineAdView from ‘./views/InlineAdView’;
import InterstitialAdView from ‘./views/InterstitialAdView’;
import * as Constants from ‘./Constants’;

At the end of index.tsx, add these exports:

export { InlineAdView };
export { InterstitialAdView }

22

const AdDelegateEvent = NativeModules.AdDelegateEvent;
export { AdDelegateEvent };
export { Constants };

Configure the Example React Native App

1. For the Android version of the app to work, include the mobile SDK’s
implementation of the ad view activities in the example project’s
AndroidManifest.xml file. Do this for any React Native app that needs to include
interstitial spots.

<activity
android:name="com.sas.ia.android.sdk.
InterstitialActivity" />

<activity
android:name="com.sas.ia.android.sdk.
InterstitialWebActivity" />

2. Inthe example/src folder, create SpotsScreen.tsx. To organize the different files,
screens components can be put in a screens folder. SpotsScreen.tsx uses a custom
button that is defined in the components folder. SpotsScreen.tsx is a functional
component.

3. Add this code at the end of the function definition:

return (
<ScrollView>
<View style={styles.container}>

<InlineAdView spotId='your inline spot id'
style={styles.inlineView} />

<CustomButton title='Show Interstitial Ad'
onPress={ () => {setShowInterstitial (true) }}
width={{width: 200}} />

{showInterstitial && <InterstitialAdView
spotId='your interstitial spot id' />}

</View>
</ScrollView>
) 8

As shown in the previous code, the inline spot takes a style that includes width and
height. Developers can use a width and a height that ensure the entire image is
displayed. Interstitial spot always fills the entire screen, so no style is used.

SpotsScreen.tsx also uses event listener to listen for inline and interstitial spots events

and to show the corresponding toast messages. For example, it listens for onAdLoaded
and onAdClosed events, and displays toast messages. The original event names are

23

different in the SAS Customer Intelligence 360 mobile SDKs for Android and iOS, but
they are unified for React Native. Developers can replace toast messages with other
operations they like to use. On the library’s native Android side, DeviceEventEmitter
is implemented in React Native, and it is used. However, for iOS,
DeviceEventEmitter is deprecated. For this reason, AdDelegateEvent is created
in the library’s native iOS part to handle the ad’s delegate events such as onlLoaded,
onClosed, which are SAS Customer Intelligence 360 SDK iOS library’s ad event names.
AdDelegateEvent isshown in the first figure in “Configure iOS”. AdDelegateEvent
is exported and can be used in a React Native app. SpotsScreen.tsx makes use of this
AdDelegateEvent.

An implementation example of how to use the ad views is provided in mobile-sdk-react-
native.zip. In the mobile-sdk-react-native project example, navigate to
example/src/screens/SpotsScreen. tsx to find details.

Location Functionality

Location features include precise location query (the ability to identify the local of a
mobile device), geofence registration and detection, and beacon detection.

Developers collaborate with marketers on when to send push notifications. If the
location of a mobile app is known, a triggered push notification can be sent when users
enter or leave geolocations, or when a beacon is discovered. For example, when a user
enters the geofence of a drugstore, the mobile app can send a push notification that
entitles the user to a discount.

A SAS Customer Intelligence 360 user creates a triggered push notification task with the
trigger set (on the Orchestration tab) to one of these mobile location options:

e Beacon Discovered
e Geofence Entered
e Geofence Exit

The SAS Customer Intelligence 360 user selects the trigger event’s attribute condition,
which is the action that triggers the event. For example, if the Geofence Entered trigger
is an airport, the event’s name might be Airport. Note that the CSV file that the
developer delivered to the SAS Customer Intelligence 360 user to upload contains the
event attributes to choose from.

To enable location features, these actions are required:
e Add startMonitoringLocation and disableLocationMonitoring. For geofences and

beacons to work, these two functions are needed from the SDK.

24

Note: The startMonitoringLocation and disableLocationMonitoring functions were
already added in MobileSdkReactNative.mm and MobileSdkReactNativeModule.java
on the native side, and in index.tsx when you configured React Native (Typescript) in
the “Basic Functionality” section of this guide.

Request location tracking permission. A developer requests location tracking
permission from the user through the mobile app. For information, for iOS, see
Enable Location-Based Features and for Android, see Enable Location-Based
Features in SAS Customer Intelligence 360: Developer’s Guide for Mobile
Applications.

Upload geofence and beacon data. A developer provides geofence and beacon
information in a CSV file to the SAS Customer Intelligence 360 user who uploads the
file to the mobile application that was created in SAS Customer Intelligence 360. For
information, see Upload Geofence and Beacon Data in SAS Customer Intelligence
360: Administration Guide.

Configure Android

. In the example project’s android folder, navigate to app/src/main and find
AndroidManifest.xml.

N/ example
> .bundle
> VS
v android

> .gradle

> build

v src
> debug
v main

assets

jni

>
> java
>
>

res

» AndroidManifest.xml

2. Add location and Bluetooth permissions:

<uses-permission
android:name="android.permission.ACCESS FINE LOCATION" />

25

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/ios-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintmobdg/android-location-features.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0n4tj4hhy5jd3n1v788ikvglopz

<uses-permission
android:name="android.permission.ACCESS COARSE LOCATION" />
<uses-permission
android:name="android.permission.ACCESS BACKGROUND LOCATION"
/>

<uses-permission
android:name="android.permission.FOREGROUND SERVICE" />

<uses-permission
android:name="android.permission.BLUETOOTH SCAN" />
<uses-permission android:name="android.permission.BLUETOOTH"
/>

<uses-permission
android:name="android.permission.BLUETOOTH ADMIN" />

3. Inside <application></application>, add these lines:

<service android:name=
"com.sas.mkt.mobile.sdk.SASCollectorIntentService" />

<receiver android:name=
"com.sas.mkt.mobile.sdk.SASCollectorBroadcastReceiver"
android:exported = "true">
<intent-filter>

<action android:name=

"android.intent.action.BOOT COMPLETED" />
</intent-filter>

</receiver>

Configure i0OS

Even though react-native-permissions was installed in Configure React Native, by
default, no permission handler is installed on iOS.

1. Inthe example project’s ios folder, find Podfile:

s ios ~/ReactNative/mobile-sdk-react-native
example/android - Contains emphasize|

> MobileSdkReactNativeExample
> MobileSdkReactNativeExample.xcodey

> MobileSdkReactNativeExample.xcwor

> ReactNativeRichPush
File.swift

= home_work.gpx
MobileSdkReactNativeExample-Bridgi
Podfile

2. In Podfile, add these lines:

26

permissions path =
'../node_modules/react-native-permissions/ios'
pod 'Permission-LocationAccuracy',

:path => "#{permissions path}/LocationAccuracy"
pod 'Permission-LocationAlways',

:path => "#{permissions path}/LocationAlways"
pod 'Permission-LocationWhenInUse',

:path => "#{permissions path}/LocationWhenInUse"

3. Inanintegrated terminal, navigate to the ios folder in the example project, and
run pod install.

4. When location permissions are requested from the user, the app must provide
request descriptions. To do this, navigate to
example/ios/MobileSdkReactNativeExample and find Info.plist.

example

> .bundle

> Jvscode

> android
v ios

> build

v MobileSdkReactNativeExample

> Images.xcassets

C AppDelegate.h

G+ AppDelegate.mm

N Info.plist

5. InInfo.plist, add these location permission request descriptions:

<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>We need to access your location for geofence</string>
<key>NSLocationAlwaysUsageDescription</key>

<string>We need to access your location for geofence</string>
<key>NSLocationWhenInUseUsageDescription</key>

<string>We need to access your location for geofence</string>

Configure React Native (Typescript)

The user’s permission is required for you to track their location. To check if the user has
granted the permission or to present a permission request, a third-party package must
be installed.

1. Inthe example project’s package. json file, add: "react-native-
permissions”: "*3.6.1" under “dependencies”:

27

v example
> .bundle

"dependencies": [{
"@react-navigation/bottom-tabs": "~6.3.2",
"@react-navigation/native": "*6.0.11",

> android "@react-navigation/native-stack": "~6.7.0",

> ios “react": "17.0.2",

> node_modules “react-native": "0.68.2",

> src "react-native-dropdown-select-list": "~1.0.18",
.ruby-version "react-native-paper": "~4,12.4",

babel.config.js "react-native-permissions": "~3.6.1",
"react-native-push-notification": "~8.1.1",
"react-native-safe-area-context": "~3.4.1",
"react-native-screens": "~3.15.0",
"react-native-simple-toast": "~1.1.4",
"react-native-vector-icons": "~9.2.0"

Gemfile
Gemfile.lock
index.tsx
metro.config.js

package.json

react-native.config.jd

Run npm install in an integrated terminal.

Note: react-native-permissions provides a wide range of permission checks
and requests for React Native on iOS, Android, and Windows. However, SAS
Customer Intelligence 360 uses only location permission.

Find App.tsx in the src folder:

v example

> .bundle

> android
ios
node_modules

/ SIC

RootNavigation

At the start of App.tsx, add these imports:

import { check, request, PERMISSIONS, RESULTS } from 'react-
native-permissions’';

import { SASMobileMessagingEvent, Constants,
startMonitoringLocation } from mobile.sdk-react-native';

Add a function to check permission and start location monitoring if permission is
granted:

async function checkLocationPermission () {

if (Platform.0S === 'ios') {
let statusIOS =

28

await check (PERMISSIONS.IOS.LOCATION ALWAYS) ;

if (statusIOS === RESULTS.GRANTED) {
startMonitoringLocation () ;
return;
}
statusIOS =
await request('ios.permission.LOCATION ALWAYS');
if (statusIOS === RESULTS.GRANTED) {
startMonitoringLocation () ;
return;

}

Toast.show('Not enough location permission. Please set
location permission to always to enable geofence');

else 1if (Platform.0S == 'android') {
let statusl = await
check(PERMISSIONS.ANDROID.ACCESS_COARSE_LOCATION);
let status2 = await
check(PERMISSIONS.ANDROID.ACCESS_FINE_LOCATION);
let status3 = await
check(PERMISSIONS.ANDROID.ACCESS_BACKGROUND_LOCATION);
if (statusl == RESULTS.GRANTED &&
status?2 === RESULTS.GRANTED &&
status3 === RESULTS.GRANTED) {
startMonitoringLocation () ;
return;
}
if (statusl !== RESULTS.GRANTED) {
statusl = await

request ('android.permission.ACCESS COARSE LOCATION') ;
}
if (status2?2 !== RESULTS.GRANTED) {
status?2 = await
request ('android.permission.ACCESS FINE LOCATION') ;
}
if (status3 !== RESULTS.GRANTED) {
status3 = await
request ('android.permission.ACCESS BACKGROUND LOCATION') ;

}

if (statusl !== RESULTS.GRANTED &&
status?2 === RESULTS.GRANTED &&
status3 === RESULTS.GRANTED) {

Toast.show ('Not enough location permission. \
Please set location permission to always \
to enable geofence');

29

6. Call the checkLocationPermission function after the React.useEffect

block:

App: React.FC<Prop: notificationWithLink})
i0OSMessagingEvent: | ntEmitter;
if (SASMobileMessagingEvent) {
i0SMessagingEvent = NativeEventEmitter(SASMobileMessagingEvent);
1

React.useEffect(

.
' I

checkLocationPermission();

Test Geofencing and Beacon Functionality

Create a geofence CSV file with mobile application ID, longitude, latitude, radius, and so
on. Give the file to the SAS Customer Intelligence 360 user to upload in SAS Customer
Intelligence 360 where the mobile application is created. For information, see Upload
Geofence and Beacon Data in SAS Customer Intelligence 360: Administration Guide.

Android

1.

In the Android simulator, create a few location points. Make sure some, but not all,
locations are also in the CSV file.

Note: VSCode does not display any logs from native code. To see log information,
start the example app from Android Studio, find a location in the simulator that is in
the CSV file, and set the location. The logs from Slog should include an
enter_geofence event.

To test leaving a geofence, choose a location that is not in the CSV file, and set the
location. The result is that an exit_geofence event is logged. Beacon events are also
included in the logs.

I0S

Create a GPX file in the example project. In the file, make sure some of the wpts
(waypoints) have the same lat (latitude) and lon (longitude) values that are defined
in the CSV file, and others do not.

In Xcode, go to Product => Scheme => Edit Scheme.

30

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0n4tj4hhy5jd3n1v788ikvglopz
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm#p0n4tj4hhy5jd3n1v788ikvglopz

Source Control Window Help

[CPr3GEt] oebus

3 MobileSdkReactNativeExample

Analyze

Archive

Build For
Perform Action

Build

Clean Build Folder

Clear All Issues

Build Documentation
Show Build Folder in Finder

Export Localizations

Import Localizations...

Scheme Choose Scheme

Destination Select Next Scheme

Test Plan

Xcode Cloud Edit Scheme...

New Scheme...
Manage Schemes...

The following window is displayed:

MobileSdkReactNativeExample

Info

Core Locatior

Profile

Release

App Data
Analyze

Routing App Coverage File
Archive
StoreKit Configuration
GPU Frame Capture
Persistent State

Document Versions

Working Directory

Background Fetch

Localization Debugging

Duplicate Scheme

Make sure the GPX file is in the Default Location field. In the figure, the file name is

Default Location

Manage Schemes...

Select Previous Scheme

Arguments Options Diagnostics

W Allow Location Simulation
home_work
None
None
None
Automatically
Launch app without state restoration
+ Allow debugging when browsing versions

Use custom working directory:

Launch due to a background fetch event

Show non-localized strings

& Shared

home_work. Also, select Allow Location Simulation.

Note:

31

e To see location logs from SASCollector, the app needs to run from Xcode.
VSCode does not display any logs from native code.

e Once the appis run, if a map is open, it moves from one location to another
based on the setup in the GPX file.

e Logs of geofence information can be found in the output pane at the bottom of
the Xcode window.

Mobile Message Functionality

Mobile message features include token registration, in-app messages, push
notifications, rich push notification for iOS, and the delegate methods.

SAS Customer Intelligence 360 enables you to capture real-time impression data and
connect other SAS Customer Intelligence 360 features with mobile messages.

Push notifications can display timely offers that invite a mobile app user back into the
mobile app or into a store. For example, a mobile app user might drive to a store for
which a geofence is defined in the mobile app. When the user (more specifically, the
user’s mobile device) enters that geofence, that action can trigger the mobile app to
send a push notification that informs the user of a sale in the store.

In-app messages can display pop-up ads in the app. For example, the user might tap a
button that triggers the in-app message event. The in-app message displays ads that
might contain a link for the user to go to the website to learn more, or a button that
takes the user to another page of the app to get more information. As the message is
triggered by a SAS Customer Intelligence 360 custom event, this cannot be achieved
using third-party plug-ins.

Like the configuration of location functionality, mobile messages require more native
setup than Typescript or Javascript setup.

Note: There are third-party push notification plug-ins for React Native apps (such as
react-native-notifications), but they do not provide the full functionality that SAS
Customer Intelligence 360 mobile messaging delivers.

Configure Android

In Android, RCTDeviceEventEmitter is used, so a custom event emitter does not need to
be created. Only the example app needs to be configured.

1. Find the project’s build.gradle file in the example project’s android folder:

32

~ example

> .bundle

v android

> app

» gradle
build.gradle
= gradle.properties

2. Add this line in the dependencies section of the project level build.gradle file:

classpath ('com.google.gms:google-services:4.3.13")
3. Inthe app level build.gradle file, add these lines in the dependencies section:

implementation 'com.google.firebase:firebase-core'
implementation 'com.google.firebase:firebase-messaging'

At the top of the file, under apply:plugin: “com.android.application”,
add this line:

apply plugin: “com.google.gms.google-services”

4. Inthe Firebase console, create a project and add the example React Native app’s
Android package ID to the project.

5. Get the google-services.json file and put it in the example project’s android/app
folder:

» example
> .bundle

» android

> src
build.gradle

= debug.keystore

{} google-services.json

33

6. From the project in the Firebase console, get the server key and give it to the SAS
Customer Intelligence 360 user. The user will add it to the SAS Customer Intelligence
360 mobile application created for the example project.

React Native Demo App

react_native_demo_app

O Active

O Inactive

Apple Certificate and Key

Date modified: Aug 30, 2022, 11:25:47 AM
Type: Development

Certificate: MIIG...hQ==

Key: MIIE...vGO=

Bundle ID: com.example.mobilesdkreactnative
Expiration date: Sep 29, 2023, 10:55:59 AM

Replace Remove

[[] Send email notifications when certificate is due to expire. @

Email addresses and distribution lists

Firebase Cloud Messaging Server Key
Date modified: Aug 30, 2022, 2:06:59 PM
Key: AAAA. ECHR

Replace Remove

For information, see Mobile Application Configuration in SAS Customer Intelligence
360: Administration Guide.

7. Find MainApplication.java in example/android/app/src/java/com/
example/mobilesdkreactnative/:

v example
> .bundle
>

v android

v src
> debug
v main
> assets
v java/com/example / mobilesdkreac...
> newarchitecture

MainActivity.java

MainApplication.java

RNFirebaseMessagingService.java

8. In MainApplication.java, add the setPushChannel methods, as shown below.

34

https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm

Note: Android version Oreo and above requires a push notification channel. By
creating it in the application class, you can avoid having to recreate the channel.

@RequiresApi (api = Build.VERSION CODES.O)
private void setPushChannel () {
NotificationManager notificationManager =
(NotificationManager)

this.getSystemService (this .NOTIFICATION SERVICE) ;

String customAndroidChannel = "ReactNativePushChannel";
CharSequence channelName = "React Native Channel";
int importance = NotificationManager.IMPORTANCE HIGH;
NotificationChannel notificationChannel =

new NotificationChannel (

customAndroidChannel, channelName, importance);

notificationChannel.enablelLights (true) ;
notificationChannel.setLightColor (Color.RED) ;
notificationChannel.enableVibration (true) ;
notificationChannel.setShowBadge (true) ;
notificationChannel.setVibrationPattern (

new long[]{100, 200, 300, 400, 500, 400, 300, 200, 400});
notificationManager.createNotificationChannel (

notificationChannel) ;

SASCollector.getInstance () .setPushNotificationChannelId (
customAndroidChannel) ;
}
9. In MainApplication.java’s onCreate method, call setPushChannel:
if (Build.VERSION. SDK_INT >= Build.VERSION_CODES .0) {
setPushChannel () ;
}

10. In the same folder where MainApplication.java resides, create
RNFirebaseMessagingService.java:

35

v src
> debug
v main
> assets
v java/com/example /mobilesdkre...

> newarchitecture

MainActivity.java

MainApplication.java

RNFirebaseMessagingService.java
11. Add this code in RNFirebaseMessagingService.java:

public class RNFirebaseMessagingService extends
FirebaseMessagingService {
private static final String TAG = "RNFBMessageService";

@Override
public void onMessageReceived (RemoteMessage remoteMessage)

{
SLog.i (TAG, "From: " + remoteMessage.getFrom())
SLog.i (TAG, "Data: " +
remoteMessage.getData () .toString()) ;
SASCollector.getInstance ()
.handleMobileMessage (remoteMessage.getData()) ;

@Override
public void onNewToken (String token) {
super.onNewToken (token) ;

SLog.e ("NEW_ TOKEN", token) ;

if (token != null) {
SASCollector.getInstance ()
.registerForMobileMessages (token) ;

An implementation example of the import is provided in mobile-sdk-react-native.zip.
In the mobile-sdk-react-native project example, navigate to
example/android/app/src/main/java/com/example/
mobilesdkreactnative/RNFirebaseMessagingService.java to find the
imports.

12. In AndroidManifest.xml, add the Firebase Messaging service:
<service android:name=
"com.example.mobilesdkreactnative.RNFirebaseMessagingService"

android:exported="false">
<intent-filter>

36

<action android:name=
"com.google.firebase.MESSAGING EVENT" />
</intent-filter>
</service>

13. Find MainActivity.java in the example project in the path example/android/
app/src/main/java/com/example/mobilesdkreactnative/:

nple

> .bundle

> debug

v main
> assets
v |ava/com example/m
> newarchitecture
MainActiy

MainApplication.java

RNFirebase
14. At the start of MainActivity.java in the class section, add these variables:

private DeviceEventManagerModule.RCTDeviceEventEmitter emitter
= null;

private static final String
DEFAULT NOTIFICATION ACTION LINK NAME =

"SASCollectorIntentServicenotificationActionLink";

Note: The static string value has to be exactly as in the above code. It is used to get
the push notification action link when the application hasn’t started yet but will be
started by tapping the push notification.

15. For the onCreate method of MainActivity.java, add this code:
FirebaseMessaging.getInstance () .getToken ()
.addOnSuccessListener (token -> {
Log.d (TAG, "token="+token);
if (!TextUtils.isEmpty (token)) {
SASCollector.getInstance ()

.registerForMobileMessages (token) ;

37

});
if (emitter == null) {
ReactInstanceManager manager =
getReactNativeHost () .getReactInstanceManager () ;
manager.addReactInstanceEventListener (

(ReactInstanceManager.ReactInstanceEventListener) context ->
emitter = context.getJSModule (

DeviceEventManagerModule.RCTDeviceEventEmitter.class)) ;

SASCollector.getInstance ()
.setMobileMessagingDelegate? (
new SASMobileMessagingDelegate2 () {

@Override
public void dismissed () {
if (emitter !'= null) {

emitter.emit ("onMessageDismissed", null);

}
@Override
public void action/(
String s, SASMobileMessageType sasMobileMessageType) {
if (sasMobileMessageType.equals (
SASMobileMessageType.IN APP MESSAGE)) {
WritableMap args = Arguments.createMap () ;
args.putString ("1link", s);
args.putString ("type", "InAppMsg") ;

if (emitter !'= null) {

emitter.emit ("onMessageOpened", args);

}

QOverride

38

public Intent getNotificationIntent (String s) {
SLog.i("getNotificationIntent", s);

Intent intent = new Intent (
MainActivity.this, MainActivity.class);
intent.putExtra ("notificationWithLink", s);

return intent;

}
}) s

Note: You might need to call FirebaseApp.initializeApp (this) before
FirebaseMessaging.getInstance () .getToken () .

16. If you use CI360 Android SDK 1.80.2, add this method in MainActivity.java:

17.

@Override
public void onNewlIntent (Intent intent) {
super.onNewIntent (intent) ;

notificationLink =
intent.getStringExtra ("notificationWithLink") ;

if (emitter != null && notificationLink != null &&
'notificationLink.isEmpty()) {

emitter.emit ("onNotificationLinkReceived",

notificationLink) ;

}

Note: The event name onNotificationLinkReceived is what the listener in React
Native side is listening to. If you want to use other event name, you also need to
change the name in React Native side. This also pertains to other strings (e.g.
notificationWithLink) in this and other code. You can also create constants for these
literal string values to avoid typos.

If you use CI360 Android SDK 1.80.3, add this method in MainActivity.java:
@Override

public void onNewIntent (Intent intent) {

super.onNewIntent (intent) ;

Bundle bundle = intent.getExtras() ;

39

this.getIntent () .putExtras (bundle) ;

notificationLink =
intent.getStringExtra ("notificationWithLink") ;

if (emitter != null && notificationLink != null &&
'notificationLink.isEmpty()) {

emitter.emit ("onNotificationLinkReceived",

notificationLink);

}

18. If you use CI360 Android SDK 1.80.3, you also need to update your

19.

SASCollector.properties file to include this property:

apprelaunch.disabled.on.notification.open=true

Note: CI360 Android SDKs 1.80.2 and 1.80.3 fixed an application relaunch bug.
Because of this, you will not get the push notification’s link in onCreat method, but
you will in onNewlntent method if your application is in background. Thus, you need
to override onNewlntent if you want to receive the link and send a message to the
React Native (typescript) side for it to take actions such as displaying an alert.
However, steps 14 and 15 are still valid.

Note: Steps 19 sets up deep linking to navigate to a specific screen dependent on
action link contained in push notification data.

Find AndroidManifest.xml file in example/android/app/src folder and update the
MainActivity as below (content added is in bold):

<activity
android:name="com.example.mobilesdkreactnative.MainActivity"
android:label="@string/app name"
android:configChanges="keyboard| keyboardHidden|orientation|
screenlLayout | screenSize|smallestScreenSize|uiMode"
android:launchMode="singleTask"
android:windowSoftInputMode="adjustResize"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

40

<intent-filter>
<action android:name="android.intent.action.VIEW"/>
<category
android:name="android.intent.category.DEFAULT" />
<category
android:name="android.intent.category.BROWSABLE" />
<data android:scheme="app://" />
</intent-filter>
</activity>

Note: In the example project, the push notification creative’s action link is set up to
be app://diagnostics. Thus, the scheme in intent-filter is set to be “app://”

20. In MainActivityDelegate class (inside of MainActivity.java), add two variables at the
start of the class:

private final @Nullable Activity activity;
private Bundle initialProps = null;

21. In the constructor of MainActivityDelegate.java, add this line:

this.activity = activity;

22. Override the onCreate and getLaunchOptions methods of the
MainActivityDelegate.java class.

Note: Create onCreate and getLaunchOptions if they are not already in your project.

@Ooverride
protected void onCreate (Bundle savedInstanceState) {
initialProps = new Bundle();
final Bundle bundle =
activity.getIntent () .getExtras();
if (bundle != null) {
if (bundle.containsKey ("notificationWithLink")) {
initialProps.putString("notificationWithLink",
bundle.getString ("notificationWithLink")) ;
} else if (bundle.containsKey (

DEFAULT NOTIFICATION ACTION LINK NAME)) {

41

initialProps.putString("notificationWithLink",
bundle.getString (DEFAULT NOTIFICATION ACTION LINK NAME)) ;

}
}

super.onCreate (savedInstanceState) ;

@Nullable

@Override

protected Bundle getLaunchOptions () {
return initialProps;

}

Note: Steps 20-22 and part of step 15 are for setting up the Android native part for
passing action link (notificationWithLink) as the initial prop to the React Native.
When the app is started by tapping push notifications, the action link
(notificationWithLink) is passed as an initial props to App.tsx.

Configure i0OS

The SAS Customer Intelligence 360 mobile SDKs use mobile messaging delegate
SASMobileMessagingDelegate2. Its methods are usually handled by developers to take
whatever actions they would like. For this method to work on React Native, the native
side must communicate with the Typescript/Javascript side. React Native uses event
emitter to send event from the native to Typescript/Javascript side. However, the
existing RCTDeviceEventEmitter in React’s DeviceEventManagerModule is deprecated
for iOS. For iOS, this means that a custom event emitter that extends RCTEventEmitter
must be created. This custom event emitter is created as part of the project, not part of
the example app.

1. Create SASMobileMessagingEvent.h and SASMobileMessagingEvent.m in the ios
folder:

42

v ios
> MobileSdkReactNative.xcodeproj
> SASCollector.xcframework
> views
Constants.h
Constants.m
MobileSdkReactNative.h
C+ MobileSdkReactNative.mm
SASMobileMessagingEvent.h

C SASMobileMessagingEvent.m

Add this code to SASMobileMessaginEvent.h:
#import <Foundation/Foundation.h>
#import <React/RCTBridgeModule.h>
#import <React/RCTEventEmitter.h>

@interface SASMobileMessagingEvent:
RCTEventEmitter<RCTBridgeModule>

+ (void) emitMessageOpenedWithPayload: (NSDictionary *)payload;
+ (void) emitMessageDismissed;
@end
Add this code to SASMobileMessagingEvent.m:
#import "SASMobileMessagingEvent.h"
#import "Constants.h"
@implementation SASMobileMessagingEvent
RCT_EXPORT MODULE () ;
- (NSArray<NSString *> *)supportedEvents {
return @[@"onMessageOpened", @"onMessageDismissed"];
}
- (void) onMessageOpened: (NSNotification*)notification {
NSDictionary *args = notification.userInfo;
[self sendEventWithName:MESSAGE OPENED body:args];
}
- (void) onMessageDismissed {
[self sendEventWithName:MESSAGE DISMISSED body:nil];
}
- (void) startObserving {

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (onMessageOpened:) name:MESSAGE OPENED
object:nil];

43

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (onMessageDismissed)
name :MESSAGE DISMISSED object:nil];

}
- (void) stopObserving {
[[NSNotificationCenter defaultCenter] removeObserver:self];
}
+ (void) emitMessageOpenedWithPayload: (NSDictionary *)payload {

[[NSNotificationCenter defaultCenter]
postNotificationName:MESSAGE OPENED object:self
userInfo:payload];

}
+(void) emitMessageDismissed {

[[NSNotificationCenter defaultCenter]
postNotificationName:MESSAGE DISMISSED object:self];

}
@end

4. In anintegrated terminal, navigate to the ios folder and type npm install to
include SASMobileMessagingEvent in the library.

To configure the example project:

1. Goto developer.apple.com, enable push notifications for the app, and create a PEM
file.

2. Copy the key and certificate and give them to a SAS Customer Intelligence 360 user.
The user will add it to the SAS Customer Intelligence 360 mobile application that is
created for the example project. For information, see Mobile Application
Configuration in SAS Customer Intelligence 360: Administration Guide.

3. Open the example ios project’s MobileSdkReactNativeExample.xcworkspace in
Xcode. Add push notifications and the checked capabilities in background modes:

44

https://developer.apple.com/
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm
https://go.documentation.sas.com/doc/en/cintcdc/production.a/cintag/mob-mging-apps.htm

MobileSdkReactNativeExample
s info BuildSettings Build Phases

veExample

| AppDelegate
AppDelegate

& Images
Infa

% LaunchScreen
main

Libraries

~ % Background Modes

Targets Support Files

4. In AppDelegate.h, replace the content with this code:

#import <React/RCTBridgeDelegate.h>

#import <UIKit/UIKit.h>

#import <UserNotifications/UserNotifications.h>
#import <React/RCTBridge.h>

#import <React/RCTEventDispatcher.h>

#import <SASCollector/SASCollector.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate,
UNUserNotificationCenterDelegate, RCTBridgeDelegate,
SASMobileMessagingDelegate2>

@property (nonatomic, strong) UIWindow *window;

@end
5. In AppDelegate.m:

a. Add these imports before #if RCT NEW ENABLED:

#import <SASCollector/SASCollector.h>
#import <SASCollector/SASLogger.h>

#import <mobile-sdk-react-native/SASMobileMessagingEvent.h>
b. Add the following method for getting push notification action link when the
application is started by tapping the push notification. The action link will be

used to redirect to the specific screen. In the example application, it is diagnostic
screen.

- (NSDictionary*)getActionLinkFromMobileMessage:
(NSDictionary *)notificationInfo {

45

if (notificationInfo == nil) {
return nil;

}

NSDictionary *aps = notificationInfo[@"aps"];

NSDictionary *mobileMessageDictionary =
aps[@"MobileMessage"];

if (mobileMessageDictionary == nil) {
return nil;

}

if (![mobileMessageDictionary[@"template™]
isEqualToString:@"creative.pushNotification"]) {
return nil;

}

NSArray *actions = mobileMessageDictionary[@"actions"];
NSString *link = actions[0][@"1ink"];
if (link == nil) {

return nil;

}

return @{@"notificationWithLink": link};

. In the didFinishLaunchingWithOptions method, add this code after
#RCT NEW ARCH ENABLED/#endif pair:

[SASLogger setLevel:SASLoggerLevelAll];

if (@available (i0OS 10.0, *)) {
UNUserNotificationCenter.currentNotificationCenter
.delegate = self;

[UNUserNotificationCenter.currentNotificationCenter
requestAuthorizationWithOptions: (UNAuthorizationOptionSou
nd | UNAuthorizationOptionAlert |
UNAuthorizationOptionBadge) completionHandler:” (BOOL
granted, NSError * Nullable error) ({

if (error != nil) {
[SASLogger error:error.localizedDescription];
return;
}
dispatch async(dispatch get main queue (), ~{
[application registerForRemoteNotifications];

b)) e

46

b1
}
[SASCollector setMobileMessagingDelegateZ:self];

In the didFinishLaunchingWithOptions method, delete the line that creates the
rootView, and then add this code to get notification action link to pass to the
rootView as an initial parameter:

NSDictionary *notificationInfo =

[launchOptions objectForKey:
UIApplicationLaunchOptionsRemoteNotificationKey];

UIView *rootView = RCTAppSetupDefaultRootView (bridge,
@"main", [self

getActionLinkFromMobileMessage:notificationInfol]);

Add these methods:

- (void) application: (UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken: (NSData
*)deviceToken {

[SASCollector registerForMobileMessages:deviceToken
completionHandler: " {

[SASLogger info:@"Registering for remote notifications
is successful"];

} failureHandler:"{

[SASLogger info:Q@"Registering for remote notifications
failed"];

318

- (void) application: (UIApplication *)application
didReceiveRemoteNotification: (NSDictionary *)userInfo
fetchCompletionHandler: (void
(") (UIBackgroundFetchResult)) completionHandler {

[SASCollector handleMobileMessage:userInfo
WithApplication:application];

completionHandler (UIBackgroundFetchResultNoData) ;
}

- (void)userNotificationCenter: (UNUserNotificationCenter
*)center
didReceiveNotificationResponse: (UNNotificationResponse

47

*) response withCompletionHandler: (void
() ())completionHandler {

[SASCollector handleMobileMessage:
Response.notification.request.content.userInfo
withApplication:UIApplication.sharedApplication];

completionHandler () ;

}

f. Atthe end of thefile, addthese SASMobileMessagingDelegate?
methods:
#pragma mark SASMobileMessagingDelegate?

- (void)actionWithLink: (NSString * Nonnull)link
type: (SASMobileMessageType) type {

NSMutableString* msgType = [NSMutableString

stringWithString:Q@""];

if (type == SASMobileMessageTypePushNotification) {
msgType = [NSMutableString

stringWithString:@"PushNotification"];

} else if (type == SASMobileMessageTypelnAppMessage) {
msgType = [NSMutableString

stringWithString:@"InAppMsg"];
}
NSDictionary *args = Q@{@"type": msgType,
@"link": link};
[SASMobileMessagingEvent
emitMessageOpenedWithPayload:args];
}
- (void) messageDismissed {
[SASMobileMessagingEvent emitMessageDismissed];
}

6. To enable rich push notifications, create a new Notification Service Extension target
from Xcode:

48

Choose a template for your new target:

Multiplatform i0s mac0S watch0S tw0S Driverkit Other

Application Extension

Intents Extension Intents Ul Location Push Message
Extension Service Extension Filter Extension

Motification Notification Persistent Photo Editing
Content Extension Service Extension Token Extension Extension

Quick Look Safari Extension Share Extension Shield Action

When the target is created, two new files are added:

MobileSdkReactNativeExample
A home_work
MobileSdkReactNativeExample
{& MobileSdkReactNativeExample
> @ Fonts
E8 SASCollector
h AppDelegate
AppDelegate
) Images
£3 Info
Y LaunchScreen
main
Libraries
ReactNativeRichPush

h NotificationService

NotificationService
E5 Info
Products
Frameworks
Pods

7. Replace the didReceiveNotificationRequest method in NotificationService.m with
this code:

- (void)didReceiveNotificationRequest: (UNNotificationRequest
*)request withContentHandler: (void
(*) (UNNotificationContent * Nonnull))contentHandler ({

self.contentHandler = contentHandler;

self.bestAttemptContent = [request.content mutableCopy];
NSDictionary *notificationData =
(NSDictionary*) request.content.userInfo[@"data"];

if (notificationData == nil) {

49

return;

}

NSString *urlStr = (NSString*) [notificationData
objectForKey:@"attachment-url"];
if (urlStr == nil) {

return;
}
NSURL *fileUrl = [NSURL URLWithString:urlStr];
if (fileUrl == nil) {

return;

}
NSURLSessionDownloadTask *downloadTask =
[NSURLSession.sharedSession
downloadTaskWithURL:fileUrl
completionHandler:” (NSURL * Nullable location,
NSURLResponse * Nullable response,

NSError * Nullable error) ({

if (location != nil && error == nil) {
NSString *tempDir = NSTemporaryDirectory():;

NSString *suggestedName = [response
suggestedFilename] ;

if (suggestedName !'= nil) {

NSString *fileName = [NSString
stringWithFormat:@"file://%@%Q@", tempDir, suggestedName];

NSString *tempFileName = [fileName
stringByReplacingOccurrencesOfString:@" " withString:@" "];
NSURL *tempUrl = [NSURL

URLWithString:tempFileName];

NSError *removeFileError;

if ([NSFileManager.defaultManager
fileExistsAtPath:tempUrl.path] &&
[NSFileManager.defaultManager
isDeletableFileAtPath:tempUrl.path]) {

[NSFileManager.defaultManager
removeltemAtPath:tempUrl.path error:&removeFileError];

}

50

if (removeFileError != nil) return;

NSError *moveFileError;

[NSFileManager.defaultManager
moveltemAtURL:location toURL:tempUrl error:é&moveFileError];

if (moveFileError != nil) return;

NSError *attachmentError;

UNNotificationAttachment *attachment =
[UNNotificationAttachment
attachmentWithIdentifier:@"ci360content"” URL:tempUrl
options:nil error:&attachmentError];

self.bestAttemptContent.attachments =
@[attachment];

if (attachmentError != nil) return;

}
self.contentHandler (self.bestAttemptContent) ;

116

[downloadTask resume];

Configure React Native (Typescript)

Push Notifications

1. Open Integrated Terminal, cd to example folder, and type this command:
npm install events

2. Find App.tsx in the example/src folder.

v example
> .bundle

> android
> ios
> node_modules
~ SsIC
> components
> screens
App.tsx

RootNavigation.tsx

51

Add these three imports:

import { SASMobileMessagingEvent, Constants } from 'mobile-
sdk-react-native';

import {navigate, RootTabParameterList} from
'./RootNavigation';

import {EventEmitter as EvtEmitter} from 'events';

Note: RootNavigation.tsx was created in the same (src) folder. The file contains
input parameter definitions of tab screens. The exported navigate is used in case
navigation is not created yet to avoid crashes in the app.

. Change the app type:
const App: React.FC<Props> = ({notificationWithLink})

Note: notificationWithLink is the parameter passed from native side when the app
has not been running and tapping push notification starts the app.

Before the start of App definition, create an instance of event emitter.

const emitter = new EvtEmitter();

Note: The emitter will send event when push notification is received while the app is
in the background. Listener will be set up in deep link in step 11 to listen for the
event and navigate to the Diagnostic screen.

add an entry in src/Constants.tsx of the project (NOT in example folder):

export const MESSAGE_NOTIFICATION_LINK_RECEIVED =

"onNotificationLinkReceived";

At the start of App definition, create a mobile messaging event for iOS:
let i0SMessagingEvent: NativeEventEmitter;
if (SASMobileMessagingEvent != null) {

i0SMessagingEvent = new
NativeEventEmitter (SASMobileMessagingEvent) ;

}

Add this code to ensure that event listeners are in place to handle both push
notifications and in-app messages:

React.useEffect (() => {

// This happens when the app is not started yet.

52

//Tapping push notification starts the app.

//notificationWithLink is a parameter in the initial props
passed from the native side.

if (notificationWithLink &&
notificationWithLink?.includes ('diagnostics')) {

Toast.show ('User got push notification with link' +
notificationWithLink, Toast.SHORT) ;

setInitialTab ('Diagnostics');

if (Platform.0S === 'android') {

DeviceEventEmitter.addListener (Constants.MESSAGE DISMISSED,
() => {

Toast.show ('User dismissed message', Toast.SHORT) ;
})

DeviceEventEmitter.addListener (Constants.MESSAGE OPENED,
(obj: {[key: string]: string}) => {

const link = obj['link'];
const msg = 'User got in-app msg with link:' + link;
Toast.show (msg, Toast.SHORT)
if (link?.includes('diagnostic')) {
navigate ('Diagnostics’', {link: link});
}
});
DeviceEventEmitter.addListener (Constants
.MESSAGE NOTIFICATION LINK RECEIVED, (link: string) => {
if (link.includes('diagnostic')) {
Toast.show ('User got push notification' +

' with link' + link, Toast.SHORT);

//This event is for the listener in deep link to listen
emitter.emit ('PushLink', {link: link})
}
})

} else if (Platform.0S === 'ios') {

53

i0SMessagingEvent.addListener (Constants.MESSAGE OPENED,
(data) => {

console.log('data: ' + data);
' + data.type + 'link is:

console.log('message type:
+ data.link);

const msg = (data.type === 'InAppMsg' ? 'User got in-

app msg with link:' + data.link : 'User got push
notification with link:' + data.link);

Toast.show (msg, Toast.SHORT)

if (data.type === 'InAppMsg') {

navigate ('Diagnostics', {link: data.link});

} else {
//This event is for the listener in deep link to listen

emitter.emit ('PushLink', {link: data.link})

) g

i0SMessagingEvent.addListener (Constants.MESSAGE DISMISSED,
0 =>{

Toast.show ('User dismissed message', Toast.SHORT) ;

F) e

return () => {
DeviceEventEmitter.removeAlllListeners () ;

if (SASMobileMessagingEvent) {

i0SMessagingEvent.removeAllListeners (

SASMobileMessagingEvent) ;

Android only: Right after checkLocationPermission (), add this code to specify
the tab to display for a push notification. In this example, the app is set to display

the Diagnostics tab when push notification is received.

54

Note: This step is only for Android because when a push notification is clicked by the
user, the app restarts.

let tabName = 'Identity';
let pushLink = '';

if (notificationWithLink &&
notificationWithLink.includes ('diagnostics')) {

tabName = 'Diagnostics'
pushLink = notificationWithLink;
}

10. If you use CI360 Android SDK 1.80.2 or 1.80.3, step 9 is not needed. Instead, this and
step 11 will set up for deep link. After checkLocationPermission () , add this
object to set up the screen when push notification is received:

const config = {
screens: {

Diagnostics: 'diagnostics'

}i

Note: Diagnostics is one of the screen name in the example project, ‘diagnostics’ is
the part in the action link: app://diagnostics

11. After the config definition in step 10, add the linking options:
const linking: LinkingOptions<RootTabParameterList> = {
prefixes: ['app://'],
config: config,
subscribe (listener: any) {
const pushSub = emitter.addListener ('PushLink’,
(data: any) => {
listener (data.link)
}) i
return () => {

pushSub.removeAllListeners () ;

55

Note: 'PushLink' event name that is passed in emitter.addListener is the event name
that the emitter uses when sending the event with push notification’s action link in
both Android and iOS in step 8.

12. In <Tab.Navigator> add initialRouteName:
<Tab.Navigator initialRouteName={initialTab}
13. In <Tab.Screen> for Diagnostics, add initialParams:
<Tab.Screen name='Diagnostics' component={DiagnosticScreen}

options={{tabBarLabel: 'diagnostics'}} />

14. If you use deep link, steps 12 and 13 are not needed. Instead update
NavigationContainer by passing it the linking parameter:

<NavigationContainer linking={linking}>

Note: “linking” in {} is the parameter defined in step 11.

In-App Messages

In-app messages are sent to devices by invoking addAppEvent, which is exposed in the
React Native library.

In the example project, a screen is created for sending an in-app message event and
receiving it. Find MessageScreen.tsx in example/src/screens.

1. In MessageScreen, add this import:
import { addAppEvent } from 'mobile-sdk-react-native';
For other imports, please see the attachment.
2. Inthe <View> container, add this code:
<View style={styles.spot}>
<TextInput style={styles.textInput}
onChangeText={setSmallMsg} value={smallMsg}/>
<CustomButton title='Send Small In-App'
width={{width: 200}} onPress={() => {
addAppEvent (smallMsg, null); }} />
</View>

<View style={styles.spacer} />

56

<View style={styles.spot}>
<TextInput style={styles.textInput}
onChangeText={setLargeMsg} value={largeMsg} />
<CustomButton title='Send Large In-App'
width={{width: 200}} onPress={() => {
addAppEvent (largeMsg, null); }} />

</View>

Note: The initial smallMsg and largeMsg values are the small and large in-app
message events names created in Design Center.

Test Push Notifications and In-App Messages

A SAS Customer Intelligence 360 user creates events, creatives, and tasks for push
notifications and in-app messages.

Test Push Notifications
Push notifications can be tested by sending external events from Postman.
1. Start the app, login and put the app in the background.

2. In SAS Customer Intelligence 360, navigate to General Settings. Under Content
Delivery, select Diagnostics.

3. For ID type, select your device ID and click Submit Test. You should receive a test
push notification on your device.

When creating a push notification creative (and then using that creative in a push task)
in SAS Customer Intelligence 360, if you have ‘diagnostic’ in the creative uri, clicking the
notification brings the app to foreground and opens the diagnostic screen.

Test In-App Messages

To test in-app messages, select the Messages tab on the running app. Click the Send
Small In-App button to open the small in-app message pop-up at the bottom of the
screen. Click the Send Large In-App button to open the large in-app message pop-up at
the center of the screen. Both message pop-ups have a Close (x) button. If a user clicks
the button, a toast message briefly appears. The large in-app message pop-up has a
button that opens the diagnostic screen.

57

Integrate the React Native Library with an Existing React
Native App

1.

4.

To use the new library in an existing project, copy the library to a desired location.
Note the absolute path of the library.

Note: The location cannot be in the existing project’s node modules folder.

For example, in the figure below, the app folder and the library folder are in the
same folder. mobile_sdk_test is the React Native app that uses the mobile-sdk-
react-native library.

-

mobile-sdk- mobile_sdk_test
react-native

Open your React Native app project in VSCode. In this example, the app is
mobile_sdk_test.

Install the babel-plugin-module-resolver library and save it as a development
dependency in package.json by running this command in integrated terminal:

npm install babel-plugin-module-resolver —-save-dev

Note: babel-plugin-module-resolver is a library that adds a new resolver for the
library (mobile-sdk-react-native) when compiling your Typescript-based project or
project with newer ECMAScript2015+ Javascript using Babel.

In your app, find the babel.config.js file.

58

v MOBILE_SDK_TEST [EJ
> __tests___
.bundle

>

> .wscode
> android
>

ios

src
_node-version
.buckconfig

@ .eslintrc.js
.gitignore
.prettierrc.js
.ruby-version
watchmanconfig
app.json
babel.config.js
Gemfile

a. Atthe start of babel.config.js, add this code:
const path = require('path');

const pak = require('../mobile-sdk-react-
native/package.json') ;

Note: The path in pak is based on folder structures in step 1. In the steps that
follow, all paths are based on the same folder structures. If yours are
different, you need to make modifications to the paths.

b. Add this code inside module.exports:
plugins: [
[
'module-resolver',
{
extensions: ['.tsx', '.ts', '.js', '.json'],
alias: {
[pak.name]: path.join(
___dirname,
'../mobile-sdk-react-native',

pak.source,

),

59

by
by
I

5. Find the metro.config.js file.

v MOBILE_SDK_TEST
2 .bundle

> wvscode
> android

> ios

2 SIC

_node-version

.buckconfig
.eslintrc.js
.gitignore

.prettierrc.js

.ruby-version
} .watchmanconfig

app.json
babel.config.js
Gemfile

index.js
metro.config.js

{} package-lock.json

a. Add this code before module.exports:
const path = require('path');
const escape = require ('escape-string-regexp');
const exclusionList = require (
'metro-config/src/defaults/exclusionList');
const pak = require(
'../mobile-sdk-react-native/package.json');
const sdkPath = path.resolve(dirname,
'../mobile-sdk-react-native') ;
const modules = Object.keys ({
...pak.peerDependencies,
});
b. Inside module.exports, add watchFolders and resolver:
watchFolders: [sdkPath],
resolver: {

blacklistRE: exclusionList (

60

modules.map (
m =>

new RegExp ("${escape (path.join (sdkPath,
'node modules', m))}\\/.*$"),

),
) s

extraNodeModules: modules.reduce ((acc, name) => {
accl[name] = path.join(dirname, 'node modules',
name) ;

return acc;
Froo A1)y
by
6. Find react-native.config.js, and add this code:

const path = require('path');
module.exports = {

dependencies: {

'module-sdk-react-native': {

root: path.join(dirname, '../mobile-sdk-react-
native'),

Vo
Vo
) 8

Note: If there is no react-native.config.js file in your React Native project, create it at
the project level.

7. Find tsconfig.json, assuming the React Native project is based on Typescript.

61

- MOBILE_SDK_TEST

uliule
> wvscode
> android

> ios

> src
node-version

.buckconfig
.eslintrc.js
.gitignore
.prettierrc.js
.ruby-version

} .watchmanconfig

} app.json
babel.config.js
Gemfile
index.js
metro.config.js

} package-lock.json

} package.json

react-native.config.js

tsconfig.json

In tsconfig.json, add this code inside “compilerOptions”:

"baseUrl": "./",
"paths": {
"mobile-sdk-react-native":
["../mobile-sdk-react-native/src/index"]
br

8. The easiest way to make these changes take effect is to close the project and reopen
it in VSCode. Alternatively, you canrun yarn tsc if you have installed Yarn.

9. Inthe android/app folder, find build.gradle.

62

~ MOBILE_SDK_TEST
> __tests__
> .bundle
> .vscode

v android

> src
= _BUCK
¥ build_defs.bzl

build.gradle

= debug.keystore

10. In the app level build.gradle file, add this line to the dependencies section:

implementation files('../../../mobile-sdk-react-
native/android/libs/SASCollector.jar"')

After making the change, you will be asked to sync the project. Click Yes.
11. In an integrated terminal, go to the ios folder, and run pod install.

12. To use the library, look back in previous sections on how to add the functionalities in
the example app.

Access API| Reference Documentation

API| reference documentation is included in SASCollector_<applicationID>.zip.

1. Navigate to the Android folder or the i0s folder in the SDK ZIP file
(SASCollector_<applicationlD>.zip).

2. To view the APl documentation in a browser:

a. Extract the contents of SASCollector-javadoc.jar (for Android) or
iOSDocumentation.zip (for iOS) to a local directory.

b. To open API reference documentation, open index.html.
TIP For ease of use, bookmark the API reference URL in your browser.

3. Android only: To view the APl documentation in Android Studio, add the SASCollector-
javadoc.jar to the app/libs folder in your Android Studio project.

63

Each time you upgrade to the latest SDK, remember to refer to the latest API reference.

Updates

October 2023 Updates

The Inline mobile spot created in the example project is a simple use case. However, you may
receive requirements to make it more dynamic. For example, if the mobile spot has no default
content, it is desirable to not display the mobile spot. Another example is when the spot id is
changed, we may need to update the mobile spot to show the new content. Such use cases of
the inline mobile spots will be covered in this update.

Configure Android

1. Find InlineAdViewManager.java in android/src/main/java/com/mobilesdkreactnative/views,
and create this property:

@ReactProp (name="notVisible")
public void setHiden (InlineAdView inlineAdView,
@Nullable boolean notVisible) {
if (notVisible) {
inlineAdView.setVisibility (View.GONE) ;
} else {

inlineAdView.setVisibility (View.VISIBLE) ;

Configure i0S

1. Find InlineAdView.h in ios/views and add a boolean property:
@property (nonatomic) BOOL notVisible;

2. Find InlineAdView.m in ios/views and make the following updates:

a. Add an instance boolean variable inside InlineAdView interface:
@interface InlineAdView () {
NSString* spotID;
BOOL _notVisible;

64

@end

b. Add notVisible property’s getter and setter methods:
- (BOOL) notVisible {
return notVisible;
}
- (void) setNotVisible: (BOOL)notVisible {
_notVisible = notVisible;
[self setHidden: notVisible];
}
c. Find InlineAdViewManager.m and export notVisible property:
RCT EXPORT VIEW PROPERTY (notVisible, BOOL)

Note: With the recent update of XCode to version 15, building the iOS application will generate
compile time error. If this is the case when you run your iOS application, follow step 3 to fix the
error.

3. Open the example project’s iOS application in Xcode, build and run. You will see the following
error in hash.hpp file. Click “Fix” to resolve the error.

I

#else
template <typename T>

struct hash_base : std::unary_function<T, std::size_t> {};

#endif

® No template named 'unary_function' in namespace 'std’; did you x
mean '__unary_function'?

struct enable_hash

Replace 'unary_function' with '__unary_function' Fix

Configure React Native (Typescript)
There are two places to update, with one in the library and one in the example application.

1. Find Constants.tsx in src and add the following variable:

export const AD DEFAULT LOADED = "onAdDefaultLoaded";

65

2. Find InlineAdView.tsx in src/views and update Props definition by adding the boolean
variable notVisible:

type Props = {
spotId: string;
notVisible: boolean;
style: ViewStyle;
}i
3. Find SpotsScreen.tsx in example/src/screens and make the following updates:

a. Add an import to provide list selection functionality:

import Selectlist from 'react-native-dropdown-select-list';

Note: The library in step a has been used in LoginScreen to provide users the option to choose
the login type. It is used in SpotsScreen to provide the options to choose different mobile spots.
You can also use other libraries that achieve the same functionality.

b. At the start of SpotsScreen definition, add this code:
const spotIdList = [
{key:'cuteCatSpot WW', value:'cuteCatSpot WW'},
{key:'cuteDogSpot WW', wvalue:'cuteDogSpot WW'},
{key:'flowerSpot WW', value:'flowerSpot WW'},
{key:'noDefaultViewSpot WW', wvalue:'noDefaultViewSpot WW'}
17

const [spotId, setSpotId] =
React.useState ('noDefaultViewSpot WW') ;

const [inlineViewNotVisible, setInlineViewNotVisible] =

React.useState (true) ;

Note: The content inside spotldList are the spot Ids created for the example project. Use your
own spot Ids. The last spot Id in spotldList does not have any default content. The inclusion of it
is to demonstrates that it will not show on the screen.

66

c. Inside React.useEffect, update addListener callbacks (Update is in bold as before):
if (Platform.0S === 'ios') {
i0SMessagingEvent.addListener (Constants.AD LOADED,

(event: Event) => {

if (event === Constants.TYPE INTERSTITIAL AD) {
Toast.show('Interstitial Ad view is loaded', Toast.SHORT) ;

} else if (event === Constants.TYPE INLINE AD) {
Toast.show('Inline Ad view is loaded', Toast.SHORT) ;
setInlineViewNotVisible (false) ;

}

b);
iOSMessagingEvent.addListener (Constants.AD DEFAULT_ LOADED,

(event: Event) => {

if (event === Constants.TYPE_ INTERSTITIAL AD) {
Toast.show('Interstitial Ad default view is loaded’',
Toast.SHORT) ;

} else if (event === Constants.TYPE INLINE AD) {
Toast.show('Inline Ad default view is loaded', Toast.SHORT) ;
setInlineViewNotVisible (true) ;

}

b

else 1if (Platform.0S == 'android') {
DeviceEventEmitter.addListener (Constants.AD LOADED,
(event: Event) => {
if (event === Constants.TYPE INTERSTITIAL AD) {
Toast.show('Interstitial Ad view is loaded', Toast.SHORT) ;
} else if (event === Constants.TYPE INLINE AD) {
Toast.show('Inline Ad view is loaded', Toast.SHORT) ;
setInlineViewNotVisible (false) ;
}
});
DeviceEventEmitter.addListener (Constants.AD DEFAULT LOADED,

67

(event: Event) => {

if (event === Constants.TYPE INTERSTITIAL AD) ({
Toast.show('Interstitial Ad default view is loaded’',
Toast.SHORT) ;

} else if (event === Constants.TYPE INLINE AD) {
Toast.show('Inline Ad default view is loaded', Toast.SHORT) ;
setInlineViewNotVisible (true) ;

}

b

c. Update InlineAdView and add SelectList component inside the last “return”. The layout of
the views is re-designed. So please look in the zipped example project to view the details.

<InlineAdView
spotId={spotId}
notVisible={inlineViewNotVisible}
style={ inlineViewNotVisible ? styles.inlineViewWithoutContent

styles.inlineViewWithContent} />

<SelectlList
boxStyles={{width: 200}}
style={styles.selectionList}
data={spotIdList}

setSelected={setSpotId} />

Run the example applications, select different spot ids, and you will see that the content of the
selected spot is displayed. If the id of the spot with no default content is selected, the view is
not displayed.

Update with SASCollector SDK release

The latest SASCollector SDKs (iOS 1.72.3 and Android1.80.4) allows you to disable
focus/defocus events and get feedback message from identity call. Here is what you can update
to get the features.

Disable focus/defocus events:

1. Find SASCollector.properties in example/android/app/src/main/assets and add this entry:

disable.focus.tracking=true

2. Find SASCollector.plist in example/ios and add this entry:

68

disableFocusTracking = "true";

Note: Steps 1 and 2 are optional. You only need them when you do not want to have
focus/defocus events.

Receive feedback messages from identity call:
1. Find MobileSdkReactNativeModule.java in android/src/main/java/com/mobilesdkreactnative
and update identity method:
@ReactMethod
public void identity(String wvalue, String type, Promise promise) {
SASCollector.getInstance() .identity (value, type,
new SASCollector.IdentityCallbackWithMessage() {
@Override
public void onComplete (boolean b, String message) ({

SLog.d("Identity callback message", message) ;

SLog.d ("Identity", "Identity called with: " +
(b ? "success" : "failure"));

new Handler (Looper.getMainLooper ()) .post (new Runnable () {
@Override
public void run() {

promise.resolve (b);

2. Find MobileSdkReactNative.mm in ios and update identity method:
RCT EXPORT METHOD (identity: (NSString*)value
withType: (NSString*) type
isSuccess: (RCTPromiseResolveBlock) successPromise
isFailure: (RCTPromiseRejectBlock) failurePromise) {
[SASCollector identity:value withType:type
withCompletion:” (BOOL success, NSString * Nonnull message) {

SLogInfo (@"Identity callback message: %Q@", message) ;

dispatch async(dispatch get main queue (), "{

69

if (success) {
successPromise ([NSNumber numberWithBool:success]):;
} else {

failurePromise (@"Error", @"Identity failure", nil);

Note: Steps 1 and 2 are optional. You only need them when you want to get feedback messages
from the identity call. The messages can tell you the reason why you get failure or success.

November 2023 Updates

In October’s update on mobile spots, the mobile spot screen only contains one inline mobile
spot view. However, there may come the need to include multiple inline mobile spot views on
one screen. And depending on whether the views have content, the views may need to render
on screen or not. With the previous update, simply adding more views will not work as
expected when we need to style the views differently or show/hide the views depending on
which does not have content. This update addresses this issue.

In this update, in addition to changes in native Android and iOS mobile spots, a new screen is
added to include one inline mobile spot view that does not have default content and another
one that has default content (no content). In addition, for the view that has default content, the
view is styled according to the spot id.

Configure Android
1. Find InlineAdViewManager.java in android/src/main/java/com/mobilesdkreactnative/views.
a. Remove spotID property previously added in InlineAdViewManager.
b. Add fields id and spotld in InlineAdView:
String id = "";
String spotId = "";
c. Add two setter methods in InlineAdView:
public void setId(String id) {
this.id = id;
}
public void setSpotId(String spotId) {

70

this.spotId = spotId;
}
d: Update sendEvent in InlineAdView:
private void sendEvent (String eventName, String type) {
ReactContext reactContext =
UseReactContext.getReactContext (InlineAdView.this.getContext ());
boolean isLoadOrDefaultLoad = false;

// Need to import WritableMap at the start of the class
WritableMap data = new WritableNativeMap () ;

if (eventName.equals (Constants.AD LOADED) ||

eventName.equals (Constants.AD DEFAULT LOADED)) {
data.putString ("eventType", type):

"");

data.putString ("spotId", spotId != null ? spotIld
data.putString ("viewId", id != null ? id "y,
isLoadOrDefaultlLoad = true;
}
reactContext.getJSModule (
DeviceEventManagerModule.RCTDeviceEventEmitter.class)

.emit (eventName, isLoadOrDefaultLoad ? data : eventName);

}
e. Update these property setter methods in InlineAdViewManager:
@ReactProp (name = "spotId")
public void setSpotId(InlineAdView inlineAdView,
@Nullable String spotID) {
if (spotID != null) {
inlineAdView.setSpotId (spotID);
inlineAdView.load (spotID, null);
}forLoad
}
@ReactProp (name = "viewId")
public void setViewId(InlineAdView inlineAdView,
@Nullable String viewId) {

inlineAdView.setId (viewId) ;

71

@ReactProp (name="notVisible")
public void setHiden(InlineAdView inlineAdView,
@Nullable boolean notVisible) {
if (notVisible) {
inlineAdView.setVisibility (View.GONE) ;
} else {

inlineAdView.setVisibility (View.VISIBLE) ;

Note: For completeness, you can update InterstitialAdViewManager.java similarly. For details,
please see the example project.

Configure iOS

1. Find InlineAdView.h in ios/views and add viewld property:
@property (nonatomic, copy) NSString *viewId;
2. Find InlineAdView.m in ios/views and do the following update:
a. Define local storage for viewld:
@interface InlineAdView() {
NSString* spotID;
NSString* _yiewID;
BOOL notVisible;
}
b. Define getter and setter methods of viewld:
- (NSString*)viewId {
return viewID;
}
- (void) setViewId: (NSString *)viewId {
_viewID = viewId;
}

3. Find InlineAdViewManager.m in ios/views and do the following update:

a. Remove the definition of InlineAdView storage, i.e. remove the variable inside
“@implementation”

72

b. Add viewld as an exported property:
RCT EXPORT VIEW PROPERTY (viewId, NSString)
c. Update didLoad and didLoadDefault method:
- (void)didLoad: (SASIA AbstractAd *)ad {
InlineAdView *adView = (InlineAdView*)ad;
[AdDelegateEvent emitAdLoadedEventWithType:TYPE INLINE AD
withSpotId:adView.spotId withViewId:adView.viewId];
}
- (void)didLoadDefault: (SASIA AbstractAd *)ad ({
InlineAdView *adView = (InlineAdView*)ad;
[AdDelegateEvent
emitAdDefaultLoadedEventWithType:TYPE INLINE AD
withSpotId:adView.spotId withViewId:adView.viewId];
}
d. Find AdDelegateEvent.h in ios/views and update the following two method declarations:
+(void) emitAdLoadedEventWithType: (NSString*)adType
withSpotId: (NSString*)spotId withViewId: (NSString*)viewlId;
+(void)emitAdDefaultLoadedEventWithType: (NSString*)adType
withSpotId: (NSString*)spotId withViewId: (NSString*)viewId;

e. Find AdDelegateEvent.m in ios/views and update the following two methods:
+(void) emitAdLoadedEventWithType: (NSString*)adType
withSpotId: (NSString *)spotId withViewId: (NSString *)viewId{
[[NSNotificationCenter defaultCenter]
postNotificationName:AD LOADED object:nil
userInfo:@{@"type": adType, @"spotId": spotId,
@"viewId": viewId}];
}
+(void)emitAdDefaultLoadedEventWithType: (NSString*)adType
withSpotId: (NSString *)spotId withViewId: (NSString *)viewId {
[[NSNotificationCenter defaultCenter]
postNotificationName:AD DEFAULT LOADED object:nil
userInfo:@{@"type": adType, Q@"spotId": spotld,

@Q"viewId": viewId}];

73

f. Create the following method:
- (void) composeAndSendEvent: (NSNotification *)notification

withEventName: (NSString*)eventName {

// can be inline or interstitial
NSString *type = [notification.userInfo objectForKey:@"type"];

NSString *spotId [notification.userInfo
objectForKey:@"spotId"];
NSString *viewId = [notification.userInfo
objectForKey:@"viewId"];
if (!spotId)
spotId = @"";
if (!viewId)
viewId = @"";
if (![eventName isEqualToString:AD DEFAULT LOADED] &&
! [eventName isEqualToString:AD LOADED]) {
return;
}
[self sendEventWithName:eventName
body:@{@"eventType": type, @"spotId": spotId,
@"viewId": viewId}];
}
g. Update the following methods to call the method defined in step f:
- (void) onAdLoaded: (NSNotification*)notification {
[self composeAndSendEvent:notification withEventName:AD LOADED];
}
- (void) onAdDefaultlLoaded: (NSNotification*)notification {
[self composeAndSendEvent:notification

withEventName:AD DEFAULT LOADED];

Note: For completeness, you can update InterstitialAdView.h, InterstitialAdView.m,
InterstitialAdVIewController.m similarly. For details, please see the example project.

74

Configure React Native (Typescript)

This part of the update is only in the example folder. In order not to affect previously added
functionality, a new screen is created.

1. Create Spots2Screen.tsx file in example/src/screens. The following only contains important
part related to the newly added properties (spotld, viewld) of the spot views.

a. Add the following at the start of SpotsScreen definition. They will be used in the
InlineAdViews:
const spotId = 'noDefaultViewSpot WW';

const spotId2 = 'cuteDogSpot WW';

const [inlineViewNotVisible, setInlineViewNotVisible] =
React.useState (true) ;

const [inlineViewNotVisible2, setInlineViewNotVisible2] =
React.useState (true) ;

const [spotViewWithBorder, setSpotViewWithBorder] =
React.useState (false) ;

const inlineViewIdl = "inlineViewIdl";

const inlineViewId2 = "inlineViewId2";

b. Inside React.useEffect, update event listener like below:
if (Platform.0S === 'ios') {
i0OSMessagingEvent.addListener (Constants.AD LOADED,
(obj: {[key: string]: string}) => {
const event = obj['eventType'l;
const receivedSpotId = obj['spotId']; //not used
const receivedViewId = obj['viewId'];
i1f (event === Constants.TYPE INTERSTITIAL AD) {
Toast.show('Interstitial Ad view is loaded', Toast.SHORT) ;
} else if (event === Constants.TYPE INLINE AD) {
Toast.show('Inline Ad view is loaded', Toast.SHORT);
if (receivedViewId === inlineViewIdl) {
setInlineViewNotVisible (false);
}
1if (receivedViewId === inlineViewId2) {
setInlineViewNotVisible2 (false);
}
if (receivedSpotId === 'cuteDogSpot WW') ({

75

setSpotViewWithBorder (true) ;

b
iOSMessagingEvent.addListener (Constants.AD DEFAULT LOADED,
(obj: {[key: string]l: string}) => {

const event = obj['eventType']l;

const receivedSpotId obj['spotId']l; // not used

const receivedViewId = obj['viewId'];
if (event === Constants.TYPE INTERSTITIAL AD) {
Toast.show('Interstitial Ad default view is loaded’',
Toast.SHORT) ;
} else if (event === Constants.TYPE INLINE AD) {
Toast.show('Inline Ad default view is loaded',
Toast.SHORT) ;
if (receivedViewId === inlineViewIdl) {
setInlineViewNotVisible (true);
}
if (receivedViewId === inlineViewId2) {

setInlineViewNotVisible2 (true);

}
});
} else if (Platform.0S == 'android') {
DeviceEventEmitter.addListener (Constants.AD LOADED,
(obj: {lkey: string]: string}) => {

const event = obj['eventType'l;

const receivedViewId obj['viewId'];

const receivedSpotId = obj['spotId'];

if (event === Constants.TYPE INTERSTITIAL AD) {
Toast.show('Interstitial Ad view is loaded', Toast.SHORT);

} else if (event === Constants.TYPE INLINE AD) ({

if (receivedViewId === inlineViewIdl) {

setInlineViewNotVisible (false);

76

if (receivedViewId === inlineViewId?2)

setInlineViewNotVisible2 (false);
}

if (receivedSpotId === 'cuteDogSpot WW')

setSpotViewWithBorder (true) ;
}

Toast.show('Inline Ad view is loaded',

}
1)

{

Toast.SHORT) ;

DeviceEventEmitter.addListener (Constants.AD DEFAULT LOADED,

(obj: {[key: string]: string}) => {

const event = obj['eventType'];
const receivedViewId = obj['viewId'];
if (event === Constants.TYPE INTERSTITIAL AD)

Toast.show('Interstitial Ad default view is loaded',

Toast.SHORT) ;

} else if (event === Constants.TYPE INLINE AD)

{

Toast.show('Inline Ad default view is loaded',

if (receivedViewId === inlineViewIdl)
setInlineViewNotVisible (true) ;

}

if (receivedViewId === inlineViewId?2?)

setInlineViewNotVisible2 (true) ;

}
1)
// The rest is omitted
c. Inside <View></View>, add two InlineAdView:
<View style={inlineViewNotVisible ?

styles.inlineViewContainerNoContent

{

{

Toast.SHORT) ;

spotViewWithBorder? styles.inlineViewContainerWithBorder

styles.inlineViewContainerWithContent}>
<InlineAdView

spotId={spotId}

77

viewId={inlineViewIdl}
notVisible={inlineViewNotVisible}
style={ inlineViewNotVisible ? styles.inlineViewNoContent
spotViewWithBorder? styles.inlineViewContainerWithBorder
styles.inlineViewWithContent} />
</View>
{!inlineViewNotVisible && <View style={styles.spacer} />}
<View style={inlineViewNotVisible2 ?
styles.inlineViewContainerNoContent
spotViewWithBorder? styles.inlineViewContainerWithBorder
styles.inlineViewContainerWithContent}>
<InlineAdView
spotId={spotId2}
viewId={inlineViewId2}
notVisible={inlineViewNotVisible2}
style={ inlineViewNotVisible2 ? styles.inlineViewNoContent
styles.inlineViewWithContent} />

</View>

Note: For styling of the views, please see the example project.

2. Update the existing SpotsScreen.tsx to add viewld to InlineAdView and InterstitialAdView,
update event emitter’s addListener function to change the listener function’s parameter to be
an object as in Spots2Screen.tsx.

3. Update App.tsx to include Spots2Screen.

4. Add uselFocused hook in both SpotsScreen.tsx and Spots2Screen.tsx. This is because both
SpotScreen and Spot2Screen listen for mobile spots events. But we only want the active
(focused) screen to listen. uselsFocused actually does not work in Android. In iOS, it is not
completely accurate. So, you should find a better solution for this issue. Since this is not the
focus of the cookbbook, no further action is taken.

Note: Consult the finished example project for how to perform steps 2-4.

78

March 2024 Updates
Mobile Spot

The native SASCollector iOS SDK (1.74.0) and Android SDK (1.82.0) added a new feature that
allows developers to use resources such as fonts and icons from inside their apps to style their
mobile spots. However, because React native properties passed to the native side are a map
data structure, we cannot assume an order of setting the properties. But SASCollector SDK
needs to know if there is the intention to use local resources before loading the spots to ensure
the local resources are used. For this reason, and to also keep the original functionality (i.e.,
the functionality before the update), a new mobile spot view will be created in this update.

Configure Android

1. Create InlineAdViewWithLocalResourcesManager.java in
android/src/main/java/com/mobilesdkreactnative/views. This class and its inner
InlineAdViewWithLocalResources class are similar to the original classes. In the following steps,
mostly only the differences will be pointed out. Check out the example project for the complete
code.

2. In InlineAdViewWithLocalResourcesManager, make these changes:

a. Add these fields:

private boolean isSpotIdSet;

private boolean isUselLocalResourcesSet;
private boolean isViewLoaded;

private boolean isResourcePathSet;
public static final String NAME =
"InlineAdViewWithLocalResources";

b. Add this method to set spotld property:

@ReactProp (name = "spotId")
public void
setSpotId(InlineAdViewManagerLocalResources.InlineAdViewWithLocal
Resources inlineAdView, String spotID) {

isViewLoaded = false;

inlineAdView.setSpotId(spotID);

isSpotIdSet = true;

if (isSpotIdSet && isUseLocalResourcesSet && isResourcePathSet

&& !isViewLoaded) {

inlineAdView.loadWithLocalResources () ;
isViewLoaded = true;

79

c. Add this method to set useLocResource property:

@ReactProp (name="uselLocResources")
public void setUselLocResources (InlineAdViewWithLocalResources

inlineAdView, boolean uselLocalResources) {

isViewLoaded = false;
inlineAdView.setUselLocalResources (uselLocalResources) ;
isUseLocalResourcesSet = true;

if (isOKToLoadSpot()) {

inlineAdView.loadWithLocalResources () ;
isViewlLoaded = true;

d. Add this method to set resourcePath property:

@ReactProp (name="resourcePath")
public void setResourcePath (InlineAdViewWithLocalResources
inlineAdView, String path) {
isViewLoaded = false;
inlineAdView.setResourcePath (path);
isResourcePathSet = true;
if (isOKToLoadSpot()) {
inlineAdView.loadWithLocalResources () ;
isViewLoaded = true;

e. Add this method to determine when to load mobile spot:

private boolean isOKToLoadSpot () {
if (isSpotIdSet && isUselocalResourcesSet && isResourcePathSet

&& !isViewLoaded)
return true;
return false;

3. In InlineAdViewWithLocalResources, make these changes:

a. Add these fields in addition to those that are in InlineAdView:

boolean uselocalResources;
String resourcePath;

80

b. Add these methods:

public void setUselocalResources (boolean uselLocalResources) {
this.uselLocalResources = uselLocalResources;

}

public void setResourcePath(String path) {
this.resourcePath = path;

}

public void loadWithLocalResources () {
this.uselLocalResources (uselLocalResources, resourcePath);
this.load (spotId, null);

Configure iOS

1. Create the .h and .m files of InlineAdViewWithLocalResources in ios/views.
InlineAdViewWithLocalResources is similar to InlineAdView, but has two more properties
uselLocalResources and resourcePath. In the following steps, mostly only the differences are
shown. Check out the example project for the complete code.

2. In InlineAdViewWithLocalResources.h, declare these five properties:
@property (nonatomic, copy) NSString *spotId;
@property (nonatomic, copy) NSString *viewlId;
@property (nonatomic) BOOL notVisible;

@property (nonatomic) BOOL useLocResources;

@property (nonatomic, copy) NSString *resourcePath;
3. In InlineAdViewWithLocalResources.m, make these changes:
a. In @interface section add these variables:
NSString* spotID;
NSString* viewlID;
BOOL notVisible;
BOOL useLocResources;
NSString * resourcePath;
BOOL isSpotIdSet;
BOOL isUseLocResourcesSet;
BOOL isViewLoaded;
b. Add this method:
- (void) setSpotId: (NSString *)spotID {
_spotID = spotlID;
isViewLoaded = NO;
super.spotID = spotlID;
isSpotIdSet = YES;

81

if (isSpotIdSet && isUselocResourcesSet && !isViewLoaded) {
[self setLocResourcesAndLoad];
isViewLoaded = YES;

}

c. Add these methods to get and set useLocResources property:

- (BOOL)uselLocResources {
return uselLocResources;

}

- (void) setUselLocResources: (BOOL)useLocalResources {
_useLocResources = uselLocalResources;
isViewLoaded = NO;
isUseLocResourcesSet = YES;

if (isSpotIdSet && isUselocResourcesSet && !isViewLoaded) {
[self setLocResourcesAndLoad];
isViewLoaded = YES;

d. Add these methods to get and set resourcePath property. This property is not used but is
for compatibility with Android. In iOS, files in different folders are flattened in the same project,
so there is no notion of folders in the compiled project.

- (NSString*) resourcePath ({

return _resourcePath;

- (void) setResourcePath: (NSString *)path {

_resourcebPath = path;

4. Create the .h and .m files of InlineAdViewWithLocalResourcesManager in ios/views.

InlineAdViewWithLocalResourcesManager is similar to InlineAdView,Manger but has two more
exported properties.

5. In InlineAdViewWithLocalResourcesManager.m, add these exported properties:
RCT EXPORT VIEW PROPERTY (spotld, NSString)
RCT EXPORT VIEW PROPERTY (useLocResources, BOOL)
RCT EXPORT VIEW PROPERTY (resourcePath, NSString)

RCT EXPORT VIEW PROPERTY (viewId, NSString)

82

RCT EXPORT VIEW PROPERTY (notVisible, BOOL)

6. After the above files are created, in VSCode integrated terminal, go to example/ios folder
and run the following code to make them logically added in MobileSdkReactNative library:

pod install

Configure React Native (Typescript)
Update the mobile-sdk-react-native library

1. Create InlineAdViewWithLocalResources.tsx file in src/views folder and add this code in
the file.

import { requireNativeComponent, UIManager, ViewStyle, } from
"react-native";

type Props = {

spotId: string;
useLocResources: boolean;
resourcePath: string;
viewId: string;
notVisible: boolean;
style: ViewStyle;

bi

const ComponentName = 'InlineAdViewWithLocalResources';

const LINKING ERROR
linked";

"The ${ComponentName} does not seem to be

const InlineAdViewWithLocalResources =
UIManager.getViewManagerConfig (ComponentName) != null
? requireNativeComponent<Props> (ComponentName)

0 =>{

83

throw new Error (LINKING ERROR) ;

bi

export default InlineAdViewWithLocalResources;
2. In src/index.tsx file, add this code:

import InlineAdViewWithLocalResources from
'./views/InlineAdViewWithLocalResources';

export {InlineAdViewWithLocalResources};

Update the example app

1. Set up the html creative that uses local resources. Here is an example of the styles that is
used in the example project.

<style>
@Qfont-face {
font-family: Pacifico;

src: url('Pacifico.ttf'")

@Qfont-face {
font-family: Windsong;

src: url('Windsong.ttf')

</style>

2. In example/android/app/src/main/assets, create a folder called ci360 and add the font
and the icon files:

84

v assets
v ci360

icon.svg
Pacifico.ttf
Windsong.ttf

3. Open the example app project in Xcode and makes these updates:

a. Under MobileSdkReactNativeExample target, create a group called ci360 and add the
font and icon files:

MobileSdkReactNativeExample
A home_work
MobileSdkReactNativeExample
ci360
Windsong
Pacifico
icon
[MobileSdkReactNativeExample

b. In MobileSdkReactNativeExample target, choose build phases and make sure the
fonts and icon files are in “Copy Bundle Resources”. If not, then click “+” button to add them.

(General Signing & Capabilities Resource Tags Info Build Settings Build Phases

+ ®

PROJECT
MobileSdkReactNat... Target Dependencies (1 item)
Run Build Tool Plug-ins (0 items)

TARGETS
MobileSdkReactNat... [CP] Check Pods Manifest.lock
£ ReactNativeRichPush

Start Packager

Compile Sources (2 items)

Link Binary With Libraries (1 item)

Copy Bundle Resources (8 items)

Windsong.ttf ...in ci360

[E Pacifico.ttf ...inc

Y LaunchScreen.storyboard ...in MobileSdkReactN|
icon.svg ...in ci360

(G Images.xcassets ...in MobileSdkReactNativeExa

A home_work.gpx

E8 SASCollector.plist

4. Add import and set state for the toggle button:

85

import { InlineAdViewWithLocalResources} from
'mobile-sdk-react-native';
const [isUselocResource, setlIsUseLocResource] =

React.useState (true) ;

5. Add this code after the second InlineAdView in example/src/screens/Spots2Screens.tsx.
Please check the example project for the styles.

<View style={styles.inlineViewShortContainerWithBorder}>
<InlineAdViewWithLocalResources
spotId={spotId3}
uselLocResources={isUselLocResource}
resourcePath="'ci360"
viewId={inlineViewId3}
notVisible={false}
style={styles.inlineViewWithContentShort}/>
</View>
<CustomButton title='Toggle using local resources'
onPress={ () => {
setIsUselocResource (!isUselLocResource) ;
H}
width={{width: 200}} />

After running the example, the mobile spot screen looks like below. The center mobile spot that
has title “Test Styles” uses the local fonts and icon. Clicking the button below will toggle using
the local resources.

86

Toggle using local
resources

Interstitial Spot

-»J/AHH’%}

L 4

Note: This update only provides instructions on how to create an inline mobile spot. If you are
interested in creating an interstitial mobile spot, you can follow the same steps.

Setting Application Version Programmatically

In addition to the mobile spot update, the iOS SDK also fixed a bug that made it impossible to
set application version programmatically. Currently the cookbook also does not include
instructions on how to set application version programmatically either. This is addressed below.
Please note that the goal of the following steps is not only to set application versions, but also
to have application versions updated in UDM session_details table. Updating session_details
table is not an explicit step in the following steps, but an implicit one performed in the backend.

Configure the mobile-sdk-react-native library
This will include changes on Android, iOS and React Native (typescript).

87

Configure Android
1. Make sure SASCollector.jar 1.82.0 is included in android/libs folder.

2. In android/build.gradle, add one or more of these dependencies:

implementation platform('com.google.firebase:firebase-bom:30.3.1")
implementation 'com.google.firebase:firebase-core'
implementation 'com.google.firebase:firebase-messaging'

3. Remove setPushChannel method and the call to setPushChannel in
example/android/app/src/java/com/example/mobilesdkreactnative/MainApplication.java.

4. In android/src/main/java/com/mobilesdkreactnative/MobileSdkReactNativeModule.java,
make these changes:

a. Add Firebase import:

import com.google.firebase.messaging.FirebaseMessaging;

b. Update the constructor:
public MobileSdkReactNativeModule (ReactApplicationContext
reactContext) {

super (reactContext) ;

¢. Move setPushChannel method from step 3, and make a small change as shown in bod
below:

@RequiresApi (api = Build.VERSION CODES.O)
private void setPushChannel () {
NotificationManager notificationManager = (NotificationManager)
getCurrentActivity () .getSystemService (

getCurrentActivity () .NOTIFICATION SERVICE) ;

String customAndroidChannel = "ReactNativePushChannel";
CharSequence channelName = "React Native Channel";

int importance = NotificationManager.IMPORTANCE HIGH;
NotificationChannel notificationChannel =

new NotificationChannel (

88

customAndroidChannel, channelName, importance);
notificationChannel.enablelLights (true);
notificationChannel.setLightColor (Color.RED);
notificationChannel.enableVibration (true) ;
notificationChannel.setShowBadge (true) ;
notificationChannel.setVibrationPattern (

new long[]{100, 200, 300, 400, 500, 400, 300, 200, 400});
notificationManager.createNotificationChannel (

notificationChannel) ;
SASCollector.getInstance () .setPushNotificationChannelId (

customAndroidChannel) ;

c. Add this method:

@ReactMethod
public void setAppVersionAndInitSDK (String appVersion) {
if (appVersion.matches (" "\\d+\\ . ANdH\\AND+S™)) |
SASCollector.getInstance () .setApplicationVersion (appVersion) ;
} else {

//1f appVersion does not have the correct format, use 0.0.1

// as the default version. Change it to whatever you like

SASCollector.getInstance () .setApplicationVersion("0.0.1");
}
SASCollector.getInstance () .initialize (getCurrentActivity()):
FirebaseMessaging.getInstance () .getToken ()

.addOnSuccessListener (token -> {
Log.d ("SASModule", "token="+token);
if (!TextUtils.isEmpty (token)) {
SASCollector.getInstance () .registerForMobileMessages (token) ;
}
});

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
setPushChannel () ;

89

Configure iOS
1. Make sure SASCollector.xcframework 1.74.0 is included in ios folder.
2. In ios/MobileSdkReactNative.mm, add this code:
RCT EXPORT METHOD (setAppVersionAndInitSDK: (NSString*)appVersion)
NSRegularExpression *regExpr = [NSRegularExpression
regularExpressionWithPattern:@"~[0-91+\\.[0-9]1+\\.[0-9]+$"
options:NSRegularExpressionCaselnsensitive error:nil];
NSRange range = [regExpr rangeOfFirstMatchInString:appVersion
options:NSMatchingProgress
range:NSMakeRange (0, appVersion.length)];
if (range.location != NSNotFound) {
[SASCollector setApplicationVersion:appVersion];
} else {

[SASCollector setApplicationVersion:@"0.0.1"1];

[SASCollector initializeCollection];

3. Inios/Constants.h, add this code:

FOUNDATION EXPORT NSString *const REGISTER DEVICE TOKEN;

4. In ios/Constants.m, add this code:

NSString *const REGISTER DEVICE TOKEN = @"onRegisterDeviceToken";

5. In ios/SASMobileMessagingEvent.h, add this method declaration:

+(void) emitMessageDeviceToken: (NSDictionary *)payload;

90

6. In ios/SASMobileMessagingEvent.m, update supportedEvents methdo:
- (NSArray<NSString *> *)supportedEvents {
return @[@"onMessageOpened", @"onMessageDismissed",

@"onRegisterDeviceToken"];

7. Still in ios/SASMobileMessagingEvent.m, add these methods:
- (void) onRegisterDeviceToken: (NSNotification*)notification {
NSDictionary *args = notification.userInfo;
NSData *token = args[@"deviceToken"];
NSString *tokenStr = [SASMobileMessagingEvent
dataToHexStr:token];
NSDictionary *tokenInfo = @{@"deviceToken": tokenStr};

[self sendEventWithName:REGISTER_DEVICE_TOKEN body:tokenInfo];

+(void) emitMessageDeviceToken: (NSDictionary *)payload {
[[NSNotificationCenter defaultCenter]
postNotificationName:REGISTER DEVICE TOKEN

object:self userInfo:payload];

+ (NSString*)dataToHexStr: (NSData*)data {
NSMutableString *str = [NSMutableString stringWithCapacity:64];
NSUInteger length = [data length];
char *bytes = malloc(sizeof (char)*length);

[data getBytes:bytes length:length];

91

for (int i=0; i<length; i++) {

[str appendFormat:@"%$02.2hhX", bytes[i]];

free (bytes);

return str;

8. Still in ios/SASMobileMessagingEvent.m, update startObserving to add this code:
[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (onRegisterDeviceToken:)

name:REGISTER DEVICE TOKEN object:nil];

Configure React Native (Typescript)

1. In src/index.tsx, add this code:
export function setAppVersionAndInitSDK (appVersion: string) {

MobileSdkReactNative.setAppVersionAndInitSDK (appVersion) ;

2. In src/Constants.tsx, add this constant definition:

export const REGISTER DEVICE TOKEN = "onRegisterDeviceToken";

Configure the example application

This will include changes in Android, iOS and React Native (typescript).

Configure Android

1. In example/android/app/src/main/java/com/example/mobilesdkreactnative, update
MainApplication.java’s onCreate method to remove this code:

92

SASCollector.getInstance () .initialize(this);

2. In In example/android/app/src/main/java/com/example/mobilesdkreactnative, update
MainActivity.java’s onCreate method to remove this code:

FirebaseMessaging.getInstance () .getToken ()
.addOnSuccessListener (token -> {
Log.d (TAG, "token="+token);

if(!TextUtils.isEmpty (token)) {
SASCollector.getInstance () .registerForMobileMessages (token) ;

}
)

Configure i0S

1. In example/ios/SASCollector.plist, update developerInitialized as below. You can
also update in Xcode.

developerInitialized = true;

2. In example/ios/MobileSdkReactNativeExample/AppDelegate.mm, make the following
changes:

a. Atthe start of @implementation AppDelegate, add these variables:
NSData *deviceTokenForNotification;
BOOL hasRegisteredDeviceToken;

b. Update didRegisterForRemoteNotificationWithDeviceToken as below:
- (void)application: (UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken: (NSData
*)deviceToken {

hasRegisteredDeviceToken = NO;

deviceTokenForNotification = deviceToken;

}

Note: In b, we removed the previous SASCollector method call because SASCollector SDK is not
initialized, and so it cannot register device token. For this reason, we have to keep track of the

93

device token and pass it to SASCollector later in step c. In addition, to not repeatitively register
device token, we used the boolean variable hasRegisteredDeviceToken.

c. Implement the below method:

- (void)applicationWillResignActive: (UIApplication *)application

if ('hasRegisteredDeviceToken) {
NSDictionary *args = @{Q@"deviceToken":
deviceTokenForNotification};
[SASMobileMessagingEvent emitMessageDeviceToken:args];

hasRegisteredDeviceToken = YES;

}

Note: The iOS side completely finishes initialization in (AppDelegate) before the React Native
side starts. For this reason, we cannot send the event to the React Native side in any of the
initialization method, such as didFinishLaunchingWithOptions, didBecomeActive, but have to
send the event when the application is going to become inactive. You may also choose to send
the event in other lifecycle methods, as long as the React Native side can receive it.

Configure React Native (typescript)
1. In example/src/App.tsx, make these changes:
a. update imports from mobile-sdk-react-native as below:
import { SASMobileMessagingEvent, Constants,
startMonitoringLocation, setAppVersionAndInitSDK,

registerForMobileMessage } from 'mobile-sdk-react-native';

b. In App function, add the bolded code in React.useEffect:

94

React.useEffect (() => {
/]
if (Platform.0S === 'android') {
setAppVersionAndInitSDK("1.0.1") ;
/]

} else 1if (Platform.0S === 'ios') {
setAppVersionAndInitSDK("1.2.2") ;

iOSMessagingEvent.addListener (Constants.REGISTER DEVICE_ TOKEN,
data => {
console.log('tokenData: ' + data);
const token = data.deviceToken;
registerForMobileMessage (token) ;
b

/...

Note: In the above code, | assume the Android and iOS apps have different versions. Change
the versions to whatever you want.

Optional SASMobileMessagingDelegate2

SASCollector iOS SDK release makes SASMobileMessagingDelegate2 optional when displaying
mobile in-app messages. However, if you exclude SASMobileMessagingDelegate2, you will not
get user interaction information of your app, such as when the user dismissed the in-app
message. The following instructions show how to remove SASMobileMessagingDelegate2;
however, the final example project will still include it.

95

Configure iOS

1. In example/ios/MobileSdkReactNativeExample/AppDelegate.h, remove
SASMobileMessagingDelegate2, so it is changed to this:

@interface AppDelegate : UIResponder <UIApplicationDelegate,
UNUserNotificationCenterDelegate, RCTBridgeDelegate>
@property (nonatomic, strong) UIWindow *window;

@end

2. In In example/ios/MobileSdkReactNativeExample/AppDelegate.mm, remove
SASMobileMessagingDelegate2’s delegate methods:

- (void)messageDismissed

- (void)actionWithLink: (NSString * Nonnull)link
type: (SASMobileMessageType) type

96

