
SAS®

9.1 OLAP Server
MDX Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 OLAP Server: MDX Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1 OLAP Server: MDX Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727–3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

Details v

Chapter 1 � MDX Introduction and Overview 1
MDX Overview 1

Basic MDX and Cube Concepts 1

Additional MDX Concepts and Expressions - Tuples and Sets 2

Additional MDX Documentation 3

Chapter 2 � MDX Queries and Syntax 5
Basic MDX Queries and Syntax 5

Basic MDX DDL Syntax 6

SAS Functions 7

External Functions 14

Chapter 3 � MDX Usage Examples 19
Simple Examples 19

Query-Calculated Member Examples 21

Session-Level Calculated Member Examples 22

Drill-Down Examples 24

Session-Named Set Examples 27

Appendix 1 � MDX Functions 33
Dimension Functions 33

Hierarchy Functions 34

Level Functions 34

Logical Functions 34

Member Functions 35

Numeric Functions 36

Set Functions 39

String Functions 47

Tuple Functions 48

Miscellaneous Functions and Operators 49

Additional MDX Documentation 50

Appendix 2 � Recommended Reading 51
Recommended Reading 51

Glossary 53

Index 59

iv

v

What’s New

Overview
The SAS OLAP Server enables users to develop and deploy scalable Online

Analytical Processing (OLAP) applications. In addition, automated data loading and
cube building is available through the use of a new administration interface called the
SAS OLAP Cube Studio, which was developed using Java technology.

OLAP queries are performed using the Multidimensional Expressions (MDX) query
language in client applications that are connected to the OLAP Server by using

� the SQL Pass-Through Facility for OLAP, which is designed to process MDX
queries within the PROC SQL environment.

� open access technologies such as OLE DB for OLAP, ADO MD, and Java.

Note: This section describes the features of the SAS OLAP Server that are new or
enhanced since SAS 8.2. �

Details
� There are two new tools for data loading and cube building:

� The OLAP procedure, in addition to cube building, includes options for
handling ragged hierarchies, defining global calculated members and named
sets, assigning properties to levels, and optimizing cube creation and query
performance. It also supports multiple hierarchies and drill-through tables.

� The SAS OLAP Cube Studio is an alternative Java interface to the OLAP
procedure. This interface is also integrated with SAS ETL Studio.

� Server performance is recorded and analyzed by using the Application Response
Measurement (ARM) system.

� The new multi-threaded data storage and server functionality provide faster cube
performance. The data can be stored in a multidimensional form (MOLAP) or in a
form that includes existing aggregations from presummarized data sources.

� The metadata structure is improved, and metadata is stored with the cube.

vi What’s New

� Caching and logging can be enabled or disabled.

� Support for ad hoc calculations and time dimensions is improved.

� An SQL Pass-Through Facility for OLAP is available in SAS for use in querying
cubes.

� Aggregations can be added to or deleted from existing cubes.

Note: Version 8 of the SAS OLAP Server can be used with SAS 9. For help, see “V8
SAS OLAP Server” in SAS System Help and Documentation. �

1

C H A P T E R

1
MDX Introduction and Overview

MDX Overview 1
Basic MDX and Cube Concepts 1

Dimensions 2

Hierarchies 2

Levels 2

Members and Measures 2
Additional MDX Concepts and Expressions - Tuples and Sets 2

Additional MDX Documentation 3

MDX Overview
Multidimensional Expressions (MDX) is a powerful syntax that enables you to query

multidimensional objects and provide commands that retrieve and manipulate
multidimensional data from those objects. MDX is designed to ease the process of
accessing data from multiple dimensions. It addresses the conceptual differences
between two-dimensional and multidimensional querying. MDX provides functionality
for creating and querying multidimensional structures called cubes with a full and
complete language of its own.

MDX is similar to the Structured Query Language (SQL), and MDX provides Data
Definition Language (DDL) syntax for managing data structures. However, its features
can be more complex and robust than SQL’s features. The SAS 9.1 OLAP Server
technology uses MDX to create OLAP cubes and data queries. MDX is part of the
underlying foundation for the SAS 9.1 OLAP Server architecture, and it offers detailed
and efficient searches of multidimensional data.

With MDX, specific portions of data from a cube can be extracted and then further
manipulated for analysis. This allows for a thorough and flexible examination of SAS
OLAP cube data. Users of MDX can take advantage of such features as calculated
measures, numeric operations, and axis and slicer dimensions.

Basic MDX and Cube Concepts
To better understand the MDX language and the OLAP technology it supports, a

basic understanding of the OLAP cube components is required.

2 Dimensions � Chapter 1

Dimensions
Dimensions are the top or highest categories of a cube. They contain subcategories of

data known as levels and measures. A dimension can have multiple hierarchies and
can be used in multiple cubes. A cube can have up to 64 dimensions.

Hierarchies
A dimension might be categorized into different hierarchies. For example, a company

might categorize its profit dimension along the verticals of geography, sales territory, or
market.

Levels
Levels are categories of organization within a dimension. Levels are hierarchical, and

each level that is descended in a dimension is a component of the previous level. For
example, a time dimension could include the following levels: Year, Quarter, Month,
Week, and Day.

Members and Measures
An additional component of a dimension and a level is a member. A member is a

component of a level and is analogous to the value of a variable on an individual record
in a data set. It is the smallest level of data in an OLAP cube. In addition to creating
dimension members, a user can create calculated members and named sets that are
based on underlying members or on other calculated members and named sets. These
user-defined objects are based on evaluated query data from the cube.

Calculated members and named sets can be created in three different ways:

Query scope
calculated
member

is only available during the query that defines it. It is created by
using the WITH MEMBER/SET keyword.

Session scope
calculated
member

is available for the user that defines the object for the duration of
that session. It is created by using the CREATE SESSION
MEMBER/SET keyword.

Global scope
calculated
member

is available for anyone to use and is stored with the cube. It is
created by using the CREATE GLOBAL MEMBER/SET keyword.
Named sets have the same three scopes.

Calculated members can be created in the Measures dimension and can include any
combination of members. Calculated members can also be created in any other
dimension and are known as nonmeasure-based calculated members. Examples of
measures include sales counts, profit margins, and distribution costs.

Additional MDX Concepts and Expressions - Tuples and Sets
MDX extracts multidimensional views of data. A tuple is a slice of data from a cube.

It is a selection of members (or cells) across dimensions in a cube. It can also be viewed
as a cross-section or vector of member data in a cube. A tuple can be composed of

� Additional MDX Documentation 3

member(s) from one or more dimensions. However, a tuple cannot be composed of more
than one member from the same dimension.

Sets are collections of tuples. The order of tuples in a set is important when querying
cube data and is known as dimensionality. It is important to note that the order of the
dimension members in every tuple must be the same. For example, if your first tuple is
(time_dimension_member, geography_dimension_member), then every other tuple in
that set must also have two members in it, the first from the time dimension and the
second from the geography dimension.

Additional MDX Documentation

In addition to the MDX usage examples, functions and related topics that are found
in this documentation, a supplementary text for the SAS OLAP Server is available. The
SAS OLAP Server: Concepts and Excerpts from “MDX Solutions with Microsoft SQL
Server Analysis Services” includes basic MDX information such as the MDX data model,
MDX construction, comments in MDX, and a complete MDX function and operator
reference. You can locate this text at support.sas.com/publishing.

4

5

C H A P T E R

2
MDX Queries and Syntax

Basic MDX Queries and Syntax 5
Basic MDX DDL Syntax 6

SAS Functions 7

Available SAS Functions Exposed for Use in MDX Expressions 7

Function Arguments and Return Types 9

Numeric Precision 9
Magnitude versus Precision 10

Computational Considerations of Fractions 10

Using the TRUNC Function 10

Differences with Microsoft Analysis Services 2000 11

SAS MDX Reserved Keywords 11

External Functions 14
Defining External Functions in Java 15

Gaining Access to an External Function Library or Class 15

State Information 15

Function Arguments and Return Types 16

Performance 16
Deployment 17

Security 17

Differences with Microsoft Analysis Server (AS2K) 17

Supported Versions of Java 17

Basic MDX Queries and Syntax
Basic MDX queries use the SELECT statement to identify a data set that contains a

subset of multidimensional data. The basic MDX SELECT statement is composed of the
following clauses:

� WITH clause (optional). This allows calculated members or named sets to be
computed during the processing of the SELECT and WHERE clauses.

� SELECT clause. The SELECT clause defines the axes for the MDX query
structure by identifying the dimension members to include on each axis. The
number of axis dimensions of an MDX SELECT statement is also determined by
the SELECT clause. The members from each dimension (to include on each axis of
the MDX query) must be identified.

� FROM clause. The cube that is being queried is named in the FROM clause. It
determines which multidimensional data source will be used when extracting data
to populate the result set of the MDX SELECT statement. The FROM clause (in
an MDX query) can list only a single cube. Queries are restricted to a single data
source or cube.

6 Basic MDX DDL Syntax � Chapter 2

� WHERE clause (optional). The WHERE clause further restricts the result data.
The axis that is formed by the WHERE clause is often referred to as the slicer.
The WHERE clause determines which dimension or member is used as a slicer
dimension. This restricts the extracting of data to a specific dimension or member.
Any dimension that does not appear on an axis in the SELECT clause can be
named on the slicer.

Note: MDX queries, and specifically the SELECT statement, can have up to 128
axis dimensions. The first five axes have aliases. Furthermore, an axis can be referred
to by its ordinal position within an MDX query or by its alias. In total you can have a
maximum of 64 different axes. �

The SELECT clause of the statement supports using MDX functions to construct
different members in a set on axes. The WITH clause of the statement supports using
MDX functions to construct calculated members to be used in an axis or slicer. The
following example shows the syntax for the SELECT statement:

[WITH
[MEMBER <member-name> AS ’<value-expression>’ |
SET <set-name> AS ’<set-expression>’] . . .]

SELECT [<axis_specification>
[, <axis_specification>...]]

FROM [<cube_specification>]
[WHERE [<slicer_specification>]]

Basic MDX DDL Syntax
The SAS OLAP Server provides support for the MDX Data Definition Language

(DDL). DDL enables users and administrators to manage the definitions of calculated
members and named sets at either a session or a global level. Management of calculated
members and named sets is provided by the CREATE and DROP DDL statements.

By using the CREATE DDL statement, a user can create definitions of calculated
members or named sets for use within a client session or for use within a cube on a
global scale. Here is the format for the CREATE DDL statement:

CREATE [GLOBAL | SESSION]
[MEMBER . AS ’’ |
SET AS ’’] . . .]

If GLOBAL or SESSION is not specified, then the default scope is SESSION. When a
calculated member or named set is defined within the SESSION scope, the definition is
available only for the lifetime of the user’s client session. When a calculated member or
named set is defined within the GLOBAL scope, the definition is permanently attached to
the cube definition and is visible to all current and future client sessions.

By using the DROP DDL statement, a user can remove definitions of calculated
members or a named set from use within a client session or from use within a cube on a
global scale. Here is the format for the DROP DDL statement:

DROP [MEMBER] |
[SET] . . .] .

When using the DROP statement, only calculated members or named sets can be
dropped at the same time. However, a user cannot drop both calculated members and
named sets in a single DROP statement.

Note: The name of the calculated member or named set must contain the cube
name. �

MDX Queries and Syntax � Available SAS Functions Exposed for Use in MDX Expressions 7

SAS Functions

SAS functions are functions that anyone can reference in MDX expressions. SAS
functions are slightly limited in the arguments that they accept and return. Here is an
MDX query that uses a SAS function called “MDY”:

WITH MEMBER measures.mdy AS ’SAS!MDY(2,9,2003)’
SELECT {cars.MEMBERS} ON 0 FROM MDDBCARS
WHERE (measures.mdy)

The resulting cells look like this:

NOTE: 0.3[0]: f=15742 (u=15742.00)
NOTE: 0.3[1]: f=15742 (u=15742.00)
NOTE: 0.3[2]: f=15742 (u=15742.00)
NOTE: 0.3[3]: f=15742 (u=15742.00)
NOTE: 0.3[4]: f=15742 (u=15742.00)
NOTE: 0.3[5]: f=15742 (u=15742.00)
NOTE: 0.3[6]: f=15742 (u=15742.00)
NOTE: 0.3[7]: f=15742 (u=15742.00)
NOTE: 0.3[8]: f=15742 (u=15742.00)
NOTE: 0.3[9]: f=15742 (u=15742.00)
NOTE: 0.3[10]: f=15742 (u=15742.00)
NOTE: 0.3[11]: f=15742 (u=15742.00)
NOTE: 0.3[12]: f=15742 (u=15742.00)
NOTE: 0.3[13]: f=15742 (u=15742.00)
NOTE: 0.3[14]: f=15742 (u=15742.00)
NOTE: 0.3[15]: f=15742 (u=15742.00)

In order to gain access to a SAS function library and before you can use a SAS
function in a query, you must define or open the library for the current session. To do
this, apply the USE statement at the beginning of your MDX query:

USE LIBRARY "SAS"

Available SAS Functions Exposed for Use in MDX Expressions

Table 2.1 SAS Functions Exposed for Use in MDX Expressions

Function Description Argument

DATE returns the current date in SAS date
format

(none)

DATEJUL converts a Julian date to a SAS date
value

«julian-date»

DATEPART returns a SAS date value that
corresponds to the date portion of a SAS
datetime value

«SAS datetime»

DATETIME returns the current data and time in SAS
datetime format

(none)

8 Available SAS Functions Exposed for Use in MDX Expressions � Chapter 2

Function Description Argument

DAY returns an integer that represents the
day of the month from a SAS date value

«SAS date»

DHMS returns a SAS datetime value from a
numeric expression that represents the
date, hour, minute, and second

«SAS date», «hour», «minute»,
«second»

HMS returns a SAS time value from a numeric
expression that represents the hour,
minute, and second

«hour», «minute», «second»

HOUR returns a numeric value that represents
the hour from a SAS time or datetime
value

«SAS time» | «SAS datetime»

IN returns TRUE if the first expression is
contained in the list of expressions that
start from the second parameter to the
end of the parameters provided;
otherwise, FALSE

«expression», «expression1», . .
., «expressionN»

JULDATE converts a SAS date value to a numeric
value that represents a Julian date

«SAS date»

JULDATE7 converts a SAS date value to a numeric
value that represents a Julian date with
the year represented in 4 digits

«SAS date»

LEFT returns the argument with leading
blanks moved to the end of the value; the
argument’s length does not change

«argument»

MDY returns a SAS date value from numeric
expressions that represent the month,
day, and year

«month», «day», «year»

MINUTE returns a numeric value that represents
the minute from a SAS time or datetime
value

«SAS time» | «SAS datetime»

MONTH returns a numeric value that represents
the month from a SAS time

«SAS date»

QTR returns a value of 1, 2, 3, or 4 from a SAS
date value to indicate the quarter of the
year during which the SAS date value
falls

«SAS date»

RIGHT returns the argument with trailing
blanks moved to the beginning of the
value; the argument’s length does not
change

«argument»

ROUND rounds the first argument to the nearest
multiple of the second argument, or to
the nearest integer when the second
argument is omitted

(argument <,rounding-unit>)

SECOND returns a numeric value that represents
the second from a SAS time or datetime
value

«SAS time» | «SAS datetime»

MDX Queries and Syntax � Numeric Precision 9

Function Description Argument

SUBSTR returns a portion of the string expression
argument, starting at the index position
and returning up to “n” characters. If “n”
is not specified, then the rest of the string
is returned

«argument», «position» <, «n»>

TIME returns the current time in SAS time
format

(none)

TIMEPART returns a SAS time value that
corresponds to the time portion of a SAS
datetime value

«SAS datetime»

TODAY returns the current date in SAS date
format

(none)

TRIM returns the argument with the trailing
blanks removed; if the argument contains
all blanks, then the result is a string
with a single blank

«argument»

TRIMN returns the argument with the trailing
blanks removed; if the argument contains
all blanks, then the result is a null string

«argument»

TRUNC truncates a numeric value to a specified
length

(number,length)

UPCASE returns the argument with all lowercase
characters converted to uppercase
characters

«argument»

WEEKDAY returns an integer that represents the
day of the week, where 1 = Sunday,
2 = Monday, . . ., 7 = Saturday, from a
SAS date value

«SAS date»

YEAR returns a numeric value that represents
the month from a SAS time

«SAS date»

YYQ returns a SAS date value that
corresponds to the first day of the
specified quarter

«year», «quarter»

Function Arguments and Return Types
Currently only floating-point (double) arguments, character string arguments, and

return values are supported. There is no limit to the number of arguments. The
promotion of arguments from MDX types to SAS data types is automatically performed
when there is a difference between the two types.

Numeric Precision
To store numbers of large magnitude and to perform computations that require many

digits of precision to the right of the decimal point, SAS OLAP Server stores all
numeric values as floating-point representation. Floating-point representation is an

10 Numeric Precision � Chapter 2

implementation of scientific notation, in which numbers are represented as numbers
between 0 and 1 times a power of 10.

In most situations, the way SAS OLAP Server stores numeric values does not affect
you as a user. However, floating-point representation can account for anomalies that
you might notice in MDX numeric expressions. This section identifies the types of
problems that can occur and how you can anticipate and avoid them.

Magnitude versus Precision
Floating-point representation allows for numbers of very large magnitude (such as 230)

and high degrees of precision (many digits to the right of the decimal place). However,
operating systems differ on how much precision and how much magnitude to allow.

Whether magnitude or precision is more important depends on the characteristics of
your data. For example, if you are working with engineering data, very large numbers
might be needed and magnitude will probably be more important. However, if you are
working with financial data where every digit is important, but the number of digits is
not great, then precision is more important. Most often, applications that are created
with SAS OLAP Server need a moderate amount of both magnitude and precision,
which is handled well by floating-point representation.

Computational Considerations of Fractions
Regardless of how much precision is available, there is still the problem that some

numbers cannot be represented exactly. For example, the fraction 1/3 cannot be
rendered exactly in floating-point representation. Likewise, .1 cannot be rendered
exactly in a base 2 or base 16 representation, so it also cannot be accurately rendered in
floating-point representation. This lack of precision is aggravated by arithmetic
operations. Consider the following example:

((10 * .1) = 1)

This expression might not always return TRUE due to differences in numeric precision.
However, the following expression uses the ROUND function to compensate for numeric
precision and therefore will always return TRUE:

(round((10 * .1), .001) = 1)

Usually, if you are doing comparisons with fractional values, it is good practice to use
the ROUND function.

Using the TRUNC Function
The TRUNC function truncates a number to a requested length and then expands

the number back to full precision. The truncation and subsequent expansion duplicate
the effect of storing numbers in less than full precision. So in the following example,
the first expression would return FALSE and the second would return TRUE:

((1/3) = .333)

(TRUNC((1/3), 3) = .333)

When you compare the result of a numeric expression to be equal to a specific value,
such as 0, it is important that you use the TRUNC and ROUND functions to ensure
that the comparison evaluates as intended.

MDX Queries and Syntax � SAS MDX Reserved Keywords 11

Differences with Microsoft Analysis Services 2000
Microsoft Analysis Services 2000 (AS2K) labels external functions as user-defined

functions (UDFs). Because AS2K runs only on Windows, it supports calling COM
libraries (usually written in Visual Basic). Because MDX evaluation can occur on either
the client or the server, Microsoft provides a means to install and use libraries on either
location (due to a dual-mode OLE DB for OLAP provider, MSOLAP).

If you use a client-side function, then all the execution is on the client. SAS OLAP
Server is a thin-client system that is designed for high volume and scalability, with all
evaluation done on the server. Therefore, external function libraries such as SAS
functions can only be installed on the server. Additionally, with the proper license, you
can run a server on your own computer and install any libraries that you need.

SAS MDX Reserved Keywords
A reserved keyword should not be used to reference a dimension, hierarchy, level, or

member name unless the reference is enclosed in square brackets []. Otherwise, the
keyword might be interpreted incorrectly.

(DRILLDOWNMEMBER NONEMPTYCROSSJOIN

) DRILLDOWNMEMBERBOTTOM NOT

* DRILLDOWNMEMBERTOP NULL

+ DRILLTHROUGH ON

’ DRILLUPLEVEL OPENINGPERIOD

- DRILLUPMEMBER OR

. DROP ORDER

/ ELSE ORDINAL

: EMPTY PAGES

< END PARALLELPERIOD

<= EXCEPT PARENT

<> EXCLUDEEMPTY PARENT_COUNT

= EXTRACT PARENT_LEVEL

> FALSE PARENT_UNIQUE_NAME

>= FILTER PERIODSTODATE

{ FIRSTCHILD POST

} FIRSTROWSET PREDICT

|| FIRSTSIBLING PREVMEMBER

12 SAS MDX Reserved Keywords � Chapter 2

ABSOLUTE FONT_FLAGS PROPERTIES

ADDCALCULATEDMEMBERS FONT_NAME PTD

AFTER FONT_SIZE PUT

AGGREGATE FORMATTED_VALUE QTD

ALL FORMAT_STRING RANGE

ALLMEMBERS FORE_COLOR RANK

ANCESTOR FROM RECURSIVE

ANCESTORS GENERATE RELATIVE

AND GLOBAL ROLLUPCHILDREN

AS HEAD ROOT

ASC HIERARCHIZE ROWS

ASCENDANTS HIERARCHY SCHEMA_NAME

AVG HIERARCHY_UNIQUE_NAME SECTIONS

AXIS IGNORE SELECT

BACK_COLOR IIF SELF

BASC INCLUDEEMPTY SELF_AND_AFTER

BDESC INTERSECT SELF_AND_BEFORE

BEFORE IS SELF_BEFORE_AFTER

BEFORE_AND_AFTER ISANCESTOR SESSION

BOTTOMCOUNT ISEMPTY SET

BOTTOMPERCENT ISGENERATION SETTOARRAY

BOTTOMSUM ISLEAF SETTOSTR

CALCULATIONCURRENTPASS ISSIBLING SIBLINGS

CALCULATIONPASSVALUE ITEM S OLVE_ORDER

CALL LAG STDDEV

CAPTION LASTCHILD STDDEVP

CASE LASTPERIODS STDEV

CATALOG_NAME LASTSIBLING STDEVP

CELL LEAD STRIPCALCULATEDMEMBERS

MDX Queries and Syntax � SAS MDX Reserved Keywords 13

CELL_ORDINAL LEAVES STRTOMEMBER

CHAPTERS LEVEL STRTOSET

CHILDREN LEVELS STRTOTUPLE

CHILDREN_CARDINALITY LEVEL_NUMBER STRTOVALUE

CLOSINGPERIOD LEVEL_UNIQUE_NAME SUBSET

COALESCEEMPTY LIBRARY SUM

COLUMNS LINKMEMBER TAIL

CORRELATION LINREGINTERCEPT THEN

COUNT LINREGPOINT TOGGLEDRILLSTATE

COUSIN LINREGR2 TOPCOUNT

COVARIANCE LINREGSLOPE TOPPERCENT

COVARIANCEN LINREGVARIANCE TOPSUM

CREATE LOOKUPCUBE TRUE

CROSSJOIN MAX TUPLETOSTR

CUBE_NAME MAXROWS UNION

CURRENT MEDIAN UNIQUENAME

CURRENTMEMBER MEMBER USE

DATAMEMBER MEMBERS USERNAME

DEFAULTMEMBER MEMBERTOSTR VALIDMEASURE

DESC MEMBER_CAPTION VALUE

DESCENDANTS MEMBER_GUID VAR

DESCRIPTION MEMBER_NAME VARIANCE

DIMENSION MEMBER_ORDINAL VARIANCEP

DIMENSIONS MEMBER_TYPE VARP

DIMENSION_UNIQUE_NAME MEMBER_UNIQUE_NAME VISUALTOTALS

DISPLAY_INFO MIN WHEN

DISTINCT MTD WHERE

DISTINCTCOUNT NAME WITH

DRILLDOWNLEVEL NAMETOSET WTD

14 External Functions � Chapter 2

DRILLDOWNLEVELBOTTOM NEXTMEMBER XOR

DRILLDOWNLEVELTOP NON YTD

External Functions

External functions are functions that can be written on a server that clients can
later reference in MDX expressions. External functions can be written by most MDX
users. External function names are case sensitive, and unlike internal functions, they
are more limited in the arguments they can take. Here is an example of an MDX query
that uses an external function called addOne(), which takes one parameter, a double
argument, and adds one (1) to it. It then returns another double argument:

WITH MEMBER measures.x AS ’addOne(measures.sales_sum)’
SELECT {cars.MEMBERS} ON 0 FROM Mddbcars
WHERE (measures.x)

The resulting cells look like this:

0.0[0]: 229001
0.0[1]: 27001
0.0[2]: 40001
0.0[3]: 86001
0.0[4]: 76001
0.0[5]: 17001
0.0[6]: 10001
0.0[7]: 20001
0.0[8]: 20001
0.0[9]: 10001
0.0[10]: 44001
0.0[11]: 17001
0.0[12]: 15001
0.0[13]: 4001
0.0[14]: 14001
0.0[15]: 58001

Here is the query and the resulting cells without the external addOne() function:

SELECT {cars.MEMBERS} ON 0
FROM Mddbcars
WHERE (measures.sales_sum)

Array(0)=229000 Array(1)=27000
Array(2)=17000 Array(3)=10000
Array(4)=40000 Array(5)=20000
Array(6)=20000 Array(7)=86000
Array(8)=10000 Array(9)=44000
Array(10)=17000 Array(11)=15000
Array(12)=76000 Array(13)=4000
Array(14)=14000 Array(15)=58000

MDX Queries and Syntax � State Information 15

Defining External Functions in Java
SAS runs on many different types of computers. As a result, you can write external

functions in the Java language. Here is a simple Java class that implements the
addOne() function from earlier:

public class Hello
{

public double addOne(double d)
{

return d+1.0;
}

}

To prepare this class for execution you must obtain and compile a copy of the Java
Development Kit (JDK), which is available on the World Wide Web. Here is an example:

C:> javac Hello.java

After compiling the JDK, you install the resulting Hello.class file in a location where
the server can find it. Currently this means you must list the directory that contains
the .class file in the CLASSPATH environment variable before you start the server.

Gaining Access to an External Function Library or Class
Before you can use a function in a query, you must define or open the library for the

current session. To do this, you execute the USE statement in MDX:

USE LIBRARY "Hello"

You do not add the .class extension, because it is automatically provided. When the
session ends, the library is released. You can use a DROP statement to release the
library before the session ends:

DROP LIBRARY "Hello"

State Information
The class is instantiated when the USE statement is first encountered in a session,

and then it is released when the session ends or the DROP statement is executed. As a
result, the state can be kept in a normal class and static variables can be maintained.
Here is an example:

public class Hello
{

static int count = 0;
int instance;
int iteration = 0;
public Hello()
{
instance = count++;
System.out.println("Hello constructor " + instance);

}
public double addOne(double d)

16 Function Arguments and Return Types � Chapter 2

{
System.out.println("addOne, world! " + instance + " " +

iteration++);
return d+1.0;

}
public void finalize()
{

System.out.println("Hello finalize");
}

}

Note: System.out is used in the above example for illustration and cannot be used in
a real function except for debugging. �

Here is an example of the debugging output that is generated:

Hello constructor 0
addOne, world! 0 0
addOne, world! 0 2
Hello constructor 1
addOne, world! 0 3
addOne, world! 1 0
addOne, world! 1 1

Each time a new session (a user or client connection) uses this class, the Java
constructor is called and a new Hello object is created. The count is incremented so
that instance has a unique value. Example items that you might want to save in a real
application include file handles, shopping cart lists, and database connection handles.

Although cleanup is automatic, you can have an optional finalize method for special
circumstances. Normal Java garbage collection of the class occurs some time after the
class is no longer needed. The finalize method should then be called. However, in
accordance with Java standards, it is possible that the finalize method will never be
called (for example, if the server is shut down early, or the class never needs to be
removed by the garbage collector).

Function Arguments and Return Types
Only floating-point (double) arguments and return values are supported by SAS 9.1

OLAP Server. Java function overloading is also supported and there is no limit to the
number of arguments that are supported.

SAS OLAP Server looks at the parameters that are passed to an external function
and creates a Java signature from that. It then looks up the function and signature in
the class. In the addOne() example that was mentioned earlier, there is one parameter.
Also, because it is a double argument, it looks for the signature “D(D)”.

Performance
Certain OLAP hosts use an in-process Java virtual machine (JVM), while other

OLAP hosts use an out-of-process JVM. An out-of-process JVM is much less efficient
because each method call has to be packaged (marshaled) and transmitted to the JVM
process. It is then unpackaged (unmarshaled) and run, and a return packet is sent

MDX Queries and Syntax � Supported Versions of Java 17

back. Currently HP-UX, OpenVMS, and OS/390 use out-of-process JVMs. In later
releases, hosts should be able to use in-process JVMs. OS/390 will use a shared address
space so it can be optimized.

Although synthetic benchmarks show that calling Java is considerably slower than
calling built-in functions, real-world performance tests show that the performance
impact of calling Java methods was negligible (at least with in-process Java
implementations). If you encounter a problem, reducing the number of function calls
per output cell, the number of cells queried, and the number of parameters to the
function can all boost performance.

Deployment
To make a Java class available, copy the .class file to a directory that is listed in the

CLASSPATH environment variable when the server is started. The CLASSPATH can
contain any number of directories that are separated by semicolons (;). The current
release of SAS OLAP Server does not contain a method to make the server reload a
.class file after it has been loaded. Therefore, if you update the .class file after using it
one time, the server will continue to use the old version. Currently you need either to
restart the server or give the new class a different name.

It is possible that later releases of SAS OLAP Server will not use CLASSPATH. A
benefit of using Java for external functions is that the .class files are portable. As a
result, you can use JavaC to compile your class one time, and deploy it on different
machines without recompiling.

Security
Because the Java classes are loaded from the server’s local file system, they have full

access to the server’s system (under the ID that started the server). Any public
methods (on any classes) in the CLASSPATH can be invoked by any client. As a result,
use caution when you decide which classes and directories to make visible.

Differences with Microsoft Analysis Server (AS2K)
See “Differences with Microsoft Analysis Services 2000” on page 11.

Supported Versions of Java
SAS OLAP Server 9.1 supports the same version of Java that SAS 9.1 does. For

example, under Windows, SAS OLAP Server 9.1 and SAS 9.1 require Java Version 1.4.1.

18

19

C H A P T E R

3
MDX Usage Examples

Simple Examples 19
Query-Calculated Member Examples 21

Example 1 21

Example 2 21

Example 3 22

Session-Level Calculated Member Examples 22
Example 1 22

Example 2 23

Example 3 23

Example 4 24

Example 5 24

Drill-Down Examples 24
Example 1 24

Example 2 25

Example 3 26

Example 4 27

Session-Named Set Examples 27
Example 1 27

Example 2 28

Example 3 28

Example 4
29

Example 5 30

Example 6 31

Example 7 31

Simple Examples
The data that is used in these simple examples is from a company that sells various

makes and models of cars. The company needs to report sales figures for different
months.

Here is a simple two-dimensional query:

select
{ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] } on columns,
{ [DATE].[All DATE].[March], [DATE].[All DATE].[April] } on rows

from mddbcars
"

20 Simple Examples � Chapter 3

Using this example code, you can flip the rows and columns:

select
{ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] } on rows,
{ [DATE].[All DATE].[March], [DATE].[All DATE].[April] } on columns

from mddbcars

Select a different measure (SALES_N) to be the default:

"select
{ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] } on columns,
{ [DATE].[All DATE].[March], [DATE].[All DATE].[April] } on rows

from mddbcars
where ([Measures].[SALES_N])

Demonstrate ":" to get a range of members:

select
{ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] } on columns,
{ [DATE].[All DATE].[January] : [DATE].[All DATE].[April] } on rows

from mddbcars

Demonstrate the .MEMBERS function:

select
{ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] } on columns,
{ [DATE].members } on rows

from mddbcars

Demonstrate the .CHILDREN function:

select
{ [CARS].[All CARS].[Ford].children } on columns,
{ [DATE].members } on rows

from mddbcars

Select more than one dimension in a tuple:

select
{ ([CARS].[All CARS].[Chevy], [Measures].[SALES_SUM]),
([CARS].[All CARS].[Chevy], [Measures].[SALES_N]),
([CARS].[All CARS].[Ford], [Measures].[SALES_SUM]),
([CARS].[All CARS].[Ford], [Measures].[SALES_N])

} on columns,
{ [DATE].members } on rows

from mddbcars

The crossjoin function makes tuple combinations for you:

select
{ crossjoin ({ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] },

{ [Measures].[SALES_SUM], [Measures].[SALES_N] })
} on columns,
{ [DATE].members } on rows

from mddbcars

The “non empty” keyword discards the row with no sales:

select
{ crossjoin ({ [CARS].[All CARS].[Chevy], [CARS].[All CARS].[Ford] },

{ [Measures].[SALES_SUM], [Measures].[SALES_N] })
} on columns,

MDX Usage Examples � Example 2 21

non empty { [DATE].members } on rows
from mddbcars

Query-Calculated Member Examples
The data that is used in these examples is from a company that sells various makes

and models of cars. The company needs to report on sales figures for different months.

Example 1
This query creates a calculation for the average price of a car. The average price of a

car is calculated by dividing the sales_sum by the count (sales_n). The query returns
the sales_sum, sales_n, and the average price for March and April.

with
member [Measures].[Avg Price] as ’[Measures].[SALES_SUM] / [Measures].[SALES_N]’

select
{ [Measures].[SALES_SUM] , [Measures].[SALES_N], [Measures].[Avg Price] } on columns,
{ [DATE].[All DATE].[March], [DATE].[All DATE].[April] } on rows

from mddbcars

Here is the resulting output:

Date Sales_sum Sales_n Avg Price

March $59,000.00 4 14750

April $34,000.00 3 11333.33

Example 2
This query has the same calculation that was created in example 1. This time the

calculation is put in the slicer instead of an axis. In this query, the types of cars that
were sold are on the column and the months that the cars were sold are on the rows.
The value in the cells is the average price of the car for that month.

with
member [Measures].[Avg Price] as ’[Measures].[SALES_SUM] / [Measures].[SALES_N]’

select
{ [CARS].[CAR].members } on columns,
{ [DATE].members } on rows

from mddbcars
where ([Measures].[Avg Price])

Here is the resulting output:

Date Chevy Chrysler Ford Toyota

All date 13500 20000 12285.71 8444.45

January 20000 10000 8000

22 Example 3 � Chapter 3

Date Chevy Chrysler Ford Toyota

February 20000 11000

March 17000 14000

April 10000 12000

May 10000 4000

Example 3
This query adds the values of the Chevy, Chrysler, and Ford cars and combines them

into one calculation called US cars. The query shows the sales_sum for the U.S. cars
and the Toyota for January through May.

with
member [CARS].[All CARS].[US] as ’

Sum({ [CARS].[All CARS].[Chevy],
[CARS].[All CARS].[Chrysler],
[CARS].[All CARS].[Ford]

}) ’
select

{ [CARS].[All CARS].US, [CARS].[All CARS].Toyota } on columns,
{ [DATE].members } on rows

from mddbcars

Here is the resulting output:

Date U.S. Toyota

All Date $153,000.00 $76,000.00

January $ 30,000.00 $24,000.00

February $ 20,000.00 $44,000.00

March $ 59,000.00

April $ 34,000.00

May $ 10,000.00 $ 8,000.00

Session-Level Calculated Member Examples
The data that is used in these examples is from a company that sells electronics and

outdoor and sporting goods equipment.

Example 1
This example creates the session-level calculated member called avg_price in the sales

cube on the Measures dimension. This calculated measure shows the average price:

MDX Usage Examples � Example 3 23

create session
member [sales].[measures].[avg_price] as
’[Measures].[total] / [Measures].[qty]’

Nothing is returned when you create a session-level calculated member.

Example 2

This example uses the session-level calculated member called “avg_price.” It shows
the quantity, total, and average price of goods sold from 1998 through 2000.

select
{[Measures].[Qty], [Measures].[Total],

[measures].[avg_price]} on columns,
{[time].[All time].children} on rows

from sales

Here is the resulting output:

Year Qty Total Average Price

1998 440,852 10,782,352.94 24.4579880322648

1999 539,433 14,080,419.58 26.1022584454418

2000 32,267 859,108.83 26.6249986053863

Example 3

This example uses the session-level calculated member called “avg_price.” It shows
the quantity, total, and average price of goods sold in different customer regions.

select
{[Measures].[Qty], [Measures].[Total],

[measures].[avg_price]} on columns,
{[Customer].[All Customer].children} on rows

from sales

Here is the resulting output:

Region Qty Total Average Price

Central 157,659 3,942,290.26 25.0051710336866

Mid-Atlantic 79,555 2,011,008.77 25.2782197222048

Midwest 259,759 6,614,999.09 25.4659091311562

Mountains 32,768 838,064.62 25.5757025146485

Northeast 143,934 3,658,452.99 25.4175732627454

South-Central 64,943 1,662,479.79 25.5990605607995

24 Example 4 � Chapter 3

Region Qty Total Average Price

Southeast 122,888 3,134,589.55 25.5076944046611

West 151,046 3,859,996.28 25.5551042728705

Example 4
This example uses the session-level calculated member called “avg_price.” It shows

the quantity, total, and average price of goods sold in the different product groups.

select
{[Measures].[Qty], [Measures].[Total],

[measures].[avg_price]} on columns,
{[Product].[All Product].children} on rows

from sales

Here is the resulting output:

Product Qty Total Average Price

Doing 191,321 4,850,302.26 25.3516459771797

Electronics 330,977 8,426,846.64 25.4605203382712

Health & Fitness 185,909 4,717,790.80 25.3768822380842

Outdoor & Sporting 304,345 7,726,941.65 25.3887583170415

Example 5
This example removes (drops) the session-level calculated member called “avg_price”

in the Sales cube in the Measures dimension.

drop member [sales].[measures].[avg_price]

Nothing is returned when you drop a session-level calculated member.

Drill-Down Examples
The data that is used in these examples is from a company that sells electronics and

outdoor and sporting goods equipment.

Example 1
This example drills down on the electronics and outdoor and sporting members down

from the family level.

select
{[Measures].[Qty]} on 0,

MDX Usage Examples � Example 2 25

drilldownlevel
(

{[Product].[All Product].[Electronics],
[Product].[All Product].[Outdoor & Sporting]
},
[Product].[family]

) on 1
from sales

Here is the resulting output:

Item Qty

Electronics 330,977

Auto Electronics 13,862

Computers, Peripherals 78,263

Digital Photography 9,008

Home Audio 38,925

Personal Electronics 31,979

Phones 59,964

Portable Audio 27,645

TV, DVD, Video 47,725

Video Games 23,606

Outdoor & Sporting 304,345

Bikes, Scooters 45,297

Camping, Hiking 63,362

Exercise, Fitness 50,700

Golf 41,467

Outdoor Gear 52,305

Sports Equipment 51,214

Example 2
This example drills down on the electronics and outdoor and sporting members down

to the family level, but it shows only the top two members at each level based on the
value of Qty.

select
{[Measures].[Qty]} on 0,

drilldownleveltop
(
{[Product].[All Product].[Electronics],
[Product].[All Product].[Outdoor & Sporting]

},
2,
[Product].[family],

26 Example 3 � Chapter 3

[Measures].[Qty]
) on 1

from sales

Here is the resulting output:

Item Qty

Electronics 330,977

Computers, Peripherals 78,263

Phones 59,964

Outdoor & Sporting 304,345

Camping, Hiking 63,362

Outdoor Gear 52,305

Example 3
This example drills down on the electronics and outdoor and sporting members down

to the family level, but it shows only the bottom two members at each level based on
the value of Qty.

select
{[Measures].[Qty]} on 0,
drilldownlevelbottom
(

{[Product].[All Product].[Electronics],
[Product].[All Product].[Outdoor & Sporting]
},
2,
[Product].[family],
[Measures].[Qty]

) on 1
from sales

Here is the resulting output:

Item Qty

Electronics 330,977

Digital Photography 9,008

Auto Electronics 13,862

Outdoor & Sporting 304,345

Golf 41,467

Bikes, Scooters 45,297

MDX Usage Examples � Example 1 27

Example 4
This example drills up the members of the set that are below the category level. It

returns only those members that are at the category level or higher.

select
{[Measures].[Qty]} on 0,

drilluplevel
(
{[Product].[All Product].[Electronics].[Computers, Peripherals],
[Product].[All Product].[Electronics].[TV, DVD, Video],
[Product].[All Product].[Electronics].[Video Games].[GamePlace],
[Product].[All Product].[Electronics].[Video Games].[Play Guy Color].[caller],
[Product].[All Product].[Outdoor & Sporting],
[Product].[All Product].[Outdoor & Sporting].[Bikes, Scooters].[Kids’ Bikes],
[Product].[All Product].[Outdoor & Sporting].[Golf].[Clubs].[designed],
[Product].[All Product].[Outdoor & Sporting].[Sports Equipment],
[Product].[All Product].[Outdoor & Sporting].[Sports Equipment].[Baseball]

},
[Product].[Category]

) on 1
from sales

Here is the resulting output:

Item Qty

Computers, Peripherals 78,263

TV, DVD, Video 47,725

Outdoor & Sporting 304,345

Sports Equipment 51,214

Session-Named Set Examples
The data that is used in these examples is from a company that sells electronics and

outdoor and sporting goods equipment.

Example 1
This example creates the session-named set called “prod in SE” in the sales cube.

This named set shows the crossing of the product family with the customer members in
the Southeast.

create session
set sales.[prod in SE] as ’
crossjoin
(

28 Example 2 � Chapter 3

[CUSTOMER].[All CUSTOMER].[Southeast].children,
[Product].[Family].members

)’

Nothing is returned when you create a session-named set.

Example 2
This example creates the session-named set called “prod in NE” in the sales cube.

This named set shows the crossing of the product family with the customer members in
the Northeast.

create session
set sales.[prod in NE] as ’
crossjoin

(
[CUSTOMER].[All CUSTOMER].[Northeast].children,
[Product].[Family].members

)’

Nothing is returned when you create a session-level named set.

Example 3
This example uses the session-named set called “prod in SE.” It shows the quantity

and total sales for products that customers in the Southeast purchased.

select
{[Measures].[Qty], [Measures].[Total]} on columns,
[prod in SE] on rows

from sales

Here is the resulting output:

State Product Qty Total

FL Doing 21,091 550,672.41

FL Electronics 31,056 794,730.61

FL Health & Fitness 16,321 415,708.57

FL Outdoor & Sporting 30,065 742,907.85

GA Doing 1,907 44,360.08

GA Electronics 2,316 61,577.03

GA Health & Fitness 1,318 35,589.84

GA Outdoor & Sporting 2,458 68,438.03

NC Doing 235 5,404.65

NC Electronics 3,727 101,688.42

NC Health & Fitness 1,228 31,310.45

NC Outdoor & Sporting 835 21,312.83

SC Doing 1 ,266 31,596.69

SC Electronics 2,646 66,565.97

MDX Usage Examples � Example 4

29

State Product Qty Total

SC Health & Fitness 3,483 89,633.82

SC Outdoor & Sporting 2,936 73,092.30

Example 4

This example uses the session-named set called “prod in NE.” It shows the quantity
and total sales for products that customers in the Northeast purchased.

select
{[Measures].[Qty], [Measures].[Total]} on columns,
[prod in NE] on rows

from sales

Here is the resulting output:

State Product Qty Total

CT Doing 844 20,961.12

CT Electronics 2,659 69,540.52

CT Health & Fitness 969 22,995.63

CT Outdoor & Sporting 2,569 61,528.35

MA Doing 7,918 206,472.36

MA Electronics 11,184 281,371.34

MA Health & Fitness 4,339 105,356.59

MA Outdoor & Sporting 10,076 250,323.21

ME Doing 1,362 35,151.55

ME Electronics 4,496 110,153.94

ME Health & Fitness 2,218 58,342.02

ME Outdoor & Sporting 3,014 79,426.68

NH Doing 141 4,207.76

NH Electronics 466 10,750.48

NH Health & Fitness 1,095 26,158.29

NH Outdoor & Sporting 603 14,893.73

NY Doing 17,493 435,513.26

NY Electronics 29,246 759,166.44

NY Health & Fitness 13,880 347,481.77

NY Outdoor & Sporting 26,714 692,416.36

RI Doing 265 6,437.18

RI Electronics 833 22,723.54

30 Example 5 � Chapter 3

State Product Qty Total

RI Health & Fitness 693 17,760.85

RI Outdoor & Sporting 857 19,320.02

Example 5
This example uses both of the session-named sets called “prod in NE.” It shows the

quantity and total sales for products that customers in the Northeast and the Southeast
purchased.

select
{[Measures].[Qty], [Measures].[Total]} on columns,
{[prod in NE], [prod in SE]} on rows

from sales

Here is the resulting output:

State Product Qty Total

CT Doing 844 20,961.12

CT Electronics 2,659 69,540.52

CT Health & Fitness 969 22,995.63

CT Outdoor & Sporting 2,569 61,528.35

MA Doing 7,918 206,472.36

MA Electronics 11,184 281,371.34

MA Health & Fitness 4,339 105,356.59

MA Outdoor & Sporting 10,076 250,323.21

ME Doing 1,362 35,151.55

ME Electronics 4,496 110,153.94

ME Health & Fitness 2,218 58,342.02

ME Outdoor & Sporting 3,014 79,426.68

NH Doing 141 4,207.76

NH Electronics 466 10,750.48

NH Health & Fitness 1,095 26,158.29

NH Outdoor & Sporting 603 14,893.73

NY Doing 17,493 435,513.26

NY Electronics 29,246 759,166.44

NY Health & Fitness 13,880 347,481.77

NY Outdoor & Sporting 26,714 692,416.36

RI Doing 265 6,437.18

RI Electronics 833 22,723.54

RI Health & Fitness 693 17,760.85

MDX Usage Examples � Example 7 31

State Product Qty Total

RI Outdoor & Sporting 857 19,320.02

FL Doing 21,091 550,672.41

FL Electronics 31,056 794,730.61

FL Health & Fitness 16,321 415,708.57

FL Outdoor & Sporting 30,065 742,907.85

GA Doing 1,907 44,360.08

GA Electronics 2,316 61,577.03

GA Health & Fitness 1,318 35,589.84

GA Outdoor & Sporting 2,458 68,438.03

NC Doing 235 5,404.65

NC Electronics 3,727 101,688.42

NC Health & Fitness 1,228 31,310.45

NC Outdoor & Sporting 835 21,312.83

SC Doing 1,266 31,596.69

SC Electronics 2,646 66,565.97

SC Health & Fitness 3,483 89,633.82

SC Outdoor & Sporting 2,936 73,092.30

Example 6
This example removes (drops) the session-named set called “prod in SE” in the sales

cube.

drop set sales.[prod in SE]

Nothing is returned when you drop a session-named set.

Example 7
This example removes (drops) the session-named set called “prod in NE” in the sales

cube.

drop set [sales].[prod in NE]

Nothing is returned when you drop a session-named set.

32

33

A P P E N D I X

1
MDX Functions

Dimension Functions 33
Hierarchy Functions 34

Level Functions 34

Logical Functions 34

Member Functions 35

Numeric Functions 36
Set Functions 39

String Functions 47

Tuple Functions 48

Miscellaneous Functions and Operators 49

Additional MDX Documentation 50

Dimension Functions
The MDX functions that are listed here indicate their return type.

Dimension returns a dimension that contains a specified member, level, or
hierarchy.

<Member>.Dimension

<Level>.Dimension

<Hierarchy>.Dimension

Dimensions returns a dimension that is specified by a numeric or string
expression.

Dimensions(<Numeric Expression>)

Dimensions(<String Expression>)

34 Hierarchy Functions � Appendix 1

Hierarchy Functions

The MDX functions that are listed here indicate their return type.

Hierarchy returns a hierarchy that contains a specified member or level.

<Member>.Hierarchy

<Level>.Hierarchy

Level Functions

The MDX functions that are listed here indicate their return type.

Level returns the level of a member.

<Member>.Level

Levels returns levels that are specified by a numeric or string expression.

<Dimension>.Levels(<NumericExpression>)

Levels(<StringExpression>)

Logical Functions

The MDX functions that are listed here indicate their return type.

IsEmpty if the evaluated expression is an empty cell value, then TRUE is
returned. Otherwise, FALSE is returned.

IsEmpty(<Value Expression>)

IS if two compared objects are equivalent, then TRUE is returned.
Otherwise, FALSE is returned.

<Object 1>IS Null

<Object 1>IS <Object 2>

IsAncestor if a specified member is an ancestor of another specified member,
then TRUE is returned. Otherwise, FALSE is returned.

IsAncestor(<Member1>,<Member2>

IsLeaf if a specified member is a leaf member, then TRUE is returned.
Otherwise, FALSE is returned.

IsLeaf(<Member>

MDX Functions � Member Functions 35

IsSibling if a specified member is a sibling of another specified member, then
TRUE is returned. Otherwise, FALSE is returned.

IsSibling(<Member1>,<Member2>)

Member Functions
The MDX functions that are listed here indicate their return type.

Ancestor returns the ancestor of a member at a specified level or distance.

Ancestor(<Member>,<Level>)

Ancestor(<Member>,<Numeric Expression>)

ClosingPeriod returns the last sibling among the descendants of a member to a
specified level.

ClosingPeriod([<Level>[,<Member>]])

Cousin returns the child member with the same relative position under its
parent member as the specified child member.

Cousin (<Member1>,<Member2>)

CurrentMember returns the current member of a dimension or hierarchy during an
iteration over a set of members of that dimension or hierarchy.

<Dimension>.CurrentMember

<Hierarchy>.CurrentMember

DataMember returns a system-generated data member that is associated with a
non-leaf member of a dimension.

<Member>.DataMember

DefaultMember returns the default member of a dimension or hierarchy.

<Dimension>.DefaultMember

<Hierarchy>.DefaultMember

FirstChild returns the first child of a specified member.

<Member>.FirstChild

FirstSibling returns the first child of the parent of a specified member.

<Member>.FirstSibling

36 Numeric Functions � Appendix 1

Item returns a member from a specified tuple. Alternatively, it returns a
tuple from a set.

<Tuple>.Item(<Index>)

Note: If a tuple is returned, then it is a tuple function, not a
member function. �

Lag returns a member that is located at a specified number of positions
before a designated member at the same level as that member.

<Member>.Lag(<Numeric Expression>)

LastChild returns the last child of a specified member.

<Member>.LastChild

LastSibling returns the last child of the parent of a specified member.

<Member>.LastSibling

Lead returns a member that is located at a specified number of positions
before a designated member at the same level as that member.

<Member>.Lead(<Numeric Expression>)

NextMember returns the next member of the level that contains the specified
member.

<Member>.NextMember

OpeningPeriod returns the first sibling among the descendants of a specified
member at the specified level.

OpeningPeriod([<Level>[,<Member>]])

ParallelPeriod returns a member at the level of the specified member that is in the
same relative position under its ancestor at the specified level.

ParallelPeriod([<Level>[,Numeric Expression>[,<Member>]]])

Parent returns the parent of a member.

<Member>.Parent

PrevMember returns the previous member at the level of the specified member.

<Member>.PrevMember

StrToMember returns a member from a string expression in Multidimensional
Expressions (MDX) format.

StrToMember(<String Expression>)

Numeric Functions

The MDX functions that are listed here indicate their return type.

MDX Functions � Numeric Functions 37

Aggregate returns a calculated value by using the appropriate aggregate
function, which is based on the aggregation type of the member.

Aggregate(<Set[,<Numeric Expression>])

Avg returns the average value of a numeric expression that is evaluated
over a set.

Avg(<Set>[,<Numeric Expression>])

CoalesceEmpty returns a coalesced value. This value is derived when an empty cell
value is coalesced to a number or string.

CoalesceEmpty(<Numeric Expression>[,<Numeric Expression>])

Correlation returns the correlation of two series that are evaluated over a set.

Correlation(<Set>,<Numeric Expression>[,<Numeric Expression>])

Count depending on the collection, returns the number of items in a
collection.

<Dimension>|<Hierarchy>.Levels.Count

<Tuple>.count

<Set>.Count

Count(<Set>[,ExcludeEmpty | IncludeEmpty])

Covariance returns the population covariance of two series that are evaluated
over a set by using the biased population formula.

Covariance(<Set>,<Numeric Expression>[,<Numeric Expression>])

CovarianceN returns the sample covariance of two series that are evaluated over
a set by using the unbiased population formula.

CovarianceN(<Set>,<Numeric Expression>[,<Numeric Expression>])

DistinctCount returns the number of distinct, non-empty tuples in a set.

DistinctCount(<Set>)

IIf returns one of two numeric or string values that are determined by
a logical test.

IIF(<Logical Expression>, <Numeric Expression1>,<Numeric Expression2>)

Note: If a string is returned, then it is a string function, not a
numeric function. �

LinRegIntercept calculates the linear regression of a set and returns the value of b in
the regression line y = ax + b.

LinRegIntercept(<Set>,<Numeric Expression>[,<NumericExpression>])

LinRegPoint calculates the linear regression of a set and returns the value of y in
the regression line y = ax + b.

LinRegPoint(<NumericExpression>,<Set>,<NumericExpression>
[,<Numeric Expression>])

38 Numeric Functions � Appendix 1

LinRegR2 calculates the linear regression of a set and returns R2 (the
coefficient of determination).

(Set, Numeric Expression[, Numeric Expression])

LinRegSlope calculates the linear regression of a set and returns the value of a in
the regression line y = ax + b.

LinRegSlope(<Set>,<NumericExpression>[,<NumericExpression>])

LinRegVariance calculates the linear regression of a set and returns the variance
associated with the regression line y = ax + b.

(Set, Numeric Expression[, Numeric Expression])

Max returns the maximum value of a numeric expression that is
evaluated over a set.

Max(<Set>[,<Numeric Expression>])

Median returns the median value of a numeric expression that is evaluated
over a set.

Median(<Set>[,<Numeric Expression>])

Min returns the minimum value of a numeric expression that is
evaluated over a set.

Min(<Set>[,<Numeric Expression>])

Ordinal returns the zero-based ordinal value that is associated with a level.

<Level>.Ordinal

Range returns the range, which is the difference between the maximum
and minimum value of a numeric expression that is evaluated over a
set.

Range (<Set>[,<Numeric Expression>])

Rank returns the one-based rank of a specified tuple in a specified set.

Rank(<Tuple>,<set>[,<Calc Expression>])

RollupChildren returns a value that is generated by rolling up the values of the
children of a specified member by using the specified unary operator.

RollupChildren(<Member>,<String Expression>)

Stdev using the unbiased population formula, returns the sample standard
deviation of a numeric expression that is evaluated over a set.

Stdev(<set>[,<Numeric Expression>])

StdevP using the biased population formula, returns the population
standard deviation of a numeric expression that is evaluated over a
set.

StdevP(<set>[,<Numeric Expression>])

StrToValue returns a value from a string expression.

StrToValue(<StringExpression>)

MDX Functions � Set Functions 39

Sum returns the sum of a numeric expression that is evaluated over a set.

Sum(<Set>[,<Numeric Expression>])

Value returns the value of a measure.

<Member>.Value

Var using the unbiased population formula, returns the sample variance
of a numeric expression that is evaluated over a set.

Var(<Set>[,<Numeric Expression>])

VarP using the biased population formula, returns the population
variance of a numeric expression that is evaluated over a set.

VarP(<Set>[,<Numeric Expression>])

Set Functions
The MDX functions that are listed here indicate their return type.

AddCalculated
Members

returns a set that includes calculated members that meet the
criteria of a given set definition (by default, calculated members are
not returned by set functions).

AddCalculatedMembers(<Set>)

AllMembers returns a set that contains all members of the specified dimension,
hierarchy, or level, including calculated members.

<Dimension>.AllMembers

<Hierarchy>.AllMembers

<Level>.AllMembers

Ancestors returns the set of ancestors of a member to a specified level or
distance. This includes or excludes ancestors at other levels. Here is
the syntax for the Ancestors function:

Ancestors(<Member>,[<Level>[,<Anc_flags>]])

Ancestors(<Member>,<Distance>[,<Anc_flags>])

Level
returns the set of ancestors of a member that are specified by
<Member> to the level that is specified by <Level>. Optionally,
the set is modified by a flag that is specified in <Anc_flags>.

Ancestors(<Member>,[<Level>[, <Anc_flags>]])

If no <Level> or <Anc_flags> arguments are specified, then
the function behaves as in the following syntax:

Ancestors(<Member>, <Member>.Level, SELF_BEFORE_AFTER)

40 Set Functions � Appendix 1

Distance
returns the set of ancestors of a member. The set of ancestors
are specified by <Member> and are <Distance> steps away in
the hierarchy. Optionally, the set is modified by a flag that is
specified in <Anc_flags>. Specifying a <Distance> of 0 returns a
set consisting only of the member that is specified in <Member>.

Ancestors(<Member>, <Distance>[,<Anc_flags>])

Table A1.1 Ancestor Flag Options

Options Returns

AFTER returns ancestor members from all levels
between <Level> and <Member>, including
<Member> itself, but not member(s) found at
<Level>

BEFORE returns ancestor members from all levels above
<Level>

BEFORE_AND_AFTER returns ancestor members from all levels above
the level of <Member> except members from
<Level>

ROOT returns the root-level member. This flag is the
opposite of the LEAVES flag for the Descendants
function

SELF (default) returns ancestor members from <Level> only.
Includes <Member>, if and only if <Level> that
is specified is the level of <Member>

SELF_AND_AFTER returns ancestor members from <Level> and all
levels below <Level>, down to and including
<Member>

SELF_AND_BEFORE returns ancestor members from <Level> and all
levels between and above <Member>

SELF_BEFORE_AFTER returns ancestor members from all levels above
the level of <Member>, including <Member> and
member(s) at <Level>

Note: By default, only members at the specified level or distance are included. This
function corresponds to an <Anc_flags> value of SELF. By changing the value of
<Anc_flags>, you can include or exclude ancestors at the specified level or distance, the
ancestors before or the ancestors after the specified level or distance (until the root
node), as well as all requests of the root ancestor(s) regardless of the specified level or
distance. �

Assuming that the levels in the Location dimension are named in a hierarchical
order, an example of levels would be All, Countries, States, Counties, and Cities.

MDX Functions � Set Functions 41

Table A1.2 Ancestor Expressions and Returns

Expressions Returns

Ancestors (USA) All members

Ancestors (Wake, Counties) USA

Ancestors (Wake, Counties, SELF) USA

Ancestors (Wake, States, BEFORE) USA, All

Ancestors (Wake, Counties, AFTER) Wake (includes member itself), North Carolina

Ancestors (Raleigh, States,
BEFORE_AND_AFTER)

Raleigh, Wake, USA, All members

Ancestors (Raleigh, States,
SELF_BEFORE_AFTER)

Raleigh, Wake, NC, USA, All members

Ancestors (NC, Counties, Root) All members

Ancestors (Wake, 1) North Carolina

Ancestors (Wake, 2, SELF_BEFORE_AFTER) Wake , NC, USA, All members

Ascendants returns all ancestors of the specified member up through the root
level, including the member itself.

Ascendants (<Member>)

Axis returns a set that is defined in an axis. Axis (0) pertains to row
members while Axis (1) pertains to column members.

Axis (<Numeric Expression>)

Example:

Axis (0)
Axis (1)

Note: The Axis function is not allowed in session- or
global-named sets or calculations. �

BottomCount returns a specified number of items from the bottom of a set.

BottomCount(<Set>,<Count>[,Numeric Expression>[,<True|False>]])

Note: The True|False flag is for including duplicates. If it is set
to TRUE, then any member that has the same value as the last
member will also be returned. If it is set to FALSE, then it will work
as it always did. The default value for the flag is FALSE. �

Note: Constant numeric expressions should not be entered for
this function. �

BottomPercent sorts a set and returns the specified number of bottommost elements
whose cumulative total is at least a specified percentage.

(<Set>,<Percentage>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for
this function. �

42 Set Functions � Appendix 1

BottomSum sorts a set by using a numeric expression and returns the specified
number of bottommost elements whose sum is at least a specified
value.

(<Set>,<Value>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for
this function. �

Children returns the children of a member.

<Member>.Children

Crossjoin returns the cross-product of two sets.

Crossjoin(<Set1>,<Set2>)

MAX SET SIZE — limits the size of sets that the OLAP server
creates. A value of 0 indicates there is no limit. The default is
1,000,000 components, where components are defined as the number
of tuples in the set times the number of dimensions in each tuple.
This enables the administrator to control the system resources that
are used by individual queries.

Descendants returns the set of descendants of a member to a specified level or
distance. Optionally, this includes or excludes descendants at other
levels. By default, only members at the specified level or distance
are included.

Descendants(<Member>,[<Level>[,<Desc_flags>]])

Descendants(<Member>,<Distance>[,<Desc_flags>])

Table A1.3 Descendants Flag Options

Options Returns

AFTER returns descendant members from all levels that
are subordinate to <Level>

BEFORE returns descendant members from all levels
between <Member> and <Level>, not including
members from <Level>

BEFORE_AND_AFTER returns descendant members from all levels that
are subordinate to the level of <Member> except
members from <Level>

LEAVES returns leaf descendant members between
<Member> and <Level> or <Distance>. This flag
is the opposite of the ROOT flag for the
Ancestors function

SELF (default) returns descendant members from <Level> only.
Includes <Member>, only if <Level> is specified
at the level of <Member>

SELF_AND_AFTER returns descendant members from <Level> and
all levels subordinate to <Level>

MDX Functions � Set Functions 43

Options Returns

SELF_AND_BEFORE returns descendant members from <Level> and
all levels between <Member> and <Level>

SELF_BEFORE_AFTER returns descendant members from all levels that
are subordinate to the level of <Member>

Distinct returns a set by removing duplicate tuples from a specified set.
Duplicates are eliminated from the tail.

Distinct(<Set>)

Drilldown
Level

drills down to the members of a set one level below the lowest level
that is represented in the set, or to one level below an optionally
specified level of a member that is represented in the set.

DrilldownLevel(<Set>[,{<Level>|,<Index}])

Drilldown
LevelBottom

drills down the members of a set to one level below the lowest level
that is represented in the set, or to one level below an optionally
specified level of a member that is represented in the set. However,
instead of including all children for each member at the specified
<level>, only the bottom <count> of children is returned, based on
<Numeric Expression>.

DrilldownLevelBottom(<Set>,<Count>[,[<Level>][,<Numeric Expression>]])

Note: Constant numeric expressions should not be entered for
this function. �

Drilldown
LevelTop

drills down the members of a set to one level below the lowest level
that is represented in the set, or to one level below an optionally
specified level of a member that is represented in the set. However,
instead of including all children for each member at the specified
<level>, only the top <count> of children is returned, based on
<Numeric Expression>.

DrilldownLevelTop(<Set>,<Count>[,[<Level>][,<Numeric Expression>]])

Note: Constant numeric expressions should not be entered for
this function. �

Drilldown
Member

drills down to the members in a specified set that are present in a
second specified set.

DrilldownMember(<Set1>,<Set2[,Recursive])

Drilldown
MemberBottom

drills down to the members in a specified set that are present in a
second specified set, therefore limiting the result set to a specified
number of members.

DrilldownMemberBottom(<Set1>,<Set2>, <Count>[,[<Numeric Expression>]
[,Recursive]])

Note: Constant numeric expressions should not be entered for
this function. �

Drilldown
MemberTop

drills to the members in a specified set that are present in a second
specified set, therefore limiting the result set to a specified number
of members.

44 Set Functions � Appendix 1

DrilldownMemberTop(<Set1>,<Set2>, <Count>[,[<Numeric Expression>]
[,Recursive]])

Note: Constant numeric expressions should not be entered for
this function. �

DrillupLevel removes all members in the set that are below the specified level. If
the level is not given, then it determines the lowest level in the set
and removes all members at that level.

DrillupLevel(<Set>[,<Level>])

DrillupMember drills to the members in a specified set that are present in a second
specified set.

DrillupMember(<Set1>,<Set2>)

Except locates the difference between two sets and optionally retains
duplicates.

Except(<Set1>,<Set2>[,All])

Extract returns a set of tuples from extracted dimension elements.

Extract(<Set>,<Dimension>[,<Dimension>...])

Filter returns the set that results from filtering a specified set that is
based on a search condition.

Filter(<Set>,<Search Condition>)

Generate applies a set to each member of another set and is joined to the
resulting sets.

Generate(<Set1>,<Set2>[,All])

Head returns the first specified number of elements in a set.

Head(<Set>[,<Numeric Expression>])

Hierarchize orders the members of a set in a hierarchy.

Hierarchize(<Set>)

Intersect returns the intersection of two input sets and optionally retains
duplicates.

Intersect(<Set1>,<Set2>[,All])

LastPeriods returns a set of members prior to and including a specified member.

LastPeriods(<Index>[,<Member>])

Members returns the set of members in a dimension, level, or hierarchy.

<Dimension>.Members

MDX Functions � Set Functions 45

<Level>.Members

<Hierarchy>.Members

Mtd returns the set of members that consist of the descendants of the
Month level ancestor of the specified member, including the specified
member itself. This function is analogous to the PeriodsToDate()
function with the level defined as Month.

Mtd([<Member>])

NameToSet returns a set that contains a single member. The set is based on a
string expression that contains a member name.

NameToSet(<Member Name>)

NonEmpty
Crossjoin

returns the cross-product of one or more sets as a set. This excludes
empty tuples and tuples without associated fact table data.

NonEmptyCrossjoin(<Set1>[,<Set2>][,<Set3>...][,<Crossjoin Set Count>])

MAX SET SIZE — limits the size of sets that the OLAP server
creates. A value of 0 indicates there is no limit. The default is
1,000,000 components, where components are defined as the number
of tuples in the set times the number of dimensions in each tuple.
This enables the administrator to control the system resources that
are used by individual queries.

Order arranges members of a specified set and optionally preserves or
breaks the hierarchy.

Order(<Set>[,[<Numeric Expression>][,ASC|DESC|BASC|BDESC]])

Order(<Set>[,[<String Expression>][,ASC|DESC|BASC|BDESC]])

Note: Constant numeric expressions should not be entered for
this function. �

PeriodsToDate returns the set of members that consist of the descendants of the
ancestor of the specified member at the specified level, including the
specified member itself.

PeriodsToDate([<Level>[,<Member>]])

Qtd returns the set of members that consist of the descendants of the
Quarter level ancestor of the specified member, including the
specified member itself. This function is analogous to the
PeriodsToDate() function with the level defined as Quarter.

Qtd([<Member>])

Siblings returns the siblings of a specified member, including the member
itself.

<Member>.Siblings

StripCalculated
Members

returns a set that is generated by removing calculated members
from a specified set.

StripCalculatedMembers(<Set>)

46 Set Functions � Appendix 1

StrToSet returns a set that is constructed from a specified string expression
in Multidimensional Expressions (MDX) format.

StrToSet (<String Expression>)

Subset returns a subset of tuples from a specified set.

Subset(<Set>,<Start>[,<Count>])

Tail returns a subset from the end of a set.

Tail(<Set>[,<Count>])

ToggleDrillState Toggles the drill state of members.

ToggleDrillState(<Set1>,<Set2>[,RECURSIVE])

Note: In a graphical user interface, drilling up and down is often
accomplished by double-clicking a label to expand or contract the
information. Drilling down on a member causes the member’s
children to be returned; drilling up causes them to disappear from
the results. �

TopCount returns a specified number of items from the topmost members of a
specified set.

TopCount(<Set>,<Count>[,<Numeric Expression>[,<True|False>]])

Note: The True|False flag is for including duplicates. If it is set
to TRUE, then any member that has the same value as the last
member will also be returned. If it is set to FALSE, then it will work
as it always did. The default value for the flag is FALSE. �

Note: Constant numeric expressions should not be entered for
this function. �

TopPercent sorts a set and returns the topmost elements, whose cumulative
total is at least a specified percentage.

TopPercent(<Set>,<Percentage>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for
this function. �

TopSum sorts a set and returns the topmost elements whose cumulative total
is at least a specified value.

TopSum(<Set>,<Value>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for
this function. �

Union returns a set that is generated by the union of two sets. Optionally,
duplicate members are retained.

Union(<Set1>,<Set2>[,All])

VisualTotals returns a set that is generated by dynamically totaling child
members in a specified set. A pattern for the name of the parent
member in the result set is used.

VisualTotals (<Set>,<Pattern>)

Wtd returns the set of members that consist of the descendants of the
Week level ancestor of the specified member, including the specified

MDX Functions � String Functions 47

member itself. This function is analogous to the PeriodsToDate()
function with the level defined as Week.

Wtd([<Member>])

Ytd returns the set of members that consist of the descendants of the
Year level ancestor of the specified member, including the specified
member itself. This function is analogous to the PeriodsToDate()
function with the level defined as Year.

Ytd([<Member>])

String Functions

The MDX functions that are listed here indicate their return type.

CoalesceEmpty coalesces an empty cell value to a number or string and returns the
coalesced value.

CoalesceEmpty(<String Expression>[,<String Expression>]...)

Generate returns a concatenated string that is created by evaluating a string
expression over a set. Alternatively, it returns a concatenated string
that is created by evaluating a string expression over a set.

Generate(<Set>,<String Expression>[,Delimiter>])

IIf returns one of two numeric or string values that are determined by
a logical test.

IIf(<Logical Expression>,<String Expression1>,<String Expression2>)

Note: If a numeric value is returned, then it is a numeric
function, not a string function. �

MemberToStr returns a string in Multidimensional Expressions (MDX) format
from a member.

MemberToStr(<Member>)

Name returns the name of a level, dimension, member, or hierarchy.

<Level>.Name

<Dimension>.Name

<Member>.Name

<Hierarchy>.Name

Properties returns a string that contains a member property value.

<Member>.Properties(Caption)

<Member>.Properties(Name)

48 Tuple Functions � Appendix 1

<Member>.Properties(UniqueName)

<Member>.Properties(<String Expression>)

Put returns a string that contains the formatted output based on a SAS
format.

Put(<Numeric Expression>,<String Expression>)

Put(<String Expression>,<String Expression>)

SetToStr constructs a string in Multidimensional Expressions (MDX) format
from a set.

SetToStr(<Set>)

TupleToStr returns a string in Multidimensional Expressions (MDX) format
from a specified tuple.

TupleToStr(<Tuple>)

UniqueName returns the unique name of a specified level, dimension, member, or
hierarchy.

<Level>.UniqueName

<Dimension>.UniqueName

<Member>.UniqueName

<Hierarchy>.UniqueName

UserName returns the domain name and user name of the current connection.

UserName

<member>
.member_caption

returns the caption of the member. It is in non-standard MDX
format.

<dimension>
.caption

returns the caption of the member. It is in non-standard MDX
format.

<hierarchy>
.caption

returns the caption of the member. It is in non-standard MDX
format.

<level>
.caption

returns the caption of the member. It is in non-standard MDX
format.

<member>
.caption

returns the caption of the member. It is in non-standard MDX
format.

Tuple Functions
The MDX functions that are listed here indicate their return type.

MDX Functions � Miscellaneous Functions and Operators 49

Current returns the current tuple from a set during an iteration.

<Set>.Current

Item returns a member from a specified tuple. Alternatively, it returns a
tuple from a set.

<Set>.Item(<Index>)

Note: If a member is returned, then it is a member function, not
a tuple function. �

StrToTuple constructs a tuple from a specified string expression in
Multidimensional Expressions (MDX) format.

StrToTuple(<String expression>)

Miscellaneous Functions and Operators

,
(comma
operator)

an operator to combine tuples to construct sets such as {[time].[all
time].[2001].[january],[time].[all time].[2001].[February],[time].[all
time].[2001].[march]}, or to combine members to construct tuples
such as ([Time].[January 2001], [Geography].[U.S.A]).

:
(colon operator)

an operator to specify ranges of tuples to contract sets such as
{[Time].[all Time].[2001].[January] : [Time].[all
Time].[2001].[March]}. It is the set constructor operator.

{}
(braces)

an alternative to crossjoin().

*
(asterisk
operator)

an alternative to nested crossjoins.

+
(plus operator
for sets)

an alternative to union().

+
(plus operator
for strings)

a concatenation of two strings.

/* */
(style
comments)

//
(style
comments)

–
(style
comments)

NON EMPTY

<Set> AS
aliasname

50 Additional MDX Documentation � Appendix 1

Supports TRUE
and FALSE

Call<UDF
Name>

executes a void returning user-defined function.

Additional MDX Documentation

In addition to the MDX usage examples, functions and related topics that are found
in this documentation, a supplementary text for the SAS OLAP Server is available. The
SAS OLAP Server: Concepts and Excerpts from “MDX Solutions with Microsoft SQL
Server Analysis Services” includes basic MDX information such as the MDX data model,
MDX construction, comments in MDX, and a complete MDX function and operator
reference. You can locate this text at support.sas.com/publishing.

51

A P P E N D I X

2
Recommended Reading

Recommended Reading 51

Recommended Reading

Here is the recommended reading list for this title:
� Administrator for Enterprise Clients: User’s Guide
� SAS Data Providers: ADO/OLE DB Cookbook

� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Management Console: User’s Guide

� SAS Metadata Server: Setup Guide
� SAS Open Metadata Architecture Reference
� SAS OLAP Server: Concepts and Excerpts from “MDX Solutions with Microsoft

SQL Server Analysis Services”
� SAS OLAP Server: Administrator’s Guide

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/publishing
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

52

53

Glossary

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

ancestor
within a dimension hierarchy, a member that resides at a higher level in relation to
other members in the hierarchy. For example, if a Geography dimension includes the
levels Country and City, then France would be an ancestor of Paris, and Japan would
be an ancestor of Tokyo.

ARM
(Application Response
Measurement)

an application programming interface that was developed by an industry partnership
and which is used to monitor the availability and performance of software
applications. ARM monitors the application tasks that are important to a particular
business.

calculated member
in a dimension, a member whose value is derived from the values of other members.

cell
in a cube, the intersection that is defined by selecting one member from each
dimension of that cube.

child
within a dimension hierarchy, a descendant in level n-1 of a member that is at level
n. For example, if a Geography dimension includes the levels Country and City, then
Bangkok would be a child of Thailand, and Hamburg would be a child of Germany.

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube can include measures, and it can have numerous dimensions and levels of data.

descendant
in a dimension hierarchy, a member that resides at a lower level in relation to other
members in the hierarchy. For example, if a Geography dimension includes the levels
Country, State, and City, then California and Los Angeles would be descendants of
USA.

54 Glossary

dimension
a group of closely related hierarchies. Different hierarchies within a single dimension
typically represent different measurements of a single concept. For example, a Time
dimension might consist of two hierarchies: (1) Year, Month, Date, and (2) Year,
Week, Day.

drill down
in a hierarchical tree view of a data repository, to start at a top- level directory and
to click through one or more intermediate-level directories until you reach the
directory or file that you are interested in.

drill up
in a hierarchical tree view of a data repository, to start at a file or lower-level
directory and to click through one or more higher- level directories until you reach
the directory that you are interested in.

fact
a single piece of factual information in a data table. For example, a fact can be an
employee name, a customer’s phone number, or a sales amount. It can also be a
derived value such as the percentage by which total revenues increased or decreased
from one year to the next.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of Year,
Quarter, Month, and Day. In a Geography dimension, a hierarchy might consist of
Country, State or Province, and City. More than one hierarchy can be defined for a
dimension. Each hierarchy provides a navigational path that enables users to drill
down to increasing levels of detail.

leaf member
the lowest-level member of a hierarchy. Leaf members do not have any child
members.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

MDDB
(multidimensional
database)

a specialized data storage structure in which data is presummarized and
cross-tabulated and then stored as individual cells in a matrix format, rather than in
the row-and-column format of relational database tables. The source data can come
either from a data warehouse or from other data sources. MDDBs can give users
quick, unlimited views of multiple relationships in large quantities of summarized
data.

MDX
(multidimensional
expressions) language

a standardized, high-level language that is used for querying multidimensional data
sources. MDX is the multidimensional equivalent of SQL (Structured Query
Language).

measure
a special dimension that usually represents numeric data values that are analyzed.
Actual Sales, Predicted Sales, and Revenue are all examples of measures. For

Glossary 55

example, you might drill down within the Clothing hierarchy of the Product
dimension to see the value of the Actual Sales measure for the Shirts classification
variable.

member
a name that represents a particular data item within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either
unique or non-unique. For example, 1997 and 1998 represent unique members in the
Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. The Open Metadata Repository is an
example.

metadata server
a server that provides metadata management services to one or more client
applications. The Open Metadata Server is an example.

MOLAP (multidimensional online analytical processing)
a type of OLAP that stores aggregates in multidimensional database structures.

navigate
to purposefully move from one view of the data in a table (or in some other data
structure, such as a cube) to another. Drilling down and drilling up are two examples
of navigation.

OLE
(Object Linking
and Embedding)

a method of interprocess communication supported by Windows that involves a
client/server architecture. OLE enables an object that was created by one application
to be embedded in or linked to another application.

OLE DB
an open specification that has been developed by Microsoft for accessing both
relational and nonrelational data. OLE DB interfaces can provide much of the same
functionality that is provided by database management systems. OLE DB evolved
from the Open Database Connectivity (ODBC) application programming interface.
See also OLE (Object Linking and Embedding).

OLE DB for OLAP
a Microsoft OLAP API that is used to link OLAP clients and servers by means of a
multidimensional language, MDX.

parent
within a dimension hierarchy, the ancestor in level n of a member in level n-1. For
example, if a Geography dimension includes the levels Country and City, then
Thailand would be the parent of Bangkok, and Germany would be the parent of
Hamburg. The parent value is usually a consolidation of all of its children’s values.

result set
the set of rows or records that a server or other application returns in response to a
query.

roll up
to summarize (or apply some other type of calculation or formula to) data values at
one level of a dimension hierarchy in order to derive values for a parent level. For

56 Glossary

example, sales figures for January can be rolled up to Quarter1, and employee data
for one department can be rolled up to the division level.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system options, which enable you to manage the ARM environment and to log
internal SAS processing transactions. See also ARM (Application Response
Measurement).

SAS OLAP server
a server that provides access to multidimensional data. The data is queried using the
multidimensional expression language (MDX).

SAS OLAP Cube
Studio

a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

slice
a subset of data from a cube, where the data in the slice pertains to one or more
members of one or more dimensions. For example, from a cube that contains data
about customer feedback, one slice might pertain to feedback on one particular
product (one member of the Product dimension). Another slice might pertain to
feedback on that product from customers residing in particular geographic areas who
submitted their feedback during a certain time period (one member of the Product
dimension, multiple members of the Geography dimension, one or more members of
the Time dimension).

SQL
(Structured Query

Language)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system objects.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating environment. In a symmetric
multiprocessing (SMP) environment, which uses multiple CPUs, multiple threads can
be spawned and processed simultaneously. Regardless of whether there is one CPU
or many, each thread is an independent flow of control that is scheduled by the
operating system. See also threading, thread-enabled operating system, SMP.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the
"boss-worker" model of threading, the same code for the I/O or calculation process is
executed simultaneously in separate threads on multiple CPUs. In the "pipeline"
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs. See also SMP, parallel processing, parallel I/O.

Time dimension
a dimension that divides time into levels such as Year, Quarter, Month, and Day.

tuple
a data object that contains two or more components. Unlike elements of a list, the
components of a tuple can be of different data types. In OLAP, a tuple is a slice of

Glossary 57

data from a cube. It is a selection of members (or cells) across dimensions in a cube.
It can also be viewed as a cross-section of member data in a cube. For example, —- is
a tuple that contains data from the —-, —–, and —– dimensions.

58

Index 59

Index

C
calculated members 2
cube concepts 1

D
DDL (Data Definition Language)

MDX 6
dimension functions 33
dimensionality 3
dimensions 2
drill-down examples 24

E
external functions 14

access to libraries or classes 15
arguments and return types 16
defining in Java 15
deployment 17
performance 16
security 17
state information 15

F
floating-point representation 9
fractions

MDX and 10
functions

external functions and MDX 14
in MDX expressions 7
MDX functions 33

G
global scope calculated members 2

H
hierarchies 2
hierarchy functions 34

J
Java

defining external functions 15
supported versions for MDX 17

K
keywords, reserved

MDX 11

L
level functions 34
levels 2
logical functions 34

M
MDX 1

concepts 1
DDL syntax 6
examples 19
external functions and 14
numeric precision 9
reserved keywords 11
SELECT statement 5

MDX expressions
function arguments and return types 9
SAS functions and 7

MDX functions
dimension functions 33
hierarchy functions 34
level functions 34
logical functions 34
member functions 35
numeric functions 36
operators 49
set functions 39
string functions 47
tuple functions 48

MDX queries 5
syntax 5

measures 2
member functions 35
members 2
Microsoft Analysis Server 17

Microsoft Analysis Services 2000 11
Multidimensional Expressions

See MDX

N
nonmeasure-based calculated members 2
numeric functions 36
numeric precision

MDX 9

O
operators

MDX functions 49
out-of-process JVM 16

P
performance

external functions 16

Q
queries

MDX queries 5
query scope calculated members 2

examples 21

R
reserved keywords

MDX 11

S
security

external functions 17
SELECT statement

MDX 5
session-named sets

examples 27

60 Index

session scope calculated members 2
examples 22

set functions 39
sets 3
slicer 6

string functions 47 T
TRUNC function

MDX and 10
tuple functions 48
tuples 2

Your Turn

If you have comments or suggestions about SAS 9.1 OLAP Server: MDX Guide,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	Details

	MDX Introduction and Overview
	MDX Overview
	Basic MDX and Cube Concepts
	Dimensions
	Hierarchies
	Levels
	Members and Measures

	Additional MDX Concepts and Expressions - Tuples and Sets
	Additional MDX Documentation

	MDX Queries and Syntax
	Basic MDX Queries and Syntax
	Basic MDX DDL Syntax
	SAS Functions
	Available SAS Functions Exposed for Use in MDX Expressions
	Function Arguments and Return Types
	Numeric Precision
	Differences with Microsoft Analysis Services 2000
	SAS MDX Reserved Keywords

	External Functions
	Defining External Functions in Java
	Gaining Access to an External Function Library or Class
	State Information
	Function Arguments and Return Types
	Performance
	Deployment
	Security
	Differences with Microsoft Analysis Server (AS2K)
	Supported Versions of Java

	MDX Usage Examples
	Simple Examples
	Query-Calculated Member Examples
	Example 1
	Example 2
	Example 3

	Session-Level Calculated Member Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Drill-Down Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Session-Named Set Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	MDX Functions
	Dimension Functions
	Hierarchy Functions
	Level Functions
	Logical Functions
	Member Functions
	Numeric Functions
	Set Functions
	String Functions
	Tuple Functions
	Miscellaneous Functions and Operators
	Additional MDX Documentation

	Recommended Reading
	Recommended Reading

	Glossary
	Index

