Setting Options

Option Name
Description
Exploring Data
By default, the task creates a histogram of the data. In the Classification variables role, specify the variables that are used to group the analysis variables into classification levels. You can assign a maximum of two columns to this role.
You can also specify whether to superimpose a kernel density estimate and the normal density curve on the histogram. Finally, you can specify whether to include an inset box of selected statistics in the graph.
Checking for Normality
Note: If you select any of these options, you can also specify whether to include these inset statistics: number of observations, goodness-of-fit test, mean, median, standard deviation, variance, skewness, and kurtosis.
Histogram and goodness-of-fit tests
requests tests for normality that include a series of goodness-of-fit tests based on the empirical distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test (provided the sample size is less than or equal to 2,000), the Kolmogorov-Smirnov test, the Anderson-Darling test, and the Cramér-von Mises test.
Normal probability plot
creates a probability plot, which compares ordered variable values with the percentiles of the normal distribution. If the data distribution matches the normal distribution, the points on the plot form a linear pattern. Probability plots are preferable for graphical estimation of percentiles.
The distribution reference line on the plot is created from the maximum likelihood estimate for the parameter.
You can also specify whether to include an inset box of selected statistics in the graph.
Normal quantile-quantile plot
creates quantile-quantile plots (Q-Q plots) and compares ordered variable values with quantiles of the normal distribution. If the data distribution matches the normal distribution, the points on the plot form a linear pattern. Q-Q plots are preferable for graphical estimation of distribution parameters.
The distribution reference line on the plot is created from the maximum likelihood estimate for the parameter.
You can also specify whether to include an inset box of selected statistics in the graph.
Fitting Distributions
Note: If you select a plot option for any of these distributions, you can also specify whether to include these inset statistics: number of observations, mean, median, standard deviation, and variance.
Beta
Histogram and goodness-of-fit tests
fits beta distribution with threshold parameter theta. Click image for alternative formats., scale parameter sigma. Click image for alternative formats., and shape parameters alpha. Click image for alternative formats. and beta. Click image for alternative formats..
Probability plot
specifies a beta probability plot for shape parameters alpha. Click image for alternative formats. and beta. Click image for alternative formats..
Quantile-quantile plot
specifies a beta Q-Q plot for shape parameters alpha. Click image for alternative formats. and beta. Click image for alternative formats..
Exponential
Histogram and goodness-of-fit tests
fits exponential distribution with threshold parameter theta. Click image for alternative formats. and scale parameter sigma. Click image for alternative formats..
Probability plot
specifies an exponential probability plot.
Quantile-quantile plot
specifies an exponential Q-Q plot.
Gamma
Histogram and goodness-of-fit tests
fits gamma distribution with threshold parameter theta. Click image for alternative formats., scale parameter sigma. Click image for alternative formats., and shape parameter alpha. Click image for alternative formats..
Probability plot
specifies a gamma probability plot for shape parameter alpha. Click image for alternative formats..
Quantile-quantile plot
specifies a gamma Q-Q plot for shape parameter alpha. Click image for alternative formats..
Lognormal
Histogram and goodness-of-fit tests
fits lognormal distribution with threshold parameter theta. Click image for alternative formats., scale parameter zeta. Click image for alternative formats., and shape parameter sigma. Click image for alternative formats..
Probability plot
specifies a lognormal probability plot for shape parameter sigma. Click image for alternative formats..
Quantile-quantile plot
specifies a lognormal Q-Q plot for shape parameter sigma. Click image for alternative formats..
Weibull
Histogram and goodness-of-fit tests
fits Weibull distribution with threshold parameter theta. Click image for alternative formats., scale parameter zeta. Click image for alternative formats., and shape parameter c. Click image for alternative formats..
Probability plot
specifies a two-parameter Weibull probability plot.
Quantile-quantile plot
specifies a two-parameter Weibull Q-Q plot.