
SAS® 9.2 BI Web Services
Developer’s Guide

TW10126_wbsvcdg_colortitlepg.indd 1 1/16/09 3:38:06 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 BI Web Services: Developer’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 BI Web Services: Developer’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-835-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic printing, February 2009

1st printing, February 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

Generated Web Services v

General Enhancements vi

Chapter 1 � Overview of SAS BI Web Services 1
What Are SAS BI Web Services? 1

Deciding Between .NET and Java 2

Creating SAS BI Web Services 3

Overview of Security for Web Services 5

Understanding Error Codes 6

Chapter 2 � Writing SAS BI Web Services Using XMLA 9
Writing SAS Programs for XMLA Web Services 9

Discover Method 11

Execute Method 16

Sample PROC MEANS Using SAS BI Web Services 18

Chapter 3 � Using Generated Web Services 23
What Are Generated Web Services? 23

Differences Between XMLA Web Services and Generated Web Services 24

Using Attachments with Generated Web Services 24

Using Prompts with Generated Web Services 26

Sample WSDLs 39

Index 49

iv

v

What’s New

Overview
SAS 9.2 BI Web Services provide generated Web services, as well as general

enhancements.

Generated Web Services
SAS BI Web Services now provides two services: the XMLA Web services (as

provided in SAS 9.1) and the new generated Web services. Generated Web services
enable you to define and create your own customized Web services. The following new
features are available with generated Web services:

� The Deploy As Web Service wizard enables you to select a set of stored processes
in SAS Management Console and deploy them as a generated Web service.

� The Web Service Maker is a Web service that generates new Web services from
stored processes.

� Generated Web services have a unique WSDL for the stored processes that are
used in that Web service. This feature makes generated Web services easier for
clients to call than the XMLA Web services, which use a generic, fixed WSDL for
all stored processes.

� More output options are supported. XMLA Web services support only a single,
inline XML output stream. Generated Web services support an inline XML output
stream, multiple output streams (which can have XML or binary content), and
output parameters. Binary content uses Web service attachments.

� Attachments (binary or text) are supported. Attachments enable you to send
non-xml (binary) data with a SOAP request or response.

� Contract-first programming is supported by associating schemas with input and
output streams. The schemas can be included in the generated WSDL.
Contract-first is a technique that enables organizations to standardize on the XML
formats they exchange between services. In SAS, the XML libname engine and
XML maps are used to interpret the XML described by these schemas.

� Generated Web services are represented as objects in SAS Management Console,
and they can be exported and imported by using the promotion wizards.

vi What’s New

General Enhancements

The following general enhancements have been added to SAS BI Web Services:

� XMLA Web services have been enhanced to use the new prompting framework.

� JBoss and IBM WebSphere are now supported (in addition to BEA WebLogic)
J2EE Application Servers. Apache Tomcat is no longer supported.

1

C H A P T E R

1
Overview of SAS BI Web
Services

What Are SAS BI Web Services? 1
Deciding Between .NET and Java 2

Installation and Administration Differences 2

Client Differences 3

Creating SAS BI Web Services 3

Use Web Services: Prerequisite 3
Use XMLA Web Services 3

Use Generated Web Services 4

Overview of Security for Web Services 5

Understanding Error Codes 6

What Are SAS BI Web Services?
A Web service is an interface that enables communication between distributed

applications. Web services enable cross-platform integration by enabling applications
that are written in various programming languages to communicate by using a
standard Web-based protocol, typically the Simple Object Access Protocol (SOAP). This
functionality makes it possible for businesses to bridge the gaps between different
applications and systems.

There are two implementations of SAS BI Web Services: one written in Java that
requires a servlet container, and another written in C# that uses the .NET framework.
For information about the differences between SAS BI Web Services for .NET and SAS
BI Web Services for Java, see “Deciding Between .NET and Java” on page 2.

The following figure shows how Web services work.

Figure 1.1 Web Services Communications

A client, such as a Web application or desktop application, obtains the Web Service
Description Language (WSDL) from the Web service. The WSDL describes the methods
that are available, the endpoint (where to call the Web service), and the format of the
XML that is required to call the Web service.

Web service clients and servers transport XML data by using a data envelope that is
called a SOAP envelope. Any client that can send and receive SOAP messages can

2 Deciding Between .NET and Java � Chapter 1

access Web services. SAS supports SOAP bindings over HTTP. The client sends XML
requests and parameters in a SOAP envelope to the Web service, which tells the Web
service to either discover or execute stored processes.

Discover and Execute are the two methods that are specified for XMLA. The Discover
method consists of middle-tier code that calls the SAS Metadata Server to get the
requested metadata. The Execute method consists of middle-tier code that calls the
SAS Stored Process Server to invoke stored processes.

The stored process that is requested is executed by a SAS Stored Process Server.
Usually any number of simple string parameters are passed to the stored process, and a
stream of XML data is returned. The input parameters to the stored process can be
nothing or a combination of simple string parameters and any number of XML streams.

Before SAS 9.2, you could write XML for Analysis (XMLA) Web services only.
Starting with SAS 9.2, you can use SAS Management Console to deploy a set of stored
processes as a generated Web service. For more information, see “What Are Generated
Web Services?” on page 23.

Deciding Between .NET and Java

Installation and Administration Differences

� What operating environment are you using?
� SAS BI Web Services for .NET can be installed only in the following

operating environments:
� Windows XP
� Windows 2003
� Windows Vista Business
� Windows Vista Ultimate
� Windows Vista Enterprise
� Windows Server 2008

� SAS BI Web Services for Java can be installed in any operating environment
that is supported by SAS middle tier components.

� How do you want to administer the Web services?
� SAS BI Web Services for .NET are administered by using IIS.
� SAS BI Web Services for Java are administered by using JBoss, BEA

WebLogic, or IBM WebSphere. If you install SAS BI Web Services for Java,
then you also need to have a Java Virtual Machine for an application server.

� Which Web service stack do you want to use? (A stack is the engine that performs
SOAP processing.)

� SAS BI Web Services for .NET use the .NET Web service stack (Web Services
Enhancements 3.0). The .NET stack supports Message Transmission
Optimization Mechanism (MTOM) attachments.

� SAS BI Web Services for Java use the Apache Axis2 Web service stack. This
stack supports both MTOM attachments and SOAP Messages with
Attachments (SwA). If your service uses attachments and your client is .NET,
then use MTOM, which is enabled by default.

Overview of SAS BI Web Services � Use XMLA Web Services 3

SAS BI Web Services for .NET and SAS BI Web Services for Java also differ in the
way they handle logging and configuration. SAS BI Web Services for .NET use .NET
logging, and SAS BI Web Services for Java use SAS Foundation Services for logging.
For more information about configuring Web services, see the SAS Intelligence
Platform: Web Application Administration Guide.

Client Differences
Web service clients cannot generally identify differences between SAS BI Web

Services for .NET and SAS BI Web Services for Java. If the client conforms to the
usage rules for Web services, then the client should be able to use either platform.

One difference for the Web service client is how the path is returned for the name of
the stored process (DataSourceName). SAS BI Web Services for Java return a fully
qualified path. SAS BI Web Services for .NET return a simple path. In both cases, you
get the name of the stored process to invoke by using the Discover method of the same
Web service.

Creating SAS BI Web Services

Use Web Services: Prerequisite
Before you can use Web services, you need to perform the following steps:

1 Decide whether you want to use SAS BI Web Services for .NET or SAS BI Web
Services for Java. Install SAS BI Web Services and the SAS Metadata Server.

Note: When you install SAS 9.2 BI Web Services, you are actually installing
two Web services: the XMLA Web services that were available with SAS 9.1, and
the new WebServiceMaker Web service that is used create generated Web
services. �

2 Write a SAS program to use as a stored process with Web services. See “Writing
SAS Programs for XMLA Web Services” on page 9.

3 Define a stored process server, if one is not already defined.

4 Define a stored process by using SAS Management Console. Use XMLA Web
Service as a keyword and Stream as the stored process output type when
defining a stored process to be called by an XMLA Web service.

Use XMLA Web Services
On the client side, perform the following steps to use XMLA Web services:

1 Locate the Web Service Description Language File (WSDL). You can access the
WSDL for a SAS BI Web Service by appending a ’?WSDL’ onto the service endpoint.

2 Write the code for the client application that uses either the Discover method or
the Execute method to call the Web service.

3 Run the code.

4 Use Generated Web Services � Chapter 1

For XMLA Web services, the SAS code that implements the Web service, the
metadata, and the client code that calls the Web service must all be synchronized. The
following table shows how to synchronize these items:

Table 1.1 Items to Synchronize

Item SAS Program Metadata Client Code

Name The name of the file
that contains the SAS
code.

Associates the name of
the SAS Stored
Process with the name
of the file.

<StoredProcess name=
’MyStoredProcess’>

Input Data Reads XML from the
fileref.

libname instream
xml;

The name of the
fileref, which must
match the name of the
data source.

<Stream name=’instream’>
<XMLDataFromClientHere...
</Stream>

Input Parameters Macros.

&tablename

The parameter name
is specified in the
metadata. Parameters
are treated as strings,
regardless of the type
that is specified in the
metadata.

<Parameter
name=’tablename’>
myParam</Parameter>

Output Data Writes output to the
_WEBOUT fileref as
XML.

libname _WEBOUT
xml xmlmeta=
&_XMLSCHEMA;

Designates the output
as ’Streaming’.

Uses the XML that is
returned.

Use Generated Web Services
Follow these steps to use generated Web services:
1 Generate a new Web service:

a Determine URL of the Web Service Maker endpoint.
b In SAS Management Console, select a set of stored processes and then select

Actions � Deploy As Web Service to generate a new Web service that can be
used to call the selected stored processes.

In the Web Service Maker URL field of the Deploy as Web Service wizard,
type the endpoint URL or select an existing URL. The user who performs this
action should belong to the SAS BI Web Services Users metadata group so
that the new Web service can be stored in metadata. The metadata is created
only if the service is successfully deployed in the target container. The new
Web service will contain one operation for each stored process that you
selected.

Upon successful deployment, a message displays that tells you the
endpoint URL for the newly deployed Web service.

2 Create clients to call the Web service.

A Web service can be created with multiple operations in it. Each operation
corresponds to a stored process, and has the same name as the stored process, unless
there is a naming conflict. If the name of the stored process conflicts with another
name, then a new operation name is created.

Overview of SAS BI Web Services � Overview of Security for Web Services 5

Overview of Security for Web Services
A default installation of SAS BI Web Services for Java or .NET is not highly secure.

The default security mechanism is SAS authentication. All requests and responses are
sent as clear-Text. If users want to authenticate as a specific user, then they can send a
user name and password as clear-Text as part of the WS-Security headers.
Authentication is performed by authenticating client credentials at the SAS Metadata
Server. Whenever user names and passwords must be sent as clear-Text, SSL should be
enabled to provide transport layer security.

If you are using XMLA Web services or generated Web services, an anonymous user
can be configured. Anonymous users cannot use the Web Service Maker; credentials
must always be provided to use the Web Service Maker. If you are using XMLA Web
services, you can pass user credentials as XMLA properties in the payload.

SAS BI Web Services can be secured by using Web authentication. This provides a
way for SAS BI Web Services to identify the calling user by using basic Web
authentication. The following two types of Web authentication can be configured:

� WS-Security message-level security
� HTTP transport-level security

Note: Web authentication can be used with both XMLA Web services and generated
Web services but cannot be used with the Web Service Maker Web service. The Web
Service Maker must be able to authenticate one-time-passwords that are generated by
SAS Management Console clients. �

SAS BI Web Services for .NET can be secured by using Web Services Enhancements
3.0 for Microsoft .NET, which enables support for the latest security and
interoperability standards for Web services. For detailed information about using Web
Services Enhancements 3.0, WS-Security, and WS-Policy to secure SAS BI Web
Services, see the SAS Intelligence Platform: Web Application Administration Guide.
The current release of SAS BI Web Services for Java does not support WS-Policy.

Consult with your administrator to determine how Web services are configured at
your site and how you can invoke them. For more information about setting up Web
service security, see the SAS Intelligence Platform: Web Application Administration
Guide.

6 Understanding Error Codes � Chapter 1

Understanding Error Codes
Errors generally fall into one of five categories, and are assigned the appropriate

error code for that category. The following table describes these error codes:

Table 1.2 Error Codes

Error Code Description

1000 Specifies an invalid user name or password (the client application
might want to re-prompt the user for credentials).

2000 Specifies a client error (the client application might want to pass in
different parameters). This error might occur for one of the following
reasons:

� invalid prompt value

� required parameter is missing

� invalid request against schema

� invalid stored process name (for XMLA Web services only)

� no ReadMetadata permission for the stored process

3000 Specifies a SAS error. This error is generated when the stored
process generates a SYSCC macro variable that is not listed in the
AcceptableSyssc configuration option. An additional attribute is
added to indicate that the actual error number that SYSCC was set
to. The SYSMSG string is also included in the message.

4000 Specifies a configuration error. This indicates a problem that the
administrator of the service should be notified about. The
administrator should be able to examine logs on the service to
determine the cause of this error. This error might occur for one of
the following reasons:

� invalid default credentials for the anonymous user

� invalid trusted credentials

� metadata server or stored process server is unreachable

� invalid configuration file

5000 Specifies a timeout error. This error occurs if the user configures SAS
BI Web Services with a stored process timeout and the execution of a
stored process exceeds this timeout.

Note: Before SAS 9.2, XMLA returned an error code of 99 for almost all errors. �

Overview of SAS BI Web Services � Understanding Error Codes 7

The following code is an example of a generated SOAP fault that has an error code of
4000:

<SOAP-ENV:Fault>
<faultcode>Server</faultcode>
<faultstring>The XML for Analysis provider encountered an error</faultstring>
<faultactor>XML for Analysis Provider>XML for Analysis Provider</faultactor>
<detail>

<sas:Fault code="4000">
<sas:Exception message="The configured credentials are invalid.">

<sas:Exception message="The config file contains invalid metadata
credentials."/>

<sas:Exception message="The user ’anon’ is unknown.">
<sas:Exception message="’anon’ is not defined in metadata."/>

</sas:Exception>
</sas:Exception>

</sas:Fault>
</detail>

</SOAP-ENV:Fault>

8

9

C H A P T E R

2
Writing SAS BI Web Services
Using XMLA

Writing SAS Programs for XMLA Web Services 9
Discover Method 11

Overview of the Discover Method 11

RequestType 11

Overview of RequestType 11

DISCOVER_DATASOURCES 12
STOREDPROCESS_PARAMETERS 13

Restrictions 14

Properties 14

Result 16

Execute Method 16

Overview of the Execute Method 16
Command 17

Properties 17

Result 18

Sample PROC MEANS Using SAS BI Web Services 18

Sample Overview 18
Write the Stored Process 18

Define the Metadata 19

Invoke the Stored Process 21

SOAP Request 21

SOAP Response 21

Writing SAS Programs for XMLA Web Services

To use the Web service to call your SAS code, you must configure your SAS code as a
stored process. A stored process is a SAS program that is stored on a server and can be
executed by requesting applications. Any stored process can be deployed as a generated
Web service. However, stored processes that are used with XMLA Web services need to
conform to rules that enable the Web service to receive data from the client and return
data to the client.

You can author a stored process manually by using SAS or a text editor to write the
code and then registering the program through SAS Management Console.
Alternatively, you can use a program such as SAS Enterprise Guide or another SAS code
generator to author a stored process using the point-and-click method. Use the following
modifications to make a stored process that can be used with SAS BI Web Services.
Keep in mind that XMLA Web services can return data only; no images can be returned.

Note: XMLA Web services in SAS 9.2 will work only with SAS 9.2 stored process
metadata and SAS 9.2 Stored Process Servers. �

10 Writing SAS Programs for XMLA Web Services � Chapter 2

The following list explains unique details about stored processes that are used with
XMLA Web services:

� The data that is returned by the stored process must be XML. Web service stored
processes produce streaming results, which means that the SAS program writes
output to _WEBOUT, typically by using the following LIBNAME statement:

libname _WEBOUT xml xmlmeta=&_XMLSCHEMA;

� For XMLA Web services, the %STPBEGIN or %STPEND macros are not used in
the stored processes. These macros set up Output Delivery System (ODS)
statements for the stored process, but Web services do not use ODS.

� The _XMLSCHEMA macro is unique to XMLA Web services. This macro is passed
to the SAS program when it is invoked from the Web service. The _XMLSCHEMA
macro is set to one of three values depending on the Content property that gets
passed to the Execute method. The possible values for _XMLSCHEMA are Schema,
SchemaData (which is the default), or Data. For example, the following code
causes SAS to write both the XML schema and the data into the libref _WEBOUT:

libname _WEBOUT xml xmlmeta=SchemaData;

A libref uses a fileref of the same name when a source is not specified in the
LIBNAME statement. For example, the following code causes the libref, called
_WEBOUT, to read from the fileref called _WEBOUT:

libname _WEBOUT xml xmlmeta=_XMLSCHEMA;

For Web services, SAS defines the filerefs for _WEBOUT and the input parameter
streams before invoking the SAS code.

Note: Applications should not try to write multiple data sets into a library
when a schema is being created. �

� Data sources are unique to Web services. Data sources are defined when you are
registering the stored process metadata. There are two types of data sources:

� generic streams, which are most similar to the input streams that were used
before SAS 9.2.

� XML streams, which can come with a schema or without a schema. If a
schema is provided for a generated Web service, then that schema is inserted
in the WSDL for the service. If no schema is provided, then xs:any is
inserted in the schema. Having a schema defined makes it easier for client
applications to call a service. The SAS code needs to be written to create
XML that is valid according to the schema that is defined in the metadata.

The following example code displays a stored process that is used as a Web service:

libname instream xml;
libname _WEBOUT xml xmlmeta=&_XMLSCHEMA;

proc means data=instream.&tablename
output out=_WEBOUT.mean;

run;

The first LIBNAME statement in the sample code defines the data source. This code
corresponds to the definition of the data source in the Stored Process Properties dialog
box in SAS Management Console. The fileref of the data source is instream. In this
example, the data source provides the data to run PROC MEANS against.

The second LIBNAME statement in the sample code defines the output for the stored
process as streaming output, or _WEBOUT. In the Stored Process Properties dialog box,
Stream is specified as the type of output on the Execution tab of the Stored Process
Properties dialog box.

Writing SAS BI Web Services Using XMLA � RequestType 11

The &tablename declaration in the sample code defines a parameter called
tablename. In the Stored Process Properties dialog box, this parameter is specified
through the New Prompt dialog box, and can be modified using the Edit Prompt dialog
box. In this example, tablename is a text parameter that specifies the name of the table
to run PROC MEANS against.

Note: The dialog boxes mentioned in the previous example are available from both
the Stored Process Properties dialog box and the New Stored Process Wizard, which are
both part of SAS Management Console. For more information about using SAS
Management Console to define metadata for stored processes, see the product Help. �

Discover Method

Overview of the Discover Method
The Discover method retrieves information, such as stored process metadata or a list

of available data sources, from the SAS Metadata Repository. The Discover method
returns a list of all the stored processes that have the keyword "XMLA Web Service" on
the SAS Metadata Server. The SAS Stored Process Server is not invoked to service the
Discover call.

Here is the syntax for the Discover method:

Discover (
[in] RequestType As EnumString,
[in] Restrictions As Restrictions,
[in] Properties As Properties,
[out] Result As Rowset)

RequestType

Overview of RequestType
RequestType is a required parameter for the Discover method. The value of

RequestType is an enumeration value that corresponds to a return rowset. The
RequestType parameter specifies the type of information to be returned by the Discover
request.

There are two main request types that are normally used with SAS BI Web Services:
DISCOVER_DATASOURCES and STOREDPROCESS_PARAMETERS.
DISCOVER_DATASOURCES and STOREDPROCESS_PARAMETERS both return a
list of the stored processes that can be invoked. DISCOVER_DATASOURCES is a
standard XMLA request type that returns a list of available data sources for the server
or Web service so that you can select a data source with which to connect. The
information that is returned by the DISCOVER_DATASOURCES request type includes
the following information:

� the name and a description of the data source
� a URL to connect to the data source, the name, and data type of the provider
� the type of security mode that the data source uses, as well as any additional

information that is needed to connect to the data source

12 RequestType � Chapter 2

STOREDPROCESS_PARAMETERS is a request type that is specific to SAS. This
request type returns a list of all the available stored processes along with a list of the
parameters that are specified in each stored process.

Other request types that might be useful with SAS BI Web Services are
DISCOVER_PROPERTIES and DISCOVER_SCHEMA_ROWSETS.
DISCOVER_SCHEMA_ROWSETS returns a list of all the available request types along
with their enumeration values and other information. For more information about what
the DISCOVER_PROPERTIES request type returns, see “Properties” on page 14.

Note: Although the SAS XMLA Stored Process provider supports the
DISCOVER_KEYWORDS, DISCOVER_LITERALS, and DISCOVER_ENUMERATORS
request types, these request types are not useful for calling stored processes. �

DISCOVER_DATASOURCES

The SAS BI Web Service returns one data source for each stored process that has
been defined in the metadata for use with Web services.

For each returned stored process, the returned rowset contains:

DataSourceName
specifies the name of the stored process, as specified in SAS Management Console.
For example,

/Samples/Stored Processes/
Sample: MEANS Procedure Web Service

DataSourceDescription
specifies the description of the stored process, as specified in SAS Management
Console. For example,

(PROC MEANS Stored Process that can be invoked by
the SAS BI Web Services for Java/.Net mid-tier.)

URL
specifies the URL to invoke the XMLA methods. This is usually the same as the
URL that is used to invoke this Discover method. For example,

http://yourserver/xmla/SASSPSProvider/sasxmla.asmx

DataSourceInfo
specifies which data source to use. The SAS Stored Process Server data source is
"Provider=SASSPS;".

ProviderName
specifies the provider behind the data source. For the SAS Stored Process Server,
this is the SAS XML for Analysis Stored Process Provider.

ProviderType
specifies the type of provider that is behind the data source. The Stored Process
Service supports only Tabular Data Provider.

AuthenticationMode
specifies the authentication required for the given data source (that is, indicates
whether a user name and password are required). SAS BI Web Services for .NET
return "Authenticated" only if a user name and password are required. SAS BI
Web Services for Java always return "Authenticated," meaning that you are
required to authenticate to the SAS Metadata Repository whether you pass in
credentials or use only default credentials that are configured by the administrator.

Writing SAS BI Web Services Using XMLA � RequestType 13

STOREDPROCESS_PARAMETERS
STOREDPROCESS_PARAMETERS is a custom request type that is used by the SAS

Stored Process Service provider only. It returns metadata describing the parameters
that are necessary to call the stored process. A stream parameter is always a required
parameter and it never has a default. This does not mean that you are required to have
a stream parameter for each stored process, but it means that any stream parameters
that are defined for the stored process must be provided when the stored process is
called using the Execute method.

For each returned stored process, the returned rowset contains:

StoredProcessName
specifies the name of the stored process.

Parameters
specifies a container that includes all of the parameters for the stored process.

Parameter
specifies a container that includes all of the details for a stored process parameter.

Name
specifies the name of the stored process parameter.

Description
specifies the description of the stored process parameter.

Type
specifies the parameter type. The possible parameter types for XMLA Web
services are string, multi-line text, Boolean, integer, float, color, time, timestamp,
and date. (XMLA Web services do not support advanced prompt types such as
data source, data source item, OLAP member, data library, ranges, and prompts
with multiple value types.) Note that all parameters are passed to SAS as macro
variables, so the SAS program does not know the parameter type that is specified
in the metadata. For more information about how to format parameter values, see
“Using Prompts with Generated Web Services” on page 26.

Required
specifies whether the stored process parameter is required.

Default
specifies a default value for the stored process parameter.

Streams
specifies a container that includes all of the data sources for the stored process.

Stream
specifies a container that includes all of the details for a stored process data source.

The following is an example of the response for a stored process that takes a single
string and a single stream as input:

<row xmlns="urn:schemas-sas-com:xml-analysis:rowset">
<StoredProcessName>

/BIP Tree/copyintoout</StoredProcessName>
<Parameters>

<Parameter>
<Name>inputname</Name>
<Description>A simple string that we are

passing as a parameter.</Description>
<Required>true</Required>
<Default />

14 Restrictions � Chapter 2

<Type>String</Type>
</Parameter>

</Parameters>
<Streams>

<Stream>
<Name>DataName</Name>
<Description>This stream does allow

multi-pass reads, so you do not have to
use an XMLMap.</Description>

</Stream>
</Streams>

</row>

Restrictions
You can use the Restrictions parameter to filter which results get returned from a call

to the Discover method. The restriction name specifies a column in a rowset that you
restrict. The restriction value specifies which data to restrict in the column. Use the
DISCOVER_SCHEMA_ROWSETS request type to get restriction information about the
rowsets that are available in each request type. The DISCOVER_SCHEMA_ROWSETS
request type returns a list of all the request types that are supported by the provider,
along with restriction information and descriptions for each request type.

The Restrictions parameter is required in the Discover method, but it can be empty.
Invalid values for restrictions are ignored.

The following RestrictionList element restricts a call to Discover
STOREDPROCESS_PARAMETERS based on the name of the stored process:

<RestrictionList
xmlns="urn:schemas-microsoft-com:xml-analysis">
<StoredProcessName>

/Samples/Stored Processes/
Sample: MEANS Procedure Web Service

</StoredProcessName>
</RestrictionList>

Properties
The Properties parameter enables you to specify properties of the Discover method,

such as the return format of the result set or the timeout value.
Use the DISCOVER_PROPERTIES request type to get information about properties

that are available for each request type and the values that are associated with those
properties. The DISCOVER_PROPERTIES request type returns information about both
standard and provider-specific properties. The returned information includes the name,
description, data type, access, and current value of each property. The information also
shows whether each property is required.

The following table contains a list of properties and property information, including
sample values, that the DISCOVER_PROPERTIES request type returns. The value of
PropertyType for each of these properties is string.

Writing SAS BI Web Services Using XMLA � Properties 15

Table 2.1 Values for the Properties Parameter

PropertyName PropertyDescription PropertyAccessType Value

Content Specifies the content
of the XML result:
None, Schema, Data,
or Both.

ReadWrite SchemaData

StateSupport Specifies the support
for state maintenance
that is offered by the
provider: None or
Sessions.

Read Sessions

UserName Specifies the user
name to use for
database
authentication.

ReadWrite

Password Specifies the password
to use for database
authentication.

Write

Domain Specifies the domain
to use for database
authentication.

ReadWrite

ProviderName Specifies the name of
the XML for Analysis
provider.

Read SAS XML for Analysis
StoredProcess
Provider

ProviderVersion Specifies the version of
the XML for Analysis
provider.

Read 1.0

Format Specifies the format of
the XML result:
Tabular or
Multidimensional.

Read Tabular

DataSourceInfo Specifies the
identifying
information that is
required to retrieve
data from a data
source.

ReadWrite Provider=SASSPS

Timeout Specifies the number
of seconds until a
request fails due to a
timeout.

Read

You can list properties in any order. The Properties parameter is required in the
Discover method. The only call to the Discover method that can have empty properties
is DISCOVER_DATASOURCES. All other request types require at least DataSourceInfo
to be specified, such as:

<PropertyList
xmlns="urn:schemas-microsoft-com:xml-analysis">

16 Result � Chapter 2

<DataSourceInfo>
Provider=SASSPS

</DataSourceInfo>
</PropertyList>

To cause a call to Discover to execute under a specific user’s identity, a UserName
and Password property can be included in the PropertyList element, such as:

<PropertyList xmlns="urn:schemas-microsoft-com:xml-analysis">
<DataSourceInfo>

Provider=SASSPS
</DataSourceInfo>
<UserName>username</UserName>
<Password>password</Password>

</PropertyList>

If you choose to include the UserName or Password properties, it is important to
ensure that access to your Web service is secure and encrypted. For more information,
see the SAS Intelligence Platform: Web Application Administration Guide.

Result
The Result parameter is required. This parameter specifies the result set that the

provider returns. The information that is returned can vary according to which values
are used in the RequestType, Restrictions, and Properties parameters.

Execute Method

Overview of the Execute Method
Client applications of the Web service call the Execute method to run a SAS Stored

Process.
When an application calls the Execute method, the Web service performs the

following actions:

� receives the call and validates the SOAP request against the WSDL.

� validates the command against the command schema.

� searches in the SAS Metadata Server to find the SAS server to connect to that can
service the request. If the user name and password are provided in the Properties
parameter, then they are used to connect to the SAS Metadata Server. The
credentials to use when connecting to the SAS Stored Process Server are obtained
from the metadata.

� invokes the SAS code that represents the stored process on the SAS Stored
Process Server.

� checks the value of the SYSCC macro in SAS. If the SYSCC macro has a non-zero
value, then the Web service throws a SOAP fault and includes the value of
SYSMSG in the fault.

� returns all data that was written to _WEBOUT.

Here is the syntax for the Execute method:

Writing SAS BI Web Services Using XMLA � Properties 17

Execute (
[in] Command As Command,
[in] Properties As Properties,
[out] Result As Resultset)

Command
The Execute method takes the Command and Properties parameters as input. Both

of these parameters are in XML.
The following code shows the command passed to the Execute method:

<StoredProcess name="MyStoredProcess">
<Stream name="DataName"> <myXML>data</myXML> </Stream>
<Parameter name="InputName">myData</Parameter>

</StoredProcess>

When the previous code is passed to the Execute method, the SAS code has a macro
defined whose name corresponds to the String parameter:

%LET InputName=myData

The SAS code also has a libref assigned that corresponds to the name of the Data
parameter:

libname DataName;

The SAS program should write output to the pre-assigned fileref _WEBOUT. Most
applications do this by using the XML LIBNAME engine, as follows:

libname _WEBOUT xml xmlmeta=&_XMLSCHEMA;
data _WEBOUT.a;

Properties
The Properties parameter enables you to specify properties of the Execute method.

Properties describe how to invoke the Command parameter. Calling applications specify
the SAS Stored Process Service Provider to be used in DataSourceInfo, as shown in the
following example:

<PropertyList>
<DataSourceInfo>

Provider=SASSPS;
</DataSourceInfo>

</PropertyList>

Use the DISCOVER_PROPERTIES request type in the Discover method to get
information about properties that are available for each request type and the values
that are associated with those properties. The DISCOVER_PROPERTIES request type
returns information about both standard and provider-specific properties. The returned
information includes the name, description, data type, access, and current value of each
property. The information also shows whether each property is required.

You can list properties in any order. The Properties parameter is required in the
Discover method, but it can be empty. The Properties parameter must be specified for
the Execute method, and must include at least the DataSourceInfo property.

Note: After you have selected a data source from the DISCOVER_DATASOURCES
rowset, set the DataSourceInfo property in the Properties parameter, which is sent to
the server using the Command parameter by the Execute method. Do not attempt to

18 Result � Chapter 2

write your own value for the DataSourceInfo property. Use a value only from the
DISCOVER_DATASOURCES rowset. �

To cause the execute method to run under a specific user’s identity, a UserName and
Password property can be included in the PropertyList element, such as:

<PropertyList xmlns="urn:schemas-microsoft-com:xml-analysis">
<DataSourceInfo>

Provider=SASSPS
</DataSourceInfo>
<UserName>username</UserName>
<Password>password</Password>

</PropertyList>

If you choose to include the UserName or Password properties, it is important to
ensure that access to your Web service is secure and encrypted. For more information,
see the SAS Intelligence Platform: Web Application Administration Guide.

Result
The Result parameter is required. This parameter specifies the result set that the

provider returns. The information that is returned can vary according to which values
are used in the Command and Properties parameters.

Sample PROC MEANS Using SAS BI Web Services

Sample Overview
This sample shows how to write, define, and invoke a sample stored process that can

be used with SAS BI Web Services. This example is for an XMLA Web service. You can
access other sample Web services in the samples database at support.sas.com.

Write the Stored Process
The following SAS code is a sample stored process called stpwsmea.sas. This

program is installed with SAS Integration Technologies; by default it is located in
C:\Program Files\SAS\SAS 9.1\inttech\sample.

%put &tablename

libname _WEBOUT xml xmlmeta = &_XMLSCHEMA;
libname instream xml;

proc means data=instream.&tablename
output out=_WEBOUT.mean;

run;

libname _WEBOUT clear;
libname instream clear;

Writing SAS BI Web Services Using XMLA � Define the Metadata 19

Define the Metadata
The stored process must be defined on a SAS Metadata Server that is used by SAS

BI Web Services in order to determine how and where to run the stored process. Stored
process metadata is defined by using SAS Management Console. The tables in this
section show the values for each field in the New Stored Process Wizard in SAS
Management Console.

Note: If you have previously installed the SAS Stored Process sample metadata as
part of the SAS Deployment Wizard or the Web Infrastructure Platform installation,
then you might not need to re-create the metadata for the "Sample: MEANS Procedure
Web Service" sample stored process. The sample metadata should already be available
from the /Products/SAS Intelligence Platform/Samples folder. If you do not have
the sample metadata, you can define the metadata for the stored process on your SAS
Metadata Server by performing the following steps. �

1 Open SAS Management Console and connect to the appropriate metadata server.
2 From the SAS Management Console navigation tree, select the folder under which

you would like to create the new stored process. (If you would like to create a new
folder, you can select the location in the navigation tree in which you want to add
the new folder, and then select Actions � New Folder from the menu bar to open
the New Folder Wizard. Follow the wizard instructions to create the new folder.)

3 After you select the folder in which you want to add a new stored process, select
Actions � New Stored Process from the menu bar. The New Stored Process
Wizard displays.

4 On the first page of the New Stored Process Wizard, enter the following values in
their corresponding fields for the sample Web service:

Table 2.2 Field Values for the New Stored Process Wizard

Field Value

Name Sample: MEANS Procedure Web Service

Keywords XMLA Web Service

Note: To add the keyword, click Add to open the Add Keyword dialog box, then
enter the name of the keyword. Click OK. Adding a description and roles for the
stored process are optional. �

5 Click Next.
6 Enter the following values in their corresponding fields for the sample Web service:

Table 2.3 Values for the Sample Web Service

Field Value

SAS server SASApp - Logical Stored Process Server

Source code repository C:\Program
Files\SAS\SASFoundation\9.2\inttech\sample

Source code file stpwsmea.sas

Results Stream

Click Next.

20 Define the Metadata � Chapter 2

7 Click New Prompt to add an input parameter to the stored process.

8 On the General tab, enter the following values in their corresponding fields for
the sample Web service:

Table 2.4 Values for the Prompt

Field Value

Name tablename

Displayed text tablename

9 Select the Requires a non-blank value check box. Entering a description is
optional.

10 On the Prompt Type and Values tab, enter the following values in their
corresponding fields for the sample Web service:

Table 2.5 Values for the Prompt

Field Value

Prompt type Text

Method for populating prompt User-entered value

Number of values Single value

Text type Single line

Default value InData

11 Click Next.

12 Click New to open the New Data Source dialog box, where you must define the data
source.

a Enter the following values in their corresponding fields for the sample Web
service:

Table 2.6 Values for the New Data Source

Field Value

Type XML Stream

Label instream

Fileref instream

Expected content type text/xml

b You must also select the Allow rewinding stream check box in the New
Data Source dialog box. Otherwise, an XMLMap would need to be specified
on the XML LIBNAME statement to define the XML schema for instream.

c Click OK to save the data source definition.

13 Review your stored process information, and click Finish to define the metadata
for the stored process.

Writing SAS BI Web Services Using XMLA � Invoke the Stored Process 21

Invoke the Stored Process

SOAP Request
The stored process that we just created can be invoked by SAS BI Web Services for

Java and .NET middle-tier clients. A Web service client invokes the middle-tier Web
service with an Execute() command. The SOAP request body, or client code, follows:

<soap-env:Body>
<Execute>

<Command>
<StoredProcess

name="/Samples/Stored Processes/Sample:
MEANS Procedure Web Service">
<Parameter name="tablename">InData</Parameter>
<Stream name="instream">

<Table>
<InData>

<Column1>1</Column1>
<Column2>20</Column2>
<Column3>99</Column3>

</InData>
<InData>

<Column1>50</Column1>
<Column2>200</Column2>
<Column3>9999</Column3>

</InData>
<InData>

<Column1>100</Column1>
<Column2>2000</Column2>
<Column3>1000000</Column3>

</InData>
</Table>

</Stream>
</StoredProcess>

</Command>
<Properties>

<PropertyList>
<DataSourceInfo>Provider=SASSPS;</DataSourceInfo>

</PropertyList>
</Properties>

</Execute>
</soap-env:Body>

SOAP Response
After you run the client code, the resulting SOAP response body is as follows:

<soap-env:Body>
<ExecuteResponse>

<return>
<root>

<TABLE>

22 Invoke the Stored Process � Chapter 2

<MEAN>
<_TYPE_> 0 </_TYPE_>
<_FREQ_> 3 </_FREQ_>
<_STAT_> N </_STAT_>
<COLUMN3> 3 </COLUMN3>
<COLUMN2> 3 </COLUMN2>
<COLUMN1> 3 </COLUMN1>

</MEAN>
<MEAN>

<_TYPE_> 0 </_TYPE_>
<_FREQ_> 3 </_FREQ_>
<_STAT_> MIN </_STAT_>
<COLUMN3> 99 </COLUMN3>
<COLUMN2> 20 </COLUMN2>
<COLUMN1> 1 </COLUMN1>

</MEAN>
<MEAN>

<_TYPE_> 0 </_TYPE_>
<_FREQ_> 3 </_FREQ_>
<_STAT_> MAX </_STAT_>
<COLUMN3> 1000000 </COLUMN3>
<COLUMN2> 2000 </COLUMN2>
<COLUMN1> 100 </COLUMN1>

</MEAN>
<MEAN>

<_TYPE_> 0 </_TYPE_>
<_FREQ_> 3 </_FREQ_>
<_STAT_> MEAN </_STAT_>
<COLUMN3> 336699.333 </COLUMN3>
<COLUMN2> 740 </COLUMN2>
<COLUMN1> 50.3333333 </COLUMN1>

</MEAN>
<MEAN>

<_TYPE_> 0 </_TYPE_>
<_FREQ_> 3 </_FREQ_>
<_STAT_> STD </_STAT_>
<COLUMN3> 574456.555 </COLUMN3>
<COLUMN2> 1094.89726 </COLUMN2>
<COLUMN1> 49.5008417 </COLUMN1>

</MEAN>
</TABLE>

</root>
</return>

</ExecuteResponse>
</soap-env>

23

C H A P T E R

3
Using Generated Web Services

What Are Generated Web Services? 23
Differences Between XMLA Web Services and Generated Web Services 24

Using Attachments with Generated Web Services 24

Using Prompts with Generated Web Services 26

Sample WSDLs 39

Sample Parameters 39
Generated WSDL for .NET 42

Generated WSDL for Java 44

What Are Generated Web Services?
Starting with SAS 9.2, you can select a set of stored processes in SAS Management

Console and deploy them to the Web Service Maker. The Web Service Maker generates
a new Web service that contains one operation for each stored process that you selected.
A new Web Service Description Language File (WSDL) document is generated when
you deploy the Web service. The generated WSDL document contains all the
information that would be obtained if you were using the Discover method with an
XMLA Web service.

Having all the type information in the WSDL is better suited to most client
applications, and also makes things simpler for the developer. Making the WSDL more
specific to the actual parameters instead of having a generic interface enables you to
simplify the request XML. Making the WSDL more specific also makes the Web service
more easily consumed by standard Web service client applications such as BizTalk,
InfoPath, Word, SharePoint, Excel, AJAX, and WebSphere.

Generated Web services also support attachments. Attachments enable you to send
non-XML (binary) data with a SOAP request or response. Most stored processes
generate binary output (because they create reports that contain HTML and GIF
images). MTOM is currently supported by .NET and the Apache Axis2 Web Service
stack.

Note: If you are using SAS BI Web Services for .NET, attachments have a
content-type of application/octet-stream. The actual content-type of the
attachment is specified in the SOAP body. �

For information about the basic steps for using generated Web services, see “Use
Generated Web Services” on page 4.

24 Differences Between XMLA Web Services and Generated Web Services � Chapter 3

Differences Between XMLA Web Services and Generated Web Services
The major differences between XMLA Web services and generated Web services are:

� Consumption capabilities. Generated Web services have a WSDL that is
customized for each stored process that is in the service. This enables client
application developers to create proxies that can create and read the XML
documents that are exchanged with the service. XMLA services are described in
the Discover call, so proxies must be manually created by the developer for calling
the service.

� Attachments. XMLA Web services can process XML only. Generated Web services
can read and write binary information by using attachments. For example, this
means you can return graphs that are generated by ODS by using generated
services.

� Output parameters. The only allowed output from XMLA is the _WEBOUT
stream. Generated services can return output parameters, the _WEBOUT stream,
packages (by using attachments), and data targets.

� Deployment. To deploy a stored process for XMLA, you set the XMLA Web Service
keyword. To deploy a stored process for a generated service, you use a wizard in
the folder view of SAS Management Console.

� Metadata. Generated Web services have metadata that can be accessed using SAS
Management Console.

Using Attachments with Generated Web Services
Streaming attachments can be defined in metadata as data sources (input

attachments) and data targets (output attachments). Two types of streaming
attachments are available:

XML stream
specifies an attachment that is in-lined in the payload of the SOAP request or
SOAP response. You can also specify a schema for this data. The schema is
included in the generated WSDL.

Note: You can specify single streaming output the same way you do with the
XMLA Web service by selecting Stream as the result capability. However, using
data targets provides more flexibility because you can provide the name of the
attachment as well as provide a schema that matches your expected data. �

generic stream
specifies an out-of-band binary attachment that is included with the SOAP request
or SOAP response in one of the following ways:

� If the attachment data is small, it can be included directly in the payload and
encoded as Base64 binary data.

� If the attachment data is not small, then it is included out-of-band from the
payload as a MIME multi-part related attachment where it is referenced
from the payload via MTOM XOP/Include or SOAP with Attachments
references (swaRef).

The following code is an example of a schema definition for a generated Web service
that expects one generic (binary) stream as an output response:

<element name="stpAllParm1Response">
<complexType>

Using Generated Web Services � Using Attachments with Generated Web Services 25

<sequence>
<element name="stpAllParm1Result">

<complexType>
<sequence>

<element maxOccurs="1" minOccurs="0" name="Streams">
<complexType>

<sequence>
<element maxOccurs="1" minOccurs="0" name="myAttachment">

<complexType>
<sequence>

<element name="Value" type="base64Binary"/>
</sequence>
<attribute name="contentType" type="string"/>

</complexType>
</element>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>

In this generated schema, myAttachment is the name of the element that represents
the output attachment. This name is defined by the user in metadata. This element is
a container for the actual value of that attachment. The content type of the attachment
can be returned as an attribute to further clarify the content of the data within the
attachment.

Package type output is also supported. This type of output produces one or more
attachments and packages them together as a single entity. To enable this type of
output, select Package as the result capability for the stored process.

Attachment definitions in metadata provide a means to establish a contract between
all parties involved in a Web service request. The Web Service Maker Web service
generates a WSDL and schema based on metadata definitions that provide a contract
between the client and generated Web service. The generated Web service enforces that
all required attachments are sent in the request. The SAS code that executes on the
SAS server must be written in accordance to the metadata definitions that it is
representing; otherwise, problems might occur (for example, not reading the correct
stream, and so on) resulting in SAS errors. If a SAS error occurs, the generated Web
service returns a SOAP fault to the client.

26 Using Prompts with Generated Web Services � Chapter 3

Using Prompts with Generated Web Services
When defining stored process parameters, the prompt type definitions are mapped to

Web service schema as follows:

Table 3.1 How Prompt Types Map to Web Service Schema

Prompt Type Parameter Type in Generated WSDL

Text, Date, Time, Color, Data source, File or
directory, Data library

xs:string

Numeric xs:int or xs:double

Ranges have lowerBound and upperBound
elements

xs:type (where type is the appropriate value,
such as int or dateTime, from this table)

xs:string (for lowerBound and upperBound
elements)

Timestamp xs:dateTime

Data source item has path and itemName
elements

xs:string (for path and itemName elements)

OLAP member has label and uniqueName
elements

xs:string (for label and uniqueName
elements)

The xs: prefix in these values is an abbreviation for the namespace being used. This
particular abbreviation stands for the standard XML schema namespace, http://
www.w3.org/2001/XMLSchema. For more information about the XML schema, see
http://www.w3.org/2001/XMLSchema.

For generated Web services, the WSDL that is generated for Java is different from
the WSDL that is generated for .NET. SAS BI Web Services for Java uses facets and
restrictions that are based on prompt constraints. These constraints do not appear in
the WSDL that is generated for .NET. In both cases, values are validated against the
constraints that are defined in metadata. However, SAS BI Web Services for .NET does
not support dynamic prompt validation. (Dynamic prompts allow you to look up
possible prompt values from a data source such as a SAS data set or information map
at run time.)

The following table explains how to format values for the various prompt types:

Using Generated Web Services � Using Prompts with Generated Web Services 27

Table 3.2 Guidelines for Entering Prompt Values (U.S. English Locale)

Prompt Type Guidelines Examples

Text Enter any character value. Blank
spaces and nonprintable characters
can be used, but the value cannot
consist completely of these
characters. Trailing blanks are
stored as part of the value and are
included when the value is validated
against the minimum and maximum
length requirements.

� you are here

� eighty-five

� Bob

Numeric Enter a standard numeric value.

� If you are working with an
integer prompt, then do not
use values with decimal
places. If you use a value with
zeros after the decimal point
(for example, 1.00) for an
integer prompt, then the zeros
and the decimal point will be
removed before the value is
stored (for example, 1.00 will
be stored as 1).

� For prompts that allow
floating-point values, the
unformatted prompt value can
contain up to 15 significant
digits. Values with more than
15 significant digits of
precision are truncated. Note
that formatted values can have
more than 15 significant digits.

� 1.25

� 6000

� 2222.444

28 Using Prompts with Generated Web Services � Chapter 3

Prompt Type Guidelines Examples

Date For dates of type Day, enter values
in one of the following formats:

� ddmmmyyyy

� ddmonth-nameyyyy (Java only)

� mm/dd/yy<yy>

� mm.dd.yy<yy>

� mm-dd-yy<yy>

� mmm/dd/yy<yy>

� mmm.dd.yy<yy>

� mmm-dd-yy<yy>

� mmm dd, yyyy (Java only)

� month-name/dd/yy<yy> (Java
only)

� month-name.dd.yy<yy> (Java
only)

� month-name-dd-yy<yy> (Java
only)

� month-name dd, yyyy

� day-of-week, mmm dd, yy
(Java only)

� day-of-week, mmm dd, yyyy
(Java only)

� day-of-week, month-name dd,
yy (Java only)

� day-of-week, month-name dd,
yyyy

� yyyy/mm/dd (Java only)

� yyyy.mm.dd (Java only)

� yyyy-mm-dd (Java only)

� yyyy.mmm.dd (Java only)

� yyyy-mmm-dd (Java only)

� yyyy.month-name.dd (Java
only)

� yyyy-month-name-dd (Java
only)

� 4APR1860

� 14January1918

� 12/14/45

� 02.15.1956

� 1--1--60

� Oct/02/08

� JUL.20.13

� MAY-13--1924

� Oct 05, 2006

� February/10/00

� March.1.2004

� DECEMBER-25--08

� SEPTEMBER 20, 2010

� FRI, Jan 3, 20

� Tuesday, Jan 15, 2008

� Monday, January 16,
40

� FRIDAY, JANUARY 04,
2008

� 2041/5/13

� 2050.07.25

� 2100--1--1

� 2009.NOV.02

� 2400--Aug-8

� 2101.December.31

� 1919--APRIL-20

Using Generated Web Services � Using Prompts with Generated Web Services 29

Prompt Type Guidelines Examples

Here is an explanation of the syntax:

day-of-week
specifies either the first three
letters of the day of the week
or the full name of the day of
the week (the full name of the
day must be used for values in
.NET). This value is not case
sensitive. (That is, the
lowercase and uppercase
versions of the same character
are considered to be the same.)

dd
specifies a one-digit or
two-digit integer that
represents the day of the
month.

mm
specifies a one-digit or
two-digit integer that
represents the month of the
year.

mmm
specifies the first three letters
of the full name of the month.
This value is not case sensitive.

month-name
specifies the full name of the
month. This value is not case
sensitive. (That is, the
lowercase and uppercase
versions of the same character
are considered to be the same.)

yy or yyyy
specifies a two-digit or
four-digit integer that
represents the year. To refer to
a year that is more than 80
years in the past or 20 years in
the future, use four digits.
Valid values for a four-digit
year range from 1600 to 2400.

30 Using Prompts with Generated Web Services � Chapter 3

Prompt Type Guidelines Examples

For dates of type Week, enter values
in one of the following formats:

� Www yy

� Www yyyy (Java only)

� Weekww yyyy

Here is an explanation of the syntax:

ww
specifies a one-digit or
two-digit integer that
represents the week of the
year. Valid values range from
1 to 52.

yy or yyyy
specifies a two-digit or
four-digit integer that
represents the year. To refer to
a year that is more than 80
years in the past or 20 years in
the future, use four digits.
Valid values for a four-digit
year range from 1600 to 2400.

� W1 08

� W52 1910

� Week 20 2020

� Week 5 2048

Using Generated Web Services � Using Prompts with Generated Web Services 31

Prompt Type Guidelines Examples

For dates of type Month, enter values
in one of the following formats:

� mm/yy<yy>

� mm.yy<yy>

� mm-yy<yy>

� mmm yy<yy> (Java only)

� mmm/yy<yy>

� mmm.yy<yy>

� mmm-yy<yy>

� month-name yy (Java only)

� month-name yyyy

� month-name/yy<yy> (Java
only)

� month-name.yy<yy> (Java
only)

� month-name-yy<yy> (Java
only)

Here is an explanation of the syntax:

mm
specifies a one-digit or
two-digit integer that
represents the month of the
year.

mmm
specifies the first three letters
of the full name of the month.
This value is not case sensitive.

month-name
specifies the full name of the
month. This value is not case
sensitive. (That is, the
lowercase and uppercase
versions of the same character
are considered to be the same.)

yy or yyyy
specifies a two-digit or
four-digit integer that
represents the year. To refer to
a year that is more than 80
years in the past or 20 years in
the future, use four digits.
Valid values for a four-digit
year range from 1600 to 2400.

� 12/1828

� 06.65

� 7--76

� Jul 08

� JUN/2010

� SEP.20

� Oct-2050

� August 20

� OCTOBER 1975

� MARCH/1970

� May.13

� November-18

32 Using Prompts with Generated Web Services � Chapter 3

Prompt Type Guidelines Examples

For dates of type Quarter, enter
values in the following format:

� quarter-name quarter
yy<yy>

Here is an explanation of the syntax:

quarter-name
specifies the quarter of the
year. Valid values are 1st,
2nd, 3rd, and 4th.

yy or yyyy
specifies a two-digit or
four-digit integer that
represents the year. To refer to
a year that is more than 80
years in the past or 20 years in
the future, use four digits.
Valid values for a four-digit
year range from 1600 to 2400.

� 1st quarter 1900

� 2nd quarter 50

� 3rd quarter 12

� 4th quarter 2060

Using Generated Web Services � Using Prompts with Generated Web Services 33

Prompt Type Guidelines Examples

For dates of type Year, enter values
in one of the following formats:

� yy (Java only)

� yyyy

Here is an explanation of the syntax:

yy or yyyy
specifies a two-digit or
four-digit integer that
represents the year. To refer to
a year that is more than 80
years in the past or 20 years in
the future, use four digits.
Valid values for a four-digit
year range from 1600 to 2400.

� 1895

� 86

� 08

� 2035

34 Using Prompts with Generated Web Services � Chapter 3

Prompt Type Guidelines Examples

Time Enter time values in the following
format:

� hh:mm<:ss> <AM | PM>

Here is an explanation of the syntax:

hh
specifies a one-digit or
two-digit integer that
represents the hour of the day.
Valid values range from 0 to
24.

mm
specifies a one-digit or
two-digit integer that
represents the minute of the
hour. Valid values range from
0 to 59.

ss (optional)
specifies a one-digit or
two-digit integer that
represents the second of the
minute. Valid values range
from 0 to 59. If this value is
not specified, then the value
defaults to 00 seconds.

AM or PM (optional)
specifies either the time period
00:01 to 12:00 noon (AM) or
the time period 12:01 to 12:00
midnight (PM). If this value is
not specified and you are using
the 12-hour system for
specifying time, then the value
defaults to AM.

Note: Do not specify
AM or PM if you are using
the 24-hour system for
specifying time. �

� 1:1

� 1:01 AM

� 13:1:1

� 01:01:01 PM

� 22:05

Using Generated Web Services � Using Prompts with Generated Web Services 35

Prompt Type Guidelines Examples

Timestamp Enter timestamp values in the
following format:

� yyyy-mm-ddThh:mm:ss

Here is an explanation of the syntax:

yyyy
specifies a four-digit integer
that represents the year. Valid
values for a four-digit year
range from 1600 to 2400.

mm
specifies a one-digit or
two-digit integer that
represents the month of the
year.

dd
specifies a one-digit or
two-digit integer that
represents the day of the
month.

hh
specifies a one-digit or
two-digit integer that
represents the hour of the day.
Valid values range from 0 to
24.

mm
specifies a one-digit or
two-digit integer that
represents the minute of the
hour. Valid values range from
0 to 59.

ss
specifies a one-digit or
two-digit integer that
represents the second of the
minute. Valid values range
from 0 to 59.

� 2012-11-23T15:30:32

� 2008-09-09T01:01:01

36 Using Prompts with Generated Web Services � Chapter 3

Prompt Type Guidelines Examples

Color Enter color values in one of the
following formats:

� CXrrggbb

� 0xrrggbb

� #rrggbb

Here is an explanation of the syntax:

rr
specifies the red component.

gg
specifies the green component.

bb
specifies the blue component.

Each component should be specified
as a hexadecimal value that ranges
from 00 to FF, where lower values
are darker and higher values are
brighter.

Bright red

� CXFF0000

� 0xFF0000

� #FF0000

Black

� CX000000

� 0x000000

� #000000

White

� CXFFFFFF

� 0xFFFFFF

� #FFFFFF

Data source Enter the name and location of a
data source in the following format:

� /folder-name-1/<.../
folder-name-n/
>data-source-name(type)

Here is an explanation of the syntax:

/folder-name-1/<.../
folder-name-n/>

specifies the location of the
data source.

data-source-name
specifies the name of the data
source.

type
is the type of data source. The
following values are valid
unless otherwise noted:
Table, InformationMap,
and Cube. Use
InformationMap for
specifying either relational or
OLAP information maps.

� /Shared Data/Tables/
OrionStar/
Customers(Table)

� /Users/MarcelDupree/
My Folder/My
Information
Map(InformationMap)

� /MyCustomRepository/
More Data/
Order_Facts(Table)

Using Generated Web Services � Using Prompts with Generated Web Services 37

Prompt Type Guidelines Examples

File or directory Enter the name and location of a file
or directory in the following format:

� directory-
specification<filename>

Here is an explanation of the syntax:

directory-specification
specifies the location of the file
or directory in the file system
of a SAS server.

filename
specifies the name of the file.
This value is required only if
the prompt is a file prompt.
Depending on the operating
environment that the SAS
server runs in, you might need
to put a forward slash (/) or a
backslash (\) between the
directory specification and the
name of the file.

� C:\Documents and
Settings\All
Users\Documents\myfile.txt

� \\myserver.internal.com\Documents
and Settings\All
Users\Documents\myfile.txt

� \\node1234\Documents
and Settings\All
Users\Documents

Data library Enter the name and location of a
data library in the following format:

� /folder-name-1/<.../
folder-name-n/
>library-name(Library)

Here is an explanation of the syntax:

/folder-name-1/<.../
folder-name-n/>

specifies the location of the
library.

library-name
specifies the name of the
library.

� /Data/Libraries/
Customer Data
Library(Library)

� /MyCustomRepository/
More Data/
OracleData(Library)

38 Using Prompts with Generated Web Services � Chapter 3

Prompt Type Guidelines Examples

Data source item For the path element, enter the path
for a data source item in the
following format:

� /folder-name-1/<.../
folder-name-n/
>data-source-name(type)

Here is an explanation of the syntax:

/folder-name-1/<.../
folder-name-n/>

specifies the location of the
data source.

data-source-name
specifies the name of the data
source.

type
is the type of data source. The
following values are valid
unless otherwise noted:
Table or InformationMap.
Use InformationMap for
specifying either relational or
OLAP information maps.

For the itemName element, enter
the name for the data source item in
the following format:

� item-name

Here is an explanation of the syntax:

item-name
specifies the name of the data
source item. This is the name
of a column in a table or a data
item in an information map.

path

� /Shared Data/Tables/
MYDATA(Table)

itemName

� Year

OLAP member For the uniqueName element, enter
the name of the OLAP member.

For the label element, enter the label
for the OLAP member.

uniqueName

� PRICEAVG

label

� Average Price

Note: An anonymous user cannot launch workspace servers. Dynamic prompt
validation requires use of workspace servers. Thus, anonymous users will not be able to
use all stored processes. �

Prompt definitions in metadata provide a means to establish a contract between all
parties that are involved in a Web service request. The Web Service Maker Web service
generates a WSDL and schema based on metadata definitions that provide a contract
between the client and generated Web service. Mature client programming tools help
assist clients in formulating valid requests. The generated Web service also validates
client requests via the SAS prompting framework. The SAS code that executes on the

Using Generated Web Services � Sample Parameters 39

SAS server must be written in accordance to the metadata definitions that it
represents. Otherwise, problems occur (for example, reading the wrong input
parameter, expecting a different type, and so on) that result in SAS errors. If a SAS
error occurs, then the generated Web service returns a SOAP fault to the client.

Sample WSDLs

Sample Parameters

The following table contains names, prompt types, and restrictions for sample
parameters for a stored process.

Table 3.3 Sample Stored Process Parameters

Prompt Name Prompt Type Restrictions

top_level Text Single value

fixed Text Read-only values

Single value

Default value: fixed
default

simple_string Text Single value

invisible Text Hide from user

Single value

Default value: hidden val

default Text Single value

Default value: def val

static_list Text Multiple ordered values

max_length Text Single value

Maximum length: 6

mult_entry Text Multiple values

Maximum value count: 5

text_range Text range Default range from: aaa

Default range to: zzz

req_string Text Requires a non-blank value

Single value

simple_int Numeric (integer) Single value

Allows only integer values

fixed_int Numeric (integer) Read-only values

Single value

Allows only integer values

Default value: 12345

40 Sample Parameters � Chapter 3

Prompt Name Prompt Type Restrictions

def_int Numeric (integer) Single value

Allows only integer values

Default value: 12345

int_list Numeric (integer) Multiple ordered values

Allows only integer values

int_mult Numeric (integer) Requires a non-blank value

Multiple values

Allows only integer values

Minimum value count: 1

Maximum value count: 5

lim_int Numeric (integer) Single value

Allows only integer values

Minimum value allowed: 1

Maximum value allowed: 99

req_int Numeric (integer) Requires a non-blank value

Single value

Allows only integer values

Default value: 9999

simple_float Numeric (double) Single value

def_float Numeric (double) Single value

Minimum number of decimal
places displayed: 1

Maximum number of decimal
places displayed:3

Minimum value allowed: 1.0

Maximum value allowed:
100.0

Default value: 99.99

float_list Numeric (double) Multiple values

Minimum number of decimal
places displayed: 1

Maximum number of decimal
places displayed: 3

float_mult Numeric (double) Multiple values

Maximum number of decimal
places displayed: 4

Maximum value count: 5

Maximum value allowed:
999999.0

lim_float Numeric (double) Single value

Minimum value allowed: 10.0

Maximum value allowed: 20.0

Using Generated Web Services � Sample Parameters 41

Prompt Name Prompt Type Restrictions

req_float Numeric (double) Requires a non-blank value

Single value

Default value: 99.0

simple_color Color

def_color Color Default value: CXFF0000

fixed_color Color Read-only values

Default value: CX0000FF

req_color Color Requires a non-blank value

Default value: CXFFFF00

simple_date Date Single value

def_date Date Single value

Default value: Today

date_list Date Multiple values

Minimum value allowed:
October 01, 2007

Maximum value allowed: N
days from now (200)

date_range Date range Minimum value allowed:
October 01, 2007

Maximum value allowed: N
days from now (300)

req_date Date Requires a non-blank value

Single value

Include special values: Missing
values

Default value: Week 50 2007

simple_time Time

fixed_time Time Read-only values

Default value: Current hour

def_time Time Minimum value allowed: N
hours ago (1)

Maximum value allowed: N
hours from now (1)

Default value: Current hour

timerange Time range Default range type: Custom

Default range from: N hours
ago (10)

Default range to: N hours
from now (1)

file1 File or directory

data_source Data source Default value: /Stored
Processes/CARS(Table)

42 Generated WSDL for .NET � Chapter 3

Prompt Name Prompt Type Restrictions

data_source_item Data source item Single value

Default value: Make [Make]
[/Stored Processes/CARS]

data_library Data library Default value library: /Stored
Processes/
WsmSASHelp(Library)

Default value libref: myref

olap_member OLAP member Single value

Generated WSDL for .NET
If a Web service is generated for a stored process with these sample parameters, the

following WSDL is generated for .NET:

<wsdl:types>

<s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/AllPromptTypes">

<s:import namespace="http://support.sas.com/xml/namespace/biwebservices/attachments-9.2" />

<s:element name="stpAllParm1">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="top_level" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="simple_string" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" default="def val" name="default" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="static_list" type="tns:ArrayOfString" />

<s:element minOccurs="0" maxOccurs="1" name="max_length" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="mult_entry" type="tns:ArrayOfString" />

<s:element minOccurs="0" maxOccurs="1" name="text_range" type="tns:GenericRangeSerializerOfString" />

<s:element minOccurs="0" maxOccurs="1" name="req_string" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="simple_int" type="s:int" />

<s:element minOccurs="0" maxOccurs="1" default="12345" name="def_int" type="s:int" />

<s:element minOccurs="0" maxOccurs="1" name="int_list" type="tns:ArrayOfInt" />

<s:element minOccurs="0" maxOccurs="1" name="int_mult" type="tns:ArrayOfInt" />

<s:element minOccurs="0" maxOccurs="1" name="lim_int" type="s:int" />

<s:element minOccurs="0" maxOccurs="1" default="9999" name="req_int" type="s:int" />

<s:element minOccurs="0" maxOccurs="1" name="simple_float" type="s:double" />

<s:element minOccurs="0" maxOccurs="1" default="99.99" name="def_float" type="s:double" />

<s:element minOccurs="0" maxOccurs="1" name="float_list" type="tns:ArrayOfDouble" />

<s:element minOccurs="0" maxOccurs="1" name="float_mult" type="tns:ArrayOfDouble" />

<s:element minOccurs="0" maxOccurs="1" name="lim_float" type="s:double" />

<s:element minOccurs="0" maxOccurs="1" default="99" name="req_float" type="s:double" />

<s:element minOccurs="0" maxOccurs="1" name="simple_color" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="def_color" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="req_color" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="simple_date" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" default="D0D" name="def_date" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="date_list" type="tns:ArrayOfString" />

<s:element minOccurs="0" maxOccurs="1" name="date_range" type="tns:GenericRangeSerializerOfString" />

<s:element minOccurs="0" maxOccurs="1" name="req_date" nillable="true">

<s:complexType>

<s:simpleContent>

<s:extension base="s:string">

Using Generated Web Services � Generated WSDL for .NET 43

<s:attribute name="missing" use="optional">

<s:simpleType>

<s:restriction base="s:string">

<s:minLength value="1" />

<s:maxLength value="1" />

<s:pattern value="[.A-Z_]" />

</s:restriction>

</s:simpleType>

</s:attribute>

</s:extension>

</s:simpleContent>

</s:complexType>

</s:element>

<s:element minOccurs="0" maxOccurs="1" name="simple_time" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" default="H0H" name="def_time" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="timerange" type="tns:GenericRangeSerializerOfString" />

<s:element minOccurs="0" maxOccurs="1" name="file1" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="data_source" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="data_source_item">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="path" type="s:string" />

<s:element minOccurs="1" maxOccurs="1" name="itemName" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element minOccurs="0" maxOccurs="1" name="data_library" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="olap_member">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="uniqueName" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="label" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

</s:sequence>

</s:complexType>

</s:element>

<s:complexType name="ArrayOfString">

<s:sequence>

<s:element minOccurs="0" maxOccurs="unbounded" name="string" nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

<s:complexType name="GenericRangeSerializerOfString">

<s:complexContent mixed="false">

<s:extension base="tns:ARangeTypeSerializer">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="lowerBound" type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="upperBound" type="s:string" />

</s:sequence>

</s:extension>

</s:complexContent>

</s:complexType>

<s:complexType name="ARangeTypeSerializer" />

44 Generated WSDL for Java � Chapter 3

<s:complexType name="ArrayOfInt">

<s:sequence>

<s:element minOccurs="0" maxOccurs="unbounded" name="int" type="s:int" />

</s:sequence>

</s:complexType>

<s:complexType name="ArrayOfDouble">

<s:sequence>

<s:element minOccurs="0" maxOccurs="unbounded" name="double" type="s:double" />

</s:sequence>

</s:complexType>

<s:element name="stpAllParm1Response">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" ref="s1:stpAllParm1Result" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

<s:schema elementFormDefault="qualified" targetNamespace=

"http://support.sas.com/xml/namespace/biwebservices/attachments-9.2">

<s:element name="stpAllParm1Result" type="s1:StreamType" />

<s:complexType name="StreamType">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="Value" type="s:base64Binary" />

</s:sequence>

<s:attribute name="name" type="s:string" />

<s:attribute name="contentType" type="s:string" />

</s:complexType>

</s:schema>

</wsdl:types>

Generated WSDL for Java

If a Web service is generated for a stored process with these sample parameters, the
following WSDL is generated for Java:

<types>

<schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/AllPromptTypes"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://tempuri.org/AllPromptTypes">

<annotation>

<documentation>SAS BI Web Services generated schema</documentation>

</annotation>

<element name="stpAllParm1">

<complexType>

<sequence>

<element name="parameters" type="tns:stpAllParm1Parameters"/>

</sequence>

</complexType>

</element>

<complexType name="stpAllParm1Parameters">

<sequence>

<element maxOccurs="1" minOccurs="0" name="top_level" type="string"/>

<element maxOccurs="1" minOccurs="0" name="simple_string" type="string"/>

<element default="def val" maxOccurs="1" minOccurs="0" name="default" type="string"/>

Using Generated Web Services � Generated WSDL for Java 45

<element maxOccurs="1" minOccurs="0" name="static_list">

<complexType>

<sequence>

<element maxOccurs="unbounded" minOccurs="0" name="Item" type="string"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="max_length">

<simpleType>

<restriction base="string">

<maxLength value="6"/>

</restriction>

</simpleType>

</element>

<element maxOccurs="1" minOccurs="0" name="mult_entry">

<complexType>

<sequence>

<element maxOccurs="5" minOccurs="0" name="Item" type="string"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="text_range">

<complexType>

<sequence>

<element name="LowerBound" type="string"/>

<element name="UpperBound" type="string"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="1" name="req_string" type="string"/>

<element maxOccurs="1" minOccurs="0" name="simple_int" type="int"/>

<element default="12345" maxOccurs="1" minOccurs="0" name="def_int" type="int"/>

<element maxOccurs="1" minOccurs="0" name="int_list">

<complexType>

<sequence>

<element maxOccurs="unbounded" minOccurs="0" name="Item" type="int"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="1" name="int_mult">

<complexType>

<sequence>

<element maxOccurs="5" minOccurs="1" name="Item" type="int"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="lim_int">

<simpleType>

<restriction base="int">

<minInclusive value="1"/>

<maxInclusive value="99"/>

</restriction>

</simpleType>

</element>

46 Generated WSDL for Java � Chapter 3

<element default="9999" maxOccurs="1" minOccurs="1" name="req_int" type="int"/>

<element maxOccurs="1" minOccurs="0" name="simple_float" type="double"/>

<element default="99.99" maxOccurs="1" minOccurs="0" name="def_float">

<simpleType>

<restriction base="double">

<minInclusive value="1.0"/>

<maxInclusive value="100.0"/>

</restriction>

</simpleType>

</element>

<element maxOccurs="1" minOccurs="0" name="float_list">

<complexType>

<sequence>

<element maxOccurs="unbounded" minOccurs="0" name="Item" type="double"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="float_mult">

<complexType>

<sequence>

<element maxOccurs="5" minOccurs="0" name="Item">

<simpleType>

<restriction base="double">

<maxInclusive value="999999.0"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="lim_float">

<simpleType>

<restriction base="double">

<minInclusive value="10.0"/>

<maxInclusive value="20.0"/>

</restriction>

</simpleType>

</element>

<element default="99.0" maxOccurs="1" minOccurs="1" name="req_float" type="double"/>

<element maxOccurs="1" minOccurs="0" name="simple_color" type="string"/>

<element default="cxff0000" maxOccurs="1" minOccurs="0" name="def_color" type="string"/>

<element default="cxffff00" maxOccurs="1" minOccurs="1" name="req_color" type="string"/>

<element maxOccurs="1" minOccurs="0" name="simple_date" type="string"/>

<element default="D0D" maxOccurs="1" minOccurs="0" name="def_date" type="string"/>

<element maxOccurs="1" minOccurs="0" name="date_list">

<complexType>

<sequence>

<element maxOccurs="unbounded" minOccurs="0" name="Item">

<simpleType>

<restriction base="string">

<enumeration value="October 05, 2007"/>

<enumeration value="October 31, 2007"/>

</restriction>

</simpleType>

Using Generated Web Services � Generated WSDL for Java 47

</element>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="date_range">

<complexType>

<sequence>

<element name="LowerBound" type="string"/>

<element name="UpperBound" type="string"/>

</sequence>

</complexType>

</element>

<element default="Week 50 2007" maxOccurs="1" minOccurs="1" name="req_date" nillable="true">

<complexType>

<simpleContent>

<extension base="string">

<attribute name="missing">

<simpleType>

<restriction base="string">

<pattern value="[_.A-Z]"/>

</restriction>

</simpleType>

</attribute>

</extension>

</simpleContent>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="simple_time" type="string"/>

<element default="H0H" maxOccurs="1" minOccurs="0" name="def_time" type="string"/>

<element maxOccurs="1" minOccurs="0" name="timerange">

<complexType>

<sequence>

<element name="LowerBound" type="string"/>

<element name="UpperBound" type="string"/>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="file1" type="string"/>

<element maxOccurs="1" minOccurs="0" name="data_source" type="string"/>

<element maxOccurs="1" minOccurs="0" name="data_source_item">

<complexType>

<sequence>

<element maxOccurs="unbounded" name="DataSourceItem">

<complexType>

<sequence>

<element maxOccurs="1" minOccurs="1" name="Path" type="string"/>

<element maxOccurs="1" minOccurs="1" name="ItemName" type="string"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

<element maxOccurs="1" minOccurs="0" name="data_library" type="string"/>

48 Generated WSDL for Java � Chapter 3

<element maxOccurs="1" minOccurs="0" name="olap_member">

<complexType>

<sequence>

<element maxOccurs="unbounded" name="OlapMember">

<complexType>

<sequence>

<element maxOccurs="1" minOccurs="1" name="UniqueName" type="string"/>

<element maxOccurs="1" minOccurs="0" name="Label" type="string"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

<element name="stpAllParm1Response">

<complexType>

<sequence>

<element name="stpAllParm1Result">

<complexType>

<sequence>

<element maxOccurs="1" minOccurs="0" name="Streams">

<complexType>

<sequence>

<element maxOccurs="1" minOccurs="0" name="_WEBOUT">

<complexType>

<sequence>

<element name="Value" type="base64Binary"/>

</sequence>

<attribute name="contentType" type="string"/>

</complexType>

</element>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

</types>

49

Index

A
administration

.NET versus Java 2
attachments 24
authentication 5

C
clients

.NET versus Java 3
Command parameter

Execute method 17

D
data sources 10

RequestType parameter and 11
data targets 24
Discover method 11

Properties parameter 14
RequestType parameter 11
Restrictions parameter 14
Result parameter 16
syntax 11

DISCOVER_DATASOURCES request type 12

E
error codes 6
Execute method 16

Command parameter 17
Properties parameter 17
Result parameter 18
syntax 16

G
generated Web services 23

attachments with 24
prerequisites for using 4
prompts with 26
versus XMLA Web services 24

generic streams 10, 24

I
installation

.NET versus Java 2

J
Java

sample generated WSDL for 44
versus .NET 2

M
MEANS procedure 18
metadata definitions 19

N
.NET

sample generated WSDL for 42
versus Java 2

O
ODS 10

P
prompts 26
Properties parameter

Discover method 14
Execute method 17

R
RequestType parameter

Discover method 11
Restrictions parameter

Discover method 14
Result parameter

Discover method 16
Execute method 18

S
SAS code

configuring as stored process 9
SAS Metadata Repository

retrieving information from 11
SAS programs

writing for XMLA Web services 9
security 5
stacks 2

50 Index

stored processes
configuring SAS code as 9
generated Web services and 23
invoking 21
running 16
sample MEANS procedure 18
writing 18

STOREDPROCESS_PARAMETERS request type 13
%STPBEGIN macro 10
%STPEND macro 10
synchronization 4

W
Web Service Description Language File

See WSDLs
Web services 1

See also generated Web services
See also XMLA Web services
creating 3

.NET versus Java 2

prerequisites for using 3

_WEBOUT 10

WSDLs 23

attachments and 24

generated Web servers versus XMLA 24

prompts and 26

sample generated WSDL for Java 44

sample generated WSDL for .NET 42

sample parameters 39

X
XML streams 10, 24

XMLA Web services 3

synchronizing items 4

versus generated Web services 24

writing SAS programs for 9

_XMLSCHEMA macro 10

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	What’s New
	Overview
	Generated Web Services
	General Enhancements

	Overview of SAS BI Web Services
	What Are SAS BI Web Services?
	Deciding Between .NET and Java
	Installation and Administration Differences
	Client Differences

	Creating SAS BI Web Services
	Use Web Services: Prerequisite
	Use XMLA Web Services
	Use Generated Web Services

	Overview of Security for Web Services
	Understanding Error Codes

	Writing SAS BI Web Services Using XMLA
	Writing SAS Programs for XMLA Web Services
	Discover Method
	Overview of the Discover Method
	RequestType
	Restrictions
	Properties
	Result

	Execute Method
	Overview of the Execute Method
	Command
	Properties
	Result

	Sample PROC MEANS Using SAS BI Web Services
	Sample Overview
	Write the Stored Process
	Define the Metadata
	Invoke the Stored Process

	Using Generated Web Services
	What Are Generated Web Services?
	Differences Between XMLA Web Services and Generated Web Services
	Using Attachments with Generated Web Services
	Using Prompts with Generated Web Services
	Sample WSDLs
	Sample Parameters
	Generated WSDL for .NET
	Generated WSDL for Java

	Index

