
SAS/Warehouse
 Administrator ® 2.0
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2002.
SAS/Warehouse Administrator® 2.0 User’s Guide. Cary, NC: SAS Institute Inc.

SAS/Warehouse Administrator® 2.0 User’s Guide
Copyright © 2002, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-579-9
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, June 2002
2nd printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 Introduction 1

Chapter 1 Using This Document 3
Purpose of This Document 3

Intended Audience 3

Other SAS/Warehouse Administrator Documentation 3

Chapter 2 Overview of SAS/Warehouse Administrator 5
What Is a Data Warehouse? 5

What Is SAS/Warehouse Administrator? 6

SAS/Warehouse Administrator Data Flow 7

Tour of the Main Windows 9

Task Summaries 14

Customizing SAS/Warehouse Administrator 17

Starting SAS/Warehouse Administrator 18

P A R T 2 Planning 19

Chapter 3 Planning Your Hardware and Software 21
Overview 21

General Hardware Requirements 21

General Software Requirements 22

Metadata Host Configuration 23

Data Host Configuration 27

What’s Next 39

Chapter 4 Planning Your Data Stores and Processes 41
Overview 41

Groups and Data Stores 42

Jobs 50

Processes 52

Valid Inputs and Outputs for Data Stores 55

What’s Next 57

P A R T 3 Implementation 59

Chapter 5 Maintaining Environments 61
Overview 61

Working with Existing Environments 62

Preparing to Create Local or Remote Warehouse Environments 64

Example: Creating a Local Warehouse Environment 67

iv

Example: Creating a Remote Warehouse Environment 68

Creating a Start Method for an Environment 71

SAS Startup Files and SAS/Warehouse Administrator 72

SAS System Options and SAS/Warehouse Administrator 73

What’s Next 74

Chapter 6 Maintaining Global Metadata 75
Overview 76

Using the Define Items Used Globally Window 76

SAS Library Definitions 77

Host Definitions 86

DBMS Connection Profiles 95

Contact Records 97

Scheduling Server Definitions 99

What’s Next 106

Chapter 7 Registering Data Sources 107
Overview 107

Preparing to Create ODDs 109

Example: Creating an ODD Group 109

Example: Creating an ODD That Registers the Location of a Data Source 111

Example: Creating an ODD with a User-Written Load Step 115

Keeping ODD Column Metadata Current 130

Accessing Data in ERP Systems 130

What’s Next 131

Chapter 8 Maintaining Data Warehouses and Subjects 133
Overview 133

Preparing to Create Local or Remote Data Warehouses 134

Example: Creating a Local Data Warehouse 134

Example: Creating a Remote Data Warehouse 138

Example: Creating a Subject 142

What’s Next 144

Chapter 9 Maintaining Data Tables 145
Overview 145

Preparing to Create Data Tables 146

Example: Creating a Data Group 147

Example: Creating a Data Table 148

What’s Next 154

Chapter 10 Maintaining Detail Logical Tables and Detail Tables 155
Overview 155

Preparing to Create Detail Tables 156

Example: Creating a Detail Logical Table as a Grouping Element for Detail
Tables 157

Example: Creating a Detail Table 158

v

Example: Linking from a Detail Logical Table to an Existing Detail Table 164

Example: Creating a Detail Logical Table as a View to Multiple Detail Tables 165

What’s Next 173

Chapter 11 Maintaining OLAP Groups and OLAP Summary Data Stores 175
Overview 176

Preparing to Create Summary Data Stores 177

Analyzing Detail Data for an OLAP Application 178

Summarizing Data Using SAS/Warehouse Administrator 182

Example: Creating Summary Data for a HOLAP Application 186

Example: Creating Summary Data for a MOLAP Application 208

Example: Adding a Frequency Count to an OLAP Summary Data Store 221

Example: Using One Analysis Column for Multiple Statistic Columns 223

Example: Using DATE/TIME Stored Expression to Split Date Values 227

Example: Using an Input Column for Multiple Summary Roles 232

What’s Next 238

Chapter 12 Maintaining Information Marts 239
Overview 239

Preparing to Create Information Marts 240

Example: Creating an Information Mart 241

Example: Creating an Information Mart Item 242

Example: Creating an Information Mart File 245

P A R T 4 General Tasks 249

Chapter 13 Maintaining Jobs 251
Overview 252

Using the Process Editor Window 253

Example: Defining a Job for which SAS/Warehouse Administrator Generates
Code 256

Example: Defining a Job for Which User-Written Code is Supplied 261

Example: Executing a Job 264

Example: Defining a Job with Multiple Output Tables and Input Sources in a Process
Flow 265

Example: Adding a User Exit Process to a Process Flow 270

Example: Adding a Data Transfer Process to a Process Flow 272

Example: Adding a Record Selector Process to a Process Flow 274

Example: Adding a Job Group 276

Example: Moving Jobs 278

Chapter 14 Maintaining Processes 281
Overview 281

User-Written Code 282

Using the Process Library 282

Example: Defining Mapping Process Properties for One-to-One Mapping 283

vi

Example: Defining Mapping Process Properties to Transform Data 288

Example: Defining User Exit Process Properties 290

Example: Defining Data Transfer Process Properties to Move Data from Remote Host to
Local Host 294

Example: Defining Record Selector Process Properties 298

Example: Editing Load Process Properties to Supply User-Written Code 301

Example: Editing Load Process Properties for SAS/Warehouse Administrator Generated
Code 304

Chapter 15 Scheduling Jobs 305
Overview 305

Preparing for Job Scheduling 305

Registering Jobs Information Libraries 306

Scheduling Jobs 306

Viewing Scheduled Jobs 311

Chapter 16 Exploiting Warehouse Metadata 313
Overview: Metadata Repositories 313

Metadata Details View in the Explorer 314

Metadata Search Facility 314

MetaSpace Explorer 315

Exporting Metadata 315

Example: Exporting Metadata to SAS/EIS Software 316

P A R T 5 Appendices 321

Appendix 1 Converting Metadata for Environments and Warehouses 323
Overview 323

Creating a Directory Structure for the New Environment 324

Inspecting the Pathname for the Old Environment 325

Converting a Release 1.x Environment and Its Warehouses 325

Opening a Converted Environment for the First Time 327

Verifying Local Resources in the Converted Environment 327

Process Flows in the New Process Editor 328

Appendix 2 Adding the Example Environment 333
Overview 333

PC Host Instructions 333

UNIX Host Instructions 334

Appendix 3 Customizing the SAS/Warehouse Administrator Interface 337
Overview 337

Add-In Tools 337

Importing Column Metadata 340

User-Defined Formats and Informats 341

Customizing the Components List for the Expression Builder Window 342

vii

Appendix 4 Metadata Export Reference 347
Overview 347

SAS Data Sets Exported for Shared Metadata 347

SAS Data Sets Exported for Groups and Data Stores 349

Add-In Metadata Exporters 351

Appendix 5 Add-in Code Generators and the Process Library 355
Add-In Code Generator Technical Reference 355

Process Library Technical Reference 366

Appendix 6 Recommended Reading 375
Recommended Reading 375

Glossary 377

Index 389

viii

1

P A R T1

Introduction

Chapter 1.Using This Document 3

Chapter 2.Overview of SAS/Warehouse Administrator 5

2

3

C H A P T E R

1
Using This Document

Purpose of This Document 3

Intended Audience 3
Other SAS/Warehouse Administrator Documentation 3

Purpose of This Document
This document, together with the online help, describes how to build data

warehouses with SAS/Warehouse Administrator software. The document describes data
warehousing concepts and gives examples of how warehouse elements can be
implemented. The online help describes SAS/Warehouse Administrator windows, and it
explains the general steps for creating groups, data stores, and processes.

Intended Audience
This document is intended for data warehouse administrators who have a thorough

knowledge of Base SAS software on UNIX or PC platforms. Here are the main SAS
features and products that you will need to know:

� SAS engines
� LIBNAME statement
� FILE and INFILE statements
� DATA step views
� PROC SQL views
� SAS/ACCESS software (PROC ACCESS and PROC DBLOAD)
� SAS/CONNECT software.

For details about these features and products, see the online documentation for Base
SAS, SAS/ACCESS, and SAS/CONNECT, as well as the relevant hardcopy documents
in the SAS publications catalog.

Other SAS/Warehouse Administrator Documentation
The online help for SAS/Warehouse Administrator describes its windows and

summarizes the main tasks that you can perform using the product. There are several
ways to display the online help.

To display the table of contents for SAS/Warehouse Administrator help:

4 Other SAS/Warehouse Administrator Documentation Chapter 1

1 Run SAS.

2 From the menu bar, select Help, then SAS System Help.
3 In the left panel of the help window, open Help on SAS Software Products,

then scroll down to the SAS/Warehouse Administrator topic and expand it.

To display the help for an active window, click its Help button. If the window does
not have a Help button, from the SAS menu bar, select Help, then Using This
Window.

To display task-oriented topics that are associated with certain SAS/Warehouse
Administrator windows:

1 Display help for the window as described above.

2 Scroll down to the bottom of the topic. Some windows have a link to a
“Maintaining...” topic, which summarizes how to perform tasks that are associated
with the window.

An online tutorial entitled Getting Started with SAS/Warehouse Administrator
Software is available from the SAS Web site. This tutorial shows you how to add a new
Warehouse Environment and walks you through creating a sample Data Warehouse.

Here are two ways to access the tutorial:

� Run SAS/Warehouse Administrator. From the desktop, position the cursor on the
Getting Started icon, click the right mouse button and select Run.

� Run SAS/Warehouse Administrator. From the desktop, open a Warehouse
Environment in the SAS/Warehouse Administrator Explorer. In the Explorer, from
the menu bar, select Help, then Getting Started with SAS/Warehouse
Administrator Software.

If you want to write programs that read or write SAS/Warehouse Administrator
metadata without using the user interface, see SAS/Warehouse Administrator 2.3
Metadata API Reference.

5

C H A P T E R

2
Overview of SAS/Warehouse
Administrator

What Is a Data Warehouse? 5

What Is SAS/Warehouse Administrator? 6
Managing through Metadata 6

SAS/Warehouse Administrator Data Flow 7

Tour of the Main Windows 9
Displaying Help for the Main Windows 9

Desktop 9

Explorer 10
Define Items Used Globally Window 11

Process Editor 12
Job Properties 13

Load Generation/Execution Properties 14

Task Summaries 14
Plan Your Data Warehouse 14

Create a Data Warehouse Environment 15

Create a Data Warehouse 15
Maintain a Data Warehouse 16

Exploit a Data Warehouse 17
Customizing SAS/Warehouse Administrator 17

Starting SAS/Warehouse Administrator 18

What Is a Data Warehouse?

A data warehouse is a collection of data that is extracted from one or more sources
for the purpose of query and analysis. For example, a toy company might create a data
warehouse that integrates sales, product, and customer information from various
sources. This collection would help the company analyze how toy sales are affected by
geography, by different promotions, by the gender and age of the customer, and by other
factors.

A data mart is a limited data warehouse that is often designed to meet the needs of a
particular department or individual. A data mart is more limited in scope than a data
warehouse, which typically contains information used by more than one department.

Note: Terms that are in italics are defined in the glossary. �

6 What Is SAS/Warehouse Administrator? Chapter 2

What Is SAS/Warehouse Administrator?
SAS/Warehouse Administrator is an application that provides a visual environment

for managing data warehouses. Using the windows in this application, you can specify
metadata that defines data sources, data stores, code libraries, and other warehouse
resources. SAS/Warehouse Administrator then uses this metadata to generate or
retrieve the code that extracts, transforms, and loads the data into your warehouse.

Through its metadata, SAS/Warehouse Administrator provides a single point of
control for managing

� data sources, on any platform accessible to SAS, in any format accessible to SAS
� data stores, on any platform accessible to SAS, in any format accessible to SAS
� Process Flows, which define how data moves from sources to targets
� source code generated by SAS/Warehouse Administrator
� user-written source code retrieved from code libraries
� Jobs, which execute the code that moves data from sources to targets.

SAS/Warehouse Administrator also provides
� a Process Library, which contains routines that can be included in the Process

Flows for data stores in your warehouse. For example, there are routines that
standardize addresses, and there are routines that generate the code required to
load a warehouse table into a DBMS, such as Oracle, using native loading software.

� Metadata Exporters, which export SAS/Warehouse Administrator metadata to
other applications.

� a Metadata API, which enables you to write client applications that read or write
SAS/Warehouse Administrator metadata.

You can also download SAS/Warehouse Administrator tools and utilities from the
SAS Web site. Here are a few examples:

� Add-in tools that generate the metadata for a table by reading a data model, or
that trace the impact of a change in a warehouse data store.

� The MetaSpace Explorer, which is a Java applet that enables you to browse
metadata that has been exported by SAS/Warehouse Administrator.

� Publish and Subscribe add-ins that enable SAS/Warehouse Administrator to
publish a package of information whenever a Subject or similar group is updated.
You can now publish a package of information
� directly to email account(s)
� directly to message queue(s)
� to subscribers of one or more channels (associated with a warehouse object or

explicitly specified with the defined package add-in)
� to an archive directory (useful with for historical snapshots).

For details about many of the features previously described, see the online help. To
view the online help for these features, from the left panel of the SAS Help window,
select Help on SAS Software Products, then SAS/Warehouse Administrator, then
Using SAS/Warehouse Administrator, then Overview, then Overview of SAS/
Warehouse Administrator.

Managing through Metadata
Metadata is a definition or description of data. The physical metadata for a table

might specify a certain number of rows and columns, with certain transformations

Overview of SAS/Warehouse Administrator SAS/Warehouse Administrator Data Flow 7

applied to some of the columns. The business metadata for a table might describe the
purpose of the table and contact information for the person who is responsible for the
accuracy of the information in the table.

SAS/Warehouse Administrator uses the metadata that you enter to generate or
retrieve the code that creates your data warehouse. This metadata-driven approach
might seem inefficient when compared to writing a program to perform a given task.
However, SAS/Warehouse Administrator offers the following advantages over writing
and managing individual programs:

� a single point of control for managing data warehouse resources because the
resources are defined in SAS/Warehouse Administrator metadata.

� a consistent and documented flow of information across computing platforms.
� because the data flows are documented, you can trace information from its source

through the entire data warehouse. Documentation also makes it easier to analyze
and improve data flows, resulting in better data quality.

� metadata can be used to automate many tasks. For example, if you have entered
the appropriate metadata, you can have SAS/Warehouse Administrator generate
the code to create and load a data store. If you have entered the appropriate
metadata, you can use the Impact Analysis add-in to trace the impact of a
proposed change to a data store.

� metadata can be used as a “view” on the data warehouse. For example, you can
export the metadata for a data warehouse and make it available to business
analysts, who might need to answer questions, such as What is the origin of the
data in this report? What does this column mean? How is it derived?.

SAS/Warehouse Administrator Data Flow
The following figure illustrates the flow of information through a data warehouse

managed by SAS/Warehouse Administrator.

8 SAS/Warehouse Administrator Data Flow Chapter 2

Figure 2.1 Data Flow Through a Warehouse

The methodology for the data flow illustrated in Figure 2.1 might be summarized as
follows:

1 Information is extracted from data sources and is stored in a table or view that is
registered in a Warehouse Environment. The table or view is called an Operational
Data Definition (ODD).

2 The ODDs are used as inputs to data stores. The data stores are organized under
grouping elements called Data Warehouses and Subjects.

3 The detail data stores can be used as inputs to summary data stores.

4 Within SAS/Warehouse Administrator, you can use Information Marts to generate
output from the detail data stores and the summary data in the warehouse. For
example, an InfoMart Item might be used to display a chart that is generated from
summary data.

5 After the data stores are available in the data warehouse, you can exploit them
using SAS software or other software products.

For example, you could use SAS Enterprise Miner to analyze patterns in detail
data. You could use SAS/EIS software to analyze multidimensional summary data,

Overview of SAS/Warehouse Administrator Desktop 9

and you could have a link from a Web page to an InfoMart Item that displays a
chart that is generated from summary data.

Tour of the Main Windows
The following table lists the main windows in SAS/Warehouse Administrator. Each

window is briefly described in the sections that follow.

Table 2.1 Main SAS/Warehouse Administrator Windows

Window Description

“Desktop” on page 9 Initial window for SAS/Warehouse
Administrator. Used to add or open Warehouse
Environments.

“Explorer” on page 10 Used to add, edit, and browse the properties of
groups and data stores.

“Define Items Used Globally Window” on page 11 Used to manage host definitions and other
metadata shared within a Warehouse
Environment.

“Process Editor” on page 12 Used to define Jobs and Process Flows which
define how data moves from sources to targets.

“Job Properties” on page 13 Used to define Jobs which execute the code that
moves data from sources to targets.

“Load Generation/Execution Properties” on page
14

Used to generate and manage SAS code for a
Job.

Displaying Help for the Main Windows
For full details about each of the windows that are listed in Table 2.1 on page 9, see

the online help. To display the relevant online help, in the SAS Help contents for Using
SAS/Warehouse Administrator Software, select Overview, then Main SAS/
Warehouse Administrator Windows.

Desktop
To display the desktop for SAS/Warehouse Administrator, run SAS on a machine

where SAS/Warehouse Administrator has been installed, then type dw on the command
line. The desktop will look similar to the one shown in Display 2.1 on page 10.

10 Explorer Chapter 2

Display 2.1 Desktop for SAS/Warehouse Administrator

The default desktop includes folders for Data Utilities and Exploitation Tools, which
are described under “Starting SAS/Warehouse Administrator” on page 18. If any Data
Warehouse Environments have been defined for your site, their icons will appear on the
desktop. Think of a Warehouse Environment as a container for some of the metadata
associated with one or more data warehouses. The Toy Store Env icon in Figure 2.1
represents the main example Environment described in this document.

For details about the SAS/Warehouse Administrator desktop, display its online help
as described in “Displaying Help for the Main Windows” on page 9. See also “Starting
SAS/Warehouse Administrator” on page 18.

Explorer
To display the Explorer window, display the SAS/Warehouse Administrator desktop,

position the cursor on an Environment icon, click the right mouse button, and select
Edit from the pop-up menu. (Under Microsoft Windows and OS/2 operating
environments, you can simply double-click the Environment icon.)

When you first open an Environment in the Explorer, it might look similar to Display
2.2 on page 11.

Overview of SAS/Warehouse Administrator Define Items Used Globally Window 11

Display 2.2 Explorer with Toy Store Environment, Unexpanded

The Explorer is used to define and browse the metadata for groups and data stores in
a Warehouse Environment. SAS/Warehouse Administrator uses this metadata to
generate or retrieve the code that extracts, transforms, and loads the data into your
data stores.

The white area at left displays the hierarchy of groups and data stores in the
Explorer. The tabs on the right display the metadata for the element that has been
selected with the left mouse button. For example, in Display 2.2 on page 11, the
metadata for the Toy Store Warehouse Environment is displayed.

In the Explorer hierarchy, the main groups are indented under the Environment, and
other groups or data stores are indented under the main groups. For example, in
Display 2.2 on page 11, there are two main groups indented under the Toy Store
Warehouse Environment: a Data Warehouse (Toy Store Whouse), and an ODD Group
(Sales Source Data).

For details about the SAS/Warehouse Administrator Explorer, refer to its online help.

Define Items Used Globally Window
To display the Define Items Used Globally window, open an Environment in the

Explorer, then select

File Setup

from the pull-down menu above the Explorer. A window will be displayed that looks
similar to the one shown in Display 2.3 on page 12.

12 Process Editor Chapter 2

Display 2.3 Define Items Used Globally Window

The Define Items Used Globally window is used to define global metadata for hosts,
libraries, and other resources that are shared at the Environment level. By adding
metadata records for these resources, you register them in the current Environment.
After these records have been saved, you can include them in the metadata for groups,
data stores, processes, Jobs, or other objects in the current Environment.

For details about the Define Items Used Globally window, refer to its online help.

Process Editor

One way to display the Process Editor is to open an Environment in the Explorer,
click a data store with the right mouse button, and select Process from the pop-up
menu. The Process Editor is used to manage Jobs, which specify the processes and
Process Flows that create one or more data stores. Display 2.4 on page 12 illustrates
the Job and Process Flow for the Customer table.

Display 2.4 Process Editor

Overview of SAS/Warehouse Administrator Job Properties 13

In Display 2.4 on page 12, the Job for Customer is represented by the icon with the
rectangle around it in the left panel. A Job is a metadata record that specifies the
processes that create one or more data stores. It enables you to connect a series of
process steps into a single unit. A Job may include scheduling metadata that enables
the processes to be executed in batch mode at a specified date and time.

In Display 2.4 on page 12, the Process Flow for Customer appears in the right panel.
A Process Flow is a diagram that is composed of symbols, with connecting arrows and
descriptive text, that illustrate the sequence of each process associated with the Job
that is selected in the left panel of the Process Editor. The Process Flow illustrates how
the data moves from input source(s) to output table(s) and what extractions and
transformations occur in between.

Keep in mind that in a Process Flow, data moves from the bottom to the top. The top
icon is the output table that is created by the active Job (Job selected in the left panel
of the Process Editor). For example, in Display 2.4 on page 12, data moves from the
source data at the bottom of the flow, through a Mapping process, to the Customer table
at the top. Between the source and the target, columns can be added, data can be
scrubbed, and other transformations can take place.

For details about the Process Editor, refer to its online help.

Job Properties

To display the properties window for an existing Job, display the Job in the Process
Editor as shown in Display 2.4 on page 12. Click the Job with the right mouse button
and select Properties from the pop-up menu. The Job Properties window displays.
Display 2.5 on page 13 shows the Source Code tab of this window.

Display 2.5 Job Properties Window

In Display 2.5 on page 13, note that the SAS/Warehouse Administrator Generated
option is selected. If this option is selected, SAS/Warehouse Administrator will use the
Process Flow associated with the active Job to generate source code for the Job. For
example, if the SAS/Warehouse Administrator Generated option was selected for the
Customer Job shown in Display 2.4 on page 12, SAS/Warehouse Administrator would
use the Process Flow shown in that figure to generate source code for the Job.

If the SAS/Warehouse Administrator Generated option is not selected, you must
specify the location of user-written source code for the Job.

14 Load Generation/Execution Properties Chapter 2

The Date/Time tab, Server tab, and Prolog/Epilog tab on this window can be used to
enter scheduling metadata for the Job. For details about the Job Properties window,
refer to its online help.

Load Generation/Execution Properties
To display the Load Generation/Execution Properties window, open a data store in

the Process Editor. In the left panel, click the Job for the data store with the right
mouse button and select Run from the pop-up menu. The Load Generation/Execution
Properties window displays. It will look similar to the one shown in Display 2.6 on page
14.

Display 2.6 Load Generation/Execution Properties Window

From this window, you can submit, save, or edit the code generated for the Job you
selected in the Process Editor. For details about the Load Generation/Execution
Properties window, refer to its online help.

Task Summaries

Many different approaches can be taken when building a data warehouse. Here are
some general guidelines:

� plan from the top down — identify your business goals, then identify the outputs,
sources, and data stores that are required to support these goals

� implement from the bottom up — from source data, to detail data stores in a
subject area, to summary data stores in a subject area

� build your warehouse one subject area at a time

� define, load, and test warehouse data sources and data stores as you go.

Plan Your Data Warehouse
1 Identify the business problem(s) to be solved.

2 Identify the subject areas to be included in your data warehouse (such as Sales,
Products, Customers, and so on).

Overview of SAS/Warehouse Administrator Create a Data Warehouse 15

3 Choose a subject area to be developed. The first subject area should be important
enough to illustrate the value of your project, but simple enough so that it can be
developed quickly and successfully.

4 Draft the reports and other outputs that you expect to get from the chosen subject
area.

5 Identify data sources required to produce the reports and other outputs that you
expect to get from the chosen subject area.

6 Identify the main column mappings and data transformations between sources
and targets in the chosen subject area.

7 Select the hardware and software required to access the data sources, execute the
transformations, and store the refined data in the appropriate formats and
locations.

8 Choose the SAS/Warehouse Administrator data stores that are appropriate for the
chosen subject area.

9 Choose the appropriate exploitation tool(s) for the chosen subject area (such as
SAS/EIS for multidimensional analysis; Enterprise Miner for data mining, and so
on).

A detailed explanation of how to create a project plan for your data warehouse is
beyond the scope of this document. However, the following chapters will help you with
the SAS/Warehouse Administrator portion of such a plan:

� Chapter 3, “Planning Your Hardware and Software,” on page 21
� Chapter 4, “Planning Your Data Stores and Processes,” on page 41

Create a Data Warehouse Environment
1 Create a directory structure for the Data Warehouse Environment.
2 If necessary, update the SAS configuration file and the SAS autoexec file that is

used during the SAS/Warehouse Administrator session so that any required
options or librefs are available.

3 Add a Data Warehouse Environment.

a Define global metadata for the Environment.
b Register data sources for the Environment (create Operational Data

Definitions).

i Enter metadata for the columns and location of the data sources.
ii Define one or more Jobs for the data sources.
iii Execute the Job(s) for the data sources.
iv Verify that the data sources are available.

For details about the tasks in this section, see the following chapters:
� Chapter 5, “Maintaining Environments,” on page 61
� Chapter 6, “Maintaining Global Metadata,” on page 75
� Chapter 7, “Registering Data Sources,” on page 107

If you need to convert a Data Warehouse Environment created with an earlier
version of SAS/Warehouse Administrator, see Appendix 1, “Converting Metadata for
Environments and Warehouses,” on page 323.

Create a Data Warehouse
1 Add a Data Warehouse within the Environment.

16 Maintain a Data Warehouse Chapter 2

2 Create a Subject within the Warehouse. Name it after a subject area identified in
your project plan.

3 Create appropriate detail data stores within the Subject.

a Enter metadata for the data sources, columns, and locations of the detail data
stores.

b Define one or more Jobs for the detail data stores.
c Execute the Job(s) for the detail data stores.
d Verify that the detail data stores are available.

4 If required by your project plan, create appropriate summary data stores within
the Subject.

a Enter metadata for the data sources, columns, and locations of the summary
data stores.

b Define one or more Jobs for the summary data stores.
c Execute the Job(s) for the summary data stores.
d Verify that the summary data stores are available.

5 If required by your project plan, create appropriate Information Marts in the
Subject.

a Enter metadata for the InfoMart Items and InfoMart Files.
b Define one or more Jobs for these objects.
c Execute the Job(s).
d Verify that the InfoMart Items and InfoMart Files are available.

For details about the tasks in this section, see the following chapters:
� Chapter 8, “Maintaining Data Warehouses and Subjects,” on page 133
� Chapter 9, “Maintaining Data Tables,” on page 145
� Chapter 10, “Maintaining Detail Logical Tables and Detail Tables,” on page 155
� Chapter 11, “Maintaining OLAP Groups and OLAP Summary Data Stores,” on

page 175
� Chapter 12, “Maintaining Information Marts,” on page 239

Maintain a Data Warehouse
Here are some typical maintenance tasks for a data warehouse.
� Schedule Jobs to load or refresh your data warehouse. For details, see Chapter 15,

“Scheduling Jobs,” on page 305.
� Use the copy feature in the SAS/Warehouse Administrator Explorer to copy a given

group or data store and paste the copy under a valid parent. Use this method to
model a new group or data store after an old one rather than creating a completely
new object. For details about the copy feature, display the Explorer. From the
menu bar, select Help, then Using This Window, then Explorer Pop-Up Menus.

� Use the Publish HTML add-in to document the metadata for a given object that is
selected in the SAS/Warehouse Administrator Explorer. For details about add-ins,
see “Customizing SAS/Warehouse Administrator” on page 17.

� Use the Impact Analysis add-in to trace the impact of a proposed change to a data
store. For example, if you wanted to change the name of a column in an ODD, you
could find out how many data stores in a Warehouse Environment include that
column. For details about add-ins, see “Customizing SAS/Warehouse
Administrator” on page 17.

� Use the appropriate software to back up the data and metadata for each
Warehouse Environment. For details about the metadata repositories for an
Environment, see “Overview: Metadata Repositories” on page 313.

Overview of SAS/Warehouse Administrator Customizing SAS/Warehouse Administrator 17

� Use the Metadata Copy Wizard to copy a Warehouse Environment to a new
location. You can use this feature to model a new Environment after an old one
rather than creating a completely new Environment. For details, see “Metadata
Copy Wizard” on page 64.

Exploit a Data Warehouse
Generally, SAS/Warehouse Administrator is used to build a data warehouse, not

exploit it. Its main role is to create and manage warehouse data stores that are then
accessed by other applications. In some cases, however, you can use SAS/Warehouse
Administrator to prepare data or metadata for exploitation.

For example, here is one way to use SAS/EIS to analyze a summary data store.
1 Use SAS/Warehouse Administrator to export metadata from the relevant summary

data store to a SAS/EIS metabase. For details about this task, see “Example:
Exporting Metadata to SAS/EIS Software” on page 316.

2 In SAS/EIS, design the report you need.
3 Run the report.

Another example is to surface a copy of the metadata for a given Data Warehouse.
This method could be used to support business analysts who need to answer such
questions as What are the subject areas in this Data Warehouse? What data stores are
available for analysis? What is the origin of the data in this column? What does this
column mean? How is it derived?

1 Export metadata from the Data Warehouse. For details, see “Exporting Metadata
for Groups and Data Stores” on page 316.

2 Download the MetaSpace Explorer from the SAS Web site, as described in
“MetaSpace Explorer” on page 315.

3 Install and configure the MetaSpace Explorer to enable access to the exported
metadata. For details about this task, see the documentation for the MetaSpace
Explorer.

Customizing SAS/Warehouse Administrator
To customize SAS/Warehouse Administrator for your site, you can
� Install software from the SAS/Warehouse Administrator Solutions CD, which

contains a number of add-ins and other tools.
� Download add-in tools from the SAS Web site.

� Go to the SAS Web site: http://www.sas.com
� Select Demos/Downloads
� Select SAS/Warehouse Administrator Software

� Select Add-In Tools for SAS/Warehouse Administrator 2.0.

� Use SAS Component Language (SCL) to write add-in tools, modify SLISTs, and
make other customizations. See “Add-In Tools” on page 337 and other topics
discussed in that appendix.

� Use the Metadata Application Programming Interface (API) to read or write SAS/
Warehouse Administrator metadata, as described in SAS/Warehouse
Administrator 2.3 Metadata API Reference.

� Use the Metadata API to write add-in generator applications, which you can add
to the Process Library or specify directly on the Source Code tab for a process. See
“Add-In Code Generator Technical Reference” on page 355.

18 Starting SAS/Warehouse Administrator Chapter 2

Starting SAS/Warehouse Administrator
After SAS/Warehouse Administrator has been installed, you can start it by running

SAS, typing dw on the SAS command line, and pressing the RETURN. SAS/Warehouse
Administrator will open the default desktop.

Display 2.7 Desktop for SAS/Warehouse Administrator

The default desktop includes folders for Data Utilities and Exploitation Tools. The
Data Utilities folder contains SAS utilities that are used to view, print, or query the
contents of warehouse tables. The Exploitation Tools folder contains SAS applications
that are used to exploit a data warehouse after it is built. The applications that appear
in this folder will vary from site to site.

If any Warehouse Environments have been defined for your site, their icons will
appear on the desktop. The Toy Store Env icon in Display 2.7 on page 18 represents the
main example Environment described in this document.

If no Environments appear on your desktop, you must add one before you can work
with SAS/Warehouse Administrator. You could start by adding the example
Environment that was installed with SAS/Warehouse Administrator (the Marketing
Warehouse Environment). For details, see Appendix 2, “Adding the Example
Environment,” on page 333.

To open an Environment in the Explorer, position the cursor on an Environment icon,
click the right mouse button, and select Edit from the pop-up menu. (Under Microsoft
Windows and OS/2 operating environments, you can simply double-click the
Environment icon.)

Keep the following in mind when you start SAS/Warehouse Administrator:

� If you do not specify another desktop folder in the dw command used to start SAS/
Warehouse Administrator, the system uses the default
SASUSER.FOLDER.SAS_WA.FOLDER. Use the FOLDER= option to specify
another desktop folder, if desired.

� If you open a Warehouse Environment whose Data Warehouses and other
elements have been defined, but these elements are not visible in the Explorer, see
“Opening an Environment with a Relative Pathname” on page 63.

19

P A R T2

Planning

Chapter 3.Planning Your Hardware and Software 21

Chapter 4.Planning Your Data Stores and Processes 41

20

21

C H A P T E R

3
Planning Your Hardware and
Software

Overview 21

General Hardware Requirements 21
General Software Requirements 22

Metadata Host Configuration 23

Overview 23
Recommendations 23

Metadata Configuration to Avoid 24

Jobs Information Libraries and SAS/SHARE Software 24
Local Metadata: Single Host 24

Support for Job Scheduling and Tracking 25
Remote Metadata: PC Client to Windows NT Server 25

Support for Job Scheduling and Tracking 26

Remote Metadata: UNIX or NT Server to Like Server 27
Data Host Configuration 27

Overview 27

Access to Data In DBMS Format 28
Local Job, Local Data 29

Support for Job Scheduling and Tracking 29
Local Job, Remote Data 30

Support for Job Scheduling and Tracking 31

Remote Job, Local Data 32
Support for Job Scheduling and Tracking 33

Remote Job, Remote Data (Example 1) 34

Support for Job Scheduling and Tracking 36
Remote Job, Remote Data (Example 2) 37

Support for Job Scheduling and Tracking 38
What’s Next 39

Overview
Use this chapter to identify the hardware and software that is required for your data

warehousing project. The configuration sections give examples of how SAS/Warehouse
Administrator can be deployed in order to access its data sources and data stores.

General Hardware Requirements
SAS/Warehouse Administrator and its metadata repositories must be installed on a

PC or a workstation that is running Microsoft Windows, Microsoft Windows NT, IBM

22 General Software Requirements Chapter 3

OS/2, or a supported version of UNIX. However, data sources, warehouse data stores,
code libraries, and other warehouse resources can be stored on any host that can run
any currently supported release of SAS.

Your SAS installation coordinator will help you select appropriate hardware for your
project. The configuration sections in this chapter show some typical hardware
configurations.

General Software Requirements
Table 3.1 on page 22 describes the SAS software that you must have in order to use

SAS/Warehouse Administrator.

Table 3.1 Software Required by SAS/Warehouse Administrator

Product Purpose Where Installed

Base SAS Manages SAS data sets; provides
many data management functions;
supports other SAS products.

Administrator’s workstation(s);
any warehouse host or source
data host that requires Base
SAS functionality or SAS
product support.

SAS/Warehouse
Administrator

Automates data warehouse creation
and maintenance.

Administrator’s workstation(s).

Note: Release 2.0 of SAS/Warehouse Administrator requires Version 8.0 or later of
SAS, but data sources and warehouse data stores can be managed by any currently
supported release of SAS. �

Table 3.2 on page 22 lists other software that you must have if your project requires
support for the tasks described in the Purpose column.

Table 3.2 Software Required for Special Tasks

Product Purpose Where Installed

SAS/CONNECT Supports connections to files,
hardware resources, and SAS
software on various remote hosts to
use with a SAS session on a local host.

On both the local and remote
hosts.

SAS/SHARE Controls concurrent access to
metadata libraries by multiple SAS/
Warehouse Administrator users.
Controls concurrent access to Jobs
Information libraries by Jobs and
SAS/Warehouse Administrator users.

Server is installed on host
where the libraries to be
controlled are stored. Licensed
on any remote hosts that
access these libraries.

SAS/ACCESS Provides a set of individual interfaces
between SAS and proprietary DBMSs.

On host(s) where DBMS data
resides.

DBMS client software Manages connections to proprietary
DBMSs. Required by Version 7 and 8
SAS/ACCESS engines.

On host(s) where SAS/ACCESS
LIBNAME statements are
executed.

SAS/MDDB server Creates Multidimensional databases.
Required for OLAP MDDBs.

On host where OLAP MDDB is
created.

Planning Your Hardware and Software Overview 23

Product Purpose Where Installed

SPDS Scalable Performance Data Server
creates, appends, and retrieves remote
SAS tables faster than other methods.

Host(s) where remote SAS
tables reside.

SAS/AF SAS application development
environment. Required to modify or
write SAS/Warehouse Administrator
metadata API applications. See Note
below about Information Mart Items.

Metadata API development
host(s). See Note below about
Information Mart Items.

SAS/GRAPH SAS graphics support. Required to
modify or write add-in software that
includes a GUI.

Add-in software development
host(s).

Other SAS products Exploit warehouse data. Depends on the product.

Note: If you create any Information Mart Items, you must either install SAS/AF on
the host where the Information Mart Item is located, or replace the default “open”
command with a command that does not require SAS/AF software. For details, see
“Example: Creating an Information Mart Item” on page 242. �

Your SAS installation coordinator will help you select appropriate software for your
project. The configuration sections in this chapter show some typical software
configurations.

Metadata Host Configuration

Overview
SAS/Warehouse Administrator stores its metadata in at least two SAS libraries:

libref _MASTER is the Data Warehouse Environment repository. It stores metadata
for any data stores defined at the Environment level, including host
definitions and most other global metadata. _MASTER contains
references to any Data Warehouse repositories (libref _DWMD).

libref _DWMD is a Data Warehouse repository. It stores metadata for any data
stores defined at the Data Warehouse level.

Warehouse Environments and Data Warehouses are described later in this document.
For now, assume they are metadata records that specify the location of the metadata
repositories for a data warehousing project.

SAS/Warehouse Administrator and its metadata repositories can be installed on the
same host or on different hosts. Your SAS installation coordinator will help you choose
the best metadata host configuration for your project. This section describes some
recommendations and typical configurations.

Recommendations
A local Warehouse Environment is an Environment whose metadata repository is

stored on the SAS/Warehouse Administrator host. Because SAS/Warehouse
Administrator continuously accesses this metadata, you will get better performance if
this metadata is local. SAS/Warehouse Administrator response time might be slower if
it has to access metadata across a remote connection.

24 Local Metadata: Single Host Chapter 3

A remote Warehouse Environment might be appropriate if you require concurrent
read/write access to Warehouse Environments by multiple SAS/Warehouse
Administrator hosts. In that case, you should create a remote Warehouse Environment
and put its metadata repository under the control of a SAS/SHARE server remote to the
SAS/Warehouse Administrator hosts. Figure 3.3 on page 26 shows an example of such a
configuration.

CAUTION:
Concurrent read/write access to a SAS/Warehouse Administrator metadata repository by
multiple SAS/Warehouse Administrator hosts must be controlled through a SAS/SHARE
server. Otherwise, metadata can be corrupted if two or more users update the metadata at
the same time. �

Metadata Configuration to Avoid
In general, avoid configurations where the SAS/Warehouse Administrator host has

one machine architecture (such as Microsoft Windows NT), and the metadata host has a
different architecture (such as UNIX).

Remote access to Environment metadata is managed through SAS/SHARE software,
and this application does not permit access to SAS catalogs if the local and remote hosts
have different machine architectures. This means, for example, that you would not be
able to store Notes for tables, columns, or other objects.

Jobs Information Libraries and SAS/SHARE Software
If you want SAS/Warehouse Administrator to generate code that will execute a Job at

a future date and time, you must define one or more Jobs Information libraries. A Jobs
Information library is a SAS library that contains status information for Jobs that have
been scheduled through the Job Properties window in SAS/Warehouse Administrator. If
job tracking is enabled for a given Job, when the Job executes, it will update its status
in the appropriate Jobs Information library.

Jobs Information libraries are separate from the metadata repositories for an
Environment or a Data Warehouse. A Warehouse Environment and its Data
Warehouses can share one Jobs Information library, or they could have separate Jobs
Information libraries.

CAUTION:
For a production data warehouse in which Jobs are scheduled and tracked through SAS/
Warehouse Administrator, it is strongly recommended that you place the Jobs Information
libraries under the control of a SAS/SHARE server. �

A SAS/SHARE server will prevent sharing conflicts between running Jobs with
tracking options enabled and SAS/Warehouse Administrator users who want to
schedule Jobs or view the status of Jobs.

For a non-production data warehouse or for a data warehouse where Jobs are not
tracked through SAS/Warehouse Administrator, it is not necessary to put the relevant
Jobs Information libraries under the control of a SAS/SHARE server. For details about
when a Job is tracked in SAS/Warehouse Administrator, see “Tracking Jobs” on page
307.

Local Metadata: Single Host
In the single host configuration, both SAS/Warehouse Administrator and its

metadata are installed on the same machine.

Planning Your Hardware and Software Remote Metadata: PC Client to Windows NT Server 25

Figure 3.1 Single Host

Support for Job Scheduling and Tracking
Figure 3.2 on page 25 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.
Note that a SAS/SHARE server controls access to the Jobs Information libraries.

Figure 3.2 Single Host with Support for Job Scheduling and Tracking

Remote Metadata: PC Client to Windows NT Server
This configuration is one possible solution for projects that require concurrent

read/write access to the metadata repositories by multiple SAS/Warehouse
Administrator users.

26 Remote Metadata: PC Client to Windows NT Server Chapter 3

Figure 3.3 PC Client to Windows NT Server

In this configuration, SAS/Warehouse Administrator is installed on one or more PC
clients, and SAS/Warehouse Administrator metadata is installed on a remote machine
running the Windows NT Server operating system. A SAS/SHARE server on the
Windows NT host handles remote communications to and from the SAS/Warehouse
Administrator clients. Each SAS/Warehouse Administrator client must have a license
for SAS/SHARE, although this application does not have to be installed on each client.

Support for Job Scheduling and Tracking
Figure 3.4 on page 27 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.
Note that a SAS/SHARE server controls access to the Jobs Information libraries.

Planning Your Hardware and Software Overview 27

Figure 3.4 PC Client to Windows NT Server with Support for Job Scheduling and
Tracking

Remote Metadata: UNIX or NT Server to Like Server
A server-to-like-server configuration—an NT Server to an NT Server, or a UNIX host

to a UNIX host—is also possible. For example, in a UNIX configuration, SAS/
Warehouse Administrator is installed on one or more UNIX hosts, and its metadata is
installed on another UNIX host. This configuration is another solution for projects that
require concurrent read/write access to the metadata repositories by multiple SAS/
Warehouse Administrator users.

Excluding the operating systems, the software that is required to implement this
configuration is similar to that described in “Remote Metadata: PC Client to Windows
NT Server” on page 25.

Data Host Configuration

Overview
Data sources and warehouse data stores can reside on any host that can run any

currently supported release of SAS. Your SAS installation coordinator will help you
choose the best data host configuration for your project. Some typical configurations are
described in this section.

Note: For simplicity, the figures in this section show SAS/Warehouse Administrator
and its metadata repositories installed on the same host. This is not a requirement.
Any of the metadata host configurations described in “Metadata Host Configuration” on
page 23 could also be used with the data host configurations described in this section. �

28 Overview Chapter 3

Access to Data In DBMS Format
SAS and SAS/Warehouse Administrator can be used to read or write data in a

proprietary data base management system (DBMS), such as DB2 or Oracle. Under
Version 7 or later of SAS, you can use a SAS/ACCESS LIBNAME statement to read and
write DBMS data as if it were SAS data. Under Version 6 or later of SAS, you can use
other SAS/ACCESS methods, such as an SQL Pass-through view to read DBMS data,
and PROC DBLOAD to load data into DBMS tables.

If your project plan requires you to read or write DBMS data, your data host
configuration must include the software to support at least one of the methods in the
following two tables.

Note: By default, for new DBMS data stores, SAS/Warehouse Administrator
generates code that uses SAS/ACCESS LIBNAME statements to read and write data in
DBMS format. �

Table 3.3 SAS/ACCESS LIBNAME Method

Product Purpose Where Installed

Base SAS, Version 7 or later Supports SAS/ACCESS
LIBNAME statement.

On the host where the SAS/
ACCESS LIBNAME statement
is executed.

SAS/ACCESS engine for target
DBMS

Read or write DBMS data as if
it were SAS data.

same

Client software for target
DBMS

Handles local or remote
connection to DBMS.

same

Note: For DBMS tables created with 1.x releases of SAS/Warehouse Administrator,
or for new DBMS tables with code generation level 1.1 Load Steps, SAS/Warehouse
Administrator creates an SQL Pass-through view to access DBMS data and uses PROC
DBLOAD to load data into DBMS tables. �

Table 3.4 Other SAS/ACCESS Methods

Product Purpose Where Installed

Base SAS, Version 6 or later Supports SAS/ACCESS On the host where the SAS/
ACCESS statement is
executed.

SAS/ACCESS Read or write DBMS data. same

SAS/CONNECT Supports connections to files,
hardware resources, and SAS
software on various remote
hosts to use with a SAS session
on a local host.

On both the local and remote
hosts.

A third alternative is to use SAS/Warehouse Administrator add-ins that generate the
code required to load a warehouse table into a DBMS, such as Oracle, using native
loading software. For instructions on obtaining add-ins, see “Customizing SAS/
Warehouse Administrator” on page 17.

Planning Your Hardware and Software Local Job, Local Data 29

Local Job, Local Data
In this configuration, SAS/Warehouse Administrator, its data sources, and its

warehouse data stores are installed on the same machine. The Job and all of its
processes execute on the SAS/Warehouse Administrator host.

Figure 3.5 Local Job, Local Data

The configuration shown in Figure 3.5 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to its SAS session on Host 1.
2 The Job calls one or more extraction processes that execute on Host 1 and send

their output to Host 1.
3 The Job calls one or more Load processes that execute on Host 1 and send their

output to Host 1.

To implement a data host configuration similar to the one shown in Figure 3.5 on
page 29, you will need the following software:

Table 3.5 Required Software: Local Job, Local Data

Software Host

Base SAS, Version 8 or later Host 1

SAS/Warehouse Administrator Host 1

If your project plan requires you to read or write DBMS data, your configuration
must include the software to support at least one of the methods described in “Access to
Data In DBMS Format” on page 28.

Support for Job Scheduling and Tracking
Figure 3.6 on page 30 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.
Note that a SAS/SHARE server controls access to the Jobs Information libraries.

30 Local Job, Remote Data Chapter 3

Figure 3.6 Local Job, Local Data with Support for Job Scheduling and Tracking

The configuration shown in Figure 3.6 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to a scheduling server application

on Host 1, such as CRON on a UNIX host, or the AT command (Schedule service)
on a Windows NT host.

2 The Job calls one or more extraction processes that execute on Host 1 and send
their output to Host 1.

3 The Job calls one or more Load processes that execute on Host 1 and send their
output to Host 1.

4 The Job updates the Jobs Information library with the status of the Job.

Local Job, Remote Data
In this configuration, SAS/Warehouse Administrator is installed on one host, and its

data sources and data stores reside on one or more remote hosts. The Job executes on
the SAS/Warehouse Administrator host. The processes within the Job can execute on
the same host, or they can be submitted remotely from the Job to run on the remote
hosts.

Planning Your Hardware and Software Local Job, Remote Data 31

Figure 3.7 Local Job, Remote Data

The configuration shown in Figure 3.7 supports the following scenario:

1 SAS/Warehouse Administrator submits the Job to its SAS session on Host 1.

2 The Job calls one or more extraction processes that execute on Host 1, read data
from Host 2, and send their output to an appropriate host.

3 The Job calls one or more Load processes that execute on Host 1 and send their
output to Host 3.

To implement a data host configuration similar to the one shown in Figure 3.7 on
page 31, you will need the following software:

Table 3.6 Required Software: Local Job, Remote Data

Software Host

Base SAS, Version 8 or later Host 1

Base SAS, any supported version Host 2, Host 3

SAS/Warehouse Administrator Host 1

Remote communication software See Note below

Note: In the data host configuration shown in Figure 3.7 on page 31, if the processes
on Host 1 must read or write SAS data on a remote host, SAS/CONNECT is required on
Host 1 and the remote host. If the processes on Host 1 must read from or write to a
proprietary DBMS, your configuration must include the software to support at least one
of the methods described in “Access to Data In DBMS Format” on page 28. �

Support for Job Scheduling and Tracking
Figure 3.8 on page 32 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.
Note that a SAS/SHARE server controls access to the Jobs Information libraries.

32 Remote Job, Local Data Chapter 3

Figure 3.8 Local Job, Remote Data with Support for Job Scheduling and Tracking

The configuration shown in Figure 3.8 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to a scheduling server application

on Host 1.
2 The Job calls one or more extraction processes that execute on Host 1, read data

from Host 2, and send their output to an appropriate host.
3 The Job calls one or more Load processes that execute on Host 1 and send their

output to Host 3.
4 The Job updates the Jobs Information library with the status of the Job.

Remote Job, Local Data
In this configuration, SAS/Warehouse Administrator is installed on one host; its data

sources reside on one or more remote hosts, and its data stores reside on the SAS/
Warehouse Administrator host. The Job is submitted to a remote host, and all of its
processes execute on remote host(s), where the source data is located.

Planning Your Hardware and Software Remote Job, Local Data 33

Figure 3.9 Remote Job, Local Data

The configuration shown in Figure 3.9 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to a SAS session on Host 2.
2 The Job calls one or more extraction processes that execute on Host 2, read data

from Host 2, and send their output to an appropriate host.
3 The Job calls one or more Load processes that execute on Host 2 and use PROC

UPLOAD to send their output to Host 1.

To implement a data host configuration similar to the one shown in Figure 3.9 on
page 33, you will need the following software:

Table 3.7 Required Software: Remote Job, Local Data

Software Host

Base SAS, Version 8 or later Host 1

Base SAS, version appropriate for the processes
being executed

Host 2

SAS/Warehouse Administrator Host 1

SAS/CONNECT Host 1, Host 2

SAS/CONNECT is required on the SAS/Warehouse Administrator host and the Job
host in order to support Remote Compute Services.

If the processes on Host 2 need to read from or write to a proprietary DBMS, your
configuration must include the software to support at least one of the methods
described in “Access to Data In DBMS Format” on page 28.

Support for Job Scheduling and Tracking
Figure 3.10 on page 34 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.

34 Remote Job, Remote Data (Example 1) Chapter 3

Note that a SAS/SHARE server controls access to the Jobs Information libraries on
Host 1. The Job on Host 2 uses SAS/SHARE to communicate with the SAS/SHARE
server. Accordingly, Host 2 must have a license for SAS/SHARE.

Figure 3.10 Remote Job, Local Data with Support for Job Scheduling and Tracking

The configuration shown in Figure 3.10 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to a scheduling server application

on Host 2.
2 The Job calls one or more extraction processes that execute on Host 2, read data

from Host 2, and send their output to an appropriate host.
3 The Job calls one or more Load processes that execute on Host 2 and send their

output to Host 1.
4 The Job updates the Jobs Information library with the status of the Job.

Remote Job, Remote Data (Example 1)
In this configuration, SAS/Warehouse Administrator is installed on one host; its data

sources reside on one or more remote hosts, and its data stores reside on one or more
remote hosts. The Job is submitted to a remote host, and all of its processes execute on
remote host(s), where the source data and the data stores are located. You could use
this configuration to execute the SAS/Warehouse Administrator Job on a remote host
where data stores are located.

Planning Your Hardware and Software Remote Job, Remote Data (Example 1) 35

Figure 3.11 Remote Job, Remote Data (Example 1)

The configuration shown in Figure 3.11 supports the following scenario:

1 SAS/Warehouse Administrator submits the Job to a SAS session on Host 2.

2 The Job calls one or more extraction processes that execute on Host 2, read data
from Host 3, and send their output to an appropriate host (probably Host 3).

3 The Job calls one or more Load processes that execute on Host 2 and send their
output to Host 2.

To implement a data host configuration similar to the one shown in Figure 3.11 on
page 35, you will need the following software:

Table 3.8 Required Software: Remote Job, Remote Data (Example 1)

Software Host

Base SAS, Version 8 or later Host 1

Base SAS, version appropriate for the processes
being executed

Host 2

Base SAS, any supported version Host 3

SAS/Warehouse Administrator Host 1

SAS/CONNECT Host 1, Host 2, perhaps Host 3

SAS/CONNECT is required on the SAS/Warehouse Administrator host (Host 1) and
the Job host (Host 2) in order to support Remote Compute Services.

36 Remote Job, Remote Data (Example 1) Chapter 3

If the extraction processes on Host 2 need to read SAS data on a remote host (Host
3), SAS/CONNECT or SAS/SHARE is required on Host 2 and the remote host. If the
processes on Host 2 needs to read from or write to a proprietary DBMS on a remote
host, your configuration must include the software to support at least one of the
methods described in “Access to Data In DBMS Format” on page 28.

Support for Job Scheduling and Tracking
Figure 3.12 on page 36 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.
Note that a SAS/SHARE server controls access to the Jobs Information libraries on
Host 1. The Job on Host 2 uses SAS/SHARE to communicate with the SAS/SHARE
server. Accordingly, Host 2 must have a license for SAS/SHARE.

Figure 3.12 Example 1 with Support for Job Scheduling and Tracking

The configuration shown in Figure 3.12 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to a scheduling server application

on Host 2.
2 The Job calls one or more extraction processes that execute on Host 2, read data

from Host 3, and send their output to an appropriate host (probably Host 3).
3 The Job calls one or more Load processes that execute on Host 2 and send their

output to Host 2.
4 The Job updates the Job Information library with the status of the Job.

Planning Your Hardware and Software Remote Job, Remote Data (Example 2) 37

Remote Job, Remote Data (Example 2)
This configuration is similar to the one described in “Remote Job, Remote Data

(Example 1)” on page 34. You could use this configuration to execute the
SAS/Warehouse Administrator Job on a remote host where data sources are located.

Figure 3.13 Remote Job, Remote Data, Example 2

The configuration shown in Figure 3.13 supports the following scenario:
1 SAS/Warehouse Administrator submits the Job to a SAS session on Host 2.
2 The Job calls one or more extraction processes that execute on Host 2, read data

from Host 2, and send their output to an appropriate host.
3 The Job calls one or more Load processes that execute on Host 2 and send their

output to Host 3.

To implement a data host configuration similar to the one shown in Figure 3.13 on
page 37, you will need the following software:

Table 3.9 Required Software: Remote Job, Remote Data (Example 2)

Software Host

Base SAS, Version 8 or later Host 1

Base SAS, version appropriate for the processes
being executed

Host 2

Base SAS, any supported version Host 3

38 Remote Job, Remote Data (Example 2) Chapter 3

Software Host

SAS/Warehouse Administrator Host 1

SAS/CONNECT Host 1, Host 2, perhaps Host 3

SAS/CONNECT is required on the SAS/Warehouse Administrator host (Host 1) and
the Job host (Host 2) in order to support Remote Compute Services.

If the Load processes on Host 2 need to write SAS data on a remote host, SAS/
CONNECT or SAS/SHARE is required on Host 2 and the remote host (Host 3). If the
processes on Host 2 need to read from or write to a proprietary DBMS on a remote host,
your configuration must include the software to support at least one of the methods
described in “Access to Data In DBMS Format” on page 28.

Support for Job Scheduling and Tracking
Figure 3.14 on page 38 shows the same configuration with additional software to

support the scheduling and tracking of Jobs through SAS/Warehouse Administrator.
Note that a SAS/SHARE server controls access to the Jobs Information libraries on
Host 1. The Job on Host 2 uses SAS/SHARE to communicate with the SAS/SHARE
server. Accordingly, Host 2 must have a license for SAS/SHARE.

Figure 3.14 Example 2 with Support for Job Scheduling and Tracking

The configuration shown in Figure 3.14 supports the following scenario:

1 SAS/Warehouse Administrator submits the Job to a scheduling server application
on Host 2.

Planning Your Hardware and Software What’s Next 39

2 The Job calls one or more extraction processes that execute on Host 2, read data
from Host 2, and send their output to an appropriate host.

3 The Job calls one or more Load processes that execute on Host 2 and send their
output to Host 3.

4 The Job updates the Jobs Information library with the status of the Job.

What’s Next

After you plan your hardware and software configuration, you are ready to determine
the SAS/Warehouse Administrator objects and processes that you will need for your
data warehousing project.

40

41

C H A P T E R

4
Planning Your Data Stores and
Processes

Overview 41

Groups and Data Stores 42
Data Warehouse Environments 43

Global Metadata 44

Operational Data Definitions (ODDs) 44
Data Files and External Files 45

Data Warehouses and Subjects 46

Data Marts 46
Detail Data Stores 46

Which Detail Data Store Do I Need? 47
Summary Data Stores 48

Which Summary Data Store Do I Need? 49

Information Marts (optional) 49
Jobs 50

Job Inputs and Outputs 51

Creating Multiple Output Tables with One Job 51
Restrictions on Jobs with Multiple Output Tables 52

Processes 52
Mappings 52

User Exits 53

Data Transfers 54
Record Selectors 54

Load Processes 55

Valid Inputs and Outputs for Data Stores 55
What’s Next 57

Overview
Use this chapter to identify the groups, data stores, and processes that you need to

implement the main data collections in your data warehousing project. For example,
suppose you had identified a set of sales data that you wanted to manage in a data
warehouse. You could use this chapter to identify the SAS/Warehouse Administrator
elements required to access this sales data and store it in a data warehouse. You might
want to plan and implement one data collection at a time.

42 Groups and Data Stores Chapter 4

Groups and Data Stores
For each data warehousing project, you will create a hierarchy of groups and data

stores in the SAS/Warehouse Administrator Explorer, such as the one shown in Display
4.1 on page 42.

Display 4.1 Warehouse Environment in the Explorer

A group is an element in the Explorer or the Process Editor that is used to organize
other elements. For example, in Display 4.1 on page 42, Toy Store Env is the top-level
group, and Toy Store Whouse and Sales Source Data are subgroups.

A data store is a table, a view, or a file that is registered in a Warehouse
Environment or in one of its Data Warehouses. For example, the Customer item in
Display 4.1 on page 42 is a data store that contains source data about toy customers.

The Explorer enforces a certain hierarchy of groups and data stores. You can only
add a Data Warehouse object to a Warehouse Environment object, for example. Figure
4.1 on page 43 illustrates the hierarchy of objects in the Explorer.

Planning Your Data Stores and Processes Data Warehouse Environments 43

Figure 4.1 Hierarchy of Groups and Data Stores in the Explorer

The sections that follow provide details about each kind of group and data store.

Data Warehouse Environments
Each data warehousing project requires at least one Data Warehouse Environment.

A Data Warehouse Environment is a metadata record that specifies the SAS library
_MASTER. The _MASTER library is the metadata repository for host definitions and

44 Operational Data Definitions (ODDs) Chapter 4

other global metadata that is shared among one or more Data Warehouses and ODD
Groups.

Environments are added and opened from the SAS/Warehouse Administrator
desktop, as described in “Opening a Warehouse Environment in the Explorer” on page
63. Display 4.2 on page 44 shows a new Environment (Toy Store Env) that has been
opened in the SAS/Warehouse Administrator Explorer.

Display 4.2 New Warehouse Environment in the Explorer

Display 4.1 on page 42 shows an Environment in which a number of subgroups and
data stores have been defined. For details, see Chapter 5, “Maintaining Environments,”
on page 61.

Global Metadata
After you open a Warehouse Environment in the Explorer, you can define metadata

records that can be shared by data stores and other elements within that Environment.
For example, if a number of data stores in an Environment will be stored on the same
host, you could create a definition for that host and save it as part of the global metadata
for the Environment. You could then include the host definition in the metadata for the
data stores that reside on that host, without retyping the host information each time.

In each Warehouse Environment, you will define at least some of the global metadata
types below:

� SAS library definitions (including SAS/ACCESS LIBNAME definitions and Jobs
Information library definitions)

� Host definitions

� DBMS connection profiles

� Contact records

� Scheduling server definitions

As you create data stores and other SAS/Warehouse Administrator elements, you
must specify hosts, libraries, and other global metadata. If you create the main global
metadata items first, you can simply select them from a list, rather than having to stop
and create a host definition in the middle of creating a data store. For details, see
Chapter 6, “Maintaining Global Metadata,” on page 75.

Operational Data Definitions (ODDs)
After you have created an Environment, you can register the source data for that

Environment. To do that, you must define at least one Operational Data Definition
Group (ODD Group) and a number of Operational Data Definitions (ODDs).

An ODD Group is a simple grouping element for ODDs. It can also contain one or
more Information Marts, another kind of SAS/Warehouse Administrator group. In the
SAS/Warehouse Administrator Explorer, an ODD Group can only be added to a

Planning Your Data Stores and Processes Operational Data Definitions (ODDs) 45

Warehouse Environment. Display 4.3 on page 45 shows one ODD Group (Sales Source
Data) that contains a number of ODDs (Customer, Drop, and so on).

Display 4.3 ODD Group with ODDs in the Explorer

An Operational Data Definition (ODD) is a metadata record that provides access to
data sources. The ODDs, in turn, are used as inputs to data stores in a Warehouse
Environment.

At a minimum, in order for a data source to be visible in a Warehouse Environment,
you must specify the location of that data source in an ODD. You can define an ODD
that simply registers the location of a SAS table or view, or that registers the location of
a DBMS table with the help of a SAS/ACCESS LIBNAME definition. You can also
define an ODD that extracts information from a data source, saves the results to a SAS
table or view, and then specifies the location of the extraction table or view.

In the SAS/Warehouse Administrator Explorer, an ODD can be added only to an ODD
Group. For details about ODDs, see Chapter 7, “Registering Data Sources,” on page 107.

Data Files and External Files
Data Files and External Files are inputs to ODDs. They cannot be added in the

Explorer; they can only be added in the Process Editor. Display 4.4 on page 45 shows a
Process Flow that includes a Data File and an External File.

Display 4.4 Data File and External File in a Process Flow

A Data File is a metadata record that specifies a SAS file that is an input to an ODD.
You can define a Data File that simply registers the location of a SAS table or view, or
one that registers the location of a DBMS table with the help of a SAS/ACCESS
LIBNAME definition. You can also define a Data File that extracts information from a
data source, saves the results to a SAS table or view, and then specifies the location of
the extraction table or view.

46 Data Warehouses and Subjects Chapter 4

An External File is an input to an ODD that extracts information from one or more
sources that are not in SAS format. That is, an External File is an input to an ODD
whose Load Step is a DATA step view.

If you are defining an ODD whose Load Step is a DATA step view or an SQL view
(but not a Pass-Through view), you must define its inputs in the Process Editor. Even if
your ODD does not meet the previously discussed conditions, you might want to specify
a Process Flow for this Job for documentation purposes.

For details about these objects, see Chapter 7, “Registering Data Sources,” on page
107.

Data Warehouses and Subjects
To support your data warehousing project, you will create at least one Data

Warehouse and one or more Subjects within each Warehouse.
A Data Warehouse is a metadata record that specifies the SAS library _DWMD. The

_DWMD library is the metadata repository for most of the groups and data stores in a
data warehouse. In the Explorer, a Data Warehouse object can only be added to a Data
Warehouse Environment. Display 4.5 on page 46 shows one Data Warehouse (Toy Store
Whouse) that contains one Subject (Toy Sales).

Display 4.5 Data Warehouse and Subject in the Explorer

A Subject is a grouping element for data related to one topic within a Data
Warehouse. For example, a Data Warehouse might have a Subject called Products
(information related to products) or Sales (information related to sales). Each Subject
can be composed of a number of different data collections: detail data, summary data,
charts, reports, and graphs. In the Explorer, a Subject can only be added to a Data
Warehouse.

For details about Data Warehouses and Subjects, see Chapter 8, “Maintaining Data
Warehouses and Subjects,” on page 133.

Data Marts
A data mart is a limited data warehouse that is often designed to meet the needs of

a particular department or individual. A data mart is more limited in scope than a data
warehouse, which typically contains information used by more than one department. To
implement a data mart in SAS/Warehouse Administrator, use an appropriate
SAS/Warehouse Administrator object: either a Data Warehouse or a Data Group.

Detail Data Stores
Detail data is information that is at or near the fact level in a database. It is data

that has not been summarized or has only been lightly summarized after extraction
from a source. In a data warehousing project, detail data stores are often used as
inputs to summary data stores. They can also be exploited directly — data mining
operations are typically run against the detail data in a warehouse, for example.

Planning Your Data Stores and Processes Detail Data Stores 47

In SAS/Warehouse Administrator, detail data can be stored in Data Tables, Detail
Logical Tables, or Detail Tables. Typically, you will create these objects whenever the
source data specified in an ODD needs to be transformed or merged in order to provide
useful detail data for your project.

A Data Table is a metadata record that specifies a SAS table or view or a DBMS
table or view that can serve multiple purposes. Data Tables are frequently used to
define intermediate data stores, such as look-up tables included as part of a join. They
can be used to define detail data stores, summary data stores (if you write your own
summary code and register it as the Load Step for the Data Table), or tables that hold
information that does not fit anywhere else. In the SAS/Warehouse Administrator
Explorer, a Data Table can only be added to a Data Group. For more information about
Data Tables, see Chapter 9, “Maintaining Data Tables,” on page 145.

A Detail Logical Table is a metadata record that specifies a SAS table or view that
can serve multiple purposes. A Detail Logical Table is often used to implement a view
on multiple, related Detail Tables. Display 4.6 on page 47 shows a Detail Logical Table
(Sales Detail Grp) with Detail Tables (Customer, Drop, and so on).

Display 4.6 Detail Logical Table with Detail Tables in the Explorer

In the SAS/Warehouse Administrator Explorer, a Detail Logical Table can only be
added to a Subject. A Subject can have only one Detail Logical Table. A Detail Logical
Table can contain any number of Detail Tables. Detail Logical Tables in different
Subjects can share (link to) the same Detail Table.

A Detail Table is a metadata record that specifies a SAS table or view or a DBMS
table or view that serves as a detail data store. In the SAS/Warehouse Administrator
Explorer, a Detail Table can be added only to a Detail Logical Table. For more
information, see Chapter 10, “Maintaining Detail Logical Tables and Detail Tables,” on
page 155.

Which Detail Data Store Do I Need?
Typically, you will create Data Tables, Detail Logical Tables, or Detail Tables

whenever the source data specified in an ODD needs to be transformed or merged in
order to provide useful detail data for your project.

A Data Table is a good choice when:
� You want to create multiple groups of detail data stores in the same Subject. (A

Subject can only have one Detail Logical Table.)

48 Summary Data Stores Chapter 4

� You need an intermediate data store, such as a look-up table included as part of a
join in the Process Editor. For details, see “Example: Creating a Data Table” on
page 148.

A Detail Logical Table and its Detail Tables are a good choice when you want to
implement a view on multiple, related Detail Tables. For more information, see
“Example: Creating a Detail Logical Table as a View to Multiple Detail Tables” on page
165.

Summary Data Stores
Summary data is information that is derived from the facts in a database. It is data

that has been summarized after extraction from a source. Many data warehousing
projects require a number of summary data stores in order to support end-user reports,
queries, and analysis.

In SAS/Warehouse Administrator, most summary data is stored in OLAP Tables and
OLAP MDDBs. It is possible to store summarized data in Data Tables, but you must
specify user-written summarization code in the Load Step for the Data Table.

Note: SAS/Warehouse Administrator 2.0 replaces Summary Groups, Summary
Tables, and Summary MDDBs with OLAP Groups, OLAP Tables, and OLAP MDDBs.
That is, in Release 2.0, you cannot create Summary Groups. Instead, you can create
OLAP Groups. The new summary data stores better support OLAP (online analytical
processing) and facilitate the different requirements of OLAP reporting for HOLAP
(hybrid OLAP), MOLAP (multidimensional OLAP), and ROLAP (relational OLAP). �

An OLAP Group (Online Analytical Processing Group) organizes related summary
data, which is stored in OLAP Tables or OLAP MDDBs. The OLAP Group properties
specify the logical structure of the summarized data and how they relate to the detail
data in a data warehouse. OLAP Groups have a type attribute, which you specify as
ROLAP (Relational OLAP), MOLAP (Multidimensional OLAP), HOLAP (Hybrid OLAP),
or MIXED.

In the SAS/Warehouse Administrator Explorer, an OLAP Group can be added only to
a Subject. Display 4.7 on page 48 shows an OLAP Group (HOLAP Group 2) that
contains an OLAP MDDB (OG2 Sum10) and a OLAP Table (OG2 Sum 12).

Display 4.7 OLAP Group in the Explorer

An OLAP MDDB is a metadata record that specifies a SAS MDDB. A SAS MDDB is
not a SAS table. It is a specialized storage format that stores derived summary data in
a multidimensional form, which is a highly indexed and compressed format. To load an
OLAP MDDB, SAS/Warehouse Administrator generates code for the MDDB procedure,
which summarizes data similar to the SUMMARY procedure.

Planning Your Data Stores and Processes Information Marts (optional) 49

An OLAP Table is a metadata record that specifies a file to store derived summary
data. This file can be a SAS table or view or a DBMS table or view. An OLAP Table can
have multiple crossings. To load an OLAP Table, SAS/Warehouse Administrator
generates code for the SUMMARY procedure, which summarizes data by computing
descriptive statistics for columns across rows or within groups of rows.

For details, see Chapter 10, “Maintaining Detail Logical Tables and Detail Tables,”
on page 155.

Which Summary Data Store Do I Need?

A Data Table can be used as a simple summary data store if you write your own
summarization code. Otherwise, the OLAP objects might be more useful. More
specifically, use an OLAP Group of type

� ROLAP to support online analytical processing performed on a relational database,
such as a SAS table or an ORACLE table

� MOLAP to support online analytical processing performed on a SAS
multidimensional database (MDDB)

� HOLAP to support online analytical processing performed on a integrated data
store consisting of one or more SAS MDDBs and one or more relational databases

� MIXED to support online analytical processing performed on individual
(unrelated) OLAP Tables and OLAP MDDBs.

Information Marts (optional)
An InfoMart is a simple grouping element for InfoMart Items and InfoMart Files, as

shown in Display 4.8 on page 49.

Display 4.8 Information Mart in the Explorer

Unlike most objects in SAS/Warehouse Administrator, InfoMart Items and Files are
used to display information rather than store it. For example, an InfoMart Item might
be used to display a chart that summarizes sales information from a warehouse data
store. An InfoMart File might be used to open a spreadsheet that contains information
useful to the person managing a given Warehouse Environment. In the SAS/Warehouse
Administrator Explorer, an InfoMart can be added only to a Subject, a Data Group, or
an ODD Group.

For details, see Chapter 12, “Maintaining Information Marts,” on page 239.

50 Jobs Chapter 4

Jobs
After using the Explorer to define the properties of a given data store, you will use

the Process Editor to define its Job. A Job is a metadata record that specifies the
processes that create one or more data stores. In Display 4.9 on page 50, a Job that
creates the Customer Detail Table is represented by the icon with the rectangle around
it in the left panel of the Process Editor.

Display 4.9 Job and Process Flow in the Process Editor

To create the Customer table, you would click the Customer Job with the left mouse
button and select Run from the pop-up menu. The Load Generation/Execution
Properties window would display. From the Load Generation/Execution Properties
window, you could execute the code associated with the Customer Job.

If you want SAS/Warehouse Administrator to generate the code for a Job,
� the Job’s SAS/Warehouse Administrator Generated attribute must be set (it is

set by default)
� you must create a Process Flow for the Job in the right panel of the Process Editor.

If the Job’s SAS/Warehouse Administrator Generated attribute is set,
SAS/Warehouse Administrator generates code for each process and data store in the
Process Flow, from the bottom to the top.

If you want to specify your own code for a Job,
� the Job’s User Written attribute must be set
� the Job must specify the location of the user-written source code to be executed for

this Job.

If the Job’s User Written attribute is set, SAS/Warehouse Administrator retrieves
code that creates the data store(s) for that Job. If you will supply the source code for a
Job, no Process Flow is required, although you might want to create one for
documentation purposes.

A Job can include scheduling metadata that enables the Process Flow or
user-supplied program to be executed in batch mode at a specified date and time. The
steps for creating Jobs are described in Chapter 13, “Maintaining Jobs,” on page 251.

Planning Your Data Stores and Processes Creating Multiple Output Tables with One Job 51

Job Inputs and Outputs
Keep the following in mind as you plan Jobs for which SAS/Warehouse Administrator

will generate code:
� The code generated for a Job only creates the data stores that are specified as

output tables for the Job. It does not create every data store in the Process Flow in
the right panel of the Process Editor.

� The output tables for a Job are listed under the Job’s icon in the left panel of the
Process Editor. Other data stores in the Process Flow are inputs to the Job.

For example, in Display 4.10 on page 51, the code generated for the All Sales
Detail Job will only create Sales Detail Grp, Customer, Drop, and so on. It will not
create the ODDs in the Process Flow (icons at the bottom of the Process Flows in
the right panel of the Process Editor). The ODDs are inputs to the All Sales Detail
Job. They must be created in one or more separate Jobs. After the ODD Jobs have
been executed, the ODDs can supply information to the output tables in the All
Sales Detail Job.

Creating Multiple Output Tables with One Job
You do not have to create a Job for each data store in your project. You can create a

single Job that creates multiple data stores.
For example, Display 4.6 on page 47 shows a Detail Logical table (Sales Detail Grp)

with Detail Tables (Customer, Drop, and so on). You could define a series of individual
Jobs, such as the Customer Job shown in Display 4.9 on page 50, which would create
each of the Detail Tables under Sales Detail Grp.

Alternatively, you could create a single Job that would create Sales Detail Grp and
all of its Detail Tables, as shown in Display 4.10 on page 51.

Display 4.10 Job with Multiple Output Tables in the Process Editor

To create all of the output tables listed under the All Sales Detail Job (item with the
rectangle around it in the left panel of the Process Editor), you would click the Job with
the left mouse button and select Run from the pop-up menu. The Load

52 Processes Chapter 4

Generation/Execution Properties window would display. From the Load
Generation/Execution Properties window, you could execute the code associated with
the All Sales Detail Job.

For more details, see “Example: Defining a Job with Multiple Output Tables and
Input Sources in a Process Flow” on page 265.

Restrictions on Jobs with Multiple Output Tables
SAS/Warehouse Administrator does not allow you to add an output table that is

invalid for a particular Job. All output tables must be in the same metadata repository
as the Job.

For example, you can create a Job whose output tables are all in the same Data
Warehouse, and you can create another Job whose output tables are all ODDs in the
same Warehouse Environment. But, you cannot create a Job in which both a warehouse
data store and its ODD are specified as outputs.

For example, if you had to create a set of Jobs to manage the sources and targets
shown in Display 4.10 on page 51, you could

1 Create and run one Job called All Sales ODDs that creates and loads all of the toy
sales ODDs in the Toy Store Environment.

2 Create and run another Job such as the All Sales Detail Job shown in Display 4.10
on page 51.

For details about the impact of metadata repositories on some user operations, see
“Overview: Metadata Repositories” on page 313.

Processes
Most of the work in defining a Job is in defining its processes. A process is a routine

that creates a warehouse data store or that extracts data, transforms data, or loads
data into a data store. In the Process Editor, you define metadata records that are used
to generate or retrieve the source code for processes. Mappings, User Exits, Data
Transfers, Record Selectors, and Load Steps are all metadata records that generate or
retrieve processes.

Each process that you define in the Process Editor generates or retrieves code.
SAS/Warehouse Administrator can generate source code for any process except a User
Exit, a Detail Logical Table Load Step, or an ODD Load Step. However, you can specify
a user-written routine for any process.

The sections that follow give an overview of SAS/Warehouse Administrator processes.

Mappings
A Mapping process is automatically added when you specify an input for most data

stores in the Process Editor. A Mapping is a metadata record used to generate or
retrieve a routine that maps columns from one or more data sources into one or more
Data Tables, Detail Tables, OLAP Tables, or OLAP MDDBs.

For example, in Display 4.11 on page 53, columns from a source table named
Customer are mapped to columns in a target table named Customer.

Planning Your Data Stores and Processes User Exits 53

Display 4.11 Process Flow With Mapping in the Process Editor

Common mappings include one-to-one (one data source to a target table), joins (one
or more data sources merged by one or more common columns), and unions (two or
more data sources appended to a target table). For details, see the two Mapping
examples in Chapter 14, “Maintaining Processes,” on page 281.

User Exits
A User Exit process is a metadata record used to retrieve a user-written routine. The

routine must be stored in a SAS catalog with an entry type of SOURCE or SCL. A User
Exit routine often extracts or transforms information for a warehouse data store, but it
could do many other tasks. Display 4.12 on page 53 shows a User Exit that could run a
validation routine on customer income levels before loading them into a warehouse
table.

Display 4.12 Process Flow With User Exit in the Process Editor

For details, see “Example: Defining User Exit Process Properties” on page 290.

54 Data Transfers Chapter 4

Data Transfers

A Data Transfer process is a metadata record used to generate or retrieve a routine
that moves data from one host to another. Data Transfers are required when an input
source and the target data reside on different hosts.

For example, in Display 4.13 on page 54, suppose that the Customer source table was
on Host 1, and the Customer target table was on Host 2.

Display 4.13 Process Flow With Data Transfer in the Process Editor

The Process Flow in Display 4.13 on page 54 illustrates how a Data Transfer could be
used to copy the Customer source data on Host 1 to an intermediate work table on a
Host 2. The Mapping in the Process Flow would then map columns from the
intermediate work table to the target table.

If SAS/Warehouse Administrator generates the code for a Data Transfer, it uses
SAS/CONNECT software and PROC UPLOAD or PROC DOWNLOAD to move the
data. This method is most easily applied to transfers between a local host (host where
SAS/Warehouse Administrator is installed) and a remote host. For details, see
“Example: Defining Data Transfer Process Properties to Move Data from Remote Host
to Local Host” on page 294.

If you need a remote-to-remote transfer, one solution is to specify a user-written
transfer routine in the metadata for the Data Transfer process.

Note: Data Transfers always execute on the remote host (a host other than the host
where SAS/Warehouse Administrator is installed). �

Record Selectors

A Record Selector process is a metadata record used to generate or retrieve a routine
that subsets data prior to loading it to a specified table. In the current release, a Record
Selector can be used only to subset the source data specified in an ODD or in a Data
File (which is an input to an ODD).

For example, Display 4.14 on page 55 illustrates a Record Selector process that
subsets information from the Customer source.

Planning Your Data Stores and Processes Valid Inputs and Outputs for Data Stores 55

Display 4.14 Process Flow With Record Selector in the Process Editor

For details, see “Example: Defining Record Selector Process Properties” on page 298.

Load Processes
A Load process (also called a Load Step) is a metadata record used to generate or

retrieve a routine that puts data into a specified target object. After you define the
metadata for a given data store, you must define a Load process, which actually creates
and loads the data store.

Unlike data preparation processes (Mappings, User Exits, Data Transfers, and
Record Selectors), Load processes do not have their own icons in a Process Flow. They
are associated with the icons of the tables they create. For example, in Display 4.14 on
page 55, the Load processes for the Customer source table and the Customer target
table are not shown in the Process Flow.

To view the Load process metadata for a given data store:
1 Display the Process Flow for the data store.
2 In the Process Flow, click the right mouse button on the data store whose Load

process you would like to inspect. Select Edit Load Step from the pop-up menu.
A window will display the Load process metadata for the selected data store.

For details, see the Load process examples in Chapter 14, “Maintaining Processes,”
on page 281.

Valid Inputs and Outputs for Data Stores
If you want SAS/Warehouse Administrator to generate the code for a Job, you must

create a Process Flow such as the one shown in Display 4.14 on page 55. A Process
Flow is a user-defined diagram in the Process View of the Process Editor. It is composed
of symbols, with connecting arrows and descriptive text, that illustrate the sequence of
each process associated with the Job that is selected in the Job Hierarchy of the Process
Editor. The Process Flow illustrates how the data moves from input source(s) to output
table(s) and what extractions and transformations occur in between.

To create a Process Flow, click an object in the Process View with your right mouse
button, then select a valid object to add. The software will not let you add an invalid

56 Valid Inputs and Outputs for Data Stores Chapter 4

object. The table in this section lists the valid inputs and outputs for data stores and
processes in the Process Editor.

The column headings in the table are as follows:

Data Store is the data store type.

Inputs are valid inputs for the data store in the Process Editor.

Note: Some data stores can use the old Summary Tables or
Summary MDDBs as input. However, no current data store can
specify a Summary Table or a Summary MDDB as an output target.
(You cannot create these old summary objects.) �

Outputs are the valid outputs for the data store in the Process Editor.

Processes are the process types that can be defined for the data store.

Table 4.1 Valid Inputs and Outputs for Data Stores

Data Store Inputs Outputs Processes

Data File a SAS data source ODD, Data File User Exit, Data
Transfer, Record
Selector

External File a data source other
than SAS

ODD, Data File User Exit, Data
Transfer

ODD Data File, External
File

Detail Table, Data
Table, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

User Exit, Data
Transfer, Record
Selector, Load

Data Table Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Group, ODD

Detail Table, Data
Table, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

Mapping, User Exit,
Data Transfer, Load

Detail Table Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Groups, ODD

Detail Table, Detail
Logical Table, Data
Table, Summary
Table, Summary
MDDB, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

Mapping, User Exit,
Data Transfer, Load

Detail Logical Table Detail Table Detail Table, Data
Table, Summary
Table, Summary
MDDB, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

User Exit, Data
Transfer, Load

Planning Your Data Stores and Processes What’s Next 57

Data Store Inputs Outputs Processes

OLAP Group Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Groups, ODD

Detail Table, Data
Table, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

Mapping, Load

OLAP Table Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Groups, ODD

Detail Table, Data
Table, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

Mapping, User Exit,
Data Transfer, Load

OLAP MDDB Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Groups, ODD

Detail Table, Data
Table, OLAP Group,
OLAP Table, OLAP
MDDB, Information
Mart Item,
Information Mart File

Mapping, User Exit,
Data Transfer, Load

Information Mart File
(within a Data
Warehouse)

Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Groups, ODD

NA Load

Information Mart File
(within an ODD)

Data File, External
File, ODD

NA Load

Information Mart Item
(within a Data
Warehouse)

Detail Table, Data
Table, Detail Logical
Table, Summary
Table, Summary
MDDB, OLAP Table,
OLAP MDDB, OLAP
Groups, ODD

NA Load

Information Mart
(within an ODD)

Data File, External
File, ODD

NA Load

What’s Next
After you have identified the groups, data stores, and processes that you need to

implement a data collection, you are ready to implement it in SAS/Warehouse
Administrator.

58

59

P A R T3

Implementation

Chapter 5.Maintaining Environments 61

Chapter 6.Maintaining Global Metadata 75

Chapter 7.Registering Data Sources 107

Chapter 8.Maintaining Data Warehouses and Subjects 133

Chapter 9.Maintaining Data Tables 145

Chapter 10.Maintaining Detail Logical Tables and Detail Tables 155

Chapter 11.Maintaining OLAP Groups and OLAP Summary Data
Stores 175

Chapter 12.Maintaining Information Marts 239

60

61

C H A P T E R

5
Maintaining Environments

Overview 61

Working with Existing Environments 62
Adding the Example Environment 62

Metadata Conversion Wizard 63

Opening a Warehouse Environment in the Explorer 63
Opening an Environment with a Relative Pathname 63

Metadata Copy Wizard 64

Preparing to Create Local or Remote Warehouse Environments 64
Creating a Directory Structure for a New Environment 64

Specifying Physical Pathnames in SAS/Warehouse Administrator 66
Pathname Portability 66

Example: Creating a Local Warehouse Environment 67

Define Warehouse Environment Properties 67
Example: Creating a Remote Warehouse Environment 68

SAS/SHARE Server Preparation 68

SAS/Warehouse Administrator Client Preparation 69
Define Warehouse Environment Properties 69

Creating a Start Method for an Environment 71
Creating a Shortcut on a PC Desktop 71

SAS Startup Files and SAS/Warehouse Administrator 72

SAS Configuration File 72
SAS Autoexec File 72

SAS System Options and SAS/Warehouse Administrator 73

VALIDVARNAME= Option 73
Using VALIDVARNAME= 73

What’s Next 74

Overview
After you have created a project plan for a data warehouse or a data mart, you are

ready to begin work in SAS/Warehouse Administrator. For each data warehousing
project, you will create a hierarchy of groups and data stores in the SAS/Warehouse
Administrator Explorer, such as the hierarchy that is shown in Display 5.1 on page 62.

62 Working with Existing Environments Chapter 5

Display 5.1 Warehouse Environment in the Explorer

The first object that you create will be a Data Warehouse Environment. A Data
Warehouse Environment is a metadata record that specifies the SAS library _MASTER.
The _MASTER library is the metadata repository for host definitions and other global
metadata that is shared among one or more Data Warehouses and Operational Data
Definition Groups (ODD Groups).

In a broad sense, creating a Warehouse Environment includes defining the global
metadata and the data sources for the Environment. These topics are covered in other
chapters. This chapter focuses on the Warehouse Environment object that defines the
_MASTER metadata repository.

To create a Warehouse Environment:

1 Create a directory structure for the Warehouse Environment.

2 Define the properties of the Warehouse Environment.

3 Create a start method for the Environment, if one is required.

Note: The basic steps for maintaining Warehouse Environments are described in the
online Help. To display the relevant online help, in the SAS Help contents, select Help
on SAS Software Products, then select Using SAS/Warehouse Administrator
Software. Select Setting Up Your Warehouse Environment, then Maintaining
Warehouse Environments. In addition, you can display Help for most SAS/Warehouse
Administrator windows by selecting Help on the window. �

Working with Existing Environments

Adding the Example Environment
When SAS/Warehouse Administrator is installed, an example Warehouse

Environment is also installed. For details about adding the example Environment to
the SAS/Warehouse Administrator desktop, see Appendix 2, “Adding the Example
Environment,” on page 333.

Maintaining Environments Opening a Warehouse Environment in the Explorer 63

Metadata Conversion Wizard
The Metadata Conversion Wizard converts Release 1.x metadata to Release 2.0

metadata. If you have any Data Warehouse Environments that were created with a
previous release of SAS/Warehouse Administrator, you must convert the metadata in
these old Environments to Release 2.0 format in order to use these Environments in the
current release.

To invoke the Metadata Conversion Wizard, run SAS/Warehouse Administrator
Release 2.0, add a new Environment to the desktop, and in the Path field for the new
Environment, specify the path to a Release 1.x Environment’s metadata repository that
has not been converted to Release 2.0 format. The Metadata Conversion Wizard
displays.

For more details, see the wizard’s online documentation. First-time users of the
Metadata Conversion Wizard might want to read Appendix 1, “Converting Metadata for
Environments and Warehouses,” on page 323.

Opening a Warehouse Environment in the Explorer
Here is one way to open a Warehouse Environment in the SAS/Warehouse

Administrator Explorer:

1 Run SAS on a machine where SAS/Warehouse Administrator has been installed.

2 Type dw on the SAS command line, and press RETURN. SAS/Warehouse
Administrator will open the default desktop.

3 On the SAS/Warehouse Administrator desktop, position the cursor on the
Environment icon, click your right mouse button, and select Edit from the pop-up
menu. (Under Microsoft Windows and OS/2 operating environments, you can
double-click the Environment icon to open the Environment.)

The Environment will be opened in the SAS/Warehouse Administrator Explorer. For
details about the SAS/Warehouse Administrator Explorer window, click Help in that
window.

Opening an Environment with a Relative Pathname
If the pathname in an Environment’s Path field is a fully qualified path on the local

host, you can start SAS in any convenient directory.
If the pathname in an Environment’s Path field is a relative path on the current

host, start SAS in a directory that will resolve the pathname to the metadata library
_MASTER. Alternatively, you can change to the appropriate parent directory by
entering a command such as the following on the SAS command line:

x ’cd drive_name:\dir_name’

If you try to open a Warehouse Environment and you get an error in the SAS log,
such as

ERROR: Invalid physical name for library _MASTER

this might indicate that SAS cannot resolve a relative pathname to the Warehouse
Environment that you are trying to open. As a result, the groups and data stores in
that Environment will not be visible in the SAS/Warehouse Administrator Explorer. If
you get this error, ask the person who created the Environment to identify the
appropriate parent directory that will resolve the Environment’s relative pathname.

64 Metadata Copy Wizard Chapter 5

If the pathname in an Environment’s Path field is a relative path on a remote host
and the Environment is under the control of a SAS/SHARE server, see “SAS/SHARE
Server Preparation” on page 68.

Metadata Copy Wizard
The Metadata Copy Wizard copies a Warehouse Environment to a new location that

you specify. You can use this feature to model a new Environment after an old one
rather than creating a completely new Environment. To invoke the Metadata Copy
Wizard, run SAS/Warehouse Administrator Release 2.0. On the SAS/Warehouse
Administrator desktop, click an Environment’s icon with the right mouse button and
select Copy. The Metadata Copy Wizard displays. Read the wizard’s online
documentation for details.

Preparing to Create Local or Remote Warehouse Environments
Before you create a Warehouse Environment, you must do some preparation:

Metadata host
configuration

Verify that you have the appropriate hardware and software to
implement your Environments, as described in “Metadata Host
Configuration” on page 23.

Physical paths The physical path for the metadata library _MASTER must exist.
Each Warehouse Environment and each Data Warehouse within an
Environment should have a unique pathname.

You might also want to create a directory structure for the
Environment, as described in “Creating a Directory Structure for a
New Environment” on page 64.

Creating a Directory Structure for a New Environment
Before you enter the metadata for a new Warehouse Environment, you might want to

create a top-level directory and a few typical subdirectories for the Environment. At a
minimum, you will need subdirectories for a Warehouse Environment and its Data
Warehouses.

Note: Each Warehouse Environment—and each Data Warehouse within an
Environment—should have a unique pathname. �

Display 5.2 on page 65 illustrates one possible directory structure for the Toy Store
Environment that is used as the main example in this document.

Maintaining Environments Creating a Directory Structure for a New Environment 65

Display 5.2 Example Directory Structure

The directory structure in Display 5.2 on page 65 is not required. It is simply an
example of a valid structure. It is a convenient way to keep metadata, source libraries,
scripts, and other elements that are associated with a given Environment together. The
directories in the example are as follows:

toystore_1 is a top-level directory that includes some local subdirectories that
are associated with the Toy Store Environment.

SAS/Warehouse Administrator does not require a top-level
directory such as toystore_1, but the combination of a top-level
directory structure and the use of relative pathnames in SAS/
Warehouse Administrator will make it easier to copy or move a
Warehouse Environment—as in a test-to-production scenario.

_env is the directory for the Toy Store Environment and its metadata
repository (reserved libref _MASTER). This library contains host
definitions and other metadata shared by all Warehouses and ODD
Groups in a given Environment. You should have a unique directory
for each Environment in your project.

_infomrt is a directory for a SAS library that contains the example
Information Mart Item and File described in Chapter 12,
“Maintaining Information Marts,” on page 239. You might need
Information Mart Items or Files for your project.

_jobinfo-env is a directory for a Jobs Information library. You do not need such a
directory unless you are using SAS/Warehouse Administrator to
schedule and track Jobs. A Warehouse Environment and its Data
Warehouses can share one Jobs Information library, or they could
have separate Jobs Information libraries. For details, see Chapter
15, “Scheduling Jobs,” on page 305.

_jobinfo-wh is a directory for another Jobs Information library.

_odd is a directory where any local tables or views that are associated
with Operational Data Definitions (ODDs) can be stored. You could
use such a directory if your ODDs create views or output tables.

_scripts is a directory where any SAS/CONNECT scripts that are unique to
this Environment could be stored. The metadata for a remote host
definition includes a reference to a SAS/CONNECT script used to
establish a connection with that host. You could use such a directory
if any warehouse resources are stored on remote hosts.

66 Specifying Physical Pathnames in SAS/Warehouse Administrator Chapter 5

_wh1 is the directory for the Toy Store Data Warehouse and its metadata
repository (reserved libref _DWMD). The _DWMD library is the
metadata repository for most of the groups and data stores in a data
warehouse or a data mart within the current Environment. You
should have a unique directory for each Data Warehouse in your
project.

data is a directory for a SAS library that contains detail data that is local
to the SAS/Warehouse Administrator host. Neither data sources nor
data stores must be local to the SAS/Warehouse Administrator host.

Holapgrp2 is a directory for a SAS library that contains summary data that is
local to the SAS/Warehouse Administrator host.

Source is a directory where a SOURCE catalog containing user-written
routines that are unique to this Environment could be stored. These
routines are used to supplement or replace the code that is
generated by SAS/Warehouse Administrator. For example,
user-written Load Step routines for ODDs could be stored in the
SOURCE catalog, because SAS/Warehouse Administrator does not
generate Load Steps for ODDs.

Specifying Physical Pathnames in SAS/Warehouse Administrator
The metadata for SAS libraries and other objects in SAS/Warehouse Administrator

include a Path field where you specify a pathname for the objects. Remember the
following things when specifying a physical path for an object in SAS/Warehouse
Administrator:

� If the path exists and is local to SAS/Warehouse Administrator, you can use the
right arrow button to select the path.

� If the path exists and is remote to SAS/Warehouse Administrator, enter the path
as it exists on the remote host. (Do not include the remote host name in the path.)

� If the path does not exist, you must use operating system commands to create the
physical path for the object before you can specify its metadata in SAS/Warehouse
Administrator.

Pathname Portability

In general, enter physical pathnames that will be reasonably portable, given the
operating systems where these objects will be stored. This will allow you to copy or
move these objects to different hosts and minimize any updates to the physical
pathnames in the metadata.

The least portable pathname might be one that includes a drive specification, such as
d:\Dw_projects\Project-1_env.

A UNC (Universal Naming Convention) pathname such as
\\pchost1\projects\Dw_projects\Project-1_env is somewhat more portable, as long as
the UNC format is appropriate for the host’s operating system.

The most portable pathname might be a relative pathname such as .\Project-1_env.
However, you must be sure that the current directory for the SAS session will resolve
any relative pathnames for SAS/Warehouse Administrator objects. For details about the
possible impact of relative pathnames, see “Opening an Environment with a Relative
Pathname” on page 63.

Maintaining Environments Define Warehouse Environment Properties 67

Example: Creating a Local Warehouse Environment
This example summarizes how to create a local Warehouse Environment—an

Environment whose metadata repository is stored on the SAS/Warehouse Administrator
host. The following explanations describe the metadata and methods used to achieve
the desired results.

Define Warehouse Environment Properties
If you have not done so already, display the SAS/Warehouse Administrator desktop.

Run SAS on a machine where SAS/Warehouse Administrator has been installed. Type
dw on the SAS command line, and press RETURN.

The following display illustrates a SAS/Warehouse Administrator desktop that has
no Warehouse Environments defined:

Position the cursor on an empty area on the desktop, click the right mouse button,
select Add Item, and then Data Warehouse Environment. A properties window for the
Environment displays as seen in the following display. Enter the appropriate
information as follows:

Path specify the physical path where the Environment’s metadata
repository (_MASTER) will be stored.

The Path field in this example contains a relative pathname that is appropriate for a
SAS library on a PC (.\toystore_1_env). For details about specifying pathnames,
see “Specifying Physical Pathnames in SAS/Warehouse Administrator” on page 66.

68 Example: Creating a Remote Warehouse Environment Chapter 5

The Engine and Options fields can be left blank. After specifying a path, click OK .
If you are creating a new Environment, you will be prompted to enter a Name and a

Description. After specifying a name and description, click OK . The new
Environment is added to the SAS/Warehouse Administrator desktop.

The following display illustrates a SAS/Warehouse Administrator desktop that has
the Toy Store Environment defined:

You are now finished defining the properties for this Environment. To ensure that
you can start SAS using a configuration file and an autoexec file that are appropriate
for this Environment, see “Creating a Start Method for an Environment” on page 71.

Example: Creating a Remote Warehouse Environment
This example summarizes how to create a remote Warehouse Environment—an

Environment whose metadata repository is not stored on the SAS/Warehouse
Administrator host.

A remote Environment might be appropriate if you require concurrent read/write
access to Environments by multiple SAS/Warehouse Administrator hosts. In that case,
you must create a remote Environment and put its metadata repository under the
control of a SAS/SHARE server that is remote to the SAS/Warehouse Administrator
hosts. For an example of such a configuration, see “Remote Metadata: PC Client to
Windows NT Server” on page 25.

The following sections describe the metadata and methods that are used to achieve
the desired results. The appropriate preparation is assumed to have taken place, as
described in “Preparing to Create Local or Remote Warehouse Environments” on page
64. Some additional preparation for remote Environments is described in the next
section.

SAS/SHARE Server Preparation
On the SAS/SHARE server host,

� create a directory structure for the Environment

� assign a SAS libref to the directory that corresponds to the _MASTER library for
the Environment; do this in such a way that the library is under the control of the
SAS/SHARE server.

For example, suppose that you created the following directory structure on the SAS/
SHARE server host,

.\Project-2_env

.\Project-2_wh1

Maintaining Environments Define Warehouse Environment Properties 69

where .\Project-2_env is the directory that corresponds to the _MASTER metadata
repository for the Environment that you will create. You would then assign a libref to
that directory in such a way that the library is under the control of the SAS/SHARE
server.

Note: Because this is a SAS/SHARE libref and not a SAS/Warehouse Administrator
libref, you are not restricted to _MASTER as the libref. For example, to the SAS/
SHARE server, the .\Project-2_env directory could have a SAS/SHARE libref of ENV1.
(The SLIBREF option would then have to be used in the Warehouse Environment’s
metadata, as described in “Define Warehouse Environment Properties” on page 69.) �

Note: If you use a relative pathname such as .\Project-2_env for the Environment
library, be sure that the SAS/SHARE server can resolve the pathname. �

SAS/Warehouse Administrator Client Preparation
Verify that your local SAS session can access the remote library that will ultimately

become the metadata repository for the Environment that you are creating. One way to
do that is to submit a LIBNAME statement for that library. Here is an example of such
a statement,

libname _MASTER server=host2.dwshare slibref=ENV1;

where _MASTER is the local libref for the Warehouse Environment’s metadata repository,
host2 is the name of the remote host, dwshare is the name of the SAS/SHARE server,
and slibref=ENV1 is the remote server’s libref for the Warehouse Environment’s
metadata repository.

If you can successfully execute such a statement, then SAS/Warehouse Administrator
can successfully generate code for the remote Warehouse Environment.

Define Warehouse Environment Properties
If you have not done so already, display the SAS/Warehouse Administrator desktop.

Run SAS on a machine where SAS/Warehouse Administrator has been installed. Type
dw on the SAS command line, and press RETURN.

The next display illustrates a SAS/Warehouse Administrator desktop that does not
have any Warehouse Environments defined:

Position the cursor on an empty area on the desktop, click the right mouse button,
select Add Item, then Data Warehouse Environment. A properties window for the
Environment displays for you to enter the appropriate information, which is described
as follows:

Engine specify a SAS engine appropriate for the current Environment.

Options specify any LIBNAME options appropriate for the current
Environment.

70 Define Warehouse Environment Properties Chapter 5

In the current example, you do not enter a physical path in the Path field because
the _MASTER library will be accessed through the SAS/SHARE server, which uses a
libref to access this library.

The Engine field specifies that the remote SAS engine will be used to access the
_MASTER library for this Environment.

The Options field specifies the SERVER= option required to access the _MASTER
library for this Environment, where host2 is the name of the remote host, dwshare is
the name of the SAS/SHARE server, and slibref=ENV1 is the remote server’s libref for
the Warehouse Environment’s metadata repository.

After specifying the appropriate values, click OK .
If you are creating a new Environment, you will be prompted to enter a Name and a

Description. After specifying a name and description, click OK . The new
Environment is added to the SAS/Warehouse Administrator desktop.

The next display illustrates a SAS/Warehouse Administrator desktop that has the
Toy Store Environment defined:

You are finished defining the properties for this Environment. To ensure that you can
start SAS with a configuration file and an autoexec file appropriate for this
Environment, see “Creating a Start Method for an Environment” on page 71.

Maintaining Environments Creating a Shortcut on a PC Desktop 71

Creating a Start Method for an Environment
SAS/Warehouse Administrator runs in a SAS session. The attributes of the

underlying SAS session should be appropriate for the tasks you want to perform in a
particular Warehouse Environment.

Note: When you create a given Warehouse Environment, you should provide the
means to start SAS with a configuration file and an autoexec file appropriate for the
Environment. �

It is recommended that you create an appropriate start method for any Environment
that you create, so that anyone who uses your Environment will have the correct
session attributes.

Creating a Shortcut on a PC Desktop
Suppose that you have installed SAS/Warehouse Administrator on a Microsoft

Windows NT host, and you have created a Warehouse Environment on that host. The
start method for that Environment might be a desktop shortcut, which could be created
as follows:

1 Click the right mouse button on the desktop and select New, and then Shortcut.
2 In the Create Shortcut window, click Browse to select the appropriate sas.exe file.

When you have selected the file, click Next .
3 In the next window, enter a name for the shortcut and click Finish .

The shortcut is created on the desktop. The next task is to specify a SAS
configuration file and a SAS autoexec file appropriate for the tasks you want to
perform in SAS/Warehouse Administrator.

4 Click the shortcut icon with the right mouse button and select Properties.
The Properties window for the shortcut displays.

5 In the Properties window for the shortcut, click the Shortcut tab.
The Shortcut tab displays. The Target field specifies the sas.exe file that you

selected in Step 2. For example,
D:\sas8\sas.exe

6 On the Shortcut tab, specify a SAS configuration file and a SAS autoexec file
appropriate for the tasks you want to perform in SAS/Warehouse Administrator in
the Target field. For example,

‘‘D:\sas8\sas.exe’’ -config ‘‘d:\username\config\sasv8.cfg’’

-autoexec ‘‘d:\username\config\autoexec.sas’’

You could replace username with any convenient directory name.

Note: To handle spaces in pathnames, use double quotation marks to delimit all
paths.

For details about SAS configuration files and SAS autoexec files appropriate for
SAS/Warehouse Administrator, see “SAS Startup Files and SAS/Warehouse
Administrator” on page 72.

7 To start SAS in a particular directory, specify that directory in the Start in field.
For example,

D:\username\dw\demo

This is important if the Warehouse Environment that you created uses relative
pathnames. For details, see “Opening an Environment with a Relative Pathname”
on page 63.

72 SAS Startup Files and SAS/Warehouse Administrator Chapter 5

8 When you are finished, click OK to save your changes.

The shortcut is ready to use.

SAS Startup Files and SAS/Warehouse Administrator

SAS Configuration File
When you install SAS software and SAS/Warehouse Administrator, the installation

process creates a SAS configuration file (such as sasv8.cfg) that includes the
appropriate SASHELP catalogs into the concatenated SASHELP library.

Be sure to specify the appropriate SAS configuration file in your SAS start command
so that the SAS/Warehouse Administrator SASHELP catalogs will be visible in the
underlying SAS session.

You might want to specify SAS options in the configuration file that would be useful
in a SAS/Warehouse Administrator session. For details about such options, see “SAS
System Options and SAS/Warehouse Administrator” on page 73.

SAS Autoexec File
A SAS autoexec file can include LIBNAME statements, SAS options, and various

commands that are appropriate for the tasks you want to perform in SAS/Warehouse
Administrator. For example, here is a typical SAS autoexec file for SAS running under
Microsoft Windows or Windows NT:

/* Typical SAS autoexec for SAS/Warehouse Administrator */

/* Assign getusrpw catalog. Provides access */
/* to GETUSRPW macro required by some */
/* SAS/CONNECT scripts. */
filename getusrpw catalog ’sashelp.dwport’;
options sasautos=(getusrpw sasautos);

/* Assign _saswa lib. Provides access */
/* to SAS/Warehouse Administrator add-ins */
/* and other software. */
libname _saswa ’d:\username\dw\sample8’;

/* Start SAS/Warehouse Administrator */
dm "dw" continue;

GETUSRPW support is often enabled on the host where SAS/Warehouse
Administrator is installed. However, the getusrpw catalog is not needed until you are
ready to create and test remote host definitions.

Most sites will want to install and use at least some of the add-in software available
for SAS/Warehouse Administrator. However, the _saswa library is not needed until you
have installed some of these add-ins. In the libname _saswa statement above, you could
replace username with any convenient directory name.

You might want to have your SAS autoexec file start SAS/Warehouse Administrator,
as shown in the previous example (see the dm "dw" continue; command).

You might want to add a command to your SAS autoexec file that will set the start
directory for the SAS session. Here is an example of such a command:

Maintaining Environments VALIDVARNAME= Option 73

x ’cd c:\username\dw’

This is important if the Warehouse Environment in which you will be working uses
relative pathnames.

You also might want to specify SAS options in the autoexec file that would be useful
in a SAS/Warehouse Administrator session. For details about such options, see “SAS
System Options and SAS/Warehouse Administrator” on page 73.

SAS System Options and SAS/Warehouse Administrator
When using SAS/Warehouse Administrator, the attributes of the underlying SAS

session must be appropriate for the tasks you want to perform. This topic describes the
impact of some SAS options on SAS/Warehouse Administrator.

Note: For full details about a SAS option, see the SAS Language Reference:
Dictionary. �

VALIDVARNAME= Option
The SAS option VALIDVARNAME= controls the type of SAS column names that can

be used and created during a SAS session.

VALIDVARNAME=v6
enforces Version 6 rules for SAS names, where the maximum length is eight
characters; all letters are displayed in uppercase, regardless of how they are
entered; and maximum width for character columns is 200 characters.

VALIDVARNAME=v7
enforces Version 7 rules for SAS names, where the maximum length is 32
characters; letters entered in mixed case are displayed in mixed case; and
maximum width for character columns is 32,767 characters. This is the default for
SAS/Warehouse Administrator.

VALIDVARNAME=UPCASE
enforces same rules as VALIDVARNAME=V7, except that all letters are displayed
in uppercase, regardless of how they are entered.

VALIDVARNAME=ANY
is not supported in SAS/Warehouse Administrator.

To specify the VALIDVARNAME= option, include the appropriate statement in a SAS
invocation, a SAS autoexec file, or a SAS configuration file as follows:

option validvarname=option;

Note: For details about the VALIDVARNAME= system option, see the SAS
Language Reference: Dictionary. �

Using VALIDVARNAME=
By default, SAS/Warehouse Administrator Release 2.0 supports 32–byte, mixed-case

column names. When entering metadata for a SAS data store name (table, view, or
MDDB), for a column in a SAS data store, or for a SAS catalog or catalog entry, the
names can now be up to 32 bytes long, and the letters in the name can be entered in
mixed-case.

Note: SAS will not let you specify two names that differ only in case. �

74 What’s Next Chapter 5

For example, SAS/Warehouse Administrator will not let you specify a column abc
and a column ABC in the same table. Accordingly, when you specify SAS column names
in SAS/Warehouse Administrator, do not specify two names that only differ in case.

Note: SAS librefs and filerefs are still limited to a maximum of eight characters. �

In addition to its effect on SAS names, the VALIDVARNAME= option can have other
significant impacts in a SAS/Warehouse Administrator session. For example,

� if you have warehouse data stores in DBMS format, the VALIDVARNAME= option
determines the rules for mapping DBMS column names to SAS column names, or
vice versa. For details, see the VALIDVARNAME= option in the SAS/ACCESS
documentation for the DBMS.

� the VALIDVARNAME= option can also have impacts on SAS/CONNECT software
and PROC SQL Pass-Through views. For details, see the VALIDVARNAME=
option in the documentation for these items.

In general, use the default (VALIDVARNAME=v7) when you are specifying metadata
for warehouse data that will reside on a SAS Version 7 or later host, and you would like
to take advantage of long, mixed-case column names.

Alternatively, if all of your warehouse data will be stored on SAS Version 6 hosts, you
might consider using the VALIDVARNAME=v6 option in your SAS/Warehouse
Administrator session, which will not allow you to specify SAS column names that will
not work on Version 6 hosts.

What’s Next
After adding a Warehouse Environment, you are ready to define host definitions and

other global metadata for that Environment.

75

C H A P T E R

6
Maintaining Global Metadata

Overview 76

Using the Define Items Used Globally Window 76
SAS Library Definitions 77

Preparing to Create a SAS Library Definition 77

Example: Creating a Local Library Definition 77
Define Library Properties 77

Example: Creating a Remote Library Definition 79

Define Library Properties 79
Example: Creating a SAS/ACCESS LIBNAME Definition 80

Preparing to Create a SAS/ACCESS LIBNAME Definition 81
Test SAS/ACCESS Engine Support 81

Define SAS/ACCESS LIBNAME Properties 82

Example: Creating a Jobs Information Library 83
Preparing to Create a Jobs Information Library 84

SAS/SHARE Server Preparation 84

SAS/Warehouse Administrator Client Preparation 84
Define Library Properties 85

Host Definitions 86
Preparing to Create Host Definitions 86

Local and Remote Host Definitions 86

Example: Adding a Local Host Definition 87
Define Host Properties 87

Example: Adding a Remote Host Definition 88

Preparing to Create a Remote Host Definition 88
Define Host Properties 89

Additional Setup for Remote Hosts 92
Creating Scripts for Accessing Remote Hosts 92

Setup Required for GETUSRPW Macro 93

GETUSRPW Support Local to SAS/Warehouse Administrator 93
GETUSRPW Support Remote to SAS/Warehouse Administrator 93

DBMS Connection Profiles 95

Preparing to Create DBMS Connection Profiles 95
Example: Creating a Connection Profile for a SAS/ACCESS LIBNAME Definition 95

Identify DBMS Login Information 95
Define Connection Properties 95

Contact Records 97

Preparing to Create Contact Records 97
Example: Creating a Contact Record 98

Define Contact Properties 98

Scheduling Server Definitions 99
Preparing to Create Scheduling Server Definitions 100

76 Overview Chapter 6

Example: Creating an AT Scheduling Server Definition 100

Preparing to Create an AT Scheduling Server Definition 100
Define Server Properties 100

Summary: Creating and Using a Null Scheduling Server Definition 105

Typical Uses for a Null Scheduler Definition 106
Define Server Properties 106

What’s Next 106

Overview

After you define a Warehouse Environment, you can define metadata records that can
be shared by data stores and other elements within that Environment. For example, if
Jane Jones is the administrator for all of the data stores in a given Data Warehouse,
you can create a contact record for Jane and save it as part of the global metadata for
the parent Environment. You could then include Jane’s contact record in the metadata
for the data stores in the Warehouse without retyping her information each time.

If you create the main global metadata items first, you can simply select them from a
list rather than having to stop and create a host definition in the middle of creating a
data store, for example. In each Warehouse Environment, you will define at least some
of the following global metadata types:

� SAS library definitions (including SAS/ACCESS LIBNAME definitions and Jobs
Information library definitions)

� host definitions

� DBMS connection profiles

� contact records

� scheduling server definitions

Note: The basic steps for maintaining global metadata are described in the online
Help. To display the relevant online Help, in the SAS Help contents, select Help on
SAS Software Products, then select Using SAS/Warehouse Administrator
Software. Select Setting Up Your Warehouse Environment, then Maintaining
Warehouse Environments, then Maintaining Global Metadata. In addition, you can
display Help for most SAS/Warehouse Administrator windows by selecting Help on the
window. �

Using the Define Items Used Globally Window

To add global metadata records (except for Jobs Information libraries):

1 Open the relevant Warehouse Environment in the SAS/Warehouse Administrator
Explorer, as described in “Opening a Warehouse Environment in the Explorer” on
page 63.

2 From the menu bar, select File, then Setup.

3 From the Define Items Used Globally window, select the type of global
metadata you want to add, then click Add .

4 In the Properties window, enter and save the metadata record.

The sections that follow provide details about each kind of global metadata.

Maintaining Global Metadata Example: Creating a Local Library Definition 77

SAS Library Definitions
A SAS library definition is a metadata record for a SAS library that contains data,

views, source code, or other information that is used in the current Warehouse
Environment. They are used to generate LIBNAME statements for the corresponding
libraries. SAS library definitions are included in the metadata records for data stores,
processes, and Jobs in the current Environment. They are required in order to access
source data and to load warehouse data stores.

Preparing to Create a SAS Library Definition
At a minimum, after you create a Warehouse Environment, and before you add any

groups or data stores, it is recommended that you add any SAS library definitions that
will be needed for the first data stores, processes, and Jobs that you will add to the
current Environment.

The metadata for SAS library definitions includes a Path field where you specify a
pathname for the library. This path must exist, or the LIBNAME statement that is
generated from the library definition will not work. You might find it convenient to
create the physical paths before you start creating the library definition in SAS/
Warehouse Administrator. Then you will know what to enter in the Path field, and you
can test the library definition immediately after creating it.

Keep in mind a SAS library definition does not include a host definition. In most
cases, in a separate task, you must create a host definition for the host where the library
will reside. In the metadata for data stores and other objects, you must specify both the
library definition and the host definition for the computer where the library resides.

Example: Creating a Local Library Definition
The following example summarizes how to create a metadata record for a SAS

library that is stored on the SAS/Warehouse Administrator host. The appropriate
Warehouse Environment is assumed to exist.

Define Library Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

SAS Libraries. Click Add at the bottom left of the window. A Library Properties
window for the library displays for you to enter the appropriate information as follows:

Name specifies a display name for the SAS library you are creating.

78 Example: Creating a Local Library Definition Chapter 6

The Name field contains a display name that is appropriate for a source code library:
Source Code.

After you have entered a name (and perhaps a description), click the Details tab. The
fields on this tab are

Let the SAS
System assign
the library

specifies who is responsible for assigning this library—you or SAS/
Warehouse Administrator.

Do not select Let the SAS System assign the library if you
want to control when this library is assigned.

Libref specifies a libref for the library being defined.

Path specifies a physical path for the library being defined. For details
about specifying pathnames, see “Specifying Physical Pathnames in
SAS/Warehouse Administrator” on page 66.

The Let the SAS System assign the library option is selected in the Details
tab above.

The Libref field above contains a libref appropriate for a source code library: source.
For a local library, you can often leave the Engine and Options fields blank.
The Path field above contains a relative pathname that is appropriate for a SAS

library on a PC: .\toystore_1\Source.
After specifying values in these fields, click OK . The new library definition is added

to the list of libraries in the Define Items Used Globally window.

Maintaining Global Metadata Example: Creating a Remote Library Definition 79

Example: Creating a Remote Library Definition
This example summarizes how to create a metadata record for a SAS library that is

not stored on the SAS/Warehouse Administrator host. The appropriate preparation is
assumed to have taken place, as described in “Preparing to Create a SAS Library
Definition” on page 77.

Keep in mind that the physical path that you specify in this library definition will
not resolve until you combine the library definition with a host definition for the
computer where the library resides. In the metadata for data stores and other objects,
you will specify both the library definition and the host definition for the computer
where the library resides.

Define Library Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

SAS Libraries. Click Add at the bottom left of the window. A Library Properties
window for the library displays for you to enter the appropriate information as follows:

Name enter a display name for the SAS library you are creating.

The Name field contains a display name that is appropriate for a remote source data
library: Remote Src Data.

After you have entered a name (and perhaps a description), click the Details tab. The
fields on this tab are

Let the SAS
System assign
the library

specifies who is responsible for assigning this library—you or SAS/
Warehouse Administrator.

Libref specifies a libref for the library being defined.

Path specifies a physical path for the library being defined. For details
about specifying pathnames, see “Specifying Physical Pathnames in
SAS/Warehouse Administrator” on page 66.

.

80 Example: Creating a SAS/ACCESS LIBNAME Definition Chapter 6

The Let the SAS System assign the library option is selected in the Details
tab above.

The Libref field contains a libref appropriate for a remote data source library:
remdata.

Note: Do not specify any values in the Engine field or the Options field on this tab.
All remote host information is provided in a separate host definition. �

The Path field above contains a relative pathname that is appropriate for a SAS
library on a UNIX machine: ./toy_unx_srcdata.

Note: In order for the remote library definition to work properly, the pathname
entered in the Path field must resolve after connection to the remote computer is
established. �

In the metadata for data stores and other objects, you will specify both the library
definition and the host definition for the computer where the library resides. A host
definition includes a reference to a SAS/CONNECT script. This script starts a session
in a particular directory on the remote computer. The library pathname entered in the
Path field must resolve from the start directory on the remote computer, as specified by
the host definition you plan to use with this remote library definition.

For example, suppose that you plan to use a host definition called unix_1 with the
Remote Src Data library definition in the current example. Suppose also that the
unix_1 definition included a reference to a SAS/CONNECT script, which started a SAS
session on a UNIX computer in the /user/admin1 directory. In that case, the pathname
entered in the Path field above must resolve from the /user/admin1 directory on the
target UNIX machine.

After specifying the values above, click OK . The new library definition is added to
the list of libraries in the Define Items Used Globally window.

Example: Creating a SAS/ACCESS LIBNAME Definition
This example summarizes how to create a metadata record for a SAS/ACCESS

LIBNAME definition, which is a special SAS library that can be used to extract source
data in DBMS format or to create warehouse data stores in a DBMS.

SAS/Warehouse Administrator uses a SAS/ACCESS LIBNAME definition to generate
a SAS/ACCESS LIBNAME statement. Some of the metadata that you specify in the
definition corresponds to the options in the LIBNAME statement. For example, a
SAS/ACCESS LIBNAME definition specifies a SAS/ACCESS engine—such as Oracle or
Sybase—that enables you to access the corresponding DBMS as if it were a SAS library.

A SAS/ACCESS LIBNAME definition also specifies a DBMS connection profile, which
includes the DBMS user ID, password, server name, and other connection information

Maintaining Global Metadata Example: Creating a SAS/ACCESS LIBNAME Definition 81

used to access the DBMS. These options are passed to DBMS client software, which
actually makes the connection to the DBMS.

SAS/ACCESS LIBNAME definitions can be used in ODDs to access source data in
DBMS format. By default, for new DBMS data stores, SAS/Warehouse Administrator
generates Load Steps that use SAS/ACCESS LIBNAME statements. For details about
the SAS/ACCESS LIBNAME statement, see the SAS Language Reference: Dictionary.

Preparing to Create a SAS/ACCESS LIBNAME Definition
Before you create a SAS/ACCESS LIBNAME definition, make the following

preparations:

� Verify that you have the software that you need, as described in “Access to Data In
DBMS Format” on page 28.

� Identify the target DBMS—the database to be accessed with the SAS/ACCESS
LIBNAME definition. Identify the DBMS username and password you will need to
make the connection.

� Install and configure the DBMS client software on the computer where the
SAS/ACCESS LIBNAME statement will be executed.

� In the DBMS client, define a connection for the target DBMS.

� In SAS/Warehouse Administrator, create a DBMS connection profile for the target
DBMS. For details, see “Example: Creating a Connection Profile for a SAS/
ACCESS LIBNAME Definition” on page 95.

Test SAS/ACCESS Engine Support
SAS/Warehouse Administrator uses a SAS/ACCESS LIBNAME definition to generate

a SAS/ACCESS LIBNAME statement. In order for such a statement to work, you must
have SAS/ACCESS software, a DBMS client for the target DBMS, and a DBMS
connection profile for the target DBMS. To verify that these elements are working, you
might want to manually submit a LIBNAME statement similar to the one that SAS/
Warehouse Administrator will generate for the SAS/ACCESS LIBNAME definition that
you are creating. If your manually submitted statement is successful in connecting to
the target DBMS, the statement generated by SAS/Warehouse Administrator will work
also.

For example, suppose that you have installed the relevant software and have
gathered the following information:

Target DBMS Oracle

DBMS user
name

admin1

DBMS password ad1min

DBMS
connection name

V2o7223.world

On the computer where the SAS/ACCESS LIBNAME statement will be executed, you
could then submit a LIBNAME statement such as the following in the SAS Program
Editor:

libname mydb oracle user=admin1 pass=ad1min path=’V2o7223.world’;

The options are specific to the DBMS to which you are connecting. For details about
options, see the appropriate chapter in SAS/ACCESS for Relational Databases:
Reference. Some of the options in the LIBNAME statement above are specified in the

82 Example: Creating a SAS/ACCESS LIBNAME Definition Chapter 6

SAS/ACCESS LIBNAME definition. Others are specified in the DBMS connection
profile for the target DBMS.

Define SAS/ACCESS LIBNAME Properties
Display the Define Items Used Globally Window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

SAS Libraries. Click Add at the bottom left of the window. A Library Properties
window for the library displays for you to enter the appropriate information as follows:

Name enter a display name for the SAS library you are creating.

The Name field contains a display name that is appropriate for a SAS/ACCESS
LIBNAME definition for an Oracle database: SAS/Oracle Lib.

After you have entered a name (and perhaps a description), click the Details tab. The
fields on this tab are

Let the SAS
System assign
the library

specifies who is responsible for assigning this library—you or SAS/
Warehouse Administrator.

Libref specifies a libref for the library being defined.

Engine specifies a SAS/ACCESS engine for the library being defined.

Maintaining Global Metadata Example: Creating a Jobs Information Library 83

The Let the SAS System assign the library option is selected in the Details
tab above.

Selecting Let the SAS System assign the library lets SAS/Warehouse
Administrator assign this library when you execute a Job that includes a reference to
this library definition. Do not select this option if you want to control when this library
is assigned.

The Libref field above contains the libref mydb.
The Engine field above specifies that the oracle SAS/ACCESS engine will be used to

access this library.
The Options and Path fields are left blank.

Note: If you are creating a SAS/ACCESS LIBNAME definition, the DBMS user ID,
password, and server name should not be entered here in the Options field. That
information should be specified as part of the DBMS connection profile that you will
specify on the Connection tab. �

After specifying the previous values, click the Connection tab. The fields on this tab
are

This library
is a database
connection
library

specifies that the library you are defining requires a DBMS
connection profile.

Connection specifies a DBMS connection profile.

The This library is a database connection library option is selected in the
Connection tab above.

In the Connection field, an appropriate DBMS connection profile was selected using
the down arrow: oracle-1. For details about connection profiles, see “DBMS
Connection Profiles” on page 95.

After specifying the previous values, click OK . The new library definition is added
to the list of libraries in the Define Items Used Globally window.

Example: Creating a Jobs Information Library
If you want SAS/Warehouse Administrator to generate code that will execute a Job at

a future date and time, you must define one or more Jobs Information libraries. This
example describes how to create a remote Jobs Information library under the control of
a SAS/SHARE server, which is the recommended configuration for a production data

84 Example: Creating a Jobs Information Library Chapter 6

warehouse in which Jobs are scheduled and tracked through SAS/Warehouse
Administrator.

A Jobs Information library is a SAS library that contains status information for Jobs
that have been scheduled through the Job Properties window in SAS/Warehouse
Administrator. If job tracking is enabled for a given Job, when the Job executes, it will
update its status in the appropriate Jobs Information library. The Job Viewer window
reads the Jobs Information library to display information about Jobs that have been
submitted.

Preparing to Create a Jobs Information Library
The basic steps for creating a Jobs Information library definition are the same as for

any SAS library definition: open the appropriate Warehouse Environment and add a
library definition from the Define Items Used Globally window. However, there are
some special considerations for Jobs Information libraries:

� Jobs Information libraries are for internal use by SAS/Warehouse Administrator.
Accordingly, they are often stored on the same host where the metadata
repositories are stored. In “Metadata Host Configuration” on page 23, see the
configurations that support Job scheduling and tracking.

� The physical path for each Jobs Information library must exist.
� For a production data warehouse in which Jobs are scheduled and tracked through

SAS/Warehouse Administrator, it is strongly recommended that the Jobs
Information libraries be placed under the control of a SAS/SHARE server. For
details, see “Jobs Information Libraries and SAS/SHARE Software” on page 24.

Note: For a non-production data warehouse, or for a data warehouse where Jobs are
not tracked through SAS/Warehouse Administrator, it is not necessary to put the
relevant Jobs Information libraries under the control of a SAS/SHARE server. In that
case, you can simply add a local or remote library definition, then make that library the
Jobs Information library for a given Environment or Data Warehouse, as described in
“Registering Jobs Information Libraries” on page 306. �

SAS/SHARE Server Preparation
On the SAS/SHARE server host,
� create a directory for the Jobs information library
� assign a SAS libref to this directory in such a way that the library is under the

control of the SAS/SHARE server.

For example, you might create the .\Project-2_jobinfo_1 directory on the SAS/
SHARE server host, then assign the libref joblib_1 to that directory so that it is under
the control of the SAS/SHARE server.

Note: If you use a relative pathname such as .\Project-2_jobinfo_1 for the Jobs
Information library, be sure that the SAS/SHARE server can resolve the pathname. �

SAS/Warehouse Administrator Client Preparation
Verify that your local SAS session can access the remote library that will ultimately

become the Jobs Information library that you are creating. One way to do that is to
submit a LIBNAME statement for that library. Here is an example of such a statement:

libname joblib_1 server=host2.dwshare;

where joblib_1 is the libref for the Jobs Information library on both the
SAS/Warehouse Administrator host and the remote SAS/SHARE server host, host2 is
the name of the remote host, and dwshare is the name of the SAS/SHARE server.

Maintaining Global Metadata Example: Creating a Jobs Information Library 85

If you can successfully execute such a statement, then SAS/Warehouse Administrator
can successfully generate code for the remote Jobs Information library.

Define Library Properties
Display the Define Items Used Globally Window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

SAS Libraries. Click Add at the bottom left of the window. A Library Properties
window for the library displays for you to enter the appropriate information as follows:

Name specifies a display name for the SAS library you are creating, such
as Joblib_1.

After you have entered a name (and perhaps a description), click the Details tab. The
fields on this tab are

Let the SAS
System assign
the library

specifies who is responsible for assigning this library—you or
SAS/Warehouse Administrator.

Libref specifies a libref for the library being defined.

Engine specifies a SAS engine appropriate for the library being defined.

Options specifies any LIBNAME statement options appropriate for the
library being defined.

86 Host Definitions Chapter 6

On the Details tab, the Let the SAS System assign the library option is
selected.

The Libref field contains a local libref appropriate for a Jobs Information library:
joblib_1. The current example assumes that the libref for the Jobs Information
library is joblib_1 on both the SAS/Warehouse Administrator host and the remote
SAS/SHARE server host.

The Engine field specifies the remote engine, because the library in our example is
on a host that is remote to SAS/Warehouse Administrator.

The Options field specifies the SERVER= option required to access the Jobs
Information library, where host2 is the name of the remote host, and dwshare is the
name of the SAS/SHARE server.

After specifying values in these fields, click OK . The new library definition is added
to the list of libraries in the Define Items Used Globally window.

After you have defined the library, you can make that library the Jobs Information
library for a given Environment or Data Warehouse, as described in “Registering Jobs
Information Libraries” on page 306.

Host Definitions
A host definition is a metadata record that specifies a computer where data stores

reside, where processes and Jobs execute, or where process output is sent. Host
definitions are included in the metadata records for data stores, processes, and
scheduling server definitions in the current Environment. They are required in order to
access source data and to load warehouse data stores.

Preparing to Create Host Definitions
Here is one way to identify the host definitions you need for a given project:
� Review the host configuration in your project plan.
� Create a local host definition for each computer where SAS/Warehouse

Administrator is installed.
� Create a remote host definition for each computer that is remote to SAS/

Warehouse Administrator where a data store resides, where a process or Job will
execute, or where a process will send its output—if SAS/Warehouse Administrator
will generate code for that object.

Local and Remote Host Definitions
Host definitions include a Warehouse Jobs Are field. This field determines whether

SAS/Warehouse Administrator will generate SAS/CONNECT statements for the object
whose metadata includes the host definition. The possible values for this field are

Local to this
Host

SAS/Warehouse Administrator generates code for the object as if it
were local to SAS/Warehouse Administrator. (The code does not
include SAS/CONNECT statements.)

Remote to
this Host

SAS/Warehouse Administrator generates code for the object as if it
were remote to SAS/Warehouse Administrator. (The code includes
SAS/CONNECT statements.)

For example, suppose that you want SAS/Warehouse Administrator to generate code
for a data store that resides on the SAS/Warehouse Administrator host. The metadata

Maintaining Global Metadata Example: Adding a Local Host Definition 87

for this library would include a local host definition because SAS/CONNECT is not
required to execute the code for this object.

To take another example, suppose that you want SAS/Warehouse Administrator to
generate code to access a remote DBMS through a local SAS/ACCESS LIBNAME
statement. The metadata for the SAS/ACCESS LIBNAME statement would include a
local host definition because SAS/CONNECT is not required to execute a local
SAS/ACCESS LIBNAME statement. (In this case, the DBMS is accessed as if it were a
local SAS library, for the most part. The remote connection is handled transparently by
the DBMS client software.)

On the other hand, suppose that you want SAS/Warehouse Administrator to generate
code for a data store that resides on a host remote to SAS/Warehouse Administrator.
The metadata for this object would include a remote host definition because
SAS/CONNECT is required to access the remote host where the data store resides.

Example: Adding a Local Host Definition
This example summarizes how to add a local host definition—a host definition with a

Local to this Host value in its Warehouse Jobs Are field. Typically, you will create
a local host definition for each computer where SAS/Warehouse Administrator is
installed. The appropriate Warehouse Environment is assumed to exist.

Define Host Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

Hosts. Click Add at the bottom left of the window. A Host Properties window for the
host displays for you to enter the appropriate information as follows:

Name specifies a display name for the host definition that you are creating.

The Name field contains a display name that is appropriate for a local host: local. If
your site has multiple SAS/Warehouse Administrator hosts, you might want to give
each local host a different display name.

After you have entered a name (and perhaps a description), click the Locale tab. The
fields on this tab are

Warehouse
jobs are

specifies whether the host being defined is local or remote to SAS/
Warehouse Administrator—for code generation purposes.

88 Example: Adding a Remote Host Definition Chapter 6

If you select Local to this host, when you incorporate this
host definition in the metadata for a data store, process, or Job,
SAS/Warehouse Administrator will generate code for that object as if
it is local to SAS/Warehouse Administrator (the code will not include
SAS/CONNECT statements).

In the Warehouse jobs are field, the Local to this host option is selected.
After specifying values in this field, click OK . The new host definition is added to

the list of hosts in the Define Items Used Globally window.

Example: Adding a Remote Host Definition
This example summarizes how to add a remote host definition—a host definition with

a Remote to this Host value in its Warehouse Jobs Are field. Typically, you will
create a remote host definition for each computer that is remote to SAS/Warehouse
Administrator where a data store resides, where a process or Job will execute, or where
a process will send its output—if SAS/Warehouse Administrator will generate code for
that object.

The appropriate Warehouse Environment is assumed to exist.

Preparing to Create a Remote Host Definition
Before you create a remote host definition, gather the following information about

the host:

Access method Example: TCP/IP

Remote host ID Example: unixone.mycompany.com

Remote User ID Example: admindw

Remote
Password

Example: addwmin

Remote SAS
Version *

Example: SAS Version 6.12

* Keep in mind that a remote host definition is used to generate the code for a SAS/
CONNECT session between two computers, one of which is the SAS/Warehouse
Administrator host. Base SAS must be installed on both machines.

In addition to gathering the information above, you should also do the following tasks:

Maintaining Global Metadata Example: Adding a Remote Host Definition 89

� Complete the relevant setup tasks for remote hosts, as described in “Additional
Setup for Remote Hosts” on page 92.

� Test the SAS/CONNECT script that you will specify in the host definition that you
are creating.

Define Host Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

Hosts. Click Add at the bottom left of the window. A Host Properties window for the
host displays for you to enter the appropriate information as follows:

Name specifies a display name for the host definition that you are creating.

The Name field contains a display name that is appropriate for a remote UNIX host:
unix1.

After you have entered a name (and perhaps a description), click the Locale tab. The
fields on this tab are

Warehouse
jobs are

specifies whether the host being defined is local or remote to
SAS/Warehouse Administrator—for code generation purposes.

If you select Remote to this host when you incorporate this
host definition in the metadata for a data store, process, or Job,
SAS/Warehouse Administrator will generate code for that object as
though it were remote to SAS/Warehouse Administrator (the code
will include SAS/CONNECT statements).

Remote ID specifies the address needed to access the remote host—as
appropriate for the access method you specify in the Access method
field.

Access method specifies the communications access method that you want to use to
access this host.

SAS/CONNECT
script

specifies the full pathname of the logon script for this host—if a
script is required for your access method. For details about creating
the SAS/CONNECT script that is referenced in this field, see
“Creating Scripts for Accessing Remote Hosts” on page 92.

90 Example: Adding a Remote Host Definition Chapter 6

Userid displays the user ID to be supplied to the script specified in the SAS/
CONNECT script field. The user ID is entered from the window that
is displayed when you click Set UserID/Password .

PW dataset displays the encrypted password data set used to store the user ID
and password to be supplied to the script specified in the SAS/
CONNECT script field. The data set name (such as
SASUSER.ENCRYPT) is entered from the window that is displayed
when you click Set UserID /Password .

In the Warehouse jobs are field, the Remote to this host option is selected.
In the Remote ID field, a domain name for the remote host is specified:

unixone.mycompany.com. This is a name appropriate for the tcp (TCP/IP) protocol
specified in the Access method field.

In the current example, the remote host has Release 6.12 of SAS installed.
Accordingly, in the SAS/CONNECT script field, the full pathname for a script
appropriate for Release 6.12 is specified:
C:\toystore_1_scripts\tcpunx_sas612.scr.

If the script specified in the SAS/CONNECT script field will not prompt for a user ID
and password, or if you write your own code to provide the user ID and password to the
script when it runs in batch mode, then you are finished with this host definition. Click
OK . The new host definition is added to the list of hosts in the Define Items Used
Globally window.

On the other hand, if the script specified in the SAS/CONNECT script field will
prompt for a user ID and password, and you want SAS/Warehouse Administrator to
supply them, then click Set UserID /Password to display the User ID/Password
Specification window. The fields in this window are

Password
dataset

specifies the encrypted data set where the user ID and password for
the remote host are stored. The default is SASUSER.ENCRYPT.
This data set must be accessible during batch jobs and interactive
SAS/Warehouse Administrator sessions.

User ID specifies the user ID needed to access the remote host.
SAS/Warehouse Administrator stores the user ID and password in
the encrypted data set that is specified in the Password dataset
field.

Old Password specifies a password that you want to use to access the remote host.

New Password specifies the new password that you want to use to access the
remote host.

Maintaining Global Metadata Example: Adding a Remote Host Definition 91

Note: The password that is specified in the User ID/Password
Specification window cannot contain delimiters such as: . < (+ &
! $ *) ; - / , % |. �

The password specified in this window will be read by a SAS
macro function such as %qscan. These macro functions cannot read
passwords with the delimiters listed above. If the password cannot
be read, the remote host login script that requires this password
might fail.

In the User ID/Password Specification window, you specify the user ID and password
that SAS/Warehouse Administrator will provide to the SAS/CONNECT script that is
specified in the SAS/CONNECT script field on the Locale tab. You will also specify the
data set where this information is stored.

In the Password dataset field, the default data set is selected: SASUSER.ENCRYPT.
To enter a new user ID and password for this host definition:
1 Enter the user ID in the User ID field and press RETURN.
2 Enter the password and press RETURN.
3 Enter the password a second time to verify it and press RETURN.
4 Click Add/Update to save the specified user ID and password in the password data

set.

Note: You must click Add/Update ID to save the specified user ID and
password in the password data set. Otherwise your changes will be lost, and the
remote host login script that requires this user ID and password might fail. �

5 Click Go Back .
You will be returned to the Locale tab.

After adding security information through the User ID/Password Specification
window, the Userid and PW dataset fields on the Locale tab are updated, as shown in
the next display:

92 Additional Setup for Remote Hosts Chapter 6

Verify that the Userid and PW dataset fields reflect the entries made in the User
ID/Password Specification window. If so, you are finished with this host definition.

Click OK . The new host definition is added to the list of hosts in the Define Items
Used Globally window.

Additional Setup for Remote Hosts
If you have created any remote host definitions in the Host Properties window, you

must do some additional setup tasks, or the connections specified in the remote host
definitions might fail.

Creating Scripts for Accessing Remote Hosts
The metadata for a remote host definition includes a reference to a SAS/CONNECT

script if a script is required for your access method. You can write your own scripts, or
you can copy and modify the example scripts that are shipped with SAS/CONNECT
software. The example scripts have an *.scr extension and are typically found in a
subdirectory under the SAS/CONNECT directory.

Verify that the SAS/CONNECT script that is referenced by a host definition

� starts the correct version of SAS, with the appropriate options

� does not prompt you for a user ID and password.

Scripts for accessing remote hosts should be accessible from batch sessions as well as
interactive sessions. Accordingly, they cannot prompt you for user ID and password
information.

Usually, your script will prompt you for your user ID and password, using code such
as the following:

input ’Userid?’;
waitfor ’ENTER PASSWORD’, 60 seconds : nolog;

input nodisplay ’Password?’;

To allow the script to run in batch, you should replace this code with the following:

type "%qscan(%superq(xxxxsec),1,.)";
type LF;
waitfor ’ENTER PASSWORD’, 60 seconds : nolog;

type "%qscan(%superq(xxxxsec),2,.)";

Maintaining Global Metadata Additional Setup for Remote Hosts 93

type LF;

In the previous code, xxxx is an abbreviation for the access method. For example, if
you are using APPC, you would specify the string appcsec as the macro variable. If
you are using TCP, you would specify the string tcpsec.

Note: If you have created a remote host definition that includes user ID and
password information stored in an encrypted data set, you must enable GETUSRPW
macro support on the host where the login script runs, as described below. �

Setup Required for GETUSRPW Macro
SAS/Warehouse Administrator provides the macro GETUSRPW to retrieve the user

ID and password from the encrypted data set specified on the User ID/Password
Specification window. The main purpose of the macro GETUSRPW is to appropriately
set the xxxxSEC macro variable (where xxxx is the access method) to
USERID.PASSWORD.

If you specified a script in the SAS/Connect script field of the Host Properties
window, and you had SAS/Warehouse Administrator generate the code to provide a user
ID and password to the script, you must enable the GETUSRPW macro support on the
platform where the script will run. For example, if you specified a script that will run
on the same Windows NT machine where SAS/Warehouse Administrator is installed,
you must enable the GETUSRPW macro support on that NT machine. Otherwise, if
you specified a script that will run on a mainframe, you must enable the GETUSRPW
macro support on that mainframe.

The following sections explain how to get the GETUSRPW macro to work on the
appropriate platform.

GETUSRPW Support Local to SAS/Warehouse Administrator
For PC platforms, place the following code in your SAS autoexec file:

libname saswa ’!sasroot\whouse\sashelp’;
filename getusrpw catalog ’saswa.dwport’;
options sasautos=(getusrpw sasautos);

For UNIX platforms, place the following code in your SAS autoexec file:

libname saswa ’!sasroot/sashelp’;
filename getusrpw catalog ’saswa.dwport’;
options sasautos=(getusrpw sasautos);

Note: The SASWA libref points to the location of SAS/Warehouse Administrator’s
DWPORT catalog. The example above shows the default location. If you install SASWA
somewhere other than the default location, you should make the changes
appropriately. �

Restart SAS with the new SAS autoexec file.

GETUSRPW Support Remote to SAS/Warehouse Administrator
Create a SAS Data library on the target platform where you need GETUSRPW

support. The location of the library can be whatever you choose. This will be the
location of the GETUSRPW components.

Allocate the SAS Data library with a library reference (libref) of SASWA.
Upload the following catalog entries from the platform where SAS/Warehouse

Administrator is installed to the target platform where GETUSRPW support is needed:

94 Additional Setup for Remote Hosts Chapter 6

ENCDEC.CLASS, ENCPWUSR.CLASS, ENCDEC.SCL, ENCPWUSR.SCL,
GETUSRPW.SCL, GETUSRPW.SOURCE.

Also, you will need to move the ENCRYPT data set to the target platform. The
GETUSRPW.SOURCE entry assumes that this data set is named SASUSER.ENCRYPT.
If you give it a different name, you will need to update the GETUSRPW.SOURCE entry.

Here is sample code for uploading to OS/390 (MVS) (with a new allocation of the
SASWA library):

options remote=sdcmvs;
filename rlink ’!SASROOT\connect\saslink\tcptso.scr’;
signon;

rsubmit;
libname saswa ’library name’ disp=(new,catlg) space=(cyl,(3,1));
proc upload incat=sashelp.dwport outcat=saswa.dwport status=no;

select
ENCDEC.CLASS
ENCPWUSR.CLASS
ENCDEC.SCL
ENCPWUSR.SCL
GETUSRPW.SCL
GETUSRPW.SOURCE;

proc upload in=sasuser out=sasuser status=no;
select encrypt;

run;
endrsubmit;
signoff;

Make the GETUSRPW macro available to remote Jobs. The best way to do this is by
making GETUSRPW.SOURCE a part of the Autocall Macro Facility search path. The
search path is defined by the SAS option SASAUTOS. Here are two examples: one for
Release 6.11 of SAS and later, the other for Release 6.09 of SAS (MVS, CMS).

For Release 6.11 of SAS and later, add the following to your SAS autoexec file:

libname saswa ’user defined location’;
filename getusrpw catalog ’saswa.dwport’;
options sasautos=(getusrpw sasautos);

For Release 6.09 of SAS (MVS, CMS), start Interactive SAS, use the LIBNAME
statement to allocate the libref SASWA to point to the library that you created. On the
SAS command line, type copy saswa.dwport.getusrpw.source.

Save the contents of the program editor to a PDS member on OS/390 (MVS) or a
maclib on CMS with the name of getusrpw. Here is an example of the FILE command
on OS/390 (MVS):

file ’userid.my.pds(getusrpw)’

Add the following to your SAS autoexec file:

libname saswa ’user defined location’;
filename getusrpw ’PDS or Maclib name’;
options sasautos=(getusrpw sasautos);

Note: The libref SASWA should point to the library created in the first step of the
process that contains the macro GETUSRPW components. �

Make sure that each invocation of SAS points to this new SAS autoexec file.

Maintaining Global Metadata Example: Creating a Connection Profile for a SAS/ACCESS LIBNAME Definition 95

DBMS Connection Profiles
A DBMS connection profile is a metadata record that specifies a user name, a

password, DBMS options, and other information that SAS can use to access source data
or warehouse data stores in a database management system (DBMS) other than SAS.
DBMS connection profiles are included in the metadata records for DBMS data stores
or SAS/ACCESS LIBNAME definitions in the current Environment.

If you want SAS/Warehouse Administrator to generate code that will access source
data in a DBMS or load warehouse data in a DBMS, you will probably need at least one
DBMS connection profile for each target DBMS. If you want to connect to the same
DBMS but with different levels of privilege or with different options, you need to create
different DBMS connection profiles with the appropriate user names, passwords, and
options.

Preparing to Create DBMS Connection Profiles
In SAS/Warehouse Administrator, you can create two kinds of connection profiles:
� connection profiles that specify SAS/ACCESS LIBNAME statement options and

are included in the metadata for SAS/ACCESS LIBNAME definitions
� connection profiles that specify SQL Pass-Through statement options and

DBLOAD options that are included directly in the metadata for DBMS data
stores—data stores with Load processes that are similar to those provided by
SAS/Warehouse Administrator Release 1.x.

Before you create a connection profile, determine how it will be used. This will help
you determine what kinds of options you will specify in the profile.

Example: Creating a Connection Profile for a SAS/ACCESS LIBNAME
Definition

This example summarizes how to create a connection profile that will be included in
the metadata for a SAS/ACCESS LIBNAME definition.

Identify DBMS Login Information
Before you create a connection profile that will be used in a SAS/ACCESS LIBNAME

definition, gather the following information:

Target DBMS Example: Oracle

DBMS user
name

Example: admin1

DBMS password Example: ad1min

DBMS
connection name

Example: V2o7223.world

Define Connection Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

DBMS Connections. Click Add at the bottom left of the window. A DBMS Connection

96 Example: Creating a Connection Profile for a SAS/ACCESS LIBNAME Definition Chapter 6

Profile Properties window for the connection displays for you to enter the appropriate
information as follows:

Name enter a name for this connection profile.

In the Name field, oracle-1 is specified.
After you have specified a name (and possibly, a description), click the Details tab.

The fields on this tab are

DBMS Nickname select the target DBMS from the drop-down list.

User/Schema specify the name that is used to log in to the target DBMS.

In the DBMS Nickname field, Oracle was selected from a list of DBMS nicknames
known to SAS.

In the User/Schema field, admin1 is the name that is used to log in to the DBMS in
our example.

After you have entered the User/Schema, click Password to define the password
used to log in to the target DBMS. In the Password window, enter the password, press
RETURN, then enter the password again to verify it. You will be returned to the
Details tab.

Click the Options tab. The fields on this tab are

SQL/LIBNAME
options

specify SAS/ACCESS LIBNAME statement options or SQL
Pass-Through statement options for the current connection profile.

Maintaining Global Metadata Preparing to Create Contact Records 97

If you are defining a DBMS connection for a SAS/ACCESS
LIBNAME definition, specify SAS/ACCESS LIBNAME statement
options in this field. At a minimum, specify the DBMS server name
required to connect to the target DBMS.

The options are specific to the DBMS to which you are connecting.
For details about options, see the appropriate chapter in SAS/
ACCESS for Relational Databases: Reference.

In the current example, the appropriate value for the SQL/LIBNAME Options field is
a PATH= option that specifies the DBMS server name—with the server name enclosed
in single quotation marks: path=’V2o7223.world’. Use the same syntax that you
would use in a SAS/ACCESS LIBNAME statement, such as the one in “Test SAS/
ACCESS Engine Support” on page 81.

Leave the DBLOAD Options field blank if you are defining a DBMS connection for a
SAS/ACCESS LIBNAME definition.

You have now entered all of the metadata required for this profile. Click OK to save
the profile. The new profile is added to the list of connections in the Define Items Used
Globally window.

Contact Records
A contact record is a metadata record that specifies the owner or administrator who

is responsible for a given warehouse element. An owner is a person who formulates
policy and makes decisions about an object. An administrator is a person who
implements decisions formulated by the owner in accordance with established policy.

Contact records can be included in the metadata for groups, data stores, processes,
Jobs, and other objects in the current Environment. Although contact records are not
required for code generation, you might find them essential for project management.
They enable you to identify—and perhaps programmatically contact—the people
responsible for a given warehouse element.

Preparing to Create Contact Records
� Review the SAS/Warehouse Administrator groups and data stores in your project

plan.

98 Example: Creating a Contact Record Chapter 6

� Identify the owners and administrators of these groups and data stores.
� Record the appropriate contact information for each person.

Example: Creating a Contact Record
This topic summarizes how to create a contact record. The appropriate Warehouse

Environment is assumed to exist.

Define Contact Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.
In the Type panel of the Define Items Used Globally window, click the button beside

Contacts. Click Add at the bottom left of the window. A Contact Properties window
for the contact displays for you to enter the appropriate information as follows:

Name specifies the name for the contact.

The Name field contains the name of the contact in our example: Jane Jones.
After you have entered a name (and perhaps a description), click the Title/Email tab.

The fields on this tab are

Title/
Position

specifies the title of the contact.

Email Address specifies the e-mail address of the contact.

Maintaining Global Metadata Scheduling Server Definitions 99

The Title/Position field contains the title of the contact: Data Administrator.
The Email Address field contains the email address of the contact:

janej@mycompany.com.
After specifying values in these fields, you could click the Address/Phone tab and

enter information there.
When you are finished entering information about this contact, click OK . The new

contact record is added to the list of contacts in the Define Items Used Globally window.

Scheduling Server Definitions
To have SAS/Warehouse Administrator schedule a Job, you must open the properties

window for the Job and enter information on the Date/Time tab and the Server tab.
The Server tab requires a scheduling server definition, as shown in the next display:

A scheduling server definition is a metadata record that specifies
� a scheduling server application, such as CRON under UNIX System V, or the AT

command under Microsoft Windows or Windows NT
� a host definition for the computer where the scheduling server runs
� directories where the scheduling server application can send temporary files
� the commands used to start SAS on the scheduling server host (to execute the Job)
� the default job-tracking option for Jobs using this scheduling server definition.

100 Preparing to Create Scheduling Server Definitions Chapter 6

Scheduling server definitions are required if you want SAS/Warehouse Administrator
to generate the code to schedule and track Jobs. At a minimum, in each Warehouse
Environment, create a scheduling server definition for each host where scheduled Jobs
will run. This typically includes the host where SAS/Warehouse Administrator is
installed, as well as one or more remote hosts.

Preparing to Create Scheduling Server Definitions
Before you create a scheduling server definition, make the following preparations:
� Create a host definition for the computer where the scheduling server application

(such as CRON) runs. For details about host definitions, see “Host Definitions” on
page 86.

� Identify the kind of scheduling server definition that will support your goals. To
schedule and track a Job on a UNIX System V computer, you would typically use a
CRON definition. To schedule and track a Job on a Microsoft Windows or Windows
NT computer, you would typically use an AT definition. To generate Jobs that can
be used with scheduling servers other than AT or CRON, use a Null Scheduler
definition. A Null Scheduler definition has other uses as well, as described in
“Typical Uses for a Null Scheduler Definition” on page 106.

� When scheduling server definitions, specify the physical paths for the directories
where the scheduling server application can send temporary files. Create or
identify these directories. For example, the working directory for an AT scheduling
server definition might be c:\job.

Example: Creating an AT Scheduling Server Definition
This example describes how to create a scheduling server definition for a local host

that is running the Microsoft Windows or Windows NT operating system. Details are
provided for a remote host running on one of these operating systems.

Note: The steps for creating a CRON scheduling server definition are very similar.
�

Preparing to Create an AT Scheduling Server Definition
In addition to the instructions given in “Preparing to Create Scheduling Server

Definitions” on page 100, more preparation might be needed when the AT command is
the scheduling server.

The properties window for a scheduling server definition is used to generate a
command for a given scheduling server. For example, the Windows NT AT Server
Properties window is used to generate an AT command that schedules a
SAS/Warehouse Administrator Job.

Note: The maximum length for an AT command is 129 characters. �

If the command generated from the metadata in the properties window is too long,
you will get an error message that says that the maximum allowable length for an AT
command has been exceeded. You will not be able to schedule the Job until this problem
has been fixed. To fix this problem, you must shorten the command that is generated
from the properties window by shortening pathnames or removing command options.

Define Server Properties
Display the Define Items Used Globally window, as described in “Using the Define

Items Used Globally Window” on page 76.

Maintaining Global Metadata Example: Creating an AT Scheduling Server Definition 101

In the Type panel of the Define Items Used Globally window, click the button beside
Scheduling Servers. Click Add at the bottom left of the window. The Available
Scheduling Servers window displays.

For the current example, on the Available Scheduling Servers window, the Windows
NT AT Command is selected. (You would select UNIX System V Cron to create a
scheduling server definition for a host running a System V UNIX, and you would select
Null Scheduler to generate a Job that could be used with a scheduling server other
than AT or CRON.)

After you have selected the appropriate scheduling server, click OK . A Windows NT
AT Server Properties window for the scheduling server displays for you to enter the
appropriate information as follows:

Scheduler
Name

specifies a display name for the scheduling server definition you are
creating, such as local schedsvr.

On the General tab, after you have entered a name (and perhaps a description), click
the Directories tab. The fields on this tab are

Local Working
Directory

specifies a directory that the scheduling server can use to store
SYSIN, LOG, LIST, and temporary files that are generated for a Job
on the SAS/Warehouse Administrator host.

Note: For the AT command, keep the names of any working
directories as short as possible to avoid generating a command that
is too long for AT software to accept. �

102 Example: Creating an AT Scheduling Server Definition Chapter 6

The current example is a scheduling server definition for a local host (SAS/Warehouse
Administrator host). Accordingly, the Directories tab only specifies a local working
directory: c:\job. If you were creating a scheduling server definition for a remote host,
you would specify a working directory on the remote host as well. After specifying the
appropriate working directories, click the Host tab. The fields on this tab are

Compute Host specifies a definition for the host where the Job will be executed.

The current example is a scheduling server definition for a local host. Accordingly, a
local host definition (which happens to be named local) is specified on the Host tab. If
you were creating a scheduling server definition for a remote host, you would specify a
remote host definition. After specifying the appropriate host definition, click the
Command tab. The fields on this tab are

Command this
server will
use to start
SAS jobs

specifies the command that the scheduling server application will
use to start SAS, in order to execute the Job.

Maintaining Global Metadata Example: Creating an AT Scheduling Server Definition 103

When you first display the Command tab, a default command is provided. You might
have to edit the default command to start SAS at your site.

Note: Use the Command tab to specify a SAS start command only. Do not specify a
script file on this tab. �

Note: Do not specify a SAS config file, a SAS autoexec file, or any other options on
the Command tab. Specify any SAS start command options on the Options tab. �

After specifying the appropriate start command, click the Options tab. The fields on
this tab are

Generated
Source
Filename

specifies the name of the file generated by SAS/Warehouse
Administrator for Jobs using this scheduling server definition. By
default, a macro is provided in this field that sends the generated
file to the local working directory specified on the Directories tab.

Sysin
Filename

specifies the default location of the SAS source code to be used
during batch mode execution of Jobs using this scheduling server
definition. By default, a macro is provided in this field that specifies
the Generated Source Filename as the Sysin Filename.

Log Filename specifies the filename where you want SAS to write the LOG output.
By default, a macro is provided in this field that sends the log to the
local working directory specified on the Directories tab.

Print
Filename

specifies the filename where you want the output of this Job to be
written. By default, a macro is provided in this field that sends any
output to the local working directory specified on the Directories tab.

Other Command
Options

specify options for the SAS command entered on the Command tab.

104 Example: Creating an AT Scheduling Server Definition Chapter 6

On the Options tab, all of the default macros are specified (&jobsrc., &jobsys., and
so on). One way to shorten the AT command generated from the Windows NT AT
Server Properties window is to omit values in the Log Filename and Print Filename
fields, but that was not required in our example.

A SAS config file and SAS autoexec file with short filenames are specified in the
Other Command Options field. These short filenames are another way to shorten the
AT command generated from the properties window.

After specifying the appropriate command options, click the Tracking tab. The fields
on this tab are

Enabled adds the default job-tracking prolog and epilog to Jobs using this
scheduling server definition unless this default is overridden by the
tracking attribute for an individual Job.

Disabled omits the default job-tracking prolog and epilog from Jobs using this
scheduling server definition unless this default is overridden by the
tracking attribute for an individual Job.

For the current example, accept the default value on the Tracking tab: Enabled.
After specifying the appropriate metadata on the Tracking tab, you are finished

entering metadata for the example scheduling server definition. Click OK . The new
server definition is added to the list of server definitions in the Define Items Used
Globally window.

Maintaining Global Metadata Summary: Creating and Using a Null Scheduling Server Definition 105

After a scheduling server definition has been created, it can be used to schedule a
Job, as described in “Example: Scheduling and Tracking a Job with the AT Command”
on page 307.

Summary: Creating and Using a Null Scheduling Server Definition
The Available Scheduling Servers window includes a Null Scheduler option, as

shown in the following display:

Use the Null Scheduler option to create a scheduling server definition that will
save a generated SAS Job as a .sas file in a specified directory, along with a command
file to run that Job.

For example, suppose that you wanted to schedule a SAS/Warehouse Administrator
Job that would execute on a mainframe computer. You could create a null scheduler
definition and use it to schedule the Job. That is, you could define the Job in SAS/
Warehouse Administrator, then schedule it, specifying a null scheduling server
definition on the Server tab in the Job Properties window as follows:

If you click Schedule on the Job Properties window, SAS/Warehouse Administrator
will

� generate the code appropriate for the Job and save it to a .sas file
� generate a SAS start command and write it to a plain text file
� write tracking metadata for the Job to the Jobs Information library.

After the command file for the Job has been generated, give it to the mainframe
operator who is responsible for scheduling batch jobs. Keep in mind that the mainframe
scheduling server would need access to the generated code for the Job, which is
specified with the -SYSIN option in the command file.

106 What’s Next Chapter 6

Typical Uses for a Null Scheduler Definition
You can use a null scheduler definition to support the following scenarios:
� Many sites do not permit users to schedule their own batch jobs, especially jobs

that update shared files. If that were the case at your site, you could schedule a
SAS/Warehouse Administrator Job with a null scheduler definition. You could then
give the resulting command file to the operator who is responsible for scheduling
batch jobs. Keep in mind that the scheduling server application would need access
to the generated code for the Job, which is specified with the -SYSIN option in the
command file.

� If you want to use a scheduling server application other than CRON or AT, create
a null scheduler definition and use it to schedule the Job. You could then submit
the resulting command file to the scheduling server application. The scheduling
sever application would need access to the -SYSIN file specified in the command.

� You could use a null scheduler definition to generate a set of command files with
unique Job IDs. These command files could be executed by a program outside of
SAS/Warehouse Administrator. For example, you could create a program that
executed the Jobs for all of the data stores in a given Subject, Data Warehouse, or
Warehouse Environment.

Define Server Properties
Except for selecting Null Scheduler from the Available Scheduling Servers window,

the steps for creating a null scheduler definition are similar to those described for the
AT command in “Define Server Properties” on page 100.

Keep in mind that if a local host is specified in the null scheduler definition, the
generated SAS Job and its command file will be sent to the directory specified in the
Local Working Directory field on the Directories tab. If a remote host is specified,
these files will be sent to the directory specified in the Remote Working Directory
field.

What’s Next
After you have created the main global metadata items that you will need in a given

Warehouse Environment, you are ready to register the data sources for that
Environment.

107

C H A P T E R

7
Registering Data Sources

Overview 107

Preparing to Create ODDs 109
Example: Creating an ODD Group 109

Overview 109

Define ODD Group Properties 109
Example: Creating an ODD That Registers the Location of a Data Source 111

Overview 111

Define ODD Properties 111
No Jobs for ODDs That Only Register Locations 114

Test the ODD 115
Example: Creating an ODD with a User-Written Load Step 115

Overview 115

Preparing to Create an ODD with a User-Written Load Step 115
Methods for Creating User-Written Load Step Routines 115

Create a Load Step Routine (Query Window Method) 116

Use the Query Window to Generate a Query 116
Edit the Query So That It Creates a Table 120

Test the Edited Query in the SAS Editor 121
Define ODD Properties 121

Define Process Editor Job 124

Create a Job for the Customer ODD 124
Test the ODD 128

Execute the ODD Job 128

View the ODD Data 129
Keeping ODD Column Metadata Current 130

Accessing Data in ERP Systems 130
What’s Next 131

Overview
After you create a Warehouse Environment and the appropriate global metadata, you

are ready to create Operational Data Definitions. An Operational Data Definition
(ODD) is a metadata record that provides access to data sources. The ODDs are used as
inputs to detail data stores or summary data stores in a Warehouse Environment.

For example, the following figure illustrates a Process Flow in which a data store
named Customer Detail is fed by the Customer ODD.

108 Overview Chapter 7

Figure 7.1 ODD in a Process Flow

ODDs provide access to source data by
� registering the location of a SAS table or view.
� registering the location of a DBMS table with the help of a SAS/ACCESS

LIBNAME definition.
� executing user-written code that extracts information from a data source and then

saves the results to a SAS table or view. The location of the extraction table or
view is then specified in the ODD.

To create an ODD that registers the location of a SAS table, view, or SAS/ACCESS
LIBNAME definition:

1 Open the appropriate Environment in the SAS/Warehouse Administrator Explorer.
2 Add an ODD Group to the Environment. Update the default properties of the

group.
3 Add an ODD to the group. Update the default properties of the ODD.
4 Verify that the ODD can successfully generate a LIBNAME statement.

To create an ODD that executes user-written code:

1 Write or generate a SAS routine that creates a table or view and saves it to a SAS
library.

2 Open the appropriate Environment in the SAS/Warehouse Administrator Explorer.
3 Add an ODD Group to the Environment. Update the default properties of the

group.
4 Add an ODD to the group. Update the default properties of the ODD.

� From the Data Location tab for the ODD, specify the location of the table or
view that is created by the routine in step 1.

5 Define a Process Editor Job for the ODD.
� From the Source Code tab for the ODD’s Load Step, specify the location of

the routine from step 1.

6 Execute the ODD’s Job. This executes the routine from step 1.
7 Verify that the ODD provides access to the table or view that is created by the

routine from step 1.

Note: The basic steps for maintaining ODDs are described in the online Help. To
display the relevant online Help, in the SAS System Help contents, select

Registering Data Sources Define ODD Group Properties 109

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Getting Data Into Your Warehouse Environment

Maintaining ODD Groups or Maintaining Operational Data Definitions

In addition, you can display Help for most SAS/Warehouse Administrator windows by
clicking Help on the window. �

Note: ODDs are the first SAS/Warehouse Administrator data stores that require you
to create one or more groups, data stores, Jobs and processes. Accordingly, the
descriptions in this chapter are more detailed than the descriptions in later chapters. �

Preparing to Create ODDs

Before you create an ODD Group and its associated ODDs, you must first do some
preparation, which is summarized next:

Hierarchy of
objects

� The Data Warehouse Environment that will contain the ODD
Group and its ODDs must exist.

Global metadata � Create at least some of the appropriate host definitions, SAS
library definitions, and other global metadata items that your
ODDs require, as described in the Chapter 6, “Maintaining
Global Metadata,” on page 75.

Input source(s) � Determine which input sources(s) to use for each ODD. Identify
the host and physical path for each input source.

Output target � Determine how many ODDs you need. Your Process Flows
might be easier to understand and manage if you have one
ODD for each of the main data sources identified in your
project plan.

Example: Creating an ODD Group

Overview
An ODD Group is a simple grouping element used to organize ODDs and Information

Marts. Before you can create an ODD, you must create an ODD Group. This example
describes how to add an ODD Group to a Warehouse Environment.

Note: The following explanations describe the metadata and methods used to
achieve the desired results; it is assumed that the appropriate Data Warehouse
Environment exists. �

Define ODD Group Properties
Open the appropriate Warehouse Environment in the Explorer, as described in

“Opening a Warehouse Environment in the Explorer” on page 63. The next display
illustrates what a new Environment would look like in the Explorer:

110 Define ODD Group Properties Chapter 7

In the Explorer, position the cursor on the Environment, for example, Toy Store
Env, click the right mouse button, select Add Item, and then Operational Data
Definition (ODD) Group. In the Explorer window, a new ODD Group is added under
the Environment, as follows:

To update the default metadata for the group, position the cursor on its icon, click
the right mouse button, and select Properties. The Data Group Properties window
displays for you to enter the appropriate information.

General Tab specifies the group’s name, such as Sales Source Data, as well as
a description, an owner, and an administrator.

Registering Data Sources Define ODD Properties 111

To specify an owner or an administrator, click the down arrow to
select a name from a list. If you need to add a new Contact record,
click the right arrow to display a properties window. For details
about that window, click its Help button.

After specifying the appropriate values, click OK . You will be returned to the
Explorer. The new ODD Group will appear under the Environment, as follows:

Example: Creating an ODD That Registers the Location of a Data Source

Overview
This example describes how to create an ODD that registers the location of a SAS

table or view, or one that registers the location of a DBMS table with the help of a SAS/
ACCESS LIBNAME definition. Use this approach when you want to bring source data
into a Warehouse Environment without transforming it at the ODD level. (You can
transform this data later in a Process Flow—between an ODD and a data store that it
feeds, for example.)

Note: The following explanations describe the metadata and methods to achieve the
desired results; it is assumed that the appropriate ODD Group exists. �

Define ODD Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the parent

ODD Group, for example, Sales Source Data, click the right mouse button, select Add
Item, and then ODD. In the Explorer window, a new ODD is added under the ODD
Group as follows:

To update the default metadata for the ODD, position the cursor on its icon, click the
right mouse button, and select Properties. The Operational Data Definition
Properties window displays for you to enter the appropriate information.

General Tab specifies the ODD’s name, such as Customer, as well as a
description, an owner, and an administrator.

112 Define ODD Properties Chapter 7

To specify an owner or an administrator, click the down arrow to
select a name from a list. If you need to add a new Contact record,
click the right arrow to display a properties window. For details
about that window, click its Help button.

The next task is to specify the location of the data source for the
ODD. Two examples of metadata for the Data Location tab are
shown next.

Example 1:
Data Location
tab for a remote
SAS table

If you want to register a remote SAS table, specify the definition for
the host where the target library resides (such as unix1); specify the
target SAS library (such as Remote Src Data); and specify the SAS
table or view within that library (such as Customer). The next
display shows an example of this metadata:

To specify a host or SAS library, click the down arrow to select a
name from a list. If you need to add a new host or library, click the
right arrow to display a properties window. For details about that
window, click its Help button.

To specify a SAS table or view within the library, click the down
arrow beside the SAS Table or View field to select a name from a
list.

Note: If you can select a SAS table by clicking the down arrow
beside the SAS Table or View field, then SAS was able to assign

Registering Data Sources Define ODD Properties 113

the library that is specified in the SAS Library field. If you are
unable to access a table, read the SAS log to identify the problem. �

Example 2:
Data Location
tab for a local
SAS/ACCESS
LIBNAME

If you want to register a local SAS/ACCESS LIBNAME for a remote
DBMS table, specify the definition for the host where the SAS/
ACCESS LIBNAME statement will be executed (such as local);
specify the SAS/ACCESS LIBNAME (such as SAS/Oracle Lib); and
specify the DBMS table within the DBMS (such as Customer). The
next display shows an example of this metadata:

To specify a host or a SAS/ACCESS LIBNAME, click the down
arrow to select a name from a list. If you need to add a new host or
SAS/ACCESS LIBNAME, click the right arrow to display a
properties window. For details about that window, click its Help
button.

To specify a DBMS table that is accessed via the local SAS/
ACCESS LIBNAME, click the down arrow beside the SAS Table or
View field to select a name from a list.

Note: If you can select a DBMS table by clicking the down arrow
beside the SAS Table or View field, then SAS was able to assign
the SAS/ACCESS LIBNAME that is specified in the SAS Library
field. If you are unable to access a table, read the SAS log to identify
the problem. �

The next task is to specify column metadata for the ODD.

From the Columns tab, you can specify the column metadata to be
included in the ODD. No column metadata has been specified yet, as
shown next:

114 No Jobs for ODDs That Only Register Locations Chapter 7

The column metadata for a data store must accurately specify the
columns that you want to "map" to other data stores in a Process
Flow, such as the one shown in Figure 7.1 on page 108. In the case
of an ODD that simply registers the location of an existing data
source, you will use the "Import from Supplied Data Location"
method to import the metadata for all columns in the data source.

To import columns from the data source, select Import , then
select Supplied Data Location. All of the columns from the data
source specified on the Data Location tab are imported, as follows:

After you specify the column metadata, you are finished creating the ODD. Click OK
to save its metadata record and return to the Explorer.

No Jobs for ODDs That Only Register Locations

A Job is a metadata record that specifies the processes that create one or more data
stores (output tables). You create Jobs in the Process Editor window. Most data stores
in SAS/Warehouse Administrator require Jobs that execute code. However, if an ODD
simply registers the location of a data source and it does not execute any code, then no
Job is needed to create the ODD.

Registering Data Sources Preparing to Create an ODD with a User-Written Load Step 115

Test the ODD
To verify that an ODD can successfully generate a LIBNAME statement (as it will

have to do in a Process Flow), position the cursor on the ODD’s icon in the Explorer,
click the right mouse button, and select Assign Libref. Check the SAS log or the
Active Libraries panel of the SAS Explorer window to verify that the SAS library
associated with this ODD was assigned.

After you have tested your ODD, you can use it as an input to another data store. See
also the maintenance note in “Keeping ODD Column Metadata Current” on page 130.

Example: Creating an ODD with a User-Written Load Step

Overview
This example describes how to create an ODD that executes user-written code that

extracts information from a data source, and then saves the results to a SAS table or
view. The location of the extraction table or view is then specified in the ODD. Use this
approach when you want to transform source data before making it available in a
Warehouse Environment.

Note: The following explanations describe the metadata and methods to achieve the
desired results; it is assumed that the appropriate ODD Group exists. �

Preparing to Create an ODD with a User-Written Load Step
In addition to the preparation described in “Preparing to Create ODDs” on page 109,

you must do the following preparation for ODDs with user-written Load Steps:

Input Sources � Analyze the columns in the input data and determine which
columns you want to include in the ODD.

Output Targets � Determine on what host and in what SAS library you will store
your user-written Load Step routine and the table or view that
is output from this routine.

Processes � Determine how you will create the SAS code for the Load Step.
� Determine if the ODD’s Process Editor Job will require

processes in addition to the Load Step, such as a User Exit
process, a Data Transfer process, or a Record Selector process.

Methods for Creating User-Written Load Step Routines
Load Steps create tables or views. SAS provides a number of ways to create tables

and views, including
� the DATA step
� the SQL procedure
� the Query window
� the External File Interface (EFI)
� SAS/ASSIST software
� SAS/TOOLKIT software.

116 Create a Load Step Routine (Query Window Method) Chapter 7

The example in this section describes how to use the Query window to generate the
majority of a Load Step routine. For more information about user-written source code,
see the online Help. To display the relevant online Help, in the SAS System Help
contents, select

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Overview Overview of SAS/Warehouse Administrator

user-written source code

to display the topic User-Written Source Code.

Create a Load Step Routine (Query Window Method)
This section summarizes how to use the Query window to generate the majority of a

Load Step routine. The Query window is an interactive interface that enables you to
build, save, and run queries without being an expert with SQL (Structured Query
Language) or with the SAS SQL procedure. The query that you build in the Query
window is passed to the SAS SQL procedure for processing when you run the query.

The code generated by the Query window can, with minor changes, be used to create
a SAS table or view. If you know a little about PROC SQL syntax, this method might
be easier than writing your own code to create a Load Step in SAS/Warehouse
Administrator.

This section summarizes how to
� use the Query window to generate a query against a data source in an input library
� save the query in a code library
� edit the query so that it creates a table or view and saves it to an output library.

Note: The input library, output library, and the code library must have library
definitions in the Warehouse Environment that will contain the ODD. �

For example, assume that the following SAS libraries have library definitions in the
example Toy Store Environment:

� OPERDATA (Operational Data library), where the input table for the query
routine is stored

� SOURCE (Source Code library), where the query routine will be saved
� ODDOUT (ODD Output library), where the edited query will write its output.

Use the Query Window to Generate a Query
1 Assign the input library (such as OPERDATA) and the code library (such as SOURCE)

in the current SAS session.
2 From the SAS window, select Tools, then Query from the menu.

The SQL Query Tables window displays.

Registering Data Sources Create a Load Step Routine (Query Window Method) 117

3 From the SQL Query Tables window, in the Table Sources panel, click the input
library where the data source resides (such as OPERDATA).

The tables in the selected library are listed in the Available Tables panel.

4 In the Available Tables panel, click the table that contains the data for the ODD,
and then click the right arrow.

The table is moved to the Selected Tables panel.

118 Create a Load Step Routine (Query Window Method) Chapter 7

5 In the Selected Tables window, click the table, and then click OK .
The SQL Query Columns table displays.

6 In the SQL Query Columns window, click on the columns you want to appear in
the ODD, or select all columns if you want all columns from the source to appear
in the ODD. Then click the right arrow.

The selected columns move to the Selected Columns window.

Registering Data Sources Create a Load Step Routine (Query Window Method) 119

7 From the SAS menu, select

File Save Query Save Query as a SOURCE entry

A default SOURCE entry specification window appears.

8 Update the SOURCE entry specification window so that it will save your query in
the appropriate code library (such as SOURCE), in the appropriate catalog (which
could also be named SOURCE), and in the appropriate catalog entry (such as
CUSTODD), as follows:

120 Create a Load Step Routine (Query Window Method) Chapter 7

9 Click OK .
Your query is saved. The SQL Query Columns window displays.

10 Exit or minimize the SQL Query Columns window.

You have just generated a query that selects columns from a data source. You must
now modify the query so that it will store the query results in another table—the table
the ODD will point to.

Edit the Query So That It Creates a Table
The next task is to edit the query generated from the Query window so that it

creates a table or view and saves it to the output library. You might only need to add a
single line of code—an SQL CREATE TABLE statement or a CREATE VIEW
statement—to the code that was generated by the Query window.

Note: The steps below assume that the code library is in SAS Version 8 format. If
your code library is not in Version 8 format, the steps for editing a source code entry
will be somewhat different than the following steps. �

To edit a SAS Version 8 source code entry:
1 In SAS Version 8, if you have not done so already, display the tree view of the SAS

Explorer by typing explorer on the Command line and pressing Return.
2 Assign the input library (such as OPERDATA), the code library (such as

SOURCE), and the output library (such as ODDOUT) in the current SAS session.
3 In the Explorer, expand the code library until you can see the entry for the query

that you saved from the Query window. Double-click that entry.
The query routine opens in a SAS Notepad window.

4 Modify the query so that it will store the query results in a table. Above the first
line (PROC SQL), you might want to add comments that will describe the purpose
of this source code. Between PROC SQL and Select, add an SQL CREATE TABLE
or CREATE VIEW statement that saves its output to an output library (such as
ODDOUT).

For example,

Registering Data Sources Define ODD Properties 121

5 When you are finished making the modifications, click the X in the upper
right-hand corner of the SAS Notepad window to save your changes.

You have just modified a query so that it will store the query results in another
table—the table that the ODD will point to. The next step is to test the query in the
SAS Editor window.

Test the Edited Query in the SAS Editor

After you have edited and saved the query, submit it in the SAS Editor window in
order to verify that the routine will in fact create a table. Also, if the table already
exists, you can simply import its column metadata in the ODD that you will create later.

1 Assign the input library (such as OPERDATA), the code library (such as
SOURCE), and the output library (such as ODDOUT) in the current SAS session.

2 Open the query routine in the SAS Notepad window, as described in “Edit the
Query So That It Creates a Table” on page 120.

3 Copy the routine from the SAS Notepad window to the SAS Editor window.

4 Execute the routine. Check the SAS log to verify that the routine creates the table
in the output library.

You have just verified that the modified query will create a table in the output
library. Later, this routine will be specified in the metadata for the ODD’s Load Step.
Before you do that, however, you must first define the properties of the ODD.

Define ODD Properties
After you have created a routine that extracts information from a data source, and

then saves the results to a SAS table or view, you can specify the location of the
extraction table or view in an ODD.

In the SAS/Warehouse Administrator Explorer, position the cursor on the parent
ODD Group, for example, Sales Source Data, press the right mouse button, select Add
Item, then ODD. In the Explorer window, a new ODD is added under the ODD Group.

122 Define ODD Properties Chapter 7

To update the default metadata for the ODD, position the cursor on its icon, click the
right mouse button, and select Properties. The Operational Data Definition
Properties window displays for you to enter the appropriate information.

General Tab specifies the ODD’s name, such as Customer, as well as a
description, an owner, and an administrator.

To specify an owner or an administrator, click the down arrow to
select a name from a list. If you need to add a new Contact record,
click the right arrow to display a properties window. For details
about that window, click its Help button.

The next task is to specify the location of the data source for this
ODD.

Data Location
Tab

specifies the definition for the host where the target library resides
(such as local); specifies the target SAS library (such as ODD
Output, the display name for the ODDOUT library); specifies the
SAS table or view within that library (such as Customer). The next
display shows an example of this metadata:

To specify a host or SAS library, click the down arrow to select a
name from a list. If you need to add a new host or library, click the

Registering Data Sources Define ODD Properties 123

right arrow to display a properties window. For details about that
window, click its Help button.

To specify a SAS table or view within the library, click the down
arrow beside the SAS Table or View field to select a name from a
list.

Note: If you can select a SAS table by clicking the down arrow
beside the SAS Table or View field, then SAS was able to assign
the library that is specified in the SAS Library field. If you are
unable to access a table, read the SAS log to identify the problem. �

Columns Tab specifies the column metadata to be included in the ODD. No
column metadata has been specified yet.

The column metadata for a data store must accurately specify the
columns that you want to "map" to other data stores in a Process
Flow, such as the one shown in Figure 7.1 on page 108. In the case
of an ODD that executes user-written code that extracts information
from a data source, and then saves the results to an output table or
view, the metadata on this tab should match the columns in the
output table or view.

In the current example, the edited query routine has been
executed at least once, as described in “Test the Edited Query in the
SAS Editor” on page 121. Accordingly, the ODD’s output table
already exists. This means that you can use the "Import from
Supplied Data Location" method to import the metadata for all
columns in the output table.

To import columns from an output table, click Import , and then
select Supplied Data Location. All of the columns from the
output table specified on the Data Location tab are imported.

124 Define Process Editor Job Chapter 7

After you specify the column metadata, you have finished entering properties for this
ODD. Click OK to save its metadata record and return to the Explorer.

You have just defined the properties of the ODD. You have specified the location of
the output table and have specified metadata for the columns in the output table. The
next step is to define a Process Editor Job for the ODD.

Define Process Editor Job
In the current example, we have created a routine that extracts information from a

data source, and then saves the results to a SAS table or view. We have defined an
ODD that specifies the location of the SAS table or view. The next step is to create a
Process Editor Job that includes

� a Process Flow that specifies how data moves from the original data source to the
ODD

� an ODD Load Step that points to the routine that extracts information from a data
source, and then saves the results to a SAS table or view.

As explained in the “Maintaining Jobs” chapter, data stores with user-written Load
Steps—such as the ODD in our current example—do not need Process Flows in the
Process Editor. However, creating a Process Flow for the example ODD has two
advantages:

� The flow of information from the input source to the ODD will be documented
within SAS/Warehouse Administrator.

� SAS/Warehouse Administrator can generate LIBNAME statements for the input
source(s) specified in a Process Flow. In our example, this means that you will not
have to assign the following SAS libraries manually, which have library definitions
in the Toy Store Warehouse Environment:

� OPERDATA (Operational Data library), where the input table for the Load
Step routine is stored

� SOURCE (Source Code library), where the Load Step routine is stored
� ODDOUT (ODD Output library), where the Load Step routine will write its

output.

In the current example, these libraries will be specified in the data stores and
processes in a Process Flow. When the Process Flow is executed, SAS/Warehouse
Administrator assigns the libraries.

Create a Job for the Customer ODD
1 Display the Customer ODD in the SAS/Warehouse Administrator Explorer.

Registering Data Sources Define Process Editor Job 125

2 Position the cursor on the Customer ODD, click the right mouse button and select
Process.

You will be asked if you want to create a Job for the ODD.
3 Select Yes.

A default Job will be created in the Process Editor, as follows:

In this display, the Job is represented by the icon with the rectangle around it
in the left panel. The next task is to specify the input to the Customer ODD.
Assume that the original data source in our example is the SAS table
OPERDATA.CUSTOMER.

4 In the Process View of the Process Editor (right panel), position the cursor on the
Customer ODD, click the right mouse button and select Add, then New Data File.
(We selected New Data File because this input has not yet been specified for any
other data store in the current Environment, and a Data File is the appropriate
type for ODD inputs that are SAS tables or views. For details, see “Valid Inputs
and Outputs for Data Stores” on page 55.)

A default Data File is added to the Process Flow, as follows:

Next, update the default properties for the Data File.
5 In the Process View of the Process Editor, position the cursor on the Data File, click

the right mouse button and select Properties. The Operational Data Definition
Process Attributes window displays for you to enter the appropriate information.

126 Define Process Editor Job Chapter 7

General Tab specifies the Data File’s name, such as Customer, as well as a
description, an owner, and an administrator.

Data Location
Tab

specifies the definition for the host where the target library
resides (such as local); specifies the target SAS library (such as
Operational Data, the display name for the OPERDATA
library); specifies the SAS table or view within that library (such
as Customer). The next display shows an example of this
metadata:

6 When you are finished entering metadata for the Data File, click OK to save it.

You are returned to the Process Editor. The Data File has its new name, if you
specified one.

Registering Data Sources Define Process Editor Job 127

The Process Flow now specifies what information will flow from the source
(Operdata Customer) to the target (Customer). The final task is to specify a Load
Step that actually moves data from the source to the target.

7 In the Process View of the Process Editor, position the cursor on the Customer
ODD, click the right mouse button and select Edit Load Step. The Operational
Data Definition Process Attributes window displays for you to enter the
appropriate information.

Source Tab specifies who supplies the source code for the Load process: you or
SAS/Warehouse Administrator.

The User Written option is selected automatically for ODDs.
The Source Code Library field specifies the name of a SAS
library that contains the routine to be executed: Source Code
(the display name for the SOURCE library). The Catalog Entry
Name field specifies a .SOURCE entry which contains the routine
associated with the current Load Step: Source.custodd.source.

Next, specify the computer where the Load Step will run.

Execution Tab specifies the host on which you want to execute the Load process.

The Compute Host field specifies a definition for the host
where the load step routine should be executed. The local host
definition is specified in our example.

128 Test the ODD Chapter 7

Post Processing
Tab

specifies code to be executed after the Load process is finished.
Leave this tab blank, for our example.

8 After you specify Execution tab metadata, you are finished creating this Load
Step. Click OK to save its metadata record and return to the Process Editor.

You are now ready to test the Job for this ODD.

Test the ODD

Execute the ODD Job
1 If you have not done so already, open the ODD in the Process Editor.

For example, display the ODD (such as Customer) in the SAS/Warehouse
Administrator Explorer, as follows:

Position the cursor on the ODD, click the right mouse button and select
Process. The ODD will be opened in the Process Editor, as follows:

Registering Data Sources Test the ODD 129

In the left panel of the Process Editor, the ODD’s Job and output tables will be
listed. In this display, the output table for the Job has a rectangle around it. Note
that the output table has a parent. This parent is the Job for the Customer ODD.

2 (Optional) Position the cursor on the Job, and click the left mouse button to select
it, as follows:

3 Position the cursor on the Job, click the right mouse button and select Run. The
Load Generation/Execution Properties window displays.

4 Click Submit to execute the Job.
Check the SAS log to verify that the Job was successful.

View the ODD Data
Use this method to view the data that is accessed through an ODD. In order for this

method to work, the Job for an ODD must have been successfully executed at least once.

130 Keeping ODD Column Metadata Current Chapter 7

Display the ODD (such as Customer) in the SAS/Warehouse Administrator Explorer,
as follows:

Position the cursor on the ODD, click the right mouse button and select Data
Utilities, and then Open. The ODD will be opened in a VIEWTABLE window, as
follows:

After you have tested your ODD, it is ready to be used as an input to another data
store. See also the maintenance note in “Keeping ODD Column Metadata Current” on
page 130.

Keeping ODD Column Metadata Current
After you create an ODD, if any changes are made to the columns in the data source

that is specified on the Data Location tab, you must update the ODD’s column
metadata to match the data source.

Mapping processes, such as the one shown in Figure 7.1 on page 108, use the
Columns tab metadata to map columns from the source to the target. The Columns tab
metadata must be accurate, or the Mapping will not match the columns that are
actually in the data source.

Accessing Data in ERP Systems
SAS provides these interfaces to Enterprise Resource Planning (ERP) systems:
� SAS/ACCESS Interface to R/3 from SAP AG
� SAS/ACCESS Interface to Baan
� SAS/ACCESS Interface to PeopleSoft

Contact your SAS technical support coordinator for details about accessing ERP data.

Registering Data Sources What’s Next 131

What’s Next

After you have defined one or more ODDs, you are ready to add a Data Warehouse
and a Subject. Then you can specify ODDs as inputs to data stores that you will add
under a Subject area.

132

133

C H A P T E R

8
Maintaining Data Warehouses
and Subjects

Overview 133

Preparing to Create Local or Remote Data Warehouses 134
Example: Creating a Local Data Warehouse 134

Define Data Warehouse Properties 134

Example: Creating a Remote Data Warehouse 138
SAS/SHARE Server Preparation 138

SAS/Warehouse Administrator Client Preparation 138

Define Data Warehouse Properties 139
Example: Creating a Subject 142

Define Subject Properties 142
What’s Next 144

Overview

After you have created a Warehouse Environment, you can define one or more Data
Warehouses within it. In SAS/Warehouse Administrator, a Data Warehouse is a
metadata record that specifies the SAS library _DWMD. The _DWMD library is the
metadata repository for most of the groups and data stores in a data warehouse or a
data mart at your site.

To create a Data Warehouse:

1 Open the appropriate Warehouse Environment in the Explorer.

2 Define the properties of the Data Warehouse.

After you have created a Data Warehouse, you can define one or more Subjects
within it. A Subject is a grouping element for data related to one topic within a Data
Warehouse. For example, a Data Warehouse might have a Subject called Products
(information related to products) or Sales (information related to sales). Each Subject
can be composed of a number of different data collections: detail data, summary data,
charts, reports, and graphs.

To create a Subject:

1 Open the appropriate Warehouse Environment in the Explorer.

2 Locate the Data Warehouse in which the Subject will be added.

3 Add the Subject to the Data Warehouse.

4 Update the default properties of the Subject.

Note: The basic steps for maintaining Data Warehouses and Subjects are described
in the online Help. To display the relevant online Help, in the SAS System Help
contents, select

134 Preparing to Create Local or Remote Data Warehouses Chapter 8

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Defining Data Warehouses and Subjects

In addition, you can display Help for most SAS/Warehouse Administrator windows by
selecting the Help button on the window. �

Preparing to Create Local or Remote Data Warehouses
Before you create a Data Warehouse, you must do some preparation, which is

summarized as follows:

Metadata host
configuration

� Verify that you have the appropriate hardware and software to
implement your Data Warehouse, as described in “Metadata
Host Configuration” on page 23.

Hierarchy of
objects

� The Warehouse Environment that will contain the Data
Warehouse must exist.

Global metadata � Create Contact records for the owners and administrators of
the Data Warehouses and Subjects that you will create. For
details about Contact records, see Chapter 6, “Maintaining
Global Metadata,” on page 75.

Physical path � The physical path for the Data Warehouse metadata library
(libref _DWMD) must exist.

Example: Creating a Local Data Warehouse
This example summarizes how to create a local Data Warehouse—a Warehouse

whose metadata repository is stored on the SAS/Warehouse Administrator host. The
following explanations describe the metadata and methods used to achieve the desired
results. It is assumed that the parent Environment exists.

Define Data Warehouse Properties
Open the appropriate Warehouse Environment in the Explorer, as described in

“Opening a Warehouse Environment in the Explorer” on page 63. The following display
illustrates what a new Warehouse Environment would look like after an ODD Group
has been defined (as described in the “Registering Data Sources” chapter), but before
any Data Warehouses have been defined:

Maintaining Data Warehouses and Subjects Define Data Warehouse Properties 135

In the Explorer, position the cursor on the Environment, for example, Toy Store
Env, click the right mouse button, select Add Item, and then Data Warehouse. A
properties window for the Warehouse displays for you to enter the appropriate
information.

General Tab specifies the Warehouse’s name, such as Toy Store Whouse, as well
as a description, an owner, and an administrator.

To specify an owner or an administrator, click the down arrow to
select a name from a list. If you need to add a new Contact record,
click the right arrow to display a properties window. For details
about that window, click its Help button.

The next task is to specify the location of the metadata library for
this Warehouse.

136 Define Data Warehouse Properties Chapter 8

Metadata
Location Tab

specifies the metadata library (libref _DWMD) for the Warehouse.
Before the metadata library has been defined, the Warehouse
Library field is blank, as follows:

On the Metadata Location tab, click the right arrow to define a metadata library for
this Warehouse. A properties window for the Warehouse library displays for you to
enter the appropriate information.

Name Tab specifies a display name for the local metadata library you are
creating in this example, such as ToyStore Whouse Lib.

For a local metadata library, the next task is to specify the
physical path for the library.

Details Tab specifies the physical path for the metadata library that you are
creating, such as ./toytstore_1/_wh1. For a local Data
Warehouse, leave the Engine and Options fields blank, as follows:

Maintaining Data Warehouses and Subjects Define Data Warehouse Properties 137

When you have specified a path in the Path field, click OK to
return to the Metadata Location tab for the Data Warehouse.

Metadata
Location Tab

After defining the metadata library, the Metadata Location tab
specifies the display name (ToyStore Whouse Lib) for the libref
_DWMD:

After specifying a name and metadata library for the Data Warehouse, click OK .
The new Warehouse is added under the Environment in the Explorer, as follows:

You are finished entering properties for this local Data Warehouse. You are ready to
add a Subject to the Warehouse.

138 Example: Creating a Remote Data Warehouse Chapter 8

Example: Creating a Remote Data Warehouse
This example summarizes how to create a remote Data Warehouse—a Warehouse

whose metadata repository is not stored on the SAS/Warehouse Administrator host.
A remote Data Warehouse might be appropriate if you require concurrent read/write

access to the Warehouse by multiple SAS/Warehouse Administrator hosts. In that case,
you must create a remote Warehouse Environment and put its metadata
repository—and the metadata repositories of its Data Warehouses—under the control of
a SAS/SHARE server remote to the SAS/Warehouse Administrator hosts. For an
example of such a configuration, see “Remote Metadata: PC Client to Windows NT
Server” on page 25.

The following sections describe the metadata and methods used to achieve the
desired results. In addition to the preparation described in “Preparing to Create Local
or Remote Data Warehouses” on page 134, some additional preparation for remote
Environments is described next.

SAS/SHARE Server Preparation
On the SAS/SHARE server host
� create a physical path for the Data Warehouse
� assign a SAS libref to the directory that corresponds to the _DWMD library for the

Warehouse; do this in such a way that the library is under the control of the SAS/
SHARE server.

For example, suppose that you created the following directory structure on the SAS/
SHARE server host:

.\Project-2_env

.\Project-2_wh1

where .\Project-2_wh1 is the directory that corresponds to the _DWMD metadata
repository for the Data Warehouse that you will create. You would then assign a libref
to that directory in such a way that the library is under the control of the SAS/SHARE
server.

Note: Because this is a SAS/SHARE libref and not a SAS/Warehouse Administrator
libref, you are not restricted to _DWMD as the libref. For example, to the SAS/SHARE
server, the .\Project-2_wh1 directory could have a SAS/SHARE libref of WH1. (The
SLIBREF option would then have to be used in the Data Warehouse’s metadata, as
described in “Define Data Warehouse Properties” on page 139. �

Note: If you use a relative pathname such as .\Project-2_wh1 for the Warehouse
library, be sure that the SAS/SHARE server can resolve the pathname. �

SAS/Warehouse Administrator Client Preparation
Verify that your local SAS session can access the remote library that will ultimately

become the metadata repository for the Data Warehouse that you are creating. One
way to do that is to submit a LIBNAME statement for that library. Here is an example
of such a statement:

libname _DWMD server=host2.dwshare slibref=WH1;
where _DWMD is the local libref for the Data Warehouse metadata repository, host2 is

the name of the remote host, dwshare is the name of the SAS/SHARE server, and
slibref=WH1 is the remote server’s libref for the Data Warehouse’s metadata repository.

Maintaining Data Warehouses and Subjects Define Data Warehouse Properties 139

If you can execute such a statement successfully, then SAS/Warehouse Administrator
can generate code successfully for the remote Data Warehouse.

Define Data Warehouse Properties
Open the appropriate Warehouse Environment in the Explorer, as described in

“Opening a Warehouse Environment in the Explorer” on page 63. The following display
illustrates what a new Warehouse Environment would look like after an ODD Group
has been defined (as described in the “Registering Data Sources” chapter), but before
any Data Warehouses have been defined:

In the Explorer, position the cursor on the Environment, for example, Toy Store
Env, click the right mouse button, select Add Item, and then Data Warehouse. A
properties window for the Warehouse displays for you to enter the appropriate
information.

General Tab specifies the Warehouse name, such as Toy Store Whouse, as well
as a description, an owner, and an administrator.

140 Define Data Warehouse Properties Chapter 8

To specify an owner or an administrator, click the down arrow to
select a name from a list. If you need to add a new Contact record,
click the right arrow to display a properties window. For details
about that window, click its Help button.

The next task is to specify the location of the metadata library for
this Warehouse.

Metadata
Location Tab

specifies the metadata library (libref _DWMD) for the Warehouse.
Before the metadata library has been defined, the Warehouse
Library field is blank, as follows:

On the Metadata Location tab, click the right arrow to define a metadata library for
this Warehouse. A properties window for the Warehouse library displays for you to
enter the appropriate information.

Name Tab specifies a display name for the remote metadata library you are
creating in this example, such as ToyStore Whouse RemLib.

Maintaining Data Warehouses and Subjects Define Data Warehouse Properties 141

For a remote metadata library, the next task is to specify the SAS
engine and the options required to connect to the SAS/SHARE
server.

Details Tab For a remote metadata library, this tab specifies the SAS engine and
the LIBNAME statement options required to connect to the SAS/
SHARE server, as follows:

For the current example, the Engine field specifies that the
remote SAS engine will be used to access the _DWMD library for
the Data Warehouse.

The Options field specifies the SERVER= option required to
access the _DWMD library for the Data Warehouse, where host2 is
the name of the remote host, dwshare is the name of
the SAS/SHARE server, and slibref=WH1 is the remote server’s
libref for the Data Warehouse’s metadata repository.

Do not enter a physical path in the Path field because the
_DWMD library will be accessed through the SAS/SHARE server,
which uses a libref to access this library.

After specifying the appropriate values, click OK to return to the
Metadata Location tab for the Data Warehouse.

142 Example: Creating a Subject Chapter 8

Metadata
Location Tab

After defining the metadata library, the Metadata Location tab
specifies the display name (ToyStore Whouse RemLib) for the libref
_DWMD:

After specifying a name and metadata library for the Data Warehouse, click OK .
The new Warehouse is added under the Environment in the Explorer, as follows:

You are finished entering properties for this remote Data Warehouse. You are ready
to add a Subject to the Warehouse.

Example: Creating a Subject
Your data warehouse project plan should specify a number of subject areas—such as

finance, sales, marketing, and accounting—for which you will develop data collections.
For each one of these areas, you will create a Subject in a Data Warehouse in the SAS/
Warehouse Administrator Explorer.

Define Subject Properties
With the appropriate Warehouse Environment open in the Explorer, locate the Data

Warehouse in which you will add the Subject. The next display illustrates what a new
Data Warehouse (Toy Store Whouse) would look like before any Subjects have been
defined:

Maintaining Data Warehouses and Subjects Define Subject Properties 143

In the Explorer, position the cursor on the Data Warehouse, for example, Toy Store
Whouse, click the right mouse button, select Add Item, and then Subject. In the
Explorer window, a new Subject is added under the Data Warehouse, as follows:

To update the default metadata for the Subject, position the cursor on its icon, click
the right mouse button, and select Properties. A properties window for the Subject
displays for you to enter the appropriate information.

General Tab specifies the Subject name, such as Toy Sales, as well as a
description, an owner, and an administrator.

144 What’s Next Chapter 8

To specify an owner or an administrator, click the down arrow to
select a name from a list. If you need to add a new Contact record,
click the right arrow to display a properties window. For details
about that window, click its Help button.

After specifying information on this tab, you are finished creating the Subject. Click
OK to save its metadata record and return to the Explorer.

What’s Next

After adding a Data Warehouse and a Subject, you are ready to define detail data
stores in the Subject.

145

C H A P T E R

9
Maintaining Data Tables

Overview 145

Preparing to Create Data Tables 146
Example: Creating a Data Group 147

Overview 147

Define Data Group Properties 147
Example: Creating a Data Table 148

Overview 148

Define Data Table Properties 148
Define Process Editor Job 152

What’s Next 154

Overview
This chapter assumes that you have evaluated the different detail data stores

available in SAS/Warehouse Administrator, as described in “Detail Data Stores” on page
46, and have chosen to create Data Tables. SAS/Warehouse Administrator provides the
Data Table as a multipurpose data store, providing flexibility and usability because of
few restrictions regarding hierarchical placement and types of input sources. In
SAS/Warehouse Administrator, the following objects are provided for multiple purposes:

Data Group is a multipurpose, simple grouping element that allows you to
organize Data Tables, other Data Groups, and Information Marts.
You can add a Data Group to a Warehouse, Subject, or another Data
Group.

Data Table is a metadata record that specifies a SAS table or view or a DBMS
table or view that can serve multiple purposes. You can use Data
Tables as intermediate data stores (such as look-up tables), detail
data stores, summary data stores (if you write your own summary
code and register it as the Load Step for the Data Table), or tables
that hold information that does not fit anywhere else. You can add a
Data Table to a Data Group only.

Note: You can also store detail data in Detail Tables. However,
Data Tables are more multipurpose. Data Table metadata is the
same as Detail Table metadata, except that it includes the SAS code
(such as a VIEWTABLE statement) used to read the Data Table
when you open it from a data utility. �

In general, to maintain Data Tables:
1 Define the properties for the Data Group.

146 Preparing to Create Data Tables Chapter 9

2 Define the properties for the Data Table(s).

3 Define a Process Editor Job that includes the data preparation processes, which
prepares the data to be loaded into the Data Tables, and the Load Step, which
defines the steps to load the Data Tables.

4 Execute the Job.

5 Verify that the Data Tables are loaded; that is, check logs, use the data utilities,
and so on.

Note: The basic steps for creating a Data Group and a Data Table are described in
the online Help. To display the relevant online Help, in the SAS System Help contents,
select

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Defining Detail Data Stores Maintaining Data Tables

In addition, you can display Help for most SAS/Warehouse Administrator windows by
selecting the Help button on the window. �

Preparing to Create Data Tables

Before you create a Data Group and its associated Data Tables, you must first do
some preparation, as follows:

Hierarchy of
objects

� In SAS/Warehouse Administrator, make sure that you have
created the appropriate Data Warehouse Environment, Data
Warehouse, and Subject.

Input source(s) � Determine which input sources(s) to use for each Data Table.
For example, if the input source for a Data Table is an ODD,
the ODD must be fully operational.

� Analyze the input data and determine which columns you want
to include in the Data Table.

� Decide what columns are needed for the Data Table.

Processes � Determine whether the source code, which defines how data
moves from input source(s) to output targets, is generated by
SAS/Warehouse Administrator or if is it user written and
stored in a SAS catalog entry.

� Determine the type of Mapping processes, for example, you
might need to transform data or generate data.

� Determine whether you need to define other processes such as
a User Exit process, Data Transfer process, or Record Selector
process.

Output target � Determine how you want to store each Data Table. For
example, determine what format you want to store the data,
such as SAS format or a DBMS.

� Determine on what platform you want to store the Data Table.
That is, you can store the table locally or on a remote host.

Maintaining Data Tables Define Data Group Properties 147

Example: Creating a Data Group

Overview
The Data Group is a simple grouping element that you create to group a variety of

data stores, which include Data Tables. This example creates a Data Group to group
related Data Tables.

Note: The following explanations describe the metadata and methods used to
achieve the desired results; it is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, and Subject exist. �

Define Data Group Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Subject, for

example, Toy Sales, click the right mouse button, select Add Item, and then Data
Group. In the Explorer window, a new Data Group is added under the Subject as follows:

To update the default metadata for the Data Group, position the cursor on its icon,
click the right mouse button, and select Properties. The Data Group Properties
window displays for you to enter the appropriate information.

General Tab specifies the group name, for example, Intermediate Tables Data
Group, a description, an owner, and an administrator.

The next section describes how to create a Data Table to add to the Data Group.

148 Example: Creating a Data Table Chapter 9

Example: Creating a Data Table

Overview
After you have a Data Group to group Data Tables, you can then add Data Tables to

that group. This example creates a Data Table to be used as a look-up table, for
example, to find the city and state associated with a specific zipcode.

Note: The following explanations describe the metadata and methods to achieve the
desired results; it is assumed that the appropriate Data Warehouse Environment, Data
Warehouse, Subject, Data Group, and ODD exist. �

Define Data Table Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Data

Group, for example, Intermediate Tables Data Group, click the right mouse button,
select Add Item, and then Data Table. In the Explorer window, a new Data Table is
added under the Data Group as follows:

To update the default metadata for the table, put the cursor on its icon, press the
right mouse button, and select Properties. The Data Table Properties window
displays for you to enter the appropriate information, which is described next:

General Tab specifies the table’s name Zipcode Lookup, a description, an owner,
and an administrator.

Maintaining Data Tables Define Data Table Properties 149

Columns Tab specifies the columns to be included in the Data Table, which do not
exist yet as follows:

To import columns from an input source, click Import to display a
list of input sources, and then select one, for example, Operational
Data Sources. The Import Column Metadata window displays.

From the Import Column Metadata window, which lists the
available sources, select an ODD, for example Geography, to display
its available columns.

Select the appropriate columns under Columns (which for this
example are city_nam, region_n, state_na, and zipcode), use the
double arrows to move them to Selected Columns, and then click
OK . You are returned to the Columns tab in the Data Table
Properties window, which lists the imported columns:

150 Define Data Table Properties Chapter 9

Physical Storage
Tab

specifies the physical storage attributes. This example specifies the
storage format SAS and the load technique Refresh.

Click Define to open the SAS Table Properties window and view
its metadata.

Location Tab specifies where the SAS table is stored.

Maintaining Data Tables Define Data Table Properties 151

Access Location
Tab

specifies a location to provide interactive access to the Data Table.
For this example, the check box Use Physical Storage Location
as the Access Location is selected by default, which enables the
software to use information from the Physical Storage tab to provide
interactive access to the table.

Open Code Tab specifies the source code used to view the table.

152 Define Process Editor Job Chapter 9

Define Process Editor Job
In the Process Editor Job, the Data Table Zipcode Lookup is specified as the output

target and the ODD Geography is specified as the input source. The following Process
Editor window shows the Process Flow for the Job:

The processes defined in the Job are summarized as follows:

Mapping
Process

� The source code to map columns is generated by
SAS/Warehouse Administrator, rather than user written, as
shown in the Source Code tab:

Maintaining Data Tables Define Process Editor Job 153

� Column mapping is defined as one-to-one mapping, as shown in
the Column Mapping tab. To produce one-to-one mapping, first
click 1 to 1 Mappings from the Column Mapping tab, which
opens the One-to-One Column Mapping window. Then, click
Quick Map .

Load Step
Process

� The source code is generated by SAS/Warehouse Administrator,
rather than user written, as shown in the Data Table Load
Process Attributes window:

154 What’s Next Chapter 9

For more information about Process Editor Jobs, see Chapter 13, “Maintaining Jobs,”
on page 251. For more information about processes, see Chapter 14, “Maintaining
Processes,” on page 281.

What’s Next

After you create Data Tables, you can use them as inputs to other
SAS/Warehouse Administrator objects such as OLAP summary data stores and Detail
Tables, or you can exploit them with tools designed to work with detail data, such as
data mining applications.

155

C H A P T E R

10
Maintaining Detail Logical
Tables and Detail Tables

Overview 155

Preparing to Create Detail Tables 156
Example: Creating a Detail Logical Table as a Grouping Element for Detail Tables 157

Overview 157

Define Detail Logical Table Properties 157
Example: Creating a Detail Table 158

Overview 158

Define Detail Table Properties 158
Define Process Editor Job 162

Example: Linking from a Detail Logical Table to an Existing Detail Table 164
Overview 164

Create a Link 164

Example: Creating a Detail Logical Table as a View to Multiple Detail Tables 165
Overview 165

Planning the Detail Logical Table to be Organized as a Star Schema 166

Define Detail Logical Table Properties 167
Define Process Editor Job 171

What’s Next 173

Overview

This chapter assumes that you have evaluated the different detail data stores
available in SAS/Warehouse Administrator, as described in Chapter 4, “Planning Your
Data Stores and Processes,” on page 41, and have chosen to create these data stores:

Detail Logical
Table

is a metadata record that specifies a SAS table or view that can
serve multiple purposes. You can use a Detail Logical Table as a
grouping element for Detail Tables or as an individual detail data
store, for example, as a view to multiple, related Detail Tables. You
can add a Detail Logical Table to a Subject only, and a Subject can
have only one Detail Logical Table.

Detail Table is a metadata record that specifies a SAS table or view or a DBMS
table or view that serves as a detail data store. You can add a Detail
Table to a Detail Logical Table only.

In general, to maintain a Detail Logical Table and associated Detail Tables:

1 Define the properties of the Detail Logical Table.

2 Define the properties of the Detail Table(s).

156 Preparing to Create Detail Tables Chapter 10

3 Define a Process Editor Job that includes the data preparation processes, which
prepare the data to be loaded into the data store(s), and the Load Step, which
defines the steps to load the data store(s).

4 Execute the Job.

5 Verify that the data store(s) are loaded; that is, check logs, use the data utilities,
and so on.

Note: The basic steps for creating a Detail Logical Table and Detail Tables are
described in the online Help. To display the relevant online Help, in the SAS System
Help contents, select

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Defining Detail Data Stores Maintaining Detail Logical Tables or

Maintaining Detail Tables

In addition, you can display Help for most SAS/Warehouse Administrator windows by
selecting the Help button on the window. �

Preparing to Create Detail Tables

Before you create a Detail Logical Table and its associated Detail Tables, you must
first do some preparation as follows:

Hierarchy of
objects

� In SAS/Warehouse Administrator, make sure that you have
created the appropriate Data Warehouse Environment, Data
Warehouse, and Subject.

Input source(s) � Determine which input source(s) to use for each Detail Table.
For example, if the input source for a Detail Table is an ODD,
the ODD must be fully operational.

� Analyze the input data and determine which columns you want
to include in the Detail Table.

� Decide what columns are needed for the Detail Table.

Processes � Determine whether the source code, which defines how data
moves from input sources to output targets, is generated by
SAS/Warehouse Administrator or if is it user written and
stored in a SAS catalog entry.

� Determine the type of Mapping processes, for example, you
might need to transform data or generate data.

� Determine whether you need to define other processes such as
a User Exit process, Data Transfer process, or Record Selector
process.

Output target � Determine how you want to store each Detail Table. For
example, determine what format you want to store the data,
such as SAS format or a DBMS.

� Determine on what platform you want to store the Detail Table.
That is, you could store the table locally or on a remote host.

Maintaining Detail Logical Tables and Detail Tables Define Detail Logical Table Properties 157

Example: Creating a Detail Logical Table as a Grouping Element for
Detail Tables

Overview
The simplest use of a Detail Logical Table is to create it as a grouping element for

Detail Tables. Note that when a Detail Logical Table is used as a grouping element, it
does not have an associated Process Editor Job. However, each Detail Table grouped by
the Detail Logical Table would have a Process Editor Job.

Note: The following explanations describe the metadata and methods used to
achieve the desired results; it is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, and Subject exist. �

Define Detail Logical Table Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Subject, for

example Subject, click the right mouse button, select Add Item, and then Detail
Logical Table. In the Explorer window, a Detail Logical Table is added under the
Subject as follows:

To update the default metadata for the Detail Logical Table, position the cursor on its
icon, click the right mouse button, and select Properties. The Detail Logical Table
Properties window displays for you to enter the appropriate information.

General Tab specifies the table name Group Detail Logical Table, a
description, an owner, and an administrator.

158 Example: Creating a Detail Table Chapter 10

Tables Tab specifies the Detail Tables that are members of the Detail Logical
Table, which do not exist yet.

The next section describes how to create a Detail Table to add to the Detail Logical
Table.

Example: Creating a Detail Table

Overview
After you have a Detail Logical Table in which you can group Detail Tables, you can

add the Detail Tables. There are different methods you can use to add a Detail Table:
� From the Detail Logical Table Properties window, select the Tables tab, and then

click Add New Table . The Detail Table Properties window opens for you to define
the appropriate metadata for the Detail Table.

� In the SAS/Warehouse Administrator Explorer, position the cursor on the Detail
Logical Table icon, click the right mouse button, and select Add New Table. The
following explanations describe this method.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, Detail Logical Table, and ODD exist. �

Define Detail Table Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Detail

Logical Table (for example, Group Detail Logical Table), click the right mouse
button, and select Add New Table. In the Explorer window, a new Detail Table is
added under the Detail Logical Table as follows:

Maintaining Detail Logical Tables and Detail Tables Define Detail Table Properties 159

To update the default metadata for the table, position the cursor on its icon, click the
right mouse button, and select Properties. The Detail Table Properties window
displays for you to enter the appropriate information.

General Tab specifies the table name Customer, a description, an owner, and an
administrator.

Columns Tab specifies the columns to be included in the Detail Table, which does
not exist yet.

To import columns from an input source, click Import to display
a list of input sources. Select an input source, for example
Operational Data Sources. The Import Column Metadata
window displays.

160 Define Detail Table Properties Chapter 10

From the Import Column Metadata window, which lists the
available tables, select an ODD, for example Customer, to display its
available columns.

Select the appropriate columns listed under Columns, which for
this example are all of the columns. Use the double arrows to move
these columns to Selected Columns, and then click OK . You are
returned to the Columns tab in the Detail Table Properties window,
which now lists the imported columns.

Physical Storage
Tab

specifies physical storage attributes. This example specifies the
storage format SAS and the load technique Refresh.

Maintaining Detail Logical Tables and Detail Tables Define Detail Table Properties 161

Click Define to open the SAS Table Properties window and view
the table metadata.

Location Tab specifies where the SAS table is stored.

Access Location
Tab

specifies a location to provide interactive access to the Detail Table.
For this example, the check box Use Physical Storage Location
as the Access Location is selected by default, which enables the
software to use information from the Physical Storage tab to provide
interactive access to the table.

162 Define Process Editor Job Chapter 10

Define Process Editor Job
In the Process Editor Job, the Detail Table Customer is specified as the output target

and the ODD Customer is specified as the input source. The following Process Editor
window shows the Process Flow for the Job:

The processes defined in the Job are as follows:

Mapping
Process

� The source code to map columns is generated by
SAS/Warehouse Administrator, rather than user written, as
shown in the Source Code tab:

Maintaining Detail Logical Tables and Detail Tables Define Process Editor Job 163

� Column mapping is defined as one-to-one mapping, as shown in
the Column Mapping tab:

Note: To produce one-to-one mapping, first click 1 to 1 Mappings
on the Column Mapping tab, which opens the One-to-One Column
Mapping window. Then, click Quick Map . �

Load Step
Process

The source code is generated by SAS/Warehouse Administrator,
rather than user written, as shown in the Detail Table Load Process
Attributes window:

164 Example: Linking from a Detail Logical Table to an Existing Detail Table Chapter 10

For more information about Process Editor Jobs, see Chapter 13, “Maintaining Jobs,”
on page 251. For more information about processes, see Chapter 14, “Maintaining
Processes,” on page 281.

Example: Linking from a Detail Logical Table to an Existing Detail Table

Overview
SAS/Warehouse Administrator provides a linking capability that enables Detail

Logical Tables in different Subjects to share individual Detail Tables. That is, a single
Detail Table needs to be defined and stored only once but can be linked to from any
number of Detail Logical Tables.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subjects, Detail Logical Tables, and Detail Table exist. �

Create a Link
To link from a Detail Logical Table to an existing Detail Table (in another Detail

Logical Table), position the cursor on the Detail Logical Table icon from which you want
to create the link, click the right mouse button, and select Properties. The Detail
Logical Table Properties window displays. Select the Tables tab, which specifies the
Detail Tables that are members of the Detail Logical Table.

Maintaining Detail Logical Tables and Detail Tables Overview 165

Click Link Existing Table to display a list of existing Detail Tables, and then select a
Detail Table from the list. The selected Detail Table becomes a member (by means of a
link) of the current Detail Logical Table.

Example: Creating a Detail Logical Table as a View to Multiple Detail
Tables

Overview
A common use of a Detail Logical Table is to create it as a view to multiple, related

Detail Tables. The result is that you use the Detail Logical Table as a detail data store,
which can then be used as an input source for other SAS/Warehouse objects, such as an
OLAP summary data store.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, and ODDs exist. �

166 Planning the Detail Logical Table to be Organized as a Star Schema Chapter 10

Planning the Detail Logical Table to be Organized as a Star Schema
To illustrate how to create a Detail Logical Table as a view to multiple, related Detail

Tables, this example creates a Detail Logical Table that organizes data in a star
schema. A star schema is an arrangement of tables in which a large fact table has a
composite, a foreign key, and is joined to several dimension tables.

For this example, the Detail Logical Table uses the toy sales data. The star schema
organization is centered around sales transactions, which is joined to several dimension
tables, with each dimension table having a single primary key. Figure 10.1 on page 166
shows the star schema organization:

Figure 10.1 Toy Sales Star Schema

Each Detail Table to be viewed by the Detail Logical Table obtains its data from a
specific ODD. That is, the following ODDs exist:

Maintaining Detail Logical Tables and Detail Tables Define Detail Logical Table Properties 167

For this example, the Detail Tables will be defined as follows:

� a fact Detail Table named Fact with input from ODD Sales Transactions

� six dimension Detail Tables:

� Detail Table Customer with input from ODD Customer

� Detail Table Drop with input from ODD Drop

� Detail Table Geography with input from ODD Geography

� Detail Table Product with input from ODD Product

� Detail Table Time with input from ODD Time

Define Detail Logical Table Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Subject, for

example Toy Sales, click the right mouse button, select Add Item, and then Detail
Logical Table. In the Explorer window, a new Detail Logical Table is added under the
Subject as follows:

To update the default metadata for the Detail Logical Table, position the cursor on its
icon, click the right mouse button, and select Properties. The Detail Logical Table
Properties window displays for you to enter the appropriate information.

General Tab specifies the table name Sales Detail Grp, a description, an
owner, and an administrator.

168 Define Detail Logical Table Properties Chapter 10

Tables Tab specifies the Detail Tables to be members of the Detail Logical Table,
which do not exist yet.

To add a table, click Add New Table to display the Detail Table
Properties window. Enter the name of the Detail Table, for example
Customer.

Maintaining Detail Logical Tables and Detail Tables Define Detail Logical Table Properties 169

To finish defining the Detail Table, complete the metadata for the
remaining Detail Table Properties window tabs. For a description of
adding a Detail Table, see “Define Detail Table Properties” on page
158.

After you define the Detail Table, click OK to add the Detail
Table to the list of member tables in the Detail Logical Table. You
are returned to the Tables tab in the Detail Logical Table Properties
window.

You would repeat these steps adding each Detail Table, which for
this example, includes the following Detail Tables:

Customer (added)
Drop
Fact
Geography
Product
Promotions
Time

Columns Tab specifies the Detail Table columns to be viewed by the Detail Logical
Table, which have not been specified yet.

To import columns from an input source, click Import to display
a list of input sources, then select Detail Tables. From the Import
Column Metadata window, which lists the available tables, select a
table (for example, Customer) to display its available columns.

170 Define Detail Logical Table Properties Chapter 10

Select the appropriate columns listed under Columns, which for
this example are all the columns, use the double arrows to move
them to Selected Columns, then click OK . You are returned to
the Columns tab in the Detail Logical Table Properties window.

Repeat the column import process for each remaining member
Detail Table.

Note: When implementing a star schema, the key column, which
links the fact table to each dimension table, is included in both
tables. You need only to import that column for the Detail Logical
Table from either the fact Detail Table or the dimension Detail
Table. Otherwise, you will get a dialog message indicating that a
duplicate column exists and asking you to rename it. If you import a
key column twice, you can cancel the rename dialog if you choose. �

Location Tab specifies the physical location of the view that provides interactive
access to the Detail Logical Table.

Maintaining Detail Logical Tables and Detail Tables Define Process Editor Job 171

Define Process Editor Job
In the Process Editor Job, the Detail Logical Table and all its children Detail Tables

are specified in a single Job. Sales Detail Grp is specified as the output target. Each
Detail Table that is a member of the Detail Logical Table is specified as input to the
Detail Logical Table as well as an output target in the Job with corresponding ODDs
specified as the input sources. The following Process Editor window shows the Process
Flow for the Job:

Note: For this example, a single Process Editor Job is illustrated with multiple
input sources and output targets. However, you could also define separate Jobs for each
Detail Table and a Job for the Detail Logical Table. �

The processes defined in the Job are as follows:

Mapping
Processes

The source code to map columns is generated by
SAS/Warehouse Administrator, rather than being user written. The
Source Code tab is shown for the Customer Detail Table:

172 Define Process Editor Job Chapter 10

Column mapping is defined by one-to-one mapping and some data
transformations. The Column Mapping tab is shown for the
Customer Detail Table:

Note: To produce one-to-one mapping, click 1 to 1 Mappings from
the Column Mapping tab, which opens the One-to-One Column
Mapping window. Then, click Quick Map . �

Note: To define data transformations, first select the column(s) to
be transformed, then click Derive Mapping , which opens the
Expression Builder window. Use the Expression Builder window to
define the transformation. �

Load Step
Processes

The source code to load each Detail Table is generated by
SAS/Warehouse Administrator.

The source code to load the Detail Logical Table is user written,
as shown in the Detail Process Attributes window. For a Detail
Logical Table, you must supply the Load Step code. The code creates
an SQL view. (Note that you can use the Query window to generate
SQL code.)

Maintaining Detail Logical Tables and Detail Tables What’s Next 173

The code used to create the SQL view follows:

For more information about Process Editor Jobs, see Chapter 13, “Maintaining Jobs,”
on page 251. For more information about processes, see Chapter 14, “Maintaining
Processes,” on page 281.

What’s Next

After you create detail data stores, you can use them as inputs to other
SAS/Warehouse Administrator objects such as OLAP summary data stores, or you can
exploit them with tools designed to work with detail data, such as data mining
applications.

174

175

C H A P T E R

11
Maintaining OLAP Groups and
OLAP Summary Data Stores

Overview 176

Preparing to Create Summary Data Stores 177
Analyzing Detail Data for an OLAP Application 178

Understanding Detail Data 178

Determining Dimensions in the Data 180
Determining Hierarchical Relationships within Dimensions 180

Determining Crossing(s) 181

Summarizing Data Using SAS/Warehouse Administrator 182
Generating the Appropriate OLAP Summary Data 182

Choosing the Appropriate Data Store 183
Assigning OLAP Summary Roles and Defining OLAP Structure 183

Example: Creating Summary Data for a HOLAP Application 186

Overview 186
Define OLAP Group Properties 187

Assign OLAP Summary Roles for the Group 190

Assign Class Columns 190
Assign Statistic Columns 191

Define OLAP Structure Definitions for the Group 192
Add an OLAP Cube 192

Define Dimensions 192

Define Hierarchies 193
Define OLAP Table Properties 195

Import OLAP Summary Roles for the Table 198

Import Class Columns 198
Import Statistic Columns 200

Define Crossing for the Table 201
Define OLAP MDDB Properties 201

Import OLAP Summary Roles for the MDDB 204

Define Crossings for the MDDB 204
Define Process Editor Job 206

Example: Creating Summary Data for a MOLAP Application 208

Overview 208
Define OLAP Group Properties 208

Define OLAP MDDB Properties 209
Assign OLAP Summary Roles for the MDDB 212

Assign Class Columns 212

Assign Statistic Columns 212
Define OLAP Structure Definitions for the MDDB 213

Add an OLAP Cube 213

Define Dimensions 213
Define Hierarchies 215

176 Overview Chapter 11

Define Crossings for the MDDB 217

Define Process Editor Job 220
Example: Adding a Frequency Count to an OLAP Summary Data Store 221

Overview 221

Add a Column to OLAP Summary Data Store 222
Assign OLAP Summary Roles to the Column 222

Define Mapping Process in Process Editor Job 223

Example: Using One Analysis Column for Multiple Statistic Columns 223
Overview 223

Add Columns to OLAP Summary Data Store 224
Assign OLAP Summary Roles to the Columns 224

Define Mapping Process in Process Editor Job 225

Example: Using DATE/TIME Stored Expression to Split Date Values 227
Overview 227

Add Columns to OLAP Summary Data Store 227

Assign OLAP Summary Roles to the Columns 228
Define Mapping Process in Process Editor Job 228

Example: Using an Input Column for Multiple Summary Roles 232
Overview 232

Import and Add Columns to OLAP Summary Data Store 233

Assign OLAP Summary Roles to the Columns 234
Define Mapping Process in Process Editor Job 235

What’s Next 238

Overview

OLAP (online analytical processing) is a reporting technology that provides
high-performance analysis and easy reporting of large amounts of data, that have been
summarized. OLAP reporting functionality is possible because the detail data has been
transformed—set up for an OLAP application to reflect the dimensions of the data.
That is, the following has occurred:

1 The detail data has been summarized, which is a process that generates derived
summary data by applying calculations to input data.

2 The derived summary data is stored in a summary data store, which is a physical
storage file such as a relational table or an MDDB (multidimensional database).

3 The summary data store is available to an OLAP application.

SAS/Warehouse Administrator supports OLAP reporting by enabling you to create
these data warehouse objects:

OLAP Group is a grouping element that organizes related summary data, which
is stored in OLAP Tables and OLAP MDDBs. OLAP Group
properties specify the logical structure of the summarized data. You
can add an OLAP Group to a Subject only.

OLAP Table is a metadata record that specifies a file for storing derived
summary data. This file can be a SAS table or view or a DBMS
table or view. To load an OLAP Table,
SAS/Warehouse Administrator generates code for the SUMMARY
procedure, which summarizes data by computing descriptive
statistics for columns across all rows or within groups of rows. Note
that an OLAP Table can also be used by non-OLAP applications.
You can add an OLAP Table to an OLAP Group only.

Maintaining OLAP Groups and OLAP Summary Data Stores Preparing to Create Summary Data Stores 177

OLAP MDDB is a metadata record that specifies a SAS MDDB (multidimensional
database). A SAS MDDB is not a SAS table. It is a specialized
storage format that stores derived summary data in a
multidimensional form, which is a highly indexed and compressed
format. To load an OLAP MDDB, SAS/Warehouse Administrator
generates code for the MDDB procedure, which summarizes data
similar to the SUMMARY procedure. You can add an OLAP MDDB
to an OLAP Group only.

In general, to maintain OLAP Groups and OLAP summary data stores, you will do
the following:

1 Analyze the detail data to understand its content and the relationships among the
data.

2 Evaluate the most likely data access patterns to determine the storage strategy.

3 Define the properties of the OLAP Group.

4 Define the properties of the summary data store(s) for the OLAP Group; that is,
define the OLAP Tables and OLAP MDDBs.

5 Define the Process Editor Job(s) that include the data preparation processes, which
prepare the data to be summarized, and the Load Steps, which define the steps to
summarize the data and load the OLAP summary data stores with derived data.

6 Execute the Jobs.

7 Verify that the summary data stores are loaded; that is, check logs, use the data
utilities, and so on.

After you have defined and loaded OLAP objects, the OLAP metadata can be used by
an OLAP application. Using SAS/Warehouse Administrator, for example, you can
export the OLAP metadata to SAS/EIS software.

Note: The basic steps for creating OLAP objects are described in the online Help. To
display the relevant online Help, in the SAS System Help contents, select Help on SAS
Software Products, then Using SAS/Warehouse Administrator Software. Finally,
select Defining Summary Data Stores. In addition, each
SAS/Warehouse Administrator window has associated reference information for its
fields and buttons by selecting the Help button. �

Preparing to Create Summary Data Stores

Before you create an OLAP Group and its associated summary data stores, you must
do some preparation, which is summarized as follows:

Hierarchy of
objects

� In SAS/Warehouse Administrator, make sure that you have
created the appropriate Data Warehouse Environment, Data
Warehouse, and Subject.

Input source(s) � Determine which input source(s) to use for each summary data
store. For example, if the input source for an OLAP MDDB is a
Detail Table, the Detail Table must be fully operational before
the OLAP MDDB is populated.

� Analyze the input data. For details, see “Analyzing Detail Data
for an OLAP Application” on page 178.

� Decide what columns are needed for the summary data store.

178 Analyzing Detail Data for an OLAP Application Chapter 11

Processes � Determine whether the source code, which defines how data
moves from input sources to output targets, is generated by
SAS/Warehouse Administrator or is it user written and stored
in a SAS catalog entry.

� Determine the type of Mapping processes, for example, you
might need to transform data or generate data.

� Determine whether you need to define other processes such as
a User Exit process, Data Transfer process, or Record selector
process.

Output target � Determine how you want to store each summary data store.
For example, determine what format you want to store the
data, such as SAS format or a DBMS. For more information,
see “Summarizing Data Using SAS/Warehouse Administrator”
on page 182.

� Determine on what platform you want to store the summary
data store and where the summarization should occur. That is,
you could store the data store locally and have the
summarization occur on a remote host.

Analyzing Detail Data for an OLAP Application

Understanding Detail Data
Detail data is information that is at or near the fact level in a database. It is the

data that an OLAP application intends to analyze. In SAS/Warehouse Administrator,
detail data is stored in

� Data Tables
� Detail Logical Tables
� Detail Tables.

To understand what detail data consists of, consider an OLAP application to analyze
the sales of toys for which the detail data represents toy sales transactions across
several product lines and manufacturers. For the Toy Store Warehouse, a Subject
named Toy Sales contains the Detail Logical Table named Sales Detail Grp, which
is physically stored as a SAS SQL view named DATA.STAR. Display 11.1 on page 179
shows some of the detail data in the Detail Logical Table.

Note: For an explanation of how the Detail Logical Table is created and a complete
description of its contents, see “Example: Creating a Detail Logical Table as a View to
Multiple Detail Tables” on page 165. �

Maintaining OLAP Groups and OLAP Summary Data Stores Understanding Detail Data 179

Display 11.1 Sales Detail Grp Detail Logical Table

To understand the detail data, consider the following:

� As a whole, the toy sales transactions form a population. For each transaction,
specific information is captured about the context of that transaction including the
time and location of the transaction. Information about the participants in the
transaction is also part of the context, such as age, gender, and income of the
purchaser, and promotional campaigns implemented by the vendor.

� All of that information can be divided into subpopulations or classifications. The
fields used to record that information are referred to as classification columns or
class columns.

To be useful, the class columns need to break the population into a manageably
small number of subpopulations. In order to make selection possible, several class
columns with different granularity are often stored. For example, geographic
classifications can be done at the Country, Region, State, City, and Zipcode level.
The number of discrete values for any class column within the population is
referred to as its cardinality.

The idea of OLAP is to explore a large population looking for trends in the
measurements within or between many different subpopulations. There can be
many different subpopulations defined by combinations of values of the class
columns.

� In addition to class columns, there are certain properties of a transaction that are
measured and stored numerically. These are the measurements, which for the toy
sales data are the number of toys sold, the cost to the seller, and the price paid by
the buyer. The fields that store the raw data are referred to as analysis columns
because they are what you want to analyze using OLAP techniques. When you
combine the measurements across a number of individuals in a subpopulation, one
or more statistic columns can be produced per analysis column. That is, the values
for an analysis column are used to compute the output summary statistics, which
become the values for the statistic column(s) in the summary data store. Typical
statistics are sum, minimum, and maximum.

� It is possible to store other information about a transaction that is neither
classification nor measurement. These are referred to as identification columns or
ID columns, because they are often used to further identify groups of transactions

180 Determining Dimensions in the Data Chapter 11

that are otherwise identified by class column values. For example, along with the
class column state_code you could have the ID column state_name.

Determining Dimensions in the Data
To perform OLAP reporting, the detail data must be summarized into

multidimensional views, which is a way of looking at data that is organized into
dimensions. A dimension acts as an index by which you can access facts according to
the value (or values) you want. A dimension is a logical grouping of related columns.

For example, continuing with the Sales Detail Grp detail data, you could organize
the data into these dimensions by grouping class columns based on related
characteristics:

Time Dimension
Year, Season, Quarter, Month, Week, Date

Promotion Dimension
Promotion Type, Promotion

Drop Dimension
Target, Category, Delivery, Drop Date, Drop Description

CustomerIncome Dimension
Income Group, Income, Customer Name

CustomerAge Dimension
Age Group, Age, Customer Name

CustomerGender Dimension
Gender, Customer Name

Product Dimension
Company, Class, Brand, Type, Product

Geography Dimension
Country, Region, State, City, Zipcode

Determining Hierarchical Relationships within Dimensions
After you have class columns grouped into dimensions, you should then determine

whether there are hierarchical relationships among the class columns within each
dimension. That is, if the class columns within a dimension have a hierarchical
relationship, each hierarchy would provide a navigational path in order to drill down
(or up) to increasing (or decreasing) levels of detail.

For example, for the Detail Logical Table Sales Detail Grp, assume that the OLAP
application intends to explore the Time dimension (which groups class columns year,
season, quarter, month, week, and date) in multiple ways. Therefore, three separate
hierarchies can be defined as follows:

TimeWeek Hierarchy
Year, Week, Date

TimeQuarter Hierarchy
Year, Quarter, Month, Date

TimeSeason Hierarchy
Season, Date

Maintaining OLAP Groups and OLAP Summary Data Stores Determining Crossing(s) 181

Determining Crossing(s)
A crossing is a unique list of one or more class columns that defines a summarization

level (subtable) to be stored in one or more OLAP summary data stores. That is, a
crossing represents a grouping on which summary statistics are calculated. A crossing
represents the physically stored data, which provides the quick response when
displaying a report in an OLAP application. For each crossing, there is a single record
for each unique combination of values of all named class columns in the original input
detail data (population).

There are several methods you can use to help determine crossings. For example, to
create a starting point for defining crossings, you can model the data using a spiral
diagram. Using the toy sales hierarchies, the steps below create the spiral diagram
shown in Figure 11.1 on page 181:

Figure 11.1 Spiral Diagram for Toy Sales Detail Data

1 First, draw an axis for each hierarchy. Then, place the class columns on the
appropriate axes (working from the outside to the center) in ascending order of
cardinality (number of unique values).

Note: The placement of axes in relation to each other can be significant. Try
several arrangements to find one that works best. For example, you could arrange
the axes in descending order of likelihood of use, in descending order of cardinality
at the top dimensional level, or in descending order of number of levels. �

2 Draw a spiral on the diagram to indicate a general ordering scheme for the
columns. Start on the outside with the class column with the lowest cardinality,
which is also the one most likely to be of interest to OLAP users, and draw a line
from this column to an adjacent column. Continue spiraling in toward the center,
as shown in Figure 11.1 on page 181.

3 Looking at the spiral diagram, you can produce an ordered list of class columns.
Most likely, the more important class columns with the lowest cardinality are at
the top and the most detailed class columns with high cardinality are at the
bottom. For this example, the order would be:

182 Summarizing Data Using SAS/Warehouse Administrator Chapter 11

Year
Country
Company
Gender
G_Age
G_Income
Target
Promo_ty
Season
Quarter
Region
PClass

4 From this list, you can develop a reasonable initial choice of crossings. Start with
the entire list and successively drop the highest cardinality column in a
“stair-step” fashion to form additional crossings as follows:

Year Country Company Gender G_Age G_Income Target Promo_Ty Season Quarter Region PClass

Year Country Company Gender G_Age G_Income Target Promo_Ty Season Quarter Region

Year Country Company Gender G_Age G_Income Target Promo_Ty Season Quarter

Year Country Company Gender G_Age G_Income Target Promo_Ty Season

Year Country Company Gender G_Age G_Income Target Promo_Ty

Year Country Company Gender G_Age G_Income Target

Year Country Company Gender G_Age G_Income

Year Country Company Gender G_Age

Year Country Company Gender

Year Country Company

Year Country

Year

Summarizing Data Using SAS/Warehouse Administrator

Generating the Appropriate OLAP Summary Data
The type and number of summary data stores you create depends largely on the data

access patterns. That is, there are a wide variety of strategies that you can use ranging
from a single OLAP Table with one crossing, or a single OLAP MDDB with multiple
crossings, to a proxy MDDB with several associated OLAP MDDBs and OLAP Tables,
some of which might reside on an external DBMS.

To facilitate the different strategies required for OLAP reporting, an OLAP Group
can be one of the following types, which depends on whether you intend to store
summary data in OLAP Tables, OLAP MDDBs, or both:

HOLAP supports a hybrid OLAP solution that combines the best features of
both ROLAP and MOLAP. HOLAP provides access to diverse data
sources on local and remote servers. An OLAP Group of type
HOLAP groups both OLAP Tables and OLAP MDDBs, which
together represent the data for one OLAP application.

When an OLAP Group of type HOLAP is specified as an output
data store in a Process Editor Job, SAS/Warehouse Administrator
generates a proxy MDDB, which is a physical file that represents the

Maintaining OLAP Groups and OLAP Summary Data Stores Assigning OLAP Summary Roles and Defining OLAP Structure 183

structure of the data in an OLAP Group. The proxy MDDB can be
used by SAS/EIS software to provide more efficient access to
multiple OLAP Tables and OLAP MDDBs.

MOLAP supports OLAP performed on a multidimensional database, such as
a SAS MDDB. SAS/Warehouse Administrator supports MOLAP with
an OLAP Group of type MOLAP. Such a group is a grouping
mechanism intended to contain only OLAP MDDBs. Multiple
MDDBs can be contained in the group, but each MDDB generally
represents the data for separate OLAP applications.

ROLAP supports OLAP performed on a relational database, such as a SAS
table or a DBMS table. SAS/Warehouse Administrator supports
ROLAP with an OLAP Group of type ROLAP. Such a group is a
grouping mechanism intended to contain only OLAP Tables.
Multiple OLAP Tables can be contained in the group, but each table
generally represents the data for separate OLAP applications.

Note: SAS/EIS software does not support ROLAP. �

MIXED groups both OLAP Tables and OLAP MDDBs. Unlike HOLAP, the
summary data stores in a MIXED group do not have to be used
together. For example, you might choose the MIXED type if you do
not want to define several OLAP Groups, with each having only one
OLAP Table or OLAP MDDB.

Choosing the Appropriate Data Store
In SAS/Warehouse Administrator, summary data is stored in OLAP Tables and

OLAP MDDBs. These are the physical storage units that will contain the derived
values for crossings and statistic columns. Here are some considerations when you are
determining the type of OLAP summary data store to create:

� If the amount of summary data that you want to store in one data store is very
large, consider using an OLAP Table. The amount of data that is considered very
large will depend on the storage and processing resources available at your site.
The amount could be anywhere from 500 megabytes to 2 gigabytes.

� If you have a specific tool that can access only relational DBMS tables, and you
want to use this tool to access your summary data, store that data in an OLAP
Table that is a DBMS table.

� To create an OLAP MDDB, SAS/MDDB Server software must be licensed on the
machine where the OLAP MDDB will be stored.

� SAS MDDBs use less storage space than SAS or DBMS tables.
� To access data stored in an OLAP MDDB, use the MDDB viewer or a

multidimensional SAS/EIS or Web EIS application. (Open the DIR window and
type S or B in front of the MDDB name to view the MDDB’s header information or
data.) If you want to use other SAS software features to access the data in your
summary tables, then use OLAP Tables to store the data.

� Existing records in an MDDB can be updated. However, if you add or drop any
statistics or analysis columns (if the metadata definition of the table changes),
then the table must be refreshed (rebuilt). If the table is not refreshed, the
changes will be ignored.

Assigning OLAP Summary Roles and Defining OLAP Structure
In addition to defining the physical properties of the OLAP Group and the summary

data store, you must also

184 Assigning OLAP Summary Roles and Defining OLAP Structure Chapter 11

� assign the OLAP summary roles, which determine how the columns are used in
the summarization process. The summary roles are class columns, statistic
columns, and ID columns.

� specify the logical structure of the data, which is how the data is to be used by an
OLAP report. The structure definitions are the OLAP Cube, dimensions, and
hierarchies.

The summary roles and structure definitions include the following:

class column is an OLAP summary role that is a numeric or character column
used to group data into subpopulations. The values for each class
column define groups for analysis. That is, the rows in the detail
data store are grouped according to the values of the column, and a
separate analysis is run for each group. Class columns typically
have a relatively small number of discrete values that define the
classification levels of the column.

For example, if columns state and county are class columns, you
can order the columns so that states come first, and
SAS/Warehouse Administrator will summarize data for each county
within each state.

Each class column has an associated sort order. The following
sort orders are supported:

ASCENDING for OLAP Tables and OLAP MDDBs, sorts in
ascending order by unformatted value. This is
the default.

ASCFORMATTED for OLAP Tables and OLAP MDDBs, sorts in
ascending order by formatted value.

DESCENDING for OLAP MDDBs, sorts in descending order by
unformatted value.

DESFORMATTED for OLAP MDDBs, sorts in descending order by
formatted value.

DSORDER for OLAP Tables and OLAP MDDBs, sorts in the
order that the values occur in the input source.

statistic column is an OLAP summary role that is a numeric column for storing
computed summary statistics, which are the results of the analysis.
Values for an input column (analysis column) are used to compute
the output summary statistic, which then become the values for the
statistic column in the summary data store.

For example, you could add a column named minsales, assign it
as a statistic column using the MIN statistic, then define a Mapping
process to compute the derived statistic from an analysis column
like sales to the statistic column minsales.

Each statistic column has a specific keyword associated with it
that specifies which statistic to compute. The following statistics are
supported:

SUM is the sum of nonmissing values for the column.
This is the default.

MIN is the smallest value for the column.

MAX is the largest value for the column.

Maintaining OLAP Groups and OLAP Summary Data Stores Assigning OLAP Summary Roles and Defining OLAP Structure 185

N is the number of rows for the column having
nonmissing values.

NMISS is the number of rows in the column having
missing values.

USS is the uncorrected sum of squares.

ID column is an OLAP summary role to include additional columns in the
summary data store. You can specify ID columns to an OLAP Table
only; it is not supported for an OLAP MDDB.

OLAP Cube represents the logical relationships (dimensions and hierarchies) of
the OLAP data so that you can run an OLAP report.

For HOLAP, the cube is associated with the OLAP Group and is
registered in SAS/EIS software as associated with the proxy MDDB.
The result is one OLAP Cube describing the relationships of all the
class columns. For MOLAP and ROLAP, there is normally one cube
associated with each OLAP MDDB and OLAP Table.

Note: You can decide not to have an OLAP Cube; however, in
your OLAP application, you will not be able to drill down without
manual intervention. If your intention is to report directly from
OLAP data using an OLAP application, then you should define an
OLAP Cube. �

dimension groups related class columns, which are organized as hierarchies.
For example, you could organize sales data into dimensions
Geography, Time, and Product. The Time dimension could include
multiple hierarchies, such as Time-by-Week and Time-by-Month,
which provide different paths in order to drill down to increasing
levels of detail.

hierarchy is a unique, ordered list of class columns that specifies related data
and is a member of a dimension. Each hierarchy provides a
navigational path in order to drill down to increasing levels of detail.
For example, for a dimension named Time, you could define a
hierarchy named Time-by-Month that consists of the class columns
year, month, and date.

Note: The term hierarchy as used here is not the same as a
stored summary level, which is a crossing. �

crossing is a unique list of one or more class columns that defines a
summarization level (subtable) to be stored in one or more OLAP
summary data stores. That is, a crossing represents a grouping on
which summary statistics are calculated. You must have at least one
crossing for an OLAP Table or an OLAP MDDB, and both summary
data stores can have multiple crossings. All class columns must be
in at least one crossing.

A crossing represents the physically stored data, which provides
the quick response when displaying a report in an OLAP
application. For each crossing, there is a single record for each
unique combination of values of all named class columns in the
original raw input data. Note that too many crossings result in lots
of initial summarization time and disk space for storage, while too

186 Example: Creating Summary Data for a HOLAP Application Chapter 11

few crossings result in slower processing and reporting time for end
users.

You can define an NWAY crossing, which is the most detailed type
of crossing. An NWAY crossing consists of all the assigned class
columns.

Note the following:

� An OLAP MDDB must have an NWAY crossing, and it must be
named NWAY if you intend on using the
SAS/Warehouse Administrator code generator.

� For an OLAP Table, you can define a crossing and not specify
any class columns in it. The result is summary statistics across
all rows in the input source.

When the Process Editor Job for an OLAP object (OLAP Group, OLAP Table, or
OLAP MDDB) is executed, SAS/Warehouse Administrator loads the summary data
store with the derived, summarized data. As each crossing is accumulated, all records
of the input data are sorted into groups by the values of the class columns specified for
the crossing. Each group represents a specific subpopulation. Within each group, the
summary statistics are derived from the analysis columns in the input data and stored
in the summary data store statistic columns. A single record is written to the crossing
for each subpopulation.

Example: Creating Summary Data for a HOLAP Application

Overview
HOLAP provides access to diverse data sources. An OLAP Group of type HOLAP

groups both OLAP Tables and OLAP MDDBs, which together represent the data for one
OLAP application.

Using the Sales Detail Grp Detail Logical Table discussed in this chapter, consider
the design of an OLAP application that calls for storage strategy of two summary data
stores:

� one summary table to store the largest crossing, which has twelve class columns

� one SAS MDDB to store the other eleven crossings.

To produce the appropriate summary data for the HOLAP application:

1 Create an OLAP Group of type HOLAP in which you import all of the columns
from the detail data source, assign the OLAP summary roles (class and statistic
columns), and define structure definitions (OLAP Cube, dimensions, and
hierarchies).

2 Create one OLAP Table in which you import a subset of columns and OLAP
summary roles from the group and define one crossing, which consists of twelve
class columns.

3 Create one OLAP MDDB in which you import a subset of columns and OLAP
summary roles from the group and define eleven crossings.

4 Define a Process Editor Job for the OLAP Group to create the OLAP Table, OLAP
MDDB, and a proxy MDDB, which will be used by the HOLAP application to
access all the summarized data.

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Group Properties 187

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, and Detail Logical Table exist. �

Define OLAP Group Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Subject

Toy Sales, click the right mouse button, select Add Item, and then OLAP Group. In
the Explorer window, a new OLAP Group is added under the Subject as follows:

To update the default metadata for the OLAP Group, position the cursor on its icon,
click the right mouse button, and select Properties. The OLAP Group Properties
window displays for you to enter the appropriate information.

General Tab specifies the group name HOLAP Group, description, group type
HOLAP, owner, and administrator.

Columns Tab specifies the columns to be included in any OLAP summary data
store for the OLAP Group, which do not exist yet. When you specify
columns at the group level, you are defining the overall OLAP
structure so that you can import the columns into specific OLAP
Tables and OLAP MDDBs. You generally specify columns at the
group level for the HOLAP group type only.

188 Define OLAP Group Properties Chapter 11

To import columns from an input source, click Import to display
a list of input sources, and then select one, for example, Detail
Logical Tables. The Import Column Metadata window displays.

From the Import Column Metadata window, which lists the
available input sources, select the Detail Logical Table Sales
Detail Grp to display its available columns.

Select the appropriate columns listed under Columns, which for
this example are all 34 columns, use the double arrows to move
them to Selected Columns, and click OK . You are returned to the
Columns tab in the OLAP Group Properties window, which lists the
imported columns.

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Group Properties 189

Physical Storage
Tab

specifies physical storage attributes. For an OLAP Group, you define
physical storage attributes for the HOLAP group type only, which
are the attributes for the OLAP Group proxy MDDB.

This example specifies the storage format MDDB and the load
technique Refresh.

Click Define to open the SAS MDDB Properties window.

Location Tab specifies where the SAS MDDB is stored.

190 Assign OLAP Summary Roles for the Group Chapter 11

Assign OLAP Summary Roles for the Group

Assign Class Columns
From the Columns tab in the OLAP Group Properties window, click OLAP to open

the OLAP Column Roles window from which you assign specific OLAP summary roles.

To assign class columns:
1 Select the columns from the Columns list.
2 Select the Class Columns summary role label in the OLAP Roles organization

chart.
3 Click the right arrow to add the columns to the summary role.

For this example, class column is assigned to all columns except for three, which will
be assigned as statistic columns. The default sort order ASCENDING is used for all
class columns.

Maintaining OLAP Groups and OLAP Summary Data Stores Assign OLAP Summary Roles for the Group 191

Assign Statistic Columns
To assign statistic columns:
1 Select the columns from the Columns list.
2 Select the Statistic Columns summary role label in the OLAP Roles

organization chart.
3 Click the right arrow to add the columns to the summary role.

For this example, statistic column is assigned to the remaining three columns, which
are the numeric columns costs, units_so, and revenue. All three are assigned the
default statistic SUM.

192 Define OLAP Structure Definitions for the Group Chapter 11

Define OLAP Structure Definitions for the Group

Add an OLAP Cube
An OLAP Cube is defined for the proxy MDDB, which results in one OLAP Cube for

the group describing the relationships of all the class columns. For HOLAP, the OLAP
Cube is associated with the OLAP Group and is registered in SAS/EIS software as
associated with the proxy MDDB.

In the OLAP Column Roles window, add an OLAP Cube by selecting the OLAP Cube
label in the organization chart. Then click the right mouse button, and select New.

Define Dimensions
Dimension objects need to be defined at the group level for each anticipated

dimension. As discussed in “Determining Dimensions in the Data” on page 180, this
example defines the following dimensions:

� Geography
� Time
� Product
� CustomerGender
� CustomerAge
� CustomerIncome
� Drop
� Promotion

To define a dimension to the OLAP Cube, select the Dimensions label in the
organization chart, click the right mouse button, then select New.

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Structure Definitions for the Group 193

To specify a name and a description for a dimension, click the right mouse button on
the Dimension object, select Properties, and then update the default metadata. The
next window displays the defined dimensions for this example:

Define Hierarchies
Hierarchies are defined for each anticipated hierarchy, which are members of a

dimension. For example, the Time dimension will include these hierarchies:
� TimeWeek
� TimeQuarter
� TimeSeason

To define a hierarchy for a dimension, select the Hierarchies label in the
organization chart associated with the appropriate dimension (for example, Time) click
the right mouse button, and then select New.

194 Define OLAP Structure Definitions for the Group Chapter 11

To specify a name (for example, TimeWeek) and a description for a hierarchy, click the
right mouse button on the Hierarchy object, select Properties, and then update the
default metadata.

Then, to specify the appropriate column(s) for the hierarchy (such as year, week and
date) select the class columns from the list under Columns, select the Columns label
associated with the hierarchy object in the organization chart, and click the right arrow
to add the columns to the object.

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Table Properties 195

The following window displays the defined hierarchies with appropriate columns for
the Time dimension:

Define OLAP Table Properties
For the HOLAP application, the OLAP Table will store the largest crossing, which

consists of twelve class columns. In the SAS/Warehouse Administrator Explorer,
position the cursor on the OLAP Group HOLAP Group, click the right mouse button,
select Add Item, then OLAP Table. In the Explorer window, a new OLAP Table is
added under the OLAP Group as follows:

196 Define OLAP Table Properties Chapter 11

To update the metadata for the OLAP Table, position the cursor on its icon, click the
right mouse button, and select Properties. The OLAP Table Properties window
displays for you to enter the appropriate information.

General Tab specifies the table name Sum 12 OLAP Table, description, owner,
and administrator.

Columns Tab specifies the columns to be included in the OLAP Table. The method
is similar to specifying the columns as explained for the OLAP
Group; however, for the OLAP Table, the columns are imported from
the group.

To import the columns from the group, click Import to display a
list of input sources, and then select OLAP Data Stores. The
Import Column Metadata window displays.

From the Import Column Metadata window, which lists the
available input sources, select OLAP Group HOLAP Group to display
its available columns.

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Table Properties 197

Select the appropriate columns listed under Columns, which for
the OLAP Table are 15 columns from the OLAP Group. Use the
double arrows to move them to Selected Columns, and then click
OK . You are returned to the Columns tab in the OLAP Table
Properties window, which lists the imported columns as follows:

Physical Storage
Tab

specifies physical storage attributes for the OLAP Table. This
example specifies the storage format SAS and the load technique
Refresh.

198 Import OLAP Summary Roles for the Table Chapter 11

Click Define to open the SAS Table Properties window.

Location Tab specifies where the SAS Table is stored.

Import OLAP Summary Roles for the Table

Import Class Columns
This example imports the summary roles already assigned for the OLAP Group.

From the Columns tab in the OLAP Table Properties window, click OLAP to open the
OLAP Column Roles window.

Maintaining OLAP Groups and OLAP Summary Data Stores Import OLAP Summary Roles for the Table 199

To import the class columns, in the organization chart, click the right mouse button
on the Class Columns label and select Import. The software opens the Selector
window.

Select OLAP Group, click Show , select HOLAP Group, and then click OK . The
software imports the class columns, and you are returned to the OLAP Column Roles
window.

Note: For each column contained in the group that is not specified for the table, a
message will display requiring you to click OK . �

200 Import OLAP Summary Roles for the Table Chapter 11

Import Statistic Columns

To import the statistic columns, follow the same steps as explained for importing
class columns. That is, in the organization chart, click the right mouse button on the
Statistic Columns label and select Import. The software opens the Selector window.

From the Selector window, select OLAP Group, click Show , select HOLAP Group, then
click OK . The software imports the statistic columns, and returns you to the OLAP
Column Roles window as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP MDDB Properties 201

Define Crossing for the Table

For the HOLAP application, the OLAP Table will store the largest crossing, which
consists of 12 class columns. (For an explanation about how these 12 class columns
were determined, see “Determining Crossing(s)” on page 181.) The crossing is defined
for the OLAP Table as an NWAY crossing, which is a crossing that consists of all the
assigned class columns.

To define the NWAY crossing from the OLAP Column Roles window, in the
organization chart on the Crossings label, click the right mouse button, and select
Create NWAY Crossing. The resulting NWAY crossing follows:

Note: For a HOLAP application, you do not need to create an NWAY crossing of all
the class columns defined for the OLAP Group, which consists of 31 columns. Because
the detail data is available from a permanent data store, the HOLAP application can
access all the detail data without it being referenced in a crossing. �

Note: If an OLAP Table has multiple crossings, the _TYPE_ column will store
numeric values that identify which class columns are included in each crossing. If you
define more than one crossing for an OLAP Table and do not define a column for this
role, SAS/Warehouse Administrator will display a dialog asking whether a column
named _TYPE_ can be added. If you say YES, the column will appear in the Columns
table and will also be assigned the summary role of _TYPE_. You can rename the
column. For an explanation of the values for _TYPE_, see the MEANS procedure in the
SAS Procedures Guide. �

Define OLAP MDDB Properties

For the HOLAP application, the OLAP MDDB will store 11 crossings. In the
SAS/Warehouse Administrator Explorer, position the cursor on the OLAP Group HOLAP
Group, click the right mouse button, select Add Item, and then OLAP MDDB. In the
Explorer window, a new OLAP MDDB is added under the OLAP Group as follows:

202 Define OLAP MDDB Properties Chapter 11

To update the metadata for the OLAP MDDB, position the cursor on its icon, click
the right mouse button, and select Properties. The OLAP MDDB Properties window
displays for you to enter the appropriate information.

General Tab specifies the MDDB name Sum 11 OLAP MDDB, description, owner,
and administrator.

Columns Tab specifies the columns to be included in the OLAP MDDB. To import
the columns from the group is identical to the method explained for
the OLAP Table. See “Define OLAP Table Properties” on page 195.

Select the appropriate column definitions, which for this example
imports 14 columns for the OLAP MDDB from the OLAP Group.
Note that pclass is the column included in the OLAP Table but not
in the OLAP MDDB.

The following window shows the imported columns for the OLAP
MDDB:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP MDDB Properties 203

Physical Storage
Tab

specifies the physical storage attributes for the OLAP MDDB. This
example specifies the storage format MDDB and the load technique
Refresh.

Click Define to open the SAS MDDB Properties window.

Location Tab specifies where the SAS MDDB is stored.

204 Import OLAP Summary Roles for the MDDB Chapter 11

Import OLAP Summary Roles for the MDDB
To import the class columns and statistic columns, use the same steps as explained

for the OLAP Table. See “Import OLAP Summary Roles for the Table” on page 198. The
following window displays the imported class columns and statistic columns for the
OLAP MDDB:

Define Crossings for the MDDB
For the HOLAP application, the OLAP MDDB will store 11 crossings. The crossings

are defined for the OLAP MDDB first as an NWAY crossing, then by creating stairstep
crossings from the NWAY crossing.

Maintaining OLAP Groups and OLAP Summary Data Stores Define Crossings for the MDDB 205

To define the NWAY crossing, in the organization chart on the Crossings label, click
the right mouse button, and select Create NWAY Crossing. The resulting NWAY
crossing follows:

To create the remaining 10 crossings, in the organization chart on the NWAY crossing,
click the right mouse button, and select Create Stairstep Crossings. Ten crossings
are added, with each one having one less column than the crossing before it as follows:

206 Define Process Editor Job Chapter 11

Define Process Editor Job
For the Process Editor Job, the OLAP Group and all its child summary data stores

are specified as output targets in a single Job. The Detail Logical Table Sales Detail
Grp is specified as the input source for the two summary data stores as well as the
OLAP Group.

When an OLAP Group of type HOLAP is specified as an output target,
SAS/Warehouse Administrator generates a proxy MDDB. The proxy MDDB is an empty
physical file that represents the structure of the data in an OLAP Group and can be
used by SAS/EIS software to provide more efficient access to multiple OLAP Tables and
OLAP MDDBs. Note that the proxy MDDB automatically creates an NWAY crossing to
be used by the HOLAP application.

The following Process Editor window displays the Process Flow for the Job:

The processes defined in the Job are summarized as follows:

Mapping
Process

� The source code to map columns is generated by
SAS/Warehouse Administrator, rather than user-written, as
shown in the Source Code tab for the Mapping Process
Properties window:

Maintaining OLAP Groups and OLAP Summary Data Stores Define Process Editor Job 207

� Column mapping is defined as one-to-one mapping. To produce
one-to-one mapping, first click 1 to 1 Mappings on the Column
Mapping tab in the Mapping Process Properties window, which
opens the One-to-One Column Mapping window. Then, click
Quick Map to create the one-to-one mapping as follows:

Load Step
Processes

� The source code is generated by SAS/Warehouse Administrator,
rather than user-written, as shown in the MDDB Load Process
Attributes window:

208 Example: Creating Summary Data for a MOLAP Application Chapter 11

For more information about Process Editor Jobs, see Chapter 13, “Maintaining Jobs,”
on page 251. For more information about processes, see Chapter 14, “Maintaining
Processes,” on page 281.

Example: Creating Summary Data for a MOLAP Application

Overview
MOLAP supports OLAP performed on a multidimensional database, such as a SAS

MDDB. Using the Sales Detail Grp Detail Logical Table discussed in this chapter,
consider the design of an OLAP application that calls for storage strategy of one SAS
MDDB; the MOLAP application will store all the necessary crossings.

To produce the appropriate summary data for the MOLAP application:

1 Create an OLAP Group of type MOLAP in which you assign the group name and
the group type of MOLAP.

2 Create one OLAP MDDB in which you import all of the columns from the detail
data source, assign the OLAP summary roles (class and statistic columns), define
structure definitions (OLAP Cube, dimensions, and hierarchies), and define
multiple crossings.

3 Define a Process Editor Job for the OLAP MDDB.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, and Detail Logical Table exist. �

Define OLAP Group Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Subject

Toy Sales, click the right mouse button, select Add Item, and then OLAP Group. In
the Explorer window, a new OLAP Group is added under the Subject as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP MDDB Properties 209

To update the default metadata for the OLAP Group, position the cursor on its icon,
click the right mouse button, and select Properties. The OLAP Group Properties
window displays for you to enter the appropriate information.

General Tab specifies the group name MOLAP Group, description, group type
MOLAP, owner, and administrator.

Define OLAP MDDB Properties
For the MOLAP application, the OLAP MDDB will store 12 crossings. In the

SAS/Warehouse Administrator Explorer, position the cursor on the OLAP Group MOLAP
Group, click the right mouse button, select Add Item, and then OLAP MDDB. In the
Explorer window, a new OLAP MDDB is added under the OLAP Group as follows:

210 Define OLAP MDDB Properties Chapter 11

To update the default metadata for the OLAP MDDB Properties window, position the
cursor on its icon, click the right mouse button, and select Properties. The OLAP
MDDB Properties window displays for you to enter the appropriate information.

General Tab specifies the MDDB name Sum 12 OLAP MDDB, description, owner,
and administrator.

Columns Tab specifies the columns to be included in the OLAP MDDB.

To import columns from an input source, click Import to display
a list of input sources, and then select one (for example Detail
Logical Tables). The Import Column Metadata window displays.

From the Import Column Metadata window, which lists the
available input sources, select the Detail Logical Table Sales
Detail Grp to display its available columns.

Select the appropriate columns listed under Columns, which for
the OLAP MDDB are all 34 columns in the Detail Logical View. Use
the double arrows to move them to Selected Columns, and then
click OK . You are returned to the Columns tab in the OLAP MDDB
Properties window, which lists the imported columns as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP MDDB Properties 211

Physical Storage
Tab

specifies physical storage attributes. This example specifies the
storage format MDDB and the load technique Refresh.

Click Define to open the SAS MDDB Properties window.

Location Tab specifies where the SAS MDDB is stored.

212 Assign OLAP Summary Roles for the MDDB Chapter 11

Assign OLAP Summary Roles for the MDDB

Assign Class Columns
From the Columns tab in the OLAP MDDB Properties window, click OLAP to open

the OLAP Column Roles window from which you assign specific OLAP summary roles.

To assign class columns:
1 Select the columns from the list under Columns.
2 Select the Class Columns summary role label in the organization chart under

OLAP Roles.
3 Click the right arrow to add the columns to the summary role.

For this example, class columns are assigned to all columns except three, which will
be assigned as statistic columns. The default sort order ASCENDING is used for all
class columns.

Assign Statistic Columns
To assign statistic columns:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Structure Definitions for the MDDB 213

1 Select the columns from the list under Columns.
2 Select the Statistic Columns summary role label in the organization chart

under OLAP Roles.
3 Click the right arrow to add the columns to the summary role.

For this example, statistic column is assigned to the remaining three columns, which
are the numeric columns costs, units_so, and revenue. All three are assigned the
default statistic SUM.

Define OLAP Structure Definitions for the MDDB

Add an OLAP Cube
From the OLAP Column Roles window, add an OLAP Cube by selecting the OLAP

Cube label in the organization chart. Then click the right mouse button, and select New.

Define Dimensions
Dimension objects need to be defined for each anticipated dimension. As discussed in

“Determining Dimensions in the Data” on page 180, this example defines the following
dimensions:

214 Define OLAP Structure Definitions for the MDDB Chapter 11

� Geography
� Time
� Product
� CustomerGender
� CustomerAge
� CustomerIncome
� Drop
� Promotion

To define a dimension for the OLAP Cube, select the Dimensions label in the
organization chart, click the right mouse button, and then select New.

To specify a name and a description for a dimension, click the right mouse button on
the Dimension object, select Properties, and then update the default metadata. The
next window displays the defined dimensions:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Structure Definitions for the MDDB 215

Define Hierarchies

Hierarchies are defined for each anticipated hierarchy, which is a member of a
dimension. For example, the Time dimension will include these hierarchies:

� TimeWeek

� TimeQuarter

� TimeSeason

To define a hierarchy for a dimension, select the Hierarchies label in the organization
chart associated with the appropriate dimension (for example, Time) click the right
mouse button, and then select New.

216 Define OLAP Structure Definitions for the MDDB Chapter 11

To specify a name (for example, TimeWeek) and a description, click the right mouse
button on the Hierarchy object, select Properties, and then update the default
metadata.

Then, to specify the appropriate column(s) for the hierarchy (such as year, week, and
date) select the class columns from the list under Columns, select the Columns label
associated with the hierarchy object in the organization chart, and click the right arrow
to add the columns to the object.

The following window displays the defined hierarchies with appropriate columns for
the Time dimension:

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Structure Definitions for the MDDB 217

Define Crossings for the MDDB
For the MOLAP application, the OLAP MDDB will store the following crossings:
� an NWAY crossing, which consists of all the assigned class columns
� one crossing for the 12 most likely accessed class columns
� 11 crossings, with each one having one less column than the crossing with the 12

class columns.

Note: For a MOLAP application, you must create an NWAY crossing for all the class
columns defined for the MDDB, which consists of 31 columns. Even though the detail
data is available from a permanent data store, a MOLAP application (unlike a HOLAP
application) cannot access all the detail data without it being referenced in a crossing. �

To define the NWAY crossing, in the organization chart on the Crossings label, click
the right mouse button, and select Create NWAY Crossing. The resulting NWAY
crossing follows:

218 Define OLAP Structure Definitions for the MDDB Chapter 11

To create the crossing to represent the 12 most likely accessed class columns, in the
organization chart on the Crossings label, click the right mouse button and select New.
For an explanation about how these 12 class columns were determined, see
“Determining Crossing(s)” on page 181. The new crossing is added under the
Crossings label as follows:

To assign a name to the crossing, click the right mouse button on the crossing and
select Properties.

To specify the class columns for the crossing:
1 Select the columns from the Columns list.
2 Select the Columns label in the organization chart under the added crossing.

Maintaining OLAP Groups and OLAP Summary Data Stores Define OLAP Structure Definitions for the MDDB 219

3 Click the right arrow to add the columns to the crossing.

The following window displays the added crossing with the name 12 Columns
Crossing and the added columns:

To create the remaining 11 crossings, in the organization chart on the crossing 12
Columns Crossing, click the right mouse button, and select Create Stairstep
Crossings. Eleven crossings are added, with each one having one less column than the
crossing before it.

220 Define Process Editor Job Chapter 11

Define Process Editor Job

In the Process Editor Job, the OLAP MDDB SUM 12 OLAP MDDB is specified as the
output target. The Detail Logical Table Sales Detail Grp is specified as the input
source. The following Process Editor window displays the Process Flow for the Job:

The processes defined in the Job are summarized as follows:

Mapping
Process

� The source code to map columns is generated by
SAS/Warehouse Administrator, rather than user-written, as
shown in the Source Code tab:

� Column mapping is defined as one-to-one mapping. To produce
one-to-one mapping, first click 1 to 1 Mappings on the Column
Mapping tab in the Mapping Process Properties window, which
opens the One-to-One Column Mapping window. Then, click
Quick Map , which produces the following results:

Maintaining OLAP Groups and OLAP Summary Data Stores Overview 221

Load Step
Process

� The source code is generated by SAS/Warehouse Administrator,
rather than user-written, as shown in the MDDB Load Process
Attributes window:

For more information about Process Editor Jobs, see Chapter 13, “Maintaining Jobs,”
on page 251. For more information about processes, see Chapter 14, “Maintaining
Processes,” on page 281.

Example: Adding a Frequency Count to an OLAP Summary Data Store

Overview
For an OLAP summary data store, you might need the summary data to contain the

frequency of each record. That is, you want a numeric column whose value represents
the frequency of the rows for each combination of class column values. To produce the
appropriate summary data:

1 Add a column to the summary data store.

2 Assign the added column as a statistic column, using the SUM statistic.

222 Add a Column to OLAP Summary Data Store Chapter 11

3 In the Mapping process for the summary data store, map the column to a value of
1.

Note: The following explanations describe only the metadata and methods that
specifically apply to this example. �

Add a Column to OLAP Summary Data Store
This explanation adds a column to an OLAP Table. You add a column from the

Columns tab in the object’s properties window, which for this example is the OLAP
Table Properties window.

Columns Tab specifies the columns to be included in the summary data store. To
add a column that does not exist in the input data, define the
column’s attributes (name, type, length, description, format, and
informat), then click Add . The result of adding a column to store
frequency count follows:

Assign OLAP Summary Roles to the Column
On the Columns tab, click OLAP to open the OLAP Column Roles window from

which you assign specific OLAP summary roles.
Assign the freq column as a statistic column, using the SUM statistic, as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Overview 223

Define Mapping Process in Process Editor Job
The freq column must be mapped to a value of 1 as shown in the following Mapping

Process Properties window:

You can do this easily by using the stored expression Frequency Count, which is
available in the Expression Builder window. That is, from the Column Mapping tab on
the Mapping Process Properties window, select the column, then click Derived Mapping ,
which opens the Expression Builder window. From the Expression Builder window,
select the Expressions component OLAP, and then Frequency Count.

When you click OK on the Expression Builder window, the value of 1 is assigned to
the freq column, and you are returned to the Column Mapping tab in the Mapping
Process Properties window.

Example: Using One Analysis Column for Multiple Statistic Columns

Overview
Suppose you want to use a specific column from input data to generate multiple

statistics for your summary data. That is, you want to use one input analysis column
for multiple output statistic columns. To produce the appropriate statistics:

224 Add Columns to OLAP Summary Data Store Chapter 11

1 Add the additional column(s) to the summary data store.
2 Assign each added column as a statistic column, using the appropriate statistic.
3 In the Mapping process for the summary data store, map the added column(s) to

the analysis column.

Note: The following explanations describe only the metadata and methods that
specifically apply to this example. �

Add Columns to OLAP Summary Data Store
This explanation adds two numeric columns named minrevenue and maxrevenue to

an OLAP Table. You add columns from the Columns tab in the object’s properties
window, which for this example is the OLAP Table Properties window.

Columns Tab specifies the columns to be included in the summary data store. To
add a column that does not exist in the input data, define the
column’s attributes (name, type, length, description, format, and
informat), and then click Add . The result of adding two columns to
store generated statistics is as follows:

Assign OLAP Summary Roles to the Columns
On the Columns tab, click OLAP to open the OLAP Column Roles window from

which you assign specific OLAP summary roles.
Assign the minrevenue and maxrevenue columns as statistic columns, using the

statistics MIN and MAX, as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Define Mapping Process in Process Editor Job 225

Define Mapping Process in Process Editor Job
The added statistic columns, shown in the following Mapping Process Properties

window, must be mapped to the analysis column.

To map the added statistic columns to the analysis column:
1 From the Column Mapping tab in the Mapping Process Properties window, select

the column, such as minrevenue.
2 Click 1-to-1 Mappings to open the One-to-One Column Mapping window as follows:

226 Define Mapping Process in Process Editor Job Chapter 11

3 Select the analysis column from under the label Source Column.
4 Select the statistic column from under the label Target Column.
5 Click the right arrow to map the two columns.

When you click OK , you are returned to the Column Mapping tab in the Mapping
Process Properties window as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Add Columns to OLAP Summary Data Store 227

Example: Using DATE/TIME Stored Expression to Split Date Values

Overview
For an OLAP summary data store, you might need to store parts of date values from

an input column. For example, suppose an input column named drop_dat contains
SAS date values that correspond to a value 05/05/95. For the data store, you could add
columns to represent different parts of that value (for example, yearonly and
monthonly) and split the value among the two output columns. To produce the
appropriate data:

1 Add the columns yearonly and monthonly to the OLAP data store.
2 Assign the added columns as class columns.
3 For each added column, in the Mapping process, define a derived mapping to

return a value using a specified format. The SAS/Warehouse Administrator
Expression Builder window provides stored expressions from the DATE/TIME
standard component so that you can easily define the derived mappings.

Add Columns to OLAP Summary Data Store
You add columns from the Columns tab in the object’s properties window, which for

this example is the OLAP Table Properties window. This example assumes that other
columns have been imported from the input source and only illustrates adding columns
to the data store.

Columns Tab specifies the columns to be included in the OLAP data store. To add
a column that does not exist in the input data, define the column’s
attributes (name, type, length, description, format, and informat),
and then click Add . The result of adding columns to store the date
values is as follows:

228 Assign OLAP Summary Roles to the Columns Chapter 11

Assign OLAP Summary Roles to the Columns
On the Columns tab, click OLAP to open the OLAP Column Roles window from

which you assign OLAP summary roles. This example assumes that the summary roles
for the imported columns have been assigned.

For the added columns, assign yearonly and monthonly as class columns.

Define Mapping Process in Process Editor Job
Mappings for the imported columns can be defined simply as one-to-one mappings.

However, derived mappings must be defined for the columns yearonly and monthonly.
You can easily do this by using stored expressions available in the Expression Builder
window from the DATE/TIME standard component.

Navigate to the Column Mapping tab on the Mapping Process Properties window as
follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Define Mapping Process in Process Editor Job 229

To define derived mappings:
1 Select yearonly, and then click Derive Mapping , which opens the Expression

Builder window.

2 In the Expression Builder window, select the Standard Expressions component,
and then DATE/TIME to display a list of available stored expressions.

230 Define Mapping Process in Process Editor Job Chapter 11

3 Select the stored expression Date to 4 digit year. The resulting expression
uses the PUT and YEAR functions.

4 You must replace the argument %date% with the input column name, which is
drop_dat.

Maintaining OLAP Groups and OLAP Summary Data Stores Define Mapping Process in Process Editor Job 231

5 Click OK on the Expression Builder window. The expression is assigned to the
column, and you are returned to the Column Mapping tab in the Mapping Process
Properties window. Note that SAS/Warehouse Administrator interprets the
expression as:

yearonly=put(year(drop_dat),4.)

6 Repeat the steps for the monthonly column and select the stored expression Date
to Month name, which results in the following expression:

The following Column Mapping tab in the Mapping Process Properties window
displays the two columns with derived mapping defined:

232 Example: Using an Input Column for Multiple Summary Roles Chapter 11

Once the Job is executed and the table loaded, here is the result:

Example: Using an Input Column for Multiple Summary Roles

Overview
Suppose you want to use a specific column from an input source as both a class

column and an analysis column for OLAP summarization. For example, consider an
input table that contains the following columns:

Maintaining OLAP Groups and OLAP Summary Data Stores Import and Add Columns to OLAP Summary Data Store 233

You determine that the OLAP data store needs to store two crossings:
� The most detailed level of summarization (an NWAY crossing) uses the class

columns: style, bedrooms, and baths. The analysis columns would be price and
sqfeet.

� At a higher level of summarization, you need a crossing based only on the class
column style. The analysis columns would be price, sqfeet, bedrooms, and
baths.

Therefore, the input columns bedrooms and baths are used as both class columns
and analysis columns. To produce the appropriate results:

1 Import the columns from the input table to the OLAP data store and add two
columns: bedsmin and bathsmin.

2 Assign OLAP summary roles to the imported columns and to the added columns.
That is, the imported columns baths and bedrooms are class columns and the
added columns bedsmin and bathsmin are statistic columns.

3 Assign the desired statistics to the statistic columns. For example, assign the MIN
statistic to the bedsmin and bathsmin columns.

4 Map the input columns to the appropriate output columns. For example, the input
column baths is mapped to the output columns baths, which is a class column,
and bathsmin, which is a statistic column.

Import and Add Columns to OLAP Summary Data Store
The Columns tab in the object’s properties window specifies the columns to be

included in an OLAP summary data store, which for this example is the OLAP Table
Properties window. This example assumes that the appropriate columns from the input
source have been imported as follows:

234 Assign OLAP Summary Roles to the Columns Chapter 11

To add a column that does not exist in the input data, define the column’s attributes,
and then click Add . (Note that you can also select an existing column, change its
name, and then click Add to easily copy a column.) The result of adding columns
bathsmin and bedsmin is as follows:

Assign OLAP Summary Roles to the Columns
On the Columns tab, click OLAP to open the OLAP Column Roles window from

which you assign OLAP summary roles. The assigned summary roles are as follows:

Maintaining OLAP Groups and OLAP Summary Data Stores Define Mapping Process in Process Editor Job 235

The following screen displays the defined crossings for the data store:

Define Mapping Process in Process Editor Job

Column mapping is defined as one-to-one mapping. To map the columns:

236 Define Mapping Process in Process Editor Job Chapter 11

1 From the Column Mapping tab in the Mapping Process Properties window, click
1 to 1 Mappings , which opens the One-to-One Column Mapping window, and then
click Quick Map , which produces the following results. Note that the two added
columns bathsmin and bedsmin are not mapped.

2 Select the input column baths from Source Column, select the output column
bathsmin from Target Column, and then click the right arrow to map the two
columns.

3 Select the input column bedrooms from Source Column, select the output column
bedsmin from Target Column, and then click the right arrow to map the two
columns.

Maintaining OLAP Groups and OLAP Summary Data Stores Define Mapping Process in Process Editor Job 237

When you click OK , you are returned to the Column Mapping tab in the Mapping
Process Properties window as follows:

After the Job is executed and the table is loaded, the results are displayed as follows:

238 What’s Next Chapter 11

What’s Next

After you create summary data stores, you can exploit them with tools designed to
work with summary data, such as SAS/EIS software. See “Example: Exporting
Metadata to SAS/EIS Software” on page 316.

For OLAP Tables only, you can use them as inputs to other SAS/Warehouse
Administrator objects such as Data Tables and other summary data stores.

239

C H A P T E R

12
Maintaining Information Marts

Overview 239

Preparing to Create Information Marts 240
Example: Creating an Information Mart 241

Overview 241

Define Information Mart Properties 241
Example: Creating an Information Mart Item 242

Overview 242

Define Information Mart Item Properties 242
Define Process Editor Job 243

Display Output 245
Example: Creating an Information Mart File 245

Overview 245

Define Information Mart File Properties 245
Display Output 247

Overview

SAS/Warehouse Administrator provides the ability to create an information mart,
which is an application (or the output from an application) that runs against warehouse
data. An information mart can provide answers to business questions and can also be
used to document any portion of the warehouse or its implementation.

In SAS/Warehouse Administrator, the following objects are provided to create an
information mart:

Information
Mart (or
InfoMart)

is a simple grouping element that allows you to organize
Information Mart Items and Information Mart Files. Unlike most
objects in SAS/Warehouse Administrator, Information Marts are
used to display information rather than store it. You can add an
Information Mart to a Subject, a Data Group, or an ODD Group.

Information
Mart Item (or
InfoMart Item)

is a metadata record that specifies a routine, which generates output
from data stores in a Data Warehouse. The output is usually a SAS
chart, report, graph, or query result. For example, an Information
Mart Item could display a chart that summarizes sales information
from a detail data store. An Information Mart Item can be added
only to an Information Mart.

Information
Mart File (or
InfoMart File)

is a metadata record that specifies a file type other than SAS that is
registered in a Warehouse Environment. The file can be a
spreadsheet, an HTML report, or any file that can be opened by an
external application. Information Mart File metadata describes the

240 Preparing to Create Information Marts Chapter 12

location of an external file and the technique for opening that file.
For example, an Information Mart File could open a spreadsheet
that contains information useful to the person managing a
Warehouse Environment. An Information Mart File can be added
only to an Information Mart.

In general, to maintain Information Marts:
1 Define the properties of the Information Mart.
2 Define the properties of Information Mart Item(s) and Information Mart File(s).
3 For an Information Mart Item, define a Process Editor Job that includes the data

preparation processes, which prepare the data to be loaded into the data store(s),
and the Load Step, which defines the steps to load the data store(s).

4 For an Information Mart Item, execute the Job.
5 Verify that the data store is loaded; that is, check logs, use the data utilities, and

so on.

Note: The basic steps for creating an Information Mart and related objects are
described in the online Help. To display the relevant online Help, in the SAS System
Help contents, select Help on SAS Software Products, then select Using SAS/
Warehouse Administrator Software. Finally, select Defining Information Marts.
In addition, you can display Help for most SAS/Warehouse Administrator windows by
clicking Help on the window. �

Preparing to Create Information Marts
Before you create an Information Mart and its associated Information Mart Items and

Information Mart Files, you must do some preparation, which is summarized as follows:

Hierarchy of
objects

In SAS/Warehouse Administrator, make sure that you have created
the appropriate Data Warehouse Environment, Data Warehouse,
and Subject, Data Group, or ODD Group.

Input source(s) Determine which input source(s) to use for each Information Mart
Item and Information Mart File. For example, if the input source for
an Information Mart File is an ODD, the ODD must be fully
operational.

Processes For an Information Mart Item, determine the user-written source
code, which produces the output, and determine the SAS catalog
entry in which to store it.

Determine whether you need to define processes such as a User
Exit process, Data Transfer process, or Record selector process.
Information Marts do not have Mapping processes.

Output target Determine the appropriate location for each Information Mart Item
and Information Mart File.

Determine on what platform you want to store the Information
Mart File and Information Mart Item. That is, you could store the
data store locally or on a remote host.

Maintaining Information Marts Define Information Mart Properties 241

Example: Creating an Information Mart

Overview
This example creates an Information Mart to group related Information Mart Items

and Information Mart Files.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, and Subject already exist. �

Define Information Mart Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the Subject (for

example, Toy Sales), click the right mouse button, select Add Item, and then
Information Mart. In the Explorer window, a new Information Mart is added under
the Subject as follows:

To update the default metadata for the Information Mart, position the cursor on its
icon, click the right mouse button, and select Properties. The Info Mart Properties
window displays for you to enter the appropriate information.

General Tab specifies the object name InfoMart for Toy Sales, a description,
an owner, and an administrator.

The next sections describe how to create an Information Mart Item and an
Information Mart File.

242 Example: Creating an Information Mart Item Chapter 12

Example: Creating an Information Mart Item

Overview
This example creates an Information Mart Item that displays a percentage chart of

sale promotion types generated from the ODD Promotions.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, Information Mart, and ODD already exist. �

Define Information Mart Item Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the

Information Mart (for example, InfoMart for Toy Sales), click the right mouse
button, select Add Item, and then Information Mart Item. In the Explorer window, a
new Information Mart Item is added under the Information Mart as follows:

To update the default metadata for the item, position the cursor on its icon, click the
right mouse button, and select Properties. The Info Mart Item Properties window
displays for you to enter the appropriate information.

General Tab specifies the item name Percent of Promotion Types, a
description, an owner, and an administrator.

Data Location
Tab

specifies where the output is stored. An Information Mart Item is
stored as a SAS catalog entry. The following types are supported:

Maintaining Information Marts Define Process Editor Job 243

SOURCE, FRAME, PROGRAM, GRSEG, LOG, OUTPUT, QUERY,
and REPORT.

Open Code Tab specifies the source code used to view the item stored in the SAS
catalog entry listed in the Data Location tab.

Note: To use the default code shown in this screen, you must
have SAS/AF software licensed. Other examples of code that you
could specify include the WBROWSE command or, for SOURCE
catalog entries, you could specify

dm ‘‘notepad &loc’’;

�

Define Process Editor Job
In the Process Editor Job, the Information Mart Item Percent of Promotion Types

is specified as the output target and the ODD Promotions is specified as the input
source. The following Process Editor window displays the Process Flow for the Job:

244 Define Process Editor Job Chapter 12

The Load process defined in the Job is summarized next. Note that there is not a
Mapping process. The Information Mart Item is generated by running source code
against the specified data.

Load Step
Process

The source code is user written and stored as a SAS catalog entry.

To enter the source code or to display it, click Edit . The user-written source code is
as follows:

Maintaining Information Marts Define Information Mart File Properties 245

For more information about Process Editor Jobs, see Chapter 13, “Maintaining Jobs,”
on page 251. For more information about processes, see Chapter 14, “Maintaining
Processes,” on page 281.

Display Output
First, you must execute the Job, which executes the user-written code specified in the

Load process, generates the output, and stores it in the specified catalog entry. Then, to
display the output, open the Info Mart Item Properties window and click Open .

Example: Creating an Information Mart File

Overview
This example creates an Information Mart File that accesses a document.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, Information Mart, and document already
exist. �

Define Information Mart File Properties
In the SAS/Warehouse Administrator Explorer, position the cursor on the

Information Mart (for example, InfoMart for Toy Sales), click the right mouse
button, select Add Item, and then Information Mart File. In the Explorer window, a
new Information Mart File is added under the Information Mart as follows:

246 Define Information Mart File Properties Chapter 12

To update the default metadata for the file, position the cursor on its icon, click the
right mouse button, and select Properties. The Info Mart File Properties window
displays for you to enter the appropriate information.

General Tab specifies the file name Toy Sales Doc, a description, an owner, and
an administrator.

File Information
Tab

specifies where the file is stored and what type of file it is.

Open Code Tab specifies the source code used to view the file.

Maintaining Information Marts Display Output 247

Note: Another example of code that you could use to specify
Microsoft Word documents is:

dm ‘‘x winword.exe &loc’’;

�

Display Output
To display the contents of an Information Mart File, open the Info Mart File

Properties window and click Open .

248

249

P A R T4

General Tasks

Chapter 13.Maintaining Jobs 251

Chapter 14.Maintaining Processes 281

Chapter 15.Scheduling Jobs 305

Chapter 16.Exploiting Warehouse Metadata 313

250

251

C H A P T E R

13
Maintaining Jobs

Overview 252

Using the Process Editor Window 253
Example: Defining a Job for which SAS/Warehouse Administrator Generates Code 256

Overview 256

Adding a Job from the Data Store 256
Defining Job Properties 257

Adding an Input Source 258

Defining Mapping Process Properties 259
Editing the Load Process 260

Example: Defining a Job for Which User-Written Code is Supplied 261
Overview 261

Adding a Job 261

Defining Job Properties 262
Example: Executing a Job 264

Overview 264

Executing a Job Interactively 264
Example: Defining a Job with Multiple Output Tables and Input Sources in a Process Flow 265

Overview 265
Adding a Job From the Data Store 266

Adding an Input Source 266

Adding a Second Output Table and Input Source 268
Adding a Third Output Table and Input Source 269

Example: Adding a User Exit Process to a Process Flow 270

Overview 270
Adding a User Exit Process 270

Example: Adding a Data Transfer Process to a Process Flow 272
Overview 272

Adding a Data Transfer Process 272

Example: Adding a Record Selector Process to a Process Flow 274
Overview 274

Adding a Record Selector Process 274

Example: Adding a Job Group 276
Overview 276

Adding a Job Group 276
Example: Moving Jobs 278

Overview 278

Moving a Job 278

252 Overview Chapter 13

Overview

This chapter assumes that you are familiar with the basic information about Jobs as
described in “Jobs” on page 50 and are ready to define the Jobs to create your data
stores. A Job enables you to connect a series of process steps into a single unit. You can
specify the processes for a Job in two ways:

� Define a Process Flow in the Process Editor. If a Process Flow exists,
SAS/Warehouse Administrator will generate code for the Job.

A Process Flow is a diagram composed of symbols with connecting arrows and
descriptive text that illustrate how data moves from input source(s) to output
table(s) and what extractions and transformations occur in between. The icons
represent the data stores, and the text boxes represent data preparation processes.
The top icon is the output table that is created by the Job. In the Process Flow,
data moves from the bottom to the top as shown in the following Process Flow:

� Supply user-written code that contains the processes to create the data store(s).
When you supply the code, a Process Flow is not required. However, you might
want to define one for documentation purposes and to take advantage of the
ability of SAS/Warehouse Administrator in that it can generate LIBNAME
statements for the input sources specified in a Process Flow. For an example, see
“Define Process Editor Job” on page 124, which illustrates defining a Process Flow
for creating an ODD in which user-written code is supplied.

In addition to specifying processes, a Job may also include the following:

� scheduling metadata, which enables the Job to be executed in batch mode at a
specified date and time. See the “Scheduling Jobs” chapter in this document.

� a Job Flow, which is a user-defined diagram in the Job View of the Process Editor
that defines metadata for Job dependencies. It is composed of symbols, with
connecting arrows and descriptive text, that illustrate the sequence in which Jobs
and Events are executed. Job Flows are not required.

Note: The current release of SAS/Warehouse Administrator does not generate
code for Job Flows. To use them, you must write a Metadata API program that
reads Job Flows and generates code for them. For details, see
SAS/Warehouse Administrator Metadata API Reference, Release 2.3. �

Maintaining Jobs Using the Process Editor Window 253

In general, to maintain Jobs, do the following:
1 Add a Job for the data store.
2 Define the Job properties, such as whether the Job code will be generated

by SAS/Warehouse Administrator or supplied by user-written code.
3 For SAS/Warehouse Administrator to generate code, define the Job Process Flow,

which initially requires the output table and an input source. Typically, a Mapping
process is added automatically to the Process Flow when you specify an input
source. You must then define the Mapping properties.

4 For a Process Flow, you might need to add additional output tables and input
sources, which also require you to update the Mapping properties.

5 For a Process Flow, after you have output table(s) and input source(s) specified,
you might need to specify additional processes to further prepare data for loading
into the output table(s). These include User Exit, Data Transfer, and Record
Selector processes, which require you to define their properties.

6 For a Process Flow, if necessary, you might need to edit the Load process
properties. Note that the code to perform the Load process can be generated by
SAS/Warehouse Administrator or supplied by user-written code, except for an
ODD or a Detail Logical Table, which must be user-written.

7 Execute the Job interactively, or schedule the Job to run in batch mode at a future
date and time.

This chapter focuses on the general procedures for maintaining Jobs. For unique
information about Jobs for a specific data store, see the examples in the chapter
associated with the data store.

Note: The basic steps for defining a Job are described in the online Help for each
type of data store. To display the relevant online Help, in the SAS System Help
contents, select

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Finally, select defining a specific type of data store, and then select the topic for adding
and updating the data store Job. In addition, you can display help for most SAS/
Warehouse Administrator windows by clicking Help on the window. �

Using the Process Editor Window
Use the Process Editor window to manage Jobs. The Process Editor window contains

a left panel and a right panel, and each panel contains two views as follows:

Left Panel: Job
Hierarchy

displays all of the Jobs that are defined in the current Warehouse
Environment. To display this view, from the
SAS/Warehouse Administrator menu bar, select

Tools Process Editor

254 Using the Process Editor Window Chapter 13

To change from Job Hierarchy to Job List, first close the Process
Editor. Then, in the Explorer, click the desired data store with the
right mouse button and select Process. The Job List for that data
store will display.

Left Panel: Job
List

displays the Job that creates a specific data store. To display this
view, in the Explorer, click the desired data store with the right
mouse button and select Process.

To change from Job List to Job Hierarchy, right-click in the
background, select View, and then Job Hierarchy.

Right Panel:
Process View

displays the Process Flow for the Job selected in the Job List or Job
Hierarchy. If no Process Flow exists, the Process View is blank. If
an icon in a Process Flow has no inputs, it might represent a data
store that is created by another Job.

Maintaining Jobs Using the Process Editor Window 255

To change from Process View to Job View, click the right mouse
button in background and select Job View.

Right panel: Job
View

displays the Job Flow for the Job selected in the Job List or Job
Hierarchy. If no Job Flow has been defined for the Job, the Job View
displays the active Job.

To change from Job View to Process View, click the right mouse
button in background and select Process View.

256 Example: Defining a Job for which SAS/Warehouse Administrator Generates Code Chapter 13

Example: Defining a Job for which SAS/Warehouse Administrator
Generates Code

Overview
This example defines a Job for which SAS/Warehouse Administrator generates the

code, which means that a Process Flow is required. The Job creates one output table (a
Detail Table), with one input source (an ODD).

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, Detail Table physical properties, and ODD
exist. �

Adding a Job from the Data Store
In the SAS/Warehouse Administrator Explorer, position the cursor on the data store

for which you want to add a Job, for example the Detail Table Customer.

Right-click and select Process. SAS/Warehouse Administrator asks you if you want
to create a Job.

Select Yes. The software adds a Job (named by default for the data store), opens the
Process Editor window, and displays a Job icon for the output table in the Process View.

Maintaining Jobs Defining Job Properties 257

Note: By adding the Job using this method, the associated output table is specified
automatically for the Job Process Flow, which is displayed in the Process View. �

Defining Job Properties
To update the default metadata for the Job, you can start from the Process Editor

Job Hierarchy or Job List.

Position the cursor on the Job icon, click the right mouse button, and select
Properties. The Job Properties window displays.

General Tab specifies the Job name, a description, an owner, and an
administrator.

Source Tab specifies who supplies the code for the Job, which for this example is
SAS/Warehouse Administrator and is the default setting.

258 Adding an Input Source Chapter 13

The remaining tabs in the Job Properties window, which are for Job scheduling, are
explained in the “Scheduling Jobs” chapter.

Adding an Input Source
After you have an output table specified for a Process Flow, which for this example

was specified automatically, you must add its input.

Note: SAS/Warehouse Administrator will not allow you to add an input that is
invalid for a particular output table. However, some inputs might be allowed to provide
for the possibility of user-written code. �

You add an input source to the Job Process Flow in the Process View:

Click the output table with the right mouse button and select

Add Inputs

The Selector window displays.

Maintaining Jobs Defining Mapping Process Properties 259

In the Selector window, select the type of table you want to add as an input source,
for example ODD, and then click Show to display the available ODDs.

From the displayed list, select the table that you want to specify as an input source,
for example Customer, and then click OK . The input source is added to the Process
Flow.

Defining Mapping Process Properties
For most output tables, a default Mapping process will appear between the output

table and the input source that was added, which is illustrated in the previous display.
The Mapping process maps columns from one or more input sources into one or more
output tables.

You must update the default metadata in order for the Mapping process to function
properly. To update the default metadata for the Mapping process, position the cursor
on the Mapping icon, click the right mouse button, and select Properties. The
Mapping Process Properties window displays.

260 Editing the Load Process Chapter 13

For an explanation about defining the Mapping process properties, see “Example:
Defining Mapping Process Properties for One-to-One Mapping” on page 283 and
“Example: Defining Mapping Process Properties to Transform Data” on page 288.

Editing the Load Process
A Load process (also called a Load Step) generates or retrieves code that puts data

into a specified output table. The Load process is automatically included in the Process
Flow that is associated with the output table. For this example, the Load process
default properties do not need to be changed.

However, to update the default metadata for the Load process, position the cursor on
the output table in the Process Flow.

Then, click the right mouse button, and select Edit Load Step. For this example,
the Detail Table Load Process Attributes window displays.

Maintaining Jobs Adding a Job 261

For an explanation about editing the Load process properties, see “Example: Editing
Load Process Properties to Supply User-Written Code” on page 301.

Example: Defining a Job for Which User-Written Code is Supplied

Overview
This example defines a Job for which user-written code is supplied, which means that

a Process Flow is not required. The Job creates one output table (a Detail Table), with
one input source (an ODD).

Note that when you supply the Job code, you are responsible for allocating any SAS
libraries that are referenced in the code. For example, you can include the appropriate
LIBNAME statements in the user-written code or in an autoexec file to be executed
when SAS is invoked.

Alternatively, you could use SAS/Warehouse Administrator to generate LIBNAME
statements for the input source(s) specified in a Process Flow. That is, you could create
a Process Flow even though one is not required because the data store is created with
user-written code. The following explanations do not take advantage of this approach,
but an example is available in “Define Process Editor Job” on page 124, which illustrates
defining a Process Flow for creating an ODD in which user-written code is supplied.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, Detail Table physical properties, and ODD
exist. �

Adding a Job
To open the Process Editor, in SAS/Warehouse Administrator Explorer, from the

menu bar, select

Tools Process Editor

262 Defining Job Properties Chapter 13

In the Job Hierarchy, position the cursor on the Data Warehouse for which you want
to define a Job, for example Toy Store Whouse, click the right mouse button, and select

Add Job

The software adds a Job icon to the Job Hierarchy.

Note: By adding the Job using this method, there is not an output table associated
with the Job and therefore there is not a Process Flow. �

Defining Job Properties
To update the default metadata for the Job, position the cursor on the Job icon, click

the right mouse button, and select Properties. The Job Properties window displays for
you to enter the appropriate information.

General Tab specifies the Job name, a description, an owner, and an
administrator.

Maintaining Jobs Defining Job Properties 263

Source Tab specifies that the code for the Job is supplied by user-written code.
SAS/Warehouse Administrator will not generate code for the Job.
When the User Written option is selected, the SAS library and the
catalog entry name containing the code must be specified.

The Edit button opens an editing window where you can enter,
view, or update the specified code. Here is an example of code for the
Job:

264 Example: Executing a Job Chapter 13

The remaining tabs in the Job Properties window, which are for Job scheduling, are
explained in the online Help for this window. See also the “Scheduling Jobs” chapter in
this document.

Example: Executing a Job

Overview
After you have added a Job and whether you want SAS/Warehouse Administrator to

generate the code or you will supply the user-written code yourself, you can execute the
Job, which executes the code and loads the output table(s). This example executes a Job
interactively. To schedule a Job to run in batch mode at a future date and time, see the
“Scheduling Jobs” chapter.

Note: The following explanation describes the metadata and methods used to
achieve the desired results and assumes that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, and Job exist. �

Executing a Job Interactively
In the SAS/Warehouse Administrator Explorer, position the cursor on the data store

for which you want to execute its Job, for example the Detail Table Customer.

Click the right mouse button, and select Process. The Process Editor opens.

Maintaining Jobs Overview 265

In the Job List, position the cursor on the Job icon, click the right mouse button, and
select Run. The Load Generation/Execution Properties window displays.

Click Submit .

Example: Defining a Job with Multiple Output Tables and Input Sources
in a Process Flow

Overview
This example defines a Job with a Process Flow that has multiple output tables and

multiple input sources. An OLAP Group and both of its children summary data stores
are specified in a single job. The Detail Logical Table Sales Detail Grp is specified as
the input source for the two summary data stores as well as the OLAP Group.

Consider the following when specifying multiple output tables for a Job:

� Only one Job can specify a given data store as an output table, but many Jobs can
specify a given data store as an input table.

� If you specify a given data store as an output table and the data store is already
specified as the output of another Job, you will be given a series of prompts to
determine how the other Job should be handled.

� SAS/Warehouse Administrator will not allow you to add an output table that is
invalid for a Job.

� All output tables that you add to a Job must be in the same metadata repository
as the Job. For example, you can create a Job whose output tables are all in the
same Data Warehouse, and you can create a Job whose output tables are all ODDs
in the same Warehouse Environment. But you cannot create a Job in which a
Warehouse table and its ODD are both specified as outputs for that Job. For more
information, see “Overview: Metadata Repositories” on page 313.

Note: The following explanations describe the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, Detail Logical Table, and OLAP objects
physical properties exist. �

266 Adding a Job From the Data Store Chapter 13

Adding a Job From the Data Store
In the SAS/Warehouse Administrator Explorer, position the cursor on the data store

for which you want to add a Job, for example HOLAP Group.

Click the right mouse button, and select Process. SAS/Warehouse Administrator
asks you if you want to create a Job. Select Yes.

The software adds a Job (named by default for the data store), opens the Process
Editor, and displays an icon for the output table in the Process View.

You would now typically define the Job properties, such as a Job name and whether
the code for the Job is generated by SAS/Warehouse Administrator or user-written.
This example assumes that the Job code is generated by SAS/Warehouse Administrator.

Adding an Input Source
To display the Selector window, in the Process Flow, click the output table HOLAP

Group with the right mouse button and select

Add Inputs

Maintaining Jobs Adding an Input Source 267

In the Selector window, select the type of table you want to add as an input source,
which for this example is a Detail Logical Table, then click Show .

From the list of displayed tables, select the table you want to add, which is Sales
Detail Grp, then click OK . The input source is added to the Process Flow.

268 Adding a Second Output Table and Input Source Chapter 13

You would now update the default metadata for the Mapping process.

Adding a Second Output Table and Input Source
In the Process Flow, click the right mouse button in background and select Add

Output Table.
The Selector window displays. In the Selector window, select the type of table you

want to add as an additional output table, which for this example is an OLAP Table.
Then click Show . From the list of displayed tables, select the table you want to add,
which is Sum 12 OLAP Table, and click OK . The additional output table is added to
the Process Flow.

To specify an input source for the additional output table, in the Process Flow, click
the output table Sum 12 OLAP Table with the right mouse button and select

Add Inputs

From the Selector window, select the type of table you want to add as an input
source, which for this example is a Detail Logical Table, then click Show . From

Maintaining Jobs Adding a Third Output Table and Input Source 269

the list of displayed tables, select the one you want to add, which is Sales Detail Grp
(the same input source as specified for output table HOLAP Group), and then click OK .
The Process Flow displays that the input source is specified for both output tables.

You would now update the default metadata for the Mapping process.

Adding a Third Output Table and Input Source
In the Process Flow, click the right mouse button in background and select Add

Output Table. The Selector window displays.
In the Selector window, select the type of table you want to add as an additional

output table, which for this example is an OLAP MDDB. Then click Show . From the list
of displayed tables, select the table you want to add, which is Sum 11 OLAP MDDB, and
click OK . The third output table is added to the Process Flow.

To specify an input source for the third output table, in the Process Flow, click the
output table with the right mouse button and select

Add Inputs

270 Example: Adding a User Exit Process to a Process Flow Chapter 13

From the Selector window, select the type of table you want to add as an input
source, which for this example is an OLAP Table. Then click Show . From the list of
displayed tables, select the table you want to add, which is Sum 12 OLAP Table, then
click OK . The input source, which is also an output table in the Process Flow, is
displayed in the Process Flow.

You would now update the default metadata for the Mapping process.

Example: Adding a User Exit Process to a Process Flow

Overview
A User Exit process is a metadata record used to retrieve user-written code. The code

often extracts or transforms information for a data store, but it can also do other tasks.
The code must be stored in a SAS catalog with an entry type of SOURCE or SCL.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Adding a User Exit Process
In the SAS/Warehouse Administrator Explorer, position the cursor on the data store

for which you want to add a User Exit process to its Process Flow, for example
Customer. Click the right mouse button, and select Process. The software opens the
Process Editor with the Process Flow displayed in the Process View.

Maintaining Jobs Adding a User Exit Process 271

To add a User Exit, in the Process Flow, right-click the Process Flow arrow either
below the output table or above the input source, as appropriate, which for this example
is the arrow above the input source. Then select

Add User Exit

To update the default metadata for the User Exit, position the cursor on the User
Exit icon, click the right mouse button, and select Properties. The User Exit Process
Attributes window displays for you to enter the appropriate information. Note that the
code for a User Exit process is always user-written code and must be stored in a SAS
catalog with an entry type of SOURCE or SCL.

272 Example: Adding a Data Transfer Process to a Process Flow Chapter 13

For an explanation about defining the User Exit properties, see “Example: Defining
User Exit Process Properties” on page 290.

Example: Adding a Data Transfer Process to a Process Flow

Overview
A Data Transfer process is a metadata record used to generate or retrieve

user-written code that moves data from one host to another. For example, a Data
Transfer process is required when the output table and its input source reside on
different hosts.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist and
that the output table and its input source reside on different hosts. �

Adding a Data Transfer Process
In the SAS/Warehouse Administrator Explorer, position the cursor on the data store

for which you want to add a Data Transfer process to its Process Flow, for example
Customer. Click the right mouse button, and select Process. The software opens the
Process Editor with the Process Flow displayed.

Maintaining Jobs Adding a Data Transfer Process 273

To add a Data Transfer, in the Process Flow, right-click the Process Flow arrow either
below the output table or above the input source, as appropriate, which for this example
is the arrow below the output table. Then select

Add Data Transfer

To update the default metadata for the Data Transfer, position the cursor on the
Data Transfer icon, click the right mouse button, and select Properties. The Data
Transfer Process Attributes window displays.

274 Example: Adding a Record Selector Process to a Process Flow Chapter 13

For an explanation about defining the Data Transfer properties, see “Example:
Defining Data Transfer Process Properties to Move Data from Remote Host to Local
Host” on page 294.

Example: Adding a Record Selector Process to a Process Flow

Overview
A Record Selector process is a metadata record used to generate or retrieve

user-written code that subsets data prior to loading it to a specified output table. A
Record Selector process can be specified only to subset the input source data specified in
an ODD or in a Data File (which is an input to an ODD).

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Adding a Record Selector Process
In the SAS/Warehouse Administrator Explorer, position the cursor on the Job to

which you want to add a Record Selector process to its Process Flow, for example
Customer. Click the right mouse button, and select Process. The software opens the
Process Editor with the Process Flow displayed.

Maintaining Jobs Adding a Record Selector Process 275

To add a Record Selection, in the Process Flow, right-click the Process Flow arrow
above the ODD input source, and select

Add Record Selector

To update the default metadata for the Record Selector process, position the cursor
on the Record Selection icon, click the right mouse button, and select Properties. The
Record Selection Process Attributes window displays.

276 Example: Adding a Job Group Chapter 13

For an explanation about defining the Record Selector properties, see “Example:
Defining Record Selector Process Properties” on page 298.

Example: Adding a Job Group

Overview
A Job Group is a simple grouping element for Jobs, Events, and other Job Groups.

This example adds a Job Group to organize Jobs for the Data Warehouse.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, and Subject exist. �

Adding a Job Group
To display the Process Editor, in the SAS/Warehouse Administrator Explorer, from

the menu bar, select

Tools Process Editor

Maintaining Jobs Adding a Job Group 277

To add a Job Group, in the Job Hierarchy, position the cursor on the Data
Warehouse, click the right mouse button, and select

Add Job Group

To add a Job to the Job Group, position the cursor on the Job Group, click the right
mouse button, and select

Add Job

278 Example: Moving Jobs Chapter 13

Example: Moving Jobs

Overview
In the Job Hierarchy, you can move (cut and paste) Job Groups, Jobs, and Events.

This allows you to organize these objects in a way that is convenient for later use.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data store, and Job, and Job Group exist. �

Moving a Job
In the Job Hierarchy, position the cursor on the Job that you want to move, for

example Customer.

Maintaining Jobs Moving a Job 279

Click the right mouse button, and select Cut. Then, position the cursor on the icon in
which to move the Job to, for example Job Group, click the right mouse button, and
select Paste. The Customer Job is moved to its new location.

280

281

C H A P T E R

14
Maintaining Processes

Overview 281

User-Written Code 282
Using the Process Library 282

Example: Defining Mapping Process Properties for One-to-One Mapping 283

Overview 283
Defining Mapping Properties 283

Example: Defining Mapping Process Properties to Transform Data 288

Overview 288
Defining Mapping Properties 288

Example: Defining User Exit Process Properties 290
Overview 290

Defining User Exit Properties 291

Example: Defining Data Transfer Process Properties to Move Data from Remote Host to Local Host 294
Overview 294

Defining Data Transfer Properties 294

Example: Defining Record Selector Process Properties 298
Overview 298

Defining Record Selector Properties 298
Example: Editing Load Process Properties to Supply User-Written Code 301

Overview 301

Writing Code for a Load Process 301
Editing Load Step Properties 302

Example: Editing Load Process Properties for SAS/Warehouse Administrator Generated Code 304

Overview 304
Editing Load Step Properties 304

Overview

This chapter assumes that

� you are familiar with how to define a Job and how to add processes to a Job
Process Flow as described in Chapter 13, “Maintaining Jobs,” on page 251.

� you are familiar with the basic information about processes as described in
“Processes” on page 52 and are ready to define properties for processes specified in
Jobs.

You define properties for the following processes:

Mapping generates or retrieves code that maps columns from one or more
input sources into one or more output tables. Common mapping
types include

282 User-Written Code Chapter 14

� one-to-one (one input source to an output table).
� joins (one or more input sources merged by one or more

common columns).
� unions (two or more input sources appended to an output table).

User Exit retrieves user-written code, which, for example, could extract or
transform information for a data store.

Data Transfer generates or retrieves user-written code that moves data from one
host to another. A Data Transfer process is required when the
output table and its input source reside on different hosts.

Record Selector generates or retrieves user-written code that subsets data prior to
loading it to an output table. In the current release, you can specify
a Record Selector process only to subset the input source data from
an ODD or a Data File (which is an input to an ODD).

Load generates or retrieves user-written code that loads data into an
output table. A Load process is included automatically in a Process
Flow that is associated with the output table.

In general, to maintain processes:
1 Add a process to a Job. See Chapter 13, “Maintaining Jobs,” on page 251.
2 Define the properties for a process.

Note: You can access reference information for SAS/Warehouse Administrator
process attributes windows by clicking Help . �

User-Written Code
In SAS/Warehouse Administrator, warehouse data stores are created by processes.

SAS/Warehouse Administrator can generate source code for any process except a User
Exit or an ODD Load Step. However, you can specify a user-written routine for any
process.

In the process attributes window for Load Steps, Mappings, User Exits, Data
Transfers, and Record Selectors, on the Source code tab, there is a User Written
option. Selecting this option enables you to specify a user-written routine to replace the
code that SAS/Warehouse Administrator would generate for the process.

For more information about user-written source code, see the online Help. To display
the relevant online Help, in the SAS System Help contents, select

Help on SAS Software Products Using SAS/Warehouse Administrator Software

Overview Overview of SAS/Warehouse Administrator

User-Written Source Code

Using the Process Library
SAS/Warehouse Administrator provides a Process Library, which is a collection of

registered routines that you can use to extract data, transform it, and load it into a
data store. For example, there are routines that standardize addresses, and there are
routines that generate the code required to load a warehouse table into a DBMS, such
as Oracle, using native loading software.

Maintaining Processes Defining Mapping Properties 283

As you define processes in a Process Flow, you have the option of selecting a
predefined routine from the Process Library, rather that supplying user-written code.

The Process Library is made up of a registered set of Process Catalogs. A Process
Catalog is a SAS catalog that has a specific set of entries and performs a specific
process. The MAIN entry in a Process Catalog is a reference to the routine that
actually performs the process.

For more information about the Process Library, click Help on the Process Library
window.

Note: Initially, the Process Library is empty. You can install routines as add-in tools
from the SAS/Warehouse Administrator Solutions CD, which is provided with
SAS/Warehouse Administrator software. �

Example: Defining Mapping Process Properties for One-to-One Mapping

Overview
This example defines the Mapping process properties for a one-to-one column

mapping, which is one input source to one output table. The properties also specify that
SAS/Warehouse Administrator will generate the Mapping process code.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Defining Mapping Properties
For most output tables, a default Mapping process will appear between the output

table and an input source after you add the input source to a Job Process Flow as
shown in the following Process Flow:

You must always update the default metadata in order for the Mapping process to
work. In the Job Process Flow, position the cursor on the Mapping process icon, click

284 Defining Mapping Properties Chapter 14

the right mouse button, and select Properties. The Mapping Process Properties
window displays.

General Tab specifies a name, for example Customer Mapping, a description, an
owner, and an administrator for the Mapping process.

Source Code Tab specifies who generates the code for the Mapping process, which for
this example is SAS/Warehouse Administrator.

Execution Tab specifies the host on which you want to run the Mapping process,
which for this example is the local host.

Maintaining Processes Defining Mapping Properties 285

Output Data
Tab

specifies the name and location of the intermediate work table(s)
produced by the Mapping process.

Column
Mapping Tab

defines how input columns are mapped into the output table(s) and,
if specified, how the data in those columns is transformed.

286 Defining Mapping Properties Chapter 14

To define mappings, you can click either 1 to 1 Mappings , which
opens the One-to-One Column Mapping window, or Derive Mapping ,
which opens the Expression Builder window. This example selects
1 to 1 Mappings , which enables you to define mappings that do not
include data transformations as follows:

In the One-to-One Column Mapping window, click Quick Map
and then OK . Column names from the source column list are
mapped to the target column list and are displayed in the mapping
list on the right of the window as follows:

Click OK to return to the Column Mapping tab in the Mapping
Process Properties window, which displays the mapped columns.

Maintaining Processes Defining Mapping Properties 287

Where Tab specifies a condition that the data must satisfy before SAS reads it,
which for this example is not specified.

The following window shows some of the generated code for the Mapping process:

288 Example: Defining Mapping Process Properties to Transform Data Chapter 14

Example: Defining Mapping Process Properties to Transform Data

Overview
This example defines the Mapping process properties to transform data by specifying

a derived mapping. Only the Column Mapping tab for the Mapping Process Properties
window is illustrated.

For this example, the input source is an ODD named Customer, and the output table
is a Detail Table named Custdet. Both tables have a column named Gender. The ODD
Gender is a numeric column that stores the values 0 or 1. The Detail Table Gender is a
character column that stores the values Male or Female.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Defining Mapping Properties
In the Job Process Flow, position the cursor on the Mapping process icon, click the

right mouse button, and select Properties. The Mapping Process Properties window
displays. Only the Column Mapping tab, which defines the transformation, is explained
here:

Column
Mapping Tab

defines how input columns are mapped into the output table(s) and
how the data in those columns is transformed. This example
transforms data by specifying a derived mapping for the Gender
column.

Maintaining Processes Defining Mapping Properties 289

First, select the column to be transformed:

Then, click Derive Mapping , which opens the Expression Builder
window:

Using the Expression Builder window, you can define a SAS
expression, which can transform columns, provide conditional

290 Example: Defining User Exit Process Properties Chapter 14

processing, calculate new values, and assign new values. To define
an expression, position the cursor in the Transformation field, which
automatically displays the name of the selected column, and then
select from the Components list and operator buttons. Or, you can
enter the appropriate expression. For example, the following
expression would transform the numeric values 0 and 1 (stored in
the ODD) to the character values Male and Female (for the Detail
Table):

Click OK to return to the Column Mapping tab, which displays
the derived mapping.

Example: Defining User Exit Process Properties

Overview
This example defines the User Exit process properties to specify the location of

user-written code, which for this example transforms data from the input source before
it is loaded into the output table.

Maintaining Processes Defining User Exit Properties 291

For an example about adding a User-Exit process, see “Example: Adding a User Exit
Process to a Process Flow” on page 270.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Defining User Exit Properties
In a Job Process Flow, a User Exit process can be added either below the output

table or above the input source as appropriate. For this example, the User Exit process
was added above the input source as shown in the following Process Flow:

In the Job Process Flow, position the cursor on the User Exit process icon, click the
right mouse button, and select Properties. The User Exit Process Attributes window
displays.

General Tab specifies a name, a description, an owner, and an administrator for
the User Exit process.

Source Code Tab specifies that the source code for the process is supplied by
user-written code, which is required for a User Exit, and specifies

292 Defining User Exit Properties Chapter 14

the name of the SAS library that contains the code. The catalog
entry name must be either SOURCE or SCL.

Click Edit to open an editing window where you can enter, view,
or update the specified code. User-written code can supplement the
code that SAS/Warehouse Administrator generates or it can
completely replace the code generated by
SAS/Warehouse Administrator. Here is an example of code for a
User Exit process:

Execution Tab specifies the host on which you want to run the User Exit process,
which for this example is the local host.

Maintaining Processes Defining User Exit Properties 293

Output Data
Tab

specifies the name and location of the intermediate work table(s) if
output is produced by the User Exit process.

Options Tab specifies options for generating the source code for the process. For
this example, both options are selected, which is the default setting.

The options available on this tab are

294 Example: Defining Data Transfer Process Properties to Move Data from Remote Host to Local Host Chapter 14

� Generate Access Code (ex. signon, libname) before
step allows you to control whether
SAS/Warehouse Administrator generates the code to access the
preceding objects, such as sign on code, and the LIBNAME
statement. If selected, SAS/Warehouse Administrator generates
the code that is required to load or run the current object or
process and the code that is required to access the objects or
processes that precede the current one. It assumes that code
has already been generated or is already in place to load or run
the objects or processes that precede the current one.

� Set &SYSLAST macro variable at end of step allows you
to control whether SAS/Warehouse Administrator generates
code that sets the &SYSLAST macro variable to the name of
the last table that was created or updated.

Example: Defining Data Transfer Process Properties to Move Data from
Remote Host to Local Host

Overview
This example defines the Data Transfer process properties to move data from a

remote host to the local host. A Data Transfer process is required for the Job because
the input source and output table reside on different hosts. The properties specify that
SAS/Warehouse Administrator will generate the necessary code to move the data. The
Data Transfer process will copy the Customer input data, which is on a remote host, to
an intermediate work table on the local host (the host where
SAS/Warehouse Administrator is installed). The Mapping process then would map the
columns from the intermediate work table to the target table, which is on the local host.

For an example about adding a Data Transfer process, see “Example: Adding a Data
Transfer Process to a Process Flow” on page 272.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Defining Data Transfer Properties
In a Job Process Flow, a Data Transfer process can be added either below the output

table or above the input source as appropriate. For this example, the Data Transfer
process was added below the output table as shown in the following Process Flow:

Maintaining Processes Defining Data Transfer Properties 295

In the Job Process Flow, position the cursor on the Data Transfer process icon, click
the right mouse button, and select Properties. The Data Transfer Process Attributes
window displays.

General Tab specifies a name, a description, an owner, and an administrator for
the Data Transfer process.

Source Code Tab specifies who supplies the source code for the process, which for this
example is SAS/Warehouse Administrator.

296 Defining Data Transfer Properties Chapter 14

Note: When SAS/Warehouse Administrator generates the code, it
uses SAS/CONNECT software and PROC UPLOAD or PROC
DOWNLOAD to move the data. �

Execution Tab specifies the host on which to run the Data Transfer process, which
for a Data Transfer is always the remote host.

Output Data
Tab

specifies the name and location of the intermediate work table(s)
produced by the Data Transfer process.

Maintaining Processes Defining Data Transfer Properties 297

Options Tab specifies options for generating the source code for the process. For
this example, both options are selected, which are the default
settings.

The options available on this screen are

� Generate Access Code (ex. signon, libname) before
step allows you to control whether
SAS/Warehouse Administrator generates the code to access the
preceding objects, such as sign on code, and the LIBNAME
statement. If selected, SAS/Warehouse Administrator generates
the code that is required to load or run the current object or
process and the code that is required to access the objects or
processes that precede the current one. It assumes that code
has already been generated or is already in place to load or run
the objects or processes that precede the current one.

For example, when SAS/Warehouse Administrator generates
code for a Data Transfer process, it generates the statements
that are necessary to access the table that precedes the Data
Transfer in the Job, but it will not generate any code that might
be required to load that table. SAS/Warehouse Administrator
assumes that the table has already been loaded.

298 Example: Defining Record Selector Process Properties Chapter 14

� Set &SYSLAST macro variable at end of step allows you
to control whether SAS/Warehouse Administrator generates
code that sets the &SYSLAST macro variable to the name of
the last table that was created or updated.

Note: By default, both of the source code options are selected. If
you specify that SAS/Warehouse Administrator generates code for
the process (on the Source Code tab), then you should leave these
source code options selected. If you are supplying the source code,
you might need to select or deselect these options as needed. �

Example: Defining Record Selector Process Properties

Overview
This example defines the Record Selector process properties to subset data from the

ODD prior to loading it into the Detail Table output table.
For an example about adding a Record Selector process, see “Example: Adding a

Record Selector Process to a Process Flow” on page 274.

Note: The following explanation describes the metadata and methods used to
achieve the desired results. It is assumed that the appropriate Data Warehouse
Environment, Data Warehouse, Subject, data stores, Job, and Process Flow exist. �

Defining Record Selector Properties
In a Job Process Flow, a Record selector process can be added above the input source

as follows:

In the Job Process Flow, position the cursor on the Record Selector process icon, click
the right mouse button, and select Properties. The Record Selection Process
Attributes window displays.

General Tab specifies a name, a description, an owner, and an administrator for
the Record Selector process.

Maintaining Processes Defining Record Selector Properties 299

Source Code Tab specifies who generates the code for the Mapping process, which for
this example is SAS/Warehouse Administrator.

Execution Tab specifies the host on which you want to run the Record Selector
process, which for this example is the local host.

300 Defining Record Selector Properties Chapter 14

Output Data
Tab

specifies the name and location of the intermediate work table(s)
produced by the Record Selector process.

Options Tab specifies options for generating the source code for the process. For
this example, both options are selected, which is the default setting.

The available options on this tab are
� Generate Access Code (ex. signon, libname) before

step allows you to control
whether SAS/Warehouse Administrator generates the code to
access the preceding objects, such as sign on code, and the
LIBNAME statement. If selected,
SAS/Warehouse Administrator generates the code that is
required to load or run the current object or process and the
code that is required to access the objects or processes that
precede the current one. It assumes that code has already been
generated or is already in place to load or run the objects or
processes that precede the current one.

� Set &SYSLAST macro variable at end of step allows you
to control whether SAS/Warehouse Administrator generates
code that sets the &SYSLAST macro variable to the name of
the last table that was created or updated.

Maintaining Processes Writing Code for a Load Process 301

Note: By default, both of the source code options are selected. If
you specify that SAS/Warehouse Administrator generates code for
the process (on the Source Code tab), then you should leave these
source code options selected. If you are supplying the source code,
you might need to select or deselect these options as needed. �

Record Selection
Tab

specifies a condition that the data must satisfy before SAS reads it.
SAS/Warehouse Administrator will generate an SQL WHERE clause
from the information you enter. You can enter the condition directly
or click Define to open the Expression Builder window, in which you
can specify the condition. For example, you could enter the following
condition:

Example: Editing Load Process Properties to Supply User-Written Code

Overview
With its default settings, you might not need to edit the Load process. However, for

example, if you intend to supply user-written code for the Load process and the default
is so that the code is generated by SAS/Warehouse Administrator, you must edit the
Load process properties. Also, SAS/Warehouse Administrator cannot generate source
code for an ODD or a Detail Logical Table Load process. Therefore, for those data
stores, you must edit the Load process to supply the user-written code.

For an example of a resulting Load process, see “Editing the Load Process” on page
260.

Writing Code for a Load Process
Load process code creates a table or view. SAS provides a number of tools that you

can use to write Load process code:
� DATA step
� SQL procedure
� Query window
� External File Interface (EFI)
� SAS/ASSIST software

302 Editing Load Step Properties Chapter 14

� SAS/TOOLKIT software

For more information about writing Load process code, click Help on the data store’s
Load process attributes window. Then, select the link for the Source Code tab, then
select User-Written Source Code.

Editing Load Step Properties
The Load process is included automatically in the Process Flow. However, the Load

process does not have its own icon; it is associated with the output table.

In the Job Process Flow, position the cursor on the output table, click the right mouse
button, and select Edit Load Step. The Load Process attributes window for the data
store displays.

Source Code Tab specifies who supplies the source code for the Job, which for this
example is user-written code.

Click Edit to open an editing window in which you can enter,
view, or update the specified code. An example of Load process code
follows:

Maintaining Processes Editing Load Step Properties 303

Note: For the output table, its properties window Columns tab
must match the columns to be loaded. If not, the Mapping process
will not match the columns loaded into the data store. �

Execution Tab specifies the host on which you want to run the Load process. This
example specifies the local host.

Post Processing
Tab

specifies code to be executed after the data store is loaded. For
example, you might want to register code that sends an e-mail
indicating that the Load process has finished.

304 Example: Editing Load Process Properties for SAS/Warehouse Administrator Generated Code Chapter 14

Example: Editing Load Process Properties for SAS/Warehouse
Administrator Generated Code

Overview
If you want SAS/Warehouse Administrator to generate the code for the Load process,

you do not need to edit the Load process. However, one property that you might need to
edit is the Load Options tab, which is the only tab discussed in this example.

Editing Load Step Properties

Load Options
Tab

specifies the level of code that SAS/Warehouse Administrator will
use to generate the code and it also lists all possible Load process
options.

Code generation level 2.0 is the level of code generated by
SAS/Warehouse Administrator Release 2.0 (the current release). It
uses SAS/ACCESS LIBNAME statements to read and write data in
DBMS format. (SQL Pass-Through views are used for some tasks
associated with DBMS tables, such as reading or writing DBMS
indexes.)

Code generation level 1.1 is the level of code generated by
SAS/Warehouse Administrator Releases 1.1, 1.2, and 1.3. It creates
an SQL Pass-Through view to access DBMS data and uses PROC
DBLOAD to load data into DBMS tables.

For more information about the levels of code, when to use one or
the other, and other Load process options such as the Load Time
column, click Help on a specific data store’s Load Process
Attributes window.

305

C H A P T E R

15
Scheduling Jobs

Overview 305

Preparing for Job Scheduling 305
Registering Jobs Information Libraries 306

Registering a Jobs Information Library 306

Scheduling Jobs 306
Tracking Jobs 307

Example: Scheduling and Tracking a Job with the AT Command 307

Summary: Scheduling a Job with the Null Scheduler 310
Viewing Scheduled Jobs 311

Overview
This chapter describes how to schedule, track, and view Jobs in SAS/Warehouse

Administrator. The CRON and AT scheduling servers are explicitly supported. It is
possible to use a Null Scheduler definition to generate a Job that can be used with
other scheduling servers.

Preparing for Job Scheduling
Before you can schedule a Job in SAS/Warehouse Administrator, you must do some

preparation, as follows:

Host
configuration

� For a production data warehouse in which Jobs will be
scheduled and tracked through SAS/Warehouse Administrator,
we strongly recommend that all Jobs Information libraries be
placed under the control of a SAS/SHARE server. For details,
see “Jobs Information Libraries and SAS/SHARE Software” on
page 24.

Global metadata � Create the SAS library that you will register as the Jobs
Information library for a given Warehouse Environment or
Data Warehouse, as described in “Example: Creating a Jobs
Information Library” on page 83.

� Register the Jobs Information library for a given Warehouse
Environment or Data Warehouse, as described in “Registering
Jobs Information Libraries” on page 306.

� Create a host definition for the host on which the scheduling
server application (such as CRON) runs. For details about host
definitions, see “Host Definitions” on page 86.

306 Registering Jobs Information Libraries Chapter 15

� Create the appropriate scheduling server definition, as
described in “Scheduling Server Definitions” on page 99.

Registering Jobs Information Libraries
A Jobs Information library is a SAS library that contains status information for Jobs

that have been scheduled through the Job Properties window in SAS/Warehouse
Administrator. If Job tracking is enabled for a given Job, when the Job executes, it will
update its status in the appropriate Jobs Information library. The Job Viewer window
reads the Jobs Information library to display information about Jobs that have been
submitted.

After you have created an appropriate library definition, you can make that library
the Jobs Information library for a given Environment or Data Warehouse. A Warehouse
Environment and its Data Warehouses can share one Jobs Information library, or they
could have separate Jobs Information libraries.

Registering a Jobs Information Library
Here is the preferred way to register a SAS library as the Jobs Information library

for a given Warehouse Environment or Data Warehouse.
1 If you have not done so already, create an appropriate library definition, as

described in “Example: Creating a Jobs Information Library” on page 83.
2 Display the Job Hierarchy view in the Process Editor.

If you are currently in the SAS/Warehouse Administrator Explorer, from the
main menu, select

Tools Process Editor

If you are currently in the Job List view of the Process Editor, right-click the
background of the Job List view, and select

View Job Hierarchy

3 In the Job Hierarchy view, left-click the Warehouse Environment or Data
Warehouse that needs a Jobs Information library.

In the Process Editor, a rectangle appears around the selected Environment or
Data Warehouse.

4 Right-click the Warehouse Environment or Data Warehouse and select

Job Info Library Select Existing Library

A list of libraries defined in the current Environment displays.
5 Select the library you defined in Step 1.

The library defined in Step 1 is now the Jobs Information library for the
Warehouse Environment or Data Warehouse that you selected.

Scheduling Jobs
Before SAS/Warehouse Administrator can generate the code that schedules a Job, at

a minimum, you must have
� a scheduling server definition for the computer where the Job will run

Scheduling Jobs Example: Scheduling and Tracking a Job with the AT Command 307

� an appropriate Jobs Information library.

For details about the preparation required for Job scheduling, see “Preparing for Job
Scheduling” on page 305.

To have SAS/Warehouse Administrator schedule a Job, at a minimum, you must open
the properties window for the Job and enter information on the Date/Time tab and the
Server tab. For details about these tabs, click Help on the Job Properties window.

Tracking Jobs
If Job tracking is enabled for a given Job, when the Job executes, it will update its

status in the appropriate Jobs Information library. The Job Viewer window reads the
Jobs Information library to display information about Jobs that have been submitted.

Job tracking through SAS/Warehouse Administrator is enabled by default. A Job
scheduled through SAS/Warehouse Administrator will be tracked through SAS/
Warehouse Administrator unless job tracking has been disabled for the Job on the
Prolog/Epilog tab of the Job Properties window.

Example: Scheduling and Tracking a Job with the AT Command
This example describes how to schedule and track a Job for a local data store on a

Microsoft Windows or Windows NT computer. The appropriate scheduling server
definition and Jobs Information library are assumed to exist, although brief instructions
for adding these items are included in the example.

Note: The steps for scheduling a Job using System V CRON are very similar to the
steps described here. The main difference is that you would select a CRON definition
on the Server tab for the Job. �

1 Display the Job for the data store. In the SAS/Warehouse Administrator Explorer,
right-click the data store and select Process.

The Job will be displayed in the Process Editor, as follows:

In the left panel of the Process Editor, the data store’s Job and output tables
will be listed. In the previous display, the output table for the Job has a rectangle
around it. Note that the output table has a parent. This parent is the Job.

308 Example: Scheduling and Tracking a Job with the AT Command Chapter 15

2 (Optional) Position the cursor on the Job, and click the left mouse button to select
it, as follows:

3 Position the cursor on the Job, click the right mouse button, and select
Properties. The Job Properties window displays, as follows:

4 Select the Date/Time tab. The tab displays, as follows:

At a minimum, use the arrows to select a date and a time for the Job to execute.
For details about the fields on this tab, click Help .

5 Select the Server tab. The tab displays, as follows:

Scheduling Jobs Example: Scheduling and Tracking a Job with the AT Command 309

Use the arrow to select a scheduling server definition that is appropriate for the
Job. In the current example, the definition should generate an AT command that
will execute the Job on the local host. To see a scheduling server definition that
would be appropriate for the current example, see “Example: Creating an AT
Scheduling Server Definition” on page 100.

6 Select the Prolog/Epilog tab. The tab displays, as follows:

In the Prolog/Epilog tab above, note that the Default to server option is
selected. This means that the Tracking tab of the properties window for the
scheduling server definition specified for this Job will determine whether this Job
will be tracked in SAS/Warehouse Administrator. For the current example, assume
that the definition specified on the Server tab has its Job tracking option selected.

You are now finished entering the metadata required to schedule this Job.
7 Click Schedule .
8 Click Yes when asked if you want to save the metadata for the current Job. The

Job Scheduling Status window displays. It presents a series of messages about the
status of the Job, as follows:

310 Summary: Scheduling a Job with the Null Scheduler Chapter 15

When the messages are all displayed, click Go Back to return to the Job
Properties window.

Note: If you get a message that says that the maximum length for an AT
command has been exceeded, you must edit the scheduling server definition that is
specified for this Job. Click Go Back to return to the Job Properties window. Click
the Server tab, then click the right arrow and select Edit existing scheduling
server. For details about what updates are required to fix the problem, see
“Preparing to Create an AT Scheduling Server Definition” on page 100.

Note: If you get a message about the Jobs Information library not being defined,
you must create a new one—or register an existing Jobs Information
library—before you can schedule a Job in the current Warehouse Environment or
Data Warehouse.

It is possible that an appropriate library has been defined, but has not yet been
registered as the Jobs Information library for the current Warehouse Environment
or Data Warehouse. In that case, cancel the scheduled Job and register the Jobs
Information library as described in “Registering a Jobs Information Library” on
page 306. Having done that, you can come back to the same Job and schedule it
again. These steps will prevent you from creating multiple Jobs Information
libraries.

Alternatively, you might know that an appropriate Jobs Information library
does not exist. In that case, click Yes when asked if you want to create a Jobs
Information library. A properties window displays. For details about that window,
click Help .

9 From the Job Properties window, click OK . You are returned to the Process Editor.

After you have scheduled a Job, you can view it, as described in “Viewing Scheduled
Jobs” on page 311.

Summary: Scheduling a Job with the Null Scheduler
This example summarizes how to schedule a Job using the Null Scheduler definition

rather than an AT or CRON definition. For a discussion of how this can be useful, see
“Summary: Creating and Using a Null Scheduling Server Definition” on page 105.

The steps required to perform this task are very similar to those described in
“Example: Scheduling and Tracking a Job with the AT Command” on page 307. The
critical difference is that on the Server tab of the Job Properties window, you would
specify a Null Scheduler definition. An example of such a Server tab follows:

Scheduling Jobs Viewing Scheduled Jobs 311

Viewing Scheduled Jobs
Here is one way to view all scheduled Jobs for a given Warehouse Environment or

Data Warehouse.
1 Display the Job Hierarchy view in the Process Editor.

If you are currently in the SAS/Warehouse Administrator Explorer, from the
main menu, select

Tools Process Editor

If you are currently in the Job List view of the Process Editor, right-click the
background of the Job List view, and select

View Job Hierarchy

2 In the Job Hierarchy view, select the Warehouse Environment or Data Warehouse
whose Jobs you want to view.

To view the scheduled Jobs for data stores at the Environment level (any data
store within an ODD Group in the Explorer), select the Environment. To view the
scheduled Jobs for data stores in a Data Warehouse, select that Data Warehouse.
It is possible that an Environment and a Data Warehouse could share the same
Jobs Information library.

In the Process Editor, a rectangle appears around the selected Environment or
Data Warehouse.

3 From the main menu, select

Tools Job Status Viewer

312 Viewing Scheduled Jobs Chapter 15

For details about Job Viewer window, click Help .

313

C H A P T E R

16
Exploiting Warehouse Metadata

Overview: Metadata Repositories 313

Impact of Metadata Repositories on User Operations 314
Metadata Details View in the Explorer 314

Metadata Search Facility 314

MetaSpace Explorer 315
Exporting Metadata 315

Exporting Host Definitions and Other Shared Metadata 316

Exporting Metadata for Groups and Data Stores 316
Example: Exporting Metadata to SAS/EIS Software 316

Overview 316
Exporting Metadata from SAS/Warehouse Administrator 317

Accessing Metadata in SAS/EIS Software 318

Overview: Metadata Repositories
When you open a Warehouse Environment and a Data Warehouse in the SAS/

Warehouse Administrator Explorer, two metadata repositories are active:

libref _MASTER specifies the current Environment repository, which stores metadata
for any data stores defined at the Environment level, along with
host definitions and other global metadata. _MASTER contains
references to any Data Warehouse repositories (libref _DWMD).

libref _DWMD specifies the current Warehouse repository, which stores metadata
for any data stores defined at the Data Warehouse level.

Note: Only two metadata repositories are active at any given time: _MASTER and
_DWMD. �

When you open a Warehouse Environment in the Explorer, a libref to the
corresponding _MASTER library is assigned. You cannot open a second Environment
from the Explorer. When you exit the Explorer, the libref to _MASTER is unassigned.

When you open a Data Warehouse in the Explorer, a libref to the corresponding
_DWMD library is assigned. If you open a second Data Warehouse, the libref to the first
one is unassigned, and the libref to the second one is assigned.

Maintaining a metadata repository is a matter of maintaining the corresponding
Warehouse Environment or Data Warehouse, as described previously in this document.
Be sure to back up the metadata repositories for an Environment and its Data
Warehouses.

314 Impact of Metadata Repositories on User Operations Chapter 16

Impact of Metadata Repositories on User Operations
Some user operations that involve two objects in the Explorer or the Process Editor

can only be completed if the metadata for these objects is in the same metadata
repository. These operations are only permitted if

� the metadata for both objects is defined in the same Data Warehouse
� the metadata for both objects is defined at the Warehouse Environment level
� the metadata for both objects is defined in the same Environment.

For example, cut and paste operations in the SAS/Warehouse Administrator Explorer
and Process Editor are restricted to the same metadata repository. This means

� you cannot cut and paste any object between a Data Warehouse and an ODD Group
� you cannot cut an object from one Data Warehouse and paste it into another Data

Warehouse
� you can cut an object from one ODD Group and paste it into another ODD Group.

For example, all output tables that you add to a Job must be in the same metadata
repository as the Job. Keep this in mind when you add multiple output tables to a Job,
as described in “Example: Defining a Job with Multiple Output Tables and Input
Sources in a Process Flow” on page 265.

Metadata Details View in the Explorer
You can browse Warehouse metadata through the Metadata Details view in the

Explorer. Open the Metadata Details view using one of the following methods:
� Open an Environment in the Explorer.
� From the menu bar, select View, then Metadata Details.
� Expand the contents of a Data Warehouse.
� Position the cursor on a group or data store and click the left mouse button.

The metadata tabs for the selected object will be displayed.

The Metadata Details view in the Explorer displays much of the information that you
enter when you define warehouse elements. Other information is generated by
SAS/Warehouse Administrator, such as the dates and times that the metadata for a
warehouse element were created. Some of the tabs—such as the tabs for Notes,
Support, and Process—appear only if you have defined metadata for those tabs.

Note: It is recommended that you set the Explorer view to Metadata General when
there is no need to search metadata. �

The Metadata Details view can impact performance because it searches and displays
the metadata for the specific object.

Metadata Search Facility
Use the Metadata Search Facility to search for character strings in the metadata for

groups and data stores. To display the Metadata Search Facility:
1 Open an Environment in the Explorer.
2 From the menu bar, select

Exploiting Warehouse Metadata Exporting Metadata 315

Tools Search Metadata

The Metadata Search Facility window displays, as shown next:

For details about this window, click Help .

MetaSpace Explorer

Note: This feature is available in SAS/Warehouse Administrator Releases 2.0, 2.1
and 2.2 only. �

The MetaSpace Explorer is a Java applet that enables you to browse metadata that
has been exported from SAS/Warehouse Administrator. End users can use their Web
browsers to locate tables, charts, graphs, and documentation associated with the
Warehouse. For example, business analysts could browse through Warehouse subject
areas, focus in on one particular area of interest, request access to that information,
and surface detailed data to their desktops or download it for further manipulation.

To export SAS/Warehouse Administrator metadata for the MetaSpace Explorer,
follow the instructions in “Exporting Metadata for Groups and Data Stores” on page
316. From the Export Format Selection window, select MetaSpace Explorer.

The MetaSpace Explorer can be downloaded from the SAS Institute Web site.

1 Go to the SAS Institute home page: http://www.sas.com.

2 Under Service & Support, select Downloads.

3 On the All Downloads page, select SAS IntrNet Software.

4 From the SAS IntrNet Software page, under the heading For Versions 8 & 6 of the
SAS System, select Java Tools.

5 From the Java Tools page, select the appropriate MetaSpace Explorer.

Exporting Metadata
You can export SAS/Warehouse Administrator metadata so that it can be exploited by

other applications such as base SAS, SAS/EIS, and the MetaSpace Explorer.

316 Exporting Host Definitions and Other Shared Metadata Chapter 16

Exporting Host Definitions and Other Shared Metadata
To export the metadata defined for SAS libraries, hosts, DBMS connections, and

contacts:
1 Open an Environment in the Explorer.
2 From the menu bar, select

File Setup

The Define Items Used Globally Window displays.
3 In the Define Items Used Globally Window, select the kind of metadata you would

like to export (SAS libraries, hosts, etc.).
4 From the menu bar, select

Tools Export Metadata

The Export Format Selection window displays. The only format available is SAS
Datasets.

5 From the Export Format Selection window, click OK .
The Export Metadata window displays.

6 Select the library where you would like to save the exported metadata and click
OK .

Exporting Metadata for Groups and Data Stores
To export the metadata defined for groups and data stores:
1 Open an Environment in the Explorer.
2 Position the cursor on the group or data store whose metadata you want to export

and click the right mouse button.
3 From the pop-up menu, select Export Metadata.

The Export Format Selection window displays. For details about this window
and any subsequent windows, click Help .

Example: Exporting Metadata to SAS/EIS Software

Overview
This example illustrates how to export SAS/Warehouse Administrator metadata to

SAS/EIS software. The example exports metadata for an OLAP MDDB, which
automatically registers the file in the SAS/EIS repository.

You can export metadata for SAS/Warehouse Administrator groups and data stores.
For example, you can export the metadata for a Data Table used as a lookup table, you
can export an OLAP data store to use in an OLAP application, and you can export an
OLAP Group of type HOLAP.

Note: The following explanations assume that the OLAP Group and OLAP MDDB
exist. For instructions about creating the OLAP objects, see “Example: Creating
Summary Data for a MOLAP Application” on page 208. The example also assumes that
SAS/EIS has been previously invoked so that the default repository is available. That

Exploiting Warehouse Metadata Exporting Metadata from SAS/Warehouse Administrator 317

is, the first time you invoke SAS/EIS, a default repository is automatically created
under the SASUSER library. (A repository is a library managed by the Common
Metadata Repository (CMR) that contains information about data tables and columns.
A repository does not contain the actual tables; instead, it contains data about the
tables.) �

Exporting Metadata from SAS/Warehouse Administrator
In the SAS/Warehouse Administrator Explorer, position the cursor on the data store

for which you want to export metadata. This example exports an OLAP MDDB that is
grouped in an OLAP Group of type MOLAP. Even though you cannot export an OLAP
Group of type MOLAP or ROLAP, exporting from the group lets you export multiple
objects if appropriate. Therefore, for this example, select the OLAP Group MOLAP Group.

Click the right mouse button, and select Export Metadata. The Export Format
Selection window displays:

In the Export Format Selection window, select SAS/EIS Metabase as the export
format, and then click OK . The Export Metadata to SAS/EIS window displays:

318 Accessing Metadata in SAS/EIS Software Chapter 16

Under Available Tables, select the OLAP MDDB Sum 12 OLAP MDDB, and select
the right arrow to move it to Selected Tables.

Click OK .
The metadata for the OLAP MDDB is exported from SAS/Warehouse Administrator

and automatically registered in the default repository for SAS/EIS. When the export is
complete, you will receive a confirmation message to which you click OK .

Note: When you export metadata for an OLAP Group of type HOLAP to SAS/EIS, in
addition to automatically registering the metadata in a repository, distributed
multidimensional metadata is also automatically registered. That is, you do not need to
issue the MDMDDB command in SAS/EIS to register the definition. �

Accessing Metadata in SAS/EIS Software
To access the exported and registered metadata, first invoke SAS/EIS software, which

displays the EIS Main Menu:

Exploiting Warehouse Metadata Accessing Metadata in SAS/EIS Software 319

Double-click the Metabase icon, which opens the Metabase window. The window
displays the active repository, which for this example is the default repository
SASUSER, and then lists the registered files.

You can view the OLAP MDDB by selecting the table, then clicking View :

320

321

P A R T5

Appendices

Appendix 1.Converting Metadata for Environments and Warehouses 323

Appendix 2.Adding the Example Environment 333

Appendix 3.Customizing the SAS/Warehouse Administrator
Interface 337

Appendix 4.Metadata Export Reference 347

Appendix 5.Add-in Code Generators and the Process Library 355

Appendix 6.Recommended Reading 375

322

323

A P P E N D I X

1
Converting Metadata for
Environments and Warehouses

Overview 323

Creating a Directory Structure for the New Environment 324
Inspecting the Pathname for the Old Environment 325

Converting a Release 1.x Environment and Its Warehouses 325

Opening a Converted Environment for the First Time 327
Verifying Local Resources in the Converted Environment 327

Local Resources with Fully Qualified Pathnames 327

Local Resources with Relative Pathnames 328
Process Flows in the New Process Editor 328

Overview 328
What the Converted Process Flows Look Like 329

Testing Converted Process Flows 331

Overview
If you have used SAS/Warehouse Administrator Release 1.1, 1.2, or 1.3 to create

Data Warehouse Environments, you must convert the metadata repositories in these
old Environments to Release 2.0 format in order to use these Environments in SAS/
Warehouse Administrator Release 2.0. A Metadata Conversion wizard is provided that
will convert Release 1.x metadata to Release 2.0 metadata.

To invoke the Metadata Conversion wizard, run SAS/Warehouse Administrator
Release 2.0, add a new Environment to the desktop. In the Path field for the new
Environment, specify the path to a Release 1.x Environment’s metadata repository that
has not been converted to Release 2.0 format. The Metadata Conversion wizard will
display.

The Metadata Conversion wizard
� copies the Environment metadata repository (libname _MASTER) for a Release 1.x

Warehouse Environment that you specify
� copies the Warehouse metadata repositories (libname _DWMD) for each Data

Warehouse within the Environment

� creates Release 2.0 metadata repositories for the new Environment and for each of
its Data Warehouses in the locations and with the options that you specify; by
default, the new repositories are SAS Version 7 libraries

� creates a default process flow and Job for each data store with its own LOAD step
in the original Environment.

The Metadata Conversion wizard operates under the following rules:
� The wizard can only be invoked from the SAS/Warehouse Administrator Release

2.0 interface, as previously described.

324 Creating a Directory Structure for the New Environment Appendix 1

� The destination directories that you specify for the converted metadata
repositories must exist on the file system. The wizard will not create them for you.

� The destination directories must be different from the ones storing the original
metadata.

� The destination directories that you specify for the converted metadata
repositories must be empty.

Note: The conversion wizard does not alter the old Environment. �

The wizard copies the old metadata, converts the copy to Release 2.0 format, and
saves the Release 2.0 metadata to the locations that you specify.

Note: The conversion wizard only converts the Environment metadata repository
(libname _MASTER) and the Warehouse metadata repositories (libname _DWMD) for
each Data Warehouse within the Environment. �

The converted Warehouse Environment and its Data Warehouses will point to the
data stores, code libraries, and other resources as they are specified in the metadata for
the original Environment. For details, see “Verifying Local Resources in the Converted
Environment” on page 327.

Note: You cannot use the Release 2.3 SAS/Warehouse Administrator Metadata API
to access metadata from previous releases. �

If such access is attempted, when the _SET_PRIMARY_REPOSITORY_ method is
called, a message will appear indicating that the metadata must first be converted. The
only way to convert the metadata is to invoke the Metadata Conversion wizard, as
previously described.

Creating a Directory Structure for the New Environment

The Metadata Conversion wizard requires you to specify directories for the converted
Warehouse Environment and for each of its Data Warehouses. The wizard will not
automatically create these directories. Accordingly, you might want to create these
directories before starting the Metadata Conversion wizard. Keep the following in mind
as you create these directories:

� The destination directories must be different from the ones storing the original
metadata.

� The destination directories that you specify for the converted metadata
repositories must be empty.

� The Warehouse Environment metadata repository should have a unique pathname,
and each Data Warehouse metadata repository should have a unique pathname.

Here is an example of a valid directory structure for an Environment (_env) and two
Data Warehouses:

.\Project-2_env

.\Project-2_wh1

.\Project-2_wh2

Later, you might want to add directories for any local data stores, code libraries, or
other local resources that will eventually be part of the new Warehouse Environment.
These directories are not required for metadata conversion, however.

Converting Metadata for Environments and Warehouses Converting a Release 1.x Environment and Its Warehouses 325

Inspecting the Pathname for the Old Environment
In the metadata for the Warehouse Environment to be converted, the physical path

for the metadata repository might be entered as a relative pathname. That is, the path
for the metadata library _MASTER can be entered with a pathname such as
.\Project-1_env rather than a fully qualified pathname such as
D:\Dw_projects\Project-1_env. In order for the Metadata Conversion wizard to
handle relative pathnames properly, start SAS in a directory that will resolve the
pathname to the metadata library _MASTER .

For example, suppose that the pathname for a particular Warehouse Environment is
.\Project-1_env. To resolve this relative pathname, the current directory shown at
the lower right of the SAS window would have to be the parent directory for the
Project-1 directory.

Before running the Metadata Conversion wizard, inspect the pathname of the
Warehouse Environment that you want to convert. Here is one way to do that.

1 Using the old version of SAS that was used to create the Warehouse Environment
to be converted, start SAS/Warehouse Administrator as if you were going to work
with that Environment.

The icon for the Environment to be converted should appear on the desktop.
2 Position the cursor on the Environment, click the right mouse button and select

Properties.
The Data Warehouse Environment Properties window displays.

3 Inspect the pathname in the Path field.

If the pathname in an Environment Path field is a relative path, when using the
Metadata Conversion wizard, start SAS in a directory that will resolve the pathname to
the metadata library _MASTER .

If the pathname in an Environment Path field is a fully qualified path, when using
the Metadata Conversion wizard, you can start SAS in any convenient directory.

Converting a Release 1.x Environment and Its Warehouses
Here is one way to convert the metadata repositories in a Warehouse Environment

and its Data Warehouses. Some of the steps provide instructions for dealing with
relative pathnames, which you might or might not have.

1 Start SAS/Warehouse Administrator Release 2.0.
2 Verify that the current directory shown at the lower right of the SAS window is

appropriate for the Warehouse Environment that you want to convert to Release
2.0 format. If it is not, change the current directory as appropriate. For details,
see “Inspecting the Pathname for the Old Environment” on page 325.

For example, suppose that the correct parent directory for a given Warehouse
Environment is D:\Dw_projects\.

3 On the SAS/Warehouse Administrator desktop, position the cursor in an empty
area, click the right mouse button, and select

Add Item Data Warehouse Environment

The Data Warehouse Properties Window displays.
4 In the Path field, use the right arrow to select the directory associated with the

metadata repository for the Warehouse Environment that you want to convert to
Release 2.0 format.

326 Converting a Release 1.x Environment and Its Warehouses Appendix 1

For example, suppose that the fully qualified pathname for a particular
Warehouse Environment is D:\Dw_projects\Project-1_env.

5 Click OK .
The Metadata Conversion wizard displays.

6 Click Next .
The Metadata Conversion Read Me File tab displays.

7 When you are finished reading the Read Me tab, click Next .
The Environment Information tab displays.

8 On the Environment Information tab, verify that the Path for the Environment
and its Data Warehouses will resolve in the current directory shown at the lower
right of the SAS window. For example, if the current directory is
D:\Dw_projects\, the relative paths .\Project-1_env and .\Project-1_wh1
will resolve.

9 When finished with the Environment Information tab, click Next .
The Metadata Destination tab for the new Environment displays.

10 On the Environment Metadata Destination tab, click Browse to select the
directory for the new metadata repository (libname _MASTER). This directory
must already exist, or you will have to create it now. For details, see “Creating a
Directory Structure for the New Environment” on page 324.

For example, for an Environment, you might select a path such as
D:\NewDw_projects\Project-2_env.

11 When finished with this tab, click Next .
The Metadata Destination tab for a Data Warehouse within the new

Environment displays.
12 On the Warehouse Metadata Destination tab, click Browse to select the directory

for the new metadata repository (libname _DWMD). This directory must already
exist, or you will have to create it now.

For example, for a Warehouse, you might select a path such as
D:\NewDw_projects\Project-2_wh1.

13 When finished with this tab, click Next .
The Metadata Destination tab for any remaining Data Warehouses within the

new Environment displays. Repeat the step above for all Data Warehouses in the
current Environment.

14 When finished with the Warehouse Metadata Destination tab, click Next .
The Begin Metadata Conversion tab displays.

15 Verify that the information on the Conversion tab is correct, and then click Finish .
The old Environment metadata repository is copied, and new metadata

repositories for the Environment and its Data Warehouses are created in the
locations that you specified. An icon for the new Environment is added to the SAS/
Warehouse Administrator desktop.

See the SAS log for any errors and for a detailed record of what occurs during
the metadata conversion. If the SAS log shows no errors, the new Warehouse
Environment is ready to use in SAS/Warehouse Administrator Release 2.0.

Unless you specified otherwise, the new metadata repositories are SAS Version 7
libraries. They contain Environment metadata or Warehouse metadata appropriate for
SAS/Warehouse Administrator Release 2.0. The converted Warehouse Environment and
its Data Warehouses will point to the data stores, code libraries, and other resources as
they are specified in the metadata for the original Environment. Default Process Flows
and Jobs will have been created for all data stores that had Process Flows in the
original Environment.

Converting Metadata for Environments and Warehouses Local Resources with Fully Qualified Pathnames 327

Opening a Converted Environment for the First Time
To test the converted Environment, open it in the SAS/Warehouse Administrator

Explorer. The steps below assume that the SAS/Warehouse Administrator Release 2.0
desktop is displayed and that there is an icon for the new Environment on the desktop.

1 Verify that the current directory shown at the lower right of the SAS window is
appropriate for the new Warehouse Environment—the one in Release 2.0 format.
If it is not, change the current directory as appropriate. For details, see
“Inspecting the Pathname for the Old Environment” on page 325.

For example, suppose that the correct parent directory for a converted
Warehouse Environment is D:\NewDw_projects\.

2 Position the cursor on the new Environment, click the right mouse button, and
select Edit.

The Environment should open in the SAS/Warehouse Administrator Explorer.
You should be able to display its Data Warehouses and other resources normally.

The Release 2.0 Explorer has not changed much from previous releases. For details
about the Explorer, click its window, then from the main menu, select

Help Using This Window

Verifying Local Resources in the Converted Environment
As previously noted, the converted Warehouse Environment and its Data Warehouses

will point to the data stores, code libraries, and other resources as they are specified in
the metadata for the original Environment. This is especially significant for local
resources.

Local Resources with Fully Qualified Pathnames
If the pathname for a local resource is specified as a fully qualified pathname in the

original Warehouse Environment, the converted Environment will use the same
resource as the original Environment. SAS/Warehouse Administrator Release 2.0 can
use resources that were registered in Release 1.x Warehouse Environments. No updates
are necessary to make them work in Release 2.0.

For example, suppose that a R1.x Environment resides in the directory
D:\r13_projects_env. Suppose also that the global metadata for the R1.x
Environment specifies a source code library that has a fully qualified pathname of
D:\r13_projects_src_code. When you convert the R1.3 Environment to a R2.0
Environment, the path for the new Environment might be D:\r20_projects_env.
However, the global metadata for the R2.0 Environment still points to the source code
library at D:\r13_projects_src_code.

You might want your new R2.0 Environment to point to resources that reside in
locations that were convenient for the old R1.3 Environment. If you do not want to use
an old local resource that is specified in the converted metadata, you could

� copy the old resource to an appropriate local directory for the new Environment.
Update the Release 2.0 metadata for that resource so that it points to the new
location.

� create a new local resource and update the Release 2.0 metadata for that resource
so that it points to the new location.

328 Local Resources with Relative Pathnames Appendix 1

Local Resources with Relative Pathnames
If the pathname for a local resource is specified as a relative pathname in the original

Warehouse Environment, the converted Environment will attempt to resolve the
pathname relative to the current directory shown at the lower right of the SAS window.
It is possible that a relative path that worked in the old Environment will not work in
the new Environment. To address that issue, you could do either of the following:

� Copy the old resource to an appropriate local directory for the new Environment.
Update the Release 2.0 metadata for that resource so that it points to the new
location.

� Create a new local resource. If necessary, update the Release 2.0 metadata for that
resource so that it points to the new location.

If the Release 2.0 metadata specifies the location of local resources with relative
pathnames, and if you create a directory structure for the new Environment that is
similar to the directory structure for the old Environment, you might not have to
update the metadata for the local resources.

For example, suppose that a Release 1.x Environment included a SAS library
definition whose pathname was specified as ._lib-1. If the directory structure that
you create for the Release 2.0 Environment included a ._lib-1 directory, you might
not have to update the metadata for this library in order for it to be accessible in the
Release 2.0 Environment. If you want to access the old content at the new location,
copy the contents of the old directory to the new directory. If you want to create new
content in the new directory, leave the new directory empty for now. Later, in SAS/
Warehouse Administrator Release 2.0, you can specify new information to be written to
the ._lib-1 library.

Process Flows in the New Process Editor

Overview
After an Environment has been converted with the Metadata Conversion wizard, and

you have verified that the Environment’s metadata is pointing to the correct local data
stores, code libraries, or other local resources, the processes for its tables should work
as they did before the conversion. However, before you try executing processes in the
new Process Editor, keep the following in mind:

� The Release 2.0 Process Editor has changed considerably from previous releases.
For details about the Process Editor, click its window, then from the main menu,
select

Help Using This Window

� The Metadata Conversion wizard creates a default process flow and Job for each
data store with its own LOAD step in the original Environment. As a result,
complex Process Flow diagrams in your old Environment will be separated into
their constituent diagrams—one for each data store with a LOAD step.

� In Release 2.0, the steps for executing a process flow have changed. Details are
provided in the next section.

Converting Metadata for Environments and Warehouses What the Converted Process Flows Look Like 329

What the Converted Process Flows Look Like
The Metadata Conversion wizard creates a default process flow and Job for each data

store with its own LOAD step in the original Environment. For example, suppose that
before metadata conversion, the process flow for Credit Data Table looked like the one
in Display A1.1 on page 329.

Display A1.1 Release 1.x Process Flow

In a Release 1.x process flow, each icon (with the exception of inputs to ODDs) has its
own load step. Accordingly, in the previous display, ODD 1 and Credit Data Table each
have their own LOAD steps.

After running the Metadata Conversion wizard, there would be a Job and a data flow
for ODD 1, and there would be a separate Job and data flow for Credit Data Table. For
example, after metadata conversion, if you opened ODD 1 in the Release 2.0 Process
Editor, the following pair of items would be displayed in the left panel:

Display A1.2 ODD 1 Release 2.0 Job Hierarchy

In Display A1.2 on page 329, the item with the rectangle around it is the output
table for the Job. The Job is represented by the parent icon of the output table.

A Job is a new Process Editor object in Release 2.0. It is a metadata record that
specifies the processes that create one or more data stores. The processes can be
specified with a process flow diagram in the Process Editor. If a process flow diagram is
specified, SAS/Warehouse Administrator can generate code for the Job. Alternatively, a
Job can reference a user-supplied program that contains the processes that create the
data store(s). A Job can include scheduling metadata that enables the process flow or
user-supplied program to be executed in batch mode at a specified date and time.

In the Process Editor, to the right of the Job and its output table, any process flow
associated with the current Job is displayed, as shown in Display A1.3 on page 330.

330 What the Converted Process Flows Look Like Appendix 1

Display A1.3 ODD 1 Release 2.0 Process Flow

Credit Data Table would have its own Job and process flow, as shown in Display A1.4
on page 330 and Display A1.5 on page 330.

Display A1.4 Credit Data Table Release 2.0 Job Hierarchy

Display A1.5 Credit Data Table Release 2.0 Process Flow

Note that in Display A1.5 on page 330, ODD 1 appears as an input to a mapping
process that feeds Credit Data Table. The Credit Data Table Job created by the
Metadata Conversion wizard will not generate the code that creates and loads ODD 1.
ODD 1 is assumed to be loaded and available for the Credit Data Table Job. In order to
create Credit Data Table, then, you would execute the ODD 1 Job shown in Display A1.2
on page 329, then execute the Credit Data Table Job shown in Display A1.4 on page 330.

Note: In Release 2.0, you can specify multiple output tables in one Job as long as
the metadata for the output tables is within the same repository (within the same Data
Warehouse, for example). �

The Metadata Conversion wizard does not automatically combine all of the data
stores (output tables) in a given process flow into one Job because

� each data store can only be created by one Job
� the same data store can be used in several different Jobs
� the site administrator must decide which Job should create the data store, and

which Jobs should assume that this data store has already been created.

Converting Metadata for Environments and Warehouses Testing Converted Process Flows 331

Also, not all of the metadata for the data stores in a given process flow is in the same
repository. For example, in Display A1.5 on page 330, the metadata for ODD 1 is stored
at the Environment level (in the _MASTER repository), while the metadata for Credit
Data Table is stored at the Data Warehouse level (in the current _DWMD repository).

For details about specifying multiple output tables in one Job, see the “Maintaining
Jobs” chapter in this document.

Testing Converted Process Flows
One way to test a Release 1.x process flow after it has been converted to Release 2.0

is to execute each Job interactively.

Note: Load the input tables first, then the output tables. �

For example, in order to test the Credit Data Table process flow, you would execute
the ODD 1 Job shown in Display A1.2 on page 329, then execute the Credit Data Table
Job shown in Display A1.4 on page 330. Here are the general steps for executing
process flows in Release 2.0.

1 If you have not done so already, open the converted Environment in SAS/
Warehouse Administrator Release 2.0.

For details, see “Opening a Converted Environment for the First Time” on page
327.

2 In the Explorer, expand the relevant groups until the table whose process flow you
want to execute is displayed.

3 In the Explorer, position the cursor on the table whose process flow you want to
execute, click the right mouse button, and select Process.

The table you selected will be opened in the Process Editor. The left panel of the
Process Editor will contain a Job and an output table for the table you selected,
similar to Display A1.2 on page 329. The right panel will contain the process flow
for the table you selected, similar to Display A1.3 on page 330.

4 In the left panel (Job Hierarchy view), position the cursor on the Job for the table
whose process flow you want to execute, click the right mouse button, and select
Run.

The Load Generation/Execution Properties window displays.
5 On the Load Generation/Execution Properties window, click Submit .

The process flow will be executed.
6 To verify that the process flow executed successfully, review the SAS log and check

the output of the process on the file system.

If the process flow fails to execute because a local data store, code library, or other
local resource cannot be found, verify that the metadata for this object in the Release
2.0 Environment is pointing to the correct location. For details on this issue, see
“Verifying Local Resources in the Converted Environment” on page 327.

332

333

A P P E N D I X

2
Adding the Example Environment

Overview 333

PC Host Instructions 333
UNIX Host Instructions 334

Overview
When you install SAS/Warehouse Administrator software, an example Warehouse

Environment called Marketing Warehouse is also installed. This appendix describes how
to add the Marketing Warehouse Environment to the SAS/Warehouse Administrator
desktop.

You can use the Marketing Warehouse Environment to view the kind of metadata
that is specified for various kinds of groups, data stores, and processes. This can help
you understand what kind of metadata you must enter for similar objects in your data
warehousing project.

PC Host Instructions
1 Execute !SASROOT\whouse\sasmisc\windemo.exe. The default location the files

will be restored to is c:\temp\dwdemo.
2 After the files have been restored, the following directory structure will be created:

c:\temp\dwdemo
c:\temp\dwdemo_dwmd
c:\temp\dwdemo_master
c:\temp\dwdemo\fmts
c:\temp\dwdemo\jobinfo
c:\temp\dwdemo\master_jobinfo
c:\temp\dwdemo\null
c:\temp\dwdemo\sdata
c:\temp\dwdemo\src
c:\temp\dwdemo\wdata

3 This demo contains formats that are referenced by placing the following libname
statement in your autoexec file:

libname library ’dwdemo\fmts’;

4 Invoke Version 8 of SAS.
5 To add the sample Environment, change the current working directory to the

directory where the sample is installed. On the SAS command line, type:

334 UNIX Host Instructions Appendix 2

x cd c:\temp\

Where c:\temp\ is the main directory where the example Environment is
installed. This statement can also be put in your autoexec file.

6 Type dw on the command line to invoke SAS/Warehouse Administrator software.

7 After the Desktop window initializes, select the Add Item menu option and then
the Data Warehouse Environment menu option from the File pull-down menu.

8 In the Data Warehouse Environment Properties window, type the following in the
Path field:

dwdemo/_master

Leave the other fields as they are and click OK .

9 The sample warehouse is now added to the desktop. Double-click the
Environment’s icon to begin exploring it.

Note: If you receive the following message

ERROR: Library _MASTER does not exist

then the current working directory is not set correctly. �

For instructions about how to set the current working directory, see Step 2. You will
need to exit SAS/Warehouse Administrator software and re-invoke it to have the
current working directory modifications take effect.

UNIX Host Instructions
1 Restore the !SASROOT/misc/warehouse/unxdemo.tar file to the location where

the example Environment will reside. In these instructions, this location will be
referred to as /usr/dw. If you do not know the location of !SASROOT, please
contact your SAS representative.

2 Change to the main directory for the sample Environment: cd /usr/dw

3 Uncompress the sample Environment: tar -xvf !SASROOT/misc/warehouse/
unxdemo.tar

4 After the files have been restored, the following directory structure will be created:

./dwdemo/

./dwdemo/_dwmd

./dwdemo/_master

./dwdemo/fmts

./dwdemo/jobinfo

./dwdemo/master_jobinfo

./dwdemo/null

./dwdemo/sdata

./dwdemo/src

./dwdemo/wdata

5 This demo contains formats that are referenced by placing the following libname
statement in your autoexec file:

libname library ’dwdemo\fmts’;

6 Invoke Version 8 of SAS.

7 To add the sample Environment, change the current working directory to the
directory where the sample is installed. On the SAS command line, type

Adding the Example Environment UNIX Host Instructions 335

x cd /usr/dw

Where /usr/dw is the main directory in which the example Environment is
installed. This statement can also be put in your autoexec file.

8 Type dw on the command line to invoke SAS/Warehouse Administrator software.

9 After the Desktop window initializes, select the Add Item menu option and then
the Data Warehouse Environment menu option from the File pull-down menu.

10 In the Data Warehouse Environment Properties window, type the following in the
Path field:

dwdemo/_master

Leave the other fields as they are and click OK .

11 The sample warehouse is now added to the desktop. Double-click the Environment
icon to begin exploring it.

Note: If you receive the following message

ERROR: Library _MASTER does not exist

then the current working directory is not set correctly. �

For instructions about how to set the current working directory, see Step 2. You will
need to exit SAS/Warehouse Administrator software and re-invoke it to have the
current working directory modifications take effect.

336

337

A P P E N D I X

3
Customizing the SAS/Warehouse
Administrator Interface

Overview 337

Add-In Tools 337
Customizing the Add-In Tools Registry 338

Registry Format 338

Example Add-In Tools Registry 339
Importing Column Metadata 340

Predefined Column Formats 340

User-Defined Formats and Informats 341
Customizing the Components List for the Expression Builder Window 342

Overview 342
Creating _SASWA.WAXFORM 343

Overview
Customizing the SAS/Warehouse Administrator interface requires writing new SAS

Component Language code (SCL code) or modifying existing SCL code. For information
about SCL, refer to SAS Component Language: Reference, Version 7 or later.

Add-In Tools
Add-in tools are SCL applications that extend the functionality of SAS/Warehouse

Administrator. If any add-ins have been installed in your copy of SAS/Warehouse
Administrator, you can display them as follows:

1 Open an Environment in the SAS/Warehouse Administrator Explorer.
2 From the main menu, select

Tools Add-Ins

A list of add-ins will be displayed.

Add-in tools are used to customize SAS/Warehouse Administrator for your site. You
can write your own tools, or you can obtain the tools that have been developed by SAS.
To obtain the add-in tools that have been developed by SAS, see “Customizing SAS/
Warehouse Administrator” on page 17. Use this section as a reference when writing
your own add-in tools.

338 Customizing the Add-In Tools Registry Appendix 3

Customizing the Add-In Tools Registry
The Add-In Tools Registry is a SAS data set that contains references to any add-in

tools that have been installed for a given copy of SAS/Warehouse Administrator. When
you install add-in tools that have been developed by SAS, the registry is updated by the
installation routine. If you develop your own add-in tool, you must update the Add-In
Tools Registry so that your tool will be available in SAS/Warehouse Administrator.

The purpose of the tool registry is to provide greater flexibility in the entry that is
called, as well as the parameters that the entry is called with. The registry data set is
contained in the SASHELP library and has a name of WATOOLS. Any site-specific
add-ins can be installed into the SASHELP.WATOOLS, or can be installed as
_SASWA.WATOOLS. If the _SASWA.WATOOLS data set is found, its entries and not
those of SASHELP.WATOOLS will be used.

Registry Format
The Add-In Tools Registry has the following format:

MNEMONIC is an indicator of which frame the SCL program is being called from.
Examples:

� USERTOOL (called from the Explorer)

� USERPRCS (called from the Process Editor)

� USERSETP (called from the Setup Frame)

ENTRY is the four-level name of the entry to call. This entry can be of any
type that can be called using the SCL CALL DISPLAY function.

NAME is the name of the tool or tool group. This would be the name shown
on the secondary pop-up list when the Tools menu option is selected.

ACTIVE is an integer variable, which indicates whether a tool is currently
active. A value of zero or missing would indicate that the tool is
currently inactive. Any other value indicates that the tool is active.
This is provided for entries to remain in the table, but in a
deactivated state.

PARMFMT is an integer variable indicating the type of parameter list expected
by the add-in:

� 0 — The add-in expects no parameters. There is no entry
statement in the called program, or the entry statement
contains optional parameters. This parameter format is
consistent with Release 1.1

� 1 — The tool expects 1 parameter. This parameter is a list of
named items that allow information to be passed from SAS/
Warehouse Administrator to the called add-in.

L_PARMS — The list of named items that allow information
to be passed from the called add-in. The current list of named
items that can be passed are

� REFRESH — A returned numeric value that indicates
that SAS/Warehouse Administrator should refresh the
displayed screen upon return from the add-in. If a value
of 1 is returned, SAS/Warehouse Administrator will
refresh the screen as appropriate upon return. Any other
value will be ignored and no refresh will be performed.

Customizing the SAS/Warehouse Administrator Interface Example Add-In Tools Registry 339

� MNEMONIC — A character item that is passed to the
add-in indicating the context in which the add-in was
called. The value corresponds to the allowable mnemonics
as documented under the registry format.

The entry statement for the called tool should be coded as
follows:

entry l_parms 8;

� 2 — The tool uses the Metadata API and thus expects the
following three parameters.

� ID — The metadata ID of the object that is currently
selected in the active SAS/Warehouse Administrator
frame. If no object is currently active, this field contains a
blank value.

� I_API — An initialized instance of the metadata API
object.

Note: The called application should not terminate the
API object passed. It will be terminated when control is
returned to the SAS/Warehouse Administrator. �

� L_PARMS — The list of named items that allow
information to be passed from the called add-in. See the
previous paragraphs for a more detailed description of the
contents of this list.

The entry statement for the called tool should be coded as
follows:

entry id $ 26 I_api 8 l_parms 8;

DESC is a 200-character field that will contain a description of the entry in
this row. It will not be shown through the user interface but is
merely for information purposes when editing the table.

Example Add-In Tools Registry

Here is an example that clarifies how tool registry parameters affect the availability
of add-in tools available from the Add-Ins pull-down menu. Suppose that the
SASHELP.WATOOLS data set contained the information in the following table.

Table A3.1 Example Add-In Tools Registry

MNEMONIC ENTRY NAME ACTIVE
PARM-
FMT DESC

USERTOOL _SASWA.DW.USERTOOL.SCL User-Written
Tools

1 0

USERSETP SASHELP.ADMIN.WATOOLS.FRAME Administration
Tools

1 1

USERTOOL SASHELP.DWEXPLT.IMPORT.FRAME Import Data
Model

1 2

340 Importing Column Metadata Appendix 3

MNEMONIC ENTRY NAME ACTIVE
PARM-
FMT DESC

USERTOOL SASHELP.DWEXPLT.EXPORT.FRAME Export Data
Model

0 2

USERPRCS _SASWA.DW.USERPRCS.SCL User Written
Tools

1 0

When the

File Tools Add-Ins

pull-down menu option is selected from the Explorer, a query will be issued against the
data set with an alias USERTOOL and Active=1. If more than one row is found to
match the query, a secondary pop-up list is shown that contains the names of the
registered add-in tools. For example,

� User-Written Tools
� Import Data Model

Note that the Export Data Model add-in is not included because it is marked as
Inactive. If only one row is found, then no pop-up list is displayed. When you select an
add-in tool, a search is performed for the corresponding catalog entry. If the entry is not
found, an error message is displayed stating that the add-in could not be found. If the
entry is found, it is called by using a CALL DISPLAY SCL function.

Importing Column Metadata
The Columns tab on the Table Properties frame is used to define column metadata

for ODDs, detail tables, and other tables. SAS/Warehouse Administrator lets you
import column metadata from various sources, including SAS data sets and views, the
supplied data location, ODDs, detail tables, PROC CONTENTS output, and COBOL file
descriptors. You can also add your own list of import tools to the catalog entry
SASHELP.DW.USERIMPT.SCL.

Select

Edit Import Other

from the pull-down menu or click Import and then select

Other

on the Columns tab to drive the first USERIMPT.SCL entry found in the search path.
By default, SASHELP.DW.USERIMPT.SCL displays a message that says that there are
no user-defined metadata import tools available. To replace this message with a list of
your own tools, put your own entry in USERIMPT.SCL that points to the catalog entries
for your tools. The recommended catalog.library for this new entry is _SASWA.DW.

Predefined Column Formats
Your column metadata import tools can be written to pass back a list of columns of a

predefined format. SAS/Warehouse Administrator will convert that list into column
metadata. This will allow you, for example, to define the metadata for a particular kind
of detail table by selecting a user-defined tool from the

Edit Import Other

Customizing the SAS/Warehouse Administrator Interface User-Defined Formats and Informats 341

selection on the Edit menu or from the

Other

selection displayed by clicking Import .
To accomplish this, you must define the parameter l_addcols in the SCL source

code for your metadata import tool. l_addcols will contain one or more sublists: one
sublist for each column in the table you want to create. Each sublist must have the
following format:

(NAME=column-name $8
DESCRIPTION=column-description $200
TYPE=column-type $1 (C or N)
LENGTH=column-length 8 (positive integer)
FORMAT=column-format $32
INFORMAT=column-informat $32

)

If your metadata import tool uses the l_addcols parameter to define a set of column
formats, SAS/Warehouse Administrator will add this information to the column
metadata displayed on the Columns tab.

The only named item required in the column sublist is NAME.
NAME must be a valid SASNAME, 1 to 32 characters in length. If the NAME named

item is not on the column sublist, an error message will be displayed and that column
sublist will be ignored. However, SAS/Warehouse Administrator will continue trying to
add the other columns in the l_addcols.

If the name supplied is a duplicate of a name already registered in column metadata,
the "Duplicate Name" dialog box will be displayed asking for a different name for the
column.

Processing will continue after a valid name is provided or that column will not be
added if CANCEL is selected on the dialog box.

If DESCRIPTION, FORMAT, and INFORMAT are not provided, they will be
defaulted to _BLANK_. If TYPE is not provided, it will default to C. If LENGTH is not
provided, it will default to 8 if type is N or 200 if type is C.

If the TYPE specified is not a valid value (C or N), the default C will be used. If the
LENGTH specified is not a valid length (positive integer), the type-dependent default
will be used.

User-Defined Formats and Informats

On the Columns and Column Roles tabs, when you select the down control widget,
the default pop-up lists displayed for formats and informats are as follows:

For FORMAT: Type C: SASHELP.FSP.FMTC.HELP
Type N: SASHELP.FSP.FMTN.HELP
Unknown Type: SASHELP.FSP.FMT.HELP

For INFORMAT: Type C: SASHELP.FSP.IFMTC.HELP
Type N: SASHELP.FSP.IFMTN.HELP
Unknown Type: SASHELP.FSP.IFMT.HELP

To provide your own pop-up list, SAS/Warehouse Administrator searches for the
following entry names in the search path:

For FORMAT: Type C: USERFMTC
Type N: USERFMTN

342 Customizing the Components List for the Expression Builder Window Appendix 3

Unknown Type: USERFMT

For INFORMAT: Type C: USERIFMC
Type N: USERIFMN
Unknown Type: USERIFM

The entry type for any of these user-defined entries can be either HELP, LIST, or
MENU. (The SCL command that will be used is LISTC.) The value returned should be
the selected format or informat character string.

These same pop-up lists are also used in the pop-up lists on the Add Column and
Define Statistics for Analysis Columns frames (the frames driven from the Column
Roles tab). The Expression Builder frame for defining derived mappings does not use
these user-written pop-up lists.

Customizing the Components List for the Expression Builder Window

Overview
In SAS/Warehouse Administrator, you use the Expression Builder window to define a

SAS expression, which can transform columns, provide conditional processing, calculate
new values, and assign new values. For example, you could use the Expression Builder
window when defining properties for a Mapping process to convert a character date into
a SAS date.

In the Expression Builder window, under the label Components, is a list of expression
components from which you select as you define an expression.

SAS/Warehouse Administrator obtains the default list of expression components that
display under the label Standard from the SAS data set SASHELP.WAXFORM. For
example, the following Expression Builder window displays the default character
formats:

Customizing the SAS/Warehouse Administrator Interface Creating _SASWA.WAXFORM 343

To add your own expression components, you can create a SAS data set named
_SASWA.WAXFORM, using the same format as SASHELP.WAXFORM. When
_SASWA.WAXFORM exists, the Expression Builder window displays the label
Extensions, which lists the customized expression components, for example, My
Informats and My Macros.

Note: For more information about the Expression Builder window and how to define
expressions, see the online Help that displays by clicking Help . �

Creating _SASWA.WAXFORM
To add your own expression components, create a SAS data set named

_SASWA.WAXFORM, using the same format as SASHELP.WAXFORM. The format of
SASHELP.WAXFORM is as follows:

Table A3.2 SASHELP.WAXFORM Format

Column
Name

Type Length Format Informat Label

category C 40 $40. $40. Primary categorization of
expression component.

area C 40 $40. $40. Secondary categorization of
the expression component
that is specific to the
category.

name C 40 $40. $40. Name of expression
component.

desc C 200 $200. $200. Description of expression
component.

text C 198 $198. $198. Text of expression
component.

344 Creating _SASWA.WAXFORM Appendix 3

Column
Name

Type Length Format Informat Label

preblank N 8 BEST12. BEST32. Indicates whether a blank
should be inserted before the
text for this transformation.
Less than 1 = no preceding
blank. 1 or more = add a
preceeding blank.

pstblank N 8 BEST12. BEST32. Indicates whether a blank
should be inserted after the
text for this transformation.
Less than 1 = no succeeding
blank. 1 or more = add a
succeeding blank.

usedesc N 8 BEST12. BEST32. A variable used to determine
if the description field
entered for this component
should replace the
description for the
expression. 1 replaces the
description. 0 says that the
description is for
informational purposes.

active N 8 BEST12. BEST32. Indicates whether this entry
is active. 1 = active entry
and should appear as a
component. 0=not active.

When _SASWA.WAXFORM exists, the Expression Builder window displays the label
Extensions, which lists the customized expression components. The items in the
components list are taken from the list of unique values of the CATEGORY column in
_SASWA.WAXFORM.

Note the following when you create _SASWA.WAXFORM:

� The TEXT column value can contain double quotes (") or single quotes (’), but not
both.

� The combination of data set, category, area, and name makes a row unique.
Therefore, the same area name can be contained in multiple categories, and the
same name can be contained in multiple areas.

� You can insert placeholders into the TEXT column to signify the location and type
of parameters needed. The following is a list of placeholders:

Table A3.3 Text Column Placeholders

Placeholder Meaning

%character% character value

%numeric% numeric value

%datetime% SAS datetime value

%date% SAS date value

%year% 2 or 4 character year

Customizing the SAS/Warehouse Administrator Interface Creating _SASWA.WAXFORM 345

Placeholder Meaning

%quarter% the number 1-4 to represent the quarters of a year

%month% the number 1-12 to represent the month of the year

%day% the number 1-31 to represent the day of the month

%interval% a character string to represent the type of interval to use

%hour% the number 0-23 to represent the hour of the day

%minute% the number 0-59 to represent the minute of an hour

%second% the number 0-59 to represent the second of the minute

%juliandate% julian date value

346

347

A P P E N D I X

4
Metadata Export Reference

Overview 347

SAS Data Sets Exported for Shared Metadata 347
SAS Data Sets Exported for Groups and Data Stores 349

Add-In Metadata Exporters 351

Usage 351
Example Add-In Application 352

Overview

This appendix describes the format of metadata that is exported with the Export
Format Selection window. It also describes how to write your own add-in metadata
exporters.

SAS Data Sets Exported for Shared Metadata

“Exporting Host Definitions and Other Shared Metadata” on page 316 describes how
to export the metadata defined for SAS libraries, hosts, DBMS connections, and
contacts. This section describes the format of the exported data sets.

GENERAL:
Variable Type Len Pos Label

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 ID
5 VERSION Char 8 105 Version of Metadata
6 DESC Char 200 113 Description
7 PARENTNM Char 40 313 Owning Parent Name
8 PARENTTP Char 40 353 Owning Parent Type
9 PARENTID Char 17 393 Owning Parent Metadata ID

10 PARENTLB Char 8 410 Owning Parent Metadata Libref
11 MDLIBREF Char 8 418 Metadata Libref
12 MDCREATE Char 20 426 Metadata Created
13 MDMODIFY Char 20 446 Metadata Modified
14 DTCREATE Char 20 466 Data Created
15 DTMODIFY Char 20 486 Data Modified
16 NOTES Char 3 534 Notes Available

348 SAS Data Sets Exported for Shared Metadata Appendix 4

17 NOTESLOC Char 40 537 Notes Location

LIBRARY:
Variable Type Len Pos Label

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 8 88 ID
5 VERSION Char 8 96 Version of Metadata
6 LOCNAME Char 40 104 Library Name
7 LOCDESC Char 200 144 Library Description
8 ASSGNBY Char 30 344 Assigned by
9 LIBREF Char 8 374 Libref
10 ENGINE Char 8 382 Engine
11 PATH Char 40 390 Physical Path
12 LIBOPTS Char 200 430 Options

HOST:
Variable Type Len Pos Label

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 8 88 ID
5 VERSION Char 8 96 Version of Metadata
6 HOST Char 40 104 Host Name
7 LOCALE Char 10 144 Locale
8 REMOTE Char 200 154 Remote Address
9 SCRIPT Char 200 354 Remote Script
10 COMAMID Char 8 554 Access Method

DBMSCONN:
Variable Type Len Pos Label

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 8 88 ID
5 NICKNAME Char 8 96 DBMS Nickname
6 SCHEMA Char 32 104 User/Schema
7 PROTECT Char 3 136 Password Protected
8 LASTMOD Char 20 139 Password Last Modified
9 DBMSOPTS Char 200 159 Connection Options

CONTACT:
Variable Type Len Pos Label

--
1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 8 88 ID
5 VERSION Char 8 96 Version of Metadata
6 PERSNAME Char 200 104 Person Name

Metadata Export Reference SAS Data Sets Exported for Groups and Data Stores 349

7 TITLE1 Char 200 304 Title (Primary)
8 TITLE2 Char 200 504 Title (Secondary)
9 PHONE1 Char 20 704 Phone (Primary)
10 PHONE2 Char 20 724 Phone (Secondary)
11 EMAIL Char 40 744 Email Address
12 ADDR1 Char 200 784 Address (line 1)
13 ADDR2 Char 200 984 Address (line 2)
14 ADDR3 Char 200 1184 Address (line 3)
15 ADDR4 Char 200 1384 Address (line 4)

EXTATTRS:
Variable Type Len Pos Label

--
7 DESC Char 200 313 Extension Description
1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 Metadata ID
6 VALUE Char 200 113 Extension Value
5 VERSION Char 8 105 Version of Metadata

SAS Data Sets Exported for Groups and Data Stores

“Exporting Metadata for Groups and Data Stores” on page 316 describes how to
export metadata for any object displayed in the Explorer window except an
Environment object. This section describes the format of the exported data sets.

GENERAL:
Variable Type Len Pos Label

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 ID
5 VERSION Char 8 105 Version of Metadata
6 DESC Char 200 113 Description
7 PARENTNM Char 40 313 Owning Parent Name
8 PARENTTP Char 40 353 Owning Parent Type
9 PARENTID Char 17 393 Owning Parent Metadata ID

10 PARENTLB Char 8 410 Owning Parent Metadata Libref
11 MDLIBREF Char 8 418 Metadata Libref
12 MDCREATE Char 20 426 Metadata Created
13 MDMODIFY Char 20 446 Metadata Modified
14 DTCREATE Char 20 466 Data Created
15 DTMODIFY Char 20 486 Data Modified
16 SUMTYPE Char 20 506 Summary Table Type
17 NUMCHILD Char 8 526 Number of Direct Subordinates
18 NOTES Char 3 534 Notes Available
19 NOTESLOC Char 40 537 Notes Location

SUPPORT:

350 SAS Data Sets Exported for Groups and Data Stores Appendix 4

Variable Type Len Pos Label
--

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 Metadata ID
5 VERSION Char 8 105 Version of Metadata
6 ROLE Char 20 113 Support Role
7 PERSNAME Char 200 133 Person Name
8 TITLE1 Char 200 333 Title (Primary)
9 TITLE2 Char 200 533 Title (Secondary)
10 PHONE1 Char 20 733 Phone (Primary)
11 PHONE2 Char 20 753 Phone (Secondary)
12 EMAIL Char 40 773 Email Address
13 ADDR1 Char 200 813 Address (line 1)
14 ADDR2 Char 200 1013 Address (line 2)
15 ADDR3 Char 200 1213 Address (line 3)
16 ADDR4 Char 200 1413 Address (line 4)

LOCATION:

Variable Type Len Pos Label
--
1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 Metadata ID
5 VERSION Char 8 105 Version of Metadata
6 LOCROLE Char 20 113 Location Role
7 LOCNAME Char 40 133 SAS Library Name
8 LOCDESC Char 200 173 SAS Library Description
9 ASSGNBY Char 30 373 Assigned by
10 LIBREF Char 8 403 SAS Libref
11 ENGINE Char 8 411 SAS Library Engine
12 PATH Char 40 419 SAS Library Path
13 OPTIONS Char 200 459 SAS Library Options
14 STORFORM Char 8 659 Storage Format
15 TABLE Char 8 667 Table Name
16 HOST Char 40 675 Host Name
17 LOCALE Char 10 715 Locale
18 REMOTE Char 200 725 Remote Address
19 SCRIPT Char 200 925 Remote Script
20 COMAMID Char 8 1125 Access Method
21 PROTECT Char 3 1133 Protected
22 TBLTYPE Char 40 1136 DBMS Table Type
23 CONNNAME Char 40 1176 DBMS Connection Name
24 CONNICK Char 8 1216 DBMS Connection Nickname
25 CONNUSER Char 32 1224 DBMS Connection User/Schema
26 CONNOPTS Char 200 1256 DBMS Connection Options

COLUMNS:

Variable Type Len Pos Label

Metadata Export Reference Usage 351

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 Metadata ID
5 VERSION Char 8 105 Version of Metadata
6 COLNAME Char 8 113 Column Name
7 COLDESC Char 200 121 Column Description
8 COLTYPE Char 1 321 Column Type
9 LENGTH Char 8 322 Column Length

10 FORMAT Char 32 330 Column Format
11 INFORMAT Char 32 362 Column Informat
12 SUMROLE Char 20 394 Summary Role
13 CNOTELOC Char 35 414 Column Note

FISCAL:

Variable Type Len Pos Label
--

1 INFOTYPE Char 8 0 Information Type
2 OBJNAME Char 40 8 Name
3 OBJTYPE Char 40 48 Type
4 OBJ_ID Char 17 88 Metadata ID
5 STOD Char 9 105 Start Time of Day
6 SDOW Char 9 114 Start Day of Week
7 SDOM Char 9 123 Start Day of Month
8 SMOY Char 9 132 Start Month of Year

Add-In Metadata Exporters
The Export Metadata Facility allows user-supplied add-in exporters to be called

from inside SAS/Warehouse Administrator. A SAS Metadata API application can be
registered and subsequently called from the SAS/Warehouse Administrator Export
Format Selection window. The application can access the metadata through the API
and export that metadata using the desired method.

The Add-In Exporter feature is designed much like the Add-In Tools Registry. The
Add-In Exporter Registry is contained in a SAS data set. The default data set contains
the entries that register the existing SAS supplied exporter tools. This data set resides
in the SASHELP library and has a name of WAEXPRT. Any site-specific add-ins can be
installed into SASHELP.WAEXPRT, or can be installed as _SASWA.WAEXPRT. If the
_SASWA.WAEXPRT data set is found, its entries are used and not those of the
SASHELP.WAEXPRT data set.

Usage
The Add-In Exporter Registry has the following format:

MNEMONIC is an indicator of which frame the export tool is being called from:

USERTOOL — called from the Explorer

USERSETP — called from the Setup Frame

ENTRY is the four-level name of the entry to call. This entry can be of any
type that can be called using the SCL CALL DISPLAY function.

352 Example Add-In Application Appendix 4

NAME is the name of the exporter tool. This is the name shown as a
selection option in the Export Format Selection window.

ACTIVE is an integer variable, which indicates whether this exporter is
currently active. A value of zero or missing indicates that the
exporter is currently inactive. Any other value indicates the tool is
active. This is provided so entries can remain in the table even
though deactivated.

DESC is a 200-character field that contains a description of the entry in
this row. It will not be shown in the user interface but is merely for
information purposes when editing the table.

The Add-In Exporter uses the SAS Metadata API and will pass the following three
parameters to the entry specified in the registry when that exporter is selected:

ID is the Metadata ID of the object that is currently selected in the
active SAS/Warehouse Administrator frame. If no object is currently
active, this field contains a blank value.

I_API is an initialized instance of the Metadata API object.

Note: The called application should not terminate the API object
passed to it. The API object will be terminated when control is
returned to the SAS/Warehouse Administrator. �

L_PARMS is an empty SCL list that can be used to pass return code
information from the called application back to SAS/Warehouse
Administrator. The L_PARMS list is designed to contain named
items that pass information back and forth between SAS/Warehouse
Administrator and the called application. The only named item in
the list that SAS/Warehouse Administrator currently processes is
RC, which is expected to be a list.

If you choose to pass return code information back to
SAS/Warehouse Administrator (which will produce a pop-up error
message), your application should create a list with two named
items, ’RC’ and ’MSG’. The ’RC’ item is a numeric return code, the
’MSG’ item is a character string that will become the message in the
pop-up error message. Add this list you create to L_PARMS as the
named item ’RC’ to return the value to SAS/Warehouse
Administrator. A non-zero RC value will signal an error to SAS/
Warehouse Administrator.

The entry statement for the called tool should be coded as follows:

entry id $ 26 i_api 8 l_parms 8;

Example Add-In Application
Suppose you have written a Metadata API application that uses the API to access

information about a Detail Table, and the application writes the pertinent metadata
about that Detail Table and its process to an external file. You want to make this tool
available from the Explorer in SAS/Warehouse Administrator, and you want to disable
the SAS data set exporter that is provided for the Explorer. To do this, you add the
necessary information to the SASHELP.WAEXPRT data set, as follows:

Metadata Export Reference Example Add-In Application 353

Table A4.1 Example Add-In Exporter Registry

Mnemonic Entry Name Active Desc

USERTOOL SASHELP.DW.EXPAEIS.SCL SAS/EIS
Metabase

1

USERTOOL SASHELP.DW.EXPASAS.SCL SAS Datasets 0

USERSETP SASHELP.DW.EXPASASG.SCL SAS Datasets 1

USERTOOL YOURLIB.YOURAPI.APP.FRAME My Exporter 1

After this modification is made to the SASHELP.WAEXPRT data set, your changes
will be reflected in the Export Format Selection window. When you select an item in
the Explorer and choose to Export Metadata, you will have the option of selecting SAS/
EIS Metabase or My Exporter. The SAS Datasets option will no longer appear because
you have set active=0.

If you were to choose My Explorer, SAS/Warehouse Administrator will invoke
YOURLIB.YOURAPI.APP.FRAME with a CALL DISPLAY SCL statement. If the entry
is not found, an error message will be displayed.

354

355

A P P E N D I X

5
Add-in Code Generators and the
Process Library

Add-In Code Generator Technical Reference 355

Requirements 356
Usage Notes 357

Sample Add-In Code Generator 358

Process Library Technical Reference 366
Invoking the Process Library 367

Navigating the Process Library 367

General Tab 368
Library Tab 368

Help Tab 368
Attributes Tab 368

Selecting a Process Catalog 369

Selection Results 369
Process Library Registry 370

Notes 371

Example Contents for WAPRCS Data Set 372
Process Catalog Format 372

ATTRS.SLIST Example 373
BLDATTRS.SCL Example 373

Add-In Code Generator Technical Reference
An add-in code generator is a SAS Metadata API application that is registered in

SAS/Warehouse Administrator to dynamically generate the code for a process step.
These applications enable you to access and use relevant metadata to drive your table
processes.

After an add-in code generator is written and stored in the proper SAS library, you
can specify it as a user-written routine on the Source Code tab for a given process step.
For example, in Display A5.1 on page 356, an add-in code generator named
DATASTEP.MAIN.SCL has been specified for a process.

356 Requirements Appendix 5

Display A5.1 Source Code Tab With Add-in Code Generator Specified

The difference between specifying a source entry for your source code and specifying
an SCL entry is that the source entry gets included in the Job that is created, while the
SCL entry you specify gets run during the creation of that Job. The SCL entry you
supply should create the source code that will actually be run when the Job is submitted.

The add-in code generator that you specify is passed parameters that make it
context-sensitive and metadata-aware. The code you provide can use the Metadata API
to dynamically create the code for that process step.

For details about the Metadata API, see SAS/Warehouse Administrator Metadata
API Reference, Release 2.3.

Requirements
There are certain requirements you must adhere to in order to successfully take

advantage of an add-in code generator. When using this feature you are no longer only
providing code to be run to create your table, you are actually integrating your API
application with SAS/Warehouse Administrator, and that integration must follow the
rules described in this section.

SAS/Warehouse Administrator will pass these parameters, in the following order, to
your application:

ID is the metadata ID of the process object associated with the Process
Editor object you have selected.

I_API is an initialized instance of the Metadata API object. This instance
will already be initialized with the primary and possibly secondary
repositories, as appropriate for the object selected.

Note: The called application should not terminate the API object
passed. It will be terminated when control is returned to
SAS/Warehouse Administrator. �

L_PARMS is an empty SCL list that can be used to pass return code
information from the called application back to SAS/Warehouse
Administrator.

The L_PARMS list is designed to contain named items that pass
information back and forth between SAS/Warehouse Administrator

Add-in Code Generators and the Process Library Usage Notes 357

and the called application. The only named item in the list that
SAS/Warehouse Administrator currently processes is RC, which is
expected to be a list. If you choose to pass return code information
back to SAS/Warehouse Administrator (which will produce a pop-up
error message), your application should create a list with two named
items, ’RC’ and ’MSG’.

The ’RC’ item is a numeric return code, the ’MSG’ item is a
character string that will become the message in the pop-up error
message. Add this list you create to L_PARMS as the named item
’RC’ to return the value to SAS/Warehouse Administrator. A
non-zero RC value will signal an error to SAS/Warehouse
Administrator.

The entry statement for the called add-in code generator should
be coded as follows:

entry id $ 26 i_api 8 l_parms 8;

SAS/Warehouse Administrator uses the preview buffer to store generated code for all
the process steps in the Process Editor, including access code for input sources and
macro definitions between steps. Your SCL code will need to place any code it generates
into the preview buffer in order for that code to be saved or submitted for that step.

CAUTION:
Because the preview buffer is shared by the SAS/Warehouse Administrator generation
process and your add-in code generation process, it is critical that you take great care in
handling the preview buffer. �

You should write to the preview buffer as necessary, but you should not clear it out
(thereby deleting any prior generated code). You should not submit the code in the
Process Editor (so do not use submit CONTINUE; statements).

SAS/Warehouse Administrator will control whether the generated code should be
submitted, saved, or viewed, based on how the code generation process was initiated.

Usage Notes

There are several small differences between API applications run as add-in code
generators and API applications run as stand-alone. The add-in generator application
will always return blank values in the STEP SOURCE CODE and SOURCE CODE
properties of any process queried with the _GET_METADATA_ method. The add-in
generator code has been registered to generate code that is supplied by those properties,
so it cannot request that information even though it creates that information.

An add-in generator API application has been registered in SAS/Warehouse
Administrator to generate code for a process and is assumed to be a secure application.
The fact that it is a secure application means that API queries of relevant types will
return password information about those types.

The WHSASSTR, WHDBMS, and WHLIBRY types have password information about
SAS data sets and DBMS connections respectively. If password information is
registered for either type, an API query of that object from an add-in code generator
application will return the registered user ID and password information.

If the API application is not a secure application, the passwords will be returned as
’XXXXXXXX’.

For details about the values returned for the WHSASSTR, WHDBMS, and WHLIBRY
types, see SAS/Warehouse Administrator Metadata API Reference, Release 2.3.

358 Sample Add-In Code Generator Appendix 5

CAUTION:
Using the add-in code generator feature demands that you be very aware of the effects
your API application will have on SAS/Warehouse Administrator. �

A simple failure to compile your application will cause a Program Halt in SAS/
Warehouse Administrator. Incorrect entry parameters will cause a Program Halt. Any
halts or other errors in your application can adversely affect SAS/Warehouse
Administrator. Also, take great care with your handling of the preview buffer (see
caution note in preceding section). If your application does take a Program Halt for any
reason, you should exit SAS/Warehouse Administrator and re-enter it.

Sample Add-In Code Generator
**/
/* */
/* */
/* S A S S A M P L E L I B R A R Y */
/* */
/* */
/* TITLE: Data Step Mapping */
/* VERSION: 2.0.0 */
/* PRODUCT: SAS/Warehouse Administrator */
/* SYSTEM: Windows 95, Windows NT, Unix */
/* DESC: This program demonstrates how to develop a */
/* user-written one-to-one data mapping process by */
/* extracting information from existing metadata. It */
/* uses SAS DATA step statements for the column mapping */
/* to load a detail or data table rather than the */
/* PROC SQL code that SAS/WA would generate. */
*/
/* */
/* This add-in retrieves column metadata of the output */
/* table to do a straight mapping, which selects input */
/* columns based on the output table metadata. The */
/* column names of the output table remain the same as */
/* the ones mapped in the input table. */
/* */
/* This program expects to be passed the ID of a WHPRCMAP*/
/* type, the process for a mapping in your warehouse. */
/**/

length mpin_lib $ 8;
length mpin_data $ 32;
length mpout_lib $ 8;
length mpout_data mpout_col $ 32

mpout_coltyp $ 1
mpout_collen 8
mpout_colfmt mpout_colinfmt $ 20
;

length keepvar $ 32;
length table_id $ 26

type_id super_type_id $ 8
;

Add-in Code Generators and the Process Library Sample Add-In Code Generator 359

entry id $ 26 i_api 8 l_parms 8;

rc = rc;

INIT:

/* l_meta is used later to store metadata of */
/* output tables from data mapping process */

l_meta = makelist();
rc = insertc(l_meta, id, -1, ’ID’);

/* l_var is used later to store column names of the */
/* interim data set output from data mapping process */

l_var = makelist();

/* get metadata of output table of data mapping process */

l_outtb = makelist();
l_meta = insertl(l_meta, l_outtb, -1, ’OUTPUT TABLES’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_meta);

if l_rc ne 0 then do;
link MAKERC;
return;

end;

if listlen(l_outtb) < 1 then do;

rc = 1000;
rc_msg =
’ERROR: output table metadata missing’;

link MAKERC;
return;

end;

/* assume only one output table is generated */

l_outtbA = getiteml(l_outtb, 1);

/* verify table ID referring to a subtype of WHTBLPRC */

table_id = getnitemc(l_outtbA, ’ID’);
type_id = scan(table_id, 2, ’.’);
super_type_id = ’WHTBLPRC’;

call send(i_api, ’_IS_SUBTYPE_OF_’, l_rc, type_id,
super_type_id, a_subtype);

360 Sample Add-In Code Generator Appendix 5

if l_rc ne 0 then do;

link MAKERC;
return;

end;

if not a_subtype then do;

rc = 10001;
rc_msg = ’ERROR: invalid process ID: ’ || id ||

’. Expecting an intermediate output table process.’;
link MAKERC;
return;

end; /* if */

/* extract metadata of the name of the output */
/* table from data mapping process */

l_outtbA = insertc(l_outtbA, ’ ’, -1, ’TABLE NAME’);

/* extract metadata of the library that the */
/* output table resides */

l_outlib = makelist();
l_outtbA = insertl(l_outtbA, l_outlib, -1, ’LIBRARY’);

/* extract metadata of input source that serves */
/* as the input table to data mapping process */

l_insrc = makelist();
l_outtbA = insertl(l_outtbA, l_insrc, -1, ’INPUT SOURCES’);

/* extract metadata of output object */

l_outobj = makelist();
l_outtbA = insertl(l_outtbA, l_outobj, -1, ’OUTPUT OBJECTS’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_outtbA);

if l_rc ne 0 then do;
link MAKERC;
return;

end;

* information of the input data set *
* used by data mapping process *

;
if listlen(l_insrc) < 1 then do;

rc = 2000;

Add-in Code Generators and the Process Library Sample Add-In Code Generator 361

rc_msg =
’ERROR: input source metadata missing’;

link MAKERC;
return;

end;

/* one input source is used */

l_insrcA = getiteml(l_insrc, 1);

l_insrcA = insertc(l_insrcA, ’ ’, -1, ’TABLE NAME’);

/* get metadata of the library storing the */
/* input data set for data mapping process */

l_inlib = makelist();
l_insrcA = insertl(l_insrcA, l_inlib, -1, ’LIBRARY’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_insrcA);

if l_rc ne 0 then do;
link MAKERC;
return;

end;

mpin_data = getnitemc(l_insrcA, ’TABLE NAME’);

if mpin_data = _blank_ then do;

rc = 9995;
rc_msg =

’ERROR: mapping input data set name missing’;
link MAKERC;
return;

end; /* if */

else do;

l_inlib = insertc(l_inlib, ’ ’, -1, ’LIBREF’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_inlib);

if l_rc = 0 then do;

mpin_lib = getnitemc(l_inlib, ’LIBREF’);

if mpin_lib = _blank_ then do;
rc = 9996;
rc_msg =

’ERROR: mapping input libref name missing’;
link MAKERC;

362 Sample Add-In Code Generator Appendix 5

return;

end; /* if */

end; /* else */

* information of the interim data set *
* output from data mapping process *

;
/* get the name of the output data set */

mpout_data = getnitemc(l_outtbA, ’TABLE NAME’);

if mpout_data = _blank_ then do;

rc = 8887;
rc_msg =

’ERROR: mapping output data set name missing’;
link MAKERC;
return;

end; /* if */

/* get metadata of the libref storing the */
/* output data set in data mapping process */

l_outlib = insertc(l_outlib, ’ ’, -1, ’LIBREF’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_outlib);

if l_rc ne 0 then do;
link MAKERC;
return;

end;

mpout_lib = getnitemc(l_outlib, ’LIBREF’);

if mpout_lib = _blank_ then do;

rc = 8888;
rc_msg =

’ERROR: mapping output libref name missing’;
link MAKERC;
return;

end; /* if */

submit;
DATA &mpout_lib.&mpout_data;

endsubmit;

Add-in Code Generators and the Process Library Sample Add-In Code Generator 363

end; /* if */

/* get metadata of the output data set columns */

if listlen(l_outobj) < 1 then do;

rc = 7773;
rc_msg =

’ERROR: output object metadata missing’;
link MAKERC;
return;

end; /* if */

l_outobjA = getiteml(l_outobj, 1);

l_outcol = makelist();
l_outobjA = insertl(l_outobjA, l_outcol, -1, ’COLUMNS’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_outobjA);

if l_rc ne 0 then do;
link MAKERC;
return;

end;

do i = 1 to listlen(l_outcol);

l_outcolA = getiteml(l_outcol, i);

l_outcolA = insertc(l_outcolA, ’ ’, -1, ’NAME’);
l_outcolA = insertc(l_outcolA, ’ ’, -1, ’TYPE’);
l_outcolA = insertn(l_outcolA, ., -1, ’LENGTH’);
l_outcolA = insertc(l_outcolA, ’ ’, -1, ’FORMAT’);
l_outcolA = insertc(l_outcolA, ’ ’, -1, ’INFORMAT’);

call send(i_api, ’_GET_METADATA_’, l_rc, l_outcolA);

if l_rc ne 0 then do;
link MAKERC;
return;

end;

* column attributes *

;
/* get column name */

mpout_col =
getnitemc(l_outcolA, ’NAME’);

if mpout_col = _blank_ then do;

364 Sample Add-In Code Generator Appendix 5

rc = 7774;
rc_msg =

’ERROR: mapping output column name missing’;
link MAKERC;
return;

end; /* if */

/* create an SCL list containing column */
/* names later referred by the SAS */
/* statements in the submit block */

l_var = insertc(l_var, mpout_col, -1);

/* get column type */

mpout_coltyp =
getnitemc(l_outcolA, ’TYPE’);

if mpout_coltyp = _blank_ then do;

rc = 7775;
rc_msg =

’ERROR: mapping output column type missing’;
link MAKERC;
return;

end; /* if */

/* get column length */

mpout_collen =
getnitemn(l_outcolA, ’LENGTH’);

if mpout_collen <= 0 then do;

rc = 7776;
rc_msg =

’ERROR: mapping output column length missing’;
link MAKERC;
return;

end; /* if */

if mpout_coltyp = ’N’ then do;

/* numeric variable */

submit;
LENGTH &mpout_col &mpout_collen;

endsubmit;

end; /* if */

Add-in Code Generators and the Process Library Sample Add-In Code Generator 365

else if mpout_coltyp = ’C’ then do;

/* character variable */

submit;
LENGTH &mpout_col $&mpout_collen;

endsubmit;

end; /* else */

/* get column format */

mpout_colfmt =
getnitemc(l_outcolA,’FORMAT’);

if mpout_colfmt ne _blank_ then do;

/* If column format is specified by */
/* the data warehouse administrator, */
/* mpout_colfmt will have a non-blank */
/* value. */

submit;
FORMAT &mpout_col &mpout_colfmt;

endsubmit;

end; /* if */

/* get column informat */

mpout_colinfmt =
getnitemc(l_outcolA,’INFORMAT’);

if mpout_colinfmt ne _blank_ then do;

/* If column informat is specified by */
/* the data warehouse administrator, */
/* mpout_colinfmt will have a non- */
/* blank value. */

submit;
INFORMAT &mpout_col &mpout_colinfmt;

endsubmit;

end; /* if */

end; /* do */

submit;
SET &mpin_lib.&mpin_data
(KEEP =

366 Process Library Technical Reference Appendix 5

endsubmit;

do k = 1 to listlen(l_var);

keepvar = getitemc(l_var, k);

submit;
&keepvar

endsubmit;

end; /* do */

submit;
);
RUN;

endsubmit;

return;

MAKERC:

passed_rc = rc;

if listlen(l_rc) = -1 then do;

l_rc = makelist();
rc = setnitemn(l_rc, passed_rc, ’RC’);

if rc_msg ne _blank_ then
rc = setnitemc(l_rc, rc_msg, ’MSG’);

end;

rc = insertl(l_parms, l_rc, -1, ’RC’);

return;

TERM:

rc = dellist(l_meta, ’Y’);
rc = dellist(l_var, ’Y’);

return;

Process Library Technical Reference
The Process Library is a collection of registered routines that extract, transform, and

load data into warehouse tables. As you use the Process Editor to define a step in the
data flow for a particular table, you have the option of selecting a pre-defined routine
from the Process Library, rather than defining your own process for that step.

The Process Library is made up of a registered set of Process Catalogs. A Process
Catalog is a SAS catalog that has a specific set of entries and performs a specific
process step. The MAIN entry in a Process Catalog is a reference to the routine that
actually performs the step. This routine can be a SOURCE entry or an SCL entry

Add-in Code Generators and the Process Library Navigating the Process Library 367

(add-in code generator). For details about the difference between these two kinds of
routines, see “Add-In Code Generator Technical Reference” on page 355. For a
description of the Process Catalog format, see “Process Catalog Format” on page 372.

Invoking the Process Library
The Process Library window can be invoked using the Process Library pull-down

Tools menu selection in the Process Editor. If a process step is currently selected, the
purpose of calling the Process Library is to define the process information for that
particular step. If no step is selected, the Process Library window is called to browse
the Process Library. Display A5.2 on page 367 shows a Process Library window.

Display A5.2 Example Process Library Window, Unexpanded

Navigating the Process Library
The Process Library contains a configurable hierarchy of Process Groups and Process

Catalogs. A Process Group is a set of related Process Catalogs. In Display A5.3 on page
368, a Process Group (Data Transformations) is expanded, and a Process Catalog
(Straight Map Process) is selected. Note the items in the figure are only examples.

368 Navigating the Process Library Appendix 5

Display A5.3 Process Library Window With A Process Selected

The tabbed pages on the right of the display show the metadata about the selected
Process Group or Process Catalog. If a Process Group is selected, only the General tab
is enabled. If a Process Catalog is selected, all tabs are enabled.

General Tab
The General tab displays descriptive information about the selected object. The tab

contains fields for the name (up to 40 characters), a description (up to 200 characters),
and, if the selected entry is a process catalog, the catalog name (up to 8 characters).

Note: A Process Catalog naming convention has been adopted to differentiate
between Process Catalogs that you define and those that have been supplied by SAS. �

The first letter of the catalog name is restricted to these alphabetic ranges:

User-defined catalogs:
start with a letter between A and R.

Catalogs supplied by SAS Institute:
start with a letter between S and Z.

Library Tab
The Library tab displays library information that is retrieved for the registry for the

currently selected Process Catalog. It contains field entries for Libref, Engine, Path,
and Options.

Help Tab
The Help tab displays any note information that is contained in the Process Catalog.

You can print this information by positioning the cursor in the white space of the tab,
clicking the right mouse button, and selecting Print.

Attributes Tab
The Attributes tab displays any extended attribute information that is contained in

the Process Catalog. In this context, extended attributes are additional items of
metadata that the Process Catalog uses to generate the appropriate code for the
selected process step. The author of the Process Catalog decides whether to include

Add-in Code Generators and the Process Library Selection Results 369

extended attributes. To print this information, position the cursor in the white space of
the tab, click the right mouse button, and select Print.

Selecting a Process Catalog
When the desired Process Catalog is located, it can be selected by clicking the name

of the Process Catalog in the left viewer. If the user desires to select this Process
Catalog as the process information for the selected step in the Process Editor, the user
can then click OK .

When OK is selected, the selected Process Catalog information will be interrogated
for correctness.

� The library information will be validated by assigning the libref using the supplied
library information. If an error occurs while assigning the libref, an appropriate
error message will be displayed to the user.

� The metadata for this Data Warehouse Environment will be searched for a Library
definition that matches the library information supplied. To determine a match,
the libref, engine, path and options information must match exactly, including
case, those of an existing library definition.

If no matching definition is found, the user will be prompted to determine
whether a new metadata definition should be created.

If the user decides to create a new definition, the user will be prompted to enter
a name for this new library definition. The default name is the phrase "Process
Library -" followed by the supplied libref.

� If the Process Catalog contains an ATTRS.SLIST entry, the attributes will be
verified. For any attributes for which an error is found, the user will be prompted
to ignore this attribute and continue or to stop the selection.

� If the user is replacing process information that is currently marked as being
generated by SAS/Warehouse Administrator, the user will be prompted to confirm
the replacement of this process information.

If any errors are discovered, the user selects No or Cancel to any confirmation
dialogs, and the termination of the frame is halted. To end the frame, the user must
then fix the errors, change selections to the confirmation dialogs, or select Cancel .

If a Process Group is selected at the time OK is selected, the process information for
the step will not be modified. If Cancel is selected, the process information for the step
will not be modified.

If no step in the Process Editor is selected at the invocation of the Process Library
frame, no process information will be modified upon exit of the frame, whether or not
OK or Cancel is selected.

Selection Results
After selecting a Process Catalog and returning to the Process Editor, the process

information for the active step, if any, will have been modified to include a reference to
the Process Catalog Main entry. To see this, select Properties on a process step, or
Edit Load Step on a table. Display A5.4 on page 370 shows the Source Code tab for a
process that has been updated by a Process Catalog.

370 Process Library Registry Appendix 5

Display A5.4 Source Code Tab After Update by a Process Catalog

Any attributes that were registered for the Process Catalog have been added to the
metadata as Extended Attributes. These can be seen by selecting Extensions from the
File pull-down menu option.

Process Library Registry
The display of groups and catalogs are controlled using the WAPRCS data set. If the

WAPRCS data set exists in the _SASWA library, this data set will be used. If it is not
found in this library, or this library is not assigned, the WAPRCS data set will be used
from the SASHELP library. The WAPRCS data set contains one row for every Process
group or Process Catalog. The data set contains the following columns:

Table A5.1 WAPRCS Data Set Columns

Col Name Col Type Col Length Col Label Description

Parent C 40 Parent Group Name of the group
that contains this
group or catalog.

Name C 40 Name of
Catalog or
Group

The name of the
Process Catalog or
Group.

Desc C 200 Description of
Catalog or
Group

A brief description of
the catalog or group.

Catalog C 8 Name of SAS
catalog

The name of the SAS
catalog. This field
should be left blank
for a Process Group.

Add-in Code Generators and the Process Library Process Library Registry 371

Col Name Col Type Col Length Col Label Description

Active N 8 1=Row active

0=Row inactive

Whether this row in
the data set is active.
Only those rows that
are active will be used
to populate the
display.

Libref C 8 Libref where
this catalog
resides

The SAS Libref that
contains the catalog
for this Process
Catalog. This field
should be left blank
for a Process Group.

Engine C 8 Libname engine
of library

The SAS Libname
engine used to access
this library.

Path C 200 Libname Path
of Library

The host-specific path
of the catalog. This
corresponds to the
path designation on
the SAS Libname
statement.

Options C 200 Libname
options of
Library

The SAS Libname
statement options.

Notes
� All names that exist in the PARENT column must match a NAME column in

another row. If the PARENT column has a blank value, this entry is the initial
level of the hierarchy.

� A row in the data set can depict either a Process Group or a Process Catalog.

If the NAME of this row exists in the data set as a PARENT, then it is a Process
Group.

If the row is just for a Group, the CATALOG and LIBREF column values should
be left blank.

If the row is a Catalog, at least the CATALOG and LIBREF column values must
have values.

� When entering Library information, the following rules apply:
For a Process Catalog, the LIBREF column must contain a non-blank value.

If any of the other Library information fields are non-blank (for example, PATH,
ENGINE, OPTIONS), this information is used to automatically assign the library
when this catalog is selected. If errors are discovered when the library is assigned,
the user will be given an appropriate message. This type of definition corresponds
to the Let the SAS System assign the library option in SAS/Warehouse
Administrator. When a new metadata definition is created for this library, this
option will be selected.

� If only the LIBREF column has a non-blank value (for example, PATH, ENGINE,
OPTIONS are blank), this represents a library that is to be assigned by the user.
This libref must be assigned by the user at the time the Process Library User

372 Process Catalog Format Appendix 5

Interface is invoked. This type of definition corresponds to the The user will
pre-assign the library option in SAS/Warehouse Administrator. When a new
metadata definition is created for this library, this option will be selected.

� When entering the same library information for several catalogs in the registry
data set, it is important to match all of the library information (LIBREF,
ENGINE, PATH, OPTIONS) exactly. This includes spacing and case. If the
information is not entered in this way, the metadata might be polluted with
several library definitions for a single set of library information.

Example Contents for WAPRCS Data Set
The following table lists the contents of an example WAPRCS data set. A Process

Library with this data set would look similar to the library shown in the following table:

Table A5.2 Example WAPRCS Contents

Parent Name Desc Active Catalog Libref Path
Engine
Options

Process
Library

Main
Process
Library
Group

1

Process
Library

Data Loaders 1

Process
Library

Data
Transformations

1

Data
Transformations

Straight Map 1 Datastep Transfrm C:\MyPrograms\loaders

Data
Transformations

Range Check 1 Range Transfrm C:\MyPrograms\loaders

Data
Transformations

Value De-
duplication

1 Dedup Dataddup C:\MyPrograms\
transforms

BASE
Access=Readonly

Data
Transformations

Transpose
Table

1 Transpos DataTran Server=server.shr6

Process Catalog Format
A Process Catalog is a SAS catalog with a defined format. A Process Catalog can

contain only a single process. A Process Catalog naming convention has been adopted
to differentiate between Process Catalogs that you define and those that have been
supplied by SAS.

User-defined catalogs:
start with a letter between A and R.

Catalogs supplied by SAS Institute:
start with a between letter S and Z.

A Process Catalog contains these standard entries:

Main.xxxx (Required) is the main entry point of the catalog. This can either be
a SOURCE or SCL type. If it is a SOURCE entry, it will be assumed
that the source code should be included as is. If it is an SCL type,

Add-in Code Generators and the Process Library Process Catalog Format 373

the SCL entry will be called during the code generation process. For
details, see “Add-In Code Generator Technical Reference” on page
355. The entry name seen on the Source Code tab will be
"catalog.MAIN.xxxx".

HELP.SOURCE (Optional) is a source entry that contains Help information. This
Help file will contain information explaining the functionality, any
usage notes, and other pertinent information.

ATTRS.SLIST (Optional) contains the information about the parameters for the
process catalog. This entry is an SLIST with a sublist for each
parameter (attribute). Each sublist has the following named items:

� Name - The name of the parameter (attribute). This name can
be up to 40 characters. This item is required for each attribute.

� Desc - The description of the parameter (attribute). This can be
up to 200 characters in length. This item is optional.

� Value - Any initial, default value for the parameter. This named
item is optional and if not passed, no default value will be set.

See “ATTRS.SLIST Example” on page 373.

BLDATTRS.SCL (Optional) is recommended that the SCL code that creates the
ATTRS.SLIST entry be included in the Process Catalog as
BLDATTRS.SCL. See “BLDATTRS.SCL Example” on page 373.

ATTRS.SLIST Example
SLIST(
(NAME=’FALLBACK’ {T}
DESC=’Teradata FALLBACK Option’ {T}
VALUE=’NO’ {P}
)[5] {L}
(NAME=’ERRLIMIT’ {T}
DESC=’Teradata ERRLIMIT Option’ {T}
)[7] {L}
(NAME=’SESSIONS’ {T}
)[9] {L}
)[3]

In this example, there are three extended attributes for this Process Catalog.

� For the first attribute, FALLBACK, a description has been given, as well as a
default value, NO.

� For the second attribute, ERRLIMT, a description has been given, but no default
value has been specified.

� For the third attribute, SESSIONS, no description or default value is specified.

Note: It is recommended that a description (item name DESC) and default value
(item name VALUE) be included in all attributes.

This will give the user of the Process Library more information to determine what
the attribute is used for and, if a default value is supplied, to lessen the amount of
manual effort associated with using a process. �

BLDATTRS.SCL Example
/**
*

374 Process Catalog Format Appendix 5

* Create the ATTRS.SLIST entry for this Process Catalog
*
***/
init:
/*
* Determine the name of the Process Catalog and build the
* ATTRS.SLIST entry into this catalog.
*/
myname=screenname();
mylib=scan(myname,1,’.’);
mycat=scan(myname,2,’.’);
attrname=mylib||’.’||mycat||’.ATTRS.SLIST’;
/*
* Create the Master List
*/
l_attrs=makelist();
/*
* Create a sublist for each attribute
*/
/*
* Feedback attribute
*/
l_attr=makelist();
l_attrs=insertl(l_attrs,l_attr,-1);
l_attr=insertc(l_attr,’FALLBACK’,-1,’NAME’);
l_attr=insertc(l_attr,’Teradata FALLBACK Option’,-1,’DESC’);
l_attr=insertc(l_attr,’NO’,-1,’VALUE’);
/*
* ERRLIMIT attribute
*/
l_attr=makelist();
l_attrs=insertl(l_attrs,l_attr,-1);
l_attr=insertc(l_attr,’ERRLIMIT’,-1,’NAME’);
l_attr=insertc(l_attr,’Teradata ERRLIMIT Option’,-1,’DESC’);
/*
* SESSIONS attribute
*/
l_attr=makelist();
l_attrs=insertl(l_attrs,l_attr,-1);
l_attr=insertc(l_attr,’SESSIONS’,-1,’NAME’);
/*
* Save the ATTRS.SLIST entry
*/
list_rc=savelist(’CATALOG’,attrname,l_attrs,0,’Attribute List’);
if list_rc ne 0 then do;
msg=’ERROR: Saving of ’||attrname||’ failed with rc=’||
trim(left(putn(list_rc,’8.’)));
put msg;
end; /* if */
return;

375

A P P E N D I X

6
Recommended Reading

Recommended Reading 375

Recommended Reading 375

Recommended Reading

Recommended Reading

Here is the recommended reading list for this title:
� Cody’s Data Cleaning Techniques Using SAS Software
� Communications Access Methods for SAS/CONNECT and SAS/SHARE
� Moving and Accessing SAS Files
� SAS/Warehouse Administrator Metadata API Reference

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57198

376 Recommended Reading Appendix 6

377

Glossary

add-in code generator
is a SAS/Warehouse Administrator Metadata API application that dynamically
generates the code for a process in SAS/Warehouse Administrator. It enables you to
access and use relevant metadata to drive your table processes. For example, the
Teradata Loader add-in reads the metadata for an input table, then generates the
code which loads the table into a Teradata DBMS, using Teradata load utilities. If
add-in code generators have been installed at your site, they are typically selected
from the Process Library.

add-in metadata exporter
is a SAS/Warehouse Administrator Metadata API application that exports SAS/
Warehouse Administrator metadata in a format that can be used by another
application. For example, the SAS/EIS Metabase Exporter exports metadata in SAS/
EIS format. If custom metadata exporters have been installed at your site, they can
be selected from the Export Format Selection window.

add-in tool
is a SAS SCL application that performs a task in SAS/Warehouse Administrator. For
example, the Publish HTML Documentation tool reads the metadata for an input
table and publishes the metadata in HTML format (column descriptions, input
sources, source code, and other metdatata). Add-in tools are available from the
Tools-> Add-Ins pull-down menu.

analysis column
is a numeric column that stores raw data to be used to calculate statistics. The values
for an analysis column are the measurements you want to analyze, for example,
using OLAP techniques. For example, Age and Income could be analysis columns.

category column
see class column.

cardinality
is the number of discrete values for any OLAP class column within a population.

class column
is a required OLAP summary role column, which is a numeric or character column
that is used to group data into classifications. The values for each class column
define groups for analysis. That is, the rows in the summary data store are grouped
according to the values of the column, and a separate analysis is run for each group.

378 Glossary

Class columns can have continuous values, but they typically have a few discrete
values that define the classifications of the column. For example, if columns STATE
and COUNTY are class columns, you can sort the data so that the states are first,
and SAS/Warehouse Administrator will summarize data for each county within each
state.

Contact record
is a metadata record which specifies the owner or administrator who is responsible
for a group, data store, process, or Job. An owner is the person who formulates policy
and makes decisions about an object. An administrator is the person who
implements decisions formulated by the owner in accordance with established policy.
Contact records are stored along with the other metadata for the current
Environment. Once created, contact records may be included in the metadata records
for groups, data stores, processes and Jobs in the current Environment.

crossing
is a unique ordered list of one or more class columns that defines a summarization
level (subtable) to be stored in one or more OLAP summary data stores. That is, a
crossing represents a grouping on which summary statistics are calculated. You must
have at least one crossing for an OLAP Table or an OLAP MDDB, and both summary
data stores can have multiple crossings. All class columns must be in at least one
crossing. A crossing represents the physically stored data, which provides the quick
response when displaying a report in an OLAP application. For each crossing, there
is a single record for each unique combination of all named class columns in the
original raw input data.

Data File
a metadata record which specifies a SAS file that is an input to an Operational Data
Definition (ODD). If you are defining an ODD whose Load Step is a DATA step view
or an SQL view (but not a Pass-Through view), you must define its inputs in the
Process Editor. Even if your ODD does not meet the conditions above, you may still
want to specify a Process Flow for this Job for documentation purposes.

Data Group
is a simple grouping element for Data Tables, Information Marts, and other Data
Groups.

data integration
is a kind of data transformation in which diverse data attributes are reconciled and
data values are put into a standard, consistent form. Integration can be performed as
a separate task, but is often performed simultaneously with other transformation
tasks or during the extraction phase. See also denormalization.

data mart
is a limited data warehouse that is often designed to meet the needs of a particular
department or individual. A data mart is more limited in scope than a data
warehouse, which typically contains information used by more than one department.
To implement a data mart in SAS/Warehouse Administrator, use an appropriate SAS/
Warehouse Administrator object, such as a Data Warehouse or a Data Group.

data mining
is the process of searching for patterns, trends, or correlations in large data stores.
Data mining uses statistical analysis techniques, pattern recognition technology, or
both. SAS Enterprise Miner software can be used for this purpose.

data preparation process
is a general term for routines which extract, validate, or transform data for loading
into a table or file. SAS/Warehouse Administrator data preparation processes include
Mappings, Record Selectors, Data Transfers, and User Exits.

Glossary 379

data source
is any information that you will extract, transform, and summarize in your
warehouse data stores. Data sources can be in any format that SAS can read, on any
supported hardware platform.

data store
is a table, a view, or a file that is registered in a Warehouse Environment. Except for
ODDs, whether a data store is in SAS format or in another format, you can have
SAS/Warehouse Administrator generate the SAS code that is required to read, write,
or update the data store. If a file is not a SAS file, you can specify a command that
SAS/Warehouse Administrator will use to open the file. Data stores can be in any
format that SAS can read and write, on any supported hardware platform.

data structuring
is a kind of data transformation in which new columns are created and/or existing
columns are modified to provide users with needed subject information.

data summarization
is a kind of data transformation in which data is aggregated by computing secondary
statistics on numeric data or by creating counts on noncontinuous columns.

Data Table
is a metadata record which specifies a SAS table or view or a DBMS table or view
that can serve multiple purposes. Data Tables are frequently used to define
intermediate data stores. They can be used to define detail data stores, summary
data stores (if you write your own summary code), a look-up table included as part of
a join, or a table that holds information that does not fit anywhere else.

Data Transfer process
is a metadata record used to generate or retrieve a routine which moves data from
one host to another. Data Transfers are required when an input source and the
target data reside on different hosts. SAS/Warehouse Administrator generates code
that uses PROC UPLOAD or PROC DOWNLOAD to move the data.

data transformation
is a general term for all of the tasks that prepare data for loading into a data
warehouse. See also data integration, data scrubbing, data structuring, data
validation, denormalization, and summarization.

data validation
is a kind of data transformation in which potentially invalid, out-of-range, missing,
or duplicate values are detected.

data warehouse
in general, a data warehouse is a collection of data that is extracted from one or more
sources for the purpose of query and analysis. Data warehouses are subject-oriented,
integrated, time-variant, and nonvolatile. In contrast to a data mart, a data
warehouse is better suited for larger, more comprehensive information storage.

Data Warehouse
in SAS/Warehouse Administrator, a Data Warehouse object is a metadata record
which specifies the SAS library _DWMD. The _DWMD library contains the metadata
for most groups and data stores in a data warehouse or a data mart at your site.

Data Warehouse Environment
is a metadata record which specifies the SAS library _MASTER. The _MASTER
library contains host definitions and other metadata that is shared among one or
more Data Warehouses and ODD Groups. On the SAS/Warehouse Administrator
desktop, Environments are displayed as icons. In the SAS/Warehouse Administrator
Explorer, the Environment you selected from the desktop is the top-most object.

380 Glossary

DBMS
data base management system; in the context of SAS/Warehouse Administrator, this
term usually refers to a DBMS other than SAS, such as Oracle, Teradata, or
Microsoft Access.

DBMS connection definition
is a metadata record which specifies a user name, a password, DBMS options and
other information that SAS requires to access tables in a data base management
system (DBMS). Once created, DBMS connection definitions can be included in the
metadata records for DBMS data stores in the current Environment. SAS/Warehouse
Administrator will then be able to generate the appropriate SAS/ACCESS statements
to access these data stores.

DBMS LIBNAME definition
see SAS/ACCESS LIBNAME definition.

denormalization
is a kind of data transformation in which DBMS data is freed from its normalized
structure by combining information from separate tables. Denormalization can
increase the performance of a data warehouse, though it frequently results in some
data redundancy.

detail data
is information at or near the fact level in a data base. It is data that has not been
summarized or has only been lightly summarized after extraction from a source. In
SAS/Warehouse Administrator, detail data is stored in Data Tables, Detail Logical
Tables, and Detail Tables.

Detail Logical Table
is a metadata record which specifies a SAS table or view that can serve multiple
purposes. Detail Logical Tables are frequently used to define views on multiple,
related Detail Tables. They can be also be used to define a detail data store or a
simple group for Detail Tables. A Subject can have only one Detail Logical Table. A
Detail Logical Table can contain any number of Detail Tables or views. Detail Logical
Tables in different Subjects can share (link to) the same Detail Table.

Detail Table
is a metadata record which specifies a SAS table or view or a DBMS table or view
that can serve as a detail data store in SAS/Warehouse Administrator. Detail Tables
are children of Detail Logical Tables.

dimension
acts as an index for identifying values. A dimension groups related data, which is
defined in hierarchies. For example, you could organize sales data into three
dimensions: Geography, Time, and Product. The Time dimension could include the
following hierarchies, which provide different paths in order to drill down to
increasing levels of detail: Time-by-Week and Time-by-Month.

drill-down analysis
is the process of displaying increasing levels of detail within a specified dimension,
such as time (from Year to Month to Day) or geographic location (from Country to
State/Province to City).

Event
is a metadata record which specifies a condition that controls a Job, such as checking
for certain return codes or verifying the existence of a file. Currently, to use Events,
you must write a Metadata API program which reads Job Flows with Events and
generates code for them.

Glossary 381

Environment
See Data Warehouse Environment.

External File
is an input to an ODD which extracts information from one or more sources that are
not in SAS format. That is, an External File is an input to an ODD whose Load Step
is a DATA step view.

fact
is an instance of some particular occurrence and the properties of the occurrence all
stored in a data base.

global metadata
is metadata that, for the most part, can be shared among one or more Data
Warehouses and ODD Groups within an Environment. After you define a Warehouse
Environment, you can define metadata records that are shared at the Environment
level. These records can be included in the metadata for data stores and other
resources in the current Environment. The global metadata types are: SAS library
definitions (including SAS/ACCESS LIBNAME definitions and Jobs Information
libraries), Host definitions, DBMS connection definitions, Contact records, and
Scheduling server definitions.

group
is an element in the SAS/Warehouse Administrator Explorer or Process Editor that is
used to organize other elements. Groups in the Explorer include Environments, ODD
Groups, Warehouses, and Subjects.

hierarchy
is a unique list of class columns that specifies related data and is a member of a
dimension. Each hierarchy provides a navigational path in order to drill down to
increasing levels of detail. For example, for a dimension named Time, you could
define a hierarchy named Time-by-Month that consists of the class columns YEAR,
MONTH, and DATE. Note that the term hierarchy is not the same as a stored
summary level, which is a crossing.

HOLAP
is hybrid online analytical processing (OLAP). HOLAP combines the functionality of
both ROLAP and MOLAP, producing a hybrid OLAP solution that combines the best
features of both. HOLAP provides access to diverse data sources on local and/or
remote servers. SAS/Warehouse Administrator supports HOLAP with an OLAP
Group of type HOLAP. Such a group can contain both OLAP Tables and OLAP
MDDBs.

When an OLAP Group of type HOLAP is specified as an output data store in a
Job, SAS/Warehouse Administrator generates a proxy MDDB, which is a physical file
that represents all of the data in an OLAP Group of type HOLAP. The proxy MDDB
can be used by SAS/EIS software to provide more efficient access to multiple OLAP
Tables and/or OLAP MDDBs.

Host definition
is a metadata record which specifies a computer where data stores reside, where
processes and Jobs execute, or where process output is sent. Once created, host
definitions may be included in the metadata records for data stores, processes and
Scheduling Server definitions in the current Environment.

ID column
is an optional OLAP summary role column that can be used to include additional
values in the summary data store. You can have multiple ID columns. Specifying an
ID column applies to an OLAP Table only; it is not supported for an OLAP MDDB.

382 Glossary

Information Mart (Info Mart)
is a grouping element for Information Mart Items and Information Mart Files.

Information Mart File (Info Mart File)
is a metadata record which specifies a file other than a SAS file that you want to
register in a Warehouse. The file can be a spreadsheet, an HTML report, or any file
that can be opened by an external application.

Information Mart Item (Info Mart Item)
is a metadata record which contains or displays information generated from detail
data or summary data in the Warehouse. These items are usually SAS charts,
reports, graphs, or queries.

Job
is a metadata record that specifies the processes that create one or more data stores
(output tables). A Job enables you to connect a series of process steps into a single
unit. The processes may be specified with a Process Flow diagram in the Process
Editor. If a process flow diagram is specified, SAS/Warehouse Administrator can
generate code for the job. Alternatively, a job may simply reference a user-supplied
program which contains the processes that create the data store(s). A job may
include scheduling metadata which enables the process flow or user-supplied
program to be executed in batch mode at a specified date and time.

Job Flow
is a user-defined diagram in the Job View of the Process Editor. It is composed of
symbols, with connecting arrows and descriptive text, that illustrate the sequence in
which Jobs and Events are executed. Job Flows are not required.

SAS/Warehouse Administrator allows you to create Job Flows, which define
metadata for Job dependencies. However, the current release does not generate code
for the Job Flows. To use them, you must write a Metadata API program that reads
Job Flows and generates code for them. For details about writing metadata API
programs, see SAS/Warehouse Administrator Metadata API Reference.

Job Group
is a simple grouping element for Process Editor Jobs, Events, and other Job Groups.

Load process (Load Step)
is a metadata record used to generate or retrieve a routine which puts data into a
specified target object. After you define the metadata for a given data store, you
must define a Load process which actually creates and loads the data store.

load time
is the date and time when a data value is loaded into a table.

logical model
is a model of a specific business process or concept from an end-user’s perspective. A
logical model identifies the subjects and relationships among data elements but does
not describe the functional or physical characteristics of the data elements.

Mapping
is a metadata record used to generate or retrieve a routine which maps columns from
one or more data sources into one or more Data Tables, Detail Tables, OLAP Tables,
or OLAP MDDBs. Common mappings include one-to-one (one data source to a target
table), joins (one or more data sources merged by one or more common columns), and
unions (two or more data sources appended to a target table).

metadata
is a definition or description of data. Using the windows in SAS/Warehouse
Administrator, you specify metadata which defines data sources, data stores, code
libraries, and other warehouse resources. SAS/Warehouse Administrator then uses

Glossary 383

this metadata to generate or retrieve the code which extracts, transforms, and loads
the data into your warehouse.

There are two main kinds of metadata: physical metadata and business metadata.
The physical metadata for a SAS table might specify a certain number of rows and
columns, with certain transformations applied to some of the columns. The business
metadata for a SAS table might describe the purpose of the table and contact
information for the person responsible for the accuracy of the information in the table.

metadata application program interface (API)
is a set of software tools that enable you to read or write SAS/Warehouse
Administrator metadata without going through its user interface.

metadata repository
is a data store that contains an application’s metadata. SAS/Warehouse
Administrator stores its metadata in two SAS libraries: libref _MASTER (metadata
for an Environment) and libref _DWMD (metadata for a Warehouse).

MOLAP
is multidimensional OLAP: online analytical processing performed on a
multidimensional database, such as a SAS MDDB. SAS/Warehouse Administrator
supports MOLAP with an OLAP Group of type MOLAP. Such a group is a grouping
mechanism intended to contain only OLAP MDDBs. Multiple MDDBs can be
contained in the group, but each MDDB generally represents an entire OLAP
application.

MDDB
is a multidimensional data base. See OLAP MDDB.

NWAY crossing
is the most detailed type of crossing for an OLAP object. An NWAY crossing consists
of all the assigned class columns.

ODD
is an operational data definition, a metadata record which provides access to data
sources. The ODDs, in turn, are used as inputs to data stores in your warehouse.

At a minimum, in order for a data source to be visible in a Warehouse
Environment, you must specify the location of that data source in an ODD. You can
define an ODD that simply registers the location of a SAS table or view, or that
registers the location of a DBMS table with the help of a SAS/ACCESS LIBNAME
definition. You can also define an ODD that extracts information from a data source,
saves the results to a SAS table or view, then specifies the location of the extraction
table or view. See also Data File and External File.

ODD Group
is a metadata record which specifies a group that is used to organize ODDs. It may
also contain Information Marts.

OLAP
is online analytical processing, a kind of data analysis that is designed to answer
"what happened and why" questions. OLAP enables you to easily and selectively
extract and view data from different points of view. For example, a user can request
that data be analyzed to display a report showing all of a company’s products sold in
Virginia in the month of September, 2000, then compare revenue figures with those
for the same products in September, 1999, and then see a comparison of other
product sales in Virginia in the same time period. SAS/Warehouse Administrator
supports OLAP with its OLAP Groups, OLAP Tables, and OLAP MDDBs.

OLAP cube
is a metadata record that represents the logical relationships (dimensions and
hierarchies) of the OLAP data so that you can run an OLAP report. For HOLAP, the

384 Glossary

cube is associated with the OLAP Group and is registered in SAS/EIS software as
associated with the proxy MDDB. The result is one OLAP Cube describing all the
separate summary data stores. For MOLAP and ROLAP, there is normally one cube
associated with each OLAP MDDB and OLAP Table.

OLAP Group
is a metadata record that specifies a group used to organize related summary data,
which is stored in OLAP Tables and/or OLAP MDDBs. OLAP Group properties
specify the logical structure of the summarized data. OLAP Groups replace the
Summary Groups used in earlier releases.

OLAP MDDB
is a metadata record that specifies a SAS MDDB (multidimensional database). A
SAS MDDB is not a SAS table. It is a specialized storage format that stores derived
summary data in a multidimensional form, which is a highly indexed and compressed
format. To load an OLAP MDDB, SAS/Warehouse Administrator generates code for
the MDDB procedure, which summarizes data similar to the SUMMARY procedure.
OLAP MDDBs replace the Summary MDDBs used in earlier releases.

OLAP Table
is a metadata record that specifies a file to store derived summary data. This file can
be a SAS table or view or a DBMS table or view. To load an OLAP Table, SAS/
Warehouse Administrator generates code for the SUMMARY procedure, which
summarizes data by computing descriptive statistics for columns across all rows or
within groups of rows. OLAP Tables replace the Summary Tables used in earlier
releases.

OLTP systems
are online transaction processing systems, the systems that an enterprise uses for
processing business transactions on a day-to-day basis.

operational data
is data from an OLTP system. Operational data is a common source for the
information that is extracted and loaded into a warehouse data store.

physical metadata
is a set of software instructions that define how an application element stores, moves,
or transforms data. For example, the physical metadata for a SAS table might
specify a certain number of rows and columns, with certain transformations applied
to some of the columns.

physical model
is the database design that identifies the structure and function of the database. A
physical model is based on a logical model and is a technical specification that
identifies schemas, tables, columns, indexes, and so on.

post-load process
is a routine that executes after a table is loaded. Post-load processes are specified on
the Source Code tab of a load process window, which you display from the Process
Editor.

process
is a routine that creates a warehouse data store, or that extracts data, transforms
data, or loads data into a data store. In SAS/Warehouse Administrator, you define
metadata records that are used to generate or retrieve the source code for processes.
Mappings, User Exits, Data Transfers, Record Selectors, and Load Steps are all
metadata records that generate or retrieve processes.

Each process that you define in the Process View of the Process Editor generates
or retrieves code. SAS/Warehouse Administrator can generate source code for any

Glossary 385

process except a User Exit or an ODD Load Step. However, you can specify a
user-written routine for any process.

Process Flow
is a user-defined diagram in the Process View of the Process Editor. It is composed of
symbols, with connecting arrows and descriptive text, that illustrate the sequence of
each process associated with the Job that is selected in the Job Hierarchy of the
Process Editor. The Process Flow illustrates how the data moves from input source(s)
to output table(s) and what extractions and transformations occur in between.

A Job must include a Process Flow if SAS/Warehouse Administrator will generate
the source code for the Job. If you will supply the source code for a Job, no Process
Flow is required, although you may want to create one for documentation purposes.

Process Library
is a collection of registered routines that extract data, transform it, and/or load it into
warehouse tables. For example, a Process Library might include routines that do a
range-check on certain data values, or that eliminate duplicate values. As you use
the Process Editor to define a step in the Process Flow for a particular table, you
have the option of selecting a predefined routine from the Process Library, instead of
defining your own process for that step.

proxy MDDB
See the discussion under HOLAP.

Record Selector process
is a metadata record used to generate or retrieve a routine which subsets data prior
to loading it to a specified table. In the current release, a Record Selector can be used
only to subset the source data specified in an ODD or in a Data File (which is an
input to an ODD).

ROLAP
is relational OLAP: online analytical processing performed on a relational database,
such as a SAS table or an ORACLE table. SAS/Warehouse Administrator supports
ROLAP with an OLAP Group of type ROLAP. Such a group is a grouping mechanism
intended to contain only OLAP Tables. Multiple OLAP Tables can be contained in
the group, but each table generally represents an entire OLAP application.

SAS Component Language (SCL)
is a programming language used with SAS/AF and SAS/FSP software to develop
interactive SAS applications. It was formerly known as SAS Screen Control
Language.

SAS library definition
is a metadata record for a SAS library that contains data, views, source code, or
other information that is used in the current Warehouse Environment. SAS library
definitions are included in the metadata records for data stores, processes, and Jobs
in the current Environment.

SAS/ACCESS LIBNAME definition
is a special SAS library definition that can be used to extract source data in DBMS
format or to create warehouse data stores in a DBMS. SAS/Warehouse Administrator
uses a SAS/ACCESS LIBNAME definition to generate a SAS/ACCESS LIBNAME
statement. Some of the metadata that you specify in the definition corresponds to the
options in the LIBNAME statement. For example, a SAS/ACCESS LIBNAME
definition specifies a SAS/ACCESS engine - such as oracle or sybase - that enables
you to access the corresponding DBMS as if it were a SAS library.

SAS/Warehouse Administrator
is an application which provides a visual environment for managing data
warehouses. Using the windows in this application, you specify the metadata which

386 Glossary

defines data sources, data stores, code libraries, and other warehouse resources. SAS/
Warehouse Administrator then uses this metadata to generate or retrieve the code
which extracts, transforms, and loads the data into your warehouse.

Scheduling Server definition
is a metadata record which specifies a scheduling server application (such as CRON
under UNIX System V), a definition for the host where the scheduling server runs,
directories where the scheduling server can send temporary files, the commands used
to start SAS on the scheduling server host, and the default job-tracking option for
jobs using this scheduling server definition.

star schema
is an arrangement of database tables in which a large fact table that has a
composite, foreign key is joined to several dimension tables. Each dimension table
has a single primary key.

statistic column
a required OLAP summary role, which is a numeric column for storing computed
summary statistics...these are the measures you want to analyze. You must have at
least one statistic column, with an unlimited maximum. The values for the input
column (analysis column) are used to compute the output summary statistics, which
then become the values for the statistic column in the summary data store.

For example, you could add a column named MINSALES, assign it as a statistic
column using the MIN statistic, then define a Mapping process to compute the derived
statistic from an analysis column like SALES to the statistic column MINSALES.

Each statistic column has a specific keyword associated with it that specifies which
statistic to compute.

Subject
is a grouping element for data related to one topic within a Data Warehouse. For
example, a Data Warehouse might have a Subject called Products (information
related to products) or Sales (information related to sales). Each Subject may be
composed of a number of different data collections: detail data, summary data,
charts, reports, and graphs.

summary data
is information that is derived from the facts in a data base. It is data that has been
summarized after extraction from a source.

summary data store
in SAS/Warehouse Administrator, OLAP Tables or OLAP MDDBs that store
crossings and statistic columns. As each crossing is accumulated, all records of the
input data are sorted into groups by the values of the class columns included. Each
group represents a specific subpopulation. Within each group, the summary statistics
are calculated on all input records and the statistics are stored in statistic columns
with the same name as the analysis columns they were derived from. A single record
is written to the crossing for each subpopulation.

Summary Group
has been replaced by OLAP Group. These are provided for compatibility with earlier
releases of SAS/Warehouse Administrator.

Summary MDDB (Multidimensional Database)
has been replaced by OLAP MDDB. These are provided for compatibility with earlier
releases of SAS/Warehouse Administrator.

Summary Table
has been replaced by OLAP Table. These are provided for compatibility with earlier
releases of SAS/Warehouse Administrator.

Glossary 387

User Exit process
is a metadata record used to retrieve a user-written routine. The routine must be
stored in a SAS catalog with an entry type of SOURCE or SCL. A User Exit routine
often extracts or transforms information for a warehouse data store, but it could do
many other tasks.

Warehouse Environment
See Data Warehouse Environment.

388

Index 389

Index

A
ACTIVE field

Exporter Registry 352
Tools Registry 338

ACTIVE variable
Add-In Exporter Registry 352
Add-In Tool Registry 338

add-in code generator 355
I_API parameter 356
ID parameter 356
L_PARMS parameter 356
parameters 356
passwords 357
requirements 356
sample 358
sample code 358
usage notes 357

Add-In Exporter Registry 351
Add-In Exporters 351
Add-In Tool Registry 338

example 339
registry format 338
variables 338

add-in tools 337
Add-In Tools Registry 338, 339
administrators 97
analysis columns, OLAP applications 179
AT command 307
Attributes tab, Process Library window 368
ATTRS.SLIST entry 373
autoexec file 72

B
BLDATTRS.SCL entry 373
browsing metadata 314

global metadata 10
MetaSpace Explorer 315
SAS/Warehouse Administrator Explorer 314

C
cardinality 179
class columns, OLAP applications 179
class columns, OLAP summary data 184

assigning 190, 212
importing 198

column metadata, importing 340
predefined column formats 340

configuration files 72
contact records 97

creating 97
properties, defining 98

converting from earlier releases 63
Data Warehouse Environments 63
directory structures for converted data 324
from Release 1.x 325
local resources with relative pathnames 328
metadata 323
opening a converted environment 327
pathname for old environment 325
process flows 328, 329
process flows, testing 331
verifying local resources 327

copying Data Warehouse Environments 64
crossings

OLAP applications 181
OLAP summary data 185, 201

customizing SAS/Warehouse Administrator 17
add-in tools 337
Add-In Tools Registry 338, 339
components list 342
Expression Builder window 342
formats, user-defined 341
importing column metadata 340
informats, user-defined 341
predefined column formats 340
SASHELP.WAXFORM data set, format 343
_SASWA.WAXFORM data set, creating 343
_SASWA.WAXFORM data set, text column

placeholders 344

D
data

loading to a target object 55
moving between hosts 54
subsetting 54

Data Files
data stores 45
Operational Data Definitions (ODDs) 45

data flow 7
through a warehouse 7

Data Groups
creating 147
properties, defining 147

data host configuration 27
DBMS data, accessing 28
local Job, local data 29
local Job, remote data 30
metadata host configuration 23
remote Job, local data 32
remote Job, remote data 34, 37

data marts 5, 46
data marts, definition 46
data stores 41, 42

adding a frequency count 221
choosing for OLAP summary data 183
Data Files 45
data marts 46
Data Tables 46
Data Warehouse Environments 43
Data Warehouses 46
detail data stores 46
Detail Logical Tables 46
Detail Tables 46
exporting data format 349
External Files 45
global metadata 44
groups 42
hierarchy of 42
hierarchy of, illustration 42
InfoMarts 49
inputs 55
Jobs, defining 50
Jobs, inputs and outputs 51
ODD Groups 44
OLAP Groups 48
OLAP MDDBs 48
OLAP Tables 49
Operational Data Definitions (ODDs) 44
output tables, creating multiple 51
output tables, Job restrictions 52
outputs 55
Subjects 46
summary data stores 48

Data Tables 145
creating 146, 148
data stores 46
properties, defining 148

Data Transfer process 282
moving data between hosts 294
properties, defining 294

Data Transfer processes 54, 272
Data Warehouse Environments 15

converting from earlier releases 63

390 Index

copying 64
creating 15, 62
data stores 43
directory structure 64
example environment, adding 62
hardware requirements 64
local 67
Metadata Conversion wizard 63
Metadata Copy wizard 64
opening in the Explorer 63
pathname portability 66
physical pathnames 66
properties, defining 67, 69
relative pathnames 63
remote 68
SAS autoexec file 72
SAS column names 73
SAS configuration file 72
SAS/SHARE server preparation 68
SAS startup files 72
SAS system options 73
SAS/Warehouse Administrator client prepara-

tion 69
shortcut for 71
starting 71
VALIDVARNAME= option 73

data warehouses 5
data flow through 7

Data Warehouses 5, 133
creating, process for 15
creating environment for 15
data stores 46
local 134
maintaining 16
planning 14
remote 138, 139

date values, splitting 227
DBMS connection profiles 95

connection properties, defining 95
creating 95
DBMS login information 95

DBMS tables, registering 111
Define Items Used Globally window 11, 76
DESC field

Exporter Registry 352
Tools Registry 339

DESC variable
Add-In Exporter Registry 352
Add-In Tool Registry 339

desktop window 9
Desktop window 9
detail data, OLAP applications 178
detail data stores 46
Detail Logical Tables 155

as view to multiple Detail Tables 165
creating 156
data stores 46
linking to Detail Tables 164
properties, defining 157, 167

Detail Tables 155
creating 156, 158
data stores 46
linking to Detail Logical Tables 164
properties, defining 158

dimensions, OLAP applications
determining 180
hierarchical relationships 180

dimensions, OLAP summary data 185
assigning 192
defining 213

documentation 3
_DWMD SAS library 23, 313

E
encryption, host definitions 93
Enterprise Resource Planning (ERP) data

sources 130
ENTRY field

Exporter Registry 351
Tools Registry 338

ENTRY variable
Add-In Exporter Registry 351
Add-In Tool Registry 338

example environment 62
adding 62
PC host 333
UNIX host 334

executing Jobs interactively 264
exploiting Data Warehouses 17

browsing metadata, MetaSpace Explorer 315
browsing metadata, SAS/Warehouse Adminis-

trator Explorer 314
_DWMD SAS library 313
exporting host definitions 315
_MASTER SAS library 313
metadata repositories 313, 314
Metadata Search Facility 314
searching metadata 314

exploiting Data Warehouses, exporting metadata
for data stores 316
for groups 316
from SAS/Warehouse Administrator 317
host definitions 316
to SAS/EIS software 316

Explorer window 10
browsing metadata 314
displaying 10
Metadata-Details view 314

Export Metadata Facility 351
Exporter Registry 351
exporting data 316

Add-In Exporter Registry 351
host definitions 316
shared metadata 316

exporting data, output formats
Data Stores 349
Groups 349
shared metadata 347

exporting host definitions 315
Expression Builder window 342
External Files

data stores 45
Operational Data Definitions (ODDs) 45

F
formats, user-defined 341

G
General tab, Process Library window 368
GETUSRPW macro

SAS/Warehouse Administrator local sup-
port 93

SAS/Warehouse Administrator remote sup-
port 93

setup 93
global metadata 76

adding to Data Warehouse Environments 76
browsing 10
data stores 44
Define Items Used Globally, adding global

metadata 76
defining 10, 11

groups 42
export data format 349
heirarchy of, illustration 42

H
hardware requirements 21, 64
help

for main windows 9
online 3

Help tab, Process Library window 368
HELP.SOURCE entry 373
hierarchies, OLAP summary data 185

assigning 193
defining 215

hierarchy of data stores 42
HOLAP groups 182
host definitions 86

encryption 93
exporting 315
GETUSRPW macro 93
local, creating 86, 87
passwords, getting 93
preparing for 86
properties, defining 87, 89
remote, accessing with scripts 92
remote, creating 86, 88
userids, getting 93

host definitions, exporting 316

I
I_API field, Exporter Registry 352
I_API parameter, add-in code generator 356
I_API variable, Add-In Exporter Registry 352
ID columns

OLAP applications 179
OLAP summary data 185

ID field, Exporter Registry 352
ID parameter, add-in code generator 356
ID variable, Add-In Exporter Registry 352
importing column metadata 340

predefined column formats 340
InfoMart Files 239

creating 245
properties, defining 245

InfoMart Items 239
creating 242

Index 391

properties, defining 242
InfoMarts 239

creating 240
data stores 49
properties, defining 241

informats, user-defined 341
inputs, Jobs 51

J
Job Groups, adding to Jobs 276
Job Properties window 13
Jobs 252

data store inputs and outputs 51
Data Transfer processes, adding 272
defining for data stores 50
executing interactively 264
Job Groups, adding 276
Job Properties window 13
Load Generation/Execution Properties win-

dow 14
loading data stores 14
managing 12
moving 278
multiple inputs/outputs 265
multiple output tables, restrictions 52
preventing conflicts 24
Process Editor window 12, 253
properties 13
Record Selector processes, adding 274
registering data sources 114
User Exit processes, adding 270

Jobs, generating code with SAS/Warehouse Ad-
ministrator

adding an input source 258
adding Jobs from the data store 256
defining Job properties 257
Load process 260
Mapping process 259

Jobs, scheduling and tracking 24
AT command 307
local Job, local data 29
local Job, remote data 31
local metadata 25
Null Scheduler 310
PC client to Windows NT Server 26
preparing for 305
registering Jobs information libraries 306
remote Job, local data 33
remote Job, remote data 36, 38
remote metadata 26
SAS/SHARE software 24
scheduling 306
scheduling server definitions, creating 99, 100
scheduling server definitions, null option 105
sharing conflicts, avoiding 24
single-host configurations 25
tracking 307
viewing scheduled Jobs 311

Jobs, with user-written code 261
adding a Job 261
defining Job properties 262

Jobs Information libraries 24
creating 83
properties, defining 85
SAS/SHARE server preparation 84

SAS/Warehouse Administrator client prepara-
tion 84

L
Library tab, Process Library window 368
linking Detail Logical Tables to Detail Ta-

bles 164
Load Generation/Execution Properties win-

dow 14
Load processes 55

editing properties 302, 304
SAS/Warehouse Administrator code 304
user-written code 301

Load Step routines
creating a query 116
defining ODD properties 121
editing a query 120
testing a query 121

L_PARMS field, Exporter Registry 352
L_PARMS parameter, add-in code generator 356
L_PARMS variable 352

M
main windows 9

Define Items Used Globally 11, 76
desktop 9
Explorer 10
help for 9
Job Properties 13
Load Generation/Execution Properties 14
Process Editor 12, 253
summary table of 9

Main.xxx entry 372
Mapping processes 52, 281

one-to-one mapping 283
properties, defining 283, 288
transforming data 288

_MASTER SAS library 23, 313
MDDB, OLAP summary data

crossings, defining 204, 217
properties, defining 201
summary roles, importing 204

MDDB OLAP structure definitions, OLAP sum-
mary data 213

metadata 6
accessing from SAS/EIS software 318
browsing with Explorer 314
browsing with Metaspace Explorer 315
column, importing 340
converting from earlier releases 323
exporting 316
global 10, 11
searching 314

metadata, browsing
global metadata 10
MetaSpace Explorer 315
SAS/Warehouse Administrator Explorer 314

metadata, exporting 315
add-in application, example 352
add-in exporters 351
Export Metadata Facility 351
Exporter Registry 351

for data stores 316
for groups 316
from SAS/Warehouse Administrator 317
host definitions 316
SAS data sets, for data stores 349
SAS data sets, for groups 349
SAS data sets, for shared metadata 347
to SAS/EIS software 316

Metadata Conversion wizard 63
Metadata Copy wizard 64
metadata host configuration 23

configurations to avoid 24
_DWMD SAS library 23
Jobs Information libraries 24
local metadata 24
_MASTER SAS library 23
NT Server to NT Server 27
PC client to Windows NT Server 25
recommended configurations 23
remote metadata 25, 27
SAS libraries used 23
single host 24
UNIX host to UNIX host 27

metadata repositories 313, 314
Metadata Search Facility 314
Metadata Search Facility window 315
Metaspace Explorer

browsing metadata 315
MIXED groups, OLAP summary data 183
MNEMONIC field

Exporter Registry 351
Tools Registry 338

MNEMONIC variable 338
Add-In Exporter Registry 351

MOLAP groups, OLAP summary data 183

N
NAME field

Exporter Registry 352
Tools Registry 338

NAME variable
Add-In Exporter Registry 352
Add-In Tool Registry 338

Null Scheduler 310
null scheduling server definition 105

properties, defining 106
uses for 106

O
ODD column metadata, keeping current 130
ODD data, viewing 129
ODD Groups

creating 109
customer ODD, creating a Job for 124
data stores 44
properties, defining 109
testing 115, 128

ODD properties, defining 121
ODDs (Operational Data Definitions) 44

Data Files 45
data stores 44
External Files 45

392 Index

OLAP applications
analysis columns 179
cardinality 179
class columns 179
crossings 181
detail data 178
dimensions 180
ID columns 179
populations 179
spiral diagrams 181
statistic columns 179

OLAP Cubes, OLAP summary data 185
adding 192, 213

OLAP group properties, OLAP summary
data 208

OLAP Groups 176
data stores 48
summary data stores, creating 177

OLAP MDDB objects 177
data stores 48
properties, OLAP summary data 209
summary roles, OLAP summary data 212

OLAP (Online Analytical Processing) 176
OLAP structure definitions 183, 192
OLAP summary data

adding frequency count to data stores 221
assigning summary roles 183
choosing data stores 183
class column role 184
crossing role 185
crossings, defining 201
date values, splitting 227
dimensions 185
hierarchies 185
HOLAP groups 182
ID column role 185
input columns, multiple summary roles 232
MIXED groups 183
MOLAP groups 183
OLAP Cubes 185
OLAP structure definitions 183
one analysis column for multiple statistic

columns 223
proxy MDDBs 182
ROLAP groups 183
statistic column role 184
statistic columns, importing 200

OLAP summary data, for HOLAP applica-
tions 186

class columns, assigning 190
class columns, importing 198
dimensions, assigning 192
group properties, defining 187
hierarchies, assigning 193
MDDB crossings, defining 204
MDDB properties, defining 201
MDDB summary roles, importing 204
OLAP Cubes, adding 192
OLAP structure definitions 192
OLAP Table properties, defining 195
statistic columns, assigning 191
summary roles, importing 198

OLAP summary data, for MOLAP applica-
tions 208

class columns, assigning 212
dimensions, defining 213
hierarchies, defining 215

MDDB crossings, defining 217
MDDB OLAP structure definitions, defin-

ing 213
OLAP cubes, adding 213
OLAP group properties, defining 208
OLAP MDDB properties, defining 209
OLAP MDDB summary roles, assigning 212
statistic columns, assigning 212

OLAP Tables 176
data stores 49
properties, defining 195

online help 3
outputs, Jobs 51
owners 97

P
PARMFMT field, Tools Registry 338
PARMFMT variable 338
passwords

add-in code generator 357
getting 93
remote host definition 90

pathname portability 66
placeholders, _SASWA.WAXFORM text

columns 344
populations 179
Process Catalog format 372

ATTRS.SLIST entry 373
BLDATTRS.SCL entry 373
HELP.SOURCE entry 373
Main.xxx entry 372

Process Catalogs 366
format 372
selecting 369

Process Editor 12
Process Editor window 12, 253
process flow

creating 12
process flows, converting from earlier re-

leases 328, 329, 331
Process Library 282, 366

invoking 367
navigating 367
process catalog, selecting 369
Process Catalogs, definition 366
Process Catalogs, format 372
Process Catalogs, selecting 369
registry 370
selection results 369
WAPRCS data set 370, 372

Process Library Registry 370
Process Library window

Attributes tab 368
General tab 368
Help tab 368
Library tab 368

process metadata, defining 12
See Process Editor

processes 52
planning 41
Process Library 282
user-written code 282, 301

processes, Data Transfer 54, 282, 294
processes, Load

definition 55

SAS/Warehouse Administrator code 304
user-written code 301

processes, Mapping 52, 281
one-to-one mapping 283
transforming data 288

processes, Record Selector 54, 282, 298
processes, User Exit 53, 282, 290
properties

contact records 98
Data Groups 147
Data Tables 148
Data Transfer process 294
Data Warehouse Environments 67, 69
DBMS connection profiles 95
Detail Logical Tables 157, 167
Detail Tables 158
host definitions 87, 89
InfoMart Files 245
InfoMart Items 242
InfoMarts 241
Job Properties window 13
Jobs, displaying 13
Jobs, with SAS/Warehouse Administrator

code 257
Jobs, with user-written code 262
Jobs Information libraries 85
Load Generation/Execution Properties win-

dow 14
Load processes 302, 304
Load Step routines 121
local Data Warehouses 134
Mapping processes 283, 288
MDDB, OLAP summary data 201
null scheduling server definition 106
ODD 121
ODD Groups 109
OLAP groups 208
OLAP MDDB 209
OLAP summary data, for HOLAP applica-

tions 187, 201
OLAP summary data, for MOLAP applica-

tions 209
OLAP Tables 195
Record Selector process 298
registering data sources 111, 121
remote Data Warehouses 139
SAS/ACCESS LIBNAME definitions 82
SAS library definitions 77, 79
scheduling server definitions 100, 106
Subjects 142
User Exit process 290

proxy MDDBs 182

R
Record Selector process 54, 282

adding to Jobs 274
properties, defining 298

registering data sources 107
customer ODD, creating a Job for 124
DBMS tables 111
Enterprise Resource Planning (ERP) data

sources 130
ODD column metadata, keeping current 130
ODD data, viewing 129
ODD groups, creating 109

Index 393

ODD groups, testing 115, 128
ODD properties, defining 111, 121
SAS tables 108, 111
SAS views 111
user-written code 108, 115

registering data sources, Load Step routine
creating a query 116
defining ODD properties 121
editing a query 120
testing a query 121

registry format 338
ROLAP groups 183

S
SAS/ACCESS engine support, testing 81
SAS/ACCESS LIBNAME definitions

creating 80
DBMS connection profile, creating 95
properties, defining 82
testing SAS/ACCESS engine support 81

SAS autoexec file 72
SAS code for elements 14
SAS column names

case sensitivity 73
specifying 73

SAS configuration files 72
SAS data sets for exported metadata

data stores 349
groups 349
shared metadata 347

SAS/EIS software
accessing metadata from 318
exporting metadata to 316

SAS libraries
_DWMD 23, 313
Jobs Information libraries 83
local libraries 77
_MASTER 23, 313
metadata host configuration 23
preparing for 77
properties, defining 77, 79
remote libraries 79
SAS/ACCESS engine support, testing 81

SAS/ACCESS LIBNAME definitions 80
SAS/SHARE servers 84
SAS/Warehouse Administrator clients 84

SAS/SHARE Server
creating a remote Data Warehouse 138
Data Warehouse Environments 68
SAS library definitions 84

SAS/SHARE software, preventing Job con-
flicts 24

SAS startup files 72
SAS system options 73
SAS tables, registering 108, 111
SAS views, registering 111
SAS/Warehouse Administrator 5

data flow 7
hardware requirements 21
metadata 6
software requirements 22
starting 18

SAS/Warehouse Administrator, customizing 17
Add-In Tool Registry 338
formats, user-defined 341
importing column metadata 340
informats, user-defined 341

SAS/Warehouse Administrator clients
creating a remote Data Warehouse 138
Data Warehouse Environments 69
SAS library definitions 84

SASHELP.WAXFORM data set, format 343
_SASWA.WAXFORM data set

creating 343
text column placeholders 344

scheduling server definitions
creating 99, 100
null option 105
properties, defining 100, 106

shared metadata, export data format 347
software requirements 22
spiral diagrams 181
statistic columns, OLAP applications 179
statistic columns, OLAP summary data 184

assigning 191, 212
importing 200

Subjects
creating 142

data stores 46

properties, defining 142

summary data stores 48

summary roles, OLAP summary data

assigning 183

importing 198

T
text column placeholders 344

U
User Exit process 53, 282

adding to Jobs 270

properties, defining 290

user-written code

Load processes 301

processes 282, 301

registering data sources 108, 115

user-written code, Jobs 261

adding a Job 261

defining Job properties 262

userids, getting 93

V
VALIDVARNAME= option 73

W
WAPRCS data set 370, 372

WAPRCS dataset 370

Warehouse Administrator 5

windows

Define Items Used Globally 11

Desktop 9

Explorer 10

Load Generation/Execution Properties 14

Process Editor 12

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

.

.

	Table of Contents
	Contents

	Introduction
	Using This Document
	Purpose of This Document
	Intended Audience
	Other SAS/Warehouse Administrator Documentation

	Overview of SAS/Warehouse Administrator
	What Is a Data Warehouse?
	What Is SAS/Warehouse Administrator?
	Managing through Metadata

	SAS/Warehouse Administrator Data Flow
	Tour of the Main Windows
	Displaying Help for the Main Windows
	Desktop
	Explorer
	Define Items Used Globally Window
	Process Editor
	Job Properties
	Load Generation/Execution Properties

	Task Summaries
	Plan Your Data Warehouse
	Create a Data Warehouse Environment
	Create a Data Warehouse
	Maintain a Data Warehouse
	Exploit a Data Warehouse

	Customizing SAS/Warehouse Administrator
	Starting SAS/Warehouse Administrator

	Planning
	Planning Your Hardware and Software
	Overview
	General Hardware Requirements
	General Software Requirements
	Metadata Host Configuration
	Overview
	Local Metadata: Single Host
	Remote Metadata: PC Client to Windows NT Server
	Remote Metadata: UNIX or NT Server to Like Server

	Data Host Configuration
	Overview
	Local Job, Local Data
	Local Job, Remote Data
	Remote Job, Local Data
	Remote Job, Remote Data (Example 1)
	Remote Job, Remote Data (Example 2)

	What’s Next

	Planning Your Data Stores and Processes
	Overview
	Groups and Data Stores
	Data Warehouse Environments
	Operational Data Definitions (ODDs)
	Data Warehouses and Subjects
	Detail Data Stores
	Summary Data Stores
	Information Marts (optional)

	Jobs
	Job Inputs and Outputs
	Creating Multiple Output Tables with One Job

	Processes
	Mappings
	User Exits
	Data Transfers
	Record Selectors
	Load Processes

	Valid Inputs and Outputs for Data Stores
	What’s Next

	Implementation
	Maintaining Environments
	Overview
	Working with Existing Environments
	Adding the Example Environment
	Metadata Conversion Wizard
	Opening a Warehouse Environment in the Explorer
	Metadata Copy Wizard

	Preparing to Create Local or Remote Warehouse Environments
	Creating a Directory Structure for a New Environment
	Specifying Physical Pathnames in SAS/Warehouse Administrator

	Example: Creating a Local Warehouse Environment
	Define Warehouse Environment Properties

	Example: Creating a Remote Warehouse Environment
	SAS/SHARE Server Preparation
	SAS/Warehouse Administrator Client Preparation
	Define Warehouse Environment Properties

	Creating a Start Method for an Environment
	Creating a Shortcut on a PC Desktop

	SAS Startup Files and SAS/Warehouse Administrator
	SAS Configuration File
	SAS Autoexec File

	SAS System Options and SAS/Warehouse Administrator
	VALIDVARNAME= Option

	What’s Next

	Maintaining Global Metadata
	Overview
	Using the Define Items Used Globally Window
	SAS Library Definitions
	Preparing to Create a SAS Library Definition
	Example: Creating a Local Library Definition
	Example: Creating a Remote Library Definition
	Example: Creating a SAS/ACCESS LIBNAME Definition
	Example: Creating a Jobs Information Library

	Host Definitions
	Preparing to Create Host Definitions
	Example: Adding a Local Host Definition
	Example: Adding a Remote Host Definition
	Additional Setup for Remote Hosts

	DBMS Connection Profiles
	Preparing to Create DBMS Connection Profiles
	Example: Creating a Connection Profile for a SAS/ACCESS LIBNAME Definition

	Contact Records
	Preparing to Create Contact Records
	Example: Creating a Contact Record

	Scheduling Server Definitions
	Preparing to Create Scheduling Server Definitions
	Example: Creating an AT Scheduling Server Definition
	Summary: Creating and Using a Null Scheduling Server Definition

	What’s Next

	Registering Data Sources
	Overview
	Preparing to Create ODDs
	Example: Creating an ODD Group
	Overview
	Define ODD Group Properties

	Example: Creating an ODD That Registers the Location of a Data Source
	Overview
	Define ODD Properties
	No Jobs for ODDs That Only Register Locations
	Test the ODD

	Example: Creating an ODD with a User-Written Load Step
	Overview
	Preparing to Create an ODD with a User-Written Load Step
	Create a Load Step Routine (Query Window Method)
	Define ODD Properties
	Define Process Editor Job
	Test the ODD

	Keeping ODD Column Metadata Current
	Accessing Data in ERP Systems
	What’s Next

	Maintaining Data Warehouses and Subjects
	Overview
	Preparing to Create Local or Remote Data Warehouses
	Example: Creating a Local Data Warehouse
	Define Data Warehouse Properties

	Example: Creating a Remote Data Warehouse
	SAS/SHARE Server Preparation
	SAS/Warehouse Administrator Client Preparation
	Define Data Warehouse Properties

	Example: Creating a Subject
	Define Subject Properties

	What’s Next

	Maintaining Data Tables
	Overview
	Preparing to Create Data Tables
	Example: Creating a Data Group
	Overview
	Define Data Group Properties

	Example: Creating a Data Table
	Overview
	Define Data Table Properties
	Define Process Editor Job

	What’s Next

	Maintaining Detail Logical Tables and Detail Tables
	Overview
	Preparing to Create Detail Tables
	Example: Creating a Detail Logical Table as a Grouping Element for Detail Tables
	Overview
	Define Detail Logical Table Properties

	Example: Creating a Detail Table
	Overview
	Define Detail Table Properties
	Define Process Editor Job

	Example: Linking from a Detail Logical Table to an Existing Detail Table
	Overview
	Create a Link

	Example: Creating a Detail Logical Table as a View to Multiple Detail Tables
	Overview
	Planning the Detail Logical Table to be Organized as a Star Schema
	Define Detail Logical Table Properties
	Define Process Editor Job

	What’s Next

	Maintaining OLAP Groups and OLAP Summary Data Stores
	Overview
	Preparing to Create Summary Data Stores
	Analyzing Detail Data for an OLAP Application
	Understanding Detail Data
	Determining Dimensions in the Data
	Determining Hierarchical Relationships within Dimensions
	Determining Crossing(s)

	Summarizing Data Using SAS/Warehouse Administrator
	Generating the Appropriate OLAP Summary Data
	Choosing the Appropriate Data Store
	Assigning OLAP Summary Roles and Defining OLAP Structure

	Example: Creating Summary Data for a HOLAP Application
	Overview
	Define OLAP Group Properties
	Assign OLAP Summary Roles for the Group
	Define OLAP Structure Definitions for the Group
	Define OLAP Table Properties
	Import OLAP Summary Roles for the Table
	Define Crossing for the Table
	Define OLAP MDDB Properties
	Import OLAP Summary Roles for the MDDB
	Define Crossings for the MDDB
	Define Process Editor Job

	Example: Creating Summary Data for a MOLAP Application
	Overview
	Define OLAP Group Properties
	Define OLAP MDDB Properties
	Assign OLAP Summary Roles for the MDDB
	Define OLAP Structure Definitions for the MDDB
	Define Process Editor Job

	Example: Adding a Frequency Count to an OLAP Summary Data Store
	Overview
	Add a Column to OLAP Summary Data Store
	Assign OLAP Summary Roles to the Column
	Define Mapping Process in Process Editor Job

	Example: Using One Analysis Column for Multiple Statistic Columns
	Overview
	Add Columns to OLAP Summary Data Store
	Assign OLAP Summary Roles to the Columns
	Define Mapping Process in Process Editor Job

	Example: Using DATE/TIME Stored Expression to Split Date Values
	Overview
	Add Columns to OLAP Summary Data Store
	Assign OLAP Summary Roles to the Columns
	Define Mapping Process in Process Editor Job

	Example: Using an Input Column for Multiple Summary Roles
	Overview
	Import and Add Columns to OLAP Summary Data Store
	Assign OLAP Summary Roles to the Columns
	Define Mapping Process in Process Editor Job

	What’s Next

	Maintaining Information Marts
	Overview
	Preparing to Create Information Marts
	Example: Creating an Information Mart
	Overview
	Define Information Mart Properties

	Example: Creating an Information Mart Item
	Overview
	Define Information Mart Item Properties
	Define Process Editor Job
	Display Output

	Example: Creating an Information Mart File
	Overview
	Define Information Mart File Properties
	Display Output

	General Tasks
	Maintaining Jobs
	Overview
	Using the Process Editor Window
	Example: Defining a Job for which SAS/Warehouse Administrator Generates Code
	Overview
	Adding a Job from the Data Store
	Defining Job Properties
	Adding an Input Source
	Defining Mapping Process Properties
	Editing the Load Process

	Example: Defining a Job for Which User-Written Code is Supplied
	Overview
	Adding a Job
	Defining Job Properties

	Example: Executing a Job
	Overview
	Executing a Job Interactively

	Example: Defining a Job with Multiple Output Tables and Input Sources in a Process Flow
	Overview
	Adding a Job From the Data Store
	Adding an Input Source
	Adding a Second Output Table and Input Source
	Adding a Third Output Table and Input Source

	Example: Adding a User Exit Process to a Process Flow
	Overview
	Adding a User Exit Process

	Example: Adding a Data Transfer Process to a Process Flow
	Overview
	Adding a Data Transfer Process

	Example: Adding a Record Selector Process to a Process Flow
	Overview
	Adding a Record Selector Process

	Example: Adding a Job Group
	Overview
	Adding a Job Group

	Example: Moving Jobs
	Overview
	Moving a Job

	Maintaining Processes
	Overview
	User-Written Code
	Using the Process Library
	Example: Defining Mapping Process Properties for One-to-One Mapping
	Overview
	Defining Mapping Properties

	Example: Defining Mapping Process Properties to Transform Data
	Overview
	Defining Mapping Properties

	Example: Defining User Exit Process Properties
	Overview
	Defining User Exit Properties

	Example: Defining Data Transfer Process Properties to Move Data from Remote Host to Local Host
	Overview
	Defining Data Transfer Properties

	Example: Defining Record Selector Process Properties
	Overview
	Defining Record Selector Properties

	Example: Editing Load Process Properties to Supply User-Written Code
	Overview
	Writing Code for a Load Process
	Editing Load Step Properties

	Example: Editing Load Process Properties for SAS/Warehouse Administrator Generated Code
	Overview
	Editing Load Step Properties

	Scheduling Jobs
	Overview
	Preparing for Job Scheduling
	Registering Jobs Information Libraries
	Registering a Jobs Information Library

	Scheduling Jobs
	Tracking Jobs
	Example: Scheduling and Tracking a Job with the AT Command
	Summary: Scheduling a Job with the Null Scheduler

	Viewing Scheduled Jobs

	Exploiting Warehouse Metadata
	Overview: Metadata Repositories
	Impact of Metadata Repositories on User Operations

	Metadata Details View in the Explorer
	Metadata Search Facility
	MetaSpace Explorer
	Exporting Metadata
	Exporting Host Definitions and Other Shared Metadata
	Exporting Metadata for Groups and Data Stores

	Example: Exporting Metadata to SAS/EIS Software
	Overview
	Exporting Metadata from SAS/Warehouse Administrator
	Accessing Metadata in SAS/EIS Software

	Appendices
	Converting Metadata for Environments and Warehouses
	Overview
	Creating a Directory Structure for the New Environment
	Inspecting the Pathname for the Old Environment
	Converting a Release 1.x Environment and Its Warehouses
	Opening a Converted Environment for the First Time
	Verifying Local Resources in the Converted Environment
	Local Resources with Fully Qualified Pathnames
	Local Resources with Relative Pathnames

	Process Flows in the New Process Editor
	Overview
	What the Converted Process Flows Look Like
	Testing Converted Process Flows

	Adding the Example Environment
	Overview
	PC Host Instructions
	UNIX Host Instructions

	Customizing the SAS/Warehouse Administrator Interface
	Overview
	Add-In Tools
	Customizing the Add-In Tools Registry
	Example Add-In Tools Registry

	Importing Column Metadata
	Predefined Column Formats

	User-Defined Formats and Informats
	Customizing the Components List for the Expression Builder Window
	Overview
	Creating _SASWA.WAXFORM

	Metadata Export Reference
	Overview
	SAS Data Sets Exported for Shared Metadata
	SAS Data Sets Exported for Groups and Data Stores
	Add-In Metadata Exporters
	Usage
	Example Add-In Application

	Add-in Code Generators and the Process Library
	Add-In Code Generator Technical Reference
	Requirements
	Usage Notes
	Sample Add-In Code Generator

	Process Library Technical Reference
	Invoking the Process Library
	Navigating the Process Library
	Selecting a Process Catalog
	Selection Results
	Process Library Registry
	Process Catalog Format

	Recommended Reading
	Recommended Reading

	Glossary
	Index

