
SAS/Warehouse
 Administrator ® 2.3
Metadata API
Reference
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/Warehouse Administrator® 2.3 Metadata API Reference. Cary, NC: SAS Institute Inc.

SAS/Warehouse Administrator® 2.3 Metadata API Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-222-4
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, January 2004
2nd printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Introduction to the Metadata API 1
Changes and Enhancements 1

Prerequisites 4

What is Metadata? 4

What is the SAS/Warehouse Administrator Metadata API? 5

What Can I Do with the SAS/Warehouse Administrator Metadata API? 5

How the Metadata API Works 5

Identifying Metadata 7

Reading Metadata: A Simple Example 8

Metadata Repositories 10

Learning to Use the Metadata API 12

Naming Conventions Used in This Manual 12

Where Metadata API Classes and SLISTS are Stored 12

Chapter 2 � Metadata API Class 13
Overview of the Metadata API Class 13

Using the Metadata API Class 14

Introduction to Metadata API Methods 14

Index to Metadata API Methods 16

Chapter 3 � SAS/Warehouse Administrator Metadata Types 51
Overview of SAS/Warehouse Administrator Metadata Types 51

Metadata Type Inheritance 52

Using Metadata Types 53

Index to SAS/Warehouse Administrator Metadata Types 70

Using the Metadata Type Dictionary 73

Appendix 1 � Sample Metadata API Code 273
Appendix Overview 273

Read Metadata Code Sample 273

Write Metadata Code Sample 277

Appendix 2 � Metadata Type Inheritance Tree 281
SAS/Warehouse Administrator Metadata Type Inheritance Tree 281

Appendix 3 � Recommended Reading 285
Recommended Reading 285

Glossary 287

Index 295

iv

1

C H A P T E R

1
Introduction to the Metadata
API

Changes and Enhancements 1
Prerequisites 4

What is Metadata? 4

What is the SAS/Warehouse Administrator Metadata API? 5

What Can I Do with the SAS/Warehouse Administrator Metadata API? 5

How the Metadata API Works 5
Identifying Metadata 7

Reading Metadata: A Simple Example 8

Metadata Repositories 10

Setting the Active Metadata Repository 11

Learning to Use the Metadata API 12

Naming Conventions Used in This Manual 12
Where Metadata API Classes and SLISTS are Stored 12

Changes and Enhancements
This section describes changes to the SAS/Warehouse Administrator metadata API

after Release 2.0.
� You can add and update the PATH property for the WHEFILE type.
� You can now use the metadata API to add, update, and delete process objects. For

example, you can write a metadata API program that creates a data store and also
creates all of the processes that are required to extract, transform, and load
information into that data store. The following metadata types have been updated
to support this feature:

� WHCOLUMN
� WHCOLDTL
� WHCOLDAT
� WHCOLODD
� WHCOLOLP
� WHCOLTIM

� WHCTRNFM
� WHEFILE
� WHEXTATR
� WHINDEX
� WHOLAP

� WOLPDIM

2 Changes and Enhancements � Chapter 1

� WOLPHIR
� WOLPCRS
� WOLPCUB

� WHPHYSTR
� WHDMSST
� WHSASSTR

� WHPOBJECT
� WHJOB
� WHGRPJOB
� WHEVENT

� WHTFILE
� WHTXTFIL
� WHSCRFIL

� WHTXTCAT
� WHNOTE
� WHSRCCAT

� WHJOBCAT

� WHDW
� WHDWENV
� WHINFO
� WHINFOFL
� WHTABLE

� WHDATTBL
� WHDETAIL
� WHLDETL
� WHODDTBL
� WHODTTBL
� WHSUMTBL
� WHOLPSTC

� WHGRPOLP
� WHOLPTBL
� WHOLPMDD

� WHTBLPRC
� WHTBLMAP
� WHTBLREC
� WHTBLUSR
� WHTBLXFR

� WHPROCES
� WHPRCMAN

� WHPRCMAP
� WHPRCREC
� WHPRCUSR

Introduction to the Metadata API � Changes and Enhancements 3

� WHPRCXFR
� WHPRCLDR

� WHLDRDAT
� WHLDRDTL
� WHLDREXT
� WHLDRINF
� WHLDRIMF
� WHLDRLDT
� WHLDRMDB
� WHLDRODD
� WHLDRODT
� WHLDRSUM
� WHLDOTBL
� WHLDOMDD

� WHLDOPRX

� WHPRCSPR
� WHPRCPST
� WHSUBSET
� WHROWSEL

� The TABLE OPTIONS property of the WHDBMSST type has a new sublist—the
APPEND sublist. The APPEND sublist contains any SAS/ACCESS LIBNAME
data set options that are used to create or load the table, such as BULKLOAD=yes.

� Load process options for warehouse tables, such as GENERATION LEVEL and
DROP INDEXES, are now surfaced through the WHPRCLDR type and all of its
subtypes. For example, you can write a SAS/Warehouse Administrator add-in that
reads the load options that are specified in a table’s load process and uses these
options to load the corresponding table.

� The operating system and SAS version that are associated with a given host are
now available through the WHHOST property. For example, you can write a
SAS/Warehouse Administrator add-in that reads the host metadata that is
associated with a given data store and then uses these values to generate code
that is appropriate for the operating system and SAS version.

� You can now write OLAP objects through the metadata API. The following types
have been updated:

� WHMDDSTR
� WHOLPSTC
� WHGRPOLP
� WHOLPTBL
� WHOLPMDD
� WHCOLOLP
� WHOLPDIM
� WHOLPHIR
� WHOLPCRS
� WHOLPCUB.

4 Prerequisites � Chapter 1

� Metadata for columns that are selected using point and click in the Expression
Builder and that are used in either a WHERE clause or a row selector is now
surfaced through the WHSUBSET and WHROWSEL types. For example, you can
write a SAS/Warehouse Administrator add-in that reads the column metadata that
is associated with a WHERE clause or a row selector and uses this metadata to
generate the appropriate code.

� You can now update the EXTENDED ATTRIBUTES property and other properties
in the WHCOLTIM type. For example, you can use an add-in tool to add data
mining attributes to a _LOADTM column, export the metadata for the table to
Enterprise Miner and analyze the _LOADTM column in Enterprise Miner.

� The usage notes for the _UPDATE_METDATA_ method have been expanded. For
details, see “Using _UPDATE_METADATA_” on page 46.

Prerequisites
To get the most out of this manual, you should be familiar with
� SCL (SAS Component Language), a programming language that controls SAS/AF

applications and provides complete object-oriented programming constructs for
creating an entire object-oriented application in SCL

� the SAS/AF software development environment
� SCL applications that use FRAME entries
� the SAS application whose metadata you want to read or write.

To use the metadata API, you will need the following SAS products in addition to
API software:

� Base SAS software, Release 6.12 or later
� SAS/AF software
� SAS/GRAPH software—if you need to modify or write API software that includes a

GUI
� the SAS application whose metadata you want to read or write, such as

SAS/Warehouse Administrator, Release 1.2 or later.

SCL applications that use the metadata API must run under Release 6.12 or later of
SAS.

What is Metadata?
Metadata is information that is internal to an application that describes elements in

the application, such as tables and columns. Metadata can be divided into two main
categories:

Physical metadata
specifies a set of software instructions that describe an application element.

For example, the physical metadata for a SAS table might specify a certain
number of rows and columns, with certain data transformations applied to some
columns.

Business metadata
specifies text that describes the content or purpose of an application element.

Introduction to the Metadata API � How the Metadata API Works 5

For example, the business metadata for a SAS table might describe the purpose
of the table and contact information for the person responsible for the accuracy of
the information in the table.

Most SAS/Warehouse Administrator metadata contains information about data
sources, data stores, and the jobs that extract, transform, and load source data into the
warehouse data stores. SAS/Warehouse Administrator metadata is stored in two or
more metadata repositories.

What is the SAS/Warehouse Administrator Metadata API?
It is a set of software tools that enable programmers to write applications that access

metadata in SAS/Warehouse Administrator.

What Can I Do with the SAS/Warehouse Administrator Metadata API?
Using the metadata API, you can write programs that read, add, update, or delete

the metadata in SAS/Warehouse Administrator—without going through the user
interface. You can write SCL applications that

� publish HTML pages that contain the current metadata for a SAS/Warehouse
Administrator group or data store

� change path names in metadata
� copy a table’s metadata (in order to create a similar table, for example)
� add columns to a table
� update a column attribute
� add tables and other objects that are defined by metadata
� use the API in a SAS macro to generate a LIBNAME statement.

How the Metadata API Works
Figure 1.1 on page 6 illustrates how client applications written in SCL use the

metadata API to read or write metadata from SAS applications.

6 How the Metadata API Works � Chapter 1

Figure 1.1 Metadata API Model

Note: The figure shows how one component works with one interpreter; however, the
metadata API accommodates multiple components as long as each component has an
appropriate interpreter. �

metadata client
specifies an application that uses metadata API methods to read or write
metadata. For the current release of the SAS metadata API, metadata clients
must be written in SCL.

metadata API
specifies a set of software tools that enables users to write applications that access
metadata.

metadata type
represents a template that models the metadata for a particular kind of object in
an application. The parameter list for a metadata type matches the items of
metadata that are maintained for the corresponding object.

SAS/Warehouse Administrator metadata types are listed in “Index to SAS/
Warehouse Administrator Metadata Types” on page 70.

Introduction to the Metadata API � Identifying Metadata 7

component
specifies a group of related metadata types. Each component has an ID (such as
WHOUSE) and a name (such as SAS/Warehouse Administrator) that often match
the name of the application whose metadata is modeled by the component. The
component that is supplied with the current API is WHOUSE (SAS/Warehouse
Administrator).

application program interface (API) interpreter
represents a program that translates the API metadata type that is requested by a
client to the corresponding metadata object in a repository. The current API has
two interpreters: one for SAS/Warehouse Administrator and the other for the Job
Scheduler utility.

API interpreters insulate client applications from the details of metadata
repositories. If you use the metadata API and there is an interpreter for your
target repository, client applications do not need to handle the details of that
repository in order to read from it or write to it. Also, if the metadata structure in
a repository should change, in many cases only the interpreter would have to be
updated and not the client applications that use the metadata API.

SAS application
specifies the SAS application whose metadata you want to read or write. The
current API supports two applications: SAS/Warehouse Administrator and its Job
Scheduler utility.

metadata repository
specifies a data store that contains an application’s metadata. For example,
SAS/Warehouse Administrator has multiple metadata repositories—one for each
environment and one for each warehouse within an environment. Accordingly, the
API provides methods for identifying primary and secondary repositories.
Repositories are described in more detail in “Metadata Repositories” on page 10.

Identifying Metadata

Each metadata object in a repository, such as the metadata for a particular column in
a SAS table, has a unique identifier. Each object can have a name and a description as
well. For example, here is the ID, name, and description for a SAS table column, as
returned by the metadata API’s _GET_METADATA_ method.

COLUMNS=((ID=’A000000E.WHCOLDTL.A0000032’
NAME=’PRODNUM’
DESC=’product number’
)[575]

) [671]

To read or write a metadata object, you must pass a list of properties for that type to
the appropriate metadata API method. (These methods are listed in “Index to Metadata
API Methods” on page 16.) The following properties are common to all metadata types.
They are often referred to as the general identifying information for a metadata object.

ID
specifies the unique three-level identifier for a metadata object. It takes the
following form: reposid.typeid.instanceid. For example, in the previous code
example, the ID for the COLUMNS object is A000000E.WHCOLDTL.A0000032.

A000000E is the repository ID that is assigned to a particular warehouse
repository when it was created in SAS/Warehouse Administrator. A reposid

8 Reading Metadata: A Simple Example � Chapter 1

(metadata repository ID) is a unique 8-character string that identifies the metadata
repository that stores the object. Each application has one or more repositories.

WHCOLDTL is the type ID for a column in a SAS/Warehouse Administrator
detail table. A typeid (metadata type ID) is a maximum 8-character string that
defines the type of the metadata object. Each application has its own set of
metadata types. For example, SAS/Warehouse Administrator metadata types are
listed in “Index to SAS/Warehouse Administrator Metadata Types” on page 70.

A0000032 is the instance ID that is assigned to a particular column in the
detail table when it was created in SAS/Warehouse Administrator. An instanceid
(metadata object instance ID) is an 8-character string that distinguishes one
metadata object from all other objects of the same type within a given repository.

NAME
specifies the name of the metadata object, up to 40 characters long. The name is
from the context of the component that it comes from. For example,
SAS/Warehouse Administrator names are those that appear in the Explorer, the
Setup window, the Process Editor, and other frames in that application. In the
previous code example, the NAME of the table column is PRODNUM.

DESC
describes the metadata object, up to 200 characters long. Not all objects will have
a description. In the previous code example, the DESC of the table column is
“product number.”

CAUTION:
It is strongly recommended that you avoid coding the literal identifier of a particular
metadata object in a client application. Instead, use the _GET_METADATA_OBJECTS_
method or other metadata API methods to return an SCL list of the unique object
identifiers, names, and descriptions for objects of a particular type. �

Reading Metadata: A Simple Example
The following steps illustrate how to use the API to select and display the metadata

for a particular detail table in a particular data warehouse that is created by
SAS/Warehouse Administrator. For the sake of simplicity, assume that you have
already attached to the relevant metadata repositories, that the metadata that you
want is in the A000000E repository, and that the type ID for the SAS/Warehouse
Administrator detail table is WHDETAIL.

1 Concatenate the DW_REPOS_ID (A000000E)with the metadata type ID
(WHDETAIL) and store them in the variable TYPE.

type=dw_repos_id||’.WHDETAIL’;

2 Define a list (L_OBJS) to hold the results of a read operation in the next step.

l_objs=makelist();

3 Call the _GET_METADATA_OBJECTS_ method, which accepts the
REPOSID.TYPEID that is assigned to the TYPE variable. It then loads the
L_OBJS list with the instance IDs and names of WHDETAIL objects in repository
A000000E .

call send(i_api,’_GET_METADATA_OBJECTS_’,rc,
type,l_objs);

Introduction to the Metadata API � Reading Metadata: A Simple Example 9

4 Use the PUTLIST function to display the list in the Message Window or SASLOG.

call putlist(l_objs,’WAREHOUSE OBJECTS’,2);
WAREHOUSE OBJECTS
(A000000E.WHDETAIL.A000001L=’Customer detail table’
A000000E.WHDETAIL.A000002X=’Product detail table’
A000000E.WHDETAIL.A000003M=’Customer detail table’
A000000E.WHDETAIL.A000004H=’Sales fact table’
A000000E.WHDETAIL.A000005U=’Oracle
A000000E.WHDETAIL.A000006Q=’Sybase’
A000000E.WHDETAIL.A000007L=’Remote Detail Table’
A000000E.WHDETAIL.A000008I=’Suppliers’
)[421]

5 Search the list for the unique ID of the product detail table and pass it to
_GET_METADATA_ in order to retrieve information about that table.

If you are interested in particular properties for a given metadata type, you can
pass those properties to the _GET_METADATA_ method as named items. For
example, in the code that follows, the LIBRARY, COLUMNS, and TABLE NAME
properties for the detail table metadata type are inserted in the metadata property
list (l_meta) that is passed to the _GET_METADATA_ method.

index=searchc(l_objs,’Product’,1,1,’Y’,’Y’);

id=nameitem(l_objs,index);
rc=clearlist(l_meta,’Y’);
l_meta=insertc(l_meta,id,-1,’ID’);
l_lib=makelist();
l_meta=insertl(l_meta,l_lib,-1,’LIBRARY’);
l_cols=makelist();
l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);
l_meta=insertc(l_meta,’ ’,-1,’TABLE NAME’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);
rc=putlist(l_meta,’PRODUCT table’,2);

6 The method populates these sublists with the requested information.

PRODUCT table(ID=’A000000E.WHDETAIL.A000002X’
LIBRARY=(ID=’A0000001.WHLIBRY.A000000U’

NAME=’Warehouse Data Library’
DESC=’’
)[405]

COLUMNS=((ID=’A000000E.WHCOLDTL.A0000032’
NAME=’PRODNUM’
DESC=’product number’
)[575]

(ID=’A000000E.WHCOLDTL.A0000034’
NAME=’PRODNAME’
DESC=’product name’
)[643]
(ID=’A000000E.WHCOLDTL.A0000036’
NAME=’PRODID’
DESC=’product id/abbreviation’
)[619]
(ID=’A000000E.WHCOLTIM.A00000FU’

10 Metadata Repositories � Chapter 1

NAME=’_LOADTM’
DESC=’DateTime Stamp of when row was

loaded’
)[621]
)[407]

The API enables you to read and write many metadata objects using techniques that
are similar to those used in these steps.

Metadata Repositories
You can divide an application’s metadata into different physical stores based on the

following criteria:
� different storage locations (such as separate repositories for local and remote

metadata)
� different intended users (such as separate repositories for business users and IT

staff)
� different levels of access control (such as separate repositories for testing and

production).

Each physical store of metadata is called a metadata repository. There are two main
types of metadata repositories—stand-alone and partitioned.

A stand-alone repository is a single metadata store, such as a SAS/EIS respository.
Once you access a stand-alone repository, all metadata is accessible. Figure 1.2 on page
10 illustrates a stand-alone repository.

Figure 1.2 Stand-Alone Metadata Repository

A partitioned repository has one or more primary repositories, each of which has one
or more secondary repositories. Figure 1.3 on page 11 illustrates the relationship
between a primary repository and its secondary repositories.

Introduction to the Metadata API � Setting the Active Metadata Repository 11

Figure 1.3 Partitioned Metadata Repository

Partitioning allows different kinds of metadata to be stored in different locations, in
different formats, and so on. The amount of metadata that you can access is controlled
by setting which repositories are active. Each repository in a partitioned repository has
a unique repository identifier (reposid).

SAS/Warehouse Administrator has a partitioned metadata repository. Each primary
repository stores metadata that is shared by all warehouses in an environment. Each
secondary repository stores metadata for an individual warehouse within an
environment.

Metadata that is stored in each repository can be associated with metadata in other
repositories. The secondary repositories can contain references to metadata in the
primary repository, but the primary repository cannot contain references to metadata in
any of the secondary repositories (as indicated by the solid arrow in Figure 1.3 on page
11). Some partitioned repositories also support secondary repositories that contain
metadata references into other secondary repositories, which are referred to as
cross-secondary repository references.

Note: The current SAS/Warehouse Administrator metadata repository does not
support cross-secondary repository references. Also, it supports only a single secondary
repository (metadata for one warehouse) to be active at one time. �

Setting the Active Metadata Repository
To use the metadata API, your SCL programs must attach to the repository that

contains the metadata that you want to read or write. This is done with the
_SET_PRIMARY_REPOSITORY_ method and the _SET_SECONDARY_REPOSITORY_
method.

In the context of the “set repository” methods, primary refers to either a stand-alone
repository or a primary repository of a partitioned repository. If the metadata that you
want is in a stand-alone repository or if it is in a primary portion of a partitioned
repository there is no need to set the secondary repository.

To identify the repository where a given type of metadata resides, you could use the
_GET_METADATA_OBJECTS_ method (with the SEARCH_SECONDARY parameter).

12 Learning to Use the Metadata API � Chapter 1

This method returns a list of all metadata objects of a given type. The reposid for each
object identifies the repository where the object is stored.

Learning to Use the Metadata API

The following are some steps you can take to learn the metadata API:

1 Become familiar with the elements of the metadata API—primary repository,
secondary repository, types, subtypes, type names, type IDs, and so on.

2 Study the “Read Metadata Code Sample” on page 273 and the “Write Metadata
Code Sample” on page 277.

3 Learn how to initialize the metadata API by executing simple API method calls
that do not read any actual metadata. For example, list all the object types that
are available in the API. List the properties for a given object in the API.

4 Try some simple queries against the metadata of a well-known metadata object.
Because this is just a test program, you can code the literal identifier of the object
in your client application. For example, list all the detail tables that are defined in
a warehouse.

5 Try a more realistic task by using the code samples in Appendix 1, “Sample
Metadata API Code,” on page 273 as a starting point.

a Decide what information you need.
b Translate this information into metadata types and attributes.
c Determine how the different metadata types you need are related so that you

will know how to access the metadata that you want.
For example, if you want to list all of the owners that are defined for a

given data warehouse and list all of the detail tables for which each owner is
responsible, you must first get a list of all detail tables. Then you can list the
owner of each detail table. For details about SAS/Warehouse Administrator
metadata relationships, see “Relationships Among Metadata Types” on page
53.

d Write the client application.
e Run the application and compare the returned metadata with the actual

metadata that you can view through the application.

Naming Conventions Used in This Manual

This document uses the following conventions in the examples:

� any variable that begins with i_ is an object (an instance of a class)

� any variable that begins with l_ is an SCL list identifier

� method names and SCL list item names appear in uppercase letters.

Where Metadata API Classes and SLISTS are Stored

The default classes and SLISTS for the metadata API are stored in the
SASHELP.METAAPI catalog.

13

C H A P T E R

2
Metadata API Class

Overview of the Metadata API Class 13
Using the Metadata API Class 14

Introduction to Metadata API Methods 14

Conventions 14

Error Codes 14

Metadata Property List 14
Index to Metadata API Methods 16

_ADD_METADATA_ 16

_CLEAR_SECONDARY_REPOSITORY_ 19

_DELETE_METADATA_ 20

_GET_COMPONENTS_ 22

_GET_CURRENT_REPOSITORIES_ 23
_GET_METADATA_ 25

_GET_METADATA_OBJECTS_ 28

_GET_SUBTYPES_ 30

_GET_TYPES_ 33

_GET_TYPE_NAME_ 35
_GET_TYPE_PROPERTIES_ 36

_IS_SUBTYPE_OF_ 38

_SET_PRIMARY_REPOSITORY_ 40

_SET_SECONDARY_REPOSITORY_ 43

_UPDATE_METADATA_ 46

Overview of the Metadata API Class
The metadata API class defines a set of methods that read and write metadata types.

A metadata client application uses these methods to communicate with an API
interpreter. The API interpreter translates the metadata types that are requested by
the client to the corresponding metadata in a SAS application’s metadata repository.

Parent:
SASHELP.FSP.OBJECT.CLASS

Class:
SASHELP.METAAPI.METAAPI.CLASS

14 Using the Metadata API Class � Chapter 2

Using the Metadata API Class

Using the metadata API class primarily involves using its methods. To access these
methods, instantiate a metadata API object using the INSTANCE and LOADCLASS
facilities.

i_api=instance(loadclass
(’SASHELP.METAAPI.METAAPI.CLASS’));

Introduction to Metadata API Methods

Methods that are specific to the metadata API class are described here.

Conventions

All lists and items in those lists that are passed to the API must have the UPDATE
list attribute. This applies to both the read and write metadata methods.

Whenever an output list is returned, a list will be created for you if one is not passed.
If one is passed, then the output information will be appended to the end of the existing
list.

Error Codes

Metadata API methods return error codes in the l_rc parameter. If a method returns
a nonzero l_rc, then the method failed, and l_rc is an error list identifier. It is your
responsibility as the application programmer to delete this list after interrogating its
contents (using PUTLIST, for example). The l_rc error list can contain the following
named items:

RC
represents the numeric return code value.

MSG
specifies an optional error message that indicates the type of failure that occurred.
The returned string can be a system message or a string that is generated by the
API or API interpreters.

Metadata Property List

To read or write a metadata object, you must pass a list of properties for that object
to the appropriate metadata API method. Typically, the metadata property list that you
pass to a method includes an ID—the unique identifier for a particular metadata object.
The list might also include the NAME and DESC properties.

The ID, NAME, and DESC properties are common to all metadata types. In this
manual, these properties are often referred to as the general identifying information for
a metadata object. For a description of the ID, NAME, and DESC properties, see
“Identifying Metadata” on page 7.

Metadata API Class � Metadata Property List 15

A metadata property list is not limited to the ID, NAME, and DESC properties. If
you are interested in other properties for a given metadata type, you can often pass
those properties as named sublists. The following code sample shows how to use the
_GET_METADATA_ method to return the LIBRARY, COLUMNS, and TABLE NAME
properties for a detail table:

id=’A000000E.WHDETAIL.A000002X’;
l_meta=clearlist(l_meta,’Y’);
l_meta=insertc(l_meta,id,-1,’ID’);

/*
* Retrieve library, column, and table name
* properties only.
*/

l_lib=makelist();
l_meta=insertl(l_meta,l_lib,-1,’LIBRARY’);
l_cols=makelist();
l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);
l_meta=insertc(l_meta,’ ’,-1,’TABLE NAME’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);

/* returns list: */
L_META(

ID=’A000000E.WHDETAIL.A000002X’
LIBRARY=(

ID=’A0000001.WHLIBRY.A000000U’
NAME=’Warehouse Data Library’
DESC=’’

)[5]
COLUMNS=(

(ID=’A000000E.WHCOLDTL.A0000032’
NAME=’PRODNUM’
DESC=’product number’

)[9]
(ID=’A000000E.WHCOLDTL.A0000034’

NAME=’PRODNAME’
DESC=’product name’

)[11]
(ID=’A000000E.WHCOLDTL.A0000036’

NAME=’PRODID’
DESC=’product id/abbreviation’

)[13]
(ID=’A000000E.WHCOLTIM.A00000FU’

NAME=’_LOADTM’
DESC=’DateTime Stamp of when row

was loaded’
)[15]

)[7]
TABLE NAME=’PRODUCT’

)[3]

Not all properties are valid for a given method. To understand which properties for a
given type are valid with a given method, see the documentation for each type.

16 Index to Metadata API Methods � Chapter 2

Index to Metadata API Methods

In the method dictionary, metadata API methods are described in alphabetical order.
In this section, these methods are listed by category.

Table 2.1 Metadata API Methods

Category Metadata API Class Description

Management
Methods

“_GET_COMPONENTS_” on page 22 Lists all components that are defined in the
metadata API

“_GET_SUBTYPES_” on page 30 Returns all possible subtypes for a specified
metadata type

“_GET_TYPES_” on page 33 Lists metadata types in the metadata API

“_GET_TYPE_NAME_” on page 35 Returns metadata type name when passed a
type ID

“_GET_TYPE_PROPERTIES_” on page 36 Returns all possible properties for a
metadata type

“_IS_SUBTYPE_OF_” on page 38 Determines if one metadata type is a
subtype of another

Navigation Method “_GET_METADATA_OBJECTS_” on page 28 Lists metadata objects when passed a
repository and type

Read Method “_GET_METADATA_” on page 25 Reads specified metadata from a repository

Repository Methods “_CLEAR_SECONDARY_REPOSITORY_” on
page 19

Detaches from a secondary repository

“_GET_CURRENT_REPOSITORIES_” on
page 23

Lists all currently active primary metadata
repositories

“_SET_PRIMARY_REPOSITORY_” on page
40

Attaches to a primary metadata repository

“_SET_SECONDARY_REPOSITORY_” on
page 43

Attaches to a secondary metadata repository

Write Methods “_ADD_METADATA_” on page 16 Adds specified metadata in a repository

“_DELETE_METADATA_” on page 20 Deletes specified metadata from a repository

“_UPDATE_METADATA_” on page 46 Updates specified metadata in a repository

_ADD_METADATA_

Adds specified metadata in a repository

Category: Write Methods

Syntax

CALL SEND(i_api, ’_ADD_METADATA_’, l_rc, l_meta);

Metadata API Class � _ADD_METADATA_ 17

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_meta L specifies the passed metadata property list for the object that is to
be added. For the general format of this list, see “Metadata
Property List” on page 14.

Details
l_meta

specifies the passed metadata property list for the object that is to be added.
To create a new instance of a particular type, the ID value in l_meta should be

resposid.typeid. If an instance ID is passed, it is ignored and replaced with a new
instance ID upon successful addition to the repository.

Not all metadata types (type IDs) can be added. The documentation for each
metadata type indicates whether it can be added or not. _ADD_METADATA_ will
return an error of any type that cannot be added.

Using _ADD_METADATA_
Be sure to check the return code of a write method call. A nonzero return indicates that
a failure has occurred while trying to write to the metadata. If a nonzero return code is
returned, none of the changes that are indicated by this method call will be made.

Example: Add a New Detail Table
l_meta=makelist();

/*
* Set which group to add this new table to.
*/

l_groups=makelist();
l_group=makelist();

l_groups=insertl(l_groups,l_group,-1);

l_group=insertc(l_group,group_id,-1,’ID’);

l_meta=insertl(l_meta,l_groups,-1,’GROUP’);

/*
* Use the same repository id as the group.
*/

18 _ADD_METADATA_ � Chapter 2

repos_id=scan(group_id,1,’.’);

new_type=repos_id||’.WHDETAIL’;

l_meta=insertc(l_meta,new_type,-1,’ID’);

/*
* Set the name for the display.
*/

l_meta=insertc(l_meta,
’NEW TABLE’,-1,’NAME’);

/*
* Set the desc for the display.
*/

l_meta=insertc(l_meta,’New table added
through API’,-1,’DESC’);

/*
* Set an icon for the display.
*/

l_meta=insertc(l_meta,
’SASHELP.I0808.ADD.IMAGE’,-1,’ICON’);

/*
* Define a column. The COLUMNS property
* contains a sublist per column.
*/

l_cols=makelist();
l_col=makelist();

l_cols=insertl(l_cols,l_col,-1);

l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);

col_id=repos_id||’.’||’WHCOLUMN’;

l_col=insertc(l_col,col_id,-1,’ID’);
l_col=insertc(l_col,’CUSTOMER’,-1,’NAME’);
l_col=insertc(l_col,’Name of Customer’,-1,

’DESC’);
l_col=insertc(l_col,’C’,-1,’TYPE’);
l_col=insertn(l_col,75,-1,’LENGTH’);

/*
* Add any additional properties
* :
* :
*/

Metadata API Class � _CLEAR_SECONDARY_REPOSITORY_ 19

/*
* Add the table.
*/

call send(i_api,’_ADD_METADATA_’,l_rc,l_meta);

if l_rc = 0 then do;

put ’Table Added successfully’;

end; /* if */
else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_ADD_METADATA_ FAILED’);
put msg;

list_rc=dellist(l_rc);

end; /* else */

l_meta=dellist(l_meta,’Y’);

See Also
_DELETE_METADATA_, _UPDATE_METADATA_

_CLEAR_SECONDARY_REPOSITORY_

Detaches from a secondary repository

Category: Repository Methods

Syntax
CALL SEND(i_api, ’_CLEAR_SECONDARY_REPOSITORY_’, l_rc, repos_id);

20 _DELETE_METADATA_ � Chapter 2

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

repos_id C specifies the passed repository ID that specifies the repository that
is to be detached from. For details about the repos_id parameter,
see “Identifying Metadata” on page 7.

Using _CLEAR_SECONDARY_REPOSITORY_
When you only want to be attached to the primary repository, use the
_CLEAR_SECONDARY_REPOSITORY_ method to detach from any secondary
repositories.

Use the _GET_METADATA_ method to return the list of possible secondary
repositories. Specify the REPOSITORIES property in the l_meta list, and use the
returned metadata identifier from the _SET_PRIMARY_REPOSITORY_ method. See
the code examples under _SET_PRIMARY_REPOSITORY_ and
_SET_SECONDARY_REPOSITORY_ .

Example: Detach from a Secondary Repository
/* sec_repos_id is the REPOSID of the secondary repository that is
* to be detached from.
*/

call send(i_api, ’_SET_SECONDARY_REPOSITORY_’, l_rc, sec_repos_id);

See Also
_GET_METADATA_
_SET_SECONDARY_REPOSITORY_
_SET_PRIMARY_REPOSITORY_

_DELETE_METADATA_

Deletes specified metadata from a repository

Category: Write Methods

Syntax
CALL SEND(i_api, ’_DELETE_METADATA_’, l_rc, l_meta);

Metadata API Class � _DELETE_METADATA_ 21

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_meta L specifies the passed metadata property list for the object that is to
be deleted. For the general format of this list, see “Metadata
Property List” on page 14.

Using _DELETE_METADATA
The object whose ID is included in the l_meta list will be deleted. Where appropriate,
the metadata API will enforce metadata integrity by deleting all other metadata that is
associated with the object that is being deleted.

CAUTION:
The _DELETE_METADATA_ method is destructive. Its changes cannot be reversed. When
you use this method in an application, verify the delete request before you issue the
method call. �

Be sure to check the return code of a write method call. A nonzero return indicates
that a failure has occurred while trying to write to the metadata. If a nonzero return
code is returned, none of the changes that are indicated by this method call will be
made.

Example: Delete Column Definitions
/*
* Delete all the current column
* definitions for the passed id.
*/

l_meta=makelist();

l_meta=insertc(l_meta,selected_id,-1,’ID’);

/*
* Get all of the columns.
*/

l_meta=insertl(l_meta,0,-1,’COLUMNS’);

call send(i_api,’_GET_METADATA_’,l_rc,l_meta);

/*
* Continue if zero return code
* (removed for brevity of example)
* :

22 _GET_COMPONENTS_ � Chapter 2

*/

l_cols=getniteml(l_meta,’COLUMNS’);

num_cols=listlen(l_cols);

do i=1 to num_cols while (l_rc = 0);

l_col=getiteml(l_cols,i);

/*
* Delete each column.
*/

call send(i_api,’_DELETE_METADATA_’,l_rc,l_col);

if l_rc ne 0 then do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_DELETE_METADATA_ FAILED’);

put msg;

list_rc=dellist(l_rc);

end; /* if */

end; /* do */

l_meta=dellist(l_meta,’Y’);

See Also
_ADD_METADATA_, _UPDATE_METADATA_

_GET_COMPONENTS_

Lists all components that are defined in the metadata API

Category: Management Methods

Syntax
CALL SEND(i_api, ’_GET_COMPONENTS_’, l_rc, l_components);

Metadata API Class � _GET_CURRENT_REPOSITORIES_ 23

Parameters

Parameter Type Description

i_api Class specifies the passed instance of the METAAPI.CLASS. See “Using
the Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Conventions” on page 14.

l_components L specifies the returned list of all components that are defined in the
metadata API. List format: comp_id=comp_name. Components are
discussed in “How the Metadata API Works” on page 5.

Using _GET_COMPONENTS_
A component is a group of related metadata types. One use for the
_GET_COMPONENTS_ method is to get a component ID that you can pass to the
_GET_TYPES_ method in order to list the metadata types for a particular component.

Example: List All Components Defined for the Metadata API
call send(i_api,’_GET_COMPONENTS_’,l_rc,
l_components);

/* A list of components is returned. */
l_components(

WHOUSE=SAS/Warehouse Administrator
)[3]

See Also
_GET_TYPES_

_GET_CURRENT_REPOSITORIES_

Lists all currently active primary metadata repositories

Category: Repository Methods

Syntax
CALL SEND(i_api, ’_GET_CURRENT_REPOSITORIES_’, l_rc, l_reps, < type>);

24 _GET_CURRENT_REPOSITORIES_ � Chapter 2

Parameters

Parameter Type Description

i_api Class specifies the passed instance of the METAAPI.CLASS. See “Using
the Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_reps L specifies the returned list of repository IDs for the currently active
primary metadata repositories. For details about repository IDs,
see “Identifying Metadata” on page 7.

type C specifies the passed repository type ID. Optional. Limits the l_reps
list to primary repositories of this type.

Details
l_reps

specifies the returned list of currently active primary metadata repositories, in the
format:

l_reps=(type=repository id
type=repository id
)

For details about primary and secondary repositories, see “Metadata
Repositories” on page 10.

type
specifies the passed repository type ID. Optional. Limits the l_reps list to primary
repositories of this type. If a type ID is not passed, all primary repositories will be
returned (a value of _ALL_) is passed for type).

Each component has one or more metadata repository types. See the metadata
type documentation for a particular component for details. For example, for
SAS/Warehouse Administrator metadata repository types, see Appendix 1,
“Sample Metadata API Code,” on page 273.

Using _GET_CURRENT_REPOSITORIES_
To return the list of active secondary repositories, use the _GET_METADATA_ method
with the appropriate primary repository ID from the returned l_reps list. See the Usage
notes under _GET_METADATA_ for details.

See Also
_GET_METADATA_

Metadata API Class � _GET_METADATA_ 25

_GET_METADATA_
Reads specified metadata from a repository

Category: Read Method

Syntax
CALL SEND(i_api, ’_GET_METADATA_’, l_rc, l_meta, <all>, <expand>);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_meta L specifies the passed metadata property list for the object that is to
be read. For the general format of this list, see “Metadata Property
List” on page 14.

all N specifies the passed indicator. Optional. Specifies whether the
method should get all associated metadata for the object.

expand N specifies the passed indicator. Optional. Specifies whether
references to dependent objects should be expanded.

Details
l_meta

specifies the passed metadata property list for the object that is to be read. At a
minimum, you must supply a fully qualified ID in the l_meta list:
reposid.typeid.instanceid.

You can supply a formatted l_meta list as input to the _GET_METADATA_ call,
as shown in Example 1. In this case, only the sublists (properties) whose names
have been passed in the formatted list will be returned. This will allow for
selective retrieval of pieces of metadata about an object.

Alternatively, you could pass an l_meta list with only the ID property filled in
and supply the all parameter to indicate to return all information about the
requested object, as shown in Example 2. Getting all properties could take much
longer than getting a select few.

all
specifies the passed indicator. Optional. Specifies whether the method should get
all associated metadata for the object.

0 — (default) return only the metadata that is specified in l_meta.
1 — return all information known about the object that is specified in l_meta.

However, if a sublist is returned that references another object, only the general
identifying information for the referenced object will be returned.

26 _GET_METADATA_ � Chapter 2

Note that it takes longer to return a query if you ask for more information.

expand
specifies the passed indicator. Optional. Specifies that any references to dependent
objects should be expanded to include all properties for the referenced object (not
only its general identifying information). For an explanation of dependent objects,
see “Independent and Dependent Metadata Objects” on page 53.

0 — (default) return all property lists unexpanded.
1 — expand all dependent object references.
Note that it takes longer to return a query if you ask for more information.

Note: To understand which properties of a given metadata type will be expanded, see
the property tables for each type in “Using the Metadata Type Dictionary” on page 73. �

Using _GET_METADATA_
It is possible that a sublist that is returned might contain identifiers of different types
of objects, each with its own properties list format. Use the _IS_SUBTYPE_OF_ method
to determine the type of the metadata identifier and thus the appropriate properties list
format.

CAUTION:
The performance of this method is directly related to the number and content of the
properties that are requested. The all and expand parameters can have an adverse effect
on the performance of this method and should be used accordingly. �

In addition to reading metadata objects in a repository, you can use
_GET_METADATA_ to return a list of secondary metadata repositories. Specify the
REPOSITORIES property in the l_meta list, and use the returned metadata identifier
from the _SET_PRIMARY_REPOSITORY_ method. See “Example: Set a Secondary
Repository” on page 45 and Example 2 on page 42.

Examples

Example 1: Return Table Information

id=’A000000E.WHDETAIL.A000002X’;
l_meta=makelist();
l_meta=insertc(l_meta,id,-1,’ID’);

/*
* For now, retrieve only table properties.
*/

l_lib=makelist();
l_meta=insertl(l_meta,l_lib,-1,’LIBRARY’);
l_cols=makelist();
l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);
l_meta=insertc(l_meta,’ ’,-1,’TABLE NAME’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);

/* returns list: */
L_META(

ID=’A000000E.WHDETAIL.A000002X’
LIBRARY=(

ID=’A0000001.WHLIBRY.A000000U’
NAME=’Warehouse Data Library’
DESC=’’

Metadata API Class � _GET_METADATA_ 27

)[5]
COLUMNS=(

(ID=’A000000E.WHCOLDTL.A0000032’
NAME=’PRODNUM’
DESC=’product number’

)[9]
(ID=’A000000E.WHCOLDTL.A0000034’

NAME=’PRODNAME’
DESC=’product name’

)[11]
(ID=’A000000E.WHCOLDTL.A0000036’

NAME=’PRODID’
DESC=’product id/abbreviation’

)[13]
(ID=’A000000E.WHCOLTIM.A00000FU’

NAME=’_LOADTM’
DESC=’DateTime Stamp of when row

was loaded’
)[15]

)[7]
TABLE NAME=’PRODUCT’

)[3]

Example 2: Return Information about One Column

l_cols=getniteml(l_meta,’COLUMNS’);
l_col=getiteml(l_cols,4);

/*
* Get all information about column
* (note get_all=1 parameter)
*/

call send(i_api,’_GET_METADATA_’,l_rc,l_col,1);

/* returns list: */
L_COL=(
ID=’A000000E.WHCOLTIM.A00000FU’
DESC=’DateTime Stamp of when row was loaded’
NOTE=()[4083]
INDEXES=()[4085]
INPUT OBJECTS=()[4087]
OUTPUT OBJECTS=()[4089]
EXTENDED ATTRIBUTES=()[4096]
TABLE=(

ID=’A000000E.WHDETAIL.A000002X’
NAME=’Product detail table’
DESC=’Contains information about all

products’
)[4091]

FORMAT=’DATETIME.’
INFORMAT=’DATETIME.’
INPUT SOURCES=()[4093]
LENGTH=8
OUTPUT TARGETS=()[4095]
TYPE=’N’
CVALUE=’’

28 _GET_METADATA_OBJECTS_ � Chapter 2

METADATA CREATED=’ 04MAR1997:15:29:29’
METADATA UPDATED=’ 04MAR1997:15:29:29’
NAME=’_LOADTM’
NVALUE=.
)[3719]

_GET_METADATA_OBJECTS_

Lists metadata objects when it is passed repository and type

Category: Navigation Method

Syntax
CALL SEND(i_api, ’_GET_METADATA_OBJECTS_’, l_rc, reposid.typeid, l_objs,

<search_secondary>, <include_subtypes>);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See
“Using the Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code
indicates failure and means that l_rc is an error list
identifier. For the error list format, see “Error Codes” on
page 14.

reposid.typeid C specifies the passed reposid and typeid of metadata that is to
be returned. For the general format of these IDs, see
“Identifying Metadata” on page 7.

l_objs L spcifies the returned list of metadata objects. List format:
id=name.

search_ secondary N specifies the passed indicator. Optional. Specifies whether
the returned list should include any objects of the specified
type from all active secondary repositories.

include_subtypes N specifies the passed indicator. Optional. Specifies whether
the returned list should include subtypes.

Details
search_secondary

specifies the passed indicator. Optional. Specifies whether the returned list should
include any objects of the specified type from all active secondary repositories.

0 — return objects from the passed repository only.

Metadata API Class � _GET_METADATA_OBJECTS_ 29

1 — (default) if passed repository ID is that of the primary repository, then
return all from the secondary repository, too. If passed repository ID is that of a
secondary repository, this parameter is ignored.

include_subtypes
specifies the passed indicator. Optional. Specifies whether the returned list should
include subtypes.

0 — return objects of the specified type only.
1 — (default) return objects of the specified type and their subtypes, if any.

Examples

Example 1: Returning a List of Entries for a Specific Type (Detail Tables)

type=dw_repos_id||’.WHDETAIL’;
call send(i_api,’_GET_METADATA_OBJECTS_’,l_rc,
type,l_objs);

/* returns list: */

L_objs(
A000000E.WHDETAIL.A000001L=’Customer detail
table’
A000000E.WHDETAIL.A000002X=’Product detail
table’
A000000E.WHDETAIL.A000003M=’Customer detail
table’
A000000E.WHDETAIL.A000004H=’Sales fact
table’
A000000E.WHDETAIL.A000005U=’Oracle’
A000000E.WHDETAIL.A000006Q=’Sybase’
A000000E.WHDETAIL.A000007L=’Remote Detail
Table’
A000000E.WHDETAIL.A000008I=’Suppliers’

)[3]

Example 2: Get All Tables Registered in Primary and Secondary Repositories

/*
* Get all Tables registered in Primary and
* Secondary repositories
* Primary Repos ID = A0000001
* Secondary Repos ID = A0000003
*/

type=primary_repos_id||’.WHTABLE’;

l_objs=makelist();

call send(i_api, ’_GET_METADATA_OBJECTS_’, l_rc, type, 1, 1);

num_objs=listlen(l_objs);

if l_rc = 0 then do;

30 _GET_SUBTYPES_ � Chapter 2

call putlist(l_objs);

end; /* if */

else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_GET_METADATA_OBJECTS_ Failed.’);
list_rc=dellist(l_rc);

end; /* else */

l_objs=dellist(l_objs);

/* returns list */

L_OBJS(
A0000003.WHDETAIL.A0000069=’Product detail table’
A0000003.WHDETAIL.A00000QI=’Sales fact table’
A0000003.WHLDETL.A000004R=’Customer detail’
A0000003.WHSUMTBL.A00000TG=’Monthly summary’
A0000001.WHODDTBL.A0000049=’Services’
A0000001.WHODDTBL.A00000FP=’Payment File’

)

_GET_SUBTYPES_

Returns all possible subtypes for a specified metadata type

Category: Management Methods

Syntax
CALL SEND(i_api, ’_GET_SUBTYPES_’, l_rc, type_id, l_types, <expand>);

Metadata API Class � _GET_SUBTYPES_ 31

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

type_id C specifies the passed type ID of metadata to be returned. For the
general format of this ID, see “Identifying Metadata” on page 7.

l_types L specifies the returned list of all possible subtypes for the specified
type. List format: type_id=type_name.

expand N specifies the passed indicator. Optional. Specifies whether returned
list will expand all possible subtypes of all subtype branches.

Details
expand

specifies the passed indicator. Optional. Specifies whether returned list will
expand all possible subtypes of all subtype branches.

0 — (default) return all subtypes unexpanded.
1 — expand all possible subtypes of all subtype branches.

Examples

Example 1: Get Subtypes—Unexpanded

/*
* Get all Immediate Subtypes of Tables
*/

l_types=makelist();

call send(i_api,’_GET_SUBTYPES_’,l_rc,’WHTABLE’,l_types,0);

num_types=listlen(l_types);

if l_rc = 0 then do;

call putlist(l_types);

end; /* if */

else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_GET_SUBTYPES_ Failed.’);
list_rc=dellist(l_rc);

end; /* else */

32 _GET_SUBTYPES_ � Chapter 2

l_types=dellist(l_types);

/* returns list */
l_types(
WHDETAIL=’Detail Table’
WHLDETL=’Detail Logical Table’
WHSUMTBL=’Summary Table’
WHODDTBL=’Operational Data Definition’
WHODTTBL=’Operational Data Table’
WHTBLPRC=’Process Output Tables’
WHDATTBL=’Data Table’
WHOLPSTR=’OLAP Structure’
WHTBLPRC=’Process Output Table’)[47]

Example 2: Get Subtypes—Expanded

/*
* Get all Subtypes of Tables
*/

l_types=makelist();

call send(i_api,’_GET_SUBTYPES_’,l_rc,’WHTABLE’,l_types,1);

num_types=listlen(l_types);

if l_rc = 0 then do;

call putlist(l_types);

end; /* if */

else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_GET_SUBTYPES_ Failed.’);
list_rc=dellist(l_rc);

end; /* else */

l_types=dellist(l_types);

/* returns list */

L_types(
WHDETAIL=’Detail Table’
WHLDETL=’Detail Logical Table’
WHSUMTBL=’Summary Table’
WHODDTBL=’Operational Data Definition’
WHODTTBL=’Operational Data Table’
WHTBLPRC=’Process Output Tables’
WHDATTBL=’Data Table’
WHTBLMAP=’Mapping Process Table’
WHTBLUSR=’User Exit Process Table’

Metadata API Class � _GET_TYPES_ 33

WHTBLXFR=’Data Transfer Process Table’
WHTBLREC=’Record Selector Process Table’
WHOLPSTR=’OLAP Structure’
WHGRPOLP=’OLAP Group’
WHOLPTBL=’OLAP Table’
WHOLPMDD=’OLAP MDDB’
)[47]

_GET_TYPES_

Lists metadata types that are in the metadata API

Category: Management Methods

Syntax
CALL SEND(i_api, ’_GET_TYPES_’, l_rc, l_types, <component>);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_types L specifies the returned list of metadata types. List format:
type_id=type_name.

component C specifies the passed component name. Optional. Can limit the
returned list to the metadata types within a specific component.

Details
component

specifies the passed component name, such as WHOUSE for the SAS/Warehouse
Administrator component. Optional. Can limit the returned list to the metadata
types within a specific component. The default is _ALL_ (all components).

Components are discussed in “How the Metadata API Works” on page 5. Use
_GET_COMPONENTS_ to return a list of components that are available at your
site.

Example: Get All Types for the WHOUSE Component
l_types=makelist();

34 _GET_TYPES_ � Chapter 2

call send(i_api,’_GET_TYPES_’,l_rc,l_types,’WHOUSE’);

num_types=listlen(l_types);

if l_rc = 0 then do;

call putlist(l_types);

end; /* if */

else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_GET_TYPES_ Failed.’);
list_rc=dellist(l_rc);

end; /* else */

l_types=dellist(l_types);

/* returns list - types
* (removed for brevity of example)
*/

l_types(
(WHROOT=’Warehouse Root Metadata Type’
WHDWENV=’Warehouse Environment’
WHDW=’Data Warehouse’
WHTFILE=’Text File’
WHTXTCAT=’Catalog Text File’
WHTXTFIL=’External Text File’
WHSCRFIL=’SAS/Connect Script File’
WHEFILE=’External File’
WHTABLE=’Table’
WHDETAIL=’Detail Table’
WHLDETL=’Detail Logical Table’
:
WHTBLPRC=’Process Output Tables’
WHTBLMAP=’Mapping Process Table’
WHTBLUSR=’User Exit Process Table’
:

) [47]

See Also
_GET_COMPONENTS_

Metadata API Class � _GET_TYPE_NAME_ 35

_GET_TYPE_NAME_

Returns metadata type name when it is passed a type ID

Category: Management Methods

Syntax
CALL SEND(i_api, ’_GET_TYPE_NAME_’, l_rc, type_id, type_name);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

type_id C specifies the passed type ID of the metadata type for which you
want the name. For more information on type ID, see “Identifying
Metadata” on page 7.

type_name C specifies the returned name of the specified metadata type.

Details
type_id

specifies the passed type ID of the metadata type for which you want the name.
For example, SAS/Warehouse Administrator has the WHDETAIL type. If an
invalid type ID is passed, the returned type name is set to blank, and a nonzero
return code is returned.

type_name
specifies the returned name of the specified metadata type. For example, if you
pass the type ID WHDETAIL, the name “Detail Table” would be returned. A blank
value is returned if an invalid metadata type name is supplied.

Example: Get Type Name for WHDETAIL
type_id=’WHDETAIL’;
type_name = _blank_;

call send(i_api,’_GET_TYPE_NAME_’,
l_rc,type_id,type_name);

if l_rc = 0 then do;

put type_id= type_name=;

36 _GET_TYPE_PROPERTIES_ � Chapter 2

end; /* if */

else do;

msg=getnitemc(l_rc,’MSG’,1,1,
’ERROR: _GET_TYPE_NAME_ Failed.’);
list_rc=dellist(l_rc);

/* Output in log */
WHDETAIL=Detail Table

_GET_TYPE_PROPERTIES_

Returns all possible properties for a metadata type

Category: Management Methods

Syntax
CALL SEND(i_api, ’_GET_TYPE_PROPERTIES_’, l_rc, type_id, l_props, <format>);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

type_id C specifies the passed type ID of the metadata type for which you
want a list of properties. For more information on type IDs, see
“Identifying Metadata” on page 7.

l_props L specifies the returned list of all possible properties for the specified
metadata type.

format C specifies the passed indicator. Optional. Specifies the format of the
returned property list.

Details
type_id

specifies the passed type ID of the metadata type for which you want a list of
properties. For example, SAS/Warehouse Administrator has the WHDETAIL type.
If an invalid type ID is passed, the returned list is blank.

Metadata API Class � _GET_TYPE_PROPERTIES_ 37

l_props
specifies the returned list of all possible properties for the specified metadata type.
The returned list includes all possible properties. Some properties might not be
populated in a given instance of this type.

format
specifies the passed indicator. Optional. Specifies the format of the returned
property list.

S — (default) returns the property list in skeleton format; the property names
are item names in the list. This format is suitable for passing to the
_GET_METADATA_ method. See Example 1.

D — returns the property list in display format; the property names are
character values in the list. This format is suitable for display to the user. See
Example 2.

Examples

Example 1: Return Skeleton Properties List for a Given Type ID

call send(i_api, _GET_TYPE_PROPERTIES_’, l_rc, ’WHDETAIL’, l_props2,’S’);

/* Returns list: */
l_props2=(
(DESC=’ ’
NOTE=()[291]
ADMINISTRATOR=()[292]
GROUP=()[293]
MEMBERS=()[294]
OWNER=()[295]
COLUMNS=()[296]
HOST=()[297]
INPUT OBJECTS=()[298]
INPUT SOURCES=()[299]
LIBRARY=()[300]
OUTPUT OBJECTS=()[301]
OUTPUT TARGETS=()[302]
PHYSICAL STORAGE=()[303]
PROCESS=()[304]
EXTENDED ATTRIBUTES=()[305]
ACCESS SAME AS PHYSICAL=.
CREATING JOB=()[306]
TABLE NAME=’ ’
USING JOBS=()[307]
ICON=’ ’
CVALUE=’ ’
ID=’ ’
METADATA CREATED=’ ’
METADATA UPDATED=’ ’
NAME=’ ’
NVALUE=.

)[290]

Example 2: Return List of Property Names for a Given Type ID

call send(i_api, _GET_TYPE_PROPERTIES_’, l_rc,’WHDETAIL’, l_props2,’D’);

38 _IS_SUBTYPE_OF_ � Chapter 2

/* Returns list: */
L_PROPS2=(

(’DESC’
’NOTE’
’ADMINISTRATOR’
’GROUP’
’MEMBERS’
’OWNER’
’COLUMNS’
’HOST’
’INPUT OBJECTS’
’INPUT SOURCES’
’LIBRARY’
’OUTPUT OBJECTS’
’OUTPUT TARGETS’
’PHYSICAL STORAGE’
’PROCESS’
’EXTENDED ATTRIBUTES’
’ACCESS SAME AS PHYSICAL’
’CREATING JOB’
’TABLE NAME’
’USING JOBS’
’ICON’
’CVALUE’
’ID’
’METADATA CREATED’
’METADATA UPDATED’
’NAME’sas
’NVALUE’

)[290]

_IS_SUBTYPE_OF_
Determines if one metadata type is a subtype of another

Category: Management Methods

Syntax
CALL SEND(i_api, ’_IS_SUBTYPE_OF_’, l_rc, type_id, super_type_id result);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

Metadata API Class � _IS_SUBTYPE_OF_ 39

Parameter Type Description

type_id C specifies the passed type ID of the metadata type that might be a
subtype of super_type_id. Type IDs are discussed in “Identifying
Metadata” on page 7.

super_type_id C specifies the passed type ID of the metadata type that might be a
supertype of type_id.

result C specifies the returned indicator. Indicates whether type_id is a
subtype of super_type_id.

Details
result

specifies the returned indicator. Indicates whether type_id is a subtype of
super_type_id.

0 — type_id is not a subtype of super_type_id.
1 — type_id is a subtype of super_type_id.

Example: Is WHOLPTBL a Subtype of WHTABLE?
type_id=’WHOLPTBL’;
super_type_id=’WHTABLE’;

call send(i_api,’_IS_SUBTYPE_OF_’,l_rc,type_id,
super_type_id,a_subtype);

if l_rc = 0 then do;

if a_subtype then
put type_id ’is a subtype of ’ super_type_id;

else
put type_id ’is not a subtype of ’super_type_id;

end; /* if */

else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_IS_SUBTYPE_OF_ Failed.’);

list_rc=dellist(l_rc);

end; /* else */
call send(i_api, ’_GET_METADATA_OBJECTS_’, l_rc, type, 1, 1);

/* Output to Log: */
WHOLPTBL is a subtype of WHTABLE

40 _SET_PRIMARY_REPOSITORY_ � Chapter 2

_SET_PRIMARY_REPOSITORY_

Attaches to a primary metadata repository

Category: Repository Methods

Syntax
CALL SEND(i_api, ’_SET_PRIMARY_REPOSITORY_’, l_rc, l_meta, repos_type,

repos_id, l_meta2, <already>);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_meta L specifies the passed metadata property list for the primary
repository that is to be set.

repos_type C specifies the passed repository type ID of the primary metadata
repository that is to be set.

repos_id C specifies the returned repository ID for the primary metadata
repository that was set. For details about the repository ID
parameter, see “Identifying Metadata” on page 7.

l_meta2 L specifies the returned metadata property list for the repository
that was set.

already N specifies the passed indicator. Optional. Specifies whether the
repository to be set is already accessible.

Details
l_rc

specifies the return codes for the method.

Note: Be sure to check the return code for this method. Do not continue if the
method fails. �

l_meta
specifies the passed metadata property list for the primary repository that is to be
set.

From the list of all possible properties for the metadata repository type that is
specified in the repos_type parameter, you need only to pass those properties that
are required to allocate a SAS libname for the repository. See the following Usage
notes.

Metadata API Class � _SET_PRIMARY_REPOSITORY_ 41

repos_type
specifies the passed repository type ID of the primary metadata repository that is
to be set.

To identify the primary repository type ID for a given SAS application, see its
metadata type documentation. For example, in SAS/Warehouse Administrator, the
primary repository type ID is WHDWENV for the environment repository.

repos_id
specifies the returned repository ID for the primary metadata repository that was
set. Use this ID as the REPOSID part of the metadata identifier in subsequent
methods that access metadata in this repository.

l_meta2
specifies the returned metadata property list for the repository that was set.
Includes the general, identifying information for that repository. Use this list with
subsequent calls, such as _GET_METADATA_, to retrieve more information about
the primary repository. See Example 2.

already
specifies the passed indicator. Optional. Specifies whether the repository that is to
be set is accessible.

0 — (default) repository is not accessible. Perform the process to gain access to
the repository.

1 — repository is accessible.
A repository might already be accessed for several reasons. If you know that the

repository is already accessed, this indicator can be set to 1 to indicate that fact.
Note that you should use this parameter with caution because possible future
changes to a metadata repository structure might cause incorrect results.

Note: Mixed usage (both 0 and 1) of the already parameter during a single
execution of an application is strongly discouraged. All calls to
_SET_PRIMARY_REPOSITORY_ during a single execution should use a single
value, either 0 or 1. �

Using _SET_PRIMARY_REPOSITORY_
Primary and secondary repositories are discussed in “Metadata Repositories” on page 10.

The example shows how to attach to the sample primary repository (a warehouse
environment called Sample Demo) that is shipped with SAS/Warehouse Administrator.

In the example, repos_type is set equal to WHDWENV because WHDWENV is the
type ID of a SAS/Warehouse Administrator environment repository.

The documentation for the WHDWENV type describes only one property that is
needed for a SAS libname statement—LIBRARY. The LIBRARY property, in turn, has
the properties of the WHLIBRY metadata type. The documentation for the WHLIBRY
type describes several properties that might be needed in a SAS libname
statement—ENGINE, LIBREF, OPTIONS, and PATH.

To access a local metadata repository of type WHDWENV, the l_meta list only needs
to include the ENGINE, PATH, and OPTIONS properties of the LIBRARY property, as
shown in the example.

Once you have attached to the primary repository, you can use the
_GET_METADATA_ method to return the list of possible secondary repositories.
Specify the REPOSITORIES property in the l_meta list, and use the returned metadata
identifier from the _SET_PRIMARY_REPOSITORY_ method, as shown in Example 2 on
page 42.

42 _SET_PRIMARY_REPOSITORY_ � Chapter 2

Examples

Example 1: Access a Primary Metadata Repository

/*
* Access the sample primary metadata repository
* that is shipped with SAS/Warehouse Administrator, which is
* a warehouse environment called ’Sample Demo.’
*/

path="!SASROOT\whouse\dwdemo_master";
repos_type=’WHDWENV’;

/*
* Insert the Location information into
* the metadata list with a name of LIBRARY.
*/

l_inmeta=makelist();
l_lib=makelist();
l_inmeta=insertl(l_inmeta,l_lib,-1,’LIBRARY’);

/*
* Use the default Libname Engine
* to access a Local Path.
*/

l_lib=insertc(l_lib,’ ’,-1,’ENGINE’);
l_path=makelist();
l_lib=insertl(l_lib,l_path,-1,’PATH’);
l_opts=makelist();
l_lib=insertl(l_lib,l_opts,-1,’OPTIONS’);
l_path=insertc(l_path,path,-1);

/*
* Set the primary repository. If a bad return code
* is returned, then you cannot continue.
*/

call send(i_api,’_SET_PRIMARY_REPOSITORY_’,
l_rc,l_inmeta,repos_type,primary_repos_id,l_meta);
l_inmeta=dellist(l_inmeta,’Y’);
if l_rc = 0 then do;

/*
* Accessed the primary repository correctly.
*/

Example 2: Using _GET_METADATA_ to list secondary repositories

/*
* Get the list of all repositories under
* the primary repository
* l_meta is l_meta returned from
* _SET_PRIMARY_REPOSITORY_.
*/

l_reps=makelist();
l_meta=setniteml(l_meta,l_reps,’REPOSITORIES’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);

/* returns list: */
l_meta=(ID=’A0000001.WHDWENV.A0000001’

NAME=’Warehouse Administrator’
DESC=’Sample Demo Warehouse Environment.’

Metadata API Class � _SET_SECONDARY_REPOSITORY_ 43

REPOSITORIES=(
(ID=’A0000001.WHDW.A000000E’
NAME=’Marketing Campaigns Data Warehouse’
DESC=’Sample Data Warehouse.’
)[2455]

)[2201]
)[2271]

See Also
_SET_SECONDARY_REPOSITORY_

_SET_SECONDARY_REPOSITORY_

Attaches to a secondary metadata repository

Category: Repository Methods

Syntax
CALL SEND(i_api, ’_SET_SECONDARY_REPOSITORY_’, l_rc, l_meta, repos_id,

<already>);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_meta L specifies the passed metadata property list for the secondary
repository that is to be set.

repos_id C specifies the returned repository ID for the secondary metadata
repository that was set. For details about the repository ID
parameter, see “Identifying Metadata” on page 7.

already N specifies the passed indicator. Optional. Specifies whether the
repository that is to be set is accessible.

44 _SET_SECONDARY_REPOSITORY_ � Chapter 2

Details
l_rc

specifies the return codes for the method.

Note: Be sure to check the return code for this method. Do not continue if the
method fails. �

l_meta
specifies the passed metadata property list for the secondary repository that is to
be set. You must pass the ID property in this list. See the following Usage notes.

repos_id
specifies the returned repository ID for the secondary metadata repository that
was set. Use this ID as the reposid part of the metadata identifier in subsequent
methods that access metadata in this repository.

already
specifies the passed indicator. Optional. Specifies whether the repository that is to
be set is accessible.

0 — (default) repository is not accessible. Perform the process to gain access to
the repository.

1 — repository is accessible.
A repository might already be accessed for several reasons. If you know that the

repository is already accessed, this indicator can be set to 1 to indicate that fact.
Note that you should use this parameter with caution because possible future
changes to a metadata repository structure might cause incorrect results.

Note: Mixed usage (both 0 and 1) of the already parameter during a single
execution of an application is strongly discouraged. All calls to
_SET_SECONDARY_REPOSITORY_ during a single execution should use a single
value, either 0 or 1. �

Using _SET_SECONDARY_REPOSITORY_
Primary and secondary repositories are discussed in “Metadata Repositories” on page
10. To set a secondary repository, you must pass the ID property for this method, and
you can pass the LIBRARY property.

ID
specifies the metadata identifier of the secondary repository. Normally, the
information that is needed to access the secondary repository is stored as a piece of
metadata within the primary repository. If the metadata that is stored is sufficient
for your application to access the secondary repository, then this is all that is
required.

The example shows how to use the ID property in the l_meta list to set a
secondary metadata repository.

LIBRARY
specifies an optional property that allows the stored metadata information to be
overridden with the information that is specified here. An example of this might
be if the administrator’s metadata libname definition does not gain you proper
access to a secondary repository (for example, SAS/SHARE access versus access
other than SAS/SHARE).

“Example: Set a Secondary Repository” on page 45 shows how to use the
_GET_METADATA_ method to return the list of possible secondary repositories.
Specify the REPOSITORIES property in the l_meta list, and use the returned metadata
identifier from the _SET_PRIMARY_REPOSITORY_ method.

Metadata API Class � _SET_SECONDARY_REPOSITORY_ 45

Note: The current interpreter for SAS/Warehouse Administrator allows only one
secondary repository to be active at any given time. If you are attached to a secondary
repository and you attach to another secondary repository, you will be detached from
the first one before you are attached to the other. �

Example: Set a Secondary Repository
/*
* Insert code to access the primary repository.
*
* Get the list of available secondary repositories
* under this primary repository.
*/

l_reps=makelist();
l_meta=setniteml(l_meta,l_reps,’REPOSITORIES’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);
if l_rc = 0 then do;

num_reps=listlen(l_reps);
if num_reps > 0 then do;

/*
* If there are any secondary repositories, select
* one to set as the active one.
*/

l_sec_rep=getiteml(l_reps,1);
call send(i_api,’_SET_SECONDARY_REPOSITORY_’,

l_rc, l_sec_rep,sec_repos_id);
/*
* If l_rc = 0 then sec_repos_id contains
* the 8 character repository id of this
* repository.
* This id is used as the first part of any
* identifiers used to access metadata in this
* secondary repository.
*/

if l_rc = 0 then do;

/* continue processing */

See Also
_SET_PRIMARY_REPOSITORY_

46 _UPDATE_METADATA_ � Chapter 2

_UPDATE_METADATA_

Updates specified metadata in a repository

Category: Write Methods

Syntax
CALL SEND(i_api, ’_UPDATE_METADATA_’, l_rc, l_meta);

Parameters

Parameter Type Description

i_api Class specifies the passed instance of METAAPI.CLASS. See “Using the
Metadata API Class” on page 14.

l_rc N specifies the return codes for the method. A nonzero code indicates
failure and means that l_rc is an error list identifier. For the error
list format, see “Error Codes” on page 14.

l_metadata L specifies the passed metadata property list for the object that is to
be updated. For the general format of this list, see “Metadata
Property List” on page 14.

Details
l_meta

specifies the passed metadata property list for the object that is to be updated.
The ID value in l_meta should be reposid.typeid.instanceid.

To add properties to an existing object, the ID value in l_meta should be
reposid.typeid.instanceid.

Using _UPDATE_METADATA_
Keep the following in mind when you use the _UPDATE_METADATA_ method:

� Always check the return code of a write method call. A nonzero return code
indicates that a failure has occurred while trying to write to the metadata. If a
nonzero return code is returned, none of the changes that are indicated by this
method call will be made.

� The_UPDATE_METADATA_ method supports indirect adds of dependent types.
For example, a physical storage (WHSASSTR) will be created and added to a data
table (WHDATTBL) when it is passed as the physical storage property in the
l_meta list for the update of WHDATTBL. As another example, a new column
(WHCOLDAT) will be created and added to a data table (WHDATTBL) when it is
passed in the Columns property in the l_meta list for the update of WHDATTBL.

� The_UPDATE_METADATA_ method does not support cascading updates. You can
update properties of an existing instance of a type only by using an
_UPDATE_METADATA_ call directly on that instance.

Metadata API Class � _UPDATE_METADATA_ 47

� When you pass a list for a property of an object through the
_UPDATE_METADATA_ method, and the existing property list is empty for the
object — or if the list can be a list of objects, UPDATE will add (for independent
types) or create and add (for dependent types) the object to the existing list.

For example, given an existing job (WHJOB) with several output tables
associated with it, an existing detail table (WHDETAIL) will also be associated
with that job when it is passed in the output tables property in the l_meta list for
the update of WHJOB. As another example, given an existing OLAP table
(WHOLPTBL) with several extended attributes (WHEXTATR) associated with it, a
new extended attribute will be created and associated with when it is passed in
the extended attributes property in the l_meta list for the update of WHOLPTBL.

� When you pass a list for a property through the _UPDATE_METADATA_ method,
and the property can only be a list with a single object, UPDATE will replace the
existing object with another existing object that is being passed in l_meta.

For example, given that an OLAP table has an existing library (WHLIBRY)
associated with it, a call to the _UPDATE_METADATA_ method for the OLAP
table (WHOPLTBL) will replace the library with another existing library when it
is passed in the l_meta list for the update of WHOLPTBL.

Examples

Example 1: Add New Columns to the Selected Table

l_meta=makelist();

/*
* object_id is the ID of an existing Data Table object.
*/

l_meta=insertc(l_meta,object_id,-1,’ID’);

/*
* Define a column. The COLUMNS property
* contains a sublist per column.
*/

l_cols=makelist();
l_col=makelist();

l_cols=insertl(l_cols,l_col,-1);

l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);

col_id=repos_id||’.’||’WHCOLUMN’;

l_col=insertc(l_col,col_id,-1,’ID’);
l_col=insertc(l_col,’SaleDate’,-1,’NAME’);
l_col=insertc(l_col,’Date of Sale’,-1,’DESC’);
l_col=insertc(l_col,’N’,-1,’TYPE’);
l_col=insertn(l_col,8,-1,’LENGTH’);
l_col=insertc(l_col,’DATE7.’,-1,’FORMAT’);
l_col=insertc(l_col,’DATE7.’,-1,’INFORMAT’);

/*
* Update any additional properties.

48 _UPDATE_METADATA_ � Chapter 2

* :
* :
*/

/*
* Update the table.
*/

call send(i_api,’_UPDATE_METADATA_’,l_rc,l_meta);

if l_rc = 0 then do;

put ’Table Updated successfully’;

end; /* if */
else do;

msg=getnitemc(l_rc,’MSG’,1,1,’ERROR:
_UPDATE_METADATA_ FAILED’);

put msg;

list_rc=dellist(l_rc);

end; /* else */

l_meta=dellist(l_meta,’Y’);

Example 2: Add Extended Attributes

/*
* object_id is the ID of an existing Data Table object.
*/

l_meta=makelist();

l_meta=insertc(l_meta,object_id,-1,’ID’);

/*
* Attributes
*/

l_attrs=makelist();
l_attr=makelist();

l_attr=insertc(l_attr,’Loader’,1,’NAME’);
l_attr=insertc(l_attr,’Oracle’,-1,’VALUE’);

l_attr=insertc(l_attr,’Name of loader used’,-1,’DESC’);
l_attrs=insertl(l_attrs,l_attr,-1);

l_meta=insertl(l_meta,l_attrs,-1,’EXTENDED ATTRIBUTES’);
call send(i_api, ’_UPDATE_METADATA_’,l_rc,l_meta);

Metadata API Class � _UPDATE_METADATA_ 49

See Also
_DELETE_METADATA_, _ADD_METADATA_

50

51

C H A P T E R

3
SAS/Warehouse Administrator
Metadata Types

Overview of SAS/Warehouse Administrator Metadata Types 51
What Is a Metadata Type? 52

Metadata Repository Types 52

Metadata Type Inheritance 52

Using Metadata Types 53

Relationships Among Metadata Types 53
Independent and Dependent Metadata Objects 53

General Metadata Type Model 53

Host Metadata Type Model 54

Table Property Metadata Type Model 55

Table Process Metadata Type Model 55

Process Type Model 56
Physical Storage Metadata Type Models 57

OLAP Metadata Type Model 58

Column Mapping Types: ODD to Detail Table Model 58

Writing Metadata 59

Writing Explorer Objects 59
Overview of the Process Editor 61

Reading Process Flow Metadata 62

Loadable Tables and WHTABLE Subtypes 63

Intermediate Output Tables and WHTBLPRC Subtypes 63

Process Objects and WHPROCES Subtypes 64
INPUT and OUTPUT Properties 64

Input Tables, Output Tables, and Job Metadata 64

Reading Job Metadata 65

Reading Job Flow Metadata 66

Reading Job Hierarchy Metadata 68

Using Icon Information 69
Index to SAS/Warehouse Administrator Metadata Types 70

Using the Metadata Type Dictionary 73

General Identifying Information 73

Overview of SAS/Warehouse Administrator Metadata Types
This section describes the metadata types that are defined for SAS/Warehouse

Administrator. These types are grouped under the WHOUSE component. They are
stored in the SASHELP.DWAPI catalog. For a complete list of these types, see “Index to
SAS/Warehouse Administrator Metadata Types” on page 70.

To use a metadata type, you pass its ID (such as WHDETAIL) to the metadata API
methods listed in “Index to Metadata API Methods” on page 16.

52 What Is a Metadata Type? � Chapter 3

What Is a Metadata Type?
A metadata type is a template that models the metadata for a particular kind of

object in an application. For example, the metadata type WHDETAIL models the
metadata that is maintained for a detail table in SAS/Warehouse Administrator.
WHDETAIL’s parameter list matches the items of metadata maintained for a detail
table, such as ID, NAME, COLUMNS, and INPUT SOURCES.

A three-level metadata identifier (REPOSID.TYPEID.INSTANCEID) is passed to
methods that are used to read or write metadata. The type ID in this identifier, such as
WHDETAIL, specifies a metadata type that describes the content of the metadata to be
read or written.

You can use all metadata types with the read methods. See “Writing Metadata” on
page 59 for a discussion of metadata types and write methods.

Metadata Repository Types
You can store an application’s metadata in a repository. A metadata repository type

is a template that models the metadata for a particular kind of metadata repository.
For example, the metadata repository type WHDWENV models the metadata for an
environment repository in SAS/Warehouse Administrator. WHDWENV’s parameter list
matches the items of metadata that are maintained for an environment, such as ID,
NAME, DESCRIPTION, and LIBRARY.

Repository types are used with the Repository Methods that are described in “Index
to Metadata API Methods” on page 16. These methods are used to attach to a given
repository so that its metadata can be read or written.

SAS/Warehouse Administrator has a partitioned metadata repository. Each primary
repository stores metadata that is shared by all warehouses in an environment. Each
secondary repository stores metadata for an individual warehouse in an environment.
Accordingly, there are two metadata repository types for SAS/Warehouse Administrator:

WHDWENV
specifies the metadata repository type for a data warehouse environment. For
details, see “WHDWENV” on page 104.

WHDW
specifies the metadata repository type for a data warehouse. For details, see
“WHDW” on page 101.

Metadata Type Inheritance
Metadata types inherit properties from their parent type, as shown in the foldout in

Appendix 2. Independent metadata types are represented as a rectangle. Dependent
types are represented by a rectangle with rounded corners. (For an explanation of these
broad categories, see “Independent and Dependent Metadata Objects” on page 53.)

SAS/Warehouse Administrator Metadata Types � Relationships Among Metadata Types 53

Using Metadata Types

Relationships Among Metadata Types
This section describes the relationships among metadata types in SAS/Warehouse

Administrator. By understanding these relationships, you can
� access metadata types by using their associated properties
� identify which metadata types can be created independently and which ones must

be created in association with other types.

Metadata type relationships are presented in several diagrams, each diagram
showing only a part of the total structure. These diagrams identify various ways to
access a given type of metadata. The following notes apply to all diagrams:

� Each node in the diagram represents a type or supertype.
� Each line (connection) indicates that two types have a relationship between them.

The text closest to each node indicates the name of the property that will return
the corresponding node’s general information.

� The type names that are contained in the nodes represent the highest supertype
that can have this relationship. When you process a relationship, use the
_IS_SUBTYPE_OF_ method to determine the current node type.

� Independent metadata types are represented as a rectangle. Dependent types are
represented by a rectangle with rounded corners.

Independent and Dependent Metadata Objects
A metadata object is an instance of a metadata type—the metadata for an element in

an application, such as a table or column.
An independent metadata object can be created by itself. For example, a

WHPERSON object can be created independently of any other object.
A dependent metadata object cannot be created by itself. For example, a

WHCOLUMN object cannot be created without first being associated with a WHTABLE
object.

In the metadata type models in this section, independent metadata types are
represented as a rectangle, and dependent types are represented by a rectangle with
rounded corners.

General Metadata Type Model
The following figure shows how to access general information about any metadata

object in SAS/Warehouse Administrator.

54 Relationships Among Metadata Types � Chapter 3

Figure 3.1 General Metadata Type Model

WHPERSON
Person

WHPERSON
Person

WHOBJECT

WHNOTE
Note File

Note

Objects

Administrator

Administered
Objects

Owner

Owned
Objects

WHEXTATR
Extend Attr

Object

Extended
Attribute

Host Metadata Type Model
The following figure shows how to access a common set of metadata for any host in

SAS/Warehouse Administrator.

Figure 3.2 Host Metadata Type Model

WHHOST
Host

WHPROCES
Process

Objects

WHTABLE
Table

Tables

Host

Process

WHSCRFIL
SAS/CONNECT

Script File

Processes

Host

Output
Tables

Script

SAS/Warehouse Administrator Metadata Types � Relationships Among Metadata Types 55

Table Property Metadata Type Model
The following figure shows how to access property metadata for any table in

SAS/Warehouse Administrator.

Figure 3.3 Table Property Metadata Type Model

WHCOLUMN

WHHOST

WHPHYSTR

Tables

WHLIBRY WHTABLE

WHINDEX

Tables

Host

ColumnsLibrary

Table

Indexes

Columns

Indexes
Table

Physical
Storage

Physical
Storage

Table Process Metadata Type Model

The following figure shows how to access process metadata for any table in
SAS/Warehouse Administrator.

Figure 3.4 Table Process Metadata Type Model

Process

Output
Table

Process

Output
Table

Process

Output
Table

WHTABLE
Table

WHTBLPRC
Intermediate

Output Table of
Process Step

WHTABLE
Table

WHPROCES
Process

WHPROCES
Process

WHPROCES
Process

Input
Sources

Input
Sources

Output
Targets

Output
Targets

Tables inherit the metadata that is shown in Figure 3.1 on page 54, Figure 3.6 on
page 57, and Figure 3.7 on page 57.

56 Relationships Among Metadata Types � Chapter 3

Note: There can be zero or more intermediate WHTBLPRC objects between two
WHTABLE objects. Use the _IS_SUBTYPE_OF_ method to determine if the object that
you are currently processing is WHTBLPRC. �

Note: If there are no intermediate WHTBLPRC objects, the outputs from the
OUTPUT TARGETS and OUTPUT OBJECTS properties are identical. The same is true
for the INPUT SOURCES and INPUT OBJECTS properties. �

Note: When you check the type of a table object, check for WHTBLPRC and not for
WHTABLE. Because WHTBLPRC is a subtype of WHTABLE, this check would always
come back true. �

Process Type Model
In SAS/Warehouse Administrator, load processes and similar jobs are defined

through the Process Editor. Each process is defined by a metadata object. The following
figure shows an example process flow.

Figure 3.5 Process Type Model

Input
Sources

Output
Objects

Output
Table

Process

Output
Table

Output
Targets

Process

Subprocesses Processes

Host

Source
Code

Step
Source
Code

WHTABLE
Table

WHPRCMAN
Process

WHTBLPRC
Intermediate

Output Table of
Process Step

WHTABLE
Table

WHPRCMAN
Process

Process

WHPRCMAN
Process

Process

Input
Objects

Output
Targets

Input
Sources

Output
Table

WHTFILE
Text File

WHHOST
Host

WHDYNSRC
Dynamic Source

Code Catalog
File

WHDYNSRC
Dynamic Source

Code Catalog
File

WHPRCSPR
Subprocess

*

*

Source File
Objects

Note: See the metadata types that are marked with an asterisk (*) in the previous
figure. For those types, because the SOURCE CODE property points to an entry that is
dynamically generated when requested, this relationship cannot be traversed in the
WHDYNSRC to WHPRCMAN direction. �

SAS/Warehouse Administrator Metadata Types � Relationships Among Metadata Types 57

Note that there can be zero or more WHTBLPRC type objects between two
WHTABLE subtype objects. The previous figure shows one intermediate WHTBLPRC
object.

This diagram shows the overall process flow, as well as any relationships that might
be specific to the WHPRCMAN type objects. Note that for simplicity, the relationships
have been drawn for only one of the WHPRCMAN type objects in the diagram, but
these relationships exist for all WHPRCMAN type objects.

Physical Storage Metadata Type Models
Physical storage information is different for SAS data stores (type WHSASSTR) and

DBMS data stores (type WHDBMSST). The following figure shows how to access a
common set of metadata for a SAS data store.

Figure 3.6 SAS Data Store Metadata Type Model

WHHOST
Host

WHLIBRARY
SAS Library

WHSASSTR
SAS Physical Store

Tables

Tables

Library

Host

WHINDEX
Index

Physical
Storage

Indexes

The following figure shows how to access a common set of metadata for a DBMS data
store.

Figure 3.7 DBMS Data Store Metadata Type Model

WHHOST
Host

WHLIBRARY

SAS Library

Libraries

Database

WHDBMS
 Database
Connection

Tables

Database

WHDBMSST
DBMS Physical Store

Host

Library

Tables

Tables

WHINDEX
Index

Physical
Storage

Indexes

58 Relationships Among Metadata Types � Chapter 3

OLAP Metadata Type Model
The following figure shows how to access metadata that defines the structure of an

OLAP table, Group, or MDDB in SAS/Warehouse Administrator including OLAP cubes,
crossings, dimensions, hierarchies, and columns.

Figure 3.8 OLAP Metadata Type Model

WHOLPSTC
OLAP Structure

WHOLPCUB
Cube

WHOLPDIM
Dimension

WHCOLOLP
Column

WHOLPHIR
Hierarchy

OLAP Structure

OLAP Groups

OLAP Members

Cube

OLAP Members

OLAP Groups

WHOLPCRS
CrossingOLAP Structure

Crossings

Columns

Table

Crossings

Columns

Columns

Hierarchies

Column Mapping Types: ODD to Detail Table Model
The following figure shows how to access the metadata that defines the column

mappings between an operational data definition (ODD) and a detail table.

Figure 3.9 Mapping Model: ODD to Detail Table

Input
Sources

Columns

Table Table

Columns

Output
Targets

Input
Sources

Output
Targets

Transformations

Mapping

Output
Objects

Input
Objects

WHODDTBL
ODD Table

WHDETAIL
Detail Table

WHCOLUMN
Column

WHCOLUMN
Column

WHCTRNFM
Column

Transformation

WHPRCMAP
Mapping Process

The ODD type (WHODDTBL) and detail table type (WHDETAIL) inherit the
metadata that is shown in Figure 3.4 on page 55.

Note: If the logic that is needed to transform the operational data column into the
detail data column is not important for your application, then you can use the output
objects/input objects relationship. For details, see “INPUT and OUTPUT Properties” on
page 64. �

SAS/Warehouse Administrator Metadata Types � Writing Metadata 59

Note: There can be zero or more intermediate WHCTRNFM objects between two
WHCOLUMN objects. Use the _IS_SUBTYPE_OF_ method to determine if the object
that you are currently processing is a WHCOLUMN or a WHCTRNFM. �

Note: If there are no intermediate WHCTRNFM objects, the outputs from the
OUTPUT TARGETS and OUTPUT OBJECTS properties are identical. The same holds
true for the INPUT SOURCES and INPUT OBJECTS properties. �

Writing Metadata
You can read all of the metadata types that are defined for SAS/Warehouse

Administrator, but you cannot write them all. You can pass only certain types to the
metadata API write methods. Not all write methods are valid for those types that can
be written.

You can write metadata for many objects that can be displayed in the Explorer
frame. You can also write metadata for host definitions and other entities that are
shared among warehouses within an environment.

The documentation for each type in the metadata type dictionary identifies the write
methods that are valid for each metadata type.

Writing Explorer Objects
Objects that are displayed in the SAS/Warehouse Administrator Explorer frame, such

as warehouses, subjects, and tables, are members of groups. When you add the
metadata for an Explorer object, you must identify the group to which it belongs. This
is done by passing the metadata identifier of the target group along with the other
parameters for the object.

The metadata types for Explorer objects have a GROUP property that lists the
metadata identifiers of the groups in which to add a new object. The following figure
lists the groups and the metadata types that are valid in each group.

60 Writing Metadata � Chapter 3

Figure 3.10 Hierarchy of Groups and Members in SAS/Warehouse Administrator
Explorer

Data Warehouse

Data Group

= Repeated element

WHDW

WHGRPDAT

Environment WHDWENV

Data Table

Info Mart

WHDATTBL

WHGRPINF

Info Mart File WHINFOFL

ODD Group

Subject

Data Group

Info Mart Item WHINFO

WHSUBJCT

Logical Det Table WHLDETL

OLAP Group WHGRPOLP

Detail Table WHDETAIL

OLAP Table

OLAP MDDB WHOLPMDD

WHOLPTBL

Data Group

Info Mart

WHGRPODDODD Group

ODD WHODDTBL

Subject

OLAP Group

Info Mart

Note: Although the GROUP property takes a list of GROUP identifiers, the object is
currently added only to the first GROUP that is specified in the list. For example, when
adding a WHDETAIL type object (a detail table), the metadata identifier that is
specified in the GROUP property list item must be of the type WHLDETL. �

SAS/Warehouse Administrator Metadata Types � Overview of the Process Editor 61

Overview of the Process Editor
This section gives a brief overview of the Process Editor so that you can better

understand how the process metadata types relate to the user interface. For details
about the Process Editor window, display the Process Editor, then select Help � Using
This Window from the menu bar.

If you open the Process Editor from the Explorer by selecting Tools � Process
Editor from the menu bar, Job Hierarchy is the default view in the left panel, as shown
in the following display.

Display 3.1 Process Editor: Job Hierarchy and Process View

In the left panel, the Job Hierarchy displays all of the jobs that are defined in the
current Warehouse environment. In the preceding figure, only two jobs are defined:
Customer Detail Job and Customer ODD Job. The Customer Detail Job (item in the left
panel with the rectangle around it) is the active job.

In the right panel, the Process View shows the process flow that is associated with
the active job (Customer Detail Job). A process flow is a user-defined diagram in the
Process View of the Process Editor. It is composed of symbols, with connecting arrows
and descriptive text, that illustrate the sequence of each process that is associated with
the job that is selected in the Job Hierarchy of the Process Editor. The process flow
illustrates how the data moves from input source(s) to output table(s) and what
extractions and transformations occur in between.

Note: A job only creates the output table(s) that are listed under its icon in the left
panel of the Process Editor. The other loadable tables in the process flow are inputs to
the job. �

For example, in the preceding display, the Customer Detail Job only creates the
Customer Detail table. It does not create Customer ODD. Customer ODD is created by
a separate job—Customer ODD Job. Customer ODD is an input to the Customer Detail
Job.

In the previous display, note that one event has been defined for the Toy Store
Whouse. An event is a metadata record that specifies a condition for controlling a job,

62 Reading Process Flow Metadata � Chapter 3

such as checking for certain return codes or verifying the existence of a file. To use
events, you must create them, include them in a job flow, and then write a metadata
API program that reads the job flow and generates code for it.

Job flows are displayed in the Job View of the Process Editor. In order to switch from
the Process View to the Job View in the right panel of the Process Editor, click the right
mouse button in the background and select Job View from the pop-up menu. The right
panel in the following display illustrates a job flow that has been defined for the
Customer Detail Job.

Display 3.2 Process Editor: Job Hierarchy and Job View

Reading Process Flow Metadata
In SAS/Warehouse Administrator, a process is a metadata record that is used to

generate or retrieve a routine that creates warehouse data stores, or one that extracts
data, transforms data, or loads data into data stores. You can link these tables together
to form a process flow. The Process Editor in SAS/Warehouse Administrator is used to
create process flows such as the one shown in the following figure.

Figure 3.11 Process Flow in SAS/Warehouse Administrator Process Editor

SAS/Warehouse Administrator Metadata Types � Reading Process Flow Metadata 63

In the previous figure, information moves from the bottom up—from the ODD named
ODD 1, to a mapping step, to the Credit data table.

The icons shown in the figure—ODD 1 and Credit data table—represent loadable
tables. A loadable table can be a source, such as ODD 1 in the figure; a target, such as
Credit data table; or both a target and a source.

The Mapping box that is shown in the figure represents an intermediate output
table—the output of a process step between sources and targets.

Note: Process flow diagrams do not depict process objects. These diagrams show
how data moves from one loadable table (icon), through an intermediate output table
(box), to a target loadable table (icon). �

In addition to the process metadata, the process flow metadata has information about
how the tables are related to the job. The following figure shows the properties that
relate jobs to tables.

Figure 3.12 Process Flow Metadata: Jobs

Input Tables

Output Tables

Creating Job

Using Jobs

WHJOB

Job

WHTABLE

Table

Loadable Tables and WHTABLE Subtypes
Each loadable table has metadata of subtype WHTABLE. For a list of WHTABLE

subtypes, see the diagram on the foldout in Appendix 2.
WHTABLE subtypes give you information about where the output data of the step

resides and any other metadata about the object that has been gathered using the
Properties frames, such as data host, data library, table name, and columns.

For each WHTABLE subtype, you can retrieve the corresponding process metadata
(WHPROCES) by using the PROCESS property. Any step for which no process
information exists will return an empty list for the PROCESS property. The
RESPONSIBILITY property will indicate whether a process has been defined for this
table, and if so, who is responsible for generating the code.

Intermediate Output Tables and WHTBLPRC Subtypes
Each intermediate output table has metadata of subtype WHTBLPRC. For a list of

WHTBLPRC subtypes, see “Metadata Type Inheritance” on page 52.
All WHTBLPRC subtypes have a property, CREATES DATA, that indicates whether

the table has output data or is a placeholder only. If CREATES DATA =0, then the
table is a placeholder only. (The This process has no output data selection has
been made on the process properties Output Data tab.) An analogy would be a DATA
step that performs processing but is coded with DATA _NULL_.

Using the _IS_SUBTYPE_OF_ method of the API, you can determine if the currently
returned table from the INPUT SOURCE property is an intermediate table or an actual
loadable table. You can use the method as follows:

call send(i_api, ’_IS_SUBTYPE_OF_’,rc,
input_source_type,’WHTBLPRC’,is_process_table);

64 Input Tables, Output Tables, and Job Metadata � Chapter 3

If IS_PROCESS_TABLE is returned as a 1, then the current table is an intermediate
table in a process step. If it returns a zero, then it is a loadable table.

Process Objects and WHPROCES Subtypes
Each process (metadata object that creates a table) is of subtype WHPROCES. For a

list of WHPROCES subtypes, see “Metadata Type Inheritance” on page 52.
These subtypes give you the process information that has been entered using the

Edit Load Step frame or the Process Properties frame for a loadable object. This
information includes the name of the person who is writing the code, the host where the
code should execute, and column mappings.

For each WHPROCES subtype, you can retrieve the corresponding WHTABLE by
using the OUTPUT TABLES property. For more information on the relationships of
metadata that are associated with processes, see the table and process models in
“Relationships Among Metadata Types” on page 53.

INPUT and OUTPUT Properties
There are two sets of properties that deal with process flow to a table or column—one

for input and one for output.

INPUT SOURCES
specifies an SCL list of general identifying information about the nearest
intermediate output table or loadable table that is a source to the current table or
column.

Given the process flow diagram that is shown in Figure 3.11 on page 62, the
INPUT SOURCES property of Credit data table would return the intermediate
table named Mapping.

INPUT OBJECTS
specifies an SCL list of general identifying information about the nearest loadable
table that is a source to the current table or column.

Given the process flow diagram that is shown in Figure 3.11 on page 62, the
INPUT OBJECTS property of Credit data table would return the loadable ODD
table named ODD 1.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the nearest
intermediate output table or loadable table that is a target for the current table or
column.

Given the process flow diagram that is shown in Figure 3.11 on page 62, the
OUTPUT TARGETS property of ODD 1 would return the intermediate table
named Mapping.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the nearest loadable
table that is a target for the current table or column.

Given the process flow diagram that is shown in Figure 3.11 on page 62, the
OUTPUT OBJECTS property of ODD 1 would return the loadable table named
Credit data table.

Input Tables, Output Tables, and Job Metadata
Each job can have input and output tables that are associated with them. As shown

in Figure 3.13 on page 65, the WHJOB type has two properties, Output Tables and
Input Tables, that can retrieve this information. Both properties will return WHTABLE

SAS/Warehouse Administrator Metadata Types � Reading Job Metadata 65

subtypes. A WHJOB type can return more than one WHTABLE as its input or output.
The WHTABLE subtype has two properties that associate it to the job: Using Jobs and
Creating Job. The WHTABLE subtype property, Using Jobs, will return all WHJOB
types that use the WHTABLE subtype as an input table. The WHTABLE subtype
property, Creating Job, will return only one WHJOB type because you can create a
table only in one job.

Figure 3.13 WHJOB: Input Tables and Output Tables

WHTABLE
Table

WHJOB

Job

WHTABLE
Table

Output
Tables

Input
Tables

Using
Jobs

Creating
Job

Reading Job Metadata
In SAS/Warehouse Administrator, a job is a metadata object that specifies the

processes that create one or more data stores (output tables). You can join these
processes together to form a job flow. The Process Editor in SAS/Warehouse
Administrator is used to create job flows.

Each job has metadata of type WHJOB. WHJOB types give you information about
the job that has been gathered using the Properties frames, such as scheduling server,
location of generated source files, scheduling starting times, and tracking user prologs
and epilogs. You can retrieve the corresponding metadata by using job properties. For
example, to retrieve the associated tracking prolog for a job, you need to use the
TRACKING PROLOG property that returns a WHJOBCAT metadata type that
contains all of the tracking prolog information.

Each scheduled job requires a scheduling server association. When you request the
SCHEDULING SERVER property of a job, a WHSERV object will be returned. The
HOST property of WHSERV returns a WHHOST object that is the defined host for this
scheduling server as shown in the following figure.

66 Reading Job Flow Metadata � Chapter 3

Figure 3.14 Job Type Model

WHJOB
Job

*

WHDYNSRC
Step Source Code

Step Source Code *

WHJOBCAT
User Epilog

User
Epilog

ObjectsWHJOBCAT
User Prolog

Objects

User
Prolog

WHJOBCAT
Tracking Epilog

Objects

Tracking
Epilog

WHJOBCAT
Tracking Prolog

Objects

Tracking
Prolog

Scheduling
Server

WHJOBFIL
Job Listing

List

Objects

WHJOBFIL
Job Log

Log

Objects

WHJOBFIL
Job Sysin

Sysin

Objects

WHSERV
Scheduling Server

Jobs

WHHOST
Host

Host

WHDYNSRC
Source Code

WHTFILE
Objects

S
ou

rc
e

Fi
le

Reading Job Flow Metadata
In SAS/Warehouse Administrator, job flow defines the relationship between jobs and

events. This metadata is used to define dependencies between jobs within the
warehouse. The Process Editor in SAS/Warehouse Administrator is used to create job
flows such as the one shown in the following figure:

SAS/Warehouse Administrator Metadata Types � Reading Job Flow Metadata 67

Figure 3.15 Job Flow in SAS/Warehouse Administrator

In the preceding figure you can interpret the chart as follows: Job 3: CRM Database
Main Load is dependent in the settings of two events, Successful Dimension Table Load
and Nightly Batch Start, as well as the execution of the job Customer Purchase Data.
The following figure shows the metadata relationships that are defined between jobs
and events. These relationships define the job flow.

68 Reading Job Hierarchy Metadata � Chapter 3

Figure 3.16 Job and Event Relationships

WHJOB

Input Sources Input
Objects

WHEVENT

Output Targets

Input Sources

Output Targets
 Output
Objects

WHJOB

The previous figure shows the relationship between jobs and events in the Job View
of the Process Editor. These relationships are used to define Job Dependencies
within SAS/Warehouse Administrator.

Note: If there are no intermediate WHEVENT objects, the outputs from OUTPUT
TARGETS and OUTPUT OBJECTS properties are identical. The same is true for
INPUT SOURCES and INPUT OBJECTS. �

Reading Job Hierarchy Metadata
This section describes how to read the metadata for the objects in the Job Hierarchy

panel of the Process Editor, as shown in Display 3.1 on page 61. These objects have a
PROCESS GROUPS property that lists the metadata identifiers of the group that
contains the object. The types also have a PROCESS MEMBERS property that lists the
metadata identifiers of the members of the object. The following figure shows the types
that these properties can return.

SAS/Warehouse Administrator Metadata Types � Using Icon Information 69

Figure 3.17 Metadata Types in the Job Hierarchy

Data Warehouse

Job Group

= Repeated element

WHDW

WHGRPJOB

Environment WHDWENV

Job

Output Table

WHJOB

WHTABLE

Event WHEVENT

Event

Job Group

Job

Event

Job

Job Group

Using Icon Information

The catalog that is returned for the icon property will always be SASHELP.I0808.
Depending on your particular use of the value that is returned, this image size might
not fit your needs. The returned image name can reside in other SASHELP catalogs
that contain different sizes. When the icon property is used with an
_ADD_METADATA_ or _UPDATE_METADATA_ property list, the image name that is
passed must exist in both the SASHELP.I0808 and SASHELP.I0404 catalogs.

If the image entry that is passed is not passed as residing in one of these catalogs or
the passed entry name cannot be found in both of these catalogs, an error is returned.
If a blank value is passed for the ICON item in the property list for the
_ADD_METADATA_ or _UPDATE_METADATA_ method, the default icon for the type
will be used. To reset the icon back to the default icon for this type, you should pass a
blank value as the value of the ICON item in the property list that is passed to
_UPDATE_METADATA_.

70 Index to SAS/Warehouse Administrator Metadata Types � Chapter 3

Index to SAS/Warehouse Administrator Metadata Types

The metadata type dictionary describes SAS/Warehouse Administrator types in
alphabetical order. In this section, metadata types are listed by category in order to
give you a general idea of what types are available and how they are used.

Table 3.1 SAS/Warehouse Administrator Metadata Types

Category SAS/Warehouse
Administrator Metadata
Type

Description

Column Types “WHCOLDAT” on page 74 Metadata type for data table columns

“WHCOLDTL” on page 75 Metadata type for detail table columns

“WHCOLODD” on page 77 Metadata type for ODD columns

“WHCOLOLP” on page 79 Metadata type for OLAP columns

“WHCOLSCL” on page 81 Metadata type for statistic columns in summary tables
and MDDBs

“WHCOLSUM” on page 83 Base metadata type for columns in summary tables and
MDDBs

“WHCOLTIM” on page 85 Metadata type for _LOADTM columns

“WHCOLUMN” on page 87 Base metadata type for table columns

Extended Attribute Type “WHEXTATR” on page 113 Metadata type for extended attributes

Global Metadata Types “WHDBMS” on page 94 Metadata type for DBMS connection definitions

“WHHOST” on page 126 Metadata type for host definitions

“WHPERSON” on page 202 Metadata type for person records

“WHSERV” on page 235 Metadata type for the scheduling server

“WHSRVAT” on page 237 Metadata type for the Windows NT AT scheduling server

“WHSRVCRN” on page 240 Metadata type for Unix Cron scheduling server

“WHSRVNUL” on page 242 Metadata type for the Null scheduling server

Index Type “WHINDEX” on page 129 Metadata type for indexes that are associated with tables
and columns

Object Types—Explorer “WHDATTBL” on page 92 Metadata type for data tables

“WHDETAIL” on page 99 Metadata type for detail tables

“WHDW” on page 101 Metadata type for data warehouses

“WHDWENV” on page 104 Metadata type for warehouse environments

“WHGRPDAT” on page 116 Metadata type for data groups

“WHGRPINF” on page 117 Metadata type for InfoMarts

“WHGRPODD” on page
121

Metadata type for ODD groups

“WHGRPOLP” on page 123 Metadata type for OLAP groups

SAS/Warehouse Administrator Metadata Types � Index to SAS/Warehouse Administrator Metadata Types 71

“WHGRPSUM” on page
125

Metadata type for summary groups

“WHINFO” on page 131 Metadata type for InfoMart items

“WHINFOFL” on page 135 Metadata type for InfoMart files

“WHLDETL” on page 146 Metadata type for detail logical tables

“WHODDTBL” on page
184

Metadata type for ODDs

“WHOLPMDD” on page
196

Metadata type for OLAP MDDBs

“WHOLPSTC” on page 198 Base metadata type for OLAP tables, groups, and
MDDBs

“WHOLPTBL” on page 200 Metadata type for OLAP tables, groups, and MDDBs

“WHSUBJCT” on page 244 Metadata type for subjects in a warehouse

“WHSUMDDB” on page
248

Metadata type for SAS Summary MDDBs

“WHSUMTBL” on page
251

Metadata type for summary tables

“WHTABLE” on page 254 Base metadata type for tables

Object
Types—Intermediate
Output Tables

“WHTBLMAP” on page
257

Metadata type for intermediate output tables that are
produced by column mapping processes

“WHTBLPRC” on page 259 Base metadata type for intermediate output tables that
are produced by processes

“WHTBLREC” on page 261 Metadata type for intermediate output tables that are
produced by record selector processes

“WHTBLUSR” on page 263 Metadata type for intermediate output tables that are
produced by user exit processes

“WHTBLXFR” on page 265 Metadata type for intermediate output tables that are
produced by data transfer processes

Object Types—OLAP “WHOLAP” on page 188 Base metadata type for OLAP dimension, hierarchy, and
crossing

“WHOLPCRS” on page 189 Metadata type for OLAP crossing

“WHOLPCUB” on page
191

Metadata type for OLAP cube

“WHOLPDIM” on page 193 Metadata type for OLAP dimension

“WHOLPHIR” on page 194 Metadata type for OLAP hierarchy

Object Types—Process
Editor

“WHEFILE” on page 109 Metadata type for external file inputs to ODDs

“WHEVENT” on page 112 Metadata type for events

“WHGRPJOB” on page 120 Metadata type for job groups

“WHJOB” on page 138 Metadata type for jobs

“WHODTTBL” on page 186 Metadata type for ODTs (Data Files)

72 Index to SAS/Warehouse Administrator Metadata Types � Chapter 3

“WHPOBJCT” on page 205 Metadata type for the Process Editor

Object Types “WHOBJECT” on page 182 Base metadata type for SAS/Warehouse Administrator
objects

Physical Storage Types “WHDBMSST” on page 96 Metadata type for DBMS physical stores

“WHDYNSAS” on page 107 Metadata type for dynamically generated SAS physical
stores

“WHMDDSTR” on page
177

Metadata type for OLAP MDDB physical store

“WHPHYSTR” on page 204 Base metadata type for physical storage objects

“WHSASSTR” on page 231 Metadata type for SAS physical data stores

Process Types—Load “WHLDOMDD” on page
149

Metadata type for OLAP MDDB load processes

“WHLDOPRX” on page 150 Metadata type for OLAP Proxy load processes

“WHLDOTBL” on page 152 Metadata type for OLAP table load processes

“WHLDRDAT” on page 155 Metadata type for data table load processes

“WHLDRDTL” on page 157 Metadata type for detail table load processes

“WHLDREXT” on page 159 Metadata type for external file load processes

“WHLDRIMF” on page 161 Metadata type for InfoMart file load processes

“WHLDRINF” on page 163 Metadata type for InfoMart item load processes

“WHLDRLDT” on page 165 Metadata type for detail logical table load processes

“WHLDRMDB” on page
167

Metadata type for SAS MDDB load processes

“WHLDRODD” on page
169

Metadata type for ODD load processes

“WHLDRODT” on page
171

Metadata type for ODT (Data File) load processes

“WHLDRSUM” on page
173

Metadata type for summary table load processes

“WHPRCLDR” on page 207 Base metadata type for table load processes

Process Types “WHCTRNFM” on page 89 Metadata type for column transformations

“WHPRCMAN” on page
209

Base metadata type for main processes

“WHPRCMAP” on page
211

Metadata type for data mapping processes

“WHPRCPST” on page 213 Metadata type for post-load processes

“WHPRCREC” on page 215 Metadata type for record selector processes

“WHPRCSPR” on page 217 Base metadata type for subprocesses

“WHPRCUSR” on page 219 Metadata type for user exit processes

“WHPRCXFR” on page 221 Metadata type for data transfer processes

“WHPROCES” on page 223 Base metadata type for processes

SAS/Warehouse Administrator Metadata Types � General Identifying Information 73

“WHROWSEL” on page
228

Metadata type for a row selector

“WHSUBSET” on page 246 Metadata type for subsetting processes that are
associated with data mappings

Root Metadata Type—SAS/
Warehouse Administrator

“WHROOT” on page 226 Root type for all SAS/Warehouse Administrator metadata
types

SAS Library Types “WHDYNLIB” on page 106 Metadata type for dynamic SAS libraries

“WHLIBRY” on page 175 Base metadata type for SAS libraries

“WHREPLIB” on page 224 Metadata type for metadata repositories

Text File Types “WHDYNSRC” on page
108

Metadata type for dynamically generated source code
entries in SAS catalogs

“WHJOBCAT” on page 143 Metadata type for scheduler catalog source file entries

“WHJOBFIL” on page 145 Metadata type for scheduler external file entries

“WHNOTE” on page 179 Metadata type for notes

“WHSCRFIL” on page 233 Metadata type for SAS/CONNECT script files

“WHSRCCAT” on page 236 Base metadata type for SAS catalog entry source code
files

“WHTFILE” on page 267 Base metadata type for text files

“WHTXTCAT” on page 268 Base metadata type for SAS catalog entry text files

“WHTXTFIL” on page 269 Base metadata type for external text files

Using the Metadata Type Dictionary

In the dictionary, types are listed in alphabetical order. The documentation for each
type includes only what is unique for that type. For additional property and usage
information, see the documentation for the parent type.

General Identifying Information
The documentation for many types refers to general identifying information. This

phrase refers to the ID, NAME, and DESC properties. The ID and NAME properties
are described under WHROOT. For more detail, see “Identifying Metadata” on page 7.

74 WHCOLDAT � Chapter 3

WHCOLDAT

Metadata type for Data Table columns

Category: Column Types

Parent
“WHCOLUMN” on page 87

Overview
WHCOLDAT models the metadata for data table columns in SAS/Warehouse
Administrator. To display these columns with the SAS/Warehouse Administrator
Explorer:

1 Select a data table with the right mouse button.
2 Select Properties from the pop-up menu.
3 Go to the Columns tab.

Properties
The following table lists all of the properties for WHCOLDAT and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Format C Yes Yes No

Id C * Req Yes No

SAS/Warehouse Administrator Metadata Types � WHCOLDTL 75

Indexes L No No No

Informat C Yes Yes No

Input Objects L No No No

Input Sources L Yes Yes No

Length N Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Table L * Auto
supplied

No No

Type C * Req * Req No

Using WHCOLDAT

Add Update Delete

No Yes Yes

WHCOLDAT is a dependent type, like all subtypes of WHCOLUMN. To understand
how all subtypes of WHCOLUMN relate to other types, see the column mapping models
in “Relationships Among Metadata Types” on page 53.

WHCOLDTL

Metadata type for detail table columns

Category: Column Types

Parent
“WHCOLUMN” on page 87

76 WHCOLDTL � Chapter 3

Overview
WHCOLDTL models the metadata for detail table columns in SAS/Warehouse
Administrator. To display these columns with the SAS/Warehouse Administrator
Explorer:

1 Select a detail table with the right mouse button.
2 Select Properties from the pop-up menu.
3 Go to the Columns tab.

Properties
The following table lists all of the properties for WHCOLDTL and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Format C Yes Yes No

Id C * Req Yes No

Indexes L No No No

Informat C Yes Yes No

Input Objects L No No No

Input Sources L Yes Yes No

Length N Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHCOLODD 77

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Table L * Auto
supplied

No No

Type C * Req * Req No

Using WHCOLDTL

Add Update Delete

No Yes Yes

WHCOLDTL is a dependent type, like all subtypes of WHCOLUMN. To understand
how all subtypes of WHCOLUMN relate to other types, see the column mapping models
in “Relationships Among Metadata Types” on page 53.

WHCOLODD

Metadata type for ODD columns

Category: Column Types

Parent
“WHCOLUMN” on page 87

Overview
WHCOLODD models the metadata for operational data definition (ODD) table columns
in SAS/Warehouse Administrator. To display these columns with the SAS/Warehouse
Administrator Explorer:

1 Select an ODD with the right mouse button.
2 Select Properties from the pop-up menu.
3 Go to the Columns tab.

Properties
The following table lists all of the properties for WHCOLODD and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

78 WHCOLODD � Chapter 3

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Format C Yes Yes Yes

Id C * Req Yes No

Indexes L No No No

Informat C Yes Yes No

Input Objects L No No No

Input Sources L Yes Yes No

Length N Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Table L * Auto
supplied

No No

Type C * Req * Req No

Using WHCOLODD

Add Update Delete

No Yes Yes

SAS/Warehouse Administrator Metadata Types � WHCOLOLP 79

WHCOLODD is a dependent type, like all subtypes of WHCOLUMN. To understand
how all subtypes of WHCOLUMN relate to other types, see the column mapping models
in “Relationships Among Metadata Types” on page 53.

WHCOLOLP

Metadata type for OLAP columns

Category: Column Types

Parent
“WHCOLUMN” on page 87

Overview
WHCOLOLP replaces the WHCOLSUM metadata type from Release 1.3. WHCOLOLP
models the metadata for OLAP tables, Groups, and MDDBs in the SAS/Warehouse
Administrator.

Properties
The following table lists all of the properties for WHCOLOLP and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Crossings L No No Yes

Cvalue C No Yes No

Desc C No Yes No

Extended
Attributes

L No Yes Yes

Hierarchies L No No No

Format C No Yes No

Id C No * Req No

Indexes L No No No

80 WHCOLOLP � Chapter 3

Informat C No Yes No

Input Objects L No No No

Input Sources L No No No

Length N No Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C No * Default No

Note L No Yes Yes

NValue N No Yes No

Output Objects L No No No

Output Targets L No No No

Statistic C No Yes No

Sort Order C No Yes No

Summary Role C No Yes No

Table L No No No

Type C No Yes No

New properties for WHCOLOLP are as follows:

CROSSINGS
specifies an SCL list of general identifying information about the crossings that
are associated with an OLAP group, Table, or MDDB.

HIERARCHIES
specifies an SCL list of general information about the hierarchies that are
associated with an OLAP group, Table, or MDDB.

SORT ORDER
specifies a character string that contains the sort order of the column. Valid values
are ASCENDING, DESCENDING, ASCFORMATTED, DESFORMATTED, and DSORDER.

STATISTIC
specifies a character string that contains the name of the statistic used to compute
this statistic column.

SUMMARY ROLE
specifies a character string that contains the role of the column in the summary
data. Valid values are CLASS, STATISTIC, ID, and _TYPE_.

Using WHCOLOLP

Add Update Delete

No Yes Yes

WHCOLOLP is a dependent type, like its parent, WHCOLUMN. To understand how
all the subtypes of WHCOLOLP relate to other types, see the OLAP Metadata Type
Model in “Relationships Among Metadata Types” on page 53.

SAS/Warehouse Administrator Metadata Types � WHCOLSCL 81

WHCOLSCL

Metadata type for statistic columns in summary tables and MDDBs

Category: Column Types

Parent
“WHCOLSUM” on page 83

Overview
WHCOLSCL models the metadata for statistic columns in summary tables and MDDBs
in SAS/Warehouse Administrator. To display these columns with the SAS/Warehouse
Administrator Explorer:

1 Select a summary group with the right mouse button.
2 Select Properties from the pop-up menu.
3 Go to the Column Roles tab.

The statistic columns in a summary group are shared by all summary tables and
MDDBs in the group.

Properties
The following table lists all of the properties for WHCOLSCL and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Alias C No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

82 WHCOLSCL � Chapter 3

Format C No No No

Id C No No No

Indexes L No No No

Informat C No No No

Input Objects L No No No

Input Sources L No No No

Length N No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Statistic Type C No No No

Summary Role C No No No

Table L No No No

Type C No No No

WHCOLSCL has the following new property:

STATISTIC TYPE
specifies the character string for the type of statistic. For example: SUM, COUNT,
AVERAGE, MAX, and MIN.

See “WHCOLSUM” on page 83 for a description of the new properties for summary
table column types.

Using WHCOLSCL

Add Update Delete

No No No

WHCOLSCL is a dependent type, like all subtypes of WHCOLUMN. To understand
how all subtypes of WHCOLUMN relate to other types, see the column mapping models
in “Relationships Among Metadata Types” on page 53.

SAS/Warehouse Administrator Metadata Types � WHCOLSUM 83

WHCOLSUM

Base metadata type for columns in summary tables and MDDBs

Category: Column Types

Parent
“WHCOLUMN” on page 87

Overview
WHCOLSUM is a base metadata type for all columns in summary tables and MDDBs
in SAS/Warehouse Administrator.

Properties
The following table lists all of the properties for WHCOLSUM and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Alias C No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Format C No No No

Id C No No No

Indexes L No No No

Informat C No No No

Input Objects L No No No

84 WHCOLSUM � Chapter 3

Input Sources L No No No

Length N No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Summary Role C No No No

Table L No No No

Type C No No No

WHCOLSUM has the following two new properties:

ALIAS
specifies a character string for the column name as registered by SAS/Warehouse
Administrator.

Note that the NAME for a summary column contains the physically stored
name, and the ALIAS contains the name as seen through SAS/Warehouse
Administrator. A column’s NAME and ALIAS are the same, except for MDDB
columns.

For MDDB columns, the NAME property returns the name as it would be
returned through the SASSFIO libname engine when looking at a specific
hierarchy. The ALIAS property returns the name as seen through SAS/Warehouse
Administrator.

SUMMARY ROLE
specifies a character string for the role of the column in the summary data. For
example: CLASS, STATISTIC, ID, FREQUENCY, and TIME.

Using WHCOLSUM

Add Update Delete

No No No

WHCOLSUM is a dependent type, like all subtypes of WHCOLUMN. To understand
how all subtypes of WHCOLUMN relate to other types, see the column mapping models
in “Relationships Among Metadata Types” on page 53.

SAS/Warehouse Administrator Metadata Types � WHCOLTIM 85

WHCOLTIM

Metadata type for _LOADTM columns

Category: Column Types

Parent
“WHCOLUMN” on page 87

Overview
WHCOLTIM models the metadata for _LOADTM columns. A _LOADTM column is an
optional column that you can specify for SAS/Warehouse Administrator tables. This
column contains automatically generated time values that indicate when particular
rows of data were loaded into a table. To specify these columns in SAS/Warehouse
Administrator:

1 In the Explorer, select a table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Edit Load Step.
5 Go to the Load Options tab.
6 Select (or deselect) Add Load Time Column to Table.

Properties
The following table lists all of the properties for WHCOLTIM and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

86 WHCOLTIM � Chapter 3

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Format C Yes Yes No

Id C * Req Yes No

Indexes L No No No

Informat C Yes Yes No

Input Objects L No No No

Input Sources L Yes Yes No

Length N Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Table L * Auto
supplied

No No

Type C * Req * Req No

Using WHCOLTIM

Add Update Delete

No Yes Yes

WHCOLTIM is a dependent type, like all subtypes of WHCOLUMN. To understand
how all subtypes of WHCOLUMN relate to other types, see the column mapping models
in “Relationships Among Metadata Types” on page 53.

SAS/Warehouse Administrator Metadata Types � WHCOLUMN 87

WHCOLUMN

Base metadata type for table columns

Category: Column Types

Parent
“WHROOT” on page 226

Overview
WHCOLUMN is the base metadata type for table columns
in SAS/WarehouseAdministrator.

Properties
The following table lists all of the properties for WHCOLUMN and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Format C No No No

Id C No * Req No

Indexes L No No No

Informat C No No No

Input Objects L No No No

Input Sources L No No No

Length N No No No

Metadata Created C No No No

Metadata Updated C No No No

88 WHCOLUMN � Chapter 3

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Table L No No No

Type C No No No

New properties for WHCOLUMN are as follows:

FORMAT
specifies a SAS format that is assigned to this column.

INDEXES
specifies an SCL list of general identifying information about the indexes that
contain this column.

INFORMAT
specifies a SAS informat that is assigned to this column.

INPUT OBJECTS
represents an SCL list of general identifying information about the objects input to
this column. For more details about input objects, see “INPUT and OUTPUT
Properties” on page 64.

INPUT SOURCES
represents an SCL list of general identifying information about the sources input
to this column. This list must be of type WHCTRNFM, WHCOLUMN, or subtypes
of these. The input sources to this column must be appropriately related through a
common process. For more details about input sources, see “INPUT and OUTPUT
Properties” on page 64.

LENGTH
specifies the value length of this column.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects output
from this column. For more details about output objects, see “INPUT and
OUTPUT Properties” on page 64.

OUTPUT TARGETS
represents an SCL list of general identifying information about the targets output
from this column. The output targets to this column must be appropriately related
through a common process. For more details about output targets, see “INPUT
and OUTPUT Properties” on page 64.

TABLE
represents an SCL list of general identifying information about the table object to
which this column belongs.

TYPE
specifies the type of data that is contained in this column. Valid types are C
(character) or N (numeric).

SAS/Warehouse Administrator Metadata Types � WHCTRNFM 89

Using WHCOLUMN

Add Update Delete

No No No

WHCOLUMN and its subtypes are dependent types. To understand how all subtypes
of WHCOLUMN relate to other types, see the column mapping models in
“Relationships Among Metadata Types” on page 53.

WHCTRNFM

Metadata type for column transformations

Category: Process Types

Parent
“WHROOT” on page 226

Overview
WHCTRNFM models the metadata for column transformation processes in the
SAS/Warehouse Administrator Process Editor. A column transformation is a data
mapping process in which data from the source column is either mapped one-to-one to a
target column or is transformed before it is loaded into the target column. The
WHCTRNFM type corresponds to the one–to-one mappings or derived mappings that
are defined on the Columns tab of the Mapping Process Properties window. The
following is one way to add a derived mapping through the SAS/Warehouse
Administrator interface:

1 In the Explorer, select a table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Add � Inputs
5 Select an input source from the Input Selector window.
6 When the input source and the Mapping box display in the Process Editor, select

the Mapping box with the right mouse button, and then select Properties.
7 Enter the column information, until you come to the Column Mapping tab.
8 Select a column.
9 Click Derive Mapping .
10 Enter the derived mapping information (transformation details).

Properties
The following table lists all of the properties for WHCTRNFM and indicates how you
can use each property with metadata API methods.

90 WHCTRNFM � Chapter 3

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Id C * Req * Req No

Input Objects L No No No

Input Sources L * Req when
mapping is
one-to-one

Yes No

Mapping L * Auto
supplied

No No

Mapping Type C * Req No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Source Code L No No Yes

Source Text L Yes for
derived
mapping
only

Yes for derived
mapping only

No

New properties for WHCTRNFM are as follows:

SAS/Warehouse Administrator Metadata Types � WHCTRNFM 91

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this transformation. Input objects are discussed in “INPUT and OUTPUT
Properties” on page 64.

INPUT SOURCES
specifies an SCL list of general identifying information about the objects that are
input to this transformation. This list points to the input columns or transforms.
If you use a column as the input for a transform, the name of the column’s
physical table must exist.

Objects are verified to ensure that they are part of the same process. If they are
not part of the same process, an error message is produced. Input sources are
discussed in “INPUT and OUTPUT Properties” on page 64.

MAPPING
specifies an SCL list of general identifying information about the mapping process
to which this transformation belongs.

MAPPING TYPE
indicates the type of column mapping. Possible values are

ONE TO ONE—mappings that do not include any transformations.
DERIVED—mappings that include transformations.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
output from this transformation. Output objects are discussed in “INPUT and
OUTPUT Properties” on page 64.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the targets that are
output from this column. This list points to the output column, transform, or row
selection object. Objects are verified to ensure that they are part of the same
process. If they are not part of the same process, an error message is produced.
Only a single WHCOLUMN subtype object can be specified, while multiple
WHROWSEL objects can be included. Output targets are discussed in “INPUT
and OUTPUT Properties” on page 64.

SOURCE CODE
specifies an SCL list of general identifying information about the source code for
this transformation.

SOURCE TEXT
represents an SCL list of character items. Each item can contain a maximum of
200 characters of source code. You can add or update this property for a derived
mapping, but it is ignored for a one-to-one mapping.

Using WHCTRNFM

Add Update Delete

No Yes Yes

WHCTRNFM is a dependent type. To understand how it relates to other types, see
the column mapping models in “Relationships Among Metadata Types” on page 53.

92 WHDATTBL � Chapter 3

WHDATTBL

Metadata type for data tables

Category: Object Types—Explorer

Parent
“WHTABLE” on page 254

Overview
WHDATTBL models the metadata for data tables in SAS/Warehouse Administrator. A
data table is a multipurpose table. You can use it as a detail data store, a summary
data store, a look-up table included as part of a join, or a table that holds information
that does not fit anywhere else.

A data table can be a SAS table or view or a DBMS table or view. To add a data table
with the SAS/Warehouse Administrator Explorer:

1 Select a data group with the right mouse button.
2 Select Add Item � data table
3 Select the data table with the right mouse button.
4 Select Properties.
5 Enter the data table information.

Properties
The following table lists all of the properties for WHDATTBL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

SAS/Warehouse Administrator Metadata Types � WHDATTBL 93

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Resolved View
Code

L No No Yes

Table Name C Yes Yes No

Using Jobs L No No No

View Code L Yes Yes Yes

New properties for WHDATTBL are as follows:

RESOLVED VIEW CODE
specifies an SCL list of general identifying information about the source code that
is used to view (open) this data table. This property will return a copy of the
source code with the &loc reference replaced with the appropriate location
information. See the Note below.

VIEW CODE
specifies an SCL list of general identifying information about the source code that
is used to view (open) this data table. This property will return a copy of the
source code with the &loc reference unresolved. See the Note below.

Note: The VIEW CODE and RESOLVED VIEW CODE properties are very closely
related. �

94 WHDBMS � Chapter 3

When you write the source code to view (open) a data table, you can insert &loc into
the text as a placeholder for the data table’s location information—information such as
libref.catalog.entry.type, for example. The VIEW CODE property will return a copy of
the source code with the &loc reference unresolved. The RESOLVED VIEW CODE
property will return a copy of the source code with the &loc reference replaced with the
appropriate location information.

The RESOLVED VIEW CODE property is provided as a convenience and removes
the burden from the application of parsing the returned code and replacing the &loc
reference. If the source code does not contain the &loc placeholder, the returned source
code is the same for both properties.

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when adding an input source to the table.

Using WHDATTBL

Add Update Delete

Yes Yes Yes

WHDATTBL is an independent type, like its parent, WHTABLE. To understand how
all subtypes of WHTABLE relate to other types, see the table model in “Relationships
Among Metadata Types” on page 53.

When you update or add the VIEW CODE property, see “Using WHINFO” on page
134.

You can also use the WHDATTBL type to read Data Mart objects that were created
prior to SAS/Warehouse Administrator, Release 1.3.

WHDBMS

Metadata type for DBMS connection definitions

Category: Global Metadata Types

Parent
“WHROOT” on page 226

Overview
WHDBMS models the metadata for a database management system connection
definition in SAS/Warehouse Administrator. All warehouses in an environment can
share DBMS definitions. In SAS/Warehouse Administrator, to add a DBMS connection
definition to the current environment in the Explorer:

1 Select File � Setup from the pull-down menu.
2 Select DBMS Connections.
3 Click Add .

SAS/Warehouse Administrator Metadata Types � WHDBMS 95

4 Enter the connection information.

Properties
The following table lists all of the properties for WHDBMS and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Connection
Options

L Yes Yes No

Cvalue C Yes No No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Icon C Yes Yes No

Id C No * Req No

Libraries L No Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Nickname C Yes No No

Note L Yes Yes Yes

NValue N Yes Yes No

Password C No No No

Tables L No No No

Userid C No No No

New properties for WHDBMS are as follows:

CONNECTION OPTIONS
represents an SCL list of options that are needed to access the DBMS in this
connection. The SQL sublist contains the options that are needed to access the
DBMS through the SQL Pass-Through facility. These are options normally
specified in the CONNECT TO statement. The DBLOAD sublist contains
statements that are needed to access the DBMS when you use PROC DBLOAD.

96 WHDBMSST � Chapter 3

LIBRARIES
specifies an SCL list of general identifying information about the libraries that are
associated with this DBMS connection.

NICKNAME
specifies the nickname of the DBMS in this connection. Valid nicknames are
limited to DB2/AIX, DB2/MVS, Informix, Oracle, SQL Server, and SYBASE.

If a passed nickname is not a known nickname, it is accepted if it is a valid SAS
name.

PASSWORD
represents the maximum 200-character string for a password that is registered for
this database connection. This property contains the registered password only if
the API application is a secure application. The only secure applications currently
supported are those registered as add-in generators. See the SAS/Warehouse
Administrator User’s Guide for documentation on add-in generators. If the API
application is not secure, this property returns a blank value if no password has
been registered, and it returns XXXXXXXX if the password has been registered.

TABLES
specifies an SCL list of general identifying information about the tables that are
associated with this DBMS connection.

USERID
represents the maximum 200-character string for the user ID that is registered for
this database connection. This property contains the registered user ID only if the
API application is a secure application. The only secure applications currently
supported are those that are registered as add-in generators. See the
SAS/Warehouse Administrator User’s Guide for documentation on add-in
generators. If the API application is not secure, this property returns a blank
value if no user ID has been registered, and it returns XXXXXXXX if the user ID
has been registered.

Using WHDBMS

Add Update Delete

Yes Yes Yes

WHDBMS is an independent type. To understand how it relates to other types, see
the physical storage models in “Relationships Among Metadata Types” on page 53.

Note: The USERID and PASSWORD attributes are only valid with the
_GET_METADATA_ method when the API application is a secure application.
Currently, the only secure applications are those that are registered as add-in
generators. �

WHDBMSST

Metadata type for DBMS physical stores

SAS/Warehouse Administrator Metadata Types � WHDBMSST 97

Category: Physical Storage Types

Parent
“WHPHYSTR” on page 204

Overview
WHDBMSST models the metadata for database management system physical stores in
SAS/Warehouse Administrator. To specify DBMS format for a table in a warehouse,
from the SAS/Warehouse Administrator Explorer:

1 Select a table with the right mouse button.
2 Select Properties from the pop-up menu.
3 Go to the Physical Storage tab.
4 Select DBMS as the storage format.

Properties
The following table lists all of the properties for WHDBMSST and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Database L * Req (see
Property
Dependencies)

No No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Indexes L Yes Yes Yes

98 WHDBMSST � Chapter 3

Library L * Req (see
Property
Dependencies)

Yes No

Load Technique C Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C Yes Yes No

Note L No No Yes

NValue N Yes Yes No

Table L * Auto
supplied

No No

Table Name C Yes Yes No

Table Options L * Default * Default No

Property Dependencies You must define either a database or a library for a physical
store instance. If you provide neither, you get an error message. If you provide a library
but no database, and a DBMS connection is defined for that library, the value for the
DATABASE property will be obtained from the DBMS connection definition. If you
supply both a library and a database, the two properties must match (the library must
be appropriate for the database). Otherwise, you get an error message.

New properties for WHDBMSST are as follows:

DATABASE
specifies an SCL list of general identifying information about the database
connection that is used for this table.

HOST
specifies an SCL list of general identifying information about the host on which
this data is accessed.

LIBRARY
specifies an SCL list of general identifying information about the library that is
used to load this database table. If the table is not loaded by using a SAS DBMS
Libname engine, then no information is returned for this property.

TABLE OPTIONS
specifies an SCL list of options that are used in creating or loading this table.

The LOAD sublist is appropriate for DBMS tables that are created with code
generation level 1.1. It contains any DBLOAD statements that are used to create
or load the table.

The CREATE and APPEND sublists are appropriate for DBMS tables that are
created with code generation level 2.0. The CREATE sublist contains any SQL
options that are used to create the table. The APPEND sublist contains any data
set options that are used to load the table. One particularly useful option for the
APPEND sublist is the data set option BULKLOAD=, which supports bulk loading
of DBMS tables.

SAS/Warehouse Administrator Metadata Types � WHDETAIL 99

Using WHDBMSST

Add Update Delete

No Yes No

WHDBMSST is a dependent type. To understand how it relates to other types, see
the physical storage models in “Relationships Among Metadata Types” on page 53.

WHDETAIL

Metadata type for detail tables

Category: Object Types—Explorer

Parent
“WHTABLE” on page 254

Overview
WHDETAIL models the metadata for detail tables in SAS/Warehouse Administrator. A
detail table is a detail data store. It can be a SAS table or view or a DBMS table or
view. To add a detail table with the SAS/Warehouse Administrator Explorer:

1 Select a detail logical table with the right mouse button.

2 Select Add New Table.

3 Select the detail table with the right mouse button.

4 Select Properties.

5 Enter the detail table information.

Properties
The following table lists all of the properties for WHDETAIL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

100 WHDETAIL � Chapter 3

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

SAS/Warehouse Administrator Metadata Types � WHDW 101

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when you add an input source to the table.

Using

Add Update Delete

Yes Yes Yes

WHDETAIL is an independent type, like all subtypes of WHTABLE. To understand
how WHTABLE and WHDETAIL relate to other types, see the table and column models
in “Relationships Among Metadata Types” on page 53.

WHDW

Metadata type for data warehouses

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHDW models the metadata for data warehouses in SAS/Warehouse Administrator. A
warehouse is a grouping element for subjects and data groups. It is the object that is
used to implement a data warehouse or a data mart. In the SAS/Warehouse
Administrator Explorer, to add a data warehouse to an environment:

1 Select the environment with the right mouse button.
2 Select Add Item � Data Warehouse
3 Select the data warehouse with the right mouse button.
4 Enter the warehouse information.

Properties
The following table lists all of the properties for WHDW and indicates how you can use
each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

102 WHDW � Chapter 3

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No Yes No

Cvalue C No Yes No

Desc C No Yes No

Extended
Attributes

L No Yes Yes

Group L No Yes No

Icon C No Yes No

Id C No * Req No

Job Info Library L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No * Default No

Note L No Yes Yes

NValue N No Yes No

Owner L No Yes No

Process Groups L No No No

Process Members L No No No

New properties for WHDW are as follows:

JOB INFO LIBRARY
specifies an SCL list of general identifying information about the job information
library that is associated with this repository. The job information library is the
location where job status information is stored for scheduled jobs.

LIBRARY
specifies an SCL list of general identifying information about the SAS library that
contains the metadata for this data warehouse. See the metadata type WHLIBRY
for the format of this list.

PROCESS GROUPS
specifies an SCL list of general identifying information about the process groups to
which this object belongs.

PROCESS MEMBERS
specifies an SCL list of general identifying information about the process members
that belong to this object. The list must be of type WHGRPJOB, WHJOB,
WHEVENT.

SAS/Warehouse Administrator Metadata Types � WHDW 103

Using WHDW

Add Update Delete

No Yes No

WHDW is used with the _SET_SECONDARY_REPOSITORY_ method to access the
metadata for a particular data warehouse. To set a secondary repository, you must pass
one of these two properties in the l_meta list for the
_SET_SECONDARY_REPOSITORY_ method:

ID
represents the metadata identifier of the secondary repository.

LIBRARY
allows the stored metadata information to be overridden with the optional
information that is specified here.

For details, see “_SET_SECONDARY_REPOSITORY_” on page 43.
WHDW is an independent type, like all subtypes of WHOBJECT. To understand how

all subtypes of WHOBJECT relate to other types, see the general information model in
“Relationships Among Metadata Types” on page 53.

104 WHDWENV � Chapter 3

WHDWENV

Metadata type for warehouse environments

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHDWENV models the metadata for warehouse environments in SAS/Warehouse
Administrator. An environment is a grouping element for warehouses and ODD groups.
It is a directory that stores metadata, such as host definitions, that is shared among
one or more warehouses and ODD groups.

In the SAS/Warehouse Administrator desktop folder, environments are displayed as
icons. In the SAS/Warehouse Administrator Explorer, the environment that you
selected from the desktop folder is the top-most object. To add an environment to the
SAS/Warehouse Administrator desktop interface:

1 Click in a clear area with the right mouse button.

2 Select Add Item � Data Warehouse Environment

3 Enter the environment information.

Properties
The following table lists all of the properties for WHDWENV and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Active
Repositories

L No No No

Administrator L No No No

Cvalue C No Yes No

Desc C No Yes No

SAS/Warehouse Administrator Metadata Types � WHDWENV 105

Extended
Attributes

L No Yes Yes

Group L No Yes No

Icon C No Yes No

Id C No * Req No

Job Info Library L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No Yes Yes

NValue N No Yes No

Owner L No No No

Process Groups L No No No

Process Members L No Yes No

Repositories L No No No

New properties for WHDWENV are as follows:

ACTIVE REPOSITORIES
specifies an SCL list of general identifying information about the currently active
secondary metadata repositories in this environment.

JOB INFO LIBRARY
specifies an SCL list of general identifying information about the job information
library that is associated with this repository. The job information library is the
location where job status information is stored for scheduled jobs.

LIBRARY
specifies an SCL list of general identifying information about the SAS library that
contains the metadata for this environment.

PROCESS GROUPS
specifies an SCL list of general identifying information about the process groups to
which this object belongs.

PROCESS MEMBERS
specifies an SCL list of general identifying information about the process members
that belong to this object. The list must be of type WHDW, WHGRPJOB, WHJOB,
or WHEVENT. A WHDW object will be rejected if it is not in the current data
warehouse. Any attempt to remove the current data warehouse from this property
will be ignored.

REPOSITORIES
specifies an SCL list of general identifying information about the metadata
repositories in this environment.

106 WHDYNLIB � Chapter 3

Using WHDWENV

Add Update Delete

No Yes No

WHDWENV is an independent type, like all subtypes of WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

WHDWENV is used with the _SET_PRIMARY_REPOSITORY_ method to access the
metadata for a warehouse environment. For details, see
“_SET_PRIMARY_REPOSITORY_” on page 40.

WHDYNLIB

Metadata type for dynamic SAS libraries

Category: SAS Library Types

Parent

“WHLIBRY” on page 175

Overview

WHDYNLIB models the metadata for dynamic SAS libraries in SAS/Warehouse
Administrator. This metadata type corresponds to the default, temporary working
directories that are identified on the Output Data tab of the properties window for data
mappings, user exits, record selectors, and data transfers.

For example, here is how to display the Output Data tab for a user exit process in
the SAS/Warehouse Administrator interface:

1 In the Explorer, select a table with the right mouse button.

2 Select Process from the pop-up menu.

3 In the Process Editor, select the table with the right mouse button.

4 Select Add � User Exit

5 Enter the user exit information, until you come to the Output Data tab.

By default, the fields on the Output Data tab will display a temporary working
directory for user exit output.

Properties

WHDYNLIB has the same properties as “WHLIBRY” on page 175. Unlike WHLIBRY
properties, however, WHDYNLIB properties cannot be written through the metadata
API. They can only be read.

SAS/Warehouse Administrator Metadata Types � WHDYNSAS 107

Using WHDYNLIB

Add Update Delete

No No No

WHDYNLIB is an independent type, like its parent, WHLIBRY. To understand how
all subtypes of WHLIBRY relate to other types, see the physical storage models in
“Relationships Among Metadata Types” on page 53.

WHDYNSAS

Metadata type for dynamically generated SAS physical stores

Category: Physical Storage Types

Parent
“WHSASSTR” on page 231

Overview
WHDYNSAS models the metadata for dynamically generated SAS physical stores in
SAS/Warehouse Administrator. The WHDYNSAS type is a placeholder for tables that
do not currently support the definition of both physical information and ACCESS
information—tables that do not have a Physical Storage tab in their property windows.

Properties
WHDYNSAS has the same properties as its parent, “WHSASSTR” on page 231.
However, unlike WHSASSTR properties, WHDYNSAS properties cannot be written
through the metadata API. They can only be read.

Using WHDYNSAS

Add Update Delete

No No No

WHDYNSAS is a dependent type, like its parent, WHSASSTR. To understand how
subtypes of WHSASSTR relate to other types, see the physical storage model for
WHSASSTR in “Relationships Among Metadata Types” on page 53.

108 WHDYNSRC � Chapter 3

WHDYNSRC

Metadata type for dynamically generated source code entries in SAS catalogs

Category: Text File Types

Parent
“WHSRCCAT” on page 236

Overview
WHDYNSRC models the metadata for dynamically generated source code catalog
entries in SAS/Warehouse Administrator. These entries are generated when you select
the

View Code � All

or

Step

option for a table in the Process Editor.

Properties
The following table lists all of the properties for WHDYNSRC and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Entry C No No No

Extended
Attributes

L No No Yes

Full Entry C No No No

Id C No No No

Library L No No No

SAS/Warehouse Administrator Metadata Types � WHEFILE 109

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Objects L No No No

Using WHDYNSRC

Add Update Delete

No No No

WHDYNSRC is a dependent type, like all of the subtypes of WHTFILE. To
understand how all subtypes of WHTFILE relate to other types, see the process model
in “Relationships Among Metadata Types” on page 53.

WHEFILE

Metadata type for external file inputs to ODDs

Category: Object Types—Process Editor

Parent
“WHROOT” on page 226

Overview
WHEFILE models the metadata for external file objects in the Process Editor. An
external file is a file of type other than SAS that is an input to an operational data
definition (ODD). Here is one way to add an external file in SAS/Warehouse
Administrator:

1 In the Explorer, select an ODD with the right mouse button.

2 Select Process from the pop-up menu.

3 In the Process Editor, select the ODD with the right mouse button.

4 Select Add � External File from the pop-up menu.

5 Select the external file with the right mouse button.

6 Select Properties.

7 Enter the external file information.

110 WHEFILE � Chapter 3

Properties
The following table lists all of the properties for WHEFILE and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Method C Yes Yes No

Creating Job L Yes Yes Yes

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Fileref C Yes Yes No

Host L Yes Yes Yes

Icon C Yes Yes No

Id C * Req No No

Input Objects L No No No

Input Sources L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Options L Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Path L Yes Yes No

Process L Yes Yes Yes

New properties for WHEFILE are as follows:

ACCESS METHOD
indicates the SAS filename access method specification.

SAS/Warehouse Administrator Metadata Types � WHEFILE 111

CREATING JOB
specifies a list of general identifying information about the job that creates this
file. This list must be a WHJOB or a subtype of WHJOB. A valid CREATING JOB
property is required before you can add any INPUT SOURCES. If the CREATING
JOB is removed, then any work tables in the chain of INPUT SOURCES will be
deleted as well.

FILEREF
represents the fileref that is used to access this file using a SAS filename
statement. The maximum length is 8 characters.

HOST
specifies an SCL List of general identifying information about the host on which
this file is accessed.

ICON
indicates the catalog entry name of the associated icon. For more information
about icons, see “Using Icon Information” on page 69.

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this external file. For more details about input objects, see “INPUT and
OUTPUT Properties” on page 64.

INPUT SOURCES
specifies an SCL list of general, identifying information about the sources that are
input to this file. For more details about input sources, see “INPUT and OUTPUT
Properties” on page 64.

OPTIONS
represents an SCL list of filename statement options. The list contains multiple
entries to support options that might be too long to fit in one list item.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
output from this external file. For more details about output objects, see “INPUT
and OUTPUT Properties” on page 64.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the targets that are
output from this external file. For more details about output targets, see “INPUT
and OUTPUT Properties” on page 64.

PATH
indicates an SCL list of host-specific path designations.

PROCESS
specifies an SCL list of general identifying information about the process that
created this file.

Using WHEFILE

Add Update Delete

Yes Yes No

WHEFILE is an independent type.

112 WHEVENT � Chapter 3

WHEVENT

Metadata type for events

Category: Object Types—Process Editor

Parent
“WHPOBJCT” on page 205

Overview
WHEVENT models the metadata for an event. An event is a metadata record that
specifies a condition for controlling a Job, such as checking for certain return codes or
verifying the existence of a file. To use events, you must create them, include them in a
job flow, and then write a metadata API program that reads the job flow and generates
code for it.

Properties
The following table lists all of the properties for WHEVENT and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

SAS/Warehouse Administrator Metadata Types � WHEXTATR 113

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Process Groups L * Req Yes No

Process Members L No No No

New properties for WHEVENT are as follows:

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this event.

INPUT SOURCES
specifies an SCL list of general identifying information about the sources that are
input to this event. This list must be of type WHJOB or WHEVENT. Adding an
object beneath itself is prevented.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
output from this event.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the targets that are
output from this event. This list must be of type WHJOB or WHEVENT. Adding
an object beneath itself is prevented.

Using WHEVENT

Add Update Delete

Yes Yes Yes

WHEVENT is an independent type.

WHEXTATR

Metadata type for extended attributes

Category: Extended Attribute Type

Parent
“WHROOT” on page 226

114 WHEXTATR � Chapter 3

Overview
WHEXTATR models the metadata for the EXTENDED ATTRIBUTE property in
SAS/Warehouse Administrator. Extended attributes store site-defined metadata that is
not part of the standard metadata for that object.

For each object that supports the EXTENDED ATTRIBUTE property, you can enter
one or more EXTENDED ATTRIBUTE records. Each EXTENDED ATTRIBUTE record
has a field for NAME, DESCRIPTION, and VALUE. For example, here is an
EXTENDED ATTRIBUTE record for a table that is named Sales Detail Data:

NAME: Sales Detail Data Web Page

DESCRIPTION: URL to Web doc for Sales Detail table

VALUE: http://www.ourserver.com/warehouse1/tables/sales_dd.html

Note: Each EXTENDED ATTRIBUTE record for a given element must have a
unique NAME. �

Most SAS/Warehouse Administrator Explorer objects, some columns within objects,
and all process objects in the Process Editor (Data Mappings, User Exits, Extractions,
and so on) provide access to an EXTENDED ATTRIBUTE property.

In the SAS/Warehouse Administrator interface, to add extended attributes to an
Explorer object or a process, display the property window for that object or process,
select File � Extensions from the pull-down menu, and enter the extended attribute.

In the SAS/Warehouse Administrator interface, to add extended attributes to a table
column, display the property window for the table, go the Columns tab, select a column,
then select Edit � Column Extensions from the pull-down menu, and enter the
extended attribute.

Properties
The following table lists all of the properties for WHEXTATR and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

SAS/Warehouse Administrator Metadata Types � WHEXTATR 115

Properties Type Indirect Add Update Method Read Method
Expand Parm.

CValue C Yes No No

Desc C Yes Yes No

Extended
Attributes

L No No No

Id C * Auto
supplied

* Req No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C Yes No No

Note L Yes No No

NValue N Yes No No

Object L * Auto
supplied

No No

Type C * Default
(defaults to
"C")

No No

Value C Yes Yes No

New Properties for WHEXTATR are as follows:

OBJECT
specifies an SCL list of general identifying information about the object that owns
this extended attribute.

TYPE
represents the one-character string that indicates whether the extended attribute
is numeric or character.

N — numeric type extended attribute (not supported in this release).
C — character type extended attribute.

VALUE
represents the 200-character string that contains the extended attribute text (such
as a URL or file path).

Using WHEXTATR

Add Update Delete

No No Yes

WHEXTATR is a dependent type.
You can add, update, or delete the EXTENDED ATTRIBUTES property from any type

under WHROOT that supports the appropriate method (_ADD_METADATA, and so on).

116 WHGRPDAT � Chapter 3

The EXTENDED ATTRIBUTE property behaves like the COLUMN property list
does on the WHTABLE type. You can pass the EXTENDED ATTRIBUTE property with
the _ADD_METADATA method that adds the owning object. After the owning object
exists, you can add new attributes by using the _UPDATE_METADATA method on the
owning object.

To update an existing attribute, send the _UPDATE_METADATA method to the
attribute itself. To remove an attribute from an owning object, send the
_DELETE_METADATA method to the attribute itself.

Reading EXTENDED ATTRIBUTE If the _GET_METADATA_ method is called on an API
object that has an extended attribute, the VALUE property of the extended attribute
will be returned even when the expand parameter is set to 0 for the
_GET_METADATA_ call.

In general, it is good practice to use the SCL UPCASE or LOWCASE functions to
read text values, as with the _GET_METADATA_ method. This is especially useful in
reading the NAME, DESCRIPTION, and VALUE fields in the EXTENDED
ATTRIBUTE property. The text in these fields is stored as the user entered them, and
it can be in mixed case.

WHGRPDAT

Metadata type for Data Groups

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHGRPDAT models the metadata for data groups in SAS/Warehouse Administrator. A
data group is a grouping element for data tables, InfoMarts, and other data groups. To
add a data group with the SAS/Warehouse Administrator Explorer:

1 Select a warehouse, a subject, or a parent data group with the right mouse button.
2 Select Add Item � Data Group
3 Select the data group with the right mouse button.
4 Select Properties.
5 Enter the data group information.

Properties
The following table lists all of the properties for WHGRPDAT and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

SAS/Warehouse Administrator Metadata Types � WHGRPINF 117

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req No No

Icon C Yes Yes No

Id C * Req * Req No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owner L Yes Yes No

Using WHGRPDAT

Add Update Delete

Yes Yes Yes

WHGRPDAT is an independent type, like all subtypes of WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

You can also use the WHGRPDAT type to read Data Mart Group objects that were
created prior to SAS/Warehouse Administrator, Release 1.3.

WHGRPINF

Metadata type for InfoMarts

118 WHGRPINF � Chapter 3

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHGRPINF models the metadata for InfoMarts in SAS/Warehouse Administrator. An
InfoMart is used to organize InfoMart items and InfoMart files. To add an InfoMart
with the SAS/Warehouse Administrator Explorer:

1 Select a subject, data group, or an ODD group with the right mouse button.
2 Select Add Item � Information Mart

3 Select the information mart with the right mouse button.
4 Select Properties.
5 Enter the information mart information.

Properties
The following table lists all of the properties for WHGRPINF and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req No No

Icon C Yes Yes No

Id C * Req * Req No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

SAS/Warehouse Administrator Metadata Types � WHGRPINF 119

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owner L Yes Yes No

Using WHGRPINF

Add Update Delete

Yes Yes Yes

WHGRPINF is an independent type, like all subtypes of WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

120 WHGRPJOB � Chapter 3

WHGRPJOB

Metadata type for job groups

Category: Object Types—Process Editor

Parent
“WHPOBJCT” on page 205

Overview
WHGRPJOB models the metadata for a job group. A job is a metadata record that
specifies the processes that create one or more data stores (output tables).

Properties
The following table lists all of the properties for WHGRPJOB and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Icon C Yes Yes No

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owner L Yes Yes No

SAS/Warehouse Administrator Metadata Types � WHGRPODD 121

Process Groups L * Req Yes No

Process Members L No No No

Using WHGRPJOB

Add Update Delete

Yes Yes Yes

WHGRPJOB is an independent type.

WHGRPODD

Metadata type for ODD groups

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHGRPODD models the metadata for operational data definition groups in
SAS/Warehouse Administrator. An ODD group is used to organize ODDs and
InfoMarts. To add an ODD group with the SAS/Warehouse Administrator Explorer:

1 Select an environment with the right mouse button.
2 Select Add Item � Operational Data Definition (ODD) Group
3 Select the ODD group with the right mouse button.
4 Select Properties.
5 Enter the ODD group information.

Properties
The following table lists all of the properties for WHGRPODD and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

122 WHGRPODD � Chapter 3

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Icon C Yes Yes No

Id C * Req * Req No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owner L Yes Yes No

Using WHGRPODD

Add Update Delete

Yes Yes Yes

WHGRPODD is an independent type, like all subtypes of WHOBJECT. To
understand how all subtypes of WHOBJECT relate to other types, see the general
information model in “Relationships Among Metadata Types” on page 53.

SAS/Warehouse Administrator Metadata Types � WHGRPOLP 123

WHGRPOLP

Metadata type for OLAP groups

Category: Object Types—Explorer

Parent
“WHOLPSTC” on page 198

Overview
WHGRPOLP models the metadata for OLAP groups in the SAS/Warehouse
Administrator Explorer. An OLAP group is a grouping element for doing HOLAP,
ROLAP, MOLAP, or MIXED type processing using OLAP tables or MDDBs. To add an
OLAP group with the SAS/Warehouse Administrator Explorer:

1 Select a subject or data group with the right mouse button.
2 Select Add Item � OLAP Group

3 Select the OLAP group with the right mouse button.
4 Select Properties.
5 Enter the OLAP group information.

Properties
The following table lists all of the properties for WHGRPOLP and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

124 WHGRPOLP � Chapter 3

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Crossings L Yes Yes Yes

Cube L Yes Yes Yes

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

OLAP Type C Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when you add an input source to the table.

SAS/Warehouse Administrator Metadata Types � WHGRPSUM 125

Using WHGRPOLP

Add Update Delete

Yes Yes Yes

WHGRPSUM

Metadata type for summary groups

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHGRPSUM models the metadata for summary groups in SAS/Warehouse
Administrator. A summary group is a grouping element for summary tables or MDDBs.
Each table or MDDB in the group uses the summary group’s assignments for input
data source, column roles, and fiscal time. A summary group also defines the default
class variables and analysis variables that are used when you build the dimensions for
each summary level within the group. To add a summary group with the
SAS/Warehouse Administrator Explorer:

1 Select a subject with the right mouse button.
2 Select Add Item � Summary Group
3 Select the summary group with the right mouse button.
4 Select Properties.
5 Enter the summary group information.

Properties
The following table lists all of the properties for WHGRPSUM and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

126 WHHOST � Chapter 3

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Group L No No No

Host L No No No

Icon C No No No

Id C No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Owner L No No No

Using WHGRPSUM

Add Update Delete

No No No

WHGRPSUM is an independent type, like all subtypes of WHOBJECT. To
understand how all subtypes of WHOBJECT relate to other types, see the general
information model in “Relationships Among Metadata Types” on page 53.

WHHOST

Metadata type for host definitions

Category: Global Metadata Types

Parent

“WHROOT” on page 226

SAS/Warehouse Administrator Metadata Types � WHHOST 127

Overview
WHHOST models the metadata for host definitions in SAS/Warehouse Administrator. A
host definition is a metadata record that specifies a computer where data stores reside,
where processes and jobs execute, or where process output is sent. Host definitions are
included in the metadata records for data stores, processes, and scheduling server
definitions in an environment. In SAS/Warehouse Administrator, to add a host
definition to the current environment in the Explorer:

1 Select File � Setup from the pull-down menu.

2 Select Hosts.

3 Click Add .

4 Enter the host information.

Properties
The following table lists all of the properties for WHHOST and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Comamid C Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Icon C Yes Yes No

Id C No * Req No

Locale C * Req No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Operating System C Yes Yes No

Processes L No No No

128 WHHOST � Chapter 3

Remote Address C Yes Yes No

SAS Version C Yes Yes No

Script L Yes Yes Yes

Source Code L No No Yes

Tables L No No No

Use Script C Yes Yes No

New properties for WHHOST are as follows:

COMAMID
indicates the SAS/CONNECT Access Method (comamid) option value that is
needed to access this host.

ICON
specifies the catalog entry name of the associated icon. For more information
about icons, see “Using Icon Information” on page 69.

LOCALE
indicates the location of this host. Values can be either LOCAL or REMOTE.

OPERATING SYSTEM
represents the operating system for this host. Valid values are defined by what is
available on the Host Options tab of the Host Properties window. Some possible
values are CMS, MVS, OS/2, UNIX, VMS, Windows.

PROCESSES
specifies an SCL list of general identifying information about the processes that
execute on this host.

REMOTE ADDRESS
represents the remote address of this host.

SAS VERSION
indicates the version of SAS that is running on this host. Valid values are defined
by what is available on the Host Options tab of the Host Properties window.

SCRIPT
specifies an SCL list of general identifying information about the SAS/CONNECT
script that is associated with this host.

SOURCE CODE
specifies an SCL list of general identifying information about the source code that
is needed to access this host.

TABLES
specifies an SCL list of general identifying information about the tables that reside
on this host.

USE SCRIPT
specifies whether a SAS/CONNECT SIGNON script is used to connect to a remote
host. Valid entries are NO (no script is used) or YES (a script is used).

SAS/Warehouse Administrator Metadata Types � WHINDEX 129

Using WHHOST

Add Update Delete

Yes Yes Yes

WHHOST is an independent type. To understand how WHHOST relates to other
types, see the host, process, and physical storage models in “Relationships Among
Metadata Types” on page 53.

WHINDEX

Metadata type for indexes that are associated with tables and columns

Category: Index Type

Parent
“WHROOT” on page 226

Overview
WHINDEX models the metadata for SAS indexes that are associated with tables and
columns in SAS/Warehouse Administrator. The tables can be in SAS or DBMS format.
To specify a SAS index for a table in the SAS/Warehouse Administrator Explorer:

1 Select a table with the right mouse button.

2 Select Properties from the pop-up menu.
3 Go to the Physical Storage tab.

4 Click Define .

5 Go to the Indexing tab.
6 Enter the index information.

Properties
The following table lists all of the properties for WHINDEX and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that

130 WHINDEX � Chapter 3

the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Clustered N * Default No No

Columns L Yes No No

Cvalue C Yes No No

Desc C Yes No No

Extended
Attributes

L Yes No Yes

Host L Yes Yes No

Id C * Req No No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Req No No

Note L Yes No Yes

NValue N Yes No No

Options L Yes No No

Physical Storage L * Auto
supplied

No No

Unique N * Default No No

New properties for WHINDEX are as follows:

CLUSTERED
specifies a numeric value (0 for No, 1 for Yes) that indicates whether this index is
clustered.

COLUMNS
specifies an SCL list of general identifying information about the columns that are
involved in this index.

OPTIONS
indicates an SCL list of character strings that contains any options that are
entered by the user.

PHYSICAL STORAGE
specifies an SCL list of general identifying information about the physical storage
definition to which this index is associated.

SAS/Warehouse Administrator Metadata Types � WHINFO 131

UNIQUE
specifies a numeric value (0 for No, 1 for Yes) that indicates whether this index is
a unique index.

Using WHINDEX

Add Update Delete

No No Yes

To update a WHINDEX:

1 Read the existing index, using _GET_METADATA_ with the all and expand
parameters set to 1.

2 Change the properties as appropriate in the returned list.

3 Delete the existing index by using the _DELETE_METADATA_ method and the ID
of the existing index.

4 Issue an _UPDATE_METADATA_ call to the associated physical storage object,
such as the WHINDEX PHYSICAL STORAGE property contents. In the passed
l_meta list, include the INDEXES property, which has a sublist of the copied
WHINDEX metadata list.

WHINDEX is a dependent type. It is dependent on a physical storage definition,
such as a subtype of WHPHYSTR.

WHINFO

Metadata type for InfoMart items

Category: Object Types—Explorer

Parent

“WHOBJECT” on page 182

Overview

WHINFO models the metadata for information mart items (InfoMart items) in
SAS/Warehouse Administrator. An InfoMart item is an object that contains or displays
information that is generated from detail data or summary data in the warehouse.
These items are usually SAS charts, reports, graphs, or queries. To add an InfoMart
item with the SAS/Warehouse Administrator Explorer:

1 Select an information mart with the right mouse button.

2 Select Add Item � Information Mart Item

132 WHINFO � Chapter 3

3 Select the information mart item with the right mouse button.
4 Select Properties.
5 Enter the information mart item information.

Properties
The following table lists all of the properties for WHINFO and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

Yes

Desc C Yes Yes No

Entry C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Full Entry C No No No

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

SAS/Warehouse Administrator Metadata Types � WHINFO 133

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L No No No

Owner L Yes Yes No

Process L Yes Yes Yes

Resolved View
Code

L No No Yes

Using Processes L No No No

View Code L Yes Yes Yes

New properties for WHINFO are as follows:

CREATING JOB
specifies a list of general identifying information about the job that creates this
InfoMart item. Must be a WHJOB or a subtype of WHJOB. A valid CREATING
JOB property is required before you can add any INPUT SOURCES. If the
CREATING JOB property is removed, then any work tables in the chain of INPUT
SOURCES will be deleted as well.

ENTRY
represents the three-level name of the catalog entry that contains the InfoMart
item. An example would be source.loadfile.source.

FULL ENTRY
represents the four-level name of the catalog entry that contains the InfoMart
item. An example would be libref.source.loadfile.source.

HOST
specifies an SCL list of general identifying information about the host on which
this InfoMart item is accessed.

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this InfoMart item. For more information about input objects, see “INPUT
and OUTPUT Properties” on page 64.

INPUT SOURCES
specifies an SCL list of general identifying information about the sources that are
input to this InfoMart item. For more information about input sources, see
“INPUT and OUTPUT Properties” on page 64.

LIBRARY
specifies an SCL list of general identifying information about the SAS library that
contains this InfoMart item. For details about SAS library metadata, see
“WHLIBRY” on page 175.

134 WHINFO � Chapter 3

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
output from this InfoMart item. For more information about output objects, see
“INPUT and OUTPUT Properties” on page 64.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the targets that are
output from this InfoMart item. For more information about output targets, see
“INPUT and OUTPUT Properties” on page 64.

PROCESS
specifies an SCL list of general identifying information about the process that
created this InfoMart item.

RESOLVED VIEW CODE
specifies an SCL list of general identifying information about the source code that
is used to view (open) this InfoMart item. This property will return a copy of the
source code with the &loc reference replaced with the appropriate location
information. See the Note below.

VIEW CODE
specifies an SCL list of general identifying information about the source code that
is used to view (open) this InfoMart item. This property will return a copy of the
source code with the &loc reference unresolved. See the Note below.

Note: The VIEW CODE and RESOLVED VIEW CODE properties are very closely
related. �

When writing the source code to view (open) an InfoMart, you can insert &loc into
the text as a placeholder for the InfoMart’s location information—information such as
libref.catalog.entry.type, for example. The VIEW CODE property will return a copy of
the source code with the &loc reference unresolved. The RESOLVED VIEW CODE
property will return a copy of the source code with the &loc reference replaced with the
appropriate location information.

The RESOLVED VIEW CODE property is provided as a convenience and removes
the burden from the application of parsing the returned code and replacing the &loc
reference. If the source code does not contain the &loc placeholder, the returned source
code is the same for both properties.

Property Dependencies You must define a CREATING JOB in order to add any
INPUT SOURCES to a table. If a table does not have a CREATING JOB property, then
you must specify one when you add an input source to the table.

Using WHINFO

Add Update Delete

Yes Yes Yes

WHINFO is an independent type, like all subtypes of WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

When you update or add the VIEW CODE property, the VIEW CODE source must be
in a catalog SOURCE entry. The source will be copied word for word with one blank
appended between each word.

SAS/Warehouse Administrator Metadata Types � WHINFOFL 135

There are three ways to specify the source’s location. In order of precedence, they
are: FULL ENTRY, LIBRARY/ENTRY, and ID.

FULL ENTRY signifies that the passed entry name is currently accessible and
should be read as the source code.

LIBRARY/ENTRY signifies that the specified ENTRY name in the specific library
should be read as the source code. The LIBRARY property contains a reference to a
defined WHLIBRY object. If necessary, the referenced library will be allocated before
reading the entry.

ID signifies that the source code exists in an already defined source code catalog
object (WHSRCCAT), whose ID is passed. In this scenario, the library that is associated
with the passed source code object will be allocated, if necessary. To get the ID for the
existing VIEW CODE, you must issue a _GET_METADATA_ call for the WHINFO
type’s VIEW CODE property.

WHINFOFL

Metadata type for InfoMart files

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHINFOFL models the metadata for an information mart file. An InfoMart file is a
metadata record that specifies the location of a file and the technique for opening that
file. It is used to specify a file other than a SAS file that you want to register in a
SAS/Warehouse Administrator environment. The file can be a spreadsheet, an HTML
report, or any file that you can using an external application.

To add an InfoMart file with the SAS/Warehouse Administrator Explorer:
1 Select an information mart with the right mouse button.
2 Select Add Item � Information Mart File

3 Select the information mart file with the right mouse button.
4 Select Properties.
5 Enter the information mart file information.

Properties
The following table lists all of the properties for WHINFOFL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

136 WHINFOFL � Chapter 3

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

Yes

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

File Type C Yes Yes No

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Location C Yes Yes No

Members L No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Process L Yes Yes Yes

Resolved View
Code

L No No Yes

View Code L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHINFOFL 137

New properties for WHINFOFL are as follows:

CREATING JOB
specifies a list of general identifying information about the job that creates this
InfoMart file. This list must be of type WHJOB or a subtype of WHJOB. A valid
CREATING JOB property is required before you can add any INPUT SOURCES.
If the CREATING JOB property is removed, then any work tables in the chain of
INPUT SOURCES will be deleted as well.

FILE TYPE
indicates a character string that describes the type of file that is being defined.
The file can be a spreadsheet, an HTML report, or any file that you can by an
application other than SAS. Maximum 40 characters.

LOCATION
indicates a character string that identifies the location of an InfoMart file.
Maximum 200 characters.

RESOLVED VIEW CODE
specifies an SCL list of general identifying information about the source code that
is used to view (open) this InfoMart item. This property will return a copy of the
source code with the &loc reference replaced with the appropriate location
information. See the Note below.

VIEW CODE
specifies an SCL list of general identifying information about the source code that
is used to view (open) this InfoMart item. This property will return a copy of the
source code with the &loc reference unresolved. See the Note below.

Note: The VIEW CODE and RESOLVED VIEW CODE properties are closely
related. �

When you write the source code to view (open) an InfoMart, you can insert &loc into
the text as a placeholder for the InfoMart’s location information—information such as
libref.catalog.entry.type, for example. The VIEW CODE property will return a copy of
the source code with the &loc reference unresolved. The RESOLVED VIEW CODE
property will return a copy of the source code with the &loc reference replaced with the
appropriate location information.

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when you add an input source to the table.

Using WHINFOFL

Add Update Delete

Yes Yes Yes

WHINFOFL is an independent type, like all subtypes of WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

When update or add the VIEW CODE property, see “Using WHINFO” on page 134.

138 WHJOB � Chapter 3

WHJOB

Metadata type for jobs

Category: Object Types—Process Editor

Parent
“WHPOBJCT” on page 205

Overview
WHJOB models the metadata for a job. A job is a metadata record that specifies the
processes that create one or more data stores (output tables).

Properties
The following table lists all of the properties for WHJOB and indicates how you can use
each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Actual End Date C No No No

Actual Start Date C No No No

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

External Job ID C Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Input Tables L No No No

SAS/Warehouse Administrator Metadata Types � WHJOB 139

Job ID C No No No

Job Type C Yes Yes No

List L No No Yes

Log L No No Yes

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Tables L Yes Yes No

Output Targets L Yes Yes No

Owner L Yes Yes No

Process Groups L * Req Yes No

Process Members L No No No

Recurring Month
Days

C Yes Yes No

Recurring Months C Yes Yes No

Recurring Week
Days

C Yes Yes No

Responsibility C Yes Yes No

Return Code N No No No

Run Command C Yes Yes No

Scheduled Start
Date

C See Property
Dependencies

See Property
Dependencies

No

Scheduling Server L Yes Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Status C No No No

Step Source Code L No No Yes

Sysin L No No Yes

Tracking N Yes Yes No

Tracking Epilog L Yes Yes Yes

Tracking Prolog L Yes Yes Yes

User Epilog L Yes Yes Yes

Userpe N Yes Yes No

User Prolog L Yes Yes Yes

140 WHJOB � Chapter 3

New properties for WHJOB are as follows:

ACTUAL END DATE
indicates the SAS datetime when the job actually ended (a character value that is
formatted with the SAS DATETIME. format) or N/A if not available. This
read-only property is set by job tracking code and job scheduling code.

ACTUAL START DATE
indicates the SAS datetime when the job actually started (a character value that is
formatted with the SAS DATETIME. format) or N/A if not available. This
read-only property is set by job tracking code and job scheduling code.

EXTERNAL JOB ID
indicates an optional 8-character field that can contain a value that uniquely
identifies the job. This read-only property is set by job tracking code and job
scheduling code.

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this job.

INPUT SOURCES
specifies an SCL list of general identifying information about the sources that are
input to this job. This list must be of type WHJOB or WHEVENT. Adding an
object beneath itself is prevented.

INPUT TABLES
specifies a list of general identifying information about the tables that are used in
this job to create the output tables. These tables are not created by this job; they
are the inputs to the tables that are created by this job.

JOB ID
represents a unique identifier that is assigned by the Job Scheduler utility.

JOB TYPE
indicates how often the job runs. Valid values are ONCE, DAILY, WEEKLY, and
MONTHLY.

LIST
specifies the location of the job list file. This property is a WHJOBFIL object. This
read-only property is set by job tracking code and job scheduling code.

LOG
indicates the location of the job log file. This property is a WHJOBFIL object. This
read-only property is set by job tracking code and job scheduling code.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
output from this job. This list points to successor jobs.

OUTPUT TABLES
specifies a list of general identifying information about the tables that are created
by this job. This list must be of type WHTABLE, WHINFO, WHINFOFL,
WHSUMDDB, WHEFILE, or subtypes of these.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the targets that are
output from this job. This list must be of type WHJOB or type WHEVENT.

RECURRING MONTH DAYS
applies only to monthly jobs. An 85-character string indicates what day(s) in the
month a job runs. Valid values are a list of integers from 1 through 31, delimited

SAS/Warehouse Administrator Metadata Types � WHJOB 141

with a comma or a semicolon. At least one integer is required. No duplicates are
permitted. The string is converted to a comma-delimited list with no embedded
blanks.

RECURRING MONTHS
applies only to monthly jobs. A 30-character string indicates what months a job
runs, where 1=January and 12=December. Valid values are a list of integers from
1 through 12, delimited with a comma or a semicolon. At least one integer is
required. No duplicates are permitted. The string is converted to a
comma-delimited list with no embedded blanks.

RECURRING WEEK DAYS
applies only to weekly jobs. A 15-character string indicates what weekday(s) a job
runs, where 0=Sunday and 6=Saturday. Valid values are a list of integers from 0
through 6, delimited with a comma or a semicolon. At least one integer is
required. No duplicates are permitted. The string is converted to a
comma-delimited list with no embedded blanks.

RESPONSIBILITY
specifies the character string that indicates who is currently responsible for the
creation of the code that is associated with this process.

SAS indicates that SAS/Warehouse Administrator is creating this code
dynamically based on the current metadata. USER indicates that the user has
written the code for this process and is responsible for it.

RETURN CODE
specifies a numeric variable that indicates the return code from the job or N/A if
not available. This read-only property is set by job tracking code and job
scheduling code.

RUN COMMAND
indicates a 200-character string that contains the command that is issued to run
the job.

SCHEDULED START DATE
represents the SAS datetime when the job is scheduled to start. (A character value
that is formatted with a SAS DATETIME. format.)

SCHEDULING SERVER
indicates the scheduling server that this job runs on. This property is a subtype of
WHSERV, such as WHSRVAT.

SOURCE CODE
specifies an SCL list of general identifying information about the source code for
this process. This source code is the same as is seen when selecting View Code �
All in the SAS/Warehouse Administrator Process Editor.

The source code information that is returned here will be that of a temporary
working location of a copy of the source code and might be different for each
request for this information.

SOURCE FILE
specifies an SCL list of general identifying information about any user-registered
code for a process. This list must be of type WHSRCCAT or a subtype of
WHSRCCAT. However, WHJOBCAT or any subtype of WHJOBCAT will be
rejected. For process steps that consist of user-written code, this property returns
the registered source code location. For process steps that consist of code that is
generated by SAS/Warehouse Administrator, this property will return an empty
list.

142 WHJOB � Chapter 3

STATUS
represents a 12-character string that indicates the status of the job. Valid values
are a blank, SCHEDULED, RUNNING, COMPLETE, or N/A if not available. This
read-only property is set by job tracking code and job scheduling code.

STEP SOURCE CODE
specifies an SCL list of general identifying information about the source code of
the individual step in the process. This source code is the same as is seen when
selecting View Code � Process in the SAS/Warehouse Administrator Process
Editor.

The source code information that is returned here will be that of a temporary
working location of a copy of the source code and therefore might be different for
each request for this information.

SYSIN
indicates the location of the job sysin file. This property is a WHJOBFIL object.
This read-only property is set by job tracking code and job scheduling code.

TRACKING
enables or disables code generation for tracking prologs and epilogs. Values are

-1 — default to server definition
0 — disable
1 — enable
The default value for this property is -1 (default to server definition).

TRACKING EPILOG
indicates the location of the tracking epilog, which is given to the Job Scheduler by
the user. This property returns a WHJOBCAT object. The tracking epilog is
appended to the input source code in order to update the job information file with
the job completion information.

TRACKING PROLOG
indicates the location of the tracking prolog, which is given to the Job Scheduler
by the user. This property returns a WHJOBCAT object.

USER EPILOG
indicates the location of the user epilog, which is given to the Job Scheduler by the
user. This property returns a WHJOBCAT object.

USERPE
enables or disables code generation for user prologs and epilogs. Values are:

0 — disable
1 — enable
The default value for this property is 0 (disable).

USER PROLOG
indicates the location of the user prolog, which is given to the Job Scheduler by the
user. This property returns a WHJOBCAT object.

Property Dependencies
If the JOB TYPE property is blank, then SCHEDULED START DATE is ignored. If the
JOB TYPE is non-blank, then a valid SCHEDULED START DATE is required.

SAS/Warehouse Administrator Metadata Types � WHJOBCAT 143

Using WHJOB

Add Update Delete

Yes Yes Yes

WHJOB is an independent type. To understand how jobs relate to other types, see
the diagram on the foldout in Appendix 2.

WHJOBCAT

Metadata type for scheduler catalog source file entries

Category: Text File Types

Parent

“WHSRCCAT” on page 236

Overview

The WHJOBCAT type models the metadata for SAS catalog entries that are defined for
jobs, such as entries for user-supplied source code, tracking options, and user-defined
prologs and epilogs.

Properties

The following table lists all the properties for WHJOBCAT and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

144 WHJOBCAT � Chapter 3

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Entry C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Full Entry C No No No

Id C * Req * Req No

Job Role C * Auto
supplied

No No

Library L Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Objects L No No No

Responsibility C Yes Yes No

New properties for WHJOBCAT are as follows:

JOB ROLE
indicates the role that this object serves for the job. The possible values are
TRACKING PROLOG, TRACKING EPILOG, USER PROLOG, and USER EPILOG.

RESPONSIBILITY
specifies the character string that indicates who is currently responsible for the
creation of the code that is associated with this process. Possible values are SAS or
USER.

SAS indicates that SAS/Warehouse Administrator is creating this code
dynamically, based on the current metadata. USER indicates that the user has
written the code for this process and is responsible for it.

Using WHJOBCAT

Add Update Delete

No Yes Yes

WHJOBCAT is a dependent type, like all subtypes of WHSRCCAT. To understand
how all subtypes of WHSRCCAT relate to other types, see the process model in
“Relationships Among Metadata Types” on page 53.

Use of _DELETE_METADATA for this type deletes SAS/Warehouse Administrator
metadata, not the corresponding catalog entries.

SAS/Warehouse Administrator Metadata Types � WHJOBFIL 145

WHJOBFIL

Metadata type for scheduler external file entries

Category: Text File Types

Parent

“WHTXTFIL” on page 269

Overview

The WHJOBFIL type models the metadata for all external file entries that are
described to the Job Scheduler utility. Properties for this type are set when you
schedule a job through SAS/Warehouse Administrator.

Properties

The following table lists all of the properties for WHJOBFIL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Id C No No No

Job Role C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

146 WHLDETL � Chapter 3

Objects L No No No

Remote N No No No

WHJOBFIL has the following new properties:

JOB ROLE
specifies the role this object serves for the job. The possible values are LOG, LIST,
SYSIN, or SOURCE.

REMOTE
indicates a Boolean that states whether the object is remote to the metadata:
1=Remote, 0=Local.

Using WHJOBFIL

Add Update Delete

No No No

WHJOBFIL is a dependent type, like all subtypes of WHTXTFIL. To understand how
all subtypes of WHTXTFIL relate to other types, see the process model in
“Relationships Among Metadata Types” on page 53.

WHLDETL

Metadata type for detail logical tables

Category: Object Types—Explorer

Parent
“WHTABLE” on page 254

Overview
WHLDETL models the metadata for detail logical tables in SAS/Warehouse
Administrator. A detail logical table is a multipurpose table that you can use as a detail
table, a grouping element for detail tables, or a view on multiple that is related detail
tables. If you use it as a grouping element, a detail logical table defines columns that
are shared by all of its detail tables.

To add a detail logical table with the SAS/Warehouse Administrator Explorer:
1 Find a subject that does not already have a detail logical table (each subject can

only have one).
2 Select the subject with the right mouse button.
3 Select Add Item � Detail Logical Table
4 Select the detail logical table with the right mouse button.

SAS/Warehouse Administrator Metadata Types � WHLDETL 147

5 Select Properties.
6 Enter the detail logical table information.

Properties
The following table lists all of the properties for WHLDETL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

148 WHLDETL � Chapter 3

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

Property Dependencies You must define a CREATING JOB property in order to add
INPUT SOURCES to a table. If a table does not have a CREATING JOB property, then
you must specify one when you add an input source to the table.

Using WHLDETL

Add Update Delete

Yes Yes Yes

WHLDETL is an independent type, like all subtypes of WHTABLE. To understand
how all subtypes of WHTABLE relate to other types, see the models in “Relationships
Among Metadata Types” on page 53.

The table that is created as part of the _ADD_METADATA_ method is added as a
member to only the first group listed in the GROUP property list. Once you add a table,
the GROUP property cannot be changed using the metadata API.

Adding and Linking Detail Tables SAS/Warehouse Administrator supports the linking
of detail tables (tables of type WHDETAIL) between multiple subjects in a warehouse.
Currently, however, the metadata API does not support the concept of linking detail
tables to multiple subjects.

Deleting and Unlinking Detail Tables You can use the _DELETE_METADATA_ method
to unlink a table from a list of subjects or delete the table entirely. The determination
of the type of delete to perform is based on the presence and value of the GROUP
property in the l_meta list that is passed to the _DELETE_METADATA_ method.

If the GROUP property is not passed in the l_meta list or an empty list is passed as
the value of the GROUP property, then the table will be deleted entirely. If the GROUP
property is passed as a nonempty list in the l_meta list, the table will be unlinked from
all groups that are referenced in the GROUP property list. If an invalid GROUP
identifier is passed in this list, an error is returned to the application and the table is
not unlinked from any of the referenced groups.

SAS/Warehouse Administrator Metadata Types � WHLDOMDD 149

WHLDOMDD

Metadata type for OLAP MDDB load processes

Category: Process Types—Load

Parent

“WHPRCLDR” on page 207

Overview

WHLDOMDD models the metadata for OLAP MDDB load processes in
the SAS/Warehouse Administrator Process Editor.

Properties

The following table lists all of the properties for WHLDOMDD and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

150 WHLDOPRX � Chapter 3

Load Options L Yes (See
Property
Dependencies)

Yes (See Property
Dependencies)

No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is YES, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDOMDD

Add Update Delete

No Yes No

WHLDOMDD is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDOPRX

Metadata type for OLAP Proxy load processes

SAS/Warehouse Administrator Metadata Types � WHLDOPRX 151

Category: Process Types—Load

Parent
“WHLDOMDD” on page 149

Overview
WHLDOPRX models the metadata for OLAP Proxy load processes in
the SAS/Warehouse Administrator Process Editor.

Properties
The following table lists all of the properties for WHLDOPRX and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes (See
Property
Dependencies)

Yes (See Property
Dependencies)

No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

152 WHLDOTBL � Chapter 3

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is Yes, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDOPRX
WHLDOPRX is valid for the following metadata API write methods:

Add Update Delete

No Yes No

WHLDOPRX is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDOTBL

Metadata type for OLAP table load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

SAS/Warehouse Administrator Metadata Types � WHLDOTBL 153

Overview

WHLDOTBL models the metadata for OLAP table load processes in
the SAS/Warehouse Administrator Process Editor.

Properties

The following table lists all of the properties for WHLDOTBL and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes (See
Property
Dependencies)

Yes (See Property
Dependencies)

No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

154 WHLDOTBL � Chapter 3

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

The properties for WHLDOTBL are the same as for WHPRCLDR, with one
exception—WHLDOTBL overrides the LOAD OPTIONS property.

LOAD OPTIONS
indicates an SCL list of options for the specified Load process. For WHLDOTBL,
the LOAD OPTIONS property includes the SINGLE PASS item.

� GENERATION LEVEL (1.1 or 2.0) selects the release level of the code that
SAS/Warehouse Administrator will generate for the specified Load process.
Each level has specific options that it can support, as well as other
characteristics.

� LOAD TIME COLUMN (YES or NO) indicates whether a Load Time Column
will be added to the table that is being loaded by the specified process.

Note: See Property Dependencies. �

� DROP INDEXES (YES or NO) specifies that you should drop (remove) any
existing indexes on the table to be loaded before loading the data into the
table. Based on the metadata definitions, the appropriate indexes will be
recreated after loading the data. This option is useful when updating the
indexes during loading is too slow.

� SINGLE PASS (YES or NO) specifies that when this item is set to YES, data for
all crossings will be produced by a single PROC SUMMARY step for
maximum performance when you use code that is generated by SAS/
Warehouse Administrator. When this item is set to NO, data for each crossing
will be produced by a separate PROC SUMMARY step in order to minimize
memory utilization, which can be important in systems with memory size
restrictions.

� TRUNCATE TABLE (YES or NO) specifies that when refreshing the data in a
table, the table should be truncated (all data rows are removed but the table
is not) instead of completely dropping the table and recreating it from
scratch. This option is useful when the table has many options, privileges,
and other characteristics defined in the database.

� UNION MULTIPLE INPUTS (YES or NO) specifies that any multiple inputs to
the current Load process will be unioned together before loading the table. A
union is identical to a SET statement in a SAS DATA step that contains
multiple input table designations.

In the SAS/Warehouse Administrator interface, LOAD OPTIONS are specified on the
Load Options tab of the Load process attributes window for a given data store. Here
are some example return values for an OLAP table:

SAS/Warehouse Administrator Metadata Types � WHLDRDAT 155

LOAD OPTIONS=(GENERATION LEVEL=’2.0’
LOAD TIME COLUMN=’NO’
UNION MULTIPLE INPUTS=’YES’
DROP INDEXES=’NO’
TRUNCATE TABLE=’NO’
SINGLE PASS=’YES’

)

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is YES, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and/or STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDOTBL

Add Update Delete

No Yes No

WHLDOTBL is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRDAT

Metadata type for data table load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRDAT models the metadata for data table load processes in the SAS/Warehouse
Administrator Process Editor. Here is one way to add a data table load process in
SAS/Warehouse Administrator:

1 In the Explorer, select a data table with the right mouse button.

2 Select Process from the pop-up menu.

3 In the Process Editor, select the table with the right mouse button.

4 Select Edit Load Step.

5 Enter the process information.

156 WHLDRDAT � Chapter 3

Properties
The following table lists all of the properties for WHLDRDAT and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
suppplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes (See
Property
Dependencies)

Yes (See Property
Dependencies)

No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

SAS/Warehouse Administrator Metadata Types � WHLDRDTL 157

Source File L Yes Yes Yes

Step Source Code L Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is YES, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and/or STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDRDAT

Add Update Delete

No Yes No

WHLDRDAT is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRDTL

Metadata type for detail table load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRDTL models the metadata for detail table load processes in the SAS/Warehouse
Administrator Process Editor. Here is one way to add a detail table load process in
SAS/Warehouse Administrator:

1 In the Explorer, select a detail table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Edit Load Step.
5 Enter the process information.

158 WHLDRDTL � Chapter 3

Properties
The following table lists all of the properties for WHLDRDTL and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes (See
Property
Dependencies)

Yes (See Property
Dependencies)

No

Metadata Created C * Auto
suplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

SAS/Warehouse Administrator Metadata Types � WHLDREXT 159

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is YES, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and/or STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDRDTL

Add Update Delete

No Yes No

WHLDRDTL is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDREXT

Metadata type for external file load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDREXT models the metadata for external file load processes in the
SAS/Warehouse Administrator Process Editor. An external file is an input to an
operational data definition (ODD) that extracts information from one or more sources
that are not in SAS format. Here is one way to add an external file load process in
SAS/Warehouse Administrator:

1 In the Explorer, select an ODD with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the ODD with the right mouse button.
4 Select Add � External File from the pop-up menu.

160 WHLDREXT � Chapter 3

5 Select the external file with the right mouse button.
6 Select Edit Load Step.
7 Enter the process information.

Properties
The following table lists all of the properties for WHLDREXT and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

SAS/Warehouse Administrator Metadata Types � WHLDRIMF 161

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is YES, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDREXT

Add Update Delete

No Yes No

WHLDREXT is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRIMF

Metadata type for InfoMart file load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRIMF models the metadata for information mart file (InfoMart file) load
processes in the SAS/Warehouse Administrator Process Editor. Here is one way to add
InfoMart file load processes in SAS/Warehouse Administrator:

1 In the Explorer, select an information mart file with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the information mart file with the right mouse button.
4 Select Edit Load Step.

162 WHLDRIMF � Chapter 3

5 Enter the process information.

Properties
The following table lists all of the properties for WHLDRIMF and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

SAS/Warehouse Administrator Metadata Types � WHLDRINF 163

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies You can add a load time column to a table as described in the
documentation for the WHCOLTIM type.

Using WHLDRIMF

Add Update Delete

No Yes No

WHLDRIMF is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRINF

Metadata type for InfoMart item load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRINF models the metadata for information mart item (InfoMart item) load
processes in the SAS/Warehouse Administrator Process Editor. Here is one way to add
InfoMart item load processes in SAS/Warehouse Administrator:

1 In the Explorer, select an information mart item with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the information mart item with the right mouse

button.
4 Select Edit Load Step.
5 Enter the process information.

164 WHLDRINF � Chapter 3

Properties

The following table lists all of the properties for WHLDRINF and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHLDRLDT 165

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies You can add a load time column to a table as described in the
documentation for the WHCOLTIM type.

Using WHLDRINF

Add Update Delete

No Yes No

WHLDRINF is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRLDT

Metadata type for detail logical table load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRLDT models the metadata for detail logical table load processes in the
SAS/Warehouse Administrator Process Editor. Here is one way to add a detail logical
table load process in SAS/Warehouse Administrator:

1 In the Explorer, select a detail logical table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Edit Load Step.
5 Enter the process information.

Properties
The following table lists all of the properties for WHLDRLDT and indicates how you

can use each property with metadata API methods.

166 WHLDRLDT � Chapter 3

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHLDRMDB 167

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies You can add a load time column to a table as described in the
documentation for the WHCOLTIM type.

Using WHLDRLDT
WHLDRLDT is valid for the following metadata API write methods:

Add Update Delete

No Yes No

WHLDRLDT is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRMDB
Metadata type for SAS MDDB load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRMDB models the metadata for SAS MDDB (multidimensional database) load
processes in the SAS/Warehouse Administrator Process Editor. Here is one way to add
an MDDB load process in SAS/Warehouse Administrator:

1 In the Explorer, select an MDDB with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the MDDB with the right mouse button.
4 Select Edit Load Step.
5 Enter the process information.

Properties
The following table lists all of the properties for WHLDRMDB and indicates how you
can use each property with metadata API methods.

168 WHLDRMDB � Chapter 3

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L No No No

Id C No No No

Load Options L No No No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default No No

Source Code L No No Yes

Source File L No No Yes

Step Source Code L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHLDRODD 169

Stepo Source Code L *Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies You can add a load time column to a table as described in the
documentation for the WHCOLTIM type.

Using WHLDRMDB

Add Update Delete

No No No

WHLDRMDB is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRODD
Metadata type for ODD load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRODD models the metadata for operational data definition (ODD) table load
processes in the SAS/Warehouse Administrator Process Editor. An ODD is a metadata
record that provides access to data stores. Here is one way to add an ODD load process
in SAS/Warehouse Administrator:

1 In the Explorer, select an ODD with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the ODD with the right mouse button.
4 Select Edit Load Step.
5 Enter the process information.

Properties
The following table lists all of the properties for WHLDRODD and indicates how you
can use each property with metadata API methods.

170 WHLDRODD � Chapter 3

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHLDRODT 171

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies You can add a load time column to a table as described in the
documentation for the WHCOLTIM type.

Using WHLDRODD
WHLDRODD is valid for the following metadata API write methods:

Add Update Delete

No Yes No

WHLDRODD is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRODT

Metadata type for ODT (Data File) load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRODT models the metadata for operational data table (ODT) load processes in
the SAS/Warehouse Administrator Process Editor. An ODT is a SAS table that is an
input to an operational data definition in the Process Editor. In the Process Editor, the
ODT is called a data file. Here is one way to add an ODT load process in
SAS/Warehouse Administrator:

1 In the Explorer, select an ODD with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the ODD with the right mouse button.
4 Select Add � Data File
5 Select the data file with the right mouse button.
6 Select Edit Load Step.
7 Enter the process information.

172 WHLDRODT � Chapter 3

Properties
The following table lists all of the properties for WHLDRODT and indicates how you

can use each property with metadata API methods.
In the table, you can specify properties with a Yes in the Indirect Add column when

you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

SAS/Warehouse Administrator Metadata Types � WHLDRSUM 173

Source File L Yes Yes Yes

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies You can add a load time column to a table as described in the
documentation for the WHCOLTIM type.

Using WHLDRODT
WHLDRODT is valid for the following metadata API write methods:

Add Update Delete

No Yes No

WHLDRODT is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLDRSUM

Metadata type for summary table load processes

Category: Process Types—Load

Parent
“WHPRCLDR” on page 207

Overview
WHLDRSUM models the metadata for summary table load processes in the
SAS/Warehouse Administrator Process Editor. Here is one way to add a summary table
load process in SAS/Warehouse Administrator:

1 In the Explorer, select a summary table with the right mouse button.

2 Select Process from the pop-up menu.

3 In the Process Editor, select the summary table with the right mouse button.

4 Select Edit Load Step.

5 Enter the process information.

174 WHLDRSUM � Chapter 3

Properties

The following table lists all of the properties for WHLDRSUM and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C * Auto
supplied

No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Load Options L Yes No No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Auto
supplied

No No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L No No No

Responsibility C * Default Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHLIBRY 175

Step Source Code L * Auto
supplied

No Yes

Subprocesses L Yes Yes Yes

Property Dependencies When you add or update the LOAD OPTIONS property, if the
value of the LOAD TIME COLUMN item is YES, then a valid load time column must
exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and STEP SOURCE CODE properties. You can add
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHLDRSUM

Add Update Delete

No No No

WHLDRSUM is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHLIBRY

Metadata type for SAS libraries

Category: SAS Library Types

Parent
“WHROOT” on page 226

Overview
WHLIBRY is the metadata type for SAS libraries in SAS/Warehouse Administrator. A
SAS library definition is a metadata record for a SAS library that contains data, views,
source code, or other information that is used in the current Warehouse environment.

Properties
The following table lists all of the properties for WHLIBRY and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

176 WHLIBRY � Chapter 3

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Database L Yes Yes No

DBMS Libname N Yes Yes No

Desc C Yes Yes No

Engine C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Icon C Yes Yes No

Id C * Req * Req No

Libref C * Req Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Options L Yes Yes No

Path L Yes Yes No

Preassigned N Yes Yes No

Tables L No No No

New properties for WHLIBRY are as follows:

DATABASE
specifies an SCL list of general identifying information about the Database
Connection profile that is used by this library to access the DBMS.

DBMS LIBNAME
indicates a flag that is set to 0 (No) or 1 (Yes) to specify whether the library is a
DBMS connection library.

ENGINE
indicates the SAS libname engine specification for this repository.

SAS/Warehouse Administrator Metadata Types � WHMDDSTR 177

ICON
specifies the catalog entry name of the associated icon. For more information
about icons, see “Using Icon Information” on page 69.

LIBREF
specifies the libref to assign to the metadata repository.

OPTIONS
specifies an SCL list of libname statement options. For a DBMS connection
library, the list includes SQL options, USERID, PASSWORD, and other options
that are required for the connection.

This property contains the registered user ID or password only if the API
application is a secure application. The only secure applications that are currently
supported are those registered as add-in generators. See the SAS/Warehouse
Administrator User’s Guide for documentation on add-in generators. If the API
application is not secure, this property returns a blank value if no password has
been registered, and it returns XXXXXXXX if the password has been registered.

PATH
specifies an SCL list of host-specific path designations. If the list contains more
than one entry, then it is assumed that the libname is a concatenated libname and
that each list entry is a directory in the concatenation.

PREASSIGNED
specifies the numeric indicator that states whether this libname is preassigned. It
has a possible value of 0 (needs to be assigned) or 1 (is already assigned).

TABLES
specifies an SCL list of general identifying information about the tables that are
registered as residing in this library.

Using WHLIBRY

Add Update Delete

Yes Yes Yes

WHLIBRY is an independent type. To understand how it relates to other types, see
the physical storage models in “Relationships Among Metadata Types” on page 53.

WHMDDSTR

Metadata type for OLAP MDDB physical store

Category: Physical Storage Types

Parent
“WHSASSTR” on page 231

178 WHMDDSTR � Chapter 3

Overview
WHMDDSTR models the metadata for OLAP MDDB physical data stores in
SAS/Warehouse Administrator.

Properties
The following table lists all of the properties for WHMDDSTR and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes No No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Indexes L No No Yes

Library L Yes Yes No

Load Technique C Yes Yes No

Metadata Created C * Auto No No

Metadata Updated C * Auto No No

Name C No No No

Note L No No Yes

NValue N Yes Yes No

Table L * Auto
supplied

No No

Table Name C Yes Yes No

Table Options L * Default * Default No

SAS/Warehouse Administrator Metadata Types � WHNOTE 179

Using WHMDDSTR

Add Update Delete

No Yes No

WHMDDSTR is a dependent type, like its parent, WHSASSTR.

WHNOTE

Metadata type for notes

Category: Text File Types

Parent
“WHTXTCAT” on page 268

Overview
WHNOTE models the metadata for notes in SAS/Warehouse Administrator. Notes are
user-entered descriptions of objects, columns, or processes. In SAS/Warehouse
Administrator, to add a note to an item, display the properties window for that item, go
to the General tab or the Columns tab and click the Notes button. Notes can include
any information that is useful to your organization, such as a description of the purpose
of an item.

Properties
The following table lists all of the properties for WHNOTE and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

180 WHNOTE � Chapter 3

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C No Yes No

Entry C Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Extended
Attributes

L Yes Yes Yes

Full Entry C Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Id C Yes Yes No

Library L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Metadata Created C No No No

Metadata Updated C No No No

Name C No Yes No

Note L No No Yes

NValue N Yes Yes No

Property Dependencies When you add a note, you must specify entry information.
This can be done in two ways:

� Specify the LIBRARY and ENTRY properties.
� Specify the FULL ENTRY property.

Using WHNOTE

Add Update Delete

No Yes Yes

WHNOTE is a dependent type. To understand how it relates to other types, see the
general information model in “Relationships Among Metadata Types” on page 53.

Use of _DELETE_METADATA for this type deletes SAS/Warehouse Administrator
metadata, not the corresponding note.

Reading Notes
When you pass a WHNOTE object to the _GET_METADATA_ method, the method
returns a copy of the note, not the actual note in the metadata. The copy is returned in
a SAS catalog entry, normally in the WORK library. Because this is a copy, any
modifications made to the contents of the catalog entry will not affect the actual note in
the metadata.

Here is example WHNOTE code:

SAS/Warehouse Administrator Metadata Types � WHNOTE 181

* Get the Note property of the object
* whose id is object_id.
*/
l_notemeta=makelist();
l_notemeta=setnitemc(l_notemeta,object_id,’ID’);

l_note=makelist();
l_notemeta=insertl(l_notemeta,l_note,-1,’NOTE’);

call send(i_api,’_GET_METADATA_’,rc,l_notemeta);
if rc = 0 then do;

/*
* Get the details of the Note if it has one.
*/

if listlen(l_note) > 0 then do;
call send(i_api,’_GET_METADATA_’,rc,l_note,1);

if rc = 0 then do;
/*
* Get the Details of the Library that
* contains the copy of the Note.
*/

l_notelib=getniteml(l_note,’LIBRARY’);

call send(i_api,’_GET_METADATA_’,
rc,l_notelib,1);

if rc = 0 then do;
libref=getnitemc(l_notelib,’LIBREF’);
entry=getnitemc(l_note,’ENTRY’);

/*
* Code here to assign library if
*/ needed.

end; /* if */
end; /* if */

end; /* if */

end; /* if */

Updating Notes

To modify the contents of a note, pass the corresponding metadata ID and WHNOTE
type ID to the _UPDATE_METADATA_ method. A combination of the LIBRARY,
ENTRY, and FULL ENTRY properties are required and must contain the location of the
new contents of the note. The contents of the catalog entry that is passed will
completely replace the existing contents of the note in the metadata.

/*
* Pull the copy of the Note into the
* preview buffer and allow the

182 WHOBJECT � Chapter 3

* user to edit it.
*/

rc=preview(’clear’);

rc=preview(’copy’,libref||’.’||entry);

rc=preview(’edit’);

if rc = 0 then do;

/*
* If the user modified the copy, save the
* modifications back to the catalog entry and
* update the metadata with the new contents.
*/

rc=preview(’save’,libref||’.’||entry);

call send(i_api,’_UPDATE_METADATA_’,rc,l_note);

end; /* if */

rc=preview(’clear’);

Creating Notes
To add a note to an object’s metadata, pass the metadata ID of the object to the
_ADD_METADATA_ or _UPDATE_METADATA_ method. In the properties list for
these methods, the NOTE property must contain the properties list that is expected by
the WHNOTE type. If a note already exists for the object that is passed the
_UPDATE_METADATA_ method, the contents of the existing note will be replaced with
the contents of the new note. Note that _ADD_METADATA_ is not valid for the
WHNOTE type.

WHOBJECT

Base metadata type for SAS/Warehouse Administrator objects

Category: Object Types

Parent
“WHROOT” on page 226

Overview
WHOBJECT is the base metadata type for SAS/Warehouse Administrator objects.

You can view most of these objects in both the SAS/Warehouse Administrator Explorer
and the Process Editor. You can view Types WHEFILE, WHODTTBL, and the children
of WHTBLPRC only in the Process Editor.

SAS/Warehouse Administrator Metadata Types � WHOBJECT 183

Properties

The following table lists all of the properties for WHOBJECT and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Group L No No No

Icon C No No No

Id C No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Owner L No No No

New properties for WHOBJECT are as follows:

ADMINISTRATOR
specifies an SCL list of general identifying information about the person who is the
administrator of the object. The list must be of type WHPERSON or a subtype of
WHPERSON.

GROUP
specifies an SCL list of general identifying information about the groups to which
this object belongs.

Note: If you pass the GROUP property to the _ADD_METADATA_ method, the
object you add will only be added to the first group in the list. �

184 WHODDTBL � Chapter 3

ICON
specifies the four-level catalog entry name (such as libref.catalog.entry.IMAGE) of
the icon that is associated with this object. For more information about icons, see
“Using Icon Information” on page 69.

MEMBERS
specifies an SCL list of general identifying information about the members of this
object. This member list is closely related to the hierarchy that is depicted in the
metadata views in SAS/Warehouse Administrator Explorer.

OWNER
specifies an SCL list of general identifying information about the person who owns
the object. The list must be of type WHPERSON or a subtype of WHPERSON.

Using WHOBJECT

Add Update Delete

No No No

WHOBJECT is not used to read or write metadata in a repository. It is a template
for all SAS/Warehouse Administrator Explorer objects. WHOBJECT is an independent
type.

WHODDTBL

Metadata type for ODDs

Category: Object Types—Explorer

Parent
“WHTABLE” on page 254

Overview
WHODDTBL models the metadata for operational data definitions (ODD) in
SAS/Warehouse Administrator. An ODD is a SAS data set, SAS view, SAS/ACCESS
view descriptor, or SQL view descriptor that identifies an operational data source. In
the SAS/Warehouse Administrator Explorer, to add an ODD to an environment:

1 Select the environment with the right mouse button.
2 Select Add Item � ODD
3 Select the ODD with the right mouse button.
4 Enter the ODD information.

Properties
The following table lists all of the properties for WHODDTBL and indicates how you
can use each property with metadata API methods.

SAS/Warehouse Administrator Metadata Types � WHODDTBL 185

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L Yes Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

186 WHODTTBL � Chapter 3

Output Targets L * Req No No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when you add an input source to the table.

Using WHODDTBL

Add Update Delete

Yes Yes Yes

WHODDTBL is an independent type, like its parent, WHTABLE. To understand how
all subtypes of WHTABLE relate to other types, see the models in “Relationships
Among Metadata Types” on page 53.

WHODTTBL

Metadata type for ODTs (Data Files)

Category: Object Types—Process Editor

Parent
“WHTABLE” on page 254

Overview
WHODTTBL models the metadata for operational data tables (ODT) in SAS/Warehouse
Administrator. An ODT is a SAS table that is an input to an operational data definition
(ODD) in the Process Editor. In the Process Editor, the ODT is called a data file. Here
is one way to add an ODT in SAS/Warehouse Administrator:

1 In the Explorer, select an ODD with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the ODD with the right mouse button.
4 Select Add � Data File
5 Select the data file with the right mouse button.
6 Select Properties.

SAS/Warehouse Administrator Metadata Types � WHODTTBL 187

7 Enter the ODT information.

Properties
The following table lists all of the properties for WHODTTBL and indicates how you

can use each property with metadata API methods.
In the table, you can pass properties with a Yes in the Add column to the

_ADD_METADATA_ method. Use this method to add a new object.
You can pass properties with a Yes in the Update column to the

_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N No No No

Administrator L Yes Yes No

Columns L No No Yes

Creating Job L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L No No No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L Yes Yes No

188 WHOLAP � Chapter 3

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

Using WHODTTBL

Add Update Delete

Yes Yes Yes

WHODTTBL is an independent type. To understand how all subtypes of WHTABLE
relate to other types, see the models in “Relationships Among Metadata Types” on page
53.

WHOLAP

Base metadata type for OLAP dimension, hierarchy, and crossing

Category: Object Types—OLAP

Parent
“WHROOT” on page 226

Overview
WHOLAP is the base metadata type for OLAP dimensions, hierarchies, and crossings.

Properties
The following table lists all of the properties for WHOLAP and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get

SAS/Warehouse Administrator Metadata Types � WHOLPCRS 189

detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

OLAP Groups L No No No

OLAP Members L No No Yes

New properties for WHOLAP are as follows:

OLAP GROUPS
specifies an SCL list of general identifying information about the OLAP groups to
which this object belongs.

OLAP MEMBERS
specifies an SCL list of general identifying information about the members of an
OLAP object.

Using WHOLAP

Add Update Delete

No No No

WHOLAP and its children are independent types.

WHOLPCRS
Metadata type for OLAP crossing

Category: Object Types—OLAP

Parent
“WHOLAP” on page 188

190 WHOLPCRS � Chapter 3

Overview
WHOLPCRS models the metadata for OLAP crossings in OLAP tables, groups, and
MDDBs. A crossing is a unique list of zero or more class columns that defines a
summarization level (subtable) to be stored in one or more OLAP summary data stores.
That is, a crossing represents a grouping on which summary statistics are calculated.
You must have at least one crossing for an OLAP table or an OLAP MDDB, and both
summary data stores can have multiple crossings. All class columns must be in at least
one crossing.

Properties
The following table lists all of the properties for WHOLPCRS and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Columns L Yes No Yes

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Id C * Req No No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Req Yes No

Note L Yes No Yes

NValue N Yes Yes No

OLAP Groups L No No No

SAS/Warehouse Administrator Metadata Types � WHOLPCUB 191

OLAP Members L No No Yes

OLAP Structure L * Auto
supplied

No No

New properties for WHOLPCRS are as follows:

COLUMNS
specifies an SCL list of general identifying information about the columns that are
associated with an OLAP group, table, or MDDB.

OLAP STRUCTURE
specifies an SCL list of general identifying information about an OLAP group,
table, or MDDB.

Using WHOLPCRS

Add Update Delete

No Yes Yes

WHOLPCRS is a dependent type, like its parent, WHOLAP.

WHOLPCUB

Metadata type for OLAP cube

Category: Object Types—OLAP

Parent
“WHOLAP” on page 188

Overview
WHOLPCUB models the metadata for OLAP Cubes. A cube is a multidimensional data
source that might be “virtual” and represents the OLAP data from which you can
generate a report.

Properties
The following table lists all of the properties for WHOLPCUB and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

192 WHOLPCUB � Chapter 3

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Id C * Req No No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Req Yes No

Note L Yes No Yes

NValue N Yes Yes No

OLAP Groups L No No No

OLAP Members L Yes Yes Yes

OLAP Structure L * Auto
supplied

No No

WHOLPCUB has the following new property:

OLAP STRUCTURE
specifies an SCL list of general identifying information about an OLAP group,
table, or MDDB.

Using WHOLPCUB

Add Update Delete

No Yes Yes

WHOLPCUB is a dependent type, like its parent, WHOLAP.

SAS/Warehouse Administrator Metadata Types � WHOLPDIM 193

WHOLPDIM
Metadata type for OLAP dimension

Category: Object Types—OLAP

Parent
“WHOLAP” on page 188

Overview
WHOLPDIM models the metadata for OLAP dimensions in OLAP tables, groups, and
MDDBs. A dimension organizes related columns, which are in hierarchies. For example,
you could organize sales data into three dimensions: Geography, Time, and Product.
The Time dimension could include these hierarchies, which provide different paths in
order to drill down to increasing levels of detail: Time-by-Week and Time-by-Month.

Properties
The following table lists all of the properties for WHOLPDIM and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Id C * Req No No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

194 WHOLPHIR � Chapter 3

Name C * Req Yes No

Note L Yes No Yes

NValue N Yes Yes No

OLAP Groups L * Auto
supplied

No No

OLAP Members L Yes Yes Yes

Using WHOLPDIM

Add Update Delete

No Yes Yes

WHOLPDIM is a dependent type, like its parent, WHOLAP.

WHOLPHIR

Metadata type for OLAP hierarchy

Category: Object Types—OLAP

Parent
“WHOLAP” on page 188

Overview
WHOLPHIR models the metadata for OLAP hierarchies in OLAP tables, groups, and
MDDBs. A hierarchy is a unique, ordered list of class columns that specifies related
data and is a member of a dimension. Each hierarchy provides a navigational path in
order to drill down to increasing levels of detail.

Properties
The following table lists all of the properties for WHOLPHIR and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

SAS/Warehouse Administrator Metadata Types � WHOLPHIR 195

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect
Update

Update Method Read Method
Expand Parm.

Columns L Yes No Yes

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Id C * Req * Req No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C * Req Yes No

Note L Yes No Yes

NValue N Yes Yes No

OLAP Groups L * Auto
supplied

No No

OLAP Members L No No Yes

WHOLPHIR has the following new property:

COLUMNS
specifies an SCL list of general identifying information about the columns that are
associated with an OLAP group, table, or MDDB.

Using WHOLPHIR

Add Update Delete

No Yes Yes

WHOLPHIR is a dependent type, like its parent, WHOLAP.

196 WHOLPMDD � Chapter 3

WHOLPMDD

Metadata type for OLAP MDDBs

Category: Object Types—Explorer

Parent
“WHOLPSTC” on page 198

Overview
WHOLPMDD replaces the WHSUMDDB metadata type. WHOLPMDD models the
metadata for a SAS MDDB (multidimensional database) in SAS/Warehouse
Administrator.

To add an OLAP MDDB with the SAS/Warehouse Administrator Explorer:
1 Select an OLAP group with the right mouse button.
2 Select Add Item � OLAP MDDB

3 Select the table with the right mouse button.
4 Select Properties.
5 Enter the OLAP MDDB information.

Properties
The following table lists all of the properties for WHOLPMDD and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

SAS/Warehouse Administrator Metadata Types � WHOLPMDD 197

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Crossings L Yes Yes Yes

Cube L Yes Yes Yes

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

OLAP Type C No No No

Output Objects L No No No

Output Targets L Yes Yes No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when you add an input source to the table.

198 WHOLPSTC � Chapter 3

Using WHOLPMDD

Add Update Delete

Yes Yes Yes

WHOLPMDD is an independent type, like its parent, WHOLPSTC.

WHOLPSTC

Base metadata type for OLAP tables, groups, and MDDBs

Category: Object Types—Explorer

Parent
“WHTABLE” on page 254

Overview
WHOLPSTC is the base metadata type for OLAP tables, groups, and MDDBs.

Properties
The following table lists all of the properties for WHOLPSTC and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N No No No

Administrator L No No No

Columns L No No Yes

Creating Job L No No No

Crossings L No No Yes

SAS/Warehouse Administrator Metadata Types � WHOLPSTC 199

Cube L No No Yes

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Group L No No No

Host L No No No

Icon C No No No

Id C No No No

Input Objects L No No No

Input Sources L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

OLAP Type C No No No

Output Objects L No No No

Output Targets L No No No

Owner L No No No

Physical Storage L No No Yes

Process L No No Yes

Table Name C No No No

Using Jobs L No No No

New properties for WHOLPSTC are as follows:

CROSSINGS
specifies an SCL list of general identifying information about the crossings that
are associated with an OLAP group, table, or MDDB.

200 WHOLPTBL � Chapter 3

CUBE
specifies an SCL list of general identifying information about the cube that is
associated with an OLAP table, group, or MDDB.

OLAP Type
specifies the character string that contains the type of OLAP configuration that is
being created. The valid value for OLAP table is DATA. The valid value for OLAP
MDDB is MDDB. The valid values for OLAP group are HOLAP, ROLAP, MOLAP, and
MIXED.

Using WHOLPSTC

Add Update Delete

No No No

WHOLPSTC and its children are independent types.

WHOLPTBL

Metadata type for OLAP tables

Category: Object Types—Explorer

Parent
“WHOLPSTC” on page 198

Overview
WHOLPTBL replaces the WHSUMTBL metadata type. WHOLPTBL models the
metadata for OLAP tables in SAS/Warehouse Administrator. An OLAP table can be a
SAS table or view, or DBMS table or view.

To add an OLAP table with the SAS/Warehouse Administrator Explorer:
1 Select an OLAP group with the right mouse button.
2 Select Add Item � OLAP table
3 Select the table with the right mouse button.
4 Select Properties.
5 Enter the OLAP table information.

Properties
The following table lists all of the properties for WHOLPTBL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

SAS/Warehouse Administrator Metadata Types � WHOLPTBL 201

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Note: A CREATING JOB property is required if the INPUT SOURCES property is
also specified.
�

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N Yes Yes No

Administrator L Yes Yes No

Columns L Yes Yes Yes

Creating Job L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Crossings L Yes Yes Yes

Cube L Yes Yes Yes

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req Yes No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes (see
Property
Dependencies)

Yes (see Property
Dependencies)

No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

OLAP Type C Yes Yes No

Output Objects L No No No

202 WHPERSON � Chapter 3

Output Targets L Yes Yes No

Owner L Yes Yes No

Physical Storage L Yes Yes Yes

Process L Yes Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

Property Dependencies You must define a CREATING JOB in order to add any
INPUT SOURCES to a table. If a table does not have a CREATING JOB property, then
you must specify one when you add an input source to the table.

Using WHOLPTBL

Add Update Delete

Yes Yes Yes

WHOLPTBL is an independent type, like its parent, WHOLPSTC.

WHPERSON
Metadata type for person records

Category: Global Metadata Types

Parent
“WHROOT” on page 226

Overview
WHPERSON models the metadata for person records in SAS/Warehouse Administrator.
These records are used to identify owners, administrators, and other people who are
responsible for warehouse elements. In SAS/Warehouse Administrator, to add a person
record to the current environment in the Explorer:

1 Select File � Setup from the pull-down menu.
2 Select Contacts.
3 Click Add .
4 Enter the person’s information.

Properties
The following table lists all of the properties for WHPERSON and indicates how you
can use each property with metadata API methods.

SAS/Warehouse Administrator Metadata Types � WHPERSON 203

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Address L Yes Yes No

Administered
Objects

L No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

Email Address C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Icon C Yes Yes No

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owned Objects L No No No

Phone L Yes Yes No

Title L Yes Yes No

New properties for WHPERSON are as follows:

ADDRESS
specifies an SCL list of character items that contain the different lines of the
person’s address. Each item has a maximum length of 200 characters. Currently,
a maximum of four lines is supported.

ADMINISTERED OBJECTS
specifies an SCL list of the general identifying information about the objects for
which this person is designated as the administrator.

EMAIL ADDRESS
indicates the person’s e-mail address. The maximum length of this field is 200
characters.

204 WHPHYSTR � Chapter 3

ICON
represents the catalog entry name of the associated icon. For more information
about icons, see “Using Icon Information” on page 69.

NAME
indicates the maximum 200-character string for the person’s name.

OWNED OBJECTS
specifies an SCL list of the general identifying information of the objects for which
this person is designated as the owner.

PHONE
specifies an SCL list of character items that contain the different lines of the
person’s phone number(s). Each item has a maximum length of 200 characters.
Currently, a maximum of two lines is supported.

TITLE
specifies an SCL list of character items that contain the person’s title. Each item
has a maximum length of 200 characters. Currently, a maximum of two lines is
supported.

Using WHPERSON

Add Update Delete

Yes Yes Yes

WHPERSON is an independent type. To understand how it relates to other types, see
the general information model in “Relationships Among Metadata Types” on page 53.

WHPHYSTR

Base metadata type for physical storage objects

Category: Physical Storage Types

Parent
“WHROOT” on page 226

Overview
WHPHYSTR is the base metadata type for physical storage objects in SAS/Warehouse
Administrator.

SAS/Warehouse Administrator Metadata Types � WHPOBJCT 205

Properties
New properties for WHPHYSTR are as follows:

INDEXES
specifies an SCL list of general identifying information about the indexes that are
defined for this store.

LOAD TECHNIQUE
specifies the character string that indicates how this table is loaded. The current
returned values can be REFRESH, APPEND, or MERGE. Note that you can extend this
list over time.

TABLE
specifies an SCL list of general identifying information about the table for which
this physical storage definition is used.

TABLE NAME
indicates the name of the table in the data store.

Using WHPHYSTR

Add Update Delete

No No No

WHPHYSTR is a dependent type. WHPHYSTR is not used to read or write metadata
from a repository. See the usage information for its subtypes: WHSASSTR or
WHDBMSST. See also the physical storage models in “Relationships Among Metadata
Types” on page 53.

WHPOBJCT

Base metadata type for the Process Editor

Category: Object Types—Process Editor

Parent
“WHROOT” on page 226

Overview
WHPOBJCT is the base metadata type for job process objects.

Properties
The following table lists all of the properties for WHPOBJCT and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

206 WHPOBJCT � Chapter 3

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Icon C No No No

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Owner L No No No

Process Groups L No No No

Process Members L No No No

New properties for WHPOBJCT are as follows:

ADMINISTRATOR
specifies an SCL list of general identifying information about the person who is the
administrator of the object. The list must be of type WHPERSON or a subtype of
WHPERSON. When you add a metadata type that includes this property, if a
value is not provided, an appropriate value will be copied from the process group if
a value is available.

ICON
indicates the four-level catalog entry name (such as libref.catalog.entry.IMAGE) of
the icon that is associated with this object. For more information about icons, see
“Using Icon Information” on page 69.

OWNER
specifies an SCL list of general identifying information about the person who owns
the object. The list must be of type WHPERSON or a subtype of WHPERSON.
When you add a metadata type that includes this property, if a value is not
provided, an appropriate value will be copied from the process group if a value is
available.

SAS/Warehouse Administrator Metadata Types � WHPRCLDR 207

PROCESS GROUPS
specifies an SCL list of general identifying information about the process groups to
which this object belongs. This list must be of type WHDW, WHDWENV,
WHGRPJOB, or a subtype of those. A process object cannot be a member of more
than one PROCESS GROUP. At least one group is required.

PROCESS MEMBERS
specifies an SCL list of general identifying information about the process members
that belong to this object.

Using WHPOBJCT

Add Update Delete

No No No

WHPOBJCT is an independent type. WHPOBJCT is not used to read or write
metadata in a repository.

WHPRCLDR

Base metadata type for table load processes

Category: Process Types—Load

Parent
“WHPRCMAN” on page 209

Overview
WHPRCLDR is the base metadata type for table load processes in the SAS/Warehouse
Administrator Process Editor.

Properties
The following table lists all of the properties for WHPRCLDR and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

208 WHPRCLDR � Chapter 3

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Host L No No No

Id C No No No

Load Options L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Tables L No No No

Owner L No No No

Responsibility C No No No

Source Code L No No Yes

Source File L No No Yes

Step Source Code L No No Yes

Subprocesses L No No Yes

WHPRCLDR has the following new property:

LOAD OPTIONS
specifies an SCL list of options for the specified load process. The options are as
follows:

� GENERATION LEVEL (1.1 or 2.0) selects the release level of the code that
SAS/Warehouse Administrator will generate for the specified load process.
Each level has specific options that it can support, as well as other
characteristics.

� LOAD TIME COLUMN (YES or NO) indicates whether a Load Time column
will be added to the table that is being loaded by the specified process.

Note: See Property Dependencies. �

� DROP INDEXES (YES or NO) specifies that you should drop (remove) any
existing indexes on the table to be loaded before you load the data into the
table. Based on the metadata definitions, the appropriate indexes will be
recreated after loading the data. This option is useful when updating the
indexes during loading is too slow.

� TRUNCATE TABLE (YES or NO) specifies that when you refresh the data in a
table, the table should be truncated (all data rows are removed but the table
is not) instead of completely dropping the table and recreating it from
scratch. This option is useful when the table has many options, privileges,
and other characteristics that are defined in the database.

SAS/Warehouse Administrator Metadata Types � WHPRCMAN 209

� UNION MULTIPLE INPUTS (YES or NO) specifies that any multiple inputs to
the current load process will be unioned together before you load the table. A
union is identical to a SET statement in a SAS data step that contains
multiple input table designations.

In the SAS/Warehouse Administrator interface, LOAD OPTIONS are specified
on the Load Options tab of the Load process attributes window for a given data
store. Here are some example return values for a data store whose Load process
attributes window includes a Load Options tab:

LOAD OPTIONS=(GENERATION LEVEL=’2.0’
LOAD TIME COLUMN=’NO’
UNION MULTIPLE INPUTS=’YES’
DROP INDEXES=’NO’
TRUNCATE TABLE=’NO’

)

Property Dependencies Subtypes of WHPRCLDR enable you to add or update the
LOAD OPTIONS property. When you add or update the LOAD OPTIONS property, if
the value of the LOAD TIME COLUMN item is YES, then a valid load time column
must exist for the table that is associated with this load process to avoid errors when
processing the SOURCE CODE and STEP SOURCE CODE properties. You can add a
load time column to a table as described in the documentation for the WHCOLTIM type.

Using WHPRCLDR

Add Update Delete

No No No

WHPRCLDR is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHPRCMAN

Base metadata type for main processes

Category: Process Types

Parent
“WHPROCES” on page 223

210 WHPRCMAN � Chapter 3

Overview

WHPRCMAN is one of the base types for main processes in the SAS/Warehouse
Administrator Process Editor. It is the parent of WHPRCLDR, the base type for all load
process metadata.

Properties

The following table lists all of the properties for WHPRCMAN and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Host L No No No

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Tables L No No No

Owner L No No No

Responsibility C No No No

Source Code L No No Yes

Source File L No No Yes

Step Source Code L No No Yes

Subprocesses L No No Yes

SAS/Warehouse Administrator Metadata Types � WHPRCMAP 211

New properties for WHPRCMAN are as follows:

OUTPUT TABLES
specifies an SCL list of general identifying information about the output tables of
this process. All WHPRCMAN processes will have at least one output table that is
associated with them (a WHTABLE subtype).

SOURCE CODE
specifies an SCL list of general identifying information about the source code for
this process. This source code is the same as is seen when you select View Code �
All in the SAS/Warehouse Administrator Process Editor.

The source code information that is returned here will be that of a temporary,
working location of a copy of the source code and might be different for each
request for this information.

SOURCE FILE
specifies an SCL list of general identifying information about any user-registered
code for a process. This list must be of type WHSRCCAT or a subtype of
WHSRCCAT. WHJOBCAT or any subtype of WHJOBCAT will be rejected,
however. For process steps that consist of user-written code, this property returns
the registered source code location. For process steps that consist of code that is
generated by SAS/Warehouse Administrator, this property will return an empty
list.

SUBPROCESSES
specifies an SCL list of general identifying information about any subprocesses
that might be registered for this process. This list must be of type WHPRCSPR or
a subtype of WHPRCSPR.

Using WHPRCMAN

Add Update Delete

No No No

WHPRCMAN is a dependent type. WHPRCMAN has the same usage information as
“WHPROCES” on page 223.

WHPRCMAP
Metadata type for data mapping processes

Category: Process Types

Parent
“WHPRCMAN” on page 209

Overview
WHPRCMAP models the metadata for data mapping processes in the SAS/Warehouse
Administrator Process Editor. A data mapping is a metadata record used to generate or

212 WHPRCMAP � Chapter 3

retrieve a routine that maps columns from one or more data sources into one or more
data tables, detail tables, OLAP tables, or OLAP MDDBs. Common mappings include
one-to-one (one data source to a target table), joins (one or more data sources merged by
one or more common columns), and unions (two or more data sources appended to a
target table). Here is one way to add a data mapping process in SAS/Warehouse
Administrator:

1 In the Explorer, select a detail table or a data table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Add � Inputs
5 Enter the mapping information.

Properties
The following table lists all of the properties for WHPRCMAP and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

SAS/Warehouse Administrator Metadata Types � WHPRCPST 213

Output Tables L * Auto
supplied

No No

Owner L Yes Yes No

Responsibility C Yes Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L No No Yes

Subprocesses L Yes Yes Yes

Transformations L Yes Yes Yes

WHPRCMAP has the following new property:

TRANSFORMATIONS
specifies an SCL list of general identifying information about the transformations
that are defined for this mapping.

Using WHPRCMAP

Add Update Delete

No Yes No

WHPRCMAP is a dependent type. WHPRCMAP has the same usage information as
“WHPROCES” on page 223. See the process model diagram in “Relationships Among
Metadata Types” on page 53.

WHPRCPST

Metadata type for post-load processes

Category: Process Types

Parent
“WHPRCSPR” on page 217

Overview
WHPRCPST models the metadata for post-load processes in SAS/Warehouse
Administrator. A post-load process is code that is specified in the Process Editor to
execute after a table is loaded. Here is one way to add a post-load process in
SAS/Warehouse Administrator:

1 In the Explorer, select a table with the right mouse button.
2 Select Process from the pop-up menu.

214 WHPRCPST � Chapter 3

3 In the Process Editor, select the table with the right mouse button.

4 Select Edit Load Step.

5 Go to the Post Processing tab.

6 Enter the process information.

Properties
The following table lists all of the properties for WHPRCPST and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Is Active N Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owner L No No No

Process L * Auto
supplied

No No

Responsibility C No No No

SAS/Warehouse Administrator Metadata Types � WHPRCREC 215

Step Source Code L No No Yes

Source File L Yes Yes Yes

New Types for WHPRCPST are as follows:

PROCESS
specifies an SCL list of general identifying information about the load process to
which this post-load process belongs. This list must be a subtype of WHPRCLDR.

SOURCE FILE
specifies an SCL list of general identifying information about any user-registered
code for a process. This list must be of type WHSRCCAT or a subtype of
WHSRCCAT. WHJOBCAT or any subtype of WHJOBCAT will be rejected,
however. For process steps that consist of user-written code, this property returns
the registered source code location. For process steps that consist of code that is
generated by SAS/Warehouse Administrator, this property will return an empty
list.

Using WHPRCPST

Add Update Delete

No Yes Yes

WHPRCPST is a dependent type. WHPRCPST has the same usage information as
“WHPROCES” on page 223.

WHPRCREC

Metadata type for record selector processes

Category: Process Types

Parent

“WHPRCMAN” on page 209

Overview

WHPRCREC models the metadata for record selector processes in SAS/Warehouse
Administrator. A record selector process is a metadata record that is used to generate or
retrieve a routine that subsets data prior to loading it to a specified table. For example,
you can use a record selector process to subset the operational data specified in an ODD.

216 WHPRCREC � Chapter 3

Here is one way to add a record selector process in SAS/Warehouse Administrator:
1 In the Explorer, select a table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select an ODD for that table with the right mouse button.
4 Select Insert � Record Selector
5 Enter the record selector information.

Properties
The following table lists all of the properties for WHPRCREC and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L Yes Yes No

Responsibility C No No Yes

SAS/Warehouse Administrator Metadata Types � WHPRCSPR 217

Source Code L No No Yes

Source File L No No Yes

Step Source Code L No No Yes

Subprocesses L Yes Yes Yes

Using WHPRCREC

Add Update Delete

No Yes No

WHPRCREC is a dependent type. WHPRCREC has the same usage information as
“WHPROCES” on page 223.

WHPRCSPR

Base metadata type for subprocesses

Category: Process Types

Parent
“WHPROCES” on page 223

Overview
WHPRCSPR is the base metadata type for subprocesses in SAS/Warehouse
Administrator, such as subset processes and post-processing processes.

Properties
The following table lists all of the properties for WHPRCSPR and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

218 WHPRCSPR � Chapter 3

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Host L No No No

Id C No No No

Is Active N No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Owner L No No No

Process L No No No

Responsibility C No No No

Step Source Code L No No Yes

New properties for WHPRCSPR are as follows:

IS ACTIVE
specifies the numeric value that indicates whether this subprocess is active (1) or
inactive (0).

PROCESS
specifies the main process object that is associated with this subprocess. This
object must be a subtype of WHPRCMAN.

Using WHPRCSPR

Add Update Delete

No No No

WHPRCSPR is a dependent type. WHPRCSPR has the same usage information as
“WHPROCES” on page 223.

SAS/Warehouse Administrator Metadata Types � WHPRCUSR 219

WHPRCUSR
Metadata type for user exit processes

Category: Process Types

Parent
“WHPRCMAN” on page 209

Overview
WHPRCUSR models the metadata for user exit processes in SAS/Warehouse
Administrator. A user exit process is a metadata record that is used to retrieve a
user-written routine. You must store the routine in a SAS catalog with an entry type of
SOURCE or SCL. Here is one way to add a user exit process in SAS/Warehouse
Administrator:

1 In the Explorer, select a table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Add � User Exit
5 Enter the user exit information.

Properties
The following table lists all of the properties for WHPRCUSR and indicates how you

can use each property with metadata API methods.
In the table, you can specify properties with a Yes in the Indirect Add column when

you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

220 WHPRCUSR � Chapter 3

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L Yes Yes No

Responsibility C No No No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L No No Yes

Subprocesses L No No Yes

Using WHPRCUSR

Add Update Delete

No Yes No

WHPRCUSR is a dependent type. WHPRCUSR has the same usage information as
“WHPROCES” on page 223.

SAS/Warehouse Administrator Metadata Types � WHPRCXFR 221

WHPRCXFR

Metadata type for data transfer processes

Category: Process Types

Parent
“WHPRCMAN” on page 209

Overview
WHPRCXFR models the metadata for data transfer processes in SAS/Warehouse
Administrator. A data transfer process is a metadata record that is used to generate or
retrieve a routine that moves data from one host to another. Data transfers are
required when an input source and the target data reside on different hosts. Here is
one way to add a data transfer process in SAS/Warehouse Administrator:

1 In the Explorer, select a table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select a table or ODD with the right mouse button.
4 Select Insert � Data Transfer
5 Enter the transfer information.

Properties
The following table lists all of the properties for WHPRCXFR and indicates how you

can use each property with metadata API methods.
In the table, you can specify properties with a Yes in the Indirect Add column when

you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

222 WHPRCXFR � Chapter 3

Extended
Attributes

L Yes Yes Yes

Host L Yes Yes No

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Output Tables L * Auto
supplied

No No

Owner L Yes Yes No

Responsibility C Yes Yes No

Source Code L No No Yes

Source File L Yes Yes Yes

Step Source Code L No No Yes

Subprocesses L No No Yes

Using WHPRCXFR

Add Update Delete

No Yes No

WHPRCXFR is a dependent type. WHPRCXFR has the same usage information as
“WHPROCES” on page 223.

SAS/Warehouse Administrator Metadata Types � WHPROCES 223

WHPROCES

Base metadata type for processes

Category: Process Types

Parent

“WHROOT” on page 226

Overview

WHPROCES is the base type for all process metadata in SAS/Warehouse Administrator.

Properties

The following table lists all of the properties for WHPROCES and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Host L No No No

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Owner L No No No

224 WHREPLIB � Chapter 3

Responsibility C No No No

Step Source Code L No No Yes

New properties for WHPROCES are as follows:

ADMINISTRATOR
specifies an SCL list of general identifying information about the person who is the
administrator of the process object. The list must be of type WHPERSON or a
subtype of WHPERSON.

HOST
specifies an SCL list of general identifying information about the host on which this
process is to execute. The list must be of type WHHOST or a subtype of WHHOST.

OWNER
specifies an SCL list of general identifying information about the person who owns
the process object. The list must be of type WHPERSON or a subtype of
WHPERSON.

RESPONSIBILITY
specifies the character string that indicates who is currently responsible for the
creation of the code that is associated with this process. Possible values are SAS or
USER.

SAS indicates that SAS/Warehouse Administrator is creating this code
dynamically based on the current metadata. USER indicates that the user has
written the code for this process and is responsible for it.

STEP SOURCE CODE
specifies an SCL list of general identifying information about the source code of
the individual step in the process. This source code is the same as is seen when
you select View Code � Step in the SAS/Warehouse Administrator Process Editor.

The source code information that is returned here will be that of a temporary,
working location of a copy of the source code and therefore might be different for
each request for this information.

Using WHPROCES

Add Update Delete

No No No

WHPROCES is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHREPLIB
Metadata type for metadata repositories

SAS/Warehouse Administrator Metadata Types � WHREPLIB 225

Category: SAS Library Types

Parent
“WHLIBRY” on page 175

Overview
WHREPLIB models metadata repositories in SAS/Warehouse Administrator.
SAS/Warehouse Administrator has a partitioned metadata repository scheme. Each
warehouse environment has a repository that is named _MASTER. Each data
warehouse within an environment has a repository that is named _DWMD. In
SAS/Warehouse Administrator, these repositories are created when the environment or
warehouse is created.

Properties
The following table lists all of the properties for WHREPLIB and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No Yes No

Database L Yes No No

DBMS Libname N * Default No No

Desc C No Yes No

Engine C No Yes No

Extended
Attributes

L No Yes Yes

Icon C No Yes No

Id C No * Req No

Libref C No Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C No * Default No

Note L No Yes Yes

226 WHROOT � Chapter 3

NValue N No Yes No

Options L No Yes No

Path L No Yes No

Preassigned N No Yes No

Tables L No No No

Using WHREPLIB

Add Update Delete

No Yes No

WHREPLIB is an independent type, like its parent, WHLIBRY. To understand how
all subtypes of WHLIBRY relate to other types, see the physical storage models in
“Relationships Among Metadata Types” on page 53.

For a general discussion of metadata repositories, see “Metadata Repositories” on
page 10.

WHROOT

Root type for all SAS/Warehouse Administrator metadata types

Category: Root Metadata Type—SAS/Warehouse Administrator

Parent
SASHELP.FSP.OBJECT

Overview
WHROOT is the root for all metadata types in SAS/Warehouse Administrator.

Properties
New properties for WHROOT are as follows:

CVALUE
indicates the 40-character string that a site can use to extend the metadata that is
maintained by SAS/Warehouse Administrator. Use it for site-specific character
metadata.

SAS/Warehouse Administrator Metadata Types � WHROOT 227

DESC
indicates the optional text that describes the purpose of an object or other
information that is useful to a site.

EXTENDED ATTRIBUTES
specifies an SCL list that a site can use to extend the metadata that is maintained
by SAS/Warehouse Administrator. Items in the list are

OBJECT specifies the general identifying information about the owning object
for this extended attribute.

TYPE indicates the data type of the attribute, C for character data is the only
valid type for this release.

VALUE indicates the 200-character string that contains the extended attribute
text, such as a URL or a file path to a document that describes the owning object.

For usage details, see “Using WHEXTATR” on page 115. The EXTENDED
ATTRIBUTES property is implemented with the object “WHEXTATR” on page 113.

ID
indicates the metadata identifier for a specific metadata object in a repository. The
identifier is 26 characters in length and is in the format:
REPOSID.TYPEID.INSTANCEID.

REPOSID specifies the ID of the repository in which the metadata resides. It is
eight characters in length.

TYPEID specifies the type of metadata object, such as WHDETAIL. It is eight
characters in length.

INSTANCEID distinguishes one metadata object from all others of that type in
a given repository. It is eight characters in length.

METADATA CREATED
specifies the SAS datetime value for when the metadata for this object was initially
created. (A character value that is formatted with a SAS DATETIME. FORMAT.)

METADATA UPDATED
specifies the SAS datetime value for when the metadata for this object was
updated. (A character value that is formatted with a SAS DATETIME. FORMAT.)

NAME
indicates the name of the metadata object. The name that is returned is in the
context of the component that it comes from. For example, SAS/Warehouse
Administrator names are those that appear in the Explorer, the Setup window, the
Process Editor, and so on.

The length of the name depends on the individual type. All names can be at
most 40 characters in length. Some types, such as WHPERSON, allow the name
to be longer than 40 characters. The maximum length of the name is 40
characters unless otherwise noted in a particular type.

NOTE
indicates the user-entered descriptions of objects, columns, or processes. NOTE
metadata is modeled by the WHNOTE type. For details, see “WHNOTE” on page
179.

NVALUE
indicates the numeric value that a site can use to extend the metadata that is
maintained by SAS/Warehouse Administrator. Use it for site-specific numeric
metadata.

Note: The documentation for many metadata types refers to general identifying
information. This phrase refers to the ID, NAME, and DESC properties. For more
details, see “Identifying Metadata” on page 7. �

228 WHROWSEL � Chapter 3

Using WHROOT

Add Update Delete

No No No

WHROOT is an independent type. WHROOT is not used to read or write metadata
in a repository. It is a template for all metadata types in SAS/Warehouse Administrator.

WHROWSEL

Metadata type for a row selector

Category: Process Types

Parent
“WHPRCSPR” on page 217

Overview
The WHROWSEL type models the metadata for all row selectors. Here is one way to
specify row selector metadata through the SAS/Warehouse Administrator interface:

1 Display a process flow with a mapping in the Process Editor.
2 In the Process Editor, click the right mouse button on a mapping and select

Properties.
3 Go to the Output Data tab.
4 Click the Generation Options button.
5 Click the Row Selection tab.
6 For the rows that are selected, select Row Selection Conditions and then click

the Define button.
7 In the Expression Builder, select Component of Input Tables and then select an

input table and column.
8 Click OK on each window until you return to the Process Editor.

Properties
The following table lists all of the properties for WHROWSEL and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

SAS/Warehouse Administrator Metadata Types � WHROWSEL 229

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Host L No No No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Is Active N No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N Yes Yes No

Output Objects L No No No

Output Tables L * Req No No

Outputs Targets L No No No

Owner L No No No

Process L * Auto
supplied

No No

Responsibility C No No No

Selection Type C Yes (See
Property
Dependencies)

Yes No

Source Text L Yes (See
Property
Dependencies)

Yes No

Step Source Code L No No Yes

230 WHROWSEL � Chapter 3

New properties for WHROWSEL are as follows:

INPUT OBJECTS
specifies an SCL list of general identifying information about the columns that are
input to this subprocess.

INPUT SOURCES
specifies an SCL list of general identifying information about the nearest
intermediate output table or loadable table that is a source to the current table or
column. This list must be of type WHCTRNFM or a subtype of WHCOLUMN, and
it must have the appropriate relation to the main process. For WHROWSEL, this
property can return the same list as INPUT OBJECTS. However, if the user
builds the row selector using columns from the output table (in Expression
Builder), INPUT SOURCES will return a transformation (WHCTRNFM) and
INPUT OBJECTS will return the columns that are used in that transformation.

OUTPUT OBJECTS
specifies a property that is currently unused.

OUTPUT TABLES
specifies an SCL list of general identifying information about the output tables for
this subprocess. This list must be of type WHTBLMAP or a subtype of
WHTBLMAP. All WHROWSEL subprocesses will have at least one output table
that is associated with them.

OUTPUT TARGETS
specifies a property that is currently unused.

PROCESS
specifies an SCL list of general identifying information about the mapping process
that called this row selection process. This list must be of type WHPRCMAP or a
subtype of WHPRCMAP.

SOURCE TEXT
specifies an SCL list of character items that specify a WHERE clause or other
subsetting code. Each item can contain a maximum of 200 characters of source
code.

Note: See Property Dependencies. �

SELECTION TYPE
specifies a character string that indicates the row selection type. Valid row
selection types are ALL ROWS, ROW SELECTION CONDITIONS, or USER DEFINED
STATEMENTS.

Note: See Property Dependencies. �

Property Dependencies When you use the indirect add approach,

� SELECTION TYPE defaults to ALL ROWS if not otherwise specified by the user.

� SOURCE TEXT is optional for indirect adds if the SELECTION TYPE is ALL
ROWS; otherwise, SOURCE TEXT is required.

Using WHROWSEL

Add Update Delete

No Yes Yes

SAS/Warehouse Administrator Metadata Types � WHSASSTR 231

WHROWSEL is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHSASSTR

Metadata type for SAS physical data stores

Category: Physical Storage Types

Parent
“WHPHYSTR” on page 204

Overview
WHSASSTR models the metadata for SAS physical data stores in SAS/Warehouse
Administrator. These stores are specified for tables that are stored in SAS format,
using the Physical Storage tab in the table property window.

Properties
The following table lists all of the properties for WHSASSTR and indicates how you can
use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

232 WHSASSTR � Chapter 3

Host L Yes Yes No

Id C * Req * Req No

Indexes L Yes Yes Yes

Library L Yes Yes No

Load Technique C Yes Yes No

Metadata Created C * Auto
supplied

No No

Metadata Updated C * Auto
supplied

No No

Name C No No No

Note L No No Yes

NValue N Yes Yes No

Table L * Auto
supplied

No No

Table Name C Yes Yes No

Table Options L * Default * Default No

New properties for WHSASSTR are as follows:

HOST
specifies an SCL list of general identifying information about the host on which
this data is accessed.

LIBRARY
specifies an SCL list of general identifying information about the SAS Library that
contains this data store.

TABLE OPTIONS
specifies an SCL list of options that are used in creating or loading this table. The
CREATE sublist contains the SQL options that are used to create the table. The
LOAD sublist contains the DBLOAD statements that are used to load the table.

See the Usage notes for details about the TABLE OPTIONS property and data
set passwords.

Using WHSASSTR

Add Update Delete

No Yes No

WHSASSTR is a dependent type. To understand how it relates to other types, see the
physical storage models in “Relationships Among Metadata Types” on page 53.

TABLE OPTIONS Property and SAS Data Set Passwords
The actual data set passwords will only be returned using the _GET_METADATA_

method if the application is running as a secure application. The only method that is
currently supported to run as a secure application is to run as an add-in generator. See

SAS/Warehouse Administrator Metadata Types � WHSCRFIL 233

SAS/Warehouse Administrator User’s Guide for documentation on running as an add-in
generator. You can determine the presence of passwords however, regardless of whether
the application is secure.

If the application is not secure and a password exists, the appropriate data set
password option will be returned with a value of XXXXXXXX (8 uppercase Xs). If the
application is secure, the actual password will be returned. The three supported
password options are READ=, WRITE=, and ALTER=. You can search for these strings
in the returned string (using the INDEX function) to determine if a password exists
this type of access. It is the application’s responsibility of retrieving these
passwords—by prompting the user, for example.

An example of a data set with a WRITE password and the COMPRESS option follows:

TABLE OPTIONS=(CREATE=(’WRITE=XXXXXX COMPRESS’
))

When you use the _UPDATE_METADATA_ method, you can add passwords to an
existing data set that has no password, but you cannot update an existing password. To
update an existing data set password, see your administrator. Note that changes to the
metadata alone can cause your metadata and data to become out of sync. You should
use this functionality with extreme caution.

WHSCRFIL

Metadata type for SAS/CONNECT script files

Category: Text File Types

Parent
“WHTXTFIL” on page 269

Overview
WHSCRFIL models the metadata for SAS/CONNECT script files in SAS/Warehouse
Administrator. These scripts are used to access a remote host. The location of such a
script is specified as part of the host definition for a remote host. In SAS/Warehouse
Administrator, to specify the location of a SAS/CONNECT script as part of a new
remote host definition:

1 From the SAS/Warehouse Administrator desktop, select an environment with the
right mouse button.

2 Select Edit.

3 From the Explorer pull-down menu, select File � Setup

4 Select Hosts.

5 Click Add .
6 Enter the host information, including the SAS/CONNECT script field.

Properties
The following table lists all of the properties for WHSCRFIL and indicates how you can
use each property with metadata API methods.

234 WHSCRFIL � Chapter 3

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No Yes No

Desc C No Yes No

Extended
Attributes

L No Yes Yes

Id C * Req * Req No

Metadata Created C No No No

Metadata Updated C No No No

Name C No * Default No

Note L No Yes Yes

NValue N No Yes No

Objects L No No No

Using WHSCRFIL

Add Update Delete

No Yes Yes

WHSCRFIL is a dependent type, like all subtypes of WHTFILE. To understand how
all subtypes of WHTFILE relate to other types, see the process model in “Relationships
Among Metadata Types” on page 53.

Use of _DELETE_METADATA for this type deletes SAS/Warehouse Administrator
metadata, not the corresponding script file.

SAS/Warehouse Administrator Metadata Types � WHSERV 235

WHSERV

Base metadata type for the scheduling server

Category: Global Metadata Types

Parent

“WHROOT” on page 226

Overview

WHSERV is the base metadata type for scheduling servers in the Job Scheduler utility.

Properties

The following table lists all of the properties for WHSERV and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Icon C No No No

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

236 WHSRCCAT � Chapter 3

WHSERV has the following new property:

ICON
specifies the four-level catalog entry name (such as libref.catalog.entry.IMAGE) of
the icon associated with this object. For more information about icons, see “Using
Icon Information” on page 69.

Using WHSERV

Add Update Delete

No Yes No

WHSERV is an independent type. WHSERV is not used to write metadata into a
repository. It is a template for all of the scheduling servers in the Job Scheduler.

WHSRCCAT

Metadata type for SAS catalog entry source code files

Category: Text File Types

Parent
“WHTXTCAT” on page 268

Overview
WHSRCCAT is the metadata type for SAS catalog entry source code files for
SAS/Warehouse Administrator.

Properties
The following table lists all of the properties for WHSRCCAT and indicates how you

can use each property with metadata API methods.
In the table, you can specify properties with a Yes in the Indirect Add column when

you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

SAS/Warehouse Administrator Metadata Types � WHSRVAT 237

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Cvalue C Yes Yes No

Desc C Yes Yes No

Entry C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Full Entry C No No No

Id C * Req * Req No

Library L Yes Yes No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Objects L No No No

Using WHSRCCAT

Add Update Delete

No Yes Yes

WHSRCCAT is a dependent type, like all of the subtypes of WHTFILE. To
understand how all subtypes of WHTFILE relate to other types, see the process model
in “Relationships Among Metadata Types” on page 53.

WHSRVAT

Metadata type for the Windows NT AT scheduling server

Category: Global Metadata Types

Parent
“WHSERV” on page 235

238 WHSRVAT � Chapter 3

Overview

The WHSRVAT type models the metadata for a Windows NT AT Interface scheduling
server.

Properties

The following table lists all of the properties for WHSRVAT and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Command C No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Generated Source
Code

C No No No

Host L No No No

Icon C No No No

Id C No No No

Jobs L No No No

Local Work
Directory

L No No No

Log Filename C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Options C No No No

Print Filename C No No No

Remote Work
Directory

L No No No

SAS/Warehouse Administrator Metadata Types � WHSRVAT 239

Sysin Filename C No No No

Tracking N No No No

New properties for WHSRVAT are as follows:

COMMAND
indicates a 200-character string that the scheduling server uses to start SAS.

GENERATED SOURCE CODE
indicates a 200-character string that identifies the location where the generated
source code resides.

HOST
indicates the host where the scheduling server is running. This property is a
WHHOST object.

JOBS
specifies an SCL list of all of the jobs that are active on this scheduling server.

LOCAL WORK DIRECTORY
identifies the location of a directory on the local platform that is used for working
storage by a local scheduling server.

LOG FILENAME
indicates a 200-character string that identifies the location where the job log
resides. This follows the —LOG option in the command string.

OPTIONS
indicates a 200-character string that contains additional SAS options that are
appended to the command string.

PRINT FILENAME
indicates a 200-character string that identifies the location where the job listing
resides. This follows the —PRINT option in the command string.

REMOTE WORK DIRECTORY
identifies the location of a directory on a remote platform that is used for working
storage by a remote scheduling server.

SYSIN FILENAME
indicates a 200-character string that identifies the location where the job sysin
resides. This follows the —SYSIN option in the command string.

TRACKING
indicates a numeric indicator stating whether the scheduling server has a job
track enabled. Valid values are

0—disabled
1—a job track enabled.

Using WHSRVAT

Add Update Delete

No No No

240 WHSRVCRN � Chapter 3

WHSRVAT is an independent type. To understand how scheduling servers relate to
other types, see the diagram in Appendix 2.

WHSRVCRN

Metadata type for UNIX Cron scheduling server

Category: Global Metadata Types

Parent
“WHSERV” on page 235

Overview
The WHSRVCRN type models the metadata for a UNIX System V CRON scheduling
server.

Properties
The following table lists all of the properties for WHSRVCRN and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Command C No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Generated Source
Code

C No No No

Host L No No No

Icon C No No No

Id C No No No

SAS/Warehouse Administrator Metadata Types � WHSRVCRN 241

Jobs L No No No

Local Work
Directory

L No No No

Log Filename C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Options C No No No

Print Filename C No No No

Remote Work
Directory

L No No No

Sysin Filename C No No No

Tracking N No No No

New properties for WHSRVCRN are as follows:

COMMAND
indicates a 200-character string that the scheduling server uses to start SAS.

GENERATED SOURCE CODE
indicates a 200-character string that identifies the location where the generated
source code resides.

HOST
indicates the host where the scheduling server is running. This property is a
WHHOST object.

JOBS
specifies an SCL list of all of the jobs that are active on this scheduling server.

LOCAL WORK DIRECTORY
identifies the location of a directory on the local platform that is used for working
storage by a local scheduling server.

LOG FILENAME
indicates a 200-character string that identifies the location where the job log
resides. This follows the —LOG option in the command string.

OPTIONS
indicates a 200-character string that contains additional SAS options that are
appended to the command string.

PRINT FILENAME
indicates a 200-character string that identifies the location where the job listing
resides. This follows the —PRINT option in the command string.

REMOTE WORK DIRECTORY
identifies the location of a directory on a remote platform that is used for working
storage by a remote scheduling server.

242 WHSRVNUL � Chapter 3

SYSIN FILENAME
indicates a 200-character string that identifies the location where the job sysin
resides. This follows the —SYSIN option in the command string.

TRACKING
indicates a numeric indicator that states whether the scheduling server has a job
track enabled. Valid values are

0—disabled
1—a job track enabled.

Using WHSRVCRN

Add Update Delete

No No No

WHSRVCRN is an independent type. To understand how scheduling servers relate to
other types, see the metadata models on the foldout at the back of this document.

WHSRVNUL

Metadata type for the null scheduling server

Category: Global Metadata Types

Parent
“WHSERV” on page 235

Overview
The WHSRVNUL type models the metadata for a null scheduling server.

Properties
The following table lists all of the properties for WHSRVNUL and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

SAS/Warehouse Administrator Metadata Types � WHSRVNUL 243

Properties Type Add Method Update Method Read Method
Expand Parm.

Command C No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Generated Source
Code

C No No No

Host L No No No

Icon C No No No

Id C No No No

Jobs L No No No

Local Work
Directory

L No No No

Log Filename C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Options C No No No

Print Filename C No No No

Remote Work
Directory

L No No No

Sysin Filename C No No No

Tracking N No No No

New properties for WHSRVNUL are as follows:

COMMAND
indicates a 200-character string that the scheduling server uses to start SAS.

GENERATED SOURCE CODE
indicates a 200-character string that identifies the location where the generated
source code resides.

HOST
indicates the host where the scheduling server is running. This property is a
WHHOST object.

JOBS
specifies an SCL list of all of the jobs that are active on this scheduling server.

LOCAL WORK DIRECTORY
identifies the location of a directory on the local platform that is used for working
storage by a local scheduling server.

244 WHSUBJCT � Chapter 3

LOG FILENAME
indicates a 200-character string that identifies the location where the job log
resides. This follows the —LOG option in the command string.

OPTIONS
indicates a 200-character string that contains additional SAS options that are
appended to the command string.

PRINT FILENAME
indicates a 200-character string that identifies the location where the job listing
resides. This follows the —PRINT option in the command string.

REMOTE WORK DIRECTORY
identifies the location of a directory on a remote platform that is used for working
storage by a remote scheduling server.

SYSIN FILENAME
indicates a 200-character string that identifies the location where the job sysin
resides. This follows the —SYSIN option in the command string.

TRACKING
specifies a numeric indicator that states whether the scheduling server has a job
track enabled.

0—disabled
1—a job track enabled.

Using WHSRVNUL

Add Update Delete

No No No

WHSRVNUL is an independent type. To understand how scheduling servers relate to
other types, see the metadata models on the foldout at the back of this document.

WHSUBJCT

Metadata type for subjects in a warehouse

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHSUBJCT models the metadata for a subject in a warehouse that is managed
by SAS/Warehouse Administrator. A subject is a grouping element for data that is
related to one topic within a data warehouse. Typical subjects might include Products,
Sales, and Customers. In SAS/Warehouse Administrator, each subject might be

SAS/Warehouse Administrator Metadata Types � WHSUBJCT 245

composed of a number of different data collections: SAS data sets, SAS
Multidimensional Databases (MDDBs), database tables, charts, reports, or graphs.

To add a subject with the SAS/Warehouse Administrator Explorer:

1 Select a warehouse with the right mouse button.

2 Select Add Item � Subject

3 Select the subject with the right mouse button.

4 Select Properties.

5 Enter the subject information.

Properties

The following table lists all of the properties for WHSUBJCT and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L * Req No No

Icon C Yes Yes No

Id C * Req * Req No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes Yes Yes

NValue N Yes Yes No

Owner L Yes Yes No

246 WHSUBSET � Chapter 3

Using WHSUBJCT

Add Update Delete

Yes Yes Yes

WHSUBJCT is an independent type, like its parent, WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

WHSUBSET

Metadata type for subsetting processes associated with data mappings

Category: Process Types

Parent
“WHPRCSPR” on page 217

Overview
WHSUBSET models the metadata for processes that subset information into data
mappings for use in SAS/Warehouse Administrator tables. WHSUBSET corresponds to
a WHERE clause that is entered on the Where tab of the Mapping Process Properties
window. Here is one way to add a subsetting process (WHERE clause) to a new data
mapping in SAS/Warehouse Administrator:

1 In the Explorer, select a detail table or a data table with the right mouse button.
2 Select Process from the pop-up menu.
3 In the Process Editor, select the table with the right mouse button.
4 Select Add � Inputs

5 Enter the mapping information, until you come to the Where tab.
6 Enter a WHERE clause on the Where tab.

Properties
The following table lists all of the properties for WHSUBSET and indicates how you

can use each property with metadata API methods.
In the table, you can specify properties with a Yes in the Indirect Add column when

you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

SAS/Warehouse Administrator Metadata Types � WHSUBSET 247

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Administrator L No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Host L No No No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Is Active N No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L No No No

Owner L No No No

Process L * Auto
supplied

No No

Responsibility C No No No

Source Text L * Req Yes No

Step Source Code L No No Yes

WHSUBSET has the following new properties:

INPUT OBJECTS
specifies an SCL list of general identifying information about the columns that are
input to this subprocess.

248 WHSUMDDB � Chapter 3

INPUT SOURCES
specifies an SCL list of general identifying information about the columns that are
input to this subprocess. This list must be of type WHCOLUMN or a subtype of
WHCOLUMN, and it must have an appropriate relation to the main process. For
WHSUBSET, this property returns the same list as INPUT OBJECTS.

OUTPUT OBJECTS
specifies a currently unused property.

OUTPUT TARGETS
specifies a currently unused property.

PROCESS
specifies an SCL list of general identifying information about the mapping process
to which this subsetting process belongs. This list must be of type WHPRCMAP or
a subtype of WHPRCMAP.

SOURCE TEXT
indicates an SCL list of character items that specify a WHERE clause or other
subsetting code. Each item can contain a maximum of 200 characters of source
code.

Using WHSUBSET

Add Update Delete

No Yes Yes

WHSUBSET is a dependent type. To understand how all subtypes of WHPROCES
relate to other types, see the process models in “Relationships Among Metadata Types”
on page 53.

For details about reading process information, see “Reading Process Flow Metadata”
on page 62.

WHSUMDDB

Metadata type for SAS Summary MDDBs

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHSUMDDB models the metadata for a SAS Multidimensional Database summary in
SAS/Warehouse Administrator. A SAS MDDB is a SAS table that stores data in
presummarized format and in more than two dimensions; that is, it stores more than
the usual down and across columns in a standard table. For example, where a

SAS/Warehouse Administrator Metadata Types � WHSUMDDB 249

summary table might show sales in dollars for a given company by month, an MDDB
could show sales in dollars for a given company by month, region, and product.

To add an MDDB with the SAS/Warehouse Administrator Explorer:

1 Select a summary group with the right mouse button.

2 Select Add Item � Summary MDDB

3 Select the MDDB with the right mouse button.

4 Select Properties.

5 Enter the MDDB information.

Properties
The following table lists all of the properties for WHSUMDDB and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Administrator L No No No

Columns L No No Yes

Cvalue C No No No

Creating Job L No No Yes

Desc C No No No

Extended
Attributes

L No No Yes

Fiscal Day of
Month

N No No No

Fiscal Day of
Week

C No No No

Fiscal Month of
Year

C No No No

Fiscal Time of Day N No No No

Group L No No No

Host L No No No

Icon C No No No

Id C No No No

250 WHSUMDDB � Chapter 3

Input Objects L No No No

Input Sources L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Owner L No No No

Process L No No Yes

Table Name C No No No

Using Processes L No No No

New properties for WHSUMDDB are as follows:

COLUMNS
specifies an SCL list of general identifying information about the columns in this
MDDB.

CREATING JOB
specifies a list of general identifying information about the job that creates this
summary MDDB.

FISCAL DAY OF MONTH
specifies the number that indicates the start day of the month of the fiscal year.
Valid numbers are between 1 and 31.

FISCAL DAY OF WEEK
indicates the character string that contains the start day of the week of the fiscal
year. Valid strings range from SUNDAY through SATURDAY.

FISCAL MONTH OF YEAR
specifies the number that indicates the start month of the year in which the fiscal
year begins. Valid numbers range between 1 and 12.

FISCAL TIME OF DAY
indicates the character string for the start time of day of the fiscal year.

HOST
specifies an SCL list of general identifying information about the host on which
this MDDB is accessed.

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this MDDB. For more information about input objects, see “INPUT and
OUTPUT Properties” on page 64.

SAS/Warehouse Administrator Metadata Types � WHSUMTBL 251

INPUT SOURCES
specifies an SCL list of general identifying information about the sources that are
input to this MDDB. For more information about input sources, see “INPUT and
OUTPUT Properties” on page 64.

LIBRARY
specifies an SCL list of general identifying information about the SAS Library
(WHLIBRY type) that contains this MDDB.

OUTPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
output from this MDDB. For more information about output objects, see “INPUT
and OUTPUT Properties” on page 64.

OUTPUT TARGETS
specifies an SCL list of general identifying information about the targets that are
output to this MDDB. For more information about output targets, see “INPUT and
OUTPUT Properties” on page 64.

PROCESS
specifies an SCL list of general identifying information about the process that
created this MDDB.

TABLE NAME
indicates the character string that contains the table name that is associated with
this MDDB.

Using WHSUMDDB

Add Update Delete

No No No

WHSUMDDB is an independent type, like its parent, WHOBJECT. To understand
how all subtypes of WHOBJECT relate to other types, see the general information
model in “Relationships Among Metadata Types” on page 53.

WHSUMTBL

Metadata type for summary tables

Category: Object Types—Explorer

Parent
“WHTABLE” on page 254

Overview
WHSUMTBL models the metadata for summary tables in SAS/Warehouse
Administrator. A summary table can be a SAS table or view or a DBMS table or view.

252 WHSUMTBL � Chapter 3

Each summary table corresponds to one of these time dimensions: day, week,
half-month, month, quarter, or year. To add a summary table with the SAS/Warehouse
Administrator Explorer:

1 Select a summary group with the right mouse button.
2 Select Add Item � summary table
3 Select the table with the right mouse button.
4 Select Properties.
5 Enter the summary table information.

Properties
The following table lists all of the properties for WHSUMTBL and indicates how you
can use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N No No No

Administrator L No No No

Aggregation Level C No No No

Columns L No No Yes

Creating Job L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Fiscal Day of
Month

N No No No

Fiscal Day of
Week

C No No No

Fiscal Month of
Year

C No No No

Fiscal Time of Day N No No No

Group L No No No

Host L No No No

SAS/Warehouse Administrator Metadata Types � WHSUMTBL 253

Icon C No No No

Id C No No No

Input Objects L No No No

Input Sources L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Owner L No No No

Physical Storage L No No Yes

Process L No No Yes

Table Name C No No No

Using Jobs L No No No

New properties for WHSUMTBL are as follows:

AGGREGATION LEVEL
specifies the character string that indicates the aggregation level of this table:
DAY, WEEK, MONTH, and so on.

FISCAL DAY OF MONTH
specifies the number that indicates the start day of the month of the fiscal year.
Valid numbers are between 1 and 31.

FISCAL DAY OF WEEK
specifies the character string that contains the start day of the week of the fiscal
year. Valid strings range from SUNDAY through SATURDAY.

FISCAL MONTH OF YEAR
specifies the number that indicates the start month of the year in which the fiscal
year starts. Valid numbers range between 1 and 12.

FISCAL TIME OF DAY
specifies the SAS datetime character string for the start time of day of the fiscal
year. (A character value that is formatted with a SAS DATETIME. format.)

Property Dependencies You must define a CREATING JOB property in order to add
any INPUT SOURCES to a table. If a table does not have a CREATING JOB property,
then you must specify one when you add an input source to the table.

254 WHTABLE � Chapter 3

Using WHSUMTBL

Add Update Delete

No No No

WHSUMTBL is an independent type, like its parent, WHTABLE. To understand how
all subtypes of WHTABLE relate to other types, see the models in “Relationships
Among Metadata Types” on page 53.

WHTABLE

Base metadata type for tables

Category: Object Types—Explorer

Parent
“WHOBJECT” on page 182

Overview
WHTABLE is the base metadata type for SAS/Warehouse Administrator tables.

Properties
The following table lists all of the properties for WHTABLE and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N No No No

Administrator L No No No

Columns L No No Yes

SAS/Warehouse Administrator Metadata Types � WHTABLE 255

Creating Job L No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Group L No No No

Host L No No No

Icon C No No No

Id C No No No

Input Objects L No No No

Input Sources L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Owner L No No No

Physical Storage L No No Yes

Process L No No Yes

Table Name C No No No

Using Jobs L No No No

New properties for WHTABLE are as follows:

ACCESS SAME AS PHYSICAL
specifies a numeric value that indicates whether the access location view
information for this table is the same as the physical storage information.

0—No, the access location view information for this table is not the same as the
physical storage information.

1—Yes, the access location view information for this table is the same as the
physical storage information. (For SAS data sets only).

See SAS/Warehouse Administrator documentation for more details about the
ACCESS SAME AS PHYSICAL option for tables that are stored as SAS data sets.

COLUMNS
specifies an SCL list of general identifying information about the columns in this
table.

CREATING JOB
specifies a list of general identifying information about the job that creates this
table. This property returns a WHJOB object. A valid CREATING JOB property is

256 WHTABLE � Chapter 3

required before you can add any INPUT SOURCES. If the CREATING JOB
property is removed, then any work tables in the chain of INPUT SOURCES will
be deleted as well.

You cannot change the CREATING JOB property for a single table that is
output from a mapping with more than one output table. You can use the
OUTPUT TABLES property of the WHJOB object to which the tables are to be
moved to change the value of the CREATING JOB property for all output tables of
a mapping simultaneously.

HOST
specifies an SCL list of general identifying information about the host on which
this data is accessed.

INPUT OBJECTS
specifies an SCL list of general identifying information about the objects that are
input to this table. For more information about input objects, see “INPUT and
OUTPUT Properties” on page 64.

INPUT SOURCES
specifies an SCL list of general identifying information about the sources that are
input to this table. For more information about input sources, see “INPUT and
OUTPUT Properties” on page 64.

LIBRARY
specifies an SCL list of general identifying information about the SAS Library that
contains this table.

OUTPUT OBJECTS
an SCL list of general identifying information about the objects that are output
from this table. For more information about output objects, see “INPUT and
OUTPUT Properties” on page 64.

OUTPUT TARGETS
an SCL list of general identifying information about the targets that are output
from this table. For more information about output targets, see “INPUT and
OUTPUT Properties” on page 64.

PHYSICAL STORAGE
specifies an SCL list of general identifying information about where this table is
physically stored.

PROCESS
specifies an SCL list of general identifying information about the process that
created this table. This list must be of type WHPRCMAN. Adding a process
beneath itself is prevented.

TABLE NAME
indicates the character string—the name of the table.

USING JOBS
specifies a list of general identifying information about all the jobs that use this
table as input to output tables of the job.

Using WHTABLE

Add Update Delete

No No No

SAS/Warehouse Administrator Metadata Types � WHTBLMAP 257

WHTABLE and its children are independent types. To understand how all subtypes
of WHTABLE relate to other types, see the models in “Relationships Among Metadata
Types” on page 53.

WHTBLMAP

Metadata type for intermediate output tables produced by column mapping processes

Category: Object Types—Intermediate Output Tables

Parent
“WHTBLPRC” on page 259

Overview
WHTBLMAP models the metadata for intermediate output tables that are produced by
column mapping processes in SAS/Warehouse Administrator. In the Process Editor,
these tables are represented as text boxes that are labeled Mapping. For details about
how intermediate output tables are displayed in the Process Editor, see “Reading
Process Flow Metadata” on page 62.

Properties
The following table lists all of the properties for WHTBLMAP and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Access Same As
Physical

N * Auto
supplied

* Auto supplied No

Administrator L No No No

Columns L No No Yes

258 WHTBLMAP � Chapter 3

Creating Job L No No No

Creates Data N No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L No No No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L No No Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L * Auto
Supplied

No No

Owner L No No No

Physical Storage L Yes Yes Yes

Process L * Default No Yes

Row Selector L No Yes Yes

Table Name C Yes Yes No

Using Jobs L No No No

WHTBLMAP has the following new property:

ROW SELECTOR
specifies an SCL list of general identifying information about any row selector
subprocess of the mapping that might be defined for this table. This list must be of
type WHROWSEL or a subtype of WHROWSEL.

Using WHTBLMAP

Add Update Delete

No Yes Yes

SAS/Warehouse Administrator Metadata Types � WHTBLPRC 259

For a discussion of how you can use intermediate output tables, see “Reading Process
Flow Metadata” on page 62 .

WHTBLMAP is a dependent type. To understand how all subtypes of WHTABLE
relate to other types, see the models in “Relationships Among Metadata Types” on page
53.

WHTBLPRC

Base metadata type for intermediate output tables produced by processes

Category: Object Types—Intermediate Output Tables

Parent
“WHTABLE” on page 254

Overview
WHTBLPRC is the base metadata type for intermediate output tables that are
produced by processes in SAS/Warehouse Administrator. In the Process Editor, these
tables are represented as text boxes with appropriate labels such as Mapping, User
Exit, and so on. For details about how intermediate output tables are displayed in the
Process Editor, see “Reading Process Flow Metadata” on page 62.

Properties
The following table lists all of the properties for WHTBLPRC and indicates how each
you can use property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Same As
Physical

N No No No

Administrator L No No No

Columns L No No Yes

Creating Job L No No No

Creates Data N No No No

260 WHTBLPRC � Chapter 3

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Group L No No No

Host L No No No

Icon C No No No

Id C No No No

Input Objects L No No No

Input Sources L No No No

Library L No No No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Output Objects L No No No

Output Targets L No No No

Owner L No No No

Physical Storage L No No Yes

Process L No No Yes

Table Name C No No No

Using Jobs L No No No

WHTBLPRC has the following new property:

CREATES DATA
specifies the numeric value that indicates whether the table has output data or is
just a placeholder only.

0—No, this table has no output data. It is a placeholder only. (The This
process has no output data selection has been made on the process properties
Output Data tab.) An analogy would be a DATA step that performs processing but
is coded with DATA _NULL_.

1—Yes, this table has output data.

Using WHTBLPRC

Add Update Delete

No No No

SAS/Warehouse Administrator Metadata Types � WHTBLREC 261

For a discussion of how you can use intermediate output tables, see “Reading Process
Flow Metadata” on page 62.

WHTBLPRC is a dependent type. To understand how all subtypes of WHTABLE
relate to other types, see the models in “Relationships Among Metadata Types” on page
53.

WHTBLREC

Metadata type for intermediate output tables produced by record selector processes

Category: Object Types—Intermediate Output Tables

Parent
“WHTBLPRC” on page 259

Overview
WHTBLREC models the metadata for intermediate output tables that are produced by
record selector processes in SAS/Warehouse Administrator. In the Process Editor, these
tables are represented as text boxes that are labeled Record Selection. For details about
how intermediate output tables are displayed in the Process Editor, see “Reading
Process Flow Metadata” on page 62.

Properties
The following table lists all of the properties for WHTBLREC and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

262 WHTBLREC � Chapter 3

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Access Same As
Physical

N * Auto
supplied

* Auto supplied No

Administrator L No No No

Columns L No No Yes

Creating Job L No No No

Creates Data N No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L No No No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L No No Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L * Auto
supplied

No No

Owner L No No No

Physical Storage L Yes Yes Yes

Process L * Default No Yes

Table Name C Yes Yes No

Using Jobs L No No No

Using WHTBLREC

Add Update Delete

No Yes Yes

SAS/Warehouse Administrator Metadata Types � WHTBLUSR 263

For a discussion of how you can use intermediate output tables, see “Reading Process
Flow Metadata” on page 62.

WHTBLREC is a dependent type. To understand how all subtypes of WHTABLE
relate to other types, see the models in “Relationships Among Metadata Types” on page
53.

WHTBLUSR
Metadata type for intermediate output tables produced by user exit processes

Category: Object Types—Intermediate Output Tables

Parent
“WHTBLPRC” on page 259

Overview
WHTBLUSR models the metadata for an intermediate output table that is produced by
a user exit process in SAS/Warehouse Administrator. In the Process Editor, these tables
are represented as text boxes that are labeled User Exit. For details about how
intermediate output tables are displayed in the Process Editor, see “Reading Process
Flow Metadata” on page 62.

Properties
The following table lists all of the properties for WHTBLUSR and indicates how you
can use each property with metadata API methods.

In the table, you can specify properties with a Yes in the Indirect Add column when
you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Access Same As
Physical

N * Auto
supplied

* Auto supplied No

Administrator L No No No

264 WHTBLUSR � Chapter 3

Columns L No No Yes

Creating Job L No No No

Creates Data N Yes Yes No

Cvalue C Yes Yes No

Desc C Yes Yes No

Extended
Attributes

L Yes Yes Yes

Group L No No No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L Yes No Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L * Auto
supplied

No No

Owner L No No No

Physical Storage L Yes Yes Yes

Process L * Default No Yes

Table Name C Yes Yes No

Using Jobs L No No No

Using WHTBLUSR

Add Update Delete

No Yes Yes

For a discussion of how you can use intermediate output tables, see “Reading Process
Flow Metadata” on page 62.

WHTBLUSR is a dependent type. To understand how all subtypes of WHTABLE
relate to other types, see the models in “Relationships Among Metadata Types” on page
53.

SAS/Warehouse Administrator Metadata Types � WHTBLXFR 265

WHTBLXFR

Metadata type for intermediate output tables produced by data transfer processes

Category: Object Types—Intermediate Output Tables

Parent
“WHTBLPRC” on page 259

Overview
WHTBLXFR models the metadata for intermediate output tables that are produced by
data transfer processes in SAS/Warehouse Administrator. In the Process Editor, these
tables are represented as text boxes that are labeled Data Transfer. For details about
how intermediate output tables are displayed in the Process Editor, see “Reading
Process Flow Metadata” on page 62.

Properties
The following table lists all of the properties for WHTBLXFR and indicates how you

can use each property with metadata API methods.
In the table, you can specify properties with a Yes in the Indirect Add column when

you indirectly add one object through another, as described in the documentation for the
_UPDATE_METADATA_ method. Use this approach to add a new dependent object.
For details, see “Using _UPDATE_METADATA_” on page 46.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method, as described in the documentation for this method.
Use this method to update properties of an existing object. For details, see “Using
_UPDATE_METADATA_” on page 46.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one. * Auto supplied means that
the property is automatically supplied; any value that you specify for such a property is
ignored.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Indirect Add Update Method Read Method
Expand Parm.

Access Same As
Physical

N * Auto
supplied

* Auto supplied No

Administrator L No No No

Columns L No No Yes

Creating Job L No No No

Creates Data N No No No

Cvalue C Yes Yes No

Desc C Yes Yes No

266 WHTBLXFR � Chapter 3

Extended
Attributes

L Yes Yes Yes

Group L No No No

Host L Yes Yes No

Icon C Yes Yes No

Id C * Req * Req No

Input Objects L No No No

Input Sources L Yes Yes No

Library L Yes Yes No

Members L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C * Default Yes No

Note L No No Yes

NValue N Yes Yes No

Output Objects L No No No

Output Targets L * Auto
supplied

No No

Owner L No No No

Physical Storage L Yes Yes Yes

Process L * Default No Yes

Table Name C Yes Yes No

Using Jobs L No No No

Using WHTBLXFR

Add Update Delete

No Yes Yes

For a discussion of how you can use intermediate output tables, see “Reading Process
Flow Metadata” on page 62.

WHTBLXFR is a dependent type. To understand how all subtypes of WHTABLE
relate to other types, see the models in “Relationships Among Metadata Types” on page
53.

SAS/Warehouse Administrator Metadata Types � WHTFILE 267

WHTFILE

Base metadata type for text files

Category: Text File Types

Parent
“WHROOT” on page 226

Overview
WHTFILE is the base metadata type for text files in SAS/Warehouse Administrator.

Properties
The following table lists all of the properties for WHTFILE and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

268 WHTXTCAT � Chapter 3

Using WHTFILE

Add Update Delete

No No No

WHTFILE is a dependent type. To understand how all subtypes of WHTFILE relate
to other types, see the process model in “Relationships Among Metadata Types” on page
53.

WHTXTCAT

Base metadata type for SAS catalog entry text files

Category: Text File Types

Parent
“WHTFILE” on page 267

Overview
WHTXTCAT is the base metadata type for SAS catalog entry text files in
SAS/Warehouse Administrator.

Properties
The following table lists all of the properties for WHTXTCAT and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Cvalue C No No No

Desc C No No No

Entry C No No No

SAS/Warehouse Administrator Metadata Types � WHTXTFIL 269

Extended
Attributes

L No No Yes

Full Entry C No No No

Id C No No No

Library L No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

New properties for WHTXTCAT are as follows:

ENTRY
indicates the three-level name of the catalog entry that contains the text. An
example would be source.loadfile.source.

FULL ENTRY
indicates the four-level name of the catalog entry that contains the text. An
example would be libref.source.loadfile.source.

LIBRARY
specifies an SCL list of general identifying information about the SAS Library
(instance of type WHLIBRY) that contains this catalog.

Using WHTXTCAT

Add Update Delete

No No No

WHTXTCAT is a dependent type, like all of the subtypes of WHTFILE. To
understand how all subtypes of WHTFILE relate to other types, see the process model
in “Relationships Among Metadata Types” on page 53.

WHTXTFIL

Base metadata type for external text files

Category: Text File Types

Parent
“WHTFILE” on page 267

270 WHTXTFIL � Chapter 3

Overview

WHTXTFIL is the base metadata type for external text files in SAS/Warehouse
Administrator.

Properties

The following table lists all of the properties for WHTXTFIL and indicates how you can
use each property with metadata API methods.

In the table, you can pass properties with a Yes in the Add column to the
_ADD_METADATA_ method. Use this method to add a new object.

You can pass properties with a Yes in the Update column to the
_UPDATE_METADATA_ method. Use this method to update properties of an existing
object.

* Req indicates that the property is required; you must provide a value for this
property when you use a given method. * Default indicates that the system will provide
a default value for that property if you do not provide one.

Properties with a Yes in the Read Method Expand Parm column are valid with the
expand parameter of the _GET_METADATA_ method. This method enables you to get
detailed metadata about a property and its associated objects through a single method
call.

Properties Type Add Method Update Method Read Method
Expand Parm.

Access Method C No No No

Cvalue C No No No

Desc C No No No

Extended
Attributes

L No No Yes

Fileref C No No No

Id C No No No

Metadata Created C No No No

Metadata Updated C No No No

Name C No No No

Note L No No Yes

NValue N No No No

Options L No No No

Path L No No No

Using WHTXTFIL

Add Update Delete

No No No

SAS/Warehouse Administrator Metadata Types � WHTXTFIL 271

WHTXTFIL is a dependent type, like all subtypes of WHTFILE. To understand how
all subtypes of WHTFILE relate to other types, see the process model in “Relationships
Among Metadata Types” on page 53.

272

273

A P P E N D I X

1
Sample Metadata API Code

Appendix Overview 273
Read Metadata Code Sample 273

Write Metadata Code Sample 277

Appendix Overview

This appendix contains SCL code that uses the metadata API to access
SAS/Warehouse Administrator metadata. For longer examples, see the sample
metadata API applications in the SAMPSIO.DWADDIN catalog. That catalog includes
the BLDPAGE program, which reads metadata and outputs it in HTML format.

Read Metadata Code Sample

* Sample Read Metadata Program
* for SAS/Warehouse Administrator
*/

length primary_repos_id $ 8;
length sec_repos_id $ 8;
init:

/*
* Create an instance of the metadata API.
*/

i_api=instance(loadclass
(’SASHELP.METAAPI.METAAPI.CLASS’));
l_rc=0;

/*
* Access the SAS/Warehouse Administrator
* Sample repository.
*/

path="!SASROOT\whouse\dwdemo_master";
repos_type=’WHDWENV’;

/*
* Insert the Location information into the
* metadata list with
* a name of LIBRARY.

274 Read Metadata Code Sample � Appendix 1

*/
l_inmeta=makelist();
l_lib=makelist();
l_inmeta=insertl(l_inmeta,l_lib,-1,’LIBRARY’);

/*
* Use the default Libname Engine to
* access a Local Path.
*/

l_lib=insertc(l_lib,’ ’,-1,’ENGINE’);
l_path=makelist();
l_lib=insertl(l_lib,l_path,-1,’PATH’);
l_opts=makelist();
l_lib=insertl(l_lib,l_opts,-1,’OPTIONS’);
l_path=insertc(l_path,path,-1);

/*
* Set the primary repository. If a bad
* return code is returned,
* then we can’t continue.
*/

call send(i_api,’_SET_PRIMARY_REPOSITORY_’,
l_rc,l_inmeta, repos_type,primary_repos_id,l_meta);
l_inmeta=dellist(l_inmeta,’Y’);
if l_rc = 0 then do;

/*
* We were able to access the primary repository
* correctly.
*/
/*
* Get the list of available secondary repositories
* under this primary repository.
*
*/
l_reps=makelist();
l_meta=setniteml(l_meta,l_reps,’REPOSITORIES’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);
if l_rc = 0 then do;

num_reps=listlen(l_reps);
if num_reps > 0 then do;

/*
* If any secondary repositories, select one to set as
* the active one.
*/

l_sec_rep=getiteml(l_reps,1);
call send(i_api,’_SET_SECONDARY_REPOSITORY_’,l_rc,
l_sec_rep,sec_repos_id);

/*
* If l_rc = 0 then sec_repos_id contains the 8
* character repository id of this repository. This
* id is used as the first part of any identifiers that are used
* to access metadata in this secondary repository.
*/

if l_rc = 0 then do;
/*
* Get the List of Detail Tables in the secondary

Sample Metadata API Code � Read Metadata Code Sample 275

* repository.
*/
of_type=sec_repos_id||’.’||’WHDETAIL’;
l_tables=makelist();
call send(i_api,’_GET_METADATA_OBJECTS_’,l_rc,
of_type,l_tables);
num_tables=listlen(l_tables);
if num_tables > 0 and l_rc = 0 then do;

table_id=nameitem(l_tables,1);
table_name=getitemc(l_tables,1);
put ’Processing Table: ’ table_name;

/*
* Get the metadata about the Load Process that created
* this table. Note that this is an example of a
* selective query, for example preformat the input list with
* only the properties desired.
*/

get_all=0;
expand=0;
l_table_meta=makelist();
l_table_meta=insertc(l_table_meta,table_id,-1,’ID’);
l_table_meta=insertl(l_table_meta,0,-1,’PROCESS’);
call send(i_api,’_GET_METADATA_’,l_rc,l_table_meta);
if l_rc = 0 then do;

l_process_meta=getniteml(l_table_meta,’PROCESS’);
/*
* It is possible that the process has not yet been
* defined for this table. If this is the case, an
* empty list will be returned.
*/

if listlen(l_process_meta) > 0 then do;

/*
* Get all metadata known about this process by
* issuing a _GET_METADATA_ with the get_all
* parameter as 1.
*/

get_all=1;
expand=0;
call send(i_api,’_GET_METADATA_’,l_rc,
l_process_meta,get_all,expand);
if l_rc = 0 then do;

/*
* Perform some processing on the returned
* metadata list.
*/

end; /* if */
else do;

msg=getnitemc(l_rc,’MSG’);

276 Read Metadata Code Sample � Appendix 1

rc=getnitemn(l_rc,’RC’);
put msg;
put ’RC=’ rc;

end; /* else */

end; /* if */
end; /* if */
else do;

msg=getnitemc(l_rc,’MSG’);
rc=getnitemn(l_rc,’RC’);
put msg;
put ’RC=’ rc;
end; /* else */

/*
* Delete the table metadata list and all of its
* sublists.
*
* NOTE: Be extremely careful when using the DELLIST
* with the ’Y’ option.
*/

l_table_meta=dellist(l_table_meta,’Y’);
end; /* if */

else do;
if l_rc = 0 then do;

put ’No detail tables found.’;
end; /* if */

else do;
msg=getnitemc(l_rc,’MSG’);
rc=getnitemn(l_rc,’RC’);
put msg;
put ’RC=’ rc;
end; /* else */

end; /* else */

l_tables=dellist(l_tables);
end; /* if */

else do;
msg=getnitemc(l_rc,’MSG’);
rc=getnitemn(l_rc,’RC’);
put msg;
put ’RC=’ rc;
end; /* else */

end; /* if */
end; /* if */

else do;
msg=getnitemc(l_rc,’MSG’);
rc=getnitemn(l_rc,’RC’);
put msg;
put ’RC=’ rc;
end; /* else */

end; /* if */
else do;

Sample Metadata API Code � Write Metadata Code Sample 277

end; /* else */

return;

term:
/*
* Make sure to _TERM_ the api object
* so that an orderly clean up
* is performed.
*/

call send(i_api,’_TERM_’);
return;

Write Metadata Code Sample

/* Sample Write Metadata Program
* for SAS/Warehouse Administrator
*/
/* Insert code to instantiate the metadata API
* and attach to the primary and secondary
* metadata repositories.
*/
/*
* Add a new Detail Table.
*/

l_meta=makelist();

/*
* Set which group to add this new table to.
*/

l_groups=makelist();
l_group=makelist();

l_groups=insertl(l_groups,l_group,-1);

l_group=insertc(l_group,group_id,-1,’ID’);

l_meta=insertl(l_meta,l_groups,-1,’GROUP’);

/*
* Use the same repository id as the group.
*/

repos_id=scan(group_id,1,’.’);

new_type=repos_id||’.WHDETAIL’;

l_meta=insertc(l_meta,new_type,-1,’ID’);

278 Write Metadata Code Sample � Appendix 1

/*
* Set the name for the display.
*/

l_meta=insertc(l_meta,’NEW TABLE’,-1,’NAME’);

/*
* Set the desc for the display.
*/

l_meta=insertc(l_meta,’New table added
through API’,-1,’DESC’);

/*
* Set an icon for the display.
*/

l_meta=insertc(l_meta,’SASHELP.I0808.ADD.IMAGE’,
-1,’ICON’);

/*
* Define a column. The COLUMNS property
* contains a sublist
* per column.
*/

l_cols=makelist();
l_col=makelist();

l_cols=insertl(l_cols,l_col,-1);

l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);

col_id=repos_id||’.’||’WHCOLUMN’;

l_col=insertc(l_col,col_id,-1,’ID’);
l_col=insertc(l_col,’CUSTOMER’,-1,’NAME’);
l_col=insertc(l_col,’Name of Customer’,-1,
’DESC’);

l_col=insertc(l_col,’C’,-1,’TYPE’);
l_col=insertn(l_col,75,-1,’LENGTH’);

/*
* Add any additional properties.
* :
* :
*/

/*
* Add the table.
*/

Sample Metadata API Code � Write Metadata Code Sample 279

call send(i_api,’_ADD_METADATA_’,
l_rc,l_meta);

if l_rc = 0 then do;

put ’Table Added successfully’;

end; /* if */
else do;

msg=getnitemc(l_rc,’MSG’,1,1,
’ERROR: _ADD_METADATA_ FAILED’);
put msg;

list_rc=dellist(l_rc);

end; /* else */

l_meta=dellist(l_meta,’Y’);

280

281

A P P E N D I X

2
Metadata Type Inheritance Tree

SAS/Warehouse Administrator Metadata Type Inheritance Tree 281

SAS/Warehouse Administrator Metadata Type Inheritance Tree
The following figures illustrate the inheritance tree for SAS/Warehouse

Administrator metadata types.

282 SAS/Warehouse Administrator Metadata Type Inheritance Tree � Appendix 2

Figure A2.1 Metadata Type Inheritance Tree: Part 1

SAS/Warehouse Administrator Metadata Type Inheritance Tree

= dependent object

= independent object

WHROOT
API Root Class

WHCOLUMN
Column

WHCOLDTL
Detail Table Column

WHDBMS
Database Connection

WHHOST
Host

WHOBJECT
Explorer Object Root

WHPERSON
Person

WHTFILE
Text File

WHCOLODD
ODD Table Column

WHCOLSUM
Summary Table Col

WHCOLSCL
Summary Stat Col

WHCOLTIM
Detail Table Time Col

WHTABLE
Table

WHDW
Data Warehouse

WHDWENV
DW Environment

WHGRPDAT
Data Group

WHGRPINF
Infomart Group

WHGRPODD
ODD Group

WHGRPSUM Summary
Group

WHINFO
Infomart Item

WHSUBJCT
Subject

WHSUMDDB
SAS Summary MDDB

WHDATTBL
Data Table

WHDETAIL
Detail Table

WHLDETL
Logical Detail Table

WHODDTBL
ODD Table

WHODTTBL
Operational Data Table

WHSUMTBL
Summary Table

WHTXTFIL
External Text File

WHTXTCAT
Catalog Entry Text File

WHJOBFIL
Job Text File

WHNOTE
Note File

WHSRCCAT
Source Catalog File

WHDYNSRC
Dynamic Source File

WHPOBJCT
Process Job Object

WHJOB
Job

WHGRPJOB
Job Group

WHEVENT
Event WHCOLDAT

Data Table Column

WHINFOFL
Infomart FileWHCOLOLP

OLAP Column

WHOLPSTC
OLAP Structure

WHGRPOLP
OLAP Group

WHOLPTBL
OLAP Table

WHOLPMDD
OLAP MDDB

WHTBLMAP
Map Output

WHTBLPRC
Process Output Table

WHTBLREC
Record Select

WHTBLUSR
User Exit Output

WHTBLXFR
Data Transfer Output

WHSERV
Scheduling Server

WHSRVAT
NT AT Scheduling Server

WHSRVCRN
Cron Scheduling Server

WHSRVNUL
Null Scheduling Server

WHJOBCAT
Job Source Code File

WHSCRFIL
SAS/CONNECT Script

WHCOLSTM
Summary Time Col

Metadata Type Inheritance Tree � SAS/Warehouse Administrator Metadata Type Inheritance Tree 283

Figure A2.2 Metadata Type Inheritance Tree: Part 2

WHCTRNFM
Column Transformation

WHEFILE
External Data File

WHINDEX
Index

WHLIBRY
SAS Library

WHPHYSTR
Physical Storage

WHPROCES
Process

WHDBMSST
DBMS Physical Store

WHSASSTR
SAS Physical Store

WHDYNSAS
Dynamic SAS Store

WHPRCMAN
Main Process

WHPRCMAP
Mapping Process

WHPRCREC
Record Select Process

WHPRCUSR
User Exit Process

WHPRCXFR
Data Transfer Process

WHPRCLDR
Loader Process

WHLDRDAT
Data Table Loader

WHLDRDTL
Detail Table Loader

WHLDREXT
External File Loader

WHLDRINF
Infomart Item Loader

WHLDRLDT
Logical Detail Loader

WHLDRMDB
MDDB Loader

WHLDRODD
ODD Loader

WHLDRODT
ODT Loader

WHLDRSUM
Summary Table Loader

WHPRCSPR
Sub-Process

WHDYNLIB
Dynamic SAS Library

WHREPLIB
Repository Library

WHPRCPST
Post-Process

WHSUBSET
Subset Process

WHLDRIMF
Infomart File Loader

WHEXTATR
Extended Attribute

WHMDDSTR
OLAP MDDB Store

WHLDOTBL
OLAP Table Loader

WHLDOMDD
OLAP MDDB Loader

WHLDOPRX
OLAP Proxy Loader

WHOLAP
OLAP Object

WHOLPDIM
OLAP Dimension

WHOLPHIR
OLAP Hierarchy

WHOLPCRS
OLAP Crossing

WHOLPCUB
OLAP Cube

WHROWSEL
Row Selector

WHROOT
API Root Class

284

285

A P P E N D I X

3
Recommended Reading

Recommended Reading 285

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� Base SAS Procedures Guide
� Cody’s Data Cleaning Techniques Using SAS Software
� Getting Started with the SAS System in the MVS Environment

� SAS/CONNECT User’s Guide
� SAS/GRAPH Reference, Volumes 1 and 2
� SAS/STAT User’s Guide

� SAS/Warehouse Administrator User’s Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

Customers outside the United States should contact their local SAS office.

286

287

Glossary

application program interface (API) interpreter
specifies a program that translates the metadata type that is requested by a client to
the corresponding metadata object in a repository.

business metadata
represents text that describes the content or purpose of an application element. For
example, the business metadata for a SAS table might describe the purpose of the
table and contact information for the person who is responsible for the accuracy of
the information in the table.

component
indicates a set of related metadata types. Each component has an ID, such as
WHOUSE, and a name, such as SAS/Warehouse Administrator, that often matches
the name of the application whose metadata is modeled by the component. WHOUSE
is the component that is used for SAS/Warehouse Administrator.

contact records
indicates a metadata record that specifies the owner or administrator who is
responsible for a given warehouse element. An owner is a person who formulates
policy and makes decisions about an object. An administrator is a person who
implements decisions that are formulated by the owner in accordance with
established policy.

You can include contact records in the metadata for groups, data stores, processes,
jobs, and other objects in the current environment. They are part of the global
metadata for a warehouse environment.

Although contact records are not required for code generation, you might find
them essential for project management. They enable you to identify—and perhaps
programmatically contact—the people who are responsible for a given warehouse
element.

data file
represents a metadata record that specifies a SAS file that is an input to an ODD.

If you are defining an ODD whose Load Step is a DATA step view or an SQL view
(but not a Pass-Through view), you must define its inputs in the Process Editor. Even
if your ODD does not meet the conditions above, you might still want to specify a
process flow for this job for documentation purposes.

You can define a data file that simply registers the location of a SAS table or view
or are that registers the location of a DBMS table with the help of a DBMS

288 Glossary

LIBNAME definition. You can also define a data file that extracts information from a
data source, saves the results to a SAS table or view, and then specifies the location
of the extraction table or view.

Data files are added in the Process View of the Process Editor. In the process flow
for an ODD, you can add a data file by clicking the ODD (or the background) with
the right mouse button, selecting Add, and then New data file.

data group
specifies a simple grouping element for data tables, InfoMarts, and other data groups.

In the SAS/Warehouse Administrator Explorer, you can add a data group only to a
subject, a data warehouse, or another data group.

You could use a data group to implement a data mart.

data table
represents a metadata record that specifies a SAS table or view or a DBMS table or
view that can serve multiple purposes. Data tables are frequently used to define
intermediate data stores, such as look-up tables that are included as part of a join.
You can use them to define detail data stores, summary data stores (if you write your
own summary code and register it as the Load Step for the data table), or tables that
hold information that does not fit anywhere else.

In the SAS/Warehouse Administrator Explorer, you can add a data table to a data
group.

data transfer process
specifies a metadata record that is used to generate or retrieve a routine that moves
data from one host to another. Data transfers are required when an input source and
the target data reside on different hosts.

If SAS/Warehouse Administrator generates the code for a data transfer, it uses
SAS/CONNECT software and PROC UPLOAD or PROC DOWNLOAD to move the
data. This method is most easily applied to transfers between a local host (host
where SAS/Warehouse Administrator is installed) and a remote host.

If you need a remote-to-remote transfer, one solution is to specify a user-written
transfer routine in the metadata for the data transfer process. The SAS/Warehouse
Administrator User’s Guide might offer other solutions for remote-to-remote data
transfers.

Note: Data transfers always execute on the remote host (a host other than the
host where SAS/Warehouse Administrator is installed). �

A data transfer, like a mapping, a user exit, or record selector, is inserted in the
process flow for a data store.

data warehouse
represents a metadata record that specifies the SAS library _DWMD. The _DWMD
library is the metadata repository for most groups and data stores in a data
warehouse or a data mart at your site.

In the SAS/Warehouse Administrator Explorer, you can add a data warehouse
object only to a data warehouse environment.

DBMS connection profile
represents a metadata record that specifies a user name, a password, DBMS options,
and other information that SAS can use to access source data or warehouse data
stores in a database management system (DBMS) other than SAS. DBMS connection
profiles are included in the metadata records for DBMS data stores or DBMS
LIBNAME definitions in the current environment. DBMS connection profiles are
part of the global metadata for a warehouse environment.

If you want SAS/Warehouse Administrator to generate code that will access source
data in a DBMS or load warehouse data in a DBMS, you will probably need at least
one DBMS connection profile for each target DBMS.

Glossary 289

If you want to connect to the same DBMS but with different levels of privilege or
with different options, you need to create different DBMS connection profiles with
the appropriate user names, passwords, and options.

DBMS LIBNAME definition
specifies a special SAS library definition that you can use to extract source data in
DBMS format or to create warehouse data stores in a DBMS.

SAS/Warehouse Administrator uses a DBMS LIBNAME definition to generate a
SAS/ACCESS LIBNAME statement. Some of the metadata that you specify in the
definition corresponds to the options in the LIBNAME statement. For example, a
DBMS LIBNAME definition specifies a SAS/ACCESS engine—such as Oracle or
SYBASE—that enables you to access the corresponding DBMS as if it were a SAS
library.

A DBMS LIBNAME definition also specifies a DBMS connection profile, which
includes the DBMS user ID, password, server name, and other connection
information that is used to access the DBMS. These options are passed to DBMS
client software, which makes the connection to the DBMS.

DBMS LIBNAME definitions are part of the global metadata for a warehouse
environment. You can use DBMS LIBNAME definitions in ODDs to access source
data in DBMS format. By default, for new DBMS data stores, SAS/Warehouse
Administrator generates Load Steps that use SAS/ACCESS LIBNAME statements.

For details about the SAS/ACCESS LIBNAME statement, see SAS Language
Reference: Dictionary.

detail logical table
represents a metadata record that specifies a SAS table or view that can serve
multiple purposes. A detail logical table is often used to implement a view on
multiple, related detail tables. You can use detail logical tables as grouping elements
for detail tables or as detail data stores.

In the SAS/Warehouse Administrator Explorer, you can add a detail logical table
only to a subject. A subject can have only one detail logical table. A detail logical
table can contain any number of detail tables. Detail logical tables in different
subjects can share (link to) the same detail table.

detail table
indicates a metadata record that specifies a SAS table or view or a DBMS table or
view that serves as a detail data store.

In the SAS/Warehouse Administrator Explorer, you can add a detail table only to a
detail logical table. A detail logical table is often used to implement a view on
multiple related detail tables.

event
is a metadata record that specifies a condition for controlling a job, such as checking
for certain return codes or verifying the existence of a file. To use events, you must
create them, include them in a job flow, then write a metadata API program that
reads the job flow and generates code for it.

You can add a new event only in the Job Hierarchy view in the Process Editor. In
the Job Hierarchy view, an event can only be added to a data warehouse
environment, data warehouse, or a job group.

external file
specifies an input to an ODD that extracts information from one or more sources that
are not in SAS format. That is, an external file is an input to an ODD whose Load
Step is a DATA step view.

External files are added in the Process View of the Process Editor. In the process
flow for an ODD, you can add an external file by clicking the ODD (or the background)
with the right mouse button, selecting Add, and then New External File.

290 Glossary

If you are defining an ODD whose Load Step is a DATA step view or an SQL view
(but not a Pass-Through view), you must define its inputs in the Process Editor. Even
if your ODD does not meet the conditions above, you might still want to specify a
process flow for this job for documentation purposes.

host definition
indicates a metadata record that specifies a computer where data stores reside,
where processes and jobs execute, or where process output is sent. Host definitions
are included in the metadata records for data stores, processes, and scheduling
server definitions in the current environment. Host definitions are part of the global
metadata for a warehouse environment.

Host definitions are required in order to access source data and to load warehouse
data stores.

InfoMart
(also called an information mart) specifies a simple grouping element for InfoMart
items and InfoMart files.

Unlike most objects in SAS/Warehouse Administrator, InfoMart items and
InfoMart files are used to display information rather than store it. For example, you
might use an InfoMart item to display a chart that summarizes sales information
from a warehouse data store. Also you might use an InfoMart file to open a
spreadsheet that contains information that is useful to the person who is managing a
given warehouse environment.

In the SAS/Warehouse Administrator Explorer, you can add an InfoMart only to a
subject, a data group, or an ODD group.

InfoMart file
(also called an information mart file) indicates a metadata record that specifies a file
other than a SAS file that you want to register in a warehouse environment. The file
can be a spreadsheet, an HTML report, or any file that you can open using an
external application. InfoMart file metadata describes the location of an external file
and the technique for opening that file.

Unlike most objects in SAS/Warehouse Administrator, InfoMart files are used to
display information rather than store it. For example, you might use an InfoMart file
to open a spreadsheet that contains information that is useful to the person who is
managing a given warehouse environment.

In the SAS/Warehouse Administrator Explorer, you can add an InfoMart file to an
InfoMart.

InfoMart item
(also called an information mart item) indicates a metadata record that specifies a
routine that generates output from detail data stores or summary data stores in a
data warehouse. The output is usually a SAS chart, report, graph, or query result.

Unlike most objects in SAS/Warehouse Administrator, InfoMart items are used to
display information rather than store it. For example, you might use an InfoMart
item to display a chart that summarizes sales information from a warehouse data
store.

In the SAS/Warehouse Administrator Explorer, you can add an InfoMart item only
to an InfoMart.

job
indicates a metadata record that specifies the processes that create one or more data
stores (output tables).

A job must include a process flow if SAS/Warehouse Administrator will generate
the source code for the job. If you will supply the source code for a job, no process
flow is required, but you might want to create one for documentation purposes.

Glossary 291

A job might include scheduling metadata that enables the process flow or
user-supplied program to be executed in batch mode at a specified date and time. A
job might also include a job flow.

load process
specifies a metadata record that is used to generate or retrieve a routine that puts
data into a specified target object. After you define the metadata for a given data
store, you must define a load process, which creates and loads the data store.

To define a load process for a given data store, display that data store in the
Process View of the Process Editor, click its icon with the right mouse button, and
select Edit Load Step.

metadata
specifies information that is internal to an application that describes elements in the
application, such as tables and columns. There are two main kinds of metadata:
physical metadata and business metadata. See also business metadata and physical
metadata.

Most SAS/Warehouse Administrator metadata contains information about data
sources, data stores, and the jobs that extract, transform, and load source data into
the warehouse data stores. SAS/Warehouse Administrator metadata is stored in two
or more metadata repositories.

metadata application program interface (API)
specifies a set of software tools that enable programmers to write applications that
access metadata. The SAS/Warehouse Administrator metadata API enables you to
access metadata in SAS/Warehouse Administrator.

metadata client
indicates an application that uses metadata API methods to read or write metadata.
For the current release of the SAS metadata API, metadata clients must be written
in SCL.

metadata object
represents an instance of a metadata type—the metadata for an element in an
application, such as a table or column.

metadata property list
specifies a list of properties for a given metadata type that you pass to a metadata
API method or a list of properties that a metadata API method returns to you.

metadata repository
indicates a data store that contains an application’s metadata.

metadata type
represents a template that models the metadata for a particular kind of object in an
application. The parameter list for a metadata type matches the items of metadata
that are maintained for the corresponding object.

ODD
(operational data definition) specifies a metadata record that provides access to data
sources. The ODDs, in turn, are used as inputs to detail data stores in a warehouse
environment.

At a minimum, in order for a data source to be visible in a warehouse environment,
you must specify the location of that data source in an ODD. You can define an ODD
that simply registers the location of a SAS table or view or one that registers the
location of a DBMS table with the help of a DBMS LIBNAME definition. You can
also define an ODD that extracts information from a data source, saves the results to
a SAS table or view, and then specifies the location of the extraction table or view.

In the SAS/Warehouse Administrator Explorer, you can add an ODD only to an
ODD Group.

292 Glossary

ODD group
specifies a simple grouping element for ODDs. It might also contain InfoMarts.

In the SAS/Warehouse Administrator Explorer, you can add an ODD group only to
a warehouse environment.

OLAP group
(online analytical processing group) organizes related summary data, which is stored
in OLAP tables or OLAP MDDBs. The OLAP group properties specify the logical
structure of the summarized data and how they relate to the detail data in a data
warehouse. OLAP groups have a type attribute, which you specify as: ROLAP,
MOLAP, HOLAP, or MIXED.

In the SAS/Warehouse Administrator Explorer, you can add an OLAP group only
to a subject.

OLAP MDDB
indicates a metadata record that specifies a SAS MDDB. A SAS MDDB is not a SAS
table. It is a specialized storage format that stores derived summary data in a
multidimensional form, which is a highly indexed and compressed format. To load an
OLAP MDDB, SAS/Warehouse Administrator generates code for the MDDB
procedure, which summarizes data similar to the SUMMARY procedure.

OLAP MDDBs are the only kind of data stores in an OLAP group of type MOLAP.
You can include OLAP MDDBs in an OLAP group of type HOLAP or MIXED.

Each MDDB in an OLAP group of type MOLAP must have an NWAY crossing that
represents all of the data summarized to the lowest level, and it must be named
NWAY. The MDDB can also contain additional crossings.

In the SAS/Warehouse Administrator Explorer, you can add an OLAP MDDB only
to an OLAP group.

OLAP table
indicates a metadata record that specifies a file to store derived summary data. This
file can be a SAS table or view or a DBMS table or view. An OLAP table can have
multiple crossings.

To load an OLAP table, SAS/Warehouse Administrator generates code for the
SUMMARY procedure, which summarizes data by computing descriptive statistics
for columns across rows or within groups of rows.

OLAP tables are the only kind of tables in an OLAP group of type ROLAP. You can
include OLAP tables in an OLAP group of type HOLAP or MIXED.

In the SAS/Warehouse Administrator Explorer, you can add an OLAP table only to
an OLAP group.

physical metadata
specifies a set of software instructions that describes an application element. For
example, the physical metadata for a SAS table might specify a certain number of
rows and columns, with certain transformations applied to some of the columns.

process
specifies a metadata record that is used to generate or retrieve a routine that creates
warehouse data stores extracts data, transforms data, or loads data into data stores.
Mappings, user exits, data transfers, record selectors, and load steps are all processes.

Each process that you define in the Process View of the Process Editor generates
or retrieves code. SAS/Warehouse Administrator can generate source code for any
process except a user exit or an ODD load step. However, you can specify a
user-written routine for any process.

record selector process
specifies a metadata record that is used to generate or retrieve a routine that subsets
data prior to loading it to a specified table.

Glossary 293

Note: In the current release, you can use a record selector only to subset the
source data that is specified in an ODD or in a data file (which is an input to an
ODD). �

A record selector process, like a mapping process, a user exit process, or a data
transfer process, is inserted in the process flow for a data store.

SAS library definition
specifies a metadata record for a SAS library that contains data, views, source code,
or other information that is used in the current warehouse environment. SAS library
definitions are included in the metadata records for data stores, processes, and jobs
in the current environment. Library definitions are part of the global metadata for a
warehouse environment.

Library definitions are required in order to access source data and to load
warehouse data stores.

Note: A SAS library definition does not include a host definition. In a separate
task, you must create a host definition for the host where the library will reside. In
the metadata for data stores and other objects, you must specify both the library
definition and the host definition for the computer where the library resides. �

See also: DBMS LIBNAME definition.

scheduling server definitions
indicates a metadata record that specifies a scheduling server application (such as
CRON under UNIX System V), a host definition for the computer where the
scheduling server runs, directories where the scheduling server can send temporary
files, the commands that are used to start SAS on the scheduling server host, and the
default job-tracking option for jobs that use this scheduling server definition.

Scheduling server definitions are part of the global metadata for a warehouse
environment. They are required if you want SAS/Warehouse Administrator to
generate the code to schedule a job.

subject
specifies a grouping element for data that is related to one topic within a data
warehouse. For example, a data warehouse for a company might have a subject that
is called Products (information related to company products) or Sales (information
related to company sales). Each subject can be composed of a number of different
data collections: detail data, summary data, charts, reports, or graphs.

In the SAS/Warehouse Administrator Explorer, you can add a subject only to a
data warehouse.

user exit process
specifies a metadata record that is used to retrieve a user-written routine. You must
store the routine in a SAS catalog with an entry type of SOURCE or SCL. A user exit
routine often extracts or transforms information for a warehouse data store, but it
could do many other tasks.

A user exit, like a mapping, a data transfer, or a record selector, is inserted into
the process flow for a data store.

warehouse environment
indicates a metadata record that specifies the SAS library _MASTER. The _MASTER
library is the metadata repository for host definitions and other global metadata that
is shared among one or more data warehouses and ODD groups.

On the SAS/Warehouse Administrator desktop, environments are displayed as
icons. The default icons are green cylinders.

To open an environment in the SAS/Warehouse Administrator Explorer, on the
desktop, put the cursor on the environment icon, click your right mouse button and
select Edit from the pop-up menu.

294 Glossary

In the Explorer, the environment that you opened from the desktop is the top-most
object.

295

Index

A
ACCESS information support 106
ACCESS METHOD property 110
ACCESS SAME AS PHYSICAL property 255
ACTIVE REPOSITORIES property 105
ACTUAL END DATE property 140
ACTUAL START DATE property 140
_ADD_METADATA_ method 17
ADDRESS property 203
ADMINISTERED OBJECTS property 203
ADMINISTRATOR property

WHOBJECT type 183
WHPOBJCT type 206
WHPROCES type 224

administrators
identifying 202

AGGREGATION LEVEL property 253
ALIAS property 84
attaching repositories 40

primary 40
secondary 43

B
business metadata 4

C
catalog entries

source code files 236
text files 268

classes 13, 14
location 12

_CLEAR_SECONDARY_REPOSITORY_ method 20
CLUSTERED property 130
column definitions

deleting 21
column information, returning 26
column mapping

See mapping columns
column transformations 89
columns

base metadata type 83, 87
indexes 129
mapping to tables 211

COLUMNS property
WHINDEX type 130
WHOLPCRS type 191

WHOLPHIR type 195
WHSUMDDB type 250
WHTABLE type 255

COMAMID property 128
COMMAND property

WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 243

components listing 23
CONNECTION OPTIONS property 95
CREATES DATA property 260
CREATING JOB property

WHEFILE type 111
WHINFO type 133
WHINFOFL type 137
WHSUMDDB type 250
WHTABLE type 255

crossings 190
OLAP 188, 190

CROSSINGS property
WHCOLOLP type 80
WHOLPSTC type 199

CUBE property 200
cubes 191
CVALUE property 226

D
Data Files

See ODTs
data groups 116
data mapping

See mapping columns
See mapping data

data mapping processes 211
data stores 138

See also repositories
creating 138
DBMS physical stores 97
OLAP MDDB physical stores 178
SAS physical stores 107, 231

data tables
columns 74
load processes 155
mapping columns to 211
WHDATTBL type 92

data transfer processes 221
data warehouses 101

296 Index

DATABASE property
WHDBMSST type 98
WHLIBRY type 176

DBMS 94
connection definitions 94
physical stores 97

DBMS LIBNAME property 176
_DELETE_METADATA_ method 21
dependent metadata objects 53
DESC property 8, 227
detaching repositories 20
detail logical tables

load processes 165
WHLDETL type 146

detail tables
adding 17, 148
columns 75
deleting 148
linking 148
load processes 157
mapping columns to 211
unlinking 148
WHDETAIL type 99

dimensions 193
OLAP 188, 193

dynamic SAS libraries 106
dynamic SAS physical stores 107
dynamic source code entries 108

E
EMAIL ADDRESS property 203
ENGINE property 176
ENTRY property

WHINFO type 133
WHTXTCAT type 269

environments 104
events 112
Explorer objects

writing 59
EXTENDED ATTRIBUTE property 113
extended attributes

adding 47
metadata type for 113

EXTENDED ATTRIBUTES property 227
reading 116

external file load processes 159
external file objects 109
external files 109

Job Scheduler entries 145
text files 270

EXTERNAL JOB IDENTIFYING property 140

F
FILE TYPE property 137
FILEREF property 111
files

registering 135
FISCAL DAY OF MONTH property

WHSUMDDB type 250
WHSUMTBL type 253

FISCAL DAY OF WEEK property
WHSUMDDB type 250
WHSUMTBL type 253

FISCAL MONTH OF YEAR property
WHSUMDDB type 250
WHSUMTBL type 253

FISCAL TIME OF DAY property
WHSUMDDB type 250
WHSUMTBL type 253

FORMAT property 88
FULL ENTRY property

WHINFO type 133
WHTXTCAT type 269

G
general identifying information 7

DESC property 8
ID property 7
NAME property 8

general metadata type model 53
GENERATED SOURCE CODE property

WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 243

_GET_COMPONENTS_ method 23
_GET_CURRENT_REPOSITORIES_ method 24
_GET_METADATA_ method 25
_GET_METADATA_OBJECTS_ method 28
_GET_SUBTYPES_ method 31
_GET_TYPE_NAME_ method 35
_GET_TYPE_PROPERTIES_ method 36
_GET_TYPES_ method 33
GROUP property 183
groups

See also environments
See also warehouses
data groups 116
job groups 120
ODD groups 121
OLAP groups 79, 123, 198
summary groups 125

H
hierarchies 194
HIERARCHIES property 80
HOLAP processing 123
host definitions 127
host metadata type model 54
HOST property

WHDBMSST type 98
WHEFILE type 111
WHINFO type 133
WHPROCES type 224
WHSASSTR type 232
WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 243
WHSUMDDB type 250
WHTABLE type 256

I
icon information 69
ICON property

WHEFILE type 111
WHHOST type 128
WHLIBRY type 177

Index 297

WHOBJECT type 184
WHPERSON type 204
WHPOBJCT type 206
WHSERV type 236

ID property 7, 227
independent metadata objects 53
indexes 129
INDEXES property

WHCOLUMN type 88
WHPHYSTR type 205

InfoMart file load processes 161
InfoMart files 135
InfoMart item load processes 163
InfoMart items 131
InfoMarts 118
INFORMAT property 88
inheritance 52
inheritance tree 281
INPUT OBJECTS property 64

WHCOLUMN type 88
WHCTRNFM type 91
WHEFILE type 111
WHEVENT type 113
WHINFO type 133
WHJOB type 140
WHROWSEL type 230
WHSUBSET type 247
WHSUMDDB type 250
WHTABLE type 256

INPUT properties 64
INPUT SOURCES property 64

WHCOLUMN type 88
WHCTRNFM type 91
WHEFILE type 111
WHEVENT type 113
WHINFO type 133
WHJOB type 140
WHROWSEL type 230
WHSUBSET type 248
WHSUMDDB type 251
WHTABLE type 256

input tables 64
INPUT TABLES property 140
instanceid 8
intermediate output tables 63

from column mapping 257
from data transfer processes 265
from processes 259
from record selector processes 261
from user exit processes 263
WHTBLPRC subtypes 63

IS ACTIVE property 218
_IS_SUBTYPE_OF_ method 38

J
job flow, displaying

See Process Editor
job flow metadata 66
job groups 120
job hierarchy metadata 68
JOB IDENTIFYING property 140
JOB INFO LIBRARY property

WHDW type 102
WHDWENV type 105

job metadata
input/output tables 64
reading 65

JOB ROLE property
WHJOBCAT type 144
WHJOBFIL type 146

Job Scheduler utility 235
base metadata type for 235
catalog source file entries 143
external file entries 145

job type model 65
JOB TYPE property 140
jobs 65, 120

catalog entries 143
conditional processing 112
events 67, 112
WHJOB type 138

JOBS property
WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 243

L
LENGTH property 88
LIBRARIES property 96
LIBRARY property

WHDBMSST type 98
WHDW type 102
WHDWENV type 105
WHINFO type 133
WHSASSTR type 232
WHSUMDDB type 251
WHTABLE type 256
WHTXTCAT type 269

LIBREF property 177
LIST property 140
LISTING FOR SPECIFIC METADATA TYPES prop-

erty 36
LOAD OPTIONS property

WHLDOTBL type 154
WHPRCLDR type 208

load process options 3
load processes 149

data tables 155
detail logical tables 165
detail tables 157
external files 159
InfoMart file 161
InfoMart item 163
MDDBs, OLAP 149
MDDBs, SAS 167
ODDs 169
ODT 171
OLAP proxy 151
OLAP table 153
post-load processes 213
summary table 173
tables 207

LOAD TECHNIQUE property 205
loadable tables 63
_LOADTM columns 85
LOCAL WORK DIRECTORY property

WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 243

298 Index

LOCALE property 128
LOCATION property 137
LOG FILENAME property

WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 244

LOG property 140

M
main processes 210
mapping columns 58

column transformations 89
intermediate output tables 257
ODD to detail model 58
to data tables 211
to detail tables 211
to OLAP MDDBs 211
to OLAP tables 211
to tables 211

mapping data 89, 211
associated subsetting processes 246
column transformations 89
data mapping processes 211
intermediate output tables 257

MAPPING property 91
MAPPING TYPE property 91
MDDBs 83

See also OLAP MDDBs
base metadata type 83
load processes 167
metadata type for statistics columns 81
SAS MDDBs 167, 248

MEMBERS property 184
metadata 4

adding to repositories 17
deleting from repositories 21
identifying 7
updating 46

metadata, reading
examples 8, 273
from repositories 25
job flow metadata 66
job hierarchy metadata 68
job metadata 65
process flow metadata 62

metadata, writing 59
example 277
write methods 59

metadata API 5
how it works 5
learning to use 12
listing components 23
uses for 5

metadata API classes
See classes

metadata API methods
See methods

METADATA CREATED property 227
metadata object instance ID 8
metadata objects 53

listing 28
literal identification 8

metadata repositories
See primary repositories
See repositories

See secondary repositories
metadata repository ID 7
metadata repository types 52
metadata type inheritance 52
metadata type names 35
metadata types 51, 52

column mapping, ODD to detail model 58
general metadata type model 53
groups and members hierarchy 59
host metadata type model 54
icon information 69
index to 70
input/output tables 64
INPUT properties 64
input tables 64
intermediate output tables 63
job and event relationships 67
job type model 65
listing 29, 33
listing properties for 36
loadable tables 63
OLAP metadata type model 58
OUTPUT properties 64
output tables 64
physical storage metadata type models 57
process objects 64
process type model 56
properties 36
reading job flow metadata 66
reading job hierarchy metadata 68
reading job metadata 65
reading process flow metadata 62
relationships among 53
root type for 226
subtypes 31, 38
table process metadata type model 55
table property metadata type model 55
WHJOB 64
WHPROCES subtypes 64
WHTABLE subtypes 63
WHTBLPRC subtypes 63
writing Explorer objects 59
writing metadata 59

METADATA UPDATED property 227
methods 14

_ADD_METADATA_ 17
_CLEAR_SECONDARY_REPOSITORY_ 20
conventions 14
_DELETE_METADATA_ 21
error codes 14
_GET_COMPONENTS_ 23
_GET_CURRENT_REPOSITORIES_ 24
_GET_METADATA_ 25
_GET_METADATA_OBJECTS_ 28
_GET_SUBTYPES_ 31
_GET_TYPE_NAME_ 35
_GET_TYPE_PROPERTIES_ 36
_GET_TYPES_ 33
_IS_SUBTYPE_OF_ 38
management 16
metadata property list 14, 15
navigation 16
passing properties 14
read 16
repository 16
_SET_PRIMARY_REPOSITORY_ 40

Index 299

_SET_SECONDARY_REPOSITORY_ 43
_UPDATE_METADATA_ 46
write 16

MIXED processing 123
MOLAP processing 123
multidimensional data sources 191

N
NAME property 8

WHPERSON type 204
WHROOT type 227

NICKNAME property 96
NOTE property 227
notes 179

creating 182
reading 180
updating 181

null scheduling server 242
NVALUE property 227

O
OBJECT property 115
objects 185
ODD groups 121
ODD load processes 169
ODDs 121, 184

external file objects 109
metadata type for 184
table columns 77

ODTs 186
load processes 171
metadata type for 186

OLAP 79
columns 79
crossings 188, 190
cubes 191
dimensions 188, 193
groups 79, 123, 198
hierarchies 188, 194

OLAP GROUPS property 189
OLAP MDDBs 211

load processes 149
mapping columns to 211
physical stores 178
WHCOLOLP type 79
WHOLPMDD type 196
WHOLPSTC type 198

OLAP MEMBERS property 189
OLAP metadata type model 58
OLAP objects

writing 3
OLAP proxy load processes 151
OLAP STRUCTURE property

WHOLPCRS type 191
WHOLPCUB type 192

OLAP table load processes 153
OLAP tables

mapping columns to 211
WHCOLOLP type 79
WHOLPSTC type 198
WHOLPTBL type 200

OLAP TYPE property 200
Online Analytical Processing

See OLAP

operating system
retrieving 3

OPERATING SYSTEM property 128
Operational Data Definitions

See ODDs
Operational Data Tables

See ODTs
OPTIONS property

WHEFILE type 111
WHINDEX type 130
WHLIBRY type 177
WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 244

OUTPUT OBJECTS property 64
WHCOLUMN type 88
WHCTRNFM type 91
WHEFILE type 111
WHEVENT type 113
WHINFO type 134
WHJOB type 140
WHROWSEL type 230
WHSUBSET type 248
WHSUMDDB type 251
WHTABLE type 256

OUTPUT properties 64
output tables 64
OUTPUT TABLES property

WHJOB type 140
WHPRCMAN type 211
WHROWSEL type 230

OUTPUT TARGETS property 64
WHCOLUMN type 88
WHCTRNFM type 91
WHEFILE type 111
WHEVENT type 113
WHINFO type 134
WHJOB type 140
WHROWSEL type 230
WHSUBSET type 248
WHSUMDDB type 251
WHTABLE type 256

OWNED OBJECTS property 204
OWNER property

WHOBJECT type 184
WHPOBJCT type 206
WHPROCES type 224

owners 202

P
partitioned metadata repositories 10
PASSWORD property 96
passwords

TABLE OPTIONS property and 232
PATH property

WHEFILE type 111
WHLIBRY type 177

person records 202
PHONE property 204
physical metadata 4
physical storage metadata type models 57
physical storage objects 204
PHYSICAL STORAGE property

WHINDEX type 130
WHTABLE type 256

300 Index

physical stores
See repositories

post-load processes 213
PREASSIGNED property 177
primary repositories 10

attaching 40
listing currently active 24
listing secondary repositories 41

PRINT FILENAME property
WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 244

Process Editor 61
process flow, displaying

See Process Editor
process flow metadata

reading 62
PROCESS GROUPS property

WHDW type 102
WHDWENV type 105
WHPOBJCT type 207

PROCESS MEMBERS property
WHDW type 102
WHDWENV type 105
WHPOBJCT type 207

process objects 64
PROCESS property

WHEFILE type 111
WHINFO type 134
WHPRCPST type 215
WHPRCSPR type 218
WHROWSEL type 230
WHSUBSET type 248
WHSUMDDB type 251
WHTABLE type 256

process type model 56
processes 62

See also load processes
base metadata type for 223
data mapping 211
data transfer 221
record selector 215
subprocesses 217
user exit 219

PROCESSES property 128
properties

listing 36

R
record selector processes 215
RECURRING MONTH DAYS property 140
RECURRING MONTHS property 141
RECURRING WEEK DAYS property 141
REMOTE ADDRESS property 128
REMOTE property 146
REMOTE WORK DIRECTORY property

WHSRVAT type 239
WHSRVCRN type 241
WHSRVNUL type 244

reposid 7
repositories 10

See also data stores
adding metadata 17
attaching 40, 43
deleting metadata 21

detaching 20
listing currently active 24
metadata repository types 52
metadata type for 225
organization of 10
partitioned repositories 10, 11
reading metadata 25
setting the active repository 11
stand-alone 10
updating metadata 46
WHDW 52
WHDWENV 52

REPOSITORIES property 105
RESOLVED VIEW CODE property

WHDATTBL type 93
WHINFO type 134
WHINFOFL type 137

RESPONSIBILITY property
WHJOB type 141
WHJOBCAT type 144
WHPROCES type 224

RETURN CODE property 141
ROLAP processing 123
ROW SELECTOR property 258
row selectors 228
RUN COMMAND property 141

S
SAS/CONNECT script files 233
SAS libraries

WHDYNLIB type 106
WHLIBRY type 175

SAS MDDBs 248
load processes 167

SAS physical stores 231
SAS summary MDDBs 248
SAS version

retrieving 3
SAS VERSION property 128
SAS/Warehouse Administrator metadata API

See metadata API
SAS/Warehouse Administrator objects 182
SASHELP.METAAPI catalog 12
SCHEDULED START DATE property 141
schedulers

See also Job Scheduler utility
catalog source file entries 143
external file entries 145
null scheduling server 242
SCHEDULING SERVER property 141
UNIX Cron scheduling server 240
Windows NT AT Interface scheduling server 238

SCHEDULING SERVER property 141
SCRIPT property 128
secondary repositories 10

attaching 43
detaching 20
listing 41

secure applications 232
SELECTION TYPE property 230
_SET_PRIMARY_REPOSITORY_ method 40
_SET_SECONDARY_REPOSITORY_ method 43
setting repositories 20, 40
SLISTS 12
SORT ORDER property 80

Index 301

SOURCE CODE property
WHCTRNFM type 91
WHHOST type 128
WHJOB type 141
WHPRCMAN type 211

SOURCE FILE property
WHJOB type 141
WHPRCMAN type 211
WHPRCPST type 215

SOURCE TEXT property
WHCTRNFM type 91
WHROWSEL type 230
WHSUBSET type 248

stand-alone metadata repositories 10
STATISTIC property 80
STATISTIC TYPE property 82
statistics columns 81
STATUS property 142
STEP SOURCE CODE property

WHJOB type 142
WHPROCES type 224

subjects 244
subprocesses 217
SUBPROCESSES property 211
subsetting data 215, 246
subsetting process 246
subtypes

determining 38
getting, for specified metadata type 31
WHPROCES 64
WHTABLE 63
WHTBLPRC 63

summary groups 125
SUMMARY ROLE property

WHCOLOLP type 80
WHCOLSUM type 84

summary tables
load processes 173
WHCOLSCL type 81
WHSUMTBL type 251

SYSIN FILENAME property
WHSRVAT type 239
WHSRVCRN type 242
WHSRVNUL type 244

SYSIN property 142

T
TABLE NAME property

WHPHYSTR type 205
WHSUMDDB type 251
WHTABLE type 256

TABLE OPTIONS property
WHDBMSST type 98
WHSASSTR type 232

table process metadata type model 55
TABLE property

WHCOLUMN type 88
WHPHYSTR type 205

table property metadata type model 55
tables

ACCESS information support 106
adding columns 47
base metadata type for 254
getting information about 26
indexes 129

input tables 64
job metadata, input/output tables 64
load processes 207
loadable tables 63
output tables 64
physical information support 106
post-load processes 213
subsetting data for 215
timestamping rows 85
without Physical Storage tabs 106

tables, temporary
See intermediate output tables

TABLES property
WHDBMS type 96
WHHOST type 128
WHLIBRY type 177

text files 267
timestamping table rows 85
TITLE property 204
TRACKING EPILOG property 142
TRACKING PROLOG property 142
TRACKING property

WHJOB type 142
WHSRVAT type 239
WHSRVCRN type 242
WHSRVNUL type 244

TRANSFORMATIONS property 213
TYPE property

WHCOLUMN type 88
WHEXTATR type 115

U
UNIQUE property 131
UNIX Cron scheduling server 240
_UPDATE_METADATA_ method 46
USE SCRIPT property 128
USER EPILOG property 142
user exit processes 219
USER PROLOG property 142
USERID property 96
USERPE property 142
USING JOBS property 256

V
VALUE property 115
VIEW CODE property

WHDATTBL type 93
WHINFO type 134
WHINFOFL type 137

W
warehouse environments 104
warehouses 101
WHCOLDAT type 74
WHCOLDTL type 75
WHCOLODD type 77
WHCOLOLP type 79
WHCOLSCL type 81
WHCOLSUM type 83
WHCOLTIM type 85
WHCOLUMN type 87
WHCTRNFM type 89
WHDATTBL type 92

302 Index

WHDBMS type 94

WHDBMSST type 97

WHDETAIL type 99
WHDW type 101

WHDWENV type 104
WHDYNLIB type 106

WHDYNSAS type 107

WHDYNSRC type 108
WHEFILE type 109

WHEVENT type 112
WHEXTATR type 113

WHGRPDAT type 116
WHGRPINF type 118

WHGRPJOB type 120

WHGRPODD type 121
WHGRPOLP type 123

WHGRPSUM type 125
WHHOST type 127

WHINDEX type 129
WHINFO type 131

WHINFOFL type 135

WHJOB type 138
WHJOBCAT type 143

WHJOBFIL type 145
WHLDETL type 146

WHLDOMDD type 149
WHLDOPRX type 151

WHLDOTBL type 153

WHLDRDAT type 155
WHLDRDTL type 157

WHLDREXT type 159
WHLDRIMF type 161

WHLDRINF type 163
WHLDRLDT type 165

WHLDRMDB type 167

WHLDRODD type 169
WHLDRODT type 171

WHLDRSUM type 173
WHLIBRY type 175

WHMDDSTR type 178

WHNOTE type 179
WHOBJECT type 182

WHODDTBL type 184
WHODTTBL type 186

WHOLAP type 188

WHOLPCRS type 190

WHOLPCUB type 191

WHOLPDIM type 193
WHOLPHIR type 194

WHOLPMDD type 196
WHOLPSTC type 198

WHOLPTBL type 200

WHPERSON type 202
WHPHYSTR type 204

WHPRCLDR type 207
WHPRCMAN type 210

WHPRCMAP type 211
WHPRCPST type 213

WHPRCREC type 215

WHPRCSPR type 217
WHPRCUSR type 219

WHPRCXFR type 221
WHPROCES subtype 64

WHPROCES type 223
WHREPLIB type 225

WHROOT type 226

WHROWSEL type 228
WHSASSTR type 231

WHSCRFIL type 233
WHSERV type 235

WHSRCCAT type 236
WHSRVAT type 238

WHSRVCRN type 240

WHSRVNUL type 242
WHSUBJCT type 244

WHSUBSET type 246
WHSUMDDB type 248

WHSUMTBL type 251
WHTABLE subtype 63

WHTABLE type 254

WHTBLMAP type 257
WHTBLPRC subtype 63

WHTBLPRC type 259
WHTBLREC type 261

WHTBLUSR type 263

WHTBLXFR type 265
WHTFILE type 267

WHTXTCAT type 268
WHTXTFIL type 270

Windows NT AT Interface scheduling server 238

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

	Contents
	Introduction to the Metadata API
	Changes and Enhancements
	Prerequisites
	What is Metadata?
	What is the SAS/Warehouse Administrator Metadata API?
	What Can I Do with the SAS/Warehouse Administrator Metadata API?
	How the Metadata API Works
	Identifying Metadata
	Reading Metadata: A Simple Example
	Metadata Repositories
	Setting the Active Metadata Repository

	Learning to Use the Metadata API
	Naming Conventions Used in This Manual
	Where Metadata API Classes and SLISTS are Stored

	Metadata API Class
	Overview of the Metadata API Class
	Using the Metadata API Class
	Introduction to Metadata API Methods
	Conventions
	Error Codes
	Metadata Property List

	Index to Metadata API Methods

	SAS/Warehouse Administrator Metadata Types
	Overview of SAS/Warehouse Administrator Metadata Types
	What Is a Metadata Type?
	Metadata Repository Types

	Metadata Type Inheritance
	Using Metadata Types
	Relationships Among Metadata Types
	Writing Metadata
	Overview of the Process Editor
	Reading Process Flow Metadata
	Input Tables, Output Tables, and Job Metadata
	Reading Job Metadata
	Reading Job Flow Metadata
	Reading Job Hierarchy Metadata
	Using Icon Information

	Index to SAS/Warehouse Administrator Metadata Types
	Using the Metadata Type Dictionary
	General Identifying Information

	Sample Metadata API Code
	Appendix Overview
	Read Metadata Code Sample
	Write Metadata Code Sample

	Metadata Type Inheritance Tree
	SAS/Warehouse Administrator Metadata Type Inheritance Tree

	Recommended Reading
	Recommended Reading

	Glossary
	Index

