
SAS ® 9.2
VSAM Processing for z/OS

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 VSAM Processing for z/OS. Cary, NC: SAS Institute Inc.

SAS® 9.2 VSAM Processing for z/OS
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-534-7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
IBM® and all other International Business Machines Corporation product or service
names are registered trademarks or trademarks of International Business Machines
Corporation in the USA and other countries.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

P A R T 1 SAS 9.2 VSAM Processing: Overview and Techniques 1

Chapter 1 � The Virtual Storage Access Method (VSAM) 3
What is Virtual Storage Access Method (VSAM)? 3

VSAM Data Access Types 9

Chapter 2 � SAS Options and Variables for VSAM Processing 13
Introduction to SAS Options and Variables for VSAM Processing 13

Using SAS System Options 13

Using SAS Automatic Variables 14

Standard SAS INFILE Options 14

Special SAS Options for VSAM 16

Using the Special SAS Options 20

VSAM Option for the FILENAME Statement 22

Chapter 3 � Accessing VSAM Data Sets 23
Accessing VSAM Data Sets 24

Reading a VSAM File 24

Writing to an Empty VSAM File 24

Updating a VSAM Data Set 24

Using Record-Level Sharing with VSAM 25

Extended-Format VSAM Data Sets 25

VSAM Options for the FILE and INFILE Statements 25

Chapter 4 � Processing VSAM Data Sets in SAS Programs 29
Determining the Type of an Existing Data Set 30

Referring to VSAM Data Sets 30

Operations on VSAM Data Sets in SAS Programs 30

Reading Records from a VSAM Data Set 32

Adding Records to a VSAM Data Set 33

Updating Records in VSAM Data Sets 34

Erasing Records from a VSAM Data Set 35

Combined Operations 36

Examples of Using VSAM Data in SAS Programs 36

Chapter 5 � Defining and Loading a VSAM Data Set 45
Defining a VSAM Data Set 45

Loading Records into a VSAM Data Set 47

Chapter 6 � Processing an ESDS in a SAS Job 51

iv

Introduction to ESDS 51

Special SAS Options Used with an ESDS 52

Reading Records from an ESDS 52

Adding Records to an ESDS 54

Updating Records in an ESDS 56

Combined Operations on an ESDS 57

Adding Records after Reading 58

Chapter 7 � Processing a KSDS in a SAS Job 59
Introduction to KSDS 59

Special SAS Options Used with a KSDS 60

Reading Records from a KSDS 61

Adding Records to a KSDS 68

Updating Records in a KSDS 69

Erasing Records from a KSDS 70

Combined Operations on a KSDS 71

Chapter 8 � Processing an RRDS in a SAS Job 77
Introduction to Processing an RRDS 77

Special SAS Options Used with an RRDS 78

Reading Records from an RRDS 79

Adding Records to an RRDS 82

Updating Records in an RRDS 84

Erasing Records from an RRDS 86

Combined Operations on an RRDS 87

Chapter 9 � Using Alternate Indexes for VSAM Data Sets 91
Introduction to Using Alternate Indexes 91

Creating an Alternate Index for an ESDS 91

Creating an Alternate Index for an Existing KSDS 92

Calculating Record Size 94

Chapter 10 � Error-Handling Techniques and Error Messages 95
What are Physical and Logical Errors? 95

Physical Errors 95

Logical Errors 96

Error-Handling Techniques 97

Some Common Causes of Logical Errors 99

COBOL Status Key Values and VSAM Feedback Codes 101

P A R T 2 Appendices 103

Appendix 1 � System Options Dictionary 105

Appendix 2 � Sample STUDENT Data Set 109
Sample STUDENT Data Set 109

v

Appendix 3 � IBM Documentation 111
IBM Documentation 111

Appendix 4 � Recommended Reading 113
Recommended Reading 113

Glossary 115

Index 119

vi

vii

What’s New

Overview

SAS 9.2 VSAM processing for z/OS has a new system option, VSAMRLS , that
enables record-level sharing for a VSAM data set.

viii What’s New

1

P A R T1

SAS 9.2 VSAM Processing: Overview and
Techniques

Chapter 1.The Virtual Storage Access Method (VSAM) 3

Chapter 2.SAS Options and Variables for VSAM Processing 13

Chapter 3.Accessing VSAM Data Sets 23

Chapter 4.Processing VSAM Data Sets in SAS Programs 29

Chapter 5.Defining and Loading a VSAM Data Set 45

Chapter 6.Processing an ESDS in a SAS Job 51

Chapter 7.Processing a KSDS in a SAS Job 59

Chapter 8.Processing an RRDS in a SAS Job 77

Chapter 9.Using Alternate Indexes for VSAM Data Sets 91

Chapter 10.Error-Handling Techniques and Error Messages 95

2

3

C H A P T E R

1
The Virtual Storage Access
Method (VSAM)

What is Virtual Storage Access Method (VSAM)? 3
Introduction to VSAM 3

Access Methods 4

Access Methods and File Organization 4

Types of VSAM Data Sets 5

VSAM Record Structure and Organization 7
VSAM Data Access Types 9

Sequential Access 9

Direct Access 9

Introduction to Direct Access 9

Keyed Direct Access 9

Addressed Direct Access 10
Keyed Direct Access with an Alternate Index 10

Skip Sequential Access 12

What is Virtual Storage Access Method (VSAM)?

Introduction to VSAM
VSAM is an IBM data access method that enables you to organize and access records

in a disk data set. VSAM is available under the z/OS operating environment. There are
three types of data set organization:

� Entry-Sequenced Data Set (ESDS)
� Key-Sequenced Data Set (KSDS)
� Relative-Record Data Set (RRDS)

VSAM has three types of access to records in VSAM data sets:
� sequential
� direct
� skip sequential

In addition, VSAM provides the following access and retrieval options:
� two direct access modes (addressed or keyed)
� two access entities (logical records and control intervals)
� two access directions (forward and backward)
� retrieval options (such as generic key and key greater-than-or-equal)

SAS supports all of these VSAM features, although not necessarily in all possible
combinations. By specifying options in the INFILE statement in your SAS program,

4 Access Methods � Chapter 1

you can read, update, create, and erase records from VSAM data sets. See Table 4.1 on
page 31 for a summary of the operations that SAS supports.

Access Methods
Access methods are software routines that control the data transfer between primary

storage (main memory) and secondary storage devices. Secondary, or auxiliary, storage
is independent of the computer’s memory (for example, storage on tape or disk). VSAM
is designed specifically for use with disks. Because VSAM data set structure permits
the use of both direct and sequential access types, you can select either the type or the
combination of access types that best suits your specific application requirements.

Direct access means that you have the ability to read any data record in a data set
directly, without reading preceding records in the data set. For more information, see
“Direct Access” on page 9. (The terms direct and random are sometimes used
interchangeably when referring to data organization, access methods, and storage
devices. SAS documentation uses the term direct, but you might find that random is
used in other literature.)

Sequential access means that you retrieve a series of records in sequence. Sequence
has a different meaning for each of the three VSAM data set organizations. For more
information, see “Sequential Access” on page 9.

Skip sequential access means that you use a combination of both direct and
sequential access. For more information, see “Skip Sequential Access” on page 12.

Access Methods and File Organization
Data stored on IBM disks can be organized in a number of ways, which are referred

to as data set types. IBM software supports the following data set types:
� Physical Sequential (PS)
� Partitioned Organization (PO)
� Indexed Sequential (IS)
� Direct Access (DA)
� Virtual Storage Access Method (VSAM)

VSAM data sets can be one of the following:
� Entry-Sequenced Data Set (ESDS)
� Key-Sequenced Data Set (KSDS)
� Relative-Record Data Set (RRDS)

In each data set type except VSAM, the records are organized in a unique way,
depending on their purpose. Each type of data set organization has one or more special
access methods. (For example, a data set that uses DA organization is characterized by
a predictable relationship between the key of a record and the address of that record on
a DASD device.) The programmer establishes this relationship and must supply most of
the logic required to locate the individual records.

VSAM is a multifunction, all-purpose access method. VSAM is different from the
other data set types because it provides a functional equivalent for most of the other
data set organizations, as follows:

� ESDS organization is the functional equivalent of Physical Sequential organization
(PS).

� KSDS organization is the functional equivalent of Indexed Sequential organization
(IS).

� RRDS organization is the functional equivalent of Direct Access organization (DA).

The Virtual Storage Access Method (VSAM) � Types of VSAM Data Sets 5

The types of data set organizations that you access with VSAM differ from others for
two reasons:

� They are device independent from the user’s viewpoint.
� They can be both sequentially and directly accessed.

You access a record by addressing the record in terms of its displacement (in bytes)
from the beginning of the data set, by its key, or by its record number.

The root of the VSAM access method is the VSAM catalog, which is a disk area for
defining data sets and disk space and for maintaining information about each VSAM
data set. VSAM catalogs and data sets are created and managed with IBM Access
Method Services (AMS), a multifunction service program.

Types of VSAM Data Sets
There are three types of VSAM data sets. The main difference between the three

data set types is the logical order in which data records are arranged in the data set.
The following is a description of each type of VSAM data set:

ESDS (Entry-Sequenced Data Set) The record sequence is determined by
the order in which the records are entered into the data set, without
respect to the record contents. New records are stored at the end of
the data set.

An ESDS is appropriate for applications that do not require any
particular ordering of the data by the record contents or for those
that require time-ordered data. Applications that use a log or
journal are suitable for an ESDS data set structure.

KSDS (Key-Sequenced Data Set) The record sequence is determined by a
key containing a unique value, such as an employee, invoice, or
transaction number. The key is a contiguous portion of the record
and is defined when the data set is created. The record order is
defined by the EBCDIC collating sequence of the key field contents.

A KSDS is always defined with a prime index that relates the
record’s key value to its relative location in the data set. VSAM uses
the index to locate a record for retrieval and to locate a collating
position for record insertion.

A KSDS is the most flexible approach for most applications
because the record can be accessed directly via the key field. Access
is not dependent on the physical location of the record in the data
set.

RRDS (Relative-Record Data Set) The data set is a string of fixed-length
slots, each identified by a relative-record number (RRN). Each slot
can either contain a record or be empty. Records are stored and
retrieved by the relative-record number of the slot.

An RRDS is appropriate for many applications using fixed-length
records or when the record number has a contextual meaning that
can be used as a key.

Figure 1.1 on page 6 shows how the three types of VSAM data sets are organized.
When a VSAM data set is created, it is defined in a cluster. A cluster encompasses

the components of a VSAM data set. ESDS and RRDS clusters have only a data
component. A KSDS cluster has a data component and an index component. The index
relates each record’s key to its location in the data set. VSAM uses the index to
sequence and locate the records of a KSDS.

6 Types of VSAM Data Sets � Chapter 1

Table 1.1 on page 6 summarizes the differences between the three VSAM data set
types.

Figure 1.1 VSAM Data Set Organization: Data Components and Index Components

Data Component

Data Component

Data Component

Data Component

ESDS
Cluster

KSDS
Cluster

RRDS
Cluster

Data ComponentIndex
Component

Table 1.1 Comparison of VSAM Data Set Types

ESDS KSDS RRDS

What is the method for
sequential access?

Entry order Primary key order RRN2

What is the method for
direct access?

RBA2 Key RBA RRN

What are the types of
record format?

Fixed

Variable

Spanned

Fixed

Variable

Spanned

Fixed

Is record length
changeable?

No Yes No

Where are new records
added?

End of file Anywhere RRN slot

(if empty)

Is embedded free space
defined?1

No Yes No

Can you delete records
and reuse space?

No3 Yes Yes

Can you access the data
set through an alternate
index?

Yes Yes No

The Virtual Storage Access Method (VSAM) � VSAM Record Structure and Organization 7

ESDS KSDS RRDS

Can you REUSE the
file?

Yes

(if no AIX2)

Yes

(if no AIX)

Yes

Can RBA or RRN
change?

No Yes No

1 You can insert records and change their lengths.
2 RRN= relative-record number, RBA= relative-byte address, and AIX= alternative index
3 You can, however, overlay a record if the length does not change.

VSAM Record Structure and Organization
Records in VSAM data sets are grouped into control intervals, the units of data

transfer between main storage and secondary disk storage. Control intervals are
continuous areas of direct access storage that VSAM uses for storing records and to
control information describing them. Although the size of control intervals varies from
one data set to another, the size within a data set is fixed, either by VSAM or by the
user (within VSAM imposed restrictions). If VSAM chooses the size, it does so based on
the DASD type, record size, and smallest amount of virtual storage space that the user
applications make available for I/O buffers. A spanned record is one that exceeds the
established control interval size by spanning one or more control interval boundaries.
Spanned records are permitted in an ESDS and a KSDS, but not in an RRDS.

Control intervals are grouped into control areas. Control areas are the units of a
data set that VSAM preformats as records are added to the data set. VSAM fixes the
number of control intervals for each control area. (See Figure 1.2 on page 7, Figure 1.3
on page 8, and Figure 1.4 on page 9 for depictions of the control interval formats used
by each of the data set types.) KSDS control areas are used for distributing free space
throughout the data set, as a percentage of control intervals per control area.

Figure 1.2 ESDS Control Intervals and Control Areas

CI

CI LR LR

LR

LR LR LR

LR LR LR

LRCI

CI

CI

Control area 1 Control area 2

ESDS File

. . . Control area n

- control informationCI
LR - logical record

Logical records can vary in length, but the length
cannot change once the record is written. All free
space is at the end of the file.

LR LR

LR

CI

CI LR

LR

LR LR LR

CI

CI

CI

LR LR

LR

LR LR LR

CI

CI LR

CI

Free Space

LR

LR Free Space

LR LR LR

- control intervals

- control areas

8 VSAM Record Structure and Organization � Chapter 1

Figure 1.3 KSDS Control Intervals and Control Areas

CI LR LR

LR

LR

Free Space

Free Space

Free Space

Free
Space

Free
Space

Free
Space

Free
Space

Free
Space

Free
Space

KSDS Data Component

KSDS Index Component

KSDS File

Control area 1 Control area 2 Control area n

- control intervals

- control areas

CI - control information

LR - logical record

Logical records can vary in length. Free space is
distributed throughout the file for inserting, de-
leting, lengthening, or shortening records.

CI LR LRLR

CI LR LR LR

CI

CI

CI LR LR

CI

CI

CI

CI Free Space

CI

CI

CI

CI

CI LR

Index record 1 Index record 2 Index record n

LR

LR

Free Space

Free
Space

Free
SpaceLR

Free Space

The Virtual Storage Access Method (VSAM) � Direct Access 9

Figure 1.4 RRDS Control Intervals and Control Areas

CI

CI LR LR LR

LR

CI

CI

CI

Control area 1 Control area 2

RRDS File

. . . Control area n

- control informationCI
LR - logical record

All relative record slots (logical records) are the
same length. The number of record slots is fixed.
Empty record slots contain the unused space in
the file.

LR LR

LR CI LR

CI LR LR LR LR

CI LR LR

CI LR LR LR

CI LR LR

CI LR LR LR

CI LR LR

CI

CI LR LR LR

CI LR LR

LR

LR

LR LR LR

LR LR

LR

- control intervals

- control areas

VSAM Data Access Types

Sequential Access
In sequential access, a series of records is retrieved in sequence. Sequence has a

different meaning for each of the three VSAM data set organizations:
� In an ESDS, sequential access means that a record is retrieved by its entry

sequence.
� In a KSDS, sequential access means that a record is retrieved by its key sequence.
� In an RRDS, sequential access means that a record is retrieved by its

relative-record sequence.

In all three cases, a record is located by its position relative to the last record
accessed.

Direct Access

Introduction to Direct Access
With direct access, data storage or retrieval depends only on the location of the

record and not on a reference to records previously accessed. Each record is stored or
retrieved directly, according to its logical address (its key or its relative-record number,
or RRN), or its address relative to the beginning of the data set (relative-byte address,
or RBA). Thus, there are two direct access modes: keyed by key or relative-record
number, and addressed by relative-byte address.

Keyed Direct Access
In keyed direct access, there are two methods in which records are retrieved or stored:
� an index that relates the record’s key to its relative location in the data set.

10 Direct Access � Chapter 1

� a relative-record number (RRN) that identifies the record that is wanted. The
RRN is relative to the first record in the data set.

SAS supports keyed access to logical records in both KSDS and RRDS data sets.
Keyed access to data records in KSDS data sets is by key; in RRDS data sets, keyed
access is by the relative-record number.

Addressed Direct Access
In addressed direct access, the entire data set is treated as a continuous stream of

bytes. A record is retrieved and stored directly by its address relative to the beginning
of the data set (relative-byte address, or RBA), which is dependent on the record’s
location relative to records previously accessed. SAS supports addressed access to
logical records in ESDS and KSDS data sets. It also supports addressed access
(read-only) to control intervals in all three data set types.

Keyed Direct Access with an Alternate Index
An alternate key index, commonly called an alternate index (AIX), provides another

way to access a VSAM data set. The advantage of an alternate index is that you
effectively reorganize the data set instead of keeping separate copies organized in
different ways for different applications. Suppose you have a KSDS with the employee
number as the prime key. By building alternate indexes using employee names and
department numbers, you can access the same data set in three ways: by employee
name, by employee number, or by department number. The alternate key does not have
to be unique; that is, there can be more than one record with the same alternate key.

Figure 1.5 on page 10 illustrates an alternate index with nonunique keys over a
KSDS. The base cluster records are sequenced by employee number, which is the prime
key. The alternate index records are sequenced by department number, which is the
alternate key. Each alternate index data record points to the prime key (employee
number) in the base cluster. Note that because the alternate keys are nonunique, there
can be multiple base records with the same department number.

Figure 1.5 KSDS with Alternate Index (Nonunique Alternate Keys)

Employee
Number

= Alt
 Key

1875318753

30162

43124

61840

Base-Cluster Data Records

Alternate Index Data Records
Prime Key = Employee number

Alternate Key = Department number

410
438

3670

5547

637

2890

Wood, FP 410 ...
Branch, OS 637 ...
Taylor, NR 410 ...
Powell, ME 438 ...
Helms, EL 410 ...
Beach, SD 103 ...
Smith, CJ 410 ...
Adam, LA 438 ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

28901

36703

49036

30162

43124

61840
55471

Name
Department
Number

Other
Data

The Virtual Storage Access Method (VSAM) � Direct Access 11

Alternate indexes can be built over a KSDS or an ESDS. You define and build an
alternate index using the IBM utility program Access Method Services (AMS). The data
set over which an alternate index is built is called the base cluster. The alternate key
can be any field having a fixed length and a fixed position within each record. The
alternate index itself is a KSDS. The data component of an alternate index contains the
alternate key, followed by a pointer to the appropriate record or records in the base
cluster. In a KSDS, the pointer is the prime key; in an ESDS, the pointer is the RBA of
the base record or records.

A path logically relates a base cluster and one of its alternate indexes. You define
and name a path to access the base cluster records through a specific alternate index
with AMS. See Chapter 9, “Using Alternate Indexes for VSAM Data Sets,” on page 91
and Appendix 3, “IBM Documentation,” on page 111 for more information on defining
alternate indexes.

12 Skip Sequential Access � Chapter 1

Skip Sequential Access
A combination of both direct and sequential access can be used in a two-step process

called skip sequential access. The process uses keyed direct access to find a starting
point. After the initial record is obtained, additional records are retrieved sequentially.
Skip sequential processing can be used with a KSDS, RRDS, and, if it has an alternate
index, an ESDS.

Skip sequential processing is useful for the following reasons:
� Skip sequential processing can improve performance and reduce overhead, because

a simple sequential retrieval is faster than direct retrieval.
� It enables you to find records when you know the key, RBA, or RRN of the first

record you want, but do not know the key, RBA, or RRN of the subsequent records.
� It enables you to process the data set sequentially, starting at a record other than

the first.

13

C H A P T E R

2
SAS Options and Variables for
VSAM Processing

Introduction to SAS Options and Variables for VSAM Processing 13
Using SAS System Options 13

Using SAS Automatic Variables 14

Standard SAS INFILE Options 14

Special SAS Options for VSAM 16

Using the Special SAS Options 20
VSAM Option for the FILENAME Statement 22

Introduction to SAS Options and Variables for VSAM Processing
SAS provides access to VSAM data sets through the DATA step INFILE, INPUT,

FILE, and PUT statements. A group of special VSAM options for the INFILE and FILE
statements is used along with standard INFILE and FILE options to read and write
VSAM data sets.

Global SAS system options and the automatic SAS variables are set when you process
VSAM data sets. “Special SAS Options for VSAM” on page 16 presents a complete,
descriptive list of each INFILE option available for processing your VSAM data sets.

See Chapter 4, “Processing VSAM Data Sets in SAS Programs,” on page 29 and the
appropriate reference section for the VSAM data set that you want to access for
information about using these options to process VSAM data.

Using SAS System Options
Four global SAS system options are used with VSAM data set processing:

VSAMREAD
enables or disables the reading of VSAM data sets.

VSAMUPDATE
enables or disables the updating of VSAM data sets by modifying or erasing
existing records or by adding new records. VSAMUPDATE implies VSAMREAD.

VSAMLOAD
enables or disables the loading of records into a new VSAM data set.

VSAMRLS
enables or disables record-level sharing for a VSAM data set.

SAS is distributed with the following default options:
� VSAMREAD

14 Using SAS Automatic Variables � Chapter 2

� NOVSAMUPDATE
� NOVSAMLOAD
� VSAMRLS

Your site administrator might have changed the default settings. Use the OPTIONS
procedure to check the settings of these and any other global SAS system options. Your
site might prevent you from overriding these options.

Using SAS Automatic Variables
The following SAS automatic variables are created when a VSAM data set is

accessed and set when records in the data set are accessed. (Records are accessed when
an INPUT or a PUT statement that reads or writes a record executes.) The following
automatic variables are not added to any SAS data sets created by a DATA step:

RBA contains the RBA of the last record accessed.

IORC is set to the VSAM input/output return code.

FDBK is set to the VSAM feedback code.

RRN contains the RRN of the last RRDS record accessed. This variable is
not created for ESDS and KSDS data sets.

Standard SAS INFILE Options
External data sets can be standard or nonstandard. VSAM data sets are

nonstandard external data sets. The following SAS INFILE statement options can be
used with any external data set, including VSAM data sets:

BLKSIZE=value
specifies the block size of the input data set.

COLUMN=variable
defines a variable that SAS sets to the column location of the pointer.

DELIMITER=delimiters
specifies a delimiter other than a blank for list input.

DSD
changes the way delimiters are treated when using list input. This option enables
you to read delimiters as characters within quoted strings.

END=variable
defines a variable, whose name you supply, that SAS sets to 1 when the current
record is the last in the input data set. Until SAS processes the last record, the
value of the END= variable is 0. You cannot use the END= option with direct
access.

EOF=label
specifies a statement label as the object of a GO TO when the INFILE statement
reaches end-of-file. When an INPUT statement attempts to read from a data set
that has no more records, SAS moves execution to the statement label indicated.
The EOF= option is ignored with direct access.

EOV=variable

SAS Options and Variables for VSAM Processing � Standard SAS INFILE Options 15

specifies a variable, whose name you supply, that SAS sets to 1 when the first
record in a data set in a series of concatenated data sets is read. The variable is
set only after SAS encounters the next data set.

EXPANDTABS|NOEXPANDTABS
specifies whether to expand tab characters to the standard tab setting.

FILENAME=variable
defines a variable, whose name you supply, that SAS sets to the value of the
physical name of the currently open input data set.

FILEVAR=variable
defines a variable whose name you supply and whose change in value causes the
INFILE statement to close the current input data set and open a new one. The
physical pathname of a VSAM file is defined with a DLBL command.

FIRSTOBS=record-number
indicates you want to begin reading the input data set at the record number that
is specified rather than beginning with the first record.

FLOWOVER
specifies the action to be taken if the INPUT statement reads past the end of the
current record. When FLOWOVER is in effect, SAS reads a new record, and the
INPUT statement continues reading data from column one to the first blank in the
new record.

INFILE=variable
names a variable that SAS uses to reference the contents of the current input
buffer of this INFILE statement. Like automatic variables, the _INFILE_=
variable is not written to the data set.

LENGTH=variable
defines a variable, whose name you supply, that SAS sets to the length of the
current line.

LINE=variable
defines a variable, whose name you supply, that SAS sets to the line location of the
INPUT or PUT pointer. The LINE= option cannot be used with direct access.

LINESIZE=value
LS=value

limits the record length available to the INPUT statement when you do not want
to read the entire record. The LINESIZE= value specifies the maximum record
length that is available to the SAS program. If a LINESIZE= value is not
specified, the default is the maximum record length that was specified when the
VSAM data set was defined.

If LINESIZE= is shorter than the VSAM maximum record length, the record is
truncated to the specified LINESIZE= value.

If an INPUT statement attempts to read past the column that is specified by
LINESIZE=, the action that is taken depends on which of the FLOWOVER,
MISSOVER, and STOPOVER options is in effect. (By default, the MISSOVER
option is in effect when VSAM data sets are read.)

If a PUT statement attempts to write a record longer than the value that is
specified by LINESIZE=, the action that is taken depends on which of the
FLOWOVER, MISSOVER, and STOPOVER options is in effect. (By default, the
STOPOVER option is in effect when VSAM data sets are written.)

LRECL=value
specifies the logical record length of the file. If you do not specify an option, SAS
chooses a value based on the operating environment’s file characteristics.

16 Special SAS Options for VSAM � Chapter 2

MISSOVER
prevents a SAS program from going to a new input line if it does not find values in
the current line for all the INPUT statement variables. When an INPUT
statement reaches the end of the current record, values that are expected but not
found are set to missing.

N=available-lines
specifies the number of lines you want available to the input pointer. The N=
option cannot be used with direct access because, by definition, direct access gets
only one line at a time.

OBS=record-number
specifies the record number of the last record you want to read from an input file
that is being read sequentially. Counting begins at the value that is set in the
FIRSTOBS= option, if specified.

PAD|NOPAD
specifies whether records that are read from an external data set are padded with
blanks up to the length specified in the LRECL= option.

PRINT|NOPRINT
specifies whether the input data set contains carriage-control characters.

RECFM=record-format
specifies the record format of the input data set.

SCANOVER
specifies that the INPUT statement scan the input records until the character
string that is specified in the @’character string’ expression (on the INPUT
statement) is found.

SHAREBUFFERS
specifies that the FILE statement and the INFILE statement share the same
buffer.

START=variable
defines a variable whose name you supply and whose value is used as the first
column number of the record that the _INFILE_ argument of the PUT statement
is to write.

STOPOVER
stops processing the DATA step when an INPUT statement reaches the end of the
current record without finding values for all variables in the statement.

When the STOPOVER option is specified and an input line does not contain the
expected number of values, SAS sets _ERROR_ to 1, stops building the data set as
if a STOP statement had executed, and prints the incomplete data line.

TRUNCOVER
overrides the default action of the INPUT statement when an input record is not
as long as expected by the INPUT statement.

UNBUFFERED
tells SAS not to perform a buffered read.

For more information on standard and nonstandard SAS options, see the “INFILE
Statement” in the SAS Language Reference: Dictionary.

Special SAS Options for VSAM
The special SAS options for VSAM data sets are specified in the INFILE statement

except when you load a new VSAM data set with initial records. You must use the

SAS Options and Variables for VSAM Processing � Special SAS Options for VSAM 17

FILE statement when you load a new VSAM data set. For more information on FILE
statement options for VSAM data sets, see “Loading Records into a VSAM Data Set” on
page 47.

All the options except those described in Table 2.1 on page 17 can be used with all
three VSAM data set types. The special SAS options for VSAM are listed in the
following table:

Table 2.1 Special SAS Options for Selected VSAM Data Sets

Option ESDS through AIX ESDS KSDS RRDS

ERASE= X X

GENKEY X X

KEY= X X

KEYGE X X

KEYLEN= X X

KEYPOS= X X

RBA= X X X

RRN= X

SEQUENTIAL X X

SKIP X X X

BACKWARD
BKWD

instructs SAS to read a VSAM data set backwards. You can use the BACKWARD
option only when you are reading the VSAM data set sequentially.

BUFND=integer
specifies the number of data buffers for a VSAM input data set. If BUFND= is not
specified, VSAM provides a default value. For sequential processing, two data
buffers are usually sufficient. If your VSAM application’s performance is slow, it
might indicate that you should increase the number of data buffers that are
specified by BUFND=. The systems programming staff at your installation can
help you determine what values to assign to BUFND=.

BUFNI=integer
specifies the number of index buffers for a VSAM data set. If BUFNI= is not
specified, VSAM provides a default value. For sequential processing, one index
buffer is usually sufficient. If your VSAM application’s performance is slow, it
might indicate that you should increase the number of data buffers specified by
BUFNI=. The systems programming staff at your installation can help you
determine what value to assign to BUFNI=.

CONTROLINTERVAL
CTLINTV
CNV

specifies that you want to read VSAM control intervals rather than logical records.
When you specify the CONTROLINTERVAL option for a password-protected
VSAM data set, you must give a control-interval-access or higher-level password
with the PASSWD= option.

Control intervals cannot be updated or erased. Control interval access is
typically used only for diagnostic applications or for reading a VSAM catalog.

18 Special SAS Options for VSAM � Chapter 2

ERASE=variable
defines a numeric SAS variable that you must set when you want to erase a
VSAM record. The ERASE= option must be specified to erase a VSAM record.

The record is erased when you set the ERASE= variable to a value of 1 before a
PUT statement for the output data set executes. When you set the ERASE=
variable to a value of 0, the record is updated (instead of erased) when the PUT
statement executes. This is the default action if ERASE= is not specified.

After a record is erased, the ERASE= variable is automatically reset to 0.
Therefore, you must reset the ERASE= variable to 1 in order to erase another
record. This prevents the inadvertent deletion of a series of records.

This option is valid only for KSDS and RRDS records. There is a VSAM
restriction that records cannot be erased from an ESDS.

FEEDBACK=variable
FDBK=variable

defines a numeric SAS variable that SAS sets to the VSAM logical error code when
a logical error occurs. FEEDBACK= is similar to the _FDBK_ automatic variable,
but it is more flexible and less likely to allow VSAM logical errors to go unnoticed.
When SAS sets the FEEDBACK= variable, you must reset it to 0 to continue
processing after a logical error. See Chapter 10, “Error-Handling Techniques and
Error Messages,” on page 95 for more information.

GENKEY
specifies generic-key processing for a KSDS. When GENKEY is specified, SAS
programs treat the KEY= variable as the leading portion of a record’s key. SAS
retrieves the first record whose key matches the generic key, unless you also
specify skip sequential processing. Use this option if you plan to retrieve a series
of KSDS records that have the same leading key field, or if you know only the
leading portion of a particular key. The GENKEY option applies to all records that
are read from the data set in the DATA step; that is, you cannot turn GENKEY on
and off. Changing the value of the KEY= variable indicates another generic-key
retrieval request.

When you specify both the GENKEY and the SKIP options, SAS retrieves the
first record containing the matching partial key and then reads the following
records sequentially. Access is sequential after the first key until you change the
value of the KEY= variable. Changing this variable indicates another
direct-access, generic-key retrieval request. Assigning a new value that equals the
previous value is not regarded as a change. To perform repeated direct-access,
generic-key retrievals with the same KEY= value, you must clear and reassign the
KEY= variable after each retrieval.

KEY=variable
KEY=(list of variables)

indicates that keyed direct access is to be used to retrieve records from a KSDS or
an ESDS that was accessed through an alternate index. The KEY= option specifies
either one variable or a list of variables that provides the key of the record to be
read. You can construct a key up to 256 characters long by defining a list of up to
16 character variables. SAS builds the key by concatenating the variables; blanks
are not trimmed. The key is extended with blanks on the right until it reaches the
full key length set during creation of the VSAM data set with AMS/IDCAMS.

Unless used with the GENKEY option, the key value that is passed to VSAM is
either padded with blanks or truncated, as necessary, to equal the key length that
is defined when the KSDS is created.

KEYGE
specifies that retrieval requests with the KEY= option are for any record whose
key is equal to or greater than the key that is specified by the KEY= option. This

SAS Options and Variables for VSAM Processing � Special SAS Options for VSAM 19

approximate key retrieval is useful when the exact record key is not known. The
KEYGE option applies to all records that are read from the data set in that DATA
step; that is, you cannot turn KEYGE on and off.

KEYLEN=variable
specifies a numeric SAS variable that, when used with GENKEY, specifies the
length of the key to be compared to the keys in the data set. The variable’s value
is the number of generic key characters passed to VSAM. If you specify GENKEY
without the KEYLEN= option, the generic-key length is the KEY= variable length
(or the sum of the KEY= variable lengths, if a list is specified).

SAS sets the variable that is specified by the KEYLEN= option to the actual key
length that is defined in the cluster before the DATA step executes. The
KEYLEN= option can be used to read KSDS keys without any advance knowledge
of the key length. Assign the value of the KEYLEN= variable to a different
variable if you also intend to set the KEYLEN= variable for generic key
processing. You might need to name the variable in a RETAIN statement if you
need this initial value after the first execution of the DATA step.

KEYPOS=variable
specifies a numeric SAS variable that SAS sets to the position of the key field.
This option enables KSDS keys to be read without advance knowledge of the key
position. The variable is set to the column number, not the offset, which is one less
than the column number.

When you use the KEYLEN= and the KEYPOS= options together, it is possible
to read KSDS keys without knowing either the key position or length in advance.
The SAS variables that you specify with the KEYLEN= and KEYPOS= options
should not be present in any SAS data set that is used as input to the DATA step.

PASSWD=password
gives the appropriate password for a data set that has VSAM password protection.
The password is replaced with Xs on the SAS log. Here are the guidelines for an
appropriate password:

� You need a read (or higher-level) password for a data set that you are reading
only.

� You need an update (or higher-level) password for a data set that you are
updating or loading.

� You need a control interval (or higher-level) password to read a data set’s
control intervals directly.

RBA=variable
defines a numeric variable that you set to the relative-byte address (RBA) of the
data record (or control interval) to be read. The RBA= option indicates that
addressed direct access is to be used for record retrieval from an ESDS or a KSDS.
The RBA= option can also be used to access the control intervals in an RRDS if
the CONTROLINTERVAL option is specified.

READPW=password
is a synonym for the PASSWD= option.

RECORDS=variable
defines a numeric variable that SAS sets to the number of logical records in the
VSAM data set you are reading.

RESET
specifies that the VSAM data set is to be reset to empty (no records) when it is
opened. The RESET option applies only to loading a VSAM data set that has been
defined with the VSAM option REUSE. Specify this option to use a VSAM data set

20 Using the Special SAS Options � Chapter 2

as a work data set by reloading it in the DATA step. This option cannot be used if
the data set has an alternate index.

RRN=variable
defines a numeric variable that you set to the relative-record number (RRN) of the
record to be read or written. This option indicates that keyed direct access is to be
used for record storage and retrieval and is appropriate only for an RRDS.

SEQUENTIAL
SEQ

specifies sequential record retrieval when either the RBA= (for an ESDS) or the
RRN= (for an RRDS) direct access option indicates direct record storage for the
PUT statement or statements.

The SEQUENTIAL option is necessary only when adding new records after
sequentially reading existing records in an ESDS or an RRDS.

SKIP
indicates that skip sequential access is to be used for record retrieval. Skip
sequential access finds an initial record with keyed direct access and then
retrieves records from that point on with sequential access. An unchanged KEY=
or RRN= value indicates that subsequent records are to be retrieved sequentially.
The SKIP option can be used for a KSDS or an RRDS.

UPDATE=variable
defines a numeric variable that tells SAS that not every record that is read is to be
updated when you are reading and writing records in a VSAM data set. When you
have both an INFILE and a FILE statement referencing the same VSAM data set,
records are retrieved for update by default.

In most cases, when a record is retrieved for update, no user, including you, can
access that particular record or any other records in the same control interval
until you free the record by executing a PUT or an INPUT statement for the data
set. The UPDATE= option is used to avoid user lockout when only a few of many
records that are read need to be updated. You can set the UPDATE= variable to
one of the following values:

� A value of 1 before an INPUT statement indicates that the record is retrieved
for update. This is the default if UPDATE= is not specified.

� A value of 0 before the INPUT statement indicates that the record is not
retrieved for update.

VSAM
indicates that the fileref points to a VSAM nonstandard, external data set. It is
optional for the VSAM option to immediately follow the fileref in the INFILE and
FILE statements. However, the VSAM option must immediately follow the fileref
if you bypass the VSAM catalog to determine the volume location of the VSAM
component or cluster and you code the AMP=(’AMORG’) parameter in the JCL
that defines the VSAM component or cluster.

WRITEPW=password
is a synonym for the PASSWD= option.

Using the Special SAS Options
The special SAS options that are used for processing VSAM data sets fall into three

functional categories:
� options that describe the characteristics of the VSAM data set and how SAS is to

process it

SAS Options and Variables for VSAM Processing � Using the Special SAS Options 21

� record retrieval options (options processed by the INPUT statement)
� record storage options (options processed by the PUT statement)

See Table 6.1 on page 52, Table 7.1 on page 60, and Table 8.1 on page 78 for
information on how each special SAS option functions when it is used with the three
VSAM data set types.

You specify the special SAS options in the INFILE statement except when you load a
new VSAM data set with initial records. When you load a new VSAM data set, you
specify the special SAS options in the FILE statement.

There are three important points concerning the INFILE statement with VSAM data
sets:

1 Because VSAM options are specified in the INFILE statement, this statement has
the extra function of setting up how an operation is to be performed.

2 Because of this setup function, the INFILE statement is sometimes used without a
corresponding INPUT statement.

3 The INFILE statement is not used to load records. Thus, loading records is
treated as a special case and is discussed separately in Chapter 5, “Defining and
Loading a VSAM Data Set,” on page 45.

Here is the syntax for using the special options in the INFILE statement:

INFILE data-set-specification <options>;

data-set-specification is a SAS fileref or a physical filename, and options are a
combination of standard and special INFILE statement options.

A number of the SAS VSAM options specify SAS variables that contain values that
control VSAM operations. The settings of such variables are not constants. They can be
changed within a DATA step with SAS assignment statements. Variables that are
specified by the ERASE= and FEEDBACK= options must be reset in a DATA step.

The variables specified by SAS VSAM options are not automatically added to any
output SAS data set.

22 VSAM Option for the FILENAME Statement � Chapter 2

VSAM Option for the FILENAME Statement
When you load a new VSAM data set, you can specify the VSAM option RECORG= in

the FILENAME statement.

RECORG= record-organization
specifies the organization of records in a new VSAM data set. Use this option only
if SMS is active. The following values are valid:

KS specifies a VSAM key-sequenced data set.

ES specifies a VSAM entry-sequenced data set.

RR specifies a VSAM relative-record data set.

23

C H A P T E R

3
Accessing VSAM Data Sets

Accessing VSAM Data Sets 24
Reading a VSAM File 24

Writing to an Empty VSAM File 24

Updating a VSAM Data Set 24

Using Record-Level Sharing with VSAM 25

Extended-Format VSAM Data Sets 25
VSAM Options for the FILE and INFILE Statements 25

24 Accessing VSAM Data Sets � Chapter 3

Accessing VSAM Data Sets
Use the VSAM option to indicate that a fileref points to a VSAM external file.
Note: Many VSAM-specific options are available with the INFILE and FILE

statements. See “VSAM Options for the FILE and INFILE Statements” on page 25 for
details.

Reading a VSAM File
To read a VSAM file with an INPUT statement, specify the VSAM option in an

INFILE statement:

filename in1 ’prod.payroll’;
data mydata;

infile in1 vsam;
input ...;
/* SAS statements */

run;

Note: A VSAM file can be read sequentially without your having to specify the
VSAM option. �

Writing to an Empty VSAM File
To write to an empty VSAM file with a PUT statement, specify the VSAM option in a

FILE statement:

filename out ’myid.newdata’ disp=old;
data current;

file out vsam;
put ...;
/* SAS statements */

run;

Updating a VSAM Data Set
To update a VSAM data set, include an INFILE statement and a FILE statement

that point to the same fileref, and specify the VSAM type option in the DATA step:

filename mydata ’myid.newdata’ disp=old;
data newdata;

file mydata vsam;
infile mydata vsam;
/* SAS statements */

run;

Accessing VSAM Data Sets � VSAM Options for the FILE and INFILE Statements 25

Using Record-Level Sharing with VSAM
SAS provides support for the record-level sharing (RLS) access feature for VSAM

data sets. For the RLS access feature to work, you must define your VSAM clusters as
eligible for RLS access.

RLS eligible data sets must be SMS data sets that were defined with a LOG
specification. The details of RLS definition, restrictions, and use are contained in the
IBM Data Facility Storage Management Subsystem (DFSMS) documentation.

SAS determines whether a VSAM data set is RLS eligible when it opens the data set.
If the data set is RLS eligible, SAS automatically opens it in RLS mode. You can
override this action by specifying the NRLS option in the INFILE statement that you
use to define the data set to be opened. The VSAMRLS system option can be used to
specify RLS processing for all VSAM data sets that are accessed during a SAS session.
(See “VSAMRLS System Option” on page 106.) Opening the data set in non-RLS mode
might generate the following results:

� If you are opening the data set for output, then the OPEN operation will fail if
another application has the data set open. Alternatively, an attempt to
subsequently open the data set by another application will fail while the data set
is open in non-RLS output mode by SAS.

� If you are opening the data set for input, the OPEN operation will succeed, even
though the data set is open by another application, as long as you specify
SHAREOPTIONS(2) when you define the VSAM cluster.

The operation of RLS is essentially transparent to users. However, make sure you
specify DISP=SHR in the statement that defines the VSAM file you are opening.

Extended-Format VSAM Data Sets
SAS supports extended-format VSAM data sets. These data sets are managed with

SMS, and they are defined as extended format with the data class DSNTYPE=EXT
parameter and sub-parameters.

Extended-format data sets are the basis for many new VSAM functions, such as data
striping, host data compression for key-sequenced data sets, system-managed buffering,
and extended addressability for data sets greater than 4 gigabytes in size.

See the IBM DFSMS documentation for information on defining these functions to
SMS and for any restrictions for using these functions.

VSAM Options for the FILE and INFILE Statements
You can use the following options for VSAM files in the FILE statement and in the

INFILE statement. (Unless otherwise indicated, the option can be used in both.)

BACKWARD | BKWD
causes SAS to read the VSAM data set backwards (INFILE only).

BUFND=value
indicates how many data buffers to use for the VSAM data set.

BUFNI=value
indicates how many index buffers to use for the VSAM data set.

CONTROLINTERVAL | CTLINTV | CNV

26 VSAM Options for the FILE and INFILE Statements � Chapter 3

indicates that you want to read physical VSAM control interval records rather than
logical records. This option is typically used for diagnostic purposes (INFILE only).

ERASE=variable
defines a numeric SAS variable that you must set to 1 when you want to erase a
VSAM record (INFILE only).

FEEDBACK=variable | FDBK=variable
defines a numeric variable that SAS sets to the VSAM logical error code. This
option is similar to the _FDBK_ automatic variable. When SAS sets the
FEEDBACK variable, you must reset it to 0 in order to continue.

GENKEY
causes SAS to use the KEY= variable as the leading portion of a record’s key.
VSAM retrieves the first record whose key matches the generic key (INFILE only).

KEY=variable | KEY=(variable1 variable2 . . .)
indicates that direct keyed access is being used to read records either from a
KSDS or from an ESDS via an alternate index. Also, the variable contains the key
value to be used in the retrieval of a record (input) or the writing of a record
(output) (INFILE ONLY).

KEYGE
is used in conjunction with the KEY= option. KEYGE indicates that when KEY=
is used in a retrieval request, SAS retrieves any record whose key is equal to or
greater than the specified key. This option is useful when the exact key is not
known (INFILE only).

KEYLEN=variable
specifies a numeric SAS variable that, when used with GENKEY, specifies the
length of the key that is to be compared to the keys in the file.

KEYPOS=variable
indicates the numeric variable that SAS sets to the position of the VSAM key field.
This option enables you to read keys without knowing the key position in advance.
This variable is set to the column number (starting from 1).

NRLS
specifies not to use record-level sharing (RLS) to open an RLS-eligible data set
(INFILE only).

PASSWD=value
gives the appropriate password for a VSAM data set that has password protection.

RBA=variable
specifies a numeric variable that you set to the relative byte address (RBA) of the
data record that you want to read. The RBA= option indicates that addressed
direct access is being used; it is appropriate for KSDS and ESDS. If you specify
the CONTROLINTERVAL option, you can use the RBA= option to access control
records in an RRDS (INFILE only).

RC4STOP
stops the DATA step from executing if a return code greater than 4 is returned by
the operating environment when the VSAM data set is opened.

RECORDS=variable
defines a numeric variable that SAS sets to the number of logical records in a
VSAM data set that has been opened for input.

RECORG=record-organization
specifies the organization of records in a new VSAM data set. Use this option only
if SMS is active. The following is a list of valid values:

Accessing VSAM Data Sets � VSAM Options for the FILE and INFILE Statements 27

KS specifies a VSAM key-sequenced data set.

ES specifies a VSAM entry-sequenced data set.

RR specifies a VSAM relative-record data set.

LS specifies a VSAM linear-space data set.

RESET
indicates that the VSAM file is reset to empty (no records) when it is opened. This
option applies only to loading a VSAM data set that has been marked REUSE. You
cannot use this option if the data set contains an alternate index.

RRN=variable
defines a numeric variable that you set to the relative record number (RRN) of the
record that you want to read or write. This option indicates that keyed direct
access is being used; it is appropriate for RRDS only.

SEQUENTIAL
specifies sequential VSAM record retrieval when either the RBA= (for an ESDS) or
the RRN= option (for an RRDS) is specified (INFILE only).

SKIP
indicates skip-sequential processing of VSAM files. Skip-sequential processing
finds the first record whose value is the same as the value that is specified by the
KEY= option; records are read sequentially from then on (INFILE only).

UPDATE=variable
defines a numeric SAS variable that indicates that not every record that it reads is
to be updated. Use this option when you are updating records in a VSAM data set
(INFILE only). When an INFILE and a FILE statement reference the same VSAM
data set, records are retrieved for update by default.

In most cases when you retrieve a record for update, no user, including you, can
access that particular record or any other records in the same control interval
until you free the record by executing a PUT or an INPUT statement for the data
set. The UPDATE= option avoids user lockout when only a few of many records
read need to be updated. When you set the UPDATE= variable to a value of 1
before the INPUT statement, the record is retrieved for update. This value is the
default if UPDATE= is not specified. If you set UPDATE=0 before the INPUT
statement, the record is not retrieved for update.

28

29

C H A P T E R

4
Processing VSAM Data Sets in
SAS Programs

Determining the Type of an Existing Data Set 30
Referring to VSAM Data Sets 30

Operations on VSAM Data Sets in SAS Programs 30

Reading Records from a VSAM Data Set 32

Different Ways to Read Records 32

Sequential Access 32
Direct Access 33

Skip Sequential Access 33

Adding Records to a VSAM Data Set 33

Updating Records in VSAM Data Sets 34

Introduction to Updating Records 34

Limitations on Updating Records 34
Using the UPDATE= Option 35

Erasing Records from a VSAM Data Set 35

Combined Operations 36

Examples of Using VSAM Data in SAS Programs 36

Generating PROC PRINT Listings from a KSDS 36
Generating Reports Using PROC MEANS 37

Using a Windowing Program to Update VSAM Records 38

30 Determining the Type of an Existing Data Set � Chapter 4

Determining the Type of an Existing Data Set

You can determine the type of an existing VSAM data set by examining the SAS log
after you load the data set for processing.

If the data set is an ESDS, the log displays the following note:

Type=NONINDEXED

If the data set is a KSDS, the log displays the following note:

Type=INDEXED

If the data set is an RRDS, the log displays the following note:

Type=NUMBERED

Referring to VSAM Data Sets

You can use a SAS fileref or the ddname as a convenient way of referring to a VSAM
data set in a SAS language statement or command. The first time the ddname is used
in a SAS statement or procedure, SAS assigns it as a fileref for the VSAM data set.
Alternatively, you can use the FILENAME statement to associate a fileref with a VSAM
data set. The FILE statement later uses the fileref rather than the data set name to
refer to the data set.

Operations on VSAM Data Sets in SAS Programs

SAS programs handle VSAM data sets the same as any external data set. The
following are examples of operations that SAS can perform on external data sets, which
are data sets that are not created by SAS:

� The VSAM data set can be read in a DATA step. Information from the VSAM data
set can be used to create a SAS data set if appropriate for the application.

� The VSAM data set can be updated in a DATA step by adding new records or by
modifying or erasing existing records.

� A SAS data set can be created from a VSAM data set. You can manipulate this
data set with SAS DATA steps or procedures and then use it to update the VSAM
data set in a subsequent DATA step.

� You can use a DATA step to generate a SAS data view of the VSAM data set.

Figure 4.1 on page 31 illustrates a typical SAS DATA step processing a VSAM data
set. A VSAM external data set is shown as input to a SAS DATA step. Only the
INFILE statement with some of the most common special SAS options and the FILE
statement are shown. Notice that both the INFILE and FILE statements specify the
VSAM option and the fileref that refers to the VSAM data set. The RBA=, KEY=, and
RRN= direct access variables are shown as INFILE statement options that depend on
whether the VSAM data set is an ESDS, a KSDS, or an RRDS. (You do not need to
specify a direct access option to process the data set sequentially.) The FEEDBACK=
variable is specified in the INFILE statement. Remember that you would need both an
INPUT and a PUT statement to read and update the VSAM data set.

Processing VSAM Data Sets in SAS Programs � Operations on VSAM Data Sets in SAS Programs 31

Figure 4.1 Processing VSAM Data Sets in SAS Programs

VSAM
FILE

any
external

file

or

SAS DATA STEP

SAS statements producing a SAS data set
containing the keys, RBAs, or RRNs of
the records to process against a VSAM file.

DATA vsamwork;
 *Read the input file;
 INFILE fileref VSAM ...

RBA=rbavar
KEY=keyvar, GENKEY, FEEDBACK=fdbk ;
RRN=rrnvar

 *Update the input file;
 FILE fileref VSAM;

VSAM
FILE

any
external

file

or

You can perform five general types of operations on VSAM data sets in SAS programs:

� read records from an existing data set. All VSAM data set types can be read both
sequentially and with one or more direct access modes.

� add new records to an existing VSAM data set.

� update an existing record by retrieving, modifying, and then writing it back to the
data set. Note that the record must be retrieved before being updated.

� erase an existing record from an RRDS or a KSDS. The record must be retrieved
before erasing it. Records cannot be erased from an ESDS.

� load new records into a new VSAM data set. This operation is discussed
separately in Chapter 5, “Defining and Loading a VSAM Data Set,” on page 45.

When you perform these operations, you can use certain types of access with each
data set type. See Table 4.1 on page 31 for an outline of this information. Note that
VSAM provides both sequential and some form of direct access for each data set type.

Table 4.1 Supported VSAM Operations and Access Types

Operation Access Type ESDS KSDS RRDS

Sequential: Yes Yes Yes

Direct access by:

Key No Yes No

Generic key No Yes No

RBA Yes Yes No

RRN No No Yes

Read

Skip sequential: No Yes Yes

32 Reading Records from a VSAM Data Set � Chapter 4

Operation Access Type ESDS KSDS RRDS

Sequential: Yes Yes Yes

Direct access by:

Key No Yes No

RBA Yes Yes No

Update

RRN No No Yes

Sequential: Yes Yes Yes

Direct access by:

Key No Yes No

RBA No No No

Add/Load

RRN No No Yes

Sequential: No Yes Yes

Direct access by:

Key No Yes No

RBA No Yes No

Erase

RRN No No Yes

Reading Records from a VSAM Data Set

Different Ways to Read Records
You must specify either the VSAMREAD or VSAMUPDATE system option in order to

read VSAM data sets. (See “VSAMREAD System Option” on page 105 and
“VSAMUPDATE System Option” on page 106.) Records can be read with sequential
access, direct access, or with a combination of both by using skip sequential access. By
default, Read access is sequential.

Options in the INFILE statement specify how the read operation is to be performed.
Chapter 6, “Processing an ESDS in a SAS Job,” on page 51, Chapter 7, “Processing a
KSDS in a SAS Job,” on page 59, and Chapter 8, “Processing an RRDS in a SAS Job,”
on page 77 describe reading data from each of the three VSAM data set types.

Sequential Access
Sequential access means that a record is retrieved by one of the following methods:

� entry sequence in an ESDS

� key sequence in a KSDS

� relative-record sequence in an RRDS

Sequential record retrieval depends on the location of the previously retrieved record.
By default, SAS processes VSAM and other data sets sequentially. When access is

sequential, SAS performs a standard look-ahead read. When SAS encounters the end of
the data set while processing sequentially, the END= variable, if specified, is set to 1.

Processing VSAM Data Sets in SAS Programs � Adding Records to a VSAM Data Set 33

Direct Access
Access is direct if one of the direct access options (KEY=, RRN=, or RBA=) is

specified in the INFILE statement.
When you access a VSAM data set directly in a SAS job, the standard look-ahead

read used with sequential access is inhibited. Therefore, the END= INFILE statement
option (if specified) is ignored with direct access because the END= variable is never set
to 1. This means there is no automatic mechanism to end a DATA step that directly
accesses a VSAM data set. Instead, you must end the DATA step using one of the
following statements:

� the standard INFILE statement option EOF= and a STOP or SET statement

� a STOP statement to end the DATA step when you are processing the VSAM data
set with direct access

� a SET statement when you are processing an existing SAS data set against the
VSAM data set

Skip Sequential Access
Skip sequential access is a two-step process that combines both direct and sequential

access. After the initial record is located with keyed direct access, subsequent records
are retrieved sequentially. Skip sequential processing can be used with a KSDS, an
RRDS, and an ESDS with an alternate index. The SKIP option in the INFILE
statement indicates skip sequential access. When you are processing a VSAM data set
skip sequentially, you must end the DATA step with either a STOP statement or, if you
are processing a SAS data set against the VSAM data set, with a SET statement.

Adding Records to a VSAM Data Set

When you add records to an existing VSAM data set, you must do the following:

1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”
on page 106.)

2 Include both an INFILE statement and a FILE statement with the same fileref
and the VSAM option in the DATA step. Specify any other options in the INFILE
statement, which must precede the FILE statement.

Note: Because VSAM options are specified in the INFILE statement, this statement
has the extra function of setting up how an operation is to be performed. Because of
this setup function, the INFILE statement is sometimes used without a corresponding
INPUT statement. �

Ordinarily, the INFILE statement identifies an external data set to be read by an
INPUT statement. However, when you add new records to an existing VSAM data set,
you can use the INFILE statement without a corresponding INPUT statement (that is,
without reading a record) because VSAM knows where to put the new records. Records
are added in the following methods:

� In an ESDS, records are added in entry order. Therefore, new records are always
added with sequential access to the end of the data set.

� In a KSDS, records are added with direct access. KSDS records are ordered by the
prime key, which is part of the record itself.

34 Updating Records in VSAM Data Sets � Chapter 4

� In an RRDS, records are added with direct access. Because records are added by
specifying the RRN, the RRN of a new record must be given via the value of the
RRN= variable.

To add a new RRDS record, you must set the RRN= variable to the value of an
empty relative-record slot (number) before the PUT statement executes.

Updating Records in VSAM Data Sets

Introduction to Updating Records
Performing an update operation involves both input access (because the record must

be read first) and output access (because you update by writing to the data set). Input
access for an update can be either sequential or direct. Output access is sequential
unless one of the direct access variables (KEY=, RRN=, or RBA=) is specified. When
you update an existing record in a VSAM data set, you must use the following options
and statements:

1 specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”
on page 106.)

2 include both an INFILE and a FILE statement with the same fileref and the
VSAM option in the DATA step. Specify all other options in the INFILE
statement, which must precede the FILE statement.

3 use an INPUT statement to read the record that is being modified.
4 use the PUT statement to write the complete record. An INPUT statement brings

the record into the INPUT buffer but does not copy it to the PUT buffer. This
method enables you to change the record easily.

There are two common ways of writing the record with the PUT statement:
� build the complete record by specifying all fields with the PUT statement. This

method might be best when many of the fields need updating or when the updated
record is shorter than the existing record because it avoids the problem of trying to
eliminate or “blank out” the unwanted fields.

� copy the input record to the output buffer (with PUT _INFILE_) and overlay
selected fields in the copy. This method might be best when relatively few fields
need to be updated.

The latter method is the easiest for most applications. The following statement
copies the last record read into the PUT buffer and overlays the information starting in
columns 10 and 30 with the values in NEWDATA1 and NEWDATA2:

PUT @ 1 _INFILE_
@ 10 NEWDATA1
@ 30 NEWDATA2;

Limitations on Updating Records
To maintain data integrity in multiple update situations, VSAM uses operating

system facilities to protect the data. However, when either SHROPTIONS(3 X) or (4 X)
is specified (full sharing by any number of users) and records in the same control area
are updated simultaneously, some of the updates might be lost (X is any value). When
SHROPTIONS(3 X) is used, each user is responsible for maintaining both Read and
Write integrity for the data the program accesses. SHROPTIONS(4 X) requires your
program to use the ENQ and DEQ macros to maintain data integrity while sharing the

Processing VSAM Data Sets in SAS Programs � Erasing Records from a VSAM Data Set 35

data set. For more information on using ENQ and DEQ, see Appendix 3, “IBM
Documentation,” on page 111.

Using the UPDATE= Option
Sometimes a program accessing a VSAM data set reads many records but updates

only a few of the records. When a record is retrieved for update, no other user,
including you, can access that particular record or any other records in the same control
interval until you release the record by executing another PUT or an INPUT statement
for the data set. (This is significant when a VSAM data set is simultaneously accessed
by other users or by an online system, such as CICS.) Use the UPDATE= option in the
INFILE statement to avoid user lockout when only a few of the records that are
retrieved need to be updated.

The UPDATE= option specifies a numeric SAS variable that indicates whether a
record is to be read only or updated.

� When you set the UPDATE= variable to a value of 1 before an INPUT statement
executes, the record is retrieved for update. This is the same action that is taken if
the UPDATE= option is not specified.

� When you set the UPDATE= variable to a value of 0 before an INPUT statement
executes, the record is not retrieved for update.

If you retrieve a record with the UPDATE= variable set to 0 (that is, the record is not
retrieved for update) and then decide that you do want to update the record, reset the
UPDATE= variable to 1, retrieve the record again, and then update the record. This is
possible only with direct access. If you are reading the data set sequentially, you must
keep track of the records that you want to update (use a SAS data set for this) and read
them for update in a subsequent DATA step.

Erasing Records from a VSAM Data Set

Erasing a record involves both input access (because the record must be read first)
and output access. You can erase records from a KSDS or an RRDS. The record must be
retrieved before you can erase it, and you must specify the VSAMUPDATE system
option. (See “VSAMUPDATE System Option” on page 106.) VSAM imposes a restriction
that ESDS records cannot be erased.

You must use an INFILE statement and an INPUT statement to read the record and
a FILE statement and a PUT statement to erase the record from a VSAM data set. Of
course, the INFILE and FILE statements must have the same fileref; that is, they must
reference the same data set. You must use the ERASE= option in the INFILE statement
to specify a numeric SAS variable that tells SAS whether a record is to be erased.

� When you set the ERASE= variable to a value of 1 before a PUT statement for the
data set executes, the record is erased.

After the PUT statement executes, the ERASE= variable is automatically reset
to 0. Therefore, you must set it to 1 again to erase another record. This prevents
the inadvertent deletion of a series of records.

� When you set the ERASE= variable to a value of 0 before a PUT statement for the
data set executes, the record is updated with the data specified instead of being
erased. This is the default action that is taken if the ERASE= option is not
specified.

36 Combined Operations � Chapter 4

Combined Operations
You might want to perform more than one operation in one DATA step. (For example,

perhaps you want to read some records, update other records, and add new records all
in one DATA step.) Regardless of the number of different operations, only one pair of
INFILE and FILE statements for the data set is needed during the DATA step. Specify
all the options you might need for processing the data set in its INFILE statement.

In a DATA step that combines operations, SAS determines whether you want to
update existing records or add new records.

When you do not have an INPUT statement that is associated with the INFILE
statement (because you are adding records without reading from the data set), SAS
assumes that the data in the PUT statement is to be added as a new record. If you are
processing a KSDS, you must specify a new primary key in the PUT statement. If you
are processing an RRDS, you must specify an empty relative-record slot with the RRN=
option in the INFILE statement.

When you do have an INPUT statement that is associated with the INFILE
statement (that is, you are reading from the data set before writing), SAS assumes that
the data in the PUT statement is to update the record that you have just read with the
INPUT statement unless you have changed one of the following:

� the RBA= variable value before the PUT statement executes for an ESDS. See
“Combined Operations on an ESDS” on page 57 for more information.

� the primary key with PUT @ statements for a KSDS. The primary key is also
changed if you do not copy it from the INPUT buffer because the key is blank in
the PUT buffer. See “Combined Operations on a KSDS” on page 71 for more
information.

� the RRN= variable value before the PUT statement executes for an RRDS. See
“Combined Operations on an RRDS” on page 87 for more information.

Examples of Using VSAM Data in SAS Programs

Generating PROC PRINT Listings from a KSDS

This example generates the following PRINT procedure listings:
1 all records read sequentially from the KSDS
2 the keys that are used to subset the KSDS
3 the subset of records read from the KSDS using keys from the second item in this

list

The following example is based on the data set described in Appendix 2, “Sample
STUDENT Data Set,” on page 109. The example can generate PROC PRINT listings:

/* This DATA step reads all of the records from a KSDS */
/* using sequential access. */

data test;
infile myksds vsam;
input id $9. lastname $10. frstname $10. address $25. city $15.

state $2. zip $5. balance $5. gpa $4. class $2. hrs $2.
finaid $1.;

run;

Processing VSAM Data Sets in SAS Programs � Generating Reports Using PROC MEANS 37

/* Generate a listing of all the records of a KSDS. */
proc print data=test;
run;

/* This DATA step subsets the keys to every third key. */
data keys;

infile myksds vsam keypos=kpos keylen=klen;
input @kpos key $varying200. klen;
if mod(_n_,3)=0 then output;

/* This DATA step reads every third record from a */
/* KSDS using keyed access. */

data test;
set keys;
infile myksds vsam key=key;
input id $9. lastname $10. frstname $10. address $25. city $15.

state $2. zip $5. balance $5. gpa $4. class $2. hrs $2.
finaid $1.;

run;

/* Generate a listing of the subset of keys. */
proc print data=keys;

/* Generate a listing of the subset of KSDS records. */
proc print data=test;
run;

Generating Reports Using PROC MEANS

The following example reads all of the records from the KSDS, creates a numeric
variable containing the students’ GPA, and generates the following reports by using the
MEANS procedure:

1 grade point average for all students

2 grade point average of students by class

3 grade point average of students by state

The data must be sorted by the variable that is used in the BY statement of PROC
MEANS before you run PROC MEANS. The following example is based on the data set
described in Appendix 2, “Sample STUDENT Data Set,” on page 109.

/* This DATA step reads all of the records from the KSDS and */
/* generates a numeric variable GPANUM from the character */
/* variable GPA using the input function. */

data test;
infile myksds vsam;
input id $9. lastname $10. frstname $10. address $25. city $15.

state $2. zip $5. balance $5. gpa $4. class $2. hrs $2.
finaid $1.;

gpanum=input(gpa,4.2);
run;

proc means data=test;
var gpanum;

38 Using a Windowing Program to Update VSAM Records � Chapter 4

run;

proc sort data=test;
by class;

run;

proc means data=test;
var gpanum;
by class;

run;

proc sort data=test;
by state;

run;

proc means data=test;
var gpanum;
by state;

run;

Using a Windowing Program to Update VSAM Records
The following program is an example of using SAS Component Language (SCL) to

create a simple windowing application for updating VSAM records.
This application uses SCL to provide an interface to a VSAM KSDS. The data set

consists of student records, keyed by the student’s Social Security number (SSN). The
application enables users to scroll through records using the NEXT and PREV buttons
(or the forward and backward commands). You can also retrieve a record with a specific
key by entering a Social Security number and selecting the RETRIEVE button. After a
record is displayed, any desired changes can be made to the values in the window, and
the record is updated by selecting the CHANGE button. A new record can be added by
entering new values for all fields in the window and selecting the ADD button.

The application uses the following algorithm:
1 Create a SAS data set by reading records from the VSAM KSDS.
2 Display the values from the first record.
3 Perform the appropriate action when the user selects a button.
4 When the user chooses to quit the application,

a sort the SAS data set in ascending order by SSN
b delete the old VSAM KSDS
c create a new VSAM KSDS
d write all records from the SAS data set to the new KSDS.

The purpose of this application is to illustrate how SCL can be used to create an
interactive interface to the records in a VSAM data set. In the interest of clarity of the
code, this application does little error checking:

INIT:

/* Set the VSAMLOAD and VSAMUPDATE SAS options. */
/* Assign a fileref to the VSAM data set. */
/* Read records into a SAS data set from a VSAM KSDS. */
/* Deallocate the fileref. */
/* Open the SAS data set for processing. */

control asis;

Processing VSAM Data Sets in SAS Programs � Using a Windowing Program to Update VSAM Records 39

error=0;
submit continue STATUS;
option vsamload vsamupdate;
filename myksds ’dsname.ksds.student’ disp=shr;

data stdrecs;
infile myksds vsam;
input id $9.

lastname $10.
frstname $10.
address $25.
city $15.
state $2.
zip $5.
balance $5.
gpa $4.
class $2.
hrs $2.
finaid $1.;

run;

filename myksds clear;
endsubmit;
dsid=open(’work.stdrecs’,’u’);
prevrec=0;
nextrec=2;
rc=fetchobs(dsid,1);
link readval;

return;

MAIN:
/* Determine what the user wants to do, and perform */
/* the appropriate action. */
/* length cmd $ 10 idnum $ 9; */

length cmd $ 10;
cmd=’’;
put ’in MAIN - cmd = ’ cmd;
call notify(’RETRIEVE’,’_getText’,cmd);
if (cmd = ’RETRIEVE’) then do;

put cmd=;
link retrieve;
return;

end;
call notify(’CHANGE’,’_getText’,cmd);
if (cmd = ’CHANGE’) then do;

put cmd=;
link change;
return;

end;
call notify(’ADD’,’_getText’,cmd);
if (cmd = ’ADD’) then do;

put cmd=;
link add;
return;

40 Using a Windowing Program to Update VSAM Records � Chapter 4

end;
/* call notify(’NEXT’,’_getText’,cmd); */

if (cmd = ’NEXT’) then do;
put cmd=;

/* link next; */
return;

end;
call notify(’PREV’,’_getText’,cmd);
if (cmd = ’PREV’) then do;

put cmd=;
link prev;
return;

end;
call notify(’QUIT’,’_getText’,cmd);
if (cmd = ’QUIT’) then do;

put cmd=;
goto term;
return;

end;
cmd=’’;

return;

TERM:

/* Close the SAS data set. Sort the SAS data set by the */
/* variable holding the VSAM key value. Delete the old */
/* VSAM data set. Create a new VSAM data set to hold */
/* the updated records. (Note: The method used here */
/* (building a SAS macro to be submitted to the operating */
/* system command processor) only works on the z/OS operating */
/* system.) Assign a fileref to the newly created VSAM data */
/* set. Write the records from the SAS data set to the VSAM */
/* data set. Deallocate the fileref. */

call close(dsid);
submit terminate;
proc sort data=work.stdrecs;

by id;
run;

x "delete (’dsname.ksds.student’) purge cluster";

%let mac=%str(define cluster %(name(’dsname.ksds.student’)) ;
%let mac=%mac %str(records(10 5));
%let mac=&mac %str(recsz(90 90));
%let mac=&mac %str(shareoptions(2,3));
%let mac=&mac %str(reuse);
%let mac=&mac %str(volumes(APP004));
%let mac=&mac %str(cisz(2048));
%let mac=%mac %str(keys(9 0)%));
%let mac=&mac %str(data);
%let mac=&mac %str(%(name(’dsname.ksds.student.data’));
%let mac=&mac %str(cisz(2048)%));
%let mac=&mac %str(index);
%let mac=&mac %str(%(name(’dsname.ksds.student.index’));

Processing VSAM Data Sets in SAS Programs � Using a Windowing Program to Update VSAM Records 41

%let mac=&mac %str(cisz(512)%));

/* Submit the macro variable for execution. */
%sysexec &mac;

filename myksds ’dsname.ksds.student’ disp=shr;

data _null_;
set work.stdrecs;
file myksds vsam reset;

/* Write the data from the variables in the SAS data set to */
/* the appropriate column in the current record of the KSDS. */

if id ^= ’ ’ then do;
put @1 id $9. /* Student’s Social Security number */

@10 lastname $10. /* Student’s surname */
@20 frstname $10. /* Student’s given name */
@30 address $25. /* Permanent mailing address */
@55 city $15. /* City of residence */
@70 state $2. /* State of residence */
@72 zip $5. /* Five-digit ZIP code */
@77 balance $5. /* Balance from previous semester */
@82 gpa $4. /* Grade point average on a4.00 scale */
@86 class $2. /* FR, SO, JU, SE, or GR */
@88 hrs $2. /* Hours registered for in next semester */
@90 finaid $1.; /* Financial aid eligibility, Y or N */
end;

run;
filename myksds clear;
endsubmit;

return;

RETRIEVE:
/* Use a WHERE clause to subset the data set to contain only */
/* the record associated with the requested ID number. If */
/* there is an observation left in the data set, display its */
/* values. If there are no observations left in the data set, */
/* blank out any values in fields other than idnum and notify */
/* the user that there was no match found. */

clause="id=’"||idnum||"’";
rc=where(dsid,clause);
rc=fetchobs(dsid,1);
if rc=0 then

link readval;
else do;

link blanks;
msg=’No matching record found.’;

end;
return;

CHANGE:

/* Update the values in the current observation. */

42 Using a Windowing Program to Update VSAM Records � Chapter 4

link writeval;
if error then

error=0;
else

rc=update(dsid);
return;

ADD:
/* Check to see if a record with that SSN already exists. If */
/* so, notify the user. Else add a new observation to the */
/* data set and update its variables. */

clause="id=’"||idnum||"’";
put clause=;
rc=where(dsid,clause);
put rc=;
rc=fetchobs(dsid,1);
put rc=;
if rc=0 then do;

msg=’A record with that key already exists.’;
msg=’No duplicates allowed’;

end ;
else do;

rc=append(dsid);
link writeval;

end;
if error then

error=0;
else

rc=update(dsid);
return;

NEXT:
put ’next - nextrec = ’ nextrec;
put ’next - prevrec = ’ prevrec;
rc=fetchobs(dsid,nextrec);
put rc=;
if rc=0 then do;

prevrec=prevrec+1;
nextrec=nextrec+1;
link readval;

end;
else

msg=’NOTE: At bottom.’;
return;

PREV:
put ’prev - nextrec = ’ nextrec;
put ’prev - prevrec = ’ prevrec;
if prevrec>0 then do;

rc=fetchobs(dsid,prevrec);
put rc=;
if rc=0 then do;

prevrec=prevrec-1;
nextrec=nextrec-1;

Processing VSAM Data Sets in SAS Programs � Using a Windowing Program to Update VSAM Records 43

link readval;
end;
else

msg=’NOTE: At top.’;
end;

else
msg=’NOTE: At top.’;

return;

BLANKS:

/* Blank out all values on the screen. */
idnum =’’;
lname =’’;
fname =’’;
address= ’’;
city =’’;
s =’’;
zip =’’;
bal =’’;
gpa =’’;
c =’’;
h =’’;
fa =’’;

return;

READVAL:
/* Assign the screen variables the values contained in the */
/* current observation. */

idnum =getvarc(dsid,1);
lname =getvarc(dsid,2);
fname =getvarc(dsid,3);
address= getvarc(dsid,4);
city =getvarc(dsid,5);
s =getvarc(dsid,6);
zip =getvarc(dsid,7);
bal =put(input(getvarc(dsid,8),5.),dollar10.2);
gpa =getvarc(dsid,9);
c =getvarc(dsid,10);
h =getvarc(dsid,11);
if getvarc(dsid,12)=’Y’ then

fa=’Yes’;
else

fa=’No’;
return;

WRITEVAL:

/* Write the values contained in the screen variables to the */
/* variables in the current observation. */

length tempbal $ 10;
call putvarc(dsid,1,idnum);
call putvarc(dsid,2,lname);
call putvarc(dsid,3,fname);

44 Using a Windowing Program to Update VSAM Records � Chapter 4

call putvarc(dsid,4,address);
call putvarc(dsid,5,city);
call putvarc(dsid,6,s);
call putvarc(dsid,7,zip);
tempbal=substr(bal,2);
pos=index(tempbal,’,’);
if pos>0 then

tempbal=substr(tempbal,1,pos-1)||substr(tempbal,pos+1);
tempbal=substr(tempbal,1,index(tempbal,’.’)-1);
call putvarc(dsid,8,tempbal);
call putvarc(dsid,9,gpa);
call putvarc(dsid,10,c);
call putvarc(dsid,11,h);
temp=upcase(substr(fa,1,1));
if (temp=’Y’) | (temp=’N’) then

call putvarc(dsid,12,temp);
else do;

msg=’Invalid value for Financial Aid Eligibility,(Yes or No)’;

error=1;
end;

return;

The output for the example creates the following window:

Display 4.1 Result of SCL Windowing Program

45

C H A P T E R

5
Defining and Loading a VSAM
Data Set

Defining a VSAM Data Set 45
Loading Records into a VSAM Data Set 47

Loading Records into a New VSAM Data Set 47

Options Used When Loading Records into a New VSAM Data Set 47

Access Types When Loading Records into a VSAM Data Set 47

Reloading a VSAM Data Set 48
Loading a VSAM Data Set in a SAS DATA Step 48

Defining a VSAM Data Set
You define a VSAM data set by using the IBM Access Method Services (AMS)

IDCAMS utility, which is invoked from JCL. The following example uses IDCAMS to
delete, allocate, and define a KSDS, an RRDS, and an ESDS. Note that the IDCAMS
DEFINE parameters are generally self-explanatory by name. Make special note of the
parameters RECORDSIZE (average maximum) and KEYS (length offset), where the
keys offset is relative to the beginning of the record.

//VSAMDEF JOB job information
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DELETE (dsname.K1719) PURGE CLUSTER
DEFINE CLUSTER (NAME(dsname.K1719) INDEXED VOLUMES(xxxxxx) -

TRACKS(1) KEYS(17 19) RECORDSIZE(40 110) NONSPANNED) -
DATA (NAME(dsname.K1719.DATA)) INDEX (NAME(dsname.K1719.INDEX))

DELETE (dsname.R002) PURGE CLUSTER
DEFINE CLUSTER (NAME(dsname.R002) NUMBERED VOLUMES(xxxxxx) TRACKS(1) -

RECORDSIZE(120 120) NONSPANNED) DATA (NAME(dsname.R002.DATA))

DELETE (dsname.E002) PURGE CLUSTER
DEFINE CLUSTER (NAME(dsname.E002) NONINDEXED VOLUMES(xxxxxx) -

TRACKS(1) RECORDSIZE(80 80)) DATA (NAME(dsname.E002.DATA))
/*
//

If the VSAM data sets do not already exist, this example produces a return code of 8
for the DELETE operation.

You can also define a VSAM data set in two other ways:

46 Defining a VSAM Data Set � Chapter 5

� by building a SAS macro variable

� by issuing a TSO DEFINE command in the Program Editor with the X statement

The VSAMLOAD and VSAMUPDATE system options are necessary for loading and
updating VSAM data sets. (See “VSAMLOAD System Option” on page 105 and
“VSAMUPDATE System Option” on page 106.)

The following is an example of a macro variable:

options vsamload vsamupdate;

/* Delete the cluster if it exists. */
x "delete (’dsname.esds.student’) purge cluster";

/* Build a macro variable containing the commands */
/* that define a VSAM ESDS. */

%let def=%str(define cluster %(name(’dsname.esds.student’));
%let def=&def %str(records(10 5));
%let def=&def %str(recsz(90 90));
%let def=&def %str(shareoptions(2,3));
%let def=&def %str(volumes(xxxxxx));
%let def=&def %str(reuse);
%let def=&def %str(cisz(2048));
%let def=&def %str(nonindexed %));

/* Submit the macro variable for execution. */
%sysexec &def;
run;

The example defines an ESDS that is named dsname.ESDS.STUDENT. If the ESDS
already exists, this example deletes the data set and redefines it. The necessary SAS
system options VSAMLOAD and VSAMUPDATE are included in the beginning of the
example. The first qualifier of the data set name, dsname, represents a value that the
user supplies.

The following is an example of a TSO DEFINE command:

X DEFINE CLUSTER
(
NAME(’dsname.TEST.VSAMFILE.CLUSTER’)
VOLUME(xxxxxx)
TRACKS(5,1)
CONTROLINTERVALSIZE(4096)
FREESPACE(10,20)
KEYS(4,0)
RECORDSIZE(80,80)
)

DATA
(
NAME(’dsname.TEST.VSAMFILE.DATA’)
)

INDEX
(
NAME(’dsname.TEST.VSAMVILE.INDEX’)
CONTROLINTERVALSIZE(1024)
)

;

Defining and Loading a VSAM Data Set � Access Types When Loading Records into a VSAM Data Set 47

Loading Records into a VSAM Data Set

Loading Records into a New VSAM Data Set
VSAM does not allow you to process records while you are loading the data set. You

can put the initial records into the data set, but you cannot read, update, or erase any
of these records until the data set is closed. Because of this restriction, SAS requires
you to use only a FILE statement, instead of both an INFILE and a FILE statement,
for a VSAM data set that is to be loaded. You must also specify the .VSAMLOAD
system option. (See “VSAMLOAD System Option” on page 105.) After the data set is
loaded and closed, you can add, update, or erase records when the VSAMUPDATE
system option is in effect. (See “VSAMUPDATE System Option” on page 106.)

You can read from and write to records in any other data set within the same DATA
step that you use to load a VSAM data set. (For example, you can load a VSAM data
set based on records you are processing from another data set.)

VSAM requires you to load a KSDS sequentially in key order. You can load an RRDS
either sequentially in record order or directly by using the RRN= direct-access option in
the FILE statement. An ESDS can be loaded only sequentially.

Options Used When Loading Records into a New VSAM Data Set
When you load initial records into a new VSAM data set, use only a FILE statement

and specify the VSAMLOAD system option. (See “VSAMLOAD System Option” on page
105.) In addition, you can use the following options in the FILE statement when you
load a VSAM data set:

BUFND= KEYPOS= RECORDS=

BUFNI= LINE= RESET

COL= LINESIZE= RRN=

FEEDBACK= N= VSAM

KEYLEN= PASSWD=

Access Types When Loading Records into a VSAM Data Set
When you load records into a VSAM data set, access depends on the data set type:
� For an ESDS, load access is sequential; that is, the records are loaded in the order

in which you write them. You cannot change this order after loading the data set.
� For a KSDS, load access is sequential; that is, you must load the records in key

order.
This VSAM restriction is imposed for performance reasons. If you attempt to

load a record with a key lower than that of a previous record, VSAM returns a
logical error with a feedback code of 12. If the sequential load restriction is a
problem, load one or more records into the data set, and then access the data set a
second time in another DATA step. After the data set is closed with one or more

48 Reloading a VSAM Data Set � Chapter 5

records, the load restrictions no longer apply. Loading the data set in this manner
might take more computer resources than loading the data set sequentially. If the
data to be loaded is in a SAS data set, you can sort it in primary key order with
the SORT procedure before loading the VSAM data set.

� For an RRDS, load access is sequential unless you specify the RRN= direct-access
variable in the FILE statement.

The first record is loaded into the first slot, and each subsequent record is
loaded into the next successive slot unless you load the records in some other order
by using the RRN= variable.

Reloading a VSAM Data Set
If you plan to reload data sets into an existing VSAM data set in a DATA step, keep

the following points in mind:
� You must define the data set with the VSAM option REUSE.
� You must specify the VSAMLOAD system option. (See “VSAMLOAD System

Option” on page 105.)
� Use the RESET option in the FILE statement to reset the existing data set to

empty (no records) when it is opened. If the VSAM data set is not defined with the
REUSE option and you attempt to use the RESET option, the DATA step will not
execute because VSAM does not open the data set.

� Reload the empty data set with new records.

Data sets that have alternate indexes cannot be reloaded; they must be deleted,
defined, and then loaded.

Loading a VSAM Data Set in a SAS DATA Step
The following example shows how to load a VSAM data set in a SAS DATA step. The

data set is described in Appendix 2, “Sample STUDENT Data Set,” on page 109.
In the example, a previously defined ESDS is loaded in a SAS DATA step. The

example also applies to a KSDS and an RRDS.

data load;
/* Open a SAS data set for input. */

set vsamdata.student;

/* Open previously defined VSAM ESDS for output. */
file myesds vsam;

/* Write the data from the variable in the SAS data set to */
/* the appropriate column in a record of the ESDS. */

put @1 id $9. /* Student’s Social Security number */
@10 lastname $10. /* Student’s surname */
@20 frstname $10. /* Student’s given name */
@30 address $25. /* Permanent mailing address */
@55 city $15. /* City of residence */
@70 state $2. /* State of residence */
@72 zip $5. /* Five-digit ZIP code */
@77 balance $5. /* Balance from previous semester (if any) */
@82 gpa $4. /* Grade point average on a 4.00 scale */
@86 class $2. /* FR, SO, JU, SE, or, GR */
@88 hrs $2. /* Hours registered for in next semester */

Defining and Loading a VSAM Data Set � Loading a VSAM Data Set in a SAS DATA Step 49

@90 finaid $1.; /* Financial aid eligibility, Y or N */
run;

50

51

C H A P T E R

6
Processing an ESDS in a SAS Job

Introduction to ESDS 51
Special SAS Options Used with an ESDS 52

Reading Records from an ESDS 52

Access Types for ESDS Operations 52

Reading an ESDS with Sequential Access 53

Reading an ESDS with Direct Access 53
Addressed Direct Access by RBA 53

Keyed Direct Access by Alternate Keys 54

Adding Records to an ESDS 54

Updating Records in an ESDS 56

Steps for Updating Records in an ESDS 56

Using the PUT Statement When Updating Records in an ESDS 56
Combined Operations on an ESDS 57

Adding Records after Reading 58

Introduction to ESDS

Record storage in an Entry-Sequenced Data Set (ESDS) is determined by the order in
which the records are entered into the data set without respect to the record contents.
New records are stored at the end of the data set. An ESDS is appropriate for
applications that do not require any particular ordering of the data by the record
contents or for those that require time-ordered data. Applications that use a log or
journal are well suited for an ESDS data set structure.

The options associated with reading, adding, and updating ESDS records are
described in the following sections. In many cases, the option’s meaning depends on
how it is used within a SAS program. (Loading ESDS records is discussed separately in
Chapter 5, “Defining and Loading a VSAM Data Set,” on page 45.)

The following are three helpful tables and their descriptions:

� Table 6.1 on page 52 lists the options that are significant for processing ESDS
records.

� Table 6.2 on page 53 summarizes the access type that you can use for each ESDS
operation.

� Table 6.3 on page 54 points out the type of access that you can use for an ESDS
with an alternate index.

Finally, there are examples of reading, adding, updating, and performing combined
operations on an ESDS data set. The examples are based on the data set described in
Appendix 2, “Sample STUDENT Data Set,” on page 109.

52 Special SAS Options Used with an ESDS � Chapter 6

For information on using a KSDS in SAS jobs, see Chapter 7, “Processing a KSDS in
a SAS Job,” on page 59. For information on using an RRDS in SAS jobs, see Chapter 8,
“Processing an RRDS in a SAS Job,” on page 77.

Special SAS Options Used with an ESDS
The special SAS options fall into functional categories. The following table lists the

special SAS options and categories used for processing an ESDS data set. Informational
and record retrieval options are specified in the INFILE statement. Record storage
options are specified in the FILE statement.

Table 6.1 SAS Options for an ESDS

Functional Category

Option Informational Record Retrieval Record Storage

BACKWARD X

BUFND= X

BUFNI= X

CONTROLINTERVAL X

ERRORABEND X

FEEDBACK= X

PASSWD= X

RBA= X

RECORDS= X

RESET X

SEQUENTIAL X

UPDATE= X

VSAM X X X

Reading Records from an ESDS

Access Types for ESDS Operations
You can use sequential or addressed direct access to read records from an ESDS

within a SAS program. (See Table 6.2 on page 53). If the ESDS has an alternate key
index, you can also use keyed direct access. (See “Keyed Direct Access by Alternate
Keys” on page 54.) The options that are specified in the INFILE statement determine
the access type for an ESDS read operation. Either the VSAMLOAD or the
VSAMUPDATE system option must be specified in order to read VSAM data sets.

Processing an ESDS in a SAS Job � Reading an ESDS with Direct Access 53

Table 6.2 Access Types for ESDS Operations

Operation Read

(INFILE/INPUT Statements)

Write

(FILE/PUT Statements)

SequentialRead

Direct with RBA= option

Does not apply

Sequential with RBA= and SEQ
options

Add*

Direct with RBA= option

Sequential: records are always
added to the end of file

SequentialUpdate

Direct with RBA= option Direct: the last record read is the
record updated

Load Does not apply Sequential: in entry order

* The INPUT statement is not required.

Reading an ESDS with Sequential Access
In an ESDS, sequential means in entry order. By default, the records that are in the

data set are read from the beginning to the end of the data set. The following example
shows the DATA step that you can use to read an ESDS sequentially:

/* Read data from an ESDS into a SAS data set */

data one;
infile myesds vsam;
input;
...more SAS statements...

If you specify the BACKWARD option, the data set is read backward, from the last
record to the first record.

Reading an ESDS with Direct Access

Addressed Direct Access by RBA
When an ESDS is read with addressed direct access, records are retrieved directly by

the address relative to the beginning of the data set (relative-byte address). For this
type of access to be useful, you must know the RBAs of the records that you want to
access. You might know the RBA if it has some relationship to the record contents or if
you have obtained it (for example, from the _RBA_ automatic variable in a previous
SAS DATA step).

To use addressed direct access, specify the RBA= option in the INFILE statement for
the VSAM data set that is to be accessed by RBA. The RBA= option defines a variable
whose value must be set to the RBA of the logical record or control interval to be
retrieved by an INPUT statement. The address you specify must correspond to the
beginning of a data record (logical record or control interval). Otherwise, the request is
invalid and causes a VSAM logical error.

54 Adding Records to an ESDS � Chapter 6

The following program illustrates addressed direct access to an ESDS:

data one;
infile myesds vsam;
input;
rbanum=_rba_;
keep rbanum;

run;

data two;
set one;
infile myesds vsam rba=rbanum;
input;
...more SAS statements...

Keyed Direct Access by Alternate Keys
If there is an alternate key index for an ESDS, you can use keyed direct access by

alternate keys to read an ESDS. An alternate index is created outside the SAS
environment by using IBM Access Method Services. Then the ESDS records can be
accessed directly by key, in a manner similar to a KSDS. (For an introduction to the
alternate index concept, see “Keyed Direct Access with an Alternate Index” on page 10).
For instructions on how to create an alternate index for an ESDS, see Chapter 9,
“Using Alternate Indexes for VSAM Data Sets,” on page 91.

You can treat an ESDS accessed through an alternate index as if it were a KSDS,
except that records cannot be erased and the record length cannot be changed.

The following table summarizes the type of access you can use for an ESDS with an
alternate key index.

Table 6.3 Operations on an ESDS with an Alternate Index

Operation Access

SequentialRead

Direct by:

� alternate key

� RBA

Add Sequential

SequentialUpdate

Direct by:

� alternate key, if required

� RBA

Load Sequential

Adding Records to an ESDS
Add records to an existing ESDS using the following method:
1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”

on page 106.)

Processing an ESDS in a SAS Job � Adding Records to an ESDS 55

2 Include both an INFILE and a FILE statement for the data set. Specify the VSAM
option in both the INFILE and the FILE statements. Specify all other options in
the INFILE statement, which must precede the FILE statement.

For a list of the options that you can use to add records to an ESDS, see Table 6.1 on
page 52.

You do not have to include an INPUT statement with the INFILE statement. The
INPUT statement is unnecessary because you do not have to read a record in order to
add a new record. Here is an example:

data three;
infile myesds vsam ;
file myesds vsam ;
id=’289478363’;
lastname=’Cox ’;
frstname=’June ’;
address=’Rt. 2 Box 784 ’;
city=’Cheyenne’;
state=’WY’;
zip=’59334 ’;
balance=’00100’;
gpa=’2.33’;
class=’SE’;
hrs=’13’;
finaid=’Y’;
if _n_=1 then newstu=0;

put @1 id $9. /* Student’s Social Security number */
@10 lastname $10. /* Student’s surname */
@20 frstname $10. /* Student’s given name */
@30 address $25. /* Permanent mailing address */
@55 city $15. /* City of residence */
@70 state $2. /* State of residence */
@72 zip $5. /* Five-digit ZIP code */
@77 balance $5. /* Balance from previous semester (if any) */
@82 gpa $4. /* Grade point average on a 4.00 scale */
@86 class $2. /* FR, SO, JU, SE, or, GR */
@88 hrs $2. /* Hours registered for in next semester */
@90 finaid $1.; /* Financial aid eligibility, Y or N */

newstu=newstu+1;
retain newstu;
...more SAS statements...

run;

In the example, a record for a new student, JUNE COX, is defined and added to the
MYESDS data set without first reading the ESDS. The record is added to the end of the
data set because output access is always sequential when new records are added to an
ESDS. (See Table 6.2 on page 53).

56 Updating Records in an ESDS � Chapter 6

Updating Records in an ESDS

Steps for Updating Records in an ESDS
To update records in an ESDS, follow these steps:

1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”
on page 106.)

2 Include both an INFILE and a FILE statement for the data set. Specify the VSAM
option in both the INFILE and the FILE statements. Specify all other necessary
options in the INFILE statement, which must precede the FILE statement.

3 Use an INPUT statement to read the record being modified.

4 Use the PUT statement to write the complete record. An INPUT statement brings
the record into the INPUT buffer but does not copy it to the PUT buffer. This
enables you to change the record easily.

For a list of options that you can use to update records in an ESDS, see Table 6.1 on
page 52.

When records in an ESDS are updated, you have the following input and output
access:

� Input access for reading can be either sequential or direct. Access is sequential
unless you specify the RBA= direct access option in the INFILE statement. (See
Table 6.2 on page 53).

� Output access for writing is direct because the last record that is read is the record
updated.

Using the PUT Statement When Updating Records in an ESDS
When you update an ESDS record, you must use the PUT statement to write the

complete record. There are two common ways of writing the record with the PUT
statement:

� Build the complete record by specifying all fields with the PUT statement. This
method might be best when many of the fields need to be updated.

� Copy the input record to the output buffer (with PUT _INFILE_) and overlay
selected fields. This method might be best when relatively few fields need to be
updated.

The latter method is the easiest for most applications. The following statement
copies the last record that is read into the PUT buffer and overlays the information
starting in columns 10 and 30 with the values in NEWDATA1 and NEWDATA2:

PUT @ 1 _INFILE_
@ 10 NEWDATA1
@ 30 NEWDATA2;

In most cases, when a record is retrieved for update, no user, including you, can
access that particular record or any other records in the same control interval. Use the
UPDATE= option to avoid user lockout when only a few of the records retrieved need to
be updated. See “Using the UPDATE= Option” on page 35 for more information.

In the following example, the RBAs of records are captured and stored in a SAS
variable called RBAVAR from the _RBA_ automatic variable. In the next DATA step,
the records are then read without being retrieved for update until the condition

Processing an ESDS in a SAS Job � Combined Operations on an ESDS 57

specified in the IF clause is met. When the IF condition is true (RBANUM=1260), the
record is retrieved again with update access.

data rbas;
infile myesds vsam ;
input;
rbanum=_rba_ ;
keep rbanum;

run;

data esdsupdt;
set rbas;
updtevar=0;
infile myesds vsam rba=rbanum update=updtevar;
input;
if (rbanum=1260) then do;

updtevar=1;
input;

/* Create NEWDATA */
lastname=’Flintstone ’;
frstname=’Fred ’;
file myesds vsam ;
put @1 _infile_

@10 lastname
@20 frstname;

end;
run;

Combined Operations on an ESDS
You might want to perform more than one operation on an ESDS in one DATA step.

(For example, perhaps you want to read some records, update other records, and add
new records in one DATA step.) Regardless of the number of different operations, you
need to specify only one pair of INFILE and FILE statements for the entire DATA step.
Specify the VSAM option in both the INFILE and the FILE statements. Specify all
other options that you might need to process the ESDS in its INFILE statement.

In a DATA step that combines operations, SAS determines whether you want to add
new records or update existing ESDS records based on whether an INPUT statement is
associated with the INFILE statement.

� When you do not have an INPUT statement associated with the INFILE
statement, SAS assumes that the data in the PUT statement is to be added as a
new record at the end of the data set.

� When you do have an INPUT statement associated with the INFILE statement,
SAS assumes that the data in the PUT statement is to modify the record you have
just read, unless you change the RBA= variable to a different value before the
PUT statement executes. When you change the RBA= variable, whatever is in the
PUT buffer is added as a new record to the end of the data set.

58 Adding Records after Reading � Chapter 6

Adding Records after Reading

To add a new record after reading an existing record, set the RBA= variable to a
different value before you execute the PUT statement. The new RBA value instructs
VSAM not to update the last record retrieved with an INPUT statement; instead, it
adds the data as a new record. (The actual value in the RBA= variable is ignored
because VSAM chooses the RBA for a new record.)

data four;
set rbas;
infile myesds vsam rba=rbanum;
file myesds vsam;
input;
if (rbanum= 1080) then do;

rbanum= 803;
lastname=’Rubble ’;
frstname=’Barney ’;
file myesds vsam ;
put @1 _infile_

@10 lastname
@20 frstname;

end;
run;

In the example, MYESDS is read until RBANUM 1080 is found; then a record is
added after 1080 because changing the RBANUM cancels the update.

If you want to read an ESDS sequentially while adding new records, specify the
SEQUENTIAL option and the RBA= option in the INFILE statement. (The
SEQUENTIAL option specifies sequential record retrieval when the RBA= direct access
option indicates direct record storage for the PUT statement.)

59

C H A P T E R

7
Processing a KSDS in a SAS Job

Introduction to KSDS 59
Special SAS Options Used with a KSDS 60

Reading Records from a KSDS 61

Three Ways for Reading Records from a KSDS 61

Reading a KSDS with Sequential Access 61

Reading a KSDS with Direct Access 61
Introduction to Reading a KSDS with Direct Access 61

Keyed Direct Access to a KSDS 62

KEY= Option 62

KEYGE Option 63

GENKEY Option 63

KEYLEN= Option 64
KEYPOS= Option 64

Packed Decimal Data and Key Variables 65

Keyed Direct Access by Alternate Index 65

Addressed Direct Access by RBA 66

Reading a KSDS with Skip Sequential Access 66
Adding Records to a KSDS 68

Updating Records in a KSDS 69

Erasing Records from a KSDS 70

Combined Operations on a KSDS 71

Introduction to Combined Operations on a KSDS 71
Adding Records without Reading 72

Introduction to Adding Records without Reading 72

Key Testing with FEEDBACK= and the PUT Statement 72

Adding Records after Reading 74

Introduction to Adding Records after Reading 74

Key Testing with FEEDBACK=, KEY=, and the INPUT Statement 74
Comparing Key-Testing Techniques 75

Introduction to KSDS

Each record in a Key-Sequenced Data Set (KSDS) has a key that contains a unique
value. KSDS records are retrieved by their key sequences. The key is a contiguous
portion of the record and is defined when the data set is created. A KSDS is always
defined with a prime index that relates the record’s key value to its relative location in
the data set. VSAM uses the index to locate a record for retrieval and to locate a
collating position for record insertion. A KSDS is the most flexible approach for most

60 Special SAS Options Used with a KSDS � Chapter 7

applications because the record can be accessed directly via the key field. Access is not
dependent on the physical location of the record in the data set.

You can read, add, update, and erase KSDS records in SAS programs. The options
that are associated with each of these operations are described in the following sections.
In many cases, the option’s meaning depends on how it is used within a SAS program.
(Loading KSDS records is discussed separately in Chapter 5, “Defining and Loading a
VSAM Data Set,” on page 45.)

Here are two helpful tables and their descriptions:

� Table 7.1 on page 60 lists the options that are significant for processing KSDS
records.

� Table 7.2 on page 62 summarizes the access type for KSDS operations.

There are examples of reading, adding, updating, and performing combined operations
on a KSDS data set. The examples are based on the STUDENT data set described in
Appendix 2, “Sample STUDENT Data Set,” on page 109. You can run the examples by
using the sample programs provided in the Help system and following the steps to
define and load a KSDS described in Chapter 5, “Defining and Loading a VSAM Data
Set,” on page 45.

For information on using an ESDS in SAS jobs, see Chapter 6, “Processing an ESDS
in a SAS Job,” on page 51. For information on using an RRDS, see Chapter 8,
“Processing an RRDS in a SAS Job,” on page 77.

Special SAS Options Used with a KSDS

The special SAS options fall into functional categories. The following table lists the
special SAS options and categories that are used for processing a KSDS data set.
Informational and record retrieval options are specified in the INFILE statement.
Record storage options are specified in the FILE statement.

Table 7.1 SAS Options for a KSDS

Functional Category

Option Informational Record Retrieval Record Storage

BACKWARD X

BUFND= X

BUFNI= X

CONTROLINTERVAL X

ERASE= X

ERRORABEND X

FEEDBACK= X

GENKEY X

KEY X X

KEYGE X

KEYLEN= X

KEYPOS= X

PASSWD= X

Processing a KSDS in a SAS Job � Reading a KSDS with Direct Access 61

Functional Category

Option Informational Record Retrieval Record Storage

RBA= X

RECORDS= X

RESET X

SKIP X

UPDATE= X

VSAM X X X

Reading Records from a KSDS

Three Ways for Reading Records from a KSDS
You can read KSDS records with sequential access, direct access, and a combination

of both sequential and direct access. (See Table 7.2 on page 62 for more information.)
The type of KSDS Read operation is specified with appropriate options in the SAS
INFILE statement. Also, you must specify either the VSAMREAD or the
VSAMUPDATE global SAS system option in order to read VSAM data sets.

Reading a KSDS with Sequential Access
By default, KSDS records are read in key order with sequential access; that is, they

are read from the beginning to the end of the collating sequence of the key field
contents. The following example shows the DATA step that you can use to read a KSDS
sequentially:

data one;
infile myksds vsam ;
input;
…more SAS statements…

If you specify the BACKWARD option, the data set is read backward, from the
highest key to the lowest.

Reading a KSDS with Direct Access

Introduction to Reading a KSDS with Direct Access
A KSDS is read directly using the following methods:

� keyed direct access by key, approximate key, or generic key

� addressed direct access by RBA

� skip sequential access, which is a combination of direct and sequential access

You cannot use both keyed direct and addressed direct access for the same data set in
one DATA step.

62 Reading a KSDS with Direct Access � Chapter 7

Keyed Direct Access to a KSDS
To read a KSDS with keyed direct access, specify the key of the record you want SAS

to read. The key can be one of the following:
� the exact key of the record
� an approximate key that is less than or equal to the actual key of the record
� a generic key specifying a leading portion of the key contained in records wanted

Several of the INFILE statement options that are described in Chapter 2, “SAS
Options and Variables for VSAM Processing,” on page 13 are used to retrieve KSDS
records. These options are GENKEY, KEY=, KEYGE, KEYLEN=, and KEYPOS=.

Table 7.2 Access Types for KSDS Operations

Operation

Read

(INFILE/INPUT Statements)

Write

(FILE/PUT Statements)

Sequential Does not apply

Direct by:

� key with KEY= option

� generic key with GENKEY
and KEYLEN= options

� alternate key

� RBA with RBA= option

Read

Skip sequential with SKIP and
KEY= options

SequentialAdd*

Direct with KEY= option

Direct: specify a unique key in the
PUT statement

SequentialUpdate

Direct with:

� KEY= option

� RBA= option

Direct: prime key in the PUT
statement must match the key of
record read to update

SequentialErase

Direct with:

� KEY= option

� RBA= option

Direct: the record that is read is the
record that is erased

Load Does not apply Sequential: in prime key order

* The INPUT statement is not required.

KEY= Option
The direct access option KEY= defines a SAS variable whose value is the key of the

record that you want to read with an INPUT statement. The following is a simple
example of the use of the KEY= option:

data two;
id= ’293652329’;

Processing a KSDS in a SAS Job � Reading a KSDS with Direct Access 63

keyvar= id;
infile myksds vsam key=keyvar;
input;
…more SAS statements…

In the example, VSAM retrieves the record with the ID value of 293652329 from the
MYKSDS data set.

The KEY= option can specify a list of variables to create a key up to 256 characters
in length. The key that is passed to VSAM is constructed by concatenating the
variables specified; blanks are not trimmed.

Unless it is used with the GENKEY option, the key value that is passed to VSAM is
either padded with blanks or truncated, as necessary, to equal the key length that is
defined when the KSDS was created. (For example, if the KSDS specified a key length
of 5 instead of 9 characters, the key that is in the preceding example would be
truncated to 29365 and only records that match that value would be retrieved.) With
the GENKEY option, SAS programs treat the value of the KEY= variable as a partial
key so that length is not an issue.

KEYGE Option
You can use the KEYGE option to specify that the read retrieval is to be any record

whose key is equal to or greater than the key specified by the KEY option variable.
This approximate key retrieval is useful when the exact key is not known. The KEYGE
option applies to all records read from the data set in that DATA step; that is, you
cannot turn KEYGE on and off.

The following example retrieves the first record that either matches or is greater
than the key given; in this case, it is 600000000:

data three;
id= ’600000000’ ;
keyvar= id;
infile myksds vsam key=keyvar keyge;
input;

…more SAS statements…

If necessary, the value of KEYVAR is padded with blanks or truncated to equal the
key length that was defined when the KSDS was created.

GENKEY Option
The GENKEY option specifies generic key processing. With the GENKEY option,

SAS programs treat the value given by the KEY= variable as a partial key (the leading
portion) of the record that is to be read. SAS reads only the first record that contains
the matching partial key (unless you also specify skip sequential processing). Changing
the value of the KEY= variable indicates another generic key retrieval request. The
GENKEY option applies to all records read from the data set in that DATA step; that is,
you cannot turn GENKEY on and off.

The following example retrieves the first record with a key matching the first part of
the key specified by the KEY= variable, KEYVAR:

data four;
id=’578’;
keyvar=id;
infile myksds vsam key=keyvar genkey;
input;
…more SAS statements…

The record that is read is the first record with 578 in its ID.

64 Reading a KSDS with Direct Access � Chapter 7

When you specify both the GENKEY and the SKIP options, SAS retrieves the first
record that contains the matching partial key and then reads the following records
sequentially. Access is sequential after the first record until you change the value of the
KEY= variable, which indicates another direct-access, generic-key retrieval request. See
“Reading a KSDS with Skip Sequential Access” on page 66 for more information and an
example of how to use both the GENKEY and SKIP options.

KEYLEN= Option

Use the KEYLEN= option with the GENKEY option to change the generic key length
from one request to the next. KEYLEN= defines a SAS variable that specifies the
length of the key to be compared to the keys in the data set. The variable’s value is the
number of generic key characters passed to VSAM. If you specify GENKEY without the
KEYLEN= option, the generic key length is the KEY= variable length (or the sum of
the KEY= variable lengths, if a list is specified) that is defined in the KSDS. The
following example retrieves the first record that matches the first character of
KEYVAR’s value, which is 5:

data five;
id=’578’;
keyvar=id;
klvar=1;
infile myksds vsam key=keyvar genkey keylen=klvar;
input;
…more SAS statements…

The KEYLEN= option has another use. It can also give information about the key
field length to the application program. Before the DATA step executes, SAS sets the
variable that is specified by KEYLEN= to the actual (maximum) key length that is
defined in the KSDS data set. This option enables KSDS keys to be read without
knowing the key length in advance. Assign the initial value of the KEYLEN= variable
to a different variable if you also intend to set the KEYLEN= variable for generic key
processing or if you need to know and use the key-length value later in the DATA step.
You might need to name the variable in a RETAIN statement if you need this initial
value after the first execution of the DATA step:

data six;
id=’578’;
keyvar=id;
infile myksds vsam key=keyvar genkey keylen=klvar;
retain lenkey;
lenkey=klvar;
put lenkey=;
klvar=1;
input;
…more SAS statements…

In the example, the first two statements assign the key value of the records that are
wanted to KEYVAR. The RETAIN statement captures and stores the initial value of the
KEYLEN= variable into the LENKEY variable for later use as KLVAR. Then KLVAR is
set to 1 for generic processing.

KEYPOS= Option

The KEYPOS= option specifies a numeric SAS variable that VSAM sets to the
position of the key in KSDS records before the DATA step executes. The variable is set

Processing a KSDS in a SAS Job � Reading a KSDS with Direct Access 65

to the column number, not the offset, which is the column number minus 1. This option
enables you to read KSDS keys without knowing their positions in advance.

data seven;
length keyvar $9;
infile myksds vsam keypos=kpvar;
retain kpvar;
input @kpvar keyvar;
…more SAS statements…

In the example, VSAM retrieves each record of the KSDS and stores the record key
position in variable KPVAR. The records’ key value is read from the input buffer into
character variable KEYVAR using the key position value.

It is possible to read KSDS keys without knowing either the key position or length in
advance by using the KEYLEN= and the KEYPOS= options together. The SAS
variables that you specify with the KEYLEN= and KEYPOS= options should not be
present in any SAS data set that is used as input to the DATA step. Use an INPUT
statement of the following form, where KPVAR is the KEYPOS= variable, KLVAR is the
variable specified by the KEYLEN= option, and KEYVAR is a variable that contains the
key. This example reads keys whose lengths are less than or equal to 2000.

infile myksds vsam key=keyvar keypos=kpvar keylen=klvar;
retain kpvar klvar;
input @kpvar keyvar $vary2000. klvar ...

Packed Decimal Data and Key Variables
You can use packed decimal data (date and time values) in a key variable if you

request it in the same internal format as the VSAM data set. For a variable key, use
the PUT function to produce the key in character format. For example, the following
code writes the value 293652329 to the character variable KEYVAR using the packed
decimal format PD5.

data dsname;
id=293652329;
keyvar=put(id,pd5.);
infile myksds vsam key=keyvar;

…more SAS statements…

For a single, known key or the leading portion of the key, use a hexadecimal value in
your request as follows:

data dsname;
keyvar=’5789’x;
infile myksds vsam key=keyvar keyge;

…more SAS statements…

Keyed Direct Access by Alternate Index
If there is an alternate key index for a KSDS, you can use keyed direct access by

alternate keys. The advantage of an alternate index is that you can effectively
rearrange records in the data set instead of keeping copies organized in separate ways
for different applications. See “Keyed Direct Access with an Alternate Index” on page 10
for an introduction to the alternate index concept and a list of references for the topic.

The main difference between the prime key and the alternate key is that there can
be many alternate keys, and they can be defined as nonunique. This means that an
alternate key can point to more than one record in the base cluster. (For example, if an
alternate index by course number is defined over a STUDENT data set that is

66 Reading a KSDS with Skip Sequential Access � Chapter 7

organized by student ID, several students could have the same course number.) Each
alternate index entry would point to several prime key records in the base cluster.

See Chapter 9, “Using Alternate Indexes for VSAM Data Sets,” on page 91 for
examples of the control language that defines an alternate index over a KSDS.

Addressed Direct Access by RBA
A KSDS can be read with addressed direct access, which means that a record is

retrieved directly by its address. A record’s address is relative to the beginning of the
data set (relative-byte address or RBA).

To indicate addressed access to KSDS records, use the RBA= option in the INFILE
statement to specify the RBA of the record that you want. The RBA= option defines a
SAS variable that you set to the RBA of the logical record or control interval that is to
be retrieved by an INPUT statement. The address that you specify must correspond to
the beginning of a data record (logical record or control interval); otherwise, the request
causes a VSAM logical error. The RBA= variable is not added to the output data set:

data rbas;
infile myksds vsam;
input;
rbanum=_RBA_;
keep rbanum;

run;

data eight;
set rbas;
infile myksds vsam rba=rbanum;
input;
…more SAS statements…

Reading a KSDS with Skip Sequential Access
With skip sequential access, the initial record of a series is located with keyed direct

access. (VSAM does not permit skip sequential addressed access.) After the first record
is obtained, subsequent records are retrieved sequentially. Skip sequential processing
improves performance because sequential retrieval requires less overhead and is faster
than direct retrieval. Skip sequential access is also useful when you know the key of
the first record that you want but do not know (or do not want to specify) the key of
subsequent records.

Use the SKIP option in the INFILE statement to specify skip sequential processing.
Retrieve the first record directly by specifying the key of the record that you want with
the KEY= option in the INFILE statement. When you use the SKIP option, leaving the
value of the KEY= variable unchanged turns off direct access and indicates that
subsequent records are to be retrieved with sequential access. If you need to know the
key of subsequent KSDS records, you can read it from the record itself, because the key
is part of the record.

The following sample program illustrates skip sequential retrieval and generic key
processing. The program reads in the generic portion of the key, reads all of the records
in the KSDS data set with that generic key, and then writes them on the procedure
output file. Note that the SKIP option retrieves only the first record with a key
matching the KEY= variable. You must supply statements to read additional records.

When processing skip sequentially, remember that you must end the DATA step with
a SET or a STOP statement. In the example program below, end-of-file sets the
feedback code to 4, and the IF RC=4 clause stops the DATA step. If there is no record

Processing a KSDS in a SAS Job � Reading a KSDS with Skip Sequential Access 67

with the generic key specified, the FEEDBACK= variable is set to 16, a message is
printed, and the next observation is processed.

data keys;
length keyvar keyword1 $1;
input keyvar $;
cards;

1
5
8
;

data process;
set keys;
file print;
if _n_=1 then do;

put ’The KSDS records selected by GENKEY and SKIP are: ’;
put;

end;

/* Read all the records with the value of KEYVAR in the key. */
/* Set KEY= variable for generic skip sequential processing. */

infile myksds vsam key=keyvar genkey skip feedback=sasrc keypos=kp;
input @;

/* Stop if end-of-file. */
if sasrc=4 | sasrc=16 then do;

error=0;
if sasrc=4 then stop;

/* If there is no record with this generic key, print a */
/* message to the procedure output file, and go on to the next */
/* observation. */

else do;
sasrc =0;
put ’There is no record with this generic key: ’ keyvar;

return;
end;

end;

/* Retain the value of KEYVAR to compare the first word of the */
/* key of records read with sequential access. Initialize the */
/* value of KEYWORD1 to the KEYVAR value to start the loop. */

input @ kp keyword1 $;

/* Sequentially read while the first word of the key matches */
/* the value of KEYVAR. Write the records to the SAS print */
/* file. */

do while (keyword1 eq keyvar);
put _infile_;
input @;

/* Stop if end-of-file. */
if sasrc=4 | sasrc=16 then do;

error=0;

68 Adding Records to a KSDS � Chapter 7

if sasrc=4 then stop;

/* If there is no record with this generic key, print a */
/* message to the procedure output file, and go on to the next */
/* observation. */

else do;
sasrc=0;
put ’There is no record with this generic key: ’ keyvar;

return;
end;

end;
input @ kp keyword1 $;

end;
run;

Adding Records to a KSDS
To add records to a KSDS:
1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”

on page 106.)
2 Include both an INFILE and a FILE statement for the data set. Specify the VSAM

option in both the INFILE and the FILE statements. Specify all other options in
the INFILE statement, which must precede the FILE statement.

3 Use the PUT statement to write the record.

For a list of the options that you can use when adding records, see “Special SAS
Options Used with a KSDS” on page 60.

When you add records to an existing KSDS, you do not have to include an INPUT
statement with the associated INFILE statement. An INPUT statement is unnecessary
in this case because you do not have to read a record to add a new record.

data ten;
infile myksds vsam;
file myksds vsam;
id=’963215683’;
lastname=’Flintstone ’;
frstname=’Pebbles ’;
address=’1234 Quarry Rd’;
city=’Boulder ’;
state=’CO’;
zip=’12345 ’;
balance=’00555’;
gpa=’3.33’;
class=’FR’;
hrs=’13’;
finaid=’Y’;

put @1 id $9.
@10 lastname $10.
@20 frstname $10.
@30 address $15.
@55 city $15.

Processing a KSDS in a SAS Job � Updating Records in a KSDS 69

@70 state $2.
@72 zip $5.
@77 balance $5.
@82 gpa $4.
@86 class $2.
@88 hrs $2.
@90 finaid $1.;

run;

In the example, a record for a new student, PEBBLES FLINTSTONE, is defined and
added to data set MYKSDS. The new record is added in the data set in ascending key
order (in this case, according to the value of the ID variable) because output access is
always direct when a new record is added to a KSDS. (See Table 7.2 on page 62 for more
information.) The key for the record must be part of the PUT statement data. You must
specify a unique prime key in the PUT statement data. VSAM does not allow duplicate
prime keys. Keys do not have to be in ascending order during the update process.

Updating Records in a KSDS
To update records in a KSDS, complete the following steps:
1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”

on page 106.)
2 Include both an INFILE and a FILE statement for the data set. Specify the VSAM

option in both the INFILE and the FILE statements. Specify all other necessary
options in the INFILE statement, which must precede the FILE statement.

3 Use an INPUT statement to read the record being modified. You must first
retrieve the record sequentially or by direct access, using either the KEY= or
RBA= option, before you can update the data set.

4 Use the PUT statement to write the complete record.

For a list of the options that you can use when updating records, see “Special SAS
Options Used with a KSDS” on page 60.

There are two common ways of writing the record with the PUT statement:
� Build the complete record by specifying all fields with the PUT statement. This

method might be best when many of the fields need updating or when the updated
record is shorter than the existing record, because it avoids the problem of trying
to eliminate or blank out the unwanted fields.

� Copy the input record to the output buffer (with PUT _INFILE_), and overlay
selected fields in the copy. This method might be best when relatively few fields
need to be updated.

The latter method is the easiest for most applications. The following statement
copies the last record that is read into the PUT buffer and overlays the information
starting in columns 10 and 30 with the values in NEWDATA1 and NEWDATA2:

put @ 1 _infile_
@ 10 newdata1
@ 30 newdata2;

Note: If you change the key of the record that was most recently retrieved, then the
modified record is added as a new record. There is a VSAM restriction that does not
allow you to change the primary key of a KSDS record. �

In the following example, the SAS data set RKEYS contains the replacement data for
a series of records in the data set MYKSDS. DATA1, DATA2, and KEYDATA are

70 Erasing Records from a KSDS � Chapter 7

variables in the SAS data set RKEYS, which contains the new data and the VSAM key
for records that are to be replaced.

data _null_;
set rkeys;
infile myksds vsam keypos=kp;
input;
file myksds vsam;
put @1 data1 @30 data2 @ kp keydata;
…more SAS statements…

In most cases, when a record is retrieved for update, no user, including you, can
access that particular record or any other records that are in the same control interval.
Use the UPDATE= option to avoid user lockout when only a few of the records that are
retrieved need to be updated. (See “Using the UPDATE= Option” on page 35 for more
information.) The following program reads records sequentially from the data set
without retrieving them for update until the condition specified in the IF clause is met.
When the IF condition is true (SASKEY = 547392749), the UPDATE= variable is set to
1, and the record is retrieved again with update access.

data keys;

/* Use the SASKEY variable to select keys of records */
/* to process. */
infile myksds vsam keypos=kpvar keylen=klvar;
retain kpvar klvar;
input @kpvar saskey $varying200.klvar;

run;

/* Update records in a KSDS */
data updtksds;

set keys;
updtevar=0;
infile myksds vsam key=saskey update=updtevar;
input;
if (saskey eq ’547392749’) then do;

updtevar=1;
input;

/* Assign a value to _INFILE_, which contains the */
/* update data. */

file myksds vsam;
put @1 _infile_ @10 ’Flintstone Fred ’;

end;
run;

Erasing Records from a KSDS
To erase a record from a KSDS, complete the following steps:
1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”

on page 106.)
2 Use an INFILE statement and an INPUT statement to read the record and a

FILE statement and a PUT statement to erase the record. Of course, the INFILE

Processing a KSDS in a SAS Job � Introduction to Combined Operations on a KSDS 71

statement and FILE statement must have the same fileref; they must reference
the same data set.

3 Specify the key that you want to erase with the KEY= option and the ERASE=
option in the INFILE statement. The ERASE= option specifies a numeric SAS
variable that tells SAS whether a record is to be erased.

See Table 7.1 on page 60 for a list of the options that you can use to erase records.
The following list explains which values you can set for the ERASE= option as well as
what the values specify:

� When you set the ERASE= variable to a value of 1 before a PUT statement for the
data set executes, the record is erased. Notice that the record is not updated with
the data in the PUT statement; it is erased instead. However, for a KSDS, you
must copy the key of the record to the PUT buffer by issuing an _INFILE_
argument in the PUT statement to identify the record.

After a record is erased, the ERASE= variable is automatically reset to 0.
Therefore, you must set it to 1 again to erase another record. This prevents you
from inadvertently deleting a series of records.

� When you set the ERASE= variable to a value of 0 before a PUT statement for the
data set executes, the record is updated with the data that is specified instead of
being erased. This is the default action taken if you do not use the ERASE= option.

In the following example, the variable SASKEY in the SAS data set KEYS contains
the keys of the records that you want to erase. Notice that the PUT statement erases
the record rather than updating it, because the ERASE= variable, ERASEVAR, is set to
a value of 1.

data eleven;
set keys;
erasevar=1;
infile myksds vsam key=saskey erase=erasevar;
file myksds vsam;
input;
if (saskey eq ’547392749’) then do;

put _infile_;
end;

run;

Combined Operations on a KSDS

Introduction to Combined Operations on a KSDS
You might want to perform more than one operation on a KSDS in one DATA step.

(For example, perhaps you want to read some records, update other records, and add
new records in one DATA step.) Regardless of the number of operations, you need only
one pair of INFILE and FILE statements for the entire DATA step. Specify the VSAM
option in both the INFILE and the FILE statements. Specify any other options that you
might need to process the KSDS in its INFILE statement.

72 Adding Records without Reading � Chapter 7

Adding Records without Reading

Introduction to Adding Records without Reading
When you do not execute an INPUT statement before the PUT statement (because

you are adding records without reading from the KSDS), SAS assumes that the data in
the PUT statement is to be added as a new record. You must specify a new primary key
in the PUT statement data.

If a record with this key already exists, VSAM refuses to replace it and returns a
logical error with a feedback code of 8. To replace the existing record with the new data,
set the KEY= variable to match the PUT statement key data, read the record with an
INPUT statement, and re-execute the PUT statement. Remember that VSAM does not
allow you to change the primary key field.

Key Testing with FEEDBACK= and the PUT Statement
You can use the FEEDBACK= option to test whether a record with a particular key

exists. Then you can either update or add a record based on the value of the
FEEDBACK= variable. The FEEDBACK= option specifies a SAS variable that is set to
the VSAM logical error code when a logical error occurs. (See Chapter 10,
“Error-Handling Techniques and Error Messages,” on page 95 for more information.)

The following is the general key-testing technique using the FEEDBACK= option and
the data in the PUT statement:

� When the FEEDBACK= variable is 0 after the PUT statement executes, the data
in the PUT statement has been added as a new record.

� When the FEEDBACK= variable is 8 after the PUT statement executes, a record
with that key already exists. Therefore, the data in the PUT buffer is not added as
a new record, because VSAM does not allow duplicate primary keys.

To replace the existing record, reset the FEEDBACK= and _ERROR_ variables
to 0, set the KEY= variable to match the PUT statement key data, issue an
INPUT statement, and re-execute the PUT statement.

Processing a KSDS in a SAS Job � Adding Records without Reading 73

Here is an example:

data twelve;
length keyvar $9.;
infile myksds vsam feedback=fdbk key=keyvar keypos=poskey;
file myksds vsam;

/* Assign a value to the KEYVAR variable, */
/* which contains the record’s key. */

keyvar=’964514789’;
lastname=’Flintstone ’;
frstname=’Fred ’;
address=’1234 Quarry Rd’;
city=’Boulder ’;
state=’CO’;
zip=’12345 ’;
balance=’00999’;
gpa=’1.33’;
class=’SE’;
hrs=’13’;
finaid=’Y’;

/* Try to write as a new record (that is, without reading). */
put @poskey keyvar $9.

@10 lastname $10.
@20 frstname $10.
@30 address $15.
@55 city $15.
@70 state $2.
@72 zip $5.
@77 balance $5.
@82 gpa $4.
@86 class $2.
@88 hrs $2.

/* If the record already exists, reset FDBK and _ERROR_ */
/* to 0, read in the record, write the record’s key, and */
/* update the record with new data. */

if fdbk=8 then do;
fdbk =0;
error = 0;
input;
put @ poskey keyvar $9.

@10 lastname $10.
@20 frstname $10.
@30 address $15.
@55 city $15.
@70 state $2.
@72 zip $5.
@77 balance $5.
@82 gpa $4.
@86 class $2.
@88 hrs $2.

74 Adding Records after Reading � Chapter 7

@90 finaid $1.;

end; /* If FDBK=8 */
stop;

run;

Adding Records after Reading

Introduction to Adding Records after Reading
When you are reading from the KSDS before you write, SAS assumes that the data

that is in the PUT buffer is to modify the record that you have just read. This is true
unless you have changed the primary key with PUT @ statements after an INPUT
statement and before the final PUT statement executes.

When you have changed the primary key after an INPUT statement and before the
PUT statement for the data set executes, the data in the PUT buffer is added as a new
record as long as the key field does not duplicate the key of an existing record. A VSAM
logical error occurs if the key duplicates the key of an existing record.

Key Testing with FEEDBACK=, KEY=, and the INPUT Statement
You can use the FEEDBACK= option to test whether a record with a particular key

exists. You then can either update or add a record based on the value of the
FEEDBACK= variable.

The FEEDBACK= option specifies a SAS variable that is set to the VSAM logical
error code when a logical error occurs. (See Chapter 10, “Error-Handling Techniques
and Error Messages,” on page 95 for more information.)

The following is the general key-testing technique using the FEEDBACK= and KEY=
options and an INPUT statement:

� When the FEEDBACK= variable is 0 after the INPUT statement executes, a
record with a key that matches the value of the KEY= variable has been found
and is read into the input buffer.

� When the FEEDBACK= variable is 16 after the INPUT statement executes, a
record with a key that matches the value of the KEY= variable does not exist.

To add the data as a new KSDS record, reset the FEEDBACK= and _ERROR_
variables to 0 and issue a PUT statement with the value of the KEY= variable in
the key field location.

Here is an example:

data thirteen;
length keyvar $9.;
infile myksds vsam feedback=fdbk key=keyvar keypos=poskey;

/* Assign a value to the KEYVAR variable, */
/* which contains the record’s key */

keyvar=’984312769’;
lastname=’Rubble ’;
frstname=’Barney ’;
address=’1234 Gravel Rd’;
city=’Boulder ’;
state=’CO’;
zip=’12345 ’;
balance=’00001’;

Processing a KSDS in a SAS Job � Adding Records after Reading 75

gpa=’0.33’;
class=’SE’;
hrs=’13’;
finaid=’Y’;

input;

/* If there is no record with this key, reset the FDBK and */
/* _ERROR_ variables to 0, and write a message on the SAS */
/* print file that a new record has been added with this key. */

if fdbk=16 then do;
fdbk =0;
error = 0;
file print;
put ’New record added. Key is ’ keyvar;

end;

/* Write the record to the data set: we are updating if there */
/* is a record with this key and adding a new record if */
/* there is not.

*/
file myksds vsam;
put @poskey keyvar $9.

@10 lastname $10.
@20 frstname $10.
@30 address $15.
@55 city $15.
@70 state $2.
@72 zip $5.
@77 balance $5.
@82 gpa $4.
@86 class $2.
@88 hrs $2.
@90 finaid $1.;

stop;
run;

Comparing Key-Testing Techniques
Notice the differences between the two key-testing techniques:
� The first technique is based on key data in the PUT statement and automatically

adds the information as a new record if the key does not already exist. Be aware
that you might create a record that you do not want.

� The second technique is based on an INPUT statement and the KEY= option. This
method is safer because you must deliberately issue a PUT statement with the key
field data in order to add a new record.

76

77

C H A P T E R

8
Processing an RRDS in a SAS
Job

Introduction to Processing an RRDS 77
Special SAS Options Used with an RRDS 78

Reading Records from an RRDS 79

Three Ways of Reading Records from an RRDS 79

Reading an RRDS with Sequential Access 79

Reading an RRDS with Direct Access 79
Reading an RRDS with Skip Sequential Access 80

Adding Records to an RRDS 82

Introduction to Adding Records to an RRDS 82

Access Type When Adding Records 82

Adding Records While Reading 82

Updating Records in an RRDS 84
Erasing Records from an RRDS 86

Combined Operations on an RRDS 87

How to Combine Operations on an RRDS 87

Adding Records without Reading 87

Adding Records without Reading Overview 87
Slot Testing with FEEDBACK=, RRN=, and the PUT Statement 87

Adding Records after Reading 88

Adding Records after Reading Overview 88

Slot Testing with FEEDBACK=, RRN=, and the INPUT Statement 88

Comparing Slot-testing Techniques 89

Introduction to Processing an RRDS

A Relative-Record Data Set (RRDS) is a string of fixed-length slots, each identified by
a relative-record number. Each slot either contains a record or is empty. Records are
stored and retrieved by the relative-record number of the slot. An RRDS is appropriate
for many applications that use fixed-length records or when the record number has a
contextual meaning that can be used as a key.

You can read, add, update, and erase RRDS records in SAS programs. In many cases,
the option’s meaning depends on how it is used within a SAS program. (Loading RRDS
records is discussed separately in Chapter 5, “Defining and Loading a VSAM Data Set,”
on page 45.)

Here are two helpful tables and their descriptions:

� Table 8.1 on page 78 lists the options that are significant for processing RRDS
records.

� Table 8.2 on page 81 summarizes the access types for RRDS operations.

78 Special SAS Options Used with an RRDS � Chapter 8

In addition, there are examples of reading, adding, updating, and performing combined
operations on an RRDS data set. The examples are based on the STUDENT data set
that is described in Appendix 2, “Sample STUDENT Data Set,” on page 109. You can
run the examples by using the sample programs that are provided in the Help system
and by following the steps to define and load an RRDS that are described in Chapter 5,
“Defining and Loading a VSAM Data Set,” on page 45.

For information on using an ESDS in SAS jobs, see Chapter 6, “Processing an ESDS
in a SAS Job,” on page 51. For information on using a KSDS in SAS jobs, see Chapter
7, “Processing a KSDS in a SAS Job,” on page 59.

Special SAS Options Used with an RRDS
The special SAS options fall into functional categories. The following table lists the

special SAS options and categories that are used for processing an RRDS data set.
Informational and record retrieval options are specified in the INFILE statement.
Record storage options are specified in the FILE statement.

Table 8.1 SAS Options for an RRDS

Functional Category

Option Informational Record Retrieval Record Storage

BACKWARD X

BUFND= X

BUFNI= X

CONTROLINTERVAL X

ERASE= X

ERRORABEND X

FEEDBACK= X

PASSWD= X

RRN= X X

RECORDS= X

RESET X

SEQUENTIAL X*

SKIP X

UPDATE= X

VSAM X X X

* Meaningful only if you also have a PUT statement.

Processing an RRDS in a SAS Job � Reading an RRDS with Direct Access 79

Reading Records from an RRDS

Three Ways of Reading Records from an RRDS
You can read RRDS records with sequential access, direct access, and with a

combination of both sequential and direct access. (See Table 8.2 on page 81). The type
of RRDS Read operation is specified with the appropriate options in the SAS INFILE
statement. You must specify either the VSAMREAD or the VSAMUPDATE system
option in order to read VSAM data sets. (See “VSAMREAD System Option” on page 105
and “VSAMUPDATE System Option” on page 106.)

Reading an RRDS with Sequential Access
With sequential access, the RRDS records are read in relative-record order; that is,

they are read from the first record to the last. This is the default.

data one;
infile myrrds vsam;
input;
...more SAS statements...

If the BACKWARD option is specified, the data set is read backward, starting with
the last record and ending with the first.

Reading an RRDS with Direct Access
An RRDS is read directly using keyed direct access where the relative-record number

(RRN) is treated as a key. For this type of access to be meaningful, you must know the
RRNs of the records that you want to read. You might know the RRN of a record
because it has some relationship to the record contents or because you have obtained it
in some other way.

To read an RRDS with keyed direct access, use the RRN= option in the INFILE
statement. The RRN= option defines a SAS variable whose value you set to the RRN of
the record that you want SAS to read. The variable is created if it does not exist and is
not added to the output data set.

In the following program, the RRDS data set is read sequentially, and the
relative-record numbers are obtained from the automatic variable _RRN_ and stored in
the SAS data set RRNS. DATA TWO uses the RRNS SAS data set to process the RRDS
by relative-record number.

data rrns;
infile myrrds vsam ;
input;
rrnvar=_rrn_ ;
keep rrnvar;

run;

data two;
set rrns;
infile myrrds vsam rrn=rrnvar;

80 Reading an RRDS with Skip Sequential Access � Chapter 8

input;
...more SAS statements...

Reading an RRDS with Skip Sequential Access
With skip sequential access, the initial record of a series is located with keyed direct

access. After the first record is obtained, subsequent records are retrieved sequentially.
Skip sequential processing improves performance because sequential retrieval requires
less overhead and is faster than direct retrieval. Skip sequential access is also useful
when you know the RRN of the first record that you want but do not know (or do not
want to specify) the RRN of subsequent records.

Use the SKIP option in the INFILE statement to specify skip sequential processing.
Retrieve the first record directly by specifying the RRN of the record that you want with
the RRN= option in the INFILE statement. With the SKIP option, leaving the value
specified by the RRN= variable unchanged turns off direct access and indicates that
subsequent records are to be retrieved with sequential access. The relative-record
number of each record that is retrieved is returned in the _RRN_ automatic variable.
The relative-record numbers might not be consecutive, because some of the slots might
be empty.

When you process skip sequentially, you must specify a means of stopping the DATA
step. In the following example, end-of-file sets the feedback code to 4, and the IF
FDBK=4 clause stops the DATA step. Note that the SKIP option retrieves only the one
record with an RRN that matches the value of the RRN= variable value. You must
supply statements to read additional records.

The following example processes an RRDS skip sequentially. For meaningful output,
this example assumes that the data set was sorted by class before it was loaded. The
program reads in the RRNUMS data set, reads all the records in the PROCESS data
set that have those RRNs, and then writes them to a procedure output file. Note that
the SKIP option retrieves only the records that are identified by the RRNs. You must
supply statements to read additional records. In the following example, the program
sequentially reads other records in the same class:

data rrnums;
input idnum class $;
cards;

0001 FR
0013 JU
0025 SO
;
run;

data process;
set rrnums;
file print;
if _n_=1 then do;

put ’The RRDS records selected skip sequentially are: ’;
put;

end;

/* Get the first record wanted with direct access. */
infile myrrds vsam rrn=idnum skip feedback=fdbk;

input @;

Processing an RRDS in a SAS Job � Reading an RRDS with Skip Sequential Access 81

/* Stop if the FEEDBACK= variable indicates end-of-file */
/* or if the RRN slot is empty or invalid. */

if fdbk=4 | fdbk=16 | fdbk=192 then do;
error=0;
if fdbk=4 then stop;

else do;
put ’RRN slot is empty, or invalid RRN. The feedback ’

’code is ’ fdbk ’ and RRN is ’ idnum;
fdbk =0;

return;
end;

end;

/* Read next records sequentially while the class matches. */

/* Write the records to the procedure output file. */

input @86 classnow $ 86-87;
do while (classnow=class);

put _infile_;

/* Stop if the FEEDBACK= variable indicates end-of-file */
/* or if the RRN slot is empty or invalid. */

if fdbk=4 | fdbk=16 | fdbk=192 then do;
error=0;
if fdbk=4 then stop;

else do;
put ’RRN slot is empty, or invalid RRN. The feedback ’

’code is ’ fdbk;
fdbk=0;

return;
end;

end;
input @86 classnow $ 86-87;

end;
run;

Table 8.2 Access Types for RRDS Operations

Operation Read

(INFILE/INPUT Statements)

Write

(FILE/PUT Statements)

Sequential

Direct with RRN= option

Read

Skip sequential with SKIP and
RRN= options

Does not apply

Direct with RRN= optionAdd*

Sequential with SEQUENTIAL and
RRN= options

Must be direct: use the RRN=
option

SequentialUpdate

Direct with RRN= option

Direct: the record read is the
record updated

82 Adding Records to an RRDS � Chapter 8

Operation Read

(INFILE/INPUT Statements)

Write

(FILE/PUT Statements)

SequentialErase

Direct with RRN= option

Direct: the record read is the
record erased

Does not apply Sequential: in relative-record
order

Load

Direct with RRN= option

* The INPUT statement is not required.

Adding Records to an RRDS

Introduction to Adding Records to an RRDS
To add records to an RRDS, complete the following steps:
1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”

on page 106.)
2 Include both an INFILE and a FILE statement for the data set. Specify the VSAM

option in both the INFILE and the FILE statements. Specify all other options in
the INFILE statement, which must precede the FILE statement.

3 Use the PUT statement to write the record.

For a list of options that you can use when adding records, see Table 8.2 on page 81.
When you add records to an existing RRDS, you do not have to include an INPUT

statement with the INFILE statement. An INPUT statement is unnecessary because
you do not have to read a record in order to add a new record.

Access Type When Adding Records
In an RRDS, records are added with direct access. (See Table 8.2 on page 81). You

must supply the relative-record number by using the RRN= variable in the INFILE
statement. The slot that is specified by the RRN= variable must be vacant in order to
add a new record to that location in the data set.

Adding Records While Reading
If you are adding new records while reading the RRDS sequentially, use the

SEQUENTIAL option in the INFILE statement. The SEQUENTIAL option specifies
sequential retrieval that is combined with direct record storage. Use the SEQUENTIAL
option only when you add new RRDS records while sequentially reading existing
records. Use both the SEQUENTIAL and the RRN= options in the INFILE statement
to indicate that the RRN= variable specifies the record that is to be added rather than
the record that is to be read.

data addrrns;
/* Create a new RRDS record and assign it to the */
/* NEWREC variable. */

length newrec $90.;
id=’984312769’;

Processing an RRDS in a SAS Job � Adding Records While Reading 83

lastname=’Rubble ’;
frstname=’Barney ’;
address=’1234 Gravel Rd ’;
city=’Boulder ’;
state=’CO’;
zip=’12345’;
balance=’00001’;
gpa=’0.33’;
class=’SE’;
hrs=’13’;
finaid=’Y’;
newrec = id||lastname||frstname||address||city||state||

zip||balance||gpa||class||hrs||finaid;

/* Assign the RRN of the new record (NEWREC) to */
/* the ADDRRN variable. */

addrrn=31;
run;

data four;
set addrrns;
n = 0;

/* Read the RRDS records with sequential access. */
infile myrrds vsam rrn=addrrn sequential;
input;
n = n+1;

/* Add the new RRDS record with direct access: RRN=ADDRRN option */
/* applies to writing when the SEQUENTIAL option is used. The */
/* NEWREC variable contains the complete new record. */

if (n=1) then do;
file myrrds vsam;
put newrec;

end;
run;

In the example, a record for a new student, BARNEY RUBBLE, is defined and added
to data set MYRRDS. The data set is read sequentially, but the record is added with
direct access to the record slot that is identified by the ADDRRN variable.

If you are adding new records while reading the RRDS directly, use the RRN= option
to specify both the record you want to read and the slot number where you want to add
a record. First, set the RRN= variable to the record that you want to read. Read the
record, but before the PUT statement executes, reset the RRN= variable to the slot
number where you want to insert the new record. Change the value of the RRN=
variable after you retrieve the record with an INPUT statement but before you write
with a PUT statement.

The following example uses direct access to read and add new records. The
NEWREC variable in the SAS data set ADDRRNS contains the complete new record,
and the ADDRRN variable contains the RRN where the record is to be added.

data addrrns;

/* Create a new RRDS record and assign it to the */

84 Updating Records in an RRDS � Chapter 8

/* NEWREC variable. */
length newrec $90.;
id=’995613769’;
lastname=’Rubble ’;
frstname=’Bettie ’;
address=’1234 Gravel Rd ’;
city=’Boulder ’;
state=’CO’;
zip=’12345’;
balance=’00001’;
gpa=’2.22’;
class=’SE’;
hrs=’13’;
finaid=’Y’;
newrec = id||lastname||frstname||address||city||state||

zip||balance||gpa||class||hrs||finaid;
/* Assign the RRN of the new record (NEWREC) to */
/* the ADDRRN variable. */

addrrn=32;
run;

data readrrns;
input readrrn ;
datalines;

31
;
run;

data five;
set readrrns;
set addrrns;
rrnvar=readrrn;

/* Read the RRDS record specified by the READRRN variable. */
infile myrrds vsam rrn=rrnvar;
file myrrds vsam ;
input;

/* Add the new RRDS record with direct access by assigning the */
/* value of ADDRRN to the RRNVAR variable and writing the */
/* NEWREC variable that contains the complete new record. */

if (readrrn = 31) then do;
put _infile_;
rrnvar =addrrn;
put newrec;

end;
run;

Updating Records in an RRDS
To update records in an RRDS, complete the following steps:
1 Specify the VSAMUPDATE system option. (See “VSAMUPDATE System Option”

on page 106.)

Processing an RRDS in a SAS Job � Updating Records in an RRDS 85

2 Include both an INFILE and a FILE statement for the data set. Specify the VSAM
option in both the INFILE and the FILE statements. Specify all other necessary
options in the INFILE statement, which must precede the FILE statement.

3 Use an INPUT statement to read the record that is being modified. You must first
retrieve the record sequentially or by direct access using the RRN= option before
you can update the data set.

4 Use the PUT statement to write the complete record.

For a list of the options that you can use when you update records, see Table 8.1 on
page 78.

When you update a record in an RRDS, input access for reading can be either
sequential or direct. (For more information, see Table 8.2 on page 81). Access is
sequential unless the RRN= direct access option is specified in the INFILE statement.
Sequential access in an RRDS means in relative-record order. You can use a
combination of direct and sequential access to the input data set if you specify the SKIP
option in the INFILE statement. For more information, see “Reading an RRDS with
Skip Sequential Access” on page 80.

When you update an RRDS record, you must include a PUT statement to write the
complete record. There are two common ways of writing the record with the PUT
statement:

� Build the complete record by specifying all fields with the PUT statement. This
method might be best when many of the fields need to be updated.

� Overlay certain fields in a copy (_INFILE_) of the existing record. This method is
best when relatively few fields need to be updated.

The latter method is the easier for most applications. The following statement copies
the last record that is read into the PUT buffer and overlays the information starting in
columns 10 and 30 with the values in NEWDATA1 and NEWDATA2:

put @ 1 _infile_
@ 10 newdata1
@ 30 newdata2;

When a record is retrieved for update, no user, including you, can access that
particular record or any other records in the same control interval. Use the UPDATE=
option to avoid user lockout when only a few of the records that are retrieved need to be
updated. For more information, see “Using the UPDATE= Option” on page 35. In the
following example, the RRDS records are read sequentially without being retrieved for
update until the IF clause condition is met. When the IF condition is true (in this case,
IDNUM=15), the UPDATE= variable is set to 1, and the record is retrieved again with
update access.

data rrnumbrs;

/* Use the IDNUM variable to select the RRNs of */
/* records to process. */

infile myrrds vsam;
input;
idnum = _rrn_;

run;

data six;
set rrnumbrs;
updtevar =0;
infile myrrds vsam rrn=idnum update=updtevar;
input;

86 Erasing Records from an RRDS � Chapter 8

if (idnum=15) then do;
updtevar=1;
input;

/* Create the NEWDATA variable which contains */
/* the update data. */
newdata=36;

file myrrds vsam;
put @ 1 _infile_ @88 newdata;

end;
run;

Erasing Records from an RRDS
To erase a record from an RRDS, complete the following steps:
1 Specify the “VSAMUPDATE System Option” on page 106.
2 Use an INFILE statement and an INPUT statement to read the record and a FILE

statement and a PUT statement to erase the record. The INFILE statement and
FILE statement must have the same fileref; they must reference the same data set.

3 Specify the record that you want to erase with the RRN= option and the ERASE=
option in the INFILE statement. The ERASE= option specifies a numeric SAS
variable that tells SAS whether a record is to be erased.

See Table 8.1 on page 78 for a list of the options that you can use when you erase
records. The following list explains which values you can set for the ERASE= option as
well as what the values specify:

� When you set the ERASE= variable to a value of 1 before a PUT statement for the
data set that executes, the record is erased. Notice that the record is not updated
with the data in the PUT statement; it is erased instead. However, for an RRDS,
you must still copy the relative-record number of the record to the PUT buffer by
issuing an _INFILE_ argument in the PUT statement in order to identify the
record.

After a record is erased, the ERASE= variable is automatically reset to 0.
Therefore, you must set it to 1 again in order to erase another record. This
prevents the inadvertent deletion of a series of records.

� When you set the ERASE= variable to a value of 0 before a PUT for the data set
executes, the record is updated with the data that is specified instead of being
erased. This is the default action taken if the ERASE= option is not used.

In the following example, the variable RRNVAR in the SAS data set ERASEREC
contains the RRNs of the records that you want to erase. Notice that the PUT
statement erases the record rather than updating it, because the ERASE= variable,
ERASEVAR, is set to a value of 1.

data seven;
set rrnumbrs;
erasevar=1;
infile myrrds vsam rrn=rrnvar erase=erasevar;
file myrrds vsam;
input;
put _infile_;

run;

Processing an RRDS in a SAS Job � Adding Records without Reading 87

Combined Operations on an RRDS

How to Combine Operations on an RRDS
You might want to perform more than one operation on an RRDS in one DATA step.

(For example, perhaps you want to read some records, update other records, and add
new records in one DATA step.) Regardless of the operations, you need only one pair of
INFILE and FILE statements for the entire DATA step. Specify the VSAM option in
both the INFILE and the FILE statements. Specify any other options that you need to
process that RRDS in its INFILE statement.

SAS determines whether you want to add new or update existing RRDS records.

Adding Records without Reading

Adding Records without Reading Overview
When you do not execute an INPUT statement before the PUT statement (because

you are adding records without reading from the RRDS), SAS assumes that the data in
the PUT statement is to be added as a new record, provided that you have specified an
empty relative-record slot with the RRN= option. The slot that is specified by the RRN=
variable must be vacant in order to add a new record in that location of the data set.

If the slot already contains a record, VSAM refuses to replace it and returns a logical
error with a feedback code of 8. The FEEDBACK= option can be used to determine
whether a particular slot is empty.

Slot Testing with FEEDBACK=, RRN=, and the PUT Statement
You can use the FEEDBACK= option to test whether the relative-record slot that is

specified by RRN= is empty. You can then either update or add a record based on the
value of the FEEDBACK= variable. The FEEDBACK= option specifies a SAS variable
that is set to the VSAM logical error code when a logical error occurs. (See Chapter 10,
“Error-Handling Techniques and Error Messages,” on page 95 for more information.)

The following is the general slot-testing technique using the FEEDBACK= and
RRN= options and the data in the PUT statement:

� When the FEEDBACK= variable is 0 after the PUT statement executes, the slot is
empty and the data in the PUT buffer has been added as a new record.

� When the FEEDBACK= variable is 8 after the PUT statement executes, the slot is
not empty.

To update the existing record, reset the FEEDBACK= and _ERROR_ variables to
0, read the record with an INPUT statement, and re-execute the PUT statement.

If you want to add a new record rather than replace the one in the slot, change
the RRN= variable to another slot number and re-execute the PUT statement.

data rrdsinfo;
/* Select values for lastname,firstname, and class. */

length lastname $10 frstname $10 class $2;
input id lastname frstname class;
datalines;
15 FLINTSTONE FRED SE

88 Adding Records after Reading � Chapter 8

30 RUBBLE BARNEY SO
31 FLINTSTONE WILMA SE
32 RUBBLE BETTIE SO
;

data eight;
set rrdsinfo;
infile myrrds vsam feedback=fdbk rrn=id;
file myrrds vsam;

/* Assume this is a new record and write it without reading. */
put @10 lastname $10.

@20 frstname $10.
@86 class $2.;

/* If the FEEDBACK= variable indicates that the record */
/* already exists, read it in and update it. */

if fdbk=8 then do;
fdbk=0;
error=0;
input;
put @1 _infile_ @86 class $2.

end;
run;

Adding Records after Reading

Adding Records after Reading Overview
When you read from the RRDS before you write, SAS assumes that the data in the

PUT statement modifies the record that you have just read unless you change the
RRN= variable value before the PUT statement executes.

When you have changed the RRN= variable after an INPUT statement and before
the PUT statement for the data set executes, the data in the PUT buffer is added as a
new record (if the changed RRN= value specifies a vacant slot).

Slot Testing with FEEDBACK=, RRN=, and the INPUT Statement
You can use the FEEDBACK= option to test whether the relative-record slot that is

specified by RRN= is empty. You can then either update or add a record based on the
value of the FEEDBACK= variable. The FEEDBACK= option specifies a SAS variable
that is set to the VSAM logical error code when a logical error occurs. (See Chapter 10,
“Error-Handling Techniques and Error Messages,” on page 95 for more information.)

The following is the general slot-testing technique using the FEEDBACK= and
RRN= options and the INPUT statement:

� When the FEEDBACK= variable is 0 after the INPUT statement executes, the
record that is in the slot specified by RRN= has been read into the input buffer.

Execute a PUT statement in order to update the record.

� When the FEEDBACK= variable is 16 after the INPUT statement executes, the
slot that is specified by RRN= is empty.

Reset the FEEDBACK= and _ERROR_ variables to 0, and execute a PUT
statement in order to add the PUT buffer data as a new record in this slot.

Processing an RRDS in a SAS Job � Adding Records after Reading 89

data rrdsinfo;
/* Select values for lastname, firstname, and class. */

length lastname $10 frstname $10 class $2;
input id lastname frstname class;
datalines;
15 FLINTSTONE FRED SE
30 RUBBLE BARNEY SO
31 FLINTSTONE WILMA SE
32 RUBBLE BETTIE SO
;

data nine;
set rrdsinfo;
infile myrrds vsam feedback=fdbk rrn=id;

/* Read the relative-record number to be updated. */
input;
file myrrds vsam;

/* If the FEEDBACK= variable indicates that the relative */
/* record slot number is empty, reset the FDBK and */
/* _ERROR_ variables to 0, and write a new record. */

if fdbk=16 then do;
fdbk=0;
error=0;
put @10 lastname $10.

@20 frstname $10.
@86 class $2.;

/* If the FEEDBACK= variable indicates PUT for update */
/* without previous INPUT then reset the FDBK and */
/* _ERROR_ variables to 0, and write the new record. */

if fdbk=92 then do;
fdbk=0;
ERROR=0;
put @10 lastname $char10.

@20 frstname $char10.
@86 class $char2.;

end;
end;

/* If the record exists, update the class field. */
else do;

put _infile_ @86 class;
end;

run;

Comparing Slot-testing Techniques
Notice the differences between the two slot-testing techniques:

� The first, based on data in the PUT statement and the RRN= option, automatically
adds the information as a new record if the slot is empty. Be aware that you might
create a record that you do not want.

90 Adding Records after Reading � Chapter 8

� The second, based on an INPUT statement and the RRN= option, is a safer
technique, because you must deliberately issue a PUT statement to add a new
record.

91

C H A P T E R

9
Using Alternate Indexes for
VSAM Data Sets

Introduction to Using Alternate Indexes 91
Creating an Alternate Index for an ESDS 91

Creating an Alternate Index for an Existing KSDS 92

Calculating Record Size 94

Introduction to Using Alternate Indexes

An alternate index provides another way to access a VSAM data set, as described in
“Keyed Direct Access with an Alternate Index” on page 10. You define and build
alternate indexes by using IBM Access Method Services (AMS).

You can create an alternate index for a new data set or an existing data set, and for
an ESDS or a KSDS. An alternate index is itself a KSDS that references the base
cluster.

In the following examples, the alternate index enables you to perform direct keyed
access of the STUDENT data set by state code. See Appendix 2, “Sample STUDENT
Data Set,” on page 109 for the data set that is used in the examples.

Creating an Alternate Index for an ESDS

You can create an alternate index for an ESDS.
The following example shows the IBM AMS IDCAMS job that is needed to create an

alternate index for an ESDS. An IDCAMS job can be submitted using JCL or in a SAS
macro variable. The following is an example of TSO DEFINE commands in a macro
variable. The example, “Creating an Alternate Index for an Existing KSDS” on page 92,
shows how to submit an IDCAMS job from JCL.

An alternate index cannot be created if the ESDS is created with the REUSE
statement.

/* Remove alternate index if it exists. */
x "delete (’dsname.esds.myindex’) purge alternateindex";

/* Define an alternate index in the cluster ’dsname.esds’. */
/* Use the two-letter state code as the alternate index key. */

%let def = %str(define aix %(name(’dsname.esds.myindex’));

/* Relate the index to the cluster entry STUDENT. */
%let def=&def %str(relate(’dsname.esds.student’));

92 Creating an Alternate Index for an Existing KSDS � Chapter 9

/* Specify the record size. */
%let def=&def %str(recsz(19 19));
%let def=&def %str(shareoptions(2,3));
%let def=&def %str(volumes(xxxxxx));
%let def=&def %str(reuse);

/* Specify NONUNIQUEKEY because there is more than one record */
/* with the same state code. */

%let def=&def %str(nonuniquekey);
%let def=&def %str(records (10 5));
%let def=&def %str(cisz(2048));

/* Use the two-letter state code that is offset 69 bytes */
/* in each record. */

%let def=&def %str(keys(2 69)%));

/* Define a path as a reference to the alternate index. */
%let path=%str(define path %(name(’dsname.esds.student.path’));
%let path=&path %str(pathentry(’dsname.esds.myindex’)%));

/* Build the index from data contained in INDATASET, */
/* and put it into the index specified in OUTDATASET. */

%let bld = %str(bldindex indataset(’dsname.esds.student’));

%let bld=&bld %str(outdataset(’dsname.esds.myindex’));

%sysexec &def;
%sysexec &path;
%sysexec &bld;

/* Assign a fileref to the index path. */
filename mypath ’dsname.esds.student.path ’ disp=shr;

/* Read the data from the data set in alternate index order. */
data aixtest;

infile mypath vsam;
input id $9. lastname $10. frstname $10. address $25. city $15.

state $2. zip $5. balance $5. gpa $4. class $2. hrs $2.
finaid $1.;

run;

/* It is a good practice to clear filerefs when you are */
/* done with them, but it is not necessary. */

filename mypath clear;

Creating an Alternate Index for an Existing KSDS

You can create an alternate index over an existing KSDS by using IDCAMS using
JCL. If the data set already has an alternate index that is defined, it is erased and then
redefined. After the alternate index is built, SAS is invoked to read the data set using
the alternate index and to write the records to the procedure output file.

Using Alternate Indexes for VSAM Data Sets � Creating an Alternate Index for an Existing KSDS 93

//DALTINDX JOB accounting information
//*
//* Define an alternate key for an existing KSDS.
//*
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//*
//* If an alternate index already exists, delete it.
//* Then define the alternate index.
//*
//SYSIN DD *
DELETE (dsname.KSDS.STUDENT.ALTINDEX) PURGE ALTERNATEINDEX
IF LASTCC=8 THEN SET MAXCC=0

DEFINE ALTERNATEINDEX (name(dsname.KSDS.STUDENT.ALTINDEX) -
KEYS(2 69) VOLUMES(xxxx) RECSZ(34 34) -
RELATE(dsname.KSDS.STUDENT) UPGRADE -
REUSE -
NONUNIQUEKEY -
CISZ(2048) -
RECORDS(10 5))

IF MAXCC=0 THEN -
DEFINE PATH (NAME(dsname.KSDS.STUDENT.PATH) -

PATHENTRY(dsname.KSDS.STUDENT.ALTINDEX))
IF MAXCC=0 THEN -

BLDINDEX INDATASET(dsname.KSDS.STUDENT) -
OUTDATASET(dsname.KSDS.STUDENT.ALTINDEX)

/*
//*
//* Invoke SAS to read the data set via the alternate index
//* defined in STEP1.
//*
//STEP2 EXEC SAS,PARM=’ VSAMREAD ’
//SYSUDUMP DD SYSOUT=A
//PATH DD DISP=SHR,DSN=dsname.KSDS.STUDENT.PATH
//SYSIN DD *

/* Read the KSDS via the alternate key. Write the records */
/* to the procedure output file, putting the observation number */
/* before each observation. */

data one;
infile path;
input;
file print;
put _n_ @5 _infile_;

/*
//

To access the data set by the alternate index, you must have a DD statement that
references the data set name in the DEFINE PATH statement. Also note that the
STEP2 EXEC statement that invokes SAS specifies the SAS system option
VSAMREAD, which is needed only if your installation’s default value for this option is
NOVSAMREAD.

94 Calculating Record Size � Chapter 9

Calculating Record Size
The AMS RECORDSIZE parameter requires the average and maximum record size,

in bytes, of the alternate index record. When you calculate the maximum record size, if
the alternate index record spans control intervals, the RECORDSIZE parameter can be
larger than the CONTROLINTERVALSIZE. Use the following formula to calculate the
maximum record size of spanned records:

MAXLRECL=CI/CA x (CISZ - 10)

MAXLRECL is the maximum spanned record size. CI/CA represents the number of
control intervals per control area. CA is the number of control areas. CISZ is the
quantity control interval size.

Use the following formulas to determine the average size of the alternate index
record when the alternate index supports ESDS or KSDS.

ESDS:
RECSZ= 5 + AIXKL + (n x 4)

KSDS:
RECSZ= 5 + AIXKL + (n x BCKL)

� AIXKL is the alternate-key length. (See the KEYS parameter.)
� BCKL is the base cluster’s prime-key length. (You can issue the AMS LISTCAT

command to determine the base cluster’s prime-key length.)
� n=1 when the UNIQUEKEY parameter is specified. (In this case, RECSZ is also

the maximum record size.)
� n is equal to the number of base cluster records that have the same alternate

index key when NONUNIQUEKEY is specified.

In the preceding examples, the average record size for alternate key STATE was
calculated as follows:

5 + 2 + (3 x 4)= 19 for the ESDS
5 + 2 + (3 x 9)= 34 for the KSDS

Specifying the same value for average and maximum identifies the records as fixed
length. See Appendix 3, “IBM Documentation,” on page 111 for more information on
calculating record size.

95

C H A P T E R

10
Error-Handling Techniques and
Error Messages

What are Physical and Logical Errors? 95
Physical Errors 95

Logical Errors 96

Types of Logical Errors 96

SAS Logical Errors 96

VSAM Logical Errors 96
Error-Handling Techniques 97

How FEEDBACK= Differs from _IORC_ and _FDBK_ 97

Using the FEEDBACK= Option 97

Some Common Causes of Logical Errors 99

COBOL Status Key Values and VSAM Feedback Codes 101

What are Physical and Logical Errors?
Two types of errors can occur when you use SAS to process VSAM data sets. The

types of errors are physical and logical. There are several things you need to know:
� the differences between physical and logical errors
� error detection
� error-handling techniques
� the FEEDBACK= variable and other error detection variables
� VSAM feedback codes
� how COBOL status key values correspond to VSAM feedback codes (see Table 10.2

on page 101)

Physical Errors
A physical error (also known as an I/O error) occurs when VSAM is unable to access

a data set or record because of a hardware error. A hardware error is usually (but not
always) caused by a problem with the disk on which the VSAM data set resides.
Physical errors are very rare.

When a physical error occurs while processing VSAM data sets, SAS does the
following:

1 prints a set of appropriate messages in the SAS log.
2 sets the _ERROR_ automatic variable to 1.
3 fills the logical record buffer with blanks. If a physical error occurs while reading,

the INPUT buffer is filled with blanks. If it occurs while writing, the PUT buffer is
filled with blanks.

96 Logical Errors � Chapter 10

4 sets the _IORC_ automatic variable to 12, which is the VSAM return code for
physical errors.

5 sets the _FDBK_ automatic variable to the VSAM feedback code for the physical
error.

6 continues with the DATA step.

Logical Errors

Types of Logical Errors
Logical errors result from mistakes in program logic. There are two types of logical

errors that can occur when you process VSAM data sets in a SAS program:

� SAS logical errors, which SAS detects before invoking VSAM
� VSAM logical errors, which VSAM detects while it attempts to process a request

from your SAS program

SAS Logical Errors
The SAS VSAM interface looks for logical errors before it invokes VSAM. When SAS

detects an error condition, it is a SAS logical error. When SAS cannot pass a request on
to VSAM because of an error in your program, the DATA step terminates, and an error
message that describes the error is printed on the SAS log. The following conditions are
examples of SAS logical errors:

� You attempt to update a VSAM data set without using the same fileref for both the
INFILE and FILE statements.

� You try to erase an ESDS record by specifying the ERASE= variable on an INFILE
statement that references an ESDS.

� You try to retrieve a spanned KSDS record by RBA.

By default, the standard INFILE statement options MISSOVER and STOPOVER are
in effect for VSAM data sets, and they relate to SAS logical error conditions.

� The MISSOVER option assigns missing values to all variables in the INPUT
statement that do not have values in the INPUT buffer.

Note that the MISSOVER option enables processing to continue instead of
terminating the DATA step.

� The STOPOVER option is the default when data overflows the current record
when writing to a VSAM data set. The STOPOVER option causes the following:

� partially built records to be written to the data set

� the DATA step to terminate immediately with an error message

For more information on these options, refer to Chapter 4, “Processing VSAM Data
Sets in SAS Programs,” on page 29.

VSAM Logical Errors
Errors in your program logic that VSAM detects are called VSAM logical errors.

Here are some common VSAM logical errors:

Error-Handling Techniques and Error Messages � Using the FEEDBACK= Option 97

� trying to read a record that does not exist
� trying to update a record without reading it first
� trying to create a new record that violates VSAM restrictions

When a VSAM logical error is encountered, the following automatic SAS variables
are set:

1 The _IORC_ variable is set to a value of 8. (_IORC_ contains the value of the
VSAM input/output return code.)

2 The _FDBK_ variable is set to the VSAM feedback code. Some of the _FDBK_
values depend on the type of operating system and the VSAM release in use.
However, the most common values are the same for all operating systems. For
more information about the VSAM logical error and feedback codes, refer to your
IBM documentation.

VSAM sets the I/O return code and the feedback code and returns their values to the
SAS VSAM interface. The interface makes these values available to your SAS program
in the automatic SAS variables _IORC_ and _FDBK_.

Error-Handling Techniques

How FEEDBACK= Differs from _IORC_ and _FDBK_
The FEEDBACK= option specifies a SAS variable that is set to the VSAM feedback

code. The variable is set only when VSAM encounters a logical error. That is, the
variable’s value is 0 until a logical error occurs. The nonzero value indicates what type
of logical error was detected. “Some Common Causes of Logical Errors” on page 99
describes the feedback codes that are most likely to be returned in the FEEDBACK=
variable.

Note that both the _FDBK_ and the FEEDBACK= variables are set to the VSAM
feedback code when a logical error occurs. The distinction between the two values is
that only by specifying the FEEDBACK= variable (and resetting it) can you continue to
process and detect later errors that might occur. The ability to reset the FEEDBACK=
variable after taking appropriate action to handle the error is very significant. For this
reason, it is strongly recommended that you use the FEEDBACK= option for all VSAM
data sets in which logical errors might occur.

Other distinctions are that _FDBK_ is also set if the following occurs:
� when VSAM detects a physical error.
� when VSAM sets a zero return code in certain situations.

You get a nonzero _FDBK_ with a zero _IORC_ when you try to create a
duplicate key in an alternate index.

The FEEDBACK= variable has a nonzero value only when a logical error occurs.

Using the FEEDBACK= Option
The FEEDBACK= option in the INFILE statement specifies a SAS variable that is

set to the VSAM feedback code when VSAM detects a logical error. You can determine
what caused the error by inspecting the FEEDBACK= variable value. You can then
design program logic that takes appropriate action depending on the value of the
FEEDBACK= variable. You must reset the values of both the FEEDBACK= variable
and the _ERROR_ variable to 0 in order to continue processing.

98 Using the FEEDBACK= Option � Chapter 10

Resetting the variable to 0 enables you to continue processing in a meaningful way.
That is, you can continue both to read and write records and detect other errors in the
DATA step. If you do not reset the FEEDBACK= and _ERROR_ variables before the
next INPUT or PUT statement, SAS assumes that your program cannot handle the
error condition, and it executes the following:

1 prints a message that includes information about the data set and the VSAM
logical error code on the SAS log

2 terminates the DATA step

The DATA step also terminates when the FEEDBACK= option is not specified, and a
logical error occurs while it attempts to write with a PUT statement.

You must use the FEEDBACK= option to use the key-testing techniques for a KSDS
(described in Chapter 7, “Processing a KSDS in a SAS Job,” on page 59) and the
slot-testing techniques for an RRDS (described in Chapter 8, “Processing an RRDS in a
SAS Job,” on page 77).

VSAM cannot return data to the input buffer when there is a logical or physical I/O
error. Subsequent INPUT statements cannot read from an empty INPUT buffer, which
leaves variables without values. To avoid this situation, test the values of _IORC_ and
the FEEDBACK= variable by using a trailing @ with the INPUT statement that
initiates the VSAM read request:

infile indata vsam feedback=NOERROR;
input @; /* Read: look at values of FEEDBACK= variable */

/* and _IORC_. If OK, finish reading values */
/* into variables and write them to the SAS */
/* print file. */

if _IORC_ = 0 and NOERROR=0 then do;
input var1 $ var2 var3 $;
file print;
put var1 var2 var3;

end; /* If _IORC_ and NOERROR=0 */
else if _IORC_= 12 then do;

/* Physical error has occurred. */
/* INPUT buffer is empty: nothing to read. */

ERROR = 0; /* Reset the _ERROR_ variable. */
file log; /* Write message on the SAS log. */
put ’Physical error has occurred for observation ’ _N_ ’.’

’I/O return code is ’ _IORC_ ’.’;
input; /* Ignore blank buffer: release trailing @. */
return;

end; /* Else: _IORC_=12 */
else if NOERROR ^= 0 then do;

/* Logical error has occurred. */
/* INPUT buffer is empty: nothing to read. */

ERROR = 0;
file log; /* Write message on the SAS log. */
put ’Logical error has occurred for observation ’ _N_ ’.’

’Feedback code is ’ noerror ’.’;
NOERROR=0; /* Reset FEEDBACK= variable back to 0. */
input; /* Ignore blank buffer: release trailing @ */
ERROR = 0; /* Above INPUT stmt. sets both the _ERROR_ */
NOERROR=0; /* and the FEEDBACK= variables. Both need */

/* to be reset to 0 again. */

Error-Handling Techniques and Error Messages � Some Common Causes of Logical Errors 99

return;
end; /* Else: NOERROR ^= 0 */
...more SAS statements...

Using the INPUT @ statement gives you the opportunity to examine the
FEEDBACK= variable for a nonzero value, which indicates that a logical error has
occurred. If both the _IORC_ and the FEEDBACK= variables are zero, continue with
the INPUT statement to read data into variables.

Notice that the _ERROR_ and the FEEDBACK= variable, NOERROR, need to be
reset to 0 twice when set to a nonzero value by an INPUT statement with a trailing @.
They need to be reset to 0 the first time in order to continue processing. The processing
continues by releasing the held record from the input buffer with an INPUT statement
without a trailing @. This sets the _ERROR_ and FEEDBACK= variables to nonzero
values again; therefore, they need to be reset to 0 a second time in order to proceed.

You might want to print error messages warning you that either a physical error was
encountered (if _IORC_ is 12) or a logical error was encountered (if the FEEDBACK=
variable is not 0). You might also design logic to handle specific, anticipated
FEEDBACK= variable values.

Some Common Causes of Logical Errors

The error condition that is associated with each feedback code is briefly described in
the list of the VSAM feedback codes. The codes in this list represent decimal values.

IBM documentation describes many VSAM feedback codes that are not returned to
your SAS program. This is because the SAS VSAM interface looks for many error
conditions before it passes requests to VSAM. A VSAM feedback code cannot be
returned when SAS detects an error before it invokes VSAM. Instead, SAS prints a
message that describes the error on the SAS log and stops the DATA step.

You get VSAM logical errors and, therefore, VSAM feedback codes if the following
occurs:

� SAS cannot detect the error in advance (for example, user lockout).

� SAS does not know what action to take (for example, record not found).

Check the return codes as previously outlined and design your programs to take
appropriate action for the various error conditions.

Table 10.1 VSAM Feedback Codes and Error Descriptions

Feedback Code Error Description

4 An end of data set was encountered (during sequential or skip
sequential retrieval), or the search argument is greater than the high
key of the data set.

8 You attempted to store a duplicate alternate key for an alternate index
with the unique key option, or you attempted to store a record with a
duplicate primary key. (For an ESDS accessed through an alternate
index or a KSDS.)

12 Records were not in key sequence when they are required to be. You are
probably trying to load the file out of key order. VSAM requires a KSDS
to be loaded in key order (for a KSDS).

100 Some Common Causes of Logical Errors � Chapter 10

Feedback Code Error Description

16 Record not found. This means that you attempted one of two things:

� You tried to retrieve a record with a key that does not exist in the
file (for a KSDS).

� You tried to retrieve a record with a relative record number that
corresponds to an empty slot (for an RRDS). Also see feedback
code 192.

20 User lockout occurred because someone else is concurrently accessing
the file and has exclusive use of the control interval that you need.

This feedback code is also returned if you read a record and then try to
add a new record to the same control interval. (You can avoid this
situation by specifying an UPDATE=0 before you read the record.)

32 You have requested a record by RBA, and there is no record with the
address given by the RBA= variable (for a KSDS or an ESDS).

36 Key ranges were specified for the data set when it was defined, and the
record you want to add has a key that is not within one of those key
ranges (for a KSDS).

72 You attempted to access only the data portion of the VSAM cluster.

88 A request was issued for which VSAM was not properly positioned. This
error code is almost always the result of lost positioning that is due to a
previous logical error.

96 You attempted to change either the primary key or the key of reference
while updating a record. This error occurs only if you access a KSDS
through an alternate index and attempt to change the primary key while
updating a record (for a KSDS).

If you change the primary key while using it to access a KSDS, or if you
change the key of reference while accessing the data set through an
alternate index, SAS assumes that you intend for the record to be a new
record (if the new key is not a duplicate).

Error-Handling Techniques and Error Messages � COBOL Status Key Values and VSAM Feedback Codes 101

Feedback Code Error Description

108 You tried to write a record that is too small to contain the full key (for a
KSDS). Your SAS program probably has not completed the following:

� copied the input record to the PUT buffer with a PUT _INFILE_ @
statement

� built the key in the PUT buffer when creating a new record

� built the key in the correct position in the record

A good way to ensure that the key is in the correct position is to use the
variable specified by the KEYPOS= option.

192 You have specified an invalid relative-record number with the RRN=
variable. An invalid RRN is one that does not represent a slot within the
file. If you specify the RRN of an existing but empty slot, the feedback
code is 16 instead of 192 (for an RRDS).

COBOL Status Key Values and VSAM Feedback Codes
Table 10.2 on page 101 contains the COBOL status key values that correspond to the

VSAM feedback codes. Before you invoke VSAM, SAS traps many error conditions that
set status key values in COBOL programs. Therefore, there are many COBOL status
key values that contain VSAM feedback codes that have no counterpart in SAS
programs.

Table 10.2 COBOL Status Key Values and VSAM Feedback Codes

VSAM

Feedback Code

COBOL

Status Key Value

8 22

12 21

16 23

20 93

32 90

36 92

88 21

96 94

108 92

192 23

For more information about COBOL status key values and their corresponding
VSAM feedback codes, consult Appendix 3, “IBM Documentation,” on page 111.

102

103

P A R T2

Appendices

Appendix 1.System Options Dictionary 105

Appendix 2.Sample STUDENT Data Set 109

Appendix 3.IBM Documentation 111

Appendix 4.Recommended Reading 113

104

105

A P P E N D I X

1
System Options Dictionary

VSAMLOAD System Option 105
VSAMREAD System Option 105

VSAMRLS System Option 106

VSAMUPDATE System Option 106

VSAMLOAD System Option

Enables you to load a VSAM data set.

Default: NOVSAMLOAD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
VSAMLOAD | NOVSAMLOAD

Details
The VSAMLOAD option must be in effect in order to load an empty VSAM data set.

VSAMREAD System Option

Enables the user to read a VSAM data set.

Default: VSAMREAD
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

106 VSAMRLS System Option � Appendix 1

Syntax
VSAMREAD | NOVSAMREAD

Details
The VSAMREAD option enables you to process VSAM data sets with a SAS DATA step.

VSAMRLS System Option

Enables record-level sharing for a VSAM data set.

Default: VSAMRLS
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: Files: EXTFILES
PROC OPTIONS GROUP= EXTFILES
Alias: RLS | NORLS
z/OS specifics: all

Syntax
VSAMRLS | NOVSAMRLS

Details
VSAMRLS specifies that record-level sharing is supported. The NOVSAMRLS value
specifies that SAS is not to attempt to open a VSAM data set in record-level sharing
mode, even if the data set is defined as VSAMRLS eligible.

VSAMUPDATE System Option

Enables you to update a VSAM data set.

Default: NOVSAMUPDATE
Valid in: configuration file, SAS invocation, OPTIONS statement, OPTIONS window
Category: File Control: EXTFILES
PROC OPTIONS GROUP= EXTFILES
z/OS specifics: all

Syntax
VSAMUPDATE | NOVSAMUPDATE

System Options Dictionary � VSAMUPDATE System Option 107

Details
The VSAMUPDATE option must be in effect in order to update VSAM data sets.
Specifying VSAMUPDATE implies VSAMREAD.

108

109

A P P E N D I X

2
Sample STUDENT Data Set

Sample STUDENT Data Set 109

Sample STUDENT Data Set

The examples use the fictional STUDENT data set that is shown in this section. If
you want to run the examples, sample programs are provided that define and load an
ESDS, KSDS, and RRDS with the student data on z/OS. You can then enter or copy the
code for the other examples. The sample programs are available in the Help system and
on the installation media.

Output A2.1 STUDENT Data Set Used in ESDS, KSDS, and RRDS Examples

OBS ID LASTNAME FRSTNAME ADDRESS CITY

1 122874839 Edwards Julia 2450 Quincy Ct. Apt. C Little Rock
2 145637205 Martin Duanne 392 Hazelwood Dr. New Hartford
3 167294367 Smith Jerry 111 Lincoln Ave. Boston
4 194304428 Allen Nancy 423 Lakefront Dr. Deerborne
5 234355167 Teague Denise 556 Cherokee Rd. Oklahoma City
6 237849217 Jones Antony 110 Aberdeen Rd. Albany
7 274596043 Friedman Oscar 2845 Ocean Drive Tampa
8 289478363 Cox June Rt. 2 Box 784 Cheyenne
9 293652329 Hawthorne Jean 688 Ridge Rock Way Bountiful
10 357593476 Doe John 384 Main Street Walla Walla

OBS ID LASTNAME FRSTNAME ADDRESS CITY
11 367829047 Taylor Anne 47 Lawrence Circle Lawrence
12 372054321 Hall Brad 56 Starr Ave. Phoenix
13 378462917 Starnes Randy 1450 Rock Quarry Road Lexington
14 467879765 Mitchell Barbara 923 Kemper Court Spartanburg
15 478369204 Ward Keith Box 2330 Hwy 90 Kalamazoo
16 483029412 Henson Edward 783 12th Ave. Circle Knoxville
17 547293675 Pierce Timothy 1233 Hamilton Drive Dallas
18 547392749 Thomas Matthew Rt. 4 Box 634 Reading
19 567879343 Thomas Wanda 21 Martian Way Jupiter
20 578927349 Miller Frank 570 8th Avenue New York

OBS ID LASTNAME FRSTNAME ADDRESS CITY
21 638798462 Jones Tanya 289 Jones Street San Diego
22 648309214 Bradley Steve PO Box 282 Albuquerque
23 674930930 Olsen Wayne PO Box 2580 Chicago
24 703946238 Allen Beth 2834 Harcourt St. Seattle
25 743092873 Miller Caroll Rt. 3 Box 245 Jackson
26 804763829 Thomas Henry 397 Pennsylvania Ave. Washington
27 847204826 Allen Harold 56 48th Street Denver
28 867496732 Quimbley Fred 934 Oak Street Richmond
29 904873627 Hart Jim 489 Hartford Drive Miami
30 948372958 Hill Thomas 2458 Johnson Parkway Santa Monica

110 Sample STUDENT Data Set � Appendix 2

OBS STATE ZIP BALANCE GPA CLASS HRS FINAID

1 AR 83992 00050 2.13 SE 13 Y
2 CN 00103 00000 0.75 JU 13 Y
3 MA 00376 00025 4.00 FR 00 Y
4 MI 50471 00025 2.45 GR 07 N
5 OK 53062 00000 2.63 SO 20 Y
6 NY 10025 00000 2.35 FR 05 Y
7 FL 34988 00035 1.22 FR 09 Y
8 WY 59334 00100 2.33 SE 13 Y
9 UT 79483 00050 2.75 SO 00 Y

10 WA 90126 00025 1.55 GR 00 Y

OBS STATE ZIP BALANCE GPA CLASS HRS FINAID
11 KS 69037 00000 3.22 JU 13 Y
12 AZ 82453 00000 3.46 SO 06 Y
13 KY 48223 00000 2.89 SO 14 N
14 SC 29027 00050 2.98 FR 00 Y
15 MI 47893 00000 2.48 SO 03 Y
16 TN 37294 00150 2.93 GR 14 N
17 TX 55934 00000 0.43 SE 00 Y
18 PA 16382 00025 3.33 JU 12 N
19 FL 34892 00000 1.83 SE 00 N
20 NY 10003 00100 1.95 GR 08 N

OBS STATE ZIP BALANCE GPA CLASS HRS FINAID

21 CA 97274 00000 4.00 SE 14 Y
22 NM 73485 00020 3.80 SO 17 N
23 IL 56038 00000 3.85 SE 10 Y
24 WA 91673 00000 2.37 FR 17 N
25 MS 42865 00025 4.00 JU 12 Y
26 DC 19534 00000 2.50 GR 10 Y
27 CO 60049 00050 1.83 JU 16 N
28 VA 20784 00070 3.90 JU 00 Y
29 FL 33134 00000 3.55 GR 11 Y
30 CA 99999 00000 4.00 GR 11 Y

111

A P P E N D I X

3
IBM Documentation

IBM Documentation 111

IBM Documentation
The following list summarizes references for IBM documentation.
� Device Support Facilities User’s Guide and Reference (GC35–0033)
� MVS/ESA Integrated Catalog Administration: Access Method Services Reference

(SC26–4500)
� MVS/XA Integrated Catalog Administration: Access Method Services Reference

(GC26–4135)

112

113

A P P E N D I X

4
Recommended Reading

Recommended Reading 113

Recommended Reading

Here is the recommended reading list for this title:
� SAS Companion for z/OS

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

114

115

Glossary

Access Method Services
an IBM utility program that defines VSAM files, allocates space for them, modifies
file attributes in the catalog, facilitates file portability between operating systems,
creates backup copies of files and indexes, helps make inaccessible files accessible,
and lists records and catalog entries.

addressed direct access
a method of access in which each record is stored and retrieved directly by its
address relative to the beginning of the file (relative-byte address), which is
independent of the record’s location relative to data that is previously accessed.
Addressed direct access can be used to access ESDS and KSDS records.

AIX
See alternate index.

alternate index
an index that is related to a given base cluster and is organized by an alternate key
(a key other than the prime key of the associated base cluster data records). Its
function is to provide an alternate method for locating records. An alternate index
can be built over an ESDS or a KSDS. Use AMS to build an alternate index.

AMS
See Access Method Services.

base cluster
the data component of an ESDS or the data and prime index components of a KSDS.

cluster
in VSAM, a named structure consisting of a group of related components. In a KSDS,
a cluster consists of a data component and an index component. In an ESDS and an
RRDS, the cluster consists of a data component only.

control area
a group of control intervals that compose the unit that VSAM preformats as records
are added to the data set.

control interval
a contiguous area of secondary (disk) storage that VSAM uses for storing records and
the control information that describes them. It is the unit of information that VSAM
transmits to and from direct access storage.

116 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. A DATA step
view contains a definition of data that is stored elsewhere; the view does not contain
the physical data. The view’s input data can come from one or more sources,
including external files and other SAS data sets. Because a DATA step view only
reads (opens for input) other files, you cannot update the view’s underlying data.

direct access
a method of access in which each record is stored and retrieved directly according to
its logical address (key or relative-record number) or its address relative to the
beginning of the file (relative-byte address). Data storage and retrieval depend only
on the location of the data and not on a reference to data previously accessed. Direct
access is synonymous with random access.

Entry-Sequenced Data Set
a VSAM file type whose record sequence is determined by the order in which the
records are entered into the file, without respect to the record contents.

ESDS
See Entry-Sequenced Data Set.

fileref
a short name (or alias) for the full physical name of an external file. A SAS
FILENAME statement maps the fileref to the full physical name.

index
in VSAM, a data set that relates each record’s key to its relative location in the file.
VSAM uses the index to sequence and locate the records of a KSDS.

key
in VSAM, one or more consecutive characters, located in the key field of each record,
that are used to identify the record and establish its order with respect to the other
records.

key field
in VSAM, a field that contains the record’s key, which is located in the same position
in each record of a KSDS.

keyed direct access
a method of access in which records are retrieved and stored by specifying the
record’s key for a KSDS or the relative-record number (RRN) for an RRDS.

Key-Sequenced Data Set
a VSAM file type in which record order is determined by the EBCDIC collating
sequence of the key field contents.

KSDS
See Key-Sequenced Data Set.

logical record
data that is requested of or given to the data management function (VSAM in this
case) as a unit.

path
the route through a hierarchical file system that leads to a particular folder or
directory.

physical record
a unit of information that is stored on secondary (disk) storage. A physical record
might consist of all or part of a logical record, and it might contain multiple logical
records. Its form depends on the characteristics of the file and the disk type.

Glossary 117

prime key
in VSAM, the main key of a key-sequenced base cluster. It is the key by which the
KSDS records are initially entered and ordered. Each KSDS record must have a
unique prime key.

RBA
See related-byte address.

related-byte address
the displacement of a record or control interval from the beginning of the file.

Relative-Record Data Set
a VSAM file type whose records are loaded into fixed-length slots and referenced by
the record numbers of the slots.

relative-record number
in VSAM in an RRDS, a number that identifies the slot, or data space, and the
record contained therein.

RRDS
See Relative-Record Data Set.

RRN
See relative-record number.

sequential access
the retrieval and storage of data in either entry sequence for an ESDS, key sequence
for a KSDS, or relative-record sequence for an RRDS.

skip sequential access
a two-step process that combines both direct and sequential access. The initial record
is located by keyed direct access, and subsequent records are retrieved sequentially.
Skip sequential access can be used with a KSDS, an RRDS, and an ESDS that is
accessed through an alternate index.

spanned record
in VSAM, a logical record that is contained in more than one control interval.

stored record
a VSAM data record, together with its control information, that is stored in auxiliary
storage.

Virtual Storage Access Method
a multifunction, all-purpose IBM data access method.

VSAM
See Virtual Storage Access Method.

VSAM catalog
a KSDS with an index that contains extensive file and volume information that VSAM
requires to locate files, allocate and deallocate storage space, verify the authorization
of a program or operator to gain access to a file, and accumulate file usage statistics.

VSAM data set
a classification that indicates how the records in an operating system data set are
organized. VSAM is an acronym for Virtual Storage Access Method and is an IBM
data access method that provides three ways to organize records in a disk file:
Entry-Sequenced Data Set (ESDS), Key- Sequenced Data Set (KSDS), and Relative
Record Data Set (RRDS). VSAM allows three types of access to records in VSAM
files: sequential, direct, and skip sequential. See also operating system data set.

118

119

Index

A
access methods

addressed direct mode 10
alternate index 10
direct 9
keyed direct mode 9
sequential 9
skip sequential 12

adding records to a KSDS
after reading 74
to an existing data set 68
without reading 72

adding records to an ESDS
after reading 58
to an existing data set 54

adding records to an RRDS
access type for 82
after reading 88
to an existing data set 82
while reading 82
without reading 87

adding records to VSAM data sets 33
addressed direct mode 10
AIX access method 10
alternate index access method 10
alternate indexes, creating

ESDS 91
KSDS 92

alternate key index access method 10
approximate key retrieval

for KSDS 63
KEYGE option 18

automatic variables
FDBK 14
IORC 14
RBA 14
RRN 14

B
BACKWARD (BKWD) option, INFILE or FILE state-

ment 17
BACKWARD option

FILE statement 25
INFILE statement 25

base clusters 11
BKWD option

FILE statement 25
INFILE statement 25

BLKSIZE= option, INFILE statement 14
blocksize, specifying 14
buffers

current input 15
data, number of 17
index, number of 17
INFILE option 15
reading VSAM data sets 16
SHAREBUFFERS option 16
sharing 16
UNBUFFERED option 16

BUFND= option
FILE statement 25
INFILE statement 25

BUFND= option, INFILE or FILE statement 17
BUFNI= option

FILE statement 25
INFILE statement 25

BUFNI= option, INFILE or FILE statement 17

C
carriage-control characters 16
clusters 5

base clusters 11
CNV option

FILE statement 25
INFILE statement 25

CNV option, INFILE or FILE statement 17
COBOL status key values, and VSAM feedback codes 101
COLUMN= option, INFILE statement 14
control areas 7
control intervals 7

reading 17
CONTROLINTERVAL (CTLINTV) option, INFILE or FILE

statement 17
CONTROLINTERVAL option

FILE statement 25
INFILE statement 25

CTLINTV option
FILE statement 25
INFILE statement 25

D
DA (Direct Access Organization) data sets 4
data integrity, VSAM data sets 34
date/time values 65
DELIMITER option, INFILE statement 14

120 Index

delimiters, list input
reading as characters 14
specifying 14

Direct Access Organization (DA) data sets 4
DLBL statements 30
DSD option, INFILE statement 14

E
end-of-dataset condition 14
end-of-file condition 14
end-of-record overflow 15
end-of-volume condition 14
END= option, INFILE statement 14
EOF= option, INFILE statement 14
EOV= option, INFILE statement 14
ERASE= option

FILE statement 26
INFILE statement 26

ERASE= option, INFILE or FILE statement 18, 35
erasing records

ERASE= option 18
ESDS 35
KSDS 35, 70
RRDS 35, 86
VSAM data sets 18, 35

error codes
saving 18
VSAM feedback codes 99

error handling
COBOL status key values, and VSAM feedback

codes 101
FDBK variable 97
FEEDBACK= option 97
hardware errors 95
I/O errors 95
IORC variable 97
logical errors, causes of 99
logical errors, SAS programs 96
logical errors, VSAM programs 96
physical errors 95
VSAM feedback codes, and COBOL status key val-

ues 101
VSAM feedback codes, table of 99

ESDS 5, 51
access types 52
adding records after reading 58
adding records to existing data set 54
alternate indexes, creating 91
clusters 5
combining DATA step operations 57
control intervals and areas 7
direct access 53
direct access by RBA 53
erasing records 35
keyed direct access, specifying 18
keyed direct access by alternate keys 54
loading a new data set 47
loading in a SAS DATA step 48
lockout, avoiding 56
RBA, setting 19
reading records from 52
SAS options for 52
sequential access 53
updating records 56

EXPANDTABS option, INFILE statement 15

external data sets 30

F
FDBK variable 14, 97
FEEDBACK= (FDBK) option, INFILE or FILE state-

ment 18
error handling 97
key testing with INPUT statement 74
key testing with PUT statement 72
slot testing, comparison of techniques 87
slot testing with INPUT statement 88
slot testing with PUT statement 87

FEEDBACK= option
FILE statement 26
INFILE statement 26

FILE statement
erasing records 35
loading VSAM data sets 47
SAS options for VSAM 16
sharing buffers with INFILE statement 16
VSAM options 25

FILENAME= option, INFILE statement 15
FILENAME statement, associating filerefs with VSAM data

sets 30
filerefs, for VSAM data sets 20, 30
FILEVAR= option, INFILE statement 15
FIRSTOBS= option, INFILE statement 15
FLOWOVER option, INFILE statement 15

G
generic-key processing

for KSDS 63
GENKEY option 18

GENKEY option
FILE statement 26
INFILE statement 26

GENKEY option, INFILE or FILE statement 18
reading a KSDS 63

H
hardware errors 95

I
I/O errors 95
IBM data set types 4
index buffers, number of 17
Indexed Sequential (IS) data sets 4
indexes, alternate

ESDS 91
KSDS 92

INFILE= option, INFILE statement 15
INFILE statement

erasing records 35
SAS options for 14
sharing buffers with FILE statement 16
syntax 21
VSAM options 25
with VSAM data sets 21

INPUT statement
key testing 74
slot testing 88

Index 121

IORC variable 14
error handling 97

IS (Indexed Sequential) data sets 4

K
key length

KEYLEN= option 19
KSDS 64

KEY= option
FILE statement 26
INFILE statement 26

KEY= option, INFILE or FILE statement 18
key testing 74
reading a KSDS 62

key position 19
key testing

INPUT statement 74
PUT statement 72

keyed direct access
specifying 18
with alternate index 10

keyed direct mode 9
KEYGE option

FILE statement 26
INFILE statement 26

KEYGE option, INFILE or FILE statement 18
reading a KSDS 63

KEYLEN= option
FILE statement 26
INFILE statement 26

KEYLEN= option, INFILE or FILE statement 19
reading a KSDS 64

KEYPOS= option
FILE statement 26
INFILE statement 26

KEYPOS= option, INFILE or FILE statement 19
reading a KSDS 64

keys, definition 5
KSDS 5, 59

access types 62
adding records after reading 74
adding records to existing data set 68
adding records without reading 72
alternate indexes, creating 92
approximate key retrieval 63
clusters 5
combining DATA step operations 71
control intervals and areas 7
date/time values 65
erasing records 35, 70
generic-key processing 18, 63, 66
key length 19
KEY= option 62, 74
key position 19
key testing with INPUT statement 74
key testing with PUT statement 72
key variables 65
keyed direct access 18, 62
KEYGE option 63
KEYLEN= option 64
KEYPOS= option 64
loading a new data set 47
loading in a SAS DATA step 48
lockout, avoiding 70
MEANS procedure reports, generating (example) 37

packed decimal data 65
PRINT procedure listings, generating (example) 36
RBA, setting 19
reading by approximate key 63
reading by RBA 66
reading with alternate index 65
reading with direct access 61
reading with keyed direct access 61
reading with sequential access 61
reading with skip sequential access 66
SAS options for 60
skip sequential access 20
updating records 69
updating with a windowing program (example) 38

L
LENGTH= option, INFILE statement 15
line length 15
line location 15
LINE= option, INFILE statement 15
lines, specifying number of 16
LINESIZE= option, INFILE statement 15
list input delimiters

reading as characters 14
specifying 14

loading a KSDS
in a SAS DATA step 48
new data set 47

loading an ESDS
in a SAS DATA step 48
new data set 47

loading an RRDS
in a SAS DATA step 48
new data set 48

loading VSAM data sets 47
enabling 13
existing data set 48
in a SAS DATA step 48
new data set 47
SAS options for 47

lockout, avoiding 20
ESDS 56
KSDS 70
RRDS 85
UPDATE=, SAS option 20

logical errors
causes of 99
SAS programs 96
VSAM programs 96

logical record length 15
lookahead read 32
LRECL= option, INFILE statement 15
LS= option, INFILE statement 15

M
MEANS procedure reports, generating (example) 37
missing values 16
MISSOVER option, INFILE statement 16

N
N= option, INFILE statement 16
NRLS option

FILE statement 26

122 Index

INFILE statement 26

O
OBS= option, INFILE statement 16
options

FILE statement options 16
for ESDS 52
for KSDS 60
for loading VSAM data sets 47
for RRDS 78
functional categories 20
INFILE statement options 14
SAS system options 13
SAS system options, default values 13
SAS system options, required for reading VSAM data

sets 32
VSAM options 22

P
PAD option, INFILE statement 16
padding input records with blanks 16
Partitioned Organization (PO) data sets 4
PASSWD= option

FILE statement 26
INFILE statement 26

PASSWD= option, INFILE or FILE statement 19
password protection, VSAM data sets 19
physical errors 95
Physical Sequential (PS) 4
PO (Partitioned Organization) data sets 4
prime keys, duplicate 69
PRINT option, INFILE statement 16
PRINT procedure listings, generating (example) 36
PS (Physical Sequential) 4
PUT statement

key testing 72
slot testing 87
updating ESDS records 56

R
random access method 9

reading VSAM data sets 33
RBA 10

getting latest 14
reading a KSDS 66
reading an ESDS 53
setting for an RRDS 19

RBA= option
FILE statement 26
INFILE statement 26

RBA= option, INFILE or FILE statement 19
adding records to an ESDS 58
reading an ESDS 53

RBA variable 14
RC4STOP option

FILE statement 26
INFILE statement 26

reading a KSDS
by approximate key 63
by RBA 66
direct access 61
GENKEY option 63
KEY= option 62

keyed direct access 61
KEYGE option 63
KEYLEN= option 64
KEYPOS= option 64
sequential access 61
skip sequential access 66
with alternate index 65

reading an ESDS
access types 52
by RBA 53
RBA= option 53

reading an RRDS
by RRN 79
direct access 79
sequential access 79
skip sequential access 80

reading control intervals 17
reading VSAM data sets

backward 17
control intervals 17
default access 32
direct access 33
enabling 13
first record, specifying 15
last record, specifying 16
list input delimiters, reading as characters 14
lookahead read 32
SAS system options required 32
sequential access 32
skip sequential access 33
unbuffered 16

READPW= option, INFILE or FILE statement 19
RECFM= option, INFILE statement 16
record format 16
record length limit 15
record level sharing

for VSAM data sets 106
record size, calculating 94
record structure and organization 7
RECORDS= option

FILE statement 26
INFILE statement 26

RECORDS= option, INFILE or FILE statement 19
RECORDSIZE parameter 94
RECORG= option

FILE statement 26
INFILE statement 26

RECORG= option, FILENAME statement 22
RESET option

FILE statement 27
INFILE statement 27

RESET option, INFILE or FILE statement 19
RLS for VSAM data sets

enabling 13
RLS (record-level sharing)

for VSAM data sets 106
RRDS 5

adding records, access type for 82
adding records after reading 88
adding records to existing data set 82
adding records while reading 82
adding records without reading 87
clusters 5
combining DATA step operations 87
control intervals and areas 7
erasing records 35, 86

Index 123

loading a new data set 48
loading in a SAS DATA step 48
lockout, avoiding 85
options for 78
RBA, setting 19
reading with direct access 79
reading with sequential access 79
reading with skip sequential access 20, 80
slot testing 87
updating records 84

RRN 10
getting the latest 14
reading RRDS 79
setting 20

RRN= option
FILE statement 27
INFILE statement 27

RRN= option, INFILE or FILE statement 20
slot testing with PUT statement 87
slot testing with INPUT statement 88

RRN variable 14

S
SAS automatic variables

FDBK 14
IORC 14
RBA 14
RRN 14

SAS system options 13
default values 13
for reading VSAM data sets 32

SCANOVER option, INFILE statement 16
sequential access method 9

reading VSAM data sets 32
specifying 20

SEQUENTIAL option
FILE statement 27
INFILE statement 27

SEQUENTIAL option, INFILE or FILE statement 20
SHAREBUFFERS option, INFILE statement 16
sharing data sets during update 34
SKIP option

FILE statement 27
INFILE statement 27

SKIP option, INFILE or FILE statement 20
skip sequential access method 12

reading VSAM data sets 33
specifying 20

slot testing
comparison of techniques 87
INPUT statement 88
PUT statement 87

spanned records 7
START= option, INFILE statement 16
STOPOVER option, INFILE statement 16
STUDENT data set 109

T
tab characters, expanding 15
time/date values 65
truncated input records 16
TRUNCOVER option, INFILE statement 16

U
UNBUFFERED option, INFILE statement 16
UPDATE= option

FILE statement 27
INFILE statement 27

UPDATE= option, INFILE or FILE statement 20, 35
updating VSAM data sets 34

data integrity 34
enabling 13
ESDS 56
KSDS 38, 69
limitations on 34
lockout, avoiding 20
losing updates 34
record specification for 20
record update status 35
RRDS 84
sharing data sets 34
UPDATE= option 20, 35
VSAMUPDATE system option 13
with a windowing program (example) 38

V
Virtual Storage Access Method 3
VSAM, definition 3
VSAM data sets 5

adding records 33
approximate key retrieval 18
approximate key retrieval, specifying 63
buffers, sharing 16
carriage-control characters 16
closing 15
column pointer location 14
combined DATA step operations 36
comparison of 5
control intervals, reading 17
current input buffer 15
data buffers, number of 17
determining type of 30
differences between 5
end-of-dataset condition 14
end-of-file condition 14
end-of-record overflow 15
end-of-volume condition 14
erasing records 18, 35
error codes, saving 18
external data sets 30
fileref, specifying 20
first record, specifying 15
generic-key processing 18, 63
IBM equivalent data set types 4
index buffers, number of 17
input blocksize 14
key length 19
key position 19
keyed direct access 18, 62
line length 15
line location 15
lines, number of 16
list input delimiters, reading as characters 14
list input delimiters, specifying 14
loading 105
loading, enabling 13
lockout, avoiding 20, 70

124 Index

logical record length 15

missing values 16
name of current 15

number of records, getting 19
opening 15
operations, and access types 31

operations, types of 31
padding with blanks 16
password protection 19

RBA, setting 19
reading 106

reading, backward 17
reading, enabling 13
reading, specifying first record 15

reading, specifying last record 16
reading, unbuffered 16
reading control intervals 17

record format 16
record length limit 15

record-level sharing for 106
referring to 30
resetting to empty 19

RRN, setting 20
scanning to a specified character 16

sequential access 20
skip sequential access 20
tab characters, expanding 15

truncated records 16
updating 107
writing, specifying first column number 16

VSAM data sets, defining under z/OS 45
VSAM data sets, loading 47

existing data set 48
in a SAS DATA step 48
new data set 47

options for 47
VSAM data sets, reading

default access 32

direct access 33

lookahead read 32

required system options 32

sequential access 32
skip sequential access 33

VSAM data sets, updating 34

data integrity 34
enabling 13

ESDS 56

KSDS 38, 69

limitations on 34
lockout, avoiding 20

losing updates 34

record update status 35
RRDS 84

sharing data sets 34

specifying records for 20

UPDATE= option 20, 35
VSAMUPDATE system option 13

with a windowing program (example) 38

VSAM feedback codes 99
and COBOL status key values 101

FDBK variable 14

table of 99

VSAM I/O return code, variable for 14
VSAM option, INFILE or FILE statement 20

VSAM options 22

FILE statement 25
INFILE statement 25

VSAMLOAD system option 13, 105

VSAMREAD system option 13, 106

VSAMRLS system option 13, 106
VSAMUPDATE system option 13, 107

W
WRITEPW= option, INFILE or FILE statement 20
writing VSAM data sets, specifying first column number 16

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview

	SAS 9.2 VSAM Processing: Overview and Techniques
	The Virtual Storage Access Method (VSAM)
	What is Virtual Storage Access Method (VSAM)?
	Introduction to VSAM
	Access Methods
	Access Methods and File Organization
	Types of VSAM Data Sets
	VSAM Record Structure and Organization

	VSAM Data Access Types
	Sequential Access
	Direct Access
	Skip Sequential Access

	SAS Options and Variables for VSAM Processing
	Introduction to SAS Options and Variables for VSAM Processing
	Using SAS System Options
	Using SAS Automatic Variables
	Standard SAS INFILE Options
	Special SAS Options for VSAM
	Using the Special SAS Options
	VSAM Option for the FILENAME Statement

	Accessing VSAM Data Sets
	Accessing VSAM Data Sets
	Reading a VSAM File
	Writing to an Empty VSAM File
	Updating a VSAM Data Set
	Using Record-Level Sharing with VSAM
	Extended-Format VSAM Data Sets
	VSAM Options for the FILE and INFILE Statements

	Processing VSAM Data Sets in SAS Programs
	Determining the Type of an Existing Data Set
	Referring to VSAM Data Sets
	Operations on VSAM Data Sets in SAS Programs
	Reading Records from a VSAM Data Set
	Different Ways to Read Records
	Sequential Access
	Direct Access
	Skip Sequential Access

	Adding Records to a VSAM Data Set
	Updating Records in VSAM Data Sets
	Introduction to Updating Records
	Limitations on Updating Records
	Using the UPDATE= Option

	Erasing Records from a VSAM Data Set
	Combined Operations
	Examples of Using VSAM Data in SAS Programs
	Generating PROC PRINT Listings from a KSDS
	Generating Reports Using PROC MEANS
	Using a Windowing Program to Update VSAM Records

	Defining and Loading a VSAM Data Set
	Defining a VSAM Data Set
	Loading Records into a VSAM Data Set
	Loading Records into a New VSAM Data Set
	Options Used When Loading Records into a New VSAM Data Set
	Access Types When Loading Records into a VSAM Data Set
	Reloading a VSAM Data Set
	Loading a VSAM Data Set in a SAS DATA Step

	Processing an ESDS in a SAS Job
	Introduction to ESDS
	Special SAS Options Used with an ESDS
	Reading Records from an ESDS
	Access Types for ESDS Operations
	Reading an ESDS with Sequential Access
	Reading an ESDS with Direct Access

	Adding Records to an ESDS
	Updating Records in an ESDS
	Steps for Updating Records in an ESDS
	Using the PUT Statement When Updating Records in an ESDS

	Combined Operations on an ESDS
	Adding Records after Reading

	Processing a KSDS in a SAS Job
	Introduction to KSDS
	Special SAS Options Used with a KSDS
	Reading Records from a KSDS
	Three Ways for Reading Records from a KSDS
	Reading a KSDS with Sequential Access
	Reading a KSDS with Direct Access
	Reading a KSDS with Skip Sequential Access

	Adding Records to a KSDS
	Updating Records in a KSDS
	Erasing Records from a KSDS
	Combined Operations on a KSDS
	Introduction to Combined Operations on a KSDS
	Adding Records without Reading
	Adding Records after Reading

	Processing an RRDS in a SAS Job
	Introduction to Processing an RRDS
	Special SAS Options Used with an RRDS
	Reading Records from an RRDS
	Three Ways of Reading Records from an RRDS
	Reading an RRDS with Sequential Access
	Reading an RRDS with Direct Access
	Reading an RRDS with Skip Sequential Access

	Adding Records to an RRDS
	Introduction to Adding Records to an RRDS
	Access Type When Adding Records
	Adding Records While Reading

	Updating Records in an RRDS
	Erasing Records from an RRDS
	Combined Operations on an RRDS
	How to Combine Operations on an RRDS
	Adding Records without Reading
	Adding Records after Reading

	Using Alternate Indexes for VSAM Data Sets
	Introduction to Using Alternate Indexes
	Creating an Alternate Index for an ESDS
	Creating an Alternate Index for an Existing KSDS
	Calculating Record Size

	Error-Handling Techniques and Error Messages
	What are Physical and Logical Errors?
	Physical Errors
	Logical Errors
	Types of Logical Errors
	SAS Logical Errors
	VSAM Logical Errors

	Error-Handling Techniques
	How FEEDBACK= Differs from _IORC_ and _FDBK_
	Using the FEEDBACK= Option

	Some Common Causes of Logical Errors
	COBOL Status Key Values and VSAM Feedback Codes

	Appendices
	System Options Dictionary
	Sample STUDENT Data Set
	Sample STUDENT Data Set

	IBM Documentation
	IBM Documentation

	Recommended Reading
	Recommended Reading

	Glossary
	Index

