I
Gsas

SAS® Stat Studio 3.11
for SAS/STAT® Users

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009. SAS® Stat Studio
3.11 for SAS/STAT® Users. Cary, NC: SAS Institute Inc.

SAS® Stat Studio 3.11 for SAS/STAT® Users
Copyright © 2009, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59994-941-3

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

Ist electronic book, February 2009
Ist printing, March 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS®and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Chapter 1. Introduction 1
Chapter 2. Reading and WritingData 9
Chapter 3. Creating Dynamically Linked Graphics 21
Chapter 4. Calling SAS Procedures 25
Chapter 5. Adding Variables to the DataObject 29
Chapter 6. Adding CurvestoPlots 31
Chapter 7. Reading ODS Tables 37
Chapter 8. Adding Titles, Legends, and Insets 41
Chapter 9. Adjusting Axesand Ticks 47
Chapter 10. Changing the Color and Shape of Observation Markers 55
Index L e 63

v

Release Notes

The following release notes pertain to SAS Stat Studio 3.11.

e Stat Studio requires SAS 9.2.

e This is an updated release of Stat Studio that enables access to remote SAS
Workspace Servers.

e If you need to open a data set containing Chinese, Japanese, or Korean char-
acters, it is important that you configure the “Regional and Language Options”
in the Windows Control Panel for the appropriate country. It is not necessary
to change the Windows setting called “Language for non-Unicode programs,”
which is also referred to as the system locale.

vi

Chapter 1
Introduction

What Is Stat Studio?

Stat Studio is a tool for data exploration and analysis. Stat Studio requires that you
have a license for Base SAS, SAS/STAT, and SAS/IML. Stat Studio runs on a PC
in the Microsoft Windows operating environment. You can use Stat Studio to do the
following:

e explore data through graphs linked across multiple windows
o transform data

e subset data

e analyze univariate distributions

e discover structure and features in multivariate data

e fit and evaluate explanatory models

Figure 1.1 shows the Stat Studio interface with a logistic model for the probability
of a passenger surviving the 1912 Titanic disaster. The figure shows output from the
LOGISTIC procedure and three linked views of the data: a data table, a diagnostic
plot that uses the DIFCHISQ statistic to identify observations that do not fit the model
well, and a line plot that shows the predicted probability of survival as a function of
a passenger’s age, gender, and cabin class (first class, second class, or third class).
Observations that are selected in the diagnostic plot are shown as selected in all other
(graphical and tabular) views of the data. The shapes and colors of observations are
also shared among all views of the data.

Figure 1.1 was created using only the Stat Studio graphical user interface (GUI).
While the GUI provides powerful tools for analyzing data, you can also extend Stat
Studio’s built-in abilities by writing programs. Stat Studio provides an integrated
development environment that enables you to write, debug, and execute programs
that combine the following:

the flexibility of the SAS/IML matrix language
the analytical power of SAS/STAT

the data manipulation capabilities of Base SAS

the dynamically linked graphics of Stat Studio

2 ¢ Chapter 1. Introduction

7 5AS Stat Studio - titanicpassengers (TitanicPassengers)
Fie Edit Wiew Program Graph Analysis Tools Window Help

N-S70HE ~hmAwW|E

Zlvmun| NG

i titanicpassengers:1 8 [=] i Scatter Plot of titanicpassengers:2 [_[o]x]
Suvived | class | sex | age | name s
[| =] || [T | Mo | —! DIFCHISO vs. Predicted
> = 1 1 female 29 Alen, Miss. Elssbeth Watan E
A 1 1 male 03167 _Alison, Master. Huson Trevar 1 =
o 251
. 2 o0
1 1 male 48 Anderson, . Harry g
1 1 temaie 63 Andrews, Miss. Kornelia Theodosi 1 =
0 1 maie 35 Andrews, M. Thomas ir £
1 1 female 53 Applston, Mrs. Edvard Dale (Char 4 g N
o 1 male T Artagavestia, Mr. Ramon s R =
0 1 male 47 Astor, Col. John Jacoh S 10 EY
1 1 temale 18 Astor, Mrs. John Jacok (Madelein g kY -
1 1 female 24 Aubsart, Mime, Lecrtin Pauine < < AN
1 1 female 26 Barker, Miss. Elen "Nele” € = 5 ., "
1 1 mal B0 Barkworth, Mr. Algernon Henry Wi e A
male arkoworth, M. Algernon Henry L] T
0 1 mele B0 Baumann, Mr. John D s, e
0 1 mele 24 Bder, b Quigy Edmond 0 —m———
1 1 female 50 Gadter, birs. James (rielene DeLau € T T T T T T
1 1 female 32 Bazzan, Ms. Albina e 0 oz oe o3 s L
0 1 male 36 Beattie, Mr. Thomson # Predicted Probability
1 1 male 37 Beckwith,Mr. Richerd Leonard E
M
Bs Outputi chil Line Plot of titanicpassengers:3 _[ofx]
Bnalysis of Mawximum Likelihood Estimates Predicted Probability of survived="1"
Standard Wald 1
Parameter DF Estimate Error ¢hi-Square Pr > ChiSg
Intercept 1 1.0182 0.1967 26.8622 <.0001
class 1 1 1.1344 0.1246 52,5424 <.0001
class 2 1 -0.1256 0.1127 1.2422 0.2650 :
sex female 1 1.1802 0.0747 253.7002 <.0001 g ngl
age L -0.0324 0.00585 30.6223 <.0001 %
I
]
0ads Ratio Estimates g Weq
H sex
Point 95% Wald < - femle
Effect Estimate Confidence Limits | 2 male
class 1vs 3 8.526 5.714 1z.721
class 2 vs 3 2,418 1,692 3,456 0
sex female vs male 10.809 8.064 14.487 , r T T ;
age 0.968 0.957 0.978 a 20 40 60 80
Age
Association of Predicted Prohabilities and Ohserved Responses
TitaricPassengers
Ready [0Errors) [0 Warning(s)

Figure 1.1. The Stat Studio Interface

The programming language in Stat Studio, which is called IMLPlus, is an enhanced
version of the IML programming language. The “Plus” part of the name refers to new
features that extend the IML language, including the ability to create and manipulate
statistical graphics and to call SAS procedures.

This book does not require previous knowledge of IML. The emphasis in this book is
on the “Plus” part of the IMLPlus language.

The

Purpose of This Book

The purpose of this book is to teach SAS/STAT users how to use Stat Studio in con-
junction with SAS/STAT in order to explore data and visualize statistical models. It
assumes that you are familiar with using Base SAS and procedures such as FREQ,
PRINT, REG, and KDE in SAS/STAT. The examples in this book do not require
knowledge of SAS/IML. A goal of this book is to enable SAS/STAT programmers to
write programs in Stat Studio as quickly as possible.

In particular, this book focuses on how to create dynamically linked graphics so you
can more easily formulate, visualize, evaluate, and revise statistical models. If you
already know how to write DATA and PROC statements to perform a certain analysis,
you can add a few IMLPlus statements to create graphics for visualizing the results.
Thus, you need to learn only a few new commands and techniques in order to get
started with IMLPlus programming.

Chapter 1. Introduction ¢ 3

This book is one of three documents about Stat Studio. You can learn how to use the
Stat Studio GUI to conduct exploratory data analysis and standard statistical analyses
in Stat Studio User’s Guide. That book also shows you how to perform many of
the tasks in this chapter by using menus in the Stat Studio GUI. You can learn more
advanced programming commands and techniques from the Stat Studio online Help,
which you can display by selecting Help » Help Topics from the main menu.

Why Program in Stat Studio?

Although you can use Stat Studio as a point-and-click tool for exploratory data anal-
ysis, there are advantages to writing programs in Stat Studio. Writing programs en-
ables you to do the following:

e create your own customized statistical graphics

e add legends, curves, maps, or other custom features to statistical graphics
e develop interactive programs that use dialog boxes

o extend the built-in analyses by calling SAS procedures

e create custom analyses

e repeat an analysis on different data

e cxtend the results of SAS procedures by using IML

e share analyses with colleagues who also use Stat Studio

e call functions from libraries written in C/C++, FORTRAN, or Java

Figure 1.2 shows the results of a program that evaluates the mortality of patients
admitted to a certain hospital with congestive heart failure. The program uses a
statewide database to build a logistic model predicting mortality as a function of a
patient’s age and the severity of her condition. The program uses IML to compute an
adjusted mortality rate (with confidence limits) for cardiac physicians employed by
the hospital. The adjusted rates are based on the observed number of deaths, the ex-
pected number of deaths (as predicted by the statewide model), and the mean number
of deaths for this hospital.

The program implements many of the features listed previously. It creates a custom
graphic with explanatory text. It calls DATA steps and the LOGISTIC procedure. It
extends the results of the LOGISTIC procedure by using IML to compute adjusted
mortality rates. It presents Stat Studio’s dynamically linked graphics to enable you to
explore why some physicians have high rates of patient mortality, to decide whether
those rates are unacceptably high, and to evaluate the overall performance of this hos-
pital’s staff compared to staff at other hospitals in the state. Although not shown in
Figure 1.2, the program even uses a dialog box to enable you to choose the explana-
tory effects used to create the logistic model.

4 + Chapter 1. Introduction

¥ 5AS Stat Studio - fitout (CentraDema}
File Edit view Program Graph Analysis Tool jow Help

-7 EE|[*x2R» Al v mn | MBOG

ModelVariahles = GetModelVars();
Mortality Adjusted by Age and Severity
Swsmit Wodelvarissles:

/7 Get the datassts and run logistic regression on hospital data ¥/
data state;

set dak.state;

rensme aprrom=Severity:

if racedes = 'White' then race=0: else race=1; /* group all non-wh
run;
data hospital;

set dat.hospital:

rename aprrom=Severity;

if racedes = 'Dhite' then race=0; =lse rase=1; /* group all non-wh

Humber of Patients Died Treated
&0 0 6 4 4 2 2 3 4|4 4 1 2
n 19 15 " 13 20 16 27 23 13 12 13 13 13

length racedesc §9;

it racedes='White' then racedese='Caucasian': else racedese='Other!: EC el
run;
For
proc logistic datasstate:
class Severity(param=ordinal) race{desc) / paramsref: M [[fevaree]
model mortflag(event='1') = eModelVarisbles; /7 use severity race =g Lili o)
score data=hospital our=ficout; —

77—
run; CT K¥ WF LT HE NR AM CD OL OG DV R
Physician D

Adjusted Mortality Rate
]
]
]
[)
%]

—
PG RJ

dara fitout:
P P =

L >4
Bs Outputi il Histogram of fitout (CentraDemo):3 _[ofx]

Analysis of Maximum Likelihood Estimates

60-|
Standara Wwald >
Parameter DF Estimate Error Chi-Square Pr > ChiSg g a0
Intercept 1 -6.8836 0.6340 117.8848 <.0001 g 0l
Severity 2 1 0.2918 0.4916 0.3524 0.5527 =
Severity 3 1 1.4360 0.2138 45,1154 <.0001 0
Zeverity 4 1 1.8918 0.1752 116, 6151 <.0001 28 ES 11 & 80 &8 7 a1 o2 100
AGE 1 0.0303 0.00694 19.0222 <.0001 Age of Patient
0dds Ratio Estimates o Bar Chart of fitout (CentraDemo):2 _[ofx]
Point 95% Wald 125
Effect Estimate Confidence Limits
1004
3
AGE 1.031 1.017 1.045 g 75
g o
fie
Association of Predicted Probabilities and Observed Responses Ea | E—
o
T f T T
Percent Concordant 82.z Somers' D 0.660 1 2 3 H
Percent Discordant 6.2 Gemma o.671 Severity of Patient Condition
Percent Tied 1.7 Tau-a 0.053
CentraDema
Ready [0Errors) [0 Warning(s)

Figure 1.2. Results of an IMLPIlus Program

Features of IMLPlus Programs

IMLPIlus programs such as the one that created Figure 1.2 share certain features. They
typically include the following steps:

1. If the data are not already in a SAS data set in a library, put them there (Chapter
2).

2. Call a SAS procedure (Chapter 4).

3. Read in results produced by the procedure (Chapter 5, Chapter 6, Chapter 7)
and, optionally, use IML for additional analysis.

4. Create graphs that use the results (Chapter 3, Chapter 5, Chapter 6).
5. Customize attributes of the graphs (Chapter 8, Chapter 9, Chapter 10).

The chapters of this book describe these steps in detail. Later chapters build on earlier
chapters.

In each chapter, you write a short program that illustrates a few key ideas. You should
type the program into the program window. You can create a new program window
by selecting File » New Workspace from the main Stat Studio menu. For your
convenience, the program for each chapter is also distributed with Stat Studio.

Chapter 1. Introduction ¢ 5

The remainder of this chapter discusses concepts that are useful in IMLPlus program-
ming but might not be familiar to the average SAS programmer.

e IMLPlus programs use classes and methods to manage dynamically linked
graphics. The section “Understanding Classes, Objects, and Methods” on page
5 explains these concepts in general, while the section “The DataObject Class”
on page 6 focuses on a class that is particularly important in Stat Studio.

e IMLPIlus programs that call SAS procedures require transferring data between
an in-memory version of the data, and SAS data sets. The section “Where Are
the Data?” on page 8 introduces this concept. Chapter 2, “Reading and Writing
Data,” discusses it in detail and gives examples.

Understanding Classes, Objects, and Methods

SAS is a procedural programming language. (So are FORTRAN and C.) SAS pro-
gramming tends to be action-oriented. The procedure (or IML module) is the “unit”
of programming. The procedure manipulates and analyzes the data.

In contrast, the IMLPlus programming language borrows ideas from object-oriented
programming. An important idea in object-oriented programming is the concept of a
class. A class is an abstract package of data and of functions that query, retrieve, or
manipulate the data. These functions are usually called methods .

An object is a concrete realization (or instance) of a class. To create an object, you
need to specify the data to the creation routine for the class. To call methods in
IMLPlus, you use a “dot notation” syntax in which the method name is appended to
the name of the object. The form of the syntax is Object.Method(arguments), as
shown in the following examples.

In SAS/IML, all variables are matrices. In IMLPlus, a variable is implicitly assumed
to be an IML matrix unless the variable is declared to refer to an object. You can
specify that an IMLPlus variable refers to an object by using the declare keyword.

For example, to create a variable named dobj that refers to an object of the DataObject
class, you can specify the data to the CreateFromFile method of the class:

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");
dobj.Sort ("latitude");

The dobj object is declared in the first line, created in the second, and manipulated in
the third by calling a method. The Sort method sorts the data in dobj by the latitude
variable. The data set on disk is not affected; it was used only to create the initial
instance of the object.

Note: To simplify the discussion, the remainder of this document refers to objects by
the name of their class. Thus a DataObject object is called merely a “DataObject”
instead of an “instance of the DataObject class.”

6 ¢ Chapter 1. Introduction

Caution: IML is not a case-sensitive language. That is, if you define a matrix named
MyMatrix, you can refer to the matrix as “mymatrix,” “MyMaTrlx,” or any other
combination of uppercase and lowercase letters. The names of IMLPlus classes and
methods, however, are case-sensitive. There is no class named “dataobject” (lower-
case), only “DataObject.” There is no method in the DataObject class named “sort,”
only “Sort” (capitalized).

The DataObject Class

The most important class in Stat Studio is the DataObject class. The DataObject class
manages an in-memory version of your data. It provide methods to query, retrieve,
and manipulate the data. It manages graphical information about observations such
as the shape and color of markers, the selected state of observations, and whether
observations are displayed in plots or hidden. Figure 1.3 is a schematic depiction of
a DataObject.

Data Set

: w0
l.

DataObject
_ Synchronize
Manipulate Data Data Views
Query
Data

Sort Get Selected Obs Change Markers
L Add/Delete Data J L Get Variable Type J LSeIect ObservationsJ

Set Labels/Formats Extract Data Exclude Obhservations

Figure 1.3. Using a DataObject

A DataObject is usually created from a SAS data set. (Other methods of creating
DataObjects, such as from Excel files or from IML matrices, are discussed in the on-
line Help.) However, once created, the data in the DataObject are independent from
the data used to initialize it. For example, you might use methods of the DataObject
class to add new variables, transform existing variables, sort by one or more vari-
ables, delete observations, or exclude observations from being plotted. None of these
operations affect the original SAS data set unless the DataObject is saved back onto
disk using the same filename.

The DataObject class provides methods that query the data. For example, a
DataObject can provide you with the number of variables and observations in the

Chapter 1. Introduction

in-memory copy of the data. You can query for a variable’s label or format, or for
whether a variable contains nominal numeric data. You can request the DataObject
to return a vector containing the values of a particular variable. The values can then
be used in a statistical analysis or to subset the data.

The DataObject class does not have any visible manifestation. Rather, you can create
tabular and graphical views of the data from a DataObject. Every data table and every
plot has an underlying DataObject, and usually several plots or tables share the same
DataObject.

The most important role of the DataObject class is to synchronize all graphs and
data tables that view the same data. Thus it is the DataObject class that enables
dynamically linked views of data. This is schematically depicted in Figure 1.4.

Views of the Data

/o
— CHistogram >
= Box Plot >
N

DataObject

Figure 1.4. The DataObject Role

For example, the DataObject class keeps track of which observations are selected.
When you interact with a graph or data table in order to select observations, your
selections are remembered by the underlying DataObject. All graphs and tables that
are linked to the DataObject are alerted so that they can update their displays to
display the new set of selected observations.

Similarly, the DataObject class contains methods that manage markers for each obser-
vation. You can set the shape and color of an observation marker by using DataObject
methods. Whenever an individual observation is plotted, it will have the same shape
and color in all graphs that display it.

In summary, the DataObject class is an in-memory version of data, together with
methods to query and manipulate data and graphical attributes associated with ob-
servations. The purpose of the DataObject class is to ensure that all graphical and
tabular views of the data display observations with the same markers and selection
state.

¢

7

8 ¢ Chapter 1. Introduction

Where Are the Data?

Stat Studio runs in a Microsoft Windows operating environment, but it can commu-
nicate with SAS running on other computers. The PC running Stat Studio is called
the client. The computer running SAS is called the SAS server. If SAS is running on
the same PC that is running Stat Studio, then the client and server machines are the
same.

There is a fundamental difference between the Stat Studio graphics and the Stat
Studio analyses. The DataObject class, which coordinates all of the dynamically
linked graphics and tables, runs on the client and keeps its data in memory on the
client. Similarly, the graphics and tables run on the client. The analyses, by contrast,
are performed using SAS procedures, and so the analyses run on the SAS server. The
SAS procedures must read from a SAS data set in a library on the server.

To perform an analysis, you must get data out of the DataObject and write the data to
a SAS data set in a server library. Similarly, after an analysis is complete, you might
want to get the results (such as observation-wise statistics) out of a server data set and
add them to the in-memory DataObject. Figure 1.5 illustrates this idea.

Client PC SAS Server
Write Data
for Analysis SAS Data Set
// (InpUt)

DataObject
Procedure

Results \ SAS Data Set

(output)

Figure 1.5. Data Flow

Thus it is important to know how to pass data between a DataObject and SAS data
sets on the server. In Chapter 2, “Reading and Writing Data,” you learn how to move
variables between a DataObject and a server data set. You also learn how to read and
write SAS data sets on the client or on the server, and how to create a DataObject
from various sources of data.

Chapter 2
Reading and Writing Data

Stat Studio runs in a Microsoft Windows operating environment, but it can commu-
nicate with SAS running on other computers. The PC running Stat Studio is called
the client. The computer running SAS is called the SAS server. If SAS is running on
the same PC that is running Stat Studio, then the client and server machines are the
same.

Dynamically linked graphics require an in-memory DataObject running on the client
PC. Calling a SAS procedure requires a SAS data set in a library on the server.
Therefore, if you are exploring data by using graphics and decide to perform an anal-
ysis with a procedure, you must write data from a DataObject into a SAS data set in
a server library. After the analysis is finished, you might want to read results from
an output data set and add one or more variables to the in-memory DataObject. For
example, you might want to add predicted values, residuals, and confidence limits for
a regression analysis.

This first part of this chapter teaches you how to use the Stat Studio graphical user
interface (GUI) to do the following:

e read a SAS data set from the client
e read a SAS data set from the server
e write data to a SAS data set on the client

e write data to a SAS data set on the server

The second part of the chapter teaches you how to do these tasks by writing a program
and also describes how to add variables to an existing DataObject.

Using the GUI to Read a SAS Data Set

A SAS data set can be opened as a client data set if it is accessible by the PC operating
system of the computer running Stat Studio. A data set on a USB flash drive, hard
drive, CD drive, or DVD drive can be opened as a client data set. So, too, can a
data set on a networked PC or a UNIX data set that is accessible through a mounted
networked drive. For example, the following can be opened as client data sets:

o C:\Program Files\SAS\Stat Studio\3.1\Data Sets\Hurricanes.sas7bdat
e \\PC123\Public\Data\climate.sas7bdat
e U:\SAS Data\patients.sas7bhdat

10 ¢ Chapter 2. Reading and Writing Data

A SAS data set is a server data set if it is in a SAS library such as WORK,
SASUSER, or SASHELP, or in a libref that you defined by using the LIBNAME

statement. For example, the following are server data sets:

e SASHELP.CLASS
¢ WORK.data1
e mylib.research

Opening Client Data Sets

To use the GUI to open a SAS data set on the client:

1. Select File » Open » File from the main menu. The dialog box in Figure 2.1
appears.

Click Go to Installation directory near the bottom of the dialog box.
Double-click on the Data Sets folder.

Select the Hurricanes.sas7bdat file.

Click Open.

A

Open File HE
Look jr: I"_? Data Sets j (€] B B

ﬁ air . sas7bdat Eﬂprdsale.sas?bdat
F=]baseball.sas7hdat Eship.sas?bdat

=] business, sas7hdat Estatesqa.sas?bdat
ﬁ Catibbean. sas7bdat

Centraldmerica.sas7bdat

[=]climate. sas7hdat

F=]drug.sas7hdat

ﬁ fish,sas7bdat
ﬁ gpa.sas7bdat
£=]Hurricanesas sas7hdat

_éHurriu:anr::s \sas7hdat

£ =diris.sas7hdat

? mining.sas7bdat
ﬁ mining:x.sas7bdat
F=]patient. sas7hdat

Open

Cancel |

File name: IHunicanes.sas?bdat

Lef Lo

Fileg of tupe: IEommon File Types

[~ Atkach to active workspace

G0 ko Installation directory

G0 to Personal Files directory |

Figure 2.1. Opening a Client Data Set

A data table appears, showing a tabular view of the data. Connected to the data table
(although invisible) is an underlying DataObject that was created from the SAS data
set. The DataObject holds the data in memory; the data table displays a view of the
data.

Chapter 2. Reading and Writing Data ¢ 11

Note: Clicking Go to Personal Files directory navigates to your personal files di-
rectory. By default, the personal files directory corresponds to the Windows directory
shown in Table 2.1.

Table 2.1. The Personal Files Directory
Windows XP C:\Documents and Settings\userid\My Documents\
My Stat Studio Files
Windows Vista C:\Users\userid\Documents\My Stat Studio Files

Opening Server Data Sets
To use the GUI to open a SAS data set in a library on the server:

1. Select File » Open » Server Data Set from the main menu. The dialog box
in Figure 2.2 appears.

2. Click on the node labeled with your server name to open it. If SAS is running
on your PC, the server name is My SAS Server.

3. Click on the SASHELP folder to view the data sets in the SASHELP library.
4. Select the CLASS data set.

5. Click OK.
Dpen Server Data Set
ServersjLibrefs/Data Sets:
= ﬁ My SAS Server
-] MAPS
=l-{z3 SASHELP
----- 2 _CMPIDX_
----- £ ADOMSG
----- £2] ADSMSG
----- 2] APMSG
----- £ AsscMaR
----- £ BWEIGHT
----- =] CARs
----- £ cLass
----- £:] CLAsSFIT
-----] CLumMss
----- £ CMTAIMER
----- 7 COLUMN |
Daka set name:
[cLass
™ attach o active workspace

Figure 2.2. Opening a Server Data Set

A data table appears, showing a tabular view of the data. There is a DataObject (not
visible, but still present) connected to the data table.

Note: Figure 2.2 shows librefs that are not predefined. If your PC is your SAS
server, you can create an AutoExec.sas file in the C:\ root directory that contains

12 ¢ Chapter 2. Reading and Writing Data

LIBNAME statements that define librefs on your PC. Everytime a SAS server starts,
SAS executes the AutoExec.sas file automatically. If you are running a SAS server
on another computer, ask your site administrator to set up librefs for you.

Using the GUI to Write a SAS Data Set

In addition to reading data sets, you can use the Stat Studio GUI to write SAS data
sets. This section presumes that you have opened a data table as described in the
previous section.

Saving Data to the Client

To use the GUI to save data from a data table (or more precisely, from the DataObject
underlying the data table) to a SAS data set on the client:

1. Activate the data table by clicking on its title bar.

2. Select File » Save As File from the main menu. The dialog box in Figure 2.3
appears.

3. Navigate to the Windows directory in which you want to save the data set.
4. Type a valid Windows filename in the File name field.
5. Click Save.

Save Data As ﬂ E

Save jn: I_,’.' Data Sets j] ? 2 [

Clinical Trial Stage 1.sas7bdat
F=]Clinical Trial Stage 2. sas7hdat

L

Desktop

File name: IEIinicaI Resultz Stage 3 j Save

Save as type: ISAS WA Data Set [* sasvbdat” =d7) j Canicel /l
%

Figure 2.3. Saving to a Client Data Set

The recommended Windows directory in which to save your data is the personal files
directory shown in Table 2.1. If you have many data sets, you can organize the data

Chapter 2. Reading and Writing Data

by making subdirectories of this directory. Stat Studio provides easy navigation for
loading files in this directory. Furthermore, the section “Opening Client Data Sets”
on page 14 explains that this directory is automatically searched when you use a
program to create a DataObject from a data set.

Saving Data to a SAS Library

To use the GUI to save data from a data table (or more precisely, from the DataObject
underlying the data table) to a SAS data set in a library on the server:

1. Activate the data table by clicking on its title bar.

2. Select File » Save As Server Data Set from the main menu. The dialog box
in Figure 2.4 appears.

3. Click on a node to see the available libraries for a server. If SAS is running on
your PC, the server name is My SAS Server.

4. Click on the node for a library. Each Stat Studio workspace has its own private
WORK library, but other libraries (such as SASUSER) are shared across all
Stat Studio workspaces.

5. Type a valid SAS data set name in the Data set name field.
6. Click OK.

Save As Seryer Data Set | x|

ServersjLibrefs/Data Sets:
= g My SAS Server
&[0 MaPS
-] SASHELP Cancel |
[T SASUSER
b WWORK

Daka set name:

Cermo

Figure 2.4. Saving to a SAS Library

L

13

14 + Chapter 2. Reading and Writing Data

Using a Program to Read a SAS Data Set

As explained in Chapter 1, “Introduction,” the DataObject class stores an in-memory
version of data. You can query, retrieve, and manipulate the data by calling methods
in the DataObject class. All graphical and tabular views of those data are linked to-
gether through the common DataObject. Therefore, when you want to create a graph
of some data, or to look at the data in a table, you first need to create a DataObject.

A DataObject is typically created from a SAS data set. As explained in the intro-
duction to this chapter, a client data set is accessible through the Windows operating
environment, whereas a server data set resides in a SAS library.

In this section you write a program to create a DataObject from a SAS data set and
save data from a DataObject to a SAS data set. You can open a program window by
selecting File » New » Workspace from the main menu.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

1. Select File » Open » File from the main menu.

2. Click Go to Installation directory near the bottom of the dialog box.
3. Navigate to the Programs\Doc\STAT Guide folder.

4. Select the Data.sx file.

5. Click Open.

Opening Client Data Sets

To create a DataObject from a SAS data set on the client, you can use the
CreateFromFile method of the DataObject class. Type or copy the following state-
ments into a program window, and select Program » Run from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");
DataTable.Create(dobj);

The first statement declares dobj to be an IMLPlus variable that refers to a
DataObject. The second statement creates the DataObject and populates it with data
from the specified data set. (More information about methods in the DataObject class
is available in the Stat Studio online Help.)

If you omit the file extension from the argument to CreateFromFile (as in this exam-
ple), an extension of sas7bdat is assumed.

The last statement creates a DataTable, which displays the data in tabular form. The
data table might appear behind your program window, so move the program window
if necessary. While it is reassuring to see the data table and to know that your data set
was correctly opened, this last step is not necessary: the DataObject is created even
if you do not create a DataTable.

Chapter 2. Reading and Writing Data ¢ 15

Note: You can specify an absolute Windows pathname for the argument to the
CreateFromFile method. If, however, you specify a partial pathname as in the pre-
ceding example, then Stat Studio searches for the file relative to certain directories.
The Hurricanes data set is distributed with Stat Studio. The directory containing
Stat Studio sample data sets (C:\Program Files\SAS\Stat Studio\3.1\Data Sets) is,
by default, one of the directories automatically searched. See the Stat Studio online
Help for information about how to add or change directory search paths.

Opening Server Data Sets

If your data are stored in a SAS data library, such as work, sashelp, or sasuser, or
in a libref that you created using the LIBNAME statement, you can open the data by
using a similar method. The method’s name is CreateFromServerDataSet. It is valid
to have a LIBNAME statement in an IMLPlus program, so you can define your libref
in the same program in which you use the CreateFromServerDataSet method.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu.

declare DataObject dobjServer;
dobjServer = DataObject.CreateFromServerDataSet ("SASHELP.CLASS");
DataTable.Create(dobjServer);

Again, the data table might appear behind your program window, so move the pro-
gram window if necessary. It is not necessary to create a DataTable unless you want
to see a tabular view of the data.

If you already have a DataObject and you want to add variables from a server data set
to it, then use the CopyServerDataToDataObject module as discussed in the section
“Using IML Matrices to Store Data” on page 17 and Chapter 5, “Adding Variables to
the DataObject.”

Using a Program to Write a SAS Data Set

In the previous section you learned programming statements to read SAS data sets.
In this section you learn programming statements to write SAS data sets.
Saving Data to the Client

If you want to save data in a DataObject to a sas7bdat data set on your PC, use the
WriteToFile method.

Add the following statement at the bottom of the program window, and select

Program » Run from the main menu.

dobj.WriteToFile ("C:\MyHurricanes.sas7bdat");

You must append the sas7bdat file extension to the filename when you use the
WriteToFile method. If you omit the extension, you get an error message saying
that the file format is not supported.

16 ¢ Chapter 2. Reading and Writing Data

It is often convenient to save data to your personal files directory, as described in the
“Opening Client Data Sets” section on page 10. You can get the Windows path for
your personal files directory by using the GetPersonalFilesDirectory module. The
following statements save data to the Data Sets folder under your personal files di-
rectory:

run GetPersonalFilesDirectory(path);
fname = path + "Data Sets\MyHurricanes.sas7bdat"; /* concatenate strings */
dobj.WriteToFile(fname);

Saving Data to a SAS Library

If you want to save certain variables in a DataObject to a data set in a SAS library,
use the WriteVarsToServerDataSet method of the DataObject.

Add the following statement at the bottom of the program window, and select
Program » Run from the main menu.

dobj.WriteVarsToServerDataSet ({"Name" "latitude" "longitude"},
"work", "HurrLatLon", true);

The first argument to the WriteVarsToServerDataSet method specifies the name of
the variables in the DataObject that you want to write to the server. The next two
arguments specify the SAS library (“work”) and name of the data set (“HurrLatLon™)
to be written. The last argument is a Java boolean argument. If you specify true, then
observations that are marked “Exclude from Analysis” are not written to the server.
If you specify false, then all observations are written to the server.

Caution: Java is a case sensitive language, so the last argument to the
WriteVarsToServerDataSet method must be lowercase.

If you want to write all variables to a SAS data set on the server, you can use the
WriteToServerDataSet method. It is more efficient to write only the variables that are
relevant to your analysis. For example, if you intend to run a regression that relates
a single response variable to two explanatory variables, you should write only those
three variables to the server data set.

Viewing Data Sets in a SAS Library

There are two ways to verify that your data were written to a SAS library as you
intended. The first way is to use PROC PRINT or PROC CONTENTS to print in-
formation to the output window. Add the following statements at the bottom of the
program window, and select Program » Run from the main menu.

submit;

proc print data=HurrLatLon (obs=10);
run;

endsubmit;

Chapter 2. Reading and Writing Data ¢ 17

The SUBMIT and ENDSUBMIT statements are discussed in Chapter 4, “Calling
SAS Procedures.” Anything between these two statements is passed from IMLPlus to
SAS for processing. The result of these statements is to print the first 10 observations
of the work.HurrLatLon data set to the output window.

The second way to view a data set in a SAS library is to open the data set in Stat
Studio as explained in the section “Opening Server Data Sets” on page 11.

Using IML Matrices to Store Data

Although this book does not require previous knowledge of SAS/IML, experienced
users of IML might wonder how to transfer data between IML matrices and a
DataObject. For completeness, this issue is addressed in this section.

The SAS/IML language provides statements to read and write server data to and from
IML matrices. The USE statement opens a SAS data set, and the READ statement
reads server data into IML matrices. IML also has a CREATE statement that creates
a server data set and an APPEND statement that writes variables from IML matrices.
These statements are documented fully in the SAS/IML User’s Guide.

Creating a DataObject from IML Matrices

If you have data in IML matrices, you can create a DataObject from those matrices
by using the Create method of the DataObject. For example, type the following
statements into a Stat Studio program window, and select Program » Run from the

main menu.
xy = {0 4,
1 6,
217,
39,
4 10};

declare DataObject dobjMatrix;
dobjMatrix = DataObject.Create("Matrix", {"XVar" "¥YVar"}, xy);

The 5 x 2 matrix Xy is used to initialize the dobjMatrix DataObject. The result is a
DataObject with two variables (named XVar and YVar) and five observations.

Adding Variables to a DataObject

If the DataObject is already created, you can add a new variable to the DataObject
by using the AddVar method. For example, add the following statements to the Stat
Studio program from the previous section, and select Program » Run from the main
menu.

z = {_11 11 0/ OI 1};
dobjMatrix.AddVar("z", z);
DataTable.Create(dobjMatrix);

18 ¢ Chapter 2. Reading and Writing Data

The result is a DataObject with three variables (the new variable is z) and five ob-
servations. It is an error to try to add a new variable that has a different number of
observations than the DataObject.

There is also a DataObject method, called the AddVars method, that enables you to
add several variables in a single call.

Copying Variables to IML Matrices

You can copy data from the DataObject and into an IML matrix by using the
GetVarData method of the DataObject. For example, add the following statements
to the Stat Studio program from the previous section, and select Program » Run
from the main menu.

dobjMatrix.GetVarData("XVar", x);
print x;

The result is a 5 x 1 IML matrix X that contains the values of the XVar variable.
You can name the IML matrix anything you want. It can have the same name as the
variable in the DataObject (as the z variable and matrix did) or a completely different
name (as in this example). After the data are copied into a matrix, there is no linkage
between the DataObject and the IML matrix: changing elements of the matrix does
not affect the DataObject, and changing the DataObject does not affect the matrix.

The CopyServerDataToDataObject module uses this approach to read variables in a
server data set directly into a DataObject. This module is discussed in Chapter 35,
“Adding Variables to the DataObject.” Again, the number of observations in the
server data set must match the number of observations in the DataObject.

Summary of Reading and Writing Data

Tables 2.2-2.4 summarize reading and writing data in IMLPlus programs.

Table 2.2. Reading Data into a DataObject
Source Statement
Client data set DataObject.CreateFromFile
Server data set DataObject.CreateFromServerDataSet
run CopyServerDataToDataObject module
IML matrix DataObject.Create
DataObject.AddVar
DataObject.AddVars

Table 2.3. Copying Data from a DataObject
Destination Statement
Client data set DataObject.WriteToFile
Server data set DataObject. WriteToServerDataSet
DataObject. Write VarsToServerDataSet
IML matrix DataObject.GetVarData

Chapter 2. Reading and Writing Data ¢ 19

Table 2.4. Reading and Writing Server Data in IML
Action Statement
Read from server into IML USE, READ
Write server data set from IML CREATE, APPEND

Note: If you create a server data set by using the WriteToServerDataSet or
WriteVarsToServerDataSet method, you might want to delete the data set after you
are finished with it by calling the IML DELETE subroutine.

20

Chapter 3
Creating Dynamically Linked Graphics

Dynamically linked graphics are one of the primary tools of exploratory data analy-
sis. When you have multivariate data and want to understand relationships between
variables, creating dynamically linked graphics is often useful.

Chapter 2, “Reading and Writing Data,” demonstrated ways to open SAS data sets
stored on your PC or on a SAS server. In this chapter you create standard statistical
graphics to visualize your data and relationships between variables.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the Graphs.sx file.

Click Open.

A

Creating a Scatter Plot and Histogram

In this example, you write a program to create a scatter plot and a histogram from
variables in a DataObject. Type or copy the following statements into a program
window, and select Program » Run from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

declare ScatterPlot plot;
plot = ScatterPlot.Create(dobj, "min_pressure", "wind kts");

declare Histogram hist;
hist = Histogram.Create(dobj, "latitude");
hist.SetWindowPosition(50, 50, 50, 50);

The first set of statements create a DataObject and are explained in Chapter 2,
“Reading and Writing Data.” The next statements declare plot to be an IMLPlus
variable that refers to a ScatterPlot, which is the class that displays and manipu-
lates attributes of a scatter plot. The scatter plot in this example is created from the
min_pressure and wind_kts variables in the DataObject. The min_pressure vari-
able contains the minimum central pressure in hectopascals (1 hPa = 1 millibar), and
the wind_kts variable contains the maximum wind speed in knots for each observa-
tion of a tropical cyclone.

22 ¢ Chapter 3. Creating Dynamically Linked Graphics

The final set of statements declare hist to be a Histogram, which is the class that
displays and manipulates attributes of a histogram. The histogram is created from the
latitude variable. The latitude variable contains the latitude in degree (north of the
equator) at which the observation was made.

To avoid having the histogram appear on top of the scatter plot, the
SetWindowPosition method is called to move the histogram into the lower-
right corner of the Stat Studio workspace. The SetWindowPosition method is a
method in the DataView class. Any plot or data table can call methods in the
DataView class. (Formally, the DataView class is a base class for all plots and data
tables.) The DataView class is documented in the Stat Studio online Help.

Selecting Observations

You can now select observations in either graph and see how the latitude of Atlantic
cyclones is related to the wind speed and minimum pressure. You can select observa-
tions in a plot by clicking on observations or on bars. You can add to a set of selected
observations by holding the CTRL key and clicking. You can also select observations
by using a selection rectangle. To create a selection rectangle, click in a graph and
hold down the left mouse button while you move the mouse pointer to a new location.

In the scatter plot, use a selection rectangle to select all observations with wind speed
greater than or equal to 100 knots. The result is shown in Figure 3.1.

dobi;
CreateFronFile ("Hurricanes.sas7hdat") ;

/% create a seatter plot 7/
declare ScatterPlot plot:
plot = ScatterPlot.Create(dekj, "min pressure”, "wind kts" 1;

decl His ram T
hist = Histogram.Create(deobj, "latitude" |;
hist.SetiindowPosition(S0, 50, S0, 50);

00 925 950 o7s 1025

min_pressure

gilHistogran of Hurricanes (Graphs):2 M=k

400 |

Frequency

200

Graphs

Figure 3.1. Creating Graphics

Chapter 3. Creating Dynamically Linked Graphics ¢ 23

Note that these very intense storms tend to occur in southern latitudes, primarily
between 14 and 35 degrees of latitude.

In the histogram, use a selection rectangle to select all observations with latitude
greater than 41 degrees. The result is shown in Figure 3.2.

The National Hurricane Center classifies a cyclone as a hurricane if it has sustained
low-level winds of 64 knots or greater. Note that few of the storms that enter northern
latitudes are still strong enough to be classified as hurricanes. Northern storms tend
to have relatively low wind speeds.

tter Plot of Hurricanes (Graphs):1

declare Datadkisct dakiz
dobj = Datadbject.CreateFromFile ("Hurricanes.sas7bdac”) :

/% create a scaster plot +/ 150
declare SeatterPlot plot:
plot = ScacterPloc.Create(dobj, "min pressure”, "wind krs" | :

/* create a histogram */

declare Histogram hist;

hist = Histogram.Create(dobj, "latitude”): £z

hist.SecVindowPosition(50, 50, 50, S0): ='
H

T T T T T T
00 935 as0 976 1000 1025

min_pressure

[_DIx]

400

Frequency

200

latitude

Graphs

Ready. OEnor(s) [0 Warning(s;
d: () (s)

Figure 3.2. Storms in Relatively Northern Latitudes

Summary of Creating Graphics

In this chapter you learned how to use IMLPlus statements to create a scatter plot
and a histogram. Many other statistical graphics are available to you in Stat Studio.
Consult the Stat Studio online Help for documentation on all classes of statistical
graphics available in Stat Studio.

24

Chapter 4
Calling SAS Procedures

In previous chapters you learned how to open a data set and how to explore the data
by creating dynamically linked graphics. Qualitatively exploring your data might
lead you to formulate statistical models. SAS procedures such as those in Base SAS
and SAS/STAT can help you to quantitatively analyze your data.

This chapter shows you how to call SAS procedures from an IMLPlus program. The
program statements in this chapter are distributed with Stat Studio. To open the pro-
gram containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the Proc.sx file.

Click Open.

ook v

Creating a Data Set for the Procedure

Recall from Chapter 1, “Introduction,” that the DataObject, which coordinates all
of the dynamically linked graphics and tables, runs on the client and keeps its data
in memory on the client. SAS procedures, however, run on the SAS server and read
data from a SAS data set in a library. Therefore, to perform an analysis, you must get
data out of the DataObject and write the data to a SAS data set in a server library.

In Chapter 3, “Creating Dynamically Linked Graphics,” you created a scatter plot of
wind_kts versus min_pressure for the Hurricanes data. You might have noticed
that the scatter plot reveals a linear relationship between these two variables. In this
section you call the REG procedure to fit a linear least squares model.

Type or copy the following statements into a program window.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

dobj.WriteVarsToServerDataSet ({"wind kts" "min_ pressure"},
"work", "Hurr", true);

These statements create a DataObject from the Hurricanes data set on your PC
and write the wind_kts and min_pressure variables to a server data set called
work.Hurr. These statements are explained in Chapter 2, “Reading and Writing
Data.”

26 ¢ Chapter 4. Calling SAS Procedures

Note: If your data are already in a data library on the SAS server (for example,
SASUSER), then the previous statements are not necessary. You can just reference
the data set in the DATA= option of the procedure.

Calling a Procedure

Now that there is a SAS data set on the server containing variables of interest, you
can call any SAS procedure to analyze the data. In order to tell the IMLPlus language
that you want certain statements to be sent to SAS rather than interpreted as IMLPlus,
you must bracket your SAS statements with SUBMIT and ENDSUBMIT statements.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu.

submit;
proc reg data=Hurr CORR;
model wind _kts = min_pressure;
run;
endsubmit;

When you run the program, Stat Studio calls the REG procedure with the CORR
option. The CORR option prints out the correlation matrix for the variables in the
MODEL statement.

The REG procedure displays its tables in the Stat Studio output window as shown
in Figure 4.1. From the output you can see that the correlation between these two
variables is —0.9336. The R-square value is 0.8716 for the line of least squares given
approximately by wind_kts = 1333 — 1.291 X min_pressure.

Chapter 4. Calling SAS Procedures

¥ SAS Stat Stu utputl
Ele Ed Vew Program Graph Analysis Tools Window Help

- S970HE*mBo|E@A > Hen HEG

/% open client data set (on che BC) #/
declare Datalkisct dakiz
dobj = Datadbject.CreateFromFile ("Hurricanes.sas7bdac”) :

/% save certain varisbles to data set in 333 library (on the server) +/
dokj . WriteVarsTaServerbatadet | ("wind kts” "min_pressurs"),
"orkn, "Hure®, true):

Submit;
proe reg data=Hurc CORR;

model wind_Kts = win_pressure;
run;

endsubmit; B output1

Correlation

variahle Label min pressure wind kts
min_pressure Minimum Central Pressure (hPa) 1.0000 -0.9338
wind_kts Heximwe Wind Speed (kt) -0.9336 1.0000

The REG Procedure
Model: MODEL1
Dependent Variable: wind kts Maximum Wind Speed (kt)

Nurber of Chservations Read 6188
Murber of Chservations Used 6185
Murber of Chservations with Missing Values 3

Analysis of Variance

sum or Mean

Source oF Suares Square F Value Pr > F

Hadel 1 3512454 3512454 41980.1 <.0001

Error 6183 517329 83.66055

Corrected Total 6184 4029783

Root HSE 9.14711 R-Seuare 0.8716

Dependent Hean 51.17801 Ad3 R-Sg 0.6716

Coeff Var 17.87312

Parameter Estimates
Parameter Standard

variable Label DF Estimate Error t Value Pr > |t

Interceps Intercept 1 1333.35489 6.25895 213.03 <.0001

min pressure Minimum Central Pressure (hPa) 1 -1.29137 0.00630 -204.89 <.0001 _
Ready [DEror(s) [0 Warning(s)

Figure 4.1. Calling the REG Procedure

*

27

28

Chapter 5
Adding Variables to the DataObject

In previous chapters, you learned how to open a data set and how to call a SAS
procedure by using the SUBMIT and ENDSUBMIT statements. This chapter shows
you how to read observation-wise statistics from the output data set of a procedure,
and how to add these variables to the DataObject so that you can visualize the results.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the AddVar.sx file.

Click Open.

A

Type or copy the following statements into a program window.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

dobj.WriteVarsToServerDataSet ({"wind_kts" "min_pressure"},
"work", "Hurr", true);

These statements open the Hurricanes data set from your PC and write the wind_kts
and min_pressure variables to a server data set called work.Hurr. These statements
are explained in Chapter 2, “Reading and Writing Data.”

In the Chapter 4, “Calling SAS Procedures,” you called the REG procedure on the
work.Hurr data and viewed tables and statistics in the output window. This time,
you use the OUTPUT statement to create an output data set that includes the residual
values for the regression model.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu.

submit;
proc reg data=Hurr;
model wind_kts = min_pressure;
output out=RegOut R=Residual;
run;
endsubmit;

30 ¢ Chapter 5. Adding Variables to the DataObject

When you run the program, Stat Studio calls the REG procedure. The procedure cre-
ates an output data set named work.RegOut that contains all of the original variables
in work.Hurr, plus a new variable named Residual. This variable is created by the
R= option in the OUTPUT statement.

Now that an output variable is created, you can add it to the DataObject. You
can read variables in a server data set directly into a DataObject by using the
CopyServerDataToDataObject module. (Note that the number of observations in
work.RegOut matches the number of observations in the dobj DataObject.) After a
variable is in the DataObject, you can use that variable to create graphs that help to
visualize the analysis. In this case, you can create a plot of the residuals versus the
explanatory variable.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu.

ok = CopyServerDataToDataObject("work", "RegOut", dobj,
{"Residual”" }, /* name on server x/
{"Residual" }, /* name in DataObject =*/
{"Residuals" }, /* label in DataObject =*/
true /* if an existing variable has this name, replace it =*/

)i
declare ScatterPlot ResPlot;

ResPlot = ScatterPlot.Create(dobj, "min_pressure", "Residual");

The residual plot (Figure 5.1) shows many storms with large negative residuals. These
storms had much lower wind speeds (20—40 knots lower) than predicted from their
values of min_pressure.

il Scatter Plot of Hurricanes (Add¥ar) | _ O] x|

40

20+

Residual

-20

40

T T T T
400 9245 50 a7h 1000 1025
min_pressure

Figure 5.1. Creating a Residual Plot

Chapter 6
Adding Curves to Plots

In previous chapters you learned how to open a data set and how to call a SAS proce-
dure by using the SUBMIT and ENDSUBMIT statements. You learned how to read
output variable from the server into the DataObject. This chapter shows you how to
add lines and curves to a graph to visualize a model’s fit.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the Fit.sx file.

Click Open.

A

In Chapter 5, “Adding Variables to the DataObject,” you created a residual plot. In
this chapter you also create a scatter plot of the independent and dependent variables
that shows the model’s predicted values and the upper and lower 95% limits for in-
dividual predictions. The REG procedure outputs the predicted values with the P=
option in the MODEL statement, and the upper and lower prediction limits with the
LCL= and UCL= options.

Type or copy the following statements into a program window.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

dobj.WriteVarsToServerDataSet ({"wind_kts" "min_pressure"},
"work", "Hurr", true);

submit;
proc reg data=Hurr;
model wind _kts = min_pressure;
output out=RegOut P=Pred R=Residual LCL=LCL UCL=UCL;
run;
endsubmit;

ok = CopyServerDataToDataObject ("work", "RegOut", dobj,
{"Pred" "Residual" "LCL" "UCL"}, /* names on server x/
{"Pred" "Residual" "LCL" "UCL"}, /* names in DataObject =*/
{"Predicted" "Residuals" "Lower Conf. Limit" "Upper Conf. Limit"},
true);

32 + Chapter 6. Adding Curves to Plots

The first two sets of statements are explained in Chapter 2, “Reading and Writing
Data.” The next two sets of statements are similar to statements in the example from
Chapter 5, “Adding Variables to the DataObject.”

Whenever you want to add a line or curve to a plot, you need to specify the following:

e whether the curve will be drawn on top of observations or under them
e the coordinate system in which the curve will be drawn
e the color, line style, and line width of the curve

e the coordinates of the curve

These aspects are discussed in the Stat Studio online Help.

Drawing a Reference Line

You can create a residual plot of the residuals versus the explanatory variable as
before. However, this time you add a horizontal reference line to the plot to indicate
where residuals are zero.

By default, curves are drawn on top of observations, which is fine for this example.
The following statements draw a dashed black line at Residual = 0.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu.

declare ScatterPlot ResPlot;

ResPlot = ScatterPlot.Create(dobj, "min_pressure", "Residual");
ResPlot .DrawUseDataCoordinates () ;

ResPlot .DrawSetPenStyle(DASHED);

ResPlot .DrawLine(850, 0, 1150, O); /* from (850,0) to (1150,0) =/

The DrawUseDataCoordinates method is a method in the Plot class. The ScatterPlot
class can use all the methods in the Plot class. (Formally, the Plot class is a base class
for the ScatterPlot class.) The DrawUseDataCoordinates method specifies that the
coordinate system for the reference line is the same as the coordinate system for the
plot’s data.

If you do not specify otherwise, a curve in a plot is drawn as a solid black line with
a one-pixel width. The DrawSetPenStyle method specifies that you want to override
the default line style (SOLID) with a different style (DASHED).

The DrawLine method specifies the two endpoints of the line segment. In this exam-
ple, a line is drawn on the plot from (850,0) to (1150,0). The line extends across
the entire plot area since both endpoints are beyond the range of the min_pressure
variable. Figure 6.1 shows the resulting plot.

Chapter 6. Adding Curves to Plots ¢+ 33

il Scatter Plot of Hurricanes (Fit):1 M[=] E3

40+

20+

Residual

-204

~an4

T T T T T
go0 925 a0 475 1000 1025
min_pressure

Figure 6.1. A Plot with a Reference Line

Drawing a Curve from Variables in the
DataObject

Now you will create a scatter plot of wind_kts versus min_pressure. On this plot
you add the predicted values and the upper and lower confidence limits as computed
by the REG procedure. This fitted model is a straight line, which can be visualized by
specifying two points as you did for the residual plot. However, visualizing a more
general parametric model (for example, a quadratic model in min_pressure) or a
nonparametric model requires plotting a polyline, so this example adopts the general
approach.

A polyline is a sequence of connected line segments specified by passing two vectors
to the DrawLine method. The first vector specifies the X coordinates, and the second
specifies the Y coordinates. The polyline is drawn from (z1, y1) to (x2,y2) to (z3, y3)
and so on until (2, ¥y,).

To draw the polyline, you need an IML matrix containing the coordinates to be plot-
ted. You can use the GetVarData method of the DataObject class to get the data from
the DataObject. You also need to sort the data according to the X variable, which is
min_pressure for this example. (Alternatively, you can use the IML SORT call if
you do not want to change the order of observations in the DataObject.)

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu.

34 + Chapter 6. Adding Curves to Plots

declare ScatterPlot FitPlot;
FitPlot = ScatterPlot.Create(dobj, "min_pressure", "wind kts");
FitPlot.SetWindowPosition(50, 50, 50, 50);

dobj.Sort ("min_ pressure");
dobj.GetVarData("min_pressure", minPress);
dobj.GetVarData("Pred", pred);

FitPlot .DrawUseDataCoordinates();
FitPlot.DrawSetPenColor(BLUE);
FitPlot.DrawlLine(minPress, pred);

dobj.GetVarData("LCL", lower);
dobj.GetVarData("UCL", upper);
FitPlot.DrawSetPenColor(GRAY);
FitPlot .DrawlLine (minPress, lower);
FitPlot.DrawLine(minPress, upper);

The predicted line is drawn in blue, as specified by the DrawSetPenColor method of
the Plot class. The lower and upper limits of prediction are drawn in gray. All lines
are drawn on top of the observations and are drawn as solid lines with a width of one
pixel, since those default values were not changed. Figure 6.2 shows the resulting
plot.

%5 SAS Stat Studio - Fit.si

Fle Edit Vien Progam Groph Analysis Tools Window Help

O-levdHa8lmaw|E@lrmennEcG

declare ScatterPlot ResPlot; -
ResPlot = ScatterPlot.Create(dobj, "min_pressure”, "Residual”):
ResFlot.DrauliseDataCoordinates () ;
ResPlot.brawdecPendvyle | DASHED | 404
ResPlot.Drawline(850, 0, 1150, O)7 /7 £row (850,0) to (1150,0) */
/% creste scatter plot with line of lesst squares ©/
Geclare ScasterPlot FicPlon; o
FitPlot - ScatterPlot.Create(dobj, "win pressure”, "wind kts");
FitPlot.SetWindowPosition(S0, 50, SO, 50): _
]
/+ sort the data by min pressure before gecting +/ 2
dob3.Sort("min_pressue=") ; K
ob).GetVarData| "min_pressure”, minPress):
o3 .Getvarbata| "Pred”, pred); -20-]
FitPlot. brauliseDatacoordinates () ;
FitPlot.DrawdetPenColor | ELUE)/
FitPlot.Drauline(minPress, pred): o
doh3.GetVarbata| "LCL", lower };
dob3.GetVarData| "UCL", wpper); T T T T T T
FitPlot.DrawSecPenColor | GRET) : ano 115 as0 a7s 1000 1025
FitPlot.Drauline(minPress, lower): e e ar]
FitPlot.Dravline { minPress, upper): -
1 >[4
o ST e 07 e
Number of Observations with Nissing Values 3
Bnalysis of Variance
160
Sum of Mean -
Source bF Squares Square F Value Pr > F 125
nodel 1 3512459 3512954 41960.1 <.0001
Error 5183 517329 83.66955 e
Corrected Toral 5184 4029783 £
§ 75
Root MSE 9.14711 R-Square 0.8718
Dependent Tean 51.17801 Adi R-Sq 0.8716
Coeff Var 17.87312 el
25
Parameter Estimates
Parameter Standard T T T T T T
Variable Label DF Estimate Error 200 925 950 975 1000 1025
min_pressure
Intercept Intercept 1 1333.35489 5.25695
min pressure Ninimun Central Pressurs (hPal 1 -1.29137 0.00630
Fit
Ready Une47 [coll [0Eror(s) [0 warning(s)

Figure 6.2. A Fitted Model and Confidence Intervals

Notice that the preceding statements read variables from an output data set into a
DataObject. This is possible only if the output data set has the same number of ob-
servations as the DataObject. The advantage of reading variables into the DataObject

Chapter 6. Adding Curves to Plots ¢+ 35

is that you can open a data table to see the values of the added variables, and you can
use these variables in subsequent analyses. Furthermore, you can use the dynamically
linked graphics to identify observations in a plot that have certain characteristics, For
example, Figure 6.3 shows the observations that have large negative residuals for this
model.

355 545 Stat Studio - Hurricanes (Fit)

Ele Edit Vew Program Graph Analysic Took Window Help

ERERET T IR 1=

B Fit.ex =1 B[scatter piot of Hurricanes (Fity1 ME
declare ScatterPlot ReaPlot: -
ResPlot = SeatterPlot.Create(dobi, "min pressure”, "Residual”)/
ResPlot.DraviseDataCosrdinates () ;
ResFlot.DravsSetPenStyle(DASHED): 40
ResPlot.Dravline| 850, 0, 1150, 0); /7 from (850,0) to (1150,0) */
/% create seatter plot with line of least squares #/
declare SeatterPlot FitPlot: a
FitPlot = ScatterPlot.Create(dobi, "min_pressure”, "wind_kts”):
FitPlot.SetVindovPosition{ 50, 50, 50, S0) —
s
/% Sort the data by min pressure before gecting ¥/ =
Qob3y.Sort("win_pressure”): 3
dokj.GetVarDatal "min_pressure”, winPress |;
dch3.GetvarData("Predr, pred): -204
FitFlot.DraviseDataCoordinates () : . -
FitPlot.DravsetPenColor{ BLUE |; - . {f_
FitPlot.Dravline | minPress, pred |; @ - T
-4 .
.
dob).GetVarData("LCL", lower): .t
dobj.GetVarDatal "UCLY, upper): T T T T T T
FitPlot.DravistPenColor{ GRAY): £y L g e 0T s
FitPlot.Dravline| minPress, lower); min_pressure
FitFlot.Draviine | minFress, upper):
LT 2z
By Output1 i Scatter Plot of Hurricanes (Fit):2 _[ofx]
Number of Observations with Hissing Values 3
Bnalysis of Variance
150
Sum of Mean
Source bF Squares Square F Value Pr > F 125
Hodel 1 3512454 3512459 41880.1 <.0001
Error 6183 517329 83.66955 1004
£ s
Roat MSE 9.14711 R-Square 0.8716
Dependent Mean 51.17801 a3 R-Sg 0.8716
Coetf Var 17.87312 a4
254
Parameter Estimates
Parameter sStandard T T T T T T
Variable Label DF Estimate Error £ 2 Sl EE 0T i
min_pressure
Intercept Intercept 1 1333.35489 6.25895
min_pressure Minimun Central Pressure (hPa) 1 -1.29137 0.00630
Fit
Ready [0Eror(s) [0 Warning(s)

Figure 6.3. Observations with Large Negative Residuals

Drawing a Curve from Variables in a Data Set

Sometimes the output of a procedure contains a different number of observations
than your data contain. This eliminates the possibility of reading the output into the
DataObject containing the original data.

For example, you can use the SCORE procedure to evaluate a linear model on a sep-
arate set of values of the explanatory variables. Or you can use the SCORE statement
of the LOESS, GAM, or TPSPLINE procedure to evaluate a nonparametric model. In
each of these cases, you can read variables from the output data set by using the IML
USE and READ statements, and then use the DrawLine method to add the relevant
curve to a plot.

As an example of this approach, suppose you want to add a kernel density estimate
to a histogram of the min_pressure variable. You can do this by calling the KDE
procedure. Add the following statements at the bottom of the program window, and
select Program » Run from the main menu.

36 ¢ Chapter 6. Adding Curves to Plots

submit;
proc kde data=Hurr;

univar min_pressure / out=KDEOut;
run;
endsubmit;

The KDE procedure creates the data set work.KDEout on the SAS server containing
401 observations. The data set contains a variable Value consisting of evenly spaced
points between the minimum and maximum values of min_pressure. A variable
named Density contains the kernel density estimate evaluated at the points of Value.

Note: You do not need to use the SORT procedure to sort this data set by Value,
because it was created in sorted order. However, for unsorted data, you need to sort
by the independent variable.

A straightforward approach is to create a histogram and add the kernel density esti-
mate by reading in the work.KDEout data set. Add the following statements at the
bottom of the program window, and select Program » Run from the main menu.

use KDEOut;

read all var {value density};
close KDEOut;

declare Histogram hist;
hist = Histogram.Create(dobj, "min_pressure");

hist.ShowDensity(); /* show density instead of frequency =*/
hist.DrawUseDataCoordinates();

hist.DrawLine(value, density);

Figure 6.4 displays the resulting histogram and the overlaid kernel density estimate.

il Histogram of Hurricanes (Fit):3 [_ (O] x|
0.05
0.04+
0.03+
2
@
@
=
0.02+
0.014
e s e e s s s e s A e e e e s L
L e o e e Y e e Y = N e e ¥ o Y e ¥ e | [R e)
[e e L B S L L N B s S Y o i O s o S o e o e A I |
I = e g o e e = R R e =
min_pressure

Figure 6.4. A Histogram Overlaid with a Kernel Density Estimate

Chapter 7
Reading ODS Tables

In Chapter 6, “Adding Curves to Plots,” you generated output data sets by using SAS
procedures and learned how to read variables from the server into the DataObject and
into IML matrices. This chapter shows you how to read information from tables into
an IMLPlus program.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the ODS.sx file.

Click Open.

A

The key to this chapter is knowing how to create SAS data sets directly from output
tables by using the Output Delivery System (ODS). When you run a SAS procedure,
the procedure typically creates one or more tables. By default, ODS sends the tables
to the SAS listing, which in Stat Studio is called the output windows. But you can
also tell ODS to send a table to a SAS data set. By subsequently reading the data set,
you can read statistics from tables into your IMLPlus programs.

Suppose you perform a linear regression analysis with the REG procedure, and you
want to read certain statistics into IML matrices. You might want to use the statistics
in future computations, or you might want to use them in a title or legend for a plot.

To be specific, suppose you want to read the following statistics into your IMLPlus
program: the number of observations used in the regression, the R-square value of
the fitted model, and the slope and intercept of the least squares line.

Your first task is to determine the name of the ODS tables that contain the information
you need. The “Details” section of the documentation for PROC REG includes a
section on the names of ODS tables. You can also have ODS display the names by
including the ODS TRACE ON statement before running your PROC REG statement.

This approach is illustrated in the following program. Type or copy the following
statements into the program window, and select Program » Run from the main
menu.

38 ¢ Chapter 7. Reading ODS Tables

declare DataObject dobj;

dobj = DataObject.CreateFromFile ("Hurricanes");

dobj.WriteVarsToServerDataSet ({"wind kts"

"work", "Hurr", true);

submit;
ods trace on / listing;
proc reg data=Hurr;
model wind kts = min_pressure;

"min_pressure"},

run;
ods trace off;
endsubmit;

B Dutputs =] E3
COutput Added: E]
Name : Fit3tatistics
Label: Fit Statistics
Tenplate: Stat.REG.Fit3tatistics
Path: Reg.MCDEL1.Fit.wind kts.Fit3catistics
Root MSE 9.14711 R-3gquare 0.5716
Dependent Mean E1.17801 Adj B-3g 0.8716
Coeff Var 17.87312
cutput Added:

Name : ParameterEstimates
Label: Parameter Estimates
Tenp late: Stat.REG.ParameterEstimates
Fath: Reg.MCDEL1.Fit.wind kts.ParsmeterEstimates
Parameter Estimates
Parameter Standard
¥ariable Label DF Estimate Error t Value Pr > |t]
Intercept Intercept 1 1333 .35489 6.25895 213.03 <.0001
min_pressure MNinimum Central Pressure (hPa) 1 -1.29137 0.00630 -204.89 <.0001
-

Figure 7.1. Printing ODS Tables Names

The output is shown in Figure 7.1. The LISTING option in the ODS TRACE ON
statement tells ODS to send the names of tables to the output window rather than
to the SAS log. By scrolling through the output, you can see that the number of
observations used in the regression is part of the NObs table. The R square value
of the fitted model is contained in the FitStatistics table. The slope and intercept of
the least squares line are contained in the ParameterEstimates table. The following
example uses the ODS OUTPUT statement to write these tables to data sets in work.

Replace the SUBMIT/ENDSUBMIT block of statements in the program window
with the following revised statements. Then select Program » Run from the main

menu.

Chapter 7. Reading ODS Tables ¢ 39

submit;
proc reg data=Hurr;
model wind kts = min_pressure;
ods output NObs = RegNObs
FitStatistics = RegFitStat
ParameterEstimates = RegParamEst;
run;
endsubmit;

These statements cause the REG procedure to create three new data sets in the work
library. You can examine each data set by opening it from the server into a data table
as follows:

1. Select File » Open » Server Data Set from the main menu. The dialog box
in Figure 7.2 appears.

Expand the entry for your current SAS server.
Expand the entry for the work directory.
Click on the REGNOBS data set.

Click OK.

Repeat the previous steps to open the REGFITSTAT and REGPARAMEST
data sets.

SANES AR

Open Server Data Set

Servers|Librefs/Data Sets:

= ﬁ My 585 Server
-] MaPS
-] SASHELP
-] SASUSER
155 WORK
7 HURR
-E5] REGFITSTAT
-E2] REGNOES
------ 2] REGPARAMEST

Diaka sek name:
| REGNCES

¥ attach to active workspace

Figure 7.2. Opening a Server Data Set

You might notice that some data sets look different from the corresponding tables that
are displayed in the output window. Some tables have nonprinting columns that are
not visible in the output window but are written to the data set.

By opening each data set in turn, you can determine the name of the variable con-
taining the information that you want to read into IML. The number of observations
used in the regression is contained in the N variable in the REGNOBS data set.

40 ¢ Chapter 7. Reading ODS Tables

The R-square value of the fitted model is contained in the NVALUEZ2 variable in the
REGFITSTAT data set. The slope and intercept of the least squares line are contained
in the Estimate variable of the REGPARAMEST data set.

The SAS/IML language provides statements to read and write server data to and from
IML matrices. The USE statement opens a SAS data set, and the READ statement
reads server data into IML matrices. Add the following statements at the bottom of
the program window, and select Program » Run from the main menu.

use RegNObs;
read all var ({N};
close RegNObs;

use RegFitStat;
read all var {Label2 NValue2}; /* name of statistic and value */
close RegFitStat;

use RegParamEst;
read all var {Variable Estimate}; /* var name and coefficient =*/
close RegParamEst;

print " ",

print N[rowname={"Num Read", "Num Used", "Num Missing"} 1,
NValue2[rowname=Label2],
Estimate[rowname=Variable];

The output is shown in Figure 7.3. Statistics from the REG tables are now contained
in IML matrices. You can use these matrices in computations or, as the next chapter
shows, in a title or legend for a plot.

Note: You can often read in the names of statistics from the ODS data set, as the
Label2 and Variable matrices in the preceding example demonstrate.

B output1 =]

H
Mum Read 6153
Ium Used 8135
Num Missing 3
Hv¥alue2

F-Sguare 0.87162Z36
Adj RB-3g 0.871602°9
a

Estimate

Intercept 15335.55489
min pressure -1.291374

| -

1] | v

Figure 7.3. Creating Matrices from ODS Tables

Chapter 8
Adding Titles, Legends, and Insets

In Chapter 7, “Reading ODS Tables,” you learned how to write ODS tables to SAS
data sets and then how to read variables from the data sets into IML matrices. This
chapter shows you how to create titles, legends, and insets on plots. (An inset is a box
drawn on the plot containing statistics.) In particular, you learn how to incorporate
the information from ODS tables into titles, legends, and insets.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the Titles.sx file.

Click Open.

A

Suppose you perform a linear regression with PROC REG, and you create a scatter
plot showing the fitted model and 95% confidence intervals for individual predictions
as shown in Figure 8.1. You learned how to do this in Chapter 6, “Adding Curves to
Plots.”

il Scatter Plot of Hurricanes (Titles) H[=] E3

140+

125+

=
=
1

wind_kts

m -1
= o
I 1

]
o
1

min_pressure

Figure 8.1. A Fitted Model and Confidence Intervals

Suppose further that you want the plot to include the following information about the
linear regression:

42 + Chapter 8. Adding Titles, Legends, and Insets

o a title that shows the fitted model
e alegend that explains the different colors of lines in the plot

e an inset that shows the number of observations used in the regression and the
R-square value of the fitted model

In Chapter 7, “Reading ODS Tables,” you learned how to get all of the needed
information out of the ODS tables output by using PROC REG. The program that
follows combines ideas from previous chapters. Copy the following statements into
a program window, and select Program » Run from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

dobj.WriteVarsToServerDataSet ({"wind kts" "min pressure'"},
"work", "Hurr", true);

submit;
proc reg data=hurr;
model wind kts = min_pressure;
output out=RegOut P=Pred LCL=LCL UCL=UCL;
ods output NObs = RegNObs
FitStatistics = RegFitStat
ParameterEstimates = RegParamEst;
run;
endsubmit;

ok = CopyServerDataToDataObject("work", "RegOut", dobj,
{"Pred" "LCL" "UCL"}, /* names on server x/
{"Pred" "LCL" "UCL"}, /* names in DataObject =*/
{"Predicted" "Lower Conf. Limit" "Upper Conf. Limit"},
true);

declare ScatterPlot FitPlot;
FitPlot = ScatterPlot.Create(dobj, "min_ pressure", "wind kts");

dobj.Sort("min_pressure");
dobj.GetVarData("min_ pressure", minPress);
dobj.GetVarData("Pred", pred);
FitPlot.DrawUseDataCoordinates();
FitPlot.DrawSetPenColor(BLUE);
FitPlot.DrawLine(minPress, pred);

dobj.GetVarData("LCL", lower);
dobj.GetVarData("UCL", upper);
FitPlot.DrawSetPenColor(GRAY);
FitPlot .DrawlLine(minPress, lower);
FitPlot.DrawLine(minPress, upper);

use RegNObs; read all var {N}; close RegNObs;
use RegFitStat; read all var {NValue2}; close RegFitStat;
use RegParamEst; read all var {Estimate}; close RegParamEst;

print " ";

print N[rowname={"Num Read", "Num Used", "Num Missing"}],
NValue2[rowname={"R-Square","Adj R-sq"," "} 1,
Estimate[rowname={"Intercept", "min_pressure"}];

Chapter 8. Adding Titles, Legends, and Insets + 43

You can add a title to a plot by calling the SetTitleText and ShowTitle methods of
the Plot class. However, in this case you first need to convert the values stored in the
Estimate matrix from numerical to character values. One way to do this is to apply
a w.d format by using the Base function PUTN. You can then concatenate pieces of
the title together using the IML CONCAT function, and display the result.

The statements that follow build the title intelligently. Let by be the intercept and b;
be the slope of the regression line. The regression line for this example has negative
slope (b1 < 0). If you built the title as

title = concat("wind kts = ", b0, " + ", bl, " * min_pressure");
then the title string might appear as

wind kts = 1333.35 + -1.29 *x min_pressure

While this is correct, it is awkward to read. A more aesthetic title would be
wind kts = 1333.35 - 1.29 x min_pressure

This can be accomplished by treating the case of negative slope separately from the
case of positive slope.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu. Figure 8.2 shows how the title appears.

b0 = putn(Estimate[1l], "7.2");

if Estimate[2]<0 then do; /* if slope is negative */
sign =" - "; /* display b0 - (-bl) */
bl = putn(-Estimate[2], "4.2");
end;

else do; /* else display b0 + bl */
sign = " + ";
bl = putn(Estimate[2], "4.2");
end;

title = concat ("wind kts = ", b0, sign, bl, " * min_ pressure");

FitPlot.SetTitleText (title);
FitPlot.ShowTitle();

Adding a legend is usually accomplished by using the DrawLegend module that is
distributed with Stat Studio. The module is documented in the Stat Studio online
Help. The statements that follow show one choice for displaying a legend. Add these
at the bottom of the program window, and select Program » Run from the main
menu. Figure 8.2 shows how the legend appears.

44 + Chapter 8. Adding Titles, Legends, and Insets

Labels = {"Least-Squares Fit" "95% Prediction Limits"};

LabelSize = 8; /* 8 point font */
LineColor = BLUE || GRAY; /% form 1x2 matrix */
LineStyle = SOLID; /* all lines are solid */
Symbol = -1; /* no symbols *x/
BackgroundColor = WHITE;

Location = 'ILB’; /* Inside, Left, Bottom %/

run DrawLegend(FitPlot, Labels, LabelSize,
LineColor, LineStyle, Symbol,
BackgroundColor, Location);

Note the use of the IML concatenation operator Il. This operator takes the two prede-
fined integers BLUE and GRAY and concatenates them into a 1 x 2 matrix.

Caution: Trying to form the matrix by using the statement

LineColor = {BLUE GRAY}; /* wrong! */

does not work because IML interprets that statement as forming a character matrix
with values “BLUE” and “GRAY.” Similarly, as the next statement illustrates, you
must use the concatenation operator when creating a matrix from submatrices. You
cannot write

Values = {N[2] NValue2[1l]}; /* wrong! x/

You can add an inset by using the DrawInset module that is distributed with Stat
Studio. The module is documented in the Stat Studio online Help. The code that
follows shows one choice for creating an inset. Add the following statements at the
bottom of the program window, and select Program » Run from the main menu.
Figure 8.2 shows how the inset appears.

Labels = {"Num Obs" "R-Square'"};

Values = N[2] || NValue2[l];

LabelProps = .; /* accept default settings for labels =*/
LabelTypeface = "Arial"; /* font */

BackgroundColor = -1; /* no color (transparent) =*/

Location = 'IRT'; /* Inside, Right, Top */

run DrawInset (FitPlot, Labels, Values,
LabelProps, LabelTypeface,
BackgroundColor, Location);

Chapter 8. Adding Titles, Legends, and Insets + 45

il Scatter Plot of Hurricanes (Titles) =] E3

wind_kts = 1333.35 - 1.29 * min_pressure

Mum Ohs 6183
150 R-Souare 0871624
125
100
£
!
§ 754
504
iy [Least-Squares Fit
—— 95% Prediction Limits
T T T T T T
800 925 950 975 1000 1025

min_pressure

Figure 8.2. Plot with Title, Legend, and Inset

46

Chapter 9
Adjusting Axes and Ticks

In Chapter 3, “Creating Dynamically Linked Graphics,” you created standard sta-
tistical graphics. In this chapter, you learn how to adjust the range and location of
tick marks on axes. You also learn how to change the label for an axis. You cannot
adjust the tick locations for nominal variables (for example, the horizontal axis on a
bar chart), but you can change the axis label.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the Axes.sx file.

Click Open.

ok w D

First, open the Hurricanes data set and create a scatter plot. Type or copy the follow-
ing statements into the program window, and select Program » Run from the main
menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

declare ScatterPlot plot;
plot = ScatterPlot.Create(dobj, "min_pressure", "wind kts");

The plot in Figure 9.1 appears. Stat Studio tries to make appropriate choices for the
location of ticks and for the minimum and maximum of the axis view range. However,
sometimes you might want to change characteristics of the axes.

48 ¢+ Chapter 9. Adjusting Axes and Ticks

il Scatter Plot of Hurricanes (Axes) [_ (O] x|

140

125

o
=
1

wind_kts

o
T 7

w
b

T T T T
elulu] 925 950 475 1000 1025
min_pressure

Figure 9.1. Default Axes

There are several methods in the Plot class that can be used to change the way that
axes are displayed. These methods all begin with the prefix SetAxis. For example:

e The SetAxisLabel method changes the axis label.
o The SetAxisTickUnit method changes the increment between tick marks.

o The SetAxisTickAnchor method shifts the location of tick marks along an axis.
(The argument to SetTickAnchor must be a number between the minimum and
maximum values of the axis tick range.)

e The SetAxisMinorTicks method adds minor tick marks (that is, unlabeled tick
marks between major ticks).

These and other methods that affect axes are documented in the Stat Studio online
Help.

Suppose you want to change the horizontal axis in the following ways:

e Label the axis with the variable’s label instead of the variable’s name.

e Change the size of the increment between successive ticks from 25 to 20 so
that the ticks marks are located at 900, 920, . . ., 1020.

o Add one minor tick mark between each major tick.

To make these changes, add the following statements at the bottom of the program
window, and select Program » Run from the main menu. Figure 9.2 shows the new
label, minor ticks, and tick placement for the horizontal axis.

plot.SetAxisLabel (XAXIS, AXISLABEL_ VARLABEL);
plot.SetAxisTickUnit (XAXIS, 20);
plot.SetAxisTickAnchor (XAXIS, 900);
plot.SetAxisMinorTicks (XAXIS, 1);

Chapter 9. Adjusting Axes and Ticks

il Scatter Plot of Hurricanes (Axes) M[=] E3

160+

125+

=
=
1

wind_kts

wm =~
= o
1 1

=]
2
1

T T T T T T T T T T T T
go0 G20 940 YE0 480 1000
Minimum Central Pressure (hPa)

T
1020

Figure 9.2. New Horizontal Axis

By default, the axis view range is determined by the minimum and maximum values
of the axis variable. (More precisely, it is determined by the minimum and maximum
values that are included in the plots.) At times you might want to override that default.
A common reason for doing this is to include a reference value (for example, zero) in
the plot, even though there are no observations with that value.

As an example of changing the axis view range, suppose you want the vertical axis
(the wind_kts axis) to show zero wind speed as in Figure 9.3. To change the ticks on
the horizontal axis, add the following statement at the bottom of the program window,
and select Program » Run from the main menu.

plot.SetAxisViewRange (YAXIS, 0, 160);

L

49

50 ¢ Chapter 9. Adjusting Axes and Ticks

il Scatter Plot of Hurricanes (Axes) [_ (O] x|

140+

125+

100+

~
T

wind_kts
@
=
1

s
o
1

o
1

T T T T T T T T T T
elulu] 920 940 960 Q80 1000 1020
Minimum Central Pressure (hPa)

Figure 9.3. \Vertical Axis Range That Includes Zero

Up to this point, this example has shown you how to contruct uniformly spaced tick
marks at locations of your choosing. You can also draw tick marks that are not uni-
formly spaced using the SetAxisTicks method of the Plot class. This method can also
be used to display labels for ticks that are different from the numerical values of the
ticks. For example, you might decide that you want the tick marks on the vertical axis
to show the categories of the Saffir-Simpson intensity scale (Table 9.1).

Table 9.1. The Saffir-Simpson Intensity Scale

Category Wind Speed (knots)
Tropical Depression (TD) 22-34
Tropical Storm (TS) 34-64

Category 1 Hurricane (Catl) 64-83
Category 2 Hurricane (Cat2) 83 -96
Category 3 Hurricane (Cat3) 96-114
Category 4 Hurricane (Cat4) 114 -135
Category 5 Hurricane (Cat5) greater than 135

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu. Figure 9.4 shows the tick locations and labels
for the vertical axis.

plot.SetAxisLabel (YAXIS, "Intensity");

StormTicks = {22 34 64 83 96 114 135};

StormLabels = {/TD’ ’'TS’ ’'Catl’ ’'Cat2’ ’Cat3’ ’'Cat4’ ’'Cat5’};
plot.SetAxisTicks(YAXIS, StormTicks, StormlLabels);
plot.ShowAxisReferencelines (YAXIS);

Chapter 9. Adjusting Axes and Ticks + 51

il Scatter Plot of Hurricanes (Axes) M[=] E3

Catd

Catd

Catd
Catz

Intensity

Catl

TS
e

T T T T T T T T T T T T
go0 G20 940 YE0 480 1000
Minimum Central Pressure (hPa)

T
1020

Figure 9.4. \Vertical Axis with Custom Ticks

Adjusting Tick Marks for Histograms

For a histogram, the location of tick marks determines the bins used to visualize
the frequency distribution. Therefore the Histogram class has some special rules for
specifying tick marks.

Create a histogram by adding the following statements at the bottom of the program
window, and select Program » Run from the main menu.

declare Histogram hist;
hist = Histogram.Create(dobj, "latitude");
hist.SetWindowPosition(50, 50, 50, 50);

52 ¢ Chapter 9. Adjusting Axes and Ticks

il Histogram of Hurricanes (Axes)

B00
400+ 1 1
z
&
2
w
200+
DII — T T T 1T T T T 1T 1 T T"T
WL WL oW Lo WL wouwl uw w o W) u uw uwl uwn wnouwn uw
W o o— 0700 — 07w 00— M7 @D o~ 70 D =)W 00— W0 00—
Rl o B o Bt B I . R v B o - S o ST o T ¥ oA Vo o B/ A T R i R ' B
latitude

Figure 9.5. Histogram with Default Bins

These statements create a histogram from the latitude variable as shown in Figure
9.5. To avoid having the histogram appear on top of the scatter plot, the

SetWindowPosition method is called to move the histogram into the lower-right cor-
ner of the Stat Studio workspace.

For a histogram, the major tick unit is also the width of each histogram bin. The
tick marks for this histogram are anchored at 6.25 and have a tick unit of 2.5. The
following steps show you how to change the location of the histogram ticks so that

the bins show the frequency of observations in the intervals 5-10, 10-15, 15-20, and
o on.

1. Right-click on the horizontal axis of the histogram. A pop-up menu appears as
in Figure 9.6.

Axis Properties

Selection Mode. .. k

IEl Select Tool

+ Pan Tool
Cl, Zoom Tool

Bg Bin Tool

Reset Yiew

Insert Annotation

Delete Annokation

o Show ¥ Axis
+ Show ¥ Axis

Figure 9.6. Plot Area Pop-up Menu

Chapter 9. Adjusting Axes and Ticks ¢

2. Select Axis Properties from the pop-up menu. The Axis Properties dialog box
appears as in Figure 9.7. Note that this is a quick way to determine the anchor
location, tick unit, and tick range for an axis.

3. Change the value in the Major tick unit field to 5.

4. Change the value in the Anchor tick field to 10.

5. Click OK.

Axis Properties

Scales |Fort | tine |

 Tick positions

IMajor tick unit: I 5
Anchar kick: I 10

Murnber of minor ticks: I i} 3:

Wisible axis range

Mazimum: I 71.25

Minimurn: | 6.25
Tick range
Minimurn: | 6,25 Maximum: I 71.25

Reset |

Cancel |

Apply

Figure 9.7. Specifying Histogram Bins

The histogram updates to reflect the new histogram bin locations (Figure 9.8).
Note that the visible axis range and the tick range (both shown in Figure 9.7)
are automatically widened, if necessary, so that all histogram bins are visible.

ﬁ"‘lHistngram of Hurricanes (Axes)

[_ O[]

1000

Tal+

G004

Frequency

2450+

5 10 14 20 25 30 55 40
latitude

45 50 55 6O 65 FO0 74

Figure 9.8. Histogram with Customized Bins

53

54 + Chapter 9. Adjusting Axes and Ticks

You can also change the location and width of histogram bins by using program
statements. For example, the Histogram class has a special ReBin method that you
can often use to change the anchor tick and the major tick unit in a single method
call. However, in the current example, you do not get tick marks at 0 or at 75 if you
use only the statement

hist.ReBin(10, 5);

This is because no tick mark can be outside the interval specified by the Tick Range
values in Figure 9.7, and the tick range for this example is [6.25, 71.25]. You can
adjust the axis tick range by using the SetAxisTickRange method of the Plot class :

hist.SetAxisTickRange(XAXIS, 0, 75);
hist.ReBin(10, 5);

Another solution is to use the SetAxisNumericTicks method of the Plot class to
change the bin locations of a histogram. This method requires that you specify the
tick anchor, unit, and range, all in the same call.

hist.SetAxisNumericTicks (XAXIS, 10, 5, 0, 75);

Chapter 10
Changing the Color and Shape of
Observation Markers

In Chapter 3, “Creating Dynamically Linked Graphics,” you created standard statis-
tical graphics. In this chapter you learn how to change the appearance of observation
markers. You can change the color and shape of markers. For each plot, you can also
choose the size of markers, and whether a marker is displayed all the time or only
when it is selected.

The program statements in this chapter are distributed with Stat Studio. To open the
program containing the statements:

Select File » Open » File from the main menu.

Click Go to Installation directory near the bottom of the dialog box.
Navigate to the Programs\Doc\STAT Guide folder.

Select the Markers.sx file.

Click Open.

A

Using Interval Variable Values to Color Markers

You might find it useful to color observation markers by using the value of an interval
(that is, continuous) variable. This enables you to examine values of the coloration
variable, even if that variable is not being plotted.

Suppose you are looking at a scatter plot of the min_pressure and wind_kts vari-
ables in the Hurricanes data set. You want to color-code observations by using the
value of a third variable, latitude. You want to assign red to the most southerly obser-
vation, blue to the most northerly, and other colors to observations with intermediate
values.

To accomplish this, you can call the ColorCodeObs module, which is distributed with
Stat Studio. The module colors observations according to values of a single variable
by using a user-defined color blend. Type or copy the following statements into the
program window, and select Program » Run from the main menu.

56 ¢ Chapter 10. Changing the Color and Shape of Observation Markers

declare DataObject dobj;
dobj = DataObject.CreateFromFile ("Hurricanes");

declare ScatterPlot plot;
plot = ScatterPlot.Create(dobj, "min_pressure", "wind kts");

ColorMap = RED//YELLOW//CYAN//BLUE;
NumColors = 13;
run ColorCodeObs(dobj, "latitude", ColorMap, NumColors);

declare Histogram hist;

hist = Histogram.Create(dobj, "latitude");
hist.SetWindowPosition(50, 50, 50, 50);
hist.SetAxisNumericTicks (XAXIS, 10, 5, 0, 75);

The first and last statements create a scatter plot and histogram as described in
Chapter 3, “Creating Dynamically Linked Graphics.” They also adjust the histogram
bins as described in Chapter 9, “Adjusting Axes and Ticks.” The resulting scatter
plot is shown in Figure 10.1.

il Scatter Plot of Hurricanes (Markers):1 [_ (O] x|

140

125 p—— -

o
=
1

wind_kts
1

754 e
504 B e ——

254

T T T T
elulu] 925 950 475 1000 1025
min_pressure

Figure 10.1. Markers Colored by an Interval Variable

The new statements in this program are those that color markers by using the latitude
variable. This is done with the ColorCodeObs module. In this example, the latitude
variable is used to color observations. The smallest value of the latitude variable
(7.2) is assigned to the first color (red) in the ColorMap matrix. The largest value
of the latitude variable (70.7) is assigned to the last color (blue) in the ColorMap
matrix. The remaining values are assigned to one of 13 colors obtained by linearly
blending the four colors defined in the ColorMap matrix. Observations are colored
yellow if they are near 28.4 degrees (28.4 ~ 7.2 4 %(70.7 — 7.2)). Observations are
colored cyan if they are near 49.5 degrees (49.5 ~ 7.2 + %(70.7 —7.2)).

Note: Observations with missing values for the requested variable are not colored.
The latitude variable used in this example does not contain any missing values.

Chapter 10. Changing the Color and Shape of Observation Markers ¢ 57

To confirm that the observations were color-coded according to values of latitude,
follow these steps:

1. Click on the histogram bars for low values of latitude.

Note that the observations are mainly colored red and orange. Orange appears
because the red and yellow colors in the ColorMap matrix were blended.

2. Click on the histogram bars for high values of latitude.

High values of latitude are colored in shades of blue. Each shade is a blend of
cyan and blue.

3. Click on the histogram bars for medium values of latitude.

Medium values of latitude are colored in shades of yellows and greens.

You can use the predefined colors available in Stat Studio, or you can create your own
colors by specifying their RGB or hexadecimal values as described in the Stat Studio
online Help. Table 10.1 lists the predefined colors in Stat Studio. Each color (written
in all capitals) is an IMLPlus keyword.

Table 10.1. Predefined Colors
BLACK CHARCOAL GRAY, GREY WHITE

RED MAROON SALMON ROSE
MAGENTA PURPLE LILAC PINK
BLUE STEEL VIOLET CYAN
GREEN OLIVE LIME

YELLOW ORANGE GOLD

BROWN TAN CREAM

Using Nominal Variable Values to Color
Markers

You might also find it useful to color observation markers according to the value of
a nominal (that is, discrete) variable. This enables you to visually identify specific
categories of the coloration variable, provided that the variable has a small number of
categories.

You can use the ColorCodeObsByGroups module to color observation markers
according to the value of a nominal variable. One of the arguments to the
ColorCodeObsByGroups module is a vector of colors (a color map) that has the same
number of colors as the number of unique categories in the nominal coloration vari-
able.

If the coloration variable is a character variable, then color coding corresponds to an
alphabetical ordering of the values of the variable. The first color corresponds to the
first sorted value; the last color corresponds to the last sorted value. If the coloration
variable is a numeric nominal variable, then color coding corresponds to a numeric
ordering of the values of the variable. Missing values appear first in the sorted order
for all variables.

58 ¢ Chapter 10. Changing the Color and Shape of Observation Markers

For example, in the Hurricanes data set, you might want to color observations by
using the category variable that contains the Saffir-Simpson intensity of the cyclone
as given in Table 9.1. Add the following statements at the bottom of the program
window, and select Program » Run from the main menu. The resulting plot is shown
in Figure 10.2.

/* color markers by value of a nominal variable */

/* missing Catl Cat2 Cat3 Cat4 Cat5 TD TS */
ColorMap = BLACK//YELLOW//ORANGE//MAGENTA//RED//GOLD//CYAN//GREEN;
run ColorCodeObsByGroups(dobj, "category", ColorMap);

@Statter Plot of Hurricanes {Markers):1 |_ (O] x|

140+

125

o
=
1

wind_kts

76

50

25

T T T T
g00 925 950 978 1000 1025

min_pressure

Figure 10.2. Markers Colored by a Nominal Variable

Coloring Markers That Satisfy a Criterion

The ColorCodeObs and ColorCodeObsByGroups modules color observations by
calling the SetMarkerColor method of the DataObject class. While these module
are often convenient to use, sometimes you might want to color markers according
to some criterion that is not covered by either module. In this case, you can use the
SetMarkerColor method directly.

The SetMarkerColor method changes the colors of specified observations. It is usu-
ally used in conjunction with the GetVarData method of the DataObject and the IML
LOC function to find observations that satisfy some criterion.

As an example, suppose you are interested in the size of the eye of a tropical cyclone.
(The eye of a cyclone is a calm, relatively cloudless central region.) The Hurricanes
data set has a variable radius_eye that gives the radius of the cyclone’s eye in nauti-
cal miles. The radius_eye variable has many missing values, because not all storms
have well-defined eyes. You can use the SetMarkerColor method to visualize the
observations for which well-defined eyes exist.

Chapter 10. Changing the Color and Shape of Observation Markers

Add the following statements at the bottom of the program window and select
Program » Run from the main menu.

/* color markers manually */

dobj.SetMarkerColor(OBS_ALL, BLACK);

dobj.GetVarData ("radius_eye", rEye);

idx = loc(rEye = .);

if ncol(idx)>0 then
dobj.SetMarkerColor(idx, GREEN);

il Scatter Plot of Hurricanes (Markers):1 [_ O] <]

140+

1244

=
=
1

wind_kts

7o

50+

25+

T T T T T T
ann 425 450 475 1000 1025

min_pressure

Figure 10.3. Markers Colored Manually

The first statement uses the special keyword OBS_ALL to set the color of all obser-
vations in the data set to black. The GetVarData method of the DataObject copies
the values of the radius_eye variable into an IML matrix called rEye. The IML
LOC function is then used to find the indices of missing values in the rEye matrix.
If at least one element of the matrix satisfies the condition, then the SetMarkerColor
method sets the color of corresponding observations to green.

You can see from the resulting graph (Figure 10.3) that very few storms with low wind
speeds have well-defined eyes, whereas most of the intense storms have well-defined
eyes.

Of course, you could repeat this process for other conditions you want to visualize.
For example, you could locate the values of rEye that are greater than or equal to 20
nautical miles, and color those observations.

L

59

60 ¢ Chapter 10. Changing the Color and Shape of Observation Markers

Changing Marker Shapes

When a graph is printed on a gray-scale printer, it is often easier to discern obser-
vations that have different marker shapes than it is to discern markers of different
colors. Even on a computer screen, marker shape is sometimes preferred for classi-
fying markers according to a small number of discrete values. For example, if some
observations represent males and others females, marker shape is an ideal way to
encode that information.

Just as you can change marker colors with the SetMarkerColor method, the
DataObject’s SetMarkerShape method enables you to change a marker’s shape. For
the Hurricanes data set, suppose you want to use marker shape to differentiate obser-
vations with missing values for the radius_eye variable from those with nonmissing
values. One way to accomplish this is to copy the values of radius_eye from the
DataObject, and then use the IML LOC function to find the observation numbers with
certain properties. You can then use the SetMarkerShape method to set the shape of
the observations.

Add the following statements at the bottom of the program window, and select
Program » Run from the main menu. Figure 10.4 shows the result of running these
statements.

/* change marker shapes x*/
dobj.GetVarData ("radius_eye", rEye);
idx = loc(rEye = .);
if ncol(idx)>0 then
dobj.SetMarkerShape(idx, MARKER X);
idx = loc(rEye *= .);
if ncol(idx)>0 then
dobj.SetMarkerShape(idx, MARKER CIRCLE);
plot.SetMarkerSize(6);
dobj.SetMarkerFillColor (OBS_ALL, NOCOLOR);

When you run these statements, the GetVarData method of the DataObject copies
the values of the radius_eye variable into an IML matrix called rEye. The IML
LOC function is then used to find the indices of missing values in the rEye matrix.
If at least one element of the matrix satisfies the condition, then the SetMarkerShape
method sets the shape of corresponding observations to an “X.” The shape of markers
for observations with nonmissing values is set to a circle.

Note: It is a good programming practice to verify that the LOC statement did not
return an empty matrix.

The SetMarkerSize method changes the marker sizes on a scale from 1 (the smallest)
to 8 (the largest). This method is in the Plot class, so changing the size of markers
in one graph does not change the size of markers in other graphs. (This is in contrast
to the DataObject methods, which set the shape and color for all graphs that display
an observation.) Finally, the SetMarkerFillColor method is used to make all markers
hollow. Hollow markers can sometimes help reduce overplotting in scatter plots.

Chapter 10. Changing the Color and Shape of Observation Markers ¢ 61

il Scatter Plot of Hurricanes (Markers):1 M[=] E3
% o0
140 oo
[s] @ [a i)
[a] (e aD
oo] [ae s]
CEO Q@G O
125 (SR oo ooyl
TG [
[D CIRHIEDGD OO
R GEGOORTINOD T O

o GLOnCaE
@

wind_kts
=
=
1
£
&
5

~
o
1

wm
=
1

=]
2
1

T T T T T
go0 925 a0 475 1000 1025
min_pressure

Figure 10.4. Changing Marker Shapes

In this example you used the MARKER_X and MARKER_CIRCLE shapes. The
complete list of valid Stat Studio marker shapes is given in Table 10.2.

Table 10.2. Marker Shapes
MARKER_SQUARE
MARKER_PLUS
MARKER_CIRCLE
MARKER_DIAMOND
MARKER_X
MARKER_TRIANGLE
MARKER_INVTRIANGLE
MARKER_STAR

]I D>X<S o+ 0O

Showing Only Selected Observations

A technique that is sometimes useful for exploring data is to show only observa-
tions that are selected. For example, suppose you are trying to understand how the
wind_kts and min_pressure variables are distributed, given specific values for the
latitude variable. Add the following statement at the bottom of the program window,
and select Program » Run from the main menu.

plot.ShowObs (false);

The scatter plot now displays only selected observations as shown in Figure 10.5. You
can select bars in the histogram and examine how the wind speed and atmospheric
pressure of storms vary as storms move from lower latitudes to higher latitudes. You
can immediately see that storms at or above 45° tend to be weaker storms without
well-developed eyes.

62 ¢ Chapter 10. Changing the Color and Shape of Observation Markers

7 5AS Stat Studio - Hurricanes (Markers) HE
Ele Edt Vew Progam Graph analyss Tools Window Help

O-c9IEE~bRwE@|rvenB@G

& Markers.sx I [=] B || o icatter Piot of Hu

‘

/+ open client data set (on the PS) +/ 1=
declare DataObject doki;
dobj = Datachject.CreateFrowFile (MHUrricanes.sasThdat™) :
/+ create a scatter plot */ = 1504
declare ScatterPlot plot;
plot = ScatterPlot.Create| dobj, "min pressure", "wind kts®): 135
/* oolor markers by a continuous varisble #/
ColorMap = RED//YELLOW//CYAN/ /BLUE; 1004
MumColors = 13: £
run ColorCodeObs{ dobi, "latitude”, ColorMap, NuwColors): ='
£
/+ create a histogram */ ®g
declare Histogram hist:
hist = Histogram.Create(dob3, "latitude”): o
hist.SetUindowPosition(50, 50, 50, 50)
hist.SethxisNwrericTicks { XANIS, 10, §, 0, 75 1/ 25
/% color marksrs by value of nowinal varisble &/
/4 missing Cani Cats TD T3 */ T T T T T T
ColorMep = BLACK//YELLOW//ORANGE//MAGENTA//RED//GOLD/ /CTAN/ / GREEN; 00 Uz 20 B o s
run ColorCodeObsByGroups{ dobl, "category®, ColorMap): min_pressure
i

ogram of Hurricanes (Marker

500

Frequency

250

latitude

Markers

Ready

[0Errors) [0 Warning(s)

Figure 10.5. Showing Only Selected Observations

Index

A Sort, 5
adding variables, 17 WriteToFile, 15
AddVar method, 17 WriteToServerDataSet, 16
AddVar.sx, 29 WriteVarsToServerDataSet, 16
AddVars method, 18 DataTable class, 14
APPEND statement, 17 DataView class, 22
AutoExec.sas, 11 DataView methods
Axes.sx, 47 SetWindowPosition, 22, 52
axis view range, 49, 53 DELETE subroutines, 19
discrete variables,
B See nominal variables
base class, 22, 32 dot notation, 5
Drawlnset module, 44
C DrawLegend module, 43
case-sensitive, 6, 16 DrawLine method, 32
class, 5 DrawSetPenColor method, 34
client, 8, 9 DrawSetPenStyle method, 32
color map, 57 DrawUseDataCoordinates method, 32
ColorCodeObs module, 55 dynamically linked, 7, 9, 21
ColorCodeObsByGroups module, 57
CONCAT function, 43 E
continuous variables, ENDSUBMIT statement, 17, 26
See interval variables
coordinate system, 32 F
CopyServerDataToDataObject module, 15, 18, 30 file extensions, 14, 15
Create method, 17 Fit.sx, 31
CREATE statement, 17
CreateFromFile method, 14 G
CreateFromServerDataSet method, 15 GetPersonalFilesDirectory module, 16
creating a DataObject GetVarData method, 18, 33, 58
from client data sets, 10, 14 Graphs.sx, 21
from IML Matrices, 17
from server data sets, 11, 15 H
help,
D See online Help
Data views, 7 Help » Help Topics, 3
Data.sx, 14 histogram bin width, 52
DataObject class, 6 Histogram class, 22
purpose, 7 Histogram methods
DataObject methods Rebin, 54
AddVar, 17 Hurricanes data set, 10
AddVars, 18
Create, 17 |
CreateFromFile, 5, 14 IMLPlus, 2
CreateFromServerDataSet, 15 programs, 4
GetVarData, 18, 33, 58 IMLPlus keywords
SetMarkerColor, 58 colors, 57
SetMarkerFillColor, 60 declare, 5

SetMarkerShape, 60 line styles, 32

64 + Index

marker shapes, 61
in-memory data, 5, 6
insets, 41, 44
installation directory, 10
interval variables, 55

K

KDE procedure, 36

L
legends, 41, 43
LIBNAME statement, 12, 15
library, 13
librefs, 11
defining, 15
line styles, 32
LOC function, 58, 60

M

markers
color, 55, 57
hollow, 60
predefined shape, 61
shape, 60
size, 60

Markers.sx, 55

methods, 5

minor tick marks, 48
missing values
color, 57
not colored, 56

N

nominal variables, 57
nonprinting columns, 39

o)

object-oriented, 5
objects, 5
OBS_ALL, 59
ODS statement, 37
ODS table name, 37
ODS.sx, 37
online Help, 3, 6, 14, 15, 23, 32, 43, 44, 48, 57
opening
client data sets, 10, 14
server data sets, 11, 15
output data sets, 30
Output Delivery System(ODS), 37
output windows, 37

P
personal files directory, 10, 11, 16
Plot methods
DrawLine, 32
DrawSetPenColor method, 34
DrawSetPenStyle method, 32
DrawUseDataCoordinates, 32

SetAxisLabel, 48
SetAxisMinorTicks, 48
SetAxisNumericTicks, 54
SetAxisTickAnchor, 48
SetAxisTickRange, 54
SetAxisTicks, 50
SetAxisTickUnit, 48
SetMarkerSize, 60
SetTitleText, 43
ShowAxisReferenceLines, 50
ShowTitle, 43
polylines, 33
predefined colors, 57
Proc.sx, 25
program windows, 4, 14
programming language, 2
programs, 3
AddVar.sx, 29
Axes.sx, 47
Data.sx, 14
Fit.sx, 31
Graphs.sx, 21
Markers.sx, 55
ODS.sx, 37
Proc.sx, 25
Titles.sx, 41
PUTN function, 43

Q

querying data, 6

R

READ statement, 17, 35, 40
ReBin method, 54

REG procedure, 26, 30, 31

S
Saffir-Simpson intensity scale, 50
SAS library, 9
saving

data to a SAS library, 13, 16

data to the client, 12, 15
ScatterPlot class, 21
selecting observations, 22
selection rectangle, 22
server, 8, 9

name, 11
SetAxisLabel method, 48
SetAxisMinorTicks method, 48
SetAxisNumericTicks method, 54
SetAxisTickAnchor method, 48
SetAxisTickRange method, 54
SetAxisTicks method, 50
SetAxisTickUnit method, 48
SetMarkerColor method, 58
SetMarkerFillColor method, 60
SetMarkerShape method, 60
SetMarkerSize method, 60
SetTitleText method, 43

SetWindowPosition method, 22, 52
show only selected observations, 61
ShowAxisReferenceLines method, 50
ShowTitle method, 43

SORT call, 33

SORT procedure, 36

SUBMIT statement, 17, 26

T
titles, 41, 43
Titles.sx, 41

U

unicode characters, v
USE statement, 17, 35, 40

w

WriteToFile method, 15
WriteToServerDataSet method, 16
WriteVarsToServerDataSet method, 16

Index

L

65

66

Your Turn

We welcome your feedback.

e If you have comments about this book, please send them to
yourturn@sas .com. Include the full title and page numbers (if
applicable).

e If you have comments about the software, please send them to
suggest@sas.com.

SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS’ Press

Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress
SAS° Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:
¢ Online help that is built into the software.
e Tutorials that are integrated into the product.
¢ Reference documentation delivered in HTML and PDF - free on the Web.
. -
Fard-copy books. support.sas.com/publishing
SAS’° Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as

access to past issues, are available at our Web site.
support.sas.comlspn

Ve

POWER
TO KNOW.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	Contents
	Chapter 1. Introduction
	Chapter 2. Reading and Writing Data
	Chapter 3. Creating Dynamically Linked Graphics
	Chapter 4. Calling SAS Procedures
	Chapter 5. Adding Variables to the DataObject
	Chapter 6. Adding Curves to Plots
	Chapter 7. Reading ODS Tables
	Chapter 8. Adding Titles, Legends, and Insets
	Chapter 9. Adjusting Axes and Ticks
	Chapter 10. Changing the Color and Shape of Observation Markers
	Index

