
SAS® 9.2 Stored Processes
Developer’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Stored Processes: Developer’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 Stored Processes: Developer’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-202-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book, September 2009
3rd electronic book, June 2010

1st printing, March 2009
2nd printing, September 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

SAS Stored Process Web Application Enhancements v

Metadata Enhancements vi

General Enhancements vi

Chapter 1 � Overview of SAS Stored Processes 1
What Are SAS Stored Processes? 1

Why Are SAS Stored Processes Important? 1

Which Clients Can Use SAS Stored Processes? 1

What Are SAS IOM Direct Interface Stored Processes? 3

Chapter 2 � Writing a Stored Process 5
Overview of Writing a Stored Process 5

Using Input Parameters 8

Setting Result Capabilities 12

Using the %STPBEGIN and %STPEND Macros 14

Using Output Parameters 19

Using Reserved Macro Variables 20

Using Sessions 33

Using Stored Process Server Functions 36

Chapter 3 � Managing Stored Process Metadata 43
Choosing or Defining a Server 43

Using Source Code Repositories 44

Registering the Stored Process Metadata 44

Developing Stored Processes with Package Results 46

Using Prompts 50

Chapter 4 � Debugging Stored Processes 53
Examining the SAS Log 53

Using SAS Options 53

Chapter 5 � Building a Web Application with SAS Stored Processes 55
Overview 56

Configuring the SAS Stored Process Web Application 58

Specifying Web Application Input 65

Uploading Files 68

Authentication in the Stored Process Web Application 77

Using the SAS Stored Process Web Application Pages 78

Using HTTP Headers 85

Embedding Graphics 89

Chaining Stored Processes 93

iv

Using Sessions in a Sample Web Application 98

Error Handling 106

Debugging in the SAS Stored Process Web Application 107

Appendix 1 � Stored Process Software Requirements 109
General Requirements 109

Client-Specific Requirements 109

Components 110

Appendix 2 � Converting SAS/IntrNet Programs to SAS Stored Processes 113
Overview 113

Compatibility Features 114

Conversion Considerations 114

Overview of Conversion Steps 117

Example 118

Executing Catalog Entries 129

Appendix 3 � Formatting Prompt Values and Generating Macro Variables from
Prompts 131
Entering Prompt Values in the SAS Stored Process Web Application 131

Macro Variables That Are Generated from Prompts 139

Index 155

v

What’s New

Overview
SAS 9.2 Stored Processes provides enhancements to the SAS Stored Process Web

Application and stored process metadata, as well as general enhancements.

SAS Stored Process Web Application Enhancements
The following enhancements have been added to the SAS Stored Process Web

Application:
� You can select a stored process in the tree view in order to run the stored process.

If there are no parameters or input forms, then the stored process will execute
immediately and the results will be displayed. If there are parameters or input
forms, then you will be taken to the custom input form or prompt page.

� You can use the SAS Stored Process Web Application to upload files.
� Samples have been enhanced to use ODS styles and to include prompts that

enable the samples to be executed from a variety of clients. There is a new sample
called Server Test, which can be used by any client to ping a server. Samples are
installed with the SAS Web Infrastructure Platform.

� Execution options are no longer included by default. If you want to include
execution options, they are available as a shared prompt group that is installed
along with the sample stored processes.

� The SAS Stored Process Web Application is now delivered in EAR files.
� Response pages can be customized.
� Initialization parameters are now set with the Configuration Manager in SAS

Management Console. The following initialization parameters are now supported:
� ActionMask
� AllowEncodedPassword
� AllowGuest
� BannerRows
� Domain

vi What’s New

� GuestUsername
� GuestPassword

� ShowLogButton

� UploadDirectory
� UploadMaxSize

� ValidatePromptValues

The following initialization parameters are obsolete:

� AuthMechanism
� InputEncoding

� OutputEncoding

� PrivilegedUser

� The appearance of the SAS Stored Process Web Application has changed in the
following ways:

� The prompt framework is used to display parameters to users.

� SAS Logon Manager is used by default for user authentication. Users can also
run stored processes without having to log on. A guest user name can be
defined to run stored processes under a fixed account.

� Error messages and the welcome page have a new appearance.

� There is now a standard banner with themes.

Metadata Enhancements
The following enhancements have been added to the Stored Process Properties dialog

box and the New Stored Process Wizard in SAS Management Console:
� Result capabilities are now specified, rather than result types. The prompt

framework can be used to develop a stored process with package results.

� Input parameters are defined using the prompt framework in SAS Management
Console, which can be accessed from the Parameters tab in the Stored Process
Properties dialog box, or in the New Stored Process Wizard.

� Output parameters can be defined on the Parameters tab or in the Stored Process
Properties dialog box, or in the New Stored Process Wizard.

� Data sources and data targets can be defined on the Data tab in the Stored
Process Properties dialog box, or in the New Stored Process Wizard. Streams can
be used to send data that is too large to be passed in parameters between the
client and the executing stored process. Definitions for data sources and data
targets can also include an XML schema specification.

General Enhancements
The following general enhancements have been added to SAS Stored Processes:

� The following new reserved macro variables are supported:

_BASEURL
overrides the default value for _URL.

_CLIENT
identifies the client and version number.

What’s New vii

_METAFOLDER
contains the name and path of the folder for the stored process that is being
executed.

_PATH
specifies the starting level for the _ACTION=INDEX display.

_STATUS_MESSAGE
returns debugging information or a message to the user.

The _ACTION macro variable now supports the following additional values:
� LOGOFF
� NEWWINDOW
� NOBANNER

� The following programs are now supported: REQUEST INIT (runs at request
initialization), REQUEST TERM (runs at request termination), REQUEST LOGIN
(only on the middle tier), SESSION INIT (runs at session initialization), and
SESSION TERM (runs at session termination).

� Prompts can be shared between stored processes or applications to perform
common prompting tasks.

� In the second maintenance release after SAS 9.2, the following enhancements
were made to the macro variables“Macro Variables That Are Generated from
Prompts” on page 139 that are generated from prompts:

� The PROMPT-NAME_LABEL macro variable is generated for date prompts.
� The PROMPT-NAME_MIN_LABEL and PROMPT-NAME_MAX_LABEL

macro variables are generated for date range prompts.
� For time and timestamp prompts, the format of the PROMPT-NAME_LABEL

macro variable has changed.
� For time range and timestamp range prompts, the format of the

PROMPT-NAME_MIN_LABEL and PROMPT-NAME_MAX_LABEL macro
variables have changed.

viii What’s New

1

C H A P T E R

1
Overview of SAS Stored
Processes

What Are SAS Stored Processes? 1
Why Are SAS Stored Processes Important? 1

Which Clients Can Use SAS Stored Processes? 1

What Are SAS IOM Direct Interface Stored Processes? 3

What Are SAS Stored Processes?
A stored process is a SAS program that is stored on a server and can be executed as

required by requesting applications. You can use stored processes for Web reporting,
analytics, building Web applications, delivering packages to clients or to the middle tier,
and publishing results to channels or repositories. Stored processes can also access any
SAS data source or external file and create new data sets, files, or other data targets
that are supported by SAS.

Why Are SAS Stored Processes Important?
The ability to store your SAS programs on the server provides an effective method for

change control management. For example, instead of embedding the SAS code into
client applications, you can centrally maintain and manage this code from the server.
This gives you the ability to change your SAS programs and at the same time ensure
that every client that invokes a stored process will always get the latest version
available.

The stored process concept becomes even more powerful when you consider that these
SAS programs can be invoked from multiple client contexts. For example, you might
deploy Java applets and Windows applications that invoke your stored processes. If your
strategy is to use a multi-tiered architecture, you can use Enterprise JavaBeans (EJB)
technology, for example, to invoke the same stored processes from an application server.

Using stored processes also enhances security and application integrity because the
programs that access your sensitive data are contained on the server instead of being
widely distributed with the client applications.

Which Clients Can Use SAS Stored Processes?
SAS Stored Processes can be used in many different client applications. The

following list gives a brief overview of each application so that you can determine which
client best suits your needs.

2 Which Clients Can Use SAS Stored Processes? � Chapter 1

SAS Add-In for
Microsoft Office

The SAS Add-In for Microsoft Office is a Component Object Model
(COM) add-in that extends Microsoft Office by enabling you to
dynamically execute stored processes and embed the results in
Microsoft Word documents, Microsoft Excel spreadsheets, and
Microsoft PowerPoint presentations. Additionally, within Excel you
can use the SAS add-in to access and view SAS data sources or any
data source that is available from your SAS server, and analyze SAS
or Excel data by using analytic tasks. For more information about
using stored processes with the SAS Add-In for Microsoft Office, see
the SAS Add-In for Microsoft Office Online Help, which is located
within the product.

SAS BI Web
Services

SAS BI Web Services provide a Web service interface to SAS Stored
Processes. Web services can be hosted on a Java servlet container or
Windows IIS. XMLA Web Services implement the Discover and
Execute Web methods to return metadata about stored processes
and to invoke stored processes, respectively. Starting with SAS 9.2,
you can also select a set of stored processes in SAS Management
Console and deploy them to the Web Service Maker to create a
generated Web service. For more information about using stored
processes with SAS BI Web Services, see the SAS BI Web Services:
Developer’s Guide.

SAS Data
Integration
Studio

SAS Data Integration Studio enables its administrators to publish
jobs as stored processes. SAS Data Integration Studio can generate
code that converts a job into a stored process, which is saved to a file
and can be executed later by the SAS Stored Process Server.
Metadata about the stored process is saved in the current metadata
repository. For more information about using stored processes with
SAS Data Integration Studio, see the SAS Data Integration Studio
product Help.

SAS Enterprise
Guide

SAS Enterprise Guide provides an integrated solution for authoring,
editing, and testing stored processes. You can create stored
processes from existing or new SAS code and create stored processes
automatically from SAS Enterprise Guide tasks. Metadata
registration and source code management are handled from one
interface. SAS Enterprise Guide also has the capability to execute
stored processes, which enables you to modify and test your stored
process without leaving the SAS Enterprise Guide environment. For
more information about using stored processes with SAS Enterprise
Guide, see the SAS Enterprise Guide product Help.

SAS
Information
Delivery Portal

The SAS Information Delivery Portal provides integrated Web access
to SAS reports, stored processes, information maps, and channels. If
you have installed the SAS Information Delivery Portal, you can
make stored processes available to be executed from the portal
without the need for additional programming. The SAS Information
Delivery Portal includes the SAS Stored Process Web Application.
For more information about using stored processes with the SAS
Information Delivery Portal, see the SAS Intelligence Platform: Web
Application Administration Guide.

SAS
Information
Map Studio

Stored processes can be used to implement information map data
sources. Stored processes can use the full power of SAS procedures
and the DATA step to generate or update the data in an information
map. For more information about stored process information maps,

Overview of SAS Stored Processes � What Are SAS IOM Direct Interface Stored Processes? 3

see SAS Information Map Studio: Tips and Techniques and the SAS
Information Map Studio product Help.

SAS Stored
Process Web
Application

The SAS Stored Process Web Application is a Java Web application
that can execute stored processes and return results to a Web
browser. The SAS Stored Process Web Application is similar to the
SAS/IntrNet Application Broker and has the same general syntax
and debugging options as the Application Broker. For examples of
this component, see “Using the SAS Stored Process Web Application
Pages” on page 78. The SAS Stored Process Web Application is
included with the SAS Web Infrastructure Platform, which is a
component of SAS Integration Technologies.

SAS Web Report
Studio

You can use SAS Web Report Studio to execute stored processes and
to include stored processes or stored process results in a report. For
more information about using stored processes with SAS Web Report
Studio, see the SAS Web Report Studio: User’s Guide, the SAS
Intelligence Platform: Web Application Administration Guide, and
the SAS Web Report Studio product Help.

Stored Process
Service

The Stored Process Service is a Java application programming
interface (API) that enables you to execute stored processes from a
Java program. This API is commonly used in JSP pages, but can
also be used from servlets, custom tagsets and other Java
applications. The Stored Process Service API is part of SAS
Foundation Services; you must deploy SAS Foundation Services in
order to use the Stored Process Service API.

Stored Process
Windows API

The Stored Process Windows API is a Microsoft .NET application
programming interface (API) that enables you to execute stored
processes from within the .NET framework (using C# or VB.NET, for
example). This API is used by both SAS Enterprise Guide and SAS
Add-In for Microsoft Office, and can be used to write ASP.NET or
Windows applications. The Stored Process Windows API is part of
SAS Integration Technologies; you must deploy SAS Integration
Technologies in order to use the Stored Process Windows API.

What Are SAS IOM Direct Interface Stored Processes?
There are two different types of stored processes. A limited form of stored processes,

IOM Direct Interface Stored Processes, was introduced in SAS 8. This type of stored
process operates on a SAS Workspace Server and produces packages only. IOM Direct
Interface Stored Processes are still fully supported. However, the focus of this
documentation is on SAS Stored Processes. SAS Stored Processes are new with SAS® 9,
and they can be used with either a SAS Workspace Server (to produce packages) or a
SAS Stored Process Server (to produce packages or streaming results).

4

5

C H A P T E R

2
Writing a Stored Process

Overview of Writing a Stored Process 5
Using Input Parameters 8

Overview of Input Parameters 8

Standard Header for Parameters 9

Defining Input Parameters 9

Special Character Quoting 10
Input Parameters with Multiple Values 11

Hiding Passwords and Other Sensitive Data 12

Setting Result Capabilities 12

Using the %STPBEGIN and %STPEND Macros 14

Overview of %STPBEGIN and %STPEND 14

ODS Options 15
Overriding Input Parameters 15

Results 16

Errors 17

Advanced Package Publishing 17

Using Output Parameters 19
Using Reserved Macro Variables 20

Using Sessions 33

Overview of Sessions 33

Creating a Session 34

Using the Session 34
Deleting the Session 35

Limitations 35

Using Stored Process Server Functions 36

STPSRVGETC Function 36

STPSRVGETN Function 37

STPSRVSET Function 38
STPSRV_HEADER Function 39

STPSRV_SESSION Function 41

STPSRV_UNQUOTE2 Function 42

Overview of Writing a Stored Process

A stored process is a SAS program that is hosted on a server and described by
metadata. Stored processes can be written by anyone who is familiar with the SAS
programming language or with the aid of a SAS code generator such as SAS Enterprise
Guide. The basic steps for creating a stored process are as follows:

1 Write the stored process.

6 Overview of Writing a Stored Process � Chapter 2

2 Choose or define a server. For more information, see “Choosing or Defining a
Server” on page 43.

3 Register the stored process metadata. For more information, see “Registering the
Stored Process Metadata” on page 44.

Almost any SAS program can be a stored process. A stored process can be written
using the SAS program editor, SAS Enterprise Guide, or any text editor. The following
program is a typical stored process:

*ProcessBody;
%STPBEGIN;

title ’Age analysis by sex’;
footnote;
proc sort data=sashelp.class out=class; by sex age; run;
proc gchart data=class;

vbar3d age / group=sex
discrete
nozero
shape=cylinder
patternid=group;

run; quit;
title;
proc print data=class;

by sex age;
id sex age;
var name height weight;

run;
%STPEND;

The program begins with a standard *ProcessBody; comment that initiates input
parameter processing, if any. The %STPBEGIN and %STPEND macros initialize the
Output Delivery System (ODS) and deliver the output to the client. This stored process
is capable of generating multiple output formats, including HTML, XML, PDF, CSV,
and custom tagsets and then delivering the output through packages or streaming
output. For more information, see “Setting Result Capabilities” on page 12.

Note: Because the %STPBEGIN and %STPEND macros initialize the Output
Delivery System (ODS), you should use them only if your stored process creates ODS
output. They are not necessary if the stored process is creating only a table and does not
create a report. Another case where they should not be used is when your stored process
writes directly to the _WEBOUT fileref, either using the DATA step or some other
method. Writing to _WEBOUT is a common technique used in SAS/IntrNet programs. �

This sample code generates the following bar chart and table:

Writing a Stored Process � Overview of Writing a Stored Process 7

Display 2.1 Stored Process Results: Bar Chart

Display 2.2 Stored Process Results: Table

8 Using Input Parameters � Chapter 2

Using Input Parameters

Overview of Input Parameters
Most stored processes require information from the client to perform their intended

function. This information can be in the form of presentation options for a report,
selection criteria for data to be analyzed, names of data tables to be used or created, or
an unlimited number of other possibilities. Input parameters are the most common way
to deliver information from a client to a stored process.

Input parameters are defined as name/value pairs. They appear in a stored process
program as global macro variables. For example, if you have a stored process that
analyzes monthly sales data, you might accept MONTH and YEAR as input
parameters. The stored process program might be similar to the following code:

*ProcessBody;
%stpbegin;

title "Product Sales for &MONTH, &YEAR";
proc print data=sales;
where Month eq "&MONTH" and Year eq &YEAR;
var productid product sales salesgoal;
run;

%stpend;

Because input parameters are simply macro variables, they can be accessed through
normal macro substitution syntax (¶m-name) or through any other SAS functions
that access macro variables (SYMGET, SYMGETC, or SYMGETN). Parameters follow the
same rules as SAS macro variables. Names must start with an alphabetic character or
underscore and can contain only alphanumeric characters or underscores. The name
can be no more than 32 characters long and is not case sensitive. Values can contain
any character except a null character and can be up to 65,534 characters in length on
the stored process server. Values are limited to approximately 5950 bytes in length and
cannot contain nonprintable characters (including line feeds or carriage returns) on the
workspace server.

Each stored process client interface provides one or more methods to set input
parameters. The Stored Process Service API provides a direct programming interface to
set name/value pairs. The SAS Stored Process Web Application allows name/value pairs
to be specified directly on a URL or indirectly through posting HTML form data. The
SAS Add-In for Microsoft Office provides a property sheet interface to specify
parameters.

There are many reserved parameters that are created by the server or the stored
process client interface. For a list of these variables, see “Using Reserved Macro

Writing a Stored Process � Defining Input Parameters 9

Variables” on page 20.

Standard Header for Parameters
Parameters are not initialized in the same way for the stored process server and the

workspace server. The stored process server sets parameter values before the stored
process begins to execute. This means the first line of code in the stored process can
access any input parameter macro variable. The workspace server does not set input
parameters into macro variables until it reaches a *ProcessBody; comment line in the
stored process:

*ProcessBody;

A stored process that does not contain this line never receives input parameters
when executed on a workspace server. Also, without this comment, the stored process is
not able to use reserved macro variables, such as _METAUSER.

It is recommended that you begin all stored processes (regardless of the server types)
with %GLOBAL declarations for all of your input parameters followed by the
*ProcessBody; comment:

/* ***
* Standard header comment documenting your
* stored process and input parameters.
* ** */
%global parmone parmtwo parmthree;
%global parmfour;
*ProcessBody;

... remainder of the stored process ...

The %GLOBAL declarations create an empty macro variable for each possible input
parameter and enable you to reference the macro variable in the stored process even if
it was not set by the stored process client. If you do not declare input parameters in a
%GLOBAL statement, then any references to an unset input parameter will result in
WARNING messages in the SAS log.

Defining Input Parameters
Most stored process client interfaces allow a client to pass any input parameter.

Input parameters are defined in SAS Management Console as prompts. Several types of
macro variables are generated from prompts, depending on the type of prompt and
what other information is included in the prompt definition. There is no requirement to
define parameters before executing the stored process, but there are many advantages
to describing parameters in stored process metadata. Here are some of the advantages:

� Parameter definitions can specify labels and descriptive text. This information can
be used by client interfaces to present a more attractive and informative user
interface. Other presentation options include grouping parameters.

� Default values can be specified. The default value is used if the parameter value is
not specified by the client.

� Default values can be flagged as read-only to allow a fixed parameter value to
always be passed in a stored process. This can be useful when using an existing
program that accepts many input parameters. You can register a new, simpler
stored process that has some fixed value parameters and fewer client-specified

10 Special Character Quoting � Chapter 2

parameters. You can also register multiple stored processes for a single program.
Each stored process definition can pass in unique fixed parameter values to the
executing program to force a particular operation or otherwise affect the execution
of the stored process.

� Parameters can be flagged as required. A stored process will not run unless the
client specifies values for these parameters.

� Parameters can be limited to a specific type such as text or date. Defining a
parameter type causes certain client user interfaces (such as SAS Add-In for
Microsoft Office) to present more appropriate input controls. All interfaces will
reject stored process requests with input parameters that do not match the
specified type.

� Parameter values can be limited by specifying enumerated lists or ranges of valid
values for a parameter.

� Dates and times, as well as date ranges and time ranges, can be specified as
relative values.

� Input parameters can be shared between stored processes. Other applications or
software features that support prompts can also take advantage of these prompts.

� Input parameters can be populated dynamically from a data source.
� Dependencies can be specified between input parameters.
� Selection groups can be used.

Parameter metadata for a stored process can be added or modified using SAS
Management Console. To define an input parameter for a stored process, click New
Prompt in the New Stored Process Wizard or on the Parameters tab in the Stored
Process Properties dialog box. For an example of how to add an input parameter to a
stored process definition, see “Adding a Parameter to the Stored Process Definition” on
page 127.

For information about using prompt features, see “Using Prompts” on page 50. For
more information about how to specify values for prompt, and macro variables that are
generated by prompts, see Appendix 3, “Formatting Prompt Values and Generating
Macro Variables from Prompts,” on page 131. For more information about prompt types
and defining prompts, see the product Help.

Special Character Quoting
Input parameter values are specified by the stored process client at run time. The

author of a stored process has little control over the values a client can specify. Setting
the values directly into SAS macro variables enables clients to insert executable macro
code into a stored process and can lead to unexpected behavior or unacceptable security
risks. For example, if an input parameter named COMP was set to Jones&Comp. and
passed directly into the macro variable, then any references to &COMP in the stored
process program would lead to an invalid recursive macro reference. To avoid this
problem, stored process parameters are masked with SAS macro quoting functions
before being set into macro variables. In the Jones&Comp example, the COMP
parameter has the following setting:

%let COMP=%nrstr(Jones&Comp.);

The stored process can then freely use &COMP without special handling for unusual
input values. Special characters that are masked for input parameters are the
ampersand (&), apostrophe (’), percent sign (%), quotation marks ("), and semicolon (;).

There might be special cases where you want to unmask some or all of the special
characters in an input parameter. The STPSRV_UNQUOTE2 function unmasks only
matched apostrophe (’) or quotation mark (") characters. For more information, see

Writing a Stored Process � Input Parameters with Multiple Values 11

“STPSRV_UNQUOTE2 Function” on page 42. This can be useful for passing in
parameters that are used as SAS options. The %UNQUOTE macro function unquotes
all characters in an input parameter, but you should use this function only in very
limited circumstances. You should carefully analyze the potential risk from unexpected
client behavior before unquoting input parameters. Remember that stored processes
can be executed from multiple clients. Some client interfaces perform little or no
checking of input parameter values before they are passed in to the stored process.

Note: An input parameter to a stored process that is executing on a workspace
server cannot contain both apostrophe (’) and quotation mark (") characters. Attempting
to set such an input parameter will result in an error. �

Input Parameters with Multiple Values
Parameters with multiple values (or alternatively, multiple input parameters with

the same name) can be useful in some stored processes. For example, an HTML input
form that is used to drive a stored process might contain a group of four check boxes,
each named CBOX. The value associated with each box is optOne, optTwo, optThree,
and optFour. The HTML for these check boxes might be

<input type="CHECKBOX" name="CBOX" value="optOne">
<input type="CHECKBOX" name="CBOX" value="optTwo">
<input type="CHECKBOX" name="CBOX" value="optThree">
<input type="CHECKBOX" name="CBOX" value="optFour">

If you select all four boxes and submit the form to the SAS Stored Process Web
Application, then the query string looks like this:

&CBOX=optOne&CBOX=optTwo&CBOX=optThree&CBOX=optFour

Macro variables cannot hold more than one value. The two types of servers that
execute stored processes handle this problem in different ways.

The stored process server uses a macro variable naming convention to pass multiple
values to the stored process. A numeric suffix is added to the parameter name to
distinguish between values. The number of values is set in <param-name> 0, the first
value is set in <param-name>1, and so on. In the previous example, the following
macro variables are set as shown in the following table:

Table 2.1 Automatically Generated Variables

Name/Value Pair Description

CBOX = optOne Specifies the first value.

CBOX0 = 4 Specifies the number of values.

CBOX1 = optOne Specifies the first value.

CBOX2 = optTwo Specifies the second value.

CBOX3 = optThree Specifies the third value.

CBOX4 = optFour Specifies the fourth value.

Note that the original parameter macro variable (CBOX) is always set to the first
parameter value.

Any client application can generate multiple value parameters. The typical uses for
multiple values are check box groups in HTML input forms and selection lists that
allow multiple selection.

12 Hiding Passwords and Other Sensitive Data � Chapter 2

If the parameter name is the same as one of the generated variables, then the
following error is returned:

Multiple definitions of a prompt name are not allowed. Certain prompt types
expand to multiple prompt names.

Hiding Passwords and Other Sensitive Data
If you are creating a prompt for a password and want the text to be masked as the

user is typing, use a text type prompt, and then select Masked single line (for
password entry) as the text type. For more information, see the prompt help in SAS
Management Console.

Even if you decide not to use a masked prompt, the SAS log exposes programs and
input parameters, which could pose a security issue. There are some actions that you
can take to hide passwords and other sensitive data from the SAS log. Password values
are hidden from the SAS log for any input parameters with the _PASSWORD suffix
anywhere in the parameter name (for example, ABC_PASSWORD, _PASSWORDABC).
You can disable the SAS log with the DebugMask Web application initialization
parameter. For more information, see “Debugging in the SAS Stored Process Web
Application” on page 107. You can also use the prefix _NOLOG_ with macro variables
to hide request variable values.

The _NOLOG_ prefix enables you to create special macro variables that can be sent
to the stored process server without publishing the macro variable values in the SAS
log. The special macro variables must start with the prefix _NOLOG_. The prefix is not
case sensitive. Here is an example of an input parameter with the _NOLOG_ prefix:

http://yourserver/SASStoredProcess/do?
_program=/WebApps/Sales/Employee+Salary&_nolog_salary=secretpw

If _NOLOG_SALARY is displayed in the SAS logs, the log shows the following:

_NOLOG_SALARY=XXXXXXXX;

Note: The _NOLOG_ prefix and the _PASSWORD suffix are effective only if your
stored process is running on a stored process server. �

Setting Result Capabilities
A stored process is a SAS program that can produce any type of output that a valid

SAS program can produce. Output could include data sets, external files, e-mail
messages, SAS catalogs, packages, and many other objects. In some cases, the output
(or a result) is delivered to the client application that is executing the stored process. In
other cases, the output is generated only on the server.

When you register the stored process, you can specify what type of output the stored
process can produce. You can specify Stream, Package, both output types, or neither
output type.

When you run the stored process, the client application chooses the type of output
that it prefers. For example, when SAS Web Report Studio runs a stored process,
package output is produced. There are four types of client output:

� The simplest type of output, or result type, is none. The client receives no output
from the stored process. The stored process is still able to create or update data
sets, external files, or other objects, but this output remains on the server. This
result type is indicated when the input parameter _RESULT is set to STATUS
because only the program status is returned to the client.

Writing a Stored Process � Setting Result Capabilities 13

� Streaming output delivers a data stream, such as an HTML page or XML
document, to the client. This result type is indicated when _RESULT is set to
STREAM. The data stream can be textual or binary data and is visible to the stored
process program as the _WEBOUT fileref. Any data that is written to the
_WEBOUT fileref is streamed back to the client application. Streaming output is
supported only on the stored process server. Stored processes that are executing
on a workspace server cannot use streaming output.

� Package output can be either transient, meaning that the output is returned only
to the client and exists only in the current session, or permanent, meaning that
the package is stored or published somewhere and can be accessed even after the
session ends.

� Transient package output returns a temporary package to the client. The
package can contain multiple entries, including SAS data sets, HTML files,
image files, or any other text or binary files. The package exists only as long
as the client is connected to the server. This result type is a convenient way
to deliver multiple output objects (such as an HTML page with associated
GIF or PNG images) to a client application. Transient package output is
available on both stored process and workspace servers, but the
implementations differ. On the stored process server, transient package
output is indicated when _RESULT is set to PACKAGE_TO_ARCHIVE and the
input parameter _ARCHIVE_PATH is set to TEMPFILE. On the workspace
server, transient package output is indicated when _RESULT is set to
PACKAGE_TO_REQUESTER.

� Permanent package output creates a package in a permanent location on a
WebDAV server or in the server file system. The package is immediately
accessible to the stored process client, but is also permanently accessible to
any client with access to WebDAV or the server file system. This result type
is a convenient way to publish output for permanent access. Output to
WebDAV is indicated when _RESULT is set to PACKAGE_TO_WEBDAV. The
input parameter _COLLECTION_URL contains the target location. The
input parameters _HTTP_USER and _HTTP_PASSWORD might be set if the
WebDAV server is secured and credentials are available. The
_HTTP_PROXY_URL parameter is set if an HTTP proxy server is required to
access the WebDAV server. Output to the server file system is indicated when
_RESULT is set to PACKAGE_TO_ARCHIVE. The input parameters
_ARCHIVE_PATH and _ARCHIVE_NAME contain the target repository and
filename, respectively.

Permanent package output can also be published to a channel or to an
e-mail recipient. For more information about the parameters that are used
for publishing packages, see “Advanced Package Publishing” on page 17.

Note: Although the result type is chosen when you define a stored process, the
result type can be changed by the client application through calls to the Stored Process
Service API. Where possible, it is recommended that you write stored processes to
support any appropriate client result type. This enables a client application to select
the result type most appropriate for that application. The program can determine the
desired client result type by examining the _RESULT input parameter. The
%STPBEGIN and %STPEND macros include support for any of the four result types.
For more information, see “Using the %STPBEGIN and %STPEND Macros” on page 14.
The following stored process is capable of generating streaming, transient package, or

14 Using the %STPBEGIN and %STPEND Macros � Chapter 2

permanent package output. (It can also be run with _RESULT set to STATUS, but this
would produce no useful result.)

*ProcessBody;
%stpbegin;
proc print data=SASHELP.CLASS noobs;
var name age height;
run;
%stpend;

�

The input parameters that were mentioned previously are set by the stored process
client APIs and are reserved parameters. They cannot be overridden by passing in new
values through the normal parameter interface. Special API methods are provided to
set the result type and associated parameters for a stored process. For more
information about specific input parameters, see “Using Reserved Macro Variables” on
page 20. For more information about developing stored processes that product package
results, see “Developing Stored Processes with Package Results” on page 46.

Using the %STPBEGIN and %STPEND Macros

Overview of %STPBEGIN and %STPEND

The %STPBEGIN and %STPEND macros provide standardized functionality for
generating and delivering output from a stored process. This enables you to write
stored processes that generate content in a variety of formats and styles with minimal
programming effort. Here is a typical stored process that uses these macros:

/* ***
* Header comment documenting your
* stored process and input parameters.
* ** */
%global input parameters;
*ProcessBody;

... any pre-processing of input parameters ...

%stpbegin;

... stored process body ...

%stpend;

Note: You must include a semicolon at the end of the %STPBEGIN and %STPEND
macro calls.

The %STPBEGIN macro initializes the Output Delivery System (ODS) to generate
output from the stored process. The %STPEND macro terminates ODS processing and
completes delivery of the output to the client or other destinations. The macros must be
used as a matched pair for proper operation. Streaming output and package output are
supported. These macros rely on many reserved macro variables to control their
actions. For a more detailed description of each macro variable mentioned in the
following sections, see “Using Reserved Macro Variables” on page 20.

Writing a Stored Process � Overriding Input Parameters 15

Stored processes that do not use ODS to generate output should not use these macros
or should set _ODSDEST to NONE to disable ODS initialization. In these cases, your
stored process must explicitly create any output. �

ODS Options
ODS options are specified by various global macro variables. These variables are

normally set by input parameters, but can be modified by the stored process. The
following variables affect ODS output:

� _ENCODING
� _GOPT_DEVICE
� _GOPT_HSIZE
� _GOPT_VSIZE
� _GOPT_XPIXELS
� _GOPT_YPIXELS
� _GOPTIONS
� _ODSDEST
� _ODSOPTIONS
� _ODSSTYLE
� _ODSSTYLESHEET

The _ODSDEST variable is important because changing this variable enables your
stored process to generate HTML, PDF, PostScript, or a variety of other formats,
including user-written tagset destinations. Many variables allow you to override ODS
options. You must remember to verify whether any options that are specified by the
stored process or its clients are compatible with the output destinations that you plan
to support.

Some ODS options (for example, BASE) are set based on the result options. For more
information, see “Results” on page 16. These options are generally transparent to the
stored process author, but they can make it difficult to modify some ODS options in
your stored process.

Overriding Input Parameters
Macro variables that are recognized by the %STPBEGIN macro can be set or

modified by the stored process. This is usually done to deny or limit client choices for
that variable. For example, a stored process that requires the use of a particular style
might begin with the following statements:

%global _ODSSTYLE;
*ProcessBody;

%let _ODSSTYLE=MyStyle;

%stpbegin;

Any client-specified value for the _ODSSTYLE variable is ignored and the MyStyle
style is always used. A more elaborate implementation might validate an input
parameter against a list of supported values and log an error or choose a default value
if the client input is not supported.

A stored process can modify the macro variables that are used by the %STPBEGIN
macro at any time until %STPBEGIN is called. Modifying these reserved macro
variables after %STPBEGIN has been called is not recommended.

16 Results � Chapter 2

Results
The %STPBEGIN and %STPEND macros implement several options for delivering

results. For an introduction to the standard options for stored process results, see
“Setting Result Capabilities” on page 12. In most cases, a stored process that uses these
macros can support all the standard result types with no special coding. The _RESULT
variable defines the result type. The following values are supported:

STATUS
returns only a completion status. An ODS destination is not opened, but the ODS
LISTING destination is closed.

STREAM
returns the body or file output from ODS as a stream. This is the default result
type if _RESULT is not set.

There are several values for _RESULT that generate packages. Packages can be
delivered directly to the client and published to a more permanent location on the
server file system, a WebDAV server, or other destinations. Package creation and
delivery are controlled by many reserved macro variables. Here are the variables that
are valid for all package destinations:

� _ABSTRACT
� _DESCRIPTION
� _EXPIRATION_DATETIME
� _NAMESPACES
� _NAMEVALUE

Here are additional variables that are recognized for specific _RESULT settings:

PACKAGE_TO_ARCHIVE
creates an archive package on the server file system that contains the generated
output. The _ARCHIVE_PATH and _ARCHIVE_NAME variables specify where
the package is created. In addition, _ARCHIVE_FULLPATH is set by %STPEND
to hold the full pathname of the created archive package.

PACKAGE_TO_REQUESTER
returns a package to the stored process client. It can also simultaneously create
an archive package on the server file system if _ARCHIVE_PATH and
_ARCHIVE_NAME are set. This option is valid only on the workspace server.

PACKAGE_TO_WEBDAV
creates a package as a collection on a WebDAV-compliant server. The location of
the package is defined by _COLLECTION_URL or _PARENT_URL. Other relevant
variables include _HTTP_PASSWORD, _HTTP_PROXY_URL, _HTTP_USER, and
_IF_EXISTS.

The %STPBEGIN macro configures ODS to create output files in a temporary
working directory. The %STPEND macro then creates the package from all of the files
in this temporary directory. The temporary directory is defined by the _STPWORK
variable. This variable should not be changed by the stored process, but new entries
can be added to the output package by creating files in this directory. For example, the
XML LIBNAME engine might be used to create one or more XML files that would be
included in the package along with any output that was created by ODS. The temporary
directory and any files that are contained in it are automatically deleted when the
stored process completes. No cleanup is required in the stored process program.

Note: If the environment variable STPWORK is not set when the server is started,
then STPBEGIN determines a temporary directory based on the operating system, and

Writing a Stored Process � Advanced Package Publishing 17

places that value in the _STPWORK reserved macro variable. If the environment
variable STPWORK is set when the server is started, then STPBEGIN uses the
directory specified as a starting point to create the temporary directory. For example,
the STPWORK environment variable is set to /usrs/. STPBEGIN creates a temporary
subdirectory under /usrs/ and places the full path to the temporary directory in the
_STPWORK reserved macro variable. �

Errors
Errors in the %STPBEGIN and %STPEND macros are reported in the _STPERROR

macro variable. A value of 0 indicates that the macro completed successfully. A nonzero
value indicates that an error occurred.

Because these macros allow clients or stored processes to submit SAS language
options (for example, the _ODSOPTIONS variable), it is possible for the macros to fail
in unusual ways. Invalid input parameters can cause the stored process to go into
syntaxcheck mode (when the SAS OBS option is set to 0) or to terminate immediately.

Advanced Package Publishing
The %STPBEGIN and %STPEND macros support some package publishing options

that are not recognized by the stored process metadata framework. These options are
generally accessed by registering a stored process with no output type. This causes the
stored process to be executed with _RESULT set to STATUS. The stored process can then
set _RESULT to one of the following values:

PACKAGE_TO_ARCHIVE
provides several new options when used in this way. Archive packages can be
created on HTTP servers that support updates and FTP servers. Variables that
control this option include the following:

� _ARCHIVE_NAME
� _ARCHIVE_PATH
� _FTP_PASSWORD
� _FTP_USER
� _HTTP_PASSWORD
� _HTTP_PROXY_URL
� _HTTP_USER

PACKAGE_TO_EMAIL
creates a package and mails it to one or more e-mail addresses. An actual archive
package can be mailed, or the package can be created in a public location and a
reference URL can be mailed. Variables that control this option include the
following:

� _ADDRESSLIST_DATASET_LIBNAME
� _ADDRESSLIST_DATASET_MEMNAME
� _ADDRESSLIST_VARIABLENAME
� _ARCHIVE_NAME
� _ARCHIVE_PATH
� _COLLECTION_URL
� _DATASET_OPTIONS
� _EMAIL_ADDRESS

18 Advanced Package Publishing � Chapter 2

� _FROM
� _FTP_PASSWORD
� _FTP_USER
� _HTTP_PASSWORD
� _HTTP_PROXY_URL
� _HTTP_USER
� _IF_EXISTS
� _PARENT_URL
� _REPLYTO
� _SUBJECT

PACKAGE_TO_QUEUE
creates a package and sends it to one or more message queues. An actual archive
package can be sent, or the package can be created in a public location and a
reference URL can be sent. Variables that control this option include the following:

� _ARCHIVE_NAME
� _ARCHIVE_PATH
� _CORRELATIONID
� _FTP_PASSWORD
� _FTP_USER
� _HTTP_PASSWORD
� _HTTP_PROXY_URL
� _HTTP_USER
� _MESSAGE_QUEUE

PACKAGE_TO_SUBSCRIBERS
creates a package and sends it to a subscriber channel. An actual archive package
can be sent, or the package can be created in a public location and a reference
URL can be sent. Variables that control this option include the following:

� _ARCHIVE_NAME
� _ARCHIVE_PATH
� _CHANNEL
� _CHANNEL_STORE
� _COLLECTION_URL
� _CORRELATIONID
� _FROM
� _FTP_PASSWORD
� _FTP_USER
� _HTTP_PASSWORD
� _HTTP_PROXY_URL
� _HTTP_USER
� _IF_EXISTS
� _PARENT_URL
� _REPLYTO
� _SUBJECT

Writing a Stored Process � Using Output Parameters 19

PACKAGE_TO_WEBDAV
creates a package and sends it to a WebDAV-compliant server. Variables that
control this option include the following:

� _ARCHIVE_NAME

� _ARCHIVE_PATH

� _COLLECTION_URL

� _HTTP_PASSWORD

� _HTTP_PROXY_URL

� _HTTP_USER

� _IF_EXISTS

� _PARENT_URL

Almost all of these package option variables have directly equivalent properties in
the package publishing API. For more information about these properties, see the
PACKAGE_PUBLISH documentation in the SAS Publishing Framework: Developer’s
Guide. The property names are the same as the variable names with the underscore
prefix removed.

Using Output Parameters

Output parameters enable stored processes to return SAS macro variables upon
successful execution, and to pass one or more values back to the client. Output
parameters are used mainly with SAS BI Web Services and with stored processes that
are called using the Stored Process Service API.

Output parameters are defined as part of the stored process metadata. Metadata for
output parameters includes the following information: name, type, label, and an
optional description. The name of the output parameter is the name of the SAS macro
variable that is associated with the output parameter. The label specifies the output
parameter name that is displayed to the user. The output parameter can be any of the
following types: Date, Double, Integer, Time, TimeStamp, or String.

Recommended formats for each output parameter type are as follows:

Table 2.2 Formats for Output Parameters

Output Parameter Type Format

Date DATEw.

Double Ew.

Integer 11.0

Note: Integer values can range from
-2,147,483,648 to 2,147,483,647. �

Time TIMEw.d

Timestamp DATETIMEw.d

String No format needed.

For more information about any of these formats, see SAS Language Reference:
Dictionary.

20 Using Reserved Macro Variables � Chapter 2

You can use the PUTN function to specify which numeric format you want the output
parameter to have. The following example shows how to set the format for a timestamp
type output parameter:

* Input value from the prompt;
%let timestamp1 = 17OCT1991:14:45:32;

* Format SAS timestamp value;
%let TimestampOut1 = %sysfunc(putn("×tamp1"dt, DATETIME.));

%put TimestampOut1 parameter is &TimeStampOut1;

The following result is written to the SAS log:

TimestampOut1 parameter is 17OCT91:14:45:32

The following example shows how to set the format for a time type output parameter:

* Input value from the prompt;
%let time1 = 19:35;

* Format SAS time value;
%let TimeOut1 = %sysfunc(putn("&time1"t, TIME8.));

%put TimeOut1 parameter is &TimeOut1;

The following result is written to the SAS log:

TimeOut1 parameter is 19:35:00

The following example shows how to set the format for a date type output parameter:

* Input value from the prompt;
%let date1 = 5Dec07;

* Format SAS time value;
%let DateOut1 = %sysfunc(putn("&date1"d, DATE9.));

%put DateOut1 parameter is &DateOut1;

The following result is written to the SAS log:

DateOut1 parameter is 05DEC2007

Using Reserved Macro Variables
Many macro variables are reserved for special purposes in stored processes.

Reserved names generally are prefixed with an underscore character. To avoid conflicts,
do not use the underscore prefix for any application variables. Some reserved macro
variables are created automatically for all stored processes that are running on a
particular server. Some are created by specific stored process client or middle-tier
interfaces and are not created or available when other clients call the stored process.

The following table shows the reserved macro variables that can be used in your
stored processes:

Writing a Stored Process � Using Reserved Macro Variables 21

Table 2.3 Reserved Macro Variables

Variable Name Used By Description

_ABSTRACT %STPBEGIN

%STPEND

Is the text string that briefly
describes a package that was created
by %STPBEGIN and %STPEND.

Specifies an action for the Web
application to take. Possible values
for this variable are as follows:

BACKGROUND
executes the stored process in
the background.

DATA
displays a summary of general
stored process data.

EXECUTE
executes the stored process.

FORM
displays a custom input form if
one exists. If FORM is the only
value for _ACTION, and no
form is found, then an error is
generated.

INDEX
displays a tree of all stored
processes.

LOGOFF
causes the Web application to
terminate the active session
and to display a logoff screen.

NEWWINDOW
displays results in a new
window.

NOBANNER
displays results without adding
a banner.

PROPERTIES
displays the prompt page,
which enables you to set input
parameters and execution
options and to execute the
stored process.

STRIP
removes null parameters. This
value can be used only in
combination with the
EXECUTE and
BACKGROUND values.

_ACTION Web Clients

22 Using Reserved Macro Variables � Chapter 2

Variable Name Used By Description

Values for _ACTION are case
insensitive. Multiple values can be
combined (except when using INDEX
or DATA). Two common combinations
are:

_ACTION=FORM,PROPERTIES
displays a custom input form if
one exists, otherwise displays
the prompt page.

_ACTION=FORM,EXECUTE
displays a custom input form if
one exists, otherwise executes
the stored process.

_ADDRESSLIST_DATASET_LIBNAME,
_ADDRESSLIST_DATASET_MEMNAME,
_ADDRESSLIST_VARIABLENAME,
_DATASET_OPTIONS

%STPBEGIN

%STPEND

Specifies a data set that contains
e-mail addresses when _RESULT is
set to PACKAGE_TO_EMAIL.

_APSLIST Stored Process
Server

Specifies the list of the names of all
the parameters that were passed to
the program.

_ARCHIVE_FULLPATH %STPBEGIN

%STPEND

Specifies the full path and name of
an archive package that was created
by %STPEND when _RESULT is set
to PACKAGE_TO_ARCHIVE or
PACKAGE_TO_REQUESTER. This value
is set by %STPEND and is an output
value only. Setting it before setting
%STPEND has no effect.

_ARCHIVE_NAME %STPBEGIN

%STPEND

Specifies the name of the archive
package to be created when _RESULT
is set to PACKAGE_TO_ARCHIVE. If
this value is not specified or is blank
and _RESULT is set to
PACKAGE_TO_ARCHIVE or
PACKAGE_TO_REQUESTER, then the
package is created with a new,
unique name in the directory that is
specified by _ARCHIVE_PATH. This
value is set through the Stored
Process Service API and cannot be
directly overridden by a client input
parameter.

Writing a Stored Process � Using Reserved Macro Variables 23

Variable Name Used By Description

_ARCHIVE_PATH %STPBEGIN

%STPEND

Specifies the path of the archive
package to be created when _RESULT
is set to PACKAGE_TO_ARCHIVE or
PACKAGE_TO_REQUESTER. This value
is set through the Stored Process
Service API and cannot be directly
overridden by a client input
parameter. The special value
TEMPFILE causes the archive package
to be created in a temporary directory
that exists only until the stored
process completes executing and the
client disconnects from the server.

_AUTHTYP Web Clients Specifies the name of the
authentication scheme that is used to
identify a Web client (for example,
BASIC or SSL), or "null" (no
authentication.) This variable is not
set by default but can be enabled.
For more information, see “Web
Application Properties” on page 61.

_BASEURL Web Clients Overrides the default value for _URL.
This macro variable is used mainly
with _REPLAY to return to the
correct location.

_CHANNEL %STPBEGIN

%STPEND

Specifies a subscriber channel when
_RESULT is set to
PACKAGE_TO_SUBSCRIBERS. For
more information about channel
names, see PACKAGE_PUBLISH in
the SAS Publishing Framework:
Developer’s Guide.

_CLIENT All Identifies the client and version
number, as follows:
_CLIENT=Client_Name;
JVM java_version;

operating_environment
(operating_environment_architecture)

operating_environment_version

The Client_Name is automatically
obtained through the Stored Process
Service API. If the API cannot obtain
the value for Client_Name, then the
default value is
StoredProcessService 9.2 (for
example,
_CLIENT=StoredProcessService 9.2;
JVM 1.5.0_12; Windows XP (x86) 5.1).

24 Using Reserved Macro Variables � Chapter 2

Variable Name Used By Description

_COLLECTION_URL %STPBEGIN

%STPEND

Specifies the URL of the WebDAV
collection to be created when
_RESULT is set to
PACKAGE_TO_WEBDAV. See also
_IF_EXISTS. This value is set
through the Stored Process Service
API and cannot be directly overridden
by a client input parameter.

_DEBUG Web Clients Specifies the debugging flags. For
information about setting the default
value of _DEBUG, see “Setting the
Default Value of _DEBUG” on page
108.

_DESCRIPTION %STPBEGIN

%STPEND

Descriptive text that is embedded in
a package that was created by
%STPBEGIN and %STPEND.

_DOMAIN Web Clients Specifies the authentication domain
for the SAS Stored Process Web
Application.

_EMAIL_ADDRESS %STPBEGIN

%STPEND

Specifies destination e-mail addresses
when _RESULT is set to
PACKAGE_TO_EMAIL. Multiple
addresses can be specified using the
multiple value convention for stored
process parameters.

_ENCODING %STPBEGIN

%STPEND

Sets the encoding for all ODS output.

_EXPIRATION_DATETIME %STPBEGIN

%STPEND

Specifies the expiration datetime that
is embedded in a package that was
created by %STPBEGIN and
%STPEND. Must be specified in a
valid SAS datetime syntax.

_FROM %STPBEGIN

%STPEND

Specifies the e-mail address of the
sender when _RESULT is set to
PACKAGE_TO_EMAIL.

_GOPT_DEVICE

_GOPT_HSIZE

_GOPT_VSIZE

_GOPT_XPIXELS

_GOPT_YPIXELS

%STPBEGIN

%STPEND

Sets the corresponding SAS/GRAPH
option. For more information, see the
DEVICE, HSIZE, VSIZE, XPIXELS,
and YPIXELS options in "Graphics
Options and Device Parameters
Dictionary" in the
SAS/GRAPH Reference in SAS Help
and Documentation.

Writing a Stored Process � Using Reserved Macro Variables 25

Variable Name Used By Description

_GOPTIONS %STPBEGIN

%STPEND

Sets any SAS/GRAPH option that is
documented in "Graphics Options
and Device Parameters Dictionary" in
the SAS/GRAPH Reference in SAS
Help and Documentation. You must
specify the option name and its value
in the syntax that is used for the
GOPTIONS statement. For example,
set _GOPTIONS to ftext=Swiss
htext=2 to specify the Swiss text
font with a height of 2.

_GRAFLOC Web Clients Specifies the URL for the location of
SAS/GRAPH applets. This variable is
set to /sasweb/graph for most
installations.

_HTACPT Web Clients Specifies the MIME types that are
accepted by the stored process client.
This variable is not set by default but
can be enabled. For more
information, see “Web Application
Properties” on page 61.

_HTCOOK Web Clients Specifies all of the cookie strings that
the client sent with this request.
This variable is not set by default but
can be enabled. For more
information, see “Web Application
Properties” on page 61.

_HTREFER Web Clients Specifies the address of the referring
page. This variable is not set by
default but can be enabled. For more
information, see, “Web Application
Properties” on page 61.

_HTTP_PASSWORD %STPBEGIN

%STPEND

Specifies the password that is used
(with _HTTP_USER) to access the
WebDAV server when _RESULT is
set to PACKAGE_TO_WEBDAV. This
value is set through the Stored
Process Service API and cannot be
directly overridden by a client input
parameter.

_HTTP_PROXY_URL %STPBEGIN

%STPEND

Specifies the Proxy server that is
used to access the WebDAV server
when _RESULT is set to
PACKAGE_TO_WEBDAV. This value is
set through the Stored Process
Service API and cannot be directly
overridden by a client input
parameter.

26 Using Reserved Macro Variables � Chapter 2

Variable Name Used By Description

_HTTP_USER %STPBEGIN

%STPEND

Specifies the user name that is used
(with _HTTP_PASSWORD) to access
the WebDAV server when _RESULT
is set to PACKAGE_TO_WEBDAV. This
value is set through the Stored
Process Service API and cannot be
directly overridden by a client input
parameter.

_HTUA Web Clients Specifies the name of the user agent.
This variable is not set by default but
can be enabled. For more
information, see “Web Application
Properties” on page 61.

_IF_EXISTS %STPBEGIN

%STPEND

Can be NOREPLACE, UPDATE, or
UPDATEANY. For more information,
see the PACKAGE_PUBLISH options
in the SAS Publishing Framework:
Developer’s Guide.

_MESSAGE_QUEUE %STPBEGIN

%STPEND

Specifies a target queue when
_RESULT is set to
PACKAGE_TO_QUEUE. For more
information about queue names, see
the PACKAGE_PUBLISH
documentation in the SAS Publishing
Framework: Developer’s Guide.
Multiple queues can be specified
using the multiple value convention
for stored process parameters.

_METAFOLDER All Contains the name or path of the
folder for the stored process that is
being executed. For example, for the
stored process:
_PROGRAM=/Sales/Southwest/
Quarterly Summary

the value of _METAFOLDER would
be: _METAFOLDER=/Sales/Southwest/.

_METAPERSON All Specifies the person metadata name
that is associated with the
_METAUSER login variable. The
value of this variable can be
UNKNOWN. This variable cannot be
modified by the client.

_METAUSER All Specifies the login user name that is
used to connect to the metadata
server. This variable cannot be
modified by the client.

Writing a Stored Process � Using Reserved Macro Variables 27

Variable Name Used By Description

_NAMESPACES %STPBEGIN

%STPEND

Applies to packages only. For more
information about this variable, see
the PACKAGE_BEGIN
documentation in the SAS Publishing
Framework: Developer’s Guide.

_NAMEVALUE %STPBEGIN

%STPEND

Specifies a list of one or more name
or value pairs that are used for
filtering when generating packages.
For more information about this
variable, see the PACKAGE_BEGIN
documentation in the SAS Publishing
Framework: Developer’s Guide.

_ODSDEST %STPBEGIN

%STPEND

Specifies the ODS destination. The
default ODS destination is HTML if
_ODSDEST is not specified. Valid
values of _ODSDEST include the
following:

� CSV

� CSVALL

� TAGSETS.CSVBYLINE

� HTML

� LATEX

� NONE (no ODS output is
generated)

� PDF

� PS

� RTF

� SASREPORT

� WML

� XML

� any tagset destination

_ODSOPTIONS %STPBEGIN

%STPEND

Specifies options that are to be
appended to the ODS statement. Do
not use this macro to override options
that are defined by a specific macro
variable. For example, do not specify
ENCODING=value in this variable
because it conflicts with
_ODSENCODING.

Note: NOGTITLE and
NOGFOOTNOTE are appended to
the ODS statement as default
options. You can override this
behavior by specifying GTITLE or
GFOOTNOTE for
_ODSOPTIONS. �

28 Using Reserved Macro Variables � Chapter 2

Variable Name Used By Description

_ODSSTYLE %STPBEGIN

%STPEND

Sets the ODS STYLE= option. You
can specify any ODS style that is
valid on your system.

_ODSSTYLESHEET %STPBEGIN

%STPEND

Sets the ODS STYLEHEET= option.
To store a generated style sheet in a
catalog entry and automatically
replay it by using the SAS Stored
Process Web Application, specify
myfile.css
(url="myfile.css").

_PATH Web Clients Specifies the starting level for the
_ACTION=INDEX display. The value
of _PATH is a folder name, such
as /Sales/Southwest.

_PROGRAM All Specifies the name of the stored
process. The
value of _PROGRAM is a path, such as
/Sales/Southwest/Quarterly Summary.

_QRYSTR Web Clients Specifies the query string that is
contained in the request URL after
the path. This variable is not set by
default but can be enabled. For more
information, see “Web Application
Properties” on page 61.

Writing a Stored Process � Using Reserved Macro Variables 29

Variable Name Used By Description

_REPLAY Stored Process
Server;
Web Clients

Specifies a complete URL for use
with programs that use the Output
Delivery System (ODS). This URL
consists of the values of
_THISSESSION and _TMPCAT. ODS
uses this URL to create links that
replay stored output when they are
loaded by the user’s Web browser.
This variable is created by the stored
process server and is not one of the
symbols that is passed from the SAS
Stored Process Web Application. The
_REPLAY variable is set only if the
_URL variable is passed in from the
client or middle tier.

If you are using the _REPLAY macro
variable with Microsoft Office, then
you will build a URL that uses the
_OUTPUTAPP= parameter.
Supported values for the
_OUTPUTAPP= parameter include
EXCEL, WORD, and POWERPOINT.
For example, if you specify
_OUTPUTAPP=EXCEL in the URL,
then the content type for the
replayed output is application/
vnd.ms-excel.

If you need to specify the name of the
file that the _REPLAY macro variable
returns, then you can use the
_CONTDISP parameter in the URL.
The value of this parameter will be
echoed back as a Content-disposition
header.

_REPLYTO %STPBEGIN

%STPEND

Specifies a designated e-mail address
to which package recipients might
respond when _RESULT is set to
PACKAGE_TO_EMAIL.

_REQMETH Web Clients Specifies the name of the HTTP
method with which this request was
made (for example, GET, POST, or
PUT). This variable is not set by
default but can be enabled. For more
information, see “Web Application
Properties” on page 61.

30 Using Reserved Macro Variables � Chapter 2

Variable Name Used By Description

_RESULT All Specifies the type of client result that
is to be created by the stored process.
For more information, see “Setting
Result Capabilities” on page 12.
Possible values for this variable are
as follows:

STATUS
no output to the client.

STREAM
output is streamed to the client
through _WEBOUT fileref.

PACKAGE_TO_ARCHIVE
package is published to an
archive file.

PACKAGE_TO_REQUESTER
package is returned to the
client. The package can also be
published to an archive file in
this case.

PACKAGE_TO_WEBDAV
package is published to a
WebDAV server.

The _RESULT value is set through
the Stored Process Service API and
cannot be directly overridden by a
client input parameter. The value
can be overridden in the stored
process program to use these
additional values:

PACKAGE_TO_EMAIL
package published to one or
more e-mail addresses.

PACKAGE_TO_QUEUE
package published to a
message queue.

PACKAGE_TO_SUBSCRIBERS
package published to a
subscriber channel.

For more information about these
options, see “Using the %STPBEGIN
and %STPEND Macros” on page 14.

Writing a Stored Process � Using Reserved Macro Variables 31

Variable Name Used By Description

_RMTADDR Web Clients Specifies the Internet Protocol (IP)
address of the client that sent the
request. For many installations with
a firewall between the client and the
Web server or servlet container, this
value is the firewall address instead
of the Web browser client. This
variable is not set by default but can
be enabled. For more information,
see “Web Application Properties” on
page 61.

_RMTHOST Web Clients Specifies the fully qualified name of
the client that sent the request, or
the IP address of the client if the
name cannot be determined. For
many installations with a firewall
between the client and the Web
server or servlet container, this value
is the firewall name instead of the
Web browser client. This variable is
not set by default but can be enabled.
For more information, see, “Web
Application Properties” on page 61.

_RMTUSER Web Clients Specifies the login ID of the user
making this request if the user has
been authenticated, or indicates null
if the user has not been
authenticated. This variable is not
set by default but can be enabled.
For more information, see “Web
Application Properties” on page 61.

_SESSIONID Stored Process
Server

Specifies a unique identifier for the
session. The _SESSIONID variable is
created only if a session has been
explicitly created.

_SRVNAME Web Clients Specifies the host name of the server
that received the request.

_SRVPORT Web Clients Specifies the port number on which
this request was received.

_SRVPROT Web Clients Specifies the name and version of the
protocol that the request uses in the
form protocol/
majorVersion.minorVersion (for
example, HTTP/1.1). This variable is
not set by default but can be enabled.
For more information, see “Web
Application Properties” on page 61.

32 Using Reserved Macro Variables � Chapter 2

Variable Name Used By Description

_SRVSOFT Web Clients Identifies the Web server software.
This variable is not set by default but
can be enabled. For more
information, see, “Web Application
Properties” on page 61.

_STATUS_MESSAGE Web Clients Returns the value of the SAS macro
variable to the client after the stored
process has been executed. This
macro variable is useful for returning
debugging information or
informational messages (for example,
when packages are created that are
not displayed).

_STPERROR %STPBEGIN

%STPEND

Specifies a global error variable. This
variable is set to 0 if %STPBEGIN
and %STPEND complete successfully.
This variable is set to a nonzero
numeric value if an error occurs.

_STPWORK %STPBEGIN

%STPEND

Specifies a temporary working
directory to hold files that are
published in a package. This variable
is set by %STPBEGIN and is not
modified by the stored process.

_SUBJECT %STPBEGIN

%STPEND

Specifies a subject line when
_RESULT is set to
PACKAGE_TO_EMAIL.

_THISSESSION Stored Process
Server;
Web Client

Specifies a URL that is composed
from the values of _URL and
_SESSIONID. This variable is
created by the stored process server
and is used as the base URL for all
URL references to the current
session. The _THISSESSION
variable is created only if the _URL
variable is passed in and a session
has been explicitly created.

_TMPCAT Stored Process
Server

Specifies a unique, temporary catalog
name. This catalog can be used to
store temporary entries to be
retrieved later. In socket servers, the
_TMPCAT catalog is deleted after a
number of minutes that are specified
in the variable _EXPIRE. This
variable is created by the stored
process server and is not one of the
symbols that is passed from the SAS
Stored Process Web Application.

Writing a Stored Process � Overview of Sessions 33

Variable Name Used By Description

_URL Web Clients Specifies the URL of the Web server
middle tier that is used to access the
stored process.

_USERNAME Web Clients Specifies the value for the user name
that is obtained from Web client
authentication.

_VERSION Web Clients Specifies the SAS Stored Process Web
Application version and build
number.

Most of the reserved macro variables that are related to package publishing have an
equivalent property or parameter in the Publishing Framework. For a description of
these variables, see the documentation for PACKAGE_PUBLISH and
PACKAGE_BEGIN in the SAS Publishing Framework: Developer’s Guide.

Using Sessions

Overview of Sessions
The Web is a stateless environment. A client request to a server does not know about

preceding requests. The Web is a simple environment for client and server developers,
but it is difficult for application programmers. Often, programmers want to carry
information from one request to the next. This is known as maintaining state. Sessions
provide a convenient way to maintain state across multiple stored process requests.

A session is the data that is saved from one stored process execution to the next. The
session data consists of macro variables and library members (data sets and catalogs)
that the stored process has explicitly saved. The session data is scoped so that all users
have independent sessions. For more information, see “Using Sessions in a Sample Web
Application” on page 98.

34 Creating a Session � Chapter 2

Creating a Session
The stored process must explicitly create a session with the STPSRV_SESSION

function, as follows:

In macro
%let rc=%sysfunc(stpsrv_session(create));

In DATA step or SCL
rc=stpsrv_session(’create’);

Creating a session will set the global macro variables _SESSIONID and
_THISSESSION and will create the SAVE session library.

Using the Session
A session saves all global macro variables whose names begin with SAVE_. For

example, the following statements cause the macro variable save_mytext to be
available in subsequent stored processes that share the same session:

%global save_mytext;
%let save_mytext="Text to be saved
for the life of the session";

Data sets and catalogs can also be saved across program requests using the SAVE
library. Data sets and catalogs that are created in or copied to this library are available
to all future stored processes that execute in the same session.

Creating a session causes the automatic variables _THISSESSION and _SESSIONID
to be set. Sample values for these variables are as follows:

%let rc=%sysfunc(stpsrv_session(create));
%put _SESSIONID=&_SESSIONID;
_SESSIONID=7CF645EB-6E23-4853-8042-BBEA7F866B55
%put _THISSESSION=&_THISSESSION;
_THISSESSION=/SASStoredProcess/do?_sessionid=

7CF645EB-6E23-4853-8042-BBEA7F866B55

Writing a Stored Process � Limitations 35

These variables can be used to construct URLs or HTML forms that execute another
stored process in the same session. For example:

%let rc=%sysfunc(stpsrv_session(create));
data _null;
file _webout;
put ’<HTML>’;
put ’<BODY>’;
put ’<H1>Session Test Page</H1>’;

/* Link to another stored process in the same session */
put ’<A HREF="’ "&_THISSESSION"
’&_PROGRAM=/Test/Test2">Test’;
put ’</BODY>’;
put ’</HTML>’;
run;

Note: The _THISSESSION variable is not identical to the _THISSESSION variable
that is used in SAS/IntrNet. If you are converting an existing SAS/IntrNet program to
a stored process, any references to symget(’_THISSESSION’) should generally be
replaced with "&_THISSESSION". For more information, see Appendix 2, “Converting
SAS/IntrNet Programs to SAS Stored Processes,” on page 113. �

Deleting the Session
Sessions expire after a period of inactivity. The default expiration time is 15 minutes.

The expiration time can be changed using the STPSRVSET function, as follows where
the timeout is specified in seconds:

In macro
%let rc=%sysfunc(stpsrvset(session timeout,300));

In DATA step or SCL
rc=stpsrvset(’session timeout’,300);

If the session is not accessed for the length of the timeout, the server will delete the
session, the associated SAVE library, and all associated macro values. Any further
attempts to access the session will result in an invalid or expired session error.

Sessions can be explicitly destroyed using the STPSRV_SESSION function, as follows:

In macro
%let rc=%sysfunc(stpsrv_session(delete));

In DATA step or SCL
rc=stpsrv_session(’delete’);

Submitting this code does not immediately delete the session. The session is marked
for deletion only at the completion of the stored process. For this reason, a stored
process cannot delete a session and create a new session.

Limitations
Stored process sessions are supported only by the stored process server. Stored

processes that execute on a workspace server cannot create or access sessions.
A session exists in the server process where it was created. All stored processes that

access that session must execute in the same server process. Load balancing and other

36 Using Stored Process Server Functions � Chapter 2

execution dispatching features are typically ignored when using sessions that might
have an impact on application performance and scalability. Sessions are not
recommended for applications with small amounts of state information; use a
client-based method for maintaining state instead.

Using Stored Process Server Functions
Stored process server functions are DATA step functions that you use to define

character, numeric, and alphanumeric strings to generate output in the desired format.
The SAS Stored Process Server functions can be used to return the correct character,
numeric, or alphanumeric value of a parameter setting.

Note: You can also use APPSRV syntax from the Application Dispatcher in place of
these functions. For more information, see the SAS/IntrNet: Application Dispatcher
documentation. �

STPSRVGETC Function

Returns the character value of a server property

Category: Character

Syntax
STPSRVGETC(valuecode)

Note: The APPSRVGETC function can be used instead of STPSRVGETC. This
feature is provided in order to enable you to convert existing SAS/IntrNet programs to
stored processes. �

Arguments

valuecode
is the character string name of the property.

Details
The STPSRVGETC function takes one character string property and returns a
character string result.

Writing a Stored Process � STPSRVGETN Function 37

Examples

SAS Statements Results

sencoding=stpsrvgetc(’Default
Output Encoding’);
put sencoding=;

sencoding=WLATIN1

version=stpsrvgetc(’version’);
put version=;

version=SAS Stored Processes
Version 9.2 (Build 150)

STPSRVGETN Function

Returns the numeric value of a server property

Category: Numeric

Syntax
STPSRVGETN(valuecode)

Note: The APPSRVGETN function can be used instead of STPSRVGETN. This
feature is provided in order to enable you to convert existing SAS/IntrNet programs to
stored processes. �

Arguments

valuecode
is the character string name of the property.

Details
The STPSRVGETN function takes one character string property and returns a numeric
string result.

38 STPSRVSET Function � Chapter 2

Examples

SAS Statements Results

dsesstimeout=stpsrvgetn(’default
session timeout’);

put dsesstimeout=;

dsesstimeout=900

sessmaxtimeout=stpsrvgetn(’maximum
session timeout’);

put sessmaxtimeout=;

sessmaxtimeout=3600

session=stpsrvgetn(’session
timeout’);

put session=;

session=900

maxconreqs=stpsrvgetn(’maximum
concurrent requests’);

put maxconreqs=;

maxconreqs=1

deflrecl=stpsrvgetn(’default
output lrecl’);

put deflrecl=;

deflrecl=65535

version=stpsrvgetn(’version’);
put version=;

version=9.2

STPSRVSET Function

Sets the value of a server property

Category: Character

Syntax
STPSRVSET(valuecode, newvalue)

Note: The APPSRVSET function can be used instead of STPSRVSET. This feature
is provided in order to enable you to convert existing SAS/IntrNet programs to stored
processes. The following Application Dispatcher properties are not supported by the
SAS Stored Process Server: REQUIRE COOKIE, REQUEST TIMEOUT, and
AUTOMATIC HEADERS. �

Arguments

valuecode
is the character string name of the property.

newvalue
is the numeric string name of the property.

Writing a Stored Process � STPSRV_HEADER Function 39

The following table lists the valid properties for valuecode and provides a description
of each.

Valuecode Description

PROGRAM ERROR Specifies the return code when there is an error.
This can be set to any value.

SESSION TIMEOUT Specifies the number of seconds that elapse
before a session expires. The default session
timeout is 900 (15 minutes).

Details
The STPSRVSET function takes one character string property and one numeric string
property and returns a numeric string result. The return code is zero for success,
nonzero for failure.

Examples

SAS Statements

rc=stpsrvset(’session timeout’,900);

rc=stpsrvset(’program error’,256);

STPSRV_HEADER Function

Adds or modifies a header

Category: Character

Syntax
STPSRV_HEADER(Header Name,Header Value)

Note: The APPSRV_HEADER function can be used instead of STPSRV_HEADER.
This feature is provided in order to enable you to convert existing SAS/IntrNet
programs to stored processes. �

40 STPSRV_HEADER Function � Chapter 2

Arguments

Header Name
is the name of the header to set or reset.

Header Value
is the new value for the header.

For a list of commonly used HTTP headers, see “Using HTTP Headers” on page 85.

Details
The STPSRV_HEADER function enables automatic header generation. You can add a
header to the default list or modify an existing header from the list. When you modify
the value of an existing header, the old value becomes the return value of the function.

The automatic HTTP header generation feature recognizes Output Delivery System
(ODS) output types and generates appropriate default content-type headers. If no
content type is specified with STPSRV_HEADER, then ODS is not used and no HTTP
header is written to _WEBOUT. A default Content-type: text/html header is
generated.

Examples

SAS Statements Resulting Headers

No calls to stpsrv_header Content-type: text/html

/* add expires header */
rc = stpsrv_header(’Expires’,’Thu,
18 Nov 1999 12:23:34 GMT’);

Content-type: text/html
Expires: Thu, 18 Nov 1999
12:23:34 GMT

/* add expires header */
rc = stpsrv_header(’Expires’,’Thu,
18 Nov 1999 12:23:34 GMT’);

/* add pragma header*/
rc = stpsrv_header(’Cache-control’,
’no-cache’);

Content-type: text/html
Expires: Thu, 18 Nov 1999
12:23:34 GMT

Cache-control: no-cache

/* add expires header */
rc = stpsrv_header(’Expires’,’Thu,
18 Nov 1999 12:23:34 GMT’);

/* add pragma header*/
rc = stpsrv_header(’Cache-control’,
’no-cache’);

...
/* remove expires header, rc
contains old value */

rc = stpsrv_header(’Expires’,’’);

Content-type: text/html
Cache-control: no-cache

Writing a Stored Process � STPSRV_SESSION Function 41

STPSRV_SESSION Function

Creates or deletes a session

Category: Character

Syntax
STPSRV_SESSION(’command’,<timeout>)

Note: The APPSRV_SESSION function can be used instead of STPSRV_SESSION.
This feature is provided in order to enable you to convert existing SAS/IntrNet
programs to stored processes. �

Arguments

command
is the command to be performed. Allowed values are CREATE and DELETE.

timeout
is the optional session timeout in seconds. This property is valid only when you
specify the value CREATE for the command property.

Details
The STPSRV_SESSION function creates or deletes a session. The function returns zero
for a successful completion. A nonzero return value indicates an error condition.

Examples

SAS Statements

rc=stpsrv_session(’create’, 600);

rc=stpsrv_session(’delete’);

42 STPSRV_UNQUOTE2 Function � Chapter 2

STPSRV_UNQUOTE2 Function

Unmasks quotation mark characters in an input parameter

Category: Character

Syntax
STPSRV_UNQUOTE2(paramname)

Arguments

paramname
is the character string name of the parameter.

Details
The STPSRV_UNQUOTE2 CALL routine takes the name of an input parameter (or any
global macro variable) and unmasks matched pairs of single or double quotation marks.
The CALL routine does not return a value; instead it modifies the specified macro
variable. This CALL routine can be used to selectively remove quotation marks from
stored process input parameters so that they can be used in statements that require
quotation marks.

Example

This CALL routine is typically called with %SYSCALL in open macro code, as follows:

/* MYGOPTIONS is an input parameter and might contain quotation
marks, for example: dashline=’c000000000000000’x */
%SYSCALL STPSRV_UNQUOTE2(MYGOPTIONS);

/* Quote characters are now interpreted as expected */
goptions &MYGOPTIONS;
...

43

C H A P T E R

3
Managing Stored Process
Metadata

Choosing or Defining a Server 43
Types of Servers That Host Stored Processes 43

SAS Stored Process Server 44

SAS Workspace Server 44

Using Source Code Repositories 44

Registering the Stored Process Metadata 44
Developing Stored Processes with Package Results 46

Overview 46

Create Permanent Package Results 46

Creating Transient Package Results 50

Using Prompts 50

Choosing or Defining a Server

Types of Servers That Host Stored Processes
You must choose a server to host your stored process. Servers are defined in

metadata and are actually logical server definitions that can represent one or more
physical server processes. There are many options, including pre-started servers,
servers that are started on demand, and servers that are distributed across multiple
hardware systems. You can use the Server Manager in SAS Management Console to
create or modify server definitions. For more information about server configurations,
see the SAS Intelligence Platform: Application Server Administration Guide.

Because the logical server description in metadata hides the server implementation
details, a stored process can be moved to or associated with any appropriate server
without modifying the stored process. Moving a stored process from one server to
another requires changing only the metadata association and moving the source code, if
necessary. A stored process is the combination of a SAS program, the server that hosts
that program, and the metadata that describes and associates the two. It is not possible
to create a stored process that is associated with more than one server, although it is
possible to create stored processes that share the same SAS program or source file.

Stored processes can be hosted by two types of servers: SAS Stored Process Servers
and SAS Workspace Servers. The two servers are similar, but they have different
capabilities and they are targeted at different use cases.

44 SAS Stored Process Server � Chapter 3

SAS Stored Process Server
The SAS Stored Process Server is a multi-user server. A single server process can be

shared by many clients. The recommended load-balancing configuration enables client
requests to be serviced by multiple server processes across one or more hardware
systems. This approach provides a high-performance, scalable server, but it imposes
some restrictions. Because the same server handles requests from multiple users, it
cannot easily impersonate a user to perform security checks. By default, the server
runs under a single, shared user identity (defined in metadata) for all requests. All
security checks based on client identity must be performed in the stored process. For
more information about stored process server security, see the SAS Intelligence
Platform: Application Server Administration Guide.

The stored process server implements several features that are not available on the
workspace server, including streaming output (see “Setting Result Capabilities” on page
12) and sessions (see “Using Sessions” on page 33). Stored process Web services are
supported on the stored process server only.

SAS Workspace Server
The SAS Workspace Server is a single-user server. A new server process is started

for each client. This approach is not as scalable as the load-balanced stored process
server, but it has a major security advantage. Each server is started under the client
user identity and is subject to host operating environment permissions and rights for
that client user. The workspace server also provides additional functionality, including
data access and execution of client-submitted SAS code. For more information about
workspace server security, see the SAS Intelligence Platform: Application Server
Administration Guide.

Some features that are available on the stored process server are not available on the
workspace server, as described in the previous section. Information map stored
processes are supported only on the workspace server.

Using Source Code Repositories
Stored processes are stored in external files with a .sas extension. The .sas file

must reside in a directory that is registered with the server that executes the stored
process. These directories are known as source code repositories. Source code
repositories are managed using the New Stored Process Wizard or the Stored Process
Properties dialog box in SAS Management Console. After you choose a server for your
stored process in the New Stored Process Wizard or in the Stored Process Properties
dialog box, you are presented with a list of available source code repositories. You can
choose an existing source code repository or click Manage to add or modify source code
repositories.

For z/OS, the program can be contained in an HFS .sas file or in a member of a
partitioned data set (PDS). Source code repositories can be either HFS directories or a
partitioned data set.

Registering the Stored Process Metadata
After you write the stored process and define or choose a server, you must register

the metadata by using the New Stored Process Wizard in SAS Management Console.

Managing Stored Process Metadata � Registering the Stored Process Metadata 45

(SAS Enterprise Guide users can perform the same steps within the SAS Enterprise
Guide application.) The New Stored Process Wizard can be used to create new stored
processes, or you can use the Stored Process Properties dialog box in SAS Management
Console to modify existing stored processes. You can specify and manage the following
information for stored processes:

Folder
specifies the metadata location where the stored process is registered. The folders
are defined in metadata and do not correspond to any physical location. The folder
hierarchies that are used for stored processes can also hold other objects such as
SAS reports, information maps, and administrative metadata. You can create and
modify folders using SAS Management Console.

Name
specifies the stored process name, which acts as both a display label and as part of
the URI for the stored process.

Description
specifies an optional text description of the stored process.

Keywords
specifies an optional list of keywords to associate with the stored process.
Keywords are arbitrary text strings that are typically used for searching or to
indicate specific capabilities. For example, the keyword XMLA Web Service is used
to indicate a stored process that can be executed by SAS BI Web Services by using
the XMLA calling convention.

Responsibilities
specifies one or more users who are responsible for the stored process. This
information is optional.

SAS server
specifies the server that executes the stored process. For more information, see
“Choosing or Defining a Server” on page 43.

Source Code Repository and Source File
specifies the directory and source file that contain the stored process. For more
information, see “Using Source Code Repositories” on page 44.

Results
specifies the type of output that the stored process can produce. For more
information, see “Setting Result Capabilities” on page 12.

Parameters
specifies input parameters or output parameters for the stored process.
Parameters are optional. For more information, see “Using Input Parameters” on
page 8 or “Using Output Parameters” on page 19.

Data Sources and Data Targets
specifies an optional list of data sources and data targets for the stored process.
Streams can be used to send data that is too large to be passed in parameters
between the client and the executing stored process. Definitions for data sources
and data targets can also include an XML schema specification.

Authorization
specifies access controls for the stored process. Currently only the ReadMetadata
and WriteMetadata permissions are honored. A user must have ReadMetadata
permission to execute the stored process. WriteMetadata permission is required to
modify the stored process definition.

46 Developing Stored Processes with Package Results � Chapter 3

You cannot specify authorization information from the New Stored Process
Wizard. To specify authorization information, you must open the Stored Process
Properties dialog box for an existing stored process.

This metadata is stored on the SAS Metadata Server so that it can be accessed by
client applications. For more information about using the New Stored Process Wizard
or the Stored Process Properties dialog box to create and maintain the metadata
defining a stored process, see the Help in SAS Management Console.

Note: Starting with SAS 9.2, you can register and modify the metadata for stored
processes programmatically by using a Java API. �

Developing Stored Processes with Package Results

Overview
Before SAS 9.2, when the user created a stored process by using SAS Management

Console and chose to create permanent package results, there was a Permanent
Package Details dialog box for providing the required information.

Starting with SAS 9.2, the Permanent Package Details dialog box has been removed
and the user is now responsible for providing this information by using the new prompt
framework instead. A set of shared prompt groups that contain this information has
been created for convenience.

If you have stored processes that were created in SAS 9.1.3 with package results, you
can migrate or promote these to SAS 9.2. Any necessary hidden prompts are created
automatically by the import process.

Create Permanent Package Results
To create a stored process with a permanent result package, perform the following

steps:
1 In the New Stored Process Wizard, when you are defining the stored process,

select the Package check box to specify result capabilities for the stored process.

Managing Stored Process Metadata � Create Permanent Package Results 47

2 On the Parameters page of the New Stored Process Wizard, click Add Shared to
load one of the predefined shared prompt groups for package result parameters.

3 In the Select a Shared Group or Prompt dialog box, navigate to the
Products/SAS Intelligence Platform/Samples/ folder. Select the appropriate
shared prompt group. The names of these all begin with Package. Some of these
are SAS server specific (that is, stored process server versus workspace server). So
if you chose a stored process server as the SAS server, you should choose a prompt
group ending in (STP Servers).

In the Add Prompt dialog box, click OK to accept the prompt group displayed
text. You have included a reference to the shared prompt group in your stored
process. You are not currently allowed to edit the shared prompts.

4 The prompts must be unshared to make them editable. To unshare the prompts,
select the prompt group (for example, Package --- File System with Archive
Name), and click Unshare.

48 Create Permanent Package Results � Chapter 3

Click Yes to continue. This operation gives you your own copy of the data from
the shared prompt group, so you can modify it.

5 If you have not already done so, expand the prompt group to display its members.
Double-click the first prompt to open it.

Managing Stored Process Metadata � Create Permanent Package Results 49

In this example, for the _RESULT prompt, the comment in the Description
field tells you Do not modify. Close the Edit Prompt dialog box without
modifying the prompt.

6 Open the remaining prompts in the group. In this example, _ARCHIVE_PATH is
next.

No changes are needed for the General tab. The description text tells you what
type of value needs to be supplied for this prompt.

Click the Prompt Type and Values tab.

Notice that the Default value needs to be supplied (as indicated by the text
Supply_Valid_Value). Set it to a valid value (for example, a physical path on the
file system such as C:\temp). Click OK to accept changes and close the prompt.

50 Creating Transient Package Results � Chapter 3

7 Repeat this process for the remaining prompts in the group, examining prompt
properties, and making necessary changes.

8 Click Next in the New Stored Process Wizard if you have data sources or data
targets to define. Otherwise, click Finish.

9 Create the SAS program and save it. Use the source filename and source code
repository path that you specified in the New Stored Process Wizard.

10 When the stored process is executed, the prompts in the prompt group remain
hidden, and the user does not see them. The default values that you specified
when you edited them are supplied to the server. If you want to show the prompts
at run time, then you need to make the prompt group visible. Make any or all of
the prompts visible by deselecting the Hide from user check box for each prompt
and prompt group.

The SAS code in the previous step writes a SAS package file under the C:\temp
folder. This package can be opened with WinZip. This content is also returned back to
the calling client as HTML.

Creating Transient Package Results
If transient package results are desired, select Package as the result capability in the

New Stored Process Wizard. None of the special shared prompt groups needs to be
added to the stored process. The SAS code returns the package content to the caller
when the stored process is executed, but it is not to be written or published to any of
the permanent destinations.

Using Prompts
Input parameters are defined in SAS Management Console as prompts. You can add

prompts or prompt groups when you are using the New Stored Process Wizard to
register a new stored process or when you are viewing properties for a currently
registered stored process. The following features are available with prompts:

dynamic prompts
Dynamic prompts allow the lookup of possible prompt values from a data source
such as a SAS data set or information map.

dependencies between prompts
When you create a set of prompts, you sometimes want the prompts to be
interrelated. You might want the values of one prompt to depend on the value that
is selected for another prompt. In that case, you would want to set up
dependencies between the prompts.

For example, you have a prompt whose values are the names of the divisions in
your organization. You also have a prompt whose values are the names of the
departments in those divisions. If you want the end user to see only the
departments for the selected division, then you set the department prompt to be
dependent on the division prompt. After you select a value for the division prompt,
the department prompt is then populated with only the names of the departments
from that division.

shared prompts and prompt groups
A shared prompt is a prompt that is stored in a shared location and that can be
accessed by multiple users, applications, and software features. Prompt groups
can also be shared. Sharing prompts is helpful when that prompt is complex or

Managing Stored Process Metadata � Using Prompts 51

when you might need to reuse that prompt (perhaps in other applications or
contexts). The following examples are good candidates for sharing:

� dynamic prompts with complex configurations
� sets of cascaded prompts
� groups of prompts that are often reused (like chart options)

selection groups
Use a selection group when you want the user to choose from several prompt
groups. Selection groups contain selection-dependent groups. Each
selection-dependent group is displayed as one of the selections for its parent
selection group. The contents (subgroups and prompts) of a selection-dependent
group are displayed to the end user only after the user selects that group for the
parent selection group. For example:

1 A user is given a choice of Laptop or Desktop for a computer type prompt.
2 If the user selects Laptop as the value of the computer type prompt, then the

user receives prompts for Battery Type, Hard Drive Size, and Processor
Speed.

3 If the user selects Desktop as the value of the computer type prompt, then
the user receives prompts for Hard Drive Size, Processor Speed, and
Type of Keyboard.

When you run a stored process that contains prompts, one or more macro variables is
generated for each prompt. The values that are specified for the prompts at run time
are assigned to the generated macro variables. When a prompt generates more than one
macro variable, suffixes such as _REL, _MIN, and _MAX are appended to the prompt
name to create unique names for these macro variables. Because macro variables are
limited to 32 characters in length, you must use caution when specifying a prompt
name. If a suffix of _REL (4 characters long) is added to the prompt name to generate a
macro variable, then you should not specify a prompt name that is more than 28
characters long. For more information about how macro variables are generated and
the suffixes that are used, see the prompt Help in SAS Management Console.

For more information about input parameters in stored processes, see “Using Input
Parameters” on page 8. For more information about how to specify values for prompt,
and macro variables that are generated by prompts, see Appendix 3, “Formatting
Prompt Values and Generating Macro Variables from Prompts,” on page 131. For more
information about prompt types and defining prompts, see the prompt Help in SAS
Management Console.

52

53

C H A P T E R

4
Debugging Stored Processes

Examining the SAS Log 53
Using SAS Options 53

Examining the SAS Log

The client interfaces that are provided to stored processes usually include a
mechanism for retrieving the SAS log from a stored process. For example, passing the
input parameter _DEBUG=LOG to the SAS Stored Process Web Application causes the
SAS log to be returned with the stored process output. The SAS log is directly
accessible from the Stored Process Service API. Assuming that your installation is
configured correctly, most run-time stored process errors will appear in the SAS log.

If you are unable to access the SAS log from the client interface, you might be able to
access the SAS log from the server log files. The server administrator controls the level
of server logging that is used and the location of the server log files. Server log options
vary depending on the server type.

Stored process and workspace servers enable you to capture the SAS log for each
stored process in the server log. To enable logging for the server, perform the following
steps:

1 In the .../Lev1/SASApp/StoredProcessServer/ directory, rename the
logconfig.xml file as logconfig_orig.xml.

Note: For a workspace server, this file is located in the .../Lev1/SASApp/
WorkspaceServer/ directory. �

2 Make a copy of the logconfig.trace.xml file (which is located in the same
directory), and name the copy logconfig.xml.

3 Restart the Object Spawner.

Note: If you enable logging for the workspace server, then all users who run
workspace server requests must have write access to the location where the log files are
written (because the workspace server runs under the client user’s account). �

For more information about SAS logging, see SAS Logging: Configuration and
Programming Reference.

Using SAS Options

Several SAS options can help you debug problems in your stored processes. If you
can return the SAS log to your Web browser, then activating some of these options can

54 Using SAS Options � Chapter 4

make that log more useful. If you are debugging a stored process that contains macro
code, you should supply one or more of these options at the beginning of your stored
process: MPRINT, SYMBOLGEN, MLOGIC, or MERROR.

If, for security reasons, you have disabled the display of submitted source code in your
stored process by using the NOSOURCE option when you are debugging, you should
enable this feature by supplying the SOURCE option. You can then see your submitted
SAS code in the log that is returned to your Web browser. After you are finished
debugging, you can revert to using NOSOURCE if your security model requires it.

55

C H A P T E R

5
Building a Web Application with
SAS Stored Processes

Overview 56
Overview of Stored Process Web Applications 56

How the SAS Stored Process Web Application Works 57

Configuring the SAS Stored Process Web Application 58

Configuration Files 58

Custom Responses 58
Initialization Parameters 59

Web Application Properties 61

Specifying Web Application Input 65

Overview of Web Application Input 65

Specifying Input Parameters in a URL 65

Specifying Name/Value Pairs in an HTML Form 66
Specifying Custom Input Forms 67

Specifying Prompt Pages 68

Uploading Files 68

Overview of Uploading Files 68

Reserved Macro Variables 69
Examples of How to Upload Files 70

Example 1: Uploading a Single File 70

Example 2: Uploading Multiple Files 72

Examples of How to Use Uploaded Files 74

Example 3: Uploading a CSV File to a SAS Table 74
Example 4: Uploading an Excel XML Workbook to Multiple SAS Tables 75

Example 5: Uploading a SAS Table or View 75

Example 6: Uploading a SAS Catalog 76

Example 7: Uploading a SAS Table, View, or Catalog and Saving a Permanent Copy 76

Example 8: Uploading an Excel Workbook to a SAS Table 76

Authentication in the Stored Process Web Application 77
Logon Manager and Basic Authentication 77

Anonymous Access 77

Other Authentication Options 78

Using the SAS Stored Process Web Application Pages 78

Welcome Page 78
Tree View 79

Stored Process Summary Page 80

Custom Input Form 81

Prompt Page 83

Execution Options 84
Using HTTP Headers 85

Overview of HTTP Headers in Stored Processes 85

Commonly Used Headers 86

56 Overview � Chapter 5

Content-type 86
Expires 87

Location 88

Pragma 88

Set-Cookie 89

Status-Code 89
Embedding Graphics 89

Embedding Graphics in Web Pages 89

Generating Direct Graphic Output 92

Chaining Stored Processes 93

Why Chain Stored Processes? 93

Passing Data Through Form Fields or URL Parameters 94
Passing Data Through Cookies 97

Passing Data Through Sessions 97

Using Sessions in a Sample Web Application 98

Overview of the Sample Web Application 98

Sample Data 98
Main Aisle Stored Process 98

Aisles Stored Process 100

Add Item Stored Process 101

Shopping Cart Stored Process 102

Logout Stored Process 104
Error Handling 106

Debugging in the SAS Stored Process Web Application 107

Testing the SAS Stored Process Web Application 107

List of Valid Debugging Keywords 108

Setting the Default Value of _DEBUG 108

Overview

Overview of Stored Process Web Applications
Stored processes are frequently used in Web-based applications. While almost any

stored process can be executed through a Web interface, the typical Web application
design might require special techniques. This chapter documents special issues that
you might encounter when building a Web application.

Web applications are typically implemented by streaming output stored processes.
Streaming output stored processes deliver their output through the _WEBOUT fileref.
You can write directly to the _WEBOUT fileref by using PUT statements, or you can
use the Output Delivery System (ODS) to generate output. The example code
throughout this chapter demonstrates both approaches. Streaming output is supported
by the stored process server only. The workspace server is not an appropriate host for
many Web applications.

Web applications can be implemented using the SAS Stored Process Web Application,
the Stored Process Service application programming interface (API), or a combination of
both. The SAS Stored Process Web Application is a Java middle-tier application that
executes stored processes on behalf of a Web client. Only SAS and HTML programming
skills are required; no Java programming is required. Most of the examples in the
remainder of this chapter assume the use of the SAS Stored Process Web Application.
The Stored Process Service API enables the Java developer to embed stored processes
within a Java Web application.

Building a Web Application with SAS Stored Processes � How the SAS Stored Process Web Application Works 57

How the SAS Stored Process Web Application Works
The SAS Stored Process Web Application is a Java Web application that can execute

stored processes and return results to a Web browser. The SAS Stored Process Web
Application is similar to the SAS/IntrNet Application Broker, and it has the same
general syntax and debugging options. The SAS Stored Process Web Application is
included with the SAS Web Infrastructure Platform, which is a component of SAS
Integration Technologies.

Request processing for the SAS Stored Process Web Application is similar to SAS/
IntrNet Application Dispatcher request processing. Here’s how the SAS Stored Process
Web Application processes a request:

1 Users enter information in an HTML form by using their Web browser and then
submitting it. The information is passed to the Web server, which invokes the first
component, the SAS Stored Process Web Application.

2 The SAS Stored Process Web Application accepts data from the Web server and
contacts the SAS Metadata Server for user authentication and retrieval of stored
process information.

3 The stored process data is then sent by the SAS Stored Process Web Application to
a stored process server through the object spawner.

4 The stored process server invokes a SAS program that processes the information.
5 The results of the SAS program are sent back through the Web application and

Web server to the Web browser of the user.

The following diagram illustrates this process:

58 Configuring the SAS Stored Process Web Application � Chapter 5

Configuring the SAS Stored Process Web Application

Configuration Files
The SAS Stored Process Web Application can be customized for your site through

various configuration files and servlet initialization parameters. The following table
describes the external files that are read by the SAS Stored Process Web Application.

Table 5.1 Configuration Files

File Description

application_config.xml Contains user information for the SAS Metadata
Repository and is delivered in the
sas.storedprocess.war file.

banner.jsp Is used to generate the top banner in the SAS
Stored Process Web Application pages. This file
is located in the /SASStoredProcess/jsp
directory and can be altered or replaced if you
want to customize the banner.

Params.config Contains stored process input parameters that
are set before any client parameters are
processed. The parameters are defined in the
form name=value on a separate line with a ’#’
character in column one to indicate a comment.
Continuation lines can be specified with a ’\’
character at the end of a line. For more
information about properties that can be
substituted into input parameters in the
Params.config file, see “Web Application
Properties” on page 61. Parameters defined in
the Params.config file cannot be overridden.

resources.properties Contains name/value pairs for locale-defined
output strings. This file is delivered in the
sas.storedprocess.webapp.jar file and is usually
not altered.

web.xml Contains servlet mappings and initialization
parameters. This file is the Web application
configuration file and is delivered in the
sas.storedprocess.war file.

Welcome.html

Welcome.jsp

Specifies an optional page that displays when
the SAS Stored Process Web Application is
invoked with no parameters.

Custom Responses
You can also customize responses for the SAS Stored Process Web Application by

using the JSP files that are described in the following table. The JSP files are stored in

Building a Web Application with SAS Stored Processes � Initialization Parameters 59

the /SASStoredProcess/jsp/response/ directory, and the Web application forwards
to the corresponding file.

Table 5.2 Custom Responses

File Description

Background.jsp Specifies a page that displays when a stored
process has been submitted for background
processing.

FailedLogin.jsp Specifies a page that displays when a bad user
name or password is entered for /do1 login types.

InvalidSession.jsp Specifies a page that displays when an invalid or
expired session ID is sent. This file is used only
with _REPLAY sessions.

Logoff.jsp Specifies a page that displays when a successful
logoff is completed for /do1 login types.

Initialization Parameters
The following table describes the initialization parameters that are available to the

SAS Stored Process Web Application. Initialization parameters are values that are set
when the SAS Stored Process Web Application is started. These parameters control
various Web Application processing options. Initialization parameters are defined in the
SAS Stored Process Web Application configuration metadata. Values can be added or
changed in SAS Management Console. On the SAS Management Console Plug-ins tab,
click Application Management. Open Configuration Manager, right-click Stored
Process Web App 9.2, and select Properties. Select the Advanced tab, and add or
edit the initialization parameters.

Note: The Web server and Remote Services must be restarted for parameter
changes to take effect. �

Table 5.3 Initialization Parameters

Initialization Parameter Description

ActionMask Specifies the _ACTION values that users can
set. The default is to allow all keywords. Valid
names can be specified as a comma-separated
list.

AllowEncodedPassword Allows encoded passwords to be passed in via
the _PASSWORD parameter if the
AllowEncodedPassword parameter is set to
true.

AllowGuest Enables a user to run stored processes without
logging in if this parameter is set to true.

BannerRows Specifies the number of rows sent in the tag for
the banner frame. (For _ACTION=INDEX, three
HTML frames are created with the top frame
being the banner frame.) By default, the size of
the banner frame is dynamically adjusted to the
size of the displayed banner.

60 Initialization Parameters � Chapter 5

Initialization Parameter Description

Debug Specifies default _DEBUG values.

DebugMask Specifies the _DEBUG values that users can set.
The default is to allow all keywords. Valid names
can be specified as a comma-separated list.

GuestUsername Specifies the user name to use when accessing
the SAS Stored Process Web Application as
/guest.

GuestPassword Specifies the password to use when accessing the
SAS Stored Process Web Application as /guest.

ParamsFile Specifies the file that contains the preset input
parameters. This value is a fully expanded file
specification. The default preset filename is
Params.config in the SAS Stored Process Web
Application root context directory.

SessionTimeout Specifies the number of minutes that elapse
before a servlet session expires. The default
session timeout varies by Application Server
(typically 30-60 minutes). After the session
expires, the user is required to log on again.
Any data that was entered on the prompt page
will need to be reentered.

ShowLogButton Disables the Show SAS log button from being
displayed on program errors (if this parameter is
set to false).

UploadDirectory Specifies a temporary directory for caching files
when the file size exceeds 32768 bytes. The
default directory is java.io.tmpdir.

UploadMaxSize Specifies the maximum file size in bytes that can
be uploaded.

Building a Web Application with SAS Stored Processes � Web Application Properties 61

Initialization Parameter Description

ValidatePromptValues Forces constraint checking, static list validation,
or dynamic list validation on a stored process, if
the ValidatePromptValues parameter is set to
true. By default, this parameter is set to false.

WelcomePage Specifies an HTML page to display if no
parameters are entered in the URL. If the
value that you specify is a JSP file, then it
should be relative to the root context (for
example, /jsp/Welcome.jsp). Otherwise,
the value that you specify should be a fully
expanded file specification. The SAS Stored
Process Web Application uses the following
sequence to determine what is displayed
when the user logs in:

1 Use the value of the WelcomePage
initialization parameter, if this value
has been set.

2 Check for a Welcome.jsp file in the
/jsp directory.

3 Check for a Welcome.html file in the
SAS Stored Process Web Application
root context directory.

4 Display the SAS Stored Process Web
Application version and build number.

Web Application Properties
Various reserved values, or properties, are available to be passed as input

parameters to stored processes that are executed by the SAS Stored Process Web
Application. To pass a property to every stored process that is executed by the SAS
Stored Process Web Application, add a line of the form name=$reserved_name to the
Params.config file. For example, to add request cookie information as an input
parameter, add the following line to Params.config:

_HTCOOK=$servlet.cookies

The input parameter _HTCOOK is created, and it contains the HTTP header cookie
data. The _HTCOOK parameter is added to the input parameters for the stored process.

Fixed data values can also be passed by using the form name=string. For example,
the following line sets the parameter MYPARM to the fixed string Hello:

MYPARM=Hello

Note: Any unresolved values can result in the corresponding parameter being set
to a zero-length string. �

62 Web Application Properties � Chapter 5

Table 5.4 Properties for Web Applications

Reserved Name
Recommended SAS Variable
Name Description

servlet.auth.type _AUTHTYP Specifies the name of the
authentication scheme that is
used to protect the SAS Stored
Process Web Application (for
example, BASIC or SSL, or null
if the SAS Stored Process Web
Application was not protected).

servlet.character.encoding Specifies the name of the
character encoding that is used
in the body of the request.

servlet.content.length Specifies the length, in bytes,
of the request body and is
made available by the data
source. If the length is not
known, the value is –1.

servlet.content.type Specifies the MIME type of the
body of the request. If the type
is not known, the value is null.

servlet.context.path Specifies the portion of the
request URL that indicates the
context of the request.

servlet.cookies _HTCOOK Specifies all of the cookie
strings that the client sent
with this request.

servlet.header Specifies the HTTP request
header as it was received by
the SAS Stored Process Web
Application.

servlet.header.accept _HTACPT Specifies the MIME types that
are accepted by the stored
process client.

servlet.header.referer _HTREFER Specifies the address of the
referring page.

servlet.header.user-agent _HTUA Specifies the name of the user
agent.

servlet.header.<name> Specifies a particular HTTP
request header line as it was
received by the SAS Stored
Process Web Application,
where <name> is the header
keyword name.

servlet.info Specifies any information
about the SAS Stored Process
Web Application, such as
author, version, and copyright.

Building a Web Application with SAS Stored Processes � Web Application Properties 63

Reserved Name
Recommended SAS Variable
Name Description

servlet.jsessionid Specifies the Java servlet
session ID.

servlet.locale Specifies the preferred locale in
which the client will accept
content, based on the
Accept-Language header.

servlet.method _REQMETH Specifies the name of the
HTTP method with which this
request was made (for
example, GET, POST, or PUT).

servlet.name Specifies the name of this SAS
Stored Process Web
Application instance.

servlet.path Specifies the part of the request
URL that calls the SAS Stored
Process Web Application.

servlet.path.info Specifies any extra path
information that is associated
with the URL that the client
sent when it made this request.

servlet.path.translated Specifies any extra path
information after the SAS
Stored Process Web Application
name but before the query
string, and translates this
information to a real path.

servlet.protocol _SRVPROT Specifies the name and version
of the protocol that the request
uses in the form protocol/
majorVersion.minorVersion (for
example, HTTP/1.1).

servlet.query.string _QRYSTR Specifies the query string that
is contained in the request
URL after the path.

servlet.remote.addr _RMTADDR Specifies the Internet Protocol
(IP) address of the client that
sent the request.

servlet.remote.host _RMTHOST Specifies the fully qualified
name of the client that sent the
request, or specifies the IP
address of the client if the
name cannot be determined.

64 Web Application Properties � Chapter 5

Reserved Name
Recommended SAS Variable
Name Description

servlet.remote.user _RMTUSER Specifies the login ID of the
user that is making this
request if the user has been
authenticated. If the user has
not been authenticated, the
value is null.

servlet.request.uri _URL Specifies the part of this
request’s URL from the
protocol name up to the query
string in the first line of the
HTTP request.

servlet.root Specifies the SAS Stored
Process Web Application root
context directory.

servlet.scheme Specifies the name of the
scheme that was used to make
this request (for example,
HTTP, HTTPS, or FTP).

servlet.secure Returns true or false
indicating whether this request
was made using a secure
channel, such as HTTPS.

servlet.server.name _SRVNAME Specifies the host name of the
server that received the
request.

servlet.server.port _SRVPORT Specifies the port number on
which this request was
received.

servlet.server.software _SRVSOFT Specifies the Web server
software.

servlet.user.name _USERNAME Specifies the value for the user
name that was obtained from
the Web browser
authentication. The symbol
_USERNAME is set
automatically by the SAS
server.

servlet.version _VERSION Specifies the SAS Stored
Process Web Application
version and build number.

Numerous system properties (for example, user.name) can be obtained. Setting
_DEBUG to ENV shows all the available values.

Building a Web Application with SAS Stored Processes � Specifying Input Parameters in a URL 65

Specifying Web Application Input

Overview of Web Application Input
A Web application that uses stored processes must have a way of sending input

parameters to the stored processes. Input parameters are typically generated by an
HTML page and passed through the Stored Process Web Application or a user-written
JSP to the stored process. Input parameters can be specified in the following:

� fields in an HTML form. The user provides the required information and submits
the request. The Web browser sends data from the form (including both
user-entered data and hidden fields) to the server. HTML forms are generally used
where user input is required to control the execution of the stored process.

� a hypertext link in an anchor tag. The link URL includes parameter values that
are passed to the server when the user selects the link. Hypertext links are
generally used where the input parameters have fixed values (for example, as
drill-down links in a table or image).

� an inline image or other embedded link in the HTML page. This case also includes
frames within an HTML frameset. In most cases, the Web browser fetches the
embedded object when the user loads the HTML page. Fetching the embedded
object can cause input parameters to be passed to a stored process.

� URLs or forms that are created and submitted by JavaScript or a similar scripting
technology in the Web browser.

The HTML page that uses these techniques can be a static HTML page or a dynamic
page that is generated on demand by another stored process or by a Java Server Page
(JSP). In all cases, the input parameters must follow the naming conventions and other
basic rules that are described in “Using Input Parameters” on page 8. Reserved
parameter names should be used only as recommended. For more information, see
“Using Reserved Macro Variables” on page 20. Reserved parameter names should be
used only as recommended.

The SAS Stored Process Web Application is set up to use the SanitizingRequestFilter
to check for invalid requests. If an invalid input string (for example, <script>) is found
in input parameters, then a status code 403 is returned to the Web browser. For more
information about this filter, see the SAS Intelligence Platform: Web Application
Administration Guide.

All of the previously mentioned techniques for specifying input parameters rely on
URLs or HTML forms. The following sections discuss how parameters are passed in
both cases. These sections assume the use of the Stored Process Web Application. JSPs
will generally use similar conventions, but the details are determined by the author of
the JSP.

Specifying Input Parameters in a URL
You can specify input parameters as a sequence of name/value pairs in a URL by

using the query string syntax. For example, the following URL specifies two name/
value pairs.

http://yourserver/SASStoredProcess/do?
_program=/WebApps/Sales/Weekly+Report®ion=West

66 Specifying Name/Value Pairs in an HTML Form � Chapter 5

The URL specifies your server, an absolute path to your Stored Process Web
Application, and the query string (following the question mark character). Each name
in the query string is separated from the following value by an equal sign (=). Multiple
name/value pairs are separated by ampersand characters (&). In this example,
_program=/WebApps/Sales/Weekly+Report is the reserved input parameter that
specifies the stored process that is to be executed. The second name/value pair
(region=West) is another input parameter to be passed to the stored process.

There are special rules for the formatting of name/value pairs in a URL. Special
characters (such as most punctuation characters, including spaces) in a value must be
URL-encoded. Spaces can be encoded as a plus sign (+) or %20. Other characters are
encoded using the %nn convention, where nn is the hexadecimal representation of the
character in the ASCII character set. In the previous example, the value /WebApps/
Sales/Weekly+Report actually identifies the stored process named "Weekly Report".
The space in the name is encoded as a plus sign (+). If your parameter values contain
special characters, then it is important that they are URL-encoded. Use the
URLENCODE DATA step function when creating URLs in a stored process.

URLs are typically used in an HTML tag attribute, and this might require extra
encoding to be properly interpreted. The ampersand characters that are used in the
URL query string can cause the Web browser to interpret them as HTML markup. The
parameter ®ion=West is interpreted as ®ion=West in some Web browsers. Use
HTML encoding to avoid this problem. The following example shows the correct HTML
code:

<A HREF="http://yourserver/SASStoredProcess/do?
_program=/WebApps/Sales/Weekly+Report&region=West">

The HTMLENCODE DATA step function can be used to encode the URL in a stored
process. If we assume that the variable myurl contains a URL with various input
parameters, then the following code creates an anchor tag in the variable atag that is
properly encoded:

atag = ’<A HREF="’ || htmlencode(myurl,
’lt gt amp quot’) || ’">’;

Note that some Web browsers and Web servers might impose a limit on the total
length of a URL. URLs with many parameter values that exceed this limit can be
truncated without warning, which results in incomplete or inconsistent input data for
your stored process. URL length limits are not well documented and might require
experimentation with your particular configuration.

For information about specifying multiple values for an input parameter, see “Input
Parameters with Multiple Values” on page 11.

Specifying Name/Value Pairs in an HTML Form
HTML forms provide the most versatile mechanism for sending input parameters to

a stored process. A form definition begins with the <FORM> tag and ends with the
</FORM> tag. Between these two tags, other HTML tags define the various components
of the form, including labels, input fields, selection lists, push buttons, and more. Here
are some issues that are related to stored process input parameters in HTML forms:

� The ACTION attribute of the <FORM> tag generally points to the Stored Process
Web Application or a JSP that will execute the stored process. The METHOD
attribute of the <FORM> tag can be set to GET or POST.

� The GET method causes the Web browser to construct a URL from all of the field
values in the form. The URL will be exactly like the URLs that were discussed in
the previous section. The GET method enables the user to bookmark a specific
stored process execution, including all input parameters, but the total length of all

Building a Web Application with SAS Stored Processes � Specifying Custom Input Forms 67

parameters might be limited. Web servers typically log all requested URLs, and
this method causes all input parameters to be included in the Web server log,
which can be a possible security issue.

� The POST method uses a special post protocol for sending the parameters to the
server. The POST method allows an unlimited number of input parameters and
usually hides them from the Web server log, but this method does not allow the
execution to be bookmarked in a Web browser.

Hidden fields are name/value pairs in a form that do not appear as buttons, selection
lists, or other visible fields on the HTML page. Hidden fields are frequently used to
hold fixed input parameters that do not require user input. For example, the following
code specifies the stored process to be executed by this form.

<INPUT TYPE="hidden"
NAME="_program" VALUE="/WebApps/Sales/Weekly Report">

The space in the stored process name is not encoded as in the previous URL section.
Values in hidden fields and other field types should not be URL-encoded, but might still
need to be HTML-encoded if they contain HTML syntax characters such as a less than
sign (<), a greater than sign (>), an ampersand (&), or quotation marks (").

Specifying Custom Input Forms
The SAS Stored Process Web Application looks for a custom input form if you add the

parameter _ACTION=FORM to the Web application URL. Custom input forms are JSPs
under the input folder in the SASStoredProcess directory. For example, the Shoe
Sales by Region sample stored process can be accessed with the following code:

http://yourserver/SASStoredProcess/do?
_program=/Samples/Stored+Processes/
Sample:+Shoe+Sales+by+Region&_action=form

Your Web browser will be forwarded as shown here:

http://yourserver/SASStoredProcess
/input/Samples/Stored_Processes/
Sample__Shoe_Sales_by_Region.jsp?
_program=/Samples/Stored+Processes/
Sample:+Shoe+Sales+by+Region

Note: If a custom input form with zero length is found, then the form will be
skipped and the stored process will execute immediately. �

In order to create the input form path and name, all names in the stored process
path (both folders and the stored process itself in the _PROGRAM parameter) are
converted to an equivalent file system path for a JSP file. The following special
characters in a folder or stored process name are converted to underscore characters:
’ " ;: * ? < >\ | tabs and blank spaces.

For example:

/Samples/John’s Test Area/Test: Hello World (English) V1.0

would be converted to:

<webapp-home>/input/Samples/John_s_Test_Area/
Test__Hello_World_(English)_V1.0.jsp

For more information about the SAS Stored Process Web Application and custom
input forms, including a sample form, see “Custom Input Form” on page 81.

68 Specifying Prompt Pages � Chapter 5

Custom input forms are provided with most of the sample stored processes that are
included in the SAS Web Infrastructure Platform. Custom input form JSP files should
be deployed from the Stored Process Web Application configuration area. Consider a
stored process with the following name and location:

/Reports/East Region/Sales Summary 2005

This stored process has a custom input form with the filename
Sales_Summary_2005.jsp. It is maintained and deployed from the following location:

<configuration-directory>\Web\Common\SASServer1\SASStoredProcess9.2\CustomContent\wars\
sas.storedprocess\ input\Reports\East_Region

Custom input forms should be deployed as part of the sas.storedprocess.war file. The
sas.storedprocess.war file is built and deployed by the SAS Web Infrastructure Platform
redeployment process.

Note: The SAS Stored Process Web Application is delivered in an EAR file and can
be run directly from the EAR file or from the exploded directory. For more information
about how to explode the EAR file, see the SAS Intelligence Platform: Web Application
Administration Guide. �

Specifying Prompt Pages
Prompt pages provide a parameter input page for stored processes that do not have

custom input forms. The prompt page is accessed by adding the parameter
_ACTION=PROPERTIES to the Web application URL. Parameters must be defined in
the stored process metadata in order for them to be visible in a prompt page. For more
information about the SAS Stored Process Web Application and prompt pages, see
“Using the SAS Stored Process Web Application Pages” on page 78.

If you are unsure whether a stored process has a custom input form, you can specify
_ACTION=FORM,PROPERTIES,EXECUTE on the Web application URL. This is the
default action for a stored process accessed from the SAS Information Delivery Portal.
This action causes the Web application to do the following:

� display the custom input form if it exists
� display the prompt page if the input form does not exist and the stored process has

prompts defined
� execute the stored process if there is no custom input form and there are no

prompts defined

Uploading Files

Overview of Uploading Files
You can use the SAS Stored Process Web Application to upload one or more files to

your SAS Stored Process Server. The upload process is initiated by a custom input form
that contains an INPUT tag with the attribute TYPE set to file:

<input type="file" name="myfile">

This tag enables you to specify the file that you want to upload. For more
information, see “Specifying Custom Input Forms” on page 67. After the form data is
submitted, the file you chose and any other name/value pairs that are contained in the
custom input form are sent to the stored process server. Your stored process can then
use both the name/value pairs and the file that was uploaded.

Building a Web Application with SAS Stored Processes � Reserved Macro Variables 69

Note: You cannot upload files to SAS Workspace Servers. �

Reserved Macro Variables
The reserved SAS macro variables that are associated with uploading files all start

with _WEBIN_.

_WEBIN_CONTENT_LENGTH
specifies the length, in bytes, of the file that was uploaded.

_WEBIN_CONTENT_TYPE
specifies the content type that is associated with the file.

_WEBIN_FILE_COUNT
specifies the number of files that were uploaded. If no files were uploaded, then
the value of this variable will be set to zero.

_WEBIN_FILEEXT
specifies the extension of the file that was uploaded.

_WEBIN_FILENAME
specifies the original location of the file.

_WEBIN_FILEREF
specifies the SAS fileref that is automatically assigned to the uploaded file. You can
use this fileref to access the file. The uploaded file is stored in a temporary location
on the stored process server, and will be deleted when the request is completed. Be
sure to copy the file to a permanent location if you need to access it at a later date.

_WEBIN_NAME
specifies the value that is specified in the NAME attribute of the INPUT tag.

_WEBIN_SASNAME
specifies a unique name for the SAS table, view, or catalog that was uploaded. A
value is set for this macro variable only if a SAS table, view, or catalog was
uploaded. All SAS data types are stored in the Work library. The type of SAS file
that was uploaded is stored in the _WEBIN_SASTYPE macro variable. See also
_WEBIN_SASNAME_ORI.

_WEBIN_SASNAME_ORI
specifies the original name of the SAS table, view, or catalog that was uploaded. If
a SAS table named mydata.sas7bdat was uploaded, then
_WEBIN_SASNAME_ORI contains the value mydata. A value is set for this macro
variable only if a SAS table, view, or catalog that was uploaded. All SAS data
types are stored in the Work library. The type of SAS file that was uploaded is
stored in the _WEBIN_SASTYPE macro variable. See also _WEBIN_SASNAME.

_WEBIN_SASTYPE
specifies the type of SAS file that was uploaded: DATA for SAS tables, VIEW for
SAS views, and CATALOG for SAS catalogs. A value is set for this macro variable
only if a SAS table, view, or catalog was uploaded. The name of the uploaded file
is stored in the _WEBIN_SASNAME macro variable.

_WEBIN_STREAM
specifies the name of the data source that was used to upload the file.

_WEBIN_STREAM_COUNT
specifies the number of files that were uploaded. If no files were uploaded, then
the value of this variable will be set to zero.

70 Examples of How to Upload Files � Chapter 5

If you are uploading more than one file, then unique macro variables will be created
for each file. This applies to all of the previous reserved macro variables except
_WEBIN_FILE_COUNT and _WEBIN_STREAM_COUNT.

Note: For z/OS, the SAS server must be invoked with the FILESYSTEM=HFS
option in order to be able to upload SAS file types. �

Examples of How to Upload Files

Example 1: Uploading a Single File
The following figure shows a custom input form that can be used to upload a single

file to the stored process server:

Here is an HTML example for uploading a single file:

<form action="StoredProcessWebApplicationURL" method="post" enctype="multipart
/form-data">

<input type="hidden" name="_program" value="/Path/StoredProcessName">
<table border="0" cellpadding="5">

<tr>
<th>Choose a file to upload:</th>
<td><input type="file" name="myfile"></td>

</tr>
<tr>

<td colspan="2" align="center"><input type="submit" value="OK"></td>
</tr>

</table>
</form>

In the preceding HTML example, you must replace
"StoredProcessWebApplicationURL" with the path to the SAS Stored Process Web
Application. This path is usually http://YourServer:8080/SASStoredProcess/do,
where YourServer corresponds to the domain name of your stored process server.
Similarly, you need to specify the path and name of the stored process that you want to
execute after the file has been uploaded. You should specify the exact values that are
shown for the METHOD and ENCTYPE attributes of the FORM tag.

The INPUT tag in the preceding HTML example is used to create the Browse button
and text entry field in the preceding figure. The appearance of this control might be
different depending on which Web browser you use, but the functionality should be the
same. Clicking the Browse button enables you to navigate to the file that you want to

Building a Web Application with SAS Stored Processes � Examples of How to Upload Files 71

upload. You can choose any file that you have access to. This example uses the file
readme.txt, which resides in the Windows directory C:\temp.

After you select a file and click OK, all form data is sent to the SAS Stored Process
Web Application, which forwards the data to the stored process server. As a result, the
following SAS macro variables are created:

Table 5.5 SAS Macro Variables

Variable Name Value Description

_WEBIN_CONTENT_LENGTH 1465 Specifies the size of the file
that was uploaded in bytes
(supplied automatically by the
Web browser).

_WEBIN_CONTENT_TYPE text/plain Specifies the content type that
corresponds to the file that
was uploaded (supplied
automatically by the Web
browser).

_WEBIN_FILE_COUNT 1 Specifies the number of files
that were uploaded.

_WEBIN_FILEEXT txt Specifies the extension of the
file that was uploaded.

_WEBIN_FILENAME C:\temp\README.txt Specifies the name and
original location of the file that
was uploaded.

_WEBIN_FILEREF #LN00197 Specifies the SAS fileref that
you can use to access the
uploaded file. This fileref is
assigned for you by the SAS
server.

_WEBIN_NAME myfile Specifies the value that
corresponds to the NAME
attribute of the INPUT tag.

Your stored process has access to the uploaded file through the fileref that is stored
in the value of the _WEBIN_FILEREF macro variable. The following code example
returns the uploaded file to the client:

* Set the Content-type header;
%let RV = %sysfunc(stpsrv_header(Content-type, &_WEBIN_CONTENT_TYPE));

* Write the file back to the Web browser;
data _null_;

length data $1;

infile &_WEBIN_FILEREF recfm=n;
file _webout recfm=n;
input data $char1. @@;
put data $char1. @@;

run;

72 Examples of How to Upload Files � Chapter 5

The preceding code example shows how to use the _WEBIN_CONTENT_TYPE macro
variable to set the content-type header. This code also shows how to use the
_WEBIN_FILEREF macro variable to access the uploaded file.

Example 2: Uploading Multiple Files
The following figure shows a custom input form that can be used to upload multiple

files to the stored process server:

Here is an HTML example for uploading multiple files:

<form action="StoredProcessWebApplicationURL" method="post" enctype="multipart/form-data">
<input type="hidden" name="_program" value="/Path/StoredProcessName">
<table border="0" cellpadding="5">

<tr>
<th>Choose a file to upload:</th>
<td><input type="file" name="firstfile"></td>

</tr>
<tr>

<th>Choose another file to upload:</th>
<td><input type="file" name="secondfile"></td>

</tr>
<tr>

<td colspan="2" align="center"><input type="submit" value="OK"></td>
</tr>

</table>
</form>

Example 2 uses the files readme.txt and winter.jpg, which reside in the Windows
directory C:\temp. Note that the two input files do not need to be in the same directory.

After you select a file and click OK, all form data is sent to the SAS Stored Process
Web Application, which forwards the data to the stored process server. As a result, the
following SAS macro variables are created:

Building a Web Application with SAS Stored Processes � Examples of How to Upload Files 73

Table 5.6 SAS Macro Variables

Variable Name Value Description

_WEBIN_CONTENT_LENGTH 1465 Specifies the size of the first file
that was uploaded in bytes
(supplied automatically by the
Web browser).

_WEBIN_CONTENT_LENGTH0 2 Specifies the number of files that
were uploaded.

_WEBIN_CONTENT_LENGTH1 1465 Specifies the size of the first file
that was uploaded in bytes
(supplied automatically by the
Web browser).

_WEBIN_CONTENT_LENGTH2 5367 Specifies the size of the second
file that was uploaded in bytes
(supplied automatically by the
Web browser).

_WEBIN_CONTENT_TYPE text/plain Specifies the content type that
corresponds to the first file that
was uploaded (supplied
automatically by the Web
browser).

_WEBIN_CONTENT_TYPE0 2 Specifies the number of files that
were uploaded.

_WEBIN_CONTENT_TYPE1 text/plain Specifies the content type that
corresponds to the first file that
was uploaded (supplied
automatically by the Web
browser).

_WEBIN_CONTENT_TYPE2 image/jpeg Specifies the content type that
corresponds to the second file
that was uploaded (supplied
automatically by the Web
browser).

_WEBIN_FILE_COUNT 2 Specifies the number of files that
were uploaded.

_WEBIN_FILEEXT txt Specifies the extension of the
first file that was uploaded.

_WEBIN_FILEEXT0 2 Specifies the number of files that
were uploaded.

_WEBIN_FILEEXT1 txt Specifies the extension of the
first file that was uploaded.

_WEBIN_FILEEXT2 jpg Specifies the extension of the
second file that was uploaded.

_WEBIN_FILENAME C:\temp\README.txt Specifies the name and original
location of the first file that was
uploaded.

74 Examples of How to Use Uploaded Files � Chapter 5

Variable Name Value Description

_WEBIN_FILENAME0 2 Specifies the number of files that
were uploaded.

_WEBIN_FILENAME1 C:\temp\README.txt Specifies the name and original
location of the first file that was
uploaded.

_WEBIN_FILENAME2 C:\temp\winter.jpg Specifies the name and original
location of the second file that
was uploaded.

_WEBIN_FILEREF #LN00014 Specifies the SAS fileref that you
can use to access the first file
that was uploaded.

_WEBIN_FILEREF0 2 Specifies the number of files that
were uploaded.

_WEBIN_FILEREF1 #LN00014 Specifies the SAS fileref that you
can use to access the first file
that was uploaded.

_WEBIN_FILEREF2 #LN00016 Specifies the SAS fileref that you
can use to access the second file
that was uploaded.

_WEBIN_NAME firstfile Specifies the value that
corresponds to the NAME
attribute of the first INPUT tag.

_WEBIN_NAME0 2 Specifies the number of files that
were uploaded.

_WEBIN_NAME1 firstfile Specifies the value that
corresponds to the NAME
attribute of the first INPUT tag.

_WEBIN_NAME2 secondfile Specifies the value that
corresponds to the NAME
attribute of the second INPUT
tag.

Examples of How to Use Uploaded Files

Example 3: Uploading a CSV File to a SAS Table
After you have uploaded a comma-separated values (CSV) file, you can use the

IMPORT procedure to import the file to a SAS table. The following sample code shows
one way of achieving this:

%let CSVFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

proc import datafile="&CSVFILE"
out=work.mydata
dbms=csv
replace;

Building a Web Application with SAS Stored Processes � Examples of How to Use Uploaded Files 75

getnames=yes;
run;

title ’First 10 records of CSV file after importing to a SAS table.’;

%STPBEGIN;
proc print data=work.mydata(obs=10); run; quit;

%STPEND;

Because the IMPORT procedure requires a full path to the CSV file, you must first
use the PATHNAME function to get the path to the file. The GETNAMES statement
uses the data in the first row of the CSV file for the SAS column names. For more
information, see the IMPORT procedure in the Base SAS Procedures Guide.

An alternative method is to write a DATA step to import the CSV file. This method
requires only Base SAS. The following code is an example of how to do this:

data work.mydata;
infile &_WEBIN_FILEREF dlm=’,’ dsd;
* Your code to read the CSV file;

run;

Example 4: Uploading an Excel XML Workbook to Multiple SAS Tables
Starting with Excel XP (Excel 2002), a workbook can be saved as an XML file. This

XML file can be read into SAS using the SAS XML LIBNAME engine and an XMLMap.
Each worksheet in the workbook will be imported to a SAS table with the same name.
The column headings in the worksheets will be used for the column names in the SAS
tables. The following code is an example of how to do this. Be sure to include the
appropriate directory paths.

%let XMLFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

* Include the XLXP2SAS macro;
%include ’loadxl.sas’;
* Import the workbook into SAS tables;
%XLXP2SAS(excelfile=&XMLFILE,

mapfile=excelxp.map);

The %INCLUDE statement makes the XLXP2SAS macro available to SAS. The
%XLXP2SAS macro imports the data from all the worksheets into separate SAS tables
with the help of an XMLMap. For more information, see the paper “Creating AND
Importing Multi-Sheet Excel Workbooks the Easy Way with SAS” at
http://support.sas.com/rnd/papers. Links are available for you to download both
the macro and the XMLMap.

Example 5: Uploading a SAS Table or View
When a SAS data type (table, view, or catalog) has been uploaded, additional

reserved macro variables are created. For example, the following macro variables will
be created if the file C:\temp\djia.sas7bdat has been uploaded:

76 Examples of How to Use Uploaded Files � Chapter 5

Table 5.7 SAS Macro Variables

Variable Name Value Description

_WEBIN_SASNAME _B3FF5FCAF39482D93793AEEF05BB15F Specifies a unique name
for the uploaded SAS
table, which is stored in
the Work library.

_WEBIN_SASNAME_ORI djia Specifies the original
name of the uploaded
SAS table.

_WEBIN_SASTYPE DATA Specifies the type of
SAS file that was
uploaded: DATA for a
SAS table; VIEW for a
SAS view.

To print the SAS table or view that has been uploaded, use the following code:

title ’First 10 records of uploaded SAS data file.’;

%STPBEGIN;
proc print data=&_WEBIN_SASNAME(obs=10); run; quit;

%STPEND;

Example 6: Uploading a SAS Catalog
You can use the following sample code to list the contents of a SAS catalog that has

been uploaded:

%STPBEGIN;
proc catalog c=&_WEBIN_SASNAME;

contents;
run; quit;

%STPEND;

Example 7: Uploading a SAS Table, View, or Catalog and Saving a
Permanent Copy

You can use the following sample code to make a permanent copy of a SAS table, view,
or catalog that has been uploaded and to retain the name of the original uploaded file:

proc datasets library=YourLibrary;
copy in=work out=YourLibrary memtype=&_WEBIN_SASTYPE;

select &_WEBIN_SASNAME;
run;

change &_WEBIN_SASNAME=&_WEBIN_SASNAME_ORI;
run;
quit;

In the preceding example of SAS code, you must replace YourLibrary with the name
of the SAS library in which you want to store the SAS table, view, or catalog.

Example 8: Uploading an Excel Workbook to a SAS Table
You can use the IMPORT procedure to import an Excel workbook file that has been

uploaded to a SAS table. The following sample code shows one way of achieving this:

Building a Web Application with SAS Stored Processes � Anonymous Access 77

%let XLSFILE=%sysfunc(pathname(&_WEBIN_FILEREF));

proc import datafile="&XLSFILE"
out=work.mydata
dbms=excel
replace ;
getnames=yes;

run; quit;

title ’First 10 records of Excel workbook after importing to a SAS table.’;

%STPBEGIN;
proc print data=work.mydata(obs=10); run; quit;

%STPEND;

Because the IMPORT procedure requires a full path to the Excel workbook, you must
first use the PATHNAME function to get the path to the file. The GETNAMES
statement uses the data in the first row of the workbook for the SAS column names.
For more information, see the IMPORT procedure in the Base SAS Procedures Guide.

Authentication in the Stored Process Web Application

Logon Manager and Basic Authentication
Starting with SAS 9.2, the default way for a user to log on to the SAS Stored Process

Web Application is to use the Logon Manager. This is the standard mechanism used by
SAS Web products. The user enters credentials in a logon dialog box. After verifying
the user credentials, the Logon Manager forwards to the URL that was entered for the
SAS Stored Process Web Application.

To log on using the same Basic authentication that was used in previous releases of
the SAS Stored Process Web Application, use the following URL:

http://yourserver.com:8080/SASStoredProcess/do1

This URL bypasses the Logon Manager and enables the SAS Stored Process Web
Application to handle the user verification. The SAS Stored Process Web Application
sends an HTTP status 401 to force the Web browser to display a logon dialog box. This
capability can be disabled by removing the servlet mapping for do1 in the web.xml
configuration file.

Anonymous Access
Starting with SAS 9.2, users can run stored processes without having to log on. A

guest user can be defined to run stored processes under a fixed account. The guest user
name and password are specified in the SAS Stored Process Web Application
initialization parameters.

The default guest account is the anonymous Web account, usually named webanon,
that was defined during the system installation. If this account was not created, or if
you want to specify a different account, then the initialization parameters
GuestUsername and GuestPassword are used to define a guest account. The encoded
value of the GuestPassword parameter can be used for the GuestPassword property
value, which can be obtained as follows:

78 Other Authentication Options � Chapter 5

PROC PWENCODE in=’’mypassword’’; run;

To enable guest access, the SAS Stored Process Web Application initialization
parameter AllowGuest must be set to true. Use the Configuration Manager in SAS
Management Console to set this parameter. Expand the Configuration Manager
group on the Plug-ins tab in SAS Management Console. Right-click the Stored
Process Web App 9.2 node and select Properties. In the Properties dialog box, click
the Advanced tab. Double-click the property value for the AllowGuest property, and
change the value to true in order to grant guest access to the Anonymous Web User.
The GuestUsername and GuestPassword initialization parameters can also be added.
To add GuestUsername and GuestPassword, click Add and enter the property name
and desired value for each.

After you modify the advanced properties for the SAS Stored Process Web
Application in the Configuration Manager, you must stop the Web application server,
restart SAS Remote Services, and then start the Web application server. A URL similar
to the following can then be used to access the SAS Stored Process Web Application by
using the guest account:

http://yourserver.com:8080/SASStoredProcess/guest

If the guest account is defined as an internal account, then any requests that use a
workspace server will fail, including prompts that use dynamically generated lists and
prompts that have dependencies.

Other Authentication Options
The values _USERNAME and _PASSWORD can be given as input parameters in the

URL in order to bypass any login dialog box. The password value can be encoded as
shown previously if the initialization parameter AllowEncodedPassword is set to true.

If a user name is defined on the host server but is not defined in metadata, then the
user is considered a member of the Public group. By default, the Public group does not
have permission to execute stored processes. You can use the Authorization Manager in
SAS Management Console to assign ReadMetadata permission to the Public group,
which will enable these users to execute stored processes. For more information about
using the Authorization Manager, see the product Help.

To allow single system sign-on, you can use Web server trusted authentication with
the Logon Manager. To set up your system for trusted authentication see the SAS
Intelligence Platform: Security Administration Guide.

To log off, the variable _ACTION=LOGOFF can be sent to SAS Stored Process Web
Application. This forces the current session to be immediately deleted, and a logoff
screen is displayed.

Using the SAS Stored Process Web Application Pages

Welcome Page
To execute the SAS Stored Process Web Application, enter the application’s URL in

the Web browser. Either the default Welcome page or static data is displayed.
Here is an example of a URL for the SAS Stored Process Web Application:

http://yourserver.com:8080/SASStoredProcess/do

In this example, if the Welcome.jsp file is installed, then the Welcome page is
displayed. The Welcome page might look like this one:

Building a Web Application with SAS Stored Processes � Tree View 79

The Welcome page contains the following links:

Stored Process Samples
Click this link to display a page of stored process samples that are installed with
the SAS Web Infrastructure Platform.

List Available Stored Processes
Click this link to display a page that contains a tree view of folders and stored
processes. You can select a stored process in the tree view in order to run the
stored process. For more information, see “Tree View” on page 79. If there are no
parameters or input forms, then the stored process will execute immediately and
the results will be displayed. If there are parameters or input forms, then you will
be taken to the custom input form or prompt page.

In the preceding example, if neither the Welcome.jsp file nor the Welcome.html page
has been installed, then static data is displayed. The static data might look like this:

Stored Process Web Application
Version 9.2 (Build 387)

Instead of navigating through this interface from the Welcome page, you can also use
the _ACTION and _PROGRAM variables in the URL to open different pages. For more
information, see “Using Reserved Macro Variables” on page 20.

Tree View
You can access the tree view of stored processes by appending the _ACTION variable

with a value of INDEX (_ACTION=INDEX) to the SAS Stored Process Web Application
URL. On the left, the tree view displays the same list of folders and stored processes
that you see if you click List Available Stored Processes on the Welcome page. However,
in this case, when you click on a stored process in the tree view, the default action is to
display the summary page for that stored process.

80 Stored Process Summary Page � Chapter 5

You can use the _PATH variable with _ACTION=INDEX to control what level the
tree view begins with. For example, if you specify _PATH=/Products/SAS Intelligence
Platform/Samples on the SAS Stored Process Web Application URL, then the Samples
folder will be at the top of the tree view.

The keywords properties, form, and execute can be added to the _ACTION
variable to control if the summary page is displayed when you select a stored process as
shown in the following examples:

_ACTION=INDEX,PROPERTIES
displays the prompt page (if available) instead of the summary page for the stored
process.

_ACTION=INDEX,FORM,EXECUTE
displays the custom input form (if available). Otherwise, the stored process will
execute.

Stored Process Summary Page
To display the summary page for a stored process, specify

_ACTION=DATA&_PROGRAM=<stored-process-path> on the SAS Stored Process Web
Application URL. (You can also add _ACTION=INDEX to the SAS Stored Process Web
Application URL and then select a stored process in order to display this page.)

The following items are included on this page:

Metadata path
specifies the location of the SAS folder that contains the stored process. You can
use this path as the value for the _PROGRAM variable. For more information, see
“Using Reserved Macro Variables” on page 20.

Source code location
specifies the source code repository, where the SAS code is located.

Source file
specifies the name of the file that contains the SAS code.

Building a Web Application with SAS Stored Processes � Custom Input Form 81

SAS server type
specifies the type of server that is used to run the stored process (either a stored
process server or a workspace server).

Created
specifies the date and time that the stored process metadata was first registered.

Last modified
specifies the date and time that the stored process metadata was last modified.

Keywords
specifies any keywords that are associated with the stored process. These
keywords are part of the stored process metadata.

Description
contains a description of the stored process. This description is part of the stored
process metadata.

To run the stored process, click Run at the bottom of the summary. If there are no
parameters or input forms, then the stored process will execute immediately and the
results will be displayed. If there are parameters or input forms, then you will be taken
to the custom input form or prompt page.

Custom Input Form
If you want the SAS Stored Process Web Application to display a custom input form

for a stored process, then you can use any of the following methods:
� On the Welcome page, click the Stored Process Samples link to display a page of

stored process samples that are installed with the SAS Web Infrastructure
Platform. Each of these samples has a link and a description. Click any of these
links to display the custom input form for that stored process.

� Use the _PROGRAM variable along with _ACTION=FORM in the URL to display
the custom input form for a stored process. For more information, see “Specifying
Custom Input Forms” on page 67.

� Select a stored process from the tree view. If the stored process has a custom input
form, then it will be displayed.

A custom input form might look like this:

82 Custom Input Form � Chapter 5

You can use the custom input form to execute the stored process. In this example,
clicking Display SAS Output generates the following results:

Building a Web Application with SAS Stored Processes � Prompt Page 83

Prompt Page
In order to display the prompt page for a stored process, you can do one of the

following:
� Use the _PROGRAM variable along with _ACTION=PROPERTIES in the URL to

display the prompt page for a stored process. For more information, see
“Specifying Prompt Pages” on page 68.

� Select a stored process from the tree view. If the stored process has parameters
but does not have a custom input form, then the prompt page will be displayed.

Note: If a stored process does not have any parameters, then it does not have a
prompt page. If you click a stored process that does not have a prompt page or a custom
input form, then the stored process is immediately executed. �

If you have defined parameters groups, then the groups are shown as items in the
menu on the left side of the prompt page. You can click each group name to display the
parameters that are in that group. A prompt page without groups might look like this:

This sample prompt page shows an example of a date range type parameter.
Parameters must be defined in the stored process metadata in order for them to be
visible in a prompt page. Parameters are called prompts in SAS Management Console.
The stored process metadata is where the name, label, type, default value, and any
constraints for a prompt are defined. Constraints help define which values are allowed
for a prompt, how many values are allowed, and so on.

The prompt type determines how that parameter is displayed in the prompt page.
You can have any of the following types of prompts in this page:

84 Execution Options � Chapter 5

� Text

� Text range

� Numeric

� Numeric range

� Date

� Date range

� Time

� Time range

� Timestamp

� Timestamp range

� Color

� Data source

� File or directory

� Data library

For more information about how to create prompts and the constraints that can be
specified for each type of prompt, see the help for prompts in SAS Management
Console. For more information about how to specify values for prompt, and macro
variables that are generated by prompts, see Appendix 3, “Formatting Prompt Values
and Generating Macro Variables from Prompts,” on page 131.

Execution Options
Execution options are delivered as a sample shared prompt group that you can add to

a stored process for use with the prompt page. Execution options are prompts that
enable you to specify the graphic device, ODS destination, ODS style, and debugging
options for a stored process at run time.

To add execution options to a stored process, perform the following steps:

1 Open the Stored Process Properties dialog box for the stored process and click the
Parameters tab.

2 Select Add Shared.

3 Under SAS Folders, navigate to /Products/SAS Intelligence Platform/
Samples.

4 Select Execution Options.

5 Click OK.

The following table contains a list of the execution options and the SAS macro
variables that they represent:

Table 5.8 Execution Options

Execution Option SAS Variable Name (Prompt Name)

Graphic device _GOPT_DEVICE

Output format _ODSDEST

ODS style _ODSSTYLE

Debug options _DEBUG

Building a Web Application with SAS Stored Processes � Overview of HTTP Headers in Stored Processes 85

Using HTTP Headers

Overview of HTTP Headers in Stored Processes

Stored process streaming output is always accompanied by an HTTP header. The
HTTP header consists of one or more header records that identify the content type of
the output and can provide other information such as encoding, caching, and expiration
directives. A streaming stored process client can use or ignore the HTTP header. The
SAS Stored Process Web Application forwards the HTTP client to the Web browser (or
other HTTP client).

HTTP headers are defined by the HTTP protocol specification (RFC 2616), which can
be found at http://www.w3.org. Each header record is a single text line consisting of
a name and a value separated by a colon (:). The following example shows records in an
HTTP header:

Content-type: text/html; encoding=utf-8
Expires: Wed, 03 Nov 2004 00:00:00 GMT
Pragma: nocache

You can set any HTTP record for your stored process output by calling the
STPSRV_HEADER function. For more information, see “STPSRV_HEADER Function”
on page 39. Typically, you must call STPSRV_HEADER before the %STPBEGIN
statement. The following DATA step function calls generate the previous example
header records:

old = stpsrv_header("Content-type",
"text/html; encoding=utf-8");
old = stpsrv_header("Expires",
"Wed, 03 Nov 2004 00:00:00 GMT");
old = stpsrv_header("Pragma", "nocache");

You can also call this function directly from SAS macro code outside a DATA step.
Note that string parameters are not enclosed in quotation marks, and macro characters
such as semicolon (;) must be masked in this case:

%let old = %sysfunc(stpsrv_header(Content-type,
text/html%str(;) encoding=utf-8);
%let old = %sysfunc(stpsrv_header(Expires,
Wed, 03 Nov 2004 00:00:00 GMT));
%let old = %sysfunc(stpsrv_header(Pragma, nocache));

Headers must be set before _WEBOUT is opened. There are several ways that
_WEBOUT can be opened. Here are some examples:

�

data _null_;
file _webout;
...;
run;

�

%STPBEGIN; * if the stored process creates streaming output;

86 Commonly Used Headers � Chapter 5

�

ods html body=_webout ... ;

Commonly Used Headers
The following are a few commonly used HTTP header records:

� Content-type

� Expires

� Location

� Pragma

� Set-Cookie

� Status-Code

Content-type
The Content-type header record is generated automatically. The value is set based

on the ODS destination that you use in your stored process. The value is determined by
looking up the ODS destination in the file types section of the SAS registry and, if
appropriate, the Windows registry. If you do not use ODS to generate the output, then
Content-type defaults to text/html. Use the STPSRV_HEADER function if you want
to override the default value. Override the value of Content-type when you want to do
any of the following:

� specify the encoding of the data. This might be important in Web applications
where the client (typically a Web browser) might expect a different encoding than
the stored process output. Examples:

Content-type: text/xml; encoding=utf-8
Content-type: text/plain; encoding=iso-8859-1
Content-type: text/html; encoding=windows-1252

� direct the output to a specific content handler. For example, HTML output can be
directed to Microsoft Excel (in later versions of Microsoft Office) by setting the
Content-type to application/vnd.ms-excel.

� override the default text/html value. Overriding this value typically occurs if you
are using ODS custom tagsets or you are not using ODS at all to generate the
output.

The following table shows commonly used Content-type values.

Table 5.9 Content Types

Content-type Description

application/octet-stream Unformatted binary data.

image/gif GIF (Graphics Interchange Format) images.

image/jpeg JPEG (Joint Photographic Expert Group) format
images.

Building a Web Application with SAS Stored Processes � Expires 87

Content-type Description

image/png PNG (Portable Network Graphics) format
images.

text/html HTML (Hypertext Markup Language).

text/plain Plain unformatted text.

text/xml XML (eXtensible Markup Language).

text/x-comma-separated-values Spreadsheet data.

Content-type values are also known as MIME types. For a list of all official MIME
types, see http://www.iana.org/assignments/media-types/. An unregistered
MIME type or subtype can be used; the value should be preceded with x-.

Expires

Web clients frequently cache HTML and other content. Accessing the same URL
might return the cached content instead of causing the output to be regenerated by the
server. Accessing the cached content is often desirable and reduces server and network
loads, but can lead to unexpected or stale data. The Expires header record enables you
to control how long a Web client will cache the content.

The Expires header record requires that the expiration time be specified in
Greenwich Mean Time (GMT) and in a particular format. A SAS picture format can be
used to create this value. Use PROC FORMAT to create a custom format as shown in
the following example:

proc format;
picture httptime (default=29)
other=’%a, %0d %b %Y %0H:%0M:%0S GMT’
(datatype=datetime);
run;

This format can be created one time and saved in a global format library, or you can
create it dynamically as needed in your stored process. The format generates a date in
this form:

Sun, 24 AUG 2003 17:13:23 GMT

DATA step functions can then be used to set the desired expiration time, adjust to
GMT, and format, as shown in the following examples:

/* Expire this page in six hours */
data _null_;
exptime = datetime() + ’6:00:00’t;
old = stpsrv_header(’Expires’,
put(exptime - gmtoff(), httptime.));
run;

/* Expire this page at the beginning of next
week (Sunday, 00:00 local time) */
data _null_;
exptime = intnx(’dtweek’, datetime(), 1);
old = stpsrv_header(’Expires’,
put(exptime - gmtoff(), httptime.));
run;

88 Location � Chapter 5

Specifying an expiration time in the past causes caching to be disabled for your
output. It is recommended that you also use the Pragma header record in this case. For
more information, see “Pragma” on page 88. Specify an expiration time far in the future
if you want your content to be cached indefinitely.

Location
The Location header record is unlike other header records. It redirects the Web

client immediately to a different URL. Generally all other header records and content
are ignored when this header record is used. Use this header to redirect the client to
another location for special conditions. For example, a stored process might redirect a
client to a Help URL if an invalid input or other error condition is detected. For
example, the following stored process redirects the Web client to a static Help page
when an error condition is detected:

%macro doSomething;

...

%if error-condition %then %do;
%let old = %sysfunc(stpsrv_header(Status-Code,300));
%let old = %sysfunc(stpsrv_header(Location,
http://myserv.abc.com/myapp/help.html));
%goto end_processing;
%end;

... normal processing ...

%end_processing:
%mend;

%doSomething;

The URL that is specified in the Location header is not limited to a static URL. It
might be a SAS Stored Process Web Application or JSP URL, and it might contain
parameters. In the preceding example, the erroneous request, complete with input
parameters, can be redirected to an error handling stored process. The error handling
stored process can examine the input parameters and generate specific error messages
and context-sensitive Help. This is one method to avoid replicating error handling or
Help material across multiple stored processes.

Note: The Status-Code header must be used to set the HTTP status before the
Location header can be used. �

Pragma
The Pragma header record is used to specify information not formally defined in the

HTTP specification. The most commonly used value is nocache. This value disables
Web client caching of content for most Web browsers. Some Web browsers require that
other headers be set in order to prevent caching. For example:

old = stpsrv_header(’Expires’,’Thu, 18 Nov 1999 12:23:34 GMT’);
old = stpsrv_header(’Cache-Control’,’no-cache,no-store’);
old = stpsrv_header(’Pragma’,’no-cache’);

Building a Web Application with SAS Stored Processes � Embedding Graphics in Web Pages 89

Set-Cookie
The Set-Cookie header record sends a cookie to the Web client to maintain

client-side state. Here is the format:

Set-Cookie: name=value; name2=
value2; ...; expires=date;
path=path; domain=domain_name; secure

where EXPIRES, PATH, DOMAIN, and SECURE are all optional. The date must be
specified in the HTTP GMT format that is described in “Expires” on page 87.

For example:

old = stpsrv_header("Set-Cookie",
"CUSTOMER=WILE_E_COYOTE; path=/SASStoredProcess/do; " ||
"expires=Wed, 06 Nov 2002 23:12:40 GMT");

The next time your application is run, any matching cookies are returned in the
_HTCOOK environment variable, assuming that this variable has been enabled in your
SAS Stored Process Web Application environment. You must parse the cookie string to
retrieve the information that you saved in the cookie. Use the scan DATA step function
to split the name/value pairs on the semicolon (;) delimiters; then split the name/value
pairs on the equal sign (=) delimiter.

Most Web browsers support cookies, but some users disable them due to privacy
concerns, site policies, or other issues. If you use cookies, explain to your users why you
need them and if they must be enabled in order to use your application. Some Web
clients might not support cookies at all.

Status-Code
The Status-Code header record is used by Web applications to set the HTTP status

for every page that is returned to the Web browser. For information about status code
definitions, see http://www.w3.org.

Embedding Graphics

Embedding Graphics in Web Pages
Web pages frequently contain embedded graphic images. For static images, an

 tag is enough to embed the image, as shown in the following example:

Dynamically generated images, such as charts that vary over time or due to input
parameters, are more complicated. Stored processes can generate graphics in addition
to HTML output. The following stored process creates a bar chart followed by a tabular
report:

/* Sales by Region and Product */

*ProcessBody;
%stpbegin;

90 Embedding Graphics in Web Pages � Chapter 5

title "Sales by Region and Product";
legend1 label=none frame;

proc gchart data=sashelp.shoes;
hbar3d region / sumvar=sales

sum space=.6
subgroup=product
shape=cylinder
patternid=subgroup
legend=legend1;

label product=’Shoe Style’;
run;

proc report data=sashelp.shoes;
column region product sales;
define region / group;
define product / group;
define sales / analysis sum;
break after region / ol summarize suppress skip;
run;

%stpend;

Depending on input parameters, this stored process might produce the following
output:

Building a Web Application with SAS Stored Processes � Embedding Graphics in Web Pages 91

Display 5.1 Web Page with Embedded Graphic

No special code was added to handle the image. ODS and the stored process
framework takes care of the details of delivering both the HTML and the image to the
Web browser. This code handles different image types through the _GOPT_DEVICE
input parameter that is supported by the %STPBEGIN macro. For more information,
see “Using the %STPBEGIN and %STPEND Macros” on page 14. The image is
delivered to the Web browser in different ways depending on the graphics device. JAVA
and ACTIVEX images are generated by embedding an <OBJECT> tag in the generated
HTML that contains the attributes and parameters necessary to invoke the viewer and
to display the graphic. There is no tag in this case. Other commonly used
drivers (GIF, JPEG, PNG, ACTXIMG, and JAVAIMG) do use the tag. The
following code is an HTML fragment that is generated by the previous stored process
using the GIF image driver:

<IMG SRC="/SASStoredProcess/do?_sessionid=
7CF645EB-6E23-4853-8042-BBEA7F866B55

92 Generating Direct Graphic Output � Chapter 5

&_program=replay&entry;=
STPWORK.TCAT0001.GCHART.GIF">

The image URL in the tag is actually a reference to the SAS Stored Process
Web Application that uses the special stored process named REPLAY. The REPLAY
stored process takes two parameters, _SESSIONID and ENTRY. _SESSIONID is new,
unique value each time the original stored process is executed. ENTRY is the name of a
temporary SAS catalog entry that contains the generated image. Image replay uses a
special, lightweight version of the stored process sessions feature to hold image files
temporarily until the Web browser retrieves them. For more information, see “Using
Sessions” on page 33.

You can use the REPLAY stored process to replay entries other than embedded
images, such as CSS style sheets, JavaScript include files, PDF files, and HTML or
XML files to be displayed in a pop-up window, frame or <IFRAME>. The special macro
variable _TMPCAT contains the name of the temporary catalog that is used for REPLAY
entries. The variable _REPLAY contains the complete URL that is used to reference the
REPLAY stored process (except the actual entry name). The _TMPCAT catalog remains
on the server for only a limited time. If the catalog is not accessed within a timeout
period (typically 15 minutes), then the catalog and its contents are deleted.

Generating Direct Graphic Output
In some cases, you might want to generate image output directly from a stored

process with no HTML container. This might be useful if you want to include a
dynamically generated graphic in static HTML pages or HTML generated by an
unrelated stored process, as shown in the following example:

/* Sales by Product - pie chart stored process
*
* XPIXELS and YPIXELS input parameters are required */

/* assume we want a new image generated
* each time the image is viewed -
* disable browser caching of this image */

%let old=%sysfunc(stpsrv_header(Pragma, nocache));

/* need test here in case XPIXELS
* or YPIXELS are not defined */

/* set up graph display options */
goptions gsfname=_webout gsfmode=replace

dev=png xpixels=&XPIXELS;
ypixels=&YPIXELS; ;

/* create a simple pie chart */
proc gchart data=sashelp.shoes;

pie3d product/sumvar=sales;
run;
quit;

This stored process expects XPIXELS and YPIXELS to be passed as input
parameters. A typical IMG tag to invoke this stored process might be similar to the
following example:

<IMG SRC="/SASStoredProcess/do?_program=
/WebApps/Utilities/Sales+by+Product&XPIXELS;=

Building a Web Application with SAS Stored Processes � Why Chain Stored Processes? 93

400&YPIXELS&YPIXELS;=300">

which results in the following output:

Display 5.2 Graphic Output

Note: Some Web browser versions have a defect that causes the Web browser to
ignore the NOCACHE and Expires directives in the HTTP header. This defect causes
the Web browser to reuse the image that was previously generated from its cache even
if the HTTP header directed that no caching was to occur. This might happen when
embedding an image in an HTML page or when directly entering an image URL in the
Web browser. The old image might be updated by manually performing a Web browser
REFRESH or RELOAD, but it is difficult to work around this problem without manual
intervention. �

Chaining Stored Processes

Why Chain Stored Processes?
Only the simplest stored process Web applications contain a single Web page. With

the addition of a second and subsequent pages, you face the problem of passing
information from one page to another. Typically, an application contains more than a
single stored process. This means that you must find a way to connect the stored
processes that compose your application and make sure that all of the data that is
collected along the way is available in the appropriate places.

It is good programming practice to design applications so that they do not request
the same information multiple times. Because HTTP is a stateless environment, each
request is separate from all other requests. If a user enters a phone number on the first

94 Passing Data Through Form Fields or URL Parameters � Chapter 5

page of an application and submits the form, that phone number is available as an
input parameter to the first stored process. After that stored process completes, the
input parameters are lost unless they are explicitly saved. If the second or third stored
process in the application needs to know the specified phone number, then the
application must ask for the phone number again. There are several ways to solve this
problem. You can store data values in the following locations:

� on the client in hidden form fields or URL parameters
� on the client in cookies
� on the server by using sessions

Passing Data Through Form Fields or URL Parameters
Storing data on the client in hidden fields or URL parameters is the simplest

technique. To do this, you must dynamically generate all of the HTML pages in your
application except for the initial page. Because each page functions as a mechanism for
transporting data values from the previous stored process to the next stored process, it
cannot be static HTML stored in a file.

Usually, the application takes the following steps:
1 The first HTML page is a welcome or login screen for the application. After the

user enters any required information, the first stored process is executed by
submitting a form or clicking on a link.

2 The first stored process performs any necessary validation on the submitted
parameters and any required application initialization.

3 The first stored process writes an HTML page to the _WEBOUT output stream.
This HTML page might be an initial report or it might be the next navigation page
in the application. Links in this page typically execute another stored process and
pass user identity, user preferences, application state, or any other useful
information through hidden form fields or URL parameters.

4 Each succeeding link in the application executes another stored process and passes
any required information through the same technique.

Each hidden field in the second form can contain one name/value pair that is passed
from the first form. You should use unique names for all of the data values in the entire
application. In this way you can pass all of the application data throughout the entire
application.

When you dynamically generate the second form, you can write out the name of the
second stored process in the hidden field _PROGRAM. Because the first stored process
contains the logic to determine the second stored process, this is referred to as chaining
stored processes. A stored process can chain to multiple stored processes depending on
the link that a user chooses or on data that is entered by the users. The stored process
can even chain back to itself.

In the following example, the MyWebApp application starts with a static HTML
welcome page:

<!-- Welcome page for MyWebApp -->
<HTML>
<HEAD><TITLE>Welcome to MyWebApp
</TITLE></HEAD>
<BODY><H1>Welcome to MyWebApp</H1>
<FORM ACTION="/SASStoredProcess/do">
Please enter your first name:
<INPUT TYPE="text" NAME="FNAME">

<INPUT TYPE="hidden" NAME="_program"

Building a Web Application with SAS Stored Processes � Passing Data Through Form Fields or URL Parameters 95

VALUE="/WebApps/MyWebApp/Ask Color">
<INPUT TYPE="submit" VALUE="Run Program">
</FORM>
</BODY></HTML>

This welcome page prompts the user for a first name and passes the value as the
FNAME input parameter to the /WebApps/MyWebApp/Ask Color stored process, as in
the following example:

/* Ask Color stored process
*
* This stored process prompts for the user’s favorite
* and passes it to the Print Color stored process.
*/
data _null_;
file _webout;
put ’<HTML>’;
put ’<H1>Welcome to MyWebApp</H1>’;

/* Create reference back to the Stored Process
Web Application from special automatic
macro variable _URL. */
put "<FORM ACTION=’&_URL’>";

/* Specify the stored process to be executed using
the _PROGRAM variable. */
put ’<INPUT TYPE="hidden" NAME="_program" ’ ||
’VALUE="/WebApps/MyWebApp/Print Color">’;

/* Pass first name value on to next program.
The value is user entered text, so you must
encode it for use in HTML. */
fname = htmlencode("&FNAME;", ’amp lt gt quot’);
put ’<INPUT TYPE="hidden" NAME="fname" VALUE="’
fname +(-1) ’">
’;

put ’What is your favorite color?’;
put ’<SELECT SIZE=1 NAME="fcolor">’;
put ’<OPTION VALUE="red">red</OPTION>’;
put ’<OPTION VALUE="green">green</OPTION>’;
put ’<OPTION VALUE="blue">blue</OPTION>’;
put ’<OPTION VALUE="other">other</OPTION>’;
put ’</SELECT>
’;
put ’<INPUT TYPE="submit" VALUE="Run Program">’;
put ’</FORM>’;
put ’</HTML>’;
run;

This stored process simply creates an HTML form that prompts the user for more
information. The reserved macro variable _URL is used to refer back to the SAS Stored
Process Web Application. This enables you to move the Web application without
modifying each stored process. The _PROGRAM variable specifies the stored process
that will process the contents of the form when it is submitted. In order to keep the
FNAME that was entered in the initial page, place it in the form as a hidden field.
Because the value was entered by the user, it must be encoded using the
HTMLENCODE function in case it contains any character that might be interpreted as

96 Passing Data Through Form Fields or URL Parameters � Chapter 5

HTML syntax. The form prompts the user for a color choice and chains to a new stored
process named Print Color, as in the following example:

/* Print Color stored process
*
* This stored process prints the user’s
* first name and favorite color.
*/
data _null_;
file _webout;
put ’<HTML>’;
fname = htmlencode("&FNAME;");
put ’Your first name is ’
fname +(-1) ’’;

put ’
’;
put "Your favorite color is
&FCOLOR;";

put ’
’;
put ’</HTML>’;
run;

The Print Color stored process prints the values of the variables from both the first
and second forms, illustrating that the data has been correctly passed throughout the
entire application.

A variation of this technique uses URL parameters instead of hidden form fields. The
following example code is an alternative implementation of the Ask Color stored
process:

/* Ask Color stored process
*
* This stored process prompts for the user’s favorite
* and passes it to the Print Color stored process.
*/
data _null_;
file _webout;
put ’<HTML>’;
put ’<H1>Welcome to MyWebApp</H1>’;

/* Build a URL referencing the next stored process.
* Use URLENCODE to encode any special characters in
* any parameters. */
length nexturl $500;
nexturl = "&_URL?_program=
/WebApps/MyWebApp/Print Color" ||
’&fname;=’ || urlencode("&FNAME;");

put ’What is your favorite color?’;
put ’’;
put ’<A HREF="’ nexturl +(-1)
’&color;=red">red’;
put ’<A HREF="’ nexturl +(-1)
’&color;=green">green’;
put ’<A HREF="’ nexturl +(-1)
’&color;=blue">blue’;
put ’<A HREF="’ nexturl +(-1)
’&color;=other">other’;

Building a Web Application with SAS Stored Processes � Passing Data Through Sessions 97

put ’’;
put ’</HTML>’;
run;

This stored process generates a separate URL link for each color choice. The end
result is the same as the first implementation of Ask Color; the Print Color stored
process is executed with both FNAME and COLOR input parameters.

The technique of passing data by using hidden fields or URL parameters has the
following advantages:

� simple to perform

� easy to debug

� state is maintained indefinitely

� allows stored processes to be distributed across multiple servers

The major disadvantages of this technique are the necessity to use dynamically
generated HTML for all pages in the application and the security and visibility of the
data. The data in hidden fields is readily visible to the client by viewing the HTML
source (and is directly visible in the URL when using GET method forms). The data is
easily changed by the user, and falsified or inconsistent data can be submitted to the
application. Sensitive data should be validated in each new stored process, even if it is
passed from generated hidden fields.

Passing Data Through Cookies
HTTP cookies are packets of information that are stored in the client Web browser.

They are shuttled back and forth with the application requests. In a general sense, they
are quite similar to hidden form fields, but they are automatically passed with every
request to the application. Cookies have the advantage of being nearly invisible to the
user. They contain a built-in expiration mechanism, and they are slightly more secure
than hidden fields. They also work seamlessly across multiple stored process servers
and Web applications and are preserved even if your application uses static HTML
pages. For more information about setting and using cookies, see “Set-Cookie” on page
89. You must enable HTTP cookies in your Web application configuration. For more
information, see “Configuring the SAS Stored Process Web Application” on page 58.

HTTP cookies can be complex to generate and parse. Carefully consider names,
paths, and domains to ensure that your cookie values do not conflict with other
applications that are installed on the same Web server. HTTP cookies can also be
disabled by some clients due to privacy concerns.

Passing Data Through Sessions
Sessions provide a simple way to save state on the server. Instead of passing all of

the saved information to and from the Web client with each request, a single session
key is passed and the data is saved on the server. Applications must use all
dynamically generated HTML pages, but the hidden fields or URL parameters are
much simpler to generate. In addition, sessions provide a method to save much larger
amounts of information, including temporary data sets or catalogs. Sessions have the
disadvantage of binding a client to a single server process, which can affect the
performance and scalability of a Web application. Sessions are not recommended for
simple applications that pass small amounts of data from one stored process to another.
For more information, see “Using Sessions” on page 33.

98 Using Sessions in a Sample Web Application � Chapter 5

Using Sessions in a Sample Web Application

Overview of the Sample Web Application
The following sample Web application demonstrates some of the features of stored

process sessions. The sample application is an online library. Users can log on, select
one or more items to check out of the library, and request by e-mail that the selected
items be delivered. The sample code shows how to create a session and then create,
modify, and view macro variables and data sets in that session. For more information,
see “Using Sessions” on page 33.

Sample Data
This sample requires a LIB_INVENTORY data set in the SAMPDAT library that is

used for other SAS Integration Technology samples. You can create the data set in
Windows using the following code. You can also use the code in other operating
environments by making the appropriate modifications to the SAMPDAT LIBNAME
statement.

libname SAMPDAT ’C:\My Demos\Library’;
data SAMPDAT.LIB_INVENTORY;
length type $10 desc $80;
input refno 1-5 type 7-16 desc 17-80;
datalines4;
17834 BOOK SAS/GRAPH Software: Reference
32345 BOOK SAS/GRAPH Software: User’s Guide
52323 BOOK SAS Procedures Guide
54337 BOOK SAS Host Companion for UNIX Environments
35424 BOOK SAS Host Companion for OS/390 Environment
93313 AUDIO The Zen of SAS
34222 VIDEO Getting Started with SAS
34223 VIDEO Introduction to AppDev Studio
34224 VIDEO Building Web Applications with
SAS Stored Processes
70001 HARDWARE Cellphone - Model 5153
70002 HARDWARE Video Projector - Model 79F15
;;;;

Main Aisle Stored Process
The main aisle page is generated by the Main Aisle stored process. This page acts as

a welcome page to new users. A session is created the first time that a user executes
this stored process.

/* Main Aisle of the Online Library */
data _null_;
file _webout;
if libref(’SAVE’) ne 0 then
rc = stpsrv_session(’create’);
put ’<HTML>’;

Building a Web Application with SAS Stored Processes � Main Aisle Stored Process 99

put ’<HEAD><TITLE>Online Library
Main Aisle</TITLE></HEAD>’;
put;
put ’<BODY vlink="#004488" link="#0066AA"
bgcolor="#E0E0E0">’;
put ’<H1>Online Library Main Aisle</H1>’;
put;
put ’Select one of the following
areas of the library:’;
put ’’;
length hrefroot $400;
hrefroot = symget(’_THISSESSION’) ||
’&_PROGRAM=/WebApps/Library/’;
put ’<A HREF="’ hrefroot +(-1)
’Aisles&type;=Book">Book Aisle’;
put ’<A HREF="’ hrefroot +(-1)
’Aisles&type;=Video">Video Aisle’;
put ’<A HREF="’ hrefroot +(-1)
’Aisles&type;=Audio">Audio Aisle’;
put ’<A HREF="’ hrefroot +(-1)
’Aisles&type;=Hardware">Hardware Aisle’;
put ’<A HREF="’ hrefroot +(-1)
’Shopping Cart">View my shopping cart’;
put ’<A HREF="’ hrefroot +(-1)
’Logout">Logout’;
put ’’;
put ’</BODY>’;
put ’</HTML>’;
run;

The main aisle page consists of a list of links to specific sections of the Online Library.

100 Aisles Stored Process � Chapter 5

Each link in this page is built using the _THISSESSION macro variable. This
variable includes both the _URL value pointing back to the Stored Process Web
Application and the _SESSIONID value that identifies the session.

Aisles Stored Process
The library is divided into aisles for different categories of library items. The pages

for each aisle are generated by one shared Aisles stored process. The stored process
accepts a TYPE input variable that determines which items to display.

/* Aisles - List items in a specified aisle.
The aisle is specified by the TYPE variable. */
libname SAMPDAT ’C:\My Demos\Library’;

/* Build a temporary data set that contains the
selected type, and add links for selecting
and adding items to the shopping cart. */
data templist;
if libref(’SAVE’) ne 0 then
rc = stpsrv_session(’create’);
set SAMPDAT.LIB_INVENTORY;
where type="%UPCASE(&type;)";
length select $200;
select = ’<A HREF="’ || symget("_THISSESSION") ||
’&_program=/WebApps/Library/Add+Item&REFNO;=’ ||
trim(left(refno)) || ’&TYPE;=’ || "&TYPE;" ||
’">Add to cart’;
run;
ods html body=_webout(nobot) rs=none;
title Welcome to the &type; Aisle;
proc print data=templist noobs label;
var refno desc select;
label refno=’RefNo’ desc=’Description’ select=’Select’;
run;
ods html close;
data _null_;
file _webout;
put ’<P>’;
put ’Return to <A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Main+Aisle’
’">main aisle
’;
put ’View my <A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Shopping+Cart’
’">shopping cart
’;
put ’</BODY>’;
put ’</HTML>’;
run;

The stored process selects a subset of the LIB_INVENTORY data set by using a
WHERE clause, and then uses PROC PRINT to create an HTML table. A temporary
data set is created. This data set contains the selected items that users can use to add
items. An additional column is generated from the LIB_INVENTORY data set that has
an HTML link that users can use to add the item to their shopping cart.

In this stored process, both ODS and a DATA step are used to generate HTML. The
ODS HTML statement includes the NOBOT option that indicates that more HTML will

Building a Web Application with SAS Stored Processes � Add Item Stored Process 101

be appended after the ODS HTML CLOSE statement. The navigation links are then
added using a DATA step. The following display shows the contents of the Book Aisle.

Add Item Stored Process
The Add Item stored process is run when the user clicks the Add to cart link in the

aisle item table. The specified item is copied from the LIB_INVENTORY data set to a
shopping cart data set in the session library (SAVE.CART). The session and the data
set remain accessible to all programs in the same session until the session is deleted or
it times out.

/* Add Item - Add a selected item to the shopping cart.
This stored process uses REFNO and TYPE input
variables to identify the item. */
libname SAMPDAT ’C:\My Demos\Library’;
/* Perform REFNO and TYPE verification here. */
/* Append the selected item. */
proc append base=SAVE.CART data=SAMPDAT.LIB_INVENTORY;
where refno=&refno;
run;
/* Print the page. */

102 Shopping Cart Stored Process � Chapter 5

data _null_;
file _webout;
put ’<HTML>’;
put ’<HEAD><TITLE>Selected Item Added to
Shopping Cart</TITLE></HEAD>’;
put ’<BODY vlink="#004488" link="#0066AA"
bgcolor="#E0E0E0">’;
put "<H1>Item &refno; Added</H1>";
put ’Return to <A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Aisles’
’&TYPE;=’ "&TYPE;" ’">’ "&TYPE; aisle
";
put ’Return to <A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Main+Aisle’
’">main aisle
’;
put ’View my <A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Shopping+Cart’
’">shopping cart
’;
put ’</BODY>’;
put ’</HTML>’;
run;

The program prints an information page that has navigation links.

Shopping Cart Stored Process
The Shopping Cart stored process displays the contents of the shopping cart.

/* Shopping Cart - Display contents of the shopping cart
* (SAVE.CART data set). */
%macro lib_cart;
%let CART=%sysfunc(exist(SAVE.CART));
%if &CART; %then %do;
/* This program could use the same technique as the
LIB_AISLE program in order to add a link to each
line of the table that removes items from the
shopping cart. */
/* Print the CART contents. */

Building a Web Application with SAS Stored Processes � Shopping Cart Stored Process 103

ods html body=_webout(nobot) rs=none;
title Your Selected Items;
proc print data=SAVE.CART noobs label;
var refno desc;
label refno=’RefNo’ desc=’Description’;
run;
ods html close;
%end;
%else %do;
/* No items in the cart. */
data _null_;
file _webout;
put ’<HTML>’;
put ’<HEAD><TITLE>No items
selected</TITLE></HEAD>’;
put ’<BODY vlink="#004488" link="#0066AA"
bgcolor="#E0E0E0">’;
put ’<H1>No Items Selected</H1>’;
put;
run;
%end;
/* Print navigation links. */
data _null_;
file _webout;
put ’<P>’;
if &CART; then do;
put ’<FORM ACTION="’ "&_url" ’">’;
put ’<INPUT TYPE="HIDDEN" NAME="_program"
VALUE="/WebApps/Library/Logout">’;
put ’<INPUT TYPE="HIDDEN" NAME="_sessionid"
VALUE="’ "&_sessionid" ’">’;
put ’<INPUT TYPE="HIDDEN" NAME="CHECKOUT"
VALUE="YES">’;
put ’<INPUT TYPE="SUBMIT"
VALUE="Request these items">’;
put ’</FORM><P>’;
end;
put ’Return to <A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Main+Aisle’
’">main aisle
’;
put ’<A HREF="’ "&_THISSESSION"
’&_PROGRAM=/WebApps/Library/Logout’
’&CHECKOUT;=NO">Logout
’;
put ’</BODY>’;
put ’</HTML>’;
run;
%mend;
%lib_cart;

The contents of the shopping cart are displayed using a PROC PRINT statement.
The page also includes a request button and navigation links. The request button is
part of an HTML form. In order to connect to the same session, include the
_SESSIONID value in addition to the _PROGRAM value. These values are usually
specified as hidden fields. This program also has a hidden CHECKOUT field that is
initialized to YES in order to indicate that the user is requesting the items in the cart.

104 Logout Stored Process � Chapter 5

The program prints a page that contains the contents of the shopping cart.

Logout Stored Process
The Logout stored process checks the user out of the Online Library. If the

CHECKOUT input variable is YES, then all of the items in the user’s shopping cart are
requested through e-mail.

/* Logout - logout of Online Library application.
Send e-mail to the library@abc.com account with
requested item if CHECKOUT=YES is specified. */
%macro lib_logout;
%global CHECKOUT;
/* Define CHECKOUT in case it was not input. */

%if %UPCASE(&CHECKOUT;) eq YES %then %do;
/* Checkout - send an e-mail request to the library.
See the documentation for the e-mail access method
on your platform for more information about the
required options. */
/* ***************** disabled for demo *************
filename RQST EMAIL ’library@abc.com’
SUBJECT=’Online Library Request for &_USERNAME’;
ods listing body=RQST;
title Request for &_USERNAME;
proc print data=SAVE.CART label;
var refno type desc;
label refno=’RefNo’ type=’Type’
desc=’Description’;
run;
ods listing close;
* *** */

Building a Web Application with SAS Stored Processes � Logout Stored Process 105

data _null_;
file _webout;
put ’<HTML>’;
put ’<HEAD><TITLE>Library
Checkout</TITLE></HEAD>’;
put ’<BODY vlink="#004488" link="#0066AA"
bgcolor="#E0E0E0">’;
put ’<H1>Library Checkout</H1>’;
put;
put ’The items in your shopping cart have
been requested.’;
put ’<P>Requested items will normally
arrive via interoffice’;
put ’mail by the following day. Thank you
for using the Online Library.’;
put ’<P><A HREF="’ "&_URL"
’?_PROGRAM=/WebApps/Library/Main+Aisle"
>Click here’;
put ’to re-enter the application.’;
put ’</BODY>’;
put ’</HTML>’;
run;
%end;
%else %do;
/* Logout without requesting anything. */
data _null_;
file _webout;
put ’<HTML>’;
put ’<HEAD><TITLE>Logout</TITLE></HEAD>’;
put ’<BODY vlink="#004488" link="#0066AA"
bgcolor="#E0E0E0">’;
put ’<H1>Library Logout</H1>’;
put;
put ’<P>Thank you for using the Online Library.’;
put ’<P><A HREF="’ "&_URL"
’?_PROGRAM=/WebApps/Library/Main+Aisle"
>Click here’;
put ’to re-enter the application.’;
put ’</BODY>’;
put ’</HTML>’;
run;
%end;
%mend;
%lib_logout;
/* User is finished - delete the session. */
%let rc=%sysfunc(stpsrv_session(delete));

An information page is displayed if the user chooses to request the shopping cart
items.

106 Error Handling � Chapter 5

A simple logout screen is displayed if the user selects the Logout link.

Note: Logging off is not required. All sessions have an associated timeout (the
default is 15 minutes). If the session is not accessed for the duration of the timeout,
then the session and all temporary data in the session will be deleted. In this sample,
the SAVE.CART data set is automatically deleted when the session timeout is reached.
You can change the session timeout by using the STPSRVSET(’session timeout’,seconds)
function inside the program. �

Error Handling

You can write custom JSPs to handle a set of common errors. For more information
about the default error JSPs for the SAS Stored Process Web Application, see “Custom
Responses” on page 58.

Building a Web Application with SAS Stored Processes � Testing the SAS Stored Process Web Application 107

If an error occurs while the stored process is running, then you will get an error
message with a button that you can click to show the SAS log.

In order to disable the Show SAS Log button, you can set the Web application
initialization parameter DebugMask to disable debug logging. For more information,
see “Debugging in the SAS Stored Process Web Application” on page 107.

If an error is detected before the output stream back to the Web browser is opened,
then the HTTP header line X-SAS-STP-ERROR is returned. This can be used by
programs that make URL connections to the SAS Stored Process Web Application.

Debugging in the SAS Stored Process Web Application

Testing the SAS Stored Process Web Application
After the SAS Stored Process Web Application has been installed, it can be tested by

invoking it directly from a Web browser. To execute the SAS Stored Process Web
Application, enter the Web application URL in the Web browser. Either the default
Welcome page or static version data is returned.

For example, if you enter the following SAS Stored Process Web Application URL:

http://yourserver.com:8080/SASStoredProcess/do

then you either get the data from the Welcome.jsp page (or from the Welcome.html
page) if it has been installed, or a display similar to the following display:

Stored Process Web Application

Version 9.2 (Build 387)

If an error is returned, then the installation was not completed successfully or the
URL that was entered is incorrect.

The reserved macro variable _DEBUG provides you with several diagnostic options.
Using this variable is a convenient way to debug a problem, because you can supply the
debug values by using the Web browser to modify your HTML or by editing the URL in
your Web browser’s location field. For example, to see the installed environment for the

108 List of Valid Debugging Keywords � Chapter 5

SAS Stored Process Web Application, the URL can be entered with _DEBUG=ENV
appended. A table is returned, which contains the system values for the SAS Stored
Process Web Application environment.

List of Valid Debugging Keywords
You can activate the various debugging options by passing the _DEBUG variable to

the SAS Stored Process Web Application. Keywords are used to set the debugging
options. Multiple keywords can be specified, separated by commas or spaces. Here is an
example:

_DEBUG=TIME,TRACE

Some debugging flags might be locked out at your site for security reasons. Verify
with your administrator which flags are locked out at your site. The following chart is a
list of valid debugging keywords:

Table 5.10 Debugging Keywords

Keyword Description

FIELDS Displays the stored process input parameters.

TIME Returns the processing time for the stored
process.

DUMP Displays output in hexadecimal format.

LOG Returns the SAS log file. This log is useful for
diagnosing problems in the SAS code.

TRACE Traces execution of the stored process. This
option is helpful for diagnosing the SAS Stored
Process Web Application communication process.
You can also use this option to see the HTTP
headers that the server returns.

LIST Lists known stored processes.

ENV Displays the SAS Stored Process Web
Application environment parameters.

Setting the Default Value of _DEBUG
Web application initialization parameters can be used to set default values for the

_DEBUG parameter or to limit the allowable values. Any of the valid keywords that
are listed in the preceding table can be specified as a comma-separated list for the
Debug initialization parameter. These values become the default debugging values for
each request. The initialization parameter DebugMask can be used to specify a list of
_DEBUG values that are valid. For more information about initialization parameters,
see “Configuring the SAS Stored Process Web Application” on page 58.

109

A P P E N D I X

1
Stored Process Software
Requirements

General Requirements 109
Client-Specific Requirements 109

Components 110

General Requirements
To manage and execute SAS Stored Processes for any client environment, you must

have the following components installed:
� SAS System software
� SAS Management Console

For general information about installing each of these components, see “Components”
on page 110.

Client-Specific Requirements
Stored processes can be accessed from many different client environments. Software

requirements vary depending on the client environment.
To use SAS Stored Processes in a Web application environment, the following

components are recommended:
� Java Runtime Environment (JRE) or Java Development Kit (JDK)
� servlet container

� SAS Web Infrastructure Platform

To use SAS Stored Processes in a Java application, the following components are
required:

� Java Development Kit (JDK)
� servlet container (for servlets or JSPs only)

To access SAS Stored Processes from Microsoft Office, the following component is
required:

� SAS Add-In for Microsoft Office

To access SAS Stored Processes from a Web services client, install one of the
following components:

� SAS BI Web Services for Java
� SAS BI Web Services for .NET

110 Components � Appendix 1

To author SAS Stored Processes in a task-oriented user interface, install the
following component:

� SAS Enterprise Guide

You can install all of the components on a single system or install them across
multiple systems. A development system might have all of the components on a single
desktop system, while a production system might have SAS installed on one or more
systems, a servlet container installed on another system, and client software installed
on multiple client desktop systems. For specific requirements about host platforms, see
the product documentation for the individual components.

For general information about installing each of these components, see “Components”
on page 110.

Components
SAS System
software

Install SAS 9.2 on your designated SAS server. You must install
Base SAS and SAS Integration Technologies in order to run stored
processes. SAS/GRAPH software is required to run some of the
sample stored processes. Install any other products that are used by
your stored processes. You must also configure a SAS Metadata
Server in order to create and use stored processes. You must
configure one or more stored process servers or workspace servers in
order to execute stored processes.

SAS
Management
Console

Install SAS Management Console on any system with network
access to your SAS server.

Java Runtime
Environment
(JRE)

The Java interface to SAS Stored Processes requires the Java 2
Runtime Environment (JRE), Standard Edition. For information
about the specific version required for your operating environment,
see the installation instructions for SAS Management Console. Some
development environments and servlet containers include a copy of
the appropriate version of the Java 2 JRE. If you need a copy, you
can download it from the Third-Party software CD in the SAS
Installation Kit. If you are developing Java applications or creating
Java Server Pages (JSPs), then you also need the Java 2 Software
Development Kit (SDK), which includes a copy of the Java 2 JRE.

Java
Development
Kit (JDK)

Java developers or servlet containers that execute Java Server
Pages (JSPs) require the Java 2 Software Development Kit (SDK),
Standard Edition. For information about the specific version
required for your operating environment, see the installation
instructions for SAS Management Console. Some development
environments and servlet containers include a copy of the
appropriate version of the Java 2 SDK. If you need a copy, you can
download it from the Third-Party software CD in the SAS
Installation Kit.

Servlet
Container

A servlet container is a Java server that can act as a middle-tier
access point to SAS Stored Processes. A servlet container can be
used to host the SAS Web Infrastructure Platform or user-written
servlets or Java Server Pages. For specific servlet container
requirements for the SAS Web Infrastructure Platform, see the
product documentation. Servlet containers used for user-written

Stored Process Software Requirements � Components 111

servlets or JSPs must include a JRE version that is compatible with
the SAS 9.2 requirements for the operating environment. Supported
servlet containers include JBoss, BEA WebLogic, and IBM
WebSphere.

SAS Web
Infrastructure
Platform

The SAS Web Infrastructure Platform is installed on a servlet
container and includes the SAS Stored Process Web Application.
This Web application enables you to execute stored processes from a
Web browser or other Web client.

SAS Add-In for
Microsoft Office

SAS Add-In for Microsoft Office must be installed on a client
Windows system in order to execute stored processes from Microsoft
Office on that system. The SAS Integration Technologies client for
Windows must also be installed on the same system.

SAS BI Web
Services for
Java

SAS BI Web Services for Java requires that several other
components be installed, including the SAS Web Infrastructure
Platform. For more information about required components, see the
installation instructions for SAS BI Web Services for Java.

SAS BI Web
Services for
.NET

SAS BI Web Services for .NET requires the Microsoft IIS Web server.

SAS Enterprise
Guide

SAS Enterprise Guide is a Microsoft Windows client application that
can be installed on any system that has network access to your SAS
server.

112

113

A P P E N D I X

2
Converting SAS/IntrNet Programs
to SAS Stored Processes

Overview 113
Compatibility Features 114

Conversion Considerations 114

HTTP Headers 115

Macro Variables 115

Code Differences 116
Overview of Conversion Steps 117

Example 118

Sample Environment 118

About the Application Dispatcher Program 118

The Program Component 118

The Input Component 118
Converting the Application Dispatcher Program to a Stored Process 121

Step 1: Copy the Source Program 121

Step 2: Modify the Program As Needed 121

Step 3: Register the Stored Process in SAS Management Console 122

Step 4: Create a New JSP Page and Modify the HTML 123
Step 5: Execute the Stored Process Using the New JSP Page 126

Adding a Parameter to the Stored Process Definition 127

Step 1: Modify the Stored Process Metadata Definition 127

Step 2: Execute the Stored Process Using the Dialog Box 128

Executing Catalog Entries 129

Overview

To fully use the capabilities of the SAS®9 Enterprise Intelligence Platform, you can
convert existing SAS/IntrNet applications into SAS Stored Processes. Many features
are implemented in the SAS Stored Process Server and the SAS Stored Process Web
application to minimize the code changes that are required during a conversion.
Existing SAS/IntrNet Application Dispatcher programs can usually be converted to
streaming stored processes with minimal or no modifications. This appendix explains
how to perform such a conversion and discusses some of the differences between
Application Dispatcher programs and stored processes.

SAS/IntrNet Application Dispatcher programs execute very much like a stored
process Web application. Although Application Dispatcher is only one component of
SAS/IntrNet, applications that use Application Dispatcher are the most likely
candidates for conversion to stored processes, because these applications execute SAS
programs with features that are very similar to stored processes. This appendix focuses
only on the conversion of Application Dispatcher programs to stored processes.

114 Compatibility Features � Appendix 2

SAS/IntrNet will continue to be supported, but the stored process framework is a
new architecture designed specifically for the SAS®9 platform.

You should convert SAS/IntrNet applications to use stored processes if you want to
use the following features:

� SAS programs in other clients, such as SAS Enterprise Guide, SAS Web Report
Studio, or Microsoft Office applications

� the common security model that is provided by metadata

� the centralized administration that is provided by metadata integration and SAS
Management Console

Note: This appendix focuses on converting SAS/IntrNet programs to stored
processes that run in the SAS Stored Process Web Application. If you want to run these
programs in other stored process clients (such as SAS Web Report Studio or the SAS
Add-In for Microsoft Office), there might be additional configuration issues. Each client
application has its own requirements for stored process behavior. �

Compatibility Features

The following features describe similarities between Application Dispatcher and
stored processes:

� The SAS Stored Process Web Application (a component of the SAS Web
Infrastructure Platform) provides the middle-tier equivalent of the Application
Broker. The SAS Stored Process Web Application requires a servlet container host
such as JBoss, BEA WebLogic, or IBM WebSphere. For other requirements, see
the SAS Web Infrastructure Platform installation instructions.

� The SAS Stored Process Server (a component of SAS Integration Technologies)
provides the equivalent of the SAS/IntrNet Application Server. The typical stored
process server configuration (a load-balanced cluster) is very similar in
functionality to a SAS/IntrNet pool service. New servers are started as demand
increases to provide a highly scalable system.

� Streaming output from a stored process is written to the _WEBOUT fileref. The
underlying access method has changed, but the functionality is very similar to the
functionality of SAS/IntrNet. ODS, HTML Formatting Tools, DATA step code, or
SCL programs can continue to write output to _WEBOUT.

� The Application Server functions (APPSRVSET, APPSSRVGETC, APPSRVGETN,
APPSRV_HEADER, APPSRV_SESSION, and APPSRV_UNSAFE) are supported
in stored processes except as noted in the "Conversion Considerations" section. In
many cases, equivalent STPSRV functions are recommended for new programs.

� The _REPLAY mechanism is supported by the stored process server. The value of
the _REPLAY URL has changed, but this does not affect most programs.

� The SAS/IntrNet sessions feature has been implemented by the stored process
server. The same SAVE library, session macro variables, and session lifetime
management functions are available in stored processes.

Conversion Considerations

There are a number of differences in the stored process server environment that
might affect existing SAS/IntrNet programs. Use the items in the following sections as
a review checklist for your existing programs.

Converting SAS/IntrNet Programs to SAS Stored Processes � Macro Variables 115

HTTP Headers
� In SAS Stored Processes, HTTP headers cannot be written directly to _WEBOUT

by using a DATA step PUT statement or SCL FWRITE function. You must use the
STPSRV_HEADER (or APPSRV_HEADER) function to set header values.
Automatic header generation cannot be disabled with appsrvset("automatic
headers", 0).

� SAS/IntrNet programs require that HTML Formatting Tools use the
RUNMODE=S option, which writes an HTML header directly to _WEBOUT. For
stored process programs, you should change the option to RUNMODE=B, or you
will get an extra header line in the output.

Macro Variables
� Unsafe processing is different for stored processes; there is no UNSAFE option.

Unsafe characters (characters that cause unwanted macro language processing)
are quoted instead of removed from the input parameters, so you can safely use
the &VAR syntax without worrying about unsafe characters. The following
examples work without using the APPSRV_UNSAFE function:

%if &MYVAR eq %nrstr(A&P)
%then do something...;

Here is another example:

data _null_;
file _webout;
put "MYVAR=&MYVAR";
run;

APPSRV_UNSAFE works in the stored process server and still returns the
complete, unquoted input value. This change might cause subtle behavioral
differences if your program relies on the SAS/IntrNet unsafe behavior. For stored
processes, use the STPSRV_UNQUOTE2 function instead.

� The _REPLAY macro variable does not have the same syntax in stored processes
as it did in Application Dispatcher. References to &_REPLAY are not recommended
for SAS/IntrNet programs, but they can be used in stored processes. The DATA
step function symget(’_REPLAY’) does not return a usable URL in a stored
process and should be replaced with "&_REPLAY". For example:

url = symget(’_REPLAY’)...;

should be changed to

url = %str(&_REPLAY)...;

However, if you were already using %str(&_REPLAY) in SAS/IntrNet, then no
change is necessary.

� The _SERVICE, _SERVER, and _PORT macro variables do not exist for stored
processes. You must review any code that uses these macro variables. Usually,
they are used to create drill-down URLs or forms. In many cases, this code does
not require any change; input values for these variables are ignored.

� In stored processes, _PROGRAM refers to a stored process path and name in the
metadata repository folder structure, and not a three-level or four-level program
name. Any programs that create drill-down links or forms with _PROGRAM must
generally be modified to use the stored process path.

116 Code Differences � Appendix 2

Code Differences
� The stored process server cannot directly execute SOURCE, MACRO, or SCL

catalog entries. You must use a wrapper .sas source file to execute the catalog
entry.

� Instead of using an ALLOCATE LIBRARY or ALLOCATE FILE statement to
assign a library, as you can do in SAS/IntrNet, you must assign a library in one or
more of the following ways:

� using the Data Library Manager plug-in for SAS Management Console
� using the server start-up command or the SAS config file

� using a SAS autoexec file

For more information about how to assign libraries, see the SAS Intelligence
Platform: Data Administration Guide.

� There is no REQUEST TIMEOUT functionality in stored processes;
appsrvset(’request timeout’) is not supported.

� The Application Server functions APPSRV_AUTHCLS, APPSRV_AUTHDS, and
APPSRV_AUTHLIB are not supported in stored processes. There are no STPSRV
functions that are equivalent to these Application Server functions.

� Stored processes do not support the SESSION INVSESS automatic user exit
program. Similar functionality can be implemented in the SAS Stored Process
Web Application through a custom Web interface.

� AUTH=HOST functionality is not supported by the stored process server. In
Application Dispatcher, this functionality provides the ability for the program to
run under the operating system permissions of the client user.

� If you are writing to _WEBOUT by using PUT statements while ODS has
_WEBOUT open, when you execute the code the PUT statement data might be out
of sequence with the data that is generated by ODS. This problem occurs with
both SAS/IntrNet applications and stored processes. It tends to be more of an
issue if you are upgrading from SAS 8 to SAS®9. This problem occurs because both
your code and ODS are opening the same fileref at the same time. For example,
the following code might not always work as expected:

ods listing close;
ods html body=_webout path=&_tmpcat
(url=&_replay) Style=Banker;
... other code ...
data _null_;
file _webout;
put ’<p align="center"> </p>’ ;
put ’<p align="center">Test.
If you see this in order, it worked.</p>’;
run;
... other code ...
ods html close;

This code might work in some SAS/IntrNet programs, but it can cause problems
with the order of data even in SAS/IntrNet. This code is more likely to fail in a
stored process. This problem can be fixed by inserting PUT statements before you
open ODS, closing ODS while you write directly to the fileref, or using the ODS
HTML TEXT="string" option to write data. The following code is an example of
how you can both close ODS while you write directly to the fileref, and insert your
PUT statements before you open ODS:

Converting SAS/IntrNet Programs to SAS Stored Processes � Overview of Conversion Steps 117

ods html body=_webout (no_bottom_matter)...;
... other code ...
ods html close;

data _null_;
file _webout;
put ’<p align="center"> </p>’ ;
put ’<p align="center">Test.
If you see this in order, it worked.</p>’;
run;

ods html body=_webout (no_top_matter)...;
... other code ...
ods html close;

The following code is an example of how you can use the ODS HTML
TEXT="string" option to write data:

ods listing close;
ods html body=_webout path=&_tmpcat
(url=&_replay) Style=Banker;
... other code ...
ods html text=’<p align="center"> </p>’ ;
ods html text=’<p align="center">Test.
If you see this in order, it worked.</p>’;
... other code ...
ods html close;

Overview of Conversion Steps
To convert existing SAS/Intrnet programs to stored processes, perform the following

steps:
1 Install and configure the SAS Web Infrastructure Platform, a component of SAS

Integration Technologies that includes the SAS Stored Process Web Application,
which is used to emulate the Application Broker.

2 Copy the program to a valid source code repository for a stored process server.

3 Modify the program as required to address the items discussed in the Conversion
Considerations. For more information, see “Conversion Considerations” on page
114.

4 Register the stored process using the New Stored Process Wizard in SAS
Management Console.

5 Modify the HTML for any custom input forms. Also, convert any HTML pages that
link to your stored process to use the SAS Stored Process Web Application URL
syntax.

6 Run the stored process.

118 Example � Appendix 2

Example

Sample Environment
The following software makes up the environment for this example:

� The Web server for the SAS/IntrNet portion of the example is Microsoft Internet
Information Services (IIS) 6.0.

� JBoss is the servlet container that is being used for this example. Other valid
servlet containers include BEA WebLogic and IBM WebSphere.

� SAS 9.2

� SAS Stored Process Server (as opposed to the SAS Workspace Server)

� Windows middle tier

� Windows SAS server tier

About the Application Dispatcher Program

The Program Component
The example in this appendix uses ODS and the TABULATE procedure to display

shoe sales data for a selected region. Here’s the SAS code:

%global regionname;

ods listing close;
ods html body=_webout;

proc tabulate data = sashelp.shoes format = dollar14.;
title "Shoe Sales for ®ionname";

where (product =: ’Men’ or product =: ’Women’) & region="®ionname";
table Subsidiary all,

(Product=’Total Product Sales’ all)*Sales=’ ’*Sum=’ ’;
class Subsidiary Product;
var Sales;
keylabel All=’Grand Total’

Sum=’ ’;
run;

ods html close;

For the sake of illustration, assume that this SAS code is stored in the location
C:\MySASFiles\intrnet\webtab1.sas.

The Input Component
The following HTML is the body for the input component, which is the physical

HTML file. For the sake of illustration, assume that this HTML is stored in a file
named webtab1.html.

Converting SAS/IntrNet Programs to SAS Stored Processes � About the Application Dispatcher Program 119

<H1>Regional Shoe Sales</H1>
<p>Select a region in order to display shoe sales data for that
region by subsidiary and style. This sample program uses ODS and
the TABULATE procedure.</p>

<HR>

<FORM ACTION="/sasweb/cgi-bin/broker.exe">
<INPUT TYPE="HIDDEN" NAME="_SERVICE" VALUE="default">
<INPUT TYPE="HIDDEN" NAME="_PROGRAM" VALUE="intrnet.webtab1.sas">

Select a region: <SELECT NAME="regionname">
<OPTION VALUE="Africa">Africa
<OPTION VALUE="Asia">Asia
<OPTION VALUE="Central America/Caribbean">Central America/Caribbean
<OPTION VALUE="Eastern Europe">Eastern Europe
<OPTION VALUE="Middle East">Middle East
<OPTION VALUE="Pacific">Pacific
<OPTION VALUE="South America">South America
<OPTION VALUE="United States">United States
<OPTION VALUE="Western Europe">Western Europe
</SELECT>

<HR>
<INPUT TYPE="SUBMIT" VALUE="Execute">
<INPUT TYPE="CHECKBOX" NAME="_DEBUG" VALUE="131">Show SAS Log

</FORM>

The input component looks like the one shown in the following display.

Display A2.1 Application Dispatcher Input Component

You can select a region from the list and click Execute to display a table of sales
data for that region. When you click Execute, Application Dispatcher executes the

120 About the Application Dispatcher Program � Appendix 2

program and sends the results back to the Web browser. The results look like the
program output shown in the following display.

Display A2.2 Application Dispatcher Program Output

The HTML form created the following URL for the results page, based on the default
selections in the input form:

http://myserver/sasweb/cgi-bin/broker.exe?
_SERVICE=default&_PROGRAM=intrnet.webtab1.sas®ionname=Africa

The URL is typically built for you by the Web browser which uses fields in an HTML
form. The HTML page uses the following FORM tag to submit the program to the
Application Broker:

<FORM ACTION="/sasweb/cgi-bin/broker.exe">

The following hidden fields are used to create name/value pairs to complete the
required syntax:

<INPUT TYPE="HIDDEN" NAME="_SERVICE" VALUE="default">
<INPUT TYPE="HIDDEN" NAME="_PROGRAM" VALUE="intrnet.webtab1.sas">

Notice that the value for _PROGRAM is set to intrnet.webtab1.sas. This first
level indicates that the program is stored in a directory identified by the intrnet fileref.
The next two levels (webtab1.sas) provide the name of the program that is executed.

Converting SAS/IntrNet Programs to SAS Stored Processes � Converting the Application Dispatcher Program 121

Note: Several samples ship with Application Dispatcher, and you can use these
samples to practice the conversion to stored processes. (Some of these samples have
already been converted to stored process samples, and these samples are installed with
SAS Integration Technologies.) You can execute the Application Dispatcher samples
from the following URL:
http://myserver/sasweb/IntrNet9/dispatch/samples.html �

Converting the Application Dispatcher Program to a Stored Process

Step 1: Copy the Source Program
To preserve the functionality of the original SAS/IntrNet example, copy the SAS

program to a new location before modifying it. Copy the webtab1.sas program from
C:\MySASFiles\intrnet to a location on the stored process server, such as
C:\MySASFiles\storedprocesses.

Step 2: Modify the Program As Needed
1 Open the new copy of webtab1.sas to check for conversion considerations.

%global regionname;

ods listing close;
ods html body=_webout;

* PROC TABULATE code here;

ods html close;

2 Note that the program is already writing to _WEBOUT, so %STPBEGIN and
%STPEND are not needed. However, replacing the ODS HTML statement with
%STPBEGIN and %STPEND makes it easier to run the stored process from
various clients. This replacement also enables you to run the code from a client
like the SAS Stored Process Web Application and specify different values for
_ODSDEST. For example, you can change the values of _ODSDEST and generate
output as PDF, RTF, or PostScript, without making any SAS code changes.

For this example, delete the two ODS statements at the beginning of the code,
and replace them with the following lines of code:

*ProcessBody;
%stpbegin;

Note: The *ProcessBody; comment is not necessary for this program because this
example does not use a workspace server, but add it to your program as a best
practice. Fewer changes are necessary if you ever want to run this stored process
from a workspace server. �

Replace the ODS statement at the end of the code with the following statement:

%stpend;

Check the list of conversion considerations. No further code changes are
necessary for this program to run as a stored process. The stored process now
consists of the following code:

%global regionname;

122 Converting the Application Dispatcher Program � Appendix 2

*ProcessBody;
%stpbegin;

* PROC TABULATE code here;

%stpend;

3 Save the changes and close webtab1.sas.

Step 3: Register the Stored Process in SAS Management Console
Note: Before you can register a stored process, a server must be defined for the

stored process to run on. Converted SAS/IntrNet programs generally should be
registered on a stored process server; workspace servers do not support streaming
output or a number of other SAS/IntrNet compatibility features. If a stored process
server is not already defined, then you can use the Server Manager in SAS
Management Console to define a server. For more information about how to define a
server, see the Help for the Server Manager. �

To register a new stored process, complete the following steps:

1 From the Folder view in SAS Management Console, select the folder in which you
would like to create the new stored process. For this example, create a
/Converted Samples folder.

To create a new folder, navigate to where you want to put the new folder. Select
Actions � New Folder. The New Folder Wizard appears.

2 Select Actions � New Stored Process. The New Stored Process Wizard appears.

3 In the New Stored Process Wizard, complete the following steps:

a Enter the following information on the first page of the wizard:

Name: Regional Shoe Sales

Description: Converted from SAS/IntrNet program.

Display A2.3 New Stored Process Wizard - Name Specification

Converting SAS/IntrNet Programs to SAS Stored Processes � Converting the Application Dispatcher Program 123

b Click Next.
c On the next page of the wizard, specify the following information:

SAS server: SASMain --- Logical Stored Process Server

Source code repository: C:\MySASFiles\storedprocesses (A
source code repository is a location on the application server that
contains stored process source code. Click Manage if you need to add a
new source code repository to the list. For more information about the
source code repository, see the New Stored Process Wizard Help.)
Source file: webtab1.sas

Output: Streaming

Display A2.4 New Stored Process Wizard - Execution Details

d Click Next.
The next page of the wizard is where you add parameters. Parameters are

optional unless you plan to execute the stored process in other clients that
need the metadata information in order to build a dialog box, or if you want
to take advantage of the dynamic prompt page that is built by the SAS Stored
Process Web Application. Parameters are also useful if you want to restrict
input values or types of input. Do not define any parameters right now.

e Click Finish to register the new stored process.

Note: After you have registered the stored process, use the Stored Process
Properties dialog box to control access to the stored process. For more information,
see the Help for the Stored Process Properties dialog box. �

Step 4: Create a New JSP Page and Modify the HTML
To preserve the functionality of the original SAS/IntrNet example, copy the HTML

file to a new location before modifying it.

Note: This example shows you how to use the input component from the Application
Dispatcher program as a custom input form for the stored process. You will be able to

124 Converting the Application Dispatcher Program � Appendix 2

use the _PROGRAM variable along with _ACTION=FORM in the URL to display the
custom input form for the stored process. However, copying the HTML file is optional.
You can run stored processes without a custom input form. �

1 If you want this Web page to be used as the default input form in the SAS Stored
Process Web Application, then copy the webtab1.html file to a physical location
under the JBoss folder. The exploded directory might be something like
C:\Program Files\JBoss\server\SASServer1\deploy_sas
\sas.storedprocess9.2.ear\sas.storedprocess.war\input\Converted_Samples.
(The physical location corresponds to the metadata location. This location is
correct only if the new stored process is registered in the /Converted Samples
folder in the metadata repository. Otherwise, the path will be different.)

Note: The SAS Stored Process Web Application is delivered in an EAR file, and
can be run directly from the EAR file or from the exploded directory. For more
information about how to explode the EAR file, see the SAS Intelligence Platform:
Web Application Administration Guide.

You can also copy the HTML file to a new directory under the IIS Web Server,
or to a new directory under the JBoss folder with the SAS Stored Process Web
Application. However, if you decide to do this, you should be aware that appending
_ACTION=FORM to the URL to find the custom input form will not work. �

2 Modify the HTML page to call the stored process instead of the SAS/IntrNet
program.

a Open webtab1.html in an HTML editor.
b Change the value of the ACTION attribute in the FORM tag to

http://myserver:8080/SASStoredProcess/do.
c Remove the hidden field for _SERVICE.
d Change the value of the hidden field for _PROGRAM to the metadata

location, and name of the stored process: /Converted Samples/Regional
Shoe Sales.

e You can leave the _DEBUG check box with a value of 131. This is equivalent
to the value LOG,TIME,FIELDS.

f You can change the text that appears on the Web page. If you want to use
images, then you need to move them to a location in the current directory or
change the tag to point back to the old directory.

g The body of the file now contains the following HTML:

<H1>Regional Shoe Sales</H1>
<p>Select a region in order to display shoe sales data for that
region by subsidiary and style. This sample program uses ODS and
the TABULATE procedure.</p>

<HR>

<FORM ACTION="http://myserver:8080/SASStoredProcess/do">
<INPUT TYPE="HIDDEN"

NAME="_PROGRAM" VALUE="/Converted Samples/Regional Shoe Sales">

Select a region: <SELECT NAME="regionname">
<OPTION VALUE="Africa">Africa
<OPTION VALUE="Asia">Asia
<OPTION VALUE="Central America/Caribbean">Central America/Caribbean
<OPTION VALUE="Eastern Europe">Eastern Europe
<OPTION VALUE="Middle East">Middle East
<OPTION VALUE="Pacific">Pacific

Converting SAS/IntrNet Programs to SAS Stored Processes � Converting the Application Dispatcher Program 125

<OPTION VALUE="South America">South America
<OPTION VALUE="United States">United States
<OPTION VALUE="Western Europe">Western Europe
</SELECT>

<HR>
<INPUT TYPE="SUBMIT" VALUE="Execute">
<INPUT TYPE="CHECKBOX" NAME="_DEBUG" VALUE="131">Show SAS Log

</FORM>

h Save the file as Regional Shoe Sales.jsp, and close it.

Note: If this JSP file is located somewhere other than in the SAS Stored Process
Web Application directory, then you need to specify the complete URL to the stored
process servlet, as follows, in the ACTION attribute in the FORM tag:
http://myserver:8080/SASStoredProcess/do. Otherwise, this URL can be a
relative link, as follows: /SASStoredProcess/do. If you do place the JSP file under the
same directory as the SAS Stored Process Web Application, then you need to be careful
to preserve the application if you later upgrade or redeploy the SAS Stored Process Web
Application. �

You should also convert any HTML pages that link to your stored process to use the
SASStoredProcess URL syntax. For example, you might use the following URL to link
to the Hello World sample program using the Application Broker:

http://myserver/cgi-bin/broker?
_service=default&_program=sample.webhello.sas

The URL specifies your Application Server, an absolute path to the Application
Broker, and the query string (followed by the question mark character). The query
string contains the name/value pair data that is input to the application. Each name is
separated from the following value by an equal sign (=). Multiple name/value pairs are
separated by an ampersand (&). The Web page that executes an Application Dispatcher
program must pass the _SERVICE and _PROGRAM variables. In this example, the
_SERVICE=DEFAULT pair specifies the service that handles this request, and the
_PROGRAM=SAMPLE.WEBHELLO.SAS pair specifies the library, name, and type of
request program to be executed.

For the SAS Stored Process Web Application, the URL in the preceding example
would need to be changed. You might use the following URL if you want to run the
program from the SAS Stored Process Web Application:

http://myserver:8080/SASStoredProcess/do?
_program =/Samples/Stored+Processes/Sample:+Hello+World

The URL specifies your stored process server, an absolute path to the SAS Stored
Process Web Application (instead of the Application Broker), and the query string.
Notice that /cgi-bin/broker? has been replaced with the stored process Web
application equivalent: /SASStoredProcess/do?. The _SERVICE name/value pair is
not used with stored processes, and _PROGRAM is the reserved input parameter that
specifies the metadata location and the name of the stored process to be executed.

There are special rules for the formatting of name/value pairs in a URL. Special
characters (most punctuation characters, including spaces) in a value must be
URL-encoded. Spaces can be encoded as a plus sign (+) or %20. Other characters are
encoded using the %nn convention, where nn is the hexadecimal representation of the
character in the ASCII character set. In the previous example, the value /Samples/
Stored+Processes/Sample:+Hello+World actually identifies the stored process

126 Converting the Application Dispatcher Program � Appendix 2

named Sample: Hello World. The space in the name is encoded as a plus sign (+).
If your parameter values contain special characters, then they should be URL-encoded.

Step 5: Execute the Stored Process Using the New JSP Page
1 You can use _ACTION=FORM in the URL in order to display the custom input

form. For example, type the following URL in a Web browser:

http://myserver:8080/SASStoredProcess/do?
_program=/Converted+Samples/Regional+Shoe+Sales&_action=form

Your Web browser is forwarded to the following URL, which displays the
modified custom input form:

http://myserver:8080/SASStoredProcess/input/Converted_Samples/
Regional_Shoe_Sales.jsp?_program=/Converted Samples/Regional Shoe Sales

Note: Be sure to start JBoss first. �

2 Select the default region (Africa) and click Execute.
The JSP page executes the stored process by using the following generated URL:

http://myserver:8080/SASStoredProcess/do?
_PROGRAM=/Converted Samples/Regional Shoe Sales®ionname=Africa

The results look like the results from the Application Dispatcher program as
shown in the following display:

Display A2.5 Stored Process Results

Converting SAS/IntrNet Programs to SAS Stored Processes � Adding a Parameter to the Stored Process Definition 127

Adding a Parameter to the Stored Process Definition

Step 1: Modify the Stored Process Metadata Definition
Parameter definitions are not required if you are converting a SAS/IntrNet program

to a stored process. If macro variables in the program are used to substitute parameter
values in the program, you can define the macro variables as parameters to the stored
process. If you define the value as a parameter, it means that other clients can use the
metadata to create a dialog box that prompts for the parameter, or you can use the
dynamic prompt page that is built by the SAS Stored Process Web application. If you do
not define the parameter, it means that the program must use defaults in the code if
you want to execute the stored process in other clients. If you intend to use the stored
process in other clients, then you should define parameters in the metadata.

In webtab1.html and webtab1.sas, the REGIONNAME macro variable is substituted
into the PROC TABULATE code. Because the HTML form uses a drop-down list, you
can count on a valid value always being passed to the program from that Web page. If
you want to make sure this stored process runs correctly in other clients (or if you want
to use the dynamic prompt page that was built by the SAS Stored Process Web
Application), then you need to define a parameter that returns a macro variable named
REGIONNAME with a valid list of regions.

To add the REGIONNAME parameter, complete the following steps:
1 In SAS Management Console, open the Stored Process Properties dialog box for

the Regional Shoe Sales stored process.
2 On the Parameters tab, click New Prompt.
3 On the General tab of the New Prompt dialog box, specify the following

information:
Name: regionname
Displayed text: Select a region
Options: Requires a non-blank value

Display A2.6 New Prompt Dialog Box: General Tab

128 Adding a Parameter to the Stored Process Definition � Appendix 2

4 In the Prompt Type and Values tab of the New Prompt dialog box, specify the
following information:

Prompt type: Text
Method for populating prompt: User selects values from a static
list
Number of values: Single value
List of values: Africa

Asia
Central America/Caribbean
Eastern Europe
Middle East
Pacific
South America
United States
Western Europe

For the List of Values table, click Add to add each value. Click the radio
button for Default next to Africa. For more information about these fields, see the
help for this dialog box.

Display A2.7 New Prompt Dialog Box: Prompt Type and Values Tab

5 Click OK in the New Prompt dialog box, and then click OK in the Stored Process
Properties dialog box.

Step 2: Execute the Stored Process Using the Dialog Box
To view the parameter that you added to the stored process metadata definition,

execute the stored process using the SAS Stored Process Web Application dialog box

Converting SAS/IntrNet Programs to SAS Stored Processes � Executing Catalog Entries 129

instead of the custom input form. The dialog box uses the parameter that you defined
in the New Stored Process Wizard when you registered the stored process metadata. To
access the dialog box for this stored process, type the following URL in a Web browser:

http://myserver:8080/SASStoredProcess/do?
_PROGRAM=/Converted Samples/Regional Shoe Sales&_action=properties

Display A2.8 SAS Stored Process Web Application: Dialog Box

Select the default region (Africa) and click Execute. You see the same results (the
table of shoe sales for Africa that was shown in “Step 5: Execute the Stored Process
Using the New JSP Page” on page 126) displayed in a separate Web browser window.

Executing Catalog Entries
If you are converting SAS/IntrNet programs that use SOURCE or MACRO catalog

entries, then you need to use a wrapper.sas source file to execute the catalog entry. As
mentioned in the "Conversion Considerations" section, the stored process server cannot
directly execute SOURCE, MACRO, or SCL catalog entries.

Note: SCL catalog entries cannot be executed using this type of wrapper program. �

You can use a wrapper program like the following to execute SOURCE catalog entries:

libname mylib ’sas-data-library’; /* this library could be pre-assigned */
filename fileref1 catalog ’mylib.catalog.program.source’;
%include fileref1;

The wrapper program for MACRO catalog entries can be something like the following
wrapper:

libname mysas ’SAS-data-library’; /* this library could be pre-assigned */
filename mymacros catalog ’mysas.mycat’;
options sasautos=mymacros mautosource;
%macroname;

130 Executing Catalog Entries � Appendix 2

These two sample programs show only the minimum code that is necessary to
execute catalog entries from a SAS program. This might be enough in some cases, but
you might want to use some other SAS/IntrNet features by including macro variables
such as _PGMLIB, _PGMCAT, _PGM, _PGMTYPE, and _APSLIST.

131

A P P E N D I X

3 Formatting Prompt Values and
Generating Macro Variables
from Prompts

Entering Prompt Values in the SAS Stored Process Web Application 131
Macro Variables That Are Generated from Prompts 139

Macro Variable Generation and Assignment 139

Example: Single Macro Variable Generation 141

Examples: Multiple Macro Variable Generation 141

Quick Reference 143

Entering Prompt Values in the SAS Stored Process Web Application
The following table explains how to format values for the various prompt types in the

SAS Stored Process Web Application:

Table A3.1 Guidelines for Entering Prompt Values (U.S. English Locale)

Prompt Type Guidelines Examples

Text Enter any character value. Blank spaces and
nonprintable characters can be used, but the
value cannot consist completely of these
characters. Trailing blanks are stored as part
of the value and are included when the value is
validated against the minimum and maximum
length requirements.

� you are here

� eighty-five

� Bob

Numeric Enter a standard numeric value.

� If you are working with an integer
prompt, then do not use values with
decimal places. If you use a value with
zeros after the decimal point (for
example, 1.00) for an integer prompt,
then the zeros and the decimal point are
removed before the value is stored (for
example, 1.00 is stored as 1).

� For prompts that allow floating-point
values, the unformatted prompt value
can contain up to 15 significant digits.
Values with more than 15 significant
digits of precision are truncated. Note
that formatted values can have more
than 15 significant digits.

� 1.25

� 6000

� 2222.444

132 Entering Prompt Values � Appendix 3

Prompt Type Guidelines Examples

Date For dates of type Day, enter values in one of
the following formats:

� ddmonth-nameyyyy

� mm/dd/yy<yy>

� mm.dd.yy<yy>

� mm-dd-yy<yy>

� month-name/dd/yy<yy>

� month-name.dd.yy<yy>

� month-name-dd-yy<yy>

� month-name dd, yyyy

� day-of-week, month-name dd, yy<yy>

� yyyy/mm/dd

� yyyy.mm.dd

� yyyy-mm-dd

� yyyy.month-name.dd

� yyyy-month-name-dd

� 4APR1860

� 14January1918

� 12/14/45

� 02.15.1956

� 1--1--60

� Feb/10/00

� March.1.2004

� DEC-25--08

� SEPTEMBER 20, 2010

� FRI, Jan 3, 20

� Monday, January 16,
40

� 2041/5/13

� 2050.07.25

� 2100--1--1

� 2101.December.31

� 2400--Aug-8

Formatting Prompt Values and Generating Macro Variables � Entering Prompt Values 133

Prompt Type Guidelines Examples

Here is an explanation of the syntax:

day-of-week
specifies either the first three letters of
the day of the week or the full name of
the day of the week (the full name of the
day must be used for values in .NET).
This value is not case sensitive. (That is,
the lowercase and uppercase versions of
the same character are considered to be
the same.)

dd
specifies a one-digit or two-digit integer
that represents the day of the month.

mm
specifies a one-digit or two-digit integer
that represents the month of the year.

month-name
specifies either the first three letters of
the month or the full name of the month.
This value is not case sensitive. (That is,
the lowercase and uppercase versions of
the same character are considered to be
the same.)

yy or yyyy
specifies a two-digit or four-digit integer
that represents the year. To refer to a
year that is more than 80 years in the
past or 20 years in the future, use four
digits. Valid values for a four-digit year
range from 1600 to 2400.

For dates of type Week, enter values in one of
the following formats:

� Www yy<yy>

� Weekww yyyy

Here is an explanation of the syntax:

ww
specifies a one-digit or two-digit integer
that represents the week of the year.
Valid values range from 1 to 52.

yy or yyyy
specifies a two-digit or four-digit integer
that represents the year. To refer to a
year that is more than 80 years in the
past or 20 years in the future, use four
digits. Valid values for a four-digit year
range from 1600 to 2400.

� W1 08

� W52 1910

� Week 20 2020

� Week 5 2048

134 Entering Prompt Values � Appendix 3

Prompt Type Guidelines Examples

Date (continued) For dates of type Month, enter values in one of
the following formats:

� mm/yy<yy>

� mm.yy<yy>

� mm-yy<yy>

� month-name yy<yy>

� month-name/yy<yy>

� month-name.yy<yy>

� month-name-yy<yy>

Here is an explanation of the syntax:

mm
specifies a one-digit or two-digit integer
that represents the month of the year.

month-name
specifies either the first three letters of
the month or the full name of the month.
This value is not case sensitive. (That is,
the lowercase and uppercase versions of
the same character are considered to be
the same.)

yy or yyyy
specifies a two-digit or four-digit integer
that represents the year. To refer to a
year that is more than 80 years in the
past or 20 years in the future, use four
digits. Valid values for a four-digit year
range from 1600 to 2400.

� 12/1828

� 06.65

� 7--76

� Jul 08

� JUNE/2010

� SEP.20

� October-2050

For dates of type Quarter, enter values in the
following format:

� quarter-name quarter yy<yy>

Here is an explanation of the syntax:

quarter-name
specifies the quarter of the year. Valid
values are 1st, 2nd, 3rd, and 4th.

yy or yyyy
specifies a two-digit or four-digit integer
that represents the year. To refer to a
year that is more than 80 years in the
past or 20 years in the future, use four
digits. Valid values for a four-digit year
range from 1600 to 2400.

� 1st quarter 1900

� 2nd quarter 50

� 3rd quarter 12

� 4th quarter 2060

Formatting Prompt Values and Generating Macro Variables � Entering Prompt Values 135

Prompt Type Guidelines Examples

For dates of type Year, enter values in the
following format:

� yy<yy>

Here is an explanation of the syntax:

yy or yyyy
specifies a two-digit or four-digit integer
that represents the year. To refer to a
year that is more than 80 years in the
past or 20 years in the future, use four
digits. Valid values for a four-digit year
range from 1600 to 2400.

� 1895

� 86

� 08

� 2035

Time Enter time values in the following format:

� hh:mm<:ss> <AM | PM>

Here is an explanation of the syntax:

hh
specifies a one-digit or two-digit integer
that represents the hour of the day. Valid
values range from 0 to 24.

mm
specifies a one-digit or two-digit integer
that represents the minute of the hour.
Valid values range from 0 to 59.

ss (optional)
specifies a one-digit or two-digit integer
that represents the second of the minute.
Valid values range from 0 to 59. If this
value is not specified, then the value
defaults to 00 seconds.

AM or PM (optional)
specifies either the time period 00:01 –
12:00 noon (AM) or the time period 12:01
– 12:00 midnight (PM). If this value is
not specified and you are using the
12-hour system for specifying time, then
the value defaults to AM.

Note: Do not specify AM or PM if
you are using the 24-hour system
for specifying time. �

� 1:1

� 1:01 AM

� 13:1:1

� 01:01:01 PM

� 22:05

136 Entering Prompt Values � Appendix 3

Prompt Type Guidelines Examples

Timestamp Enter timestamp values in one of the following
formats:

� mm/dd/yy<yy> hh:mm AM | PM

� yyyy-mm-ddThh:mm:ss

� ddmonth-nameyy<yy> :hh:mm:ss

� <day-of-week,> month-name dd, yyyy
hh:mm:ss AM | PM

Here is an explanation of the syntax:

day-of-week (optional)
specifies either the first three letters of
the day of the week or the full name of
the day of the week. This value is not
case sensitive. (That is, the lowercase
and uppercase versions of the same
character are considered to be the same.)

dd
specifies a one-digit or two-digit integer
that represents the day of the month.

mm
specifies a one-digit or two-digit integer
that represents the month of the year.

month-name
specifies either the first three letters of
the month or the full name of the month.
This value is not case sensitive. (That is,
the lowercase and uppercase versions of
the same character are considered to be
the same.)

yy or yyyy
specifies a two-digit or four-digit integer
that represents the year. To refer to a
year that is more than 80 years in the
past or 20 years in the future, use four
digits. Valid values for a four-digit year
range from 1600 to 2400.

hh
specifies a one-digit or two-digit integer
that represents the hour of the day. Valid
values range from 0 to 24.

mm
specifies a one-digit or two-digit integer
that represents the minute of the hour.
Valid values range from 0 to 59.

ss
specifies a one-digit or two-digit integer
that represents the second of the minute.
Valid values range from 0 to 59.

� 7/3/08 12:40 AM

� 2012-11-23T15:30:32

� 14FEB2020:11:0:0

� Dec 25, 2020
12:00:00 AM

� Thursday, November
24, 2050 4:45:45 PM

Formatting Prompt Values and Generating Macro Variables � Entering Prompt Values 137

Prompt Type Guidelines Examples

ss
specifies a one-digit or two-digit integer
that represents the second of the minute.
Valid values range from 0 to 59.

AM or PM (optional)
specifies either the time period 00:01 –
12:00 noon (AM) or the time period 12:01
– 12:00 midnight (PM). If this value is
not specified and you are using the
12-hour system for specifying time, then
the value defaults to AM.

Note: Do not specify AM or PM if
you are using the 24-hour system
for specifying time. �

Color Enter color values in one of the following
formats:

� CXrrggbb

� 0xrrggbb

� #rrggbb

Here is an explanation of the syntax:

rr
specifies the red component.

gg
specifies the green component.

bb
specifies the blue component.

Each component should be specified as a
hexadecimal value that ranges from 00 to FF,
where lower values are darker and higher
values are brighter.

Bright red

� CXFF0000

� 0xFF0000

� #FF0000

Black

� CX000000

� 0x000000

� #000000

White

� CXFFFFFF

� 0xFFFFFF

� #FFFFFF

138 Entering Prompt Values � Appendix 3

Prompt Type Guidelines Examples

Data source Enter the name and location of a data source in
the following format:

� /folder-name-1/<.../folder-name-n/
>data-source-name(type)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the data source.

data-source-name
specifies the name of the data source.

type
is the type of data source. The following
values are valid unless otherwise noted:
Table, InformationMap, and Cube.
Use InformationMap for specifying
either relational or OLAP information
maps.

� /Shared Data/
Tables/OrionStar/
Customers(Table)

� /Users/
MarcelDupree/My
Folder/My
Information
Map(InformationMap)

� /MyCustomRepository
/More Data/
Order_Facts
(Table)

Formatting Prompt Values and Generating Macro Variables � Macro Variable Generation and Assignment 139

Prompt Type Guidelines Examples

File or directory Enter the name and location of a file or
directory in the following format:

� directory-specification<filename>

Here is an explanation of the syntax:

directory-specification
specifies the location of the file or
directory in the file system of a SAS
server.

filename
specifies the name of the file. This value
is required only if the prompt is a file
prompt. Depending on the operating
environment that the SAS server runs in,
you might need to put a forward slash (/)
or a backslash (\) between the directory
specification and the name of the file.

� C:\Documents and
Settings\All
Users\Documents
\myfile.txt

Data library Enter the name and location of a data library
in the following format:

� /folder-name-1/<.../folder-name-n/
>library-name(Library)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the library.

library-name
specifies the name of the library.

� /Data/Libraries/
Customer Data
Library(Library)

� /MyCustomRepository
/More Data/
OracleData
(Library)

Macro Variables That Are Generated from Prompts

Macro Variable Generation and Assignment
One or more global macro variables is automatically generated for each prompt when

the prompt is executed at run time. The values that are specified for the prompts at
run time are assigned to the generated macro variables.

One or more macro variables can be generated from both single-value prompts and
multi-value prompts. A prompt can have single or multiple values, depending on what
you select for the Number of values field on the Prompt Type and Values tab in the
New Prompt or Edit Prompt dialog box in SAS Management Console. The following list
describes the macro variables that can be generated. PROMPT-NAME is used to
represent the name of the prompt.

� A base macro variable is generated for every type of prompt except range prompts.
The name of the prompt is used as the name of the base macro variable.

140 Macro Variable Generation and Assignment � Appendix 3

Note: Macro variable names can be no more than 32 characters long. Ensure
that you consider this restriction when you name the prompt. �

� For all multi-value prompts, the following macro variables are generated. Suffixes
such as _COUNT or a numeric value are appended to the prompt name to create
unique names for these macro variables.

PROMPT-NAME_COUNT
The value of this macro variable is the number of values that are specified for
the prompt. If no value is specified for a multi-value prompt, then
PROMPT-NAME_COUNT is set to 0.

PROMPT-NAME0
The value of this macro variable is the same as the value of
PROMPT-NAME_COUNT. If no value or only one value is specified for a
multi-value prompt, then this macro variable is not generated.

PROMPT-NAMEn
When a multi-value prompt has more than one value specified for it, then
each value is stored in a macro variable with the name PROMPT-NAMEn
where n is the ordinal number of the value in the list of prompt values. The
value of PROMPT-NAME1 is the same as the value of the base macro
variable. If only one value is specified for a multi-value prompt, then no
PROMPT-NAMEn macro variables are generated.

Note: Macro variable names can be no more than 32 characters long. Ensure
that you consider this restriction and the length of the suffix when you name the
prompt. The length of the suffix is included as part of the 32 characters. �

� If any of the following special values are specified for a prompt, then the
corresponding base macro variable or PROMPT-NAMEn macro variable is
assigned a value as follows:

Table A3.2 Generated Macro Variables for Special Values

Special Value Macro Variable Value

(all possible values) _ALL_VALUES_

(missing values) for numeric, date, time, and
timestamp prompts

.

(missing values) for character prompts [space]

� Additional macro variables are generated for certain types of prompts (see the
“Quick Reference” on page 143 for a list of these macro variables). Suffixes such as
_REL, _MIN, and _MAX are appended to the prompt name to create unique names
for these macro variables. The following list describes the macro-variables that
can be generated. SUFFIX is used to represent the various suffixes.

PROMPT-NAME_SUFFIX
This macro variable is generated for both single-value and multi-value
prompts.

PROMPT-NAME_SUFFIXn
These macro variables are generated when a multi-value prompt has more
than one value specified for it. The n is the ordinal number of the value in
the list of prompt values. The value of PROMPT-NAME_SUFFIX1 is the
same as the value of PROMPT-NAME_SUFFIX. If only one value is specified

Formatting Prompt Values and Generating Macro Variables � Examples: Multiple Macro Variable Generation 141

for a multi-value prompt, then no PROMPT-NAME_SUFFIXn macro
variables are generated.

Note: Macro variable names can be no more than 32 characters long. Ensure
that you consider this restriction and the length of the suffix when you name the
prompt. The length of the suffix is included as part of the 32 characters. �

� If no value is specified for a prompt, then an empty base macro variable is
generated. For range prompts, which do not have base macro variables, the
PROMPT-NAME_MIN and PROMPT-NAME_MAX macro variables are empty.

Example: Single Macro Variable Generation
The following example shows the macro variable that is generated for a single-value

text prompt.

Table A3.3 Generated Macro Variables for a Single-Value Text Prompt

Prompt Name Prompt Value Macro Variable Name Macro Variable Value

MYPROMPT Hello World! MYPROMPT Hello World!

Examples: Multiple Macro Variable Generation
The following example shows the macro variables that are generated for a

single-value time prompt.

Table A3.4 Generated Macro Variables for a Single-Value Time Prompt

Prompt Name Prompt Value Macro Variable Name Macro Variable Value

MYTIME 9:59:55MYTIME 09:59:55 AM

MYTIME_LABEL 9:59:55 AM

In the preceding example, two macro variables were generated for the single prompt
value. If the prompt value had been a relative time value (such as Yesterday), then a
third macro variable named MYTIME_REL would have been generated.

The following example shows the macro variables that are generated for a
multi-value text prompt.

142 Examples: Multiple Macro Variable Generation � Appendix 3

Table A3.5 Generated Macro Variables for a Multi-value Text Prompt

Prompt Name Prompt Value Macro Variable Name Macro Variable Value

RESPONSE Yes

RESPONSE_COUNT 4

RESPONSE0 4

RESPONSE1 Yes

RESPONSE2 No

RESPONSE3 Undecided

RESPONSE Yes

No

Undecided

(missing values)

RESPONSE4

In the preceding example, seven macro variables were generated for the four prompt
values. The macro variables RESPONSE and RESPONSE1 both contain the first
prompt value. The macro variables RESPONSE_COUNT and RESPONSE0 both
contain the number of values that were specified for the prompt. The macro variables
RESPONSE2 and RESPONSE3 contain the second and third prompt values,
respectively. RESPONSE4 contains a single blank space, which represents the special
value (missing values).

The following example shows the macro variables that are generated for a
multi-value date prompt.

Table A3.6 Generated Macro Variables for a Multi-value Date Prompt

Prompt Name Prompt Value Macro Variable Name Macro Variable Value

MYDATE_COUNT 3

MYDATE0 3

MYDATE 02Sep2008

MYDATE1 02Sep2008

MYDATE2 03Sep2008

MYDATE3 04Sep2008

MYDATE_LABEL Today

MYDATE_LABEL1 Today

MYDATE_LABEL2 Tomorrow

MYDATE_LABEL3 September 04, 2008

MYDATE_REL D0D

MYDATE_REL1 D0D

MYDATE Today

Tomorrow

September 04, 2008

MYDATE_REL2 D1D

In the preceding example, 13 macro variables were generated for the three prompt
values.

� The macro variables MYDATE_COUNT and MYDATE0 contain the number of
values that were specified for the prompt.

� The macro variables MYDATE and MYDATE1 both contain the specific date that
the first relative date (Today) resolves to. The macro variable MYDATE2 contains
the specific date that the second relative date (Tomorrow) resolves to. The macro
variable MYDATE3 contains the third prompt value.

Formatting Prompt Values and Generating Macro Variables � Quick Reference 143

� The macro variables MYDATE_LABEL, MYDATE_LABEL1, and
MYDATE_LABEL2 contain the relative dates that were specified for the prompt.
MYDATE_LABEL3 contains the long form of the specific date that was selected for
the prompt.

� The macro variables MYDATE_REL and MYDATE_REL1 contain the internal
representation of Today. The macro variables MYDATE_REL2 contains the
internal representation of Tomorrow.

Quick Reference
The following table lists, by prompt type, the macro variables that are generated and

how their values are determined. Examples of the generated macro variables are also
provided.

Note: If your application or software feature enables you to create custom types of
prompts, then the application or software feature determines which macro variables are
generated for those prompts. For information about macro variables for custom types of
prompts, see the documentation for your application or software feature. �

Table A3.7 Generated Macro Variables by Prompt Type for Prompt MYPROMPT

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

Text The PROMPT-NAME macro variable
contains the value of the prompt. No
additional macro variables are
generated for single-value prompts.
For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

Hello World! MYPROMPT Hello World!

Numeric The PROMPT-NAME macro variable
contains the value of the prompt. No
additional macro variables are
generated for single-value prompts.
For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

12 MYPROMPT 12

A base macro variable is not generated
for range prompts.

The PROMPT-NAME_MIN macro
variable contains the lower boundary of
the specified prompt range.

From: 23

To: 45

MYPROMPT_MIN 23

Text range,
Numeric
range

The PROMPT-NAME_MAX macro
variable contains the upper boundary
of the specified prompt range.

From: 23

To: 45

MYPROMPT_MAX 45

144 Quick Reference � Appendix 3

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

The PROMPT-NAME macro variable
contains the value of the prompt in the
format ddmmmyyyy.1

Here is an explanation of the syntax:

dd
specifies a two-digit integer that
represents the day of the month.

mmm
specifies the first three letters of
the month.

yyyy
specifies a four-digit integer that
represents the year.

For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

April 04,
2008

MYPROMPT 04Apr2008Date (Day)

The PROMPT-NAME_LABEL macro
variable contains one or more of the
following values:

� for the relative date values, the
relative date (for example,
Tomorrow.

� for specific date values, the date
in the format month-name dd,
yyyy.

Here is an explanation of the syntax:

month-name
specifies the full name of the
month.

dd
specifies a two-digit integer that
represents the day of the month.

yyyy
specifies a four-digit integer that
represents the year.

For the macro variables that are
generated for multi-value prompts, see
“Macro Variable Generation and
Assignment” on page 139.

April 04,
2008

MYPROMPT_LABEL April 04,
2008

Formatting Prompt Values and Generating Macro Variables � Quick Reference 145

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

Date (Day)
(continued)

The PROMPT-NAME_REL macro
variable contains the internal
representation of the relative date that
is specified for the prompt. This macro
variable is generated only when the
prompt value is a relative date.

For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

Current day
of last year

MYPROMPT_REL D0D-1Y

Date
(Week,
Month,
Quarter,
Year)

The PROMPT-NAME macro variable
contains the first day of the week,
month, quarter, or year2 that is
specified for the prompt. The format of
the macro variable value is
ddmmmyyyy.1

Here is an explanation of the syntax:

dd
specifies a two-digit integer that
represents the day of the month.

mmm
specifies the first three letters of
the month.

yyyy
specifies a four-digit integer that
represents the year.

For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

Week 36 2008 MYPROMPT 01Sep2008

The PROMPT-NAME_END macro
variable contains the last day of the
week, month, quarter, or year2 that is
specified for the prompt. See the above
base macro variable entry for the
format that is used.1

For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

Week 36 2008 MYPROMPT_END 07Sep2008

146 Quick Reference � Appendix 3

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

Date
(Week,
Month,
Quarter,
Year)
(continued)

The PROMPT-NAME_LABEL macro
variable contains one or more of the
following week, month, quarter, or
year2 values:

� for the relative date values, the
relative date (for example,
Current week.

� for specific date values, the date
in the following formats:

� Week ww yyyy

� month-name yyyy

� quarter-name quarter yyyy

� yyyy

Here is an explanation of the syntax:

ww
specifies a two-digit integer that
represents the week of the year.

month-name
specifies the full name of the
month.

quarter-name
specifies the quarter of the year
(1st, 2nd, 3rd, or 4th).

yyyy
specifies a four-digit integer that
represents the year.

For the macro variables that are
generated for multi-value prompts, see
“Macro Variable Generation and
Assignment” on page 139.

Week 36 2008 MYPROMPT_LABEL Week 36 2008

The PROMPT-NAME_REL macro
variable contains the internal
representation of the relative date that
is specified for the prompt. This macro
variable is generated only when the
prompt value is a relative date.

For more information about the macro
variables that are generated for
multi-value prompts, see “Macro
Variable Generation and Assignment”
on page 139.

Current week
of last year

MYPROMPT_REL W0W-1Y

Formatting Prompt Values and Generating Macro Variables � Quick Reference 147

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

A base macro variable is not generated
for range prompts.

The PROMPT-NAME_MIN macro
variable contains the lower boundary of
the specified prompt range. See the
base macro variable entry for date
prompts for the format that is used.1

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MIN 31Aug2008

The PROMPT-NAME_MAX macro
variable contains the upper boundary
of the specified prompt range. See the
base macro variable entry for date
prompts for the format that is used.1

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MAX 06Sep2008

The PROMPT-NAME_MIN_LABEL
macro variable contains the lower
boundary of the specified prompt range
in the format that is specified for the
PROMPT-NAME_LABEL macro
variable entry for date (day) prompts.

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MIN_LABEL August 31,
2008

The PROMPT-NAME_MAX_LABEL
macro variable contains the upper
boundary of the specified prompt range
in the format that is specified for the
PROMPT-NAME_LABEL macro
variable entry for date (day) prompts.

From: August
31, 2008

To: September
06, 2008

MYPROMPT_MAX_LABEL September 06,
2008

The PROMPT-NAME_MIN_REL
macro variable contains the internal
representation of the relative date that
is specified for the lower boundary. This
macro variable is generated only when
the prompt value is a relative date.

From: Today

To: Current
day of next
month

MYPROMPT_MIN_REL D0D

Date range
(Day)

The PROMPT-NAME_MAX_REL
macro variable contains the internal
representation of the relative date that
is specified for the upper boundary.
This macro variable is generated only
when the prompt value is a relative
date.

From: Today

To: Current
day of next
month

MYPROMPT_MAX_REL DOD1M

A base macro variable is not generated
for range prompts.

Date range
(Week,
Month,
Quarter,
Year)

The PROMPT-NAME_MIN macro
variable contains the first day of the
lower boundary of the specified prompt
range. See the base macro variable
entry for date prompts for the format
that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MIN 01Sep2008

148 Quick Reference � Appendix 3

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

The PROMPT-NAME_MAX macro
variable contains the first day of the
upper boundary of the specified prompt
range. See the base macro variable
entry for date prompts for the format
that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MAX 01Jun2009

The PROMPT-NAME_MIN_LABEL
macro variable contains the lower
boundary of the specified prompt range
in the formats that are specified for the
PROMPT-NAME_LABEL macro
variable entry for date (week, month,
quarter, year) prompts.

From:
September
2008

To: June 2009

MYPROMPT_MIN_LABEL September
2008

The PROMPT-NAME_MAX_LABEL
macro variable contains the upper
boundary of the specified prompt range
in the formats that are specified for the
PROMPT-NAME_LABEL macro
variable entry for date (week, month,
quarter, year) prompts.

From:
September
2008

To: June 2009

MYPROMPT_MAX_LABEL June 2009

The PROMPT-NAME_MIN_END
macro variable contains the last day of
the lower boundary of the specified
prompt range . See the base macro
variable entry for date prompts for the
format that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MIN_END 30Sep2008

The PROMPT-NAME_MAX_END
macro variable contains the last day of
the upper boundary of the specified
prompt range. See the base macro
variable entry for date prompts for the
format that is used.1

From:
September
2008

To: June 2009

MYPROMPT_MAX_END 30Jun2009

The PROMPT-NAME_MIN_REL
macro variable contains the internal
representation of the relative date that
is specified for the lower boundary. This
macro variable is generated only when
the prompt value is a relative date.

From: Current
week

To: Current
week of next
year

MYPROMPT_MIN_REL W0W

Date range
(Week,
Month,
Quarter,
Year)
(continued)

The PROMPT-NAME_MAX_REL
macro variable contains the internal
representation of the relative date that
is specified for the upper boundary.
This macro variable is generated only
when the prompt value is a relative
date.

From: Current
week

To: Current
week of next
year

MYPROMPT_MAX_REL W0W1Y

Formatting Prompt Values and Generating Macro Variables � Quick Reference 149

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

Time The PROMPT-NAME macro variable
contains the value of the prompt in the
format hh:mm:ss.1

Here is an explanation of the syntax:

hh
specifies a one-digit or two-digit
integer that represents the hour
of a 24-hour day.

mm
specifies a two-digit integer that
represents the minute of the
hour.

ss
specifies a two-digit integer that
represents the second of the
minute.

02:05:28 PM MYPROMPT 14:05:28

The PROMPT-NAME_LABEL macro
variable contains one of the following
values:

� for relative time values, the
relative time (for example,
Current time).

� for specific time values, the time
in the format hh:mm:ss
AM | PM.

Here is an explanation of the syntax:

hh
specifies a two-digit integer that
represents the hour of a 12-hour
day.

mm
specifies a two-digit integer that
represents the minute of the
hour.

ss
specifies a two-digit integer that
represents the second of the
minute.

AM or PM
specifies either the time period
00:01–12:00 noon (AM) or the
time period 12:01–12:00
midnight (PM).

02:05:28 PM MYPROMPT_LABEL 02:05:28 PM

150 Quick Reference � Appendix 3

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

The PROMPT-NAME_REL macro
variable contains the internal
representation of the relative time that
is specified for the prompt. This macro
variable is generated only when the
prompt value is a relative time (such
as Next minute).

Next minute MYPROMPT_REL m1m

Timestamp The PROMPT-NAME macro variable
contains the value of the prompt in the
format ddmmmyyyy hh:mm:ss.1

Here is an explanation of the syntax:

dd
specifies a two-digit integer that
represents the day of the month.

mmm
specifies the first three letters of
the month.

yyyy
specifies a four-digit integer that
represents the year.

hh
specifies a one-digit or two-digit
integer that represents the hour
of a 24-hour day.

mm
specifies a two-digit integer that
represents the minute of the
hour.

ss
specifies a two-digit integer that
represents the second of the
minute.

September 02,
2008 02:07:03
PM

MYPROMPT 02Sep2008
14:07:03

Formatting Prompt Values and Generating Macro Variables � Quick Reference 151

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

Timestamp
(continued)

The PROMPT-NAME_LABEL macro
variable contains one of the following
values:

� for relative timestamp values, the
relative timestamp (for example,
Current date and time).

� for specific time values, the time
in the format month-name dd,
yyyy hh:mm:ss AM | PM.

Here is an explanation of the syntax:

month-name
specifies the full name of the
month.

dd
specifies a two-digit integer that
represents the day of the month.

yyyy
specifies a four-digit integer that
represents the year.

hh
specifies a two-digit integer that
represents the hour of a 12-hour
day.

mm
specifies a two-digit integer that
represents the minute of the
hour.

ss
specifies a two-digit integer that
represents the second of the
minute.

AM or PM
specifies either the time period
00:01–12:00 noon (AM) or the
time period 12:01–12:00
midnight (PM).

September 02,
2008 02:07:03
PM

MYPROMPT_LABEL September 02,
2008 02:07:03
PM

The PROMPT-NAME_REL macro
variable contains the internal
representation of the relative
timestamp that is specified for the
prompt. This macro variable is
generated only when the prompt value
is a relative timestamp (such as
Current date and time).

Current date
and time

MYPROMPT_REL T0m

152 Quick Reference � Appendix 3

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

A base macro variable is not generated
for range prompts.

The PROMPT-NAME_MIN macro
variable contains the lower boundary of
the specified prompt range. See the
base macro variable entries for time
and timestamp prompts for the formats
that are used.1

From: 01:13:04
AM

To: 02:13:14
PM

MYPROMPT_MIN 1:13:04

The PROMPT-NAME_MAX macro
variable contains the upper boundary
of the specified prompt range. See the
base macro variable entries for time
and timestamp prompts for the formats
that are used.1

From: 01:13:04
AM

To: 02:13:14
PM

MYPROMPT_MAX 14:13:14

The PROMPT-NAME_MIN_LABEL
macro variable contains the lower
boundary of the specified prompt range
in the formats that are specified for the
PROMPT-NAME_LABEL macro
variables for time and timestamp
prompts.1

From: October
29, 2008
10:12:12 AM

To: February
14, 2009
12:25:36 PM

MYPROMPT_MIN_LABEL October 29,
2008 10:12:12
AM

The PROMPT-NAME_MAX_LABEL
macro variable contains the lower
boundary of the specified prompt range
in the formats that are specified for the
PROMPT-NAME_LABEL macro
variables for time and timestamp
prompts.1

From: October
29, 2008
10:12:12 AM

To: February
14, 2009
12:25:36 PM

MYPROMPT_MAX_LABEL February 14,
2009 12:25:36
PM

The PROMPT-NAME_MIN_REL
macro variable contains the internal
representation of the relative time or
timestamp that is specified for the
lower boundary. This macro variable is
generated only when the lower
boundary is a relative time or
timestamp (such as Beginning of next
hour).

From:
Beginning of
next hour

To: End of
next hour

MYPROMPT_MIN_REL t1HBH (for time)

T1HBH (for
timestamp)

Time
range,
Timestamp
range

The PROMPT-NAME_MAX_REL
macro variable contains the internal
representation of the relative time or
timestamp that is specified for the
upper boundary. This macro variable is
generated only when the upper
boundary is a relative time or
timestamp (such as End of next hour).

From:
Beginning of
next hour

To: End of
next hour

MYPROMPT_MAX_REL t1HEH (for time)

T1HEH (for
timestamp)

Formatting Prompt Values and Generating Macro Variables � Quick Reference 153

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

Color The PROMPT-NAME macro variable
contains the value of the prompt in the
format cxrrggbb.

Here is an explanation of the syntax:

rr
specifies the red component.

gg
specifies the green component.

bb
specifies the blue component.

CXFF0000 (bright
red)

MYPROMPT cxff0000

The PROMPT-NAME macro variable
contains the value of the prompt in the
format /folder-name-1/<.../
folder-name-n/>data-source-name(type).

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the data
source.

data-source-name
specifies the name of the data
source.

type
specifies the type of data source
(Table, InformationMap, or
Cube).

/Shared Data/
Tables/
MYDATA(Table)

MYPROMPT /Shared Data/
Tables/
MYDATA(Table)

Data
source

PROMPT-NAME_TYPE contains the
type of the data source, represented by
the following numbers:

� 1 represents a table

� 2 represents a cube

� 4 represents a relational
information map

� 8 represents an OLAP
information map

/Shared Data/
Tables/
MYDATA(Table)

MYPROMPT_TYPE 1

154 Quick Reference � Appendix 3

Prompt
Type Macro Variable Prompt Value Macro Variable Name

Macro Variable
Values

The PROMPT-NAME macro variable
contains the value of the prompt in the
format
directory-specification<filename>

Here is an explanation of the syntax:

directory-specification
specifies the location of the file or
directory in the file system of the
SAS Workspace Server that was
specified for the prompt.

filename
specifies the name of the file.
This value is available only if the
prompt is a file prompt.

C:\Documents
and
Settings\All
Users
\Documents
\myfile.txt

MYPROMPT C:\Documents
and
Settings\All
Users
\Documents
\myfile.txt

File or
directory

The PROMPT-NAME_SERVER macro
variable contains the name of the SAS
server that was specified for the
prompt.

C:\Documents
and
Settings\All
Users
\Documents
\myfile.txt

MYPROMPT_SERVER SASApp -
Logical
Workspace
Server

The PROMPT-NAME macro variable
contains the libref of the library that is
specified for the prompt.

/Shared Data/
Libraries/
SASHELP
(Library)

MYPROMPT SASHELPData
library

The PROMPT-NAME_PATH macro
variable contains the name and location
of the library. The format of the macro
variable value is /folder-name-1/<.../
folder-name-n/>library-name(Library).

/Shared Data/
Libraries/
SASHELP
(Library)

MYPROMPT_PATH /Shared Data/
Libraries/
SASHELP
(Library)

1 Relative date, relative time, and relative timestamp values are resolved to specific date, time, and timestamp
values, respectively, for this macro variable.

2 All dates are based on the Gregorian calendar. Each year begins with the month of January, and each week
begins on Monday and ends on Sunday, regardless of locale.

155

Index

A
Application Dispatcher 113, 118

compatibility with stored processes 114
authentication

in SAS Stored Process Web Application 77

C
catalog entries, executing 129
catalogs

uploading 76
uploading and saving a permanent copy 76

chaining 93
passing data through cookies 97
passing data through form fields or URL parameters 94
passing data through sessions 97
reasons for 93

character values
of server properties 36

client-specific software requirements 109
clients 1
code differences

converting SAS/IntrNet programs to stored processes 116
configuration files

SAS Stored Process Web Application 58
Content-type HTTP header 86
cookies, passing data through 97
CSV files

uploading to a SAS table 74
custom input form 81

D
_DEBUG parameter

setting default value 108
debugging

examining the log 53
list of valid debugging keywords 108
SAS Stored Process Web Application 107
with SAS options 53

E
embedding graphics 89

generating direct graphic output 92
in Web pages 89

errors
%STPBEGIN and %STPEND macros 17

Web applications 106
Excel workbooks

uploading to a SAS table 76
Excel XML workbooks

uploading to multiple SAS tables 75
execution options 84
Expires HTTP header 87

F
form fields, passing data through 94
functions

stored process server functions 36

G
graphics

See embedding graphics

H
headers

See also HTTP headers
adding or modifying 39
for input parameters 9

HTML forms
specifying name/value pairs in 66

HTTP headers 85
commonly used headers 86
Content-type 86
converting SAS/IntrNet programs to stored processes 115
Expires 87
Location 88
Pragma 88
Set-Cookie 89
Status-Code 89

I
input forms, custom 67
input parameters 8

defining 9
hiding passwords and other sensitive data 12
overriding 15
special character quoting 10
specifying in URL 65
standard header for 9
unmasking quotation marks in 42
with multiple values 11

156 Index

IOM Direct Interface Stored Processes 3

J
Java applications 109

Java Development Kit (JDK) 110

Java Runtime Environment (JRE) 110

JSP pages 123

L
Location HTTP header 88

log, examining for debugging 53

M
macro variables

converting SAS/IntrNet programs to stored processes 115

generated from prompts 139

reserved 20, 69

maintaining state 33

metadata

See stored process metadata

Microsoft Office 109

N
name/value pairs 8

specifying in an HTML form 66

numeric values

of server properties 37

O
ODS options

%STPBEGIN and %STPEND macros 15

output 12

%STPBEGIN and %STPEND macros 14

output parameters 19

formats for 19

P
package output 12

package publishing 17

package results

developing stored processes with 46

passwords, hiding 12

permanent package output 13

permanent package results 46

Pragma HTTP header 88

prompt pages 68, 83

prompt values 131

prompts 50

macro variables generated from 139

Q
quotation marks

unmasking, in input parameters 42

quoting for input parameters 10

R
registering

stored process metadata 44
stored processes 122

reserved macro variables 20
for uploading files 69

result capabilities 12

S
SAS Add-In for Microsoft Office 2, 111
SAS BI Web Services 2
SAS BI Web Services for Java 111
SAS BI Web Services for .NET 111
SAS Data Integration Studio 2
SAS Enterprise Guide 2, 111
SAS Information Delivery Portal 2
SAS Information Map Studio 2
SAS/IntrNet

Application Dispatcher versus stored processes 114
code differences 116
conversion considerations 114
conversion steps 117
converting programs to stored processes 113
example 118
executing catalog entries 129
HTTP headers 115
macro variables 115

SAS Management Console 110
registering stored processes in 122

SAS options, debugging with 53
SAS Stored Process Server 44
SAS Stored Process Web Application 3

authentication 77
configuration files 58
configuring 58
custom input form 81
custom responses 58
debugging 107
error handling 106
execution options 84
initialization parameters 59
list of valid debugging keywords 108
prompt page 83
properties 61
setting default value of _DEBUG 108
stored process summary page 80
testing 107
tree view 79
Welcome page 78

SAS Stored Processes 1
clients using 1
importance of 1

SAS System software 110
SAS Web Infrastructure Platform 111
SAS Web Report Studio 3
SAS Workspace Server 44
sensitive data, hiding 12
server properties

character value of 36
numeric value of 37
setting value of 38

servers
choosing or defining for metadata 43
types that host stored processes 43

Index 157

servlet containers 110

sessions 33

creating 34, 41
deleting 35, 41

in sample Web application 98
limitations 35

passing data through 97
using 34

Set-Cookie HTTP header 89

software requirements 109
client-specific 109

components 110
source code repositories 44

special character quoting
for input parameters 10

Status-Code HTTP header 89

stored process definitions
adding parameters to 127

stored process metadata 43
choosing or defining a server 43

developing, with package results 46
prompts 50

registering 44

source code repositories 44
stored process server functions 36

Stored Process Service 3
stored process summary page 80

stored process Web applications
See Web applications

Stored Process Windows API 3

stored processes
See also SAS Stored Processes

chaining 93
compatibility with Application Dispatcher 114

converting SAS/IntrNet programs to 113
executing with dialog box 128

HTTP headers in 85
IOM Direct Interface Stored Processes 3

registering in SAS Management Console 122

types of servers hosting 43
writing 5

%STPBEGIN and %STPEND macros 14
advanced package publishing 17

errors in 17
ODS options 15

overriding input parameters 15

results 16
STPSRVGETC function 36

STPSRVGETN function 37
STPSRV_HEADER function 39

STPSRV_SESSION function 41
STPSRVSET function 38

STPSRV_UNQUOTE2 function 42

stream output 12

T
tables

uploading 75

uploading and saving a permanent copy 76

uploading CSV files to 74

uploading Excel workbooks to 76

uploading Excel XML workbooks to multiple 75

task-oriented user interface 110

transient package output 13

transient package results 50

tree view 79

U
unmasking quotation marks 42

uploading files 68

catalogs 76

CSV file to a SAS table 74

examples 70

examples of using uploaded files 74

Excel workbook to a SAS table 76

Excel XML workbook to multiple SAS tables 75

multiple files 72

reserved macro variables and 69

SAS tables or views 75

saving a permanent copy 76

single file 70

tables 76

views 76

URL parameters, passing data through 94

URLs

specifying input parameters in 65

V
views

uploading 75

uploading and saving a permanent copy 76

W
Web application environment 109

Web applications 56

configuring SAS Stored Process 58

how it works 57

sessions in sample application 98

specifying custom input forms 67

specifying input 65

specifying input in URL 65

specifying name/value pairs in an HTML form 66

specifying prompt pages 68

Web pages

embedding graphics in 89

Web services clients 109

Welcome page 78

workbooks

uploading to a SAS table 76

uploading to multiple SAS tables 75

X
XML workbooks

uploading to multiple SAS tables 75

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview
	SAS Stored Process Web Application Enhancements
	Metadata Enhancements
	General Enhancements

	Overview of SAS Stored Processes
	What Are SAS Stored Processes?
	Why Are SAS Stored Processes Important?
	Which Clients Can Use SAS Stored Processes?
	What Are SAS IOM Direct Interface Stored Processes?

	Writing a Stored Process
	Overview of Writing a Stored Process
	Using Input Parameters
	Overview of Input Parameters
	Standard Header for Parameters
	Defining Input Parameters
	Special Character Quoting
	Input Parameters with Multiple Values
	Hiding Passwords and Other Sensitive Data

	Setting Result Capabilities
	Using the %STPBEGIN and %STPEND Macros
	Overview of %STPBEGIN and %STPEND
	ODS Options
	Overriding Input Parameters
	Results
	Errors
	Advanced Package Publishing

	Using Output Parameters
	Using Reserved Macro Variables
	Using Sessions
	Overview of Sessions
	Creating a Session
	Using the Session
	Deleting the Session
	Limitations

	Using Stored Process Server Functions

	Managing Stored Process Metadata
	Choosing or Defining a Server
	Types of Servers That Host Stored Processes
	SAS Stored Process Server
	SAS Workspace Server

	Using Source Code Repositories
	Registering the Stored Process Metadata
	Developing Stored Processes with Package Results
	Overview
	Create Permanent Package Results
	Creating Transient Package Results

	Using Prompts

	Debugging Stored Processes
	Examining the SAS Log
	Using SAS Options

	Building a Web Application with SAS Stored Processes
	Overview
	Overview of Stored Process Web Applications
	How the SAS Stored Process Web Application Works

	Configuring the SAS Stored Process Web Application
	Configuration Files
	Custom Responses
	Initialization Parameters
	Web Application Properties

	Specifying Web Application Input
	Overview of Web Application Input
	Specifying Input Parameters in a URL
	Specifying Name/Value Pairs in an HTML Form
	Specifying Custom Input Forms
	Specifying Prompt Pages

	Uploading Files
	Overview of Uploading Files
	Reserved Macro Variables
	Examples of How to Upload Files
	Examples of How to Use Uploaded Files

	Authentication in the Stored Process Web Application
	Logon Manager and Basic Authentication
	Anonymous Access
	Other Authentication Options

	Using the SAS Stored Process Web Application Pages
	Welcome Page
	Tree View
	Stored Process Summary Page
	Custom Input Form
	Prompt Page
	Execution Options

	Using HTTP Headers
	Overview of HTTP Headers in Stored Processes
	Commonly Used Headers
	Content-type
	Expires
	Location
	Pragma
	Set-Cookie
	Status-Code

	Embedding Graphics
	Embedding Graphics in Web Pages
	Generating Direct Graphic Output

	Chaining Stored Processes
	Why Chain Stored Processes?
	Passing Data Through Form Fields or URL Parameters
	Passing Data Through Cookies
	Passing Data Through Sessions

	Using Sessions in a Sample Web Application
	Overview of the Sample Web Application
	Sample Data
	Main Aisle Stored Process
	Aisles Stored Process
	Add Item Stored Process
	Shopping Cart Stored Process
	Logout Stored Process

	Error Handling
	Debugging in the SAS Stored Process Web Application
	Testing the SAS Stored Process Web Application
	List of Valid Debugging Keywords
	Setting the Default Value of _DEBUG

	Stored Process Software Requirements
	General Requirements
	Client-Specific Requirements
	Components

	Converting SAS/IntrNet Programs to SAS Stored Processes
	Overview
	Compatibility Features
	Conversion Considerations
	HTTP Headers
	Macro Variables
	Code Differences

	Overview of Conversion Steps
	Example
	Sample Environment
	About the Application Dispatcher Program
	Converting the Application Dispatcher Program to a Stored Process
	Adding a Parameter to the Stored Process Definition

	Executing Catalog Entries

	Formatting Prompt Values and Generating Macro Variables from Prompts
	Entering Prompt Values in the SAS Stored Process Web Application
	Macro Variables That Are Generated from Prompts
	Macro Variable Generation and Assignment
	Example: Single Macro Variable Generation
	Examples: Multiple Macro Variable Generation
	Quick Reference

	Index

