

SAS/STAT® 9.2 User's Guide The SURVEYFREQ Procedure (Book Excerpt)

This document is an individual chapter from SAS/STAT® 9.2 User's Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008 2nd electronic book, February 2009

SAS[®] Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at **support.sas.com/publishing** or call 1-800-727-3228.

 $SAS^{\textcircled{@}}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. @ indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Chapter 83

The SURVEYFREQ Procedure

Overview: SURVEYFREQ Procedure	628
Getting Started: SURVEYFREQ Procedure	628
Syntax: SURVEYFREQ Procedure	629
PROC SURVEYFREQ Statement	629
BY Statement	630
CLUSTER Statement	630
REPWEIGHTS Statement	630
STRATA Statement	630
TABLES Statement	630
WEIGHT Statement	631
Details: SURVEYFREQ Procedure	631
Specifying the Sample Design	63
Domain Analysis	63
Missing Values	63
Statistical Computations	63
Variance Estimation	63
Definitions and Notation	632
Totals	632
Covariance of Totals	632
Proportions	632
Row and Column Proportions	632
Balanced Repeated Replication (BRR)	632
The Jackknife	632
Confidence Limits	63
Degrees of Freedom	633
Coefficient of Variation	63
Design Effect	63
Expected Weighted Frequency	633
Risks and Risk Difference	633
Odds Ratio and Relative Risks	633
Rao-Scott Chi-Square Test	63
Rao-Scott Likelihood Ratio Chi-Square Test	634
Wald Chi-Square Test	634

Wald Log-Linear Chi-Square Test 6346

Output Data Sets	6347
Displayed Output	6348
ODS Table Names	6354
Examples: SURVEYFREQ Procedure	6354
Example 83.1: Two-Way Tables	6354
Example 83.2: Multiway Tables (Domain Analysis)	6358
Example 83.3: Output Data Sets	6360
References	6362

Overview: SURVEYFREQ Procedure

The SURVEYFREQ procedure produces one-way to *n*-way frequency and crosstabulation tables from sample survey data. These tables include estimates of population totals, population proportions, and their standard errors. Confidence limits, coefficients of variation, and design effects are also available. The procedure provides a variety of options to customize the table display.

For one-way frequency tables, PROC SURVEYFREQ provides Rao-Scott chi-square goodness-of-fit tests, which are adjusted for the sample design. You can test a null hypothesis of equal proportions for a one-way frequency table, or you can input custom null hypothesis proportions for the test. For two-way tables, PROC SURVEYFREQ provides design-adjusted tests of independence, or no association, between the row and column variables. These tests include the Rao-Scott chi-square test, the Rao-Scott likelihood ratio test, the Wald chi-square test, and the Wald log-linear chi-square test. For 2 × 2 tables, PROC SURVEYFREQ computes estimates and confidence limits for risks (or row proportions), the risk difference, the odds ratio, and relative risks.

PROC SURVEYFREQ computes variance estimates based on the sample design used to obtain the survey data. The design can be a complex multistage survey design with stratification, clustering, and unequal weighting. PROC SURVEYFREQ provides a choice of variance estimation methods, which include Taylor series linearization, balanced repeated replication (BRR), and the jackknife.

Getting Started: SURVEYFREQ Procedure

The following example shows how you can use PROC SURVEYFREQ to analyze sample survey data. The example uses data from a customer satisfaction survey for a student information system (SIS), which is a software product that provides modules for student registration, class scheduling, attendance, grade reporting, and other functions.

The software company conducted a survey of school personnel who use the SIS. A probability sample of SIS users was selected from the study population, which included SIS users at middle schools and high schools in the three-state area of Georgia, South Carolina, and North Carolina. The sample design for this survey was a two-stage stratified design. A first-stage sample of schools

was selected from the list of schools in the three-state area that use the SIS. The list of schools, or the first-stage sampling frame, was stratified by state and by customer status (whether the school was a new user of the system or a renewal user). Within the first-stage strata, schools were selected with probability proportional to size and with replacement, where the size measure was school enrollment. From each sample school, five staff members were randomly selected to complete the SIS satisfaction questionnaire. These staff members included three teachers and two administrators or guidance department members.

The SAS data set SIS_Survey contains the survey results, as well as the sample design information needed to analyze the data. This data set includes an observation for each school staff member responding to the survey. The variable Response contains the staff member's response about overall satisfaction with the system.

The variable State contains the school's state, and the variable NewUser contains the school's customer status ('New Customer' or 'Renewal Customer'). These two variables determine the first-stage strata from which schools were selected. The variable School contains the school identification code and identifies the first-stage (primary) sampling units, or clusters. The variable SamplingWeight contains the overall sampling weight for each respondent. Overall sampling weights were computed from the selection probabilities at each stage of sampling and were adjusted for nonresponse.

Other variables in the data set SIS_Survey include SchoolType and Department. The variable SchoolType identifies the school as a high school or a middle school. The variable Department identifies the staff member as a teacher, or an administrator or guidance department member.

The following PROC SURVEYFREQ statements request a one-way frequency table for the variable Response:

```
title 'Student Information System Survey';
proc surveyfreq data=SIS_Survey;
  tables Response;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
run;
```

The PROC SURVEYFREQ statement invokes the procedure and identifies the input data set to be analyzed. The TABLES statement requests a one-way frequency table for the variable Response. The table request syntax for PROC SURVEYFREQ is very similar to the table request syntax for PROC FREQ. This example shows a request for a single one-way table, but you can also request two-way tables and multiway tables. As in PROC FREQ, you can request more than one table in the same TABLES statement, and you can use multiple TABLES statements in the same invocation of the procedure.

The STRATA, CLUSTER, and WEIGHT statements provide sample design information for the procedure, so that the analysis is done according to the sample design used for the survey, and the estimates apply to the study population. The STRATA statement names the variables State and NewUser, which identify the first-stage strata. Note that the design for this example also includes stratification at the second stage of selection (by type of school personnel), but you specify only the first-stage strata for PROC SURVEYFREQ. The CLUSTER statement names the variable School, which identifies the clusters or primary sample units (PSUs). The WEIGHT statement names the sampling weight variable.

Figure 83.1 and Figure 83.2 display the output produced by PROC SURVEYFREQ, which includes the "Data Summary" table and the one-way table, "Table of Response." The "Data Summary" table is produced by default unless you specify the NOSUMMARY option. This table shows there are 6 strata, 370 clusters or schools, and 1850 observations or respondents in the SIS_Survey data set. The sum of the sampling weights is approximately 39,000, which estimates the total number of school personnel in the study area that use the SIS.

Figure 83.1 SIS_Survey Data Summary

Student Information System Survey		
The SURVEYFREQ Procedure		
Data Summary	у	
Number of Strata	6	
Number of Clusters	370	
Number of Observations	1850	
Sum of Weights	38899.6482	

Figure 83.2 displays the one-way table of Response, which provides estimates of the population total (weighted frequency) and the population percentage for each category, or level, of the variable Response. The response level 'Very Unsatisfied' has a frequency of 304, which means that 304 sample respondents fall into this category. It is estimated that 17.17% of all school personnel in the study population fall into this category, and the standard error of this estimate is 1.29%. Note that the estimates apply to the population of all SIS users in the study area, as opposed to describing only the sample of 1850 respondents. The estimate of the total number of school personnel that are 'Very Unsatisfied' is 6,678, with a standard deviation of 502. The standard errors computed by PROC SURVEYFREQ are based on the multistage stratified design of the survey. This differs from some of the traditional analysis procedures, which assume the design is simple random sampling from an infinite population.

Figure 83.2 One-Way Table of Response

Table of Response					
Response	Frequency	Weighted Frequency	Std Dev of Wgt Freq	Percent	Std Err of Percent
Very Unsatisfied	304	6678	501.61039	17.1676	1.2872
Unsatisfied	326	6907	495.94101	17.7564	1.2712
Neutral	581	12291	617.20147	31.5965	1.5795
Satisfied	455	9309	572.27868	23.9311	1.4761
Very Satisfied	184	3714	370.66577	9.5483	0.9523
Total	1850	38900	129.85268	100.000	

The following PROC SURVEYFREQ statements request confidence limits for the percentages and a chi-square goodness-of-fit test for the one-way table of Response:

```
proc surveyfreq data=SIS_Survey nosummary;
  tables Response / cl nowt chisq;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
  run;
```

The NOSUMMARY option in the PROC statement suppresses the "Data Summary" table. In the TABLES statement, the CL option requests confidence limits for the percentages in the one-way table. The NOWT option suppresses display of the weighted frequencies and their standard deviations. The CHISQ option requests a Rao-Scott chi-square goodness-of-fit test.

Figure 83.3 shows the one-way table of Response, which includes confidence limits for the percentages. The 95% confidence limits for the percentage of users that are 'Very Unsatisfied' are 14.64% and 19.70%. To change the α level of the confidence limits, which equals 5% by default, you can use the ALPHA= option. Like the other estimates and standard errors produced by PROC SURVEYFREQ, these confidence limit computations take into account the complex sample design of the survey, and the results apply to the entire study population.

Figure 83.3 Confidence Limits for Response Percentages

	Student I	nformation	System Survey		
The SURVEYFREQ Procedure					
		Table of Re	sponse		
			Std Err of	95% Confid	ence Limits
Response	Frequency	Percent	Percent	for	Percent
Very Unsatisfied	304	17.1676	1.2872	14.6364	 19.6989
Unsatisfied	326	17.7564	1.2712	15.2566	20.2562
Neutral	581	31.5965	1.5795	28.4904	34.7026
Satisfied	455	23.9311	1.4761	21.0285	26.8338
Very Satisfied	184	9.5483	0.9523	7.6756	11.4210
Total	1850	100.000			

Figure 83.4 shows the chi-square goodness-of-fit results for the table of Response. The null hypothesis for this test is equal proportions for the levels of the one-way table. (To test a null hypothesis of specified proportions instead of equal proportions, you can use the TESTP= option to specify null hypothesis proportions.)

The chi-square test invoked by the CHISQ option is the Rao-Scott design-adjusted chi-square test, which takes the sample design into account and provides inferences for the entire study population. To produce the Rao-Scott chi-square statistic, PROC SURVEYFREQ first computes the usual Pearson chi-square statistic based on the weighted frequencies, and then adjusts this value with a design correction. An F approximation is also provided. For the table of Response, the F value is 30.0972 with a p-value of <0.0001, which indicates rejection of the null hypothesis of equal proportions for all response levels.

Figure 83.4 Chi-Square Goodness-of-Fit Test for Response

```
Rao-Scott Chi-Square Test
Pearson Chi-Square 251.8105
                     2.0916
Design Correction
Rao-Scott Chi-Square 120.3889
Pr > ChiSq
                       <.0001
F Value
                     30.0972
Num DF
                           4
Den DF
                        1456
Pr > F
                       <.0001
     Sample Size = 1850
```

Continuing to analyze the SIS_Survey data, the following PROC SURVEYFREQ statements request a two-way table of SchoolType by Response:

```
proc surveyfreq data=SIS_Survey nosummary;
  tables SchoolType * Response;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
run;
```

The STRATA, CLUSTER, and WEIGHT statements do not change from the one-way table analysis, because the sample design and the input data set are the same. These SURVEYFREQ statements request a different table but specify the same sample design information.

Figure 83.5 shows the two-way table produced for SchoolType by Response. The first variable named in the two-way table request, SchoolType, is referred to as the *row variable*, and the second variable, Response, is referred to as the *column variable*. Two-way tables display all column variable levels for each row variable level. This two-way table lists all levels of the column variable Response for each level of the row variable SchoolType, 'Middle School' and 'High School'. Also SchoolType = 'Total' shows the distribution of Response overall for both types of schools. And Response = 'Total' provides totals over all levels of response, for each type of school and overall. To suppress these totals, you can specify the NOTOTAL option.

Figure 83.5 Two-Way Table of SchoolType by Response

Student Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response

SchoolType	Response	Frequency	Weighted Frequency			
Middle School	Very Unsatisfied	116	2496	351.43834	6.4155	0.9030
	Unsatisfied	109	2389	321.97957	6.1427	0.8283
	Neutral	234	4856	504.20553	12.4847	1.2953
	Satisfied	197	4064	443.71188	10.4467	1.1417
	Very Satisfied	94	1952	302.17144	5.0193	0.7758
	Total	750	15758	1000	40.5089	2.5691
High School	Very Unsatisfied	188	4183	431.30589	10.7521	1.1076
	Unsatisfied	217	4518	446.31768	11.6137	1.1439
	Neutral	347	7434	574.17175	19.1119	1.4726
	Satisfied	258	5245	498.03221	13.4845	1.2823
	Very Satisfied	90	1762	255.67158	4.5290	0.6579
	Total	1100	23142	1003	59.4911	2.5691
Total	Very Unsatisfied	304	 6678	501.61039	17.1676	1.2872
	Unsatisfied	326	6907	495.94101	17.7564	1.2712
				617.20147		
	Satisfied	455	9309	572.27868	23.9311	1.4761
	Very Satisfied	184	3714	370.66577	9.5483	0.9523
	Total	1850	38900	129.85268	100.000	

By default, without any other TABLES statement options, a two-way table displays the frequency, the weighted frequency and its standard deviation, and the percentage and its standard error for each table cell, or combination of row and column variable levels. But there are several options available to customize your table display by adding more information or by suppressing some of the default information.

The following PROC SURVEYFREQ statements request a two-way table of SchoolType by Response that displays row percentages, and also request a chi-square test of association between the two variables:

```
proc surveyfreq data=SIS_Survey nosummary;
  tables SchoolType * Response / row nowt chisq;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
run;
```

The ROW option in the TABLES statement requests row percentages, which give the distribution of Response within each level of the row variable SchoolType. The NOWT option suppresses display of the weighted frequencies and their standard deviations. The CHISQ option requests a Rao-Scott chi-square test of association between SchoolType and Response.

Figure 83.6 displays the two-way table of SchoolType by Response. For middle schools, it is estimated that 25.79% of school personnel are satisfied with the student information system and 12.39% are very satisfied. For high schools, these estimates are 22.67% and 7.61%, respectively.

Figure 83.7 displays the chi-square test results. The Rao-Scott chi-square statistic equals 9.04, and the corresponding F value is 2.26 with a p-value of 0.0605. This indicates an association between school type (middle school or high school) and satisfaction with the student information system at the 10% significance level.

Figure 83.6 Two-Way Table with Row Percentages

Student Information	System Survey
The SURVEYFREQ	Procedure

Table of SchoolType by Response

				Std Err of	Row	Std Err of
SchoolType	Response	Frequency	Percent	Percent	Percent	Row Percent
Middle School	Very Unsatisfied	116	6.4155	0.9030	15.8373	1.9920
	Unsatisfied	109	6.1427	0.8283	15.1638	1.8140
	Neutral	234	12.4847	1.2953	30.8196	2.5173
	Satisfied	197	10.4467	1.1417	25.7886	2.2947
	Very Satisfied	94	5.0193	0.7758	12.3907	1.7449
	Total	750	40.5089	2.5691	100.000	
High School	Very Unsatisfied	188	10.7521	1.1076	18.0735	1.6881
	Unsatisfied	217	11.6137	1.1439	19.5218	1.7280
	Neutral	347	19.1119	1.4726	32.1255	2.0490
	Satisfied	258	13.4845	1.2823	22.6663	1.9240
	Very Satisfied	90	4.5290	0.6579	7.6128	1.0557
	Total	1100	59.4911	2.5691	100.000	
Total	Very Unsatisfied	30 4	17.1676	1.2872		
	Unsatisfied	326	17.7564	1.2712		
	Neutral	581	31.5965	1.5795		
	Satisfied	455	23.9311	1.4761		
	Very Satisfied	184	9.5483	0.9523		
	Total	1850	100.000			

Figure 83.7 Chi-Square Test of No Association

```
Rao-Scott Chi-Square Test
Pearson Chi-Square
                     18.7829
Design Correction
                     2.0766
Rao-Scott Chi-Square 9.0450
Pr > ChiSq
                     0.0600
                      2.2613
F Value
Num DF
                        1456
Den DF
Pr > F
                      0.0605
     Sample Size = 1850
```

Syntax: SURVEYFREQ Procedure

The following statements are available in PROC SURVEYFREQ:

```
PROC SURVEYFREQ < options>;
BY variables;
CLUSTER variables;
REPWEIGHTS variables < / options>;
STRATA variables < / option>;
TABLES requests < / options>;
WEIGHT variable;
```

The PROC SURVEYFREQ statement invokes the procedure, identifies the data set to be analyzed, and specifies the variance estimation method. The PROC SURVEYFREQ statement is required.

The TABLES statement specifies frequency or crosstabulation tables and requests tests and statistics for those tables. The STRATA statement lists the variables that form the strata in a stratified sample design. The CLUSTER statement specifies cluster identification variables in a clustered sample design. The WEIGHT statement names the sampling weight variable. The REPWEIGHTS statement names replicate weight variables for BRR or jackknife variance estimation. The BY statement requests completely separate analyses of groups defined by the BY variables.

All statements can appear multiple times except the PROC SURVEYFREQ statement and the WEIGHT statement, which can appear only once.

The rest of this section gives detailed syntax information for the BY, CLUSTER, REPWEIGHTS, STRATA, TABLES, and WEIGHT statements in alphabetical order after the description of the PROC SURVEYFREQ statement.

PROC SURVEYFREQ Statement

PROC SURVEYFREQ < options > ;

The PROC SURVEYFREQ statement invokes the procedure. In this statement, you identify the data set to be analyzed, specify the variance estimation method, and provide sample design information. The DATA= option names the input data set to be analyzed. The VARMETHOD= option specifies the variance estimation method, which is the Taylor series method by default. For Taylor series variance estimation, you can include a finite population correction factor in the analysis by providing either the sampling rate or population total with the RATE= or TOTAL= option. If your design is stratified, with different sampling rates or totals for different strata, then you can input these stratum rates or totals in a SAS data set that contains the stratification variables.

You can specify the following options in the PROC SURVEYFREQ statement.

DATA=SAS-data-set

names the SAS data set to be analyzed by PROC SURVEYFREQ. If you omit the DATA= option, the procedure uses the most recently created SAS data set.

MISSING

treats missing values as a valid (nonmissing) category for all categorical variables, which include TABLES, STRATA, and CLUSTER variables.

By default, if you do not specify the MISSING option, an observation is excluded from the analysis if it has a missing value for any STRATA or CLUSTER variable. Additionally, PROC SURVEYFREQ excludes an observation from a frequency or crosstabulation table if that observation has a missing value for any of the variables in the table request, unless you specify the MISSING option. For more information, see the section "Missing Values" on page 6315.

NOMCAR

includes observations with missing values of TABLES variables in the variance computation as *not missing completely at random* (NOMCAR) for Taylor series variance estimation. When you specify the NOMCAR option, PROC SURVEYFREQ computes variance estimates by analyzing the nonmissing values as a domain or subpopulation, where the entire population includes both nonmissing and missing domains. See the section "Missing Values" on page 6315 for details.

By default, PROC SURVEYFREQ completely excludes an observation from a frequency or crosstabulation table (and the corresponding variance computations) if that observation has a missing value for any of the variables in the table request, unless you specify the MISSING option. Note that the NOMCAR option has no effect when you specify the MISSING option, which treats missing values as a valid nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods, which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not use the NOMCAR option.

NOSUMMARY

suppresses the display of the "Data Summary" table, which PROC SURVEYFREQ produces by default. For details about this table, see the section "Data Summary Table" on page 6348.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the order in which the values of the frequency and crosstabulation table variables are displayed. PROC SURVEYFREQ interprets values of the ORDER= option as follows:

DATA orders values according to their order in the input data set.

FORMATTED orders values by their formatted values (in ascending order). This order is

operating-environment dependent.

FREQ orders values by their descending frequency counts. The frequency count

of a variable value is its (nonweighted) frequency of occurrence or sample

size, and not its weighted frequency.

INTERNAL orders values by their unformatted values, which yields the same order that

the SORT procedure does. This order is operating-environment dependent.

By default, ORDER=INTERNAL.

PAGE

displays only one table per page. Otherwise, PROC SURVEYFREQ displays multiple tables per page as space permits.

RATE=value | SAS-data-set

R=value | SAS-data-set

specifies the sampling rate as a nonnegative *value*, or identifies an input data set that gives the stratum sampling rates in a variable named _RATE_. PROC SURVEYFREQ uses this information to compute a finite population correction for Taylor series variance estimation. The procedure does not use the RATE= option for BRR or jackknife variance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

If your sample design has multiple stages, you should specify the *first-stage sampling rate*, which is the ratio of the number of primary sampling units (PSUs) selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate in all strata, you should specify a nonnegative *value* for the RATE= option. If your design is stratified with different sampling rates in different strata, then you should name a SAS data set that contains the stratification variables and the stratum sampling rates. See the section "Population Totals and Sampling Rates" on page 6314 for details.

The sampling rate *value* must be a nonnegative number. You can specify *value* as a number between 0 and 1. Or you can specify *value* in percentage form as a number between 1 and 100, and PROC SURVEYFREQ converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

If you do not specify the RATE= or TOTAL= option, then the Taylor series variance estimation does not include a finite population correction. You cannot specify both the TOTAL= option and the RATE= option in the same PROC SURVEYFREQ statement.

TOTAL=value | SAS-data-set

N=value | SAS-data-set

specifies the total number of primary sampling units (PSUs) in the study population as a positive *value*, or identifies an input data set that gives the stratum population totals in a variable named _TOTAL_. PROC SURVEYFREQ uses this information to compute a finite population correction for Taylor series variance estimation. The procedure does not use the TOTAL= option for BRR or jackknife variance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

For a nonstratified sample design, or for a stratified sample design with the same population total in all strata, you should specify a positive *value* for the TOTAL= option. If your sample design is stratified with different population totals in different strata, then you should name a SAS data set that contains the stratification variables and the stratum totals. See the section "Population Totals and Sampling Rates" on page 6314 for details.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does not include a finite population correction. You cannot specify both the TOTAL= option and the RATE= option in the same PROC SURVEYFREQ statement.

VARHEADER=LABEL | NAME | NAMELABEL

specifies the variable identification to use in the displayed output. By default VARHEADER=NAME, which displays variable names in the output. The VARHEADER= option affects the headers of the variable level columns in one-way frequency tables, crosstabulation tables, and the "Stratum Information" table. The VARHEADER= option also controls variable identification in the table headers. The following values are available for the VARHEADER= option:

LABEL displays the variable label.

NAME displays the variable name.

NAMELABEL displays both the variable name and label, with the label in parentheses

following the name—that is, Name (Label).

VARMETHOD=BRR < (method-options) > | JACKKNIFE < (method-options) > | TAYLOR

specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method, which is the default if you do not specify the VARMETHOD= option or a REPWEIGHTS statement. VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE, you can specify *method-options* in parentheses following the variance method name. Table 83.1 summarizes the available *method-options*.

Table 83.1 Variance Estimation Options

VARMETHOD=	Variance Estimation Method	Method-Options
BRR	Balanced repeated replication	DFADJ FAY <=value> HADAMARD=SAS-data-set OUTWEIGHTS=SAS-data-set PRINTH REPS=number
JACKKNIFE	Jackknife	DFADJ OUTJKCOEFS= <i>SAS-data-set</i> OUTWEIGHTS= <i>SAS-data-set</i>
TAYLOR	Taylor series linearization	None

The following values are available for the VARMETHOD= option.

BRR < method-options > requests variance estimation by balanced repeated replication (BRR). The BRR method requires a stratified sample design with two primary sampling units (PSUs) in each stratum. If you specify the VARMETHOD=BRR option, you must also specify a STRATA statement unless you provide replicate weights with a REPWEIGHTS statement. See the section "Balanced Repeated Replication (BRR)" on page 6326 for details.

You can specify the following *method-options* in parentheses after the VARMETHOD=BRR option.

DFADJ

computes the degrees of freedom as the number of nonmissing strata for the individual table request. The degrees of freedom for VARMETHOD=BRR equal the number of strata, which by default is based on all valid observations in the data set. But if you specify the DFADJ method-option, PROC SURVEYFREQ excludes from the count any empty strata that occur when observations with missing values of the TABLES variables are removed from the analysis for that table.

See the section "Degrees of Freedom" on page 6332 for more information. See the section "Data Summary Table" on page 6348 for details about valid observations.

The DFADJ method-option has no effect when you specify the MISSING option, which treats missing values as a valid nonmissing level. The DFADJ method-option is not used when you specify the degrees of freedom in the DF= option in the TABLES statement.

The DFADJ method-option cannot be used when you provide replicate weights with a REPWEIGHTS statement. When you use a REPWEIGHTS statement, the degrees of freedom equal the number of REPWEIGHTS variables (or replicates), unless you specify an alternative value in the DF= option in the REPWEIGHTS or TABLES statement.

FAY <=value>

requests Fay's method, which is a modification of the BRR method. See the section "Fay's BRR Method" on page 6327 for details.

You can specify the *value* of the Fay coefficient, which is used in converting the original sampling weights to replicate weights. The Fay coefficient must be a nonnegative number less than 1. By default, the value of the Fay coefficient equals 0.5.

HADAMARD=SAS-data-set

H=SAS-data-set

names a SAS data set that contains the Hadamard matrix for BRR replicate construction. If you do not provide a Hadamard matrix with the HADAMARD= method-option, PROC SURVEYFREQ generates an appropriate Hadamard matrix for replicate construction. See the sections "Balanced Repeated Replication (BRR)" on page 6326 and "Hadamard Matrix" on page 6328 for details.

If a Hadamard matrix of a given dimension exists, it is not necessarily unique. Therefore, if you want to use a specific Hadamard matrix, you must provide the matrix as a SAS data set in the HADAMARD=SAS-data-set method-option.

In the HADAMARD= input data set, each variable corresponds to a column of the Hadamard matrix, and each observation corresponds to a row of the matrix. You can use any variable names in the HADAMARD= data set. All values in the data set must equal either 1 or -1. You must ensure that the matrix you provide is indeed a Hadamard matrix—that is, $\mathbf{A}'\mathbf{A} = R\mathbf{I}$, where \mathbf{A} is the Hadamard matrix of dimension R and \mathbf{I} is an identity matrix. PROC SURVEYFREQ does not check the validity of the Hadamard matrix that you provide.

The HADAMARD= input data set must contain at least H variables, where H denotes the number of first-stage strata in your design. If the data set contains more than H variables, PROC SURVEYFREQ uses only the first H variables. Similarly, the HADAMARD= input data set must contain at least H observations.

If you do not specify the REPS= method-option, then the number of replicates is taken to be the number of observations in the HADAMARD= input data set. If you specify the number of replicates—for example, REPS=nreps—then the first nreps observations in the HADAMARD= data set are used to construct the replicates.

You can specify the PRINTH method-option to display the Hadamard matrix that the procedure uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set

names a SAS data set to store the replicate weights that PROC SURVEYFREQ creates for BRR variance estimation. See the section "Balanced Repeated Replication (BRR)" on page 6326 for information about replicate weights. See the section "Replicate Weights Output Data Set" on page 6347 for details about the contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide replicate weights with a REPWEIGHTS statement.

PRINTH

displays the Hadamard matrix used to construct replicates for BRR. When you provide the Hadamard matrix in the HADAMARD= method-option, PROC SURVEYFREQ displays only the rows and columns that are actually used to construct replicates. See the sections "Balanced Repeated Replication (BRR)" on page 6326 and "Hadamard Matrix" on page 6328 for more information.

The PRINTH method-option is not available when you provide replicate weights with a REPWEIGHTS statement because the procedure does not use a Hadamard matrix in this case.

REPS=number

specifies the number of replicates for BRR variance estimation. The value of *number* must be an integer greater than 1.

If you do not provide a Hadamard matrix with the HADAMARD= method-option, the number of replicates should be greater than the number of strata and should be a multiple of 4. See the section "Balanced Repeated Replication (BRR)" on page 6326 for more information. If a Hadamard matrix cannot be constructed for the REPS= value that you specify, the value is increased until a Hadamard matrix of that dimension can be constructed. Therefore, it is possible for the actual number of replicates used to be larger than the REPS= value that you specify.

If you provide a Hadamard matrix with the HADAMARD= methodoption, the value of REPS= must not be less than the number of rows in the Hadamard matrix. If you provide a Hadamard matrix and do not specify the REPS= method-option, the number of replicates equals the number of rows in the Hadamard matrix.

If you do not specify the REPS= or HADAMARD= method-option and do not include a REPWEIGHTS statement, the number of replicates equals the smallest multiple of 4 that is greater than the number of strata.

If you provide replicate weights with a REPWEIGHTS statement, the procedure does not use the REPS= method-option. With a REPWEIGHTS statement, the number of replicates equals the number of REPWEIGHTS variables.

JACKKNIFE | JK < method-options > requests variance estimation by the delete-1 jack-knife method. See the section "The Jackknife" on page 6329 for details. If you provide replicate weights with a REPWEIGHTS statement, VARMETHOD=JACKKNIFE is the default variance estimation method.

You can specify the following *method-options* in parentheses after the VARMETHOD=JACKKNIFE option:

DFADJ

computes the degrees of freedom by using the number of nonmissing strata and clusters for the individual table request. The degrees of freedom for VARMETHOD=JACKKNIFE equal the number of clusters minus the number of strata, which by default is based on all valid observations in the data set. But if you specify the DFADJ method-option, PROC SURVEYFREQ excludes any empty strata or clusters that occur when observations with missing values of the TABLES variables are removed from the analysis for that table.

See the section "Degrees of Freedom" on page 6332 for more information. See the section "Data Summary Table" on page 6348 for details about valid observations.

The DFADJ method-option has no effect when you specify the MISSING option, which treats missing values as a valid nonmissing level. The DFADJ method-option is not used when you specify the degrees of freedom in the DF= option in the TABLES statement.

The DFADJ method-option cannot be used when you provide replicate weights with a REPWEIGHTS statement. When you include a REPWEIGHTS statement, the degrees of freedom equal the number of REPWEIGHTS variables (or replicates), unless you specify an alternative value in the DF= option in the REPWEIGHTS or TABLES statement.

OUTJKCOEFS=SAS-data-set

names a SAS data set to store the jackknife coefficients. See the section "The Jackknife" on page 6329 for information about jackknife coefficients. See the section "Jackknife Coefficients Output Data Set" on page 6347 for details about the contents of the OUTJKCOEFS= data set.

OUTWEIGHTS=SAS-data-set

names a SAS data set to store the replicate weights that PROC SURVEYFREQ creates for jackknife variance estimation. See the

section "The Jackknife" on page 6329 for information about replicate weights. See the section "Replicate Weights Output Data Set" on page 6347 for details about the contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide replicate weights with a REPWEIGHTS statement.

TAYLOR

requests Taylor series variance estimation. This is the default method if you do not specify the VARMETHOD= option or a REPWEIGHTS statement. See the section "Taylor Series Variance Estimation" on page 6319 for details.

BY Statement

BY variables:

You can specify a BY statement with PROC SURVEYFREQ to obtain separate analyses of observations in groups defined by the BY variables. The *variables* are one or more variables in the input data set.

Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide a statistically valid subpopulation or domain analysis, where the total number of units in the subpopulation is not known with certainty. You should include the domain variable(s) in your TABLES request to obtain domain analysis. See the section "Domain Analysis" on page 6315 for more details.

If you specify more than one BY statement, the procedure uses only the last BY statement and ignores any previous BY statements.

When you use a BY statement, the procedure expects the input data set to be sorted in order of the BY variables. If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement. The NOTSORTED
 option does not mean that the data are unsorted but rather that the data are arranged in groups
 (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see *SAS Language Reference: Concepts*. For more information about the DATASETS procedure, see the *Base SAS Procedures Guide*.

CLUSTER Statement

CLUSTER variables;

The CLUSTER statement names variables that identify the first-stage clusters, or primary sampling units (PSUs), in a clustered sample design. The combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA statement, clusters are nested within strata.

If your sample design has clustering at multiple stages, you should specify only the first-stage clusters, or PSUs, in the CLUSTER statement. See the section "Specifying the Sample Design" on page 6312 for more information.

If you provide replicate weights for BRR or jackknife variance estimation with a REPWEIGHTS statement, you do not need to specify a CLUSTER statement.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be either character or numeric, but the procedure treats them as categorical variables. The formatted values of the CLUSTER variables determine the CLUSTER variable levels. Thus, you can use formats to group values into levels. See the discussion of the FORMAT procedure in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS Language Reference: Dictionary.

You can use multiple CLUSTER statements to specify CLUSTER variables. The procedure uses variables from all CLUSTER statements to create clusters.

REPWEIGHTS Statement

REPWEIGHTS variables < / options > ;

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option in the PROC SURVEYFREQ statement. If you do not provide replicate weights for these methods by using a REPWEIGHTS statement, then PROC SURVEYFREQ constructs replicate weights for the analysis. See the sections "Balanced Repeated Replication (BRR)" on page 6326 and "The Jackknife" on page 6329 for information about replicate weights.

Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the variable values must be nonnegative numbers.

If you provide replicate weights with a REPWEIGHTS statement, you do not need to specify a CLUSTER or STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option in the PROC SURVEYFREQ statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, PROC SURVEYFREQ uses the average of each observation's replicate weights as the observation's weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=df

specifies the degrees of freedom for the analysis. The value of *df* must be a positive number. By default, the degrees of freedom equals the number of REPWEIGHTS variables. See the section "Degrees of Freedom" on page 6332 for details.

PROC SURVEYFREQ uses the DF= value in computing confidence limits for proportions, totals, and other statistics. See the section "Confidence Limits" on page 6331 for details. PROC SURVEYFREQ also uses the DF= value in computing the denominator degrees of freedom for the *F* statistics in the Rao-Scott and Wald chi-square tests. See the sections "Rao-Scott Chi-Square Test" on page 6338, "Rao-Scott Likelihood Ratio Chi-Square Test" on page 6342, "Wald Chi-Square Test" on page 6344, and "Wald Log-Linear Chi-Square Test" on page 6346 for more information.

JKCOEFS=value

specifies the jackknife coefficient for VARMETHOD=JACKKNIFE. The coefficient *value* must be a nonnegative number less than one. See the section "The Jackknife" on page 6329 for details about jackknife coefficients.

You can use this option to specify a single value of the jackknife coefficient, which the procedure uses for all replicates. To specify different coefficients for different replicates, use the JKCOEFS=(values) or JKCOEFS=SAS-data-set option.

JKCOEFS=(values)

specifies jackknife coefficients for VARMETHOD=JACKKNIFE, where each coefficient corresponds to an individual replicate identified by a REPWEIGHTS variable. You can separate *values* with blanks or commas. The coefficient *values* must be nonnegative numbers less than one. The number of *values* must equal the number of replicate weight variables named in the REPWEIGHTS statement. List these values in the same order in which you list the corresponding replicate weight variables in the REPWEIGHTS statement.

See the section "The Jackknife" on page 6329 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=SAS-data-set option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

JKCOEFS=SAS-data-set

names a SAS data set that contains the jackknife coefficients for VARMETHOD=JACKKNIFE. You provide the jackknife coefficients in the JKCOEFS= data set variable JKCoefficient. Each coefficient value must be a nonnegative number less than one. The observations in the JKCOEFS= data set should correspond to the replicates that are identified by the REPWEIGHTS variables. Arrange the coefficients or observations in the JKCOEFS= data set in the same order in which you list the corresponding replicate weight variables in the REPWEIGHTS statement. The number of observations in the JKCOEFS= data set must not be less than the number of REPWEIGHTS variables.

See the section "The Jackknife" on page 6329 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=*values* option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=*value* option.

STRATA Statement

```
STRATA variables < / option > ;
```

The STRATA statement names variables that form the strata in a stratified sample design. The combinations of levels of STRATA variables define the strata in the sample, where strata are nonoverlapping subgroups that were sampled independently.

If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the STRATA statement. See the section "Specifying the Sample Design" on page 6312 for more information.

If you provide replicate weights for BRR or jackknife variance estimation with a REPWEIGHTS statement, you do not need to specify a STRATA statement.

The STRATA *variables* are one or more variables in the DATA= input data set. These variables can be either character or numeric, but the procedure treats them as categorical variables. The formatted values of the STRATA variables determine the STRATA variable levels. Thus, you can use formats to group values into levels. See the discussion of the FORMAT procedure in the *Base SAS Procedures Guide* and the discussions of the FORMAT statement and SAS formats in Bookrefirdict.

You can specify the following option in the STRATA statement after a slash (/):

LIST

displays a "Stratum Information" table, which lists all strata together with the corresponding values of the STRATA variables. This table provides the number of observations and the number of clusters in each stratum, as well as the sampling fraction if you specify the RATE= or TOTAL= option. See the section "Stratum Information Table" on page 6348 for more information.

TABLES Statement

```
TABLES requests < / options > ;
```

The TABLES statement requests one-way to *n*-way frequency and crosstabulation tables and statistics for these tables.

If you omit the TABLES statement, PROC SURVEYFREQ generates one-way frequency tables for all DATA= data set variables that are not listed in the other statements.

The following argument is required in the TABLES statement:

requests

specify the frequency and crosstabulation tables to produce. A *request* is composed of one variable name or several variable names separated by asterisks. To request a one-way frequency table, use a single variable. To request a two-way crosstabulation table, use an asterisk between two variables. To request a multiway table (an n-way table, where n>2), separate the desired variables with asterisks. The unique values of these variables form the rows, columns, and layers of the table.

For two-way tables to multiway tables, the values of the last variable form the crosstabulation table columns, while the values of the next-to-last variable form the rows. Each level (or combination of levels) of the other variables forms one layer. PROC SURVEYFREQ produces a separate crosstabulation table for each layer. For example, a specification of A*B*C*D in a TABLES statement produces k tables, where k is the number of different combinations of levels for A and B. Each table lists the levels for D (columns) within each level of C (rows).

You can use multiple TABLES statements in a single PROC SURVEYFREQ step. You can also specify any number of table requests in a single TABLES statement. To specify multiple table requests quickly, use a grouping syntax by placing parentheses around several variables and joining other variables or variable combinations. Table 83.2 shows some examples of grouping syntax.

Table 83.2 Grouping Syntax

Request	Equivalent to		
tables A*(B C);	tables A*B A*C;		
tables (A B) $*$ (C D);	tables A*C B*C A*D B*D;		
tables (A B C)*D;	tables A*D B*D C*D;		
tables $A - C$;	tables A B C;		
tables $(A C)*D$;	tables A*D B*D C*D;		

The TABLES statement variables are one or more variables from the DATA= input data set. These variables can be either character or numeric, but the procedure treats them as categorical variables. PROC SURVEYFREQ uses the formatted values of the TABLES variable to determine the categorical variable levels. So if you assign a format to a variable with a FORMAT statement, PROC SURVEYFREQ formats the values before dividing observations into the levels of a frequency or crosstabulation table. See the discussion of the FORMAT procedure in the *Base SAS Procedures Guide* and the discussions of the FORMAT statement and SAS formats in *SAS Language Reference: Dictionary*.

The frequency or crosstabulation table lists the values of both character and numeric variables in ascending order based on internal (unformatted) variable values unless you change the order with the ORDER= option. To list the values in ascending order by formatted value, use ORDER=FORMATTED in the PROC SURVEYFREQ statement.

Without Options

If you request a frequency or crosstabulation table without specifying options, PROC SURVEYFREQ produces the following for each table level or cell:

- frequency, or sample size
- weighted frequency, which estimates the population total
- standard deviation of the weighted frequency
- percentage, which estimates the population proportion
- standard error of the percentage

The table displays weighted frequencies if your analysis includes a WEIGHT statement, or if you specify the WTFREQ option in the TABLES statement. The table also displays the number of observations with missing values. See the sections "One-Way Frequency Tables" on page 6349 and "Crosstabulation Tables" on page 6350 for more information.

Options

Table 83.3 lists the options available in the TABLES statement. Descriptions follow in alphabetical order.

 Table 83.3
 TABLES Statement Options

Option	Description
Control Statistical	Analysis
ALPHA=	sets the level for confidence limits
CHISQ	requests Rao-Scott chi-square test
CHISQ1	requests Rao-Scott modified chi-square test
DF=	specifies degrees of freedom
LRCHISQ	requests Rao-Scott likelihood ratio test
LRCHISQ1	requests Rao-Scott modified likelihood ratio test
OR	requests odds ratio and relative risks
RISK	requests risks and risk difference
TESTP=	specifies null proportions for one-way chi-square test
WCHISQ	requests Wald chi-square test
WLLCHISQ	requests Wald log-linear chi-square test
Control Additional	Table Information
CL	displays confidence limits for percentages
CLWT	displays confidence limits for weighted frequencies
COL	displays column percentages and standard errors
CV	displays coefficients of variation for percentages
CVWT	displays coefficients of variation for weighted frequencies
DEFF	displays design effects for percentages
EXPECTED	displays expected weighted frequencies (two-way tables)

Table 83.3 continued

Option	Description
ROW	displays row percentages and standard errors
VAR	displays variances for percentages
VARWT	displays variances for weighted frequencies
WTFREQ	displays totals and standard errors
	when there is no WEIGHT statement
Control Displayed Outp	ut
NOCELLPERCENT	suppresses display of overall percentages
NOFREQ	suppresses display of frequency counts
NOPERCENT	suppresses display of all percentages
NOPRINT	suppresses display of tables but displays statistical tests
NOSPARSE	suppresses display of zero rows and columns
NOSTD	suppresses display of standard errors for all estimates
NOTOTAL	suppresses display of row and column totals
NOWT	suppresses display of weighted frequencies

You can specify the following options in a TABLES statement.

$ALPHA=\alpha$

sets the level for confidence limits. The value of α must be between 0 and 1, and the default is 0.05. A confidence level of α produces $100(1-\alpha)\%$ confidence limits. The default of ALPHA=0.05 produces 95% confidence limits.

You request confidence limits for percentages with the CL option, and you request confidence limits for weighted frequencies with the CLWT option. See the section "Confidence Limits" on page 6331 for more information.

The ALPHA= option also applies to confidence limits for the risks and risk difference, which you request with the RISK option, and to confidence limits for the odds ratio and relative risks, which you request with the OR option. See the sections "Risks and Risk Difference" on page 6334 and "Odds Ratio and Relative Risks" on page 6336 for details.

CHISQ

requests the Rao-Scott chi-square test. This test applies a design effect correction to the Pearson chi-square statistic computed from the weighted frequencies. See the section "Rao-Scott Chi-Square Test" on page 6338 for details.

By default for one-way tables, the CHISQ option provides a design-based goodness-of-fit test for equal proportions. To compute the test for other null hypothesis proportions, specify the null proportions with the TESTP= option.

The CHISQ option uses proportion estimates to compute the design effect correction. To use null hypothesis proportions instead, specify the CHISQ1 option.

CHISQ1

requests the Rao-Scott modified chi-square test. This test applies a design effect correction to the Pearson chi-square statistic computed from the weighted frequencies, and bases the design

effect correction on null hypothesis proportions. See the section "Rao-Scott Chi-Square Test" on page 6338 for details. To compute the design effect correction from proportion estimates instead of null proportions, specify the CHISQ option.

By default for one-way tables, the CHISQ option provides a design-based goodness-of-fit test for equal proportions. To compute the test for other null hypothesis proportions, specify the null proportions with the TESTP= option.

CL

requests confidence limits for the percentages, or proportions, in the crosstabulation table. PROC SURVEYFREQ determines the confidence coefficient from the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits. See the section "Confidence Limits" on page 6331 for more information.

CLWT

requests confidence limits for the weighted frequencies, or totals, in the crosstabulation table. PROC SURVEYFREQ determines the confidence coefficient from the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits. See the section "Confidence Limits" on page 6331 for more information.

COL

displays the column percentage, or estimated proportion of the column total, for each cell in a two-way table. The COL option also provides the standard errors of the column percentages. See the section "Row and Column Proportions" on page 6324 for more information. This option has no effect for one-way tables.

CV

displays the coefficient of variation for each percentage, or proportion estimate, in the crosstabulation table. See the section "Coefficient of Variation" on page 6333 for more information.

CVWT

displays the coefficient of variation for each weighted frequency, or estimated total, in the crosstabulation table. See the section "Coefficient of Variation" on page 6333 for more information.

DEFF

displays the design effect for each overall proportion estimate in the crosstabulation table. See the section "Design Effect" on page 6333 for more information.

DF=df

specifies the degrees of freedom for the analysis. The value of *df* must be a nonnegative number. By default, PROC SURVEYFREQ computes the degrees of freedom as described in the section "Degrees of Freedom" on page 6332.

PROC SURVEYFREQ uses the DF= value in computing confidence limits for proportions, totals, and other statistics. See the section "Confidence Limits" on page 6331 for details. PROC SURVEYFREQ also uses the DF= value in computing the denominator degrees of freedom for the *F* statistics in the Rao-Scott and Wald chi-square tests. See the sections

"Rao-Scott Chi-Square Test" on page 6338, "Rao-Scott Likelihood Ratio Chi-Square Test" on page 6342, "Wald Chi-Square Test" on page 6344, and "Wald Log-Linear Chi-Square Test" on page 6346 for more information.

EXPECTED

displays expected weighted frequencies for the table cells in a two-way table. The expected frequencies are computed under the null hypothesis that the row and column variables are independent. See the section "Expected Weighted Frequency" on page 6334 for more information. This option has no effect for one-way tables.

LRCHISQ

requests the Rao-Scott likelihood ratio chi-square test. This test applies a design effect correction to the likelihood ratio chi-square statistic computed from the weighted frequencies. See the section "Rao-Scott Likelihood Ratio Chi-Square Test" on page 6342 for more information.

By default for one-way tables, the LRCHISQ option provides a design-based test for equal proportions. To compute the test for other null hypothesis proportions, specify the null proportions with the TESTP= option.

The LRCHISQ option uses proportion estimates to compute the design effect correction. To use null hypothesis proportions instead, specify the LRCHISQ1 option.

LRCHISQ1

requests the Rao-Scott modified likelihood ratio chi-square test. This test applies a design effect correction to the likelihood ratio chi-square statistic computed from the weighted frequencies, and bases the design effect correction on null hypothesis proportions. See the section "Rao-Scott Likelihood Ratio Chi-Square Test" on page 6342 for more information. To compute the design effect correction from proportion estimates instead of null proportions, specify the LRCHISQ option.

By default for one-way tables, the LRCHISQ option provides a design-based test for equal proportions. To compute the test for other null hypothesis proportions, specify the null proportions with the TESTP= option.

NOCELLPERCENT

suppresses the display of overall cell percentages in the crosstabulation table, as well as the standard errors of the percentages. The NOCELLPERCENT option does not suppress the display of row or column percentages, which you request with the ROW or COL option.

NOFREQ

suppresses the display of cell frequencies in the crosstabulation table. The NOFREQ option also suppresses the display of row, column, and overall table frequencies.

NOPERCENT

suppresses the display of all percentages in the crosstabulation table. The NOPERCENT option also suppresses the display of standard errors of the percentages. Use the NOCELLPERCENT option to suppress display of overall cell percentages but allow display of row or column percentages.

NOPRINT

suppresses the display of frequency and crosstabulation tables but displays all requested statistical tests. Note that this option disables the Output Delivery System (ODS) for the suppressed tables. For more information, see Chapter 20, "Using the Output Delivery System."

NOSPARSE

suppresses the display of variable levels with zero frequency in two-way tables. By default, the procedure displays all levels of the column variable within each level of the row variable, including any column variable levels with zero frequency for that row. For multiway tables, the procedure displays all levels of the row variable for each layer of the table by default, including any row variable levels with zero frequency for the layer.

NOSTD

suppresses the display of all standard errors in the crosstabulation table.

NOTOTAL

suppresses the display of row totals, column totals, and overall totals in the crosstabulation table.

NOWT

suppresses the display of weighted frequencies in the crosstabulation table. The NOWT option also suppresses the display of standard errors of the weighted frequencies.

OR

requests estimates of the odds ratio, the column 1 relative risk, and the column 2 relative risk for 2×2 tables. The OR option also provides confidence limits for these statistics. See the section "Odds Ratio and Relative Risks" on page 6336 for details.

To compute confidence limits for the odds ratio and relative risks, PROC SURVEYFREQ determines the confidence coefficient from the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

RISK

requests risk statistics for 2×2 tables. The RISK option also provides standard errors and confidence limits for these statistics. Risk statistics include the row 1 risk (or proportion), row 2 risk, overall risk, and risk difference. See the section "Risks and Risk Difference" on page 6334 for details.

The RISK option provides both column 1 and column 2 risks. To request only column 1 or column 2 risks, use the RISK1 or RISK2 option.

To compute confidence limits for the risks and risk difference, PROC SURVEYFREQ determines the confidence coefficient from the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

RISK1

requests column 1 risk statistics for 2×2 tables, together with their standard errors and confidence limits. Risk statistics include the row 1 risk (or proportion), row 2 risk, overall risk, and risk difference. See the section "Risks and Risk Difference" on page 6334 for details.

To compute confidence limits for the risks and risk difference, PROC SURVEYFREQ determines the confidence coefficient from the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

RISK2

requests column 2 risk statistics for 2×2 tables, together with their standard errors and confidence limits. Risk statistics include the row 1 risk (or proportion), row 2 risk, overall risk, and risk difference. See the section "Risks and Risk Difference" on page 6334 for details.

To compute confidence limits for the risks and risk difference, PROC SURVEYFREQ determines the confidence coefficient from the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

ROW

displays the row percentage, or estimated proportion of the row total, for each cell in a two-way table. The ROW option also provides the standard errors of the row percentages. See the section "Row and Column Proportions" on page 6324 for more information. This option has no effect for one-way tables.

TESTP=(values)

specifies null hypothesis proportions, or test percentages, for one-way chi-square tests. You can separate *values* with blanks or commas. Specify *values* in probability form as numbers between 0 and 1, where the proportions sum to 1. Or specify *values* in percentage form as numbers between 0 and 100, where the percentages sum to 100. PROC SURVEYFREQ treats the value 1 as the percentage form 1%. The number of TESTP= values must equal the number of variable levels in the one-way table. List these values in the same order in which the corresponding variable levels appear in the output.

When you specify the TESTP= option, PROC SURVEYFREQ displays the specified test percentages in the one-way frequency table. The TESTP= option has no effect for two-way tables.

PROC SURVEYFREQ uses the TESTP= values for all one-way chi-square tests you request in the TABLES statement. The available one-way chi-square tests include the Rao-Scott (Pearson) chi-square test and the Rao-Scott likelihood ratio chi-square test and their modified versions, which you request with the CHISQ, CHISQ1, LRCHISQ, and LRCHISQ1 options. See the sections "Rao-Scott Chi-Square Test" on page 6338 and "Rao-Scott Likelihood Ratio Chi-Square Test" on page 6342 for details.

VAR

displays the variance estimate for each percentage in the crosstabulation table. See the section "Proportions" on page 6323 for details. By default, PROC SURVEYFREQ displays the standard errors of the percentages.

VARWT

displays the variance estimate for each weighted frequency, or estimated total, in the crosstabulation table. See the section "Totals" on page 6321 for details. By default, PROC SURVEYFREQ displays the standard deviations of the weighted frequencies.

WCHISQ

requests the Wald chi-square test for two-way tables. See the section "Wald Chi-Square Test" on page 6344 for details.

WLLCHISQ

requests the Wald log-linear chi-square test for two-way tables. See the section "Wald Log-Linear Chi-Square Test" on page 6346 for details.

WTFREQ

displays totals (weighted frequencies) and their standard errors when you do not specify a WEIGHT or REPWEIGHTS statement. PROC SURVEYFREQ displays the weighted frequencies by default when you include a WEIGHT or REPWEIGHTS statement. Without a WEIGHT or REPWEIGHTS statement, PROC SURVEYFREQ assigns all observations a weight of one.

WEIGHT Statement

WEIGHT variable;

The WEIGHT statement names the variable that contains the sampling weights. This variable must be numeric, and the sampling weights must be positive numbers. If an observation has a weight that is nonpositive or missing, then the procedure omits that observation from the analysis. See the section "Missing Values" on page 6315 for more information. If you specify more than one WEIGHT statement, the procedure uses only the first WEIGHT statement and ignores the rest.

If you do not specify a WEIGHT statement but provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ uses the average of each observation's replicate weights as the observation's weight.

If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYFREQ assigns all observations a weight of one.

Details: SURVEYFREQ Procedure

Specifying the Sample Design

PROC SURVEYFREQ produces tables and statistics based on the sample design used to obtain the survey data. PROC SURVEYFREQ can be used for single-stage or multistage designs, with or without stratification, and with or without unequal weighting. To analyze your survey data with PROC SURVEYFREQ, you need to provide sample design information for the procedure. This information can include design strata, clusters, and sampling weights. You provide sample de-

sign information with the STRATA, CLUSTER, and WEIGHT statements, and with the RATE= or TOTAL= option in the PROC SURVEYFREQ statement.

If you provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a STRATA or CLUSTER statement. Otherwise, you should specify STRATA and CLUSTER statements whenever your design includes stratification and clustering.

When there are clusters, or PSUs, in the sample design, the procedure estimates variance by using the PSUs, as described in the section "Statistical Computations" on page 6318. For a multistage sample design, the variance estimation depends only on the first stage of the sample design. So, the required input includes only first-stage cluster (PSU) and first-stage stratum identification. You do not need to input design information about any additional stages of sampling.

Stratification

If your sample design is stratified at the first stage of sampling, use the STRATA statement to name the variables that form the strata. The combinations of categories of STRATA variables define the strata in the sample, where strata are nonoverlapping subgroups that were sampled independently. If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the STRATA statement.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a STRATA statement. Otherwise, you should specify a STRATA statement whenever your design includes stratification. If you do not specify a STRATA statement or a REPWEIGHTS statement, then PROC SURVEYFREQ assumes there is no stratification at the first stage.

Clustering

If your sample design selects clusters at the first stage of sampling, use the CLUSTER statement to name the variables that identify the first-stage clusters, or primary sampling units (PSUs). The combinations of categories of CLUSTER variables define the clusters in the sample. If there is a STRATA statement, clusters are nested within strata. If your sample design has clustering at multiple stages, you should specify only the first-stage clusters, or PSUs, in the CLUSTER statement. PROC SURVEYFREQ assumes that each cluster defined by the CLUSTER statement variables represents a PSU in the sample, and that each observation belongs to one PSU.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER statement, then PROC SURVEYFREQ treats each observation as a PSU.

Weighting

If your sample design includes unequal weighting, use the WEIGHT statement to name the variable that contains the sampling weights. Sampling weights must be positive numbers. If an observation

has a weight that is nonpositive or missing, then the procedure omits that observation from the analysis. See the section "Missing Values" on page 6315 for more information.

If you do not specify a WEIGHT statement but include a REPWEIGHTS statement, PROC SURVEYFREQ uses the average of each observation's replicate weights as the observation's weight. If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYFREQ assigns all observations a weight of one.

Population Totals and Sampling Rates

To include a finite population correction (*fpc*) in Taylor series variance estimation, you can input either the sampling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYFREQ statement. (You cannot specify both of these options in the same PROC SURVEYFREQ statement.) The RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not use a finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, the Taylor series variance estimation does not include a finite population correction. For fairly small sampling fractions, it is appropriate to ignore this correction. See Cochran (1977) and Kish (1965) for more information.

If your design has multiple stages of selection and you are specifying the RATE= option, you should input the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should input the total number of PSUs in the study population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This data set is called a secondary data set, as opposed to the primary data set that you specify with the DATA= option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and all the variables in the BY statement. Furthermore, the BY groups must appear in the same order as in the primary data set. If there are formats associated with the STRATA variables and the BY variables, then the formats must be consistent in the primary and the secondary data sets. If you specify the TOTAL=SAS-data-set option, the secondary data set must have a variable named _TOTAL_ that contains the stratum population totals. If you specify the RATE=SAS-data-set option, the secondary data set must have a variable named _RATE_ that contains the stratum sampling rates. If the secondary data set contains more than one observation for any one stratum, the procedure uses the first value of TOTAL or RATE for that stratum and ignores the rest.

The *value* in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative numbers. You can specify *value* as a number between 0 and 1. Or you can specify *value* in percentage form as a number between 1 and 100, and PROC SURVEYFREQ converts that number to a proportion. The procedure treats the value 1 as 100%, and not the percentage form 1%.

If you specify the TOTAL=*value* option, *value* must not be less than the sample size. If you provide stratum population totals in a secondary data set, these values must not be less than the corresponding stratum sample sizes.

Domain Analysis

PROC SURVEYFREQ provides domain analysis through its multiway table capability. *Domain analysis* refers to the computation of statistics for subpopulations, or domains, in addition to the computation of statistics for the entire study population. Formation of subpopulations can be unrelated to the sample design, and so the domain sample sizes can actually be random variables. Domain analysis takes this variability into account by using the entire sample in estimating the variance of domain estimates. Domain analysis is also known as subgroup analysis, subpopulation analysis, or subdomain analysis. For more information about domain analysis, see Lohr (1999), Cochran (1977), and Fuller et al. (1989).

To request domain analysis with PROC SURVEYFREQ, you should include the domain variable(s) in your TABLES statement request. For example, specifying DOMAIN * A * B in a TABLES statement produces separate two-way tables of A by B for each level of DOMAIN. If your domains are formed by more than one variable, you can specify DomainVariable_1 * DomainVariable_2 * A * B, for example, to obtain two-way tables of A by B for each domain formed by the different combinations of levels for DomainVariable_1 and DomainVariable_2. See Example 83.2 for an example of domain analysis.

If you specify DOMAIN * A in a TABLES statement, the values of the variable DOMAIN form the table rows. The two-way table lists levels of the variable A within each level of the row variable DOMAIN. Specify the ROW option in the TABLES statement to obtain the row percentages and their standard errors. This provides the one-way distribution of A for each domain, or level of the variable DOMAIN.

Including the domain variables in a TABLES statement request gives a different analysis from that obtained by using a BY statement, which provides completely separate analyses of the BY groups. The BY statement can also be used to analyze the data set by subgroups, but it is critical to note that this will *not* produce a valid domain analysis. The BY statement is appropriate only when the number of units in each subgroup is known with certainty; when the subgroup sample size is a random variable, include the domain variables in your TABLES statement request.

Missing Values

WEIGHT Variable

If an observation has a missing value or a nonpositive value for the WEIGHT variable, then PROC SURVEYFREQ excludes that observation from the analysis.

REPWEIGHTS Variables

If you provide replicate weights with a REPWEIGHTS statement for BRR or jackknife variance estimation, all REPWEIGHTS variable values must be nonmissing. Similarly, if you provide jackknife coefficients with the JKCOEFS= option in the REPWEIGHTS statement, all values of the

JKCoefficient variable must be nonmissing. The procedure does not perform the analysis when any replicate weight or jackknife coefficient value is missing.

STRATA and CLUSTER Variables

An observation is excluded from the analysis if it has a missing value for any STRATA or CLUSTER variable, unless you specify the MISSING option in the PROC SURVEYFREQ statement. If you specify the MISSING option, the procedure treats missing values as a valid (nonmissing) category for all categorical variables, which include STRATA variables, CLUSTER variables, and TABLES variables.

TABLES Variables

By default, PROC SURVEYFREQ excludes an observation from a crosstabulation table (and all associated analyses) if the observation has a missing value for any of the variables in the TABLES request, unless you specify the MISSING or NOMCAR option in the PROC SURVEYFREQ statement. When the procedure excludes observations with missing values from a table, it displays the total frequency of missing observations below the table.

If you specify the MISSING option, the procedure treats missing values as a valid (nonmissing) level for each TABLES variable. These levels are displayed in the crosstabulation table and included in computations of totals, percentages, and all other table statistics.

If you specify the NOMCAR option, which is available for Taylor series variance estimation, the procedure includes observations with missing values of TABLES variables in the variance computations. The NOMCAR option does not display missing levels in the crosstabulation table or compute percentages and totals for missing levels.

The NOMCAR Option

The NOMCAR option includes observations with missing values of TABLES variables in the variance computations as *not missing completely at random* (NOMCAR) for Taylor series variance estimation. By default, observations are completely excluded from the analysis if they have missing values for any of the variables in the current TABLES request. This default treatment is based on the assumption that the values are *missing completely at random* (MCAR), and assumes that the analysis results should not be substantially different between the missing and nonmissing groups. See the section "Analysis Considerations" on page 6318 for more information.

When you specify the NOMCAR option, PROC SURVEYFREQ computes variance estimates by analyzing the nonmissing values as a domain or subpopulation, where the entire population includes both nonmissing and missing domains.

Note that the NOMCAR option has no effect when you specify the MISSING option, which treats missing values as a valid nonmissing level. The NOMCAR option does not affect the inclusion of observations with missing values of the WEIGHT, CLUSTER, or STRATA variables. Observations

with missing values of the WEIGHT variable are always excluded from the analysis. Observations with missing values of the CLUSTER or STRATA variables are excluded unless you specify the MISSING option.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods, which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not use the NOMCAR option.

Degrees of Freedom

PROC SURVEYFREQ computes degrees of freedom to obtain the *t*-percentile for confidence limits for proportions, totals, and other statistics. The procedure also uses degrees of freedom for the *F* statistics in the Rao-Scott and Wald chi-square tests. The degrees of freedom computation depends on the variance estimation method that you request. See the section "Degrees of Freedom" on page 6332 for details. Missing values can affect the degrees of freedom computation.

Taylor Series Variance Estimation

The degrees of freedom can depend on the number of clusters, the number of strata, and the number of observations. For Taylor series variance estimation, these numbers are based on the observations included in the analysis of the individual table. These numbers do not count observations excluded from the table due to missing values. If all values in a stratum are excluded from the analysis of a table as missing values, then that stratum is called an *empty stratum*. Empty strata are not counted in the total number of strata for the table. Similarly, empty clusters and missing observations are not included in the totals counts of cluster and observations use to compute the degrees of freedom for the analysis.

If you specify the MISSING option, missing values are treated as valid nonmissing levels and are included in computing degrees of freedom. If you specify the NOMCAR option for Taylor series variance estimation, observations with missing values of the TABLES variables are included in computing degrees of freedom.

Replicate-Based Variance Estimation

For BRR or jackknife variance estimation, by default PROC SURVEYFREQ computes the degrees of freedom by using all valid observations in the input data set. A valid observation is an observation that has a positive value of the WEIGHT variable and nonmissing values of the STRATA and CLUSTER variables unless you specify the MISSING option. See the section "Data Summary Table" on page 6348 for details about valid observations.

If you specify the DFADJ method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE, the procedure computes the degrees of freedom based on the nonmissing observations included in the individual table analysis. This excludes any empty strata or clusters that occur when observations with missing values of the TABLES variables are removed from the analysis for that table.

Table Summary Output Data Set

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, "Table Summary," which contains the number of (nonmissing) observations, strata, and clusters that are included in the analysis of the individual table. If there are missing observations, empty strata, or empty clusters excluded from the analysis, the "Table Summary" data set also contains this information. If you request any confidence limits or chi-square tests for the table, which require degrees of freedom, the "Table Summary" data set provides the degrees of freedom.

Due to missing values, the number of observations used for an individual table analysis can differ from the number of valid observations in the input data set, which is reported in the "Data Summary" table. Similarly, a difference can also occur for the number of clusters or strata. See Example 83.3 for more information about the "Table Summary" output data set.

If you specify the NOMCAR option for Taylor series variance estimation, the "Table Summary" data set reflects all observations used for variance estimation, which includes those observations with missing values of the TABLES variables.

Analysis Considerations

If you have missing values in your survey data for any reason (such as nonresponse), this can compromise the quality of your survey results. An observation without missing values is called a *complete respondent*, and an observation with missing values is called an *incomplete respondent*. If the complete respondents are different from the incomplete respondents with regard to a survey effect or outcome, then survey estimates will be biased and will not accurately represent the survey population. There are a variety of techniques in sample design and survey operations that can reduce nonresponse. After data collection is complete, you can use imputation to replace missing values with acceptable values, and you can use sampling weight adjustments to compensate for nonresponse. You should complete this data preparation and adjustment before you analyze your data with PROC SURVEYFREQ. See Cochran (1977), Kalton and Kaspyzyk (1986), and Brick and Kalton (1996) for more details.

Statistical Computations

Variance Estimation

PROC SURVEYFREQ provides a choice of variance estimation methods for complex survey data. In addition to the Taylor series linearization method, the procedures offer two replication-based or resampling methods—balanced repeated replication (BRR) and the delete-1 jackknife. These variance estimation methods usually give similar, satisfactory results (Lohr 1999; Särndal, Swensson, and Wretman 1992; Wolter 1985). The choice of a variance estimation method can depend on the sample design used, the sample design information available, the parameters to be estimated, and computational issues. See Lohr (1999) for more details.

Taylor Series Variance Estimation

The Taylor series linearization method can be used to estimate standard errors of proportions and other statistics for crosstabulation tables. For sample survey data, the proportion estimator is a ratio estimator formed from estimators of totals. For example, to estimate the proportion in a crosstabulation table cell, the procedure uses the ratio of the estimator of the cell total frequency to the estimator of the overall population total, where these totals are linear statistics computed from the survey data. The Taylor series expansion method obtains a first-order linear approximation for the ratio estimator and then uses the variance estimate for this approximation to estimate the variance of the estimate itself (Woodruff 1971; Fuller 1975). For more information about Taylor series variance estimation for sample survey data, see Lohr (1999), Särndal, Swensson, and Wretman (1992), Lee, Forthoffer, and Lorimor (1989), and Wolter (1985).

When there are clusters, or PSUs, in the sample design, the Taylor series method estimates variance from the variance among PSUs. When the design is stratified, the procedure combines stratum variance estimates to compute the overall variance estimate. For a multistage sample design, the variance estimation depends only on the first stage of the sample design. So the required input includes only first-stage cluster (PSU) and first-stage stratum identification. You do not need to input design information about any additional stages of sampling. This variance estimation method assumes that the first-stage sampling fraction is small, or the first-stage sample is drawn with replacement, as it often is in practice.

See the sections "Proportions" on page 6323, "Row and Column Proportions" on page 6324, "Risks and Risk Difference" on page 6334, and "Odds Ratio and Relative Risks" on page 6336 for details and formulas for Taylor series variance estimates.

Replication-Based Variance Estimation

Replication-based methods for variance estimation draw multiple replicates (or subsamples) from the full sample by following a specific resampling scheme. Commonly used resampling schemes include *balanced repeated replication* (BRR) and the *jackknife*. PROC SURVEYFREQ estimates the parameter of interest (a proportion, total, odds ratio, or other statistic) from each replicate, and then uses the variability among replicate estimates to estimate the overall variance of the parameter estimate. See Wolter (1985) and Lohr (1999) for more information.

The BRR variance estimation method requires a stratified sample design with two PSUs in each stratum. Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix and adjusting the original weights of the remaining PSUs. The adjusted weights are called *replicate weights*. PROC SURVEYFREQ also provides Fay's method, which is a modification of the BRR method. See the section "Balanced Repeated Replication (BRR)" on page 6326 for details.

The jackknife method deletes one PSU at a time from the full sample to create replicates, and modifies the original weights to obtain replicate weights. The total number of replicates equals the number of PSUs. If the sample design is stratified, each stratum must contain at least two PSUs, and the jackknife is applied separately within each stratum. See the section "The Jackknife" on page 6329 for details.

Instead of having PROC SURVEYFREQ generate replicate weights for the analysis, you can input your own replicate weights with a REPWEIGHTS statement. This can be useful if you need to do multiple analyses with the same set of replicate weights, or if you have access to replicate weights instead of design information. See the section "Replicate Weights Output Data Set" on page 6347 for more information.

Definitions and Notation

For a stratified clustered sample design, define the following:

 $h=1,2,\ldots,H$ is the stratum number, with a total of H strata $i=1,2,\ldots,n_h$ is the cluster number within stratum h, with a total of n_h sample clusters in stratum h is the unit number within cluster i of stratum h, with a total of m_{hi} sample units from cluster i of stratum h $n=\sum_{h=1}^{H}\sum_{i=1}^{n_h}m_{hi}$ is the total number of observations in the sample $f_h=1$ first-stage sampling rate for stratum h $W_{hij}=1$ sampling weight of unit j in cluster i of stratum h

The sampling rate f_h , which is used in Taylor series variance estimation, is the fraction of first-stage units (PSUs) selected for the sample. You can specify the stratum sampling rates with the RATE= option. Or if you specify population totals with the TOTAL= option, PROC SURVEYFREQ computes f_h as the ratio of stratum sample size to the stratum total, in terms of PSUs. See the section "Population Totals and Sampling Rates" on page 6314 for details. If you do not specify the RATE= option or the TOTAL= option, then the procedure assumes that the stratum sampling rates f_h are negligible and does not use a finite population correction when computing variances.

This notation is also applicable to other sample designs. For example, for a design without stratification, you can let H=1; for a sample design without clustering, you can let $m_{hi}=1$ for every h and i, which replaces clusters with individual sampling units.

For a two-way table representing the crosstabulation of two variables, define the following, where there are R levels of the row variable and C levels of the column variable:

 $r=1,2,\ldots,R$ is the row number, with a total of R rows $c=1,2,\ldots,C$ is the column number, with a total of C columns N_{rc} is the population total in row r and column c $N_r.=\sum_{c=1}^C N_{rc}$ is the total in row r $N_{\cdot c}=\sum_{r=1}^R N_{rc}$ is the total in column c $N=\sum_{r=1}^R \sum_{c=1}^C N_{rc}$ is the overall total

 $P_{rc} = N_{rc} / N$ is the population proportion in row r and column c

 $P_{r.} = N_{r.} / N$ is the proportion in row r

 $P_{.c} = N_{.c} / N$ is the proportion in column c

 $P_{rc}^{\ r} = N_{rc} / N_r$. is the row proportion for table cell (r, c)

 $P_{rc}^{\ c} = N_{rc} / N_{c}$ is the column proportion for table cell (r, c)

For a specified observation (identified by stratum, cluster, and unit number within the cluster), define the following to indicate whether or not that observation belongs to cell (r, c), row r and column c, of the two-way table, for r = 1, 2, ..., R and c = 1, 2, ..., C:

$$\delta_{hij}(r,c) = \begin{cases} 1 & \text{if observation } (hij) \text{ is in cell } (r,c) \\ 0 & \text{otherwise} \end{cases}$$

Similarly, define the following functions to indicate the observation's row and column classification:

$$\delta_{hij}(r \cdot) = \begin{cases} 1 & \text{if observation } (hij) \text{ is in row } r \\ 0 & \text{otherwise} \end{cases}$$

$$\delta_{hij}(\cdot c) = \begin{cases} 1 & \text{if observation } (hij) \text{ is in column } c \\ 0 & \text{otherwise} \end{cases}$$

Totals

PROC SURVEYFREQ estimates population frequency totals for the specified crosstabulation tables, including totals for two-way table cells, rows, columns, and overall totals. The procedure computes the estimate of the total frequency in table cell (r, c) as the weighted frequency sum,

$$\widehat{N}_{rc} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \delta_{hij}(r,c) W_{hij}$$

Similarly, PROC SURVEYFREQ computes estimates of row totals, column totals, and overall totals as

$$\widehat{N}_{r} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \delta_{hij}(r \cdot) W_{hij}$$

$$\widehat{N}_{\cdot c} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \delta_{hij}(\cdot c) W_{hij}$$

$$\widehat{N} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} W_{hij}$$

PROC SURVEYFREQ estimates the variances of totals by using the variance estimation method that you request. If you request BRR variance estimation (by specifying the VARMETHOD=BRR

option in the PROC SURVEYFREQ statement), the procedure estimates the variances as described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request jackknife variance estimation (by specifying the VARMETHOD=JACKKNIFE option), the procedure estimates the variances as described in the section "The Jackknife" on page 6329.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance estimation method is Taylor series, which you can also request with the VARMETHOD=TAYLOR option. Since totals are linear statistics, their variances can be estimated directly, without the approximation that is used for proportions and other nonlinear statistics. PROC SURVEYFREQ estimates the variance of the total frequency in table cell (r, c) as

$$\widehat{\operatorname{Var}}(\widehat{N}_{rc}) = \sum_{h=1}^{H} \widehat{\operatorname{Var}}_{h}(\widehat{N}_{rc})$$

where if $n_h > 1$,

$$\widehat{\text{Var}}_{h}(\widehat{N}_{rc}) = \frac{n_{h}(1 - f_{h})}{n_{h} - 1} \sum_{i=1}^{n_{h}} (n_{rc}^{hi} - \bar{n}_{rc}^{h})^{2}$$

$$n_{rc}^{hi} = \sum_{j=1}^{m_{hi}} \delta_{hij}(r, c) W_{hij}$$

$$\bar{n}_{rc}^{h} = \sum_{i=1}^{n_{h}} n_{rc}^{hi} / n_{h}$$

and if $n_h = 1$,

$$\widehat{\operatorname{Var}}_h(\widehat{N}_{rc}) = \begin{cases} \text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \dots, H \\ 0 & \text{if } n_{h'} > 1 \text{ for some } 1 \le h' \le H \end{cases}$$

The standard deviation of the total is computed as

$$Std(\widehat{N}_{rc}) = \sqrt{\widehat{Var}(\widehat{N}_{rc})}$$

The variances and standard deviations are computed in a similar manner for row totals, column totals, and overall table totals.

Covariance of Totals

The covariance matrix of the table cell totals \widehat{N}_{rc} is an $rc \times rc$ matrix $\widehat{\mathbf{V}}(\widehat{\mathbf{N}})$, which contains the pairwise table cell covariances $\widehat{\mathrm{Cov}}(\widehat{N}_{rc}, \ \widehat{N}_{ab})$, for $r=1,\cdots,R; \ c=1,\cdots,C; \ a=1,\cdots,R;$ and $b=1,\cdots,C$.

PROC SURVEYFREQ estimates the covariances by using the variance estimation method that you request. If you request BRR variance estimation (by specifying the VARMETHOD=BRR option in the PROC SURVEYFREQ statement), the procedure estimates the covariances by the method described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request

jackknife variance estimation (by specifying the VARMETHOD=JACKKNIFE option), the procedure uses the method described in the section "The Jackknife" on page 6329.

Otherwise (by default, or if you request the Taylor series method), PROC SURVEYFREQ estimates the covariance between total frequency estimates for table cells (r, c) and (a, b) as

$$\widehat{\text{Cov}}(\widehat{N}_{rc}, \ \widehat{N}_{ab}) = \sum_{h=1}^{H} \left(\frac{n_h (1 - f_h)}{n_h - 1} \ \sum_{i=1}^{n_h} (n_{rc}^{\ hi} - \bar{n}_{rc}^{\ h}) \ (n_{ab}^{\ hi} - \bar{n}_{ab}^{\ h}) \right)$$

Proportions

PROC SURVEYFREQ computes the estimate of the proportion in table cell (r, c) as the ratio of the estimated total for the table cell to the estimated overall total,

$$\widehat{P}_{rc} = \widehat{N}_{rc} / \widehat{N}$$

$$= \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \delta_{hij}(r,c) W_{hij} / \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} W_{hij}$$

If you request BRR variance estimation (by specifying the VARMETHOD=BRR option in the PROC SURVEYFREQ statement), the procedure estimates the variances of proportion estimates as described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request jackknife variance estimation (by specifying the VARMETHOD=JACKKNIFE option), the procedure estimates the variances as described in the section "The Jackknife" on page 6329.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance estimation method is Taylor series, which you can also request with the VARMETHOD=TAYLOR option. By using Taylor series linearization, the variance of a proportion estimate can be expressed as

$$\widehat{\operatorname{Var}}(\widehat{P}_{rc}) = \sum_{h=1}^{H} \widehat{\operatorname{Var}}_{h}(\widehat{P}_{rc})$$

where if $n_h > 1$,

$$\widehat{\text{Var}}_{h}(\widehat{P}_{rc}) = \frac{n_{h}(1 - f_{h})}{n_{h} - 1} \sum_{i=1}^{n_{h}} (e_{rc}^{hi} - \bar{e}_{rc}^{h})^{2}$$

$$e_{rc}^{hi} = \left(\sum_{j=1}^{m_{hi}} (\delta_{hij}(r, c) - \widehat{P}_{rc}) W_{hij}\right) / \widehat{N}$$

$$\bar{e}_{rc}^{h} = \sum_{i=1}^{n_{h}} e_{rc}^{hi} / n_{h}$$

and if $n_h = 1$,

$$\widehat{\operatorname{Var}}_h(\widehat{P}_{rc}) = \begin{cases} \text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \dots, H \\ 0 & \text{if } n_{h'} > 1 \text{ for some } 1 \le h' \le H \end{cases}$$

The standard error of the proportion is computed as

$$StdErr(\widehat{P}_{rc}) = \sqrt{\widehat{Var}(\widehat{P}_{rc})}$$

Similarly, the estimate of the proportion in row r is

$$\widehat{P}_{r.} = \widehat{N}_{r.} / \widehat{N}$$

And its variance estimate is

$$\widehat{\operatorname{Var}}(\widehat{P}_{r.}) = \sum_{h=1}^{H} \widehat{\operatorname{Var}}_{h}(\widehat{P}_{r.})$$

where if $n_h > 1$,

$$\widehat{\text{Var}}_{h}(\widehat{P}_{r}.) = \frac{n_{h}(1 - f_{h})}{n_{h} - 1} \sum_{i=1}^{n_{h}} (e_{r}^{hi} - \bar{e}_{r}^{h})^{2}$$

$$e_{r}^{hi} = \left(\sum_{j=1}^{m_{hi}} (\delta_{hij}(r \cdot) - \widehat{P}_{r}.) W_{hij}\right) / \widehat{N}$$

$$\bar{e}_{r}^{h} = \sum_{i=1}^{n_{h}} e_{r}^{hi} / n_{h}$$

and if $n_h = 1$,

$$\widehat{\operatorname{Var}}_h(\widehat{P}_r.) = \begin{cases} \text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \dots, H \\ 0 & \text{if } n_{h'} > 1 \text{ for some } 1 \le h' \le H \end{cases}$$

The standard error of the proportion in row r is computed as

$$StdErr(\widehat{P}_{r\cdot}) = \sqrt{\widehat{Var}(\widehat{P}_{r\cdot})}$$

Computations for the proportion in column c are done in the same way.

Row and Column Proportions

PROC SURVEYFREQ computes the estimate of the row proportion for table cell (r, c) as the ratio of the estimated total for the table cell to the estimated total for row r,

$$\widehat{P}_{rc}^{r} = \widehat{N}_{rc} / \widehat{N}_{r}.$$

$$= \sum_{h=1}^{H} \sum_{i=1}^{n_{h}} \sum_{j=1}^{m_{hi}} \delta_{hij}(r,c) W_{hij} / \sum_{h=1}^{H} \sum_{i=1}^{n_{h}} \sum_{j=1}^{m_{hi}} \delta_{hij}(r \cdot) W_{hij}$$

Similarly, PROC SURVEYFREQ estimates the column proportion for table cell (r, c) as the ratio of the estimated total for the table cell to the estimated total for column c,

$$\widehat{P}_{rc}^{c} = \widehat{N}_{rc} / \widehat{N}_{\cdot c}$$

$$= \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \delta_{hij}(r,c) W_{hij} / \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \delta_{hij}(\cdot c) W_{hij}$$

If you request BRR variance estimation (VARMETHOD=BRR), PROC SURVEYFREO estimates the variances of the row and column proportions as described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure estimates the variances as described in the section "The Jackknife" on page 6329.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the variance of the row proportion estimate can be expressed as

$$\widehat{\operatorname{Var}}(\widehat{P}_{rc}^{r}) = \sum_{h=1}^{H} \widehat{\operatorname{Var}}_{h}(\widehat{P}_{rc})$$

where if $n_h > 1$,

$$\widehat{\text{Var}}_{h}(\widehat{P}_{rc}^{r}) = \frac{n_{h}(1 - f_{h})}{n_{h} - 1} \sum_{i=1}^{n_{h}} (g_{rc}^{hi} - \bar{g}_{rc}^{h})^{2}$$

$$g_{rc}^{hi} = \left(\sum_{j=1}^{m_{hi}} (\delta_{hij}(r, c) - \widehat{P}_{rc}^{r} \delta_{hij}(r \cdot)) W_{hij}\right) / \widehat{N}_{r}.$$

$$\bar{g}_{rc}^{h} = \sum_{i=1}^{n_{h}} g_{rc}^{hi} / n_{h}$$

and if $n_h = 1$,

$$\widehat{\operatorname{Var}_{h}}(\widehat{P}_{rc}^{r}) = \begin{cases} \text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \dots, H \\ 0 & \text{if } n_{h'} > 1 \text{ for some } 1 \le h' \le H \end{cases}$$

The standard error of the row proportion is computed as

$$StdErr(\widehat{P}_{rc}^{\ r}) = \sqrt{\widehat{Var}(\widehat{P}_{rc}^{\ r})}$$

The Taylor series variance estimate for the column proportion is computed as described previously for the row proportion, but with

$$g_{rc}^{hi} = \left(\sum_{j=1}^{m_{hi}} (\delta_{hij}(r,c) - \widehat{P}_{rc}^{c} \delta_{hij}(\cdot c)) W_{hij}\right) / \widehat{N}_{\cdot c}$$

Balanced Repeated Replication (BRR)

If you specify the VARMETHOD=BRR option, then PROC SURVEYFREQ uses balanced repeated replication (BRR) for variance estimation. The BRR variance estimation method requires a stratified sample design with two PSUs in each stratum. You can provide replicate weights for BRR variance estimation by using a REPWEIGHTS statement, or the procedure can construct replicate weights for the analysis. PROC SURVEYFREQ estimates the parameter of interest (a proportion, total, odds ratio, or other statistic) from each replicate, and then uses the variability among replicate estimates to estimate the overall variance of the parameter estimate. See Wolter (1985) and Lohr (1999) for more information about BRR variance estimation.

If you do not provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ constructs replicates based on the stratified design with two PSUs in each stratum. This section describes replicate construction by the traditional BRR method. If you specify the FAY method-option for VARMETHOD=BRR, the procedure uses Fay's modified BRR method, which is described in the section "Fay's BRR Method" on page 6327.

With the traditional BRR method, each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix of dimension R, where R is the number of replicates. The number of replicates equals the smallest multiple of 4 that is greater than the number of strata H. Alternatively, you can specify the number of replicates with the REPS= method-option. If a Hadamard matrix cannot be constructed for the REPS= value that you specify, the value is increased until a Hadamard matrix of that dimension can be constructed. Therefore, it is possible for the actual number of replicates used to be larger than the REPS= value that you specify.

You can provide a Hadamard matrix for BRR replicate construction by using the HADAMARD= method-option. Otherwise, PROC SURVEYFREQ generates an appropriate Hadamard matrix. See the section "Hadamard Matrix" on page 6328 for more information. You can display the Hadamard matrix by specifying the PRINTH method-option.

PROC SURVEYFREQ constructs replicates by using the first H columns of the $R \times R$ Hadamard matrix, where H denotes the number of strata. The rth replicate (r = 1, 2, ..., R) is drawn from the full sample according to the rth row of the Hadamard matrix as follows:

- If the (r, h)th element of the Hadamard matrix equals 1, then the first PSU of stratum h is included in the rth replicate, and the second PSU of stratum h is excluded.
- If the (r, h)th element of the Hadamard matrix equals -1, then the second PSU of stratum h is included in the rth replicate, and the first PSU of stratum h is excluded.

For the PSUs included in replicate r, the original weights are doubled to form the replicate r weights. For the PSUs not included in replicate r, the replicate r weights equal zero. You can use the OUTWEIGHTS= method-option to store the replicate weights in a SAS data set. See the section "Replicate Weights Output Data Set" on page 6347 for details about the contents of the OUTWEIGHTS= data set. You can provide these replicate weights to the procedure for subsequent analyses by using a REPWEIGHTS statement.

Let θ denote the population parameter to be estimated—for example, a proportion, total, odds ratio, or other statistic. Let $\hat{\theta}$ denote the estimate of θ from the full sample, and let $\hat{\theta}_r$ denote the estimate

from the rth BRR replicate, which is computed by using the replicate weights. The BRR variance estimate for $\hat{\theta}$ is computed as

$$\widehat{V}(\widehat{\theta}) = \frac{1}{R} \sum_{r=1}^{R} \left(\widehat{\theta}_r - \widehat{\theta} \right)^2$$

where R is the total number of replicates.

If a parameter cannot be estimated from some replicate(s), then the variance estimate is computed by using those replicates from which the parameter can be estimated. For example, suppose the parameter is a column proportion—the proportion of column j for table cell (i, j). If a replicate r contains no observations in column j, then the column j proportion is not estimable from replicate r. In this case, the BRR variance estimate is computed as

$$\widehat{V}(\widehat{\theta}) = \frac{1}{R'} \sum_{r=1}^{R'} \left(\widehat{\theta}_r - \widehat{\theta} \right)^2$$

where the summation is over the replicates where the parameter θ is estimable, and R' is the number of those replicates.

Fav's BRR Method

If you specify the FAY method-option for VARMETHOD=BRR, then PROC SURVEYFREQ uses Fay's BRR method, which is a modification of the traditional BRR variance estimation method. As for traditional BRR, Fay's method requires a stratified sample design with two PSUs in each stratum. You can provide replicate weights by using a REPWEIGHTS statement, or the procedure can construct replicate weights for the analysis. PROC SURVEYFREQ estimates the parameter of interest (a proportion, total, odds ratio, or other statistic) from each replicate, and then uses the variability among replicate estimates to estimate the overall variance of the parameter estimate.

If you do not provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ constructs replicates based on the stratified design with two PSUs in each stratum. As for traditional BRR, the number of replicates R equals the smallest multiple of 4 that is greater than the number of strata H, or you can specify the number of replicates with the REPS= method-option. You can provide a Hadamard matrix for replicate construction by using the HADAMARD= method-option, or PROC SURVEYFREQ generates an appropriate Hadamard matrix.

The traditional BRR method constructs half-sample replicates by deleting one PSU per stratum according to the Hadamard matrix and doubling the original weights to form replicate weights. Fay's BRR method adjusts the original weights by a coefficient ϵ , where $0 \le \epsilon < 1$. You can specify the value of ϵ with the FAY= method-option. If you do not specify the value of ϵ , PROC SURVEYFREQ uses $\epsilon = 0.5$ by default. See Judkins (1990) and Rao and Shao (1999) for information about the value of the Fay coefficient. When $\epsilon = 0$, Fay's method becomes the traditional BRR method. See Dippo, Fay, and Morganstein (1984), Fay (1989), and Judkins (1990) for more information.

PROC SURVEYFREQ constructs Fay BRR replicates by using the first H columns of the $R \times R$ Hadamard matrix, where H denotes the number of strata. The rth replicate (r = 1, 2, ..., R) is drawn from the full sample according to the rth row of the Hadamard matrix as follows:

- If the (r, h)th element of the Hadamard matrix equals 1, the sampling weight of the first PSU in stratum h is multiplied by ϵ , and the sampling weight of the second PSU is multiplied by (2ϵ) to form the rth replicate weights.
- If the (r, h)th element of the Hadamard matrix equals -1, then the sampling weight of the second PSU in stratum h is multiplied by ϵ , and the sampling weight of the first PSU is multiplied by (2ϵ) to form the rth replicate weights.

You can use the OUTWEIGHTS= method-option to store the replicate weights in a SAS data set. See the section "Replicate Weights Output Data Set" on page 6347 for details about the contents of the OUTWEIGHTS= data set. You can provide these replicate weights to the procedure for subsequent analyses by using a REPWEIGHTS statement.

Let θ denote the population parameter to be estimated—for example, a proportion, total, odds ratio, or other statistic. Let $\hat{\theta}$ denote the estimate of θ from the full sample, and let $\hat{\theta}_r$ denote the estimate from the rth BRR replicate, which is computed by using the replicate weights. The Fay BRR variance estimate for $\hat{\theta}$ is computed as

$$\widehat{V}(\widehat{\theta}) = \frac{1}{R(1-\epsilon)^2} \sum_{r=1}^{R} \left(\widehat{\theta}_r - \widehat{\theta}\right)^2$$

where R is the total number of replicates and ϵ is the Fay coefficient.

If you request Fay's BRR method and also include a REPWEIGHTS statement, PROC SURVEYFREQ uses the replicate weights that you provide and includes the Fay coefficient ϵ in the denominator of the variance estimate in the preceding expression.

If a parameter cannot be estimated from some replicate(s), then the variance estimate is computed by using those replicates from which the parameter can be estimated. For example, suppose the parameter is a column proportion—the proportion of column j for table cell (i, j). If a replicate r contains no observations in column j, then the column j proportion is not estimable from replicate r. In this case, the BRR variance estimate is computed as

$$\widehat{V}(\widehat{\theta}) = \frac{1}{R'(1-\epsilon)^2} \sum_{r=1}^{R'} \left(\widehat{\theta}_r - \widehat{\theta}\right)^2$$

where the summation is over the replicates where the parameter θ is estimable, and R' is the number of those replicates.

Hadamard Matrix

PROC SURVEYFREQ uses a Hadamard matrix to construct replicates for BRR variance estimation. You can provide a Hadamard matrix for replicate construction by using the HADAMARD=method-option for VARMETHOD=BRR. Otherwise, PROC SURVEYFREQ generates an appropriate Hadamard matrix. You can display the Hadamard matrix by specifying the PRINTH method-option.

A Hadamard matrix **A** of dimension R is a square matrix that has all elements equal to 1 or -1. A Hadamard matrix must satisfy the requirement that $\mathbf{A}'\mathbf{A} = R\mathbf{I}$, where **I** is an identity matrix. The dimension of a Hadamard matrix must equal 1, 2, or a multiple of 4.

For example, the following matrix is a Hadamard matrix of dimension k = 8:

For BRR replicate construction, the dimension of the Hadamard matrix must be at least H, where H denotes the number of first-stage strata in your design. If a Hadamard matrix of a given dimension exists, it is not necessarily unique. Therefore, if you want to use a specific Hadamard matrix, you must provide the matrix as a SAS data set in the HADAMARD=SAS-data-set method-option. You must ensure that the matrix you provide is actually a Hadamard matrix; PROC SURVEYFREQ does not check the validity of your Hadamard matrix.

See the section "Balanced Repeated Replication (BRR)" on page 6326 and "Fay's BRR Method" on page 6327 for details about how the Hadamard matrix is used to construct replicates for BRR variance estimation.

The Jackknife

If you specify the VARMETHOD=JACKKNIFE option, PROC SURVEYFREQ uses the delete-1 jackknife method for variance estimation. The jackknife method can be used for stratified sample designs and for designs with no stratification. If your design is stratified, the jackknife method requires at least two PSUs in each stratum. You can provide replicate weights for jackknife variance estimation by using a REPWEIGHTS statement, or the procedure can construct replicate weights for the analysis. PROC SURVEYFREQ estimates the parameter of interest (a proportion, total, odds ratio, or other statistic) from each replicate, and then uses the variability among replicate estimates to estimate the overall variance of the parameter estimate. See Wolter (1985) and Lohr (1999) for more information about jackknife variance estimation.

If you do not provide replicate weights with a REPWEIGHTS statement, PROC SURVEYFREQ constructs the replicates. The number of replicates *R* equals the number of PSUs, and the procedure deletes one PSU from the full sample to form each replicate. The sampling weights are modified by the jackknife coefficient for the replicate to create the replicate weights.

If your design is not stratified (no STRATA statement), the jackknife coefficient has the same value for each replicate r. The jackknife coefficient equals

$$\alpha_r = \frac{R-1}{R} \text{ for } r = 1, 2, \dots, R$$

where R is the total number of replicates (or total number of PSUs). For the PSUs included in a replicate, the replicate weights are computed by dividing the original sampling weights by the jackknife coefficient. For the deleted PSU, which is not included in the replicate, the replicate

weights equal zero. The replicate weight for the jth member of the ith PSU can be expressed as follows when the design is not stratified:

$$W_{ij}^{r} = \begin{cases} W_{ij}/\alpha_{r} & \text{if PSU } i \text{ is included in replicate } r \\ 0 & \text{otherwise} \end{cases}$$

where W_{ij} is the original sampling weight of unit (ij), r is the replicate number, and α_r is the jackknife coefficient.

If your design is stratified, the jackknife method requires at least two PSUs in each stratum. Let stratum \tilde{h}_r be the stratum from which a PSU is deleted to form the rth replicate. Stratum \tilde{h}_r is called the *donor stratum*. The jackknife coefficients are defined as

$$\alpha_r = \frac{n_{\tilde{h}_r} - 1}{n_{\tilde{h}_r}}$$
 for $r = 1, 2, \dots, R$

where $n_{\tilde{h}_r}$ is the total number of PSUs in the donor stratum for replicate r. For all strata other than the donor stratum, the replicate r weights equal the original sampling weights. For PSUs included from the donor stratum, the replicate weights are computed by dividing the original sampling weights by the jackknife coefficient. For the deleted PSU, which is not included in the replicate, the replicate weights equal zero. The replicate weight for the jth member of the ith PSU in stratum k can be expressed as

$$W_{hij}^r = \begin{cases} W_{hij} & \text{if } h \neq \tilde{h}_r \\ W_{hij}/\alpha_r & \text{if } h = \tilde{h}_r \text{ and PSU } (hi) \text{ is included in replicate } r \\ 0 & \text{if } h = \tilde{h}_r \text{ and PSU } (hi) \text{ is not included in replicate } r \end{cases}$$

You can use the OUTWEIGHTS= method-option to store the replicate weights in a SAS data set. You can also use the OUTJKCOEFS= method-option to store the jackknife coefficients in a SAS data set. See the sections "Jackknife Coefficients Output Data Set" on page 6347 and "Replicate Weights Output Data Set" on page 6347 for details about the contents of these output data sets. You can provide replicate weights and jackknife coefficients to the procedure for subsequent analyses by using a REPWEIGHTS statement. If you provide replicate weights but do not provide jackknife coefficients, PROC SURVEYFREQ uses $\alpha_r = (R-1)/R$ as the jackknife coefficient for all replicates.

Let θ denote the population parameter to be estimated—for example, a proportion, total, odds ratio, or other statistic. Let $\hat{\theta}$ denote the estimate of θ from the full sample, and let $\hat{\theta}_r$ be the estimate from the rth jackknife replicate, which is computed by using the replicate weights. The jackknife variance estimate for $\hat{\theta}$ is computed as

$$\widehat{V}(\widehat{\theta}) = \sum_{r=1}^{R} \alpha_r \left(\widehat{\theta}_r - \widehat{\theta}\right)^2$$

where R is the total number of replicates and α_r is the jackknife coefficient for replicate r.

If a parameter cannot be estimated from some replicate(s), then the variance estimate is computed by using those replicates from which the parameter can be estimated. For example, suppose the

parameter is a column proportion—the proportion of column j for table cell (i, j). If a replicate r contains no observations in column j, then the column j proportion is not estimable from replicate r. In this case, the jackknife variance estimate is computed as

$$\widehat{V}(\widehat{\theta}) = \frac{R}{R'} \sum_{r=1}^{R'} \alpha_r \left(\widehat{\theta}_r - \widehat{\theta}\right)^2$$

where the summation is over the replicates where the parameter θ is estimable, and R' is the number of those replicates.

Confidence Limits

If you specify the CL option in the TABLES statement, PROC SURVEYFREQ computes confidence limits for the proportions in the frequency and crosstabulation tables. The confidence coefficient is determined according to the value of the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

For the proportion in table cell (r, c), the confidence limits are computed as

$$\widehat{P}_{rc} \pm \left(t_{df,\alpha/2} \times \operatorname{StdErr}(\widehat{P}_{rc}) \right)$$

where \widehat{P}_{rc} is the estimate of the proportion in table cell (r,c), $\operatorname{StdErr}(\widehat{P}_{rc})$ is the standard error of the estimate, and $t_{df,\alpha/2}$ is the $100(1-\alpha/2)$ th percentile of the t distribution with df degrees of freedom calculated as described in the section "Degrees of Freedom" on page 6332. The confidence limits for row proportions and column proportions are computed similarly to the confidence limits for table cell proportions.

If you specify the CLWT option in the TABLES statement, PROC SURVEYFREQ computes confidence limits for the weighted frequencies, or totals, in the crosstabulation tables.

For the total in table cell (r, c), the confidence limits are computed as

$$\widehat{N}_{rc} \pm \left(t_{df,\alpha/2} \times \operatorname{StdErr}(\widehat{N}_{rc})\right)$$

where \widehat{N}_{rc} is the estimate of the total frequency in table cell (r,c), StdErr (\widehat{N}_{rc}) is the standard error of the estimate, and $t_{df,\alpha/2}$ is the $100(1-\alpha/2)$ th percentile of the t distribution with df degrees of freedom calculated as described in the section "Degrees of Freedom" on page 6332. The confidence limits for row totals, column totals, and the overall total are computed similarly to the confidence limits for table cell totals.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, "Table Summary," which contains the number of observations, strata, and clusters that are included in the analysis of the requested table. When you request confidence limits, the "Table Summary" data set also contains the degrees of freedom df and the value of $t_{df,\alpha/2}$ used to compute the confidence limits. See Example 83.3 for more information about this output data set.

Degrees of Freedom

PROC SURVEYFREQ uses the degrees of freedom of the variance estimator to obtain the *t*-percentile for confidence limits for proportions, totals, and other statistics. The procedure also uses the degrees of freedom in computing the *F* statistics for the Rao-Scott and Wald chi-square tests.

PROC SURVEYFREQ computes the degrees of freedom based on the variance estimation method and the sample design. Alternatively, you can specify the degrees of freedom in the DF= option in the TABLES statement instead of having the procedure compute it.

For Taylor series variance estimation, PROC SURVEYFREQ calculates the degrees of freedom (df) as the number of clusters minus the number of strata. If there are no clusters, then df equals the number of observations minus the number of strata. If the design is not stratified, then df equals the number of clusters minus one. These numbers are based on the observations included in the analysis of the individual table request. These numbers do not count observations excluded from the table due to missing values. See the section "Missing Values" on page 6315 for details. If you specify the MISSING option, missing values are treated as valid nonmissing levels and are included in computing degrees of freedom. If you specify the NOMCAR option for Taylor series variance estimation, observations with missing values of the TABLES variables are included in computing degrees of freedom.

If you provide replicate weights with a REPWEIGHTS statement, the degrees of freedom equal the number of replicates, which is the number of REPWEIGHTS variables that you provide. Alternatively, you can specify the degrees of freedom in the DF= option in the REPWEIGHTS or TABLES statement.

For BRR variance estimation (when you do not use a REPWEIGHTS statement), PROC SURVEYFREQ calculates the degrees of freedom as the number of strata. PROC SURVEYFREQ bases the number of strata on all valid observations in the data set, unless you specify the DFADJ method-option for VARMETHOD=BRR. When you specify the DFADJ option, the procedure computes the degrees of freedom as the number of nonmissing strata for the individual table request. This excludes any empty strata that occur when observations with missing values of the TABLES variables are removed from the analysis for that table.

For jackknife variance estimation (when you do not use a REPWEIGHTS statement), PROC SURVEYFREQ calculates the degrees of freedom as the number of clusters minus the number of strata. If there are no clusters, then df equals the number of observations minus the number of strata. If the design is not stratified, then df equals the number of clusters minus one. For jackknife variance estimation, PROC SURVEYFREQ bases the number of strata and clusters on all valid observations in the data set, unless you specify the DFADJ method-option for VARMETHOD=JK. When you specify the DFADJ option, the procedure computes the degrees of freedom from the number of nonmissing strata and clusters for the individual table request. This excludes any empty strata or clusters that occur when observations with missing values of the TABLES variables are removed from the analysis for that table.

For each table request, PROC SURVEYFREQ produces a nondisplayed ODS table, "Table Summary," which contains the number of (nonmissing) observations, strata, and clusters that are included in the analysis of the table. If there are missing observations, empty strata, or empty clusters excluded from the analysis, the "Table Summary" data set also contains this information. If you re-

quest confidence limits or chi-square tests, which depend on the degrees of freedom of the variance estimator, the "Table Summary" data set provides the degrees of freedom df. See Example 83.3 for more information about this output data set.

Coefficient of Variation

If you specify the CV option in the TABLES statement, PROC SURVEYFREQ computes the coefficients of variation for the proportion estimates in the frequency and crosstabulation tables. The coefficient of variation is the ratio of the standard error to the estimate.

For the proportion in table cell (r, c), the coefficient of variation is computed as

$$CV(\widehat{P}_{rc}) = StdErr(\widehat{P}_{rc}) / \widehat{P}_{rc}$$

where \widehat{P}_{rc} is the estimate of the proportion in table cell (r,c) and $StdErr(\widehat{P}_{rc})$ is the standard error of the estimate. The coefficients of variation for row proportions and column proportions are computed similarly.

If you specify the CVWT option in the TABLES statement, PROC SURVEYFREQ computes the coefficients of variation for the weighted frequencies, or estimated totals, in the crosstabulation tables. For the total in table cell (r, c), the coefficient of variation is computed as

$$CV(\widehat{N}_{rc}) = StdErr(\widehat{N}_{rc}) / \widehat{N}_{rc}$$

where \widehat{N}_{rc} is the estimate of the total in table cell (r,c) and $StdErr(\widehat{N}_{rc})$ is the standard error of the estimate. The coefficients of variation for row totals, column totals, and the overall total are computed similarly.

Design Effect

If you specify the DEFF option in the TABLES statement, PROC SURVEYFREQ computes design effects for the overall proportion estimates in the frequency and crosstabulation tables. The design effect for an estimate is the ratio of the actual variance (estimated based on the sample design) to the variance of a simple random sample with the same number of observations. See Lohr (1999) and Kish (1965) for details.

For Taylor series variance estimation, PROC SURVEYFREQ computes the design effect for the proportion in table cell (r, c) as

$$\begin{aligned} \text{DEFF}(\widehat{P}_{rc}) &= \widehat{\text{Var}}(\widehat{P}_{rc}) / \widehat{\text{Var}}_{SRS}(\widehat{P}_{rc}) \\ &= \widehat{\text{Var}}(\widehat{P}_{rc}) / \left\{ (1 - f) \widehat{P}_{rc} (1 - \widehat{P}_{rc}) / (n - 1) \right\} \end{aligned}$$

where \widehat{P}_{rc} is the estimate of the proportion in table cell (r, c), $\widehat{\text{Var}}(\widehat{P}_{rc})$ is the variance of the estimate, f is the overall sampling fraction, and n is the number of observations in the sample.

For Taylor series variance estimation, PROC SURVEYFREQ determines the value of f, the overall sampling fraction, based on the RATE= or TOTAL= option. If you do not specify either of these

options, then PROC SURVEYFREQ assumes the value of f is negligible and does not use a finite population correction in the analysis, as described in the section "Population Totals and Sampling Rates" on page 6314. If you specify RATE=value, then PROC SURVEYFREQ uses this value as the overall sampling fraction f. If you specify TOTAL=value, then PROC SURVEYFREQ computes f as the ratio of the number of PSUs in the sample to the specified total.

If you specify stratum sampling rates with the RATE=SAS-data-set option, then PROC SURVEYFREQ computes stratum totals based on these stratum sampling rates and the number of sample PSUs in each stratum. The procedure sums the stratum totals to form the overall total, and computes f as the ratio of the number of sample PSUs to the overall total. Alternatively, if you specify stratum totals with the TOTAL=SAS-data-set option, then PROC SURVEYFREQ sums these totals to compute the overall total. The overall sampling fraction f is then computed as the ratio of the number of sample PSUs to the overall total.

For BRR and jackknife variance estimation, PROC SURVEYFREQ computes the design effect for the proportion in table cell (r, c) as

$$\begin{aligned} \text{DEFF}(\widehat{P}_{rc}) &= \widehat{\text{Var}}(\widehat{P}_{rc}) / \widehat{\text{Var}}_{SRS}(\widehat{P}_{rc}) \\ &= \widehat{\text{Var}}(\widehat{P}_{rc}) / \left\{ \widehat{P}_{rc} \left(1 - \widehat{P}_{rc} \right) / \left(n - 1 \right) \right\} \end{aligned}$$

where \widehat{P}_{rc} is the estimate of the proportion in table cell (r,c), $\widehat{\text{Var}}(\widehat{P}_{rc})$ is the variance of the estimate, and n is the number of observations in the sample. This computation does not include the overall sampling fraction.

Expected Weighted Frequency

If you specify the EXPECTED option in the TABLES statement, PROC SURVEYFREQ computes expected weighted frequencies for the table cells in two-way tables. The expected weighted frequencies are computed under the null hypothesis that the row and column variables are independent. The expected weighted frequency for table cell (r, c) equals

$$E_{rc} = \widehat{N}_r. \ \widehat{N}_{\cdot c} \ / \ \widehat{N}$$

where \widehat{N}_r is the estimated total for row r, $\widehat{N}_{\cdot c}$ is the estimated total for column c, and \widehat{N} is the estimated overall total. Equivalently, the expected weighted frequency can be expressed as

$$E_{rc} = \widehat{P}_{r.} \ \widehat{P}_{\cdot c} \ \widehat{N}$$

These expected values are used in the design-based chi-square tests of independence, as described in the sections "Rao-Scott Chi-Square Test" on page 6338 and "Wald Chi-Square Test" on page 6344.

Risks and Risk Difference

The RISK option provides estimates of risks (or binomial proportions) and risk differences for 2×2 tables, together with their standard errors and confidence limits. Risk statistics include the row 1 risk, row 2 risk, overall risk, and risk difference. If you specify the RISK option, PROC

SURVEYFREQ provides both column 1 and column 2 risks. You can request only column 1 (or only column 2) risks by specifying the RISK1 (or RISK2) option.

The column 1 risk for row 1 is the row 1 proportion for table cell (1, 1). The column 1 risk estimate is computed as the ratio of the estimated total for table cell (1, 1) to the estimated total for row 1,

$$\widehat{P}_{11}^{(1)} = \widehat{N}_{11} / \widehat{N}_{1}.$$

where the total estimates are computed as described in the section "Totals" on page 6321. The column 1 risk for row 2 is the row 2 proportion for table cell (2, 1), which is estimated as

$$\widehat{P}_{21}^{(2)} = \widehat{N}_{21} / \widehat{N}_{2}.$$

The overall column 1 risk is the overall proportion in column 1, and its estimate is computed as

$$\widehat{P}_{\cdot 1} = \widehat{N}_{\cdot 1} / \widehat{N}$$

The column 2 risk estimates are computed similarly.

The row 1 and row 2 risks are the same as the row proportions for a 2×2 table, and their variances are computed as described in the section "Row and Column Proportions" on page 6324. The overall risk is the overall proportion in the column, and its variance computation is described in the section "Proportions" on page 6323. Confidence limits for the column 1 risk for row 1 are computed as

$$\widehat{P}_{11}^{(1)} \pm \left(t_{df,\alpha/2} \times \text{StdErr}(\widehat{P}_{11}^{(1)})\right)$$

where StdErr($\widehat{P}_{11}^{(1)}$) is the standard error of the risk estimate, and $t_{df,\alpha/2}$ is the $100(1-\alpha/2)$ th percentile of the t distribution with df degrees of freedom calculated as described in the section "Degrees of Freedom" on page 6332. The value of the confidence coefficient α is determined by the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits. Confidence limits for the other risks are computed similarly.

The risk difference is defined as the row 1 risk minus the row 2 risk. The estimate of the column 1 risk difference RD_1 is computed as

$$\begin{split} \widehat{RD}_{1} &= \widehat{P}_{11}^{(1)} - \widehat{P}_{21}^{(2)} \\ &= \left(\widehat{N}_{11} / \widehat{N}_{1.} \right) - \left(\widehat{N}_{21} / \widehat{N}_{2.} \right) \end{split}$$

The column 2 risk difference is computed similarly.

PROC SURVEYFREQ estimates the variance of the risk difference by using the variance estimation method that you request. If you request BRR variance estimation (VARMETHOD=BRR), the procedure estimates the variance as described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure estimates the variance as described in the section "The Jackknife" on page 6329.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the variance estimate for the column 1 risk difference $\widehat{\text{Var}}(\widehat{RD}_1)$ can be expressed as

$$\widehat{\operatorname{Var}}(\widehat{RD}_1) = \widehat{\mathbf{D}} \, \widehat{\mathbf{V}}(\widehat{\mathbf{X}}) \, \widehat{\mathbf{D}}'$$

where $\widehat{V}(\widehat{X})$ is the covariance matrix of \widehat{X} ,

$$\widehat{\mathbf{X}} = (\widehat{N}_{11}, \widehat{N}_{1}, \widehat{N}_{21}, \widehat{N}_{2})$$

and $\widehat{\mathbf{D}}$ is an array containing the partial derivatives of the risk difference with respect to the elements of $\widehat{\mathbf{X}}$,

$$\widehat{\mathbf{D}} = (1/\widehat{N}_{1\cdot}, -\widehat{N}_{11}/\widehat{N}_{1\cdot}^{2}, -1/\widehat{N}_{2\cdot}, -\widehat{N}_{21}/\widehat{N}_{2\cdot}^{2})$$

See Wolter (1985, pp. 239–242) for details. The variance estimate for the column 2 risk difference is computed similarly.

The standard error of the column 1 risk difference is

$$StdErr(\widehat{RD}_1) = \sqrt{\widehat{Var}(\widehat{RD}_1)}$$

Confidence limits for the column 1 risk difference are computed as

$$\widehat{RD}_1 \pm \left(t_{df,\alpha/2} \times \operatorname{StdErr}(\widehat{RD}_1)\right)$$

where $t_{df,\alpha/2}$ is the $100(1-\alpha/2)$ th percentile of the t distribution with df degrees of freedom calculated as described in the section "Degrees of Freedom" on page 6332. The value of the confidence coefficient α is determined by the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits. Confidence limits for the column 2 risk difference are computed in the same way.

Odds Ratio and Relative Risks

The OR option provides estimates of the odds ratio, the column 1 relative risk, and the column 2 relative risk for 2×2 tables, together with their confidence limits.

Odds Ratio

For a 2 × 2 table, the odds of a positive (column 1) response in row 1 is N_{11}/N_{12} . Similarly, the odds of a positive response in row 2 is N_{21}/N_{22} . The odds ratio is formed as the ratio of the row 1 odds to the row 2 odds. The estimate of the odds ratio is computed as

$$\widehat{OR} = \frac{\widehat{N}_{11} / \widehat{N}_{12}}{\widehat{N}_{21} / \widehat{N}_{22}} = \frac{\widehat{N}_{11} \widehat{N}_{22}}{\widehat{N}_{12} \widehat{N}_{21}}$$

The value of the odds ratio can be any nonnegative number. When the row and column variables are independent, the true value of the odds ratio equals 1. An odds ratio greater than 1 indicates that the odds of a positive response are higher in row 1 than in row 2. An odds ratio less than 1 indicates that the odds of positive response are higher in row 2. The strength of association increases with the deviation from 1. See Stokes, Davis, and Koch (2000) and Agresti (2007) for details.

PROC SURVEYFREQ constructs confidence limits for the odds ratio by using the log transform. The $100(1-\alpha)\%$ confidence limits for the odds ratio are computed as

$$\left(\widehat{OR} \times \exp(-t_{df,\alpha/2} \sqrt{v}), \widehat{OR} \times \exp(t_{df,\alpha/2} \sqrt{v})\right)$$

where

$$v = \widehat{\text{Var}}(\ln \widehat{OR}) = \widehat{\text{Var}}(\widehat{OR}) / \widehat{OR}^2$$

is the estimate of the variance of the log odds ratio, and where $t_{df,\alpha/2}$ is the $100(1-\alpha/2)$ th percentile of the t distribution with df degrees of freedom. The computation of df is described in the section "Degrees of Freedom" on page 6332. The value of the confidence coefficient α is determined by the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

If you request BRR variance estimation (VARMETHOD=BRR), PROC SURVEYFREQ estimates the variance of the odds ratio as described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure estimates the variance as described in the section "The Jackknife" on page 6329.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the variance estimate for the odds ratio can be expressed as

$$\widehat{\operatorname{Var}}(\widehat{OR}) = \widehat{\mathbf{D}} \widehat{\mathbf{V}}(\widehat{\mathbf{N}}) \widehat{\mathbf{D}}'$$

where $\widehat{V}(\widehat{N})$ is the covariance matrix of the estimates of the cell totals \widehat{N} ,

$$\widehat{\mathbf{N}} = (\widehat{N}_{11}, \widehat{N}_{12}, \widehat{N}_{21}, \widehat{N}_{22})$$

and $\widehat{\mathbf{D}}$ is an array containing the partial derivatives of the odds ratio with respect to the elements of $\widehat{\mathbf{N}}$. The section "Covariance of Totals" on page 6322 describes the computation of $\widehat{\mathbf{V}}(\widehat{\mathbf{N}})$. The array $\widehat{\mathbf{D}}$ is computed as

$$\widehat{\mathbf{D}} = (\widehat{N}_{22}/\widehat{N}_{12}\widehat{N}_{21}, -\widehat{N}_{11}\widehat{N}_{22}/\widehat{N}_{21}\widehat{N}_{12}^2, \\ -\widehat{N}_{11}\widehat{N}_{22}/\widehat{N}_{12}\widehat{N}_{21}^2, \widehat{N}_{11}/\widehat{N}_{12}\widehat{N}_{21})$$

See Wolter (1985, pp. 239–242) for more information.

Relative Risks

For a 2×2 table, the column 1 relative risk is the ratio of the column 1 risks for row 1 to row 2. As described in the section "Risks and Risk Difference" on page 6334, the column 1 risk for row 1 is the proportion of row 1 observations classified in column 1, and the column 1 risk for row 2 is the proportion of row 2 observations classified in column 1. The estimate of the column 1 relative risk is computed as

$$\widehat{RR}_1 = \frac{\widehat{N}_{11} / \widehat{N}_{1.}}{\widehat{N}_{21} / \widehat{N}_{2.}}$$

Similarly, the estimate of the column 2 relative risk is computed as

$$\widehat{RR}_2 = \frac{\widehat{N}_{12} / \widehat{N}_{1.}}{\widehat{N}_{22} / \widehat{N}_{2.}}$$

A relative risk greater than 1 indicates that the probability of positive response is greater in row 1 than in row 2. Similarly, a relative risk less than 1 indicates that the probability of positive response

is less in row 1 than in row 2. The strength of association increases with the deviation from 1. See Stokes, Davis, and Koch (2000) and Agresti (2007) for more information.

PROC SURVEYFREQ constructs confidence limits for the relative risk by using the log transform, which is similar to the odds ratio computations described previously. The $100(1 - \alpha)\%$ confidence limits for the column 1 relative risk are computed as

$$\left(\widehat{RR}_1 \times \exp(-t_{df,\alpha/2} \sqrt{v}), \widehat{RR}_1 \times \exp(t_{df,\alpha/2} \sqrt{v})\right)$$

where

$$v = \widehat{\text{Var}}(\ln \widehat{RR}_1) = \widehat{\text{Var}}(\widehat{RR}_1) / \widehat{RR}_1^2$$

is the estimate of the variance of the log column 1 relative risk, and where $t_{df,\alpha/2}$ is the $100(1-\alpha/2)$ th percentile of the t distribution with df degrees of freedom. The computation of df is described in the section "Degrees of Freedom" on page 6332. The value of the confidence coefficient α is determined by the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits.

If you request BRR variance estimation (VARMETHOD=BRR), PROC SURVEYFREQ estimates the variance of the column 1 relative risk as described in the section "Balanced Repeated Replication (BRR)" on page 6326. If you request jackknife variance estimation (VARMETHOD=JACKKNIFE), the procedure estimates the variance as described in the section "The Jackknife" on page 6329.

If you do not specify the VARMETHOD= option or a REPWEIGHTS statement, the default variance estimation method is Taylor series (VARMETHOD=TAYLOR). By using Taylor series linearization, the variance estimate for the column 1 relative risk can be expressed as

$$\widehat{\operatorname{Var}}(\widehat{RR}_1) = \widehat{\mathbf{D}} \widehat{\mathbf{V}}(\widehat{\mathbf{X}}) \widehat{\mathbf{D}}'$$

where $\widehat{\mathbf{V}}(\widehat{\mathbf{X}})$ is the covariance matrix of $\widehat{\mathbf{X}}$,

$$\widehat{\mathbf{X}} = (\widehat{N}_{11}, \widehat{N}_{1\cdot}, \widehat{N}_{21}, \widehat{N}_{2\cdot})$$

and $\widehat{\mathbf{D}}$ is an array containing the partial derivatives of the column 1 relative risk with respect to the elements of $\widehat{\mathbf{X}}$.

$$\widehat{\mathbf{D}} = (\widehat{N}_{2 \cdot} / \widehat{N}_{21} \widehat{N}_{1 \cdot}, -\widehat{N}_{11} \widehat{N}_{2 \cdot} / \widehat{N}_{21} \widehat{N}_{1 \cdot}^{2}, \\ -\widehat{N}_{11} \widehat{N}_{2 \cdot} / \widehat{N}_{1 \cdot} \widehat{N}_{21}^{2}, \widehat{N}_{11} / \widehat{N}_{21} \widehat{N}_{1 \cdot})$$

See Wolter (1985, pp. 239–242) for more information.

Confidence limits for the column 2 relative risk are computed similarly.

Rao-Scott Chi-Square Test

The Rao-Scott chi-square test is a design-adjusted version of the Pearson chi-square test, which involves differences between observed and expected frequencies. For two-way tables, the null hypothesis for this test is no association between the row and column variables. For one-way tables,

the null hypothesis is equal proportions for the variable levels. Or you can specify null hypothesis proportions for one-way tables by using the TESTP= option.

Two forms of the design correction are available for the Rao-Scott tests. One form of the design correction uses the proportion estimates, and you request the corresponding Rao-Scott chi-square test with the CHISQ option. The other form of the design correction uses the null hypothesis proportions. You request this test, called the Rao-Scott modified chi-square test, with the CHISQ1 option.

See Lohr (1999), Thomas, Singh, and Roberts (1996), and Rao and Scott (1981, 1984, 1987) for details about design-adjusted chi-square tests.

Two-Way Tables

The Rao-Scott chi-square statistic is computed from the Pearson chi-square statistic and a design correction based on the design effects of the proportions. Under the null hypothesis of no association between the row and column variables, this statistic approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom. PROC SURVEYFREQ also computes an F statistic that can provide a better approximation.

The Rao-Scott chi-square Q_{RS} is computed as

$$Q_{RS} = Q_P / D$$

where D is the design correction described in the section "Design Correction for Two-Way Tables" on page 6340, and Q_P is the Pearson chi-square based on the estimated totals. The Pearson chi-square is computed as

$$Q_P = (n/\widehat{N}) \sum_r \sum_c (\widehat{N}_{rc} - E_{rc})^2 / E_{rc}$$

where *n* is the sample size, \widehat{N} is the estimated overall total, \widehat{N}_{rc} is the estimated total for table cell (r, c), and E_{rc} is the expected total for table cell (r, c) under the null hypothesis of no association,

$$E_{rc} = \widehat{N}_r \cdot \widehat{N}_{\cdot c} / \widehat{N}$$

Under the null hypothesis of no association, the Rao-Scott chi-square Q_{RS} approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom. A better approximation can be obtained by the F statistic,

$$F = Q_{RS} / (R-1)(C-1)$$

which has an F distribution with (R-1)(C-1) and $(R-1)(C-1)\kappa$ degrees of freedom under the null hypothesis. The value κ is the degrees of freedom for the variance estimator and depends on the sample design and the variance estimation method. The section "Degrees of Freedom" on page 6332 describes the computation of κ .

Design Correction for Two-Way Tables

If you specify the CHISQ or LRCHISQ option, the design correction D is computed by using the estimated proportions as

$$D = \left\{ \sum_{r} \sum_{c} (1 - \widehat{P}_{rc}) \operatorname{DEFF}(\widehat{P}_{rc}) - \sum_{r} (1 - \widehat{P}_{r.}) \operatorname{DEFF}(\widehat{P}_{r.}) - \sum_{c} (1 - \widehat{P}_{.c}) \operatorname{DEFF}(\widehat{P}_{.c}) \right\} / (R - 1)(C - 1)$$

where

$$\begin{aligned}
\mathsf{DEFF}(\widehat{P}_{rc}) &= \widehat{\mathsf{Var}}(\widehat{P}_{rc}) / \mathsf{Var}_{\mathsf{SRS}}(\widehat{P}_{rc}) \\
&= \mathsf{Var}(\widehat{P}_{rc}) / \left\{ (1 - f) \widehat{P}_{rc} (1 - \widehat{P}_{rc}) / (n - 1) \right\}
\end{aligned}$$

as described in the section "Design Effect" on page 6333. \widehat{P}_{rc} is the estimate of the proportion in table cell (r,c), $\widehat{\text{Var}}(\widehat{P}_{rc})$ is the variance of the estimate, f is the overall sampling fraction, and n is the number of observations in the sample. DEFF (\widehat{P}_r) , the design effect for the estimate of the proportion in row r, and DEFF $(\widehat{P}_{\cdot c})$, the design effect for the estimate of the proportion in column c, are computed similarly.

If you specify the CHISQ1 or LRCHISQ1 option for the Rao-Scott modified test, the design correction uses the null hypothesis cell proportions instead of the estimated cell proportions. For two-way tables, the null hypothesis cell proportions are computed as the products of the corresponding row and column proportion estimates. The modified design correction D_0 (based on null hypothesis proportions) is computed as

$$D_0 = \left\{ \sum_r \sum_c (1 - P_{rc}^{\ 0}) \operatorname{DEFF}_0(\widehat{P}_{rc}) - \sum_r (1 - \widehat{P}_{r\cdot}) \operatorname{DEFF}(\widehat{P}_{r\cdot}) - \sum_c (1 - \widehat{P}_{\cdot c}) \operatorname{DEFF}(\widehat{P}_{\cdot c}) \right\} / (R - 1)(C - 1)$$

where

$$P_{rc}^{\ 0} = \widehat{P}_{r.} \times \widehat{P}_{.c}$$

and

DEFF₀(
$$\widehat{P}_{rc}$$
) = $\widehat{\text{Var}}(\widehat{P}_{rc}) / \text{Var}_{SRS}(P_{rc}^{\ 0})$
= $\widehat{\text{Var}}(\widehat{P}_{rc}) / \{(1 - f) P_{rc}^{\ 0} (1 - P_{rc}^{\ 0}) / (n - 1)\}$

One-Way Tables

For one-way tables, the Rao-Scott chi-square statistic provides a design-based goodness-of-fit test for equal proportions. Or if you specify null proportions with the TESTP= option, the Rao-Scott chi-square provides a design-based goodness-of-fit test for the specified proportions. Under the null hypothesis, the Rao-Scott chi-square statistic approximately follows a chi-square distribution with

(C-1) degrees of freedom for a table with C levels. PROC SURVEYFREQ also computes an F statistic that can provide a better approximation.

The Rao-Scott chi-square Q_{RS} is computed as

$$Q_{RS} = Q_P / D$$

where D is the design correction described in the section "Design Correction for One-Way Tables" on page 6341, and Q_P is the Pearson chi-square based on the estimated totals. The Pearson chi-square is computed as

$$Q_P = (n/\widehat{N}) \sum_c (\widehat{N}_c - E_c)^2 / E_c$$

where n is the sample size, \widehat{N} is the estimated overall total, \widehat{N}_c is the estimated total for level c, and E_c is the expected total for level c under the null hypothesis. For the null hypothesis of equal proportions, the expected total for level c equals

$$E_c = \widehat{N} / C$$

For specified null proportions, the expected total for level c equals

$$E_c = \widehat{N} \times P_c^0$$

where $P_c^{\ 0}$ is the null proportion for level c.

Under the null hypothesis, the Rao-Scott chi-square Q_{RS} approximately follows a chi-square distribution with (C-1) degrees of freedom. A better approximation can be obtained by the F statistic,

$$F = Q_{RS} / (C - 1)$$

which has an F distribution with (C-1) and $(C-1)\kappa$ degrees of freedom under the null hypothesis. The value κ is the degrees of freedom for the variance estimator and depends on the sample design and the variance estimation method. The section "Degrees of Freedom" on page 6332 describes the computation of κ .

Design Correction for One-Way Tables

If you specify the CHISQ or LRCHISQ option, the design correction D is computed by using the estimated proportions as

$$D = \sum_{c} (1 - \widehat{P}_c) \operatorname{DEFF}(\widehat{P}_c) / (C - 1)$$

where

$$\begin{aligned} \text{DEFF}(\widehat{P}_c) &= \widehat{\text{Var}}(\widehat{P}_c) / \text{Var}_{SRS}(\widehat{P}_c) \\ &= \widehat{\text{Var}}(\widehat{P}_c) / \left\{ (1 - f) \widehat{P}_c (1 - \widehat{P}_c) / (n - 1) \right\} \end{aligned}$$

as described in the section "Design Effect" on page 6333. \widehat{P}_c is the proportion estimate for table level c, $\widehat{\text{Var}}(\widehat{P}_c)$ is the variance of the estimate, f is the overall sampling fraction, and n is the number of observations in the sample.

If you specify the CHISQ1 or LRCHISQ1 option for the Rao-Scott modified test, the design correction uses the null hypothesis proportions—either equal proportions for all levels, or the proportions that you specify with the TESTP= option. The modified design correction D_0 is computed as

$$D_0 = \sum_c (1 - P_c^0) \text{ DEFF}_0(\widehat{P}_c) / (C - 1)$$

where

$$\begin{aligned} \text{DEFF}_0(\widehat{P}_c) &= \widehat{\text{Var}}(\widehat{P}_c) / \text{Var}_{\text{SRS}}(P_c^{\ 0}) \\ &= \widehat{\text{Var}}(\widehat{P}_c) / \left\{ (1 - f) P_c^{\ 0} \left(1 - P_c^{\ 0} \right) / \left(n - 1 \right) \right\} \end{aligned}$$

and $P_c^0 = 1/C$ for equal proportions, or P_c^0 equals the null proportion for level c if you specify the TESTP= option.

Rao-Scott Likelihood Ratio Chi-Square Test

The Rao-Scott likelihood ratio chi-square test is a design-adjusted version of the likelihood ratio test, which involves ratios between observed and expected frequencies. For two-way tables, the null hypothesis for this test is no association between the row and column variables. For one-way tables, the null hypothesis is equal proportions for the variable levels. Or you can specify null hypothesis proportions for one-way tables by using the TESTP= option.

Two forms of the design correction are available for the Rao-Scott tests. One form of the design correction uses the proportion estimates, and you request the corresponding Rao-Scott likelihood ratio test with the LRCHISQ option. The other form of the design correction uses the null hypothesis proportions. You request this test, called the Rao-Scott modified likelihood ratio test, with the LRCHISQ1 option.

See Lohr (1999), Thomas, Singh, and Roberts (1996), and Rao and Scott (1981, 1984, 1987) for details about design-adjusted chi-square tests.

Two-Way Tables

The Rao-Scott likelihood ratio statistic is computed from the likelihood ratio chi-square statistic and a design correction based on the design effects of the proportions. Under the null hypothesis of no association between the row and column variables, this statistic approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom. PROC SURVEYFREQ also computes an F statistic that can provide a better approximation.

The Rao-Scott likelihood ratio chi-square G_{RS}^2 is computed as

$$G_{RS}^2 = G^2 / D$$

where D is the design correction described in the section "Design Correction for Two-Way Tables" on page 6340, and G^2 is the likelihood ratio chi-square based on the estimated totals. The likelihood ratio chi-square is computed as

$$G^2 = 2 (n/\widehat{N}) \sum_{r} \sum_{c} \widehat{N}_{rc} \ln \left(\widehat{N}_{rc} / E_{rc} \right)$$

where n is the sample size, \widehat{N} is the estimated overall total, \widehat{N}_{rc} is the estimated total for table cell (r, c), and E_{rc} is the expected total for cell (r, c) under the null hypothesis of no association. The expected total for cell (r, c) equals

$$E_{rc} = \widehat{N}_{r} \cdot \widehat{N}_{c} / \widehat{N}$$

Under the null hypothesis of no association, the Rao-Scott likelihood ratio chi-square G_{RS}^2 approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom. A better approximation can be obtained by the F statistic,

$$F = G_{RS}^2 / (R-1)(C-1)$$

which has an F distribution with (R-1)(C-1) and $(R-1)(C-1)\kappa$ degrees of freedom under the null hypothesis. The value κ is the degrees of freedom for the variance estimator and depends on the sample design and the variance estimation method. The section "Degrees of Freedom" on page 6332 describes the computation of κ .

One-Way Tables

For one-way tables, the Rao-Scott likelihood ratio chi-square statistic provides a design-based goodness-of-fit test for equal proportions. Or if you specify null proportions with the TESTP= option, the Rao-Scott likelihood ratio chi-square provides a design-based goodness-of-fit test for the specified proportions. Under the null hypothesis, the Rao-Scott likelihood ratio statistic approximately follows a chi-square distribution with (C-1) degrees of freedom for a table with C levels. PROC SURVEYFREQ also computes an F statistic that can provide a better approximation.

The Rao-Scott likelihood ratio chi-square G_{RS}^2 is computed as

$$G_{RS}^2 = G^2 / D$$

where D is the design correction described in the section "Design Correction for One-Way Tables" on page 6341, and G^2 is the likelihood ratio chi-square based on the estimated totals. The likelihood ratio chi-square is computed as

$$G^2 = 2 \left(n / \widehat{N} \right) \sum_c \widehat{N}_c \ln \left(\widehat{N}_c / E_c \right)$$

where n is the sample size, \widehat{N} is the estimated overall total, \widehat{N}_c is the estimated total for level c, and E_c is the expected total for level c under the null hypothesis. For the null hypothesis of equal proportions, the expected total for each level equals

$$E_c = \widehat{N} / C$$

For specified null proportions, the expected total for level c equals

$$E_c = \widehat{N} \times P_c^0$$

where $P_c^{\ 0}$ is the null proportion for level c.

Under the null hypothesis of no association, the Rao-Scott likelihood ratio chi-square G_{RS}^2 approximately follows a chi-square distribution with (C-1) degrees of freedom. A better approximation can be obtained by the F statistic,

$$F = G_{RS}^2 / (C - 1)$$

which has an F distribution with (C-1) and $(C-1)\kappa$ degrees of freedom under the null hypothesis, The value κ is the degrees of freedom for the variance estimator and depends on the sample design and the variance estimation method. The section "Degrees of Freedom" on page 6332 describes the computation of κ .

Wald Chi-Square Test

PROC SURVEYFREQ provides two Wald chi-square tests for independence of the row and column variables in a two-way table: a Wald chi-square test based on the difference between observed and expected weighted cell frequencies, and a Wald log-linear chi-square test based on the log odds ratios. These statistics test for independence of the row and column variables in two-way tables, taking into account the complex survey design. See Bedrick (1983), Koch, Freeman, and Freeman (1975), and Wald (1943) for information about Wald statistics and their applications to categorical data analysis.

For these two tests, PROC SURVEYFREQ computes the generalized Wald chi-square statistic, the corresponding Wald F statistic, and also an adjusted Wald F statistic for tables larger than 2×2 . Under the null hypothesis of independence, the Wald chi-square statistic approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom for large samples. However, it has been shown that this test can perform poorly in terms of actual significance level and power, especially for tables with a large number of cells or for samples with a relatively small number of clusters. See Thomas and Rao (1984 and 1985) and Lohr (1999) for more information. See Felligi (1980) and Hidiroglou, Fuller, and Hickman (1980) for information about the adjusted Wald F statistic. Thomas and Rao (1984) found that the adjusted Wald F statistic provides a more stable test than the chi-square statistic, although its power can be low when the number of sample clusters is not large. See also Korn and Graubard (1990) and Thomas, Singh, and Roberts (1996).

If you specify the WCHISQ option in the TABLES statement, PROC SURVEYFREQ computes a Wald test for independence in the two-way table based on the differences between the observed (weighted) cell frequencies and the expected frequencies.

Under the null hypothesis of independence of the row and column variables, the expected cell frequencies are computed as

$$E_{rc} = \widehat{N}_r \cdot \widehat{N}_{\cdot c} / \widehat{N}$$

where \widehat{N}_r is the estimated total for row r, \widehat{N}_{c} is the estimated total for column c, and \widehat{N} is the estimated overall total, as described in the section "Expected Weighted Frequency" on page 6334. The null hypothesis that the population weighted frequencies equal the expected frequencies can be expressed as

$$H_0: Y_{rc} = N_{rc} - E_{rc} = 0$$

for all r = 1, ... (R - 1) and c = 1, ... (C - 1). This null hypothesis can be stated equivalently in terms of cell proportions, with the expected cell proportions computed as the products of the marginal row and column proportions.

The generalized Wald chi-square statistic Q_W is computed as

$$Q_W = \widehat{\mathbf{Y}}' (\mathbf{H} \widehat{\mathbf{V}}(\widehat{\mathbf{N}}) \mathbf{H}')^{-1} \widehat{\mathbf{Y}}$$

where $\widehat{\mathbf{Y}}$ is the (R-1)(C-1) array of differences between the observed and expected weighted frequencies $(\widehat{N}_{rc} - E_{rc})$, and $(\mathbf{H} \ \widehat{\mathbf{V}}(\widehat{\mathbf{N}}) \ \mathbf{H}')$ estimates the variance of $\widehat{\mathbf{Y}}$.

 $\widehat{\mathbf{V}}(\widehat{\mathbf{N}})$ is the covariance matrix of the estimates \widehat{N}_{rc} , and its computation is described in the section "Covariance of Totals" on page 6322.

H is an (R-1)(C-1) by RC matrix containing the partial derivatives of the elements of $\widehat{\mathbf{Y}}$ with respect to the elements of $\widehat{\mathbf{N}}$. The elements of **H** are computed as follows, where a denotes a row different from row r, and b denotes a column different from column c:

$$\begin{split} \partial \widehat{Y}_{rc} / \partial \widehat{N}_{rc} &= 1 - \left(\widehat{N}_{r\cdot} + \widehat{N}_{\cdot c} - \widehat{N}_{\cdot c} \, \widehat{N}_{r\cdot} / \, \widehat{N} \right) / \, \widehat{N} \\ \partial \widehat{Y}_{rc} / \partial \widehat{N}_{ac} &= - \left(\widehat{N}_{r\cdot} - \widehat{N}_{r\cdot} \, \widehat{N}_{\cdot c} / \, \widehat{N} \right) / \, \widehat{N} \\ \partial \widehat{Y}_{rc} / \partial \widehat{N}_{rb} &= - \left(\widehat{N}_{\cdot c} - \, \widehat{N}_{r\cdot} \, \widehat{N}_{\cdot c} / \, \widehat{N} \right) / \, \widehat{N} \\ \partial \widehat{Y}_{rc} / \partial \widehat{Y}_{ab} &= \widehat{N}_{r\cdot} \, \widehat{N}_{\cdot c} / \, \widehat{N}^{\, 2} \end{split}$$

Under the null hypothesis of independence, the statistic Q_W approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom for large samples.

PROC SURVEYFREO computes the Wald F statistic as

$$F_W = Q_W / (R-1)(C-1)$$

Under the null hypothesis of independence, F_W approximately follows an F distribution with (R-1)(C-1) numerator degrees of freedom. The denominator degrees of freedom are the degrees of freedom for the variance estimator and depend on the sample design and the variance estimation method. The section "Degrees of Freedom" on page 6332 describes the computation of the denominator degrees of freedom. Alternatively, you can specify the denominator degrees of freedom with the DF= option in the TABLES statement.

For tables larger than 2×2 , PROC SURVEYFREQ also computes the adjusted Wald F statistic as

$$F_{Adj_W} = \frac{s - k + 1}{k \ s} \ Q_W$$

where k = (R-1)(C-1), and s is the degrees of freedom, which are computed as described in the section "Degrees of Freedom" on page 6332. Alternatively, you can specify the value of s with the DF= option in the TABLES statement. Note that for 2×2 tables, k = (R-1)(C-1) = 1, so the adjusted Wald F statistic equals the (unadjusted) Wald F statistic, with the same numerator and denominator degrees of freedom.

Under the null hypothesis, F_{Adj_W} approximately follows an F distribution with k numerator degrees of freedom and (s - k + 1) denominator degrees of freedom.

Wald Log-Linear Chi-Square Test

If you specify the WLLCHISQ option in the TABLES statement, PROC SURVEYFREQ computes a Wald test for independence based on the log odds ratios. See the section "Wald Chi-Square Test" on page 6344 for more information about Wald tests.

For a two-way table of R rows and C columns, the Wald log-linear test is based on the (R-1)(C-1) array of elements \widehat{Y}_{rc} ,

$$\widehat{Y}_{rc} = log\widehat{N}_{rc} - log\widehat{N}_{rC} - log\widehat{N}_{Rc} + log\widehat{N}_{RC}$$

where \widehat{N}_{rc} is the estimated total for table cell (r,c). The null hypothesis of independence between the row and column variables can be expressed as $H_0: Y_{rc} = 0$ for all $r = 1, \ldots (R-1)$ and $c = 1, \ldots (C-1)$. This null hypothesis can be stated equivalently in terms of cell proportions.

The generalized Wald log-linear chi-square statistic is computed as

$$Q_{WLL} = \widehat{\mathbf{Y}}' \widehat{\mathbf{V}} (\widehat{\mathbf{Y}})^{-1} \widehat{\mathbf{Y}}$$

where $\widehat{\mathbf{Y}}$ is the (R-1)(C-1) array of the \widehat{Y}_{rc} , and $\widehat{\mathbf{V}}(\widehat{\mathbf{Y}})$ estimates the variance of $\widehat{\mathbf{Y}}$,

$$\widehat{\mathbf{V}}(\widehat{\mathbf{Y}}) = \mathbf{A} \, \mathbf{D}^{-1} \, \widehat{V}(\widehat{\mathbf{N}}) \, \mathbf{D}^{-1} \, \mathbf{A}'$$

where $\widehat{\mathbf{V}}(\widehat{\mathbf{N}})$ is the covariance matrix of the estimates \widehat{N}_{rc} , which is computed as described in the section "Covariance of Totals" on page 6322. **D** is a diagonal matrix with the estimated totals \widehat{N}_{rc} on the diagonal, and **A** is the (R-1)(C-1) by $RC \times RC$ linear contrast matrix.

Under the null hypothesis of independence, the statistic Q_{WLL} approximately follows a chi-square distribution with (R-1)(C-1) degrees of freedom for large samples.

PROC SURVEYFREQ computes the Wald log-linear F statistic as

$$F_{WLL} = Q_{WLL} / (R - 1)(C - 1)$$

Under the null hypothesis of independence, F_{WLL} approximately follows an F distribution with (R-1)(C-1) numerator degrees of freedom. PROC SURVEYFREQ computes the denominator degrees of freedom as described in the section "Degrees of Freedom" on page 6332. Alternatively, you can specify the denominator degrees of freedom with the DF= option in the TABLES statement.

For tables larger than 2×2 , PROC SURVEYFREQ also computes the adjusted Wald log-linear F statistic as

$$F_{Adj_WLL} = \frac{s - k + 1}{k \ s} \ Q_{WLL}$$

where k = (R-1)(C-1), and s is the denominator degrees of freedom computed as described in the section "Degrees of Freedom" on page 6332. Alternatively, you can specify the value of s with the DF= option in the TABLES statement. Note that for 2×2 tables, k = (R-1)(C-1) = 1, so the adjusted Wald F statistic equals the (unadjusted) Wald F statistic, with the same numerator and denominator degrees of freedom.

Under the null hypothesis, F_{Adj_WLL} approximately follows an F distribution with k numerator degrees of freedom and (s - k + 1) denominator degrees of freedom.

Output Data Sets

You can use the Output Delivery System to create a SAS data set from any piece of PROC SURVEYFREQ output. See the section "ODS Table Names" on page 6354 for more information.

PROC SURVEYFREQ also provides an output data set that stores the replicate weights for BRR or jackknife variance estimation and an output data set that stores the jackknife coefficients for jackknife variance estimation.

Replicate Weights Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or JACKKNIFE, PROC SURVEYFREQ stores the replicate weights in an output data set. The OUTWEIGHTS= output data set contains all observations used in the analysis or all valid observations in the DATA= input data set. (A valid observation is an observation that has a positive value of the WEIGHT variable. Valid observations must also have nonmissing values of the STRATA and CLUSTER variables, unless you specify the MISSING option. See the section "Data Summary Table" on page 6348 for details about valid observations.)

The OUTWEIGHTS= data set contains the following variables:

- all variables in the DATA= input data set
- RepWt_1, RepWt_2, ..., RepWt_n, which are the replicate weight variables

where n is the total number of replicates in the analysis. Each replicate weight variable contains the replicate weights for the corresponding replicate. Replicate weights equal zero for those observations not included in the replicate.

After the procedure creates replicate weights for a particular input data set and survey design, you can use the OUTWEIGHTS= method-option to store these replicate weights and then use them again in subsequent analyses, either in PROC SURVEYFREQ or in the other survey procedures. You can use a REPWEIGHTS statement to provide replicate weights for the procedure.

Jackknife Coefficients Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC SURVEYFREQ stores the jackknife coefficients in an output data set. The OUTJKCOEFS= output data set contains one observation for each replicate. The OUTJKCOEFS= data set contains the following variables:

- Replicate, which is the replicate number for the jackknife coefficient
- JKCoefficient, which is the jackknife coefficient
- DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent analyses, either in PROC SURVEYFREQ or in the other survey procedures. You can use the JKCOEFS= option in the REPWEIGHTS statement to provide jackknife coefficients for the procedure.

Displayed Output

Data Summary Table

The "Data Summary" table provides information about the input data set and the sample design. PROC SURVEYFREQ displays this table unless you specify the NOSUMMARY option in the PROC SURVEYFREQ statement.

The "Data Summary" table displays the total number of valid observations. To be considered *valid*, an observation must have a nonmissing, positive sampling weight value if you specify a WEIGHT statement. If you do not specify the MISSING option, a valid observation must also have nonmissing values for all STRATA and CLUSTER variables. The number of valid observations can differ from the number of nonmissing observations for an individual table request, which the procedure displays in the frequency or crosstabulation tables. See the section "Missing Values" on page 6315 for more information.

PROC SURVEYFREQ displays the following information in the "Data Summary" table:

- Number of Strata, if you specify a STRATA statement
- Number of Clusters, if you specify a CLUSTER statement
- Number of Observations, which is the total number of valid observations
- Sum of Weights, which is the sum over all valid observations, if you specify a WEIGHT or REPWEIGHTS statement

Stratum Information Table

If you specify the LIST option in the STRATA statement, PROC SURVEYFREQ displays a "Stratum Information" table. This table provides the following information for each stratum:

- Stratum Index, which is a sequential stratum identification number
- STRATA variable(s), which lists the levels of STRATA variables for the stratum
- Number of Observations, which is the number of valid observations in the stratum
- Population Total for the stratum, if you specify the TOTAL= option

- Sampling Rate for the stratum, if you specify the TOTAL= or RATE= option. If you specify
 the TOTAL= option, the sampling rate is based on the number of valid observations in the
 stratum.
- Number of Clusters, which is the number of clusters in the stratum, if you specify a CLUSTER statement

Variance Estimation Table

If you specify the VARMETHOD=BRR, VARMETHOD=JACKKNIFE, or NOMCAR option in the PROC SURVEYFREQ statement, the procedure displays a "Variance Estimation" table. If you do not specify any of these options, the procedure creates a "Variance Estimation" table but does not display it. You can store this nondisplayed table in an output data set by using the Output Delivery System (ODS). See the section "ODS Table Names" on page 6354 for more information.

The "Variance Estimation" table provides the following information:

- Method, which is the variance estimation method—Taylor Series, Balanced Repeated Replication, or Jackknife
- Replicate Weights input data set name, if you provide replicate weights with a REPWEIGHTS statement
- Number of Replicates, for VARMETHOD=BRR or VARMETHOD=JACKKNIFE
- Hadamard Data Set name, if you specify the HADAMARD= method-option for VARMETHOD=BRR
- Fay Coefficient, if you specify the FAY method-option for VARMETHOD=BRR
- Missing Levels Included (MISSING), if you specify the MISSING option
- Missing Levels Included (NOMCAR), if you specify the NOMCAR option

Hadamard Matrix

If you specify the PRINTH method-option for VARMETHOD=BRR, PROC SURVEYFREQ displays the Hadamard matrix used to construct replicates for BRR variance estimation. If you provide a Hadamard matrix with the HADAMARD= method-option for VARMETHOD=BRR but the procedure does not use the entire matrix, the procedure displays only the rows and columns that are actually used to construct replicates.

One-Way Frequency Tables

PROC SURVEYFREQ displays one-way frequency tables for all one-way table requests in the TABLES statements, unless you specify the NOPRINT option in the TABLES statement. A one-way table shows the sample frequency distribution of a single variable, and provides estimates for its population distribution in terms of totals and proportions.

If you request a one-way table without specifying options, PROC SURVEYFREQ displays the following information for each level of the variable:

- Frequency count, which is the number of sample observations in the level
- Weighted Frequency, which estimates the population total for the level
- Standard Deviation of Weighted Frequency
- Percent, which estimates the population proportion for the level
- Standard Error of Percent

The one-way table displays weighted frequencies if your analysis includes a WEIGHT or REPWEIGHTS statement, or if you specify the WTFREQ option in the TABLES statement.

The one-way table also displays the Frequency Missing, or the number of observations with missing values.

You can suppress the frequency counts by specifying the NOFREQ option in the TABLES statement. Also, the NOWT option suppresses the weighted frequencies and their standard deviations. The NOPERCENT option suppresses the percentages and their standard errors. The NOSTD option suppresses the standard errors of the percentages and the standard deviations of the weighted frequencies. The NOTOTAL option suppresses the total row of the one-way table.

PROC SURVEYFREQ optionally displays the following information in a one-way table:

- Variance of Weighted Frequency, if you specify the VARWT option
- Confidence Limits for Weighted Frequency, if you specify the CLWT option
- Coefficient of Variation for Weighted Frequency, if you specify the CVWT option
- Test Percent, if you specify the TESTP= option
- Variance of Percent, if you specify the VAR option
- Confidence Limits for Percent, if you specify the CL option
- Coefficient of Variation for Percent, if you specify the CV option
- Design Effect for Percent, if you specify the DEFF option

Crosstabulation Tables

PROC SURVEYFREQ displays all table requests in the TABLES statements, unless you specify the NOPRINT option in the TABLES statement. For two-way to multiway crosstabulation tables, the values of the last variable in the table request form the table columns. The values of the next-to-last variable form the rows. Each level (or combination of levels) of the other variables forms one layer. PROC SURVEYFREQ produces a separate two-way crosstabulation table for each layer of a multiway table.

For each layer, the crosstabulation table displays the row and column variable names and values (or levels). Each two-way table lists levels of the column variable within each level of the row variable.

By default, the procedure displays all levels of the column variable within each level of the row variables, including any column variable levels with zero frequency for that row. For multiway tables, the procedure displays all levels of the row variable for each layer of the table by default, including any row levels with zero frequency for that layer. You can suppress the display of zero frequency levels by specifying the NOSPARSE option.

If you request a crosstabulation table without specifying options, the table displays the following information for each combination of variable levels, or table cell:

- Frequency, which is the number of sample observations in the table cell
- Weighted Frequency, which estimates the population total for the table cell
- Standard Deviation of Weighted Frequency
- Percent, which estimates the population proportion for the table cell
- Standard Error of Percent

The two-way table displays weighted frequencies if your analysis includes a WEIGHT or REPWEIGHTS statement, or if you specify the WTFREQ option in the TABLES statement.

The two-way table also displays the Frequency Missing, or the number of observations with missing values.

You can suppress the frequency counts by specifying the NOFREQ option in the TABLES statement. Also, the NOWT option suppresses the weighted frequencies and their standard deviations. The NOPERCENT option suppresses all percentages and their standard errors. The NOCELLPERCENT option suppresses overall cell percentages and their standard errors, but displays any other percentages (and standard errors) that you request, such as row or column percentages. The NOSTD option suppresses the standard errors of the percentages and the standard deviations of the weighted frequencies. The NOTOTAL option suppresses the row totals and column totals, as well as the overall total.

PROC SURVEYFREQ optionally displays the following information in a two-way table:

- Expected Weighted Frequency, if you specify the EXPECTED option
- Variance of Weighted Frequency, if you specify the VARWT option
- Confidence Limits for Weighted Frequency, if you specify the CLWT option
- Coefficient of Variation for Weighted Frequency, if you specify the CVWT option
- Variance of Percent, if you specify the VAR option
- Confidence Limits for Percent, if you specify the CL option
- Coefficient of Variation for Percent, if you specify the CV option

- Design Effect for Percent, if you specify the DEFF option
- Row Percent, which estimates the population proportion of the row total, if you specify the ROW option
- Standard Error of Row Percent, if you specify the ROW option
- Variance of Row Percent, if you specify the VAR option and the ROW option
- Confidence Limits for Row Percent, if you specify the CL option and the ROW option
- Coefficient of Variation for Row Percent, if you specify the CV option and the ROW option
- Column Percent, which estimates the population proportion of the column total, if you specify the COL option
- Standard Error of Column Percent, if you specify the COL option
- Variance of Column Percent, if you specify the VAR option and the COL option
- Confidence Limits for Column Percent, if you specify the CL option and the COL option
- Coefficient of Variation for Column Percent, if you specify the CV option and the COL option

Statistical Tests

If you specify the CHISQ option for the Rao-Scott chi-square test, the CHISQ1 option for the modified test, the LRCHISQ option for the Rao-Scott likelihood ratio chi-square test, or the LRCHISQ1 option for the modified test, PROC SURVEYFREQ displays the following information:

- Pearson Chi-Square, if you specify the CHISQ or CHISQ1 option
- Likelihood Ratio Chi-Square, if you specify the LRCHISQ or LRCHISQ1 option
- Design Correction
- Rao-Scott Chi-Square, if you specify the CHISQ or CHISQ1 option
- Rao-Scott Likelihood Ratio Chi-Square, if you specify the LRCHISQ or LRCHISQ1 option
- DF, which is the degrees of freedom for the chi-square test
- Pr > ChiSq, which is the p-value for the chi-square test
- F Value
- Num DF, which is the numerator degrees of freedom for F
- Den DF, which is the denominator degrees of freedom for F
- Pr > F, which is the p-value for the F test

If you specify the WCHISQ option for the Wald chi-square test or the WLLCHISQ option for the Wald log-linear chi-square test, PROC SURVEYFREQ displays the following information:

- Wald Chi-Square, if you specify the WCHISQ option
- Wald Log-Linear Chi-Square, if you specify the WLLCHISQ option
- F Value
- Num DF, which is the numerator degrees of freedom for F
- Den DF, which is the denominator degrees of freedom for F
- Pr > F, which is the p-value for the F test
- Adjusted F Value, for tables larger than 2×2
- Num DF, which is the numerator degrees of freedom for Adjusted F
- Den DF, which is the denominator degrees of freedom for Adjusted F
- Pr > Adj F, which is the p-value for the Adjusted F test

Risks and Risk Difference

If you specify the RISK option in the TABLES statement for a 2 × 2 table, PROC SURVEYFREQ displays "Column 1 Risk Estimates" and "Column 2 Risk Estimates" tables. You can display only column 1 or column 2 risks by specifying the RISK1 or RISK2 option, respectively.

The "Risk Estimates" table displays the following information for Row 1, Row 2, Total, and Difference:

- Row, which identifies the risk as Row 1, Row 2, Total, or Difference
- Risk estimate
- Standard Error
- Confidence Limits

In the "Column 1 Risk Estimates" table, the row 1 risk is the column 1 percentage of row 1. The row 2 risk is the column 1 percentage of row 2, and the total risk is the column 1 percentage of the entire table. The risk difference is the row 1 risk minus the row 2 risk. In the "Column 2 Risk Estimates" table, these computations are based on column 2.

Odds Ratio and Relative Risks

If you specify the OR option in the TABLES statement for a 2×2 table, PROC SURVEYFREQ displays the "Odds Ratio" table. This table includes the following information:

- Statistic, which identifies the statistic as the Odds Ratio, the Column 1 Relative Risk, or the Column 2 Relative Risk
- Estimate
- Confidence Limits

ODS Table Names

PROC SURVEYFREQ assigns a name to each table it creates. You can use these names to reference tables when using the Output Delivery System (ODS) to select tables and create output data sets. For more information about ODS, see Chapter 20, "Using the Output Delivery System." Table 83.4 lists the table names, along with the corresponding analysis options.

Table 83.4 ODS Tables Produced by PROC SURVEYFREQ

ODS Table Name	Description	Statement	Option
ChiSq	Chi-square test	TABLES	CHISQ
ChiSq1	Modified chi-square test	TABLES	CHISQ1
CrossTabs	Crosstabulation table	TABLES	(n-way table, $n > 1)$
HadamardMatrix	Hadamard matrix	PROC	VARMETHOD=BRR(PRINTH)
LRChiSq	Likelihood ratio test	TABLES	LRCHISQ
LRChiSq1	Modified likelihood ratio test	TABLES	LRCHISQ1
OddsRatio	Odds ratio and relative risks	TABLES	$OR (2 \times 2 \text{ table})$
OneWay	One-way frequency table	PROC	(with no TABLES stmt)
		or TABLES	(one-way table)
Risk1	Column 1 risk estimates	TABLES	RISK or RISK1 $(2 \times 2 \text{ table})$
Risk2	Column 2 risk estimates	TABLES	RISK or RISK2 $(2 \times 2 \text{ table})$
StrataInfo	Stratum information	STRATA	LIST
Summary	Data summary	PROC	default
TableSummary	Table summary (not displayed)	TABLES	default
VarianceEstimation	Variance estimation	PROC	VARMETHOD=JK BRR
			or NOMCAR
WChiSq	Wald chi-square test	TABLES	WCHISQ (two-way table)
WLLChiSq	Wald log-linear chi-square test	TABLES	WLLCHISQ (two-way table)

Examples: SURVEYFREQ Procedure

Example 83.1: Two-Way Tables

This example uses the SIS_Survey data set from the section "Getting Started: SURVEYFREQ Procedure" on page 6286. The data set contains results from a customer satisfaction survey for a student information system (SIS).

The following PROC SURVEYFREQ statements request a two-way table for Department by Response and customize the crosstabulation table display:

```
proc surveyfreq data=SIS_Survey;
  tables   Department * Response / cv deff nowt nostd nototal;
  strata   State NewUser / list;
  cluster School;
  weight   SamplingWeight;
run;
```

The TABLES statement requests a two-way table of Department by Response. The CV option requests coefficients of variation for the percentage estimates. The DEFF option requests design effects for the percentage estimates. The NOWT option suppresses display of the weighted frequencies, and the NOSTD option suppresses display of standard errors for the estimates. The NOTOTAL option suppresses the row totals, column totals, and overall totals.

The STRATA, CLUSTER, and WEIGHT statements provide sample design information for the procedure, so that the analysis is done according to the sample design used for the survey. The STRATA statement names the variables State and NewUser, which identify the first-stage strata. The LIST option in the STRATA statement requests a "Stratum Information" table. The CLUSTER statement names the variable School, which identifies the clusters or primary sampling units (PSUs). The WEIGHT statement names the sampling weight variable.

Output 83.1.1 displays the "Data Summary" and "Stratum Information" tables produced by PROC SURVEYFREQ. The "Stratum Information" table lists the six strata in the survey and shows the number of observations and the number of clusters, or schools, in each stratum.

Output 83.1.1 Data Summary and Stratum Information

	Stud	ent Information Sys	cem survey	
		The SURVEYFREQ Pro	cedure	
		Data Summary		
	Numbe	r of Strata	6	
	Numbe	r of Clusters	370	
		r of Observations		
	Sum o	f Weights	38899.6482	
		Stratum Informat	ion	
Stratum		Stratum Informat	ion Number of	Number of
	State	NewUser	Number of Obs	Clusters
		NewUser	Number of Obs	Clusters
Index	GA	NewUser	Number of Obs	Clusters
Index	GA GA	NewUser Renewal Customer	Number of Obs 315 355	Clusters 63
Index	GA GA NC	NewUser Renewal Customer New Customer	Number of Obs 315 355 280	Clusters 63 71
1 2 3 4	GA GA NC NC	NewUser Renewal Customer New Customer Renewal Customer	Number of Obs 315 355 280 420	Clusters 63 71 56

Output 83.1.2 displays the two-way table of Department by Response. According to the TABLES statement options specified, this two-way table includes coefficients of variation and design effects for the percentage estimates, and it does not show the weighted frequencies or the standard errors of the estimates. It also does not show the row, column, and overall totals.

Output 83.1.2	Two-Way	Table of D	epartment by	/ Response

CV for Desi							
Department	Response	Frequency	Percent	Percent	Effect		
Faculty	Very Unsatisfied	209	13.4987	0.0865	2.1586		
	Unsatisfied	203	13.0710	0.0868	2.0962		
	Neutral	346	22.4127	0.0629	2.1157		
	Satisfied	254	16.2006	0.0806	2.3232		
	Very Satisfied	98	6.2467	0.1362	2.2842		
Admin/Guidance	Very Unsatisfied	95	3.6690	0.1277	1.1477		
	Unsatisfied	123	4.6854	0.1060	1.0211		
	Neutral	235	9.1838	0.0700	0.9166		
	Satisfied	201	7.7305	0.0756	0.8848		
	Very Satisfied	86	3.3016	0.1252	0.9892		

The following PROC SURVEYFREQ statements request a two-way table of Department by Response that includes row percentages, and also a Wald chi-square test of association between the two table variables:

```
proc surveyfreq data=SIS_Survey nosummary;
  tables Department * Response / row nowt wchisq;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
run;
```

Output 83.1.3 displays the two-way table. The row percentages show the distribution of Response for Department = 'Faculty' and for Department = 'Admin/Guidance'. This is equivalent to a domain or subpopulation analysis of Response, where the domains are Department = 'Faculty' and Department = 'Admin/Guidance'.

Output 83.1.4 displays the Wald chi-square test of association between Department and Response. The Wald chi-square is 11.44, and the corresponding adjusted F value is 2.84 with a p-value of 0.0243. This indicates a significant association between department (faculty or admin/guidance) and satisfaction with the student information system.

Output 83.1.3 Table of Department by Response with Row Percentages

Student Information System Survey

The SURVEYFREQ Procedure

Table of Department by Response

Row Percent	Percent				Response	-
	18.8979		13.4987		Very Unsatisfied	
1.5897	18.2992	1.1350	13.0710	203	Unsatisfied	
1.9705	31.3773	1.4106	22.4127	346	Neutral	
1.8287	22.6805	1.3061	16.2006	254	Satisfied	
1.1918	8.7452	0.8506	6.2467	98	Very Satisfied	
		0.1468				
1.6374		0.4684	3.6690			.dmin/Guidance
1.7446	16.3995	0.4966	4.6854	123	Unsatisfied	
2.2300	32.1447	0.6430	9.1838	235	Neutral	
2.0406	27.0579	0.5842	7.7305	201	Satisfied	
1.4466	11.5560	0.4133	3.3016	86	Very Satisfied	
	100.000	0.1468	28.5703	740	Total	
		1.2872	17.1676	304	Very Unsatisfied	Total
		1.2712	17.7564	326	Unsatisfied	
		1.5795	31.5965	581	Neutral	
		1.4761	23.9311	455	Satisfied	
		0.9523	9.5483	184	Very Satisfied	
			100.000	1850	Total	

Output 83.1.4 Wald Chi-Square Test

Wald Chi-Squa	re Test	
Chi-Square	11.4454	
F Value	2.8613	
Num DF	4	
Den DF	364	
Pr > F	0.0234	
Adj F Value	2.8378	
Num DF	4	
Den DF	361	
Pr > Adj F	0.0243	
Sample Size	= 1850	

Example 83.2: Multiway Tables (Domain Analysis)

Continuing to use the SIS_Survey data set from the section "Getting Started: SURVEYFREQ Procedure" on page 6286, this example shows how to produce multiway tables. The following PROC SURVEYFREQ statements request a table of Department by SchoolType by Response for the student information system survey:

The TABLES statement requests a multiway table with SchoolType as the row variable, Response as the column variable, and Department as the layer variable. This request produces a separate two-way table of SchoolType by Response for each level of the variable Department. The TABLES statement also requests a two-way table of SchoolType by Response, which totals the multiway table over both levels of Department. As in the previous examples, the STRATA, CLUSTER, and WEIGHT statements provide sample design information, so that the analysis will be done according to the design used for this survey.

Output 83.2.1 displays the multiway table produced by PROC SURVEYFREQ, which includes a table of SchoolType by Response for Department = 'Faculty' and for Department = 'Admin/Guidance'. This is equivalent to a domain or subpopulation analysis of SchoolType by Response, where the domains are Department = 'Faculty' and Department = 'Admin/Guidance'.

Output 83.2.1 Multiway Table of Department by SchoolType by Response

Student Information System Survey

The SURVEYFREQ Procedure

Table of SchoolType by Response Controlling for Department=Faculty

Percen	Percent	Wgt Freq	Weighted Std Dev Response Frequency Frequency Wgt F			
			 1846	74	Very Unsatisfied	
1.020	6.9428	283.11476	1929	78	Unsatisfied	
1.465	11.8369	407.80855	3289	130	Neutral	
1.328	10.0597	368.85087	2795	113	Satisfied	
0.941	4.9578	261.63311	1378	55	Very Satisfied	
2.571		714.97120		450	Total	
				135		
1.380	11.3563	384.56734	3155	125	Unsatisfied	
1.756	19.5404	489.37826	5429	216	Neutral	
1.504	12.6208	417.54773	3507	141	Satisfied	
0.798	3.7874	221.59367	1052	43	Very Satisfied	
2.571	59.5585	719.61536	16549	660	Total	
1.632	18.8979	454.82598	5251	209	Very Unsatisfied	Total
1.589	18.2992	442.39032	5085	203	Unsatisfied	
1.970	31.3773	550.81735	8718	346	Neutral	
1.828	22.6805	507.01711	6302	254	Satisfied	
1.191	8.7452	330.97602	2430	98	Very Satisfied	
	100.000	119.25529	27786	1110	Total	

Output 83.2.1 continued

Table o	of S	choolType	by	Response
Controlling	for	Departmen	nt=2	Admin/Guidance

SchoolType	Response	Frequency	Weighted Frequency			
Middle School	Very Unsatisfied	42	649.43427	133.06194	5.8435	1.1947
	Unsatisfied	31	460.35557	100.80158	4.1422	0.9076
	Neutral	104	1568	186.99946	14.1042	1.6804
	Satisfied	84	1269	165.71127	11.4142	1.4896
	Very Satisfied	39	574.93878	110.37243	5.1732	0.9942
	Total	300	4521	287.86832	40.6774	2.5801
High School	Very Unsatisfied	 53	 777.77725	136.41869	6.9983	1.2285
	Unsatisfied	92	1362	175.40862	12.2573	1.5806
	Neutral	131	2005	212.34804	18.0404	1.8990
	Satisfied	117	1739	190.07798	15.6437	1.7118
	Very Satisfied	47	709.37033	126.54394	6.3828	1.1371
	Total	440	6593	288.92483	59.3226	2.5801
Total	Very Unsatisfied	95	 1427	182.28132	12.8419	1.6374
	Unsatisfied	123	1823	193.43045	16.3995	1.7446
	Neutral	235	3572	250.22739	32.1447	2.2300
	Satisfied	201	3007	226.82311	27.0579	2.0406
	Very Satisfied	86	1284	160.83434	11.5560	1.4466
	Total	740	11114	60.78850	100.000	

Example 83.3: Output Data Sets

PROC SURVEYFREQ uses the Output Delivery System (ODS) to create output data sets. This is a departure from older SAS procedures that provide OUTPUT statements for similar functionality. By using ODS, you can create a SAS data set from any piece of PROC SURVEYFREQ output. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

When selecting tables for ODS output data sets, you reference tables by their ODS table names. Each table created by PROC SURVEYFREQ is assigned a name. See the section "ODS Table Names" on page 6354 for a list of the table names provided by PROC SURVEYFREQ.

To save the one-way table of Response from Figure 83.3 in an output data set, use an ODS OUTPUT statement as follows:

```
proc surveyfreq data=SIS_Survey;
  tables Response / cl nowt;
  ods output OneWay=ResponseTable;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
run;
```

Output 83.3.1 displays the output data set ResponseTable, which contains the one-way table of Response. This data set has six observations, and each of these observations corresponds to a row of the one-way table. The first five observations correspond to the five levels of Response, as they are ordered in the one-way table display, and the last observation corresponds to the overall total, which is the last row of the one-way table. The data set ResponseTable includes a variable corresponding to each column of the one-way table. For example, the variable Percent contains the percentage estimates, and the variables LowerCL and UpperCL contain the lower and upper confidence limits for the percentage estimates.

Output 83.3.1 Response Table Output Data Set

Obs	Table	Response	Frequency	Percent	StdErr	LowerCL	UpperCL
1	Table Response	Very Unsatisfied	304	17.1676	1.2872	14.6364	19.6989
2	Table Response	Unsatisfied	326	17.7564	1.2712	15.2566	20.2562
3	Table Response	Neutral	581	31.5965	1.5795	28.4904	34.7026
4	Table Response	Satisfied	455	23.9311	1.4761	21.0285	26.8338
5	Table Response	Very Satisfied	184	9.5483	0.9523	7.6756	11.4210
6	Table Response		1850	100.000	_	_	_

PROC SURVEYFREQ also creates a table summary that is not displayed. Some of the information in this table is similar to that contained in the "Data Summary" table, but the table summary describes the data used to analyze the specified table, while the data summary describes the entire input data set. Due to missing values, for example, the number of observations (or strata or clusters) used to analyze a particular table can differ from the number of observations (or strata or clusters) reported for the input data set in the "Data Summary" table. See the section "Missing Values" on page 6315 for more details. If you request confidence limits, the "Table Summary" table also contains the degrees of freedom and the *t*-value used to compute the confidence limits.

The following statements store the nondisplayed "Table Summary" table in the output data set ResponseSummary:

```
proc surveyfreq data=SIS_Survey;
  tables Response / cl nowt;
  ods output TableSummary=ResponseSummary;
  strata State NewUser;
  cluster School;
  weight SamplingWeight;
run;
```

Output 83.3.2 displays the output data set ResponseSummary.

Output 83.3.2 ResponseSummary Output Data Set

Obs	Table	Number of Observations	Number of Strata	Number of Clusters	Degrees of Freedom	t Percentile
1	Table Response	1850	6	370	364	1.966503

References

Agresti, A. (2002), Categorical Data Analysis, Second Edition, New York: John Wiley & Sons.

Agresti, A. (2007), *An Introduction to Categorical Data Analysis*, Second Edition, New York: John Wiley & Sons.

Bedrick, E. J. (1983), "Adjusted Chi-Squared Tests for Cross-Classified Tables of Survey Data," *Biometrika*, 70, 591–596.

Brick, J. M. and Kalton, G. (1996), "Handling Missing Data in Survey Research," *Statistical Methods in Medical Research*, 5, 215–238.

Cochran, W. G. (1977), Sampling Techniques, Third Edition, New York: John Wiley & Sons.

Dippo, C. S., Fay, R. E., and Morganstein, D. H. (1984), "Computing Variances from Complex Samples with Replicate Weights," *Proceedings of the Survey Research Methods Section, ASA*, 489–494.

Fay, R. E. (1989), "Theory and Application of Replicate Weighting for Variance Calculations," *Proceedings of the Survey Research Methods Section, ASA*, 212–217.

Felligi, I. P. (1980), "Approximate Tests of Independence and Goodness of Fit Based on Stratified Multistage Samples," *Journal of the American Statistical Association*, 75, 261–268.

Fienberg, S. E. (1980), *The Analysis of Cross-Classified Data*, Second Edition, Cambridge, MA: MIT Press.

Fleiss, J. L. (1981), *Statistical Methods for Rates and Proportions*, Second Edition, New York: John Wiley & Sons.

Fuller, W. A. (1975), "Regression Analysis for Sample Survey," Sankhyā, 37 (3), Series C, 117–132.

Fuller, W. A., Kennedy, W., Schnell, D., Sullivan, G., and Park, H. J. (1989), *PC CARP*, Ames: Statistical Laboratory, Iowa State University.

Hansen, M. H., Hurwitz, W. N., and Madow, W. G. (1953), *Sample Survey Methods and Theory*, Volumes I and II, New York: John Wiley & Sons.

Hidiroglou, M. A., Fuller, W. A., and Hickman, R. D. (1980), *SUPER CARP*, Ames: Statistical Laboratory, Iowa State University.

Judkins, D. (1990), "Fay's Method for Variance Estimation," *Journal of Official Statistics*, 6, 223–239.

Kalton, G. (1983), *Introduction to Survey Sampling*, Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-035, Beverly Hills, CA, and London: Sage Publications.

Kalton, G. and Kaspyzyk, D. (1986), "The Treatment of Missing Survey Data," Survey Methodol-

- *ogy*, 12, 1–16.
- Kish, L. (1965), Survey Sampling, New York: John Wiley & Sons.
- Koch, G. G., Freeman, D. H., and Freeman, J. L. (1975), "Strategies in the Multivariate Analysis of Data from Complex Surveys," *International Statistical Review*, 43, 59–78.
- Koch, G. G., Landis, J. R., Freeman, D. H., Freeman, J. L., and Lehnen, R. G. (1977), "A General Methodology for the Analysis of Experiments with Repeated Measurement of Categorical Data," *Biometrics*, 33, 133–158.
- Korn, E. L. and Graubard, B. I. (1990), "Simultaneous Testing with Complex Survey Data: Use of Bonferroni *t*-Statistics," *The American Statistician*, 44, 270–276.
- Lee, E. S., Forthoffer, R. N., and Lorimor, R. J. (1989), *Analyzing Complex Survey Data*, Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-071, Beverly Hills, CA, and London: Sage Publications.
- Levy, P. and Lemeshow, S. (1999), Sampling of Populations, Methods and Applications, Third Edition, New York: John Wiley & Sons.
- Lohr, S. L. (1999), Sampling: Design and Analysis, Pacific Grove, CA: Duxbury Press.
- Nathan, G. (1975), "Tests for Independence in Contingency Tables from Stratified Samples," *Sankhyā*, 37, Series C, 77–87.
- Rao, J. N. K. and Scott, A. J. (1979), "Chi-Squared Tests for Analysis of Categorical Data from Complex Surveys," *Proceedings of the Survey Research Methods Section, ASA*, 58–66.
- Rao, J. N. K. and Scott, A. J. (1981), "The Analysis of Categorical Data from Complex Surveys: Chi-Squared Tests for Goodness of Fit and Independence in Two-Way Tables," *Journal of the American Statistical Association*, 76, 221–230.
- Rao, J. N. K. and Scott, A. J. (1984), "On Chi-Squared Tests for Multiway Contingency Tables with Cell Properties Estimated from Survey Data," *The Annals of Statistics*, 12, 46–60.
- Rao, J. N. K. and Scott, A. J. (1987), "On Simple Adjustments to Chi-Square Tests with Survey Data," *The Annals of Statistics*, 15, 385–397.
- Rao, J. N. K. and Shao, J. (1996), "On Balanced Half Sample Variance Estimation in Stratified Sampling," *Journal of the American Statistical Association*, 91, 343–348.
- Rao, J. N. K. and Shao, J. (1999), "Modified Balanced Repeated Replication for Complex Survey Data," *Biometrika*, 86, 403–415.
- Särndal, C. E., Swensson, B., and Wretman, J. (1992), *Model Assisted Survey Sampling*, New York: Springer-Verlag.
- Satterthwaite, F. E. (1946), "An Approximate Distribution of Estimates of Variance Components," *Biometrics*, 2, 110–114.
- Stokes, M. E., Davis, C. S., and Koch, G. G. (2000), Categorical Data Analysis Using the SAS

System, Second Edition, Cary, NC: SAS Institute Inc.

Thomas, D. R., and Rao, J. N. K. (1984), "A Monte Carlo Study of Exact Levels of Goodness-of-Fit Statistics under Cluster Sampling," *Proceedings of the Survey Research Methods Section, ASA*, 207–211.

Thomas, D. R., and Rao, J. N. K. (1985), "On the Power of Some Goodness-of-Fit Tests under Cluster Sampling," *Proceedings of the Survey Research Methods Section, ASA*, 291–296.

Thomas, D. R., Singh, A. C., and Roberts, G. R. (1996), "Tests of Independence on Two-Way Tables under Cluster Sampling: An Evaluation," *International Statistical Review*, 64, 295–311.

Wald, A. (1943), "Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations Is Large," *Transactions of the American Mathematical Society*, 54, 426–482.

Wolter, K. M. (1985), Introduction to Variance Estimation, New York: Springer-Verlag.

Woodruff, R. S. (1971), "A Simple Method for Approximating the Variance of a Complicated Estimate," *Journal of the American Statistical Association*, 66, 411–414.

Subject Index

SURVEYFREQ procedure, 6307	Rao-Scott (SURVEYFREQ), 6342
balanced repeated replication variance estimation (SURVEYFREQ), 6326	missing values SURVEYFREQ procedure, 6315
BRR variance estimation	multiway tables
SURVEYFREQ procedure, 6326	SURVEYFREQ procedure, 6304, 6350
chi-square tests	odds ratio
Rao-Scott (SURVEYFREQ), 6338 Wald (SURVEYFREQ), 6344	SURVEYFREQ procedure, 6336
Wald log-linear (SURVEYFREQ), 6346	primary sampling units (PSUs)
clustering	SURVEYFREQ procedure, 6302
SURVEYFREQ procedure, 6302, 6313	D 01:
coefficient of variation	Rao-Scott chi-square test
SURVEYFREQ procedure, 6333	SURVEYFREQ procedure, 6338
confidence limits	Rao-Scott likelihood ratio test
SURVEYFREQ procedure, 6331	SURVEYFREQ procedure, 6342
contingency tables	relative risks
SURVEYFREQ procedure, 6304	SURVEYFREQ procedure, 6337
covariance	replicate weights
SURVEYFREQ procedure, 6322	SURVEYFREQ procedure, 6302
crosstabulation tables	replication-based variance estimation
SURVEYFREQ procedure, 6304, 6350	SURVEYFREQ procedure, 6319
	risk difference
degrees of freedom	SURVEYFREQ procedure, 6334
SURVEYFREQ procedure, 6332	risks
design effects	SURVEYFREQ procedure, 6334
SURVEYFREQ procedure, 6333	commis decien
design-adjusted chi-square tests	sample design
SURVEYFREQ procedure, 6338	SURVEYFREQ procedure, 6312
domain analysis	sampling rates
SURVEYFREQ procedure, 6315, 6358	SURVEYFREQ procedure, 6295, 6314
	sampling weights
Fay's BRR method	SURVEYFREQ procedure, 6312, 6313
variance estimation (SURVEYFREQ), 6327	stratification
finite population correction	SURVEYFREQ procedure, 6304, 6313
SURVEYFREQ procedure, 6295	subdomain analysis, <i>see also</i> domain analysis
frequency tables	subgroup analysis, <i>see also</i> domain analysis
SURVEYFREQ procedure, 6304	subpopulation analysis, see also domain analysis
TT 1 1	survey data analysis
Hadamard matrix	SURVEYFREQ procedure, 6286
BRR variance estimation (SURVEYFREQ),	survey sampling
6328	data analysis (SURVEYFREQ), 6286
jackknife coefficients	SURVEYFREQ procedure, 6286
v .	alpha level, 6307
SURVEYFREQ procedure, 6329	BRR variance estimation, 6326
jackknife variance estimation	clustering, 6302, 6313
SURVEYFREQ procedure, 6329	coefficient of variation, 6333

	column proportions, 6324	Taylor series variance estimation
	confidence limits, 6331	SURVEYFREQ procedure, 6319
	covariance, 6322	
	crosstabulation tables, 6304, 6350	variance estimation
	degrees of freedom, 6332	BRR (SURVEYFREQ), 6326
	design effects, 6333	jackknife (SURVEYFREQ), 6329
	design-adjusted chi-square tests, 6338	SURVEYFREQ procedure, 6318
	displayed output, 6348	Taylor series (SURVEYFREQ), 6319
	domain analysis, 6315, 6358	
	expected frequencies, 6334	Wald chi-square test
	Fay's BRR variance estimation, 6327	SURVEYFREQ procedure, 6344
	finite population correction, 6295	Wald log-linear chi-square test
		SURVEYFREQ procedure, 6346
	frequency tables, 6304	weighting
	Hadamard matrix (BRR variance	SURVEYFREQ procedure, 6312, 6313
	estimation), 6328	Service Triangle procedure, 03/12, 03/13
	introductory example, 6286	
	jackknife coefficients, 6329	
	jackknife variance estimation, 6329	
	missing values, 6315	
	multiway tables, 6350	
	odds ratio, 6336	
	ODS table names, 6354	
	one-way frequency tables, 6349	
	order of levels, 6295	
	output data sets, 6347, 6360	
	population totals, 6296, 6314	
	primary sampling units (PSUs), 6302	
	proportions, 6323	
	Rao-Scott chi-square test, 6338	
	-	
	Rao-Scott likelihood ratio test, 6342	
	relative risks, 6337	
	replicate weights, 6302	
	risk difference, 6334	
	risks, 6334	
	row proportions, 6324	
	sample design, 6312	
	sampling rates, 6295, 6314	
	sampling weights, 6312, 6313	
	statistical computations, 6318	
	stratification, 6304, 6313	
	Taylor series variance estimation, 6319	
	totals, 6321	
	variance estimation, 6318	
	Wald chi-square test, 6344	
	Wald log-linear chi-square test, 6346	
	weighting, 6312, 6313	
	weighting, 0312, 0313	
table	es	
inon	contingency (SURVEYFREQ), 6304	
	crosstabulation (SURVEYFREQ), 6304,	
	6350	
	multiway (SURVEYFREQ), 6304	
	one-way frequency (SURVEYFREQ), 6304,	
	6349	

Syntax Index

ALPHA= option	REPWEIGHTS statement
TABLES statement (SURVEYFREQ), 6307	(SURVEYFREQ), 6303
BY statement	LIST option
SURVEYFREQ procedure, 6301	STRATA statement (SURVEYFREQ), 6304
	LRCHISQ option
CHISQ option	TABLES statement (SURVEYFREQ), 6309
TABLES statement (SURVEYFREQ), 6307	LRCHISQ1 option
CHISQ1 option	TABLES statement (SURVEYFREQ), 6309
TABLES statement (SURVEYFREQ), 6307	
CL option	MISSING option
TABLES statement (SURVEYFREQ), 6308	PROC SURVEYFREQ statement, 6294
CLUSTER statement	
SURVEYFREQ procedure, 6302	NOCELLPERCENT option
CLWT option	TABLES statement (SURVEYFREQ), 6309
TABLES statement (SURVEYFREQ), 6308	NOFREQ option
COL option	TABLES statement (SURVEYFREQ), 6309
TABLES statement (SURVEYFREQ), 6308	NOMCAR option
CV option	PROC SURVEYFREQ statement, 6294
TABLES statement (SURVEYFREQ), 6308	NOPERCENT option
CVWT option	TABLES statement (SURVEYFREQ), 6309
TABLES statement (SURVEYFREQ), 6308	NOPRINT option
D. (7)	TABLES statement (SURVEYFREQ), 6310
DATA= option	NOSPARSE option
PROC SURVEYFREQ statement, 6294	TABLES statement (SURVEYFREQ), 6310
DEFF option	NOSTD option
TABLES statement (SURVEYFREQ), 6308	TABLES statement (SURVEYFREQ), 6310
DF= option	NOSUMMARY option
REPWEIGHTS statement	PROC SURVEYFREQ statement, 6295
(SURVEYFREQ), 6303	NOTOTAL option
TABLES statement (SURVEYFREQ), 6308	TABLES statement (SURVEYFREQ), 6310
DFADJ option	NOWT option
VARMETHOD=BRR (PROC	TABLES statement (SURVEYFREQ), 6310
SURVEYFREQ statement), 6297	OR option
VARMETHOD=JK (PROC SURVEYFREQ	TABLES statement (SURVEYFREQ), 6310
statement), 6300	ORDER= option
EXPECTED option	PROC SURVEYFREQ statement, 6295
TABLES statement (SURVEYFREQ), 6309	OUTJKCOEFS= option
TABLES statement (SURVETTREQ), 0309	VARMETHOD=JK (PROC SURVEYFREQ
FAY= option	statement), 6300
VARMETHOD=BRR (PROC	OUTWEIGHTS= option
SURVEYFREQ statement), 6298	VARMETHOD=BRR (PROC
HADAMARD= option	SURVEYFREQ statement), 6299
VARMETHOD=BRR (PROC	VARMETHOD=JK (PROC SURVEYFREQ statement), 6300
SURVEYFREQ statement), 6298	statement), 0300
- "	PAGE option
JKCOEFS= option	PROC SURVEYFREO statement, 6295

PRINTH option	TOTAL= option, 6296
VARMETHOD=BRR (PROC	VARHEADER= option, 6296
SURVEYFREQ statement), 6299	VARMETHOD= option, 6296
PROC SURVEYFREQ statement, 6294, see	SURVEYFREQ procedure, REPWEIGHTS
SURVEYFREQ procedure	statement, 6302
-	DF= option, 6303
RATE= option	JKCOEFS= option, 6303
PROC SURVEYFREQ statement, 6295	SURVEYFREQ procedure, STRATA statement,
REPS= option	6304
VARMETHOD=BRR (PROC	LIST option, 6304
SURVEYFREQ statement), 6299	SURVEYFREQ procedure, TABLES statement,
REPWEIGHTS statement	6304
SURVEYFREQ procedure, 6302	ALPHA= option, 6307
RISK option	CHISQ option, 6307
TABLES statement (SURVEYFREQ), 6310	CHISQ1 option, 6307
RISK1 option	CL option, 6308
TABLES statement (SURVEYFREQ), 6310	CLWT option, 6308
RISK2 option	COL option, 6308
TABLES statement (SURVEYFREQ), 6311	CV option, 6308
ROW option	CVWT option, 6308
TABLES statement (SURVEYFREQ), 6311	DEFF option, 6308
0, 11	DF= option, 6308
STRATA statement	EXPECTED option, 6309
SURVEYFREQ procedure, 6304	LRCHISQ option, 6309
SURVEYFREQ procedure	LRCHISQ option, 6309
syntax, 6293	NOCELLPERCENT option, 6309
SURVEYFREQ procedure, BY statement, 6301	NOFREQ option, 6309
SURVEYFREQ procedure, CLUSTER	
statement, 6302	NOPERCENT option, 6309
SURVEYFREQ procedure, PROC	NOPRINT option, 6310
SURVEYFREQ statement, 6294	NOSPARSE option, 6310
DATA= option, 6294	NOSTD option, 6310
DFADJ option (VARMETHOD=BRR),	NOTOTAL option, 6310
6297	NOWT option, 6310
DFADJ option (VARMETHOD=JK), 6300	OR option, 6310
FAY= option (VARMETHOD=BRR), 6298	RISK option, 6310
HADAMARD= option	RISK1 option, 6310
(VARMETHOD=BRR), 6298	RISK2 option, 6311
MISSING option, 6294	ROW option, 6311
NOMCAR option, 6294	TESTP= option, 6311
NOSUMMARY option, 6295	VAR option, 6311
ORDER= option, 6295	VARWT option, 6311
OUTJKCOEFS= option	WCHISQ option, 6312
(VARMETHOD=JK), 6300	WLLCHISQ option, 6312
OUTWEIGHTS= option	WTFREQ option, 6312
(VARMETHOD=BRR), 6299	SURVEYFREQ procedure, WEIGHT statement,
	6312
OUTWEIGHTS= option	TADI ES statement
(VARMETHOD=JK), 6300	TABLES statement
PAGE option, 6295	SURVEYFREQ procedure, 6304
PRINTH option (VARMETHOD=BRR),	TESTP= option
6299	TABLES statement (SURVEYFREQ), 6311
RATE= option, 6295	TOTAL= option
REPS= option (VARMETHOD=BRR),	PROC SURVEYFREQ statement, 6296
6299	VAR option
	· r · ·

TABLES statement (SURVEYFREQ), 6311
VARHEADER= option
PROC SURVEYFREQ statement, 6296
VARMETHOD= option
PROC SURVEYFREQ statement, 6296
VARWT option
TABLES statement (SURVEYFREQ), 6311
WCHISQ option
TABLES statement (SURVEYFREQ), 6312
WEIGHT statement
Wardin Statement
SURVEYFREQ procedure, 6312
.,
SURVEYFREQ procedure, 6312
SURVEYFREQ procedure, 6312 WLLCHISQ option

Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

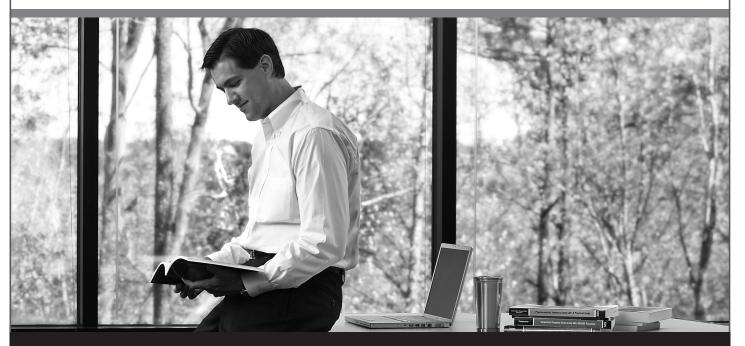
SAS® Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS® Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:


- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF free on the Web.
- Hard-copy books.

support.sas.com/publishing

SAS® Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

support.sas.com/spn

Sas THE POWER TO KNOW.