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Overview: Structural Equation Modeling with Latent
Variables

You can use the CALIS or TCALIS procedure for analysis of covariance structures, fitting systems
of linear structural equations, and path analysis. These terms are more or less interchangeable, but
they emphasize different aspects of the analysis. The analysis of covariance structures refers to the
formulation of a model for the variances and covariances among a set of variables and the fitting of
the model to an observed covariance matrix. In linear structural equations, the model is formulated
as a system of equations relating several random variables with assumptions about the variances and
covariances of the random variables. In path analysis, the model is formulated as a path diagram,
in which arrows connecting variables represent variances, covariances, and regression (or path)
coefficients. Path models and linear structural equation models can be converted to models of the
covariance matrix and can, therefore, be fitted by the methods of covariance structure analysis. All
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of these methods support the use of hypothetical latent variables and measurement errors in the
models.

Loehlin (1987) provides an excellent introduction to latent variable models by using path diagrams
and structural equations. A more advanced treatment of structural equation models with latent
variables is given by Bollen (1989). Fuller (1987) provides a highly technical statistical treatment
of measurement-error models.

TCALIS and CALIS Procedures

In SAS 9.2, the newly developed TCALIS procedure serves as an enhanced version of the older
CALIS procedure. The TCALIS procedure has most of the capabilities of the CALIS procedure. In
addition, it has some new capabilities that are not available in PROC CALIS. These new capabili-
ties include multiple-group analysis, mean structures analysis, and a whole spectrum of modeling
languages, among others. See Chapter 88, “The TCALIS Procedure (Experimental),” for more de-
tails about the new features available in PROC TCALIS. In this chapter, statistical analyses in the
examples are done using PROC TCALIS.

Comparison of the TCALIS and SYSLIN Procedures

The SYSLIN procedure in SAS/ETS software can also fit certain kinds of path models and linear
structural equation models. PROC TCALIS differs from PROC SYSLIN in that PROC TCALIS is
more general in the use of latent variables in the models. Latent variables are unobserved, hypo-
thetical variables, as distinct from manifest variables, which are the observed data. PROC SYSLIN
allows at most one latent variable, the error term, in each equation. PROC TCALIS allows several
latent variables to appear in an equation—in fact, all the variables in an equation can be latent as
long as there are other equations that relate the latent variables to manifest variables.

Both the TCALIS and SYSLIN procedures enable you to specify a model as a system of linear
equations. When there are several equations, a given variable might be a dependent variable in
one equation and an independent variable in other equations. Therefore, additional terminology
is needed to describe unambiguously the roles of variables in the system. Variables with values
that are determined jointly and simultaneously by the system of equations are called endogenous
variables. Variables with values that are determined outside the system—that is, in a manner sep-
arate from the process described by the system of equations—are called exogenous variables. The
purpose of the system of equations is to explain the variation of each endogenous variable in terms
of exogenous variables or other endogenous variables or both. Refer to Loehlin (1987, p. 4) for
further discussion of endogenous and exogenous variables. In the econometric literature, error and
disturbance terms are usually distinguished from exogenous variables, but in systems with more
than one latent variable in an equation, the distinction is not always clear.
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In PROC SYSLIN, endogenous variables are identified by the ENDOGENOUS statement. In PROC
TCALIS, endogenous variables are identified by the procedure automatically after you specify the
model. With different modeling languages, the identification of endogenous variables by PROC
TCALIS is done by different sets of rules. For example, when you specify structural equations by
using the LINEQS modeling language in PROC TCALIS, endogenous variables are assumed to be
those that appear on the left-hand sides of the equations; a given variable can appear on the left-hand
side of at most one equation. When you specify your model by using the PATH modeling language
in PROC TCALIS, endogenous variables are those variables pointed to by arrows at least once in
the path specifications.

PROC SYSLIN provides many methods of estimation, some of which are applicable only in special
cases. For example, ordinary least squares estimates are suitable in certain kinds of systems but
might be statistically biased and inconsistent in other kinds. PROC TCALIS provides three major
methods of estimation that can be used with most models. Both the TCALIS and SYSLIN proce-
dures can do maximum likelihood estimation, which PROC TCALIS calls ML and PROC SYSLIN
calls FIML. PROC SYSLIN can be much faster than PROC TCALIS in those special cases for
which it provides computationally efficient estimation methods. However, PROC TCALIS has a
variety of sophisticated algorithms for maximum likelihood estimation that might be much faster
than FIML in PROC SYSLIN.

PROC TCALIS can impose a wider variety of constraints on the parameters, including nonlinear
constraints, than can PROC SYSLIN. For example, PROC TCALIS can constrain error variances or
covariances to equal specified constants, or it can constrain two error variances to have a specified
ratio.

Model Specification

PROC TCALIS provides several modeling languages to specify a model. Different modeling lan-
guages in PROC TCALIS are signified by the main model specification statement used. In the
TCALIS procedure, FACTOR, LINEQS, LISMOD, MSTRUCT, PATH, and RAM are the main
modeling specification statements. Each of these statements invokes a specific modeling language.
Depending on your modeling philosophy and the type of the model, you can choose a modeling lan-
guage that is most suitable for your application. Models specified using structural equations can be
transcribed directly into the LINEQS statement. Models that are hypothesized using path diagrams
can be described easily in the PATH or RAM statement. First-order confirmatory or exploratory
factor models are most conveniently specified using the FACTOR and MATRIX statements. Tra-
ditional LISREL models are supported through the LISMOD and MATRIX statements. Finally,
patterned covariance and mean models can be specified directly by the MSTRUCT and MATRIX
statements.

For most applications, the PATH and LINEQS statements are the easiest to use. In other cases,
the FACTOR, LISMOD, MSTRUCT, or RAM statement might be more suitable. See the sec-
tion “Which Modeling Language?” on page 6706 in Chapter 88, “The TCALIS Procedure
(Experimental),” for a more detailed discussion.

You can save a model specification in an OUTMODEL= data set, which can then be used with the
INMODEL-= option to specify the model in a subsequent analysis.
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Estimation Methods
The TCALIS procedure provides five methods of estimation specified by the METHOD= option:

DWLS diagonally weighted least squares

ULS unweighted least squares

GLS normal theory generalized least squares

ML maximum likelihood for multivariate normal distributions
WLS weighted least squares for arbitrary distributions

Each estimation method is based on finding parameter estimates that minimize a badness-of-fit
or discrepancy function, which measures the difference between the observed sample covariance
matrix and the fitted (or predicted) covariance matrix, given the model and the parameter esti-
mates. See the section “Estimation Criteria” on page 6880 in Chapter 88, “The TCALIS Procedure
(Experimental),” for formulas, or refer to Loehlin (1987, pp. 54-62) and Bollen (1989, pp. 104-
123) for further discussion.

The default is METHOD=ML, which is the most popular method for applications. The op-
tion METHOD=GLS usually produces very similar results to those produced by METHOD=ML.
Asymptotically, ML and GLS are the same. Both methods assume a multivariate normal distribu-
tion in the population. The WLS method with default weight matrix, which is equivalent to the
asymptotically distribution free (ADF) method, yields asymptotically normal estimates regardless
of the distribution in the population. When the multivariate normal assumption is in doubt, espe-
cially if the variables have high kurtosis, you should seriously consider the WLS method. When a
correlation matrix is analyzed, only the WLS can produce correct standard error estimates. How-
ever, in order to use the WLS method with the expected statistical properties, sample size must be
large. Several thousands might be a minimum requirement.

The ULS and DWLS methods yield reasonable estimates under less restrictive assumptions. You
can apply these methods to normal or nonnormal situations, or to covariance or correlation matrices.
The drawback is that the statistical qualities of the estimates seem to be unknown. For this reason,
PROC TCALIS does not provide standard errors or test statistics with these two methods.

You cannot use METHOD=ML or METHOD=GLS if the observed covariance matrix is singular.
You could either remove variables involved in the linear dependencies or use less restrictive estima-
tion methods like ULS. Specifying METHOD=ML assumes that the predicted covariance matrix is
nonsingular. If ML fails because of a singular predicted covariance matrix, you need to examine
whether the model specification leads to the singularity. If so, modify the model specification to
eliminate the problem. If not, you probably need to use other estimation methods.

You should remove outliers and try to transform variables that are skewed or heavy-tailed. This
applies to all estimation methods, since all the estimation methods depend on the sample covariance
matrix, and the sample covariance matrix is a poor estimator for distributions with high kurtosis
(Bollen 1989, pp. 415-418; Huber 1981; Hampel et al. 1986). PROC TCALIS displays estimates
of univariate and multivariate kurtosis (Bollen 1989, pp. 418-425) if you specify the KURTOSIS
option in the PROC TCALIS statement.
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Statistical Inference

When you specify the ML, GLS, or WLS estimation with appropriate models, PROC TCALIS can
compute the following:

e a chi-square goodness-of-fit test of the specified model versus the alternative that the data are
from a population with unconstrained covariance matrix (Loehlin 1987, pp. 62—-64; Bollen
1989, pp. 110, 115, 263-269)

e approximate standard errors of the parameter estimates (Bollen 1989, pp. 109, 114, 286),
displayed with the STDERR option

e various modification indices, requested via the MODIFICATION or MOD option, that give
the approximate change in the chi-square statistic that would result from removing constraints
on the parameters or constraining additional parameters to zero (Bollen 1989, pp. 293-303)

If you have two models such that one model results from imposing constraints on the parameters of
the other, you can test the constrained model against the more general model by fitting both models
with PROC TCALIS. If the constrained model is correct, the difference between the chi-square
goodness of fit statistics for the two models has an approximate chi-square distribution with degrees
of freedom equal to the difference between the degrees of freedom for the two models (Loehlin
1987, pp. 62-67; Bollen 1989, pp. 291-292).

All of the test statistics and standard errors computed under ML and GLS depend on the assumption
of multivariate normality. Normality is a much more important requirement for data with random
independent variables than it is for fixed independent variables. If the independent variables are
random, distributions with high kurtosis tend to give liberal tests and excessively small standard
errors, while low kurtosis tends to produce the opposite effects (Bollen 1989, pp. 266-267, 415—
432).

All test statistics and standard errors computed by PROC TCALIS are based on asymptotic theory
and should not be trusted in small samples. There are no firm guidelines on how large a sample
must be for the asymptotic theory to apply with reasonable accuracy. Some simulation studies
have indicated that problems are likely to occur with sample sizes less than 100 (Loehlin 1987,
pp. 60-61; Bollen 1989, pp. 267-268). Extrapolating from experience with multiple regression
would suggest that the sample size should be at least 5 to 20 times the number of parameters to be
estimated in order to get reliable and interpretable results. The WLS method might even require
that the sample size be over several thousand.

The asymptotic theory requires that the parameter estimates be in the interior of the parameter
space. If you do an analysis with inequality constraints and one or more constraints are active at the
solution (for example, if you constrain a variance to be nonnegative and the estimate turns out to be
zero), the chi-square test and standard errors might not provide good approximations to the actual
sampling distributions.

For modeling correlation structures, the only theoretically correct method is the WLS method with
the default ASYCOV=CORR option. For other methods, standard error estimates for modeling cor-
relation structures might be inaccurate even for sample sizes as large as 400. The chi-square statistic
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is generally the same regardless of which matrix is analyzed, provided that the model involves no
scale-dependent constraints. However, if the purpose is to obtain reasonable parameter estimates
for the correlation structures only, then you might find other estimation methods useful as well.

If you fit a model to a correlation matrix and the model constrains one or more elements of the
predicted matrix to equal 1.0, the degrees of freedom of the chi-square statistic must be reduced
by the number of such constraints. PROC TCALIS attempts to determine which diagonal elements
of the predicted correlation matrix are constrained to a constant, but it might fail to detect such
constraints in complicated models, particularly when programming statements are used. If this
happens, you should add parameters to the model to release the constraints on the diagonal elements.

Goodness-of-Fit Statistics

In addition to the chi-square test, there are many other statistics for assessing the goodness of fit of
the predicted correlation or covariance matrix to the observed matrix.

Akaike’s (1987) information criterion (AIC) and Schwarz’s (1978) Bayesian criterion (SBC) are
useful for comparing models with different numbers of parameters—the model with the smallest
value of AIC or SBC is considered best. Based on both theoretical considerations and various
simulation studies, SBC seems to work better, since AIC tends to select models with too many
parameters when the sample size is large.

There are many descriptive measures of goodness of fit that are scaled to range approximately
from zero to one: the goodness-of-fit index (GFI) and GFI adjusted for degrees of freedom (AGFI)
(Joreskog and Sorbom 1988), centrality (McDonald 1989), and the parsimonious fit index (James,
Mulaik, and Brett 1982). Bentler and Bonett (1980) and Bollen (1986) have proposed measures
for comparing the goodness of fit of one model with another in a descriptive rather than inferential
sense.

The root mean squared error approximation (RMSEA) proposed by Steiger and Lind (1980) does
not assume a true model being fitted to the data. It measures the discrepancy between the fitted
model and the covariance matrix in the population. For samples, RMSEA and confidence intervals
can be estimated. Statistical tests for determining whether the population RMSEA’s fall below
certain specified values are available (Browne and Cudeck 1993). In the same vein, Browne and
Cudeck (1993) propose the expected cross validation index (ECVI) that measures how good a model
is for predicting future sample covariances. Point estimate and confidence intervals for ECVI are
also developed.

None of these measures of goodness of fit are related to the goodness of prediction of the structural
equations. Goodness of fit is assessed by comparing the observed correlation or covariance matrix
with the matrix computed from the model and parameter estimates. Goodness of prediction is
assessed by comparing the actual values of the endogenous variables with their predicted values,
usually in terms of root mean squared error or proportion of variance accounted for (R?). For latent
endogenous variables, root mean squared error and R? can be estimated from the fitted model.
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Optimization Methods

PROC TCALIS uses a variety of nonlinear optimization algorithms for computing parameter es-
timates. These algorithms are very complicated and do not always work. PROC TCALIS will
generally inform you when the computations fail, usually by displaying an error message about the
iteration limit being exceeded. When this happens, you might be able to correct the problem simply
by increasing the iteration limit (MAXITER= and MAXFUNC=). However, it is often more effec-
tive to change the optimization method (OMETHOD=) or initial values. For more details, see the
section “Use of Optimization Techniques” on page 6915 in Chapter 88, “The TCALIS Procedure
(Experimental),” and refer to Bollen (1989, pp. 254-256).

PROC TCALIS might sometimes converge to a local optimum rather than the global optimum. To
gain some protection against local optima, you can run the analysis several times with different
initial estimates. The RANDOM= option in the PROC TCALIS statement is useful for generating
a variety of initial estimates.

Structural Equation Models and the LINEQS Modeling
Language

Consider fitting a linear equation to two observed variables, Y and X. Simple linear regression uses
the model of a particular form, labeled for purposes of discussion, as model form A.

Model Form A

Y =a+BX + Ey

with the following assumption:
Cov(X,Ey) =0

where o and S are coefficients to be estimated and Ey is an error term. If the values of X are
fixed, the values of Ey are assumed to be independent and identically distributed realizations of
a normally distributed random variable with mean zero and variance Var(Ey). If X is a random
variable, X and Ey are assumed to have a bivariate normal distribution with zero correlation and
variances Var(X) and Var(Ey), respectively. Under either set of assumptions, the usual formulas
hold for the estimates of the coefficients and their standard errors (see Chapter 4, “Introduction to
Regression Procedures”).

In the REG or SYSLIN procedure, you would fit a simple linear regression model with a MODEL
statement listing only the names of the manifest variables, as shown in the following statements:
proc reg;
model y = x;
run;
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You can also fit this model with PROC TCALIS, but you must explicitly specify the error terms
and the parameter name for the regression coefficient (except for the intercept, which is assumed
to be present in each equation). The following specification in PROC TCALIS is equivalent to the
preceding regression model:

proc tcalis;

linegs
y = beta x + ey;
run;

where beta is the parameter name for the regression coefficient and ey is the error term of the
equation. You do not need to type an “*” between beta and x to indicate the multiplication of the
variable by the coefficient.

You might use other names for the parameters and the error terms, but there are rules to follow in
the LINEQS model specification. The LINEQS statement uses the convention that the names of
error terms begin with the letter E or e, disturbances (errors terms for latent variables) in equations
begin with D or d, and other latent variables begin with F or f for “factor”” Names of variables in
the input SAS data set can, of course, begin with any letter.

Optionally, you can specify the variance parameters of exogenous variables explicitly by using the
STD statement as follows:

proc tcalis;

linegs
y = beta x + ey;
std
X = VX,
ey = vey;
run;

where vx and vey represent the variance of x and ey, respectively. Explicitly giving these variance
parameters names would be useful when you need to set constraints on these parameters by referring
to their names. In this simple case without constraints, however, naming these variance parameters
is not necessary.

Although naming variance parameters for exogenous variables is optional, naming the regression
coefficients when they should be free parameters is not. Consider the following statements:
proc tcalis;
linegs
y = X + ey;
run;

In this specification, you leave out the regression coefficient beta from the preceding LINEQS
model. Instead of being a parameter to estimate, the regression coefficient in this specification
is a fixed constant 1.

In certain special situations where you need to specify a regression equation without an error term,
you can explicitly set the variance of the error term to zero. For example, the following statements,
in effect, will fit an equation without an error term:
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proc tcalis;

linegs
y = beta x + ey;
std
ey = 0;
run;

In this specification, the mean of the error term ey is presumably zero, as all error terms in the PROC
TCALIS are set to have fixed zero means. Together with the zero variance specification for ey in
the STD statement, ey is essentially a zero constant in the equation.

By default, PROC TCALIS analyzes the covariance matrix. This is exactly the opposite of PROC
CALIS or PROC FACTOR, which analyzes the correlation matrix by default. Most applications
that use PROC TCALIS should employ the default covariance structure analysis.

Since the analysis of covariance structures is based on modeling the covariance matrix and the co-
variance matrix contains no information about means, PROC TCALIS neglects the intercept param-
eter by default. To estimate the intercept, you can add the intercept term explicitly into the LINEQS
statement. For example, the following statements fit a regression model with the estimation of the
intercept alpha:

proc tcalis;
linegs
y = alpha intercept + beta x + ey;
run;

In the LINEQS statement, intercept represents a “variable” with a constant value of 1; hence, the
coefficient alpha is the intercept parameter. Notice that with the simultaneous analysis of mean and
covariance structures, you have to provide either the raw data or the means and covariances in your
input data set.

Other commonly used options in the PROC TCALIS statement include the following:

MODIFICATION to display model modification indices

NOBS to specify the number of observations

NOSE to suppress the display of approximate standard errors

RESIDUAL to display residual correlations or covariances

e TOTEFF to display total and indirect effects

For ordinary unconstrained regression models, there is no reason to use PROC TCALIS instead
of PROC REG. But suppose that the observed variables ¥ and X are contaminated by errors (es-
pecially measurement errors), and you want to estimate the linear relationship between their true,
error-free scores. The model can be written in several forms. A model of form B is as follows.
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Model Form B
Y = a+BFx+Ey
X = Fx+Ex

with the following assumption:
COV(F)(, Ex) = COV(F)(, Ey) = COV(E)(, Ey) =0

This model has two error terms, Ey and Ex, as well as another latent variable Fx representing the
true value corresponding to the manifest variable X. The true value corresponding to ¥ does not
appear explicitly in this form of the model.

The assumption in model form B that the error terms and the latent variable Fx are jointly uncorre-
lated is of critical importance. This assumption must be justified on substantive grounds such as the
physical properties of the measurement process. If this assumption is violated, the estimators might
be severely biased and inconsistent.

You can express model form B in the LINEQS statement as follows:

proc tcalis;

linegs
y = beta fx + ey,
x = fx + ex;

std
fx
ey
ex = vex;

vEx,

vey,
run;

In this specification, you specify a variance for each of the latent variables in this model by using the
STD statement. You can specify either a name, in which case the variance is considered a parameter
to be estimated, or a number, in which case the variance is constrained to equal that numeric value.
In this model, vfx, vey, and vex are variance parameters to estimate.

The variances of endogenous variables are predicted from the model and hence are not parameters.
Covariances involving latent exogenous variables are assumed to be zero by default.

Fuller (1987, pp. 18-19) analyzes a data set from Voss (1969) involving corn yields (Y') and avail-
able soil nitrogen (X)) for which there is a prior estimate of the measurement error for soil nitrogen
Var(Ex) of 57. You can fit model form B with this constraint to the data by using the following
statements:

data corn(type=cov);
input _type_ $ _name_ $ y x;
datalines;

n .11 11

mean . 97.4545 70.6364

cov y 87.6727

cov x 104.8818 304.8545

’
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proc tcalis data=corn;
lineqs y = beta fx + ey,
x = fx + ex;

std ex 57,
fx = vfx,
ey = vey;

run;

In the STD statement, the variance of ex is given as the constant value 57. PROC TCALIS produces
the estimates shown in Figure 17.1.

Figure 17.1 Measurement Error Model for Corn Data

Linear Equations

v = 0.4232xfx + 1.0000 ey
Std Err 0.1658 beta

t Value 2.5520

X = 1.0000 £fx + 1.0000 ex

Estimates for Variances of Exogenous Variables

Variable Standard

Type Variable Parameter Estimate Error t Value
Error ex 57.00000

Latent fx vEx 247.85450 136.33508 1.81798
Error ey vey 43.29105 23.92488 1.80946

PROC TCALIS also displays information about the initial estimates that can be useful if there are
optimization problems. If there are no optimization problems, the initial estimates are usually not
of interest; they are not reproduced in the examples in this chapter.

You can write an equivalent model (labeled here as model form C) by using a latent variable Fy to
represent the true value corresponding to Y.

Model Form C
Y = Fy+ Ey
X = Fxy+ Eyx
Fy = a+ pFy

with the following assumption:
COV(F)(, E)() = COV(F)(, Ex) = COV(Ex, Ey) =0

The first two equations express the observed variables in terms of a true score plus error; these
two equations are called the measurement model. The third equation, expressing the relationship
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between the latent true-score variables, is called the structural or causal model. The decomposition
of a model into a measurement model and a structural model (Keesling 1972; Wiley 1973; Joreskog
1973) has been popularized by the program LISREL (Jéreskog and Sorbom 1988). The statements
for fitting this model are shown in the following:

proc tcalis;

linegs
y = £y + ey,
x = fx + ex,
fy = beta fx + dfy;
std
fx = vEix,
ey = vey,
ex = vex,
dfy = 0;
run;

As a syntactic requirement, each equation in the LINEQS statement should have an error term. As
discussed before, because dfy has a fixed variance 0 in the STD statement, in effect, there is no error
term in the structural equation with the outcome variable fy.

You do not need to include the variance of Fy in the STD statement because the variance of Fy is
determined by the structural model in terms of the variance of Fy—that is, Var(Fy ):,32 Var(Fy).

Correlations or covariances involving endogenous variables are derived from the model. For ex-
ample, the structural equation in model form C implies that Fy and Fy are correlated unless 8 is
zero. In all of the models discussed so far, the latent exogenous variables are assumed to be jointly
uncorrelated. For example, in model form C, Ey, Ex, and Fyx are assumed to be uncorrelated.
If you want to specify a model in which Ey and Ex, say, are correlated, you can use the COV
statement to specify the numeric value of the covariance Cov(Ey, Ex) between Ey and Ey, or
you can specify a name to make the covariance a parameter to be estimated. For example:

proc tcalis;

linegs

y = £y + ey,

x = fx + ex,

fy = beta fx + dfy;
std

fx = vEx,

ey = vey,

ex = vex,

dfy = 0;
cov

ey ex = ceyex;
run;

This COV statement specifies that the covariance between ey and ex is a parameter named ceyex.
All covariances that are not listed in the COV statement and that are not determined by the model
are assumed to be zero. If the model contained two or more manifest exogenous variables, their
covariances would be set as free parameters by default.
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Identification of Models

Unfortunately, if you try to fit models of form B or form C without additional constraints, you cannot
obtain unique estimates of the parameters. These models have four parameters (one coefficient
and three variances). The covariance matrix of the observed variables ¥ and X has only three
elements that are free to vary, since Cov(Y ,X)=Cov(X,Y). The covariance structure can, therefore,
be expressed as three equations in four unknown parameters. Since there are fewer equations than
unknowns, there are many different sets of values for the parameters that provide a solution for the
equations. Such a model is said to be underidentified.

If the number of parameters equals the number of free elements in the covariance matrix, then there
might exist a unique set of parameter estimates that exactly reproduce the observed covariance
matrix. In this case, the model is said to be just identified or saturated.

If the number of parameters is less than the number of free elements in the covariance matrix, there
might exist no set of parameter estimates that reproduces the observed covariance matrix. In this
case, the model is said to be overidentified. Various statistical criteria, such as maximum likelihood,
can be used to choose parameter estimates that approximately reproduce the observed covariance
matrix. If you use ML, GLS, or WLS estimation, PROC TCALIS can perform a statistical test of
the goodness of fit of the model under the certain statistical assumptions.

If the model is just identified or overidentified, it is said to be identified. If you use ML, GLS,
or WLS estimation for an identified model, PROC TCALIS can compute approximate standard
errors for the parameter estimates. For underidentified models, PROC TCALIS obtains approximate
standard errors by imposing additional constraints resulting from the use of a generalized inverse of
the Hessian matrix.

You cannot guarantee that a model is identified simply by counting the parameters. For example,
for any latent variable, you must specify a numeric value for the variance, or for some covariance
involving the variable, or for a coefficient of the variable in at least one equation. Otherwise, the
scale of the latent variable is indeterminate, and the model will be underidentified regardless of the
number of parameters and the size of the covariance matrix. As another example, an exploratory
factor analysis with two or more common factors is always underidentified because you can rotate
the common factors without affecting the fit of the model.

PROC TCALIS can usually detect an underidentified model by computing the approximate covari-
ance matrix of the parameter estimates and checking whether any estimate is linearly related to other
estimates (Bollen 1989, pp. 248-250), in which case PROC TCALIS displays equations showing
the linear relationships among the estimates. Another way to obtain empirical evidence regarding
the identification of a model is to run the analysis several times with different initial estimates to
see if the same final estimates are obtained.

Bollen (1989) provides detailed discussions of conditions for identification in a variety of models.

The following example is inspired by Fuller (1987, pp. 40-41). The hypothetical data are counts of
two types of cells, cells forming rosettes and nucleated cells, in spleen samples. It is reasonable to
assume that counts have a Poisson distribution; hence, the square roots of the counts should have a
constant error variance of 0.25.
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You can use PROC TCALIS to fit a model of form C to the square roots of the counts without
constraints on the parameters, as displayed in the following statements:

data spleen;
input rosette nucleate;
sgrtrose=sqrt (rosette);
sgrtnucl=sqgrt (nucleate);
datalines;
4 62
5 87
5 117
6 142
8 212
9 120
12 254
13 179
15 125
19 182
28 301
51 357

proc tcalis data=spleen;

lineqs sqgrtrose factrose + err_rose,
sqgrtnucl = factnucl + err_nucl,
factrose = beta factnucl + disturb;
std err_rose = v_rose,

err nucl = v_nucl,
factnucl = v_factnu,
disturb = 0;

run;

This model is underidentified. PROC TCALIS displays the following warning:

WARNING: Estimation problem not identified: More parameters to
estimate ( 4 ) than the total number of mean and
covariance elements ( 3 ).

Then it diagnoses the indeterminacy as follows:

NOTE: Covariance matrix for the estimates is not full rank.

NOTE: The variance of some parameter estimates is zero or
some parameter estimates are linearly related to other
parameter estimates as shown in the following equations:

v_rose = 0.207718 + 0.108978 * beta
+ 0.916873 * v_nucl
- 0.916873 * v_factnu
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The constraint that the error variances equal 0.25 can be imposed by modifying the STD statement:

proc tcalis data=spleen;
lineqgs sqrtrose = factrose + err_rose,

sqgrtnucl = factnucl + err_nucl,
factrose = beta factnucl + disturb;
std err_rose = .25,
err nucl = .25,
factnucl = v_factnu,
disturb = 0;
run;

This model is overidentified and the chi-square goodness-of-fit test yields a p-value of 0.0219, as
displayed in Figure 17.2.

Figure 17.2 Spleen Data: Fit Statistics for Overidentified Model

Fit Summary

Modeling Info N Observations 12
N Variables 2
N Moments 3
N Parameters 2
N Active Constraints 0
Independence Model Chi-Square 13.2732
Independence Model Chi-Square DF 1
Absolute Index Fit Function 0.4775
Chi-Square 5.2522
Chi-Square DF 1
Pr > Chi-Square 0.0219
Z-Test of Wilson & Hilferty 2.0375
Hoelter Critical N 10

Root Mean Square Residual (RMSR)
Standardized RMSR (SRMSR)
Goodness of Fit Index (GFI)

Parsimony Index Adjusted GFI (AGFI)
Parsimonious GFI
RMSEA Estimate
RMSEA Lower 90% Confidence Limit
RMSEA Upper 90% Confidence Limit
Probability of Close Fit
ECVI Estimate
ECVI Lower 90% Confidence Limit
ECVI Upper 90% Confidence Limit
Akaike Information Criterion
Bozdogan CAIC
Schwarz Bayesian Criterion
McDonald Centrality

Incremental Index Bentler Comparative Fit Index
Bentler—-Bonett NFI
Bentler—-Bonett Non-normed Index
Bollen Normed Index Rhol
Bollen Non—-normed Index Delta2
James et al. Parsimonious NFI
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PROC TCALIS arranges the fit statistics according to their types: absolute, parsimony, and in-
cremental. After displaying some important modeling information in the fit summary table, the
absolute fit indices are printed. Absolute indices are those model fit statistics that assess the model
fit without comparing to a “null” model. The most typical fit index of the this type is the chi-square
fit statistic. Nonsignificance of the chi-square indicates good model fit. Other popular absolute fit
indices include the root mean square residual (RMSR), the standardized RMSR (SRMSR), and the
goodness-of-fit index (GFI). By convention, a good model should have an SRMSR smaller than
0.05 and a GFI larger than 0.90.

Parsimony indices are those fit indices that assess the model fit without comparing with a null
model, but with the number of parameters in the model taking into account. These fit indices
favor precise models. If two models have the same chi-square value for the same data set but have
different number of parameters in the models, the model with fewer parameters will have a better
parsimony fit statistic. The most popular parsimony index displayed in the table is perhaps the root
mean squared error of approximation, or RMSEA (Steiger and Lind 1980). An RMSEA below 0.05
is recommended for a good model fit (Browne and Cudeck 1993). Another popular index in this
category is the adjusted GFI (AGFI). By convention, an AGFI above 0.90 is required for a good
model fit.

Finally, the incremental fit indices are those indices that measure model fit by comparing with a null
model. A null model is usually the independence model that assumes the measured variables are
all uncorrelated. The most popular incremental index is Bentler’s CFI. By convention, a CFI above
0.90 is required for a good model fit.

After the model fit summary, the parameter estimates are displayed in Figure 17.3.

Figure 17.3 Spleen Data: Parameter Estimates for Overidentified Model

Linear Equations

sgrtrose = 1.0000 factrose + 1.0000 err_rose
sqrtnucl = 1.0000 factnucl + 1.0000 err_nucl
factrose = 0.4034xfactnucl + 1.0000 disturb
Std Err 0.0508 beta

t Value 7.9439

Estimates for Variances of Exogenous Variables

Variable Standard
Type Variable Parameter Estimate Error t Value
Error err_ rose 0.25000

err_nucl 0.25000
Latent factnucl v_factnu 10.45846 4.56608 2.29047
Disturbance disturb 0

Overall, the model does not provide a good fit. The sample size is so small that the p-value of
the chi-square test should not be taken to be accurate, but to get a small p-value with such a small
sample indicates it is possible that the model is seriously deficient. The deficiency could be due to
any of the following:
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e The error variances are not both equal to 0.25.

e The error terms are correlated with each other or with the true scores.

e The observations are not independent.

e There is a nonzero disturbance in the linear relation between factrose and factnucl.
e The relation between factrose and factnucl is not linear.

e The actual distributions are not adequately approximated by the multivariate normal distribu-
tion.

A simple and plausible modification to the model is to make the “disturbance term” disturb a real
random variable with nonzero variance in the structural model. This can be done by giving the
variance of disturb a parameter name in the STD statement, as shown in the following statements:

proc tcalis data=spleen;
linegs sqgrtrose factrose + err_rose,
sgrtnucl = factnucl + err_nucl,
factrose = beta factnucl + disturb;
std err_rose = .25,
err_nucl .25,
factnucl v_factnu,
disturb = v_dist;

run;

In the STD statement, v_dist is now specified as a free variance parameter to be estimated. The
parameter estimates are produced in Figure 17.4.

Figure 17.4 Spleen Data: Parameter Estimated for Just Identified Model

Linear Equations

sgrtrose = 1.0000 factrose + 1.0000 err_rose
sqrtnucl = 1.0000 factnucl + 1.0000 err_nucl
factrose = 0.3907xfactnucl + 1.0000 disturb
Std Err 0.0771 beta

t Value 5.0692

Estimates for Variances of Exogenous Variables

Variable Standard
Type Variable Parameter Estimate Error t Value
Error err_rose 0.25000

err_nucl 0.25000
Latent factnucl v_factnu 10.50458 4.58577 2.29069
Disturbance disturb v_dist 0.38153 0.28556 1.33607

As shown in Figure 17.4, the variance of disturb is estimated at 0.382. Due to the inclusion of
this new parameter, estimates for beta and v_factnu also shift a little bit from the previous analysis.



316 4 Chapter 17: Introduction to Structural Equation Modeling with Latent Variables

Because this model is just identified or saturated, there are no degrees of freedom for the chi-square
goodness-of-fit test.

Path Diagrams and the PATH Modeling Language

Complicated models are often easier to understand when they are expressed as path diagrams. One
advantage of path diagrams over equations is that variances and covariances can be shown directly
in the path diagram. Loehlin (1987) provides a detailed discussion of path diagrams. Another ad-
vantage is that the path diagram can be translated easily into the PATH modeling language supported
by PROC TCALIS.

It is customary to write the names of manifest variables in rectangles and the names of latent vari-
ables in ovals. The coefficients in each equation are indicated by drawing arrows from the indepen-
dent variables to the dependent variable. Covariances between exogenous variables are drawn as
two-headed arrows. The variance of an exogenous variable can be displayed as a two-headed arrow
with both heads pointing to the exogenous variable, since the variance of a variable is the covari-
ance of the variable with itself. Figure 17.5 displays a path diagram for the spleen data, explicitly
showing all latent variables (including error terms) and variances of exogenous variables.

Figure 17.5 Path Diagram: Spleen

A A
err_rose err_nucl
1.0 1.0
sqrtrose sqrtnucl
1.0 1.0
1.0 Vj%nu

S

v_dist

There is an easier way to draw the path diagram based on McArdle’s reticular action model (RAM)
(McArdle and McDonald 1984). McArdle uses the convention that a two-headed arrow that points
to an endogenous variable actually refers to the error or disturbance term associated with that vari-
able. A two-headed arrow with both heads pointing to the same endogenous variable represents the
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error or disturbance variance for the equation that determines the endogenous variable; there is no
need to draw a separate oval for the error or disturbance term. Similarly, a two-headed arrow con-
necting two endogenous variables represents the covariance between the error of disturbance terms
associated with the endogenous variables. The RAM conventions enable the previous path diagram
to be simplified, as shown in Figure 17.6.

Figure 17.6 Simplified Path Diagram: Spleen

A A
sqrtrose sqrtnucl

‘1.0 ‘1.0
bet
() )

L

v_dist v_factnu

The PATH modeling language in PROC TCALIS provides a simple way to transcribe a path diagram
based on the reticular action model. In the PATH modeling languages, there are three statements to
capture the specifications in path diagrams:

e The PATH statement enables you to specify each of the one-headed arrows (paths). The
parameters specified in the PATH statement are the path (regression) coefficients.

e The PVAR statement enables you to specify each of the double-headed arrows with both
heads pointing to the same variable. In general, you specify partial (or total) variance param-
eters in the PVAR statement. If the variable being pointed at is exogenous, a (total) variance
parameter is specified. If the variable being pointed at is endogenous, a partial or an error
variance parameter is specified.

e The PCOV statement enables you to specify each of the double-headed arrows with its heads
pointing to different variables. In general, you specify (partial) covariance parameters in the
PCOV statement. The two most common cases are as follows: (1) If the heads of a double-
headed arrow are connecting two exogenous variables, a covariance parameter between the
two variables is specified; and (2) If the heads of a double-headed arrow are connecting two
endogenous variables, an error covariance parameter for the two variables is specified. This
error covariance is also a partial covariance between the endogenous variables.

For example, the path diagram for the spleen data in Figure 17.6 can be specified with the PATH
modeling language as follows:
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proc tcalis data=spleen outmodel=splmodl;
path
sqrtrose <- factrose 1.0,
sqrtnucl <- factnucl 1.0,
factrose <- factnucl beta;

pvar
sqrtrose = 0.25, /* error variance for sqrtrose x/
sqgrtnucl = 0.25, /* error variance for sqrtnucl */
factrose = v_dist, /* disturbance variance for factrose */
factnuecl = v_factnu; /x variance of factnucl */

run;

One notable item in the specification is that each of the single-headed or double-headed arrows in
the path diagram is transcribed into an entry in either the PATH or PVAR statement:

o PATH statement:
The paths “sqrtrose <— factrose” and “sqgrtnucl <— factnucl” in the PATH statement are followed
by the constant 1, indicating fixed path coefficients. The path “factrose <— factnucl” is followed
by a parameter named beta, indicating a free path coefficient to estimate in the model.

e PVAR statement:
A fixed value 0.25 is specified after the equal signs of sqrtrose and sqrtnucl in the PVAR
statement. Because sqrtrose and sqrtnucl are endogenous in the model, you are fixing the error
variances of sqrtrose and sqgrtnucl to 0.25 in the specification.
In the last two entries of the PVAR statement, you are putting parameter names after the
equal signs. Because factrose and factnucl are exogenous in the model, v_dist and v_factnu are
variance parameters of factrose and factnucl, respectively.

Because there are no double-headed arrows each pointing to different variables in the path diagram,
the PCOV statement is not needed in the model specification. The resulting output of the PATH
model is displayed in Figure 17.7.

Figure 17.7 Spleen Data: RAM Model

PATH List
Standard
Path Parameter Estimate Error t Value
sgrtrose <= factrose 1.00000
sqgrtnucl <- factnucl 1.00000
factrose <- factnucl beta 0.39074 0.07708 5.06920
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Error sqrtrose 0.25000
sqrtnucl 0.25000
factrose v_dist 0.38153 0.28556 1.33607
Exogenous factnucl v_factnu 10.50458 4.58577 2.29069
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In the PROC TCALIS statement, the OUTMODEL=SPLMODI1 option is used. This will save the
model specification, together with final estimates in a SAS data set called SPLMODI1. This special
type of SAS data set is called “CALISMDL.” The following statements are used to display the
contents of this OUTMODEL= data set:

proc print data=splmodl;
run;

As displayed in Figure 17.8, the first record saves the model type, which is the PATH model spec-
ification in this case. The next seven records save the information about the PATH model: 3 paths
and 4 partial variances specifications.

Figure 17.8 Spleen Data: OUTMODEL= Data Set with Final Parameter Estimates

Obs _TYPE_ _NAME__ _VAR1_ _VAR2__ _ESTIM _STDERR_
1 MDLTYPE PATH .
2 LEFT sgrtrose factrose 1.0000
3 LEFT sgrtnucl factnucl 1.0000 .
4 LEFT beta factrose factnucl 0.3907 0.07708
5 PVAR sgrtrose 0.2500
6 PVAR sqgrtnucl 0.2500 .
7 PVAR v_dist factrose 0.3815 0.28556
8 PVAR v_factnu factnucl 10.5046 4.58577

In each record, the variables involved, the parameter name, the final estimate, and the standard
error estimate are stored. For records with fixed parameters, the parameter names entries are blanks
and the standard error estimates are indicated by missing values. This data set can be used as
input to another run of the TCALIS procedure with the INMODEL= option in the PROC TCALIS
statement. For example, if the iteration limit is exceeded, you can use the CALISMODEL data set
to start a new run that begins with the final estimates from the last run. Or you can change the data
set to add or remove constraints or modify the model in various other ways. The easiest way to
change a CALISMDL data set is to use the FSEDIT procedure, but you can also use a DATA step.
For example, you could set the variance of the disturbance term to zero, effectively removing the
disturbance from the equation, by removing the parameter name v_dist in the _NAME_ variable and
setting the value of the estimate to zero in the _ESTIM_ variable:

data splmod2 (type=calismdl) ;
set splmodl;
if _name_=’v_dist’ then
do;
_name_=' '’ ;
_estim_=0;
end;
run;

Hence, due to the fixed zero error variance for factrose, a model with perfect prediction of factrose
from factnucl is specified in the new CALISMDL data set SPLMOD?2. This data set serves as the
INMODEL= data set in the following statements for another PROC TCALIS run:
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proc tcalis data=spleen inmodel=splmod2;
run;

The main estimation results are displayed in Figure 17.9.

Figure 17.9 Spleen Data: PATH Model Estimates with INMODEL= Data Set

PATH List
Standard
Path Parameter Estimate Error t Value
sqrtrose <- factrose 1.00000
sgrtnucl <- factnucl 1.00000
factrose <- factnucl beta 0.40340 0.05078 7.94391
Variance Parameters

Variance Standard
Type Variable Parameter Estimate Error t Value
Error sqrtrose 0.25000

sgrtnucl 0.25000

factrose 0
Exogenous factnucl v_factnu 10.45846 4.56608 2.29047

As can be seen in Figure 17.9, error variance for factrose is a fixed zero in the final results. Because
of this modification in the current model specified in the SPLMOD2 data set, the estimates of
beta and v_factnu are different from those of the previous model results, which are stored in the
SPLMODI1 data set.

Some Measurement Models

Psychometric test theory involves many kinds of models relating scores on psychological and ed-
ucational tests to latent variables representing intelligence or various underlying abilities. The fol-
lowing example uses data on four vocabulary tests from Lord (1957). Tests W and X have 15
items each and are administered with very liberal time limits. Tests Y and Z have 75 items and are
administered under time pressure. The covariance matrix is read by the following DATA step:

data lord(type=cov) ;
input _type_ $§ _name_ $ w x y z;
datalines;

n . 649

cov w 86.3979

cov x 57.7751 86.2632

cov y 56.8651 59.3177 97.2850

cov z 58.8986 59.6683 73.8201 97.8192
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The psychometric model of interest states that W and X are determined by a single common factor
Fwx,and Y and Z are determined by a single common factor Fyz. The two common factors are
expected to have a positive correlation, and it is desired to estimate this correlation. It is convenient
to assume that the common factors have unit variance, so their correlation will be equal to their
covariance. The error terms for all the manifest variables are assumed to be uncorrelated with each
other and with the common factors. The model (labeled here as model form D) is as follows.

Model Form D
W = Bwlwx + Ew
X = BxFwx + Ex
Y = ByFyz+ Ey
Z = PBzFyz+Ez

with the following assumptions:

Var(Fwy) = Var(Fyz) =1
Cov(Fwx,Fyz) = p
Cov(Ew,Ex) = Cov(Ew,Ey)=Cov(Ew,Ez)=Cov(Eyx, Ey)

Cov(Eyx,Ez) = Cov(Ey,Ez) = Cov(Ew, Fwx)
Cov(Ew, Fyz) = Cov(Ex, Fwx) = Cov(Ey, Fyz)
COV(Ey, wa) = COV(Ey, Fyz) = COV(Ez, FW)()
= Cov(Ez,Fyz)=0

The corresponding path diagram is shown in Figure 17.10.

Figure 17.10 Path Diagram: Lord

vew vex vey vez
w X y z
betaw betax betay betaz
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With the following rules, the conversion from the path diagram to the PATH model specification is
very straightforward:

e Each single-headed arrow in the path diagram is specified in the PATH statement.
e Each double-headed arrow that points to a single variable is specified in the PVAR statement.

e Each double-headed arrow that points to two distinct variables is specified in the PCOV state-
ment.

Hence, this path diagram can be converted easily to a PATH model as follows:

title "H4: Unconstrained’;
proc tcalis data=lord outmodel=model4;

path
w <- fwx betaw,
x <- fwx betax,
y <- fyz betay,
z <- fyz betaz;
pvar
fwx fyz = 2 » 1.0,
W XYy Z = Vew vex vey vez;
pcov
fwx fyz = rho;
run;

The major results are displayed in Figure 17.11 and Figure 17.12.
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Figure 17.11 Lord Data: Fit Summary, Hypothesis H4

Fit Summary

Modeling Info N Observations 649

N Variables 4

N Moments 10

N Parameters 9

N Active Constraints 0

Independence Model Chi-Square 1466.5524

Independence Model Chi-Square DF 6

Absolute Index Fit Function 0.0011

Chi-Square 0.7030

Chi-Square DF 1

Pr > Chi-Square 0.4018

Z-Test of Wilson & Hilferty 0.2363

Hoelter Critical N 3543

Root Mean Square Residual (RMSR) 0.2720

Standardized RMSR (SRMSR) 0.0030

Goodness of Fit Index (GFI) 0.9995

Parsimony Index Adjusted GFI (AGFI) 0.9946

Parsimonious GFI 0.1666

RMSEA Estimate 0.0000

RMSEA Lower 90% Confidence Limit .

RMSEA Upper 90% Confidence Limit 0.0974

Probability of Close Fit 0.6854

ECVI Estimate 0.0291

ECVI Lower 90% Confidence Limit .

ECVI Upper 90% Confidence Limit 0.0391

Akaike Information Criterion -1.2970

Bozdogan CAIC -6.7725

Schwarz Bayesian Criterion -5.7725

McDonald Centrality 1.0002

Incremental Index Bentler Comparative Fit Index 1.0000

Bentler—-Bonett NFI 0.9995

Bentler—-Bonett Non-normed Index 1.0012

Bollen Normed Index Rhol 0.9971

Bollen Non—-normed Index Delta2 1.0002

James et al. Parsimonious NFI 0.1666

Figure 17.12 Lord Data: Estimation Results, Hypothesis H4
PATH List
Standard

Path Parameter Estimate Error t Value
w <= fwx betaw 7.50066 0.32339 23.19390
x <- fwx betax 7.70266 0.32063 24.02354
y <- fyz betay 8.50947 0.32694 26.02730
z <= fyz betaz 8.67505 0.32560 26.64301
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Figure 17.12 continued

Variance Parameters

Variance Standard

Type Variable Parameter Estimate Error t Value

Exogenous fwx 1.00000
fyz 1.00000

Error w vew 30.13796 2.47037 12.19979
x vex 26.93217 2.43065 11.08021
y vey 24.87396 2.35986 10.54044
z vez 22.56264 2.35028 9.60000

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value
fwx fyz rho 0.89855 0.01865 48.17998

It is convenient to create the OUTMODEL= data set called model4 for use in fitting other models
with additional constraints. The same analysis can be performed with the LINEQS statement, as
specified in the following:

title "H4: Unconstrained; LINEQS Specification’;
proc tcalis data=lord;

lineqs w = betaw fwx + ew,
x = betax fwx + ex,
y = betay fyz + ey,
z = betaz fyz + ez;

std fwx fyz = 2 x 1.,
ew ex ey ez = Vew Vex vey vez;
cov fwx fyz = rho;
run;

Unlike the PATH model specification, in the LINEQS specification you need to specify the error
terms explicitly in the LINEQS statement. In the STD statement, you would need to specify the
variance parameters for the exogenous variables, including both of the factors and the error terms.
However, using the PATH model specification, no explicit names for error or disturbance terms are
needed. As a result, the exogenous variance and error variance parameters are both specified in the
PVAR statement. This treatment generalizes to the following useful rule about the PATH model
specification:

e Each variable in the PATH model specification or path diagram should have a variance or
partial variance parameter specified in the PVAR statement—as either an exogenous variance
or a partial variance due to error.

The main results from the LINEQS model specification are displayed in Figure 17.13.
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Figure 17.13 Lord Data: Using LINEQS Statement for RAM Model, Hypothesis H4

Linear Equations

w = 7.5007*xfwx + 1.0000 ew
Std Err 0.3234 betaw

t Value 23.1939

X = 7.7027xfwx + 1.0000 ex
Std Err 0.3206 betax

t Value 24.0235

y = 8.5095xfyz + 1.0000 ey
Std Err 0.3269 betay

t Value 26.0273

z = 8.6751xfyz + 1.0000 ez
Std Err 0.3256 betaz

t Value 26.6430

Estimates for Variances of Exogenous Variables

Variable Standard

Type Variable Parameter Estimate Error t Value

Latent fwx 1.00000
fyz 1.00000

Error ew vew 30.13796 2.47037 12.19979
ex vex 26.93217 2.43065 11.08021
ey vey 24.87396 2.35986 10.54044
ez vez 22.56264 2.35028 9.60000

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value
fwx fyz rho 0.89855 0.01865 48.17998

Aside from the output format, all estimates in the LINEQS model results in Figure 17.13 match
those of the PATH model results in Figure 17.12. In some situations, the PATH and LINEQS
statements might yield slightly different results due to the inexactness of the numerical optimiza-
tion; the discrepancies can be reduced by specifying a more stringent convergence criterion such as
GCONV=1E+4 or GCONV=1E-6.

Subsequent analyses are illustrated with the PATH statement rather than the LINEQS statement
because it is easier to translate the path diagram to the PATH model specification.
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In an analysis of these data by Joreskog and Sérbom (1979, pp. 54-56; Loehlin 1987, pp. 84-87),
four hypotheses are considered:

Hli p = 1,
Bw = Bx., Var(Ew) = Var(Ex)(orvew = vex),
By = Bz, Var(Ey) = Var(Ez)(orvey = vez)

H;: same as Hy: except p is unconstrained
Hj: p = 1
Hy: model form D without any additional constraints

The hypothesis H3 says that there is really just one common factor instead of two; in the terminol-
ogy of test theory, W, X, Y, and Z are said to be congeneric. The hypothesis H; says that W and
X have the same true scores and have equal error variance; such tests are said to be parallel. The
hypothesis H; also requires Y and Z to be parallel. The hypothesis H; says that W and X are
parallel tests, Y and Z are parallel tests, and all four tests are congeneric.

It is most convenient to fit the models in the opposite order from that in which they are numbered.
The previous analysis fit the model for H4 and created an OUTMODEL= data set called model4.
The hypothesis H3 can be fitted directly or by modifying the model4 data set. Since H3 differs
from H4 only in that p is constrained to equal 1, the model4 data set can be modified by finding the
observation for which _NAME_=’rho’ and changing the variable _"NAME_ to a blank value (meaning
that the observation represents a constant rather than a parameter to be fitted) and by setting the
variable _ESTIM_ to the value 1. The following statements create a new model stored in the model3
data set that is modified from the model4 data set:

data model3 (type=calismdl);
set model4;
if _name_=’'rho’ then
do;
_name_=' ’/;
_estim_=1;
end;
run;

In other words, the model information stored in data set model3 is specified exactly as hypothesis
H3 requires. This data set is then read as an INMODEL-= data set for the following PROC TCALIS
run:

title 'H3: W, X, Y, and Z are congeneric’;
proc tcalis data=lord inmodel=model3;
run;

Another way to specify the model under hypothesis H3 is to specify the entire PATH model anew,
such as in the following statements:
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title 'H3: W, X, Y, and Z are congeneric’;
proc tcalis data=lord;
path w <— £ Dbetaw,
x <- £ Dbetax,
y <- £ Dbetay,
z <—- £ Dbetaz;

pvar

£f=1,

W XYy zZ = Vew vex vey vez;
run;

This would produce essentially the same results as those of the analysis based on the model stored
in the data set model3. The main results from the analysis with the INMODEL=MODEL3 data set
are displayed in Figure 17.14.

Figure 17.14 Lord Data: Major Results for Hypothesis H3

Fit Summary

Modeling Info N Observations 649
N Variables 4
N Moments 10
N Parameters 8
N Active Constraints 0
Independence Model Chi-Square 1466.5524
Independence Model Chi-Square DF 6
Absolute Index Fit Function 0.0559
Chi-Square 36.2095
Chi-Square DF 2
Pr > Chi-Square 0.0000
Z-Test of Wilson & Hilferty 5.2108
Hoelter Critical N 109
Root Mean Square Residual (RMSR) 2.4636
Standardized RMSR (SRMSR) 0.0277
Goodness of Fit Index (GFI) 0.9714
Parsimony Index Adjusted GFI (AGFI) 0.8570
Parsimonious GFI 0.3238
RMSEA Estimate 0.1625
RMSEA Lower 90% Confidence Limit 0.1187
RMSEA Upper 90% Confidence Limit 0.2108
Probability of Close Fit 0.0000
ECVI Estimate 0.0808
ECVI Lower 90% Confidence Limit 0.0561
ECVI Upper 90% Confidence Limit 0.1170
Akaike Information Criterion 32.2095
Bozdogan CAIC 21.2586
Schwarz Bayesian Criterion 23.2586
McDonald Centrality 0.9740
Incremental Index Bentler Comparative Fit Index 0.9766
Bentler-Bonett NFI 0.9753
Bentler-Bonett Non-normed Index 0.9297
Bollen Normed Index Rhol 0.9259
Bollen Non—-normed Index Delta2 0.9766
James et al. Parsimonious NFI 0.3251
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Figure 17.14 continued

PATH List
Standard
Path Parameter Estimate Error t Value
w <- fwx betaw 7.10472 0.32177 22.08019
x <= fwx betax 7.26906 0.31826 22.83965
y <- fyz betay 8.37348 0.32542 25.73160
z <- fyz betaz 8.51057 0.32409 26.25985
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Exogenous fwx 1.00000
fyz 1.00000
Error w vew 35.92087 2.41466 14.87615
X vex 33.42397 2.31038 14.46688
y vey 27.16980 2.24619 12.09595
z vez 25.38948 2.20839 11.49684
Covariances Among Exogenous Variables
Standard
Varl Var2 Estimate Error t Value
fwx fyz 1.00000

The hypothesis H; requires that several pairs of parameters be constrained to have equal estimates.
With PROC TCALIS, you can impose this constraint by giving the same name to parameters that
are constrained to be equal. This can be done directly in the PATH and PVAR statements or by
using the DATA step to change the values in the model4 data set.

First, you can specify the model directly under the hypothesis H»; the following PATH model is
specified:

title "H2: W and X parallel, Y and Z parallel’;
proc tcalis data=lord;
path
w <— fwx betawx,
x <- fwx betawx,
y <- fyz betayz,
z <- fyz betayz;

pvar

fwx fyz = 2 » 1.0,

W X Yy Z = Vewx Vewx veyz veyz;
pcov

fwx fyz = rho;

run;
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Alternatively, if you use the DATA step to modify from the model4 data set, you would specify a
new data set called model2 for storing the model information under the hypothesis H», as shown in
the following statements:

data model2 (type=calismdl);
set model4;
if _name_='betaw’ then _name_ =’betawx’;
if name ='betax’ then _name_='betawx’;
if _name_=’'betay’ then _name_='betayz’;
if _name_='betaz’ then _name_='betayz’;
if name ='vew’ then _name_='vewx’;
if _name_='vex’ then _name_='vewx’;
if _name_=’vey’ then _name_='veyz’';
if _name_=’vez’ then _name_='veyz’;
run;

Then you would use model2 as the INMODEL= data set in the following PROC TCALIS run:

title 'H2: W and X parallel, Y and Z parallel’;
proc tcalis data=lord inmodel=model2;
run;

The main results from either of these analyses are displayed in Figure 17.15.
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Figure 17.15 Lord Data: Major Results for Hypothesis H2

Modeling Info

Absolute Index

Parsimony Index

Incremental Index

Path
w <- fwx
X <- fwx
y <- fyz
z

<- fyz

Fit Summary

N Observations

N Variables

N Moments

N Parameters

N Active Constraints
Independence Model Chi-Square
Independence Model Chi-Square DF
Fit Function

Chi-Square

Chi-Square DF

Pr > Chi-Square

Z-Test of Wilson & Hilferty
Hoelter Critical N

Root Mean Square Residual (RMSR)
Standardized RMSR (SRMSR)
Goodness of Fit Index (GFI)
Adjusted GFI (AGFI)

Parsimonious GFI

RMSEA Estimate

RMSEA Lower 90% Confidence Limit
RMSEA Upper 90% Confidence Limit
Probability of Close Fit

ECVI Estimate

ECVI Lower 90% Confidence Limit
ECVI Upper 90% Confidence Limit
Akaike Information Criterion
Bozdogan CAIC

Schwarz Bayesian Criterion
McDonald Centrality

Bentler Comparative Fit Index
Bentler-Bonett NFI
Bentler-Bonett Non-normed Index
Bollen Normed Index Rhol

Bollen Non—-normed Index Delta2
James et al. Parsimonious NFI

PATH List
Standard
Parameter Estimate Error
betawx 7.60099 0.26844
betawx 7.60099 0.26844
betayz 8.59186 0.27967
betayz 8.59186 0.27967

1466.
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5524

.0030
.9335

.8583
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.6983
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.0293
.9936
.0185

.0276
.0665
.4436
.4436
.0024
.0000
.9987
.0025
.9984
.0021
.8322

t Value

28.31580
28.31580
30.72146
30.72146
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Figure 17.15 continued

Variance Parameters

Variance Standard

Type Variable Parameter Estimate Error t Value

Exogenous fwx 1.00000
fyz 1.00000

Error w vewx 28.55545 1.58641 18.00000
X vewx 28.55545 1.58641 18.00000
y veyz 23.73200 1.31844 18.00000
z veyz 23.73200 1.31844 18.00000

Covariances Among Exogenous Variables

Standard
Varl Var2 Parameter Estimate Error t Value
fwx fyz rho 0.89864 0.01865 48.18011

The hypothesis H; requires one more constraint in addition to those in H,. Again, there are two
ways to do this. First, a direct model specification is shown in the following statements:

title 'Hl: W and X parallel, Y and Z parallel, all congeneric’;
proc tcalis data=lord;

path
w <—- £ betawx,
x <—- £ betawx,
y <- £ betayz,
z <- f betayz;
pvar
£ =1.0,
W X Yy Z = VeWwxX Vewx veyz veyz;
run;

Alternatively, you can modify the model2 data set to create a new data set model2 that stores the
model information required by the hypothesis H1, as shown in the following statements:

data modell (type=calismdl);
set model2;
if name_='rho’ then
do;
_name_='" ';
_estim_=1;
end;
run;
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You can then pass the model information stored in model1 as an INMODEL= data set in the follow-
ing PROC TCALIS run:

title 'Hl: W and X parallel, Y and Z parallel, all congeneric’;
proc tcalis data=lord inmodel=modell;
run;

The main results from either of these analyses are displayed in Figure 17.16.

Figure 17.16 Lord Data: Major Results for Hypothesis H1

Fit Summary

Modeling Info N Observations 649
N Variables 4
N Moments 10
N Parameters 4
N Active Constraints 0
Independence Model Chi-Square 1466.5524
Independence Model Chi-Square DF 6
Absolute Index Fit Function 0.0576
Chi-Square 37.3337
Chi-Square DF 6
Pr > Chi-Square 0.0000
Z-Test of Wilson & Hilferty 4.5535
Hoelter Critical N 220
Root Mean Square Residual (RMSR) 2.5430
Standardized RMSR (SRMSR) 0.0286
Goodness of Fit Index (GFI) 0.9705
Parsimony Index Adjusted GFI (AGFI) 0.9509
Parsimonious GFI 0.9705
RMSEA Estimate 0.0898
RMSEA Lower 90% Confidence Limit 0.0635
RMSEA Upper 90% Confidence Limit 0.1184
Probability of Close Fit 0.0076
ECVI Estimate 0.0701
ECVI Lower 90% Confidence Limit 0.0458
ECVI Upper 90% Confidence Limit 0.1059
Akaike Information Criterion 25.3337
Bozdogan CAIC -7.5189
Schwarz Bayesian Criterion -1.5189
McDonald Centrality 0.9761
Incremental Index Bentler Comparative Fit Index 0.9785
Bentler—-Bonett NFI 0.9745
Bentler—-Bonett Non-normed Index 0.9785
Bollen Normed Index Rhol 0.9745
Bollen Non—-normed Index Delta2 0.9785
James et al. Parsimonious NFI 0.9745
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Figure 17.16 continued

PATH List
Standard
Path Parameter Estimate Error t Value
w <- fwx betawx 7.18622 0.26598 27.01798
x <- fwx betawx 7.18622 0.26598 27.01798
y <- fyz betayz 8.44198 0.28000 30.14946
z <- fyz betayz 8.44198 0.28000 30.14946
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Exogenous fwx 1.00000
fyz 1.00000
Error w vewx 34.68878 1.64635 21.07013
X vewx 34.68878 1.64635 21.07013
y veyz 26.28501 1.39954 18.78118
z veyz 26.28501 1.39954 18.78118
Covariances Among Exogenous Variables
Standard
Varl Var2 Estimate Error t Value
fwx fyz 1.00000

The goodness-of-fit tests for the four hypotheses are summarized in the following table.

Number of Degrees of
Hypothesis Parameters  y? Freedom p-value 0
H, 4 37.33 6 0.0000 1.0
H; 5 1.93 5 0.8583  0.8986
Hj; 8 36.21 2 0.0000 1.0
Hy 9 0.70 1 0.4018 0.8986

The hypotheses H; and H3, which posit p = 1, can be rejected. Hypotheses H, and H4 seem to
be consistent with the available data. Since H- is obtained by adding four constraints to H4, you
can test H, versus Hy4 by computing the differences of the chi-square statistics and their degrees of
freedom, yielding a chi-square of 1.23 with 4 degrees of freedom, which is obviously not significant.
So hypothesis H> is consistent with the available data.

The estimates of p for H, and H,4 are almost identical, about 0.90, indicating that the speeded and
unspeeded tests are measuring almost the same latent variable, even though the hypotheses that
stated they measured exactly the same latent variable are rejected.
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A Combined Measurement-Structural Model with
Reciprocal Influence and Correlated Residuals

To illustrate a more complex model, this example uses some well-known data from Haller and
Butterworth (1960). Various models and analyses of these data are given by Duncan, Haller, and
Portes (1968), Joreskog and Sérbom (1988), and Loehlin (1987).

The study is concerned with the career aspirations of high school students and how these aspirations
are affected by close friends. The data are collected from 442 seventeen-year-old boys in Michigan.
There are 329 boys in the sample who named another boy in the sample as a best friend. The
observations to be analyzed consist of the data from these 329 boys paired with the data from their
best friends.

The method of data collection introduces two statistical problems. First, restricting the analysis to
boys whose best friends are in the original sample causes the reduced sample to be biased. Second,
since the data from a given boy might appear in two or more observations, the observations are not
independent. Therefore, any statistical conclusions should be considered tentative. It is difficult to
accurately assess the effects of the dependence of the observations on the analysis, but it could be
argued on intuitive grounds that since each observation has data from two boys and since it seems
likely that many of the boys will appear in the data set at least twice, the effective sample size might
be as small as half of the reported 329 observations.

The correlation matrix, taken from Joreskog and Sorbom (1988), is shown in the following DATA
step:

title 'Peer Influences on Aspiration: Haller & Butterworth (1960)’;
data aspire (type=corr);
_type_='corr’;
input _name_ $ riq rpa rses roa rea fiq fpa fses foa fea;
label rig='Respondent: Intelligence’
rpa='Respondent: Parental Aspiration’
rses='Respondent: Family SES’
roa='Respondent: Occupational Aspiration’
rea='Respondent: Educational Aspiration’
fig='Friend: Intelligence’
fpa='Friend: Parental Aspiration’
fses='Friend: Family SES’
foa='Friend: Occupational Aspiration’
fea='Friend: Educational Aspiration’;
datalines;
riqgq 1.
rpa .1839 1. .
rses .2220 .0489 1. .
roa .4105 .2137 .3240 1. .
rea .4043 .2742 .4047 .6247 1. .
fiq .3355 .0782 .2302 .2995 .2863 1. .
fpa .1021 .1147 .0931 .0760 .0702 .2087 1. .
fses .1861 .0186 .2707 .2930 .2407 .2950 -.0438 1. .
foa .2598 .0839 .2786 .4216 .3275 .5007 .1988 .3607 1. .
fea .2903 .1124 .3054 .3269 .3669 .5191 .2784 .4105 .6404 1.

4
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The model analyzed by Joreskog and Sorbom (1988) is displayed in the path diagram in
Figure 17.17.

Figure 17.17 Path Diagram: Career Aspiration — Joreskog and Sérbom (1988)
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Two latent variables, f ramb and f_famb, represent the respondent’s level of ambition and his best
friend’s level of ambition, respectively. The model states that the respondent’s ambition is deter-
mined by his intelligence (rig) and socioeconomic status (rses), his perception of his parents’ aspira-
tion for him (rpa), and his friend’s socioeconomic status (fses) and ambition (f_famb). It is assumed
that his friend’s intelligence (fiq) and parental aspiration (fpa) affect the respondent’s ambition only
indirectly through the friend’s ambition (f_famb). Ambition is indexed by the manifest variables of
occupational (roa) and educational aspiration (rea), which are assumed to have uncorrelated resid-
uals. The path coefficient from ambition to occupational aspiration is set to 1.0 to determine the
scale of the ambition latent variable.

This model can be analyzed with PROC TCALIS by using the PATH modeling language, as shown
in the following statements:
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proc tcalis corr data=aspire nobs=329;

path
/* measurement model for aspiration */
rea <- f ramb lambda2,
roa <- £ ramb 1.,
foa <- £ famb 1.,
fea <- £ famb lambda3,
/* structural model of influences */
f _ramb <- rpa gaml,
f_ramb <- riq gam2,
f ramb <- rses gam3,
f ramb <- fses gam4,
f famb <- rses gam5,
f famb <- fses gamé,
f _famb <- fiq gam7,
f_famb <- fpa gams8,
f ramb <- £ famb betal,
f famb <- £ ramb beta2;
pvar
f _ramb = psill,
f_famb = psi22,

rpa riq rses fpa fiq fses = v1-v6,
rea roa fea foa

pcov

= thetal-theta4;

f _ramb £ famb = psil2,
rpa riq rses fpa fiq fses = 15 * cov__;

run;

In this specification, the names of the parameters correspond to those used by Joreskog and Sérbom
(1988). Since this TYPE=CORR data set does not contain an observation with _TYPE_="N’ giving
the sample size, it is necessary to specify the NOBS= option in the PROC TCALIS statement.

Specifying a name followed by double underscores is a quick way to generate unique parameter
names. The double underscores are replaced with a unique number each time a new parameter
name is generated. For example, in the COV statement, the specification

rpa riq rses fpa fiq fses = 15 * cov__;

is equivalent to

rpa riq rses fpa fiq fses

cov0l-covl5;

In the PROC TCALIS statement, the CORR option is used to indicate that the correlation matrix is
fitted by the model. Fitting correlation matrices by covariance structure modeling method is plagued
with some statistical issues. For example, the chi-square statistic might not follow the theoretical
distribution well, and the estimates of standard errors might not be accurate. Nonetheless, the
correlation matrix is fitted here for illustration and comparison purposes.

The results from this analysis are displayed in Figure 17.18.
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Figure 17.18 Career Aspiration Data: Fit Summary of Jéreskog and Sérbom (1988) Analysis 1

Fit Summary

Modeling Info N Observations 329
N Variables 10
N Moments 55
N Parameters 40
N Active Constraints 0
Independence Model Chi-Square 872.0008
Independence Model Chi-Square DF 45
Absolute Index Fit Function 0.0814
Chi-Square 26.6972
Chi-Square DF 15
Pr > Chi-Square 0.0313
Z-Test of Wilson & Hilferty 1.8625
Hoelter Critical N 309
Root Mean Square Residual (RMSR) 0.0202
Standardized RMSR (SRMSR) 0.0202
Goodness of Fit Index (GFI) 0.9844
Parsimony Index Adjusted GFI (AGFI) 0.9428
Parsimonious GFI 0.3281
RMSEA Estimate 0.0488
RMSEA Lower 90% Confidence Limit 0.0145
RMSEA Upper 90% Confidence Limit 0.0783
Probability of Close Fit 0.4876
ECVI Estimate 0.3338
ECVI Lower 90% Confidence Limit 0.3012
ECVI Upper 90% Confidence Limit 0.3910
Akaike Information Criterion -3.3028
Bozdogan CAIC -75.2437
Schwarz Bayesian Criterion -60.2437
McDonald Centrality 0.9824
Incremental Index Bentler Comparative Fit Index 0.9859
Bentler-Bonett NFI 0.9694
Bentler-Bonett Non-normed Index 0.9576
Bollen Normed Index Rhol 0.9082
Bollen Non-normed Index Delta2 0.9864
James et al. Parsimonious NFI 0.3231

Joreskog and Sorbom (1988) present more detailed results from a second analysis in which two
constraints are imposed:

e The coefficients connecting the latent ambition variables are equal (that is, betal = beta2).

e The covariance of the disturbances of the ambition variables is zero (that is, psi12 = 0).

This analysis can be performed by changing the names beta1 and beta2 to beta and omitting the line
from the COV statement for psi12, as shown in the following statements:



338 4 Chapter 17: Introduction to Structural Equation Modeling with Latent Variables

proc tcalis corr data=aspire nobs=329;
path
/* measurement model for aspiration */
rea <- f ramb lambda2,
roa <- £ ramb 1.,
foa <- £ famb 1.,
fea <- £ famb lambda3,
/* structural model of influences */
f _ramb <- rpa gaml,
f _ramb <- riq gam2,
f ramb <- rses gam3,
f ramb <- fses gam4,
f _famb <- rses gam5,
f famb <- fses gamé,
f _famb <- fiq gam7,
f _famb <- fpa gams$,
f ramb <- £ famb beta,
f famb <- £ ramb beta;
pvar
f ramb psill,
f _famb = psi22,
rpa riq rses fpa fiq fses = vl1l-v6,
rea roa fea foa = thetal-theta4;
pcov
rpa riq rses fpa fiq fses = 15 x cov__;

run;

The fit summary is displayed in Figure 17.19, and the estimation results are displayed in
Figure 17.20.
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Figure 17.19 Career Aspiration Data: Fit Summary of Jéreskog and Sérbom (1988) Analysis 2

Fit Summary

Modeling Info N Observations 329
N Variables 10
N Moments 55
N Parameters 38
N Active Constraints 0
Independence Model Chi-Square 872.0008
Independence Model Chi-Square DF 45
Absolute Index Fit Function 0.0820
Chi-Square 26.8987
Chi-Square DF 17
Pr > Chi-Square 0.0596
Z-Test of Wilson & Hilferty 1.5599
Hoelter Critical N 338
Root Mean Square Residual (RMSR) 0.0203
Standardized RMSR (SRMSR) 0.0203
Goodness of Fit Index (GFI) 0.9843
Parsimony Index Adjusted GFI (AGFI) 0.9492
Parsimonious GFI 0.3718
RMSEA Estimate 0.0421
RMSEA Lower 90% Confidence Limit .
RMSEA Upper 90% Confidence Limit 0.0710
Probability of Close Fit 0.6367
ECVI Estimate 0.3218
ECVI Lower 90% Confidence Limit .
ECVI Upper 90% Confidence Limit 0.3781
Akaike Information Criterion -7.1013
Bozdogan CAIC -88.6343
Schwarz Bayesian Criterion -71.6343
McDonald Centrality 0.9851
Incremental Index Bentler Comparative Fit Index 0.9880
Bentler—-Bonett NFI 0.9692
Bentler—-Bonett Non-normed Index 0.9683
Bollen Normed Index Rhol 0.9183
Bollen Non—normed Index Delta2 0.9884
James et al. Parsimonious NFI 0.3661
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Figure 17.20 Career Aspiration Data: Estimation Results of Jéreskog and Sérbom (1988)

Analysis 2
PATH List
Standard
Path Parameter Estimate Error t Value
rea <- f_ramb lambda2 1.06097 0.08921 11.89233
roa <— f ramb 1.00000
foa <= £f_famb 1.00000
fea <- £f_famb lambda3 1.07359 0.08063 13.31498
f_ramb <- rpa gaml 0.16367 0.03872 4.22740
f_ramb <= riq gam2 0.25395 0.04186 6.06725
f ramb <- rses gam3 0.22115 0.04187 5.28219
f_ramb <- fses gam4 0.07728 0.04149 1.86264
£f_famb <- rses gam5 0.06840 0.03868 1.76809
f famb <- fses gamé 0.21839 0.03948 5.53198
£f_famb <- figq gam7 0.33063 0.04116 8.03314
£f_famb <= fpa gam8 0.15204 0.03636 4.18169
f_ramb <- f_famb beta 0.18007 0.03912 4.60305
£f_famb <- f_ramb beta 0.18007 0.03912 4.60305
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Error f_ramb psill 0.28113 0.04640 6.05867
£f_famb psi22 0.22924 0.03889 5.89393
Exogenous rpa vl 1.00000 0.07809 12.80625
riq v2 1.00000 0.07809 12.80625
rses v3 1.00000 0.07809 12.80625
fpa v4 1.00000 0.07809 12.80625
figq v5 1.00000 0.07809 12.80625
fses v6 1.00000 0.07809 12.80625
Error rea thetal 0.33764 0.05178 6.52039
roa theta2 0.41205 0.05103 8.07403
fea theta3 0.31337 0.04574 6.85165
foa theta4 0.40381 0.04608 8.76428
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Figure 17.20 continued

Covariances Among Exogenous Variables
Standard
Varl Var2 Parameter Estimate Error t Value
rpa riq cov01l 0.18390 0.05614 3.27564
rpa rses cov02 0.04890 0.05528 0.88456
riq rses cov03 0.22200 0.05656 3.92503
rpa fpa cov04 0.11470 0.05558 2.06377
rig fpa cov05 0.10210 0.05550 1.83955
rses fpa cov06 0.09310 0.05545 1.67885
rpa fiq cov07 0.07820 0.05538 1.41195
rig fiqg cov08 0.33550 0.05824 5.76060
rses fiqg cov09 0.23020 0.05666 4.06284
fpa figq covl0 0.20870 0.05641 3.70000
rpa fses covll 0.01860 0.05523 0.33680
riq fses covl2 0.18610 0.05616 3.31352
rses fses covl3 0.27070 0.05720 4.73226
fpa fses covl4 -0.04380 0.05527 -0.79249
fiqg fses covl5 0.29500 0.05757 5.12435

The difference between the chi-square values for the two preceding models is 26.8987 —26.6972 =
0.2015 with 2 degrees of freedom, which is far from significant. This indicates that the restricted
model (analysis 2) fits as well as the unrestricted model (analysis 1). However, the chi-square test of
the restricted model against the alternative of a completely unrestricted covariance matrix yields a
p-value of 0.0596, which indicates that the model might not be entirely satisfactory (p-values from
these data are probably too small because of the dependence of the observations).

Loehlin (1987) points out that the models considered are unrealistic in at least two respects. First,
the variables of parental aspiration, intelligence, and socioeconomic status are assumed to be mea-
sured without error. Loehlin adds uncorrelated measurement errors to the model and assumes, for
illustrative purposes, that the reliabilities of these variables are known to be 0.7, 0.8, and 0.9, respec-
tively. In practice, these reliabilities would need to be obtained from a separate study of the same or
a very similar population. If these constraints are omitted, the model is not identified. However, con-
straining parameters to a constant in an analysis of a correlation matrix might make the chi-square
goodness-of-fit test inaccurate, so there is more reason to be skeptical of the p-values. Second, the
error terms for the respondent’s aspiration are assumed to be uncorrelated with the corresponding
terms for his friend. Loehlin introduces a correlation between the two educational aspiration error
terms and between the two occupational aspiration error terms. These additions produce the path
diagram for Loehlin’s model 1 shown in Figure 17.21.
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Figure 17.21 Path Diagram: Career Aspiration — Loehlin (1987)
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In Figure 17.21, the observed variables rpa, rig, rses, fses, fig, and fpa are all treated as measurements
with errors. Their purified counterparts f_rpa, f_riq, f_rses, f_fses, f_fiq, and f_fpa are latent variables
created in the model to represent measurements without errors. Path coefficients from these latent
variables to the observed variables are fixed coefficients, indicating the square roots of the theoret-
ical reliabilities in the model. These latent variables, rather than the observed counterparts, serve
as predictors of the ambition variables f_ramb and f_famb. Correlated errors for the occupational
aspiration variables and the educational aspiration variables are also shown in Figure 17.21. The
error covariance for the educational aspiration variables rea and fea is indicated by the parameter
covea, and the error covariance for the occupational aspiration variables roa and foa is indicated by
the parameter covoa.
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The statements for fitting this model by using the PATH modeling language are as follows:

proc tcalis corr data=aspire nobs=329;
path

/* measurement model for aspiration */
rea <- £ ramb lambda2,

roa <- £ ramb 1.,

foa <- £ _famb 1.,

fea <- f_ famb lambda3,

/* measurement model for intelligence and environment */

rpa <- f_rpa 0.837,
riq <- f_riq 0.894,
rses <—- f rses 0.949,
fses <- f_ fses 0.949,
fiq <- £_fiq 0.894,
fpa <- £ _fpa 0.837,

/* structural model of influences x/

f_ramb <- f rpa gaml,
f_ramb <- f riq gam2,
f_ramb <- f rses gam3,
f ramb <- £ fses gam4,

f famb <- £ rses gam5,
f famb <- £ fses gamé6,
f _famb <- £ _fiq gam7,
f_famb <- f fpa gam8,
f ramb <- £ famb betal,
f famb <- £ ramb beta2;

pvar
f_ramb = psill,
f_famb = psi22,

f rpa £ riq £ rses £ fses £ fiq £ fpa
rea roa fea foa
rpa riq rses fpa fiq fses

pcov

run;

The fit summary is displayed in Figure 17.22, and the estimation results

f ramb £ famb = psil2,
rea fea = covea,
roa foa = covoa,

f rpa £ riq £ rses £ fses £ fiq £ fpa

Figure 17.23.

6 x 1.0,

thetal-theta4,

errl-erré6;

15 * cov__;

are displayed in
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Figure 17.22 Career Aspiration Data: Fit Summary of Loehlin (1987) Model 1
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Figure 17.23 Career Aspiration Data: Estimation Results of Loehlin (1987) Model 1

PATH List
Standard
Path Parameter Estimate Error t Value
rea <- f_ramb lambda2 1.08398 0.09417 11.51054
roa <- f_ramb 1.00000
foa <- f_famb 1.00000
fea <- f_famb lambda3 1.11631 0.08627 12.93937
rpa <- f_rpa 0.83700
riqg <= f riq 0.89400
rses <— f rses 0.94900
fses <- f fses 0.94900
figq <- £ fiq 0.89400
fpa <- f_fpa 0.83700
f_ramb <= f _rpa gaml 0.18370 0.05044 3.64201
f_ramb <- f riq gam2 0.28004 0.06139 4.56183
f_ramb <- f _rses gam3 0.22616 0.05223 4.33004
f_ramb <= f fses gam4 0.08698 0.05476 1.58836
f famb <- f rses gam5 0.06327 0.05219 1.21240
f_famb <- f fses gamé 0.21539 0.05121 4.20600
f_famb <= £ fiq gam7 0.35386 0.06741 5.24971
f_famb <- f_fpa gam8 0.16877 0.04934 3.42051
f_ramb <- f_famb betal 0.11897 0.11396 1.04397
f_famb <= £f_ramb beta2 0.13022 0.12067 1.07921
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Error £ _ramb psill 0.25418 0.04469 5.68738
f_famb psi22 0.19698 0.03814 5.16533
Exogenous f rpa 1.00000
f riq 1.00000
f rses 1.00000
f_fses 1.00000
f _fiq 1.00000
f_fpa 1.00000
Error rea thetal 0.32707 0.05452 5.99883
roa theta2 0.42307 0.05243 8.06948
fea theta3 0.28715 0.04804 5.97748
foa theta4 0.42240 0.04730 8.93103
rpa errl 0.29584 0.07774 3.80573
riq err2 0.20874 0.07832 2.66519
rses err3 0.09887 0.07803 1.26715
fpa err4 0.29987 0.07807 3.84089
fiq err5 0.19988 0.07674 2.60475
fses erré6 0.10324 0.07824 1.31950
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Figure 17.23 continued

Covariances Among Exogenous Variables
Standard
Varl Var2 Parameter Estimate Error t Value
f rpa f riq cov01l 0.24677 0.07519 3.28204
f rpa f_rses cov02 0.06184 0.06945 0.89034
f riq f rses cov03 0.26351 0.06687 3.94075
f rpa f_fses cov04 0.02383 0.06952 0.34272
f riq f_fses cov05 0.22135 0.06648 3.32976
f rses f fses cov06 0.30156 0.06359 4.74205
f rpa f fiq cov07 0.10853 0.07362 1.47419
f riq £ fiq cov08 0.42476 0.07219 5.88373
f rses f_fiq cov09 0.27250 0.06660 4.09143
f_fses f fiq covl0 0.34922 0.06771 5.15755
f rpa f fpa covll 0.15789 0.07873 2.00553
f riq f_fpa covl2 0.13085 0.07418 1.76393
f_rses f_fpa covl3 0.11517 0.06978 1.65053
f_fses f fpa covl4 -0.05623 0.06971 -0.80655
f _fiq f_fpa covl5 0.27867 0.07530 3.70083
Covariances Among Errors

Error Error Standard

of of Parameter Estimate Error t Value
f_ramb £_famb psil2 -0.00935 0.05010 -0.18669
rea fea covea 0.02308 0.03139 0.73543
roa foa covoa 0.11206 0.03258 3.43993

Since the p-value for the chi-square test is 0.5266, this model clearly cannot be rejected. How-
ever, Schwarz’s Bayesian criterion for this model (SBC = —63.3356) is somewhat larger than for
Joreskog and Sorbom’s (1988) analysis 2 (SBC = —71.6343), suggesting that a more parsimonious
model would be desirable.

Since it is assumed that the same model applies to all the boys in the sample, the path diagram
should be symmetric with respect to the respondent and his friend. In particular, the corresponding
coefficients should be equal. By imposing equality constraints on the 15 pairs of corresponding
coefficients, this example obtains Loehlin’s (1987) model 2. The PATH model is as follows, where
an OUTMODEL-= data set is created to facilitate subsequent hypothesis tests:
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proc tcalis corr data=aspire nobs=329 outmodel=model2;
path

/* measurement model for aspiration */
rea <- f_ramb lambda, /* 1 ec! x/
roa <- f ramb 1.,

foa <- £ _famb 1.,
fea <- £ _famb lambda,

/* measurement model for intelligence and environment */

rpa <- f_rpa 0.837,
riq <- f_riq 0.894,
rses <- f rses 0.949,
fses <- f_fses 0.949,
fig <- £ _fiq 0.894,
fpa <- £ _fpa 0.837,

/* structural model of influences */

f ramb <- f_rpa gaml, /* 5 ec! x/
f _ramb <- £ _riq gam2,
f ramb <- £ rses gam3,

f ramb <- £ fses gam4,
f famb <- f rses gam4,

f_famb <- f fses gam3,
f _famb <- £ fiq gam2,
f _famb <- f_fpa gaml,

f ramb <- £ famb beta,
f famb <- £ ramb beta;

pvar

f _ramb = psi, /* 1 ec! *x/

f _famb = psi,

f rpa £ riqg £ rses £ fpa £ fiq £ fses = 6 * 1.0,

rea fea = 2 x thetaea, /* 2 ec! */

roa foa = 2 *x thetaoa,

rpa fpa = errpal errpa2,

riq fiq = erriql erriq2,

rses fses = errsesl errses2;

pcov

f ramb £ famb = psil2,

rea fea = covea,

roa foa = covoa,

f rpa £ riq f_rses = covl-cov3, /* 3 ec! x/

f fpa £ fiq f_fses = covl-cov3,

f rpa £ riq f_rses x £f_fpa £ _fiq £ fses = /* 3 ec! x/
cov4 cov5 cové
cov5 cov7 cov8
cov6 cov8 cov9;

run;

The fit summary is displayed in Figure 17.24, and the estimation results are displayed in
Figure 17.25.
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Figure 17.24 Career Aspiration Data: Fit Summary of Loehlin (1987) Model 2
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Figure 17.25 Career Aspiration Data: Estimation Results of Loehlin (1987) Model 2

PATH List
Standard
Path Parameter Estimate Error t Value
rea <- f_ramb lambda 1.10067 0.06842 16.08795
roa <- f_ramb 1.00000
foa <- f_famb 1.00000
fea <- f_famb lambda 1.10067 0.06842 16.08795
rpa <- f_rpa 0.83700
riqg <= f riq 0.89400
rses <— f rses 0.94900
fses <- f fses 0.94900
figq <- £ fiq 0.89400
fpa <- f_fpa 0.83700
f_ramb <= f rpa gaml 0.17585 0.03508 5.01299
f_ramb <- f riq gam2 0.32234 0.04702 6.85568
f_ramb <- f_rses gam3 0.22273 0.03629 6.13725
f_ramb <= f fses gamé 0.07564 0.03750 2.01699
f famb <- f rses gam4 0.07564 0.03750 2.01699
f_famb <- f_fses gam3 0.22273 0.03629 6.13725
f_famb <= £ fiq gam2 0.32234 0.04702 6.85568
f_famb <- f_fpa gaml 0.17585 0.03508 5.01299
f_ramb <- £f_famb beta 0.11578 0.08390 1.38007
f_famb <= f_ramb beta 0.11578 0.08390 1.38007
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Error £ _ramb psi 0.22456 0.02971 7.55930
f_famb psi 0.22456 0.02971 7.55930
Exogenous f rpa 1.00000
f riq 1.00000
f rses 1.00000
f fpa 1.00000
f _fiq 1.00000
f_fses 1.00000
Error rea thetaea 0.30662 0.03726 8.22956
fea thetaea 0.30662 0.03726 8.22956
roa thetaoa 0.42295 0.03651 11.58311
foa thetaoa 0.42295 0.03651 11.58311
rpa errpal 0.30758 0.07511 4.09498
fpa errpa2 0.28834 0.07369 3.91289
riq erriql 0.26656 0.07389 3.60730
fiqg erriq2 0.15573 0.06700 2.32445
rses errsesl 0.11467 0.07267 1.57800
fses errses2 0.08814 0.07089 1.24333
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Figure 17.25 continued

Varl

f_rpa
f_rpa
f riq
f_fpa
f_fpa
f_fiq
f_rpa
f_rpa
f_rpa
f riq
f riq
f riq
f rses
f rses
f rses

Error
of

f ramb
rea
roa

Var2

f riq
f rses
f rses
f _fiq
f fses
f fses
f_fpa
£ fiq
f fses
f_fpa
£ fiq
f fses
f_fpa
£ fiq
f fses

Error
of

f famb
fea
foa

Covariances Among Exogenous Variables

Parameter

covl
cov2
cov3
covl
cov2
cov3
cov4
cov5
cové
cov5
cov’7
cov8
cové
cov8
cov9

Covariances Among Errors

Parameter

psil2
covea
covoa

Estimate

.26470
.00177
.31129
.26470
.00177
.31129
.15784
.11837
.06910
.11837
.43061
.24967
.06910
.24967
.30190

O OO0 O0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOo

Estimate

-0.00344
0.02160
0.11208

Standard
Error

.05442
.04996
.05057
.05442
.04996
.05057
.07872
.05447
.04996
.05447
.07258
.05060
.04996
.05060
.06362

O OO O0OO0OO0OO0OO0OO0OO0OO0OOoOOoOOoOOo

Standard
Error

0.04931
0.03144
0.03257

o

w R PR OODNMNEDNMDNDOGODOBMOOD

Value

.86370
.03533
.15553
.86370
.03533
.15553
.00521
.17325
.38303
.17325
.93255
.93420
.38303
.93420
.74578

Value

.06981
.68686
.44076

The test of Loehlin’s (1987) model 2 against model 1 yields a chi-square of 19.0697 — 12.0132 =
7.0565 with 15 degrees of freedom, which is clearly not significant. This indicates the restricted
model 2 fits at least as well as model 1. Schwarz’s Bayesian criterion (SBC) is also much lower
for model 2 (—143.2200) than for model 1 (—63.3356). Hence, model 2 seems preferable on both

substantive and statistical grounds.

A question of substantive interest is whether the friend’s socioeconomic status (SES) has a signifi-
cant direct influence on a boy’s ambition. This can be addressed by omitting the paths from f_fses to
f_ramb and from f_rses to f_famb designated by the parameter name gam4, yielding Loehlin’s (1987)

model 3:

title2 'Loehlin (1987) analysis: Model 3’;
data model3 (type=calismdl);
set model2;

if _name_ ='gamé’

do;

_name_='

_estim_=0;
end;

run;

proc tcalis corr data=aspire nobs=329

run;

then

r

inmodel=model3;
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The fit summary is displayed in Figure 17.26.

Figure 17.26 Career Aspiration Data: Fit Summary of Loehlin (1987) Model 3

Fit Summary

Modeling Info N Observations 329
N Variables 10
N Moments 55
N Parameters 26
N Active Constraints 0
Independence Model Chi-Square 872.0008
Independence Model Chi-Square DF 45
Absolute Index Fit Function 0.0702
Chi-Square 23.0365
Chi-Square DF 29
Pr > Chi-Square 0.7749
Z-Test of Wilson & Hilferty -0.7563
Hoelter Critical N 607
Root Mean Square Residual (RMSR) 0.0304
Standardized RMSR (SRMSR) 0.0304
Goodness of Fit Index (GFI) 0.9858
Parsimony Index Adjusted GFI (AGFI) 0.9731
Parsimonious GFI 0.6353
RMSEA Estimate 0.0000
RMSEA Lower 90% Confidence Limit .
RMSEA Upper 90% Confidence Limit 0.0295
Probability of Close Fit 0.9984
ECVI Estimate 0.2343
ECVI Lower 90% Confidence Limit .
ECVI Upper 90% Confidence Limit 0.2780
Akaike Information Criterion -34.9635
Bozdogan CAIC -174.0492
Schwarz Bayesian Criterion -145.0492
McDonald Centrality 1.0091
Incremental Index Bentler Comparative Fit Index 1.0000
Bentler-Bonett NFI 0.9736
Bentler-Bonett Non—-normed Index 1.0112
Bollen Normed Index Rhol 0.9590
Bollen Non—-normed Index Delta2 1.0071
James et al. Parsimonious NFI 0.6274

The chi-square value for testing model 3 versus model 2 is 23.0365 — 19.0697 = 3.9668 with 1
degree of freedom and a p-value of 0.0464. Although the parameter is of marginal significance, the
estimate in model 2 (0.0756) is small compared to the other coefficients, and SBC indicates that
model 3 is preferable to model 2.

Another important question is whether the reciprocal influences between the respondent’s and
friend’s ambitions are needed in the model. To test whether these paths are zero, set the param-
eter beta for the paths linking f_ramb and f_famb to zero to obtain Loehlin’s (1987) model 4:
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title2 ’'Loehlin (1987) analysis: Model 4';
data modeld (type=calismdl);

set model2;
if _name_='beta’ then
do;
_name_=' ’/;
_estim_=0;
end;
run;

proc tcalis corr data=aspire nobs=329 inmodel=model4;

run;

The fit summary is displayed in Figure 17.27, and the estimation results are

Figure 17.28.

Figure 17.27 Career Aspiration Data: Fit Summary of Loehlin (1987) Model 4
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Figure 17.28 Career Aspiration Data: Estimation Results of Loehlin (1987) Model 4

PATH List
Standard
Path Parameter Estimate Error t Value
rea <- f_ramb lambda 1.10505 0.06804 16.24157
roa <- f_ramb 1.00000
foa <- f_famb 1.00000
fea <- f_famb lambda 1.10505 0.06804 16.24157
rpa <- f_rpa 0.83700
riqg <= f riq 0.89400
rses <— f rses 0.94900
fses <- f fses 0.94900
figq <- £ fiq 0.89400
fpa <- f_fpa 0.83700
f_ramb <= f rpa gaml 0.17760 0.03610 4.91945
f_ramb <- f riq gam2 0.34856 0.04625 7.53618
f_ramb <- f_rses gam3 0.23834 0.03549 6.71576
f_ramb <= f fses gamé 0.10810 0.02992 3.61340
f_famb <- f_rses gam4 0.10810 0.02992 3.61340
f_famb <- f_fses gam3 0.23834 0.03549 6.71576
f_famb <= £ fiq gam2 0.34856 0.04625 7.53618
f_famb <- f_fpa gaml 0.17760 0.03610 4.91945
f_ramb <- £f_famb 0
f_famb <- f_ramb 0
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Error £ _ramb psi 0.22738 0.03140 7.24263
f_famb psi 0.22738 0.03140 7.24263
Exogenous f rpa 1.00000
f riq 1.00000
f rses 1.00000
f fpa 1.00000
f _fiq 1.00000
f_fses 1.00000
Error rea thetaea 0.30502 0.03728 8.18091
fea thetaea 0.30502 0.03728 8.18091
roa thetaoa 0.42429 0.03645 11.64071
foa thetaoa 0.42429 0.03645 11.64071
rpa errpal 0.31354 0.07543 4.15664
fpa errpa2 0.29051 0.07374 3.93945
riq erriql 0.29611 0.07299 4.05703
fiq erriq2 0.18181 0.06611 2.75034
rses errsesl 0.12320 0.07273 1.69400
fses errses2 0.09873 0.07109 1.38881
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Figure 17.28 continued

Covariances Among Exogenous Variables
Standard
Varl Var2 Parameter Estimate Error t Value
f rpa f riq covl 0.27241 0.05520 4.93523
f rpa f_rses cov2 0.00476 0.05032 0.09455
f riq f rses cov3 0.32463 0.05089 6.37870
f fpa f fiq covl 0.27241 0.05520 4.93523
f fpa f_fses cov2 0.00476 0.05032 0.09455
f_fiq f fses cov3 0.32463 0.05089 6.37870
f rpa f fpa cov4 0.16949 0.07863 2.15559
f rpa £ fiq cov5 0.13539 0.05407 2.50384
f_rpa f fses coveé 0.07362 0.05027 1.46453
f riq f_fpa cov5 0.13539 0.05407 2.50384
f riq £ fiq cov’7 0.46893 0.06980 6.71822
f riq f fses cov8 0.26289 0.05093 5.16164
f_rses f_fpa cové 0.07362 0.05027 1.46453
f_rses £ fiq cov8 0.26289 0.05093 5.16164
f rses f fses cov9 0.30880 0.06409 4.81849
Covariances Among Errors

Error Error Standard

of of Parameter Estimate Error t Value
f_ramb £_famb psil2 0.05479 0.02699 2.03009
rea fea covea 0.02127 0.03150 0.67534
roa foa covoa 0.11245 0.03258 3.45136

The chi-square value for testing model 4 versus model 2 is 20.9981 — 19.0697 = 1.9284 with 1
degree of freedom and a p-value of 0.1649. Hence, there is little evidence of reciprocal influence.

Loehlin’s (1987) model 2 has not only the direct paths connecting the latent ambition variables
f ramb and f_famb but also a covariance between the disturbance terms d_ramb and d_famb to allow
for other variables omitted from the model that might jointly influence the respondent and his friend.
To test the hypothesis that this covariance is zero, set the parameter psi12 to zero, yielding Loehlin’s
(1987) model 5:

title2 'Loehlin (1987) analysis: Model 5’;
data modelS5 (type=calismdl);

set model2;
if _name_='psil2’ then
do;
_name_=' '/ ;

_estim_=0;
end;
run;

proc tcalis corr data=aspire nobs=329 inmodel=model5;
run;
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The fit summary is displayed in Figure 17.29, and the estimation results are displayed in
Figure 17.30.

Figure 17.29 Career Aspiration Data: Fit Summary of Loehlin (1987) Model 5

Fit Summary

Modeling Info N Observations 329
N Variables 10
N Moments 55
N Parameters 26
N Active Constraints 0
Independence Model Chi-Square 872.0008
Independence Model Chi-Square DF 45
Absolute Index Fit Function 0.0582
Chi-Square 19.0745
Chi-Square DF 29
Pr > Chi-Square 0.9194
Z-Test of Wilson & Hilferty -1.4014
Hoelter Critical N 733
Root Mean Square Residual (RMSR) 0.0276
Standardized RMSR (SRMSR) 0.0276
Goodness of Fit Index (GFI) 0.9884
Parsimony Index Adjusted GFI (AGFI) 0.9780
Parsimonious GFI 0.6370
RMSEA Estimate 0.0000
RMSEA Lower 90% Confidence Limit .
RMSEA Upper 90% Confidence Limit 0.0152
Probability of Close Fit 0.9998
ECVI Estimate 0.2222
ECVI Lower 90% Confidence Limit .
ECVI Upper 90% Confidence Limit 0.2592
Akaike Information Criterion -38.9255
Bozdogan CAIC -178.0111
Schwarz Bayesian Criterion -149.0111
McDonald Centrality 1.0152
Incremental Index Bentler Comparative Fit Index .0000

1

Bentler—-Bonett NFI 0.9781
Bentler-Bonett Non-normed Index 1.0186
Bollen Normed Index Rhol 0.9661
Bollen Non—-normed Index Delta2 1.0118
James et al. Parsimonious NFI 0.6303
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Figure 17.30 Career Aspiration Data: Estimation Results of Loehlin (1987) Model 5

Path

rea <-— f ramb
roa <- f ramb
foa <-— f famb
fea <-— f famb
rpa <= f _rpa
rig <- f riq
rses <— f rses
fses <- f fses
fiq <- f fiq
fpa <- f_fpa
f ramb <- f_rpa
f ramb <- f riq
f ramb <— f rses
f ramb <- f fses
f famb <- f rses
f famb <-— f fses
f famb <= f fiq
f famb <- f_fpa
f_ramb <- f_famb
f famb <- f ramb
Variance
Type Variable
Error f_ramb

f famb
Exogenous f_rpa

f riq

f rses

f_fpa

f fiq

f fses
Error rea

fea

roa

foa

rpa

fpa

riq

fiq

rses

fses

PATH List
Parameter Estimate
lambda 1.10086

1.00000
1.00000
lambda 1.10086
0.83700
0.89400
0.94900
0.94900
0.89400
0.83700
gaml 0.17618
gam2 0.32351
gam3 0.22334
gam4 0.07698
gamé 0.07698
gam3 0.22334
gam2 0.32351
gaml 0.17618
beta 0.11074
beta 0.11074

Variance Parameters

Parameter Estimate
psi 0.22453
psi 0.22453
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
thetaea 0.30645
thetaea 0.30645
thetaoa 0.42304
thetaoa 0.42304
errpal 0.30781
errpa2 0.28837
erriql 0.26748
erriq2 0.15653
errsesl 0.11477
errses2 0.08832

Standard
Error

0.06836

0.06836

.03502
.04346
.03533
.03225
.03225
.03533
.04346
.03502
.04283
.04283

O O 0O O0OO0OO0OO0oOOoOOoOOo

Standard
Error

0.02973
0.02973

.03721
.03721
.03650
.03650
.07510
.07366
.07295
.06614
.07265
.07088

O OO O0OO0OO0OO0oOOoOOoOOo

le.

le6.
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[ee]
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Value

10408

10408

.03081
.44351
.32150
.38702
.38702
.32150
.44351
.03081
.58539
.58539
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.55201
.55201

.23647
.23647
11.
11.
.09880
.91467
.66672
.36682
.57975
.24608

58877
58877
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Figure 17.30 continued

Covariances Among Exogenous Variables
Standard
Varl Var2 Parameter Estimate Error t Value
f_rpa f riq covl 0.26494 0.05436 4.87395
f_rpa f_rses cov2 0.00185 0.04995 0.03696
f riq f rses cov3 0.31164 0.05039 6.18460
f_fpa f fiq covl 0.26494 0.05436 4.87395
f_fpa f_fses cov2 0.00185 0.04995 0.03696
f _fiq f fses cov3 0.31164 0.05039 6.18460
f_rpa f_fpa cov4 0.15828 0.07846 2.01729
f_rpa f fiq cov5 0.11895 0.05383 2.20978
f_rpa f fses cové 0.06924 0.04993 1.38664
f riq f_fpa cov5 0.11895 0.05383 2.20978
f riq f fiq cov7 0.43180 0.07084 6.09540
f riq f fses cov8 0.25004 0.05039 4.96207
f_rses f_fpa cové 0.06924 0.04993 1.38664
f rses f fiq cov8 0.25004 0.05039 4.96207
f rses f fses cov9 0.30203 0.06360 4.74852
Covariances Among Errors

Error Error Standard

of of Parameter Estimate Error t Value
f_ramb f_famb 0

rea fea covea 0.02120 0.03094 0.68516
roa foa covoa 0.11197 0.03254 3.44068

The chi-square value for testing model 5 versus model 2 is 19.0745 — 19.0697 = 0.0048 with 1 de-
gree of freedom. This test statistic is insignificant. Omitting the covariance between the disturbance
terms, therefore, causes hardly any deterioration in the fit of the model.

These data fail to provide evidence of direct reciprocal influence between the respondent’s and
friend’s ambitions or of a covariance between the disturbance terms when these hypotheses are
considered separately. Notice, however, that the covariance psi12 between the disturbance terms
increases from —0.003344 for model 2 to 0.05479 for model 4. Before you conclude that all of
these paths can be omitted from the model, it is important to test both hypotheses together by
setting both beta and psi12 to zero as in Loehlin’s (1987) model 7:
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title2 ’'Loehlin (1987) analysis: Model 7';
data model7 (type=calismdl);

set model2;

if _name ='psil2’ |_name_='beta’ then

do;
_name_=' ’/;
_estim_=0;
end;
run;

proc tcalis corr data=aspire nobs=329 inmodel=model7;

run;

The fit summary is displayed in Figure 17.31, and the estimation results are

Figure 17.32.

Figure 17.31 Career Aspiration Data: Fit Summary of Loehlin (1987) Model 7

displayed in

Modeling Info

Absolute Index

Parsimony Index

Incremental Index

Fit Summary

Observations

Variables

Moments

Parameters

Active Constraints
Independence Model Chi-Square
Independence Model Chi-Square DF
Fit Function

Chi-Square

Chi-Square DF

Pr > Chi-Square

Z-Test of Wilson & Hilferty
Hoelter Critical N

Root Mean Square Residual (RMSR)
Standardized RMSR (SRMSR)
Goodness of Fit Index (GFI)
Adjusted GFI (AGFI)

Parsimonious GFI

RMSEA Estimate

RMSEA Lower 90% Confidence Limit
RMSEA Upper 90% Confidence Limit
Probability of Close Fit

ECVI Estimate

ECVI Lower 90% Confidence Limit
ECVI Upper 90% Confidence Limit
Akaike Information Criterion
Bozdogan CAIC

Schwarz Bayesian Criterion
McDonald Centrality

Bentler Comparative Fit Index
Bentler-Bonett NFI
Bentler—-Bonett Non—-normed Index
Bollen Normed Index Rhol

Bollen Non—-normed Index Delta2
James et al. Parsimonious NFI

22222
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45

.0773
25.

3466
30

.7080
.5487

568

.0363
.0363
.9846
.9718
.6564
.0000

.0326
.9975
.2350

.2815
.6534
.5351
.5351
.0071
.0000
.9709
.0084
.9564
.0055
.6473
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Figure 17.32 Career Aspiration Data: Estimation Results of Loehlin (1987) Model 7

PATH List
Standard
Path Parameter Estimate Error t Value
rea <- f_ramb lambda 1.10371 0.06784 16.27015
roa <- f_ramb 1.00000
foa <- f_famb 1.00000
fea <- f_famb lambda 1.10371 0.06784 16.27015
rpa <- f_rpa 0.83700
riqg <= f riq 0.89400
rses <— f rses 0.94900
fses <- f fses 0.94900
figq <- £ fiq 0.89400
fpa <- f_fpa 0.83700
f_ramb <= f _rpa gaml 0.17653 0.03604 4.89810
f ramb <- f riq gam2 0.35727 0.04609 7.75204
f_ramb <- f_rses gam3 0.24187 0.03628 6.66710
f_ramb <= f fses gamé 0.11087 0.03056 3.62795
f famb <- f rses gam4 0.11087 0.03056 3.62795
f_famb <- f_fses gam3 0.24187 0.03628 6.66710
f_famb <= £ fiq gam2 0.35727 0.04609 7.75204
f_famb <- f_fpa gaml 0.17653 0.03604 4.89810
f_ramb <- £f_famb 0
f_famb <- f_ramb 0
Variance Parameters
Variance Standard
Type Variable Parameter Estimate Error t Value
Error £ _ramb psi 0.21011 0.02940 7.14704
f_famb psi 0.21011 0.02940 7.14704
Exogenous f rpa 1.00000
f riq 1.00000
f rses 1.00000
f fpa 1.00000
f _fiq 1.00000
f_fses 1.00000
Error rea thetaea 0.31633 0.03648 8.67106
fea thetaea 0.31633 0.03648 8.67106
roa thetaoa 0.42656 0.03610 11.81508
foa thetaoa 0.42656 0.03610 11.81508
rpa errpal 0.31329 0.07538 4.15589
fpa errpa2 0.29286 0.07389 3.96366
riq erriql 0.30776 0.07307 4.21157
fiq erriq2 0.19193 0.06613 2.90250
rses errsesl 0.14303 0.07313 1.95574
fses errses2 0.11804 0.07147 1.65171
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Figure 17.32 continued

Covariances Among Exogenous Variables
Standard
Varl Var2 Parameter Estimate Error t Value
f rpa f riq covl 0.27533 0.05552 4.95900
f_rpa f rses cov2 0.00611 0.05085 0.12020
f riq f rses cov3 0.33510 0.05150 6.50648
f fpa f fiq covl 0.27533 0.05552 4.95900
f fpa f_fses cov2 0.00611 0.05085 0.12020
f_fiq f fses cov3 0.33510 0.05150 6.50648
f rpa f fpa cov4 0.17099 0.07872 2.17210
f rpa £ fiq cov5 0.13859 0.05431 2.55174
f_rpa f fses coveé 0.07563 0.05077 1.48956
f riq f_fpa cov5 0.13859 0.05431 2.55174
f riq £ fiq cov’7 0.48105 0.06993 6.87858
f riq f fses cov8 0.27235 0.05157 5.28154
f_rses f_fpa cové 0.07563 0.05077 1.48956
f_rses £ fiq cov8 0.27235 0.05157 5.28154
f rses f fses cov9 0.32046 0.06517 4.91719
Covariances Among Errors

Error Error Standard

of of Parameter Estimate Error t Value
f ramb f famb 0

rea fea covea 0.04535 0.02918 1.55444
roa foa covoa 0.12085 0.03214 3.75976

When model 7 is tested against models 2, 4, and 5, the p-values are respectively 0.0433, 0.0370,
and 0.0123, indicating that the combined effect of the reciprocal influence and the covariance of the
disturbance terms is statistically significant. Thus, the hypothesis tests indicate that it is acceptable
to omit either the reciprocal influences or the covariance of the disturbances, but not both.

It is also of interest to test the covariances between the error terms for educational (covea) and
occupational aspiration (covoa), since these terms are omitted from Joreskog and Sérbom’s (1988)
models. Constraining covea and covoa to zero produces Loehlin’s (1987) model 6:

title2 'Loehlin (1987) analysis: Model 6’;
data modelé6 (type=calismdl);

set model2;
if _name_='covea’ |_name_ ='covoa’ then
do;
_name_=' '/ ;

_estim_=0;
end;
run;

proc tcalis corr data=aspire nobs=329 inmodel=model6;
run;
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The fit summary is displayed in Figure 17.33.

Figure 17.33 Career Aspiration Data: Loehlin (1987) Model 6

Fit Summary

Modeling Info N Observations 329
N Variables 10
N Moments 55
N Parameters 25
N Active Constraints 0
Independence Model Chi-Square 872.0008
Independence Model Chi-Square DF 45
Absolute Index Fit Function 0.1020
Chi-Square 33.4475
Chi-Square DF 30
Pr > Chi-Square 0.3035
Z-Test of Wilson & Hilferty 0.5151
Hoelter Critical N 431
Root Mean Square Residual (RMSR) 0.0306
Standardized RMSR (SRMSR) 0.0306
Goodness of Fit Index (GFI) 0.9802
Parsimony Index Adjusted GFI (AGFI) 0.9638
Parsimonious GFI 0.6535
RMSEA Estimate 0.0187
RMSEA Lower 90% Confidence Limit .
RMSEA Upper 90% Confidence Limit 0.0471
Probability of Close Fit 0.9686
ECVI Estimate 0.2597
ECVI Lower 90% Confidence Limit .
ECVI Upper 90% Confidence Limit 0.3164
Akaike Information Criterion —-26.5525
Bozdogan CAIC -170.4342
Schwarz Bayesian Criterion -140.4342
McDonald Centrality 0.9948
Incremental Index Bentler Comparative Fit Index 0.9958
Bentler-Bonett NFI 0.9616
Bentler-Bonett Non—-normed Index 0.9937
Bollen Normed Index Rhol 0.9425
Bollen Non—-normed Index Delta2 0.9959
James et al. Parsimonious NFI 0.6411

The chi-square value for testing model 6 versus model 2 is 33.4476 — 19.0697 = 14.3779 with
2 degrees of freedom and a p-value of 0.0008, indicating that there is considerable evidence of
correlation between the error terms.

The following table summarizes the results from Loehlin’s (1987) seven models.
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Model P df p-value SBC

1. Full model 12.0132 13  0.5266  —63.3356
2. Equality constraints 19.0697 28 0.8960 —143.2200
3. No SES path 23.0365 29 0.7749 —145.0492
4. No reciprocal influence 20.9981 29 0.8592 —147.0876
5. No disturbance correlation 19.0745 29 0.9194 —149.0111
6. No error correlation 33.4475 30 0.3035 —140.4342
7. Constraints from both 4 and 5 25.3466 30 0.7080 —148.5351

For comparing models, you can use a DATA step to compute the differences of the chi-square
statistics and p-values:

data _null_;
array achisq[7] _temporary
(12.0132 19.0697 23.0365 20.9981 19.0745 33.4475 25.3466);
array adf[7] _temporary_
(13 28 29 29 29 30 30);
retain indent 16;
file print;
input ho ha @Q@;
chisq = achisq[ho] - achisqg[ha];
df = adf[ho] - adf[ha];
P = 1 - probchi( chisq, df);

if n_ =1 then put
/ +indent 'model comparison chixx2 df p-value’
/ +indent ’ i
put +indent +3 ho ’ versus ' ha @18 +indent chisq 8.4 df 5. p 9.4;
datalines;

21 3 2 4 2 52 7 2 7 4 75 6 2

4

The DATA step displays the table in Figure 17.34.

Figure 17.34 Career Aspiration Data: Model Comparisons

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 6

model comparison chixx2 df p-value

2 versus 1 7.0565 15 0.9561
3 versus 2 3.9668 1 0.0464
4 versus 2 1.9284 1 0.1649
5 wversus 2 0.0048 1 0.9448
7 versus 2 6.2769 2 0.0433
7 versus 4 4.3485 1 0.0370
7 versus 5 6.2721 1 0.0123
6 versus 2 14.3778 2 0.0008

Although none of the seven models can be rejected when tested against the alternative of an unre-
stricted covariance matrix, the model comparisons make it clear that there are important differences
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among the models. Schwarz’s Bayesian criterion indicates model 5 as the model of choice. The
constraints added to model 5 in model 7 can be rejected (p=0.0123), while model 5 cannot be
rejected when tested against the less constrained model 2 (p=0.9448). Hence, among the small
number of models considered, model 5 has strong statistical support. However, as Loehlin (1987,
p. 106) points out, many other models for these data could be constructed. Further analysis should
consider, in addition to simple modifications of the models, the possibility that more than one friend
could influence a boy’s aspirations, and that a boy’s ambition might have some effect on his choice
of friends. Pursuing such theories would be statistically challenging.
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