| The POWER Procedure |
The power computing formula is based on Shieh and O’Brien (1998), Shieh (2000), and Self, Mauritsen, and Ohara (1992).
Define the following notation for a logistic regression analysis:
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
The logistic regression model is
![]() |
The hypothesis test of the first predictor variable is
![]() |
![]() |
|||
![]() |
![]() |
Assuming independence among all predictor variables,
is defined as follows:
![]() |
where
is calculated according to the following algorithm:
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
![]() |
|||||
This algorithm causes the elements of the transposed vector
to vary fastest to slowest from right to left as
increases, as shown in the following table of
values:
![]() |
The
values are determined in a completely analogous manner.
The discretization is handled as follows (unless the distribution is ordinal, or binomial with sample size parameter at least as large as requested number of bins): for
, generate
quantiles at evenly spaced probability values such that each such quantile is at the midpoint of a bin with probability
. In other words,
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
The primary noncentrality for the power computation is
![]() |
where
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() |
![]() |
where
![]() |
![]() |
|||
![]() |
![]() |
The power is
![]() |
Alternative input parameterizations are handled by the following transformations:
![]() |
![]() |
|||
![]() |
![]() |
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.