
SAS® Scalable Performance
Data Server® 4.5
User’s Guide

TW10910_colortitlepg.indd 1 5/26/09 3:23:52 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009. SAS® Scalable
Performance Data Server® 4.5: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® Scalable Performance Data Server® 4.5: User’s Guide

Copyright © 2009, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, June 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

PART 1 Product Notes 1

Chapter 1 • SAS Scalable Performance Data (SPD) Server Product Notes 3
Overview . 3
What's New in SPD Server 4.5? . 3
SPD Server 4.5 Platform Support Changes . 4

PART 2 SPD Server Usage 5

Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview . 7
Introduction to SAS Scalable Performance Data (SPD) Server . 7
The SPD Server Client/Server Model . 8
Accessing SPD Server Using SAS . 11
Securing SAS Data . 13
Organizing SAS Data . 14
SPD Server Performance Enhancements . 16
SPD Server Extensions to Base SAS . 17
Using SPD Server with Data Warehousing . 17

Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server 19
Introduction . 19
SAS and SPD Server Tables . 20
SPD ServerResource Security . 21
Accessing SPD Server from a SAS Client . 22
SPD Server Table Options . 26
SPD Server Macro Variables . 27

Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD)
Server Tables . 31

Introduction . 31
Using a LIBNAME Statement to Access SPD Server . 32
Managing Large SPD Server Files . 33
Migrating Tables between SAS and SPD Server . 39
The SQL Pass-Through Facility . 40
Creating a New Table . 44

Chapter 5 • Indexing, Sorting, and Manipulating SAS Scalable Performance
Data (SPD) Server Tables . 47

Introduction . 47
Indexing a Table . 47
Creating SPD Server Indexes Examples . 48

Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients 53
Overview . 53
Using Open Database Connectivity (ODBC) to Access SPD Server Tables 54
Using JDBC (Java) to Access SPD Server Tables . 59
Using htmSQL to Access SPD Server Tables . 62

Using SQL C API to Access SPD Server Tables . 64

Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables 65
Introduction to Dynamic Cluster Tables . 65
Dynamic Cluster Table Structure . 66
Benefits of Dynamic Cluster Tables . 67
Creating and Controlling Dynamic Cluster Tables . 68
Dynamic Cluster BY Clause Optimization . 76
Member Table Requirements for Creating Dynamic Cluster Tables 79
Querying and Reading Member Tables in a Dynamic Cluster . 82
Unsupported Features in Dynamic Cluster Tables . 83
Dynamic Cluster Table Examples . 84

PART 3 SPD Server SQL Features 91

Chapter 8 • SPD Server SQL Features . 93
SPD Server SQL Planner . 94
Connecting to the SPD Server SQL Engine . 95
Specifying SPD Server SQL Planner Options . 97
Important SPD Server SQL Planner Options . 98
Parallel Join Facility . 105
Parallel Group-By Facility . 108
Parallel Group-By SQL Options . 112
SPD Server STARJOIN Facility . 113
STARJOIN Options . 114
STARJOIN Facility Reference . 115
SPD Server Index Scan . 127
Optimizing Correlated Queries . 130
Correlated Query Options . 130
Materialized Views . 132
SPD Server SQL Extensions . 134
Differences between SAS SQL and SPD Server SQL . 141

PART 4 SPD Server SQL Reference 143

Chapter 9 • SPD Server SQL Syntax Reference Guide . 145
Overview . 146
Document Conventions . 146
SQL Syntax Definitions . 147
SQL Statements . 148
NEW SQL Statements . 151
SQL Building Blocks . 152

Chapter 10 • SAS Scalable Performance Data (SPD) Server SQL Access
Library API Reference . 159

Introduction . 159
Overview of SPQL Usage . 160
SPQL API Description . 160
SPQL API Functions . 160
SPQL Function Return Codes . 164

iv Contents

PART 5 SPD Server Reference 165

Chapter 11 • Optimizing SPD Server Performance . 167
SPD Server Performance and Usage Tips . 168
Symmetric Multiple Processor (SMP) Utilization . 168
File System Performance Concepts . 169
LIBNAME Domains . 171
Loading Data into an SPD Server Host . 172
Table Loading Techniques . 173
Loading Indexes in Parallel . 174
Truncating Tables . 176
Optimizing WHERE clauses . 177
SPD Server Indexing . 178
WHERE Clause Planner . 181
How to Affect the WHERE Planner . 187
Identical Parallel WHERE Clause Subsetting Results . 189
WHERE Clause Examples . 191
Server-Side Sorting . 196

Chapter 12 • SPD Server Macro Variables . 199
Introduction . 200
Variable for Compatibility with the Base SAS Engine . 200
Variables for Miscellaneous Functions . 201
Variables for Sorts . 206
Variables for WHERE Clause Evaluations . 208
Variables That Affect Disk Space . 214
Variables To Enhance Performance . 217
Variables for a Client and a Server Running on the Same UNIX Machine 219

Chapter 13 • SPD Server LIBNAME Options . 221
Introduction . 222
Options to Locate an SPD Server Host . 222
Options to Identify the SPD Server Client . 224
Options to Specify Implicit SQL Pass-Through . 227
Options to Specify File Paths for Table Storage . 229
Options for Access Control Lists (ACLs) . 231
Options for a Client and Server Running on the Same UNIX Machine 232
Options for Other Functions . 233

Chapter 14 • SPD Server Table Options . 245
Introduction . 245
Option for Compatibility with Base SAS Software . 246
Options That Affect Disk Space . 247
Options to Enhance Performance . 250
Option to Test Performance . 252
Options for WHERE Clause Evaluations . 254
Options for Other Functions . 258
Options for Security . 267

Chapter 15 • SPD Server Formats and Informats . 269
Introduction . 269
Formats . 269
User-Defined Formats Example . 271
Informats . 275

Chapter 16 • SPD Server NLS Support . 277

Contents v

Overview of NLS . 277
Character Encoding Overview . 278
Moving Data across Environments with Different Encodings 281
Base SAS Encoding Behavior . 282
Setting the Encoding for Base SAS Sessions . 283
Changing the Encoding for Base SAS Sessions . 284
NLS Support in SPD Server . 285

PART 6 Appendix 289

Chapter 17 • SPD Server Frequently Asked Questions . 291
SPD Server Frequently Asked Questions . 292

vi Contents

Part 1

Product Notes

Chapter 1
SAS Scalable Performance Data (SPD) Server Product Notes 3

1

2

Chapter 1
SAS Scalable Performance Data
(SPD) Server Product Notes

Overview . 3

What's New in SPD Server 4.5? . 3
Overview of SPD Server 4.5 . 3

SPD Server 4.5 Platform Support Changes . 4

Overview
This document summarizes enhancements and changes in SPD Server 4.5.

• The SPD Server 4.5 installation includes client modules that are compatible with SAS
9.2.

• SPD Server 4.5 is not compatible with SAS versions earlier than SAS 9.2. Refer to the
appropriate SPD Server UNIX or Windows installation guide for more information
about SAS software requirements for use with SPD Server 4.5.

What's New in SPD Server 4.5?

Overview of SPD Server 4.5
The operating system requirements for SPD Server 4.5 have changed from the operating
system requirements for SPD Server 4.4. For more detailed information about operating
system requirements for SPD Server 4.5, see the Chapter 2, "SPD Server Pre-Installation
and System Requirements Guide," in the SAS Scalable Performance Data (SPD) Server
4.5: Administrator's Guide.

• SPD Audit logging has been enhanced to include the user LIBNAME in the proxy and
SQL audit logs. For additional information, see the section on SPD Server Auditing in
Chapter 14, ACL Security Overview, of the SAS Scalable Performance Data (SPD)
Server 4.5: Administrator's Guide.

• You can now specify recycle times for the SPD Server Name Server log and the SPD
Server snet log. For additional information about configuring SPD Server log cycle
times for Windows installations, see the section, "Configuring SPD Server Software
on your Windows Host" in Chapter 4, "SPD Server Windows Installation Guide," of
the SAS Scalable Performance Data (SPD) Server 4.5: Administrator's Guide. For

3

additional information about configuring SPD Server log cycle times for UNIX
installations, see "Configuring SPD Server Host Software for Your Site" in Chapter 3,
"SPD Server UNIX Installation Guide," of the SAS Scalable Performance Data (SPD)
Server 4.5: Administrator's Guide.

• SPD Server now supports user formats with the put() function that are greater than 8
characters in length. An SPD Server host can read user format catalog files that were
created by SAS running on Windows, or on the same machine as the SPD Server host.
The spdsls list utility has been enhanced to add a -verbose option. The -verbose
option provides information such as the number of observations, observation length,
index segment size, partition size, and whether the table is compressed, encrypted, or
is a member of a cluster. For more information about SPD Server list utilities, see "SPD
Server Table List Utility Spdsls," in Chapter 18 of the SAS Scalable Performance Data
(SPD) Server 4.5: Administrator's Guide.

• SAS implicit pass-through SQL now permits SQL queries to SPD Server that include
supported SPD Server functions. contains a section, Chapter 8 of the SAS Scalable
Performance Data (SPD) Server 4.5: User's Guide, "SPD Server SQL Features"
contains a section “Differences between SAS SQL and SPD Server SQL ” on page
141that lists the functions that SPD Server supports via implicit pass-through SQL.

• The installation and delivery of the SPD Server 4.5 client components for SAS is now
part of your SAS installation. For more detailed information about installing SPD
Server 4.5 on a Windows platform, see Chapter 4, "SPD Server Windows Installation
Guide," of the SAS Scalable Performance Data (SPD) Server 4.5: Administrator's
Guide. For more detailed information about installing SPD Server 4.5 on a UNIX
platform, see Chapter 3, "SPD Server UNIX Installation Guide," of the SAS Scalable
Performance Data (SPD) Server 4.5: Administrator's Guide.

• The installation and delivery of SAS Management Console components for SPD Server
4.5 is now part of your SAS Management Console installation. For more detailed
information about installing SAS Management Console components for SPD Server
4.5 on a Windows platform, see "Before You Install: Precautions and Required
Permissions" in Chapter 4, "SPD Server Windows Installation Guide" of the SAS
Scalable Performance Data (SPD) Server 4.5: Administrator's Guide. For more
detailed information about installing SAS Management Console components for SPD
Server 4.5 on a UNIX platform, see, " Before You Install: Precautions and Required
Permissions," in Chapter 3, "SPD Server UNIX Installation Guide" of the SAS Scalable
Performance Data (SPD) Server 4.5: Administrator's Guide.

SPD Server 4.5 Platform Support Changes
SPD Server 4.5 now supports Linux x64 platform.

4 Chapter 1 • SAS Scalable Performance Data (SPD) Server Product Notes

Part 2

SPD Server Usage

Chapter 2
SAS Scalable Performance Data (SPD) Server Overview 7

Chapter 3
Connecting to SAS Scalable Performance Data (SPD) Server 19

Chapter 4
Accessing and Creating SAS Scalable Performance Data (SPD) Server
Tables . 31

Chapter 5
Indexing, Sorting, and Manipulating SAS Scalable Performance Data
(SPD) Server Tables . 47

Chapter 6
Using SAS Scalable Performance Data (SPD) Server with Other
Clients . 53

Chapter 7
SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables
. 65

5

6

Chapter 2
SAS Scalable Performance Data
(SPD) Server Overview

Introduction to SAS Scalable Performance Data (SPD) Server 7

The SPD Server Client/Server Model . 8
Overview of the Client/Server Model . 8
Symmetric Multi-Processor Hosts . 9
SPD Server Host Services for Clients . 9

Accessing SPD Server Using SAS . 11
SQL Pass-Through Facility . 11
LIBNAME Access . 12
SPD Server Host Name Server . 12
Specifying the Port Address for the Name Server . 13

Securing SAS Data . 13
LIBNAME Domain Registration . 13
ACL File Security . 13

Organizing SAS Data . 14
SPD Server Tables . 14
SPD Server Component Files . 14
SPD Server Table Indexes . 16

SPD Server Performance Enhancements . 16
SPD Server Pass-Through SQL Enhancements . 16
Implicit and Explicit Server Sorts . 16
Modified SAS Heapsort . 16
Indexed Parallel Table Scan . 16
Improved Table Appends . 17

SPD Server Extensions to Base SAS . 17

Using SPD Server with Data Warehousing . 17

Introduction to SAS Scalable Performance Data
(SPD) Server

SAS Scalable Performance Data (SPD) Server software is designed for high-performance
data delivery. Its primary function is to provide user access to SAS data for intensive
processing (queries and sorts) on the host server machine. When client workstations from
varying operating platforms send processing requests to an SPD Server host, the host
returns results in the format required by each client workstation. SPD Server uses the power

7

of parallel processing to exploit the threading capabilities of servers with multiple
processors.

SPD Server executes threads, units of processing, in parallel on an SPD Server host. The
software tasks are performed in conjunction with an operating system that enables threads
to execute on any of the machine's available processors. A specialized machine and
operating system are important processing partners, but SPD Server's power is derived
from the software architecture that enable it to rapidly and efficiently process SAS data in
concurrent parallel threads on multiple processors .

SPD Server is the high-speed processing tool among SAS products. SPD 4.5 provides on-
disk structures that are compatible with SAS 9 and the large table capacities that it supports.
Enterprise-wide data mining often creates immense tables. In order to generate business
intelligence quickly, the ability to update tables that contain billions of rows is more
important than ever. The cluster table structure provides a new foundation for the next
generation of SAS data storage. Previous versions of SPD Server were based on 32-bit
architecture that supported just over 2 billion rows and 32,768 columns. SPD Server is
based on a 64-Bit architecture which supports tables with over nine quintillion rows and
over 2 billion columns.

SPD Server 4.5 operates on computers running SAS 9.2 or later. PC users that do not use
SAS can still use SPD Server. Information about connecting to SPD Server with Other
Clients is found in “Using SAS Scalable Performance Data (SPD) Server with Other
Clients” on page 53. SAS users can access SPD Server either by using SQL pass-through
or by using SAS language.

Syntax Conventions: SPD Server software supports both SAS users and non-SAS users.
The SPD Server document uses common terminology that both audiences should
understand. In the SPD Server documentation, SAS data sets are referred to as tables, SAS
variables are referred to as columns, and SAS observations are referred to as rows. The
SPD Server product is referred to as SPD Server or the software, depending on the context
of the documentation.

The SPD Server Client/Server Model

Overview of the Client/Server Model
SPD Server software divides SAS processing loads between the client and server. The
Figure 2.1 on page 9 diagram shows a simple client/server topology. The server hosts
multiple concurrent clients while performing the heaviest processing tasks. Typical clients
are desktop PCs or low-end UNIX workstations running front-end software. The front-end
application sends the client's data requests over the network to the server and processes the
information that the server returns.

You can create one or more SPD Servers on the host server machine. When an SPD Server
host receives a client's data request, it performs some action on behalf of the client. The
action varies with the request received.

Where does the user fit within in the SPD Server Client/Server model? Users initiate SPD
Server client sessions. In this documentation, the term 'user' refers to the operator of an
SPD Server client.

8 Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview

Figure 2.1 The SPD Server Client/Server Model

Symmetric Multi-Processor Hosts
SPD Server host machines use operating systems that can process concurrent threads in
parallel on multiple processors. SPD Server exploits symmetric multiprocessing (SMP)
hardware and software architecture.

The number of processors on an SMP server varies by manufacturer and model. The
operating system of the machine must also support the parallel processing. Operating
systems which contain a threaded kernel enjoy enhanced performance because the threaded
kernel prevents contention issues among competing threads in real time. Synergy between
processors and threads allows SPD Server to scale processing performance. The scalability,
in turn, significantly improves the speed of SPD Server table creates, appends, scans,
queries, and sorts.

SPD Server Host Services for Clients
SPD Server hosts provide multiple services to SPD Server clients:

• Access to data stores SPD Server offers concurrent read access and retrieval of SAS
data.

• High-speed data server SPD Server manages and processes massive SAS tables.

• Offloads heavy processing work SPD Server divides the labor. The Server process
retrieves, sorts, and subsets SAS data. A client process reviews and analyzes the data
that the Server returns.

SPD Server Host Services for Clients 9

• Embellishes client hardware SPD Server host machines are able to use the computing
hardware resources that are required to process large tables efficiently and rapidly.

• Reduces network traffic SPD Servers read, sort, and subset entire SAS tables and then
return answer sets. A query subset replaces large file downloads to the client machine.
SPD Server also offers a common storage facility. Multiple client users can use the
same SAS data on the server without having to each transfer the SAS data to their
workstations.

• Provides multi-platform support SPD Server allows clients to share SAS data across
computing platforms with other SAS users.

Table 2.1 SPD Server Features

SPD Server Feature

SPD Server

Client Action

SPD Server

Host Response

Support for Gigabytes of data The SPD Server client inputs
existing SAS tables with a PROC
COPY statement or creates an SPD
Server table using a SAS DATA step
or procedure. SPD Server clients can
also use SQL pass-through
CREATE, COPY, or LOAD
statements to input SAS tables.

The SPD Server host creates
component files that consist of one
or more physical partition files. The
server stores the physical partition
files in one or more device /
directory paths.

Scalable Symmetric Multiple
Processor (SMP) Support

The SPD Server client runs SAS
procedures and SQL pass-through
syntax to read, sort, index, or query
an SPD Server table.

The SPD Server host uses its
threaded operating system to
perform concurrent processing tasks
distributed across multiple
processors.

Selective Parallel Queries The SPD Server client uses
WHERE-clause or SQL SELECT
syntax. Pass-through SQL, PROC
SQL, and non-SAS WHERE
alternatives are supported.

The SPD Server host supports and
subsets SPD Server tables, and then
delivers query answer sets to clients.

Parallel Loads The SPD Server client runs SAS
procedures with LOAD or COPY to
store SAS data and indexes.

The SPD Server host uses multiple
threads to load and store tables and
indexes.

Parallel Indexes The SPD Server client creates table
indexes using a DATA step or the
DATASETS procedure with an
INDEX option, or pass-through
SQL with the LOAD or COPY
command.

The SPD Server host creates SPD
Server table indexes in parallel.

SAS Data Security The SPD Server client accesses the
SPD Server host using SQL pass-
through, a LIBNAME statement, or
a non-SAS alternative connection.

The SPD Server host secures SPD
Server files at the LIBNAME
domain and / or table, column, and
row level.

10 Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview

Accessing SPD Server Using SAS
You begin an SPD Server session by starting your SPD Server client. There are two ways
to start your SPD Server client session. You can use SQL pass-through commands to start
your SPD Server client session, or you can use a LIBNAME statement to start your SPD
Server client session. Both methods use the SASSPDS engine and initiate communication
between the SPD Server client machine and SPD Server host.

SQL Pass-Through Facility
SPD Server can use SQL pass-through commands. The SPD Server host can perform
complete SQL-expression evaluation. SPD Server also supports nested SQL pass-through
commands. Nested SQL pass-through commands permit you to connect to other SPD
Server hosts while you are still connected to your SPD Server host. You can use nested
pass-through commands to distribute simultaneous SQL queries across multiple SPD
Server hosts on your network.

The SQL Pass-Through Facility can be accessed with or without SAS syntax and
applications. You can use SAS to connect to an SPD Server host by using pass-through
syntax from PROC SQL or from other SQL-aware SAS applications. The chapter on
“Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables” on page
31 contains more detailed information about the SPD Server Pass-Through Facility and
provides examples of the syntax.

Figure 2.2 SPD Server Client Access to SPD Server Host Using SQL Pass-Through and SAS CONNECT

SQL Pass-Through Facility 11

LIBNAME Access
SAS users can initiate a client session by issuing a LIBNAME statement using the engine
SASSPDS. LIBNAME access is illustrated in Figure 1.3. The documentation chapter on
“Connecting to SAS Scalable Performance Data (SPD) Server” on page 19 explains the
mechanics of LIBNAME access to the engine and SPD Server LIBNAME options.

Figure 2.3 SPD Server Client (SAS User) Access to SPD Server Host Using a LIBNAME Statement

SPD Server Host Name Server
Distributed computing can enrich user resources, but it has an inherent problem. To connect
to an SPD Server, you must know its location within your network. Instead of requiring
users to memorize long paths or IP addresses, SPD Server software uses a specialized server
called a name server. The SPD Server Name Server locates active SPD Server hosts on
your network. A name server recognizes active SPD Server machines because all the SPD
Servers 'register' with the name server as they come up and contact the host machine.

The name server keeps network addresses and a list of the LIBNAME domains for each
SPD Server host. What is an SPD Server LIBNAME domain? An SPD Server LIBNAME
domain is a logical entity that SPD Server creates. A LIBNAME domain maintains domain
attributes such as the library name, owner, and contents. Whenever you use a LIBNAME
statement to specify a LIBNAME domain, a name server can determine the correct
directory path to the SPD Server data library and connect your SPD Server client to the
SPD Server host for that domain.

12 Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview

Specifying the Port Address for the Name Server
SPD Server clients use port addressing to locate SPD name servers. SPD Server
administrators must assign a port address to a name server. Most UNIX system clients use
their local /etc/services file to register port assignments. The service name for an
SPD Server Name Server in an /etc/services file must be SPDSNAME. PC clients
use services files to register port assignments. The services files on PC clients vary
according to the software that the PC network uses.

When a client SPD Server application issues a LIBNAME statement that does not contain
the port address of the name server, SPD Server checks the services file for the SPDSNAME
entry and the port address. Registering the name server port assignment in your client's
network services file relieves you from the responsibility of coding name server port
numbers when you write SAS jobs. For examples of using a LIBNAME statement to
connect, see “LIBNAME Example Statements ” on page 26.

Securing SAS Data

LIBNAME Domain Registration
The name server helps SPD Server clients locate and connect to SPD Server hosts. The
name server also controls access to the SPD Server LIBNAME domains. How does the
name server get domain information? The SPD Server administrator defines LIBNAME
domains in an SPD Server LIBNAME parameter file.

When an SPD Server administrator brings up a server on the host machine, SPD Server
reads the spdssrv.parm parameter file and registers the domains that are listed in the
parameter file with the name server. The name server remembers which SPD Server host
or hosts have access to a given LIBNAME domain. If you want to specify a LIBNAME
domain, you can do so using a LIBNAME statement or a pass-through SQL CONNECT
statement. Your SPD Server administrator can provide you with a list of the LIBNAME
domains that are mapped to your SPD Server host machine.

ACL File Security
SPD Server uses Access Control Lists (ACLs) and SPD Server user IDs to secure domain
resources. You obtain your user ID and password from your SPD Server administrator.

SPD Server also supports ACL groups, which are similar to UNIX groups. SPD Server
administrators can associate an SPD Server user as many as five ACL groups.

ACL file security is turned on by default when an administrator brings up SPD Server.
ACL permissions affect all SPD Server resources, including domains, tables, table
columns, catalogs, catalog entries, and utility files. When ACL file security is enabled,
SPD Server only grants access rights to the owner (creator) of an SPD Server resource.
Resource owners can use PROC SPDO to grant ACL permissions to a specific group (called
an ACL group) or to all SPD Server users.

The resource owner can use the following properties to grant ACL permissions to all SPD
Server users:

READ
universal READ access to the resource (read or query).

ACL File Security 13

WRITE
universal WRITE access to the resource (append to or update).

ALTER
universal ALTER access to the resource (rename, delete, or replace a resource and add,
delete indexes associated with a table).

The resource owner can use the following properties to grant ACL permissions to a named
ACL group:

GROUPREAD
group READ access to the resource (read or query).

GROUPWRITE
group WRITE access to the resource (append to or update).

GROUPALTER
group ALTER access to the resource (rename, delete, or replace a resource and add,
delete indexes associated with a table).

Organizing SAS Data

SPD Server Tables
SPD Server software alters SAS tables to enable high-performance processing. SPD Server
tables are physically different than a Base SAS table. You can use tables in either SAS or
native SPD Server format. The SPD Server User's Guide chapter on “Accessing and
Creating SAS Scalable Performance Data (SPD) Server Tables” on page 31 discusses
how a simple SAS PROC COPY statement handles “Migrating Tables between SAS and
SPD Server” on page 39.

How are SAS tables organized? SAS tables stores a single file that contains the data
descriptors and the table data. The data are column values, the descriptors are metadata
that describe the column and data formatting that the table uses.

SPD Server tables do not reuse space. When an SQL command to delete one or more rows
from a table is issued, the row is marked deleted and the space will not be reused. To
recapture the space, the table must be copied.

The diagram of the Figure 2.4 on page 15 shows differences in the architecture between
SPD Server tables and SAS tables. SPD Server uses component files to store tables. One
component file stores the stream of data values. Another component file stores the column
and data descriptors, the metadata. If you create an index for a column or a composite of
columns, SPD Server creates component files for each index.

SPD Server Component Files
SPD Server uses four types of component files to store SPD Server tables. The diagram of
the Figure 2.4 on page 15 shows the components of SPD Server tables. Two component
files store table information: the *.dpf component file stores a stream of the table's data
values, and the *.mdf component file stores the table's metadata (column and data
descriptors) information. SPD Server also creates two more component files to manage
index data: *.hbx components are unique global B-tree indexes and *.idx components are
segmented views of the indexed column data. The *.idx components are especially useful
in evaluating parallel WHERE-clauses.

14 Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview

Figure 2.4 SPD Server Component Files

SPD Server partitions component files when they are created to keep them from growing
too large. Each partitioned component file is stored as one or more disk files. There are
several advantages to partitioning the component files:

• Very Large Tables: SPD Server bypasses file size limits imposed by many applications
and operating systems. By using partitioned component files, SPD Server can support
any file system transparently.

• Multiple Directory Paths: SPD Server can access data libraries that span numerous
directory paths and storage devices. SPD Server software partitions massive data
libraries into component files. The component architecture enables rapid threaded data
access while circumventing device capacity and file size limitation issues. Storage lists
transparently track component file locations so users can access multiple storage
devices as a single volume, even if file partitions exist in different locations.

• Flexibility in Storage: There is no need to store data tables and associated indexes in
the same location when using SPD Server component files. Data files and associated
indexes can be stored on different directory structures or devices if you want. When
deciding where to store component SPD Server tables, you only need to consider the
cost, performance, and availability of the disk space.

• Improved Table Scan Performance: Data component partitions that are created using
fixed-size intervals will perform aggressively during parallelized full table scans. The
documentation chapter on “SPD Server Table Options ” on page 26 contains
information about how to use the PARTSIZE= option to control partition size.

SPD Server Component Files 15

SPD Server Table Indexes
SPD Server allows you to create indexes on table columns. SPD Server can thread WHERE-
clause evaluations for tables that are not indexed. Indexes enable more rapid WHERE-
clause evaluations. Large tables in particular should be indexed to exploit SPD Server
performance. A detailed description of the SPD Server index is provided in the SPD Server
4.5: User's Guide section on “ Indexing a Table ” on page 47.

SPD Server Performance Enhancements

SPD Server Pass-Through SQL Enhancements
You can use pass-through SQL to submit SQL statements that use SPD Server tables
directly to SPD Server. The SPD Server SQL planner contains several optimizations that
you can use to create SQL queries that can take advantage of symmetric multiprocessing
and SPD table indexes, resulting in improved SQL query performance. Refer to the SPD
Server User's Guide section on the “SPD Server SQL Features ” on page 93 for more
information about SPD Server pass-through SQL enhancements.

Implicit and Explicit Server Sorts
You can use implicit or explicit sorts with SPD Server. For example, the PROC SORT in
Base SAS software is an explicit sort. You can use PROC SORT with SPD Server as well.

An implicit sort is unique to SPD Server. Each time you submit a SAS statement with a
BY clause, SPD Server sorts your data -- unless the table is already sorted or indexed on
the BY column. The automatic sort is very convenient. The documentation chapter on
“Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables” on page
31 contains tips on how and when to use each sort type.

Modified SAS Heapsort
SPD Server uses Heapsort as its default sort with some slight changes. Under SPD Server,
Heapsort compares available memory on the server to the memory required to load and
process the index key data in memory. If the memory is not constrained, SPD Server
performs the Heapsort in RAM memory.

Indexed Parallel Table Scan
SPD Server indexes are designed to support parallelism. Experienced RDBMS users are
accustomed to a perceptible processing lag that occurs when databases must read or process
enormous tables. When SPD Server performs table queries, the SPD Server index
architecture enables the software to analyze different table sections or segments in parallel.
By processing large table segments in parallel, SPD Server delivers much faster data
throughput. The faster throughput might be difficult to perceive on small tables, but when
SPD Server performs scans on very large tables, the processing performance is significantly
faster than database systems that support only serial indexed table scans.

16 Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview

Improved Table Appends
SPD Server decomposes table append operation into a set of steps that can be performed
in parallel. The level of parallelism attained depends on the number of indexes present on
the table. The more indexes you have, the greater the potential exploitation of parallelism
during the append processing.

Tip: You can save time by creating an empty table in SPD Server, and then define your
indexes on it, and then append the data, as opposed to loading the table and then creating
the indexes afterwards. It is faster to create indexes on an empty table.

SPD Server Extensions to Base SAS
You can access SPD Server by using an SQL pass-through CONNECT statement or you
can issue a SAS LIBNAME statement. After connecting to SPD Server, you can run SAS
DATA steps, SAS procedures, or PROC SQL statements.

The documentation in the SPD Server Administrator's Guide and the SPD Server User's
Guide furnish syntax and examples that use SPD Server extensions to Base SAS language.
Most of your existing SAS programs will work in SPD Server with only minor
modifications.

SPD Server extensions to the Base SAS language include:

• new LIBNAME statement options

• SPD Server SQL pass-through syntax

• new table options

• new macro variables

• parallel WHERE clause processing

• parallel group-by processing

• BY-data grouping

• parallel index creation

• PROC SPDO, an operator interface procedure.

Using SPD Server with Data Warehousing
SPD Server offers SAS Data Warehousing customers an excellent facility to store data.
Using component files and partitioning, SPD Server alleviates large table constraints such
as device or directory size limits. SPD Server can perform storage services on a reliable
and relatively inexpensive machine.

Besides providing efficient, economical storage, SPD Server can deliver the enhanced
processing capabilities users need to manage and query data in a warehouse. SMP
processing furnishes the machine's horsepower to parallel-process huge tables. SPD Server
also offers multiple access, domain protection, and table locking: these features enable data
warehouse users to secure and access their shared SPD Server.

Using SPD Server with Data Warehousing 17

Figure 2.5 Data Warehouse With Large Data Stores

Within a data warehouse, there are several data stores (repositories for data). Three stores
are of interest above: detail tables, summary tables, and data marts. Organizations often
store transactions that are up to 90 days old in a detail store, transactions that are up to a
year old in a summary store, and additional data 'snapshots' in data marts. The three data
stores share a common requirement -- they must maintain hundreds of gigabytes of data.

To perform queries, data warehouse users can use the SAS System with SAS syntax or
PROC SQL syntax. Alternatively, the software supports use of other vendors' applications
that allow pass-through SQL and comply with other non-SAS connection standards. In
brief, SPD Server can contribute significantly to objectives for a data warehouse: to deliver
low-cost, relevant, machine-independent, and timely information to users throughout the
organization.

18 Chapter 2 • SAS Scalable Performance Data (SPD) Server Overview

Chapter 3
Connecting to SAS Scalable
Performance Data (SPD) Server

Introduction . 19

SAS and SPD Server Tables . 20
Overview of SPD Server Tables . 20
SAS Libraries . 20
Temporary LIBNAME Domains . 20

SPD ServerResource Security . 21
UNIX File Security . 21
ACL File Security . 21

Accessing SPD Server from a SAS Client . 22
SQL Pass-Through Facility . 22
LIBNAME Access . 22
LIBNAME Options . 23
Connect to a Specified SPD Server Host . 23
Manage Server Network Traffic . 25
Additional LIBNAME Options . 25
LIBNAME Example Statements . 26

SPD Server Table Options . 26
Options to Enhance Performance . 27
Options for Other Functions . 27

SPD Server Macro Variables . 27
Overview of Macro Variables . 27
Macro Variables and Corresponding Table Options . 28
Summary of SPD Server Macro Variables . 28
Variable for a Client and Server Running on the Same UNIX Machine 28
Variable for Compatibility with the Base SAS Engine . 28
Variables for Miscellaneous Functions . 28
Variables for Sorts . 29
Variables for WHERE Clause Evaluations . 29
Variables That Affect Disk Space . 30
Variables to Enhance Performance . 30

Introduction
All SAS users should read the Help section on “Accessing and Creating SAS Scalable
Performance Data (SPD) Server Tables” on page 31 to review the methods that they can
use to access SPD Server. These methods include LIBNAME statements and SQL pass-

19

through statements. Syntax statements and options are provided for each method, as well
as useful table options and macro variables.

SAS and SPD Server Tables

Overview of SPD Server Tables
SPD Server tables have different physical structures than SAS tables. In a general
discussion, a SAS table can also refer to an SPD Server table. If the context is specific (for
example, an SPD Server command), then the reference is specific. A SAS table refers to
the Base SAS format; an SPD Server table refers to the SPD Server format.

Using SPD Server and SAS together, you can

• convert tables from the Base SAS format to the SPD Server format

• convert tables from the SPD Server format to the Base SAS format

• create a new SPD Server table

• read, query, append to, update, sort, and index SPD Server tables.

SAS Libraries
The term 'SAS library' refers either to a collection of SAS files or SPD Server files. For
SPD Server, a SAS library, or data library, is a collection of one or more directories that
specify the location of stored SPD Server files. A data library has a primary file system.
This is the directory an SPD Server administrator defines for the LIBNAME domain when
it is set up. In addition, a SAS library can have other directories for separation of SPD
Server component files.

An SPD Server data library can contain the following LIBNAME domain files:

• SPD Server tables

• SPD Server indexes

• SPD Server catalogs

• SPD Server ACL files

• SPD Server utility files, such as a VIEW, an MDDB, and so on.

Temporary LIBNAME Domains
SPD Server allows you to create temporary LIBNAME domains that exist only for the
duration of the LIBNAME assignment. Using this capability, SPD Server users can create
space analogous to the SAS WORK library. To create a temporary LIBNAME domain,
use the SPD Server LIBNAME statement option, TEMP=YES.

When you end your SPD Server session, all the data objects, including tables, catalogs,
and utility files in the TEMP=YES temporary domain are automatically deleted. This is
similar to how the SAS WORK library functions.

20 Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server

SPD ServerResource Security
SPD Server provides two levels of data security: UNIX file security and ACL file security.
ACL file security enforces SPD Server permissions with SPD Server user IDs and Access
Control Lists (ACLs).

UNIX File Security
The software enables ACL file security by default. While ACL file security is strongly
recommended, the default can be changed. Only an SPD Server administrator can change
the default file security setting. When an SPD Server administrator specifies the NOACL
option, all clients for SPD Server obtain the SPD Server user ID 'anonymous'. There is no
SPD Server security in effect. SPD Server tables are then secured only by the UNIX file
protections that are currently in force.

When UNIX file security controls SPD Server file access, it validates on the user ID
associated with SPD Server. Which UNIX user ID is associated with SPD Server? The
UNIX ID associated with SPD Server is the UNIX ID of the user that brings up the server.
Suppose an SPD Server administrator brings up the SPD Server host machine, using his
SPD Server administrator's account named SPDSADMN. When any SAS client connects
to this SPD Server host, they will be able to read only files that have UNIX read permissions
set for the SPDSADMN user. As a result, SAS clients that are connected to this SPD Server
host must write all files in a directory created by SPDSADMIN that also has write
permission set for SPDSADMN. SPDSADMN will own all files written in this directory.

How is security maintained? The SPD Server administrator can set up the SPD Server
LIBNAME domain directories such that only the administrator has appropriate read and
write access to those directories.

It is possible for a site to give different UNIX permissions to a group of users. To do this,
an SPD Server administrator must bring up another SPD Server using a different UNIX
user account. (Bringing up a different SPD Server affects only the new SPD Server files
created, not existing SPD Server files.)

ACL File Security
UNIX file security alone is not adequate for many installations. For more complex
workplace environments, SPD Server provides a finer level of controls, called ACL file
security. ACL file security is used by default for SPD Server LIBNAME domains. SPD
Server always enforces ACL file security unless an SPD Server administrator specifies the
NOACL option when bringing up a Server.

To understand ACL file security, you must know how SPD Server user IDs work. The SPD
Server administrator assigns each approved SPD Server user an ID, a password, a level of
data authorization, and, if desired, membership in up to five ACLGROUPS. (The SPD
Server user ID 'anonymous' does not require a password.)

Once your SPD Server User ID has been created, you and the SPD Server administrator
can use PROC SPDO to create ACLs that grant or deny other users access to an SPD Server
table. The documentation chapter on “Accessing and Creating SAS Scalable Performance
Data (SPD) Server Tables” on page 31 explains how to use the PROC SPDO operator
interface to secure SPD Server resources.

ACL File Security 21

Accessing SPD Server from a SAS Client

SQL Pass-Through Facility
SPD Server SQL pass-through processing supports an associated proxy process for each
new client (via the name server). The proxy issues SQL pass-through requests. To connect
to an SPD Server SQL server from a SAS session, you must submit a CONNECT statement
that specifies the SASSPDS engine and SPD Server options, and then issues the SQL
commands.

For example:

 PROC SQL;
 connect to sasspds
 (dbq='mydomain'
 host='namesvrID'
 serv='5555'
 user='neraksr'
 passwd='siuya');
 select *
 from connection
 to sasspds
 (select * from employee_info);
 disconnect from sasspds;
 quit;

LIBNAME Access

Overview of LIBNAME Access
A logical name, or libref, is a name for the data library that you associate with an SPD
Server domain during a SAS job or session. Once a libref is assigned, SPD Server allows
you to read, create, or update files in the data library if you have the appropriate access to
the data library.

A libref is valid only for the current SAS job or session. Librefs can be referenced repeatedly
during a valid job or session. SAS does not limit the number of librefs that you can assign
during a session. Once you define a libref, it is most commonly used as the first element
in two-level SAS filenames: LibraryName.Tablename. The library name, or libref,
identifies where the SPD Server can find or store the file.

The documentation chapter on “Accessing and Creating SAS Scalable Performance Data
(SPD) Server Tables” on page 31 contains several examples that use librefs. The
following example is a libref used with LIBNAME access to an SPD Server.

Example: A Libref Used with LIBNAME Access
The statement below creates the table TRAVEL and stores it in a permanent SAS library
with the libref ANNUAL.

data annual.travel;

Below is a LIBNAME statement that associates a libref, the SASSPDS engine, and an SPD
Server domain.

22 Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server

libname mydatalib sasspds 'mydomain'
 host='namesvrID'
 serv='5555'
 user='neraksr'
 passwd='siuya';

LIBNAME libref SASSPDS <'SAS-data-library'> <SPD Server-options>;

Use the following arguments:

libref
a name that is up to eight characters long and that conforms to the rules for SAS names.

SASSPDS
the name of the SPD Server engine.

'SAS-data-library'
the logical LIBNAME domain name for an SPD Server data library on the host machine.
The name server resolves the domain name into the physical path for the library.

SPD Server-options
one or more SPD Server options.

LIBNAME Options
You must supply the SASSPDS engine name to access SPD Server LIBNAME domains
with a LIBNAME statement. You must also specify one or more SPD Server options. The
syntax for an SPD Server option is

<SPD Server-option>=<value>;

SPD Server-option
a keyword to name the option.

value
a value expected by the keyword.

Option values in a LIBNAME statement enable the engine to initiate, manage, and tailor
a client session. This section summarizes LIBNAME options and groups them by function.

Connect to a Specified SPD Server Host

Overview of Connecting to a Specified SPD Server Host
To connect to a host, SPD Server needs the network node name for the SPD Server host
machine or the IP address of the server machine, and the port number of a name server.
SPD Server provides the following options to locate a name server using a named service.

SERVER=
specifies a node name for an SPD Server host machine and a port number for the name
server running on the machine.

HOST=
specifies a node for an SPD Server host machine and a port number for the name server
running on the machine.

Both options have the same function. SERVER= arguments are compatible with
SAS/SHARE software. HOST= arguments support FTP conventions. The HOST option

Connect to a Specified SPD Server Host 23

allows a node to be an IP address (for example, 123.456.76.1); the SERVER option requires
a network node name.

SPDSHOST= Macro Variable
If you create a SAS macro variable named SPDSHOST= or an environment variable named
SPDSHOST=, whenever a LIBNAME statement does not specify an SPD Server host
machine, SPD Server will look for the value of SPDSHOST= to identify the server.

 %let spdshost=samson;
 libname myref sasspds 'mylib'
 user='yourid'
 password='swami';

The first statement assigns the SPD Server host SAMSON to the macro variable
SPDSHOST. Therefore, a subsequent LIBNAME statement does not need to name the host
server again.

Validate the Client User ID
SPD Server uses the name server to secure its domains. SPD Server uses ACL file security
to secures domain resources. If ACL file security is enabled, the software grants access in
the following hierarchy:

• using the permissions that belong to the UNIX ID that is associated with the SPD Server

• using the permissions that belong to the SPD Server user ID.

You can use SQL pass-through and LIBNAME options to specify the identify of an SPD
Server user. SPD Server uses a special ID table to validate user IDs and passwords. The
following LIBNAME options identify a client:

ACLGRP=
specifies one of up to five ACL groups that the user can belong to.

ACLSPECIAL=
grants special privileges to an SPD Server user who is previously set up as special
(ACLSPECIAL=YES is defined for the user in the password file.) Special privileges
override other ACL restrictions that apply to resources in the domain.

CHNGPASS=
prompts a client user to change his or her SPD Server password.

NEWPASSWORD= or NEWPASSWD=
specifies a new password for an SPD Server client user.

PASSWORD= or PASSWD=
specifies a password to validate an SPD Server client user.

PROMPT=
prompts for a password to validate an SPD Server client user.

PASSTHRU=
specifies implicit SQL pass-through options for an SPD Server client user.

USER=
specifies the SPD Server user ID.

24 Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server

Table 3.1 User ID Options When ACL File Security Is Enabled

User= Password= or Prompt= Grants Access To . . .

Required unless the SAS client
process has a User ID, that is, not a
Windows client. Submitted values
for User= are validated against the
SPD Server User ID Table.

Required and validated against the
SPD Server User ID Table.

Resources that you create within the
SPD Server LIBNAME domain
and in other resources that are not
excluded by ACLs or by UNIX file
permissions.

Table 3.2 User ID Options When UNIX File Security Only Is Enabled

User= Password= or Prompt= Grants Access To . . .

Not required. The SPD Server User
ID under UNIX file security only is
anonymous.

Not required with anonymous User
ID.

All resources within the LIBNAME
domain granted by UNIX
permissions for the SPD Server's
UNIX ID.

Manage Server Network Traffic
If your SPD Server installation uses the same physical machine to run your SPD Server
client process and your SPD Server host services, you can use the two following SPD Server
options to improve client / server network traffic:

NETCOMP=
compresses the data stream in an SPD Server network packet.

UNIXDOMAIN=
uses UNIX domain sockets for data transfer between the client and the SPD Server.

Additional LIBNAME Options
BYSORT=

performs an implicit sort when a BY clause is encountered.

DISCONNECT=
specifies when to close network connections between the SAS client and the SPD
Server. This can be after all librefs are cleared or at the end of a SAS session.

ENDOBS=
specifies the end row (observation) in a user-defined range.

NOSASSORT=
ignores an explicit PROC SORT statement.

STARTOBS=
specifies the start row (observation) in a user-defined range.

TRUNCWARN=
Suppresses hard failure on NLS transcoding overflow and character mapping errors.
When using the TRUNCWARN=YES LIBNAME option, data integrity can be
compromised because significant characters can be lost in this configuration. The
default setting is NO, which causes hard read/write stops when transcode overflow or
mapping errors are encountered. When TRUNCWARN=YES, and an overflow or

Additional LIBNAME Options 25

character mapping error occurs, a warning is posted to the SAS log at data set close
time if overflow occurs, but the data overflow is lost.

LIBNAME Example Statements

Example 1
Example 1 creates the libref MINE, associates it with the SASSPDS engine, and specifies
the SPD Server LIBNAME domain GOLDMINE. Values for the SPD Server options
specify to

• locate the server machine FASTCPUS and use the default service SPDSNAME to get
the port number of the name server

• validate the SPD Server user EXPLORER

• prompt for EXPLORER's old SPD Server password

• change the password.

libname mine sasspds 'goldmine'
 user='explorer'
 host='fastcpus'
 prompt=yes
 chngpass=yes;

Example 2
Example 2 represents the first LIBNAME statement that was made for the SPDSDATA
domain. It creates the libref MYLIB, associates MYLIB with the SASSPDS engine, and
specifies the SPD Server LIBNAME domain SPDSDATA. Values for the SPD Server
options specify to

• locate the server machine HEFTY and use the named service SPDSNAME to get the
port number of the name server.

• validate the SPD Server user ID camills and account password of escort.

• store data file partitions in the directories MAINDATA on device DISK1,
MOREDATA on device DISK2, and MOREDATA on device DISK3. This example
implies that the metadata and index partitions for tables are stored in the primary file
system, that is, the path set up by the SPD Server administrator for SPDSDATA.

libname mylib sasspds 'spdsdata'
 server=hefty.spdsname
 user='camills' password='escort'
 datapath=('/disk1/maindata'
 '/disk2/moredata'
 '/disk3/moredata');

SPD Server Table Options
SPD Server table options specify processing actions that apply only to a specific table.
When you use a LIBNAME statement, you should specify the options in parentheses next
to the table name. If you use an SQL pass-through statement, use brackets to specify the
options next to the table name.

26 Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server

Options to Enhance Performance
BYNOEQUALS=

specifies the index output order of table rows with identical values for the BY column.

NETPACKSIZE=
controls the size of an SPD Server network data packet.

SEGSIZE=
sizes the segment for index files associated with an SPD Server table.

Options for Other Functions
BYSORT=

performs an implicit sort of a given table when a BY clause is encountered and there
is no index available.

ENDOBS=
specifies the end row (observation) number in a user-defined range.

STARTOBS=
specifies the start row (observation) number in a user-defined range.

SORTSIZE=
specifies the amount of memory (in number of bytes, not Kbytes or Mbytes) that SPD
Server is able to allocate in order to complete a sorting request. The SORTSIZE= table
option declared must be less than the global sortsize parameter specified in the
spdsserv.parm server parameter file.

VERBOSE=
details all indexes associated with an SPD Server table. This option also provides other
information, such as who is the table owner and the ACL group.

SPD Server Macro Variables

Overview of Macro Variables
You can use global macro variables in SPD Server to simplify your work. Global macro
variables use default values set by the SPD Server software and operate in the background.
You can make global changes to the values of macro variables in your code by specifying
a new the default setting for the specified variable. The new default setting is applied to all
macro variables in the code that you submit to SPD Server. You can also override the setting
for a single macro variable by using a table option to change the setting for only the specified
table.

The default macro variable values automate sophisticated processing decisions. The default
settings furnish good performance. However, top performance often requires intelligent
changes to some macro variable default settings. When you make changes to the macro
variable default settings, you should attempt to find the best processing opportunity for the
type of data that you have.

Learning the best way to set SPD Server macro variables and options takes time.
Sometimes, performance testing is the only way to determine whether changing a setting
improves processing performance. Performance testing is time well spent. After you

Overview of Macro Variables 27

quantify performance parameters under various macro variable settings, you can customize
SPD Server so that it solves your real business or data problems with maximum efficiency.

Each SPD Server installation is different. You might want to change many values, or just
a few default values. When you make changes, you will find macro variables are friendly,
flexible and easily to manipulate.

Use a %LET statement to change macro variable values. You can place the macro variable
assignment anywhere in the open code of a SAS program except data lines. The most
convenient place to put your %LET statements to initialize macro variables is in your
autoexec.sas file or at the beginning of a program. The macro variable assignment is valid
for the duration of your session or the executing program. Macro variable values remain
in effect until they are changed by a subsequent assignment.

Assignments for macro variables with YES|NO arguments must be entered in uppercase
(capitalized).

Because the SPD Server macro variables operate behind the scenes, you cannot query SPD
Server to find out the status of a macro variable. SAS does not 'know' about the status of
macro variables. If you want to see which SPD Server macro variables are in effect, or their
default values, you can use PROC SPDO.

Macro Variables and Corresponding Table Options
When you need to apply the action to a single table that a macro variable applies globally
to all tables, you should use a table option instead of the macro variable setting. A table
option is more selective because you can turn the macro variable function on or off for a
single table.

Summary of SPD Server Macro Variables
This section summarizes the SPD Server macro variables and groups them by the function
of their default value.

Variable for a Client and Server Running on the Same UNIX Machine
SPDSCOMP=

specifies to compress the data when sending a data packet through the network.

Variable for Compatibility with the Base SAS Engine
SPDSBNEQ=

specifies the output order of table rows with identical values in the BY column.

Variables for Miscellaneous Functions
SPDSEOBS=

specifies, when processing a table, the end row (observation) number in a user-defined
range.

SPDSSOBS=
specifies, when processing a table, the start row (observation) number in a user-defined
range.

28 Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server

SPDSUSAV=
specifies, when appending to tables with unique indexes, to save rows with non-unique
(rejected) keys to a separate SAS table.

SPDSUSDS=
returns the name of a hidden SAS table generated by the SPD Server which stores rows
with identical (non-unique) table values.

SPDSVERB=
specifies when executing a PROC CONTENTS statement to provide more details that
are specific to SPD Server indexes that are associated with the table. Examples of
information include ACL information, index information, PARTSIZE= value, and
others.

SPDSFSAV=
specifies to retain the table if an abnormal condition is encountered during a table-
creation operation. (Normally SAS closes and deletes these tables.)

SPDSEINT=
specifies disconnect behavior for the SQL pass-through EXECUTE() statement.

Variables for Sorts
SPDSBSRT=

specifies for the SPD Server to perform a sort whenever it encounters a BY clause, and
there is no index available.

SPDSNBIX=
specifies whether to turn BY-sorts with an index on or off.

SPDSSTAG=
specifies whether to use non-tagged or tagged sorting for PROC SORT or BY
processing.

Variables for WHERE Clause Evaluations
SPDSTCNT=

specifies the number of threads to be used for WHERE clause evaluations.

SPDSEV1T=
specifies whether the data returned from WHERE clause evaluations that use an index
should be in strict row (observation) order.

SPDSEV2T=
specifies whether the data returned from WHERE clause evaluations that do not use
an index should be in strict row (observation) order.

SPDSWDEB=
specifies when evaluating a WHERE expression, whether WHINIT, the WHERE
clause planner, should display a summary of the execution plan.

SPDSIRAT=
controls, when WHERE clause processing with enhanced bitmap indexes, whether to
perform segment candidate pre-evaluation.

Variables for WHERE Clause Evaluations 29

Variables That Affect Disk Space
SPDSCMPF=

specifies to add a number of bytes to a compressed block as growth space.

SPDSDCMP=
specifies to compress SPD Server tables on the disk.

SPDSIASY=
specifies, when creating multiple indexes on an SPD Server table, whether to create
the indexes in parallel.

SPDSSIZE=
specifies the size of an SPD Server table partition.

Variables to Enhance Performance
SPDSNETP=

sizes a buffer in server memory for the network data packet.

SPDSSADD=
specifies whether to apply a single row, or multiple rows at a time, when appending to
a table.

SPDSSYRD=
specifies whether to perform data streaming when reading a table.

SPDSAUNQ=
specifies whether to cancel an append operation if uniqueness is not maintained.

30 Chapter 3 • Connecting to SAS Scalable Performance Data (SPD) Server

Chapter 4
Accessing and Creating SAS
Scalable Performance Data
(SPD) Server Tables

Introduction . 31

Using a LIBNAME Statement to Access SPD Server . 32
Overview of Using a LIBNAME Statement . 32
Example: Issuing an Initial LIBNAME Statement . 32
The Client Session . 32

Managing Large SPD Server Files . 33
Initial Setup of SPD Server LIBNAME Domain Storage . 34
Effect of the Administrator Option, ROPTIONS= . 34
Explicit or Default Storage Paths . 35
Understanding SPD Server Component Storage . 36
Forced Partitioning of the Data Component . 36
Importance of the First Metadata Partition . 37
Using Path Options for Large Table Storage . 38

Migrating Tables between SAS and SPD Server . 39
SAS and SPD Server Table Migration Examples . 39

The SQL Pass-Through Facility . 40
Overview of the SQL Pass-Through Facility . 40
Accessing Data Using the SQL Pass-Through Facility . 40
SQL Pass-Through Statements . 41

Creating a New Table . 44
Example - Creating a New Table Using Pass-Through Statements 44
Example - Creating a New Table with a LIBNAME Statement 45

Introduction
This documentation chapter describes how to access SPD Server using SAS and an SPD
Server SQL Pass-Through Facility or SAS LIBNAME statement. The chapter also
demonstrates typical data tasks on an SPD Server host. Finally, it discusses how to secure
SPD Server resources using PROC SPDO. Power users who have special privileges should
see Chapter 16, "SPD Server Operator Interface Procedure (PROC SPDO)" in the SAS
Scalable Performance Data (SPD) Server 4.5: Administrator's Guide.

Note: For readability, the SPD Server SQL Pass-Through Facility is shortened here to SQL
Pass-Through Facility, unless the context requires a more explicit reference. Similarly,
when the chapter references a name server, it is the Scalable Performance Data Server
name server.

31

Using a LIBNAME Statement to Access SPD Server

Overview of Using a LIBNAME Statement
It is not necessary to understand all possible LIBNAME and table options to initiate an
SPD Server client session. There are only a few required elements which are shown in the
example below. The LIBNAME statement should specify

• the local library reference (libref)

• the required engine name SASSPDS

• a valid domain name that is registered to the name server and defined to the SPD Server
host

• the name server host's name

• the user ID

• password access, either through the PROMPT=YES switch or using the PASSWD
keyword. (The PROMPT=YES approach is recommended for security reasons.)

Example: Issuing an Initial LIBNAME Statement

libname market sasspds 'mktdata' host='sunone'
 user='user id' prompt=yes;

This example specifies the libref market, the engine name SASSPDS, the LIBNAME
domain mktdata, and the name server host called sunone. It identifies an SPD Server user
ID and is configured to prompt the user for a password. Alternately, but less recommended,
is

libname market sasspds 'mktdata' host='sunone'
 user='user id' passwd='beemer';

The only difference between this and the previous example is the password specification.
Here the password beemer is recursed into the LIBNAME statement. This method can be
used for batched SPD Server jobs that run unattended.

The Client Session
Successfully issuing the LIBNAME statement or SQL pass-through statement(s) initiates
an SPD Server client session. The client session operates using a combination of up to four
distinct components:

SPD Server Name Server
The name server acts as a traffic cop and provides a central point of control between
clients and SPD Server hosts. The name server maintains a list of LIBNAME domains
associated with each SPD Server host. Client sessions will always connect to an SPD
Server host through a name server. The name server resolves the submitted LIBNAME
domain name (a logical entity) to a physical path (usually a UNIX or Windows
directory). The name server then connects you to the SPD Server serving the domain
without requiring you to know physical addresses. An SPD Server administrator sets

32 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

up the LIBNAME domains in a parameter file for SPD Server which then registers its
domains with the name server.

SPD Server Host
Each SPD Server host controls security access to the domain resources it manages.
When an SPD Server host starts up, it registers its LIBNAME domains with the name
server. Clients can connect to an SPD Server host only through a name server -- direct
connections between clients and SPD Server hosts are not permitted. The SPD Server
host validates the client user ID and password (passed in the LIBNAME statement),
launches the system process (client proxy) for each client, and grants access to the
appropriate SPD Server domain.

SQL Server
The SQL server parses and processes the pass-through SQL syntax submitted by the
SAS client.

SPDSSNET Server
The SPDSSNET server enables access between clients without SAS software and SAS
Scalable Performance Data Server. The SPDSSNET server runs as a stand-alone
process on either the client or SPD Server host machine. It acts as a bridge between the
SAS ODBC driver and the SPD Server host. SPDSSNET can also be used with JDBC
drivers and HTMSQL used with Web Servers. SPDSSNET can run multiple processes
concurrently and perform parallel processing.

Figure 4.1 SPD Server Hosts, SPD Server Name Servers, and LIBNAME Domains

Managing Large SPD Server Files
Leaving aside performance issues, managing large files is a matter of file storage and disk
space. Optimally, an SPD Server administrator will manage storage space for SPD Server
LIBNAME domains. In this case, you do not need to consider storage issues -- SPD Server
does the work for you. The Help section on “Optimizing SPD Server Performance ” on
page 167 contains more detail on managing large SPD Server files.

Managing Large SPD Server Files 33

Initial Setup of SPD Server LIBNAME Domain Storage
Figure 4.2 reviews how an SPD Server domain is set up. An SPD Server administrator
must define the name and primary path for the domain in the LIBNAME parameter file for
SPD Server. The path that the administrator defines for each domain is referred to as the
primary file system for that domain. The LIBNAME parameter file is read by the SPD
Server at startup. The SPD Server registers the domains with the SPD Name Server. When
the user issues a LIBNAME statement, the client sends a message to the SPD Name Server
that will resolve the domain name to its physical directory path and also determine the SPD
Server that registered the domain.

Figure 4.2 SPD Server LIBNAME Domains

“SAS Scalable Performance Data (SPD) Server Overview” on page 7 discusses LIBNAME
path options that allow a user to specify additional storage devices and paths for a domain.
To manage their own disk space, a user must be aware of the DATAPATH=,
METAPATH=, and INDEXPATH= options, as well as the ROPTIONS= option that the
SPD Server administrator uses.

Effect of the Administrator Option, ROPTIONS=
After defining a primary file system for a domain, an SPD Server administrator can use
LIBNAME parameter file options, identical to the DATAPATH=, METAPATH=, and
INDEXPATH= options in the LIBNAME statement, to set up additional paths for the
domain. However, the administrator can also exercise an option to restrict a user from
defining additional paths via the LIBNAME statement with the ROPTIONS= LIBNAME
parameter file option. When an SPD Server administrator uses the ROPTIONS= option,
the administrator's specification takes precedence over the users. More information is
available in the Help section on Configuring LIBNAME Domain Disk Space in the SPD
Server Administrator's Guide.

For example, assume that a user uses the DATAPATH= option to specify a path(s) to store
table data for a domain, and that the SPD Server administrator also uses the DATAPATH=
option, along with ROPTIONS= for that domain entry in the LIBNAMES parameter file.
The user's DATAPATH= specifications are then ignored.

34 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

The administrator's use of ROPTIONS= with path options is recommended. It relieves
users of the complicated task of managing disk space and avoids the need to embed physical
path information in SAS programs. Instead, SAS jobs need to refer to only the logical
LIBNAME, relying on ROPTIONS= embedded by the administrator to specify all of the
physical information. This approach uses the power of the name server, allowing it to
resolve path information for an SPD Server domain.

Figure 4.3 Primary File System Default Paths

Explicit or Default Storage Paths
You might wonder why the software offers you path options and then discourages their
use? The answer is flexibility. A site can elect to allow users to manage their own disk
space. While this practice is not recommended, the software allows for the possibility.

To use path options effectively, you must know that the first LIBNAME assignment or
SQL Pass-Through CONNECT statement naming a domain establishes an initial set of
paths for the domain. You can specify the paths, or the software can establish a default set.
Figure 3.2 shows a default set of paths. Figure 3.4 shows an explicit initial set of paths.

The path options METAPATH=, DATAPATH=, and INDEXPATH= store partitions for
the component files: metadata, data, and indexes. Subsequent LIBNAME assignments
augment the path list created by the initial LIBNAME assignment. That is, SPD Server
appends each new path assignment to any prior list for the component.

Explicit or Default Storage Paths 35

Figure 4.4 Explicit Initial Set of Paths

In summary, unless you or an SPD Server administrator specify an initial set of paths, the
software uses the domain's primary file system in the LIBNAMES parameter file for the
default path set. As you will learn in the next section, the default path set might not be
ample for large tables nor provide optimal performance.

Understanding SPD Server Component Storage
Earlier, you learned that the software creates a list of paths for storage of table files in an
SPD Server domain, but file partition storage was not discussed. This section focuses on
using path options when an SPD Server administrator has not used the ROPTIONS= option.

Minimally, each table consists of a metadata component and a data component. Each
component file consists of one or more partition files on disk. The software requires that
the first metadata partition reside in the primary file system, that is, the path defined for
the domain by an SPD Server administrator. Other metadata partitions can overflow to
additional paths specified using the METAPATH= option.

If no paths are specified for index and data components by the INDEXPATH= or
DATAPATH= options, the software stores these partitions in the primary file system too.
If other paths are specified, the software stores the initial partition for these classes in the
first path with available space. (Unlike metadata partitions, data and index partitions do
not have to start in the primary file system.) A partition can expand until the path fills up;
remaining partitions then overflow to the next path with available space, and so on. (See
Figure 4.5 on page 37.)

Forced Partitioning of the Data Component
To improve parallel processing of various operations involving full-table scans (for
example, WHERE-clause evaluations without indexes or SQL GROUP-BY evaluations)
the SPD Server allows you to force creation of data component partitions at fixed-size
intervals. To specify the size interval, use the PARTSIZE= table option. By default, the
SPD Server sets PARTSIZE= to 16 megabytes. See the documentation chapter on “SPD
Server Table Options ” on page 26 for details.

36 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

The SPD Server uses the collection of file systems that you specify with the DATAPATH=
option to distribute partitions in a cyclic (round-robin) fashion. But, instead of creating
partitions until the first file system is full, the SPD Server randomly chooses a file system
from the DATAPATH= list for the first partition, then sequentially assigns partitions to
successive file systems in the DATAPATH= list. The software continues to cycle through
the file system set, as many times as needed, until all data partitions for the table are stored.
Assume that you specify

DATAPATH='('/data1' '/data2')

Subsequently, you store your BIGONE table into the domain. SPD uses random placement
of data partitions in the DATAPATH= list, so the first BIGONE partition can be stored in
either the /data1 or the /data2 directory. Subsequent partitions will alternate between
the /data1 and /data2 directories, and so on.

If you set PARTSIZE=0, SPD Server uses the DATAPATH= file systems strictly as
overflow space. That is, it creates partitions in the first file system, up to the file size limit
of your operating system. Then, when the first file system is full, it proceeds to the second
file system, and so on.

Figure 4.5 SPD Server Component Storage

What happens when you issue the first LIBNAME statement for a domain but do not specify
path options? If your tables are small, most likely the primary file system is probably
adequate. However, if you store large tables, the primary file system can fill up quickly.
How do you know when the primary file system is full? SPD Server will return an error
message when you perform an append operation on an existing table or create a new table
in the domain.

Importance of the First Metadata Partition
If the primary file system is full, you can issue a subsequent LIBNAME statement
specifying additional paths. This allows a data append to an existing table but might not
allow creation of a new table in the domain. The reason why the new paths did not solve
the create failure might not be obvious. The answer is the software cannot store the first
metadata file partition because the primary file system is still full. What is the create failure
solution? Either free space in the primary file system or have the SPD Server administrator
create a new LIBNAME domain.

Importance of the First Metadata Partition 37

Using Path Options for Large Table Storage

Overview of Using Path Options
If you must manage your table storage, anticipate disk space for large tables. Use the
LIBNAME path options with the first LIBNAME statement for the domain. Store data and
index partitions using the DATAPATH= and INDEXPATH= options on a different storage
device than the primary file system. This reserves the primary file system for metadata
files.

Example 1: Specify An Explicit Initial Set of Paths
SITEUSR1 issues the first LIBNAME statement for the MYLIB domain. By default, the
domain's primary file system is used to store metadata partitions but another device
MYDISK30 and directory SITEUSER is specified to store the data and index partitions.
(The SPD Server administrator created the primary file system for MYLIB.)

 /* I anticipate the primary file system for the MYLIB domain */
 /* is ample for metadata files, but I will use MYDISK30 */
 /* to store my data and index partitions. */
 libname myref sasspds 'mylib'
 datapath=('/mydisk30/siteuser')
 indexpath=('/mydisk30/siteuser')
 server=husky.spdsname
 user='siteusr1' prompt=yes;

Example 2: Specify A Subsequent LIBNAME Statement to Add Paths
SITEUSR1 issues a subsequent LIBNAME statement for the MYLIB domain specifying
additional paths for the data and index partitions. The user is storing very large tables so
two storage devices (and directories) for data are listed, and a third device for indexes
associated with the tables is listed.

 /* I noticed today MYDISK30 is getting full. */
 /* I am adding MYDISK31 for possible overflows. */
 libname expand sasspds 'mylib'
 datapath=('/mydisk31/siteuser' '/mydisk32/siteuser')
 indexpath=('/mydisk33/siteuser')
 server=husky.spdsname
 user='siteusr1' prompt=yes;

The software appends the new paths listed to the prior list for each component type. The
entire path list that .spdslib11 maintains now is

datapath=('mydisk30/siteuser' '/mydisk31/siteuser' '/mydisk32/siteuser')
indexpath=('mydisk30/siteuser' '/mydisk33/siteuser')

How does SPD Server use the path list? It stores partitions of the data components for
MYLIB tables in the specified data paths. (How the software uses the paths depends upon
the value of the PARTSIZE= option.) For index components, it stores the files in the first
path listed until the space is filled, then it proceeds to fill the next path listed.

38 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

Migrating Tables between SAS and SPD Server
Many organizations use SPD Server because they need more horsepower to handle very
large SAS tables. As a result, there are many instances where it is handy to be able to
migrate data in both directions between SAS and SPD Server. SPD Server provides simple
methods to easily migrate data between SAS and SPD Server.

SAS and SPD Server Table Migration Examples

Example 1: Create a SAS Table from an SPD Server Table
To create a SAS table from an SPD Server table, issue a LIBNAME statement but do not
specify the engine SASSPDS. Your program will then create a Base SAS table. (Later, if
you decide to use SPD Server capabilities, you can convert the SAS table to the SPD Server
format. Conversion is easy: interchange table formats using the SAS System's COPY
procedure. See Example 2.)

/* Create local racquets data set. */
 libname local '/u/sasdemo/local';

 data local.racquets;
 input racquet_name $20. @22 weight_oz @28 balance $2.
 @32 flex @36 gripsize
 @42 string_type $3. @47 retail_price @55 inventory_onhand;
 datalines;
 Filbert VolleyMaster 10.5 HL 5 4.5 syn 129.95 5
 Solo Queensize 10.9 HH 6 5.0 syn 130.00 3
 Perkinson AllCourt 11.0 N 5 4.25 syn 159.99 12
 Wilco Specialist 8.9 HL 3 5.0 nat 287.50 1
 ;

Example 2: Convert from SAS to SPD Server Format
SITEUSR1 makes a libref SPORT, associates SPORT with the SPD Server engine
SASSPDS, and points to the CONVERSION_AREA domain on an SPD Server host server
named HUSKY. User SITEUSR1 uses a default named service SPDSNAME to locate the
port number of the name server and requests a prompt for the password.

The PROC COPY statement inputs the SAS table LOCAL.RACQUETS and outputs the
SPD Server table SPORT.RACQUETS to the CONVERSION_AREA domain. After the
PROC COPY statement executes, the SAS table becomes two SPD Server table component
files. (See Figure 3.6.)

 /* Copy existing SAS table to the SPD Server format. */
 libname sport sasspds 'conversion_area' server=husky.spdsname

 user='siteusr1' prompt=yes;

 proc copy in=local out=sport;
 select racquets;

SAS and SPD Server Table Migration Examples 39

 run;

Figure 4.6 PROC COPY Converts a SAS Table to an SPD Server Table

The SQL Pass-Through Facility

Overview of the SQL Pass-Through Facility
SPD Server uses pass-through SQL commands to access and manipulate data. What does
this mean? Enabling pass-through SQL functionality provides SPD Server clients with a
new way to establish a connection with an SPD Server host or direct load from an external
database such as Oracle. Users now have broader data access in the SPD Server
environment and growing connectivity to external databases using the SPD Server engine.

The “SPD Server SQL Syntax Reference Guide” on page 145 documentation chapter
provides additional detailed reference information about using SPD Server SQL syntax.

Accessing Data Using the SQL Pass-Through Facility
The SQL Pass-Through Facility is another access method allowing SPD Server to connect
to a SQL server and manipulate data. An overview of the steps is presented here, and
followed with examples. These are the major steps for using SQL pass-through:

1. Establish a connection from an SPD Server client using a CONNECT statement.

2. Send SPD Server SQL statements using the EXECUTE statement.

3. Retrieve data SQL query with the CONNECTION TO component in a SELECT
statement's FROM clause.

4. Terminate the connection using the DISCONNECT statement.

40 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

SQL Pass-Through Statements

CONNECT Statement
Specifies the SAS I/O engine that will provide the SQL pass-through access.

Syntax
CONNECT TO dbms-name < AS alias >(dbms-args);

Arguments:

dbms-name (required)
Specifies the name of the engine.

When running SAS and PROC SQL, you must specify sasspds to obtain SQL pass-
through to an SPD Server SQL Server. You must specify spdseng to obtain SQL pass-
through from an SPD Server SQL server. The later examples show CONNECT
statements specifying these engines.

AS alias (optional)
Specifies an alias or logical name for a connection. When specifying an alias to identify
the connection, use a string without quotes. Then refer to this logical name in
subsequent SQL pass-through statements.

Note: The alias must specify the connection that will execute the statement.

Example - Using an Alias

execute(...) by alias

or

select * from connection to alias(...)

dbms-args (required and/or optional arguments)
Identifies the SQL server and data source. The following dbms-args arguments are for
the SPD Server engines, sasspds and spdseng. SPD Server SQL uses the following
simple syntax: Keyword=Value

DBQ=libname-domain (required)
Specifies the primary SPD Server LIBNAME domain for the SQL pass-through
connection. The name that you specify is identical to the LIBNAME domain name
that you used when making a SAS LIBNAME assignment to sasspds. Use single
or double quotes around the specified value.

HOST=name-server-host (optional)
Specifies a node name or IP address for a name server that is currently running. Use
single or double quotes around the specified string. If you do not specify a name,
the software uses the current value of the SAS macro variable spdshost to determine
the node name.

SERVICE=name-server-port (optional)
SERV=name-server-port (optional)

Specifies the network address (port number) for a name server that is currently
running. Use single or double quotes around the specified value. If you do not
furnish a port number for the name server, the software determines the port address
from the named service spdsname in the /etc/services file.

USER=SPD Server user ID (required on Windows, but not UNIX)
Specifies an SPD Server user ID to access an SPD Server SQL Server. Use single
or double quotes around the specified value.

SQL Pass-Through Statements 41

PASSWORD=password (required)
PASSWD=password (required, or use PROMPT=YES, unless USER='anonymou')

Specifies an SPD Server user ID password to access an SPD Server. (This value is
case sensitive.) Normally you would not specify a password in text files that others
can view. More likely you would use this argument in batch jobs that are protected
by file system permissions, prohibiting others from reading the job files.

PROMPT=YES (required, or use PASSWD or PASSWORD=, unless
USER='anonymou')

Specifies a password prompt to access an SPD Server SQL server. This value is
case sensitive.

DISCONNECT Statement
Disconnects you from your DBMS source.

Syntax
DISCONNECT FROM [dbms-name | alias];

Description

When you are finished with a PROC SQL connection, you must disconnect from the DBMS
source. This automatically occurs when you exit the PROC SQL procedure. You can,
however, explicitly disconnect from the DBMS by using the DISCONNECT statement.

Arguments

dbms-name
the name specified in the CONNECT statement that established the connection.

alias
the alias value specified in the CONNECT statement that established the connection.

EXECUTE Statement
The EXECUTE statement is part of the pass-through SQL facility. It allows the user to use
specific SQL statements during a pass-through connection. Before using the EXECUTE
statement, the user must first establish a connection using the CONNECT statement. After
a user has created a pass-through connection, use EXECUTE to submit valid SQL
statements (except the SELECT statement).

Syntax
EXECUTE (SQL-statement)BY [dbms-name | alias];

Arguments

(SQL-statement)
A valid SQL statement passed for execution (except SELECT statements). This
argument is required and must be enclosed within parentheses.

dbms-name (required, or use alias)
Identifies the DBMS to which you want to direct the SQL statement. Note that dbms-
name must be preceded by the keyword BY.

alias (optional, or use dbms-name)
Specifies an optional alias used in the CONNECT statement.

CONNECTION TO Statement
CONNECTION TO is an SQL pass-through component that can be used in a SELECT
statement's FROM clause as part of the from- list. The CONNECTION TO component
enables you to make pass-through queries for data and to use that data in a PROC SQL
query or table. PROC SQL treats the results of the query like a virtual table.

42 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

Syntax
CONNECTION TO dbms-name(SQL-query)

Arguments

dbms-name (required)
If you have a single connection, dbms-name is the dbms-name specified in your
CONNECT statement. If you have multiple connections, use the alias specified in the
AS clause of the CONNECT statement.

(SQL-query)
The (SQL-query) specifies the SQL query you want to send. Your SQL query cannot
contain a semicolon because that represents the end of a statement to SPD Server.
Character literals are limited to 32,000 characters. Be sure your SQL query is enclosed
in parentheses.

alias (optional)
Specifies an optional alias used in the CONNECT statement.

Example 1: Using SAS PROC SQL to Connect to a SQL Server
To connect from a SAS session to a SQL server, in this example the SPD Server's SQL
Server, execute a CONNECT statement. After making the connection, the first execute
statement creates a table EMPLOYEE_INFO with three columns, EMPLOYEE_NO,
EMPLOYEE_NAME, and ANNUAL_SALARY. The second execute statement inserts an
observation into the table where EMPLOYEE_NO equals 1 and EMPLOYEE_NAME
equals The Prez.

The subsequent FROM CONNECTION TO statement retrieves all the records from the
new EMPLOYEE_INFO table. (In this example, that would be the single observation
inserted by the second execute statement.) The DISCONNECT statement terminates the
data source connection.

 PROC SQL;
 connect to sasspds
 (dbq='mydomain'
 host='workstation1'
 serv='spdsname'
 user='me'
 passwd='noway');
 execute (create table employee_info
 (employee_no num, employee_name char(30),
 annual_salary num) by sasspds;
 execute (insert into employee_info
 values (1, 'The Prez')) by sasspds;
 select * from connection to sasspds
 (select * from employee_info);
 disconnect from sasspds;
 quit;

Example 2 - Nested SQL Pass-Through
SPD Server pass-through access can be nested. Nesting allows access to data stored on two
different networks or network nodes.

In the example that follows, we nest SQL pass-through from the current local network host
DATAGATE to access the EMPLOYEE_INFO table, which is available at the PROD host
on a remote network. (Our example presumes that we have user access to PROD.)

SQL Pass-Through Statements 43

 proc sql;
 connect to sasspds (dbq='domain1'
 host='datagate' serv='spdsname'
 user='usr1' passwd='usr1_pw');
 execute (connect to spdseng (dbq='domain2'
 host='prod' serv='spdsname'
 user='usr2' passwd='usr2_pw') by sasspds;
 select * from connection to sasspds(
 select * from connection to spdseng(
 select employee_no, annual_salary
 from employee_info));
 execute (disconnect from spdseng) by sasspds;
 disconnect from sasspds;
 quit;

Creating a New Table
One of the SPD Server's strengths lies in the ability to create, manipulate, and query very
large tables. As a rule of thumb, client users generally choose not to store massive tables
locally because of their sheer size. The following code examples assume that users will
create and store large tables on the SPD Server host.

Example - Creating a New Table Using Pass-Through Statements
First, connect from a SAS session to a SQL server, in this example the SPD Server's SQL
Server. Then, execute a CONNECT statement. After you establish the connection, the first
execute statement creates a table LOTTERYWIN with two columns, TICKETNO and
WINNAME. The second execute statement inserts an observation into the table where
TICKETNO equals 1 and NAME equals Wishu Weremee.

The subsequent FROM CONNECTION TO statement retrieves all the records from the
new LOTTERYWIN table. (In this example, that would be the single observation inserted
by the second execute statement. The DISCONNECT statement terminates the data source
connection.

 proc sql;
 connect to sasspds (dbq='mydomain'
 host='workstation1' serv='spdsname'
 user='me' passwd='luckyones');
 execute (create table lotterywin
 (ticketno num, winname char(30))) by sasspds;
 execute (insert into lotterywin
 values (1, 'Wishu Weremee')) by sasspds;
 select * from connection to sasspds
 (select * from employee);
 disconnect from sasspds;
 quit;

44 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

Example - Creating a New Table with a LIBNAME Statement
SITEUSR1 creates a new SPD Server table CARDATA.OLD_AUTOS on the server.

libname cardata sasspds 'conversion_area' server=husky.5105
 user='siteusr1' prompt=yes;

/* Create the table CARDATA.OLD_AUTOS on the SPD Server host. */

data cardata.old_autos;
 input year $4. @6 manufacturer $12. model $12. body_style $5.
 engine_liters @39 transmission_type $1. @41 exterior_color
 $10. options $10. mileage conditon;

datalines;

1966 Ford Mustang conv 3.5 M white 00000001 143000 2
1967 Chevrolet Corvair sedan 2.2 M burgundy 00000001 70000 3
1975 Volkswagen Beetle 2door 1.8 M yellow 00000010 80000 4
1987 BMW 325is 2door 2.5 A black 11000010 110000 3
1962 Nash Metropolitan conv 1.3 M red 00000111 125000 3
;

Example - Creating a New Table with a LIBNAME Statement 45

46 Chapter 4 • Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

Chapter 5
Indexing, Sorting, and
Manipulating SAS Scalable
Performance Data (SPD) Server
Tables

Introduction . 47

Indexing a Table . 47
The SPD Server Index . 47

Creating SPD Server Indexes Examples . 48
Creating SPD Server Indexes from a DATA Step . 48
Creating SPD Server Indexes from PROC DATASETS . 49
Creating SPD Server Indexes Using SQL . 49
Creating SPD Server Indexes Using Pass-Through SQL . 49
Using VERBOSE= to See Index Information . 49
Using PROC SORT with SPD Server . 50
Example Using Implicit SPD Server BY Clause Sort . 50
Example Using PROC SORT . 50

Introduction
This chapter describes and provides examples on indexing, sorting, and manipulating SPD
Server tables on an SPD Server host.

Indexing a Table
SPD Server provides a single SPD Server index type that efficiently indexes tables of
varying size and data distributions. The SPD Server SPD index optimally supports queries
that require global table views (such as queries that contain BY clause processing and SQL
joins), or queries which require segmented views (such as parallel processing of WHERE
clause statements).

The SPD Server Index
The SPD Server index maintains two views of the index values, a global view and a
segmented view. The global view is maintained using a unique global B-tree that has a
single entry for each discrete value. The segmented view is maintained by the data for each
value in the global B-tree, which includes a list of segments that contain the value, and for
each segment a bitmap that identifies which rows in the segment contain the value. The
global view is maintained in the SPD Server index.hbx file, and the segmented data is
maintained in the SPD Server index.idx file.

47

For queries that require a global view, SPD Server searches the hybrid global B-tree for a
particular value. The segment lists are scanned for the value, then the bitmaps from each
segment containing the value are read. SPD Server uses the bitmap to locate and retrieve
the observations for that segment. This type of query returns results sorted first by value
and then by observation number. This sorting is optimal for BY Clause processing and
SQL joins.

A parallel WHERE clause on a table that is indexed is done in two phases. The first phase,
pre-evaluation, uses the SPD Server indexes to build a list of segments that satisfy the
query. The list drops segments from the WHERE clause scan queue when those segments
contain no data in the clause range. As more and more segments are excluded from the
scan queue, the benefit of the pre-evaluation phase increases proportionally. The second
phase in the evaluation launches threads which read an index in parallel. Each thread queries
a particular segment of the index, using information from the pre-evaluation phase. Using
the SPD Server index, the thread reads the segment bitmap. The per-segment bitmaps
identify the segment rows which satisfy the query for that particular column. If you include
more than one indexed column in the WHERE clause, SPD Server retrieves the per-segment
bitmaps for each column in parallel (as are the segments for each column). After retrieving
all the bitmaps for each column of the segment, SPD Server determines which rows satisfy
the query, and returns those segment rows to the client. The multi-threaded per-segment
queries begin execution at the same time, and their finishing order varies and cannot be
reasonably predicted. As a result, the overall order of the results cannot be guaranteed when
you are using this type of query. See the documentation chapter on “WHERE Clause
Planner” on page 181 for a more detailed description on using indexed columns with
WHERE clause evaluations.

When a table is modified due an append or update, all SPD Server indexes on the table are
updated. Updating the index can potentially fragment the per-value segment lists or cause
some disk space to be wasted. A highly fragmented SPD Server index can negatively impact
the performance of queries that use the index. In this case, you should reorganize the index
to eliminate the fragmentation and reclaim wasted disk space, using the ixutil utility
program. For further information about SPD Server index utilities, see Chapter 15,
"Managing SAS Scalable Performance Data (SPD) Server Passwords, Users, and Table
ACLs," of the SAS Scalable Performance Data (SPD) Server 4.5: Administrator's Guide.

Creating SPD Server Indexes Examples
This section shows how to create SPD Server indexes for new and existing tables.

Creating SPD Server Indexes from a DATA Step

 data foo.x(
 index=(x y=(a b)));
 x=1;
 a="Doe";
 b=20;
 run;

The code above creates SPD Server table X. Next, the code creates a simple SPD Server
index X on column X, and a composite SPD Server index Y on columns (A B).

48 Chapter 5 • Indexing, Sorting, and Manipulating SAS Scalable Performance Data (SPD) Server Tables

Creating SPD Server Indexes from PROC DATASETS

 PROC DATASETS lib=foo;
 modify x;
 index create x;
 index create y=(a b);
 quit;

This creates the same simple and composite SPD Server indexes that were created in
Example 1, assuming that the same DATA step was executed without index creation
included.

Creating SPD Server Indexes Using SQL

 PROC SQL;
 create index x
 on foo.x (x);
 create index y
 on foo.x (a,b);
 quit;

This creates the same simple and composite SPD Server indexes as in Example 1, assuming
that the same DATA step was executed without index creation included.

Creating SPD Server Indexes Using Pass-Through SQL

 PROC SQL;
 connect to sasspds (
 dbq="path1"
 server=host.port
 user='anonymous');

 execute(create index x on x (x))
 by sasspds;

 execute(create index y on x (a,b))
 by sasspds;
 quit;

This creates the same simple and composite SPD Server indexes as in Example 1, assuming
that the same DATA step was executed without index creation included.

Using VERBOSE= to See Index Information
There will be times when you want to see information about indexes that are associated
with a particular table. The table option VERBOSE= provides details of all indexes
associated with an SPD Server table. For example, if the code from Example 2 above is
followed with the expression below:

 PROC CONTENTS
 data=sports.expraqs

Using VERBOSE= to See Index Information 49

 (verbose=yes);
 run;

The following will be output:

 Alphabetic List of Index Info:
Bitmap Index (No Global Index): GRIPSIZE
KeyValue (Min): 4.250000
KeyValue (Max): 5.000000
of Discrete values: 3

Using PROC SORT with SPD Server
If you use PROC SORT with SPD Server, your table will be sorted. However, you might
want to understand a few sort details to avoid surprises. For example, assume that you
submit a PROC SORT statement in order to sort a table that was not previously indexed,
or sorted on the table's BY column.

PROC SORT takes advantage of SPD Server sorting implicitly and asserts BY Clause
ordering to the SPD Server. This performs the sort on the SPD Server machine, but there
will still be significant I/O between the client node and the SPD Server machine. The sorted
data still makes a round trip from the server machine to the client machine and back again.
Fortunately, the SQL Pass-Through Facility in SPD Server offers an extension to the SQL
language to permit a table copy and sort operation, all on the server machine.

Knowing the implications of using PROC SORT with SPD Server, how can you avoid
inefficiency? The answer is to eliminate PROC SORT statements from your SAS jobs
where possible. Instead, make SAS procedures and DATA steps that require BY Clause
processing use SPD Server's implicit sorts.

Example Using Implicit SPD Server BY Clause Sort

 /* The following DATA step performs a server sort on the */
 /* table column PRICE. There is no prior index for PRICE */

 data _null_;
 set sport.expraqs;
 by price;
 if (string='nat') then do;
 put '*' @@;
 price = price - 30.00;
 end;
 put raqname @30 price;

Example Using PROC SORT

 /* The following PROC SORT performs a server sort on the */
 /* table column MODEL. There is no prior index for MODEL */

 PROC SORT
 data=inventory.old_autos
 out=inventory.old_autos_by_model;

50 Chapter 5 • Indexing, Sorting, and Manipulating SAS Scalable Performance Data (SPD) Server Tables

 by model;
 run;

Example Using PROC SORT 51

52 Chapter 5 • Indexing, Sorting, and Manipulating SAS Scalable Performance Data (SPD) Server Tables

Chapter 6
Using SAS Scalable Performance
Data (SPD) Server with Other
Clients

Overview . 53

Using Open Database Connectivity (ODBC) to Access SPD Server Tables 54
Why Use ODBC? . 54
Installing OBDC Drivers on the Server . 55
Configuring ODBC on the Client . 55
Preparing your Client Machine for ODBC Installation . 56
Two Types of ODBC Connections . 56
Primary and Secondary LIBNAME Domains . 57
Configuring an ODBC Data Source to Connect Directly to a SPD Server 57
Configuring an ODBC Data Source for SPD SNET . 58
Editing the Services File on Your Machine - ODBC Details 58
Creating a Query Using an ODBC-Compliant Program . 59

Using JDBC (Java) to Access SPD Server Tables . 59
Why Would I Want to Use JDBC? . 59
How Is JDBC Set Up on the Server? . 60
How Is JDBC Set Up on the Client? . 60
How Do I Use JDBC to Make a Query? . 60
JDBC Code Examples and Tips . 61
Limitations of Using JDBC with SPD Server . 61

Using htmSQL to Access SPD Server Tables . 62
Why Would I Want to Use htmSQL? . 62
How Is htmSQL Set Up on the Server? . 63
How Is htmSQL Set Up on the Client? . 63
How Do I Use htmSQL to Make a Query? . 63
Examples of Setting Up an htmSQL Web Page . 64

Using SQL C API to Access SPD Server Tables . 64
Why Would I Want to Use SQL C API? . 64

Overview
This chapter describes using SAS Scalable Performance Data (SPD) Server to connect with
ODBC, JDBC, htmSQL, and SQL C API clients.

Scalable Performance Data Server provides ODBC, JDBC, htmSQL, and SQL C API
access to SPD Server data stores from all supported platforms.

53

SPD Server can read tables exported from Base SAS software using PROC COPY, and,
with the proper drivers installed on the network, allows queries on the tables from client
machines that do not have SAS software.

There are four possible options:

• ODBC:Open Database Connectivity - This is an interface standard that provides a
common interface for accessing databases. Many software applications running in a
Windows environment are compliant with this standard and can access data created by
other software. This is a good choice if you have client machines running Windows
applications, such as Microsoft Excel or Microsoft Access.

• JDBC:Java Database Connectivity - This option allows users with browsers to log on
to a Web page and make a query. The results of the request are formatted and returned
to a Web page. This makes information available across a wide range of client platforms
because all you need, after installing the JDBC driver on SPD Server, is a Web page
with some Java code, and a client machine with a Java-enabled browser.

• htmSQL:HyperText Markup Structured Query Language - This option allows users
with browsers to log on to a Web page and make a query. The results of the request are
formatted and returned to a Web page. This makes information available across a wide
range of client platforms. Why? After installing the htmSQL driver in SPD Server, all
you need is an htmSQL Web page and a client machine with a browser.

• SQL C API:This option allows access to SPD Server tables from SQL statements
generated by C/C++ language applications. This access is provided in the form of a C-
language run-time access library. This library provides a set of functions that you can
use to write custom applications to process SPD Server tables and to generate new ones.
This library is designed to support multi-threaded applications and is available on all
supported SPD Server platforms.

Note: GUI interfaces might not display all return codes or error messages that the server
generates.

Using Open Database Connectivity (ODBC) to
Access SPD Server Tables

Read this section if you do not have Base SAS software on the network client, but you want
to access SPD Server tables on the network, using an ODBC compliant program, such as
Microsoft Word, Query, Excel, or Access, and you have SPD Server tables available for
use, somewhere on the network, or SPD Server data servers and SPD Server snet servers
running, or client machines in a Windows environment.

Why Use ODBC?
You have SPD Server tables available on your network, and one or more of the following
might be true:

• You do not have Base SAS software running on the Windows client, but you need to
view or change SPD Server tables.

• You need to view or change the SPD Server tables using a Microsoft spreadsheet,
database or word processor.

• You need to view or change SPD Server tables in ways that cannot be predetermined
or programmed into a Web page.

54 Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients

• You need to view or change SPD Server tables using Windows tools you are familiar
with.

Installing OBDC Drivers on the Server
Instructions for installing the OBDC driver are included in the SPD Server installation
package.

Configuring ODBC on the Client
1. Configure an ODBC data source.

2. Make your query using a Windows program.

Figure 6.1 Configure ODBC to Connect SPD Server Client to SPD Server Host

Configuring ODBC on the Client 55

Figure 6.2 Configure ODBC to Connect SPD Server Client to SPD SNET Server

Preparing your Client Machine for ODBC Installation
Before you create OBDC data sources driver, you'll need the following information from
your network administrator:

• a user name and password that is defined by a SPD Server administrator

• the primary LIBNAME domain of the SPD Server (also called the DBQ)

• the port number of the SPD name server (also called the SERV)

• the machine name or IP address of the SPD Server Name Server (also called the HOST)

• any secondary LIBNAME domains you want to assign to the ODBC connection.

Two Types of ODBC Connections
With SPD Server software you can connect directly to a SPD Server without going through
the SPD SNET server. Although connecting directly is the preferred method, connections
via the SPD snet server are still supported.

Note that connections via the SPD snet servers are not supported in the SAS 9 ODBC
Driver software. If you intend to connect via the SPD snet Server you must install the SAS
8 ODBC Driver.

56 Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients

Primary and Secondary LIBNAME Domains
When a connection to the SPD Server is established a primary LIBNAME domain is
assigned. The primary LIBNAME domain is specified by the DBQ connection options
parameter. Immediately after the connection is made the SAS ODBC Driver assigns the
secondary LIBNAME domains which are configured through the Libraries tab of the SAS
ODBC Driver Configuration window.

ODBC Connections via the SPD snet server must have an odbc.parm file configured on
the SPD snet Server machine.

Configuring an ODBC Data Source to Connect Directly to a SPD
Server

Once the SAS ODBC driver is installed, you will need to configure your ODBC data source.
When you open the ODBC manager, you'll get a display screen that allows you to enter
information that points the OBDC driver to the data on the SPD Server.

1. From the Windows Start button, select Start ð Settings ð Control Panel

2. Locate the ODBC Data Sources icon and open the Microsoft ODBC Data Source
Administrator . The exact location of this program depends on your version of
Windows.

3. Select the Add button, then select the SAS ODBC driver.

4. Enter a data source name (and description if desired.)

5. Select the Servers panel and type in your two-part server name.

6. Click on the Configure box. The TCP Options window appears:

• Server Address: Enter the network address of the machine on which the SPD
Server is running.

• Server User Name: Enter the user name as configured for a DBQ (SPD Server
primary LIBNAME domain) on the SPD Server to which you will connect.

• Server User Password: Enter the user password as configured for a DBQ (SPD
Server primary LIBNAME domain) on the SPD Server host to which you will
connect.

• Connection Options: Enter the Connection Options as follows:

• DBQ='SPD Server primary LIBNAME domain', this is the SPD Server
LIBNAME domain

• HOST='name server node name',this is the location of the host computer

• SERV='name server port number',this is the port number of the SPD Server
name server running on the HOST.

• Any other SPD Server LIBNAME options. For more information, see the SPD
Server 4.45: User's Guide section on “LIBNAME Options” on page 23.

7. Click OK, and then click Add, and select the Libraries panel.

8. Enter the DBQ name of a secondary LIBNAME domain in both the Name and Host
File text fields.

9. Enter spdseng in the Engine text field.

Configuring an ODBC Data Source to Connect Directly to a SPD Server 57

10. Follow the syntax rules for the SQL Pass-Through libref statement for entering a value
in the Options text field.

Configuring an ODBC Data Source for SPD SNET
Once the SAS ODBC driver is installed, you will need to configure your ODBC data source.
When you open the ODBC manager, you'll get a display screen that allows you to enter
information that points the OBDC driver to the data on the SPD Server.

1. From the Windows Start button, select Start ð Settings ð Control Panel

2. Click on the ODBC icon and select the Add button.

3. Select the SAS ODBC driver.

4. Enter a data source name (and description if desired).

5. Select the Servers panel and type in the two-part server name. The second part of the
server name should match the entry in the services file. In the example that follows that
shows you how to edit the services file, the server name is spdssnet.

6. Click on the Configure box. The TCP Options window appears with four input fields
that you fill:

• Server Address: Enter the network address of the machine on which the SPD snet
server is running.

• Server User Name: Enter the user name as configured for a DBQ (SPD Server
primary LIBNAME domain) on the SPD Server to which you will connect.

• Server User Password: Enter the user password as configured for a DBQ (SPD
Server primary LIBNAME domain) on the SPD Server host to which you will
connect.

• Connection Options: Enter the connection options as follows:

• DBQ='SPD Server primary LIBNAME domain':this is the SPD Server
LIBNAME domain.

• HOST='name server node name':this is the location of the host computer.

• SERV='name server port number':this is the port number of the SPD Server
name server running on the HOST.

7. Click OK, and then click Add.

Editing the Services File on Your Machine - ODBC Details
Editing the Services file is required only for ODBC connections via the SPD snet Server.

1. Find the Services file on your Windows machine. In Windows, the Services file is
usually located in c:\windows\services

2. Open the Services file using a text editor.

3. The services file contains four columns. The rows of information can be sorted in port
number order. Find the closest port number to the SPD Server port number, which you
obtained from the network administrator (see “Preparing your Client Machine for
ODBC Installation ” on page 56). This is where you insert the new information.

4. Add an entry to the Services file, on its own line, in proper numeric order, using the
following syntax:

58 Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients

Table 6.1 How to Add Service Name and Port Number to the Services File

column1

<service name>

column2

<port number

& protocol>

column3

<aliases>

column4

<comment>

spdssnet

spdssnet=name

assigned to server

nnnn/tcp

nnnn=port number

protocol is

always /tcp

not

required

not

required

Remember: The service name, spdssnet must match the server name that you used in step
6 of “Configuring an ODBC Data Source for SPD SNET ” on page 58. The port number
must match the port number on which the SPD snet server is running.

Creating a Query Using an ODBC-Compliant Program
The following instructions create a query using Microsoft Access.

1. Start the SPD Server snet server.

2. Start Microsoft Access.

3. From the Microsoft Access main menu, select File ð Get External Table.

4. Select Link Table.

5. Select Files of Type.

6. Select ODBC Databases.

7. Select the data source.

Using JDBC (Java) to Access SPD Server Tables
Read this information if you do not have Base SAS software on the network client, but you
want to use the power of the Java programming language to query SPD Server tables from
any client on the network that has a browser. You must have SPD Server tables on the
network and SPD Server and SPD snet servers running on the same server as the Web
server in order to use JDBC to access SPD Server tables.

Why Would I Want to Use JDBC?
You might want to use JDBC if you have SPD Server tables available on your network and
one or more of the following is true:

• You do not have Base SAS software on the network client to process the data sets.

• You want to distribute the information across your corporate intranet through a Web
page.

• The clients on your network are varied: UNIX boxes, Windows PCs, and workstations.
One thing they might have in common is browser access to your intranet.

Why Would I Want to Use JDBC? 59

• The audience for the information understands Web browsing and wants point-and-click
access to the information.

• You want to distribute the information over the World Wide Web.

• Your planned application requires the power of the Java programming language.

How Is JDBC Set Up on the Server?
JDBC is usually set up on the server at the time the SPD Server is installed. The process
is covered in the SPD Server installation manual.

How Is JDBC Set Up on the Client?
The client needs a browser set up to accept Java applets, such as

• Netscape Navigator, Release 3.0 or later

• Microsoft Internet Explorer, Release 3.02 or later.

How Do I Use JDBC to Make a Query?
1. Log on to the World Wide Web and enter the URL for the Web page that contains the

JDBC code.

2. Click on the desired information.

3. JDBC handles the request, formats the information, and returns the result to the Web
page.

60 Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients

JDBC Code Examples and Tips
The following lines must be a part of the HTML file for JDBC:

<applet code=CLASSPATH.*.class codebase=../ width=600 height=425>
<param name=url value=jdbc:sharenet://spdssnet_node:PORT>
<param name=dbms_options value=DBQ='libname' HOST='host_node' SERV='NNNN'>
<param name=spdsuser value=userid>
<param name=sharePassword value=thepassword>
<param name=shareRelease value=V9>
<param name=dbms value=spds>
</applet>

Line 1:

• CLASSPATH points to the class path set up where the JDBC driver is installed.

• *.class is the name of the Java class that consumes all of the <PARAM name=...> lines.

Line 2:

• spdssnet_node is the node name of the machine on which the SPD snet server is
running.

• PORT=port number of the machine on which the SPD snet server is running.

Line 3:

• value=DBQ='libref' is the LIBNAME domain of the SPD Server.

• HOST='host_node'is the location of the SPD snet server.

• SERV='NNNN'is the port number of the name server.

Line 4:

• spdsuser value=user ID is the user ID that queries the SPD Server table.

Line 5:

• sharePassword value=thepassword is the password of the user ID that will make the
query.

Line 6:

• shareRelease value=V9 is the version of the driver you are using. This must not be
altered.

Line 7:

• Sets the foreign database property on the JDBC driver. This means that the server is
not SAS and JDBC should not create a DataBaseMetaData object. See the examples
below for how to get around this.

Limitations of Using JDBC with SPD Server

JDBC Used with SAS Versus JDBC Used with SPD Server
SPD Server is treated as a foreign database. SPD Server clients can't query the JDBC
metadata class for available tables and other metadata. Users must write their own queries
to do this.

Limitations of Using JDBC with SPD Server 61

Example JDBC Query for Getting a List of Tables
(JDBC Used with SPD Server)

SELECT '' AS qual,
LIBNAME AS owner,
MEMNAME AS name,
MEMTYPE AS type,
MEMNAME AS remarks FROM dictionary.tables AS tbl
WHERE (memtype = 'DATA' OR memtype = 'VIEW' OR memtype = 'SYSTEM TABLE' OR
 memtype = 'ALIAS' OR memtype = 'SYNONYM')
AND (tbl.libname NE 'MAPS' AND tbl.libname NE 'SASUSER' AND tbl.libname NE 'SASHELP')
ORDER BY type, qual, owner, name

Example JDBC Query for Getting Metadata about a Specific Table
(Your data file)

SELECT '' AS qual,
LIBNAME AS owner,
MEMNAME AS tname, name,
length AS datatype,
type || ' ',
length AS prec,length,
length AS scale, length AS radix, length AS nullable,label,
FORMAT FROM dictionary.columns AS tbl
WHERE memname = 'your data file'
AND (tbl.libname NE 'MAPS'
 AND tbl.libname NE 'SASUSER'
 AND tbl.libname NE 'SASHELP')

Using htmSQL to Access SPD Server Tables
Read this section if you do not have Base SAS software on the network client, but you want
to use the point-and-click convenience of a Web page to query SPD Server tables from any
browser-enabled client on the network. You must have SPD Server tables available for use,
htmSQL loaded and configured on a UNIX or Windows operating system, and Scalable
Performance Data Servers and SPD snet servers running.

Why Would I Want to Use htmSQL?
You might want to use htmSQL if you have SPD Server tables available on your network
and one or more of the following is true:

• You do not have Base SAS software on the network client to process the data sets.

• You want to distribute the information across your corporate intranet through a Web
page.

• The clients on your network are varied: UNIX boxes, Windows PCs, and workstations.
One thing they might have in common is browser access to your intranet.

• The audience for the information understands Web browsing and wants point-and-click
access to the data.

62 Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients

• You would like to use the JDBC option to extract the information but cannot permit
Java applets to run on your network browsers.

• You want to distribute the information over the World Wide Web.

• Your developers are familiar with SQL and HTML.

How Is htmSQL Set Up on the Server?
• htmSQL is usually set up on the server at the time the SPD Server is installed. The

process is covered in the SPD Server installation manual.

• htmSQL must be installed on the Web server and you need the name of a data source
that points to the SPD snet server and to the specific LIBNAME domain that contains
the SPD Server data you are interested in.

How Is htmSQL Set Up on the Client?
HtmSQL requires nothing more than a browser on the network or Web client.

Figure 6.3 htmSQL Configured on a SPD Server Client

How Do I Use htmSQL to Make a Query?
1. Log on to the World Wide Web and enter the URL for the Web page that contains the

htmSQL code.

2. Click on the desired information.

3. htmSQL handles the request, formats the information, and returns the result to the Web
page.

How Do I Use htmSQL to Make a Query? 63

Examples of Setting Up an htmSQL Web Page
SAS Institute maintains a Web site that explains the technical details of setting up htmSQL
Web pages. In some cases, there are references to the SAS/SHARE product. The rules for
setting up htmSQL for either the SPD Server or SAS/SHARE are virtually the same.

The SAS Institute Web page for htmSQL is http://support.sas.com/rnd/web/
intrnet/htmSQL/index.html.

Using SQL C API to Access SPD Server Tables
Read this section if you do not have Base SAS software on the network client but you want
to provide your network client machines with the capability of accessing SPD Server tables,
using SQL query methods. You must have SPD Server tables available for use, SPD Servers
and SPD snet servers running, and Network client machines capable of running C/C++
programs.

Why Would I Want to Use SQL C API?
You have SPD Server tables available on your network and one or more of the following
might be true:

• You do not have Base SAS software on the network client to process the data sets.

• You want to distribute the information across your corporate intranet.

• The clients on your network are varied: UNIX boxes, Windows PCs, workstations. One
thing they might have in common is the ability to run C/C++ programs.

• Your developers are familiar with SQL and C/C++.

“SAS Scalable Performance Data (SPD) Server SQL Access Library API Reference” on
page 159 contains additional information about SQL C API.

64 Chapter 6 • Using SAS Scalable Performance Data (SPD) Server with Other Clients

http://support.sas.com/rnd/web/intrnet/htmSQL/index.html
http://support.sas.com/rnd/web/intrnet/htmSQL/index.html

Chapter 7
SAS Scalable Performance Data
(SPD) Server Dynamic Cluster
Tables

Introduction to Dynamic Cluster Tables . 65

Dynamic Cluster Table Structure . 66

Benefits of Dynamic Cluster Tables . 67
Overview of Dynamic Cluster Tables . 67
Parallel Loading . 67
Fast and Economical Refreshes . 67

Creating and Controlling Dynamic Cluster Tables . 68
Create a Dynamic Cluster Table . 68
Dynamic Cluster Table Access Control . 70
Add Tables to a Dynamic Cluster . 70
Undo Dynamic Cluster Tables . 72
Refresh Dynamic Cluster Tables . 74
Modify Dynamic Cluster Tables . 75

Dynamic Cluster BY Clause Optimization . 76
Overview of Optimizing BY Clauses . 76
Dynamic Cluster BY Clause Optimization Example . 77

Member Table Requirements for Creating Dynamic Cluster Tables 79
Overview of Table Requirements . 79
Table Attributes . 79
Variable Attributes . 80
Index Attributes . 81

Querying and Reading Member Tables in a Dynamic Cluster 82

Unsupported Features in Dynamic Cluster Tables . 83

Dynamic Cluster Table Examples . 84
Create a Dynamic Cluster Table Example . 84
Add Tables to a Dynamic Cluster Example . 88
Undo Dynamic Cluster Table Example . 88
Refresh Dynamic Cluster Table Example . 88

Introduction to Dynamic Cluster Tables
SPD Server is designed to meet the storage and performance demands that are associated
with processing large amounts of data using SAS. As the size of the data grows, the demand
to process that data increases, and storage architecture must change to keep up with business
needs.

65

SPD Server offers dynamic cluster tables. Earlier releases of SPD Server provided a type
of cluster table called the time-based partitioning table. To optimize the benefits of the
clustering, the SPD Server administrator can use dynamic clusters to partition SPD Server
data tables for speed and enhanced I/O processing. Clustering is performed using metadata
that when combined with SPD Server functionality, provides parallel processing
capabilities for loading and querying data tables. Parallel processing can accelerate
performance and increase the manageability, flexibility, and scalability of very large data
stores.

Dynamic Cluster Table Structure
The SPD Server dynamic cluster table can be considered as part of a hierarchy of tables
with increasing sophistication:

• Traditional SAS tablesare single files that contain the data descriptors and the table
data. Data values are the columns, and the descriptors are the metadata that describe
the column and data formatting that the table uses. If a traditional SAS table contains
one or more indexes, they are stored in a separate file.

• SPD Server tablesuse component files to store tables. One component file stores the
stream of data values. Another component file stores the column and data descriptors.
If you create an index for a column or a composite of columns, SPD Server creates two
separate component files (a *.hbx file and a *.idx file) for each index.

• SPD Server Cluster tablesare virtual table structures. SPD Server cluster tables consist
of members. Each member is an SPD Server table. All members must share the same
metadata formats and organization. SPD Server cluster tables use the metadata to
manage the data that is contained in the members.

The SPD Server dynamic cluster table structure provides architecture that enables
flexible loading and rapid storage and processing for very large data tables. Using
dynamic cluster tables, loading data, removing data, and refreshing tables in very large
data marts become easier and more timely. Dynamic cluster tables provide

66 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

organizational features and performance benefits that traditional SAS tables and SPD
Server tables do not have.

Benefits of Dynamic Cluster Tables

Overview of Dynamic Cluster Tables
Organizing SPD Server data into dynamic cluster tables creates an architecture that
supports parallelism, enhanced data flexibility and manageability, and significantly
improved speed in robust data warehousing environments that use large and very large data
tables.

For example, you can add new data or remove historical data from very large tables by
accessing only the member tables that are affected by the change. You can access the
individual member tables in parallel. This strategy reduces the time that is needed for the
job to complete and uses simple commands. Furthermore, a complete refresh of a dynamic
cluster table can occur using a fraction of the disk space that is needed to refresh a large
traditional SAS or SPD Server table that contains the same amount of data.

Parallel Loading
Because dynamic cluster tables are virtual tables that consist of numerous small SPD Server
tables, the architecture enables parallel loading and processing. Cluster table loads and
refreshes are broken down into multiple tasks that can be performed concurrently. Separate
SAS MP CONNECT jobs manage the parallel loading and processing.

The scalability of parallel loading with dynamic cluster tables depends on the scalability
of the server I/O and the number of processors on the server.

Parallel loading requires multiple concurrent writes to disk. If the I/O hardware does not
scale appropriately, the loading process can degrade performance.

SPD Server can create multiple indexes on the same table in parallel, and index creation is
a CPU-intensive process.

When sufficient processing power is available, parallel index creation in SPD Server is
highly scalable.

The creation process for each index is multi-threaded. A single index creation can use
multiple CPUs on a server if they are available, which greatly improves performance.

Fast and Economical Refreshes
Refreshing a dynamic cluster table requires only a fraction of the disk space that a traditional
SPD Server table with the same amount of data would require. The dynamic cluster table
architecture allows users to refresh many large tables concurrently, while conserving disk
and I/O resources. With very large traditional SAS or SPD Server tables, available disk
space often limits the number of tables that can be concurrently refreshed.

In the life cycle of data warehouses, tables can be refreshed to recapture disk space when
rows have been updated or deleted, or to reorder data for optimized performance. However,
refreshing a table can temporarily use twice the disk space of the table itself. With very
large tables, disk space can be a limiting factor when updating a data warehouse or data
mart. When disk space is limited on a server, the amount of data that can be refreshed at

Fast and Economical Refreshes 67

any given time is constrained. The window of time that is required to load and refresh can
become huge.

Because dynamic cluster tables can be quickly unbound into smaller SPD Server tables,
refreshing dynamic cluster tables does not use twice the disk space of the original table.
Instead, only twice the disk space of the largest member table in the dynamic cluster table
is required.

After the dynamic cluster table is unbound, disk space equal to the first member table is
required to perform a refresh. A backup of the refresh is created, and then the old version
is deleted, creating more available disk space. The refresh process repeats for each
successive member table until all members in the dynamic cluster table have been refreshed
and updated. Then, the member tables are merged into a dynamic cluster table once again.

When a server has enough disk space and I/O resources to refresh more than one member
table at a time, the benefits of parallel processing can be realized.

Creating and Controlling Dynamic Cluster Tables
Creating dynamic cluster tables in SPD Server is simple and straightforward. The following
operations are associated with creating and controlling dynamic cluster tables:

Create a Dynamic Cluster Table
To create dynamic cluster tables in SPD Server, you must have a set of related SPD Server
tables that you want to cluster, such as tables that contain monthly sales histories. The SPD
Server tables that you want to cluster must all be in the same domain, and must use identical
table structures (columns and indexes) and compression. However, member table partition
sizes and member table owners can vary. These requirements ensure the metadata
compatibility that is necessary to create dynamic cluster tables in SPD Server.

Once the related SPD Server tables are organized, a simple PROC SPDO command is used
to bind the tables into a dynamic cluster table.

The following graphic represents a dynamic cluster table with 24 members. Each member
table is an SPD Server table that contains monthly sales transactions:

68 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

The following code shows the PROC SPDO command syntax that is used to create dynamic
cluster tables from the member tables:

 PROC SPDO library=domain-name ;
 cluster create Sales_History
 mem=sales200301
 mem=sales200302
 mem=sales200303
 mem=sales200304
 mem=sales200305
 mem=sales200306
 mem=sales200307
 mem=sales200308
 mem=sales200309
 mem=sales200310
 mem=sales200311
 mem=sales200312
 mem=sales200401
 mem=sales200402
 mem=sales200403
 mem=sales200404
 mem=sales200405
 mem=sales200406
 mem=sales200407
 mem=sales200408
 mem=sales200409
 mem=sales200410
 mem=sales200411
 mem=sales200412
 maxslot=36 ;
 quit ;

Create a Dynamic Cluster Table 69

PROC SPDO uses a LIBRARY statement to identify the domain that contains the tables
to be clustered. The cluster create syntax specifies the name of the dynamic cluster table
to be created (Sales_History).

The mem= syntax identifies the members of the cluster table. The tables in the previous
example represent monthly sales transactions. This example uses 24 monthly sales tables
for the years 2003 and 2004.

The maxslot= specification specifies the maximum number of members that are allowed
in the dynamic cluster table Sales_History.

The “Dynamic Cluster Table Examples ” on page 84 section contains more extensive
code examples of creating dynamic cluster tables.

Dynamic Cluster Table Access Control
A user must have SPD Server control access on any member tables that are used in the
CLUSTER CREATE or CLUSTER ADD commands. A user must also have SPD Server
control access on the dynamic cluster table itself to submit a CLUSTER UNDO command.
There is no restriction on table ownership, as long as the user has control access on all
member tables. All users that have access to a domain have default control access on tables
that were created by the user Anonymous within that domain. ACLs can be defined on a
dynamic cluster table after it is created, and the permissions that are specified in the
dynamic cluster table ACL are applied when SPD Server accesses the dynamic cluster
table. Any individual ACL that is defined on a member table does not apply during the
time when the member table is part of a created dynamic cluster table.

Add Tables to a Dynamic Cluster
To add tables to a dynamic cluster table, you must have an existing dynamic cluster table.
The SPD Server tables that you want to add to the dynamic cluster table must all be in the
same domain as the dynamic cluster table. These tables must use identical table structures
(columns and indexes) and compression. However, partition sizes and owners can vary.
These requirements ensure the metadata compatibility that is required to add to a dynamic
cluster table.

Once the tables to be added are organized, a simple PROC SPDO command is used to add
the new tables to an existing dynamic cluster table. In the following graphic, sales tables
for the first six months of 2005 are set up to be added to the dynamic cluster table that
contains monthly sales transaction data for 2003 and 2004:

70 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

The following code shows the PROC SPDO command syntax that is used to add new tables
to an existing dynamic cluster table:

 PROC SPDO library=domain-name ;
 cluster add Sales_History
 mem=sales200501
 mem=sales200502
 mem=sales200503
 mem=sales200504
 mem=sales200505
 mem=sales200506 ;
 quit ;

PROC SPDO uses a LIBRARY statement to identify the domain that contains the existing
dynamic cluster table that you want to add to. The cluster add syntax specifies the name
of the dynamic cluster table that you want to add to (Sales_History).

The mem= syntax identifies the members that form the table to be added to the existing
dynamic cluster table. In the following graphic, six tables that include monthly sales
transactions for the first half of 2005 are set up to be added to the existing dynamic cluster
table of 2003 and 2004 sales transactions data:

Add Tables to a Dynamic Cluster 71

See the “Dynamic Cluster Table Examples ” on page 84 section for a more extensive
code example of adding to a dynamic cluster table.

Undo Dynamic Cluster Tables
To undo a dynamic cluster table, you must have an existing dynamic cluster table. Undoing
the dynamic cluster table simply reverts the table back to unbound SPD Server tables.
Undoing a dynamic cluster table is required to remove a specific member table from a
dynamic cluster table, to add data to a specific member table in the dynamic cluster table,
or to completely refresh a specific member table that belongs to the dynamic cluster table.

The following graphic represents a dynamic cluster table with 24 members. Each member
contains monthly sales transactions for the years 2003 and 2004:

72 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

PROC SPDO is used to undo the existing dynamic cluster table.

The following code shows the PROC SPDO command syntax that is used to undo an
existing dynamic cluster table:

 PROC SPDO library= domain-name ;
 cluster undo Sales_History ;
 quit ;

PROC SPDO uses a LIBRARY statement to identify the domain that contains the existing
dynamic cluster table that you want to undo. The cluster undo syntax specifies the name
of the dynamic cluster table that you want to undo (Sales_History).

The following graphic represents the previous dynamic cluster table, now unbound.

Undo Dynamic Cluster Tables 73

See the “Dynamic Cluster Table Examples ” on page 84 section for a more extensive
code example of undoing a dynamic cluster table and then refreshing it.

Refresh Dynamic Cluster Tables
To refresh a dynamic cluster table, you perform the same actions that are required to undo
a dynamic cluster table. Then, you recreate the dynamic cluster table after you add a
member table or change an existing member table. An example of refreshing an SPD Server
dynamic cluster table is updating on a monthly basis a dynamic cluster table whose
members are the 24 previous months of sales transaction data.

To refresh a dynamic cluster table, use sequential PROC SPDO commands to UNDO
CLUSTER and CREATE CLUSTER with the desired member tables. The dynamic cluster
table is first undone. Table changes are made, and then the dynamic cluster table is rebound
again. The following example unbinds the sales transactions tables for 2003 and 2004, and
then refreshes the dynamic cluster table with sales transactions tables for the first six months
of 2005:

74 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

See the “Dynamic Cluster Table Examples ” on page 84 section for a more extensive
code example of unbinding a dynamic cluster table and then refreshing it by recreating it
with different member tables.

Modify Dynamic Cluster Tables
The PROC SPDO command set for dynamic clusters provides a CLUSTER MODIFY
cluster command. The usage syntax for the CLUSTER MODIFY command is

CLUSTER MODIFY clustername
 MINMAXVARLIST=(varname1 <varname2 varname3 ...>);

The CLUSTER MODIFY command sets a MINMAXVARLIST attribute on one or more
variables that belong to an existing dynamic cluster. The variable names that are specified
in the CLUSTER MODIFY command must exist in the cluster and the variables must not
have a pre-existing MINMAXVARLIST setting. When the SPD Server runs the CLUSTER
MODIFY command, the dynamic cluster is unclustered while the variable modifications
are made to the individual member tables. The cluster is recreated after the
MINMAXVARLIST changes are completed. Control permission and exclusive access to
the dynamic cluster is required in order to run the CLUSTER MODIFY command. SPD
Server performs a full table scan to initialize the MINMAXVARLIST values in each
member table, so the processor time that is required to perform the CLUSTER MODIFY
command is directly related to the size of the tables that belong to the cluster. If an error
occurs while the CLUSTER MODIFY command is running, the cluster cannot be recreated
and the user will need to manually recreate the cluster using the CLUSTER CREATE
command.

Modify Dynamic Cluster Tables 75

Dynamic Cluster BY Clause Optimization

Overview of Optimizing BY Clauses
When you use SPD Server dynamic clusters, you can create huge data sets. If the huge data
sets need further manipulation by some SAS job, it might be better to sort them for more
efficient processing. Traditional processing of huge data sets can overuse or overwhelm
available resources. The resulting lack of available run-time or processor resources can
prohibit you from running full-table scans and manipulating table rows, which are required
to sort huge data sets for subsequent processing.

SPD Server provides dynamic cluster BY clause optimization to reduce the need for a large
amount of processor resources when evaluating BY clauses. The dynamic cluster BY clause
optimization uses SPD Server to join individually created SPD Server member data sets
so that the data sets appear to be single data set, while still keeping the individual member
data sets intact. The dynamic cluster BY clause optimization uses the SORTEDBY
metadata of the member data sets to bypass most of the sorting that is required to perform
the implicit BY clause ordering. With the SORTEDBY metadata of each member, SPD
Server merges the member data sets in the dynamic cluster by using each member data set's
order. No additional SPD Server work-space is required, and the ordered data set records
are returned with minimum delay since member sorting is eliminated.

To use dynamic cluster BY clause optimization, you need to build the dynamic cluster table
a certain way. All of the member tables in your dynamic cluster table need to be sorted by
the same columns that you need to use in the BY clause. When you build your dynamic
cluster table from member tables that are presorted by your BY clause columns, your
dynamic cluster table can use the BY clause optimization.

When a BY clause is run that matches the SORTEDBY column order of the dynamic cluster
table member tables, SPD Server performs the BY clause without using sort work-space
or experiencing first-record latency. SPD Server uses the presorted member tables to
perform an instantaneous interleave. By using the presorted member tables, the dynamic
cluster BY clause optimization enables you to perform operations on huge data sets that
would be impossible to handle otherwise.

For example, suppose that you have a system that has sufficient CPU, memory, and work-
space resources to sort a 50-GB data set in a reasonable amount of time. However, suppose
this system accumulates 50 GB of new data every month, so that after 12 months, the data
sets require 600 GB of storage. The system cannot handle sorting 600 GB of data to process
queries that are based on the previous 12-month period. If you use SPD Server to create a
dynamic cluster table from the 12 50-GB member tables, you can store each rolling month
of data in an SPD Server member table, and then sort it like the other dynamic cluster table
member tables, and then add the new member table to the 600-GB dynamic cluster table.
Now you can use the dynamic cluster BY clause optimization to run SAS steps that use
BY clauses on the 600-GB cluster. For example, you can run a DATA step MERGE
statement that uses the dynamic cluster table as the master source for the MERGE
statement. The BY clause from the MERGE statement triggers the dynamic cluster BY
clause optimization. As a result, the operation completes in the time that it takes to
interleave the individual member tables, using no SPD Server work-space and without
experiencing any implicit BY sort delays.

Dynamic cluster BY clause optimization allows the BY optimization to be combined with
certain WHERE clauses on dynamic cluster tables. For the WHERE clause optimization
to work, SPD Server must be able to determine whether the WHERE clause is trivially true

76 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

or trivially false for each member table in the dynamic cluster table. To be trivially true, a
WHERE clause must find the clause condition true for every row in the member table. To
be trivially false, a WHERE clause must find the clause condition false for every row in
the member table.

SPD Server keeps metadata about indexed values in dynamic cluster table member tables,
and if the WHERE clause criteria can be determined as true or false based on the dynamic
cluster table's member table metadata, the WHERE clause optimization is possible on a
member-by-member basis for the entire dynamic cluster table. Suppose that member tables
of a dynamic cluster table all have an index on the column QUARTER (1=Jan-Mar, 2=Apr-
Jun, 3=Jul-Sep, 4=Oct-Dec). Suppose that you need to run a DATA step MERGE statement
that uses the expression WHERE QUARTER=2. Because the QUARTER column is
indexed in all of the member tables, SPD Server uses the BY clause optimization to
determine that the WHERE clause is trivially true. SPD Server then evaluates the
expression only on the member tables for April, May, and June without using any SPD
Server work-space. When the WHERE clause can be determined as trivially true or trivially
false for each member table of the dynamic cluster table in advance, the BY clause
optimization performs the BY processing only on the appropriate member tables.

The dynamic cluster BY clause optimization is triggered when member tables all have an
applicable SORTEDBY ordering for the BY clause that is asserted. When the SORTEDBY
ordering is strong (validated), SPD Server does not perform checks to verify the order of
BY variables that are returned from the member table. When the SORTEDBY ordering is
weak (such as from a SORTEDBY assertion that was a data set option), additional checking
is performed to verify the order of BY variables that are returned from the member table.
If an invalid BY variable order is detected, SPD Server terminates the BY clause and
displays the following error message:

ERROR: Clustered BY member violates weak
 sort order during merge.

Dynamic Cluster BY Clause Optimization Example
Consider a database of medical patient insurance claims, with quarterly claims data sets
that are named ClaimsQ1, ClaimsQ2, ClaimsQ3, and ClaimsQ4. Each quarterly claims
table is sorted by columns that are named PatID (for Patient ID) and ClaimID (for Claim
ID). The member tables are combined into a dynamic cluster table that is named ClaimsAll.
The following example shows the code:

DATA SPDS.ClaimsQ1;
...
run;

DATA SPDS.ClaimsQ2;
...
run;

PROC SORT DATA=SPDS.ClaimsQ1;
 BY PatID ClaimID;
run;

PROC SORT DATA=SPDS.ClaimsQ2;
 BY PatID ClaimID;
run;

PROC SPDO LIB=SPDS;

Dynamic Cluster BY Clause Optimization Example 77

create cluster ClaimsAll;
quit;

Consider the DATA step MERGE statement to be submitted to the ClaimsAll dynamic
cluster table:

DATA SPDS.ToAdd SPDS.ToUpdate;
MERGE SPDS.NewOnes(IN=NEW1)
 SPDS.ClaimsAll(IN=OLD1);
BY PatID ClaimID;

SELECT;
WHEN(NEW1 and OLD1)
 DO;
 OUTPUT SPDS.ToUpdate;
 end;
WHEN(NEW1 and not OLD1)
 DO;
 OUTPUT SPDS.ToAdd;
 end;
run;

If ClaimsAll were not a dynamic cluster table, the DATA step MERGE statement would
create an implicit sort from the BY clause on the respective SPD Server data sets. However,
ClaimsAll is a dynamic cluster table with member tables that are presorted. As a result, the
dynamic cluster BY clause optimization uses BY clause processing to merge the sorted
member tables instantaneously without using any SPD Server work-space or experiencing
delays. The previous example merges the transaction data named NewOnes into new rows
that will be appended to the data for the next quarter.

Consider that the member data sets ClaimsQ1 and ClaimsQ2 are indexed on the column
Claim_Date:

DATA SPDS.RepClaims;
 SET SPDS.ClaimsAll;
 WHERE Claim_Date BETWEEN '01JAN2007' and '31MAR2007';
 BY PatID ClaimID;
run;

The WHERE clause determines whether each member table is true or false for each quarter.
The WHERE clause is trivially true for the data set ClaimsQ1 because the WHERE clause
is true for all dates in the first quarter. The WHERE clause is trivially false for the data set
ClaimsQ2 because the WHERE clause is false for all dates in the second quarter. The BY
clause optimization determines that the member table ClaimsQ1 will be processed because
the WHERE clause is true for all of the rows of the ClaimsQ1 table. The BY clause
optimization skips the member table ClaimsQ2 because the WHERE clause is false for
all of the rows of the ClaimsQ2 table.

Suppose that the Claim_Date range is changed in the WHERE clause:

DATA SPDS.RepClaims;
 SET SPDS.ClaimsAll;
 WHERE Claim_Date BETWEEN '05JAN2007' and '28JUN2007';
 BY PatID ClaimID;
run;

When the new WHERE clause is evaluated, it is not trivially true for member tables
ClaimsQ1 or Claims Q2. The WHERE clause is not trivially false for member tables
ClaimsQ1 or Claims Q2 either. The WHERE clause calls dates that exist in portions of the

78 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

member table ClaimsQ1, and it calls dates that exist in portions of the member table
ClaimsQ2. The dates in the WHERE clause do not match all of the dates that exist in the
member table ClaimsQ1, or all of the dates that exist in the member table ClaimsQ2. The
dates in the WHERE clause are not totally exclusive of the dates that exist in the member
tables ClaimsQ1 or ClaimsQ2. As a result, BY clause optimization will not be used when
SPD Server runs the code.

Member Table Requirements for Creating Dynamic
Cluster Tables

Overview of Table Requirements
When you create a dynamic cluster table, all of the member tables must have matching
table, variable, and index attributes. If there are attribute mismatches, the dynamic cluster
table creation fails, and SPD Server displays the following error message:

ERROR: Member table not compatible with other
 cluster members. Compare CONTENTS.

A more detailed error message is written to the SPD Server log. The SPD Server log lists
which attribute is mismatched in the member tables. The following lists specify the member
table attributes that must match for SPD Server to successfully create a dynamic cluster
table.

• “Table Attributes ” on page 79

• “Variable Attributes ” on page 80

• “Index Attributes ” on page 81

Table Attributes
The following table attributes must match in all member tables to successfully create a
dynamic cluster table:

IDXSEGSIZE
index segment size

OBSLEN
observation record length

NVAR
number of columns

NINDEXES
number of indexes

DSORG
data set organization

SEMTYPE
data set semantic type

DSTYPE
SAS data set type

LOCALE
creation locale

Table Attributes 79

LANG
data set language tag

LTYPE
data set language type tag

FLAGS
compressed data set

encrypted data set

backup data set

NLS variables in data set

minmaxvarlist variables in data set

SAS encryption password in data set

SASPW
SAS encryption password

DS_ROLE
data set option for ROLE

ENCODING_CEI
encoding CEI for NLS (for compressed tables)

DISKCOMP
compression algorithm

IOBLOCKSIZE
I/O block size

IOBLOCKFACTOR
I/O block factor

Variable Attributes

The following variable attributes must match in all member tables to successfully create a
dynamic cluster table:

NAME
variable name

LABEL
variable label

NFORM
variable format

NIFORM
variable informat

NPOS
variable offset in record

NVARO
variable number in record

NLNG
variable length

NPREC
variable precision

80 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

FLAGS
NLS encoding supported

minmaxvarlist variable

NFL
format length

NFD
format decimal places

NIFL
informat length

NIFD
informat precision

NSCALE
scale for fixed-point decimal

NTATTR
variable type attributes

TYPE
variable type

SUBTYPE
variable subtype

SORT
variable sorted status

NTYPE2
variable extended type code

Index Attributes

The following index attributes must match in all member tables to successfully create a
dynamic cluster table:

NAME
index name

TYPE
index type

KEYFLAGS
unique index

nomiss index

LENGTH
index length

NVAR
number of variables in index

NVAR0
variable number in index

Index Attributes 81

Querying and Reading Member Tables in a
Dynamic Cluster

Dynamic clusters can be read using the MEMNUM= table option. The MEMNUM= option
enables you to perform query or read operations on a single member table that belongs to
a dynamic cluster. When you use the MEMNUM= option, SPD Server opens only the
specified member table, instead of opening all of the member tables that belong to the
cluster. You can determine the member number of a table in the cluster by issuing a
CLUSTER LIST statement or a PROC CONTENTS command on the cluster. The SPD
Server CLUSTER LIST or PROC CONTENTS command output lists the member tables
of the cluster in numbered order.

You can specify verbose output for the CLUSTER LIST statement by using the following
option syntax:

CLUSTER LIST clustername [/VERBOSE]

When you issue the /VERBOSE option with a CLUSTER LIST statement, the output lists
the MINMAXVARLIST information for each member table in a dynamic cluster.

The following example uses PROC SPDO to create a dynamic cluster that has a
MINMAXVARLIST on the numeric column STORE_ID of each member table. Then a
CLUSTER LIST statement is issued using the /VERBOSE option. The CLUSTER LIST
output displays the dynamic cluster name, the names of each member table in the cluster,
and the MINMAXVARLIST values for each member table.

PROC SPDO library=&libdom ;

CLUSTER CREATE ussales
 mem=ne_region
 mem=se_region
 mem=central_region
 maxslot=6 ;

CLUSTER LIST ussales/VERBOSE;
MINMAXVARLIST COUNT = 1
varname = store_id
Numeric type.

Cluster Name USSALES, Mem=NE_REGION
 Variable Name (MIN,MAX)
 STORE_ID (1, 20)

Cluster Name USSALES, Mem=SE_REGION
 Variable Name (MIN,MAX)
 STORE_ID (60, 70)

Cluster Name USSALES, Mem=CENTRAL_REGION
 Variable Name (MIN,MAX)
 STORE_ID (60, 70)

NOTE: The maximum number of possible slots is 6.

82 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

You can specify an integer value n as an argument for the MEMNUM= table option to
select the nth member of the table, or you can use the argument
LASTCLUSTERMEMBER. When you use the LASTCLUSTERMEMBER argument
with MEMNUM=, SPD Server selects the last member of the dynamic cluster table, without
needing to count the members to determine the number (n) of the last member.

The following example uses the MEMNUM= table option to query against the member
table sales200504 that belongs to the dynamic cluster table sales_history:

PROC SPDO library=&domain; ;
 CLUSTER CREATE sales_history
 mem=sales200501
 mem=sales200502
 mem=sales200503
 mem=sales200504
 mem=sales200505
 mem=sales200506
 maxslot=12 ;
 quit ;

 PROC PRINT data=&domain..sales_history (MEMNUM=4);
 WHERE salesdate = 30Apr2005;
 run;

To use the MEMNUM= table option to query the last member table in the dynamic cluster
table sales200506, the query would be:

PROC SPDO library=&domain ;

 CLUSTER CREATE sales_history
 mem=sales200501
 mem=sales200502
 mem=sales200503
 mem=sales200504
 mem=sales200505
 mem=sales200506
 maxslot=12 ;
 quit ;

 PROC PRINT data&domain..sales_history
 (MEMNUM=LASTCLUSTERMEMBER);
 WHERE salesdate = 15Jun2005;
 run;

Unsupported Features in Dynamic Cluster Tables
Because of differences in the load and read structures for dynamic cluster tables, some
standard features that are available in SAS tables and SPD Server tables are currently not
supported in SPD Server 4.5. These features are:

• You cannot append data to a dynamic cluster table. To append data to a dynamic cluster
table, the table must be unclustered, the data is appended to the individual unclustered
files, and then the individual unclustered files must be reclustered.

• Record-level locking is not allowed.

Unsupported Features in Dynamic Cluster Tables 83

• The SPD Server backup/restore utility is not available.

• Copying data with PROC COPY or PROC SQL is not supported.

If a task for a dynamic cluster table requires one of these features, you should undo the
dynamic cluster table and create standard SPD Server tables.

Dynamic Cluster Table Examples
The following four examples show all of the fundamental operations that are required to
use dynamic cluster tables:

Create a Dynamic Cluster Table Example
The following example creates a dynamic cluster table named Sales_History. The first part
of the example generates dummy transaction data that is used in the rest of the example.

The example uses SPD Server tables from the domain motorcycle. Twelve individual SPD
Server tables for monthly motorcycle sales during 2004 are bound into the dynamic cluster
table named Sales_History. Tables are created for the first six months of motorcycle sales
during 2005:

/* declare macro variables that will be used to */
/* generate dummy transaction data */
%macro var (varout,dist,card,seed,peak) ;
 %put &dist; &card; &seed; ;
 %local var1 ;

 if upcase("&dist;") = 'RANUNI'
 then do ;
 &varout; = int(ranuni(&seed;)*&card;)+1;
 end ;
 else
 if upcase("&dist;") = 'RANTRI'
 then do ;
 *%let vartri = %substr("&dist;",5,2)&card; ;
 &varout; = int(rantri(&seed;,&peak;)&card;)+1;
 &varout; = int(rantri(&seed;,&peak;)*&card;)+1;
 end ;
%mend ;

%macro linkvar (varin,varout,devisor) ;
 &varout; = int(&varin;/&devisor;) ;
%mend ;

/* declare main vars */
%let domain=motorcycle ;
%let host=kaboom ;
%let port=5200 ;
%let spdssize=256M ;
%let spdsiasy=YES ;

libname &domain; sasspds "&domain;"
 server=&host..;&port;

84 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

 user='anonymous'
 ip=YES ;

/* generate monthly sales data tables for */
/* 2004 and the first six months of 2005 */
data
 &domain..sales200401;
 &domain..sales200402;
 &domain..sales200403;
 &domain..sales200404;
 &domain..sales200405;
 &domain..sales200406;
 &domain..sales200407;
 &domain..sales200408;
 &domain..sales200409;
 &domain..sales200410;
 &domain..sales200411;
 &domain..sales200412;
 &domain..sales200501;
 &domain..sales200502;
 &domain..sales200503;
 &domain..sales200504;
 &domain..sales200505;
 &domain..sales200506;
 ;

drop seed bump1 bump2 random_dist ;

 seed = int(time()) ;

/* format the dummy transaction data */
format trandate shipdate paiddate yymmdd10. ;

put seed ;
 do transact = 1 to 5000 ;
 %var (customer,ranuni,100000,seed,1) ;

 %linkvar (customer,zipcode,10) ;
 %linkvar (customer,agent,20) ;
 %linkvar (customer,mktseg,10000) ;
 %linkvar (agent,state,100) ;
 %linkvar (agent,branch,25) ;
 %linkvar (state,region,10) ;

 %var (item_number,ranuni,15000,seed,1) ;

 %var (trandate,ranuni,577,seed,1) ;
 trandate = trandate + 16071 ;

 %var (bump1,ranuni,20,seed,.1) ;
 shipdate = trandate + bump1 ;

 %var (bump2,rantri,30,seed,.5) ;
 paiddate = trandate + bump2 ;

Create a Dynamic Cluster Table Example 85

 %var (units,ranuni,100,seed,1) ;
 %var (trantype,ranuni,10,seed,1) ;
 %var (amount,rantri,50,seed,.5) ;
 amount = amount + 25 ;

 random_dist = ranuni ('03feb2005'd) ;

 /* sort the dummy transaction data into */
 /* monthly sales data tables */

 if '01jan2004'd <= trandate <= '31jan2004'd
 then output &domain..sales200401; ;

 else if '01feb2004'd <= trandate <= '28feb2004'd
 then output &domain..sales200402; ;

 else if '01mar2004'd <= trandate <= '31mar2004'd
 then output &domain..sales200403; ;

 else if '01apr2004'd <= trandate <= '30apr2004'd
 then output &domain..sales200404; ;

 else if '01may2004'd <= trandate <= '31may2004'd
 then output &domain..sales200405; ;

 else if '01jun2004'd <= trandate <= '30jun2004'd
 then output &domain..sales200406; ;

 else if '01jul2004'd <= trandate <= '31jul2004'd
 then output &domain..sales200407; ;

 else if '01aug2004'd <= trandate <= '31aug2004'd
 then output &domain..sales200408; ;

 else if '01sep2004'd <= trandate <= '30sep2004'd
 then output &domain..sales200409; ;

 else if '01oct2004'd <= trandate <= '31oct2004'd
 then output &domain..sales200410; ;

 else if '01nov2004'd <= trandate <= '30nov2004'd
 then output &domain..sales200411; ;

 else if '01dec2004'd <= trandate <= '31dec2004'd
 then output &domain..sales200412; ;

 else if '01jan2005'd <= trandate <= '31jan2005'd
 then output &domain..sales200501; ;

 else if '01feb2005'd <= trandate <= '28feb2005'd
 then output &domain..sales200502; ;

 else if '01mar2005'd <= trandate <= '31mar2005'd
 then output &domain..sales200503; ;

86 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

 else if '01apr2005'd <= trandate <= '30apr2005'd
 then output &domain..sales200504; ;

 else if '01may2005'd <= trandate <= '31may2005'd
 then output &domain..sales200505; ;

 else if '01jun2005'd <= trandate <= '31jun2005'd
 then output &domain..sales200506; ;
 end ;
run ;

/* index the transaction data in the */
/* monthly sales data tables */
%macro indexit (yrmth) ;
 PROC DATASETS library=&domain; nolist ;
 modify sales&yrmth; ;
 index create transact customer agent state branch trandate ;
 quit ;
%mend ;

%let spdsiasy=YES ;

%indexit (200401) ;
%indexit (200402) ;
%indexit (200403) ;
%indexit (200404) ;
%indexit (200405) ;
%indexit (200406) ;
%indexit (200407) ;
%indexit (200408) ;
%indexit (200409) ;
%indexit (200410) ;
%indexit (200411) ;
%indexit (200412) ;
%indexit (200501) ;
%indexit (200502) ;
%indexit (200503) ;
%indexit (200504) ;
%indexit (200505) ;
%indexit (200506) ;

/* Use PROC SPDO to create the dynamic cluster */
/* table sales_history */
PROC SPDO library=&domain; ;
 cluster create sales_history
 mem=sales200401
 mem=sales200402
 mem=sales200403
 mem=sales200404
 mem=sales200405
 mem=sales200406
 mem=sales200407
 mem=sales200408

Create a Dynamic Cluster Table Example 87

 mem=sales200409
 mem=sales200410
 mem=sales200411
 mem=sales200412
 maxslot=36 ;
quit ;

Add Tables to a Dynamic Cluster Example
The following example adds member tables to the dynamic cluster table named
Sales_History. The Sales_History table currently contains 12 members. Each member is
an SPD Server table that contains monthly sales data. This example augments the 12
member tables for 2004 with 6 new member tables that contain sales data for January
through June of 2005:

/* declare main vars */
%let domain=motorcycle ;
%let host=kaboom ;
%let port=5200 ;
%let spdssize=256M ;
%let spdsiasy=YES ;

libname &domain; sasspds &domain;
 server=&host..;&port;
 user='anonymous'
 ip=YES ;

/* Use PROC SPDO to add member tables to */
/* the dynamic cluster table sales_history */

PROC SPDO library=&domain;
 cluster add sales_history
 mem=sales200501
 mem=sales200502
 mem=sales200503
 mem=sales200504
 mem=sales200505
 mem=sales200506;
quit ;

/* Verify the presence of the added tables */
PROC CONTENTS data=&domain..sales_history;
run ;

Undo Dynamic Cluster Table Example
The undo example is included as part of the following refresh example.

Refresh Dynamic Cluster Table Example
Refreshing SPD Server dynamic cluster tables is a combination of two tasks, UNDO
CLUSTER and CREATE CLUSTER. The UNDO CLUSTER command unbinds an
existing dynamic cluster table. The CREATE CLUSTER command rebinds the dynamic

88 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

cluster table with updated member tables. Therefore, the following example shows both
the UNDO CLUSTER and CREATE CLUSTER commands with SPD Server dynamic
cluster tables.

The following example refreshes the dynamic cluster table named Sales_History. The
Sales_History table received additional member tables in the previous example. The 18-
member dynamic cluster table Sales_History is unbound. The 12 member tables that
contain 2004 sales data are deleted when the dynamic cluster table Sales_History is
recreated with only the six member tables that contain 2005 sales data. The combined
actions refresh the contents of the dynamic cluster table Sales_History.

/* declare main vars */
%let domain=motorcycle ;
%let host=kaboom ;
%let port=5200 ;
%let spdssize=256M ;
%let spdsiasy=YES ;

libname &domain; sasspds &domain;
 server=&host..;&port;
 user='anonymous'
 IP=YES ;

/* Use PROC SPDO to undo the existing dynamic */
/* cluster table Sales_History, then rebind */
/* it with members from months in 2005 only */

PROC SPDO library=&domain;
 cluster undo sales_history ;
 cluster create sales_history
 mem=sales200501
 mem=sales200502
 mem=sales200503
 mem=sales200504
 mem=sales200505
 mem=sales200506
 maxslot=36 ;
quit ;

/* Verify the contents of the refreshed dynamic */
/* cluster table sales_history */

PROC CONTENTS data=&domain..sales_history;
run ;

Refresh Dynamic Cluster Table Example 89

90 Chapter 7 • SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

Part 3

SPD Server SQL Features

Chapter 8
SPD Server SQL Features . 93

91

92

Chapter 8
SPD Server SQL Features

SPD Server SQL Planner . 94

Connecting to the SPD Server SQL Engine . 95
Implicit Pass-Through Connection . 95
Explicit Pass-Through Connection . 95
LIBNAME Syntax to Specify a Libref . 95
Libref Statements . 96
Libref Clauses . 96
Libref Examples . 96

Specifying SPD Server SQL Planner Options . 97
Specify SQL Options using Explicit Pass-Through Code . 97
Specify SQL Options using Implicit Pass-Through Code . 98

Important SPD Server SQL Planner Options . 98
_Method . 98
Reading the Method Tree . 99
EXEC/NOEXEC . 100
MAGIC . 101
INDEXSELECTIVITY= . 101
OUTRSRTJNDX/NOOUTRSRTJNDX . 101
INOBS . 102
OUTOBS . 102
SASVIEW/NOSASVIEW . 102
UNDO_POLICY= . 103
BUFFERSIZE= . 103
PRINTLOG/NOPRINTLOG . 104
Additional SQL Reset Options . 104

Parallel Join Facility . 105
Overview of the Parallel Join Facility . 105
Parallel Join Methods . 105
Parallel Joins with Group-By . 106
Parallel Join SQL Options . 106
Parallel Join Example 1 . 107
Parallel Join Example 2 . 107
Parallel Join Example 3 . 108

Parallel Group-By Facility . 108
Overview of the Parallel Group-By Facility . 108
Enhanced Group-By Functions . 109
Table Aliases Supported . 109
Nested Queries Meet Group-By Syntax Requirements . 109
Formatted Parallel Group Select . 110

93

Parallel Group-By SQL Options . 112
GRPSEL/NOGRPSEL . 112
FMTGRPSEL/NOFMTGRPSEL . 113
SCANGRPSEL/NOSCANGRPSEL . 113

SPD Server STARJOIN Facility . 113

STARJOIN Options . 114
NOSTARJOIN . 114
STARMAGIC . 114
DETAILS . 114

STARJOIN Facility Reference . 115
Overview: SPD Server STARJOIN Facility . 115
Star Schemas . 115
SPD Server STARJOIN Requirements . 117
Enabling STARJOIN Optimization in SPD Server . 117
Invoking the SPD Server STARJOIN Facility . 117
SPD Server STARJOIN Optimization . 118
Indexing Strategies to Optimize STARJOIN Query Performance 121
SPD Server STARJOIN RESET Statement Options . 124
Example: STARJOIN RESET Statements . 125
SPD Server STARJOIN Examples . 125

SPD Server Index Scan . 127

Optimizing Correlated Queries . 130

Correlated Query Options . 130
_QRW/NO_QRW . 130
_QRWENABLE/NO_QRWENABLE . 131

Materialized Views . 132
Materialized Views Operating Details . 132
User Interface for Materialized Views . 132
Benefits of Materialized Views . 133
Materialized View Example . 133

SPD Server SQL Extensions . 134
BEGIN and END ASYNC OPERATION Statements . 134
LOAD Statement . 139
COPY Statement . 140

Differences between SAS SQL and SPD Server SQL . 141
Reserved Keywords . 141
Table Options and Delimiters . 141
Mixing Scalar Expressions and Boolean Predicates . 141
INTO Clause . 141
Tilde Negation . 141
Nested Queries . 142
USER Value . 142
Supported Functions . 142

SPD Server SQL Planner
SPD Server includes SQL Planner optimizations. SQL Planner optimizations improve the
performance of the more frequent query types that used in data mining solutions such as
Enterprise Marketing Automation. A key enhancement to the SPD Server SQL Planner is

94 Chapter 8 • SPD Server SQL Features

optimizing correlated queries through the use of query rewrite techniques. Correlated
queries are common in business and analytic intelligence data mining. Another significant
enhancement is the tighter integration of the Parallel Group-By technology in the planner.
The tighter integration adds performance benefits to nested Group-By syntax.

Connecting to the SPD Server SQL Engine

Implicit Pass-Through Connection
You can use an implicit pass-through connection to pass implicit SQL statements to the
SPD Server SQL Engine. When you use an implicit pass-through connection, the SAS SQL
planner parses SQL statements to determine which, if any, portions can be passed to the
SPD Server SQL Engine. In order for a submitted SQL statement to take advantage of
implicit pass-through SQL, the tables that are referenced in the SQL statement must be
SPD Server tables, and the SPD Server SQL engine must be able to successfully parse the
submitted SQL statement.

An example of an SPD Server implicit pass-through connection is available in the Help
section in this document on how to “Specify SQL Options using Implicit Pass-Through
Code” on page 98.

Explicit Pass-Through Connection
You can use an explicit pass-through connection to pass explicit SQL statements to the
SPD Server SQL Engine. When you use an explicit pass-through connection, you decide
explicitly which SQL statements are passed to the SPD Server SQL Engine. The explicit
pass-through connection passes the entire SQL statement as written to the SPD Server SQL
Engine, which parses and plans the SQL statement. All tables that are referenced in the
SQL statement must be SPD Server tables or an error will occur.

An example of an SPD Server implicit pass-through connection is available in the Help
section in this document on how to “Specify SQL Options using Explicit Pass-Through
Code” on page 97.

LIBNAME Syntax to Specify a Libref
Below is a LIBNAME statement that associates a libref, the SASSPDS engine, and an SPD
Server domain.

LIBNAME libref
SASSPDS <'SAS-data-library'> <SPD Server-options>;

Use the following arguments:

libref
a name that is up to eight characters long and that conforms to the rules for SAS names.

SASSPDS
the name of the SPD Server engine.

'SAS-data-library'
the logical LIBNAME domain name for an SPD Server data library on the host machine.
The name server resolves the domain name into the physical path for the library.

SPD Server-options
one or more SPD Server options.

LIBNAME Syntax to Specify a Libref 95

Libref Statements
Whenever you issue a CONNECT statement to an SPD Server SQL server with the DBQ
option, by default you define a primary LIBNAME domain. The software uses the primary
domain to resolve table references in SQL statements executed for that connection.

You can also use the libref statement to assign secondary LIBNAME domains for the SPD
Server SQL Server. The additional libref statements assign explicit LIBNAME domains,
allowing the software to specify two-part table names for SQL statements executed for the
connection.

PROC SQL;
 execute(libref librefname
 <enginename>
 engopt= ' ')
by sasspds;

Libref Clauses

The ENGNAME Clause
Specifies the name of an alternate SAS I/O engine to service the libref's access to data. If
you do not specify an alternate SAS I/O engine, the default is spdseng, which accesses
SPD Server tables.

The ENGOPT Clause
Specifies options that configure the libref to access a specific data source or storage domain.
Use single or double quotes around the clause. (If you have nested quotes within a clause,
alternate between single and double quoted expressions.) The available options depend on
the current value of the ENGNAME option. For the default spdseng, you can specify any
SPD Server CONNECT or LIBNAME engine option with the exception of prompt,
newpasswd, and chngpass. Use the same keyword/value syntax required by the
CONNECT statement.

Note: If you specify the SAS I/O engine spdseng and use explicit options in your
CONNECT statement, these options become default ENGOPT clause options. Explicit
options can also be specified using the ENGOPT clause. Explicit options specified in
an ENGOPT clause will override default values or declarations made in previous
CONNECT statements.

Libref Examples

Libref for Another Domain but the Same CONNECT Statement User
In this example the client connects to the SPD Server SQL server using the engine
sasspds. The domain is mydomain, the server machine is called namesvrID, and the port
number is namesvrPortNum. The execute statement assigns the libref cookie to another
domain, dough. After the libref is executed, the user issuing the connect statement can now
access either the default domain mydomain or the secondary domain dough.

 PROC SQL;
 connect to sasspds

96 Chapter 8 • SPD Server SQL Features

 (dbq='mydomain'
 host='namesvrID'
 serv='namesvrPortNum'
 user='neraksr'
 passwd='siuya');
 execute(libref cookie
 engopt='
 dbq="dough"')
 by sasspds;

In the example above, the libref is cookie, and the secondary domain named is dough. The
intent of the example is to show how the CONNECT and libref statements work in
conjunction to access multiple domains for the same user.

Libref to Same Domain but Different CONNECT Statement User
This example assigns a libref to the domain specified by the CONNECT statement but for
another user (different SPD Server User ID).

 PROC SQL;
 execute(libref samslib
 engopt='
 user="sam"
 passwd="samspwd"')
 by sasspds;

Secondary Libref Using a Different Host
This example assigns a secondary libref to a different host machine.

 PROC SQL;
 execute(libref sam2
 engopt='
 host="flex"
 dbq="samsplace"')
 by sasspds;

Specifying SPD Server SQL Planner Options
The SPD Server SQL Planner provides reset options that you can use to configure the
behavior of the SQL Planner and the SPD Server facilities that function through the SQL
Planner, such as the SPD Server Parallel Group-By facility, the SPD Server Parallel Join
facility, and the SPD Server STARJOIN facility. You can specify SPD Server SQL reset
options using either explicit pass-through or implicit pass-through code.

Specify SQL Options using Explicit Pass-Through Code
The example below shows how to use an execute(reset <reset-options>) statement in
explicit SPD Server pass-through SQL code to invoke an SQL Planner, Parallel Group-By
facility, Parallel Join facility, or STARJOIN facility reset option.

Most SQL Planner reset option usage examples in this document use explicit pass-through
code. See the implicit pass-through code example below to see how SQL reset options can

Specify SQL Options using Explicit Pass-Through Code 97

be declared using an implicit %let spdssqlr= statement instead of an explicit execute(reset
<reset-options>) statement.

/* Explicit Pass-Through SQL Example */
/* to invoke an SQL Reset Option */

PROC SQL ;

connect to sasspds (
 dbq=domain-name
 server=<host-name>.<port-number>
 user='username') ;

execute(reset <reset-options>)
 by sasspds ;

execute(SQL statements)
 by sasspds ;

disconnect from sasspds ;
 quit ;

Specify SQL Options using Implicit Pass-Through Code
The example below shows how to use a %let spdssqlr=<reset-options> statement in
implicit SPD Server pass-through SQL code to invoke an SQL Planner, Parallel Group-By
facility, Parallel Join facility, or STARJOIN facility reset option.

Most SQL Planner reset option usage examples in this document use explicit pass-through
code. The implicit pass-through code example below shows how SQL reset options can be
declared using an implicit %let spdssqlr= statement instead of an explicit execute(reset
<reset-options>) statement.

/* Implicit Pass-Through SQL Example */
/* to invoke an SQL Reset Option */

%let spdssqlr=<reset-options> ;

PROC SQL ;
SQL statements ;

quit ;

Important SPD Server SQL Planner Options

_Method
The SQL _method option is one of the most important reset options. The _method reset
option provides a method tree in the output that shows how the SQL was executed.

The following methods are displayed in the SQL _method tree:

98 Chapter 8 • SPD Server SQL Features

sqxcrta
Create table as Select.

sqxslct
Select rows from table.

sqxjsl
Step Loop Join (Cartesian Join).

sqxjm
Merge Join execution.

sqxjndx
Index Join execution.

sqxjhsh
Hash Join execution.

sqxsort
Sort table or rows.

sqxsrc
Read rows from source.

sqxfil
Filter rows from table.

sqxsumg
Summary Statistics (with GROUP BY).

sqxsumn
Summary Statistics (not grouped).

sqxuniq
Distinct rows only.

sqxstj
STARJOIN

sqxxpgb
Parallel Group-By

sqxxpjn
Parallel Join with Group-By. The SAS log will display the name of the parallel join
method that was used.

sqxpll
Parallel Join without Group-By

Reading the Method Tree
A method tree is produced in your output when the _methodreset option is specified for
the SQL Planner. The SQL Planner method tree is read from bottom row to top row. Below
is an example that shows how to interpret the method tree by substituting the type of method
that was used in each step.

PROC SQL ;
create table tbl1 as
 select *
 from path1.dansjunk1 a,
 path1.dansjunk2 b,
 path1.dansjunk3 c

Reading the Method Tree 99

 where a.i = b.i
 and a.i = c.i ;
quit ;

Here is the example Method Tree that was printed:

SPDS_NOTE: SQL execution methods chosen are:
<0x00000001006BBD78> sqxslct
<0x00000001006BBBF8> sqxjm
<0x00000001006BBB38> sqxsort
<0x0000000100691058> sqxsrc
<0x0000000100667280> sqxjm
<0x0000000100666C50> sqxsort
<0x0000000100690BD8> sqxsrc
<0x00000001006AE600> sqxsort
<0x0000000100694748> sqxsrc

Reading from bottom to top, you can review the sequence of methods that were invoked.

SPDS_NOTE: SQL execution methods chosen are:
<0x00000001006BBD78> step-9
<0x00000001006BBBF8> step-8
<0x00000001006BBB38> step7
<0x0000000100691058> step-6
<0x0000000100667280> step-5
<0x0000000100666C50> step-4
<0x0000000100690BD8> step-3
<0x00000001006AE600> step-2
<0x0000000100694748> step-1

In step 1, sqxsrc reads rows from the source. In step 2, sqxsort sorts the table rows. Then
in steps 3 and 4, more rows are read and sorted. In step 5, the tables are joined by sqxjm,
and so on.

EXEC/NOEXEC
You use the SPD Server SQL Planner EXEC/NOEXEC option to turn SPD Server SQL
execution on or off.

Usage:

/* This explicit Pass-Through SQL */
/* prints the method tree without */
/* executing the SQL code. */

PROC SQL ;
connect to sasspds
 (dbq=domain
 server=<host-name>.<port-number>
 user='username') ;

execute (reset _method noexec)
 by sasspds ; /* turns SQL exec off */

execute (SQL statements)
 by sasspds ;

100 Chapter 8 • SPD Server SQL Features

disconnect from sasspds ;
quit ;

MAGIC
You use the SPD Server SQL Planner MAGIC reset option that controls how the SPD
Server SQL planner executes join statements. The Magic option has three settings, 101,
102, and 103.

Usage:

execute(reset magic=<101/102/103>)
 by sasspds ;

MAGIC=101
SPD Server performs sequential loop joins. Sequential loop joins are brute force joins
that match every row from the first table to every row of the second table.

MAGIC=102
SPD Server performs sort merge joins. Sort merge joins force a sort on all tables that
are involved in the join.

MAGIC=103
SPD Server performs hash joins. Hash joins require SPD Server to create a memory
table in order to perform the join. The size of the memory table is limited based on
memory available.

INDEXSELECTIVITY=
The INDEXSELECTIVITY= option allows you to tune SPD Server join methods,
depending on the proportion of the tables to be joined. The index selectivity property can
have values of 0.0 or 1.0.

Usage:

execute(reset indexselectivity=<1.0/0.0>)
 by sasspds ;

INDEXSELECTIVITY=0.0 is the default SPD Server setting and uses index join
methods.

INDEXSELECTIVITY=1.0 configures the SPD Server SQL planner to use a 15%
heuristic rule when it decides to perform a join with an index. If the SPD Server SQL
Planner calculates that less than 15% of the total table rows will be selected in a join, the
SQL Planner uses an index join method. If the SPD Server SQL Planner determines that
greater than 15% of the total table rows will be selected in a join, the SQL Planner uses a
sort merge join.

OUTRSRTJNDX/NOOUTRSRTJNDX
Use the OUTRSRTJNDX/NOOUTRSRTJNDX option to configure sort behavior for an
SPD Server join index. OUTRSRTJNDX sorts the outer table for a join index by the join
key. This is the default SPD Server setting. NOOUTRSRTJNDX does not sort the outer
table for a join index.

OUTRSRTJNDX/NOOUTRSRTJNDX 101

Usage:

/* Disable outer table */
/* sorting for a join index */
execute(reset nooutrsrtjndx)
 by sasspds ;

/* Enable outer table */
/* sorting for a join index */
execute(reset outrsrtjndx)
 by sasspds ;

INOBS
Use the INOBS option to specify the specific number of observations that you want to read
from input tables.

Usage:

execute(reset inobs=<n>)
 by sasspds ;

where the integer value <n> is the desired number of observations.

OUTOBS
Use the OUTOBS option to specify the specific number of observations that you want to
create or print in your output.

Usage:

execute(reset outobs=<n>)
 by sasspds ;

where the integer value <n> is the desired number of observations.

SASVIEW/NOSASVIEW
Use the SASVIEW/NOSASVIEW option to enable or disable SAS PROC SQL views that
use an SPD Server LIBNAME. SAS PROC SQL views use a generic transport format to
represent numeric values, which SPD Server converts to native numeric values. When
extremely large or extremely small numeric values are conveyed in a SAS PROC SQL
view to SPD Server, some precision might be lost in extreme values during the SPD Server
numeric conversion.

Usage:

/* Disable SAS PROC SQL views */
/* that use an SPD Server LIBNAME */
execute(reset nosasview)
 by sasspds ;

/* Enable SAS PROC SQL views that */
/* use an SPD Server LIBNAME */

102 Chapter 8 • SPD Server SQL Features

execute(reset sasview)
 by sasspds ;

If SAS PROC SQL views are disabled and SPD Server Pass-Through SQL uses a view
that was created by PROC SQL, SPD Server rejects the PROC SQL statement and inserts
the following error message in the SAS log::

SPDS_WARNING: SAS View and SASVIEW Reset Option equals No.
SPDS_ERROR: An error has occured.

If SAS PROC SQL views are enabled and SPD Server Pass-Through SQL uses a view that
was created by PROC SQL, SPD Server prints the following note in the SAS log:

SPDS_NOTE: SPDS using SAS View in transport mode.

UNDO_POLICY=
Use the UNDO_POLICY option in SPD Server PROC SQL and RESET statements to
configure SPD Server PROC SQL error recovery. When you update or insert rows in a
table, you might receive an error message that states that the update or insert operation
cannot be performed. The UNDO_POLICY option specifies how you want SPD Server
to handle rows that were affected by INSERT or UPDATE statements that preceded a
processing error.

Usage:

/* Do not undo any updates or inserts */
execute(reset undo_policy=none)
 by sasspds ;

/* Permit row inserts and updates to */
/* be done up to the point of error */
execute(reset undo_policy=required)
 by sasspds ;

UNDO_POLICY=NONE
is the default setting for SPD Server. It does not undo any updates or inserts.

UNDO_POLICY=REQUIRED
undoes all row updates or inserts up to the point of error.

UNDO_POLICY=OPTIONAL
Undoes any updates or inserts that it can undo reliably.

If the UNDO policy is not REQUIRED, you will get the following warning message for
an insert into the table:

WARNING: The SQL option UNDO_POLICY=REQUIRED is not in effect. If an
error is detected when processing this insert statement, that error
will not cause the entire statement to fail.

BUFFERSIZE=
The SPD Server query optimizer considers a hash join when an index join is eliminated as
a possibility. With a hash join, the smaller table is reconfigured in memory as a hash table.
SQL sequentially scans the larger table and row-by-row performs a hash lookup against
the small table to form the result set. On a memory-rich system, consider increasing the

BUFFERSIZE= 103

BUFFERSIZE= option to increase the likelihood that a hash join is chosen. The default
BUFFERSIZE= setting is 64K. You can specify the amount of memory that you want
SPD Server to use for hash joins.

Usage:

/* Increase buffersize from 64K */
execute(reset buffersize=1048576)
 by sasspds ;

PRINTLOG/NOPRINTLOG
You use the PRINTLOG/NOPRINTLOG option of the SPD Server SQL Planner to turn
the printing of the SQL statement text to the SPD Server log on or off.

Usage:

PROC SQL ;
connect to sasspds
 (dbq=domain
 server=<host-name>.<port-number>
 user='username') ;

/* turn SQL statement printing on */
execute (reset printlog)
by sasspds ;

/* all statements will be printed to SPD Server log */
execute (SQL statements)
by sasspds ;

/* turn SQL statement printing off */
execute (reset noprintlog)
by sasspds ;

disconnect from sasspds ;
quit ;

Additional SQL Reset Options
More detailed information about the available SQL reset options for the SPD Server SQL
Parallel Join, Parallel Group-By, STARJOIN, and Correlated Query facilities can be found
in this document as follows:

• “Parallel Join SQL Options ” on page 106

• “Parallel Group-By SQL Options ” on page 112

• “STARJOIN Options ” on page 114

• “Correlated Query Options ” on page 130

104 Chapter 8 • SPD Server SQL Features

Parallel Join Facility

Overview of the Parallel Join Facility
The Parallel Join facility is a feature of the SPD Server SQL planner that decreases the
required processing time when creating a pair-wise join between two SPD Server tables.
The processing time savings is created when SPD Server performs the pair-wise join in
parallel.

The SQL planner first searches for pairs when SPD Server source tables are to be joined.
When a pair is found, the planner checks the join syntax for that pair to determine whether
it meets all of the requirements for the Parallel Join facility. If the join syntax meets the
requirements, the pair of tables will be joined by the Parallel Join facility.

Parallel Join Methods

Parallel Sort-Merge Method
The parallel sort-merge join method first performs a parallel sort to order the data, and then
merges the sorted tables in parallel. During the merge, the facility concurrently joins
multiple rows from one table with the corresponding rows in the other table. You can use
the parallel sort-merge join method to execute any join that meets the requirements for
parallel join.

The parallel sort-merge method is a good all-around parallel join strategy that requires no
intervention from the user. The tables for the sort-merge method do not need to be in the
same domain. The performance for the sort-merge method is not affected by the distribution
of the data in the sort key columns.

The sort-merge method begins by completely sorting the smaller of the two tables being
joined, while also performing concurrent partial parallel sorts on the larger table. If both
tables are very large and sufficient resources are not available to do the complete sort on
the smaller table, the performance of the parallel sort-merge method can degrade. The
parallel sort-merge method is also limited when performing an outer, left, or right join in
parallel. Only two concurrent threads can be used when performing parallel outer, left, or
right joins. Inner joins are not limited in the parallel sort-merge method and can use more
than two concurrent threads during parallel operations.

Parallel Range Join Method
The parallel range join method uses a join index to determine the ranges of rows between
the tables that can be joined in parallel. The parallel range join method requires you to
create a join index on the columns to be joined in the tables that you want to merge. The
join index divides the two tables into a specified number of near-equal parts, or ranges,
based on matching values between the join columns. The Parallel Join Facility recognizes
the ranges of rows that contain matching values between the join columns, then uses
concurrent join threads to join the rows in parallel. The SPD Server parallel sort then sorts
the rows within a range.

The parallel range join method can be performed only on tables that are in the same domain.
If either of the two tables are updated after the join index is created, the join index must be
rebuilt before the parallel range join method can be used. The parallel range join method
performs best when the columns of the tables that are being joined are sorted. If the columns

Parallel Join Methods 105

are not relatively sorted, then the concurrent join threads can cause processor thrashing.
Processor thrashing occurs when unsorted rows in a table require SPD Server to perform
increasingly larger table row scans, which can consume processor resources at a high rate
during concurrent join operations.

More detailed information about creating join indexes is available in Chapter 17, "SAS
Scalable Performance Data (SPD) Server Index Utility Ixutil," of the SAS Scalable
Performance Data (SPD) Server 4.5: Administrator's Guide.

How does the SPD Server Parallel Join facility choose between the sort-merge method and
the range join method? If a join index is available for the tables to be joined, the Parallel
Join facility will choose the parallel range join method. If a join index does not exist, or if
the join index has not been rebuilt since a table was updated, the Parallel Join facility
defaults to using the parallel sort-merge method.

Parallel Joins with Group-By
A powerful feature of the SPD Server Parallel Join facility is its integration with the SPD
Server Parallel Group-By facility. If the result of the parallel join contains a group-by
statement, the partial results of the parallel join threads are passed to the Parallel Group-
By facility, which performs the group-by operation in parallel. In the following example,
SPD Server performs both a parallel join and parallel group-by operation.

LIBNAME path1 sasspds IP=YES;

PROC SQL;
create table junk as
 select a.c, b.d, sum(b.e)
 from path1.table1 a,
 path1.table2 b
 where a.i = b.i
 group by a.d, b.d;
quit;

When you use the SPD Server Parallel Join facility, you are not restricted to using the
parallel group-by method only on single tables.

Parallel Join SQL Options

PLLJOIN/NOPLLJOIN
The PLLJOIN/NOPLLJOIN option enables and disables the SPD Server Parallel Join
facility.

Usage:

execute(reset noplljoin)
 by sasspds ; /* disables Parallel Join */

CONCURRENCY
The CONCURRENCY=<n> option sets the concurrency level that is used by the SPD
Server Parallel Join facility, where the integer n specifies the number of levels. In most
cases, changing the default SPD Server concurrency setting (half of the available number
of processors) is not recommended.

Usage:

106 Chapter 8 • SPD Server SQL Features

execute(reset concurrency=4)
 by sasspds ; /* enables 4 concurrency levels */

PLLJMAGIC
The PLLJMAGIC option specifies how SPD server performs parallel joins.

Usage:

execute(reset plljmagic=<100/200>)
 by sasspds ;

PLLJMAGIC=100 forces a parallel range join when the range index is available.

PLLJMAGIC=200 forces a parallel merge join.

Parallel Join Example 1
The first parallel join example is a basic SQL query that creates a pair-wise join of two
SPD Server tables, table1 and table2.

LIBNAME path1 sasspds IP=YES;

PROC SQL;
create table junk as
 select *
 from path1.table1 a,
 path1.table2 b
 where a.i = b.i;
 quit;

Parallel Join Example 2
The next parallel join example is an SQL query that uses more than two SPD Server tables.
In this example, the SQL planner performs a parallel join on table1 and table2, and then
use a non-parallel method to join the results of the first join and table3. A non-parallel join
method is used for the second join, because the criteria for a parallel join was not met. A
parallel join can be performed only on a pair-wise join of two SPD Server tables, and the
query calls three SPD Server tables.

LIBNAME path1 sasspds IP=YES;

PROC SQL;
create table junk as
 select *
 from path1.table1 a,
 path1.table2 b,
 path1.table3 c
 where a.i = b.i and b.i = c.i;
quit;

Parallel Join Example 2 107

Parallel Join Example 3
Multiple parallel joins can be used in the same SQL query, as long as the SQL planner can
perform the query using more than one pairwise join. In the next parallel join example, a
more complex query contains a union of two separate joins. Both joins are pair-wise joins
of two SPD Server tables. There is a pair-wise join between table1 and table2, and then a
pair-wise join between table3 and table4 is performed concurrently, using the Parallel Join
facility.

PROC SQL;
create table junk as
 select *
 from path1.table1 a,
 path1.table2 b
 where a.i = b.i
 union

 select *
 from path1.table3 c,
path1.table4 d
where c.i = d.i;
quit;

The required criteria to use the SPD Server Parallel Join facility can be more complex than
simply requiring a pair-wise join of two SPD Server tables. The Parallel Join facility can
handle multiple character columns, numeric columns, or combinations of character and
numeric columns that are joined between pairs of tables. Numeric columns do not need to
be of the same width to act as a join key, but character columns must be of the same width
in order to be a join key. Columns that are involved in a join cannot be derived from a SAS
CASE statement, and cannot be created from character manipulation functions such as
SUBSTR, YEAR, MONT, DAY, and TRIM.

Parallel Group-By Facility

Overview of the Parallel Group-By Facility
SPD Server SQL Planner optimizations improve the performance of the more frequent
query types used in data mining solutions. One of the SQL planner optimizations integrated
into SPD Server is tighter integration of the Parallel Group-By capability. Parallel Group-
By is a high performance parallel summarization of data executed using SQL. Parallel
Group-By is often used in SQL queries (through the use of sub queries) to apply selection
lists for inclusion or exclusion. The tighter integration adds performance benefits to nested
Group-By syntax.

Parallel Group-By looks for specific patterns in a query that can be performed using parallel
processing summarization. Parallel Group-By works against single tables that are used to
aggregate data. Parallel processing summarization is limited to the types of functions it can
handle.

The Parallel Group-By support in SPD Server has been expanded in many areas. Parallel
Group-By is integrated into the WHERE-clause planner code so that it will boost the
capabilities of the SPD Server SQL engine. Any section of code that matches the Parallel
Group-By trigger pattern will use it.

108 Chapter 8 • SPD Server SQL Features

Enhanced Group-By Functions
Parallel Group-By now supports the following functions in syntax: COUNT, FREQ, N,
USS, CSS, AVG, MEAN, MAX, MIN, NMISS, RANGE, STD, STDERR, SUM, VAR.
These functions all can accept the DISTINCT term. The listed functions are the minimum
summary functions that are required in order to support the SAS Enterprise Marketing
Automation tool suite.

Table Aliases Supported
Table aliases are now supported in SPD Server in order to better support front end tools
such as SAS Enterprise Marketing Automation. Tools such as SAS Enterprise Marketing
Automation generate SQL queries that use table aliases. Table aliases allow both shorter
coding syntax and a method to select a specific column in a query that has two tables that
share common column names.

Nested Queries Meet Group-By Syntax Requirements
Since the Parallel Group-By functionality is integrated into the SPD Server WHERE-clause
planner, now many sections of queries can take advantage of performance enhancements
such as parallel processing. Some common performance enhancements are sub-queries that
generate value lists in an IN clause, views that now conform to Parallel Group-By syntax,
and views that contain nested Group-By syntax.

General Syntax:

SELECT 'project-list' FROM 'table-name' ;

WHERE [where-expression];

GROUP BY [groupby-list];

HAVING [having-expression];

ORDER BY [orderby-list];

project-list
Items must be either column names (which must appear in the groupby-list) or
aggregate (summary) functions involving a single column (with the exception of
count(*) which accepts an asterisk argument. At least one aggregate function must be
specified. Project items can be aliased (for example, select avg(salary) as avgsal from)
and these aliases can appear in any where-expression, having-expression, groupby-
list or orderby-list. The following aggregate functions are supported: count, avg, avg
distinct, count distinct, css, max, min, nmiss, sum, sum distinct, supportc, range, std,
stderr, uss, var. Mean is a synonym for avg. Freq and n are synonyms for count except
they do not accept the asterisk argument.

table-name
Table names can be one- or two-part identifiers (for example, mytable or foo.mytable),
the latter requiring a previous libref statement to define the domain identifier (for
example, foo).

The where-expression is optional.

The optional groupby-list must be column names or projected aliases.

The optional having-expression must be a Boolean expression composed of aggregate
functions, group by columns and/or constants.

Nested Queries Meet Group-By Syntax Requirements 109

The optional orderby-list must be projected column names or aliases or numbers which
represent the position of a projected item (for example, select a, count (*) order by 2).

Since the Parallel Group-By functionality is integrated into the SPD Server WHERE-clause
planner, now many sections of queries can take advantage of performance enhancements
such as parallel processing. Some common performance enhancements are sub-queries that
generate value lists in an IN clause, views that now conform to Parallel Group-By syntax,
and views that contain nested Group-By syntax.

Formatted Parallel Group Select
By default, the columns of a group-by statement are grouped by their unformatted value.
SQL pass-through parallel group by provides the capability to also group data by the
columns output data format. For example, you could group by the date column of a table
with an input format of mmddyy8 and an output format of monname9. Suppose the column
has dates 01/01/04 and 01/02/04. Grouping by the unformatted value would put these dates
into two separate groups. However, grouping by the formatted month name, would put
these values into the same month grouping of January.

You enable or disable pass-through formatted parallel group by with the following execute
commands:

 PROC SQL;
 connect to sasspds
 (dbq=........);

 /* turn on formatted parallel group-by */
 execute(reset fmtgrpsel)
 by sasspds;

 select *
 from connection
 to sasspds
 (select dte
 from mytable
 groupby dte);

 /* turn off formatted parallel group-by */
 execute(reset nofmtgrpsel)
 by sasspds;

 select *
 from connection
 to sasspds
 (select dte
 from mytable
 groupby dte);

 quit;

The example code below is extracted from a larger block of code, whose purpose is to make
computations based on user-defined classes of age, such as Child, Adolescent, Adult, and
Pensioner. The code uses SQL Parallel Group-By features to create the user-defined classes
and then uses them to perform aggregate summaries and calculations.

/* Use the parallel group-by feature with the */

110 Chapter 8 • SPD Server SQL Features

/* fmtgrpsel option. This groups the data based */
/* on the output format specified in the table. */
/* This will be executed in parallel. */

PROC SQL;
connect to sasspds
 (dbq="&domain"
 serv="&serv"
 host="&host"
 user="anonymous");

 /* Explicitly set the fmtgrpsel option */

 execute(reset fmtgrpsel)
 by sasspds;

 title 'Simple Fmtgrpsel Example';
 select *
 from connection to sasspds
 (select age, count(*) as count
 from fmttest group by age);

 disconnect from sasspds;
 quit;

PROC SQL;
connect to sasspds
 (dbq="&domain"
 serv="&serv"
 host="&host"
 user="anonymous");

 /* Explicitly set the fmtgrpsel option */

 execute(reset fmtgrpsel)
 by sasspds;

 title 'Format Both Columns Group Select Example';

 select *
 from connection to sasspds
 (select
 GENDER format=$GENDER.,
 AGE format=AGEGRP.,
 count(*) as count
 from fmttest
 formatted group by GENDER, AGE);

 disconnect from sasspds;

 quit;

PROC SQL;
connect to sasspds
 (dbq="&domain"
 serv="&serv"

Formatted Parallel Group Select 111

 host="&host"
 user="anonymous");

 /* Explicitly set the fmtgrpsel option */

 execute(reset fmtgrpsel)
 by sasspds;

 title1 'To use Format on Only One Column With Group Select';
 title2 'Override Column Format With a Starndard Format';

 select *
 from connection to sasspds
 (select
 GENDER format=$1.,
 AGE format=AGEGRP.,
 count(*) as count
 from fmttest
 formatted group by GENDER, AGE);

 disconnect from sasspds;

 quit;

 /* A WHERE-clause that uses a format to subset */
 /* data is pushed to the server. If it is not */
 /* pushed to the server, the following warning */
 /* message will be written to the SAS log: */
 /* WARNING: Server is unable to execute the */
 /* where clause. */

 data temp;
 set &domain..fmttest;
 where put
 (AGE,AGEGRP.) = 'Child';
 run;

For the complete code example, see “User-Defined Formats Example” on page 271.

Parallel Group-By SQL Options
SPD Server provides the following Parallel Group-By SQL reset options:

GRPSEL/NOGRPSEL
The GRPSEL/NOGRPSEL option enables or disables the SPD Server Parallel Group-By
facility.

Usage:

/* Disable Parallel Group-By */
execute(reset nogrpsel)
 by sasspds ;

112 Chapter 8 • SPD Server SQL Features

FMTGRPSEL/NOFMTGRPSEL
The FMTGRPSEL/NOFMTGRPSEL option enables or disables the SPD Server Parallel
Group-By use of formats.

Usage:

/* Disable Parallel Group-By */
/* use of formats. */
execute(reset nofmtgrpsel)
 by sasspds ;

SCANGRPSEL/NOSCANGRPSEL
Use the SCANGRPSEL/NOSCANGRPSEL option to turn the SPD Server index scan
facility on and off. The default SPD Server setting uses the index scan facility.

Usage:

/* Disable index scan facility */
execute(reset noscangrpsel)
 by sasspds ;

/* Enable index scan facility */
execute(reset scangrpsel)
 by sasspds ;

SPD Server STARJOIN Facility
The SPD Server's enhanced SQL planner includes the STARJOIN facility. The SPD Server
STARJOIN facility validates, optimizes, and executes SQL queries on data that is
configured in a star schema. Star schemas consist of two or more normalized dimension
tables that surround a centralized fact table. The centralized fact table contains data
elements of interest derived from the dimension tables.

In data warehouses with large numbers of tables and millions or billions of rows of data,
properly constructed star joins can minimize overhead data redundancy during query
evaluation. If the SPD Server STARJOIN facility is not enabled, or of SPD Server SQL
does not detect a star schema, then the SQL will be processed using pair-wise joins.

How do star joins differ from pair-wise joins? In SPD Server 4.4, properly configured star
joins require only three steps to complete, regardless of the number of dimension tables.
SPD Server pair-wise joins require one step for each table to complete the join. If a star
schema consisted of 25 dimension tables and one fact table, the STARJOIN is accomplished
in three steps; joining the tables in the star schema using pair-wise joins will require 26
steps.

When data is configured in a valid SPD Server star schema, and the STARJOIN facility is
not disabled, the SPD Server STARJOIN facility can produce quicker and more processor-
efficient SQL query performance than would be realized using SQL pair-wise join queries.

For more information about the STARJOIN Facility, see “STARJOIN Facility Reference”
on page 115.

SPD Server STARJOIN Facility 113

STARJOIN Options
Use the SPD Server SQL STARJOIN facility options to specify how SPD Server
implements Star Joins.

NOSTARJOIN
Use the NOSTARJOIN option to disable or enable the SPD Server STARJOIN facility.

Usage

execute(reset nostarjoin=<1/0>)
 by sasspds ;

NOSTARJOIN=0 enables the SPD Server STARJOIN facility.

NOSTARJOIN=1 disables the SPD Server STARJOIN facility.

STARMAGIC
Use the STARMAGIC option to modify the behavior of the SPD Server STARJOIN and
override some internal heuristics in order to favor a particular join strategy in the planner.
The values are bit flags in the STARJOIN code that can be added together to result in a
variety of controls.

Usage

execute(reset starmagic=<1/2/4/8/16>)
 by sasspds ;

STARMAGIC=1 forces all dimension tables to be classified as Phase I tables.

STARMAGIC=2 is currently not used.

STARMAGIC=4 requires an exact match on the FACT composite index in order to meet
Phase I conditions for STARJOIN.

STARMAGIC=8 disables the IN-SET STARJOIN strategy. The IN-SET strategy is
enabled by default.

STARMAGIC=16 disables the COMPOSITE STARJOIN strategy. The COMPOSITE
strategy is enabled by default.

DETAILS
Use the DETAILS option to print details about your SPD Server STARJOIN facility
settings. All internal STARJOIN debugging information is tied to the stj$ DETAILS key.
Issuing the stj$ reset option displays available information as SPD Server attempts to
validate a join sub-tree. The RESET DETAILS="stj$" option is very useful for debugging
STARJOIN and SQL statement execution.

Usage

execute(reset details="stj$")
 by sasspds ;

114 Chapter 8 • SPD Server SQL Features

STARJOIN Facility Reference

Overview: SPD Server STARJOIN Facility
SPD Server provides an enhanced SQL planner that includes the STARJOIN facility. The
SPD Server STARJOIN facility validates, optimizes, and executes SQL queries on data
that is configured in a star schema. Star schemas consist of two or more normalized
dimension tables that surround a centralized fact table. The centralized fact table contains
data elements of interest that are derived from the dimension tables.

In data warehouses with large numbers of tables and millions or billions of rows of data,
a properly constructed STARJOIN can minimize overhead data redundancy during query
evaluation. If the SPD Server STARJOIN facility is not enabled, or if SPD Server SQL
does not detect a star schema, then the SQL will be processed using pairwise joins.

How does a STARJOIN differ from a pairwise join? In SPD Server, a properly configured
STARJOIN requires only three steps to complete, regardless of the number of dimension
tables. SPD Server pairwise joins require one step for each table to complete the join. If a
star schema consists of 25 dimension tables and one fact table, the STARJOIN is
accomplished in three steps; joining the tables in the star schema using pairwise joins
requires 26 steps.

When data is configured in a valid SPD Server star schema, and the STARJOIN facility is
not disabled, the SPD Server STARJOIN facility can produce quicker and more processor-
efficient SQL query performance than SQL pairwise joins.

Star Schemas

Overview of Star Schemas
To exploit the power of the SPD Server STARJOIN facility, the data must be configured
as a star schema, and it must meet specific SPD Server SQL star schema requirements.

Star schemas are the simplest data warehouse schema, consisting of a central fact table that
is surrounded by multiple normalized dimension tables. Fact tables contain the measures
of interest. Dimension tables provide detailed information about the attributes within each
dimension. The columns in fact tables are either foreign key columns that define the links
between the fact table and individual dimension tables, or they are columns that calculate
numeric values that are based on foreign key data.

Figure 1 is an example of a simple star schema. The dimension tables Products, Supplier,
Location, and Time surround the fact table Sales.

Star Schemas 115

Figure 8.1 Example Star Schema

The dimension tables, fact table, and keys in Figure 1 are used in the examples in this
document.

Dimension Tables Information
Products is a table of products, with one row per unique product SKU. The row for each
unique SKU contains information such as product name, height, width, depth, weight, pallet
cube, and so on. The example Products table contains 1,500 rows.

Supplier is a table of the suppliers that supply the products. The row for each unique supplier
contains information such as supplier name, address, state, contact representative, and so
on. The example Supplier table contains 25 rows.

Location is a table of the stores selling the products. The row for each unique location
contains information such as store number, store name, store address, store manager, store
sales volume, and so on. The Location table contains 500 rows.

Time is a sequential sales transaction table. Each row in the Time table represents one day
out of a rolling three-year, 365-day-per-year calendar. The row for each day contains
information such as date, day of week, month, quarter, year, and so on. The Time table
contains 1,095 rows.

116 Chapter 8 • SPD Server SQL Features

Fact Table Information
The fact table Sales is a table that combines information from the four dimension tables,
Products, Supplier, Location, and Time. Its foreign keys are imported, one from each
dimension table: PRODUCT_CODE from Products, STORE_NUMBER from Location,
SUPPLIER_ID from Supplier, and SALES_DATE from Time. The fact table Sales might
have other columns with facts or information that are not found in any dimension table.
Examples of fact table columns that are not foreign keys from a dimension table are columns
such as QTY_SOLD or NET_SALES. The fact table in this example could contain as many
as 1,500 x 25 x 500 x 1,095 = 20,531,250,000 rows.

SPD Server STARJOIN Requirements
For SPD Server SQL to take advantage of the STARJOIN planner, the following conditions
must be true:

• STARJOIN optimization must be enabled in SPD Server.

• The SPD Server star schema must use a single central fact table.

• All dimension tables in the SPD Server star schema must be connected to the fact table.

• SPD Server dimension tables can appear in only one join condition.

• SPD Server fact tables are equally joined to dimension tables.

• SPD Server SQL infers fact tables by topology (common equally joined predicates).

• Dimension tables that have no subsetting require a simple index on the dimension table's
join column.

When SPD Server SQL is submitted that does not meet these STARJOIN conditions, SPD
Server reverts to performing the requested SQL task using SPD Server's pairwise join
strategy. The “SPD Server STARJOIN Examples” on page 125 section of this document
provides three examples that show valid, invalid, and restricted candidates for the SPD
Server STARJOIN facility.

Enabling STARJOIN Optimization in SPD Server
SPD Server STARJOIN optimization is enabled by default. The “SPD Server STARJOIN
RESET Statement Options” on page 124 section provides detailed information about
statement options that enable or disable the STARJOIN facility in SPD Server.

Invoking the SPD Server STARJOIN Facility
SPD Server knows when to use the STARJOIN facility because it is topology based. SPD
Server invokes STARJOIN based on the SQL that is submitted. When SQL is submitted
and STARJOIN optimization is enabled, SPD Server checks the submitted SQL for
admissible STARJOIN patterns. SPD Server SQL identifies a fact table by scanning for a
common equally joined table among multiple join predicates in a WHERE clause. When
SPD Server SQL detects patterns that have multiple equally joined operators sharing a
common table, the common table becomes the star schema's fact table.

When an SQL statement that is submitted to SPD Server uses structures that indicate the
presence of a star schema, the STARJOIN validation checks begin.

Invoking the SPD Server STARJOIN Facility 117

SPD Server STARJOIN Optimization

Overview of STARJOIN Optimization
The SPD Server STARJOIN optimization process searches for the most efficient SQL
strategy to use for computations. The STARJOIN optimization process consists of three
steps, regardless of the number of dimension tables that are joined to the fact table in the
star schema.

1. Classify dimension tables that are called by SQL as Phase I tables or Phase II tables.

2. Phase I probes fact table indexes and selects a STARJOIN strategy.

3. Phase II performs index lookups and joins subsetted fact table rows with Phase II tables.

Classify Dimension Tables That Are Called by SQL as Phase I Tables
or Phase II Tables
After the STARJOIN planner validates the join sub-tree, join optimization begins. Join
optimization is the process that searches for the most efficient SQL strategy to use when
joining the tables in the star schema.

The first step in optimization is to examine the dimension tables that were called by SQL
for structures that SPD Server can use to improve performance. Each dimension table is
classified as a Phase I table or a Phase II table. The structure of a dimension table and
whether the submitted SQL filters or subsets the table's contents determine its classification.
SPD Server uses different processes to handle Phase I and Phase II dimension tables.

Phase I tables can improve performance. A Phase I table is a dimension table that is either
very small (nine rows or less), or a dimension table whose SQL queries contain one or more
filtering criteria that is expressed with a WHERE clause. A Phase II table is any dimension
table that does not meet Phase I criteria. Rows in Phase II tables that are referenced in the
SQL query are not subsetted.

Consider the star schema that is illustrated in Figure 8.1 on page 116, with the fact table
Sales and the dimension tables Products, Supplier, Location, and Time.

Suppose a submitted SQL query requests transaction reports from the fact table Sales for
all stores where the location is the state of North Carolina, for the time period of the month
of January, for all products, and for all suppliers. The SQL query subsets the Location and
Time tables, so SPD Server classifies the Location and Time tables as Phase I tables. The
query requests information from all of the rows in the Product and Supplier tables. Because
those tables are not subsetted by a WHERE clause in the submitted SQL, STARJOIN
classifies the Products and Supplier tables in this query as Phase II tables.

Now, using the same star schema, add more detail to the SQL query. Set up a new query
that requests transaction reports from the fact table Sales for all stores where the location
is the state of North Carolina, for the time period of the month of January, and for products
where the supplier is from the state of North Carolina. The subsetted dimension tables
Location, Time, and Supplier are classified as Phase I tables. The Products table, unfiltered
by the submitted SQL query, is classified as a Phase II table.

Dimension tables are classified as Phase I or Phase II tables because the two types of tables
require different index probe methods.

Phase I Probes Fact Table Indexes and Selects a STARJOIN Strategy
Phase I uses the SQL join keys from the subsetted Phase I dimension tables to get a smaller
set of candidate rows to query in the central fact table. After optimizing the candidate rows
in the fact table, the Phase I index probe examines index structures to determine the best

118 Chapter 8 • SPD Server SQL Features

STARJOIN strategy to use. There are two SPD Server STARJOIN strategies: the IN-SET
strategy and the COMPOSITE strategy. In all but a few cases, the IN-SET strategy is the
most robust and efficient processing strategy. The user can determine which strategy SPD
Server will choose by providing the required table index types in the submitted SQL.

Phase I creates the smaller set of candidate rows in the central fact table by eliminating fact
table rows that do not match the SQL join keys from the subsetted Phase I dimension tables.
For example, if the SQL query requests information about transactions that occurred only
in North Carolina store locations, the candidate rows that are retained in the fact table will
use the SQL that subsets the Location dimension table:

WHERE location.STATE = "NC";

If the Sales fact table contains sales records for all 50 states, Phase I uses the SQL that
subsets the Location dimension table to eliminate the sales records of all stores in states
other than North Carolina from the fact table candidate rows. The example is simple, but
powerful -- reducing the fact table candidate row set to transactions from only North
Carolina stores eliminates massive amounts of nonproductive data processing.

The Phase I index probe inventories the number and types of indexes on the fact table and
dimension tables as it attempts to identify the best STARJOIN strategy. To use the
STARJOIN IN-SET strategy, Phase I must find simple indexes on all SQL join columns
in the fact table and dimension tables. Otherwise, to use the STARJOIN COMPOSITE
strategy, Phase I searches for the best composite index that is available on the fact table.
The best composite index for the fact table is the composite index that spans the largest set
of join predicates from the aggregated Phase I dimension tables.

Based on the fact table and dimension table index probe, SPD Server selects the STARJOIN
strategy using the following logic:

• If one or more simple indexes are found on fact table and dimension table SQL join
columns, and no spanning composite indexes are found on the fact table, SPD Server
selects the STARJOIN IN-SET strategy.

• If an optimal spanning composite index is found on the fact table, and no simple indexes
are found on fact table and dimension table SQL join columns, SPD Server selects the
STARJOIN COMPOSITE strategy.

• If both simple and spanning composite indexes are found, SPD Server generally selects
the STARJOIN IN-SET strategy, unless the composite index is an exact match for all
of the Phase I join predicates, and only lesser matches are available with the IN-SET
strategy.

• If no suitable indexes are found for either STARJOIN strategy, SPD Server does not
use STARJOIN; it joins the sub-tree using the standard SPD Server pairwise join.

The IN-SET and COMPOSITE join strategies have some underlying differences.

The IN-SET join strategy uses an IN-SET transformation of dimension table metadata to
produce a powerful compound WHERE clause to be used on the STARJOIN fact table.
The "IN" part of the term "IN-SET" refers to an IN specification in the SQL WHERE
clause. The IN-SET is the set of values that populate the contents of the SQL IN query
expression. For example, in the following SQL WHERE clause, the cities Raleigh, Cary,
and Clayton are the values of the IN-SET:

WHERE location.CITY in ("Raleigh", "Cary", "Clayton");

For the IN-SET strategy, Phase I dimension tables are subsetted, and then the resulting set
of join keys form the SQL IN expression for the fact table's corresponding join column.
You must have simple indexes on all SQL join columns in both the fact table and dimension
tables before STARJOIN Phase I can select the IN-SET strategy.

SPD Server STARJOIN Optimization 119

If the dimension table Location has six rows for Raleigh, Cary, and Clayton, then six
STORE_NUMBER values are applied to the IN-SET WHERE clause that is used to select
the candidate rows from the central fact table. The STARJOIN IN-SET facility transforms
the dimension table's CITY values into STORE_NUMBER values that can be used to select
candidate rows from the Sales fact table. The transformed WHERE clause to be applied to
the fact table might resemble the following code:

WHERE fact.STORE_NUMBER in
 (100,101,102,103,104,105,106);

You can use IN-SET transformations in a star schema that has any number of dimension
tables and a fact table. Consider the following example dimension table subsetting
statement:

WHERE location.CITY in
("Raleigh","Cary","Clayton")
 and Time.SALES_WEEK = 1;

Because the Sales fact table has no matching CITY column to join with the Location
dimension table, and no matching SALES_WEEK column to join with the Time table, the
IN-SET strategy uses transformations to create a WHERE clause that the Sales fact table
can resolve:

WHERE fact.STORE_NUMBER in
 (100,101,102,103,104,105,106)
and Time.SALES_DATE in
 ('01JAN2005'd,'02JAN2005'd,'03JAN2005'd,
 '04JAN2005'd,'05JAN2005'd,'06JAN2005'd,
 '07JAN2005'd,);

The advantage of the STARJOIN facility is that it handles all of the transformations on a
fact table, from dimension table subsetting to IN-SET WHERE clauses.

The COMPOSITE join strategy uses a composite index on the fact table to exhaustively
probe the full Cartesian product of the combined join keys that is produced by the
aggregated dimension table subsetting. SPD Server compares the composite indexes on the
fact table to the theoretical composite index that is made from all of the join keys in the
Phase I dimension tables. Phase I selects the best composite index on the fact table, based
on the join requirements of the dimension tables.

A disadvantage of using the COMPOSITE join strategy is that when more than a few join
keys exist, the Cartesian product map can become large geometric matrixes that can
interfere with processing performance. You must have a composite index on the fact table
that consists of Phase I dimension table join columns before STARJOIN Phase I can select
the COMPOSITE join strategy.

If any Phase I dimension tables contain join predicates that do not have supporting simple
or composite indexes on the fact table, those Phase I dimension tables are dropped from
Phase I processing and are moved to the Phase II group.

Phase II Performs Index Lookups and Joins Subsetted Fact Table
Rows with Phase II Tables
Phase I optimizes the join strategies between the Phase I dimension tables and the candidate
rows from the fact table . After Phase I terminates, Phase II takes over. Phase II completes
the indicated joins between the candidate rows from the fact table and the corresponding
rows in the subsetted Phase I dimension tables. After completing the joins with the Phase
I dimension tables, Phase II performs index lookups from the fact table to the Phase
dimension II tables. Phase II dimension tables should have indexes created on all columns
that join with the fact table.

120 Chapter 8 • SPD Server SQL Features

When SPD Server completes the STARJOIN Phase I and Phase II tasks, the STARJOIN
optimizations have been performed, the STARJOIN strategy has been selected, and the
subsetted dimension tables and fact table joins are ready to run and produce the desired
SQL results set.

Indexing Strategies to Optimize STARJOIN Query Performance

Overview of Indexing Strategies
Once the baseline criteria to create an SQL STARJOIN in SPD Server have been satisfied,
you can configure indexing to influence which strategy the SPD Server STARJOIN facility
chooses.

With the IN-SET strategy, the SPD Server STARJOIN facility can use multiple simple
indexes on the fact table. The IN-SET strategy is the simplest to configure, and usually
provides the best performance. To configure your work to choose the STARJOIN IN-SET
strategy, create a simple index on each fact table and dimension table SQL column that
you want to use in a join relation. Creating simple indexes prevents STARJOIN Phase I
from rejecting a Phase I dimension table so that it becomes a non-optimized Phase II table.
In addition, simple indexes facilitate the Phase II fact-table-to-dimension-table join lookup.

Consider the following SQL code for a star schema with one fact table and two dimension
tables:

PROC SQL;
select F.FID, D1.DKEY, D2.DKEY
from fact F, DIM1 D1, DIM2 D2
where D1.DKEY EQ F.D1KEY
and D2.DKEY EQ F.D2KEY
and D1.REGION EQ 'Midwest'
and D2.PRODUCT EQ 'TV';

Indexing to Optimize the IN-SET Join Strategy
The SPD Server IN-SET join strategy is the preferred strategy for almost every STARJOIN.
If you want the previous example code to trigger the IN-SET STARJOIN strategy, create
simple indexes on the join columns for the star schema's fact table and dimension tables:

• On the fact table F, create simple indexes on columns F.D1KEY and F.D2KEY.

• On the dimension tables D1 and D2, create simple indexes on columns D1.DKEY and
D2.DKEY.

Other fact table and dimension table indexes might exist that could filter WHERE clauses,
but those simple indexes are the indexes that are needed to enable the STARJOIN IN-SET
join strategy.

Indexing to Optimize the COMPOSITE Join Strategy
Using the COMPOSITE join strategy, the dimension tables with WHERE clause subsetting
are collected from the set of equally joined predicates. A fact table composite index is
needed for the fact table columns that correspond to the subsetted dimension table columns.
The composite index on the fact table is necessary to facilitate the dimension tables'
Cartesian product probes on the fact table rows. The STARJOIN optimizer code looks for
the best composite index, which is based on the best and simplest left-to-right match of the
columns in the COMPOSITE join.

If the subsetting in a STARJOIN is limited to a single dimension table, then the
COMPOSITE join strategy can be enabled by creating a simple index on the join column
of the single dimension table. That index is used to perform the Phase II index lookup on

Indexing Strategies to Optimize STARJOIN Query Performance 121

the fact table candidate rows. The fact table candidate row set is the result of the Phase I
composite index probe.

For the previous example code to trigger the COMPOSITE STARJOIN strategy, create a
composite index named COMP1 on the fact table for each of the dimension table keys:
F.COMP1=(D1KEY D2KEY).

Other fact table and dimension table indexes might exist that could filter WHERE clauses,
but the COMPOSITE index named COMP1 is the type of index that is needed to enable
the STARJOIN COMPOSITE join strategy.

Although the COMPOSITE join strategy might appear to be a simpler configuration, the
strongest utility of the COMPOSITE join strategy is limited to join relations between the
fact table and dimension tables that are based on a Cartesian matrix of outcomes. As the
number of dimension tables and join relations increases, the resulting Cartesian matrixes
increase geometrically in size and can become unmanageable. The superior performance
of the IN-SET strategy is so dramatic and robust that you should consider using the
COMPOSITE join strategy only if you have good evidence that it compares favorably with
the IN-SET strategy.

Example: Indexing using the IN-SET Join Strategy
The example star schema in Figure 8.1 on page 116 has four dimension tables (Supplier,
Products, Location, and Time) and one fact table (Sales) with simple indexes on the
SUPPLIER_ID, PRODUCT_CODE, STORE_NUMBER, and SALES_DATE columns in
the Sales fact table.

Consider the following SQL query to create a January sales report for an organization's
North Carolina stores:

PROC SQL;
select
 sum(s.sales_amt) as sales_amt
 sum(s.units_sold) as units_sold
 s.product)code,
 t.sales_month

from
 spdslib.sales s,
 spdslib.supplier sup,
 spdslib.products p,
 spdslib.location l,
 spdslib.time t

where
 s.store_number = l.store_number
and s.sales_date = t.sales_date
and s.product_code = p.product_code
and s.supplier_id = sup.supplier_id
and l.state = 'NC'
and t.sales_date
 between '01JAN2005'd and '31JAN2005'd;

quit;

During optimization, the STARJOIN planner examines the WHERE clause subsetting in
the SQL to determine which dimension tables qualify as Phase I tables and which are Phase
II tables.

122 Chapter 8 • SPD Server SQL Features

The WHERE clause subsetting of the STATE column of the Location dimension table
(where ... l.state = 'NC') and the subsetting of the SALES_DATE column of the Time
dimension table (where ... t.sales_date between '01JAN2005'd and '31JAN2005'd)
cause SPD Server to process the Location and Time tables as Phase I tables. The remaining
dimension tables Supplier and Products are processed as Phase II tables.

SPD Server STARJOIN uses the Phase I dimension tables to reduce the rows in the fact
table to candidate rows that contain the matching criteria. The values in each dimension
table key are used to create a list of values that meet the subsetting criteria of the fact table.

For example, the previous SQL query is intended to create a January sales report for stores
located in North Carolina. Note that the WHERE clause in the SQL code joins the Location
and Sales tables on the STORE_NUMBER column. Suppose that there are 10 unique North
Carolina stores, with consecutively ordered STORE_NUMBER values that run from 101
to 110. When the WHERE clause is evaluated, the results will include a list of the 10 North
Carolina store IDs that existed in January 2005.

With simple indexes on the fact table and dimension tables for the STORE_NUMBER
column, STARJOIN chooses the IN-SET strategy. Subsetting the STATE column values
to 'NC' allows STARJOIN to build the set of store numbers that are associated with North
Carolina locations. STARJOIN can use the set of North Carolina store numbers to generate
a where ... in SQL expression. SQL uses the where ... in expression to efficiently subset
the candidate rows in the fact table before the final SQL expression evaluation.

In other words, STARJOIN uses a matrix of database relationships and index combinations
to reorganize the SQL expression for more internal processing that can take advantage of
the IN-SET join strategy. For the previous example code, the internal STARJOIN SQL
reorganization resembles the following example code. The WHERE clause IN-SET
statements for the STORE_NUMBER and TIME columns can be rapidly processed to
subset the candidate rows in the Sales fact table. (The optimized code sections are
highlighted.)

PROC SQL;
 select sum(s.sales_amt) as sales_amt
 sum(s.units_sold) as units_sold
s.product)code,
 t.sales_month

from spdslib.sales s,
 spdslib.supplier sup,
 spdslib.products p,
 spdslib.location l,
 spdslib.time t

 where s.store_number = l.store_number
 and s.sales_date = t.sales_date
 and s.product_code = p.product_code
 and s.supplier_id = sup.supplier_id
 and s.store_number in (101,102,103,104,105,106,107,108,109,110)
 and s.time
 in ('01JAN2005'd,'02JAN2005'd,'03JAN2005'd,
 '04JAN2005'd, <...>, '28JAN2005'd,
 '29JAN2005'd,'30JAN2005'd,'31JAN2005'd);

quit;

After Phase I completes the candidate row optimization on the Sales fact table, Phase II
processes the optimized query from the fact table outward. Phase II uses the values in the

Indexing Strategies to Optimize STARJOIN Query Performance 123

fact table's subsetted candidate rows to perform index lookups on the dimension tables'
contents to complete the join in the most efficient manner.

SPD Server STARJOIN RESET Statement Options

Overview of STARJOIN Reset Statement Options
SPD Server recognizes several RESET statements that can configure or provide
information about the STARJOIN facility in SPD Server SQL.

RESET NOSTARJOIN=[0/1]
The NOSTARJOIN option suppresses the use of the SPD Server STARJOIN optimizer in
the planning and running of SQL statements that have valid STARJOIN patterns or star
schemas. The statements NOSTARJOIN and NOSTARJOIN=1 are equivalent. When
NOSTARJOIN is enabled, SPD Server ignores STARJOIN and uses pairwise joins to plan
and run SQL statements. The default setting is NOSTARJOIN=0, meaning that in SPD
Server, STARJOIN is enabled unless reset, and STARJOIN optimization occurs when SQL
recognizes a valid SPD Server pattern or star schema.

RESET STARMAGIC=nnn
STARMAGIC is the STARJOIN counterpart to the SQL MAGIC number option. You can
set magic numbers that direct STARJOIN to override internal heuristics, which results in
enhanced join strategies. The STARMAGIC option uses bit flags to configure the
STARJOIN code. You can select different controls by adding the values for the different
bit flags in the following STARMAGIC set:

Table 8.1 STARMAGIC Bit Flags

Value Meaning

1 forces all dimension tables to be
classified as Phase I tables.

2 obsolete; not used.

4 requires exact matches on the fact
table composite index to

meet STARJOIN Phase I conditions.

8 disables IN-SET join strategy.
(Default setting is enabled.)

16 disables COMPOSITE join strategy.
(Default setting is enabled.)

RESET DETAILS="stj$"
All internal STARJOIN debugging information is tied to RESET DETAILS="stj$". Issuing
this statement displays available information as SPD Server attempts to validate a join sub-
tree. The RESET DETAILS="stj$" statement is useful for debugging STARJOIN and SQL
statements.

124 Chapter 8 • SPD Server SQL Features

Example: STARJOIN RESET Statements
The following example connects to sasspds, and then issues the "stj$" RESET option to
display all available information as SPD Server attempts to validate the join sub-tree for
the submitted SQL on a star schema. The STARMAGIC=16 setting disables the
STARJOIN COMPOSITE join strategy (STARJOIN COMPOSITE joins are enabled by
default in SPD Server). The NOSTARJOIN=0 setting means that STARJOIN is enabled
(or resets a disabled STARJOIN facility) and ensures that STARJOIN optimization occurs
if SQL recognizes a valid SPD Server pattern or star schema. (The STARJOIN facility is
enabled by default in SPD Server.)

After submitting the following SQL statements, the code disconnects from sasspds and
quits:

 PROC SQL;
 connect to sasspds
 (dbq="star"
 server=sunburn.5007
 user='anonymous');

 execute (reset
 DETAILS="stj$"
 STARMAGIC=16
 NOSTARJOIN=0)

 by sasspds;

 execute (
 ...
 SQL statements
 ...);
 by sasspds;

 disconnect from sasspds;
 quit;

SPD Server STARJOIN Examples

Example 1: Valid SQL STARJOIN Candidate
The following code is an example of an SQL submission that SPD Server is able to use as
a star schema. The submission is a valid candidate because:

• a single central fact table, Sales, exists

• the dimension tables Time, Products, Location, and Supplier all join with the fact table
Sales

• each dimension table appears in only one join condition

• all dimension tables link to the fact table using equally joined operators

PROC SQL;
 create table Sales_Report as
 select a.STORE_NUMBER,
 b.quarter
 c.month,

SPD Server STARJOIN Examples 125

 d.state,
 e.SUPPLIER_ID

 sum(a.total_sold) as tot_qtr_mth_sales
 from Sales a,
 Time b,
 Products c,
 Location d,
 Supplier e

 where a.sales_date = b.sales_date
 and a.STORE_NUMBER = d.store_number
 and a.PRODUCT_CODE = c.product_code
 and a.SUPPLIER_ID = d.supplier_id
 and b.quarter in (3, 4)
 and c.PRODUCT_CODE in (23, 100)

 group by b.quarter,
 a.STORE_NUMBER,
 b.month;
 quit;

Example 2: Invalid SQL STARJOIN Candidate
The following code is an example of an SQL submission that SPD Server is not able to use
as a star schema because no single central fact table can be identified. Changes to the
previous code example are highlighted:

 PROC SQL;
 create table Sales_Report as
 select a.STORE_NUMBER,
 b.quarter
 c.month,
 d.state,
 e.SUPPLIER_ID

 sum(a.total_sold) as tot_qtr_mth_sales
 from Sales a,
 Time b,
 Products c,
 Location d,
 Supplier e

 where a.sales_date = b.sales_date
 and a.STORE_NUMBER = d.store_number
 and a.PRODUCT_CODE = c.product_code
 and c.SUPPLIER_ID = d.supplier_id
 and b.quarter in (3, 4)
 and c.PRODUCT_CODE in (23, 100)

 group by b.quarter,
 a.STORE_NUMBER,
 b.month;
 quit;

SPD Server is not able to use the SQL submission in this example as a star schema This
submitted code joins the dimension tables for Time, Products, and Location to the Sales

126 Chapter 8 • SPD Server SQL Features

table, but the table for Supplier is joined to the Sales table through the Products table. As
a result, the topology does not define a single central fact table.

Example 3: STARJOIN Candidate with Created or Calculated Columns
The STARJOIN facility in SPD Server supports calculated or created columns. The
following code is an example of an SQL submission that creates columns, but still uses
STARJOIN optimization, if the central fact table and the dimension tables contain indexes
on the join columns for the STARJOIN:

 PROC SQL;
 create table &Regional_Report as
 select case d.state
 when 1 then 'NC'
 when 2 then 'SC'
 when 3 then 'GA'
 when 4 then 'VA'
 else ' '

 end as state_abv,
 b.quarter,
 sum (a.tot_amt) as total_amt

 from wk_str_upd_t a,
 week_t b,
 location_t d,

 where a.we_dt = b.we_dt
 and a.chn_str_nbr = d.chn_str_nbr
 and b.quarter = 2

 group by d.state,
 b.quarter
 having d.state in (1,2,3,4);
 quit;

The highlighted code creates a column called state_abv. The SPD Server STARJOIN
facility supports created columns if the appropriate indexes on the join columns exist in
the fact table and dimension tables.

SPD Server Index Scan
SPD Server SQL provides users with the capability to use lightning-fast index scans on
large tables. Rather than scanning entire tables which can have million or billions of rows,
SPD Server SQL is able to scan cached index metadata instead of sequentially scanning
entire large tables. SPD Server SQL provides enhanced index scan support for the following
functions:

min, max, count, nmiss, range uss, css, std, stderr,and var. All of the functions can
accept the DISTINCT term as well.

All index scan capabilities listed above are available for both standard SPD Server tables
as well as clustered tables, with the exception of the DISTINCT qualifier. The DISTINCT
index scan function is not available in clustered tables.

SPD Server Index Scan 127

The count(*) function is the only function included with the index scan support
enhancement that does not require an index on the table. For example,

select count(*) from tablename;

will return the number of rows in the large table tablenamewithout performing a row scan
of the table. Table metadata is able to return the correct number of rows. As a result, the
response is as fast as an index scan, even on an unindexed table in this case.

Count(*) functions with WHERE-clauses require an index for each column referenced in
the WHERE-clause, in order for the index scan feature to provide the performance
enhancement. For example, suppose SPD Server table Foo has indexes on numeric columns
a and b. The following count(*) functions benefit from SPD Server index scan support:

 select count(*)
 from Foo
 where a = 1;

 select count(*)
 from Foo
 where a LT 4
 and b EQ 5;

 select count(*)
 from Foo
 where a in (2,4,5)
 or b in (10,20,30);

All functions other than count(*) require an index on function columns in order to exploit
the index scan performance savings. Minimal WHERE-clause support is available for these
queries, as long as all functions use the same column, and the WHERE-clause is a simple
clause that uses the LT, LE, EQ, GE, GT, IN, or BETWEEN operator for that column. For
example, suppose that the SPD Server table Bar has indexes on numeric columns x and y.
The following SQL submissions will be able to exploit the performance gains of index
scans:

 select min(x),
 max(x),
 count(x),
 nmiss(x),
 range(x),
 count(distinct x)
 from Bar;
 select min(x),
 max(x),
 count(x),
 nmiss(x),
 range(x),
 count(distinct x)
 from Bar
 where x between 5 and 10;

 select min(x),
 max(x),
 count(x),
 nmiss(x),
 range(x),
 count(distinct x)

128 Chapter 8 • SPD Server SQL Features

 from Bar
 where x gt 100;

 select min(x),
 min(y),
 count(x),
 count(y)
 from Bar;

If any one function in a statement does not meet the index scan criteria, all functions in that
statement will revert to being resolved by table scan instead of index scan. Suppose the
SPD Server table Oops has indexes on numeric columns x and y. Column z is not indexed.
Then, the SPD Server SQL statement below

 select min(x),
 min(y),
 count(x),
 count(y),
 count(z)
 from Oops;

will be entirely evaluated by table scan; index scanning will not be performed on any of
the functions. To take advantage of index scans, the statement above could be resubmitted
as

 select min(x),
 min(y),
 count(x),
 count(y)
 from Oops;

 select count(y)
 from Bar;

The functions min(x), min(y), count(x), and count(y) will be evaluated using index scan
metadata and will exploit the performance gains. The function count(y) will continue to be
evaluated by table scan. The count(*) function can be combined with other functions and
benefit from index scan performance gains. Continuing to use the SPD Server table Oops
with indexes on numeric columns x and y, the following SPD Server SQL statement will
benefit from index scan performance:

select min(x),
 range(y),
 count(x),
 count(*)
from Oops;

SPD Server Index Scan is an extension to the SPD Server Parallel Group-By Facility. The
query must first be accepted by Parallel Group-By to be evaluated for an Index Scan. The
section on “Parallel Group-By Facility ” on page 108 contains more detailed information.
When SPD Server uses the Index Scan optimization, the following message will be printed
to the SAS log:

SPDS_NOTE: Metascan used to resolve this query.

SPD Server Index Scan 129

Optimizing Correlated Queries
Intelligent storage must have the ability to interpret and process complex requests such as
correlated queries. A correlated query is a select expression where a predicate within the
query has a relationship to a column that is defined in another scope. Today's business and
analytic intelligence tools often generate SQL queries that are nested 3 or 4 layers deep.
Queries with cross-nested relationships consume significant processor resources and
require more time to complete processing. New algorithms in the SQL Planner of SPD
Server implement techniques that significantly improve the performance of correlated
queries for patterns that permit query rewrites or query de-correlation.

The SQL Planner improves correlated query performance by changing complex rules about
nested relationships into a series of simple steps. SPD Server can process the simple steps
much faster than it can process the complex rules that arise with multiple levels of nesting.
When a query with multiple levels of nesting is submitted to the SQL Planner, the planner
examines the relationships between nested and unnested sections of the query. When a
complex nested relation ship is found, the SQL Planner restructures or recodes the SQL
query into a simpler form using temporary SPD Server tables.

Development work continues to improve the range of sub-expressions that are addressed
by the SPD Server SQL rewrite facility. For more information, see Chapter 8, "SPD Server
SQL Query Rewrite Facility," of the SAS Scalable Performance Data (SPD) Sever 4.5:
Administrator's Guide.

Correlated Query Options
The following are SPD Server SQL options for use with correlated query rewrites:

_QRW/NO_QRW
Use the _QRW/NO_QRW option to configure SPD Server to enable or disable the query
rewrite facility diagnostic output. Specifying this SPD Server RESET option enables or
disables various debugging and tracing outputs from the query rewrite facility. The
debugging and tracing outputs are generated when the SPD Server query rewrite facility
detects sub-expressions that it rewrites and executes the SQL code. The SQL code produces
the intermediate results and final rewritten SQL statement. By default, the SPD Server
_QRW option for diagnostic output is not enabled.

SPD Server provides alternate expressions that do the same thing as the _QRW/
NO_QRW option. They are the _QRW=1/_QRW=0 option and the NO_QRW=0/
NO_QRW=1 option.

Usage:

/* Enable query rewrite diagnostics */
execute(reset _qrw)
 by sasspds ;

/* A second way to enable */
/* query rewrite diagnostics */
execute(reset _qrw=1)
 by sasspds ;

130 Chapter 8 • SPD Server SQL Features

/* A third way to enable */
/* query rewrite diagnostics */
execute(reset no_qrw=0)
 by sasspds ;

/* Disable query rewrite diagnostics */
execute(reset no_qrw)
 by sasspds ;

/* A second way to disable query */
/* rewrite diagnostics */
execute(reset _qrw=0)
 by sasspds ;

/* Another way to disable query */
/* rewrite diagnostics */
execute(reset no_qrw=1)
 by sasspds ;

_QRWENABLE/NO_QRWENABLE
Use the _QRWENABLE/NO_QRWENABLE option to completely disable the SPD
Server query rewrite facility. Disabling the query rewrite facility prevents the rewrite
planner from intervening in the SQL flow and from making any optimizing rewrites. This
option is not normally specified unless you want to test if an SQL statement would run
faster without rewrite optimization, or if you suspect that the resulting row set that you get
from a query rewrite evaluation is incorrect.

SPD Server provides an alternate expression that does the same thing as the
_QRWENABLE/NO_QRWENABLE option. It is the _QRWENABLE=1/
_QRWENABLE=0 option. The query rewrite facility is enabled in SPD Server by default.

Usage:

/* Disable query rewrite */
/* facility */
execute(reset no_qrwenable)
 by sasspds ;

/* A second way to disable */
/* query rewrite facility */
execute(reset _qrwenable=0)
 by sasspds ;

/* Enable query rewrite */
/* facility */
execute(reset _qrwenable)
 by sasspds ;

/* A second way to enable */
/* query rewrite facility */
execute(reset _qrwenable=1)
 by sasspds ;

_QRWENABLE/NO_QRWENABLE 131

Materialized Views
SPD Server allows users to create an SQL view as a materialized view. What makes a
materialized view different from an SQL view? For a materialized view, the results of the
view statement are computed and saved in a temporary SPD Server table at the time the
view is created. For a standard SQL view the results are computed each time the view is
referenced in a subsequent SQL statement. As long as there are no changes to any of the
input tables that the view consists of, the materialized view will return the results from the
temporary table when the view is referenced in an SQL statement. If any of the input tables
that comprise the view are modified, the materialized view will recompute the results the
next time that the view is referenced and it will refresh the temporary table with the new
results. The materialized view temporary results table exists for as long as the view is in
existence. When a view is dropped or deleted, then the temporary results table is also
deleted.

Materialized Views Operating Details
A materialized view can be created only at the time the SQL view is created. This feature
is available only through the SPD Server 4.5 SQL Pass-Through Facility. A new keyword
Materialized is added to the Create View syntax that identifies the view to be created as a
materialized view. When a materialized view is created, the Create View operation will
not complete until the temporary results table has been populated. This can add substantial
time to the execution of Create View.

Each time a created materialized view is referenced in an SQL statement, there is a check
to determine whether any of the input tables used to produce the temporary results table
have been modified. If not, the temporary table is substituted in place of the vie w file
within the SQL statement. If any of the input tables have been modified, the SQL statement
will execute without this substitution so it will act as if it is a standard SQL view reference.
There is also a background thread launched at this time that is independent of the SQL
statement execution which will refresh the temporary results table. Until this refresh is
completed, any incoming references to the view will be treated as standard view references.

Creating a standard SQL view results in a view file being created in the specified domain
with the name <viewname>.view.0.0.0.spds9. Creating a materialized view results in an
additional SPD Server table being created in the same domain as the view file with the
name format <.viewname>.mdfspds9 and corresponding .dpf files <.viewname>.dpfspds9.
The materialized view table is not visible or accessible to the user by using PROC
DATASETS or other SAS procedures. If one or more simple indexes are defined on any
of the input tables that are used to create the results table, the indexes will also be created
on the materialized view table, as long as the column that was indexed in the input table
also exists in the materialized view table.

User Interface for Materialized Views
To create a materialized view, use the following SQL Pass-Through syntax.

EXECUTE (Create Materialized View <viewname> as Select) BY [sasspds | alias];

All other references to the view follow the existing SQL syntax, whether it is a standard
SQL view or a materialized view. The Materialized keyword is used only in the Create
statement. For example, to drop a materialized view, you would use the following syntax.

EXECUTE (Drop View <viewname>) BY [sasspds | alias];

132 Chapter 8 • SPD Server SQL Features

If any of the input tables to a materialized view are modified, the next time the view is
referenced, a refresh is performed on the materialized view table. You can use an
spdsserv.parm file option setting to specify the time delay before the materialized view
table is refreshed.

MVREFRESHTIME=<number-of-seconds> ;

Where <number-of-seconds> specifies the number of seconds before the refresh will start.
You can set the MVREFRESHTIME= option to any integer value between 0 and 86400.
The default MVREFRESHTIME= specification is 30 seconds.

The reason that a time delay might be necessary before refreshing a materialized view table
is to prevent processor thrashing. Processor thrashing might occur if you refresh the
materialized view table when other processes are concurrently processing updates to the
tables that are used in the view. If your computing environment does not perform multiple
concurrent table updates, then you can set MVREFRESHTIME=0 and eliminate any time
delay associated with materialized view refreshes.

Benefits of Materialized Views
Creating a materialized view instead of a Standard SQL view can provide enormous
performance benefits when the view is referenced in an SQL statement. For views that
contain costly operations such as multiple table joins or operations on very large tables,
the execution time for queries containing a materialized view can be orders of magnitude
less than a standard view. If the results table produced by the view is relatively small in
comparison with the input tables, the execution time for queries using a materialized view
might be a few seconds versus several minutes for a standard view.

For example, if it takes on average 20 minutes to produce the result set from a view and
the result is in the order of thousands of rows or less, a query referencing the materialized
view will now take seconds. Previously using the standard view operation s, every time
the view was referenced would result in 20 minutes of execution time. The performance
benefits should be measured on a case by case basis.

The decision of whether to use a standard view or a materialized view can be primarily
driven by how often the input tables to the view are updated versus how often the view is
referenced in an SQL statement. If a view is being referenced at least twice be fore any
updates can occur, then the materialized view should provide superior performance. In
cases where the defined view can be created very quickly, there is probably not a need for
using a materialized view. If the input tables are frequently updated in comparison to how
often the view is referenced, a standard view would probably be more efficient.

Materialized View Example
The following code shows the creation and use of a materialized view. The input tables X
and Z are created with X having three columns a,b,c and Z having four columns a,b,c,d
respectively.

data mydomain.X;
 do a = 1 to 1000;
 b = sin(a);
 c = cos(a);
 output;
end;
run;

data mydomain.Z;
 do a = 500 to 1500;

Materialized View Example 133

 b = sin(a);
 c = cos(a);
 d = mod(a,99);
 output;
end;
run;

PROC SQL;
connect to sasspds (dbq='mydomain'
 host='myhost'
 serv='myport'
 user='me'
 passwd='mypasswd');

execute (create materialized view XZVIEW as
 select *
 from Z
 where a in
 (select a from X))
 by sasspds;

 select *
 from connection
 to sasspds
 (select *
 from XZVIEW
 where d >90);

execute (drop view XZVIEW);
quit;

SPD Server SQL Extensions
SPD Server SQL furnishes several extensions to the SQL language. These extensions are
not a part of standardized industry SQL, but they are an integral part of the SPD Server
system. These extensions enable systemic data management unique to the SPD Server. The
SPD Server SQL uses a special Pass-Through Facility that uses these extensions for data
manipulation and extraction operations. The following section discusses the roles of the
following extensions which enable SPD Server's SQL Pass-Through Facility. In addition
to the extensions in this section, users should know “Libref Statements” on page 96 and
“Libref Clauses” on page 96.

BEGIN and END ASYNC OPERATION Statements

Overview of BEGIN and END ASYNC Operation Statements
Asynchronous statements are a useful technique you can use to harness the multi-processor
power of SPD Server. Asynchronous statements enable execution of multiple, independent
threads at the same time. The BEGIN ASYNC OPERATION and END ASYNC
OPERATION statements allow you to delimit one or more statements for asynchronous,
parallel execution. Since the statements execute in parallel, they must not depend on
another, because there is no way to guarantee which statement will finish before another

134 Chapter 8 • SPD Server SQL Features

statement executes. SPD Server software initiates thread execution according to the order
of the statements in the block.

Usage:

execute ([BEGIN | END] ASYNCH OPERATION);

Illegal ASYNC Block Statements
The statements in this Illegal ASYNC Block example have illegal interdependencies and
cannot be expected to work correctly:

 /* Example of Illegal ASYNC Block Code */

 PROC SQL;
 connect to sasspds
 (dbq="my-domain"
 server=host.port
 user='user-name'
 password='user-password'
 other connection options);

 execute(begin async operation)
 by sasspds;

 execute(create table T1 as
 select *
 from SRC1)
 by sasspds;

 execute(create unique index I1 on
 T1(a,b))
 by sasspds;

 execute(end async operation)
 by sasspds;

 disconnect from sasspds;
 quit;

The example violates the interdependency rule. The create index statement assumes table
T1 exists and is complete. However, table T1 is created from table SRC1, and might not
be complete before the asynchronous create index statement executes. Hence, index I1 is
dependent on a complete table T1. The resultant data would not be reliable. The purpose
of this example is to illustrate the concept of interdependency, and how not to write an
ASYNC block.

Legal ASYNC Block Statements
The statements in this Legal ASYNC Block example have no interdependencies.

 /* Example of Legal ASYNC Block Code */
 /* Creates some tables in the first ASYNC block */
 /* */

 PROC SQL;
 connect to sasspds

BEGIN and END ASYNC OPERATION Statements 135

 (dbq="path1"
 server=host.port
 user='anonymous');

 execute(begin async operation)
 by sasspds;

 execute(create table state_al as
 select *
 from allstates
 where state='AL')
 by sasspds;

 execute(create table state_az as
 select *
 from allstates
 where state='AZ')
 by sasspds;
 ...

 execute(create table state_wy as
 select *
 from allstates
 where state='WY')
 by sasspds;

 execute(end async operation)
 by sasspds;

 /* */
 /* Create some indexes in the second ASYNC block */
 /* */

 execute(begin async operation)
 by sasspds;

 execute(create index county on
 state_al(county))
 by sasspds;

 execute(create index county on
 state_az(county))
 by sasspds;
 ...

 execute(create index county on
 state_wy(county))
 by sasspds;

 execute(end async operation)
 by sasspds;

 disconnect from sasspds;
 quit;

136 Chapter 8 • SPD Server SQL Features

Why does the second example work correctly? First, each table is created independently.
Second, there is a 'synchronization point': the first END ASYNC operation. This point
ensures that all the tables are created before the second ASYNC statement block begins.
(You can also achieve results that are similar to this example by using the LOAD statement).

Using Librefs in an ASYNC Block Statement
To refer to a two-part table name inside an ASYNC block, you must re-execute the libref
statement issued before entering the block. Conversely, if you issue a libref statement inside
the ASYNC block, it does not extend outside the ASYNC block. An ASYNC block creates
a distinct scope for the libref. To work correctly, a libref statement must be located inside
the ASYNC block, and the libref statement must precede the first SQL statement that
references it.

 /* Example of Legal Code using LIBREFs in an ASYNC Block */
 /* Create some tables in the first ASYNC block */

 PROC SQL;
 connect to sasspds
 (dbq="path1"
 server=host.port
 user='anonymous');

 execute(begin async operation)
 by sasspds;

 execute(libref path1 engopt='dbq="path1"
 server=host.port
 user="anonymous"')
 by sasspds;

 execute(libref path2 engopt='dbq="path1"
 server=host.port
 user="anonymous"')
 by sasspds;

 execute(create table path1.southeast as
 select a.customer_id,
 a.region,
 b.sales
 from path1.customer a,
 path2.orders b
 where a.customer_id = b.customer_id
 and a.region='SE')
 by sasspds;

 execute(create table path1.northeast as
 select a.customer_id,
 a.region,
 b.sales
 from path1.customer a,
 path2.orders b
 where a.customer_id = b.customer_id
 and a.region='NE')

BEGIN and END ASYNC OPERATION Statements 137

 by sasspds;

 execute(end async operation)
 by sasspds;

 disconnect from sasspds;
 quit;

Using SQL Options in an ASYNC Block Statement
SPD Server SQL options must be set globally for all execute statements in the ASYNC
block. These options must be set using an execute statement before the BEGIN ASYNC
operation. This example uses code blocks from the preceding example to show how to print
a method tree without executing the SQL.

 /* */
 /* Example of Legal SQL Options in ASYNC Block */
 /* */

 PROC SQL;
 connect to sasspds
 (dbq="path1"
 server=host.port
 user='anonymous');

 execute(reset noexec _method)
 by sasspds;

 execute(begin async operation)
 by sasspds;

 execute(libref path1
 engopt='dbq="path1"
 server=host.port
 user="anonymous"')
 by sasspds;

 execute(libref path2
 engopt='dbq="path1"
 server=host.port
 user="anonymous"')
 by sasspds;

 execute(create table path1.southeast as
 select a.customer_id,
 a.region,
 b.sales
 from path1.customer a,
 path2.orders b
 where a.customer_id = b.customer_id
 and a.region='SE')
 by sasspds;

 execute(create table path1.northeast as

138 Chapter 8 • SPD Server SQL Features

 select a.customer_id,
 a.region,
 b.sales
 from path1.customer a,
 path2.orders b
 where a.customer_id = b.customer_id
 and a.region='NE')
 by sasspds;

 execute(end async operation)
 by sasspds;

 disconnect from sasspds;
 quit;

LOAD Statement
The LOAD statement enables table creation (with one or more indexes) with a single
statement. The data source for the statement is a SELECT clause. The SELECT list in the
clause defines the columns for the new table. All characteristics of the columns (variables)
in the select list are preserved, becoming permanent attributes of the new table's column
definitions. The target table for the LOAD TABLE statement must be on the local machine.

Usage:

execute (LOAD TABLE table spec
 < WITH index spec
 < WITH index spec>>
 by sasspds;

In the following example, each execute statement creates a table for one U.S. state using a
global table called STATE that contains many states. The first execute statement uses
LOAD to create table STATE_AL (Alabama), and creates an index on the COUNTY
column. The structure of the state table STATE_AL and the data in the state table both
come from the global table STATE. The data in STATE_AL is the subset of all records
from STATE where the STATE column variable equals 'AL'. LOAD creates a table for
states from Alabama to Wyoming, with each state's table indexed by county and mirroring
the structure of the parent table STATE.

 execute(load table state_al
 with index county
 on (county) as
 select *
 from state
 where state='AL')
 by sasspds;

 execute(load table state_az
 with index county
 on (county) as
 select *
 from state
 where state='AZ')
 by sasspds;

LOAD Statement 139

 ...

 execute(load table state_wy
 with index county
 on (county) as
 select *
 from state
 where state='WY')
 by sasspds;

In general, the LOAD statement is faster than a corresponding create table / create index
statement pair, because it builds the table and associated index(es) asynchronously using
parallel processing.

COPY Statement
The COPY table statement creates a copy of an SPD Server table with or without the table
index(es). For the COPY table statement to work, the source and target tables must be on
the local machine. By default, the software creates an index(es). The COPY table statement
is faster than either of the following CREATE and LOAD statements:

create table ...
as select ...
create index ...

or

load table ...
with index...
as select ...

The COPY statement is faster than the two above statements because it uses a more direct
access path than the SQL SELECT clause when accessing the data.

In the example that follows, two new tables are created: T_NEWand T2_NEW. The first
table, T_NEW, is created with index structures identical to table T_NEW. The second table,
T2_NEW, is unindexed regardless of the structure of table T2_OLD.

 execute(copy table t_new
 from t_old)
 by sasspds;

 execute(copy table t2_new
 from t2_old
 without indexes)
 by sasspds;

The COPY statement also supports an ORDER BY clause you use to create a new table
with a sort order on one or more columns of the new table. While COPY TABLE does not
support all of the options of PROC SORT, you can achieve substantial performance gains
when creating this ordered table by using COPY with an ORDER BY clause when
appropriate.

The next example copies the table T_OLD to T_NEW using the order by clause. The data
will be ordered by columns: x in ascending order, y in descending order, and z in ascending
order. The results are the same if you run PROC SORT on the columns using the same BY
clause. The syntax of the COPY ORDER BY follows the normal SQL ORDER BY clause,

140 Chapter 8 • SPD Server SQL Features

but the column identifiers that you can specify are restricted. You can specify only actual
table columns when using the COPY ORDER BY clause.

execute(copy table t_new
 from t_old
 order by x, y desc, z asc)
 by sasspds;

Differences between SAS SQL and SPD Server
SQL

This section overviews some of the functional differences between SAS SQL and SPD
Server SQL. A great deal of SAS SQL functionality is integrated into SPD Server.
Exceptions between SAS and SPD Server SQL are listed below.

Reserved Keywords
SPD Server uses keywords to initiate statements or refer to syntax elements. For example,
the words where and group can be used only in certain ways, because there are WHERE
and GROUP BY clauses. Keywords are treated as reserved words. That means you cannot
use keywords when naming a libref, a table, a column or an index.

In contrast, SAS allows keywords in some, but not all, syntax locations. The documentation
chapter “SPD Server SQL Syntax Reference Guide” on page 145 contains a list of
“(Reserved) Keywords” on page 148.

Table Options and Delimiters
SPD Server SQL uses brackets to delimit table options. SAS SQL uses parentheses as
delimiters. You can place table options in a create table statement. You must put table
options within parentheses to delimit column definitions within a table.

Mixing Scalar Expressions and Boolean Predicates
SPD Server SQL does not allow mixing scalar expressions with Boolean predicates. SAS
SQL does allow mixing scalar expressions with Boolean predicates in most places. The
Help section on “Scalar Expressions Contrasted with Boolean Predicates” on page 147
contains more information about permissible expression content.

INTO Clause
SPD Server SQL does not support the INTO clause, as in

select a, b into :var1, :var2 from t where a > 7;

In contrast, SAS SQL supports the INTO clause.

Tilde Negation
SPD Server SQL supports the use of the tilde only to negate the 'equals' operator, ~= (not
equals). SAS SQL allows broader use of the tilde ('~') character, where the tilde is

Tilde Negation 141

synonymous with not and can be combined with various operators. For example, SAS SQL
can use the tilde with 'between' ~ between (not between). SPD Server does not recognize
that expression.

Nested Queries
SAS SQL permits sub-queries without parentheses delimiters in more places than SPD
Server SQL. SPD Server SQL uses parentheses to explicitly group sub-queries or
expressions that are nested within a query statement whenever possible. Queries with
nested expressions execute more reliably and are also easier to read.

USER Value
SAS SQL permits sub-queries without parentheses delimiters in more places than SPD
Server SQL. SPD Server SQL uses parentheses whenever possible to explicitly group sub-
queries or expressions that are nested within a query statement. Queries with nested
expressions execute more reliably and are easier to read.

SPD Server SQL does not support the USER keyword in the INSERT statement. For
example, the following query will fail in SPD Server SQL:

insert into t1(myname) values(USER);

Supported Functions
SPD Server SQL supports the following functions:

abs, addr, arcos, arsin, atan, band, betainv, blshift, bnot, bor, brshift, bxor,
byte, ceil, cinv, collate, compbl, compound, compress, cos, cosh, css, cv,
daccdb, daccdbsl, daccsl, daccsyd, dacctab, date, datejul, datepart, datetime,
day, dcss, depdb, depdbsl, depsl, depsyd, deptab, dequote, dhms, digamma, dmax,
dmean, dmin, drange, dstd, dstderr, dsum, duss, dvar, erf, erfc, exp, finv,
fipname, fipnamel, fipstate, floor, fnonmiss, fuzz, gaminv, gamma, hms, hour,
int, intck, intnx, intrr, irr, ispexec, isplink, kurtosis, left, length, lgamma,
log, log10, log2, lowcase, max, mdy, mean, min, minute, mod, month, mort, n,
netpv, nmiss, npv, ordinal, poisson, probbeta, probbnml, probchi, probf, probgam,
probhypr, probit, probnegb, probnorm, probt, qtr, quote, range, ranuni, rank,
recip, repeat, reverse, right, round, saving, second, sign, signum, sin, sinh,
skewness, sqrt, std, stderr, stfips, stname, stnamel, substr, sum, tan, tanh,
time, timepart, tinv, today, tranwrd, trigamma, trim, upcase, uss, var, weekday,
year, zipfips, zipname, zipnamel, and zipstate.

Ranuni functions can show slight variation from run to run due to the impact of parallel
processing.

Note that date, int, left, right and trim are reserved keywords. Therefore, they must be
preceded by a backslash in SPD Server SQL queries:

select \date() from t ;

142 Chapter 8 • SPD Server SQL Features

Part 4

SPD Server SQL Reference

Chapter 9
SPD Server SQL Syntax Reference Guide . 145

Chapter 10
SAS Scalable Performance Data (SPD) Server SQL Access Library API
Reference . 159

143

144

Chapter 9
SPD Server SQL Syntax
Reference Guide

Overview . 146

Document Conventions . 146
Productions . 146
Production Links / References . 146
Literal Text . 146
Optional Text . 146
Selection Lists . 146

SQL Syntax Definitions . 147
Statement (Query) . 147
Scalar Expressions Contrasted with Boolean Predicates . 147
Strings . 147
Identifiers . 148
(Reserved) Keywords . 148

SQL Statements . 148
Alter Table Statement . 148
Connect Statement . 148
Create Index Statement . 149
Create Table Statement . 149
Create View Statement . 149
Delete Statement . 149
Describe Table Statement . 149
Describe View Statement . 149
Disconnect Statement . 150
Drop Index Statement . 150
Drop Table Statement . 150
Drop View Statement . 150
Execute Statement . 150
Insert Statement . 150
Reset Statement . 151
Select Statement . 151
Update Statement . 151
Validate Statement . 151

NEW SQL Statements . 151
Async Operation Statement . 151
Copy Table Statement . 151
Create Materialized View Statement . 152
Libref Statement . 152
Load Table Statement . 152

SQL Building Blocks . 152

145

Overview
This chapter describes the SQL syntax that is allowed with the Scalable Performance Data
(SPD) Server. SPD Server SQL is a dialect of SQL. That is, it combines SQL-92, SAS
SQL and extensions that are specific to SPD Server. Whenever possible, SPD Server
attempts to conform to SAS SQL.

Document Conventions

Productions
The syntax uses building blocks which are referred to as productions. Productions are
denoted by the symbol ::= . To the left of the equal sign is a production name; to the right
of the equal, or on the next line, is a list of production constructs. If a production has more
than one possible construct, the alternatives are separated by a vertical bar |. Read
productions top-down. For example, reading the delete statement, there are literal keywords
and two subproductions, a table_spec and the WHERE clause.

Production Links / References
Subproductions that are referenced within a production definition are HTML links to their
definitions. You can navigate the links with an HTML browser.

Literal Text
Traversing down a syntax tree leads to leaf/terminal definitions. The definitions are
composed either of keywords (select), identifiers (names of tables, columns, and so on) or
symbols (punctuation, operators, and so on.). Keywords and identifiers are shown with
bold, capitalized text. In contrast, symbols are shown with single quotation marks and are
bold.

Optional Text
Optional syntax is delimited by square brackets, [and]. Optional lists (syntax elements
that are repeated) are denoted by [and]*. The * signifies zero or more occurrences of the
bracketed syntax.

Selection Lists
Selection lists, that allow you to choose from a list of alternative syntax elements, are
denoted by braces { and }. These elements are separated by a vertical bar |. The selection
list itself is not optional; you must choose at least one element. If you must choose one or
more of the elements, the list is terminated with a }+. The + indicates one or more
occurrences of the delimited syntax.

Note: The browser displays links best with underscores. To view underscores using
Netscape, refer to the option under the File Command: Options/General Preferences/
Appearance.

146 Chapter 9 • SPD Server SQL Syntax Reference Guide

SQL Syntax Definitions

Statement (Query)
One or more syntax elements terminated by a semicolon.

Scalar Expressions Contrasted with Boolean Predicates
Scalar expressions represent a single data value, either a numeric or a string from a constant
specification. Examples include: 1, 'hello there', '31-DEC-60'd), a function (that is,
avg(a*b)), a column/variable (that is foo.bar), the case expression, or even a subquery
which returns a single run-time value. Boolean predicates are either true or false. They are
used in WHERE clauses, having clauses and in the case expression. You cannot select
predicates, nor can you assign them to columns (that is, in an update statement). Scalar
expressions and Boolean predicates cannot be used interchangeably, although SAS SQL
does allow you to mix the expressions.

Strings
SPD Server SQL strings are character streams which are delimited by either single or double
quotation marks. If you use a single quotation mark to begin a string, you must use a single
quotation mark to terminate the string. To embed a single quotation mark in a string, use
two single quotation marks together. For example,

SELECT 'it''s a wonderful life' from mytable.

You can use double quotation marks in the same manner. There is another way to embed
a single quotation mark without doubling the character. You can use double-quotation
marks as delimiters. For example,

SELECT it's a wonderful life from mytable.

In some of the syntax specifications that follow, a user-defined or database-specific string
is noted. Delimit these strings with a bracket or parenthesis. Characters between the
delimiters are considered part of the string up to, but not including, the matching delimiter.

 CONNECT to sasspds(
 user='john'
 passwd='foobar'
 options=(a b c)
);

The dbms_options string is

 user='john'
 passwd='foobar'
 options=(a b c).

In this example, the first right-parenthesis is considered part of the string. It is not the
matching termination delimiter.

Strings 147

Identifiers
Identifiers are the names of librefs, tables, indexes and columns as well as table and column
aliases.

(Reserved) Keywords
Keywords are used to initiate statements and syntax elements. For example, WHERE or
GROUP BY clauses. Keywords are also reserved. They cannot be used for identifiers
because this use introduces ambiguity. For example, select unique from; is a valid but
ambiguous statement. Below is a list of current SPD Server keywords. Some words have
been reserved for future enhancements to SPD Server SQL:

add, all, alter, and, any, as, asc, async, begin, between, both, by,
calculated, cascade, case, char, character, column, connect,
connection, contains, contents, copy, corr, corresponding, create,
cross, date, dec, decimal, default, delete, desc, describe,
dictionary, disconnect, distinct, double, drop, else, end, engname,
engopt, eq, except, execute, exists, false, float, for, format, from,
full, ge, grant, group, gt, having, in, index, indexes, informat,
inner, insert, int, integer, intersect, into, is, join, label, le,
leading, left, libref, like, load, lower, lt, match, missing, modify,
natural, ne, no, not, notin, null, num, numeric, on, operation, option,
or, order, outer, overlaps, partial, precision, privileges, public,
real, references, reset, restrict, revoke, right, select, set,
smallint, some, table, then, to, trailing, trim, true, union, unique,
unknown, update, upper, using, validate, values, varchar, verbose,
view, when, where, with, without, yes

SQL Statements

Alter Table Statement
The Alter table statement changes a table definition.

alter table statement ::=
 ALTER TABLE table spec
 { { ADD|MODIFY|ALTER [COLUMN] column def list } |
 { DROP [COLUMN] column name list }
 }+ ';'

Connect Statement
The Connect statement creates a pass-through connection.

connect statement ::=
 CONNECT TO libref name [[AS]
 alias name] '('
 dbms options ')'] ';'

148 Chapter 9 • SPD Server SQL Syntax Reference Guide

Create Index Statement
The Create Index statement creates an index on a table.

create index statement ::=
 CREATE [UNIQUE] INDEX index name ON
 table spec '(' column name list ')' ';'

Create Table Statement
The Create Table statement creates a table definition.

create table statement ::=
 CREATE TABLE table spec
 { '(' column def list ')' | AS
select spec | LIKE
table spec } ';'

Create View Statement
The Create View statement creates a view upon one or more tables.

create view statement ::= CREATE VIEW
table spec AS
select spec ';'

Delete Statement
The Delete statement deletes records.

delete statement ::= DELETE FROM
table spec [
where clause] ';'

Describe Table Statement
The Describe Table statement describes a table definition.

describe table statement ::=
 DESCRIBE TABLE table spec [[',']
 table spec]* ';'

Describe View Statement
The Describe View statement describes a view definition.

describe view statement ::=
 DESCRIBE VIEW table spec [[',']
 table spec]* ';'

Describe View Statement 149

Disconnect Statement
The Disconnect statement is a pass-through statement.

disconnect statement ::= DISCONNECT FROM
libref name ';'

Drop Index Statement
The Drop Index statement drops an index from a table.

drop index statement ::=
 DROP INDEX index name [[',']
 index name]* FROM
 table spec ';'

Drop Table Statement
The Drop Table statement drops a table definition.

drop table statement ::= DROP TABLE
table spec [[',']
table spec]* ';'

Drop View Statement
The Drop View statement drops a view definition.

drop view statement ::=
 DROP VIEW table spec [[',']
 table spec]* ';'

Execute Statement
The Execute statement is a pass-through statement.

execute statement ::= EXECUTE '('
passthru spec ')' BY
libref name ';'

Insert Statement
The Insert statement adds records.

insert statement ::=
 INSERT INTO table spec ['('
 column name list ')']
 insert source ';'

150 Chapter 9 • SPD Server SQL Syntax Reference Guide

Reset Statement
The Reset statement resets session options and flags.

set option statement ::=
 { SET OPTION | RESET }
 { identifier
 ['=' { constant |
identifier |
truth value
| DEFAULT }] }+

Select Statement
The Select statement retrieves information.

select statement::=
select spec ';'

Update Statement
The Update statement updates records.

update statement ::=
 UPDATE table spec
 SET column name '='
scalar expr [','
column name '='
scalar expr]*
 [where clause] ';'

Validate Statement
The Validate statement validates a given select specification.

validate statement ::= VALIDATE
select spec ';'

NEW SQL Statements

Async Operation Statement
async operation statements ::= { BEGIN | END } ASYNC OPERATION ';'

Copy Table Statement
copy table statement ::=
 COPY TABLE table spec FROM

Copy Table Statement 151

 table spec [WITHOUT INDEXES] [ORDER BY
 column name
 [ASC | DESC] [','
 column name [ASC | DESC]]] ';'

Create Materialized View Statement
create materialized view statement ::= CREATE MATERIALIZED VIEW
table spec AS
select spec ';'

Libref Statement
libref statement ::=
 LIBREF libref name [ENGNAME '='
 identifier] [ENGOPT '='
 string] ';'

Load Table Statement
load table statement ::=
 LOAD TABLE table spec [WITH
 with index spec [','
 with index spec]*]
 AS select spec ';'

SQL Building Blocks
Alias Name

alias name ::=
identifier

Atomic Expression

atomic expr ::=
constant |
column spec

Between Predicate

between pred ::=
scalar expr [NOT] BETWEEN
scalar expr AND
scalar expr

Boolean Expression

boolean expr ::=
 | [NOT] { predicate | '('
 boolean expr ')' } [IS [NOT]
 truth value]

152 Chapter 9 • SPD Server SQL Syntax Reference Guide

 | boolean expr { AND | OR }
 boolean expr

Case Expression

case expr ::=
 CASE { WHEN boolean expr THEN
 scalar expr }+ [ELSE
 scalar expr] END
 | CASE scalar expr { WHEN
 scalar expr THEN
 scalar expr }+ [ELSE
 scalar expr] END

Column Definition

column def ::=
column name
data type [
column modifier]* [NOT NULL]

Column Definition List

column def list ::=
column def [','
column def]*

Column Modifier

column modifier ::=
 FORMAT '=' <quoted or nonquoted SAS format specification>
 | LABEL '=' string

Column Name

column name ::= identifier

Column Name List

column name list ::=
column name [[',']
column name]*

Column Specifications

column spec ::=
 [CALCULATED] column name
 | table alias'.'
 column name

Comparative Operators

comp operator ::=
 | EQ | '='
 | NE | '^=' | '~=' | '!=' | '<>'
 | LT | '<'
 | GT | '>'
 | LE | '<='
 | GE | '>='

Comparison Predicates

comparison pred ::=
scalar expr {

SQL Building Blocks 153

comp operator
scalar expr }+

Connection String

connection string ::= <user-defined
string delimited by ending/matching parenthesis>

Constant

constant ::=
 | number | missing value
 | string | date/time string
 | NULL

Contains Predicate

contains pred ::=
scalar expr { CONTAINS | '?' }
scalar expr

Data Types

data type ::=
 { CHAR[ACTER] | VARCHAR } ['('unsigned ')']
 | { INT[EGER] | SMALLINT }
 | { NUM[ERIC] | DEC[IMAL] | FLOAT }
 ['(' unsigned [',' unsigned] ')']
 | REAL | DOUBLE PRECISION | DATE

Date / Time String

date/time string ::=
string{D|T|DT}

DBMS Options

dbms options ::= <user-defined
string delimited by ending/matching parenthesis>

Digits (Numeric)

digit ::= '0' <through> '9'

Exists Predicate

exists pred ::= EXISTS subquery

Function Arguments

function args ::=
 scalar expr [',' scalar expr]* | DISTINCT scalar expr | [DISTINCT] '*'

Function Expressions

function expr ::=
func name '('
function args ')'

Function Name

function name ::=
identifier

Identifier

identifier ::= ['\']{
letter|<underscore>}{

154 Chapter 9 • SPD Server SQL Syntax Reference Guide

letter|
digit|<underscore>}*

In Predicate

in pred ::=
 scalar expr { [NOT] IN | NOTIN } {
 subquery | '('
 constant [','
 constant]* ')' }

Index Name

index name ::=
identifier

Insert Set List

insert set list ::= SET
set value list [SET
set value list]*

Insert Source

insert source ::=
 | insert values list
 | insert set list
 | query expr

Insert Value

insert value ::= VALUES '('
scalar expr [','
scalar expr]* ')'

Insert Values List

insert values list ::=
insert value [
insert value]*

Letter (Alpha)

letter ::= 'a' <through> 'z' <or> 'A' <through> 'Z'

Libref Name

libref name ::=
identifier

LIKE Predicate

like pred ::=
scalar expr [NOT] LIKE
scalar expr

Missing Value

missing value ::= '.'[
letter]

Null Predicate

null pred ::=
scalar expr IS [NOT] { NULL | MISSING }

Number

SQL Building Blocks 155

number ::=
 {unsigned|{
 digit}+'.'[{
 digit}+]|'.'{
 digit}+}[{'e'|'E'}['+'|'-']{
 digit}+]

ORDER BY Clause

order by clause ::=
 ORDER BY atomic expr [ASC | DESC] [','
 atomic expr [ASC | DESC]]*

Pass-Through Spec

passthru spec ::=
 <database-specific string delimited by ending/matching parenthesis>

Predicate Types

predicate ::=
 | comparison pred
 | between pred
 | in pred
 | like pred
 | null pred
 | quantified comparison pred
 | exists pred
 | contains pred
 | soundslike pred

Quantified Comparison Predicate

quantified comparison pred ::=
 scalar expr
 comp operator { ALL | SOME | ANY }
 subquery

Query Expression

query expr ::=
 query spec
 | query expr { [OUTER] UNION | EXCEPT | INTERSECT } [CORRESPONDING] [ALL]
 query expr

Query Spec

query spec ::=
 SELECT [DISTINCT | UNIQUE] select item [','
 select item]*
 FROM table ref [','
 table ref]*
 [WHERE boolean expr]
 [GROUP BY scalar expr [','
 scalar expr]*]
 [HAVING boolean expr]

Scalar Expression

scalar expr ::=
 | atomic expr
 | function expr

156 Chapter 9 • SPD Server SQL Syntax Reference Guide

 | '(' scalar expr ')'
 | subquery
 | scalar expr { '+' | '-' | '*' | '/' | '||' | '**' }
scalar expr
 | { '+' | '-' } scalar expr
 | case expr

Select Item

select item ::=
 '*'
 | identifier'.*'
 | scalar expr [[AS]
 identifier] [
 column modifier]*

Select Spec

select spec ::=
query expr [
order by clause]

Set Value List

set value list ::=
column name '='
scalar expr [','
column name '='
scalar expr]*

Soundslike Predicate

soundslike pred ::=
scalar expr '=*'
scalar expr

String

string ::=
<a single- or double-quoted
literal string -- see Strings>

Subquery

subquery ::= '('
query expr

Table Alias

table alias ::=
identifier

Table Join

table join ::=
 table ref [INNER | { LEFT | RIGHT | FULL }
 [OUTER]] JOIN table ref
 { ON boolean expr | USING '('
column name list ')' }
 | '(' table join ')'

Table Name

table name ::=
identifier

SQL Building Blocks 157

Table Options

table options ::= <user-defined
 string delimited by ending/matching bracket>

Table Reference

table ref ::=
 table spec [[AS]
 identifier]
 | subquery [[AS]
 identifier] ['('
 column name list ')']
 | CONNECTION TO identifier '('
 connection string ')' [[AS]
 identifier]
 | table join

Table Spec

table spec ::=
 | table name ['['
 table options ']']
 | libref name'.'
 table name ['['
 table options ']']

Truth Value

truth value ::= { TRUE | YES } | { FALSE | NO }

Unsigned

unsigned ::= {
digit }+

WHERE Clause

where clause ::= WHERE
boolean expr

With Index Spec

with index spec ::= [UNIQUE] INDEX
index name ON '('
column name list ')'

158 Chapter 9 • SPD Server SQL Syntax Reference Guide

Chapter 10
SAS Scalable Performance Data
(SPD) Server SQL Access Library
API Reference

Introduction . 159

Overview of SPQL Usage . 160

SPQL API Description . 160

SPQL API Functions . 160
spqlinit() . 160
spqlterm() . 160
spqlconnect() . 161
spqldisconnect() . 161
spqlperform() . 161
spqlfreestok() . 162
spqltabinfo() . 162
spqlcolinfo() . 163
spqlfetch() . 163
spqlgmsg() . 163

SPQL Function Return Codes . 164
SPQL_SUCCESS(==0) . 164
SPQL_ENDDATA(WARNING) . 164
SPQL_INITFAILED(ERROR) . 164
SPQL_NOMEM . 164
SPQL_CONFAILED(ERROR) . 164
SPQL_BADSTMT(ERROR) . 164

Introduction
This chapter describes the Scalable Performance Data Server SQL access library API
(Application Programming Interface) and provides some simple examples. This chapter
refers to the Scalable Performance Data Server SQL access library as SPQL. Read this
chapter if you want a library that provides a C-language compatible interface to write user
applications to access an SPD Server SQL server. Because the library was designed for
multi-threaded applications, the code is thread safe.

159

Overview of SPQL Usage
SPQL enables you to write application: programs that can connect to and access Scalable
Performance Data Server (SPD Server) hosts using the SQL language. SPQL is oriented
toward connection, allowing you to submit SQL statements to one or more SPD Server
SQL servers which execute SQL statements on your behalf.

SPQL API Description
The C-language H file spql.h is provided for customer-written applications. This chapter
describes the API functions, their use, and restrictions.

SPQL API Functions
The SPQL API functions include

spqlinit()
Initializes the SPQL library for operation.

int spqlinit(void)

Usage: Performs a one-time initialization which enables the SPQL library to function. For
this reason, you must call spqlinit() at least once to activate an SPQL program. Do not make
other SPQL API calls before calling this function. If you do, the results are unpredictable.
When spqlinit() successfully completes, you can safely proceed to use the SPQL API in a
multi-threaded context.

Note: Spqlinit()-is not a thread-safe function. Call it only within a single-threaded context
in your application. Alternatively, call it within an application-controlled mutex region.

Parameters: None

Returns: 0 if successful; SPQL_INITFAILED if the initialization fails.

spqlterm()
Is the termination counterpart of the spqlinit() function.

int spqlterm(void)

Usage: Terminates the SPQL library session, disconnecting all active SPD Server SQL
server connections and freeing up the memory resources associated with the SPQL run-
time library executables.

Parameters: None

Returns: 0 if successful.

160 Chapter 10 • SAS Scalable Performance Data (SPD) Server SQL Access Library API Reference

spqlconnect()
Establishes a connection to a specified SPD Server SQL server.

int spqlconnect(char *constr, void **contok)

Usage: Establishes a connection to the SPD Server SQL server. The constr parameter
specifies all the connection information needed to establish the connection to an SPD Server
SQL server. When a connection is made successfully, a connection, token (contok) is
returned to the caller.

Parameters:

char *constr
A null-terminated string identifying the SPD Server SQL server to connect to for this
session. The syntax for the string is identical to that used for the SAS PROC SQL pass-
through CONNECT statement.

void **contok
Returns a connection token if the connection successfully completes. You must retain
the token; use it in subsequent SPQL library operations that you perform using the
connection.

Returns: 0 if successful; SPQL_NOMEM if unable to allocate memory for the connection
token; SPQL_CONFAILED if unable to connect successfully to the SPD Server SQL
server.

spqldisconnect()
Terminates a connection from the SPD Server SQL server specified with a spqlconnect().

int spqldisconnect(void *contok)

Usage: Disconnects from a specified SPD Server SQL server. The caller passes the
connection token which was returned from an spqlconnect() call. Then, the SPD Server
SQL server associated with the connection is disconnected from the caller, and the memory
associated with connection token is returned to the system.

Parameters:

void *contok
Connection token previously obtained from spqlconnect().

Returns: 0 if successful.

spqlperform()
Submits an SQL statement for execution on a given connection.

 int spqlperform(void *contok, char *stmtbuf, int stmtlen,
 int *actions, void **stmttok);

Usage: Performs specified SQL statement and informs caller of the results. The actions
parameter returns a value of 0 if no additional action is required. If actions are required to
complete the statement, one or more of the following bit flags are returned.

 Flag Action
 ---------- ---------------

spqlperform() 161

 SPQLDATA Data is returned(see spqlfetch())
 SPQLCOLINFO Column information is returned(see spqlcolinfo())

Parameters:

void *contok
The connection used to execute the SQL statement.

char *stmtbuf
A buffer that holds the SQL statement to perform.

int stmtlen
The length of the SQL statement in buffer; -1 if null-terminated.

int *actions
Returns post-processing notification bit flags.

void **stmttok
Returns a statement token to use in post-processing the SQL statement results. See post-
processing action definitions for use of statement token.

Returns: 0 if the SQL statement is successfully prepared/executed; SPQL_BADSTMT if
the SQL statement specified in the statement buffer is prepared incorrectly;
SPQL_NOMEM if spqlperform cannot allocate memory for the statement token.

spqlfreestok()

Generates a free statement token from spqlperform().

int spqlfreestok(void *stmttok);

Usage: Free resources used for the statement token from spqlperform(). Call
spqlfreestok() after the data/information from the statement token has been extracted. You
can call this function before all selected rows from the spqlperform() are read. If you do,
the remaining unread rows (from the previous select) are discarded.

Parameters:

void *stmttok
Statement token to free

Returns: 0 if successful.

spqltabinfo()

Gets table information from a statement token.

int spqltabinfo(void *stmttok, spqltinfo_t **tinfo)

Usage: Interrogates the statement token for table information. Upon return of the call,
updates tinfo with the pointer to the spqltinfo_t structure in the statement.

Note: Treat the structure accessed by the returned pointer as read-only memory.

Parameters:

void *stmttok
The statement token to use to access table information from a 'select'.

spqltinfo **tinfo
Returns pointer to spqltinfo_t structure into the statement token memory.

Returns: 0 for successful completion.

162 Chapter 10 • SAS Scalable Performance Data (SPD) Server SQL Access Library API Reference

spqlcolinfo()
Gets column information from a statement token.

int spqlcolinfo(void *stmttok, int *ncols, spqlcinfo_t **colvec)

Usage: Interrogates token for column information. Upon return of the call, updates ncols
with the column count selected in the statement and updates colvec with the pointer to the
vector of spqlcol_t structures in the statement.

Note: Treat structures accessed by the returned pointer as read-only memory.

Parameters:

void *stmttok
The statement token to use to access column information from 'select'.

int *ncols
Returns in the statement token the number of columns selected.

spqlcinfo **colvec
Returns in the statement token a pointer to the array of spqlcinfo_t structures.

Returns:0 if successful.

spqlfetch()

Gets row data from a statement token.

int spqlfetch(void *stmttok, void **bufptr, int *bufsize)

Usage: Fetches the rows returned from executing a statement. Each call to spqlfetch returns
a row from a statement to the caller's buffer. If bufptr contains a NULL value, the routine
returns a pointer to a buffer containing the next row. If the value is not NULL, it assumes
that the buffer is owned by the caller and returns the data to the caller's buffer. In either
case, bufsize is updated with the row length returned. Callers that use locate-mode spqlfetch
semantics (that is, who specify bufptr as NULL), should NEVER FREE the memory
pointer returned by spqlfetch! A call to spqlfetch(), after all rows for the statement are
returned, returns a bufsize of 0.

Parameters:

void *stmttok
The statement token to use to access row data from 'select'.

void **bufptr
Contains a pointer to the caller's row buffer to fill with row data. If it is NULL on entry,
it returns a pointer to the internal statement buffer.

int *bufsize
Returns the size of the row buffer that was returned to the caller.

Returns: 0 if successful; SPQL_ENDDATA if the statement has no more rows to return;
SPQL_FETCHFAILED if there is an unexpected failure while fetching the next row buffer.

spqlgmsg()
Accesses thread-specific error/diagnostic message buffer contents.

int spqlgmsg(char **mbuf)

spqlgmsg() 163

Usage: Returns a pointer to the threads error/diagnostic message buffer. Call spqlgmsg()
to get any diagnostic messages if you encounter an error executing an SPQL function. If
there is message information, spqlgmsg() returns the message pointer in the mbuf
parameter as well as the length of the message (the function return value).

Parameters:

char **mbuf
Returns a pointer to the thread's error/diagnostic message buffer. If mbuf is NULL,
there is no message information. The call also returns the length of the thread's error/
diagnostic message buffer. A 0 indicates that no message exists.

SPQL Function Return Codes
Some SPQL functions generate return codes, allowing you to check the value and take
appropriate action in your application code. Typically, the application action taken upon
receiving an error code, is a call to spqlgmsg() to get the contents of the diagnostic buffer.
The program can then display the buffer's contents to the user or write the contents to a
log. The return codes in this section are classified by their state: positive [(WARNING),
(SUCCESS)] or negative [(ERROR)].

SPQL_SUCCESS(==0)
Successful completion of the SPQL function call.

SPQL_ENDDATA(WARNING)
All rows selected were read from the statement token.

SPQL_INITFAILED(ERROR)
Initialization failure. (It is unsafe for your application to make additional SPQL calls if this
error occurs.)

SPQL_NOMEM
Unable to allocate memory for some type of SPQL data structure. Check the diagnostic
buffer for details.

SPQL_CONFAILED(ERROR)
Unable to make a connection to an SPD Server SQL server. Check the diagnostic buffer
for details.

SPQL_BADSTMT(ERROR)
SQL statement is incorrectly formatted for submission to sqlprepare(). Either the statement
is blank (all white space) or contains contiguous non-white space characters.

164 Chapter 10 • SAS Scalable Performance Data (SPD) Server SQL Access Library API Reference

Part 5

SPD Server Reference

Chapter 11
Optimizing SPD Server Performance . 167

Chapter 12
SPD Server Macro Variables . 199

Chapter 13
SPD Server LIBNAME Options . 221

Chapter 14
SPD Server Table Options . 245

Chapter 15
SPD Server Formats and Informats . 269

Chapter 16
SPD Server NLS Support . 277

165

166

Chapter 11
Optimizing SPD Server
Performance

SPD Server Performance and Usage Tips . 168

Symmetric Multiple Processor (SMP) Utilization . 168

File System Performance Concepts . 169
Overview of File System Performance . 169
Defining Directories . 169
Disk Striping . 170
RAID Levels . 170
Transient Storage . 171

LIBNAME Domains . 171
Data and Index Separation . 171
Configuring a LIBNAME Domain . 172

Loading Data into an SPD Server Host . 172

Table Loading Techniques . 173
Parallel Table Load Technique Using PROC APPEND . 173
Parallel Table Load Technique Using SQL Pass-Through 173
Parallel Pass-Through Table Load and Data Subset . 174
Parallel Pass-Through Table Copy . 174

Loading Indexes in Parallel . 174
Parallel Index Creation . 175
Parallel Index Creation Example . 175
Parallel Index Updates . 176

Truncating Tables . 176

Optimizing WHERE clauses . 177
Overview of Optimizing WHERE Clauses . 177
WHERE Clause Definitions and Terminology . 177

SPD Server Indexing . 178
Overview of Server Indexing . 178
SPD Indexes . 178
MINMAX Indexes . 179

WHERE Clause Planner . 181
WHERE-Costing Using Duplicity and Distribution Values 181
WHERE Clause EVAL Strategies . 181
Assigning EVAL Strategies . 182
WHINIT: Indexed and Non-Indexed Predicates . 184

How to Affect the WHERE Planner . 187
Macro Variable SPDSWCST= . 187

167

Macro Variable SPDSWDEB= . 187
Macro Variable SPDSIRAT= . 187
Macro Variable SPDSNIDX= or Table Option NOINDEX= 188
Macro Variable SPDSWSEQ= . 188
Server Parameter Option [NO]WHERECOSTING . 188
WHERENOINDEX Option . 188
When and Why Should I Suppress Indexes? . 188

Identical Parallel WHERE Clause Subsetting Results . 189
Overview of Parallel WHERE Clause Subsetting . 189
WHERE Clause Subsetting Variation Example: . 190
Job 1 . 190
Job 1 Output: . 190
Job 2: . 190
Job 2 Output: . 191

WHERE Clause Examples . 191
Data for WHERE Examples . 191
Example 1 "where i = 1 and j = 2 and m = 4" . 192
WHERE_EXAMPLE 2: where i in (1, 2, 3) and j in (4, 5, 6, 7)

and k > 8 and m = 2 . 192
WHERE_EXAMPLE 3: where i = 1 and j > 5 and mod(k, 3) = 2 194
WHERE_Example 4: where i = 1 and j > 5 and mod(k, 3) = 2

(the index IJK is suppressed) . 195

Server-Side Sorting . 196
Overview of Server-Side Sorting . 196
Suppressing the Use of Indexes . 197
Advantages of Implicit Server Sorts . 197

SPD Server Performance and Usage Tips
SPD Server gives good performance when run using default configuration settings. To
realize the full benefits of SPD Server's design and capabilities, you must configure some
of the software's options to modify the default behaviors. The configuration changes will
depend on the computing environment, table size and complexity, and indexing structures.

You use SAS/MACRO variables that are specific to SPD Server and SAS statement options
(LIBNAME options and table options) to configure SPD Server for optimum performance.

Symmetric Multiple Processor (SMP) Utilization
A cornerstone of SPD Server's power is the ability to perform parallel processing. Parallel
processing uses multiple processors to execute more than one set of instructions, or threads,
concurrently. SPD Server is oriented to exploit parallelism whenever it can improve
transaction times and processor utilization.

A fundamental question about parallelism is whether using additional CPUs on a specific
problem will deliver data faster. Extra CPUs do not guarantee faster results every time. The
amount of CPU-intensive work that a thread must do needs to last long enough to justify
the cost of the thread. The cost of the thread is creating it, managing it, and interacting with
other threads involved in the same parallel algorithm.

168 Chapter 11 • Optimizing SPD Server Performance

If not properly matched to the workload, the parallel algorithm can use more CPU time
without reducing data delivery time. Additional threads can create conflicting demands for
critical system resources such as physical memory. Excessive execution times can occur
if too many threads attempt to access a large table at the same time, because many threads
demand large amounts of physical memory. Extreme resource constraints can result in
slower overall processing.

SPD Server focuses on the following areas to speed overall processing using parallelism:

• User-definable parallel execution blocks for SQL pass-through statements

• Parallel aggregation for common summary functions when performing SELECT [...]
GROUP BY statements

• WHERE clause evaluation for indexed and non-indexed strategies

• Overlapped table and concurrent index updates when appending to tables

• Index creation when creating multiple indexes

• Optimize PROC SORT/BY clauses

• Pipelined read-ahead when concurrently accessing multiple tables

File System Performance Concepts

Overview of File System Performance
SPD Server uses several file types in its data storage model. Data objects in SPD Server
consist of one or more component files. Each component file is itself a collection of one
or more disk files. These are called the partitions of the component.

Component files create partitions when any of the following conditions is true:

• The current partition exceeds the user-specified PARTSIZE= value: Subsequent
partitions are allocated in cyclical fashion across the set of directories that are specified
in the DATAPATH= statement for the LIBNAME domain. Partitioning uses file-level
striping to create PARTSIZE-sized files that complement disk-level striping that your
operating system's volume manager software creates. SPD Server uses a default
PARTSIZE= setting of 16 MB. PARTSIZE= determines a unit of work for parallel
operations that require full table scans. Examples of parallel operations that require full
table scans are WHERE clause evaluation and SQL GROUP-BY summarization.
Trade-offs are balancing increased numbers of files used to store the table versus the
work savings realized through parallel partitions. Extra partitions means that files are
opened to process a table, but with fewer rows in each partition.

• The current partition exceeds the RLIMIT_FILESIZE value: In UNIX systems,
RLIMIT_FILESIZE is a system parameter that defines the maximum size of a single
disk file. In Windows, SPD Server uses a default RLIMIT_FILESIZE value of 2 GB.

• The current partition exceeds the space on the file system where it has been created.

Defining Directories
SPD Server allows the user to define a set of directories that contain component files and
their partitions. Normally, a single directory path is constrained by some volume limit for
the file system, or the maximum amount of disk space that the operating system
understands.

Defining Directories 169

Most UNIX and Windows systems offer a volume manager utility. You can use volume
manager utilities to create file systems (volumes) that are greater than the available space
on a single disk. System administrators can use these utilities to create large, multi-gigabyte
volumes. These volumes can be spread across a number of disk partitions, or even span
multiple disk devices. Volume manager utilities generally support creation of disk volumes
that implement one of the common RAID (redundant arrays of inexpensive disks)
configuration levels.

Disk Striping
A defining feature of all RAID levels is disk striping. Striping organizes the linear address
space of a volume into pieces that are spread across a collection of disk drive partitions.
For example, a user can configure a volume across two 1 GB partitions on separate disk
drives A and B with a stripe size of 64K bytes. Stripe 0 lives on drive A, stripe 1 lives on
drive B, stripe 2 lives on drive A, and so on.

By distributing the stripes of a volume across multiple disks it is possible to

• achieve parallelism at the disk I/O level

• use multiple kernel threads to drive a block of I/O.

This also reduces contention and data transfer latency for a large block I/O because the
physical transfer can be split across multiple disk controllers and drives.

RAID Levels
The following is a brief summary of RAID levels relevant to SPD Server:

RAID-0
High performance with low availability. Physically losing a disk means that data is lost.
No redundancy exists to recover volume stripes on a failed disk.

RAID-1
Disk mirroring for high availability. Every block is duplicated on another mirror disk,
sometimes referred to as shadowing. In the event one disk is lost, the mirror disk is still
likely to be intact, preserving the data. RAID-1 can also improve read performance
since a device driver has two potential sources for the same data. The system can choose
the drive that has the least load/latency at a given point in time. The down side to
RAID-1: it requires twice the number of disk drives as RAID-0 to store a given amount
of data.

RAID-5
High performance and high availability at the expense of resources. An error correcting
code (ECC) is generated for each stripe written to disk. The ECC distributes the data
in each logical stripe across physical stripes in such a way that if a given disk in the
volume is lost, data in the logical stripe can still be recovered from the remaining
physical stripes. RAID-5's downside is resource utilization; RAID-5 requires extra
CPU cycles and extra disk space to transform and manage data using the ECC model.

RAID-1+0
Many RAID systems offer a combination of RAID-1 (pure disk mirroring) and RAID-0
(striping) to provide both redundancy and I/O parallelism in a configuration known as
RAID-1+0 (sometimes referred to as RAID-10). Advantages are the same as for
RAID-1 and RAID-0. The only disadvantage is the requirement for twice as much disk
as the pure RAID-0 solution. Generally, this configuration tends to be a top performer
if you have the disk resources to pursue it.

170 Chapter 11 • Optimizing SPD Server Performance

Regardless of RAID level, disk volumes should be hardware striped when using the SPD
Server software. This is a significant way to improve performance. Without hardware
striping, I/O will bottleneck and constrain SPD Server performance.

Transient Storage
You should configure a RAID-0 volume for WORKPATH= storage for your SPD Server.
When sizing this RAID-0 volume, keep in mind that the WORKPATH= that you set up
for a given SPD Server host must be shared by all of its SQL and LIBNAME proxy
processes that exist at a given point in time. The SPD Server Frequently Asked Questions
(FAQ) is a good source of information about estimating disk space requirements for
WORKPATH=.

Consider using one or more RAID-0 volumes to locate the database domains that will
support TEMP=YES LIBNAME assignments. This LIBNAME statement option creates a
temporary storage domain that exists only for the duration of the LIBNAME assignment.
This is the SPD Server equivalent of the SAS WORK library. All data objects (tables,
catalogs, utility files) that are created in the TEMP=YES temporary domain are
automatically deleted when you end the SAS session.

LIBNAME Domains
LIBNAME domains define the primary directory path and can, if desired, define other
directories for placing the data and index components of SPD Server tables. The
METAPATH=, DATAPATH=, and INDEXPATH= LIBNAME definition options
determine the placement of SPD Server's component and partition files.

Data and Index Separation
The section on “File System Performance Concepts” on page 169 discussed how
distributing I/O load across different disk drives can improve performance. Further load
distribution can be achieved by separating data and index components of SPD Server tables.
To do this, use the DATAPATH= and INDEXPATH= options when configuring
LIBNAME domains.

For example, when performing complex WHERE clause evaluations, multiple threads are
active on index component files and the data component file at the same time. Splitting the
index and data file components onto different volumes can improve performance by
reducing disk contention and increasing the level of parallelism down to the disk access
level.

A word of caution when using DATAPATH= and INDEXPATH= options to distribute the
data and index components: take extra care when performing and restoring disk backups
of SPD Server tables using a system backup and restore utility. When making a backup,
ensure that the metadata, data, and index component partition files are of the same
generation and are in their respective directories.

When restoring a backup, restore the component partitions to the same directories where
they were created. To avoid this restore problem, create symbolic links with the original
directory path that point to the restore directories. Of course, if the components are not
separated using the path options, this restore issue does not apply.

The backup and restore issues are not an issue when using the SPD Server Backup and
Restore Utilities. These utilities resolve any component files when backing up or restoring
tables. For more information, see Chapter 19, "SPD Server Backup and Restore Utilities,"

Data and Index Separation 171

of the SAS Scalable Performance Data (SPD) Server 4.5: Administrator's Guide.SAS
Scalable Performance Data Server: Administrator's Guide.

Configuring a LIBNAME Domain
Suppose a user has four volumes designated. Volumes exist for (1) SPD Server metadata,
(2) data components, (3) index components, and (4) proxy working storage, as follows

• /dmart_domain is a 4 GB volume

• /dmart_data is a 40 GB volume

• /dmart_index is a 40 GB volume

• /spds_work is a 10 GB volume

The user wants to configure a LIBNAME domain called dmart to use /dmart_domain
for the primary directory, with data components going to /dmart_data, and index
components going to /dmart_index. The /spds_work volume should be configured for
proxy working storage.

The configuration is made in two steps:

1. In the server parameter file (-parmfile) enter the following line:

WORKPATH=/spds_work;

2. In the SPD Server LIBNAME file (-libnamefile) enter the following domain definition:

ibname=dmart
 path=/dmart_domain
 roptions="datapath=('/dmart_data')
 indexpath=('/dmart_index')";

Loading Data into an SPD Server Host
SPD Server's emphasis on complete LIBNAME compatibility means that when you access
SPD Server, the standard procedures used to create tables in SAS apply to SPD Server
tables as well.

Using SAS, you can load data into SPD Server tables using DATA step programs, PROC
COPY or PROC APPEND, and SCL applications. You can also use SQL pass-through to
load SPD Server tables. The SPD Server SQL extensions for the LOAD TABLE and COPY
TABLE statements provide further support.

Use LOAD TABLE to load a table from the projected columns of an SQL SELECT
statement and create indexes, all in a single pass. LOAD TABLE exploits multi-thread
table I/O and index creation. The multi-thread table I/O and index creation overlaps with
the SELECT statement that extracts the data from its source tables.

Use COPY TABLE to copy an existing SPD Server table to a new table and include indexes
as part of the copy operation. It offers the same parallel table and index I/O and overlapped
input as the LOAD TABLE command.

The COPY TABLE and LOAD TABLE statements work only for source and target tables
on the local machine.

172 Chapter 11 • Optimizing SPD Server Performance

Table Loading Techniques
The SAS data storage model adds rows to a data set one at a time. The SPD Server I/O
engine buffers rows to be added from the SAS application and performs block adds using
a highly efficient pipelined append protocol when communicating with the proxy.

Parallel Table Load Technique Using PROC APPEND
To achieve significant improvements in building a table, create the empty table first,
defining indexes on the desired columns. Then, use PROC APPEND to populate the table
and indexes. The example below demonstrates this technique.

/* Create an empty SPD Server table with the same */
/* columns and column attributes as the existing */
/* SAS table. */
data spdslib.cars;
set somelib.cars(obs=0);
run;

/* Create indexes for the empty table so the indexes */
/* are appended in parallel with the table appends. */

PROC DATASETS lib=spdslib;
 modify cars;
 index create make;
 index create origin;
 index create mpg;
quit;

/* PROC APPEND SAS table Cars to SPD Server table */
/* Cars. The append to the SPD Server table and */
/* its indexes will occur in parallel. */

PROC APPEND
 base=spdslib.cars
 data=somelib.cars;
run;

Parallel Table Load Technique Using SQL Pass-Through
If you are using SQL pass-through, consider using the LOAD TABLE command to perform
the same operation. LOAD TABLE encapsulates the sequence of SAS DATA and PROC
steps into an even more powerful technique for gaining maximum performance when
loading a new table. The following example demonstrates the same table construction using
LOAD TABLE and SQL pass-through:

/* Create a copy of the SPD Server table Cars and */
/* its index from Example 1 to another SPD Server */
/* table carload using pass-through LOAD command. */
/* The table creation of the SPD Server table */
/* carload and its indexes will occur in parallel. */

Parallel Table Load Technique Using SQL Pass-Through 173

execute(
load table carload with
 index make
 on (make),
 index origin
 on (origin),
 index mpg
 on (mpg)
 as select *
 from cars
) by sasspds;

Parallel Pass-Through Table Load and Data Subset
/* Create a subset of the SPD Server table Cars */
/* from Example 1 to another SPD Server table */
/* Fordcar using the pass-through LOAD command. */
/* The table creation of the SPD Server table */
/* Fordcar and its indexes occurs in parallel. */

execute(
load table fordcar with
 index origin
 on (origin),
 index mpg
 on (mpg)
 as select *
 from cars
 where make="ford"
) by sasspds;

Parallel Pass-Through Table Copy

/* Create a copy of the SPD Server table Cars and */
/* all its indexes from Example 1 to another Data */
/* Server table Copycars using the pass-through */
/* COPY command. The table creation of the Data */
/* Server table Copycars and its indexes will */
/* occur in parallel. */

execute(
copy table copycars
 from cars
) by sasspds;

Loading Indexes in Parallel
A significant strength of SPD Server is efficient creation, maintenance, and use of table
indexes. Indexing can greatly speed the evaluation of WHERE clause queries. The index

174 Chapter 11 • Optimizing SPD Server Performance

can also be a source of sort order when performing BY clause processing. The index is also
used directly by some SAS applications. For example, PROC SQL uses indexes to
efficiently evaluate equijoins.

Parallel Index Creation
SPD Server supports parallel index creation using asynchronous index options. To enable
asynchronous parallel index creation, either submit the SPDSIASY=YES macro variable
before creating an index in SAS, or use the ASYNCINDEX=YES table option.

Both the macro variable and the table option apply to the DATA step INDEX= processing
as well as to PROC DATASETS INDEX CREATE commands. Either method allows all
of the declared indexes to be populated with a single scan of the table. A single scan is a
substantial improvement over making multiple passes through the data to build each index
serially.

As always, there is a price for parallelism. To create multiple indexes requires enough
WORKPATH= disk space to create all of the key sorts at the same time. The PROC
DATASETS structure has the flexibility to allow batched parallel index creation by using
multiple MODIFY groups. The Parallel Index Creation example below inserts INDEX
CREATE statements between two successive MODIFY statements resulting in a parallel
creation group.

Parallel Index Creation Example

 DATA foo.patient_info;
 length
 last_name $10
 first_name $20
 patient_class $2
 patient_sex $1;

 patient_no=10;
 last_name="Doe";
 first_name="John";
 patient_class="XY";
 patient_age=33;
 patient_sex="M";

 run;

 %let spdsiasy=YES;
 PROC DATASETS lib=foo;
 modify patient_info;
 index create
 patient_no
 patient_class;
 modify patient_info;
 index create
 last_name
 first_name;
 modify patient_info;
 index create
 whole_name=(last_name first_name)

Parallel Index Creation Example 175

 class_sex=(patient_class patient_sex);
 quit;

Indexes for PATIENT_NO and PATIENT_CLASS are created in parallel, indexes for
LAST_NAME and FIRST_NAME are created in parallel, and indexes for
WHOLE_NAME and CLASS_SEX are created in parallel.

Parallel Index Updates
SPD Server also supports parallel index updates during table append operations. Multiple
threads enable overlap of data transfer to the proxy, as well as updates of the data store and
index files. SPD Server decomposes table append operations into a set of steps that can be
performed in parallel. The level of parallelism attained depends on the number of indexes
that are present on the table. The more indexes you have, the greater the exploitation of
parallelism during the append processing. As with parallel index creation, parallel index
updates use WORKPATH= disk space for the key sorts that are part of the index append
processing.

Truncating Tables
The Truncate command is a PROC SPDO command that allows the deletion of all rows in
a table without deleting the table structure or metadata. The PROC SPDO truncate
command is shaded for emphasis in the code example below.

%let host=kaboom ;
%let port=5191 ;
%let domain=path2 ;

libname &domain sasspds "&domain"
 server=&host..&port
 user='anonymous'
 ip=YES ;
/* create a table */
data &domain..staceys_table ;

 do i = 1 to 100 ;
 output ;
end ;
run ;

* verify the contents of the created table */

PROC CONTENTS data=&domain..staceys_table ;
run ;

/* SPDO Truncate command deletes the table */
/* data but leaves the table structure in */
/* place so new data can be appended */
PROC SPDO lib=&domain ;
set acluser ;
Truncate staceys_table ;

quit ;

176 Chapter 11 • Optimizing SPD Server Performance

* verify that no rows or data remain in */
/* the structure of staceys_table */
PROC CONTENTS data=&domain..staceys_table ;
run ;

Optimizing WHERE clauses

Overview of Optimizing WHERE Clauses
SPD Server includes more advanced methods to optimize WHERE clauses. Before SPD
Server 4.0, the rule-based, heuristic WHERE clause planner WHINIT was used to manually
tune queries for performance. SPD Server provides dynamic WHERE clause costing, an
automatic feature which can replace the need to manually tune queries. SPD Server
dynamic WHERE-costing uses factors of duplicity and distribution to calculate relative
processor costs of various WHERE clause options. SPD Server users can use server
parameter commands in the spdsserv.parm file or macro variables to turn dynamic
WHERE-costing on and off. If dynamic WHERE-costing is turned off, SPD Server reverts
to using the rules-based WHERE clause planner.

WHERE Clause Definitions and Terminology
• WHERE clauses are selection criteria for a query that specify one or more Boolean

predicates. Implementing the criteria, SPD Server selects only records that satisfy the
WHERE clause.

• Predicates are the building blocks of WHERE clauses. Use them stand-alone or
combine them with the operators AND and/or OR to form complex WHERE clauses.
An example of a WHERE clause is

"where x > 1 and y in (1 2 3)"

In this example, there are two predicates, x > 1 and y in (1 2 3). You specify the negative
of a predicate by using not. For example, where x > 1 and not (y in (1 2 3)).

• Boolean logic determines whether two predicates, joined with an AND or OR, are true
(satisfies) or false (does not satisfy) the specification. The AND operator requires that
all predicates be true for the entire expression to be true. For example, the expression
p1 AND p2 AND p3, is true only if all three predicates (p1, p2 and p3) are true. In
contrast, the OR operator requires only one predicate to be true for the entire expression
to be true.

For the WHERE clause (x < 5 or y in (1 2 3)) and z = 10, the following truth table
describes the overall result (truth):

"x < 5 ?" "y in (1 2 3) ?" "z = 10 ?" Result
========= ================ ========== ======
 False False False False
 False False True False
 False True False False
 False True True True
 True False False False
 True False True True
 True True False False
 True True True True

WHERE Clause Definitions and Terminology 177

• Indexes are structures associated with tables that permit SPD Server to quickly access
records that satisfy an indexed predicate. In an example WHERE clause, where x = 10
and y > 11, SPD Server selects the best index on column x to directly retrieve records
that have a value of 10 in the x column. If no index exists for x, SPD Server must
sequentially read each record in the table searching for x equal to 10.

• Simple and composite indexes: Simple indexes index a single column; composite
indexes index two or more columns. The list of column(s) in an index is sometimes
called the index key.

• Parallelism is the SPD Server capability that enables multiple threads to execute in
parallel. Using multiple processors in parallel mode is sometimes called 'divide and
conquer' processing. SPD Server uses parallelism to evaluate the multiple indexes that
are involved in more complicated WHERE clauses.

SPD Server Indexing

Overview of Server Indexing
SPD Server tables can have one or more indexes. There are a combination of four different
indexing strategies a table can use, and the choice depends on the data populating the table,
the size of the table, and the types of queries that will be executed against the table.

SPD Server indexing evaluates the processor cost of a WHERE clause. The section
“WHERE-Costing Using Duplicity and Distribution Values” on page 181 shows how
factors of duplicity and distribution are used to choose the evaluation strategy that will
perform the WHERE clause at the smallest processor cost. The five evaluation strategies
that the WHERE clause planner uses are EVAL 1, EVAL 2, EVAL 3, EVAL 4, and EVAL
5. The different EVAL strategies calculate the number of rows that will be required to
execute a given query.

True rows are rows that contain the variable values specified in a WHERE clause. False
rows do not contain the variable value specified in the clause. EVAL 1, EVAL 3, EVAL
4, and EVAL 5 evaluate true rows in the table using indices. EVAL 2 evaluates true rows
of a table without using indices. EVAL strategies are explored in more detail in the section
below on “WHERE Clause EVAL Strategies” on page 181.

SPD Indexes
SPD Server uses segmented indices. A segmented index is created by dividing the index
of a table into equally sized ranges of rows. Each range of rows is called a segment, or slot.
You use the SEGSIZE= setting to define the size of the segment. A series of sub-indices
each point to blocks of rows in the table. By default, SPD Server creates an index segment
for every 8192 rows in a table.

The SPD segmented index facilitates SPD Server's parallel evaluation of WHERE clauses
with an indexed predicate. First, the SPD index supports a pre-evaluation phase to
determine which segments contain values that satisfy the predicate. Pre-evaluation speeds
queries by eliminating segments that do not contain any possible values. Then, a number
of threads up to the value of the SPDSTCNT= variable are launched to query the remaining
index segments. The threads query the segments of the SPD index in parallel to retrieve
the segment rows that satisfy the predicate. When all segments have been queried, the per-
segment results are accumulated to determine the rows that satisfy the predicate. If the
query contains multiple indexed predicates, then those predicates are also evaluated in

178 Chapter 11 • Optimizing SPD Server Performance

parallel. When all predicates have been completed, their results are accumulated to
determine the rows that satisfy the query.

MINMAX Indexes
SPD Server contains a new table option called MINMAXVARLIST=. The primary purpose
of the MIINMAXVARLIST= table option is for use with SPD Server dynamic cluster
tables where specific members in the dynamic cluster contain a set or range of values, such
as sales data for a given month. When an SPD Server SQL subsetting WHERE clause
specifies specific months from a range of sales data, the WHERE planner checks the min/
max indexes. Based on the min/max index information, the SPD Server WHERE planner
includes or eliminates member tables in the dynamic cluster for evaluation.

Use the MIINMAXVARLIST= table option with either numeric or character-based
columns. MINMAXVARLIST= uses the list of columns you submit to build an index. The
MINMAXVARLIST= index contains only the minimum and maximum values for each
column. The WHERE clause planner uses the index to filter SQL predicates quickly, and
to include or eliminate member tables belonging to the cluster table from the evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with
dynamic clusters, it also works on standard SPD Server tables. MINMAXVARLIST= can
help reduce the need to create many indexes on a table, which can save valuable resources
and space.

The MINMAXVARLIST= table option is available only when a table is being created or
defined. If a table has a MINMAXVARLIST= type of index, moving or copying the table
will destroy the index unless MINMAXVARLIST= is specified in the table output.

%let domain=path3 ;
%let host=kaboom ;
%let port=5201 ;

libname &domain sasspds "&domain"
 server=&host..&port
 user='anonymous' ;

/* Create three tables called */
/* xy1, xy2, and xy3. */

data &domain..xy1(minmaxvarlist=(x y));
 do x = 1 to 10;
 do y = 1 to 3;
 output;
 end;
end;
run;

data &domain..xy2(minmaxvarlist=(x y));
 do x = 11 to 20;
 do y = 4 to 6 ;
 output;
 end;
end;
run;

data &domain..xy3(minmaxvarlist=(x y));
 do x = 21 to 30;

MINMAX Indexes 179

 do y = 7 to 9 ;
 output;
 end;
end;
run;

/* Create a dynamic cluster table */
/* called cluster_table out of */
/* new tables xy1, xy2, and xy3 */

PROC SPDO library=&domain ;
 cluster create cluster_table
 mem=xy1
 mem=xy2
 mem=xy3
 maxslot=10;
quit;

/* Enable WHERE evaluation to see */
/* how the SQL planner selects */
/* members from the cluster. Each */
/* member is evaluated using the */
/* min-max index. */

%let SPDSWDEB=YES;

/* The first member has true rows */

PROC PRINT data=&domain..cluster_table ;
 where x eq 3 and y eq 3;
run;

/* Examine the other tables */

PROC PRINT data=&domain..cluster_table ;
 where x eq 19
 and y eq 4 ;
run;

PROC PRINT data=&domain..cluster_table ;
 where x eq 22
 and y eq 9;
run;

PROC PRINT data=&domain..cluster_table ;
 where x between 1 and 10
 and y eq 3;
run;

PROC PRINT data=&domain..cluster_table ;
 where x between 11 and 30
 and y eq 8 ;

180 Chapter 11 • Optimizing SPD Server Performance

run;

/* Delete the dynamic cluster table. */

PROC SPDO library=&domain ;
 cluster undo cluster_table ;
quit;

PROC DATASETS lib=&domain nolist;
 delete xy1 xy2 xy3 ;
quit ;

WHERE Clause Planner
The WHERE clause Planner implemented in SPD Server avoids computation-intensive
operations and uses simple computations where possible. WHERE clauses in large database
operations can be very resource-intensive operations. In SPD Server 3.x and earlier
releases, query authors often needed to manually tune queries for performance. The tuning
was accomplished using macro variables and index settings. The WHERE clause planner
integrated into SPD Server does the tuning work for the user by automatically costing the
different approaches to index evaluation.

WHERE-Costing Using Duplicity and Distribution Values
Two key factors are used to evaluate, or cost WHERE clause indices. The factors are
duplicity and distribution.

Duplicity refers to the proportion expressed by the number of rows in a table divided by
the number of distinct values in the index. When many observations in a table hold the
same value for a given variable, the variable value is said to have a high duplicity. An
example of a table with high duplicity might be a table of unleaded gasoline prices from
service stations in the same area of a large city.

Conversely, when a table has only one or few observations that contain a given value for
a variable, then that value can be described as low duplicity. An example of a table with
low duplicity might be an office phone directory, where the variable for phone extension
is always unique.

The duplicity value for an index ranges from 1 to the number of rows in the table. Indices
with a duplicity value of 1 are unique. Indices with high duplicity generate a score that is
close to the number of rows in the table.

Distribution refers to the sequential proximity between observations for values of a variable
that are repeated throughout the variable's data set distribution. When a certain value for a
variable exists in many observations that are scattered uniformly throughout the table, that
value is said to have a wide distribution. If a variable value exists in many contiguous or
nearly contiguous rows, the distribution is clustered.

WHERE Clause EVAL Strategies
SPD Server indexing keeps track of the duplicity and distribution of variable values in a
table and uses them to calculate the cost of a WHERE clause. The WHERE clause planner

WHERE Clause EVAL Strategies 181

uses four evaluation strategies to determine the number of rows that will be required to
execute a given query. The four evaluation strategies are EVAL 1, EVAL 2, EVAL 3, and
EVAL 4. True rows are rows that contain the variable values specified in a WHERE clause.
False rows do not contain the variable value specified in the clause.

EVAL 1, EVAL 3, EVAL 4, and EVAL 5 evaluate true rows in the table using indices.
EVAL 2 evaluates true rows of a table without using indices.

• EVAL 1 evaluates true rows using an index to locate the true rows in each segment of
the table. The index evaluation process generates a list of row IDs per segment. EVAL
1 accepts WHERE clause operators for equivalency expressions such as EQ, =, LE,
<=, LT, <, GE, >=, GT, >, IN, and BETWEEN. EVAL 1 uses threaded parallel
processing across the index segments to permit concurrent evaluation of multiple
indices. EVAL 1 combines multiple segment bitmaps from queries that use multiple
indices to generate the list of row IDs per segment.

• EVAL 2 takes true rows as determined by EVAL 1, EVAL 3, or EVAL 4, and then
uses brute force to eliminate any rows shown to be false, leaving a table which contains
only true rows. EVAL 2 processes all rows of a table when no index evaluation is
possible. For example, no index evaluation is possible when an index is not present or
when some predecessor function performs an operation that invalidates the index.

• EVAL 3 is a single index sequential process. Use EVAL 3 when the number of rows
returned by an index is unique or nearly unique (when duplicity is low). EVAL 3 returns
a list of true rows for the entire table. EVAL 3 only supports the equality operators
EQ and =.

• EVAL 4 is similar to EVAL 3 but supports a larger set of inequality and inclusion
operators, such as IN, GT, GE, LT, LE, and BETWEEN.

• EVAL 5 can operate when the SPD Server Index Scan Facility is used. The EVAL 5
strategy uses index metadata and aggregate SQL functions to evaluate true rows. The
EVAL 5 strategy does not require a table scan.

For example, when x is indexed, and SPD Server uses EVAL 5 to evaluate the SQL
expression

count(*) where x=5 ,

the index metadata is scanned for the condition, x = 5 instead of performing table scans.
The EVAL 5 strategy supports the min(), max(), count(), count(distint), nmiss(), and
range() functions. The EVAL 5 strategy cannot be used on SQL expressions which uses
functions other than those listed above.

The WHERE clause planner in SPD Server 3.x relied heavily on EVAL 1 and EVAL 2
threaded strategies to evaluate most clauses. Sometimes the SPD Server 3.x EVAL 1 and
EVAL 2 strategies would over-thread and over-manipulate indices during the evaluations
during WHERE clause evaluation. This resulted in reduced performance or excessive
resource consumption. With SPD Server 4.5's WHERE clause costing in place, EVAL 3
and EVAL 4 strategies are more suitable evaluation engines which conserve resources and
boost processor performance.

Assigning EVAL Strategies

Overview of Assigning EVAL Strategies
The SPD Server WHERE clause planner uses the following logic when selecting an EVAL
strategy to evaluate expressions:

When the planner encounters a WHERE clause, it builds a tree that represents all of the
possible predicate expressions. The objective of the WHERE clause planner is to divide

182 Chapter 11 • Optimizing SPD Server Performance

the set of predicate expressions into two trees. One tree collects predicate expressions which
lack usable indices and are constrained to EVAL 2 evaluation. The remaining predicate
expressions are put in the other tree. Each of the predicate expressions in the second tree
are scanned and assigned an evaluation strategy of EVAL 1, EVAL 3, or EVAL 4,
depending on the WHERE clause costing values and the syntax used in the predicate
expression .

The second tree, which does not use the EVAL 2 method, is scanned for predicate
expressions that return values with high duplicity . When high duplicity predicate
expressions are identified, they are ranked. The predicate expression with the highest
duplicity value is set aside for an index-based evaluation. All of the other remaining
predicate expressions are evaluated using the EVAL 2 tree strategy. The lowest duplicity
predicate expression is evaluated using either the EVAL 3 or the EVAL 4 strategy. The
syntax used in the predicate expression determines which of the two strategies to use.
Frequently, the single index EVAL 3 or EVAL 4 is chosen because single index evaluations
require smaller processing loads and yield reliable results. With a low processor overhead
and a high data yield, there is no reason to include other indices when a single index is
sufficient.

When the WHERE clause planner determines that no predicate expressions meet the high
duplicity criteria, it chooses the EVAL 1 strategy. Before the EVAL 1 operation is
performed, the costing algorithm is run on the remaining predicates in order to prune any
predicate expressions which represent large processor loads and large data yields. Predicate
expressions which will require large processor loads and produce large data yields are
moved to the EVAL 2 tree.

Index Scan Facility
When SPD Server invokes the Index Scan Facility, and the SQL aggregate uses the
specified supported functions for EVAL 5, the EVAL 5 strategy uses a fast index metadata
scan to select SQL statements that meet the aggregate function criterion.

High Yield Predicate Expressions
A large, or high data yield expression has a high percentage of rows containing true
segments. The default threshold for a high yield expression is one where less than 25% of
the rows evaluated are returned by the predicate. At this point, processor costs related to
index use begin increasing without proportional returns on the evaluation results.

High Processing Load Predicate Expressions
Predicate expressions that require high processing loads are predicates that usually require
large amounts of index manipulation before they can complete. When the amount of index
work that is required exceeds the work that is required to use an EVAL 2 strategy, the
predicate expression will be best evaluated by the EVAL 2 tree. Open-ended predicate
expressions that contain many syntax inequality operators such as GT and LT or many
variations in syntax are good high work candidates for EVAL 2. High work predicate
expressions are detected by comparing the number of unique values in the predicate
expression to the number of unique values contained in the index.

High Yield and High Processing Load Predicate Expressions
When all predicate expressions in EVAL 1 are high yield or high processor load, SPD
Server uses segmented costing. In segmented costing, true segments are passed to EVAL
2 for processing. EVAL 2 only processes table segments that can provide true rows for the
WHERE clause.

Assigning EVAL Strategies 183

Turning WHERE Clause Costing Off
You can use the SPD Server spdsserv.parm parameter file to configure the default
WHERECOSTING parameter setting to ON. If you want to turn WHERE clause costing
off within the scope of a job, you can use macros or a DATA step to turn WHERE clause
costing off and on:

• The SPDSWCST=NO macro setting turns off WHERE clause costing.

• The SPDSWSEQ=YES macro overrides WHERE clause costing and allows you to
force a global EVAL3 or EVAL4 strategy.

• The WHERECOSTING parameter can be removed or set to NOWHERECOSTING in
the spdsserv.parm file if you want to turn off costing for the entire server.

If you turn WHERE clause costing off in the spdsserv.parm parameter file, or if you use
the macro setting SPDSWCST=NO, the WHERE clause planner reverts to the rules-based
WHERE clause planning of earlier versions of SPD Server.

WHINIT: Indexed and Non-Indexed Predicates

Overview of WHINIT
If SPD Server is not configured to use dynamic WHERE-costing, the WHERE clause
planner reverts to the rule-based heuristics of WHINIT. WHINIT uses rules to select
indexes for the predicates, and then select the most appropriate EVAL strategy for the
query.

WHINIT splits the WHERE clause, represented as a tree, into non-indexed and indexed
parts. Non-indexed predicates include

• non-indexed columns

• functions

• columns that have indexes that WHINIT cannot use.

If the WHERE clause planner places indexed predicates in the non-indexed tree, it is usually
because the predicates involve an OR expression. An example of a predicate with an OR
expression is, where x = 1 or y = 2. Even if column x is indexed, WHINIT cannot use the
index because the OR is disjunctive. As a result of the disjunctive OR, the planner cannot
use the index, and places both the predicates, x = 1 and y = 2, into the non-indexed part of
the WHERE tree.

Sample WHINIT Output
SAS users can use an SPD Server macro variable to view WHERE clause planner output:

%let SPDSWDEB=YES;

The following is what the WHINIT plan might give for the following scenario:

• a WHERE clause of where a = 1 and b in (1 2 3) and d = 3 and (d + 3 = c)

• an SPD index IDX_ABC on columns (A B C)

• an SPD index D on column (D).

Note: The line numbers are for reference; they are NOT part of the actual output.

 1:whinit: WHERE ((A=1) and B in (1, 2, 3) and (D=3) and (C=(D+3)))
 2:whinit: wh-tree presented
 3:
 /-NAME = [A]

184 Chapter 11 • Optimizing SPD Server Performance

 4: /-CEQ----|
 5: |
 \-LITN = [1]
 6: --LAND---|
 7: |
 /-NAME = [B]
 8: |--IN-----|
 9: |
 | /-LITN = [1]
10: |
 \-SET----|
11: |
 |--LITN = [2]
12: |
 \-LITN = [3]
13: |
 /-NAME = [D]
14: |--CEQ----|
15: |
 \-LITN = [3]
16: |
 /-NAME = [C]
17: \-CEQ----|
18:
 | /-NAME = [D]
19:
 \-AADD---|
20:
 \-LITN = [3]
21:whinit: wh-tree after split
22: /-NAME = [C]
23: --CEQ----|
24: |
 /-NAME = [D]
25: \-AADD---|
26:
 \-LITN = [3]
27:whinit: SBM-INDEX D uses 50% of segs (WITHIN maxsegratio 75%)
28:whinit: INDEX tree after split
29:
 /-NAME = [A] <1>SBM-INDEX IDX_ABC (A,B)
30: /-CEQ----|
31: |
 \-LITN = [1]
32: --LAND---|
33: |
 /-NAME = [B]
34: |--IN-----|
35: |
 | /-LITN = [1]
36: |
 \-SET----|
37: |
 |--LITN = [2]
38: |
 \-LITN = [3]

WHINIT: Indexed and Non-Indexed Predicates 185

39: |
 /-NAME = [D] <2>SBM-INDEX D (D)
40: \-CEQ----|
41:
 \-LITN = [3]
42:whinit returns: ALL EVAL1(w/SEGLIST) EVAL2

Line 1 shows what the WHINIT Planner received. Do not be surprised -- what the Planner
receives can differ from your entries. Sometimes SAS optimizes or transforms a WHERE
clause before passing it to SPD Server. For example, it can eliminate entities such as NOT
operators, the union of set lists, and so on.

Lines 2 to 20 show the presented WHERE clause in a tree format. The tree format is a user-
readable form of the actual WHERE clause that is processed by the SPD Server engine.

Lines 21 to 26 show the non-indexed WHERE tree, the result of splitting off the indexed
part. The non-indexed WHERE tree can be empty or it can look the same as lines 2 to 20
if no indexes are selected. Consider that it is the non-indexed part of the WHERE clause
that WHINIT uses to filter records obtained by the indexed strategies (EVAL1, 3 or 4).

Lines 27 to 41 shows that the percentage of segments containing values selected from
column D is with the maximum allowed to proceed with pre-segment logic. Therefore,
only those segments that contain values that satisfy the WHERE clause for column D will
be included in further query processing for that column. Composite index IDX_ABC and
simple index D are used to resolve the indexed WHERE clause predicates.

Line 42, the last line in our output, shows which strategies are used. The first keyword ALL
indicates that SPD Server can identify correctly ALL resulting records, without help from
the SAS System. First, SPD Server will call EVAL1, an indexed method, to quickly access
a list of records which satisfy where a = 1 and b in (1 2 3) and d = 3, then it will use
EVAL2 to determine whether c = d + 3 is true on these records.

When output from EVAL1 displays the suffix w/ seglist, as it does in the above output, it
means that SPD indexes were detected, and that the indexes were used to filter out only
the segments that satisfy the given indexed predicates. When EVAL1 has no suffix, it means
that ALL segments will be evaluated.

SPD Server stores the minimum and maximum values for a table index in a global structure.
WHINIT can use the numeric range to 'prune' predicates when the table index values are
out of the min / max range. WHINIT output keywords can indicate pruning activity. For
example, if WHINIT had determined that the values for D (in our WHERE clause) are
between 5 and 13, then as a consequence, the predicate where d = 3 could never be true.
In this case, WHINIT would have pruned this predicate since it is logically impossible, or
FALSE. Pruning can also affect higher nodes. If the d = 3 predicate were deemed FALSE,
then the AND sub tree would also be FALSE and would also have been pruned.

WHINIT Output Return Keywords
In the last line of the output, ALL is one of the following keywords that the Planner can
display:

• ALL - SPD Server can evaluate ALL of the WHERE clause when determining which
records satisfy the clause.

• SOME - SPD Server can handle SOME, or part, of the WHERE clause; it will then
need some of the SAS System to help identify resulting records.

• NONE - SPD Server cannot evaluate this WHERE clause; the SAS System will perform
all evaluations.

• TRUE - SPD Server has determined that the entire WHERE clause is TRUE, and that
all the records satisfy the given WHERE clause.

186 Chapter 11 • Optimizing SPD Server Performance

• FALSE - SPD Server determined that the WHERE clause is FALSE, that is, no records
can satisfy the WHERE clause.

• RC=number - An internal error has occurred; the error number is displayed.

• EVALx - the EVAL strategies the Planner will use, x can be 1, 2, 3 or 4.

Composite Index Permutations
A composite index can involve one or more in set equality predicates, such as an index on
columns (a b c). When WHINIT is presented with a WHERE clause that has such a
composite index, such as where a = 1 and b in (1 2 3) and c in (4 5), it
will generate all permutations of this compound key, probing the index for each value. In
our example, six values are generated:

(a b c) = (1 1 4) (1 1 5) (1 2 4) (1 2 5) (1 3 4) (1 3 5)

The permutations start at the back end of the key to take advantage of locality: to locate
keys with close values which access the same disk page. This means less input/output
operations on the index.

How to Affect the WHERE Planner

Macro Variable SPDSWCST=
To turn off dynamic WHERE-costing, specify

%let SPDSWCST=NO;

Macro Variable SPDSWDEB=
To turn on WHINIT planning output, specify

%let SPDSWDEB=YES;

Macro Variable SPDSIRAT=
To affect the WHERE-planner SPD index pre-evaluation, specify

%let SPDSIRAT=index-segment-ratio;

The SPDSIRAT= macro variable specifies a maximum percentage (ratio) for the number
of segments in the hybrid bitmap which must contain the index value before the WHERE-
planner should pre-evaluate a segment list.

The segment list enables the planner to launch threads only for segments that contain the
value. If the value number exceeds the ratio, the planner performs no pre-evaluation.
Instead, the planner launches a thread for each segment in the table.

The SPDSIRAT= macro variable option can be used to ensure that time spent in pre-
evaluation does not exceed the cost of launching a thread for each segment in the table. By
default SPDSIRAT= is set to 75 percent. This means that if an index value is contained in
75 percent or less of the index segments, the hybrid bitmap logic will pre-evaluate the value
and return a list of segments to the WHERE clause planner. If more than 75 percent of the
index segments contain the target index value, the time spent on pre-evaluation might be
more than the time saved by skipping a small number of segments.

Macro Variable SPDSIRAT= 187

For some tables 75 percent might not be the optimal setting. To determine a better setting,
run a performance benchmark, adjust the percentage, and rerun the performance
benchmark. Comparing results will show you how the specific data population you are
querying responds to shifting the index-segment ratio. The allowable range to adjust the
setting value is from 0 to 100, where 0 means never perform WHERE clause pre-
evaluation, and 100 means always perform WHERE clause pre-evaluation.

Macro Variable SPDSNIDX= or Table Option NOINDEX=
To suppress WHINIT use of any index, specify the no index SPD Server macro variable
or the corresponding SPD Server table option:

%let SPDSNIDX=YES;

data _null_;
set foo.a (noindex=yes);

Macro Variable SPDSWSEQ=
By default, when WHINIT detects equality predicates that have indexes, it chooses
EVAL1. However, the user can decide that sequential EVAL3 or EVAL4 methods are
better. For example, in an equality WHERE predicate such as where x = 3, WHINIT will
default EVAL1 to evaluate the clause. If a user knows that the table queried has only a few
records that can satisfy this predicate, EVAL3 might be a better choice. To force WHINIT
to choose EVAL3/4, specify:

%let SPDSWSEQ=YES;

Server Parameter Option [NO]WHERECOSTING
Controls whether the server uses dynamic WHERE-costing. When dynamic WHERE-
costing is disable, the rules-based WHINIT heuristic is used to tune WHERE clauses for
performance. The default setting is for NOWHERECOSTING.

WHERENOINDEX Option
A user might decide that one or more indexes selected by a WHINIT plan are not the best
choice. This can occur because WHINIT is rule-based, not cost-based. Sometimes WHINIT
selects a less-than-optimal plan. WHINIT's use of specific indexes can be affected by
specifying the SPD Server option WHERENOINDEX= in your DATA step.

data _null_;
set foo.a (wherenoindex=(idx_abc d))

This example specifies that WHINIT not use index idx_abc and index d.

When and Why Should I Suppress Indexes?
Most rule-based planners, including WHINIT from SPD Server, assume that the index has
a uniform distribution of values between the upper and lower value boundaries. This means
if data values range between 2 and 10, that there are an equal number of 3s and 4s, and so
on. When the assumption of a uniform distribution is false, an indexed predicate can return

188 Chapter 11 • Optimizing SPD Server Performance

a large number of records. In turn, this causes WHINIT's indexed plan to run slower than
a sequential read of the entire table. In this case the index should be suppressed.

Here is another, more subtle instance. When the WHERE clause uses only the front part
of the key, WHINIT selects a composite index. Assume an index abcd on columns A, B,
C and D and an index e on column E, and specify the WHERE clause

where a = 3 and e = 5;

Normally, WHINIT will select both indexes (abcd and e) and choose EVAL1. However,
using the index abcd just to interrogate a might return a large number of records. In this
case, suppressing the abcd index might be a good idea. If so, WHINIT will still choose
EVAL1 for e = 5, or EVAL3 if SPDSWEV1=NO, and EVAL2, the post-filter, for a = 3.

Identical Parallel WHERE Clause Subsetting
Results

Overview of Parallel WHERE Clause Subsetting
Under certain circumstances, it is possible to perform parallel WHERE clause subsetting
on a table more than once and to receive slightly different results. This event can occur
when submitting parallel WHERE clause code to SPD Server that uses the SAS
OBS=nnnn data set option.

The SAS OBS=nnnn data set option causes processing to end with the specified (nth)
observation in a table. Because parallel WHERE clause processing is threaded, subsetting
a table and using the OBS=nnnn might not produce identical results from run to run, or
different batch jobs using the same WHERE clause code might produce slightly different
results.

When a parallel WHERE-cause evaluation is split into multiple threads, SPD Server uses
a multi-threading model that is designed to return rows as fast as possible. Some threads
might be able to complete row scans incrementally faster than other threads, due to uneven
loads across multiple processors or system contention issues. This inequity can create
minute variances which can generate non-identical results to the same subsetting request.

If you have code that performs parallel WHERE clause subsetting in conjunction with the
OBS=nnnn data processing option, and if it is critical that successive WHERE clause
subsets on the same data must be identical, you can eliminate thread contention error by
setting the thread count value for that operation to 1.

To set the SPD Server thread count value, you can use the SPDSTCNT= macro:

%let SPDSTCNT=1;

The same potential for subsetting variation applies when a DATA step uses the
OBS=nnnn data processing option with a parallel by-clause, such as:

 data test1;
 set spds45.testdata (obs=1000);
 where j in (1,5,25);
 by i;
 run;

Use the SPDSTCNT= macro solution to ensure identical results across multiple identical
table subsetting requests.

Overview of Parallel WHERE Clause Subsetting 189

WHERE Clause Subsetting Variation Example:
Job 1 and Job 2 use the same tables and data requests but produce non-identical results as
seen in the respective Job 1 and Job 2 outputs.

To eliminate variation in the output, simply add the thread count statement

%let SPDSTCNT=1;

to the beginning of each job.

Job 1
 data test1;
 set spds45.testdata
 (obs=1000);
 where j in (1,5,25);
 run;

 PROC SORT data=test1;
 by i;
 run;

 PROC PRINT data=test1
 (obs=10);
 run;

Job 1 Output:
The SAS System 11:44 Monday, May 9, 2005 1

 Obs a i j k

 1 24601 1 1
 2 24605 5 5
 3 24625 25 0
 4 24701 1 1
 5 24705 5 5
 6 24725 25 0
 7 24801 1 1
 8 24805 5 5
 9 24825 25 0
 10 24901 1 1

Job 2:
 data test2;
 set spds45.testdata
 (obs=1000);
 where j in (1,5,25);
 run;

 PROC SORT data=test2;

190 Chapter 11 • Optimizing SPD Server Performance

 by i;
 run;

 PROC PRINT data=test2
 (obs=10);
 run;

Job 2 Output:
The SAS System
11:44 Monday, May 9, 2005 1

 Obs a i j k

 1 1 1 1
 2 5 5 5
 3 25 25 0
 4 101 1 1
 5 105 5 5
 6 125 25 0
 7 201 1 1
 8 205 5 5
 9 225 25 0
 10 301 1 1

WHERE Clause Examples

Data for WHERE Examples
The WHERE clause examples below assume that the user is connected to the SPD Server
LIBNAME foo and has executed the following SAS code:

data foo.a;
do i=1 to 100;
 do j=1 to 100;
 do k=1 to 100;
 m=mod(i,3);
 output;
 end;
 end;
end;
run;

proc datasets lib=foo;
modify a;
index create ijk = (i j k);
index create j;
index create m;
quit;

Data for WHERE Examples 191

Example 1 "where i = 1 and j = 2 and m = 4"
whinit: WHERE ((I=1) and (J=2) and (M=4))
whinit: wh-tree presented

 /-NAME = [I]
 /-CEQ----|
 |
 \-LITN = [1]
 --LAND---|
 |
 /-NAME = [J]
 |--CEQ----|
 |
 \-LITN = [2]
 |
 /-NAME = [M]
 \-CEQ----|

 \-LITN = [4]
whinit: wh-tree after split
 --[empty]
whinit: pruning INDEX node which is trivially FALSE
 /-NAME = [M] INDEX M (M)
 --CEQ----|
 \-LITN = [4]
whinit: INDEX tree evaluated to FALSE
whinit returns: FALSE

Here the only values that column M can contain are 0, 1, or 2. Thus, the predicate m = 4
is identified as trivially FALSE. Because this predicate is part of an AND predicate, it too
is FALSE. Consequently, the entire WHERE clause is pre-evaluated to FALSE, meaning
that no records can satisfy this WHERE clause. Thus, as a result of the pre-evaluation, no
records are actually read from disk. This is an example of optimization at its best.

WHERE_EXAMPLE 2: where i in (1, 2, 3) and j in (4, 5, 6, 7) and k > 8
and m = 2

 whinit: WHERE (I in (1, 2, 3) and J in (4, 5, 6, 7) and (K>8) and (M=2))
whinit: wh-tree presented

 /-NAME = [I]
 /-IN-----|
 |
 | /-LITN = [1]
 |
 \-SET----|
 |
 |--LITN = [2]
 |
 \-LITN = [3]
 --LAND---|
 |
 /-NAME = [J]

192 Chapter 11 • Optimizing SPD Server Performance

 |--IN-----|
 |
 | /-LITN = [4]
 |
 \-SET----|
 |
 |--LITN = [5]
 |
 |--LITN = [6]
 |
 \-LITN = [7]
 |
 /-NAME = [K]
 |--CGT----|
 |
 \-LITN = [8]
 |
 /-NAME = [M]
 \-CEQ----|

 \-LITN = [2]
whinit: SBM-INDEX M uses 60% of segs(WITHIN maxsegratio 100%)
whinit: wh-tree after split
 /-NAME = [K]
 --CGT----|
 \-LITN = [8]
whinit: INDEX tree after split

 /-NAME = [I] <1>SBM-INDEX IJK (I,J)
 /-IN-----|
 |
 | /-LITN = [1]
 |
 \-SET----|
 |
 |--LITN = [2]
 |
 \-LITN = [3]
 --LAND---|
 |
 /-NAME = [J]
 |--IN-----|
 |
 | /-LITN = [4]
 |
 \-SET----|
 |
 |--LITN = [5]
 |
 |--LITN = [6]
 |
 \-LITN = [7]
 |
 /-NAME = [M] <2>SBM-INDEX M (M)
 \-CEQ----|

WHERE_EXAMPLE 2: where i in (1, 2, 3) and j in (4, 5, 6, 7) and k > 8 and m = 2 193

 \-LITN = [2]
whinit returns: ALL EVAL1(w/SEGLIST) EVAL2

Here, a composite index ijk was defined on columns (i j k). This composite index is used
for column's i and j, which is an equality index predicate. Column k is not included because
it involves an inequality operator (greater than). Since there are no other indexes for column
k, this predicate is assigned to EVAL2 . EVAL2 will post-filter the records obtained
through the use of indexes.

WHERE_EXAMPLE 3: where i = 1 and j > 5 and mod(k, 3) = 2
 whinit: WHERE ((I=1) and (J>5) and (MOD(K, 3)=2))
whinit: wh-tree presented

 /-NAME = [I]
 /-CEQ----|
 |
 \-LITN = [1]
 --LAND---|
 |
 /-NAME = [J]
 |--CGT----|
 |
 \-LITN = [5]
 |
 /-FUNC = [MOD()]
 |
 /-FLST---|
 |
 | |--NAME = [K]
 |
 | \-LITN = [3]
 \-CEQ----|

 \-LITN = [2]
whinit: wh-tree after split

 /-FUNC = [MOD()]
 /-FLST---|
 |
 |--NAME = [K]
 |
 \-LITN = [3]
 --CEQ----|
 \-LITN = [2]
whinit: SBM-INDEX IJK uses 1% of sges(WITHIN maxsegratio 75%)
whinit: SBM-INDEX J uses at least 76% of segs(EXCEEDS maxsegratio 75%)
whinit: INDEX tree after split

 /-NAME = [I] <1>SBM-INDEX IJK (I)
 /-CEQ----|
 |
 \-LITN = [1]
 --LAND---|
 |
 /-NAME = [J] <2>SBM-INDEX J (J)

194 Chapter 11 • Optimizing SPD Server Performance

 \-CGT----|

 \-LITN = [5]
whinit returns: ALL EVAL1(w/SEGLIST) EVAL2

Here the indexes on column i, a composite index on the columns (i j k), and the column
j are combined. In this example WHINIT uses both EVAL1 and EVAL2. The j predicate
involves an inequality operator (greater than). Therefore, WHINIT cannot combine the
predicate with i and the composite index involving i and j (and k).

Using the composite index ijk in this plan might be inefficient. If a smaller composite index
(that is, one on i j or a simple index on i) were available, WHINIT would select it. In lieu
of this, try benchmarking the plan. Suppress the composite index and compare the results
to the existing plan to see which is more efficient (faster) on your machine.

The example that follows shows what WHINIT's plan would look like with the composite
index suppressed.

WHERE_Example 4: where i = 1 and j > 5 and mod(k, 3) = 2 (the index
IJK is suppressed)

 whinit: WHERE ((I=1) and (J>5) and (MOD(K, 3)=2))
whinit: wh-tree presented

 /-NAME = [I]
 /-CEQ----|
 |
 \-LITN = [1]
 --LAND---|
 |
 /-NAME = [J]
 |--CGT----|
 |
 \-LITN = [5]
 |
 /-FUNC = [MOD()]
 |
 /-FLST---|
 |
 | |--NAME = [K]
 |
 | \-LITN = [3]
 \-CEQ----|

 \-LITN = [2]
whinit: wh-tree after split

 /-NAME = [I]
 /-CEQ----|
 |
 \-LITN = [1]
 --LAND---|
 |
 /-FUNC = [MOD()]
 |
 /-FLST---|
 |

WHERE_Example 4: where i = 1 and j > 5 and mod(k, 3) = 2 (the index IJK is suppressed)
195

 | |--NAME = [K]
 |
 | \-LITN = [3]
 \-CEQ----|

 \-LITN = [2]
whinit: SBM_INDEX J uses at least 76% of segs (EXCEEDS maxsegratio 75%)
whinit: checking all hybrid segments
whinit: INDEX tree after split
 /-NAME = [J] <1>SBM-INDEX J (J)
 --CGT----|
 \-LITN = [5]
whinit returns: ALL EVAL1 EVAL2

Notice that the predicate involving column i is non-indexed. WHINIT evaluates it using
EVAL2. Because the predicate j > 5 still uses an inequality comparison, WHINIT continues
to use EVAL1. Finally, because the percentage of segments that contain values for column
J exceeds the maximum segment ratio, pre-segment logic is not done on column J. As a
result, all segments of the table are queried for values which satisfy the WHERE clause for
column J.

Server-Side Sorting

Overview of Server-Side Sorting
In most instances, using a BY clause in SAS code submitted to an SPD Server table triggers
a BY clause evaluation by SPD Server. This BY clause assertion to the SPD Server might
or might not require sorting to produce the ordered row set that the BY clause requires. In
some cases, a table index can be used to sort the rows to satisfy a BY clause.

For example, the input table to a PROC SORT step is sorted in server context (by the
associated LIBNAME proxy). The rows are returned to PROC SORT in BY clause order.
In this case, PROC SORT knows that the data is already ordered, and writes the data to the
output table without sorting it again. Unfortunately, this approach still must send the data
from the LIBNAME proxy to the SAS client and then back to the LIBNAME proxy.
However, there are other ways to use an SPD Server SQL pass-through COPY statement
to avoid the overhead of the data round-trip.

SPD Server attempts to use an index when performing a BY clause. The software looks
specifically for an index that has variables in the order specified in the BY clause. On the
surface this seems like a good idea: table row order is already determined because the keys
in the index are ordered. SPD Server reads the keys in order from the index, and then returns
the rows from the table, based on the row IDs that are stored with the index key values.

Use caution when using BY clauses on tables that have indexes on their BY columns. Using
the index is not always a good idea. When no suitable index exists to determine BY clause
order, SPD Server uses a parallel table scan sort that keeps the table row intact with the
sort key. The time required to access a highly random distribution of row IDs (obtained by
using the index) can greatly exceed the time required to sort the rows from scratch.

When you use a WHERE clause to filter the rows from an SPD Server table with a BY
clause to order them in a desired way, SPD Server handles both the subsetting and the
ordering for this request. In this case, the filtered rows that were qualified by the WHERE
clause are fed directly into a sort step. Feeding the filtered rows into the sort step is part of
the parallel WHERE clause evaluation. The final ordered row set is the result. In this case,

196 Chapter 11 • Optimizing SPD Server Performance

the previous discussion of index use does not apply. Index use for WHERE clause filtering
is very desirable and greatly improves the filtering performance that feeds into the sort step.
Arbitrarily suppressing index use with a WHERE and BY combination should be avoided.

Suppressing the Use of Indexes
Suppress the use of indexes on the BY clause by using the SPDSNIDX=YES macro
variable or by asserting the NOINDEX=YES table option. Suppressing the use of the index
can significantly improve time required to process a BY clause in SPD Server.

Advantages of Implicit Server Sorts
An exceptional feature is the software's ability to execute ad hoc order-BY queries without
pre-sorting the table on the BY variables. Many SAS job streams are structured with code
that alternates PROC SORT followed by PROC xxxx invocations where the PROC SORT
step is needed only for the execution of the PROC xxxx step.

When sort order is relevant only to the following step, eliminate the PROC SORT step and
just use the BY clause on the PROC xxxx step. This eliminates the extra data transfer (to
PROC SORT from SPD Server and then back from PROC SORT to SPD Server) to store
the sorted result. Even if SPD Server performs the sort associated with the PROC SORT,
there is extra data transfer. The data's round trip from the server to the SAS client and back
can impose a substantial time penalty.

Advantages of Implicit Server Sorts 197

198 Chapter 11 • Optimizing SPD Server Performance

Chapter 12
SPD Server Macro Variables

Introduction . 200

Variable for Compatibility with the Base SAS Engine . 200
SPDSBNEQ= . 200

Variables for Miscellaneous Functions . 201
SPDSEOBS= . 201
SPDSSOBS= . 202
SPDSUSAV= . 202
SPDSUSDS= . 203
SPDSVERB= . 204
SPDSFSAV= . 204
SPDSEINT= . 205

Variables for Sorts . 206
SPDSBSRT= . 206
SPDSNBIX= . 207
SPDSSTAG= . 208

Variables for WHERE Clause Evaluations . 208
SPDSTCNT= . 208
SPDSEV1T= . 209
SPDSEV2T= . 210
SPDSWDEB= . 211
SPDSIRAT= . 211
SPDSNIDX= . 212
SPDSWCST= . 213
SPDSWSEQ= . 213

Variables That Affect Disk Space . 214
SPDSCMPF= . 214
SPDSDCMP= . 214
SPDSIASY= . 215
SPDSSIZE= . 216

Variables To Enhance Performance . 217
SPDSNETP= . 217
SPDSSADD= . 217
SPDSSYRD= . 218
SPDSAUNQ= . 218

Variables for a Client and a Server Running on the Same UNIX Machine 219
SPDSCOMP= . 219

199

Introduction
Macro variables, known as symbolic variables, operate similarly to LIBNAME and table
options. But, they have an advantage because they apply globally. That is, their value
remains constant until explicitly changed.

This chapter presents reference information for SPD Server macro variables, including
their purpose, default values, and when and how to use them. The variables are grouped
by function or purpose of the default value. Changing the value can also change the purpose,
making the variable fall into another group.

For example, the default setting for the macro variable SPDSSADD= is NO. The
SPDSSADD= macro enhances performance during data appends. Setting SPDSSADD=
to YES changes the way the variable functions. The macro setting SPDSADD=YES
ensures compatibility with the Base SAS engine. The default setting improves performance.
Changing the setting from the default improves Base SAS software compatibility.

To set a macro variable to YES submit the following statement:

%let MACROVAR=YES;

Note: Assignments for macro variables with YES|NO arguments must be entered in
uppercase (capitalized).

When you specify table option settings, precedence matters. If you specify a table option
after you set the option in a macro variable statement, the table option setting takes
precedence over the macro variable option setting. If you specify an option using a
LIBNAME statement, then later specify an option setting through a macro variable
statement, the table option setting made in the macro variable takes precedence over the
LIBNAME statement setting.

To view the default values for the SPD Server macro variables, use the SPDSMAC
command associated with PROC SPDO. SAS displays the macro variables and their current
settings. Understanding proper use of macro variables in SPD Server allows you to unleash
the power of the software.

Variable for Compatibility with the Base SAS
Engine

SPDSBNEQ=
Use the SPDSBNEQ= setting to specify the output order of table rows that have identical
values in the BY column.

Syntax

SPDSBNEQ=YES|NO

Default: NO

Corresponding Table Option: BYNOEQUALS=

Arguments

200 Chapter 12 • SPD Server Macro Variables

YES
outputs rows with identical values in a BY clause in random order.

NO
outputs rows with identical values in a BY clause using the relative table position of
the rows from the input table.

Description

SPDSBNEQ=NO configures the SPD Server to imitate the Base SAS engine behavior. If
strict compatibility is not required, assign SPDSBNEQ=YES. Random output allows the
SPD Server to create indexes and append to tables faster.

Example

Configure the SPD Server so that it output table rows as quickly as possible when
processing rows that have identical values in the BY column.

%let SPDSBNEQ=YES;

Variables for Miscellaneous Functions

SPDSEOBS=
Use the SPDSEOBS= macro variable to specify the number of the last row (end
observation) of a user-defined range that you want to process in a table.

Syntax

SPDSEOBS=n

Default: The default setting of 0 processes the entire table.

Corresponding Table Option: ENDOBS=

Arguments

n
is the number of the end row.

Description

The SPD Server processes the entire table by default unless you specify a range of rows.
You can specify a range using the macro variables SPDSSOBS= and SPDSEOBS=, or you
can use the table options, STARTOBS= and ENDOBS=.

If you use the range start macro variable SPDSSOBS= without specifying an end range
value using the SPDSEOBS= macro variable, SPD Server processes to the last row in the
table. If you specify values for both SPDSSOBS= and SPDSEOBS= macro variables, the
value of SPDSEOBS= must be greater than SPDSSOBS=. The SPDSSOBS= and
SPDSEOBS= macro variables specify ranges for table input processing as well as WHERE
clause processing.

Example

In order to create test tables, you configure the SPD Server to subset the first 100 rows of
each table in your job. Submit the macro variable statement for SPDSEOBS= at the
beginning of your job.

%let SPDSEOBS=100;

SPDSEOBS= 201

SPDSSOBS=
Use the SPDSSOBS= macro variable to specify the number of the starting row
(observation) in a user-defined range of a table.

Syntax

SPDSSOBS=n

Default: The default setting of 0 processes the entire table.

Corresponding Table Option: STARTOBS=

Arguments

n
is the number of the start row.

Description

By default, SPD Server processes entire tables unless you specify a range of rows. You can
specify a range using the macro variables SPDSSOBS= and SPDSEOBS=, or you can use
the table options, STARTOBS= and ENDOBS=.

If you specify the end of a user-defined range using the SPDSEOBS= macro variable, but
do not implicitly specify the beginning of the range using SPDSSOBS=, SPD Server sets
SPDSSOBS= to 1, or the first row in the table. If you specify values for both SPDSSOBS=
and SPDSEOBS= macro variables, the value of SPDSEOBS= must be greater than
SPDSSOBS=. The SPDSSOBS= and SPDSEOBS= macro variables specify ranges for
table input processing as well as WHERE clause processing.

Example

Print the INVENTORY.OLDAUTOS table, skipping rows 1-999 and beginning with row
1000. You should submit the SPDSSOBS= macro variable statement before the PROC
PRINT statement in your job.

%let SPDSSOBS=1000;

The statement above specifies the starting row with SPDSSOBS=, but does not declare an
ending row for the range using SPDSEOBS=. When the program executes, SAS will begin
printing at row 1000 and continues until the final row of the table is reached.

PROC PRINT data=inventory.oldautos;
run;

SPDSUSAV=
Use the SPDSUSAV= macro variable to specify whether to save rows with non-unique
(rejected) keys to a separate SAS table.

Syntax

SPDSUSAV=YES|NO|REP

Default: NO

Affected by Table Option : SYNCADD=

Use in Conjunction with Variable : SPDSUSDS=

Corresponding Table Option : UNIQUESAVE=

202 Chapter 12 • SPD Server Macro Variables

Arguments

YES
writes rows with non-unique key values to a SAS table. Use the macro variable
SPDSUSDS= to reference the name of the SAS table for the rejected keys.

NO
non-unique key values are ignored and rejected rows are not written to a separate table.

REP
when updating a master table from a transaction table, where the two tables share
identical variable structures, the SPDSUSAV=REP option replaces the row updated
row in the master table instead of appending a row to the master table. The REP option
only functions in the presence of a /UNIQUE index on the MASTER table. Otherwise,
the REP setting is ignored..

Description

When performing an append operation, SPD Server does not save the rows which contain
duplicate key values unless the SPDSUSAV= macro variable is set to YES.

When SPDSUSAV= is set to YES, SPD Server creates a hidden SAS table and writes
rejected rows to the table. Use the SPDSUSDS= macro variable command to view the
contents of the table. Each append operation creates a different table.

Example

Append several tables to the EMPLOYEE table, using employee number as a unique key.
The appended tables should not have records with duplicate employee numbers.

At the beginning of the job, configure SPD Server to write any rejected (identical) employee
number records to a SAS table. The macro variable SPDSUSDS= holds the name of the
SAS table for the rejected keys.

%let SPDSUSAV=YES

Use a %PUT statement to display the name of the table, and then print the table.

%put Set the macro variable spdsusds to &spdsusds;

title 'Duplicate (non-unique) employee numbers found in
 EMPS';
PROC PRINT data=&spdsusds run;

SPDSUSDS=
Use the SPDSUSDS= macro variable to reference the name of the SAS table that SPD
Server creates for duplicate or rejected keys when the SPDSUSAV= macro variable is set
to YES.

Syntax

SPDSUSDS=

Default: SPD Server automatically generates identifying strings for the duplicate or
rejected key tables.

Use in Conjunction with Table Option: SYNCADD=

Use in Conjunction with Variable: SPDSUSAV=

Corresponding Table Option: UNIQUESAVE=

SPDSUSDS= 203

Description

When SPDSUSAV= or UNIQUESAVE= is set to YES, SPD Server creates a table to store
any rows with duplicate key values encountered during an append operation. Submitting
the SPDSUSDS= macro variable references the generated name for the hidden SAS table.

To obtain the name and print the table's contents, reference the variable SPDSUSDS=.

Example

%let SPDSUSAV=YES

Use a %PUT statement to display the name of the table created by SPDSUSDS= and to
print out the duplicate rows.

%put Set the macro variable spdsusds to &spdsusds;

title 'Duplicate Rows Found in MYTABLE
 During the Last Data Append';
PROC PRINT data=&spdsusds run;

SPDSVERB=
Use the SPDSVERB= macro variable to provide verbose details on all indexes, ACL
information, and other information that is associated with SPD Server tables.

Syntax

SPDSVERB=YES|NO

Default:NO

Corresponding Table Option:VERBOSE=

Arguments

YES
requests detail information for indexes, ACLs, and other SPD Server table values.

NO
suppresses detail information for indexes, ACLs, and other SPD Server table values.

Example

You need information about associated indexes for the SPD Server table SUPPLY.
Configure SPD Server for verbose details at the start of your session so you can see index
details. Submit the SPDSVERB= macro variable as a line in your autoexec.sas file:

%let SPDSVERB=YES;

Submit a PROC CONTENTS request for the SUPPLY table:

PROC CONTENTS data=supply;
run;

SPDSFSAV=
Use the SPDSFSAV= macro variable to specify whether you want to retain table data if
the SPD Server table creation process terminates abnormally.

Syntax

204 Chapter 12 • SPD Server Macro Variables

SPDSFSAV=YES|NO

Default: NO. Normally SAS closes and deletes tables which are not properly created.

Arguments

YES
enables FORCESAVE mode and saves the table.

NO
default SPD Server actions delete partially completed tables.

Description

Large tables can require a long time to create. If problems such as network interruptions
or disk space shortages occur during this time period, the table might not be properly created
and signal an error condition. If SAS encounters such an error condition, it deletes the
partially completed table.

In SPD Server you can set SPDSFSAV=YES. Saving the partially created table can protect
the time and resources invested a in long-running job. When the SPDSFSAV= macro
variable is set to YES, the SPD Server LIBNAME proxy saves partially completed tables
in their last state and identifies them as damaged tables.

Marking the table damaged prohibits other SAS DATA or PROC steps from accessing the
table until its state of completion can be verified. After you verify or repair a table, you can
clear the 'damaged' status and enable further read/update/append operations on the table.
Use the PROC DATASETS REPAIR operation to remove the damaged file indicator.

Example

Configure SPD Server before you run the table creation job for a large table called
ANNUAL. If some error prevents the successful completion of the table ANNUAL, the
partially completed table will be saved.

%let SPDSFSAV=YES;
DATA SPDSLIB.ANNUAL;
...
RUN;

SPDSEINT=
Use the SPDSEINT= macro to specify how SPD Server responds to network disconnects
during SQL pass-through EXECUTE() statements.

Syntax

SPDSEINT=YES|NO

Default: YES

Description:

The SPD Server SQL server interrupts SQL processing by default when a network failure
occurs . The interruption prematurely terminates the EXECUTE() statement. Setting
SPDSEINT=NO configures the SPD Server's SQL server to continue processing until
completion regardless of network disconnects.

Warning: Use the macro variable setting SPDSEINT=NO carefully! A runaway
EXECUTE() statement requires a privileged system user on the server machine to kill the
SPD Server SQL proxy process. This is the only way to stop the processing.

SPDSEINT= 205

Variables for Sorts

SPDSBSRT=
Use the SPDSBSRT= macro variable to configure SPD Server's sorting behavior when it
encounters a BY-clause and there is no index available.

Syntax

SPDSBSRT=YES|NO

Default:YES

Corresponding Table Option:BYSORT=

Arguments

YES
SPD Server performs a server sort when it encounters a BY clause and there is no index
available.

NO
SPD Server does not perform a sort when it encounters a BY clause.

Description

Base SAS software requires an explicit PROC SORT statement to sort SAS data. In
contrast, SPD Server sorts a table whenever it encounters a BY clause, if it determines that
the table has no index.

Advantages for using SPD Server implicit sorts are discussed in detail in the Help section
for “Additional LIBNAME Options ” on page 25.

Example 1

At the start of a session to run old SAS programs, you realize that you do not have time to
remove the existing PROC SORT statements. These statements are present only to generate
print output.

To avoid redundant Server sorts, configure SPD Server to turn off implicit sorts. Put the
macro variable assignment in your autoexec.sas file so SPD Server retains the configuration
for all job sessions.

%let SPDSBSRT=NO;

During the Example 1 session you decide to run a new program that has no PROC SORT
statements. Instead, the new program takes advantage of SPD Server implicit sorts.

data inventory.old_autos;
 input
 year $4.
 @6 manufacturer $12.
 model $10.
 body_style $5.
 engine_liters
 @39 transmission_type $1.
 @41 exterior_color $10.
 options $10.
 mileage condition;

206 Chapter 12 • SPD Server Macro Variables

 datalines;

1971 Buick Skylark conv 5.8 A yellow 00000001 143000 2
1982 Ford Fiesta hatch 1.2 M silver 00000001 70000 3
1975 Lancia Beta 2door 1.8 M dk blue 00000010 80000 4
1966 Oldsmobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Mustang sptrf 7.1 M red 00000111 125000 3
;

PROC PRINT data=inventory.old_autos
; by model;

run;

When the code executes, the PRINT procedure returns an error message. What happened?
SAS expected INVENTORY.OLDAUTOS to be sorted before it would generate print
output. Since there is no PROC SORT statement -- and implicit sorts are still turned off --
the sort does not occur.

Example 2

Keep implicit sorts turned off for the session, but specify an implicit sort for the table
INVENTORY.OLDAUTOS.

 PROC PRINT data=inventory.oldautos(bysort=yes);
 by model;
 run;

SPDSNBIX=
Use the SPDSNBIX= macro variable to configure whether to use an index during a BY-
sort.

Syntax

SPDSNBIX=YES|NO

Default: NO

Corresponding Server Parameter Option: [NO]BYINDEX

Arguments

YES
Set SPDSNBIX=YES to suppress index use during a BY-sort. If the distribution of the
values in the table are not relatively sorted or clustered, using the index for the by sort
can result in poor performance.

NO
Set SPDSNBIX=NO or use the default value to allow the [NO]BYINDEX server
parameter option to determine whether to use an index for a BY sort.

Example

%let SPDSNBIX=YES;

SPDSNBIX= 207

SPDSSTAG=
Use the SPDSSTAG= macro variable to specify whether to use non-tagged or tagged
sorting for PROC SORT or BY processing.

Syntax

SPDSSTAG=YES|NO

Default:NO

Arguments

YES
performs tagged sorting.

NO
performs non-tagged sorting.

Description

During a non-tagged sort, SPD Server attaches the entire table column to the key field(s)
to be sorted. Non-tagged sorting allows the software to deliver better performance than a
tagged sort. Non-tagged sorting also requires more temporary disk space than a tagged sort.

Example

You are running low on disk space and don't know whether you have enough disk overhead
to accommodate the extra sort space required to support a non-tagged sort operation.

Configure SPD Server to perform a tagged sort.

%let SPDSSTAG=YES;

Variables for WHERE Clause Evaluations

SPDSTCNT=
Use the SPDSTCNT= macro variable to specify the number of threads that you want to
use during WHERE clause evaluations.

Syntax

SPDSTCNT=n

Default: The value of MAXWHTHREADS is configured by SPD Server parameters.

Used in Conjunction with the SPD Server Parameter: MAXWHTHREADS

Corresponding Table Option: THREADNUM=

Arguments

n
is the number of threads.

Description

208 Chapter 12 • SPD Server Macro Variables

See “THREADNUM=” on page 256 for a description and an explanation of how
SPDSTCNT= interacts with the SPD Server parameter MAXWHTHREADS.

SPDSEV1T=
Use the SPDSEV1T= macro variable to indicate whether data returned from an SPD Server
WHERE clause evaluations should be in strict row (observation) order.

The macro variables SPDSEV1T= and SPDSEV2T= work in conjunction with the SPD
Server WHERE clause planner WHINIT.

The variables SPDSEV1T= and SPDSEV2T= are identical in purpose. You use them to
specify the row order of data returned in WHERE-processing. Which variable the server
exercises depends on the evaluation strategy selected by WHINIT. The SPDSEV1T=
evaluation strategy is indexed. The SPDSEV2T= evaluation strategy is non-indexed. Avoid
using these options unless you absolutely understand the SPD Server performance tradeoffs
that depend on maintaining the order of data.

If compatibility with Base SAS software is important, set both SPDSEV1T= and
SPDSEV2T= to 0. When both evaluation strategies are set to 0, SPD Server returns data
in row order whether the SPDSEV1T= or the SPDSEV2T= strategy is selected.

When you use PROC SQL to perform table joins on sorted tables that use extra WHERE
predicates to filter table rows, PROC SQL uses sort order information to optimize the join
strategy. Data that has been filtered by the evaluation of extra WHERE predicates returns
to PROC SQL in sorted order. SPD Server restricts parallel evaluation of WHERE
predicates any time the table(s) have been sorted using PROC SORT to meet this
requirement. Sorting data in this manner can negatively impact net performance because
most SAS PROCs or DATA steps do not process sorted data any faster than unsorted data..
SPD Server recommends you set the SPDSEV1T= and/or SPDSEV2T= macro variables
to 2. Setting SPDSEV1T= and/or SPDSEV2T= macro variables to 2 configures SPD Server
to perform parallel WHERE clause evaluations without regard for the sort order of the SPD
Server tables.

Note: The SPDSEV1T= and SPDSEV2T= usage discussed here does not apply to SQL
statements executed via the SPD Server pass-through SQL mechanism.

Syntax

SPDSEV1T=0|1|2

Default: 1

Used in Conjunction with Indexed WHERE clause Evaluation Strategy

Arguments

0
returns data in row order.

1
might not return the data in row order. SPD Server can override as needed to force a 0
setting if the table is sorted using PROC SORT.

2
always forces parallel evaluation regardless of sorted order. May not return data in row
order.

Description

If SPD Server must return many rows during WHERE clause processing, setting the
variable to 0 will greatly slow performance. Use 0 only when row order is required. Use
2 only when you know row order is not important to the result.

SPDSEV1T= 209

Example

Configure SPD Server to send back data in row order whenever WHINIT performs an
EVAL1 evaluation.

%let SPDSEV1T=0;

SPDSEV2T=
Use the SPDSEV2T= macro variable to specify whether the data returned from WHERE
clause evaluations should be in strict row (observation) order.

The macro variables SPDSEV1T= and SPDSEV2T= work in conjunction with the SPD
Server WHERE clause planner WHINIT.

The variables SPDSEV1T= and SPDSEV2T= are identical in purpose. You use them to
specify the row order of data returned in WHERE-processing. Which variable the server
exercises depends on the evaluation strategy selected by WHINIT. The SPDSEV1T=
evaluation strategy is indexed. The SPDSEV2T= evaluation strategy is non-indexed. Avoid
using these options unless you absolutely understand the SPD Server performance tradeoffs
that depend on maintaining the order of data.

If compatibility with Base SAS software is important, set both SPDSEV1T= and
SPDSEV2T= to 0. When both evaluation strategies are set to 0, SPD Server returns data
in row order whether the SPDSEV1T= or the SPDSEV2T= strategy is selected.

When you use PROC SQL to perform table joins on sorted tables that use extra WHERE
predicates to filter table rows, PROC SQL uses sort order information to optimize the join
strategy. Data that has been filtered by the evaluation of extra WHERE predicates returns
to PROC SQL in sorted order. SPD Server restricts parallel evaluation of WHERE
predicates any time the table(s) have been sorted using PROC SORT to meet this
requirement. Sorting data in this manner can negatively impact net performance because
most SAS PROCs or DATA steps do not process sorted data any faster than unsorted data..
SPD Server recommends you set the SPDSEV1T= and/or SPDSEV2T= macro variables
to 2. Setting SPDSEV1T= and/or SPDSEV2T= macro variables to 2 configures SPD Server
to perform parallel WHERE clause evaluations without regard for the sort order of the SPD
Server tables.

Note: The SPDSEV1T= and SPDSEV2T= usage discussed here does not apply to SQL
statements executed via the SPD Server pass-through SQL mechanism.

Syntax

SPDSEV2T=0|1|2

Default:1

Used in Conjunction with Non-Indexed WHERE clause Evaluation Strategy

Arguments

0
returns data in row order.

1
might not return the data in row order. SPD Server can override as needed to force 0
setting if the table is sorted using PROC SORT.

2
always forces parallel evaluation regardless of sorted order. May not return the data in
row order.

Description

210 Chapter 12 • SPD Server Macro Variables

If SPD Server must return many rows during WHERE clause processing, setting the
variable to 0 will greatly slow performance. Use 0 only when row order is required. Use
2 only when you know row order is not important to the result.

Example

Configure SPD Server to send back data in row order whenever WHINIT performs an
EVAL2 evaluation.

%let SPDSEV2T=0;

SPDSWDEB=
Use the SPDSWDEB= macro variable to specify whether the WHERE clause planner
WHINIT, when evaluating a WHERE expression, should display a summary of the
execution plan.

Syntax

SPDSWDEB=YES|NO

Default: NO

Arguments

YES
displays WHINIT's planning output.

NO
suppresses WHINIT's planning output.

SPDSIRAT=
Use the SPDSIRAT= macro variables to specify whether to perform segment candidate
pre-evaluation when performing WHERE clause processing with hybrid indexes.

Syntax

SPDSIRAT=0..100

Default: MAXSEGRATIO server parameter

Description:

When using hybrid indexes, WHERE-based queries pre-evaluate segments. The segments
are scanned for candidates that match one or more predicates in the WHERE clause. The
candidate segments that were identified during the pre-evaluation are queried in subsequent
logic to evaluate the WHERE clause. Eliminating the non-candidate segments from the
WHERE clause evaluation generally results in substantial performance gains.

Some queries can benefit by limiting the pre-evaluation phase. SPD Server imposes the
limit based on a ratio: the number of segments that contain candidates compared to the total
number of segments in the table. The reason for this is simple. If the predicate has candidates
in a high percentage of the segments, the pre-evaluation work is largely wasted.

The ratio formed by dividing the number of segments that containing candidates by the
number of total segments is compared to a cutoff point. If the segment ratio is greater than
the value assigned to the cutoff point, the extra processing required to perform pre-
evaluation outweighs any potential process savings that might be gained through the
predicate pre-evaluation. SPD Server calculates the ratio for a given predicate and
compares the ratio to the SPDSIRAT= value, which acts as the cutoff point. If the calculated
ratio is less than or equal to the SPDSIRAT= value, pre-evaluation is performed. If the

SPDSIRAT= 211

calculated ratio is greater than the SPDSIRAT= value, pre-evaluation is skipped and every
segment is a candidate for the WHERE clause.

Use the global SPD Server parameter, MAXSEGRATIO to set the default cutoff value.
The default MAXSEGRATIO should provide good performance. Certain specific query
situations might be justification for modifying your SPDSIRAT= value. When you modify
your SPDSIRAT= value, it overrides the default value established by MAXSEGRATIO.

Example:

Configure SPD Server to perform a pre-evaluation phase for WHERE clause processing
with hybrid indexes if the candidates are in 65% or less of the segments.

%let SPDSIRAT=65;

SPDSNIDX=
Use the SPDSNIDX= macro variable to specify whether to use the table's indexes when
processing WHERE clauses. SPDSNIDX= can also be used to disable index use for BY-
order determination.

Syntax

SPDSNIDX=YES|NO

Default: NO

Corresponding Table Option: NOINDEX=

Arguments

YES
ignores indexes when processing WHERE clauses.

NO
uses indexes when processing WHERE clauses.

Description:

Set SPDSNIDX=YES to test the effect of indexes on performance or for specific
processing. Do not use YES routinely for normal processing.

Example:

Assume you are processing data from SPORT.MAILLIST. There is an index for the SEX
column and you want to test to determine whether the index will improve performance
when you use PROC PRINT processing on SPORT.MAILLIST.

You should configure SPD Server not to use the index:

data sport.maillist;
 input
 name $ 1-20
 address $ 21-57
 phoneno $ 58-69
 sex $71;

datalines;

Douglas, Mike 3256 Main St., Cary, NC 27511 919-444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham, NC 27707 919-324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwell, Jack 567 Scott Ln., Chapel Hill, NC 27514 919-533-3845 M

212 Chapter 12 • SPD Server Macro Variables

Clark, John 9 Church St., Durham, NC 27705 919-324-0390 M
;

PROC DATASETS lib=sport nolist;
modify maillist;
index create sex;
quit;

/*Turn on the macro variable SPDSWDEB */
/* to show that the index is not used */
/* during the table processing. */

%let spdswdeb=YES;

%let spdsnidx=YES;

title "All Females from Current Mailing List";
PROC PRINT data=sport.maillist;
where sex="F";
run;

%let spdsnidx=NO;

SPDSWCST=
Use the SPDSWCST= macro variable to specify whether to use dynamic WHERE clause
costing.

Syntax

SPDSWCST=YES|NO

Default:NO

Corresponding Server Parameter Option: [NO]WHERECOSTING

Turns WHERE-costing on or off for an entire server.

Description:

Set SPDSWCST=YES to use dynamic WHERE clause costing. Disabling SPDSWCST=
defaults SPD Server to using WHERE-costing with WHINIT.

Example:

%let SPDSWCST=YES;

SPDSWSEQ=
Syntax

SPDSWSEQ=YES|NO

Default:NO

Description:

Set the SPDSWSEQ= macro variable to YES. When set to YES, the SPDSWSEQ= macro
variable overrides WHERE clause costing and forces a global EVAL3 or EVAL4 strategy.

SPDSWSEQ= 213

Example:

%let SPDSWSEQ=YES;

Variables That Affect Disk Space

SPDSCMPF=
Use the SPDSCMPF= macro variable to specify the amount of growth space, sized in bytes,
to be added to a compressed data block.

Syntax

SPDSCMPF=n

Default:0 bytes

Arguments

n
is the number of bytes to add.

Description

Updating rows in compressed tables can increase the size of a given table block. Additional
space is required for the block to be written back to disk. When contiguous space is not
available on the hard drive, a new block fragment stores the excess, updated quantity. Over
time, the table will experience block fragmentation.

When opening compressed tables for OUTPUT or UPDATE, you can use the SPDSCMPF=
macro variable to anticipate growth space for the table blocks. If you estimate correctly,
you can greatly reduce block fragmentation in the table.

Note: SPD Server table metadata does not retain compression buffer or growth space
settings.

SPDSDCMP=
Use the SPDSDCMP= macro variable to compress SPD Server tables that are stored on
disk.

Syntax

SPDSDCMP=YES|NO

Default:NO

Use in Conjunction with Table Option: IOBLOCKSIZE=

Corresponding Table Option: COMPRESS=

Arguments

YES
performs the run-length compression algorithm SPDSRLLC.

NO
performs no table compression.

Description

214 Chapter 12 • SPD Server Macro Variables

When you set the SPDSDCMP= macro variable to YES, SPD Server compresses newly
created tables by 'blocks' according to the algorithm specified. To control the amount of
compression, use the table option IOBLOCKSIZE= to specify the number of rows that you
want to store in the block. For a complete discussion, refer to “IOBLOCKSIZE=” on page
250.

Note: Once a compressed table is created, you cannot change its block size. To resize the
block, you must PROC COPY the table to a new table, setting IOBLOCKSIZE= to the
new block size for the output table.

Example

Before creating huge tables, you want to conserve disk space. Specify compression, and
the default algorithm SPDSRLLC, at the beginning of your job.

%let SPDSDCMP=YES;

SPDSIASY=
Use the SPDSIASY= macro variable to specify whether to create indexes in parallel when
creating multiple indexes on an SPD Server table.

Syntax

SPDSIASY=YES|NO

Default:NO

Corresponding Table Option : ASYNCINDEX=

Arguments

YES
creates the indexes in parallel.

NO
creates one index at a time.

Description

You use the macro variable SPDSIASY= to choose between parallel and sequential index
creation on SPD Server tables with more than one index. One advantage of creating multiple
indexes in parallel is speed. The speed enhancements that can be achieved with parallel
indexes are not free. Parallel indexes require significantly more disk space for working
storage. The default SPD Server setting for the SPDSIASY= macro variable is set to NO,
in order to avoid exhausting the available work storage space.

However, if you have adequate disk space to support parallel sorts, it is strongly
recommended that you override the default SPDSIASY=NO setting and assign
SPDSIASY=YES. You can substantially increase performance -- indexes that take hours
to build complete much faster.

How many indexes should you create in parallel? The answer depends on several factors,
such as the number of CPUs in the SMP configuration and available storage space needed
for index key sorting.

When managing disk space on your SPD Server, remember that grouping index
create statements can minimize the number of table scans that SPD Server performs, but
it also affects disk space consumption. There is an inverse relationship between the table
scan frequency and disk space requirements. A minimal number of table scans requires
more auxiliary disk space; a maximum number of table scans requires less auxiliary disk
space.

SPDSIASY= 215

Example

Your perform batch processing from midnight to 6:00 a.m. All of your processing must be
completed before start of the next work day. One frequently repeated batch job creates
large indexes on a table, and usually takes several hours to complete. Configure SPD Server
to create indexes in parallel to reduce the processing time.

%let SPDSIASY=YES;
proc datasets lib=spds;
 modify a;
 index create x;
 index create y;
 modify a;
 index create comp=(x y) comp2=(y x);
 quit;

In the example above, the X and Y indexes will be created in parallel. After creating X and
Y indexes, SPD Server creates the COMP and COMP2 indexes in parallel. In this example,
two table scans are required: one table scan for the X and Y indexes, and a second table
scan for the COMP and COMP2 indexes.

SPDSSIZE=
Use the SPDSSIZE= macro variable to specify the size of an SPD Server table partition.

Syntax

SPDSSIZE=n

Default:16 Megabytes

Corresponding Table Option: PARTSIZE=

Affected by LIBNAME option: DATAPATH=

Arguments

n
is the size of the partition in Megabytes.

Description

Use this SPDSSIZE= macro variable option to improve performance of WHERE clause
evaluation on non-indexed table columns.

Splitting the data portion of a server table at fixed-sized intervals allows SPD Server to
introduce a high degree of scalability for non-indexed WHERE clause evaluation. This is
because SPD Server launches threads in parallel and can evaluate different partitions of
the table without file access or thread contention. The speed enhancement comes at the cost
of disk usage. The more data table splits you create, the more you increase the number of
files, which are required to store the rows of the table.

Scalability limits on the SPDSSIZE= macro variable ultimately depend on how you
structure the DATAPATH= option in your LIBNAME statement. The configuration of the
DATAPATH= file systems across striped volumes is important. You should spread each
individual volume's striping configuration across multiple disk controllers/SCSI channels
in the disk storage array. Your configuration goal, at the hardware level, should be to
maximize parallelism when performing data retrieval.

The SPDSSIZE= specification is also limited by MINPARTSIZE=, an SPD Server
parameter maintained by the SPD Server administrator. MINPARTSIZE= ensures that an

216 Chapter 12 • SPD Server Macro Variables

over-zealous SAS user cannot arbitrarily create small partitions, thereby generating an
excessive number of physical files. The default for MINPARTSIZE= is 16 Mbytes.

Note: The SPDSSIZE= value for a table cannot be changed after the table is created. To
change the SPDSSIZE=, you must PROC COPY the table and use a different SPDSSIZE=
(or PARTSIZE=) option setting on the new (output) table.

For an example using the table option, see “PARTSIZE=” on page 248.

%let SPDSSIZE=32;

Variables To Enhance Performance

SPDSNETP=
Use the SPDSNETP= macro variable to size buffers in server memory for the network data
packet.

Syntax

SPDSNETP=size-of-packet

Default:32K

Corresponding Table Option:“NETPACKSIZE= ” on page 251

Arguments

size-of-packet
is the size (integer) in bytes of the network packet.

Description

When sizing the buffer for data packet transfer between SPD Server and your SAS client
machine, the packet must be greater than or equal in size to one table row. See
“NETPACKSIZE= ” on page 251 for more information.

Example

Despite recent upgrades to your network connections, you are experiencing significant
pauses when the SPD Server transfers data. You want to resize the data packet to send three
rows at a time for a more continuous data flow.

Specify a buffer size in server memory that is three times the row size (6144 bytes.) Submit
your SPDSNETP= macro variable statement at the top of your job.

%let SPDSNETP=18432;

SPDSSADD=
Use the SPDSSADD= macro variable to specify whether SPD Server appends tables by
transferring a single row at a time synchronously, or by transferring multiple rows
asynchronously (block row appends).

Syntax

SPDSSADD=YES|NO

Default:NO

Related Table Option: SYNCADD=

SPDSSADD= 217

Arguments

YES
applies a single row at a time during an append operation. This behavior imitates the
Base SAS engine.

NO
appends multiple rows at a time

Description

SPDSSADD=YES slows performance. Use this argument only if you require strict
compatibility with Base SAS software when processing a table. For a complete discussion,
refer to “SYNCADD=” on page 246.

SPDSSYRD=
Use the SPDSSYRD= macro variable to specify whether SPD Server should perform
asynchronous data streaming when reading a table.

Syntax

SPDSSYRD=YES|NO

Default:NO

Related Table Option: SYNCREAD=

Arguments

YES
enables asynchronous data streaming.

NO
disables asynchronous data streaming.

Description

Use SPDSSYRD=YES only with a MODIFY statement. If you use it with any other
processing operation, you slow performance.

SPDSAUNQ=
Use the SPDSAUNQ= macro variable setting to specify whether to cancel an append to a
table if the table has a unique index and the append would violate the index uniqueness.

Syntax

SPDSAUNQ=YES|NO

Default:NO

Description:

Use SPDSAUNQ=YES macro variable to improve append performance to a table with
unique indexes. If uniqueness is not maintained, the append is canceled and the table is
returned to its state before the append. In such an instance, you can scrub the table to remove
non-unique values and re-do the append with the macro variable SPDSAUNQ= set to YES.
The other alternative is to simply re-do the append with the macro variable SPDSAUNQ=
set to NO.

If SPDSAUNQ=NO, the SPD Server will enforce uniqueness at the expense of appending
unique indexes in observation order one row at a time. If uniqueness is not maintained for
any given row, that row is discarded from the append.

218 Chapter 12 • SPD Server Macro Variables

Variables for a Client and a Server Running on the
Same UNIX Machine

SPDSCOMP=
specifies to compress the data when sending a data packet through the network.

Syntax

SPDSCOMP=YES|NO

Default: NO

SPDSCOMP= 219

220 Chapter 12 • SPD Server Macro Variables

Chapter 13
SPD Server LIBNAME Options

Introduction . 222

Options to Locate an SPD Server Host . 222
HOST= . 222
SERVER= . 223

Options to Identify the SPD Server Client . 224
ACLGRP= . 224
CHNGPASS= . 224
NEWPASSWORD= or NEWPASSWD= . 225
PASSWORD= or PASSWD= . 225
PROMPT= . 226
USER= . 227

Options to Specify Implicit SQL Pass-Through . 227
IP=YES . 227
PASSTHRU= . 228

Options to Specify File Paths for Table Storage . 229
CREATE= . 229
DATAPATH= . 230
INDEXPATH= . 230
METAPATH= . 231

Options for Access Control Lists (ACLs) . 231
ACLSPECIAL= . 231

Options for a Client and Server Running on the Same UNIX Machine 232
NETCOMP= . 232
UNIXDOMAIN= . 233

Options for Other Functions . 233
BYSORT= . 233
DISCONNECT= . 235
ENDOBS= . 236
LIBGEN= . 236
LOCKING= . 239
STARTOBS= . 240
TEMP= . 241
TRUNCWARN= . 241
WORKPATH= . 242

221

Introduction
All SAS users who want to use LIBNAME access to an SPD Server should read this chapter.

This chapter contains reference information for the SPD Server LIBNAME options. The
options are grouped by the function or purpose of their default value. You can change the
default, thereby controlling how they function in different data situations. The examples
for using the options assume that a LIBNAME statement to access the SPD Server engine
SASSPDS has previously been issued.

When using the options, remember that if a table option is used subsequent to a LIBNAME
option of the same name, the value of the table option or macro variable takes precedence.

Options to Locate an SPD Server Host

HOST=

Summary
Specifies an SPD Server machine by node name or IP address, and locates the name server
using the SERVICE value.

Syntax
HOST=hostname <SERVICE=service>

Arguments

hostname
is the node name of the SPD Server machine or an IP address.

service
is the name of a service or the port number for the SPD Server's name server.

Description
This option provides the node name of an SPD Server host machine and locates the port
number of the SPD Server's name server. When there is no SERVICE= specification, SPD
Server checks the client's /etc/services file (or its equivalent file) for SPDSNAME –
a reserved name for the SPD Server's name server.

Examples
Specify the server machine SAMSON and use the default named service SPDSNAME to
obtain the port number of the SPD Server name server.

 LIBNAME mylib sasspds 'spdsdata'
 host='samson';

Specify the server machine SAMSON and provide the port number of the SPD Server name
server.

222 Chapter 13 • SPD Server LIBNAME Options

 LIBNAME mylib sasspds 'spdsdata'
 host='samson'
 service='5002';

Using a Macro Variable to Specify the SPD Server Host
Assign the macro variable SPDSHOST to the SPD Server host SAMSON so that the
LIBNAME statement is not required to SAMSON.

 %let spdshost=samson;
 LIBNAME mylib sasspds 'spdsdata'
 user='yourid'
 password='swami';

SERVER=

Summary
Specifies an SPD Server host machine by node name, and locates the network address (port
number) of the SPD Server name server.

Syntax
SERVER=hostname.servname

Arguments

hostname
is the node name of the SPD Server host machine.

servname
is the name of a service or the port number of the SPD Server name server.

Examples
Specify the SPD Server host machine SAMSON and use the default named service
SPDSNAME to obtain the port number of the SPD Server name server.

 LIBNAME mylib sasspds 'spdsdata'
 server=samson.spdsname;

Specify the SPD Server host machine SAMSON and give the port address of the SPD
Server name server.

 LIBNAME mylib sasspds 'spdsdata'
 server=samson.5002;

SERVER= 223

Options to Identify the SPD Server Client

ACLGRP=

Summary
Names an ACL group which has been previously assigned to the SPD Server user ID. The
SPD Server system administrator sets up ACL groups and can assign a single user to up to
five ACL groups.

Syntax
ACLGRP=aclgroup

Arguments

aclgroup
Names the ACL group that the SPD Server Administrator assigned to your SPD Server
user ID. (You can be assigned up to five ACL groups.)

Example
Specify the ACL group PROD.

LIBNAME mylib sasspds 'spdsdata'
 user='receiver'
 aclgrp='PROD'
 prompt=yes;

Note: Password values are case sensitive. If the SPD Server administrator assigns a
lowercase password value, you must enter the password value in lowercase.

CHNGPASS=

Summary
Specifies whether to prompt an SPD Server user for a change of password. If ACL file
security is enabled, SPD Server validates the old/new password against its user ID table.

Syntax
CHNGPASS= YES | NO

Arguments

YES
prompts for a change of the SPD Server user password.

NO
suppresses a prompt for a change of the SPD Server user password. This is the default.

Example
Specify a prompt to change the password of SPD Server user TEMPHIRE.

224 Chapter 13 • SPD Server LIBNAME Options

LIBNAME mylib sasspds 'spdsdata'
 user='temphire'
 password='whizbang'
 chngpass=yes;

Note: If you are using LDAP user authentication, and create a user connection that uses
the CHNGPASS= LIBNAME option, the user password will not be changed. If you
are using LDAP authentication and want to change a user password, follow the
operating system procedures to change a user password, and check with your LDAP
server administrator to en sure that the LDAP database also records password changes.

NEWPASSWORD= or NEWPASSWD=

Summary
Specifies a new password for an SPD Server client user. If ACL file security is enabled,
SPD Server validates the old or new password against its user ID table.

Syntax

NEWPASSWORD= newpassword
NEWPASSWD= newpassword

Arguments

newpassword
is the new password of an SPD Server client user. The password, visible in a SAS
program, is encrypted in the SAS log file.

Example
Specify a new password rambo for SPD Server client user RECEIVER.

LIBNAME mylib sasspds 'spdsdata'
 user='receiver'
 password='whizbang'
 newpassword='rambo';

Note: If you are using LDAP user authentication, and create a user connection that uses
the NEWPASSWORD= LIBNAME option, the user password will not be changed. If
you are using LDAP authentication and want to change a user password, follow the
operating system procedures to change a user password, and check with your LDAP
server administrator to en sure that the LDAP database also records password changes.

PASSWORD= or PASSWD=

Summary
Specifies the SPD Server password of an SPD Server client user. If ACL file security is
enabled, SPD Server validates the password against its user ID table.

PASSWORD= or PASSWD= 225

Syntax

PASSWORD='password'
PASSWD='password'

Arguments

'password'
is the case-sensitive password of an SPD Server client user. The password, visible in
a SAS program, is encrypted in the SAS log file.

Example
Specify the password whizbang for SPD Server client user SPDSUSER.

LIBNAME mylib sasspds 'spdsdata'
 server=kaboom.5200
 user='spdsuser'
 password='whizbang';

Options
SPD Server 4.5 supports the integration of the SAS 9.2 PROC PWENCODE. This permits
scripts to be generated that do not explicitly contain secure passwords that could easily be
used without authorization. You must run PROC PWENCODE in Base SAS to enable the
usage of script password encoding within SPD Server 4.5. See the Base SAS documentation
for detailed instruction on running PROC PWENCODE for use with SPD Server 4.5.

The example below shows an SPD Server LIBNAME statement that uses the password
encoding option:

LIBNAME mylib sasspds 'spdsdata'
 server=kaboom.5200
 user='spdsuser'
 password='{sas001}c3BkczEyMw==';

PROMPT=

Summary
Specifies whether to prompt an SPD Server user for a password. If ACL file security is
enabled, SPD Server validates the password against its user ID table.

Syntax
PROMPT= YES | NO

Arguments

YES
prompts an SPD Server user for a password.

NO
suppresses a prompt for a password.

Example
Configure SPD Server to prompt SPD Server user BIGWHIG for a password.

226 Chapter 13 • SPD Server LIBNAME Options

LIBNAME mylib sasspds 'spdsdata'
 user='bigwhig'
 prompt=yes;

USER=

Summary
Specifies the ID of an SPD Server client user. If ACL file security is enabled, SPD Server
validates the ID against its user ID table. (The SPD Server user ID defaults to the SAS
process user ID if it is available, that is, when the client is not a Windows client.)

Syntax
USER='username'

Arguments

'username'
is the ID of an SPD Server client user.

Example
Specify the identifier SPDSUSER for an SPD Server client user.

LIBNAME mylib sasspds 'spdsdata'
 user='spdsuser'
 prompt=yes;

Options to Specify Implicit SQL Pass-Through

IP=YES

Summary
This is an abbreviated specification which replaces the more verbose PASSTHRU= option.
The IP=YES option draws on information specified in the LIBNAME declaration. The
IP=YES option specifies an implicit SQL pass-through connection for a single user to a
specified domain and server during a given SPD Server session.

Syntax

LIBNAME BOAF sasspds 'BOAF'
 server=kaboom.5200
 user='rcnye'
 password='*******'
 IP=YES ;

IP=YES 227

PASSTHRU=

Summary
This older and more verbose specification for IP=YES is still supported. It specifies an
implicit SQL pass-through connection for a single user to a specified domain and server
during a given SPD Server session.

Syntax

PASSTHRU=<'dbq=<SAS-data-library>
 <SPD Server-options>
 user=<'UserID'>
 password=<'password'> ;

Arguments

DBQ=libname-domain (required)
Specifies the primary SPD Server LIBNAME domain for the SQL pass-through
connection. The name that you specify is identical to the LIBNAME domain name that
you used when making a SAS LIBNAME assignment to sasspds. Use single or double
quotes around the specified value.

SPD Server-options
one or more SPD Server options.

USER=SPD Server user ID (required on Windows, but not UNIX)
Specifies an SPD Server user ID in order to access an SPD Server SQL Server. Use
single or double quotes around the specified value.

PASSWORD=password (required, or use PROMPT=YES, unless USER='anonymou')
Specifies an SPD Server user ID password to access an SPD Server. (This value is case
sensitive.)

Example:
The following is a LIBNAME statement that specifies the implicit SQL pass-through option
for user rcnye, using a libref to connect to the domain named 'BOAF' on the server named
'Kaboom' on port 5200:

LIBNAME BOAF sasspds 'BOAF'
 server=kaboom.5200
 user='rcnye'
 password='*******'

 PASSTHRU='
 dbq="BOAF"
 server=kaboom.5200
 user="rcnye"
 password="*******"' ;

Options
SPD Server 4.5 supports the integration of the SAS 9.2 PROC PWENCODE. This permits
scripts to be generated that do not explicitly contain secure passwords that could easily be
used without authorization. You must run PROC PWENCODE in Base SAS to enable the

228 Chapter 13 • SPD Server LIBNAME Options

usage of script password encoding within SPD Server 4.5. See the Base SAS documentation
for detailed instruction on running PROC PWENCODE with SPD Server 4.5.

The example below shows an SPD Server LIBNAME statement that uses the password
encoding option:

LIBNAME mylib sasspds 'spdsdata'
 server=kaboom.5200
 user='spdsuser'
 password='{sas001}c3BkczEyMw=='

 PASSTHRU='
 dbq="spdsdata"
 server=kaboom.5200
 user="spdsuser"
 password="{sas001}c3BkczEyMw=="';

Options to Specify File Paths for Table Storage
SPD Server strongly recommends that your site administrator defines SPD Server domain
options in the SPD Server libnames.parm configuration file. However, in unusual cases,
such as the SPD Server administrator being temporarily unavailable, the following four
LIBNAME options can be issued by an SPD Server user to define domains and table file
storage paths.

CREATE=

Summary
Creates the primary directory for an SPD Server domain, if it does not already exist.

Syntax
CREATE=YES | NO

Arguments

YES
creates the primary directory if it does not already exist.

NO
fails the LIBNAME assignment if the primary directory does not already exist. This is
the default setting.

Description
An SPD Server administrator defines the primary directory for the SPD Server domain in
the LIBNAME parameter file. If CREATE= is set to YES, the software creates the directory
(primary file system) in the event that an SPD Server administrator forgets to create it.

CREATE= 229

DATAPATH=

Summary
The SPD Server administrator for your site should use options in the SPD Server
libnames.parm configuration file to define SPD Server domain options. However, if the
SPD Server is temporarily unavailable, the following LIBNAME option can be issued by
an SPD Server user to specify a list of initial or overflow paths to store data (.dpf) file
partitions for an SPD Server table.

Syntax
DATAPATH=('filesystem' 'filesystem'...)

Arguments

'filesystem'
is a directory path for UNIX or Windows.

Example
Create partitions as needed by cycling through the directories specified, DATAFLOW1
directory on DISK1 and DATAFLOW2 directory on DISK2.

LIBNAME mylib sasspds 'spdsdata'
 datapath=('/disk1/dataflow1'
 '/disk2/dataflow2');

INDEXPATH=

Summary
The SPD Server administrator for your site should use options in the SPD Server
libnames.parm configuration file to define SPD Server domain options. However, if the
SPD Server is temporarily unavailable, the following LIBNAME option can be issued by
an SPD Server user to specify a list of initial or overflow paths to store index (.hbx), (.idx),
and (.aux) file partitions associated with an SPD Server table.

Syntax
INDEXPATH=('filesystem' 'filesystem'...)

Arguments

'filesystem'
is a directory path for UNIX or Windows.

Example
Create index file partitions as needed using the directories specified, IDXFLOW1 directory
on DISK1 and IDXFLOW2 directory on DISK2.

LIBNAME mylib sasspds 'spdsdata'
 indexpath=('/disk1/idxflow1'
 '/disk2/idxflow2');

230 Chapter 13 • SPD Server LIBNAME Options

METAPATH=

Summary
The SPD Server administrator for your site should use options in the SPD Server
libnames.parm configuration file to define SPD Server domain options. However, if the
SPD Server is temporarily unavailable, the following LIBNAME option can be issued by
an SPD Server user to specify a list of overflow paths to store metadata (.mdf) file partitions
for an SPD Server table.

Syntax
METAPATH=('filesystem' 'filesystem'...)

Arguments

'filesystem'
is a directory path for UNIX or Windows.

Example
Create overflow metadata file partitions as needed using the directories specified,
METAFLOW1 directory on DISK1 and METAFLOW2 directory on DISK2.

LIBNAME mylib sasspds 'spdsdata'
 metapath=('/disk1/metaflow1'
 '/disk2/metaflow2');

Options for Access Control Lists (ACLs)

ACLSPECIAL=

Summary
Grants special access to SPD Server resources in the LIBNAME domain to an SPD Server
user. The SPD Server user must also be defined as 'special' by the SPD Server administrator.

Syntax
ACLSPECIAL=YES | NO

Arguments

YES
grants special access (read, write, alter, and control permission) to all SPD Server
resources in the domain.

NO
denies special access (read, write, alter, and control permission) to all SPD Server
resources in the domain.

Description
Grants special privileges to all SPD Server tables and associated indexes in the LIBNAME
domain. The special privileges, (read, write, alter, and control permissions), override

ACLSPECIAL= 231

normal ACL restrictions only if the SPD Server administrator defines the user as 'special'
in the user ID table.

Example
Grant special privileges to THEBOSS allowing him to read, write, alter, and control all
tables in the CONVERSION_AREA domain. (The SPD Server administrator has defined
THEBOSS as 'special'.)

LIBNAME mydatalib sasspds 'conversion_area'
 server=husky.5105
 user='theboss'
 prompt=yes
 aclspecial=yes ;

Options for a Client and Server Running on the
Same UNIX Machine

NETCOMP=

Summary
Compresses the data stream for an SPD Server network packet.

Syntax
NETCOMP=YES | NO

Arguments

YES
sends compressed data in an SPD Server network packet.

NO
sends uncompressed data in an SPD Server network packet.

Description
Normally, data compression for inter-process transfers is recommended. However, for a
client and server process on the same machine -- with UNIXDOMAIN=YES -- turning off
compression can improve performance. You should examine NETCOMP together with
UNIXDOMAIN and NETPACKSIZE for both client and server on the same machine.

Example
Specify to turn off compression of the data stream.

LIBNAME mylib sasspds 'test_area'
 netcomp=no;

232 Chapter 13 • SPD Server LIBNAME Options

UNIXDOMAIN=

Summary
Specifies the use of UNIX domain sockets for data communication between an SPD Server
and client process running on the same machine. (Not available in Windows.)

Syntax
UNIXDOMAIN=YES | NO

Arguments

YES
uses AF_UNIX domain sockets for client/server data communication.

NO
uses the default AF_INET domain sockets for client/server data communication.

Description
When UNIXDOMAIN=YES, SPD Server uses AF_UNIX domain sockets rather than the
customary AF_INET domain sockets for data communication. AF_UNIX sockets typically
are much faster and greatly enhance performance but are possible only for cases where
client and server are running on the same machine. You should also examine NETCOMP
and NETPACKSIZE parameters for possible use to enhance performance in conjunction
with UNIXDOMAIN.

Example
You find that using the AF_UNIX sockets for your session that is running on the same
machine as the SPD Server is not faster. Configure SPD Server to use the default AF_INET
sockets instead.

LIBNAME mylib sasspds 'test_area'
 unixdomain=no;

Note: If you are running SPD Server 4.5 or later, and the client and server are both running
UNIX, SPD Server automatically detects UNIX domain sockets. In such cases, it is not
necessary to specify the UNIXDOMAIN parameter for optimum performance.

Options for Other Functions

BYSORT=

Summary
Specifies whether to use implicit automatic SPD Server sorts on BY clauses.

Syntax
BYSORT=YES | NO

Arguments

BYSORT= 233

YES
performs an implicit sort for a BY clause. This is the default.

NO
does not perform an implicit sort for a BY clause.

Description
Where Base SAS software requires an explicit sort statement (PROC SORT) to sort SAS
data, by default, SPD Server performs a sort whenever it encounters a BY clause. If the
value of the BYSORT= option is NO, the SPD Server software performs the same as the
Base SAS engine.

Example 1
Specify to turn off implicit SPD Server sorts for the session.

LIBNAME mydatalib sasspds 'conversion_area'
 server=husky.5105
 user='siteusr1'
 prompt=yes
 bysort=no ;

data mydatalib.old_autos;
 input
 year $4.
 @6 manufacturer $12.
 model $10.
 body_style $5.
 engine_liters
 @39 transmission_type $1.
 @41 exterior_color $10.
 options $10.
 mileage condition ;
 datalines ;

1971 Buick Skylark conv 5.8 A yellow 00000001 143000 2
1982 Ford Fiesta hatch 1.2 M silver 00000001 70000 3
1975 Lancia Beta 2door 1.8 M dk blue 00000010 80000 4
1966 Oldsmobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Mustang sptrf 7.1 M red 00000111 125000 3
;

PROC PRINT data=mydatalib.old_autos;
 by model;
run;

In this program, the PRINT procedure will return an error message because the table
MYDATALIB.OLD_AUTOS is not sorted.

Example 2
Turn off implicit SPD Server sorts with the LIBNAME option, but specify a server sort for
the table MYDATALIB.OLD_AUTOS using the BYSORT table option.

PROC PRINT data=mydatalib.old_autos
 (bysort=yes);

234 Chapter 13 • SPD Server LIBNAME Options

 by model;
run;

DISCONNECT=

Summary
Specifies when to close the network connections between the SAS client and the SPD
Server. This can be done either when all SPD Server librefs are cleared or when the SAS
client session ends.

Syntax
DISCONNECT=YES | NO

Arguments

YES
closes network connections between the SAS client and SPD Server when all SPD
Server librefs are cleared.

NO
closes network connections between the SAS client and SPD Server only when the
SAS session ends. This is the default.

Description
When the DISCONNECT= option is NO, the network connections between the SAS client
and the SPD Server are closed when the current SAS session ends. When network
connections are active, the user can issue successive librefs to the same SPD Server more
efficiently.

When the DISCONNECT= option is YES, the server connection closes after all SPD Server
librefs are cleared. Assuming that a user does not issue a subsequent LIBNAME statement,
closing the connection frees resources. For example, a SAS job or program accesses an
SPD Server table at the beginning of a job but performs remaining processing locally. In
this situation, closing the network connection after clearing all librefs frees both SAS and
SPD Server file descriptors, machine memory, and TCP/IP resources.

Note: Unless this option is used with the initial LIBNAME engine statement for the SPD
Server session, it has no effect.

Example
Specify for SPD Server to close the network connections after you clear your librefs, rather
than at the end of your SAS session.

LIBNAME spud sasspds 'potatoes'
 disconnect=yes
 server=husky.5105
 user='siteusr1'
 prompt=yes ;

data local;
 set spud.idaho ;
run ;

/* Clear the libref SPUD so SPD Server will close the server */

DISCONNECT= 235

/* connection - Do the rest of the SAS processing locally */

LIBNAME spud clear;

/* The rest of the program follows */

ENDOBS=

Summary
Specifies the end row (observation) number in a user-defined range for processing.

Syntax
ENDOBS=n

Arguments

n
is the number of the end row.

Description
By default, SPD Server processes the entire table unless the user specifies a range of rows
with the STARTOBS= and ENDOBS= options. If the STARTOBS= option is used without
the ENDOBS= option, the implied value of ENDOBS= is the end of the table. When both
options are used together, the value of ENDOBS= must be greater than STARTOBS=.

In contrast to the Base SAS software options FIRSTOBS= and OBS=, the STARTOBS=
and ENDOBS= SPD Server options can be used for WHERE clause processing in addition
to table input operations.

Example 1
Specify for SPD Server to process only row numbers (observations) 200 - 500 while the
LIBNAME is active.

LIBNAME mydatalib sasspds 'conversion_area'
 server=husky.5105
 user='siteusr1'
 prompt=yes
 startobs=200
 endobs=500;

LIBGEN=

Summary
The LIBGEN=YES option is used in explicit SQL connection statements. When you set
LIBGEN= yes, SPD Server is configured to generate additional domain connections that
enable you to perform SQL joins across different SPD Server domains.

Syntax
LIBGEN=YES

236 Chapter 13 • SPD Server LIBNAME Options

Description
You should specify the LIBGEN=YES option in the explicit SQL LIBNAME connection.
You cannot specify the LIBGEN=YES option setting without first creating a LIBNAME
connections to the domain.

Examples
The two code examples that follow both perform the same task. Both examples use explicit
SQL to join two tables from different domains. The first example uses execute connection
statements to facilitate joining the tables from separate domains. The second example uses
the LIBGEN=YES option to perform the same join without having to issue the extra execute
connection statements.

SQL Without LIBGEN=YES

/* The example code without LIBGEN=YES */
/* must issue execute connection */
/* statements to access tables that */
/* reside in two different domains. */

LIBNAME path1 sasspds 'path1'
 server=boxer.5140
 ip=YES
 user='anonymous' ;

LIBNAME path2 sasspds 'path2'
 server=boxer.5140
 ip=YES
 user='anonymous' ;

DATA path1.table1
 (keep=i table1)
path2.table2
 (keep=i table2) ;

table1 = 'table1' ;
table2 = 'table2' ;

do i = 1 to 10 ;
 output ;
 end ;
run ;

PROC SQL ;
CONNECT to sasspds (
 dbq='Path1'
 server=boxer.5140
 user='anonymous') ;

/* Without LIBGEN=YES, you must make */
/* two execute connect statements. */

execute (LIBREF path1 engopt="dbq='path1'")
 by sasspds;
execute (LIBREF path2 engopt="dbq='path2'")
 by sasspds;

LIBGEN= 237

execute
 (create table table4 as
 select *
 from
 path1.table1 a,
 path2.table2 b
 where a.i = b.i)
 by sasspds ;

disconnect from sasspds ;

quit ;

SQL With LIBGEN=YES

/* The example code that uses LIBGEN=YES */
/* can join the tables from two different */
/* domains in a more simple manner. */

LIBNAME path1 sasspds 'path1'
 server=boxer.5140
 LIBGEN=YES
 ip=YES
 user='anonymous' ;

LIBNAME path2 sasspds 'path2'
 server=boxer.5140
 LIBGEN=YES
 ip=YES
 user='anonymous' ;

DATA path1.table1
 (keep=i table1)
path2.table2
 (keep=i table2) ;

table1 = 'table1' ;
table2 = 'table2' ;

do i = 1 to 10 ;
 output ;
 end ;
run ;

PROC SQL ;
CONNECT to sasspds (
 dbq='Path1'
 server=boxer.5140
 user='anonymous') ;

/* Syntax used with LIBGEN=YES option */

execute
 (create table table4 as

238 Chapter 13 • SPD Server LIBNAME Options

 select *
 from
 path1.table1 a,
 path2.table2 b
 where a.i = b.i)
by sasspds ;

disconnect from sasspds ;

quit ;

LOCKING=

Overview of Record-Level Locking
Record-level locking is an SPD Server feature that allows multiple users concurrent read
and write access to SPD Server tables while maintaining the integrity of the table contents.
When record-level locking is enabled, users can insert, append, delete, and update the
contents of an SPD Server table while performing concurrent reads on the table. When a
client enables record-level locking, the client connects to the single SPD Server record-
level locking proxy process. When record-level locking is not enabled, clients connect to
separate SPD Server user proxy processes for each LIBNAME connection to a domain.

Record-Level Locking Details
Record-level locking is enabled when an SPD Server client specifies the LOCKING=YES
LIBNAME option to the client's LIBNAME connection statement. All subsequent
operations on the given LIBNAME domain will use record-level locking. The primary use
of record-level locking is to allow multiple clients or parallel operations from the same
client to have both read and write access to the same SPD Server table resource. If record-
level locking is not enabled, then any write operation (update, append, insert, or delete) to
an SPD Server table requires exclusive access to the resource, or else a member lock failure
error occurs. Operations that affect metadata, such as creating or deleting indexes, renaming
variables, and renaming tables require exclusive access to the resource, whether record-
level locking is enabled or not. These types of operations will report a member lock failure
error when with record-level locking is enabled, but exclusive access is not available.

Record-level locking must be enabled in SPD Server before a SAS client can use the
CNTLEV=REC table option in their SAS program to access SPD Server tables. Record-
level locking enforces SAS style record-level integrity across multiple clients, so clients
are guaranteed that an observation will not change during a multi-phased read or write
operation on the specified observation. Record-level locking will allow multiple concurrent
update access to a single SPD Server table, but it will deny concurrent access to the specified
observation within the table.

When an SPD Server client establishes a LIBNAME connection to a domain with record-
level locking enabled, it connects using the single record-level locking proxy process. There
is only one record-level locking proxy process per SPD Server. All SPD Server clients that
use record-level locking connections are processed through the record-level locking proxy
process. If there are a large number of record-level locking connections, there might be
some contention for process resources between the clients. The record-level locking proxy
process is a single point of failure for all these connections, so care should be taken when
you use record-level locking to update critical data.

When you append or insert new rows into a table with defined indexes, the table updates
are processed more sequentially through the record-level locking proxy process than they
would be through the SPD user proxy processes. The performance of record-level locking

LOCKING= 239

will probably be less than the performance that can be obtained without record-level locking
enabled for these types of operations. The standard member-level locking that is used in
SPD user proxy processes allows for more parallel processing when doing table append or
insert operations.

Record-level locking is not supported for operations on tables that use dynamic clusters.

Syntax
LOCKING=YES|NO

Default:NO

Arguments

YES
enables record sharing mode.

NO
disables record sharing mode.

Example

 LIBNAME testrl sasspds 'tmp'
 server=serverNode.port
 user='anonymous'
 locking=YES ;

STARTOBS=

Summary
Specifies the start row (observation) number in a user-defined range for processing.

Syntax
STARTOBS=n

Arguments

n
is the number of the start row.

Description
By default, SPD Server processes the entire table unless the user specifies a range of rows
with the options, STARTOBS= and ENDOBS=. If the ENDOBS= option is used without
the STARTOBS= option, the implied value of STARTOBS= is 1. When both options are
used together, the value of STARTOBS= must be less than the value of ENDOBS.=

In contrast to the Base SAS software options FIRSTOBS= and OBS=, the STARTOBS=
and ENDOBS= SPD Server options can be used for WHERE clause processing in addition
to table input operations.

Example
Specify for SPD Server to process only row numbers (observations) 200–500 while the
LIBNAME is active.

LIBNAME mydatalib sasspds 'conversion_area'

240 Chapter 13 • SPD Server LIBNAME Options

 server=husky.5105
 user='siteusr1'
 prompt=yes
 startobs=200
 endobs=500;

TEMP=

Summary
Controls the creation of a temporary LIBNAME domain for this LIBNAME assignment.

Syntax
TEMP=YES|NO

Default:NO

Arguments

YES
creates a temporary LIBNAME domain for the LIBNAME assignment.

NO
does not create a temporary LIBNAME domain.

Description
Use this option to create temporary LIBNAME domains that exist for the duration of the
LIBNAME assignment. The TEMP (temporary) domains are analogous to SAS WORK
libraries.

To create a temporary LIBNAME domain, use TEMP=YES. Any data objects, tables,
catalogs, or utility files that are created in the TEMP=YES temporary domain are
automatically deleted when you end the SAS session. This functions similarly to a SAS
WORK library. (Note: The temporary domain is created as a subdirectory of the directory
specified as the library domain.)

Example 1
Create a LIBNAME domain to use for temporary storage during your SAS session.

LIBNAME mydatalib sasspds 'conversion_area'
 server=kaboom.5191
 user='siteusr1'
 prompt=yes
 temp=yes ;

TRUNCWARN=

Summary
Suppresses hard failure on NLS transcoding overflow and character mapping errors.

Syntax
TRUNCWARN=YES|NO

TRUNCWARN= 241

Default:NO

Description
When using the TRUNCWARN=YES LIBNAME option, data integrity might be
compromised because significant characters can be lost in this configuration. The default
setting is NO, which causes hard read/write stops when transcode overflow or mapping
errors are encountered. When TRUNCWARN=YES, and an overflow or character
mapping error occurs, a warning is posted to the SAS log at data set close time if overflow
occurs, but the data overflow is lost.

WORKPATH=

Summary
I/O contention can occur when many SPD Server users or SPD Server jobs perform heavy
processing that uses the same workpath. The WORKPATH= option permits users to specify
an alternate workpath that utility files (such as index builds and sorting files) can use.
Specifying an alternate workpath can relieve I/O contention issues when other users are
running heavy processing jobs at the same time.

A properly configured workpath directs I/O from utility operations to a separate disk.
Mapping the utility file work to a separate disk using the WORKPATH= option avoids
conflict with other jobs that use a default workpath that is specified in the spdsserv.parm
configuration file.

Using the optional WORKPATH= specification to direct utility file operations to a separate
disk increases the overall I/O through-put for the utility files and speeds up the server
performance as well.

Syntax
WORKPATH=('path-specification') ;

Example
Two SPD Server power users perform heavy index creation and are creating heavy I/O
contention on the default workpath that is defined in the spdsserv.parm configuration file:

workpath=('workspace1')

Both users override the default workpath by using the alternate WORKPATH=
specification when issuing the LIBNAME statements in their jobs:

User 1 LIBNAME statement:

LIBNAME domain-name sasspds "domain-name"
 server=host-name.port-number
 user='user1'

workpath=('/bigdisk/spdsmgr/workpath1') ;

User 2 LIBNAME statement:

LIBNAME domain-name sasspds "domain-name"
 server=host-name.port-number
 user='user2'

workpath=('/bigdisk/spdsmgr/workpath2') ;

242 Chapter 13 • SPD Server LIBNAME Options

All SPD Server jobs by other users continue to use the default workpath specification that
is declared in spdsserv.parm

The libnames.parm configuration file also accepts alternate WORKPATH= specifications
for each domain.

WORKPATH= 243

244 Chapter 13 • SPD Server LIBNAME Options

Chapter 14
SPD Server Table Options

Introduction . 245

Option for Compatibility with Base SAS Software . 246
SYNCADD= . 246

Options That Affect Disk Space . 247
ASYNCINDEX= . 247
COMPRESS= . 248
PARTSIZE= . 248

Options to Enhance Performance . 250
BYNOEQUALS= . 250
IOBLOCKSIZE= . 250
NETPACKSIZE= . 251
SEGSIZE= . 252

Option to Test Performance . 252
NOINDEX= . 252

Options for WHERE Clause Evaluations . 254
MINMAXVARLIST= . 254
THREADNUM= . 256
WHERENOINDEX= . 257

Options for Other Functions . 258
BYSORT= . 258
ENDOBS= . 260
STARTOBS= . 261
UNIQUESAVE= . 262
VERBOSE= . 266

Options for Security . 267
ENCRYPT= . 267

Introduction
All SAS users who use LIBNAME access to SAS Scalable Performance Data (SPD) Server
should read this chapter. Most table options also work in SQL pass-through statements.

This chapter presents reference information for the SPD Server table options. To specify
a table option with LIBNAME access, place the option value in parentheses after the table
name. The option value then specifies processing that applies only to that table. To specify
a table option with pass-through access, place the option value in brackets after the table

245

name. The option value then specifies processing that applies only to that table. The SPD
Server table options that follow are grouped by the function of their default value.

When using the options in this chapter, remember that if a table option is used subsequent
to a LIBNAME option or macro variable, the value of the table option takes precedence.

Option for Compatibility with Base SAS Software

SYNCADD=
Specifies when appending to a table whether to apply a single or multiple rows at a time.

Syntax

SYNCADD=YES|NO

Default

NO

Corresponding Macro Variable

SPDSSADD

Related Table Option

UNIQUESAVE=

Arguments

YES
imitates the behavior of the Base SAS engine, applying a single row at a time
(synchronously).

NO
appends multiple rows at a time (asynchronously).

Description

When SYNCADD= is set to YES, processing performance becomes slower. Use this setting
only in order to force the server's append processing to be compatible with Base SAS
software processing. That is, when the server encounters a row with a non-unique value,
to cancel the append operation, back out the transactions just added, and leave the original
table on disk.

Example

In this example, when executing the first INSERT statement, PROC SQL permits insertion
of the values 'rollback1' and 'rollback2' because the row additions to table A are performed
asynchronously. PROC SQL does not get the true completion status at the time it adds a
row.

When executing the second INSERT statement, PROC SQL performs a rollback on the
INSERT, upon encountering the Add error on 'nonunique', and deletes the rows 'rollback3'
and 'rollback4'.

data a;
 input z $ 1-20 x y;
 list;

 datalines;

246 Chapter 14 • SPD Server Table Options

one 1 10
two 2 20
three 3 30
four 4 40
five 5 50
;

PROC SQL sortseq=ascii exec noerrorstop;
create unique index comp on a (x, y);
insert into a
 values('rollback1', -80, -80)
 values('rollback2',-90, -90)
 values('nonunique', 2, 20);

insert into a(syncadd=yes)
 set z='rollback3', x=-60, y=-60
 set z='rollback4', x=-70, y=-70
 set z='nonunique', x=2, y=20;
 quit;

Options That Affect Disk Space

ASYNCINDEX=
Specifies when creating multiple indexes on an SPD Server table whether to create the
indexes in parallel.

Syntax

ASYNCINDEX=YES|NO

Default

NO

Corresponding Macro Variable

SPDSIASY

Arguments

YES
creates the indexes in parallel.

NO
creates a single index at a time.

Description

SPD Server can create multiple indexes for a table at the same time. To do this, it launches
a single thread for each index created, and then processes the threads simultaneously.
Although creating indexes in parallel is much faster, the default for this option is NO. The
reason is because parallel creation requires additional sort work space which might not be
available.

For a complete description of the benefits and tradeoffs of creating multiple indexes in
parallel, see“SPDSIASY=” on page 215 in the SAS SPD Server 4.5: User's Guide.

Example

ASYNCINDEX= 247

Since the disk work space required for parallel index creation is available, specify for SPD
Server to create, in parallel, the X, Y, and COMP indexes for table A.

PROC DATASETS lib=mydatalib;
 modify a(asyncindex=yes);
 index create x;
 index create y;
 index create comp=(x y);
 quit;

COMPRESS=
Compresses SPD Server tables on disk.

Syntax

COMPRESS=YES|NO

Default

NO

Use in Conjunction with Table Option

IOBLOCKSIZE=

Corresponding Macro Variable

SPDSDCMP

Arguments

YES
performs the run-length compression algorithm SPDSRLLC.

NO
performs no table compression.

Description

When COMPRESS= is assigned YES, SPD Server compresses newly created tables by
'blocks' based on the algorithm specified. To control the amount of compression, use the
table option IOBLOCKSIZE=. This option specifies the number of rows that you want to
store in the block.

Note: Once a compressed table is created, you cannot change its block size. To resize the
block, you must PROC COPY the table to a new table, setting IOBLOCKSIZE= to the
block size desired for the output table.

PARTSIZE=
Specifies the size of an SPD Server table partition.

Syntax

PARTSIZE=n

Default

16 Megabytes

Corresponding Macro Variable

248 Chapter 14 • SPD Server Table Options

SPDSSIZE=

Affected by LIBNAME option

DATAPATH=

Arguments

n
is the size of the partition in megabytes.

Description

Specifying PARTSIZE= forces the software to partition (split) SPD Server tables at the
given size. The actual size is computed to accommodate the largest number of rows that
will fit in the specified size of n Mbytes.

Use this option to improve performance of WHERE Clause evaluation on non-indexed
table columns and on SQL GROUP_BY processing. By splitting the data portion of a
Scalable Platform Data Server table at fixed-sized intervals, the software can introduce a
high degree of scalability for these operations. The reason: it can launch threads in parallel
to perform the evaluation on different partitions of the table, without the threat of file access
contention between the threads. There is, however, a price for the table splits: an increased
number of files, which are required to store the rows of the table.

Ultimately, scalability limits using PARTSIZE= depend on how you structure
DATAPATH=, a LIBNAME option discussed in the documentation on “SPD Server
LIBNAME Options ” on page 221. Specifically, the limits depend on how you configure
and spread the DATAPATH= file systems across striped volumes. You should spread each
individual volume's striping configuration across multiple disk controllers/SCSI channels
in the disk storage array. The goal for the configuration is, at the hardware level, to
maximize parallelism during data retrieval.

The PARTSIZE= specification is limited by MINPARTSIZE=, an SPD Server parameter
maintained by the SPD Server administrator. MINPARTSIZE= ensures that an over-
zealous SAS user does not create arbitrarily small partitions, thereby generating a large
number of files. The default for MINPARTSIZE= is 16 Mbytes and probably should not
be lowered much beyond this value.

Note: The PARTSIZE value for a table cannot be changed after a table is created. To
change the PARTSIZE, you must PROC COPY the table and use a different PARTSIZE
option setting on the new (output) table.

Example

Using PROC SQL, extract a set of rows from an existing table to create a non-indexed table
with a partition size of 32 Mbytes in a SAS job:

PROC SQL;
create table SPDSCEN.HR80SPDS(partsize=32)
 as select
 state,
 age,
 sex,
 hour89,
 industry,
 occup
 from SPDSCEN.PRECS
 where hour89 > 40;
quit;

PARTSIZE= 249

Options to Enhance Performance

BYNOEQUALS=
Specifies the output order of table rows with identical values for the BY column.

Syntax

BYNOEQUALS=YES | NO

Arguments

YES
does not guarantee the output order of table rows with identical values in a BY clause.

NO
guarantees the output order of table rows with identical values in a BY clause will be
the relative table position of the rows from the input table. This is the default.

Example

Specify for SPD Server in the ensuing BY-column operation to output rows with identical
values in the key column randomly.

data sport.racquets(index=(string));
 input
 raqname $20.
 @22 weight
 @28 balance $2.
 @32 flex
 @36 gripsize
 @42 string $3.
 @47 price
 @55 instock;
 datalines;
Solo Junior 10.1 N 2 3.75 syn 50.00 6
Solo Lobber 11.3 N 10 5.5 syn 160.00 1
Solo Queensize 10.9 HH 6 5.0 syn 130.00 3
Solo Kingsize 13.1 HH 5 5.6 syn 140.00 3
;

data sport.racqbal(bynoequal=yes);
 set sport.racquets;
 by balance;
run;

IOBLOCKSIZE=
Specifies the number of rows in a block to be stored in or read from an SPD Server table.

Syntax

IOBLOCKSIZE=n

Default

250 Chapter 14 • SPD Server Table Options

4096

Use in Conjunction with Macro Variable “SPDSDCMP=” on page 214 or Table Options
COMPRESS= or ENCRYPT= .

Arguments

n
is the size of the block.

Description

The software reads and stores a server table in blocks. IOBLOCKSIZE= is useful on
compressed or encrypted tables. SPD Server software does not use IOBLOCKSIZE= on
noncompressed or nonencrypted tables.

For tables that you compress or encrypt, using either the option COMPRESS= or the macro
variable SPDSDCMP=, the IOBLOCKSIZE= specification determines the number of rows
to include in the block. The specification applies to block compression as well as data I/O
to and from disk. The IOBLOCKSIZE= value affects the table's organization on disk.

When using SPD Server table compression or encryption, specify an IOBLOCKSIZE=
value that complements how the data is to be accessed, sequentially or randomly. Sequential
access or operations requiring full table scans favor a large block size, for example 64K.
In contrast, random access favors a smaller block size, for example 8K.

Example

A huge company mailing list is processed sequentially. Specify a block size for
compression that is optimal for sequential access.

/* IOblocksize set to 64K */
data sport.maillist(ioblocksize=65536 compress=yes);
 input name $ 1-20
 address $ 21-57
 phoneno $ 58-69
 sex $71;

 datalines;

Douglas, Mike 3256 Main St., Cary, NC 27511 919-444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham, NC 27707 919-324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwell, Jack 567 Scott Ln., Chapel Hill, NC 27514 919-533-3845 M
Clark, John 9 Church St., Durham, NC 27705 919-324-0390 M
;
run;

NETPACKSIZE=
Specifies the size of the SPD Server network data packet.

Syntax

NETPACKSIZE=size-of-packet

Arguments

size-of-packet
is the size of the network packet in bytes.

NETPACKSIZE= 251

Description

This option controls the size of the buffer used for data transfer between SPD Server and
a SAS client. The default is 32K bytes. The buffer size is relative to the size of a table row.
It cannot be less than the size of a single row. Packet size must be equal to some multiple
of the table rows. If it is not, SPD Server rounds up the size specified. For example, if the
packet buffer size is 4096 bytes and the row size is 3072, the software rounds up the buffer
size to 6144.

Select a packet size to complement the bandwidth of the network it must travel through.
An optimum size will flow the data continuously without significant pauses between
packets.

Example

Create a 12K buffer in the memory of the server to send three rows from MYTABLE in
each network packet. (The row size in MYTABLE is 4K.)

data mylib.mytable (netpacksize=12288);

SEGSIZE=
Specifies the size of the segment for an index file associated with an SPD Server table.

Syntax

SEGSIZE=number

Arguments

number
is the number of table rows to include in the index segment.

Description

The minimum SEGSIZE= value is 1024 table rows. The default value is 8192 table rows.
The size of the index segment corresponds to the structure of the table and cannot be
changed after the table is created.

Example

Specify a segment size of 64K for MYLIB.MYTABLE.

data mylib.mytable (segsize=65536);

Note: Tests show that increasing the size of the segment does not significantly increase
performance.

Option to Test Performance

NOINDEX=
Specifies whether to use the table's indexes when processing WHERE Clauses.

Syntax

NOINDEX=YES|NO

Default

NO

252 Chapter 14 • SPD Server Table Options

Arguments

YES
ignores indexes when processing WHERE Clauses.

NO
uses indexes when processing WHERE Clauses.

Description

Set NOINDEX= to YES to test the effect of indexes on performance or for specific
processing. Do not use YES routinely for normal processing.

Example

We created an index for the SEX column but decide to test whether it is necessary for our
PROC PRINT processing. Specify for the server not to use the index.

data sport.maillist;
 input
 name $ 1-20
 address $ 21-57
 phoneno $ 58-69
 sex $71;

 datalines;

Douglas, Mike 3256 Main St., Cary, NC 27511 919-444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham, NC 27707 919-324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwell, Jack 567 Scott Ln., Chapel Hill, NC 27514 919-533-3845 M
Clark, John 9 Church St., Durham, NC 27705 919-324-0390 M
;

PROC DATASETS lib=sport nolist;
 modify maillist;
 index create sex;
 quit;

/*Turn on the macro variable SPDSWDEB */
/* to show that the index is not used */
/* used during the table processing. */

%let spdswdeb=YES;

title All Females from Current Mailing List;
PROC PRINT data=sport.maillist(noindex=yes);
where sex=F;
run;

NOINDEX= 253

Options for WHERE Clause Evaluations

MINMAXVARLIST=
Creates an index that documents the minimum and maximum values of specified variables.
SPD Server WHERE Clause evaluations use MINMAXVARLIST= indexes to include or
eliminate member tables in an SPD Server dynamic cluster table from SQL evaluation
scans..

Syntax

MINMAXVARLIST=(varname1, varname2, ... , varnameN)

Arguments

varname1, varname2, ... , varname N
are SPD Server table variable names.

Description

The primary purpose of the MIINMAXVARLIST= table option is for use with SPD Server
“SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables” on page 65 where
specific members in the dynamic cluster contain a set or range of values, such as sales data
for a given month. When an SPD Server SQL sub setting where- clause specifies specific
months from a range of sales data, the WHERE planner checks the min/max indexes. Based
on the min/max index information, the SPD Server WHERE planner includes or eliminates
member tables in the dynamic cluster for evaluation.

MINMAXVARLIST= uses the list of columns you submit to build an index. The
MINMAXVARLIST= index contains only the minimum and maximum values for each
column. The WHERE Clause planner uses the index to filter SQL predicates quickly, and
to include or eliminate member tables belonging to the cluster table from the evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with
dynamic clusters, it also works on standard SPD Server tables. MINMAXVARLIST= can
help reduce the need to create many indexes on a table, which can save valuable resources
and space.

Example

%let domain=path3 ;
%let host=kaboom ;
%let port=5201 ;

libname &domain sasspds "&domain"
 server=&host..&port
 user='anonymous' ;

/* Create three tables called */
/* xy1, xy2, and xy3. */

data &domain..xy1(minmaxvarlist=(x y));
 do x = 1 to 10;
 do y = 1 to 3;
 output;
 end;
end;

254 Chapter 14 • SPD Server Table Options

run;

data &domain..xy2(minmaxvarlist=(x y));
 do x = 11 to 20;
 do y = 4 to 6 ;
 output;
 end;
end;
run;

data &domain..xy3(minmaxvarlist=(x y));
 do x = 21 to 30;
 do y = 7 to 9 ;
 output;
 end;
end;
run;

/* Create a dynamic cluster table */
/* called cluster_table out of */
/* new tables xy1, xy2, and xy3 */

PROC SPDO library=&domain ;
 cluster create cluster_table
 mem=xy1
 mem=xy2
 mem=xy3
 maxslot=10;
quit;

/* Enable WHERE evaluation to see */
/* how the SQL planner selects */
/* members from the cluster. Each */
/* member is evaluated using the */
/* min-max index. */

%let SPDSWDEB=YES;

/* The first member has true rows */

PROC PRINT data=&domain..cluster_table ;
 where x eq 3
 and y eq 3;
run;

/* Examine the other tables */

PROC PRINT data=&domain..cluster_table ;
 where x eq 3
 and y eq 3 ;
run;

MINMAXVARLIST= 255

PROC PRINT data=&domain..cluster_table ;
 where x eq 3
 and y eq 3;
run;

PROC PRINT data=&domain..cluster_table ;
 where x between 1 and 10
 and y eq 3;
run;

PROC PRINT data=&domain..cluster_table ;
 where x between 11 and 30
 and y eq 8 ;
run;

/* Delete the dynamic cluster table. */

PROC DATASETS lib=&domain nolist;
 delete cluster_table ;
quit ;

THREADNUM=
Specifies the number of threads to be used for WHERE Clause evaluations.

Syntax

THREADNUM=n

Default

THREADNUM= is set equal to the value of the MAXWHTHREADS server parameter.

Used in Conjunction with SPD Server Parameter

MAXWHTHREADS

Corresponding Macro Variable

SPDSTCNT=

Arguments

n
is the number of threads.

Description

THREADNUM= allows you to specify the thread count the SPD Server should use when
performing a parallel WHERE Clause evaluation.

Use this option to explore scalability for WHERE Clause and GROUP_BY evaluations in
non-production jobs. If you use this option for production jobs, you are likely to lower the
level of parallelism that is applied to those clause evaluations.

THREADNUM= works in conjunction with MAXWHTHREADS, a configurable system
parameter. MAXWHTHREADS imposes an upper limit on the consumption of system
resources. The default value of MAXWHTHREADS is dependent on your operating
system. Your SPD Server administrator can change the default value for
MAXWHTHREADS.

256 Chapter 14 • SPD Server Table Options

If you do not use THREADNUM=, the software provides a default thread number, up to
the value of MAXWHTHREADS as required. If you use THREADNUM=, the value that
you specify is also constrained by the MAXWHTHREADS value.

The THREADNUM= value applies both to parallel table scans (EVAL2 strategy), parallel
indexed evaluations (EVAL1 strategy), parallel BY-clause processing, and parallel
GROUP_BY evaluations. The SPD Server User's Guide Help section on Optimizing SPD
Server Performance, contains more information about “Optimizing WHERE clauses” on
page 177.

Example

The SPD Server administrator set MAXWHTHREADS=128 in the SAS Scalable
Performance Data (SPD) Server's parameter file. Explore the effects of parallelism on a
given query by using the following SAS macro:

%macro dotest(maxthr);
%do nthr=1 %to &maxthr
 data _null_;
 set SPDSCEN.PRECS(threadnum=&nthr);
 WHERE
 occup='022'
 and state in('37','03','06','36');
 run;
%mend dotest;

WHERENOINDEX=
Specifies a list of indexes to exclude when making WHERE Clause evaluations.

Syntax

WHERENOINDEX=(name1 name2...)

Arguments

(name1 name2...)
a list of index names that you want to exclude from the WHERE planner.

Example

We have a table PRECS with indexes defined as follows:

PROC DATASETS lib=spdscen;
modify precs(bitindex=(hour89));
index create
 stser=(state serialno)
 occind=(occup industry)
 hour89;
quit;

When evaluating the next query, we want the SPD Server to exclude from consideration
indexes for both the STATE and HOUR89 columns.

In this case, we know that our AND combination of the predicates for the OCCUP and
INDUSTRY columns will produce a very small yield. Few rows satisfy the respective
predicates. To avoid the extra index I/O (machine time) that the query requires for a full-
indexed evaluation, use the following SAS code:

WHERENOINDEX= 257

PROC SQL;
create table hr80spds
 as select
 state,
 age,
 sex,
 hour89,
 industry,
 occup
 from spdscen.precs(wherenoindex=(stser hour89))
 where occup='022'
 and state in('37','03','06','36')
 and industry='012'
 and hour89 > 40;
quit;

Note: Specify index names in the WHERENOINDEX list, not the column names. The
example excludes both the composite index for the STATE column STSER and the
simple index HOUR89 from consideration by the WHINIT WHERE planner.

Options for Other Functions

BYSORT=
Perform an implicit automatic sort when SPD Server encounters a BY clause for a given
table.

Syntax

BYSORT=YES | NO

Arguments

YES
sorts the data based on the BY columns and returns the sorted data to the SAS client.
This powerful capability means that the user does not have to sort data using a PROC
SORT statement before using a BY clause.

NO
does not sort the data based on the BY columns. This might be desirable if a DATA
step BY clause has a GROUPFORMAT option or if a PROC step reports grouped and
formatted data.

Description

The default is YES. The NO argument means the table must have been previously sorted
by the requested BY columns. The NO argument allows grouped data to maintain their
precise order in the table. A YES argument groups the data correctly but possibly in a
different order from the order in the table.

Example 1 - Group Formatting with BYSORT=

libname sport sasspds 'mylib'
 host='samson'
 user='user19'
 passwd='dummy2';

258 Chapter 14 • SPD Server Table Options

PROC FORMAT;
 value dollars
 0-99.99="low"
 100-199.99="medium"
 200-1000="high";
run;

data sport.racquets;
 input
 raqname $20.
 @22 weight
 @28 balance $2.
 @32 flex
 @36 gripsize
 @42 string $3.
 @47 price
 @55 instock;

 datalines;
Solo Junior 10.1 N 2 3.75 syn 50.00 6
Solo Lobber 11.3 N 10 5.5 syn 160.00 1
Solo Queensize 10.9 HH 6 5.0 syn 130.00 3
Solo Kingsize 13.1 HH 5 5.6 syn 140.00 3
;

PROC PRINT data=sport.racquets (bysort=yes);
 var raqname instock;
 by price;
 format price dollars.;
title 'Solo Brand Racquets by Price Level';
run;

Output 14.1 Report Output with BYSORT=

 Solo Brand Racquets by Price Level

---------------------------- Price=low ---------------------------

OBS RAQNAME INSTOCK

 1 Solo Junior 6

-------------------------- Price=medium --------------------------

OBS RAQNAME INSTOCK

 3 Solo Queensize 3

 4 Solo Kingsize 3

 2 Solo Lobber 1

Example 2 - Group Formatting without BYSORT=

PROC PRINT data=sport.racquets (bysort=no);

BYSORT= 259

 var raqname instock;
 by price;
 format price dollars.;
title 'Solo Brand Racquets by Price Level';
run;

Output 14.2 Report Output without BYSORT=

 Solo Brand Racquets by Price Level

---------------------------- Price=low ---------------------------

OBS RAQNAME INSTOCK

 1 Solo Junior 6

-------------------------- Price=medium --------------------------

OBS RAQNAME INSTOCK

 2 Solo Lobber 1

 3 Solo Queensize 3

 4 Solo Kingsize 3

ENDOBS=
Specifies the end row (observation) number in a user-defined range for the processing of
a given table.

Syntax

ENDOBS=n

Arguments

n
is the number of the end row.

Description

By default, SPD Server processes the entire table unless the user specifies a range of rows
with the STARTOBS= and ENDOBS= options. If the STARTOBS= option is used without
the ENDOBS= option, the implied value of ENDOBS= is the end of the table. When both
options are used together, the value of ENDOBS= must be greater than STARTOBS=.

In contrast to the Base SAS software options FIRSTOBS= and OBS=, the STARTOBS=
and ENDOBS= SPD Server options can be used for WHERE Clause processing in addition
to table input operations.

Example

Print only rows 2-4 of the table INVENTORY.OLD_AUTOS.

libname inventory sasspds 'conversion_area'
 server=husky.5105
 user='siteusr1'
 prompt=yes;

260 Chapter 14 • SPD Server Table Options

data inventory.old_autos;
 input
 year $4.
 @6 manufacturer $12.
 model $10.
 body_style $5.
 engine_liters
 @39 transmission_type $1.
 @41 exterior_color $10.
 options $10.
 mileage conditon;

 datalines;
1971 Buick Skylark conv 5.8 A yellow 00000001 143000 2
1982 Ford Fiesta hatch 1.2 M silver 00000001 70000 3
1975 Lancia Beta 2door 1.8 M dk blue 00000010 80000 4
1966 Oldsmobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Mustang sptrf 7.1 M red 00000111 125000 3
;

PROC PRINT data=inventory.old_autos (startobs=2 endobs=4);
run;

Output 14.3 Data in the Printed Output

1982 Ford Fiesta hatch 1.2 M silver 00000001 70000
3

1975 Lancia Beta 2door 1.3 M dk blue 00000010 80000
4

1966 Oldsmobile Toronado 2door 7.0 A black 11000010 110000
3

STARTOBS=
Specifies the start row (observation) number in a user-defined range for the processing of
a given table.

Syntax

STARTOBS=n

Arguments

n
is the number of the start row.

Description

By default, SPD Server processes the entire table unless the user specifies a range of rows
with the STARTOBS= and ENDOBS= options. If the ENDOBS= option is used without
the STARTOBS= option, the implied value of STARTOBS= is 1. When both options are
used together, the value of STARTOBS= must be less than ENDOBS=.

STARTOBS= 261

In contrast to the Base SAS software options FIRSTOBS= and OBS=, the STARTOBS=
and ENDOBS= SPD Server options can be used for WHERE Clause processing in addition
to table input operations.

Example

Print only rows 2-4 of the table INVENTORY.OLD_AUTOS.

libname inventory sasspds 'conversion_area'
 server=husky.5105
 user='siteusr1'
 prompt=yes;

data inventory.old_autos;
 input
 year $4.
 @6 manufacturer $12.
 model $10.
 body_style $5.
 engine_liters
 @39 transmission_type $1.
 @41 exterior_color $10.
 options $10.
 mileage conditon;

 datalines;
1971 Buick Skylark conv 5.8 A yellow 00000001 143000 2
1982 Ford Fiesta hatch 1.2 M silver 00000001 70000 3
1975 Lancia Beta 2door 1.8 M dk blue 00000010 80000 4
1966 Oldsmobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Mustang sptrf 7.1 M red 00000111 125000 3
;

proc print data=inventory.old_autos (startobs=2 endobs=4);
run;

UNIQUESAVE=
Specifies to save rows with non-unique key values (the rejected rows) to a separate table
when appending data to tables with unique indexes.

Syntax

UNIQUESAVE=YES|NO|REP

Default

NO

Complements the Table Option

SYNCADD=

Used in Conjunction with Macro Variable

SPDSUSDS=

Corresponding Macro Variable:

SPDSUSAV=

Arguments

262 Chapter 14 • SPD Server Table Options

YES
writes rejected rows to a separate, system-created table file which can be accessed by
a reference to the macro variable SPDSUSDS=.

NO
does not write rejected rows to a separate table, that is, ignores non-unique key values.

REP
when updating a master table from a transaction table, where the two tables share
identical variable structures, the UNIQUESAVE=REP option replaces the row updated
row in the master table instead of appending a row to the master table. The REP option
only functions in the presence of a /UNIQUE index on the MASTER table. Otherwise
the REP setting is ignored..

Description

SYNCADD= is defaulted to NO. When NO, table appends are 'pipelined', meaning that
the server data is sent in a stream a block at a time. (See table option NETPACKSIZE=.)
While pipelining is faster than a synchronous append, SAS reports the results of the append
operation differently for these two modes.

When applying only a single row (SYNCADD=NO), SAS returns a status code for each
ADD operation. The application can determine the next action based on the status value.
If a row is rejected due to containing a non-unique value for a unique index, the user receives
a status message. In contrast, when data is pipelined (SYNCADD=YES), SAS returns a
status code only after all the rows are applied to a table. As a consequence, the user does
not know which rows have been rejected.

To enjoy the performance of data pipelining but still retain the rejected rows, use the
UNIQUESAVE= option. When set to YES, SPD Server will save any rows that are rejected
to a hidden SAS table.

When using this option, SAS returns the name of the hidden table containing the rejected
rows in the macro variable SPDSUSDS. If you want to report the contents of the table,
reference “SPDSUSDS=” on page 203 .

Note: If SYNCADD= YES is set, data pipelining is overridden and the data is processed
synchronously. In this situation, the UNIQUESAVE= option is not relevant and, if set,
is ignored.

Example 1

We want to append two tables, NAMES2 and NAMES3, which contain employees' names,
to the NAMES1 table. Before performing our append, we create an index on the NAME
column in NAMES1, declaring the index unique.

Specify for SAS Scalable Performance Data (SPD) Server, during the append operation,
to store rows found with duplicate employee names to a separate table file generated by
the macro variable SPDSUSDS=.

Use a %PUT statement to display the table name for SPDSUSDS=. Then request a printout
of the duplicate rows to review later.

data employee.names1;
input name $ exten;
datalines;
Jill 4344
Jack 5589
Jim 8888
Sam 3334
;
run;

UNIQUESAVE= 263

data employee.names2;
input name $ exten;
datalines;
Jack 4443
Ann 8438
Sam 3334
Susan 5321
Donna 3332
;
run;

data employee.names3;
input name $ exten;
datalines;
Donna 3332
Jerry 3268
Mike 2213
;
run;

PROC DATASETS lib=employee nolist;
 modify names1;
 index create name/unique;
quit;

PROC APPEND data=employee.names2
 out=employee.names1(uniquesave=yes); run;

title 'The NAMES1 table with unique names
 from NAMES2';

PROC PRINT data=employee.names1;
run;

%put Set the macro variable spdsusds to &spdsusds;

title 'Duplicate (non-unique) name rows found in
 NAMES2';

PROC PRINT data=&spdsusds;
run;

PROC APPEND data=employee.names3
 out=employee.names1(uniquesave=yes);
run;

The SAS log provides the messages:

WARNING: Duplicate values not allowed on index NAME for
 file EMPLOYEE.NAMES1. (Occurred 2 times.)
NOTE: Duplicate records have been stored in file
 EMPLOYEE._30E3FD5.

And, an extract from our PROC PRINT shows:

264 Chapter 14 • SPD Server Table Options

The NAMES1 table with unique names from NAMES2

 OBS NAME EXTENs

 1 Jill 4344
 2 Jack 5589
 3 Jim 8888
 4 Sam 3334
 5 Ann 8438
 6 Susan 5321
 7 Donna 3332

Duplicate (non-unique) name rows found in NAMES2

 OBS NAME EXTEN XXX00000

 1 Jack 4443 NAME
 2 Sam 3334 NAME

Example 2

Use the UNIQUESAVE=REP option to perform an update / append case using PROC
APPEND instead of a DATA step:

* A MASTER table to update. ID */
/* will get a UNIQUE index */

 DATA SPDS.MASTER;
 INPUT ID VALUE $;
 CARDS;
 1 one
 2 two
 3 three
 ;

 PROC DATASETS LIB=SPDS;
 MODIFY MASTER;
 INDEX CREATE ID/UNIQUE;
 QUIT;

 /* A transaction table TRANS to use to */
 /* drive update/appends to MASTER */

 DATA SPDS.TRANS;
 INPUT ID VALUE $;
 1 ONE
 3 THREE
 4 FOUR
 4 FOUR*
 ;

 /* Use of UNIQUESAVE=REP to update/append */
 /* TRANS rows to MASTER based on whether */
 /* TRANS records have an ID column that */
 /* matches an existing row from the MASTER */
 /* table. Update MASTER rows with a match, */

UNIQUESAVE= 265

 /* otherwise append TRANS row to MASTER */

 PROC APPEND DATA=SPDS.TRANS
 OUT=SPDS.MASTER(UNIQUESAVE=REP);
 run;

Output of the resulting MASTER table would look like:

 Obs ID VALUE

 1 1 ONE
 2 2 two
 3 2 THREE
 4 4 FOUR*

VERBOSE=
Provides details of all indexes and ACL information associated with an SPD Server table.

Syntax

VERBOSE= YES | NO

Arguments

YES
requests detail information for the indexes, ACLs, and other SPD Server table values.
This argument must be used with the CONTENTS procedure.

NO
suppresses detail information for the indexes, ACLs, and other SPD Server table values.
This is the default.

Example

Request details of all the indexes for the table TEMP1 in the domain SPDS45.

PROC CONTENTS data=SPDS45 (verbose=yes);
run;

266 Chapter 14 • SPD Server Table Options

 The CONTENTS Procedure

Data Set Name SPDS45.TEMP1 Observations 1000
Member Type DATA Variables 2
Engine SASSPDS Indexes 2
Created Tuesday, May 10, 2005 10:00:02 AM Observation Length 16
Last Modified Tuesday, May 10, 2005 11:01:36 AM Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation Default
Encoding Default

 Engine / Host Dependent Information

 Blocking Factor (obs/block) 2047
 ACL Entry NO
 ACL User Access(R,W,A,C) (Y,Y,Y,Y)
 ACL User Name ANONYMOU
 ACL Owner Name ANONYMOU
 Data Set is Ranged NO
 Alphabetic List of Index Info .
 Bitmap index (No Global Index) i
 Keyvalue (Min) 1
 Keyvalue (Max) 100
 # of Discrete values 100
 Bitmap index (No Global Index) j
 Keyvalue (Min) 1
 Keyvalue (Max) 10
 # of Discrete values 10
 Data Partsize 16777216

 Alphabetic List of Variables and Attributes

 * Variable Type Len

 1 i Num 8
 2 j Num 9

 Alphabetic List of Indexes and Attributes

 # of
 Unique
 * Index Values

 1 i 100
 2 j 10

Options for Security

ENCRYPT=
Encrypts SPD Server tables on disk. Encryption is a security mechanism that protects table
contents from users who have system access to raw SPD Server tables. Access to tables is

ENCRYPT= 267

normally controlled by SPD Server ACLs. The SPD Server Administrator's Guide contains
detailed information about using SPD Server ACLs to control access to tables.

When the ENCRYPT= option setting is set to YES, SPD Server encrypts newly created
tables by blocks. To control the amount of encryption per block, use the table option
IOBLOCKSIZE=. The IOBLOCKSIZE= option specifies the number of rows to be
encrypted in each block.

Syntax

ENCRYPT= YES | NO

Arguments

YES
encrypts the data set. The encryption method uses passwords. At a minimum, you must
specify the READ= or the PW= data set option at the same time that you specify an
ENCRYPT=YES option setting.

NO
no table encryption is performed. NO is the default setting for the ENCRYPT= option.

Usage Notes

1. Depending on your query patterns, increasing or decreasing the block size can affect
performance.

2. SPD Server does not encrypt table indexes or metadata. Only table row data are
encrypted.

3. To encrypt SPD tables with pass-through SQL, use only the READ= or PW= table
option. With pass-through SQL, ENCRYPT=YES is implied with these options.

4. To access an encrypted table, the user must have appropriate ACL permissions to the
table and must provide the encryption key via the READ= or PW= table option.

5. Encrypting an SPD Server table provides security from users that have system access
to dump raw SPD Server tables. The section on Security in the SPD Server
Administrator's Guide contains more information about how to controll system access
to SPD Server tables.

268 Chapter 14 • SPD Server Table Options

Chapter 15
SPD Server Formats and
Informats

Introduction . 269

Formats . 269
List of Formats . 269
Formats Example: . 271

User-Defined Formats Example . 271

Informats . 275

Introduction
SAS Scalable Performance Data (SPD) Server supports some of the more commonly used
SAS format and informats. Use these in your SQL pass-through code when you want SAS
Scalable Performance Data (SPD) Server to associate a data set variable with a specific
format.

A general reminder about formats: A format is applied to data set variables as it is written
out. Informats are applied as the data set variable is being read.

Formats

List of Formats
• $ -- Writes standard character data

• $BINARY -- Converts character values to binary representation

• $CHAR -- Writes standard character data

• $HEX -- Converts character values to hexadecimal representation

• $OCTAL -- Converts character values to octal representation

• $QUOTE -- Converts character values to quoted strings

• $VARYING -- Writes varying length values

• BEST -- SAS Scalable Performance Data (SPD) Server system chooses best notation

• BINARY -- Converts numeric values to binary representation

269

• COMMA -- Writes numeric values with commas and decimal points

• COMMAX -- Writes numeric values with commas and decimal points (European style)

• DATE -- Writes date values (ddmmmyy)

• DATETIME -- Writes date time values (ddmmmyy:hh:mm:ss.ss)

• DAY -- Writes day of month

• DDMMYY -- Writes date values (ddmmyy)

• DOLLAR -- Writes numeric values with dollar signs, commas, and decimal points

• DOLLARX -- Writes numeric values with dollar signs, commas, and decimal points
(European style)

• DOWNAME -- Writes name of day of the week

• E -- Writes scientific notation

• F -- Writes scientific notation

• FRACT -- Converts values to fractions

• HEX -- Converts real binary (floating-point) numbers to hexadecimal representation

• HHMM -- Writes hours and minutes

• HOUR -- Writes hours and decimal fractions of hours

• IB -- Writes integer binary values

• MMDDYY -- Writes date values (mmddyy)

• MMSS -- Writes minutes and seconds

• MMYY -- Writes month and year, separated by a 'M'

• MONNAME -- Writes name of month

• MONTH -- Writes month of year

• MONYY -- Writes month and year

• NEGPAREN -- Displays negative values in parentheses

• OCTAL -- Converts numeric values to octal representation

• PD -- Writes packed decimal data

• PERCENT -- Prints numbers as percentages

• PIB -- Writes positive integer binary values

• QTR -- Writes quarter of year

• RB -- Writes real binary (floating-point) data

• SSN -- Writes Social Security numbers

• TIME -- Writes hours, minutes, and seconds

• TOD -- Writes the time portion of datetime values

• w.d -- Writes standard numeric data

• WEEKDATE -- Writes day of week and date (day-of-week, month-name dd, yy)

• WEEKDATX -- Writes day of week and date (day-of-week, dd month-name yy)

• WEEKDAY -- Writes day of week

270 Chapter 15 • SPD Server Formats and Informats

• WORDDATE -- Writes date with name of month, day, and year (month-name dd,
yyyy)

• WORDDATX -- Writes date with day, name of month, and year (dd month-name yyyy)

• WORDF -- Converts numeric values to words

• WORDS -- Converts numeric values to words (fractions as words)

• YEAR -- Writes year part of date value

• YYMM -- Write year and month, separated by a 'M'

• YYMMDD -- Writes day values (yymmdd)

• YYMON -- Writes year and month abbreviation

• YYQ -- Writes year and quarter, separated by a 'Q'

• Z -- Writes leading 0s

• ZD -- Writes data in zoned decimal format

Note: Formats which begin with a '$' sign are character formats. Otherwise the format
accepts numeric values.

Formats Example:
Use the dollar. format to convert numeric sales figures into dollar values. Suppose you have
an SPD Server data set saleswith a single numeric variable salesite representing the total
sales for a given site. Using SQL pass-through, create a new data set containing the sales
in dollar format.

PROC SQL;
connect to sasspds
 (dbq='tmp'
 user='anonymous'
 host='localhost'
 serv='5127');

execute(create table money
 as select salesite
 format=dollar.
 from sales)

by sasspds;

quit;

User-Defined Formats Example
This example is a sample test job that validates its own configuration to use user-defined
formats. When properly configured, user-defined formats will allow columns to be
formatted using parallel group-by statements and a WHERE-clause that uses a format to
subset data to the server.

The example provides sample spdsserv.parm and libnames.parm file examples, as well
as code examples that follow the two sample SPD Server configuration files.

User-Defined Formats Example 271

This example is a sample test job that checks the usage of user-defined formats. When
correctly set up, user-defined formats will allow formatting of columns in parallel group-
by and permits usage of a WHERE-clause that uses a format to subset data.

SPD Server spdsserv.parm file used in the example:

SORTSIZE=8M;
INDEX_SORTSIZE=8M;
BINBUFSIZE=32K;
INDEX_MAXMEMORY=8M;
NOCOREFILE;
SEQIOBUFMIN=64K;
RANIOBUFMIN=4K;
NOALLOWMMAP;
MAXWHTHREADS=16;
WHERECOSTING;
RANDOMPLACEDPF;
FMTDOMAIN=FORMATS;
FMTNAMENODE=d8488 ;
FMTNAMEPORT=5200;

SPD Server libnames.parm file used in the example:

libname=tmp pathname=c:\temp;
libname=formats pathname=c:\data\formats;

SPD Server example code:

%let domain=tmp;
%let host=d8488;
%let serv=5200;

/* locking=YES must be specified when using */
/* options fmtsearch=(formats); */

libname formats sasspds 'formats'
 host=&host; serv=&serv;
 user='anonymous' locking=YES;
 libname &domain;
 sasspds &domain;
 host=&host;
 serv=&serv;
 user='anonymous'
 IP=YES;

 options fmtsearch=(formats);

PROC DATASETS nolist
 lib=formats
 memtype=catalog;
 delete formats;
quit ;

/* To create user defined formats, they must be */
/* loaded from the same platform where they are */
/* going to be stored. You cannot use Windows */

272 Chapter 15 • SPD Server Formats and Informats

/* path specifications to load formats on UNIX */
/* platforms. */

/* Add formats to format domain */

PROC FORMAT lib=formats;
value AGEGRP
 0-13='Child'
 14-17='Adolescent'
 18-64='Adult'
 65-HIGH='Pensioner';
value $GENDER
 'F' = 'Female'
 'M' = 'Male';
run ;

/* Create a test table with a column that uses */
/* AGEGRP format */

data &domain..fmttest;
format age AGEGRP. GENDER $GENDER. id z5.;
 length GENDER $1;
do id=1 to 100;
 if mod (id,2) = 0
 then GENDER = 'F';
 else GENDER = 'M';
 age=int(ranuni(0)*100);
 income=age*int(ranuni(0)*1000);
output;

end;

run;

/* Use the parallel group-by feature with the */
/* fmtgrpsel option. This groups the data based */
/* on the output format specified in the table. */
/* This will be executed in parallel. */

PROC SQL;
connect to sasspds
(dbq="&domain";
 serv="&serv";
 host="&host";
 user="anonymous");

/* Explicitly set the fmtgrpsel option */

execute(reset fmtgrpsel)
by sasspds;

title 'Simple Fmtgrpsel Example';

select *
from connection to sasspds
 (select age, count(*) as count

User-Defined Formats Example 273

 from fmttest group by age);

disconnect from sasspds;

quit;

PROC SQL;
connect to sasspds
(dbq="&domain";
 serv="&serv";
 host="&host";
 user="anonymous");

/* Explicitly set the fmtgrpsel option */

execute(reset fmtgrpsel)
by sasspds;

title 'Format Both Columns Group Select Example';

select *
from connection to sasspds
 (select GENDER format=$GENDER.,
 AGE format=AGEGRP.,
 count(*) as count
 from fmttest
 formatted group by GENDER, AGE);

disconnect from sasspds;

quit;

PROC SQL;
connect to sasspds
(dbq="&domain";
 serv="&serv";
 host="&host";
 user="anonymous");

/* Explicitly set the fmtgrpsel option */

execute(reset fmtgrpsel)
by sasspds;

title1 'To use Format on Only One Column With Group Select';
title2 'Override Column Format With a Starndard Format';

select *
from connection to sasspds
 (select GENDER format=$1.,
 AGE format=AGEGRP.,
 count(*) as count
 from fmttest
 formatted group by GENDER, AGE);

274 Chapter 15 • SPD Server Formats and Informats

disconnect from sasspds;

quit;

/* A WHERE-clause that uses a format to subset */
/* data is pushed to the server. If it is not */
/* pushed to the server, the following warning */
/* message will be written to the SAS log: */
/* WARNING: Server is unable to execute the */
/* where clause. */

data temp;
set &domain..fmttest;
 where put
 (AGE,AGEGRP.) = 'Child';
 run;

Informats
• $ -- Reads standard character data

• $BINARY -- Converts binary values to character values

• $CB -- Reads standard character data from column-binary files

• $CHAR -- Reads character data with blanks

• $HEX -- Converts hexadecimal data to character data

• $OCTAL -- Converts octal data to character data

• $PHEX -- Converts packed hexadecimal data to character data

• $QUOTE -- Converts quoted strings to character data

• $SASNAME --

• $VARYING -- Reads varying length values

• BEST -- SPD Server system chooses best notation

• BINARY -- Converts positive binary values to integers

• BITS -- Extract bits

• COMMA -- Removes embedded characters (for example $,.)

• COMMAX -- Removes embedded characters (for example $,.) European style

• D -- Reads scientific notation

• DATE -- Reads date values (ddmmmyy)

• DATETIME -- Reads datetime values (ddmmmyy hh:mm:ss.ss)

• DDMMYY -- Reads date values (ddmmyy)

• DOLLAR -- Reads numeric values with dollar signs, commas, and decimal points

• DOLLARX -- Reads numeric values with dollar signs, commas, and decimal points
(European style)

• E -- Reads scientific notation

Informats 275

• F -- Reads scientific notation

• HEX -- Converts hexadecimal positive binary values to fixed- or floating-point values

• IB -- Reads integer binary (fixed-point) values

• JULIAN -- Reads Julian dates (yyddd or yyyyddd)

• MMDDYY -- Reads date values (mmddyy)

• MONYY -- Reads month and year date values (mmmyy)

• MSEC -- Reads TIME MIC values

• OCTAL -- Converts octal values to integers

• PD -- Reads packed decimal data

• PDTIME -- Reads packed decimal time of SMF and RMF records

• PERCENT -- Converts percentages into numeric values

• PIB -- Reads positive integer binary (fixed-point) values

• PK -- Reads unsigned packed decimal data

• PUNCH -- Reads whether a row of column-binary data is punched

• RMFSTAMP -- Reads time and date fields of RMF records

• ROW -- Reads a column-binary field down a card column

• SMFSTAMP -- Reads time-date values of SMF records

• TIME -- Reads hours, minutes, and seconds (hh:mm:ss.ss)

• TODSTAMP -- Reads 8-byte time-of-day stamp

• TU -- Reads timer units

• YYMMDD -- Reads date values (yymmdd)

• YYQ -- Reads quarters of the year

Note: Informats which begin with a '$' sign are character informats. Otherwise the informat
accepts numeric values.

The SQL procedure itself does not use the INFORMAT= modifier: it stores informats in
its table definitions so that other procedures and the DATA step can use the information.
SPD Server informats are provided now to allow for forward compatibility with future
development.

276 Chapter 15 • SPD Server Formats and Informats

Chapter 16
SPD Server NLS Support

Overview of NLS . 277

Character Encoding Overview . 278
Overview of Character Encoding . 278
What is Character Encoding? . 278
Common Encodings . 280

Moving Data across Environments with Different Encodings 281
Transcoding . 281
How Base SAS Transcodes Data . 282

Base SAS Encoding Behavior . 282
Overview of Base SAS Encoding . 282
SAS 9 Output Processing . 282
SAS 9 Input Processing . 283
Reading and Writing External Files . 283

Setting the Encoding for Base SAS Sessions . 283

Changing the Encoding for Base SAS Sessions . 284

NLS Support in SPD Server . 285
Overview of NLS Support . 285
SPD Server NLS Limitations . 285
LIBNAME Option Restrictions: . 286

Overview of NLS
NLS, or National Language Support, deals both with Internationalization and Localization
of SAS software. Internationalization is the process of designing an application so that it
can be adapted to different languages and regions, without requiring engineering changes.
Often the term internationalization is abbreviated as i18n, because there are 18 letters
between the first i and the last n. Localization is the process of adapting software for a
particular region or language by adding locale-specific components and translating text.
The term localization is often abbreviated as L10n, because there are 10 letters between
the L and the n. Translation of user interface, messages, and documentation is a large part
(but not all) of localization. Localizers also verify that the formatting of dates, numbers,
currencies, and so on, conforms to local requirements.

SAS 9 contains built-in support for NLS character set encoding and locale choices. Users
access the NLS encoding and locale choices through various SAS, LIBNAME, and data
set options. SAS Scalable Performance Data (SPD) Server and SAS together offer basic

277

levels of NLS support. This document describes the basic entities of NLS support and how
they are implemented in SPD Server

Character Encoding Overview

Overview of Character Encoding
All input to a computer is represented internally as numbers. The computer assigns a
number to each character -- technically, the number is a binary number (base 2 numbering
system, consisting of 0s and 1s).

Because most of us don't want to think in binary numbers, computers provide hexadecimal
(base 16 numbering system) representation as a shorthand for binary representation. For
example, for the decimal number 167, it's easier to understand the hexadecimal number A7
than the equivalent binary number 10100111. Therefore, you can think of the computer's
internal numeric representation of all data as a hexadecimal number.

What is Character Encoding?
All data that is stored, transmitted, or processed by a computer is in an encoding. An
encoding maps each character to a unique numeric representation. For example:

1. You press a key on a keyboard, like the uppercase letter A.

2. The computer assigns the internal numeric representation, that is, a unique hexadecimal
number.

3. To display or print the character, the computer uses the font (graphical representation)
that matches the numeric representation, that is, the uppercase letter A.

To assign the numeric representation to a character, an encoding uses a code page, which
is an ordered set of characters in which a numeric index (code point value) is associated
with each character. The position of a character on the code page determines its two-digit
hexadecimal number. The first digit of the hexadecimal number is determined by the
column, and the second digit by the row. For example, the following is the code page for
the Windows Latin1 encoding. The numeric representation for the uppercase A is the
hexadecimal number 41, and the numeric representation for the equal sign (=) is the
hexadecimal number 3D.

278 Chapter 16 • SPD Server NLS Support

Encoding is the combination of a character set with an encoding method:

• A character set is the repertoire of characters and symbols that are used by a language
or group of languages. A character set includes national characters (which are characters
specific to a particular nation or group of nations), special characters (such as
punctuation marks), the unaccented Latin characters A-Z, the digits 0-9, and control
characters that are needed by the computer.

• An encoding method is the set of rules that are used to assign the numbers to the set of
characters that are in an encoding. These rules govern such things as the size of the
encoding (number of bits used to store the numeric representation of the character) and
the ranges in the code page where characters are allowed to appear.

When the rules of the encoding method are followed, and numbers are assigned to the
characters, the result is called an encoding.

An individual character can have different positions in code pages for different encodings,
which result in different hexadecimal numbers. For example, the position of the uppercase
letter A in the Wlatin1 code page (shown above) results in the hexadecimal number 41,
while in the following Danish EBCDIC code page, the position of the uppercase letter A
results in the hexadecimal number C1.

What is Character Encoding? 279

Common Encodings
There are many encodings that address the requirements of different languages. Very few
languages use only the 26 characters A through Z of the Latin alphabet. In addition, there
are different encodings to address different operating system standards.

An encoding that represents each character in one byte is a single-byte character set (SBCS).
A single-byte character set can be either 7 bits (providing up to 128 characters) or 8 bits
(providing up to 256 characters). An example of an 8-bit SBCS is the Latin1 encoding
(represents the characters of Western Europe). (Note that the term octet, for the
international community, is an 8-bit byte. Since a byte is not 8 bits in all computer systems,
octet provides an unambiguous term.)

A multiple-byte character set (MBCS) is a mixed-width encoding in which some characters
consist of more than one byte. For example, the Japanese, Korean, Simplified Chinese, and
Traditional Chinese are MBCS encodings. A double-byte character set (DBCS) is a specific
type of an MBCS encoding that includes characters that consist of two bytes.

The following are common encodings:

280 Chapter 16 • SPD Server NLS Support

ASCII (American Standard Code for Information Interchange)
is a 7-bit encoding for the United States that provides 128 character combinations. The
encoding contains characters for uppercase and lowercase English, American English
punctuation, base 10 numbers, and a few control characters. The set of 128 characters
is the one common denominator that is contained in most encodings, excluding
EBCDIC-based encodings. ASCII is used by personal computers.

ISO (International Organization for Standardization) 646 family
is a 7-bit encoding that is an international standard and provides 128 character
combinations. The ISO 646 family of encodings is like ASCII except for 12 code points
for national variants. The 12 national variants represent specific characters needed for
a particular language.

EBCDIC (Extended Binary Coded Decimal Interchange Code) family
is an 8-bit encoding that provides 256 character combinations. There are multiple
EBCDIC-based encodings. EBCDIC is used on IBM mainframes and most IBM
midrange computers. EBCDIC follows ISO 646 conventions to facilitate translations
between itself and 7-bit ASCII-based encodings. Characters A-Z and 0-9 are mapped
to the same code points on all EBCDIC code pages, while the rest of the code points
can be used for special characters and national characters, depending on the encoding.

ISO 8859 family and Windows family
is an 8-bit extension of ASCII that supports all of the ASCII code points and adds 12
more, providing 256 character combinations. Latin1, which is officially named
ISO-8859-1, is the most frequently used member of the ISO 8859 family of encodings.
In addition to the ASCII characters, Latin1 contains accented characters, other letters
needed for languages of Western Europe, and some special characters.

Unicode
uses two bytes for each character rather than one and provides up to 65,536 character
combinations. Unicode can handle the scripts of basically all of the world's languages.
For example, the Japanese language, which has thousands of characters, uses a 16-bit,
multiple-byte character set. There are various forms of Unicode, including UTF-8,
UTF-16, and UTF-32.

Moving Data across Environments with Different
Encodings

Transcoding
Although it's easy to move data across environments that use the same encoding, it can be
more difficult to move data across environments that use different encodings. When the
encoding of a file is incompatible with the computer environment's encoding, transcoding
occurs.

Transcoding is the process of mapping data from one encoding to another, such as mapping
data from an ASCII-based encoding to an EBCDIC-based encoding. Transcoding is not
translating from one language to another; transcoding is remapping of characters.

For example, consider a file that was created on a UNIX platform that uses the Latin1
encoding, then moved to an IBM mainframe that uses the Danish EBCDIC encoding. When
the file is processed on the IBM mainframe, the data is remapped from the Latin1 encoding
to the Danish EBCDIC encoding. If the data contains a dollar sign ($), the hexadecimal
number is converted from 24 to 67.

Transcoding 281

Transcoding can occur in the following situations:

• when you move a SAS file from one platform to another and the file's encoding is
incompatible with the current session encoding. An example might be moving a SAS
file from a z/OS operating environment with an EBCDIC-based encoding to a Windows
operating environment with an ASCII-based encoding.

• when you share data between two SAS sessions (like in a client/server environment)
that have incompatible session encodings.

• when you read and write an external file.

How Base SAS Transcodes Data
Base SAS provides transcoding when you move data and applications from one
environment to another. To transcode one encoding to another, SAS uses translation tables,
like the one that maps Wlatin2 (Windows) to ISO Latin2 (UNIX).

For example, when you

• use the CPORT and CIMPORT procedures to create a transport file, SAS automatically
uses translation tables to transcode one encoding to another and back again. First, the
data is converted from the source encoding to transport format, then the data is
converted from the transport format to the target encoding.

• process a SAS data set that has an encoding that is different from the current session
encoding, SAS automatically uses CEDA (cross environment data access) software to
transcode data. (CEDA is the same software in SAS that converts a SAS file to the
correct data representation when you move a file from one platform to another.)

Base SAS Encoding Behavior

Overview of Base SAS Encoding
For Base SAS files (not SPD Server), the encoding support depends on the version of SAS
that created the file:

• Data sets created in SAS 9 automatically have an encoding attribute, which is stamped
in the descriptor portion of the file.

• Data sets created in SAS 8 do not have an encoding value stamped on the file; they are
assumed to be in the session encoding of the host environment.

The NLS features in SPD Server only support encoding from SAS 9.

SAS 9 Output Processing
For SAS 9 data sets (not SPD Server), encoding is determined as follows:

• For a new output file, the data is written to the file using the current session encoding.

• For a new output file that is created with the OUTREP= option, which specifies a data
representation different from the current session, the data is written to the file using the
default session encoding for the operating system that is based on the specified
OUTREP= value.

• For output processing that replaces an existing file, the new file inherits the encoding
of the existing file.

282 Chapter 16 • SPD Server NLS Support

• For output processing that replaces an existing file that is from another platform or if
the existing file has no encoding stamped on it, then the current session encoding is
used.

SAS 9 Input Processing
For input (read) processing in SAS 9 (not SPD Server), encoding behavior is as follows:

• If the session encoding and the encoding that is stamped on the file are incompatible,
the data is transcoded to the session encoding. For example, if the current session
encoding is ASCII and the encoding that is stamped on the file is EBCDIC, SAS
transcodes the data from EBCDIC to ASCII.

• If a file does not have an encoding stamped on it, SAS transcodes the data only if the
file's data representation is different from the current session.

Reading and Writing External Files
SAS reads and writes external files using the current session encoding. SAS assumes that
the external file is in the same encoding as the session encoding. For example, if you are
creating a new SAS data set by reading an external file, SAS assumes that the file's encoding
is the same as the session encoding. If it is not, the data could be written to the new SAS
data set incorrectly.

Setting the Encoding for Base SAS Sessions
When SAS 9 is installed, the Base SAS (not SPD Server) default encoding is host dependent
and is determined by the default settings for several SAS system options. Here are three
system options that you should be familiar with:

ENCODING=
establishes the session encoding, which is the encoding that SAS uses to process syntax,
process SAS data sets, and read and write external files. The default value is host
dependent; all are SBCS encodings:

Table 16.1 Default Session Encodings

Host Value Description

OpenVMS Latin1 Western (ISO)

z/OS OPEN_ED_1047 OpenEdition EBCDIC
cp1047-Latin1

UNIX Latin1 Western (ISO)

Windows WLatin1 Western (Windows)

LOCALE=
specifies the locale of the SAS session. The locale reflects the local language,
conventions, and culture for a particular geographical region. A locale's conventions
can include the formatting of dates, times, and numbers, and printer preferences like
paper size. Specifying a locale also automatically sets the default encoding that

Setting the Encoding for Base SAS Sessions 283

establishes the session encoding; a locale has a common encoding that is used most
often for a particular operating environment. The default locale is English, and the
common encodings for English are the defaults above for ENCODING=.

NONLSCOMPATMODE | NLSCOMPATMODE
provides national language compatibility for non-English data processing using native
characters. For SAS 9, the default is NONLSCOMPATMODE, which provides
consistency for running SAS on multiple systems. NONLSCOMPATMODE specifies
that data is to be processed in the encoding that is set by the ENCODING= or LOCALE=
system option.

Changing the Encoding for Base SAS Sessions

You can change the session encoding by using the LOCALE= system option, the
ENCODING= system option, or both. Note that valid values for both options are host
dependent.

Here's how you can set the Base SAS (not SPD Server) session encoding when
NONLSCOMPATMODE is specified:

• You can specify the LOCALE= system option in a configuration file, at SAS
invocation, in an OPTIONS statement, or in the SAS System Options window. In SAS
9, several NLS-related system options are automatically set, based on the value of
LOCALE=. Most customers will implicitly set encoding with the LOCALE= system
option.

• You can specify the ENCODING= system option in a configuration file or at SAS
invocation.

• Here is how LOCALE= and ENCODING= interact:

• If a value is not specified for ENCODING= (that is, the installation default is set),
then specifying a value for LOCALE= sets the encoding based on the LOCALE=
value. In addition, values for the following system options are set based on the
LOCALE= value: DFLANG=, TRANTAB=, DATESTYLE=, and PAPERSIZE=.

• If a value is specified for ENCODING=, that value sets the session encoding and
overrides LOCALE=.

• If the value specified for LOCALE= is not compatible with the value specified for
ENCODING=, then the value for LOCALE= is used. A warning message is
provided if ENCODING= and LOCALE= conflict.

• If the DBCS system option is set, which specifies that SAS process DBCS encodings,
the values for DBCSLANG= and DBCSTYPE= system options determine the session
encoding and the locale. These options are used for Asian languages or for English with
DBCS extensions.

Here is an example of implicitly setting the Base SAS (not SPD Server) session encoding
based on the specified locale when you invoke SAS:

sas9 -explorer -locale spanish

Here is an example of explicitly setting the Base SAS (not SPD Server) session encoding
with the OPTIONS statement:

options encoding=wlatin2;

284 Chapter 16 • SPD Server NLS Support

T I P Changing encoding for a SAS session does not affect SAS keywords, which remain
in English, or SAS log output, which also remains in English.

NLS Support in SPD Server

Overview of NLS Support
SPD Server contains support for a subset of the SAS 9 NLS functions documented above.
SPD Server uses encoding and locale currently only on SAS software.

In future releases of SPD Server, the locale identifier information will be used for locale-
sensitive case folding and linguistic collation. Case-folding is defined as a process applied
to a sequence of characters, in which those identified as non-uppercase are replaced by
their uppercase equivalents. Linguistic collation is performing linguistic sorts based on
linguistic sort keys. However, those functions have yet to be implemented in SPD Server
production code.

All tables that are produced by SPD Server and SAS inherit the SAS session's default
encoding and locale settings. By default, SPD Server code expects new tables to follow the
current SAS session's encoding and locale. Table updates that append rows or update
existing rows will perform transcoding to ensure that appended and updated table rows
match the existing table encoding.

Wire transfer is in the character set encoding of the SAS session for transfers to and from
the SPD Server host, unless SPD Server transcoding has been disabled. SPD Server
transcoding is enabled or disabled by inserting a [NO]NLSTRANSCODE statement in the
SPD Server spdsserv.parm parameter file.

SPD Server NLS Limitations

Affected Data
SPD Server hosts are restricted in the way they handle NLS character strings. SPD Server
hosts are restricted to data that is contained in character columns in data sets and some
metadata structures. The NLS support for SPD Server is functional for only table labels
and variable labels.

Column names, index names, table names, and catalog names are not supported in the SPD
Server NLS support. Column names, index names, table names, and catalog names are still
dependent on ASCII support. SPD Server SQL is subject to the NLS same restrictions.

Pass-Through SQL
SPD Server pass-through SQL does not support any NLS functions. Pass-through SQL
operates in the encoding and locale of the SAS session that initiates the CONNECT to
SASSPDS.

Case Folding and Sort Sequences
SPD Server NLS code supports very limited English Latin1 and Polish Latin2 case folding
for SBCS encodings. UTF8 case folding is limited to the ASCII range of UTF8 encoding.
NLS Sort sequences for SPD Server 4.5 are restricted to lexical sorts for all combinations.
Linguistic sorting is a subject for future SPD Server releases.

SPD Server NLS Limitations 285

Indexes and Ordering
Indexes in SPD Server are created in the table's encoding, and only support lexical ordering.
If the client's encoding and locale settings match the SPD Server host table's encoding and
locale settings, index use is unrestricted. Otherwise, index usage is restricted to certain
predicates in WHERE clauses that can be safely interpreted according to the table's
encoding and locale settings. When the client and host table encoding and locale settings
differ, the EVAL2 strategy is used to filter predicates that require use of order.

Date and Time Representations
SPD Server server-side functions and formats that produce or accept textual date, time, and
date/time representations are not locale-sensitive.

Suppressing Transcoding
You can suppress transcoding in the SPD Server environment by entering the following
into the spdsserv.parm options:

NONLSTRANSCODE;

If you add the NONLSTRANSCODE option to your spdsserv.parm file, character
transcoding between the SPD Server host and connected clients is disabled. Disabling
character transcoding restricts the types of operations that the SPD Server host performs
to operations it can safely perform, where host and client tables share the same encoding.
Disabling SPD Server host transcoding assumes that the client will perform any needed
transcoding on the data streams that it sends and receives to match the encoding of
referenced tables. The SPD Server host setting for NONLSTRANSCODE does not perform
any actions to deny client access to a host table that has mismatched encoding.

LIBNAME Option Restrictions:
The following options are not implemented in the SPD Server NLS functions:

The LIBNAME option

OUTENCODING=<client-server encoding>

is not supported and will produce a WARNING message if submitted to sasspds.

In addition, the related data set option

ENCODING=<client-server encoding>

is supported by the SAS LIBNAME engine for OUTPUT data sets only. Character data is
assumed to be in the encoding of the session that initiates the CONNECT to SASSPDS
and is normally stored using that encoding. ENCODING= will cause SPD Server to
transcode from the SAS session encoding to the specified encoding for storing data. If you
specify ENCODING= for a non OUTPUT data set open, and if the encoding value that you
specify doesn't match the data set's encoding, the data set open will produce a warning:

ENCODING= specified on table open fails to match table
encoding. Option ignored.

The LIBNAME option

TRUNCWARN=YES

Suppresses hard failure on NLS transcoding overflow and character mapping errors. When
using the TRUNCWARN=YES LIBNAME option, data integrity can be compromised
because significant characters can be lost in this configuration. The default setting is NO,
which causes hard read/write stops when transcode overflow or mapping errors are
encountered. When TRUNCWARN=YES, and an overflow or character mapping error

286 Chapter 16 • SPD Server NLS Support

occurs, a warning is posted to the SAS log at data set close time if overflow occurs, but the
data overflow is lost.

LIBNAME Option Restrictions: 287

288 Chapter 16 • SPD Server NLS Support

Part 6

Appendix

Chapter 17
SPD Server Frequently Asked Questions . 291

289

290

Chapter 17
SPD Server Frequently Asked
Questions

SPD Server Frequently Asked Questions . 292
Does SPD Server support files that are larger than 2 Gigabytes in size? 292
Can I create file systems that are larger than 2 Gigabytes in size? 292
How do SPD Server client and server processes communicate? 292
How do I know which ports must be surfaced through an Internet firewall? 293
How does SPD Server interact with multi-homed hosts? . 294
Can I use standard UNIX backup procedures? . 294
What do I need to know about SPD Server installation? How

long will it take? . 294
Is it necessary to run UNIX SPD Server as root? . 294
What is the SPD Server Name Server, and why do I need it? 295
Does every SPD Server client need a UNIX ID or Windows Networking ID? . . . 295
Can an SPD Server host, SPD Server Name Server and an SPD

Server client all run on the same machine? . 295
Can I have multiple SPD Server hosts on the same machine? 295
How do I create LIBNAME domains? . 295
How do I specify a LIBNAME domain in SAS? . 295
Is there anything else I have to change to run my existing SAS applications? . . . 296
How can I get existing data loaded into an SPD Server table? 296
Can SPD Server create indexes in parallel? . 297
Does SPD Server append indexes in parallel? . 297
What are ACLs and how do I use them to control access to data tables? 297
How do I get a list of the SAS macro variables introduced for SPD Server? 298
What about unique indexes? Can I do something to speed appends? 298
What about disk compression for SPD Server tables? . 298
What about estimates for disk space consumption when using SPD Server? 298
Transient space for PROC SORT / BY processing . 301
What should I set WORKPATH= to? . 302
How do I, as a LIBNAME domain owner, allow others to create

tables in my domain? . 302
How does the system administrator list the access control lists for "user 1"? 303
How do I change existing PROC SQL code that works with

SAS to query SPD Server tables? . 304
Can I use pass-through async to create multiple indexes on a

single existing table? . 307
Can I use pass-through async to create multiple indexes on existing tables? 308
What size increases can I expect for tables that are stored in

domains with BACKUP=YES? . 308

291

SPD Server Frequently Asked Questions

Does SPD Server support files that are larger than 2 Gigabytes in
size?

Yes. SPD Server does so by breaking up larger files into partitions that are smaller than 2
Gigabytes. The SPD Server host performs this function automatically and it requires no
special syntax.

Can I create file systems that are larger than 2 Gigabytes in size?
Yes, if you use a volume manager that will let you create file systems greater than 2
Gigabytes. SAS recommends this practice.

How do SPD Server client and server processes communicate?
An SPD Server client communicates with three SPD Server processes.

When a client issues a LIBNAME assignment to the SPD Server host, the client
communicates with the SPD Server name server process using the HOST= and SERV=
options that were specified in the LIBNAME connection. The HOST= option specifies the
host system where the SPD Server name server is running, and the SERV= option is the
well-known port number of the SPD Server name server that was specified when the
software was started. The SPD Server name server ensures that the domain of the
LIBNAME assignment is valid, then returns the HOST= and SERV= option settings to the
client. This ends the interaction of the client with the SPD Server name server for that
LIBNAME assignment. The client will communicate with the SPDSSERV process to
complete the LIBNAME assignment.

The SPDSSERV process authenticates the USER and PASSWORD portion of the
LIBNAME assignment, and validates whether the USER has access to the domain. If the
LIBNAME is successfully authenticated, the SPDSSERV process forks and executes a
user proxy, the SPDSBASE process, which continues to service all other client requests
for that LIBNAME connection. Subsequent LIBNAME assignments from the same client
that are resolved to the same SPD Server user and SPDSSERV context are passed directly
to SPDSBASE for processing without any further SPDSSERV interaction. (No further
interaction is required because the authentication is inherited by subsequent LIBNAME
assignments.)

LIBNAME assignments from the same client for a different SPD Server user or LIBNAME
assignments to a domain that is serviced by a different SPDSSERV will result in a new
SPDSBASE process to service that LIBNAME assignment.

Connections that use the record-level locking option LOCKING=YES to connect to a
server in any domain are handled differently. All LIBNAME assignments share the same
SPDSBASE record level locking process. When the LOCKING=YES option is in force,
instead of forking and executing a new user proxy, the SPDSSERV process initiates
communication with the shared LOCKING=YES SPDSBASE process and the client.

292 Chapter 17 • SPD Server Frequently Asked Questions

How do I know which ports must be surfaced through an Internet
firewall?

There are two ports that the SPDServer name server uses that you can specify using
command line options. The listenport option defines the port that must be used by clients
(such as SAS) in LIBNAME and SQL CONNECT statements. The listenport option can
also define the port that an ODBC data source requires to communicate with the SPD Server
name server. The operport option defines a second port that is used for various command
communications from SPD Server utilities. Either of these ports can be specified using
well-known port definitions in the operating system's services file, instead of specifying
them on the command line. In UNIX systems, this is typically the /etc/services file.
In the services file, the spdsname specification corresponds to listenport, and the
spdsoper setting corresponds to the operport setting. Both of these ports should be
surfaced through the firewall.

The SPDSSERV process uses two types of ports. The first type of port is a port that
SPDSSERV uses for local machine communications, internal to SPD Server. The second
type of ports are ports that must be accessed by SPD Server clients.

Ports in the first category are not discussed here, because they do not need to be visible
beyond the local machine, and therefore do not need firewall connectivity. There are two
ports in the second category. The first port in the second category is the port that is defined
by the SPDSSERV listenport command line option that performs LIBNAME
authentication of the SPD Server user and password, and validates access to the SPD Server
domain. The second port in the second category is the port that is used for various
communications from SPD Server utilities, and is defined by the SPDSSERV -operport
command line option.

The SPDSSERV listenport and operport specifications are registered in the SPD Server
Name Server by the SPDSSERV process when it starts up. Both specifications are returned
to the SPD Server client from the SPD Server Name Server when it maps the LIBNAME
domain to an SPDSSERV. If you do not specify a listenport or operport in the SPDSSERV
command line, any port that is available will be used. Both of these ports should be specified
in the SPDSSERV command line and surfaced through the firewall.

Ports that the SPDSBASE process uses also fall into the two same categories. The first type
of ports is used for local machine communications that are internal to SPD Server. The
second type of ports are ports that must be accessed by SPD Server Clients. Like the
SPDSSERV process, the SPDSBASE process only cares about the ports that outside clients
need to access through an Internet firewall.

The way that the SPDSBASE processes use ports is complex and requires a range of port
numbers that are declared using the SPD Server MINPORTNO=/MAXPORTNO= server
parameter specifications. The MINPORTNO= and MAXPORTNO= parameters must both
be specified in order to define the range of port numbers that are available to communicate
with SPD Server clients, and therefore require access from outside of the firewall. If the
SPD Server parameters for MINPORTNO= and MAXPORTNO= are not specified, the
SPDSBASE processes will use any port that is available to communicate with the SPD
Server client.

How many port numbers need to be set aside for SPDSBASE proxy processes? Each
SPDSBASE process produces its own operator port that can be accessed using command-
line specifications issued by an SPD Server client. In addition, each SPD Server table that
is opened creates its own port. Each table's port becomes a dedicated data transfer
connection that is used to stream data transfers to and from the SPD Server client. SPD
Server table ports are normally dynamically assigned, unless the MINPORTNO= and
MAXPORTNO= parameters have been specified. If the MINPORTNO= and

How do I know which ports must be surfaced through an Internet firewall? 293

MAXPORTNO= parameters have been specified, SPD Server table ports are assigned from
within the specified port range.

Therefore, it follows that the range of ports that is specified for the MINPORTNO= and
MAXPORTNO= parameters must take into consideration the peak number of concurrent
LIBNAME connections that will be made to the server, as well as the I/O streams that are
channeled between the SPDSBASE processes and the SPD Server clients.

The following ports must be surfaced for access beyond the firewall:

• Two SPD Server name server ports, listenport and operport , as well as any other
ports that are identified in SPDSNAME and SPDSOPER services.

• Two SPDSSERV ports: listenport and operport , as well as any other ports that are
identified in SPDSSERV_SAS and SPDSSERV_OPER services.

• Any other ports that are defined in the MINPORTNO= and MAXPORTNO= range that
is specified in the spdsserv.parm file.

How does SPD Server interact with multi-homed hosts?
A multi-homed host is a machine that has two or more IP addresses. For SPD Server to
work properly on host machines that have more than one IP address, you must define which
IP address you want to associate with the socket bind calls. Socket bind calls listen for the
SPD Server name server and the SPDSSERV processes. You use the SPDSBINDADDR
environment variable to define the preferred IP address. You set the SPDSBINDADDR
environment variable in the rc.spds script that you use to initiate the SPD Server name
server and SPDSSERV processes on the SPD Server host machine.

Can I use standard UNIX backup procedures?
Yes. SPD Server files are standard files. If all the components of a table are in the same
directory, then you can use the standard backup utility. This is our recommendation. SPD
Server includes an incremental backup utility. .

What do I need to know about SPD Server installation? How long will
it take?

The SPD Server install is quick and easy to do. The hard copy installation instructions and
shell scripts that are included on the install media will guide you through the installation
process. Installation and verification take less than an hour. You might need additional time
if you have several SAS client platforms to update.

On UNIX, the SPD Server installation can be performed using a non-privileged UNIX
account, although to implement all recommendations, UNIX root privilege is required.

Is it necessary to run UNIX SPD Server as root?
No. SAS recommends that you use a UNIX user ID other than root to run your production
SPD Server environment. While there are no known security or integrity problems with
the current SPD Server release, root access is not required to run the SPD Server
environment when you properly configure the UNIX directory ownership and permissions
on your LIBNAME domains. There is no real benefit from running the SPD Server package
as root, other than possibly convenience. You should carefully consider whether any
convenience you might obtain justifies the potential risk from running as root.

294 Chapter 17 • SPD Server Frequently Asked Questions

What is the SPD Server Name Server, and why do I need it?
All access to SPD Server is controlled and managed by the SPD Server name server. All
clients first connect to the name server, which acts as a gateway to named SPD Server
domains. The name server maintains a dynamically updated list of valid SPD Server hosts
and LIBNAME domains. When a user client needs a domain connection, the name server
parses the requested LIBNAME domain into a physical address, and then creates a proxy
connection to the corresponding SPD Server host. The SPD Server name server means that
users don't have to keep track of the physical addresses of SPD Server hosts. The only
server that an SPD Server client has to know about is the name server, which handles the
details of connecting SPD Server client users to the appropriate domains.

Does every SPD Server client need a UNIX ID or Windows Networking
ID?

No. SPD Server does not use UNIX or Windows networking IDs for login security. Each
SPD Server client must have a valid SPD Server ID in order to log in to the server. Access
to the server is controlled by this ID. Access to individual data is controlled by ACLs
(Access Control Lists) which are created by the owner of the data.

Can an SPD Server host, SPD Server Name Server and an SPD Server
client all run on the same machine?

Yes, they can. In fact, this even boosts performance because the client engine uses direct
access where possible instead of issuing requests to the server. For example, the SPD Server
client can perform direct reads from disk. WHERE-clause evaluation and index retrieval
are faster, too.

Can I have multiple SPD Server hosts on the same machine?
Yes. They can either be all connected to the same SPD Server name server or different SPD
Server name servers. Within each name server, all SPD Server LIBNAME domains must
be unique.

How do I create LIBNAME domains?
LIBNAME domains are defined in a LIBNAME startup file. The required SPD Server
command line option, -libnamefile, specifies the LIBNAME startup file. Each entry
in this file has the form

LIBNAME=ldname pathname= <libname-path-specification> ;

where

LIBNAME= specifies the argument for the LIBNAME domain name that SPD Server
clients need to reference

PATHNAME= specifies the full UNIX or Windows path where the SPD Server data tables
reside.

How do I specify a LIBNAME domain in SAS?
LIBNAME domains are defined by using a SAS LIBNAME statement. A sample syntax
is

How do I specify a LIBNAME domain in SAS? 295

libname sample sasspds 'ldname' server=spdshost.spdsname user='johndoe' prompt=yes ;

where

sample is the name of the libref

sasspds is the name of the SPD Server engine

ldname is the LIBNAME domain

spdshost is the IP name of the node which is running the name server

spdsname is the port number that the name server uses

johndoe is the SPD Server login ID

prompt is the prompt for password Y | N

Is there anything else I have to change to run my existing SAS
applications?

Typically, no. Once the librefs have been assigned, your existing SAS application will run
unchanged.

How can I get existing data loaded into an SPD Server table?
There are several ways to accomplish this. Here are the three most common:

1. Use PROC COPY:

 PROC COPY
 in=old
 out=spds
 memtype=data ;
 run ;

This will copy the data and build any existing indexes automatically.

2. Use the DATA Step and SET statement:

 DATA spds.a ;
 set old.a ;
 run ;

This will copy the data. You have to specify the indexes that you want to build.

 DATA spds.a(index=(z));
 set old.a ;
 run ;

This will copy the data and create an index on variable Z.

3. Use the Microsoft Windows ODBC driver.

Also, see “Migrating Tables between SAS and SPD Server” on page 39, which examines
table conversions.

296 Chapter 17 • SPD Server Frequently Asked Questions

Can SPD Server create indexes in parallel?
Yes, SPD Server can create multiple indexes at the same time. It does this by launching
one thread per index and driving them all at the same time. You can accomplish this with

PROC DATASETS lib=spds ;
 modify a(asyncindex=yes) ;
 index create x ;
 index create y ;
 index create comp=(x y) ;
quit;

In the above example, X, Y and COMP will be created in parallel. Notice the
ASYNCINDEX=YES data set option in the MODIFY statement.

%LET spdsiasy=YES ;
PROC DATASETS lib=spds ;
 modify a ;
 index create x ;
 index create y ;
 modify a ;
 index create
 comp=(x y)
 comp2=(y x) ;
quit ;

In the above example, X and Y will be created in parallel; COMP and COMP2 will be
created in a second parallel index create as soon as the first pair completes. Notice the use
of the SPDSIASY macro variable to specify parallel index creation. In this example, a table
scan is required for each batch of indexes identified for creation in parallel: one table scan
for the X and Y indexes and a second table scan for the COMP and COMP2 indexes.

How many indexes should you create in parallel? It will depend on how many CPUs are
in the SMP configuration, available disk space for index key sorting, and other tasks. Some
results show that on an 8-way UltraSparc, you can create four indexes in almost the same
time it takes to create 1. You can group index creates to minimize table scans or auxiliary
disk space consumption, but generally there is an inverse relationship between the two:
minimizing table scans requires more auxiliary disk space and vice versa. The Help
documentation contains more information about “Parallel Index Creation” on page 175.

Does SPD Server append indexes in parallel?
Yes, SPD Server appends indexes in parallel by default.

What are ACLs and how do I use them to control access to data
tables?

ACLs are Access Control Lists which define who can access a data table and what type of
access they are granted. Currently, there are four levels of access defined: Access List
Entry, Owner Access, Group Access, and Universal Access. Every SPD Server user has
access to at least one group. During log in, an SPD Server user must specify a particular
ACL group if the SPD Server password file has the user entered as a member of more than
one group. Every data table has an ACL owner and the owner's ACL group attached to it.
The precedence of the access levels is the following:

What are ACLs and how do I use them to control access to data tables? 297

• Access List Entry

• Owner Access

• Group Access

• Universal Access

Types of access are READ, WRITE, ALTER and CONTROL. To create access lists you
must have CONTROL access. The owner by default has control access. For more
information, refer to the Help section in the SPD Server 4.4 Administrator's Guide on The
ACL Command Set.

How do I get a list of the SAS macro variables introduced for SPD
Server?

In a SAS session, get into PROC SPDO and issue the SPDSMAC command. For example:

 LIBNAME foo sasspds ... ;
 PROC SPDO lib=foo ;
 SPDSMAC ;

For more information, see the list of macro variables in the Help section on “SPD Server
Macro Variables ” on page 199.

What about unique indexes? Can I do something to speed appends?
You can use the SPDSAUNQ=YES on page 218 server option to speed up appends to
unique indexes.

What about disk compression for SPD Server tables?
You can request compression for an SPD Server table by using the COMPRESS= data set
option. You can also set a macro variable named SPDSDCMP to the same value that you
would set in the COMPRESS= option. This causes compression on all data sets you
generate without explicitly specifying COMPRESS= on each DATA step. SPD Server
compresses your table set by "blocks" and the way you control this amount is through the
IOBLOCKSIZE= table option. Once you create a compressed table, the compression block
size (that is, the number obs/block) cannot be changed. You must PROC COPY the data
set to a new data set with a different IOBLOCKSIZE= on the output data set.

In any case, you select the default SPD Server compression by asserting COMPRESS=YES
or using %let SPDSDCMP=YES. The default compression algorithm is a run-length
compression.

What about estimates for disk space consumption when using SPD
Server?

Overview of Disk Space Consumption
The answer to this question depends on what type of component file within the SPD Server
data you need to estimate. Recall that there are three classes of component files that make
up an SPD Server table: metadata, data, and indexes. You always get the first two for every
table. You get an index component file for each index you create on the table.

298 Chapter 17 • SPD Server Frequently Asked Questions

Metadata space consumption
The approximate estimate here is:

SpaceBytes = 12Kb + (#columns * 120) + (5Kb * #indexes)

This estimate increases if you delete observations from the table or use compression on the
table. In general, the size of this component file should not exceed approximately 400K.

Data space consumption
The estimate here is for uncompressed tables:

SpaceBytes = #rows * RowLength

Your space consumption for compressed tables will obviously vary with the compression
factor for your table as a whole.

Hybrid index space consumption
The hybrid index uses two data files. The .hbx file contains the global portion of the hybrid
index. You can estimate space consumption approximately for the .hbx component of a
hybrid index as follows:

If the index is NOT unique:

number_of_discrete_values_in_the_index * (22.5 +
 (length_of_columns_composing_the_index))

If the index IS unique:

number_of_descrete_value_in_the_index * (6 +
 (length_of_columns_composing_the_index))

The .idx file contains the per-value segment lists and bitmaps portion of the hybrid index.
Estimating disk space consumption for this file is much more difficult than the .hbx file.
This is because the .idx file size depends on the distribution of the key values across the
rows of the table. The size also depends on the number of updates/appends performed on
the index. The .idx files of an indexed table initially created with "n" rows consumes
considerably less space than the .idx files of an identical table created and with several
append or updates performed afterwards. The wasted space in the latter example can be
reclaimed by reorganizing the index.

With the above in mind, a worst case estimate for space consumption of the .idx component
of a hybrid index is:

8192 + (number_of_descrete_values_in_more_than_one_obs * (24 +
 (avg_number_of_segments_per_value * (16 + (seg_size / 8)))))

This estimate does not take into consideration the compression factor for the bitmaps, which
could be substantial. The fewer occurrences of a value in a given segment, the more the
bitmap for that segment can be compressed. The uncompressed bitmap size is the (seg_size/
8) component of the algorithm.

To estimate the disk usage for non-unique hybrid index on a column with a length of 8,
where the column contains 1024 discrete values, each value is in an average of 4 segments
with a segment size of 8192 rows would be:

.hyb_size = 1024 * (22.5 + 8) = 31323 bytes

.idx_size = 8192 + (10000 * (24 + (4 * (16 + (8192/8))))) = 4343808 bytes

What about estimates for disk space consumption when using SPD Server? 299

To estimate the disk usage of a unique hybrid index on a column with a length of 8 that
contains 100000 values would be:

.hyb_size = 100000 * (6 + 8) = 1400000 bytes

.idx_size = 8192 + (0 * (...)) = 8192 bytes

Note: The size of the .idx file for a unique index will always be 8192 bytes because the
unique index contains no values that are in more than one observation.

There is a hidden workspace requirement when creating indexes or when appending
indexes in SPD Server. This need arises from the fact that SPD Server sorts the rows of
the table by the key value before adding the key values to the hybrid index. This greatly
improves the index create/append performance but comes with a price requiring temporary
disk space to hold the sorted keys while the index create/append is in progress. This work
space is controlled for SPD Server by the WORKPATH= parameter in the SPD Server host
parameter file.

You can estimate workspace requirements for index creation as follows for a given index
"x":

SpaceBytes ~ #rows * SortLength(x)

where #rows = Number of rows in the table if creating; number of rows in the append if
appending.

if KeyLength(x) >= 20 bytes
 SortLength(x) = (4 + KeyLength(x))
if KeyLength(x) < 20 bytes
 SortLength(x) = 4 + (4 * floor((KeyLength(x) + 3) / 4))

For example, consider the following SAS code:

DATA foo.test ;
 length xc $15 ;
 do x=1 to 1000 ;
 xc = left(x) ;
 output ;
 end ;
run ;

PROC DATASETS lib=foo ;
 modify test ;
 index create x xc xxc=(x xc) ;
quit ;

For index X, space would be:

SpaceBytes = 1000 * (4 + (4 * floor((8 + 3) / 4)))
 = 1000 * (4 + (4 * floor(11 / 4)))
 = 1000 * (4 + 4 * 2)
 = 12,000

For index XC, space would be:

SpaceBytes = 1000 * (4 + (4 * floor(15 + 3) / 4)))
 = 1000 * (4 + (4 * floor(18 / 4)))

300 Chapter 17 • SPD Server Frequently Asked Questions

 = 1000 * (4 + 4 * 4)
 = 20,000

For index XXC, space would be:

SpaceBytes = 1000 * (4 + 23)
 = 1000 * 27
 = 27,000

There is one other factor that plays into workspace computation: Are you creating the
indexes in parallel or serially? If you create the indexes in parallel by using the
ASYNCINDEX=YES data set option or by asserting the SPDSIASY macro variable, you
will need to sum the space requirements for each index that you create in the same create
phase. Referring back to the example in the parallel index Q/A, the indexes X and Y
constitute a create phase, as do COMP and COMP2. You would need to sum the space
requirement for X and Y, and for COMP and COMP2, and take the maximum of these two
numbers to get the workspace needed to complete the PROC DATASETS indexes
successfully.

For index X, space would be:

The same applies to PROC APPEND runs when appending to the table with indexes. In
this case all of the indexes are appended in parallel so you would need to sum the workspace
requirement across all indexes.

Transient space for PROC SORT / BY processing
Workspace is required for SPD Server sorting just as it is required for SPD Server sorted
index creation. There are two modes of sorting in SPD Server: tag and non-tag sorting. In
either case you sort based on the columns selected in the BY clause. The difference is in
the auxiliary data that is carried along by the sort in addition to the key constructed from
the BY columns. The default for SPD Server is to use the non-tag sort.

In the case of non-tag sorting, SPD Server carries along the entire row contents (that is, all
columns) as the auxiliary data for the key. In the mode of tag sorting, SPD Server only
carries along the row ID that points back to the original table row as the auxiliary data. You
control the amount of a sort problem that fits in memory at one time by the SPD Server
parameter SORTSIZE. Obviously, for a given sort size the number of sort records that will
fit will be a function of the sort mode(#records = SORTSIZE / (SortKeyLength +
AuxillaryLength)). When the sort problem does not fit in one SORTSIZE bin, the bins are
written to workspace on disk and then merged back to make the final sorted run.

Estimating the disk space required for SPD Server sorting depends on the mode.

For non-tag sorting the estimate is

SpaceBytes = #rows * (SortKeyLength + 4 + RowLength)

For tag sorting the estimate is

SpaceBytes = #rows * (SortKeyLength + 8)

So there is a very obvious question here: Since non-tag sort requires so much more space
than a tag sort, why would you ever choose a non-tag sort, much less make it the default?
The answer lies in the post-processing phase required for the tag sort. When the tag sort
completes all you have is the sorted list of row IDs. You must probe the table using the
row IDs to return the rows in the desired order. This generally means a highly randomized
I/O access pattern to the original table which can add significantly to the time to complete
the BY clause. There is definitely a trade-off between tag and non-tag sorting. The critical

Transient space for PROC SORT / BY processing 301

factors are the row length, the total number of rows to process, and the clustering of
consecutive row IDs in the final ordering.

What should I set WORKPATH= to?
The default server parameter file (that is, the spdsserv.parm file) sets the WORKPATH=
to /var/tmp. Generally this will be inadequate for even moderate SPD Server usage.
More than likely /var/tmp or /tmp at your site will have a small amount of space
allocated and will be used by other system and application programs that create temporary
files. In addition, these file systems will frequently be configured as a memory mapped file
system by the system administrator (that is, mounted as a tmpfs file system). Our experience
has been that neither /var/tmp nor /tmp is a suitable choice for WORKPATH, given
the space and performance limitations of a typical system configuration.

We strongly recommend that you configure WORKPATH to use a volume manager file
system that is striped across multiple disks, if possible, to provide the optimum performance
and to allow adequate temporary workspace for the collection of SPD Server proxy
processes that will be running concurrently on your server hardware.

How do I, as a LIBNAME domain owner, allow others to create tables
in my domain?

For example, Tom is a LIBNAME domain owner, and he wants to give Fred access to
create tables in Tom's domain. Tom needs to do the following:

Table 17.1 SAS Code to Give Access to User "Fred"

SAS code, by line Remarks

LIBNAME dmowner sasspds
"tomdom"
host="samson"
serv="5555"
user="tom"
passwd="tompw" ;

• dmowner is the libref for the location of the SPD
Server data.

• tomdom is the previously established SPD Server
domain.

• host= specifies the name of the computer where
SPD Server resides.

• serv= is followed by the port number of the SPD
Server's name server.

• passwd= is followed by the required password for
tom.

PROC SPDO lib=dmowner ; PROC SPDO opens the command set that allows the
user tom to change ACLs in the tomdom domain using
the libref dmowner.

set acluser tom ; SET ACLUSER command allows ACLs under user ID
tom to be modified.

add acl/libname ; Command to add the ACL for a LIBNAME domain.

LIBNAME is the syntax used to indicate the LIBNAME
domain assigned, which is tomdom to the libref that
PROC SPDO is started with, which is dmowner.

302 Chapter 17 • SPD Server Frequently Asked Questions

SAS code, by line Remarks

modify acl/LIBNAME fred=(Y,Y,,) ; Modifies the ACL in the LIBNAME domain ACL to
give user ID fred read and write access to the
tomdom domain.

quit ;

Fred can now connect to the TOMDOM domain and create tables.

How does the system administrator list the access control lists for
"user 1"?

To see the ACL privileges for a domain, the system administrator lists them for each user.

For this to work, your SPD Server user ID must be previously set up to have the SPECIAL
(level 7) privilege, to use the ACLSPECIAL=YES option on a LIBNAME statement.

Table 17.2 Code to List ACLs

Command from command prompt > Remark

LIBNAME test saspds

'temp'

server=servname.7880

prompt=yes ;

Issue LIBNAME statement for test
domain, specify server and port
number, ask system for a password
prompt.

user="username" aclspecial=YES ; aclspecial=YES now gives
"username" access to special ACL
commands, such as setting a new user
ID.

PROC SPDO lib=test ; Connects to the temp LIBNAME
domain using the libref test.

set acluser user1 ; Sets the SPD Server user scope to
user1.

list acl _all_ ; Lists all ACLs owned by user1.

The resulting output, described in the table below, lists all of the tables in "test".

Table 17.3 Results from List Command

Resulting output from list acl _all_; command Remarks

The SAS System 10:58 Tuesday, November 17, 2003 System message

ACL Info for A.DATA This ACL will affect table A if table A exists and user1
is the owner or has ACL control of the table A.

Owner = USER1 USER1 created and owns the A.DATA ACL.

How does the system administrator list the access control lists for "user 1"? 303

Resulting output from list acl _all_; command Remarks

Group = TECH This ACL was created while user1was connected with
an ACL group of TECH. All group permissions will
affect the permissions of the members of the TECH
ACL group.

Default Access (R,W,A,C) = (Y,N,N,N) R=Read; W=Write; A=Alter (rename, delete, or replace
tables) C=Control (define and update ACLs for a table)

Y=Yes; N=No;

Universal privileges are limited to read on table
A.DATA.

Group Access (R,W,A,C) = (N,N,N,N) Users in the ACL group TECH have no privileges on
table A.DATA.

The SAS System 10:58 Tuesday, November 17, 2003

ACL Info for NTE*.DATA NTE*.DATA refers to a set of tables, which begin with
NTE. ACLs of this kind are created using the generic
option. If you create a specific ACL for a table that starts
with NTE, the specific ACL will override the generic
ACL.

Owner = user1

Group = TECH

Default Access (R,W,A,C) = (N,N,N,N)

Group Access (R,W,A,C) = (Y,Y,N,N) Users from the ACL group TECH have read and write
access to tables with names that start with NTE.

How do I change existing PROC SQL code that works with SAS to
query SPD Server tables?

Overview
You do not have to change your PROC SQL code. The way to do this is to wrap your code
inside a CONNECT statement, which points to the location of the SPD Server tables. This
technique is referred to as pass-through. Normal operating system and ACL privileges
apply to the user ID making the query during the CONNECT process. Your PROC SQL
code should work with a few exceptions. For more information, see “Differences between
SAS SQL and SPD Server SQL ” on page 141. .

Once you establish a working CONNECT statement which points to the location of your
SPD Server tables, you can assign a LIBNAME to the SPD Server table path with a libref
command. This allows the simple name you assign to the SPD Server table to be used in
the SQL query, which keeps your SQL query as short as possible.

Here are four progressive examples:

• “Example 1: PROC SQL query, designed to work with a SAS data set, with a two-level
SAS filename example.” on page 305 shows PROC SQL that works with SAS.

304 Chapter 17 • SPD Server Frequently Asked Questions

• “Example 2: PROC SQL query, without using pass-through, pointing to an SPD Server
table, with a two-level SAS filename.” on page 305 shows how you can access SPD
Server tables without using the Pass-Through Facility.

• “Example 3: PROC SQL query, using pass-through, pointing to an SPD Server table,
with a LIBNAME example, with SQL code modified, to avoid using a two-level SAS
filename.” on page 306 shows how you can access the SPD Server tables by changing
your PROC SQL code.

• “Example 4: PROC SQL query, using pass-through, pointing to an SPD Server table,
executing a libref statement on the server, so that existing code can be used "as is".”
on page 307 shows how you can use the original PROC SQL code from the first
example, wrapped with a CONNECT statement, so that it can query SPD Server tables.

Example 1: PROC SQL query, designed to work with a SAS data set,
with a two-level SAS filename example.

Table 17.4 Example 1 Code

Code Remarks

 /* Issue a LIBNAME statement which */
 /* creates a LIBREF called "test" */
 LIBNAME test '/path/for/your/data' ;
 /* Query using base LIBREF of test */
 PROC SQL ;
 select sum(table1+table2)
 as pass,
 carrier from test.carriers
 where carrier in('AA','JI')
 and bstate='TX'
 group by carrier ;
 quit ;

This is an example of SQL code that works with SAS.
The code contains a two-level SAS filename reference,
which is typical for PROC SQL, but it will not work if
we attempt to use it inside of a pass-through CONNECT
statement.

Each of the following examples will show variations of
this code, modified to access SPD Server information.
We'll also discuss the pros and cons of each method.

Example 2: PROC SQL query, without using pass-through, pointing
to an SPD Server table, with a two-level SAS filename.
Why would you want to do this? You might NOT want to do this, because without pass-
through, all the processing is done on the CPU of the client machine. When processing
large tables, this is impractical, if not impossible.

How do I change existing PROC SQL code that works with SAS to query SPD Server tables?
305

Table 17.5 Example 2 Code

Code Remarks:

/* Issue a SPD Server (mkt) library */
/* LIBNAME statement */

 LIBNAME mkt sasspds 'mkt'
 server=servername.4228
 user='anonymous' ;
 PROC CONTENTS data=mkt.carriers ;
 run ;
/* query spds LIBREF (mkt) */
/* (two-level SAS file name) */
 PROC SQL;
 select sum(table1+table2)
 as pass, carrier
 from mkt.carriers
 where carrier in
 ('AA','JI')
 and bstate='TX'
 group by carrier ;
 quit ;

This example shows you how to make a query against
SPD Server tables, using your original SQL code,
without using SQL pass-through.

Example 3: PROC SQL query, using pass-through, pointing to an SPD
Server table, with a LIBNAME example, with SQL code modified, to
avoid using a two-level SAS filename.
Why would you want to do this? By modifying your SQL code slightly, you can use the
Pass-Through Facility to have SPD Server perform the work and send the results to the
client.

Table 17.6 Example 3 Code

Code

//* Query spds LIBREF (mkt) (pass-through one-level LIBREF)*/
 PROC SQL;
 connect to sasspds
 (dbq='mkt'
 serv='8770'
 user='anonymous'
 host='localhost') ;
 select *
 from connection
 to sasspds

 (select sum(table1+table2)
 as pass,
 carrier
 from carriers
 where carrier
 in('AA','JI')
 and bstate='TX'
 group by carrier) ;
 quit ;

306 Chapter 17 • SPD Server Frequently Asked Questions

Example 4: PROC SQL query, using pass-through, pointing to an SPD
Server table, executing a libref statement on the server, so that
existing code can be used "as is".
Why would you want to do this? Without modifying your SQL code, you can use the
Pass-Through Facility so SPD Server performs the work and sends the results to the client.

Table 17.7 Example 4 Code

Code

 PROC SQL ;
 connect to sasspds
 (dbq='mkt'
 serv='8770'
 user='anonymous'
 host='localhost');
 /* Issue passthru LIBREF (mkt) for use */
 /* in two-level queries */
 execute(LIBREF mkt)
 by sasspds;
 /* Query the SPD Server LIBREF (mkt) */
 /* that is a pass-through LIBREF */
 select *
 from connection
 to sasspds

 (select sum(table1+table2)
 as pass,
 carrier from mkt.carriers
 where carrier in('AA','JI')
 and bstate='TX'
 group by carrier) ;
 quit;

Can I use pass-through async to create multiple indexes on a single
existing table?

No. Multiple create indexes on the same existing table are not supported with async.

PROC DATASETS can be used to create indexes in parallel for a single existing table.

For example:

PROC DATASETS lib=foo ;
modify customer(
 asyncindex=yes
 bitindex=(state) ;
index create state ;
index create phoneno ;
index create custno ;
index create totsales ;
quit ;

Can I use pass-through async to create multiple indexes on a single existing table? 307

Can I use pass-through async to create multiple indexes on existing
tables?

Yes. As long as you create only one index per table, the index creation can be run with
async.

For example, to create an index State on table Customer, an index Totals on table Billing,
and an index Orderno on table Orders asynchronously, you use the following code:

execute(begin async operation)
 by sasspds ;

execute(create index state on customer(state))
 by sasspds ;

execute(create index totals on billing(totals))
 by sasspds ;

execute(create index orderno on orders(orderno))
 by sasspds ;

execute(end async operation)
 by sasspds ;

What size increases can I expect for tables that are stored in domains
with BACKUP=YES?

Tables created in domains that have Backup=YES will have an additional 17 bytes per
observation.

308 Chapter 17 • SPD Server Frequently Asked Questions

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	Product Notes
	SAS Scalable Performance Data (SPD) Server Product Notes
	Overview
	What's New in SPD Server 4.5?
	Overview of SPD Server 4.5

	SPD Server 4.5 Platform Support Changes

	SPD Server Usage
	SAS Scalable Performance Data (SPD) Server Overview
	Introduction to SAS Scalable Performance Data (SPD) Server
	The SPD Server Client/Server Model
	Overview of the Client/Server Model
	Symmetric Multi-Processor Hosts
	SPD Server Host Services for Clients

	Accessing SPD Server Using SAS
	SQL Pass-Through Facility
	LIBNAME Access
	SPD Server Host Name Server
	Specifying the Port Address for the Name Server

	Securing SAS Data
	LIBNAME Domain Registration
	ACL File Security

	Organizing SAS Data
	SPD Server Tables
	SPD Server Component Files
	SPD Server Table Indexes

	SPD Server Performance Enhancements
	SPD Server Pass-Through SQL Enhancements
	Implicit and Explicit Server Sorts
	Modified SAS Heapsort
	Indexed Parallel Table Scan
	Improved Table Appends

	SPD Server Extensions to Base SAS
	Using SPD Server with Data Warehousing

	Connecting to SAS Scalable Performance Data (SPD) Server
	Introduction
	SAS and SPD Server Tables
	Overview of SPD Server Tables
	SAS Libraries
	Temporary LIBNAME Domains

	SPD ServerResource Security
	UNIX File Security
	ACL File Security

	Accessing SPD Server from a SAS Client
	SQL Pass-Through Facility
	LIBNAME Access
	LIBNAME Options
	Connect to a Specified SPD Server Host
	Manage Server Network Traffic
	Additional LIBNAME Options
	LIBNAME Example Statements

	SPD Server Table Options
	Options to Enhance Performance
	Options for Other Functions

	SPD Server Macro Variables
	Overview of Macro Variables
	Macro Variables and Corresponding Table Options
	Summary of SPD Server Macro Variables
	Variable for a Client and Server Running on the Same UNIX Machine
	Variable for Compatibility with the Base SAS Engine
	Variables for Miscellaneous Functions
	Variables for Sorts
	Variables for WHERE Clause Evaluations
	Variables That Affect Disk Space
	Variables to Enhance Performance

	Accessing and Creating SAS Scalable Performance Data (SPD)
Server Tables
	Introduction
	Using a LIBNAME Statement to Access SPD Server
	Overview of Using a LIBNAME Statement
	Example: Issuing an Initial LIBNAME Statement
	The Client Session

	Managing Large SPD Server Files
	Initial Setup of SPD Server LIBNAME Domain Storage
	Effect of the Administrator Option, ROPTIONS=
	Explicit or Default Storage Paths
	Understanding SPD Server Component Storage
	Forced Partitioning of the Data Component
	Importance of the First Metadata Partition
	Using Path Options for Large Table Storage

	Migrating Tables between SAS and SPD Server
	SAS and SPD Server Table Migration Examples

	The SQL Pass-Through Facility
	Overview of the SQL Pass-Through Facility
	Accessing Data Using the SQL Pass-Through Facility
	SQL Pass-Through Statements

	Creating a New Table
	Example - Creating a New Table Using Pass-Through Statements
	Example - Creating a New Table with a LIBNAME Statement

	Indexing, Sorting, and Manipulating SAS Scalable Performance
Data (SPD) Server Tables
	Introduction
	 Indexing a Table
	 The SPD Server Index

	Creating SPD Server Indexes Examples
	Creating SPD Server Indexes from a DATA Step
	Creating SPD Server Indexes from PROC DATASETS
	Creating SPD Server Indexes Using SQL
	Creating SPD Server Indexes Using Pass-Through SQL
	Using VERBOSE= to See Index Information
	Using PROC SORT with SPD Server
	Example Using Implicit SPD Server BY Clause Sort
	Example Using PROC SORT

	Using SAS Scalable Performance Data (SPD) Server with Other
Clients
	Overview
	Using Open Database Connectivity (ODBC) to Access SPD Server
Tables
	Why Use ODBC?
	Installing OBDC Drivers on the Server
	Configuring ODBC on the Client
	Preparing your Client Machine for ODBC Installation
	Two Types of ODBC Connections
	Primary and Secondary LIBNAME Domains
	Configuring an ODBC Data Source to Connect Directly to a SPD
Server
	Configuring an ODBC Data Source for SPD SNET
	Editing the Services File on Your Machine - ODBC Details
	Creating a Query Using an ODBC-Compliant Program

	Using JDBC (Java) to Access SPD Server Tables
	Why Would I Want to Use JDBC?
	How Is JDBC Set Up on the Server?
	How Is JDBC Set Up on the Client?
	How Do I Use JDBC to Make a Query?
	JDBC Code Examples and Tips
	Limitations of Using JDBC with SPD Server

	Using htmSQL to Access SPD Server Tables
	Why Would I Want to Use htmSQL?
	How Is htmSQL Set Up on the Server?
	How Is htmSQL Set Up on the Client?
	How Do I Use htmSQL to Make a Query?
	Examples of Setting Up an htmSQL Web Page

	Using SQL C API to Access SPD Server Tables
	Why Would I Want to Use SQL C API?

	SAS Scalable Performance Data (SPD) Server Dynamic Cluster
Tables
	Introduction to Dynamic Cluster Tables
	Dynamic Cluster Table Structure
	Benefits of Dynamic Cluster Tables
	Overview of Dynamic Cluster Tables
	Parallel Loading
	Fast and Economical Refreshes

	Creating and Controlling Dynamic Cluster Tables
	Create a Dynamic Cluster Table
	Dynamic Cluster Table Access Control
	Add Tables to a Dynamic Cluster
	Undo Dynamic Cluster Tables
	Refresh Dynamic Cluster Tables
	Modify Dynamic Cluster Tables

	Dynamic Cluster BY Clause Optimization
	Overview of Optimizing BY Clauses
	Dynamic Cluster BY Clause Optimization Example

	Member Table Requirements for Creating Dynamic Cluster Tables
	Overview of Table Requirements
	Table Attributes
	Variable Attributes
	Index Attributes

	Querying and Reading Member Tables in a Dynamic Cluster
	Unsupported Features in Dynamic Cluster Tables
	Dynamic Cluster Table Examples
	Create a Dynamic Cluster Table Example
	Add Tables to a Dynamic Cluster Example
	Undo Dynamic Cluster Table Example
	Refresh Dynamic Cluster Table Example

	SPD Server SQL Features
	SPD Server SQL Features
	SPD Server SQL Planner
	Connecting to the SPD Server SQL Engine
	Implicit Pass-Through Connection
	Explicit Pass-Through Connection
	LIBNAME Syntax to Specify a Libref
	Libref Statements
	Libref Clauses
	Libref Examples

	Specifying SPD Server SQL Planner Options
	Specify SQL Options using Explicit Pass-Through Code
	Specify SQL Options using Implicit Pass-Through Code

	Important SPD Server SQL Planner Options
	_Method
	Reading the Method Tree
	EXEC/NOEXEC
	MAGIC
	INDEXSELECTIVITY=
	OUTRSRTJNDX/NOOUTRSRTJNDX
	INOBS
	OUTOBS
	SASVIEW/NOSASVIEW
	UNDO_POLICY=
	BUFFERSIZE=
	PRINTLOG/NOPRINTLOG
	Additional SQL Reset Options

	Parallel Join Facility
	Overview of the Parallel Join Facility
	Parallel Join Methods
	Parallel Joins with Group-By
	Parallel Join SQL Options
	 Parallel Join Example 1
	Parallel Join Example 2
	Parallel Join Example 3

	Parallel Group-By Facility
	Overview of the Parallel Group-By Facility
	Enhanced Group-By Functions
	Table Aliases Supported
	Nested Queries Meet Group-By Syntax Requirements
	Formatted Parallel Group Select

	Parallel Group-By SQL Options
	GRPSEL/NOGRPSEL
	FMTGRPSEL/NOFMTGRPSEL
	SCANGRPSEL/NOSCANGRPSEL

	SPD Server STARJOIN Facility
	STARJOIN Options
	NOSTARJOIN
	STARMAGIC
	DETAILS

	STARJOIN Facility Reference
	Overview: SPD Server STARJOIN Facility
	Star Schemas
	SPD Server STARJOIN Requirements
	Enabling STARJOIN Optimization in SPD Server
	Invoking the SPD Server STARJOIN Facility
	SPD Server STARJOIN Optimization
	Indexing Strategies to Optimize STARJOIN Query Performance
	SPD Server STARJOIN RESET Statement Options
	Example: STARJOIN RESET Statements
	SPD Server STARJOIN Examples

	SPD Server Index Scan
	Optimizing Correlated Queries
	Correlated Query Options
	_QRW/NO_QRW
	_QRWENABLE/NO_QRWENABLE

	Materialized Views
	Materialized Views Operating Details
	User Interface for Materialized Views
	Benefits of Materialized Views
	Materialized View Example

	SPD Server SQL Extensions
	BEGIN and END ASYNC OPERATION Statements
	LOAD Statement
	COPY Statement

	Differences between SAS SQL and SPD Server SQL
	Reserved Keywords
	Table Options and Delimiters
	Mixing Scalar Expressions and Boolean Predicates
	INTO Clause
	Tilde Negation
	Nested Queries
	USER Value
	Supported Functions

	SPD Server SQL Reference
	SPD Server SQL Syntax Reference Guide
	Overview
	Document Conventions
	Productions
	Production Links / References
	Literal Text
	Optional Text
	Selection Lists

	SQL Syntax Definitions
	Statement (Query)
	Scalar Expressions Contrasted with Boolean Predicates
	Strings
	Identifiers
	(Reserved) Keywords

	SQL Statements
	Alter Table Statement
	Connect Statement
	Create Index Statement
	Create Table Statement
	Create View Statement
	Delete Statement
	Describe Table Statement
	Describe View Statement
	Disconnect Statement
	Drop Index Statement
	Drop Table Statement
	Drop View Statement
	Execute Statement
	Insert Statement
	Reset Statement
	Select Statement
	Update Statement
	Validate Statement

	NEW SQL Statements
	Async Operation Statement
	Copy Table Statement
	Create Materialized View Statement
	Libref Statement
	Load Table Statement

	SQL Building Blocks

	SAS Scalable Performance Data (SPD) Server SQL Access Library
API Reference
	Introduction
	Overview of SPQL Usage
	SPQL API Description
	SPQL API Functions
	spqlinit()
	spqlterm()
	spqlconnect()
	spqldisconnect()
	spqlperform()
	spqlfreestok()
	spqltabinfo()
	spqlcolinfo()
	spqlfetch()
	spqlgmsg()

	SPQL Function Return Codes
	SPQL_SUCCESS(==0)
	SPQL_ENDDATA(WARNING)
	SPQL_INITFAILED(ERROR)
	SPQL_NOMEM
	SPQL_CONFAILED(ERROR)
	SPQL_BADSTMT(ERROR)

	SPD Server Reference
	Optimizing SPD Server Performance
	SPD Server Performance and Usage Tips
	Symmetric Multiple Processor (SMP) Utilization
	File System Performance Concepts
	Overview of File System Performance
	Defining Directories
	Disk Striping
	RAID Levels
	Transient Storage

	LIBNAME Domains
	Data and Index Separation
	Configuring a LIBNAME Domain

	Loading Data into an SPD Server Host
	Table Loading Techniques
	Parallel Table Load Technique Using PROC APPEND
	Parallel Table Load Technique Using SQL Pass-Through
	Parallel Pass-Through Table Load and Data Subset
	Parallel Pass-Through Table Copy

	Loading Indexes in Parallel
	Parallel Index Creation
	Parallel Index Creation Example
	Parallel Index Updates

	Truncating Tables
	Optimizing WHERE clauses
	Overview of Optimizing WHERE Clauses
	WHERE Clause Definitions and Terminology

	SPD Server Indexing
	Overview of Server Indexing
	SPD Indexes
	MINMAX Indexes

	WHERE Clause Planner
	WHERE-Costing Using Duplicity and Distribution Values
	WHERE Clause EVAL Strategies
	Assigning EVAL Strategies
	WHINIT: Indexed and Non-Indexed Predicates

	How to Affect the WHERE Planner
	Macro Variable SPDSWCST=
	Macro Variable SPDSWDEB=
	Macro Variable SPDSIRAT=
	Macro Variable SPDSNIDX= or Table Option NOINDEX=
	Macro Variable SPDSWSEQ=
	Server Parameter Option [NO]WHERECOSTING
	WHERENOINDEX Option
	When and Why Should I Suppress Indexes?

	Identical Parallel WHERE Clause Subsetting Results
	Overview of Parallel WHERE Clause Subsetting
	WHERE Clause Subsetting Variation Example:
	Job 1
	Job 1 Output:
	Job 2:
	Job 2 Output:

	WHERE Clause Examples
	Data for WHERE Examples
	Example 1 "where i = 1 and j = 2 and m = 4"
	WHERE_EXAMPLE 2: where i in (1, 2, 3) and j in (4, 5, 6, 7)
and k > 8 and m = 2
	WHERE_EXAMPLE 3: where i = 1 and j > 5 and mod(k, 3) =
2
	WHERE_Example 4: where i = 1 and j > 5 and mod(k, 3) = 2
(the index IJK is suppressed)

	Server-Side Sorting
	Overview of Server-Side Sorting
	Suppressing the Use of Indexes
	Advantages of Implicit Server Sorts

	SPD Server Macro Variables
	Introduction
	Variable for Compatibility with the Base SAS Engine
	SPDSBNEQ=

	Variables for Miscellaneous Functions
	SPDSEOBS=
	SPDSSOBS=
	SPDSUSAV=
	SPDSUSDS=
	SPDSVERB=
	SPDSFSAV=
	SPDSEINT=

	Variables for Sorts
	SPDSBSRT=
	SPDSNBIX=
	SPDSSTAG=

	Variables for WHERE Clause Evaluations
	SPDSTCNT=
	SPDSEV1T=
	SPDSEV2T=
	SPDSWDEB=
	SPDSIRAT=
	SPDSNIDX=
	SPDSWCST=
	SPDSWSEQ=

	Variables That Affect Disk Space
	SPDSCMPF=
	SPDSDCMP=
	SPDSIASY=
	SPDSSIZE=

	Variables To Enhance Performance
	SPDSNETP=
	SPDSSADD=
	SPDSSYRD=
	SPDSAUNQ=

	Variables for a Client and a Server Running on the Same UNIX
Machine
	SPDSCOMP=

	SPD Server LIBNAME Options
	Introduction
	Options to Locate an SPD Server Host
	HOST=
	SERVER=

	Options to Identify the SPD Server Client
	ACLGRP=
	CHNGPASS=
	NEWPASSWORD= or NEWPASSWD=
	PASSWORD= or PASSWD=
	PROMPT=
	USER=

	Options to Specify Implicit SQL Pass-Through
	IP=YES
	PASSTHRU=

	Options to Specify File Paths for Table Storage
	CREATE=
	DATAPATH=
	INDEXPATH=
	METAPATH=

	Options for Access Control Lists (ACLs)
	ACLSPECIAL=

	Options for a Client and Server Running on the Same UNIX Machine
	NETCOMP=
	UNIXDOMAIN=

	Options for Other Functions
	BYSORT=
	DISCONNECT=
	ENDOBS=
	LIBGEN=
	LOCKING=
	STARTOBS=
	TEMP=
	TRUNCWARN=
	WORKPATH=

	SPD Server Table Options
	Introduction
	Option for Compatibility with Base SAS Software
	SYNCADD=

	Options That Affect Disk Space
	ASYNCINDEX=
	COMPRESS=
	PARTSIZE=

	Options to Enhance Performance
	BYNOEQUALS=
	IOBLOCKSIZE=
	NETPACKSIZE=
	SEGSIZE=

	Option to Test Performance
	NOINDEX=

	Options for WHERE Clause Evaluations
	MINMAXVARLIST=
	THREADNUM=
	WHERENOINDEX=

	Options for Other Functions
	BYSORT=
	ENDOBS=
	STARTOBS=
	UNIQUESAVE=
	VERBOSE=

	Options for Security
	ENCRYPT=

	SPD Server Formats and Informats
	Introduction
	Formats
	List of Formats
	Formats Example:

	User-Defined Formats Example
	Informats

	SPD Server NLS Support
	Overview of NLS
	Character Encoding Overview
	Overview of Character Encoding
	What is Character Encoding?
	Common Encodings

	Moving Data across Environments with Different Encodings
	Transcoding
	How Base SAS Transcodes Data

	Base SAS Encoding Behavior
	Overview of Base SAS Encoding
	SAS 9 Output Processing
	SAS 9 Input Processing
	Reading and Writing External Files

	Setting the Encoding for Base SAS Sessions
	Changing the Encoding for Base SAS Sessions
	NLS Support in SPD Server
	Overview of NLS Support
	SPD Server NLS Limitations
	LIBNAME Option Restrictions:

	Appendix
	SPD Server Frequently Asked Questions
	SPD Server Frequently Asked Questions
	Does SPD Server support files that are larger than 2 Gigabytes
in size?
	Can I create file systems that are larger than 2 Gigabytes
in size?
	How do SPD Server client and server processes communicate?
	How do I know which ports must be surfaced through an Internet
firewall?
	How does SPD Server interact with multi-homed hosts?
	Can I use standard UNIX backup procedures?
	What do I need to know about SPD Server installation? How long
will it take?
	Is it necessary to run UNIX SPD Server as root?
	What is the SPD Server Name Server, and why do I need it?
	Does every SPD Server client need a UNIX ID or Windows Networking
ID?
	Can an SPD Server host, SPD Server Name Server and an SPD Server
client all run on the same machine?
	Can I have multiple SPD Server hosts on the same machine?
	How do I create LIBNAME domains?
	How do I specify a LIBNAME domain in SAS?
	Is there anything else I have to change to run my existing
SAS applications?
	How can I get existing data loaded into an SPD Server table?
	Can SPD Server create indexes in parallel?
	Does SPD Server append indexes in parallel?
	What are ACLs and how do I use them to control access to data
tables?
	How do I get a list of the SAS macro variables introduced for
SPD Server?
	What about unique indexes? Can I do something to speed appends?
	What about disk compression for SPD Server tables?
	What about estimates for disk space consumption when using
SPD Server?
	Transient space for PROC SORT / BY processing
	What should I set WORKPATH= to?
	How do I, as a LIBNAME domain owner, allow others to create
tables in my domain?
	How does the system administrator list the access control lists
for "user 1"?
	How do I change existing PROC SQL code that works with SAS
to query SPD Server tables?
	Can I use pass-through async to create multiple indexes on
a single existing table?
	Can I use pass-through async to create multiple indexes on
existing tables?
	What size increases can I expect for tables that are stored
in domains with BACKUP=YES?

