
SAS® Simulation Studio 1.5
User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009. SAS® Simulation Studio 1.5:
User’s Guide. Cary, NC: SAS Institute Inc.

SAS® Simulation Studio 1.5: User’s Guide

Copyright © 2009, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-60764-192-6

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor
at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation
by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19,
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, August 2009

1st electronic book, May 2009

2nd electronic book, August 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to
its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the
SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents
Chapter 1. Overview of SAS Simulation Studio 1

Chapter 2. Introduction to SAS Simulation Studio 15

Chapter 3. Simulation Models . 25

Chapter 4. Experiments . 33

Chapter 5. Blocks . 45

Chapter 6. Compound Blocks . 51

Chapter 7. Entities . 57

Chapter 8. Resources . 61

Chapter 9. Log and Trace . 83

Chapter 10. Block Templates . 91

Chapter 11. Data Collection, Analysis, and Reporting 95

Chapter 12. Batch Execution . 99

Appendix A. Templates . 101

Appendix B. Random Variation in a Model 185

Appendix C. Design of Experiments 197

Appendix D. Input Analysis . 207

Appendix E. Examples of Simulation Studio Models 211

Appendix F. Expressions . 241

iv

Chapter 1

Overview of SAS Simulation Studio

Contents
What Is Simulation? . 1
What Is SAS Simulation Studio? . 2
A Simple M/M/1 Queueing Model . 3

Running the Model . 5
Collecting Statistics . 6

Repair Shop Example . 7
Compound Blocks . 8
Model Logic . 9
Collecting Data . 11

What Is Simulation?

Simulation is a very broad term that is applied across many fields and industries. In its most general
sense, simulation is the process of building or designing a model that mimics the behavior of a
particular real-life system. These models can be either physical or logical. Examples of physical
models include flight simulators, wind tunnels, and earthquake simulators. This document focuses
on logical models, which can usually be represented by computer programs.

For some systems governed by logical and mathematical relationships, you can use traditional math-
ematical techniques such as queueing theory and differential equations to derive an analytical solu-
tion. For these systems, obtaining an exact answer is a benefit. However, you often need to make
simplifying assumptions about the system being studied in order to obtain an analytical model; this
simplification brings to the forefront the question of model validity. You can build a simple model
of a complex system, but that does not necessarily mean that the model is valid.

Many real-world systems are composed of not only extremely complicated and intricate mathemat-
ical and logical relationships, but also a significant random component. For these systems, you
simply might not be able to derive an analytical model. Instead, you can use a computer to build a
model of the system and numerically generate data that you can use to foster a better understanding
of the behavior of the real-world system. Part of the art of designing a computer simulation model
is deciding which aspects of the real-life system are necessary to include in the model so that the
data generated by the model can be used to make effective decisions.

2 F Chapter 1: Overview of SAS Simulation Studio

One of the main advantages of computer simulation is the ability to model extremely complex sys-
tems that ordinarily would be impossible to model using traditional analytical techniques. On the
other hand, the data generated by a computer simulation model is not exact and, to complicate
matters even further, the output is random if any of the model’s inputs is random. This random-
ness makes it more difficult to analyze the output from computer simulations, and often advanced
statistical methods are required to formulate valid conclusions about the behavior of the system.

The field of computer-based simulation is itself very broad and includes a number of different
classes of modeling techniques. This document focuses primarily on discrete-event modeling meth-
ods in which the state of the model is dynamic and the state of the model changes only at countable,
distinct points in time. For example, the operation of an emergency room at a hospital over a 24-hour
period can be modeled using discrete-event simulation techniques. A state change in this example
can be triggered by the arrival of a new patient or the departure of a nurse for a meal break. Each
state change occurs at a distinct point in time, and the simulation model operates by scheduling
these events and proceeds by advancing the simulation time to the next event or state change.

The popularity of simulation as a tool for design and analysis has grown over recent years, especially
with the advancement of computing technology. Part of simulation’s popularity is also due to the
numerous and diverse areas where it can be applied. Some areas where discrete-event simulation
has been successfully used include manufacturing, telecommunications, transportation, military,
and health care.

What Is SAS Simulation Studio?

SAS Simulation Studio is a SAS application that uses discrete-event simulation to model and an-
alyze systems. Simulation Studio is based on the Java programming language and provides the
following user interfaces:

� a graphical user interface that requires no programming and provides all the tools for building,
executing, and analyzing discrete-event simulation models

� a programmatic interface that enables you to run models in batch mode

Although having a comprehensive set of modeling tools is an important quality in a simulation
package, having advanced analysis tools is arguably just as important. As mentioned in the pre-
vious section, analyzing output from discrete-event simulations often requires advanced statistical
methods. Simulation Studio is designed to interact with both SAS software and JMP® software so
that you can conduct sophisticated statistical analyses of your results. Data generated by the model
can be saved as a SAS data set or JMP table for later analysis, or alternatively you can use a SAS
block included in the basic template of modeling blocks to execute SAS or JMP code directly from
Simulation Studio.

Simulation Studio includes a state-of-the-art Experiment window that gives you an organized way to
investigate the effects of different parameters on your model output in addition to a place to record
results. For a discrete-event simulation model in general, you might be interested in conducting the
following types of experiments:

A Simple M/M/1 Queueing Model F 3

� a sensitivity analysis in which a parameter in the model is varied and the effect on some
recorded response is examined. For example, you might be interested in the effect on cus-
tomer waiting times of hiring an additional cashier at a store.

� a comparison of two or more systems. For example, given two different factory floor layout
options, you might want to determine which one yields a higher throughput.

� an experimental design for a system that has flexibility in how several different parameters can
be set. You might want to use an experimental design (such as a full factorial) to efficiently
organize the testing of different parameter combinations and then study the effect on one or
more results.

The Simulation Studio Experiment window can be used to conduct all these different types of
simulation experiments. It can interface with JMP software to generate experimental designs and
then seamlessly pass the simulated results from the design back to the JMP program for analysis.
Simulation Studio is also designed to support multiple models and experiments in a single project
so that factors and responses can be defined once and used for all models in the project. This is
especially useful when comparing two or more systems.

No matter how advanced the available output analysis tools, they are essentially useless if the in-
puts to the model have not been estimated correctly. Input analysis is another important aspect of
building a simulation model. In Simulation Studio input analysis can be facilitated by using JMP
distribution estimation capabilities.

Simulation Studio is a flexible discrete-event simulation tool designed to provide the necessary
modeling and analysis tools for both novice and advanced simulation users. Furthermore, Simula-
tion Studio attempts to avoid being simply a black box that takes model inputs and mysteriously
produces model outputs. Rather, it includes features that enable you to customize your models and
tailor Simulation Studio to meet your specific needs.

A Simple M/M/1 Queueing Model

To illustrate some of the basic concepts involved in building models in Simulation Studio, consider
a model of a simple banking system with one teller. Assume that customers arrive at the bank at a
rate of 10 per hour (so that the interarrival time between customers is a sample from the exponential
distribution with a mean of 6 minutes). Customers wait in a single line on a first-come, first-served
basis. Also assume that the teller has a service rate of 12 customers per hour (so that the service
time for each customer is a sample from the exponential distribution with a mean of 5 minutes).
This simple banking system is an example of an M/M/1 queueing system.

For a queueing system such as this one, the following statistics might be of interest:

� average time a customer waits in line

� length of the queue

� number of customers served in one day

4 F Chapter 1: Overview of SAS Simulation Studio

Figure 1.1 An M/M/1 Queueing Model

Figure 1.1 shows a Simulation Studio model of the banking system. All the blocks used in this
example can be found in the basic template of blocks provided with the application. (The labels of
blocks in Figure 1.1 have been changed from their default labels to reflect their role in this model.
The default labels match the block type.) Customer arrivals to the bank are modeled using an Entity
Generator block labeled Arriving Customers in Figure 1.1. The Entity Generator block has an
input value port for the interarrival time. (See “Ports” on page 26 for more information about ports.)
The Numeric Source block generates a sample from the exponential distribution (representing
the next interarrival time) and the Entity Generator pulls that value through the InterArrivalTime
port.

Figure 1.2 shows the dialog box for the Numeric Source block. Since time in Simulation Studio is
dimensionless, you can use hours or minutes or any other time unit in any Simulation Studio model,
as long as you use the same units consistently throughout the model.

Running the Model F 5

Figure 1.2 Numeric Source Block Dialog Box

When the entity that represents a customer leaves the Arriving Customers Entity Generator block, it
is pushed to the FIFO Queue block . The movement of the entity down the link does not advance
the simulation clock. If the queue has a limited capacity and is full when the entity arrives, the
entity is pushed out the FIFO Queue block’s OutBalk port. If the queue is not full, the FIFO Queue
block attempts to push the entity to the Server block (representing the bank teller). If the Server
is available, it accepts the entity. Otherwise, the entity waits in the queue. When the Server becomes
available, it requests an entity from the queue.

When the entity arrives at the Server block , a service time is sampled from the second Numeric
Source block and pulled by the Server through the InServiceTime port. Once the entity completes
its service, it is pushed out to the Disposer block where it leaves the system. The Server then
requests another entity from the queue.

Running the Model

Figure 1.3 shows the Experiment window for this model. A single experimental design point, called
point1, has the number of replications set to 1 and the length of the simulation set to 540 minutes
(one banking day).

6 F Chapter 1: Overview of SAS Simulation Studio

Figure 1.3 M/M/1 Queueing Model: One Design Point

To display the simulation clock, select RunIShowISimulation Clock from the Simulation Studio
menu. To turn on the animation, click the Animation button . To run this model, click the Start
button . To pause the model, click the Pause button . To restart the model, click the Start
button again. When the model finishes running, only the Reset button is active. You must click
the Reset button before you make changes to the experiment window or rerun the model.

Collecting Statistics

You can use the Number Holder block to collect and display statistics such as minimum, max-
imum, sum, and mean as the model is running. In Figure 1.3, a Number Holder block (labeled
Average Waiting Time) is connected to the OutWait port on the FIFO Queue block. (Although the
ports on a block are not labeled in Figure 1.3, when you rest your mouse pointer on a port, a tooltip
displays the port name.)

Double-clicking any block in a model opens the properties dialog box for that block. Figure 1.4
shows the dialog box for this Number Holder block. As each entity leaves the queue, its wait time
is pushed into the Number Holder block, whose Display field is set to Mean. The Number Holder

Repair Shop Example F 7

then recomputes the average waiting time and displays the new value. In this example, the average
waiting time for customers computed over one banking day is 16.81 minutes.

Figure 1.4 Number Holder Block Properties

A second Number Holder block (labeled Current Queue Length), with the Display field set to
Value, is connected to the OutLength port on the FIFO Queue block. Each time an entity enters
or leaves the queue, the new queue length is pushed to the Current Queue Length Number Holder
block and the updated queue length is displayed. Number Holder blocks can display only averages
for observation-based statistics, such as waiting time. For time-dependent statistics such as queue
length, Number Holder blocks should be used only to display the minimum, maximum, sum, or
current value. In Figure 1.3, the final queue length is 2.

Finally, there is a third Number Holder block (labeled Number Serviced), with the Display field
set to Value, connected to the OutCount port on the Disposer block . Each time an entity leaves
the system, the Number Serviced Number Holder block updates its value and displays the current
number of entities serviced. In this example, the number of customers served by the end of one day
is 88.

Repair Shop Example

This section discusses a more complicated model to demonstrate some of the additional features
and capabilities of Simulation Studio, including compound blocks, branching based on probability,
and using the various plotting blocks to monitor the status of the model as it is running.

8 F Chapter 1: Overview of SAS Simulation Studio

Suppose parts arrive at a repair shop at a rate of four per hour. Upon arrival, a part is taken to
the service desk where it is inspected. The time it takes a person to inspect the part is uniformly
distributed between 5 and 15 minutes. The service desk can repair 35% of the parts. The rest
require more complicated repairs and must be sent to the repair station. At the repair station, the
part is worked on by a repairman. The time it takes a repairman to diagnose and fix the problem
is uniformly distributed with a minimum of 10 minutes and a maximum of 45 minutes. With a
probability of 0.09 a repairman cannot fix the part, and it is sent to the scrap area. Otherwise, the
repaired part is sent on to a quality control manager who inspects the part to determine whether it
has been repaired properly. The time it takes a quality control manager to inspect a part is uniformly
distributed between 6 and 18 minutes. Two people work at the service desk, and two people work at
the repair desk. Assume the travel time for parts between all stations is 1 minute. The shop is open
from 9:00 a.m. to 6:00 p.m., Monday through Friday. The simulation is run for one work week (45
hours).

Compound Blocks

Figure 1.5 shows the completed repair shop model. This model contains several yellow blocks
labeled Arrivals, Delay, and Chance; these are compound blocks. If you double-click the yellow
compound block labeled Arrivals, you see that it is made up of two blocks: a Numeric Source block
and an Entity Generator block. (See Figure 1.6.) Compound blocks are a handy way to organize
and streamline your model by collapsing groups of blocks into one block. Compound blocks are
also useful in situations where you have the same logic repeated more than once because they can
be saved to a template and later reused. For example, double-clicking a Chance compound block
reveals that it is made up of three blocks. (See Figure 1.7.) By combining them into one compound
block and saving it to a template, you can easily reuse this same logic at other places in your model.
See Chapter 6, “Compound Blocks,” for more information about creating and saving compound
blocks.

Model Logic F 9

Figure 1.5 Repair Shop Model

Figure 1.6 Arrivals Compound
Block

Figure 1.7 Chance Compound
Block

Model Logic

Entities that represent the parts are created in the Arrivals compound block and are pushed to a
Delay compound block where they are held for one minute, representing the travel time between
stations. Next they are pushed to the Service DeskQ Queue block where they wait for the next
available associate at the service desk. After service is completed at the service desk, the entity is

10 F Chapter 1: Overview of SAS Simulation Studio

pushed to a Chance compound block, which is used to model branching based on probability (in
particular, to model that 35% of the parts are repaired at the service desk while the rest are sent on
to the repair station).

If you right-click the Switch block inside the first Chance compound block to open the properties di-
alog box, you see that there are two cases defined: one named FurtherRepair and one named Fixed.
(See Figure 1.8.) The Port option indicates that the switch value comes through the InSwitchValue
port. After the two cases have been defined, two additional entity output ports are dynamically cre-
ated on the Switch block to allow routing of entities based on the switch value. The InSwitchValue
port is connected to a Formula block.

Figure 1.8 Switch Block Properties

Figure 1.9 shows the properties dialog box for the Formula block. After you add one input variable
named runif of type Number, the Formula block dynamically creates an input port labeled runif.
Connected to the runif input port is a Numeric Source block. This Numeric Source block generates
a sample from the uniform distribution with a minimum of 0 and a maximum of 1. After the value
for runif is pulled by the Formula block, the expression cond(runif>0.35,1,0) is evaluated as
follows. If runif is greater than 0.35, then the value 1 is returned and pushed out of the Formula
block and into the Switch block. Otherwise, the value 0 is returned and pushed out. The Switch
block then receives either the value of 1 or 0 and uses the value to determine which output port the
entity should use to leave the Switch block.

Collecting Data F 11

Figure 1.9 Formula Block Properties

If a part is fixed at the service desk, it leaves the system. Otherwise, it is pushed on to the second
Delay compound block where it is held for one minute. It then waits in the repair desk queue for the
next available repairman. After being serviced by a repairman, the part is pushed into the second
Chance block. Here the expression cond(runif>0.09,1,0) is evaluated so that with probability
0.09 the part cannot be fixed and is scrapped (that is, the entity leaves the system). Parts that are
fixed move on to the third Delay compound block where they wait for one minute and then are
pushed into the quality control queue. After being inspected by the quality control manager, the
part leaves the system.

Collecting Data

Several blocks in Simulation Studio can be used to collect data. One of these blocks used in the
repair shop model is the Server Stats Collector block . This block can be placed anywhere in the
model window because entities do not flow through it. Figure 1.10 shows the properties dialog box
for the Server Stats Collector block. A list of all blocks that implement the ServerStats interface in
the model is shown, and you can select the ones for which you want to collect statistics. The data
collected can be saved to a file as a SAS data set or JMP table or passed to one of the Simulation
Studio plotting blocks.

12 F Chapter 1: Overview of SAS Simulation Studio

Figure 1.10 Server Stats Block Properties

In the repair shop model, a Bar Chart block is connected to the OutData port of the Server Stats
Collector block. Figure 1.11 shows the properties dialog box for the Bar Chart block, which requests
a bar chart of the average utilization for each of the three servers in the model. After the model is
run, the bar chart shows that the average utilization at the quality control station is significantly
higher than at the repair or service desks. (See Figure 1.5.)

Collecting Data F 13

Figure 1.11 Bar Chart Block Properties

To further investigate the severity of the bottleneck at the quality control station, you can connect a
Number Holder block (labeled WaitingTimeQC) to the OutWait port on the quality control queue.
Then you can pass the waiting time values to a Scatter Plot block by connecting the OutCollected
port of the Number Holder block to the InData port of the Scatter Plot block. For the plots to display
correctly, the Collect Data check box in the Number Holder Block properties dialog box must be
selected. (See Figure 1.4.) As the model runs, you see that the waiting time at the quality control
station continues to increase. Appendix E, “Examples of Simulation Studio Models,” revisits this
repair shop model.

14

Chapter 2

Introduction to SAS Simulation Studio

Contents
Simulation Studio Graphical User Interface . 15
Installing and Starting Simulation Studio . 16

Installing Simulation Studio . 16
Starting Simulation Studio . 17
Configuring Simulation Studio . 17
Launching SAS and JMP Servers . 18

Simulation Studio Menu and Toolbar . 18
Block Template Display Area . 19
Simulation Studio Projects . 20

Project Explorer . 20
Project Window . 21
Log and Trace Window . 24
Project Status Bar . 24

Simulation Studio Graphical User Interface

As mentioned in Chapter 1, “Overview of SAS Simulation Studio,” Simulation Studio provides a
graphical user interface (GUI) and a batch interface. Initially, most users typically use the Sim-
ulation Studio GUI to build and execute simulation models. This chapter provides a high-level
overview of Simulation Studio from the GUI perspective and discusses the major components of
the application framework. The batch interface is detailed in Chapter 12, “Batch Execution.”

16 F Chapter 2: Introduction to SAS Simulation Studio

Figure 2.1 Simulation Studio Application Framework

When you start the Simulation Studio application, the graphical user interface opens on your com-
puter screen as shown in Figure 2.1. This window consists of six main areas: menu, toolbar, block
template display area, project explorer, project desktop, and project status bar. The following sec-
tions provide details about each of these areas. Of course, before you can view the Simulation
Studio GUI, you have to know how to launch the application.

Installing and Starting Simulation Studio

Installing Simulation Studio

The installation program for Simulation Studio asks where you want to install the software on
your computer. The default location is \Program Files\SAS\SimulationStudio\1.5. If
you choose the default location, the installation software loads the software and adds an entry for
Simulation Studio to the Start menu. The installation routine also includes an option to add a
Simulation Studio icon to your desktop for launching Simulation Studio.

Configuring Simulation Studio F 17

Simulation Studio requires you to have a valid version of either the SAS/OR® or JMP software or
both installed on your computer. It also needs to know the location of this software on your system.
This information is referred to as the Simulation Studio configuration data. The configuration data
must be supplied to Simulation Studio for the application to launch.

Starting Simulation Studio

To start Simulation Studio, you can either double-click the Simulation Studio desktop icon or select
the Simulation Studio entry from the Start menu (StartIProgramsISASISimulation Studio
1.5.)

Configuring Simulation Studio

When you attempt to launch the Simulation Studio application for the first time, it has not yet
acquired the configuration data it needs. The message “No valid SAS/OR or JMP license” appears
because at this point Simulation Studio does not know where to look for SAS or JMP software
on your machine. Then Simulation Studio displays the SAS Simulation Configuration dialog box
for you to enter the necessary information. (See Figure 2.2.) Under Analytical Servers, enter the
directory location for the version of SAS or JMP software you want to use with Simulation Studio.
(The default paths for these locations are usually something like \Program Files\SAS\SAS 9.
2 or \Program Files\SAS\JMP8.) You need to supply the information for at least one of these
items for the application to function.

If you populate the information for only one of the servers, the Default Data Format choice is made
automatically. If you supply both SAS and JMP server information, you might have to choose your
default data format. (This format information is used for reading and writing data when the filename
extension is not provided with an input or output filename.)

Figure 2.2 Configuration Dialog Box

18 F Chapter 2: Introduction to SAS Simulation Studio

Launching SAS and JMP Servers

If you want to submit SAS code (probably through a SAS block in your simulation model) or
interact with JMP software during a Simulation Studio session, you need to have the Simulation
Studio SAS server or JMP server (or both) running on your computer. You must launch these servers
manually. The server code is installed in the launchSASServer directory under your Simulation
Studio installation directory. To launch the SAS server, double-click the file SASServers9_2.
bat in the launchSASServer directory. (You might need to edit this file to reflect the location
of the sas.exe you specified for the SAS folder in the configuration dialog box.) The process for
launching the Simulation Studio JMP server is similar except that you open and run the JMP script
file named JMP_Sim_Server.JSL. (Use the Run Script menu option from a JMP window.)

Simulation Studio Menu and Toolbar

The main Simulation Studio menu consists of five items: File, Template, Run, Analyze, and
Tools. Use the File menu (shown in Figure 2.3) to open, create, close, and save projects, models,
and experiments in Simulation Studio. When you open or create a new project, Simulation Studio
opens a new project window in the Project Desktop area of the GUI and updates the Project Explorer
accordingly. If this is a new project, a new (empty) model and experiment are also created. When
an existing project is opened, all models and experiments in that project are opened and entries are
created for them in the Project Explorer.

Figure 2.3 File Menu

A Simulation Studio template stores information about a collection of Simulation Studio blocks.
Template details are provided in Chapter 10, “Block Templates.” Use the Template menu to open,
create, close, and save Simulation Studio templates. Opening a template adds the template name
to the Template list box in the Block Template Display area of the application. You can use this
list box to determine which template palette is visible in the Block Template Display area of the
application. Select TemplateIClose to remove the current template name from the Template list
box and also remove the associated blocks from the Template palette. Select Save or SaveAs to
save the current template to disk storage. More details about templates are provided in Chapter 10,
“Block Templates.”

Block Template Display Area F 19

The Run menu (Figure 2.4) controls much of the model execution and animation. Many of the
controls are also found in the toolbar. The functionality associated with model execution controls
(Start, Pause, and so on) is discussed in Chapter 3, “Simulation Models.” Select Show to enable
or disable the simulation clock and replication count displays for the current model. When visible,
the clock and replication count appear in the upper right corner of an individual Project window.

Figure 2.4 Run Menu

To access the JMP distribution-fitting platform, select AnalyzeIInput Analysis. To open the con-
figuration dialog box (Figure 2.2), select ToolsIConfiguration.

The toolbar (Figure 2.5) provides quick access to most of the functionality in the Run menu. The
animation icon acts as a toggle switch for turning execution animation on and off. Clicking an
icon in the toolbar invokes the functionality associated with that icon. The remaining toolbar icons
are discussed in Chapter 3, “Simulation Models.”

Figure 2.5 Toolbar

Block Template Display Area

The Block Template Display area (Figure 2.6) consists of two components. The Template list
box contains the names of all the templates currently loaded into Simulation Studio. The selection
displayed in the Template list box represents the currently active template. In Figure 2.6 the template
labeled Standard is active. The area immediately below the list box, called the Template Palette area,
displays the templates for the individual blocks contained in the currently active template.

You can change the format of the displayed items in the Template Palette area by using the pop-up
menu available on the Block Template Display area background. Display options include Large
Icons, Small Icons, List, Text Only, and Icons Only. You can also use this pop-up menu to view
specific information about an individual block. Selecting Block Info from the pop-up menu opens
a dialog box to display information about the corresponding block. This information includes the
block name, class path, icon, and tooltip associated with the block. Menu options are also available

20 F Chapter 2: Introduction to SAS Simulation Studio

via the pop-up menu to remove blocks from and import blocks to the template.

When you rest the pointer on an individual block icon in the Template Palette, a tooltip appears
that contains a brief description of the block. The Template Palette area is your source for blocks
when you are using the Simulation Studio GUI to build your simulation model. To add blocks to
your simulation model, drag template icons from the Template Palette into a Model window. This
process creates an instance of the associated block in your model. Templates are discussed in detail
in Chapter 10, “Block Templates.”

Figure 2.6 Template Display Area

Simulation Studio Projects

A project in Simulation Studio (ideally) contains models and experiments that are in some way
associated with each other and helps to provide organizational structure to all of your models and
experiments. A project must contain at least one model and experiment, but there is no limit to
how many models and experiments can be in a project. Any number of projects can be loaded into
Simulation Studio at one time. In addition to organizing models and experiments, projects provide
storage for factor and response definitions that can be shared across models and experiments in that
project. Factors and responses are discussed in Chapter 4, “Experiments.”

Project Explorer

The Project Explorer (located on the top left side of the GUI in Figure 2.1) uses a tree structure to
display the projects, associated models, and experiments that are currently loaded into the applica-

Project Window F 21

tion. Figure 2.7 shows a Project Explorer with two projects loaded: crane and repairshopDOE, each
with one model and one experiment.

Figure 2.7 Sample Project Explorer

Selecting a project, model, or experiment name listed in the Project Explorer hierarchy causes the
windows associated with that item to activate and pop to the top in the Project window. The activated
model and experiment names are shown in bold. Up to one model and one experiment in a project
can be activated.

Context-sensitive pop-up menus are available on the items displayed in the Project Explorer. You
can right-click a project to open a dialog box to edit factors and responses associated with the
project and also to change the base directory location where any simulation results are stored. You
can right-click a model to open the Anchors dialog box to associate block parameters in a model to
project factors and responses and also to set flags in blocks for automatically saving results. You can
right-click an experiment to open a dialog box to include factors and responses. Factors, responses,
and anchors are detailed in Chapter 4, “Experiments.”

Project Window

Each project loaded into Simulation Studio has a Project window associated with it in the Project
Desktop area of the GUI. A newly created Project window is displayed in Figure 2.8. Each Project
window has a desktop area at the top and a tabbed window at the bottom. The Project Desktop area
contains any Model windows and Experiment windows associated with the project. When a new
Project window is first created, it has one (empty) Model window, one Experiment window, and at
the bottom of the frame, Log and Trace tabs. Project windows can be minimized as needed using
controls on the Project window frame. To open the Factor and Response definition dialog boxes,
right-click on the background of a Project window. See Chapter 4, “Experiments,” for details about
factors and responses.

22 F Chapter 2: Introduction to SAS Simulation Studio

Figure 2.8 Sample Project Window

Model Window

Each model in a project has a Model window associated with it. You use this window to graphically
construct and display a simulation model. You drag a block from the Template Palette into a Model
window to create an instance of the block associated with that template in your model. You connect
the blocks in your model by creating links between ports on the various blocks. You can right-
click or double-click an individual block to open a dialog box where you can modify parameters
associated with the block. Interacting with blocks and models is discussed in detail in Chapter 3,
“Simulation Models.” Closing a Model window deletes the window and removes the model entry

Project Window F 23

from the Project Explorer. NOTE: Modified models are not automatically saved upon closing.
Figure 2.9 displays a sample Model window that contains a simple M/M/1 model.

Figure 2.9 Sample Model Window

Experiment Window

You use Experiment windows to control the initialization and running of simulation models. Each
experiment in a project has an Experiment window in the Project window. By default, each Ex-
periment window contains columns for controlling the start and end times of a simulation run (or
design point) along with a column for designating how many times you want to repeat this run. An
experiment must have at least one design point in order to run an associated simulation model.

You can use an Experiment window to control initialization of block parameters before running a
simulation model. Any factor or response defined on the project can be included in an experiment.
Using this and other features of experiments is discussed in Chapter 4, “Experiments.”

As with a Model window, closing an Experiment window deletes the window and removes the
experiment entry from the Project Explorer. Figure 2.10 shows a sample Experiment window in-
cluding a factor labeled maxentities and a response labeled Number Serviced. To modify the content
of an Experiment window, right-click on the background of the Experiment window and select the
appropriate item from the pop-up menu.

24 F Chapter 2: Introduction to SAS Simulation Studio

Figure 2.10 Sample Experiment Window

Log and Trace Window

Each Project window also contains one Log and Trace window in a tabbed format along the bottom
of the Project window frame. (See Figure 2.8.) The Log tab displays log messages from either the
currently running or most recently run model. Each log message has a Severity Level associated
with it along with the source and simulation time of the message.

The Tracer feature must be enabled for trace messages to appear in the Trace tab. You enable the
Tracer feature by using a pop-up menu available on the Trace tab background. Trace messages are
generated by individual blocks during the execution of a model and are intended to provide details
about events and execution flow within the blocks.

Additional details about the log and trace facilities in Simulation Studio are provided in Chapter 9,
“Log and Trace.”

Project Status Bar

The Project Status bar, located at the bottom of the GUI, displays the path name of the currently
active project.

Chapter 3

Simulation Models

Contents
Overview of Models . 25
Blocks . 25
Ports . 26
Entities and Values . 28
Building a Model . 29
Running a Model . 30
Saving a Project . 31
Opening a Project, Model, or Experiment . 31

Overview of Models

In Simulation Studio, the term model means an abstraction or representation of a system that you
want to investigate or study. Most models represent a simplified version of the real system, but they
still must capture the essence of the system under investigation to be useful. In Simulation Studio,
models are composed of blocks, and blocks communicate with each other through ports. In the
Simulation Studio GUI, blocks are said to be connected if a port on one block has a link to a port on
another block, creating a path for information to flow between them. A model in Simulation Studio
is usually a series of blocks arranged or connected in a configuration that represents the system
under investigation.

This chapter provides an overview of blocks, ports, and the types of information that flow between
them. The details about each of these subjects is provided in later chapters. This chapter also
discusses how to use the Simulation Studio GUI to build, run, and save a simulation model.

Blocks

In Simulation Studio, blocks are the most fundamental units used to build a simulation model.
Each block usually encapsulates some well-defined and specialized functionality. Communication

26 F Chapter 3: Simulation Models

between blocks is accomplished through the ports defined on the individual blocks. In the Simu-
lation Studio GUI, you manually create a link between the ports on blocks to provide a path for
information to flow when the simulation is running.

Simulation Studio provides a default collection of basic blocks for model construction. These blocks
appear in, and can be accessed through, the Standard template of the application. The details about
these individual blocks is provided in Appendix A, “Templates.” Each block has a pop-up menu
associated with it that you can open by right-clicking the block in the Model window. This menu
looks similar to the one displayed in Figure 3.1.

Figure 3.1 Sample Block Menu

This menu provides various functionality, including access to the block properties dialog box. The
properties dialog box displays any individual parameters for the block along with a block func-
tionality overview page. You can also open a block’s properties dialog box by double-clicking the
block.

In addition to the basic blocks provided by Simulation Studio, you can create compound blocks by
aggregating a series of blocks, or you can create your own basic blocks. The details about these
subjects are covered in later chapters.

Ports

Ports represent the basic interface to blocks. Blocks usually have multiple ports. Depending on
the functionality of the block, a block can have static ports (the same ports are always available for
this type of block) or dynamic ports (ports can be dynamically created or deleted based on various
properties of the block). An example of a block with static ports is the Entity Generator block used
to create entities. (See Figure 3.2.) This block always has an InterArrivalTime, BatchSize, Signal,
OutEntity, and OutBalk port.

Ports F 27

Figure 3.2 Entity Generator Block with Five Static Ports

The Modifier block has static ports and optional dynamic ports. You use a Modifier block
(Figure 3.3) to assign attributes to an entity that flows through a model. The number of ports avail-
able on the Modifier block is dependent on the number of attributes you have decided to set using
that block. In Figure 3.3, three attributes are assigned using this Modifier block, so the block’s icon
displays three dynamic attribute input ports along with the Modifier block’s standard static input
and (two) output entity ports.

Figure 3.3 Modifier Block with Three Dynamic Attribute Ports

Blocks have two types of ports: value ports and entity ports. The ports are color-coded with value
ports displayed in blue and entity ports in red. Value ports are always located on the top and bottom
of the block icon, and entity ports are displayed on the right and left sides of the block icon. In
general, values are information such as numbers, character strings, and so on, and entities represent
special objects that flow through the model during a simulation, potentially carrying additional
information or properties along with them.

Each value port can either be an input value port or an output value port. Similarly, entity ports can
be input or output ports. An input port is used to get information into the block, and an output port
is either used by the block to push information out or used by another block to pull information
from the block. Input ports are drawn as triangles on the perimeter of a block, and output ports are
represented by squares. In Figure 3.2, the InterArrivalTime port represents an input value port and
the OutEntity port is an output entity port. When you first rest the pointer over a port, a tooltip with
a brief label for the port appears. The ports for each block are described on the Overview tab in the
block’s properties dialog box.

Each port has associated with it a Port Connections dialog box that is accessed by right-clicking the
port. The Port Connections dialog box shows a list of all ports (and associated blocks) connected
to the selected port. (See Figure 3.4.) The Order column in the dialog box indicates the priority of
each port that is connected to the selected port. The order in which the ports appear in the dialog box
is the order in which they are activated when the selected port needs to communicate with another

28 F Chapter 3: Simulation Models

port. The order can be changed by selecting a row in the Port Connections dialog box and then
clicking the Up or Down arrow button to move the selected row in the list. Connections can also be
deleted by selecting a row in the dialog box and clicking the Delete button located under the arrow
buttons.

Figure 3.4 Port Connections Dialog Box

Entities and Values

Two general types of information are communicated between blocks: values and entities. Values can
be numbers, strings, or generic Java objects, and they are usually associated with state information
or properties on blocks. Value ports are used to access or set value information associated with
blocks.

As an example, the Queue block has a numeric property called capacity that represents the maxi-
mum number of entities the queue can hold at one time. Although you can use the properties dialog
box of a Queue to set its capacity, you can also connect the InCapacity port (as shown in Figure 3.5)
to a numeric output port of another block that sends out a numeric value while the simulation is
running. The Queue block also has a numeric value output port called OutLength. Every time the
number of entities in the queue changes, the length of the queue is pushed out its OutLength port.
It is also possible to query the length of the queue via a connection to the OutLength port.

Figure 3.5 Queue Block

Building a Model F 29

Although most values are simply numbers or strings, values can also be Java objects. Some blocks
collect information or statistics and store the data in a custom Java object. This storage object
can be shared with other blocks. An example of this functionality is the Number Holder block. The
Number Holder block provides an option to store data values that pass through the block in a storage
object, and the Number Holder block has an output port called OutCollected to provide access to
this storage object. For example, you might be interested in displaying the values being collected
in the Number Holder block while the simulation is running, so you could connect the DataIn input
port (of value type Object) of a Histogram block to the OutCollected port of the Number Holder
block. The Histogram block would then display a representation of the data passing through the
Number Holder block when the simulation is running.

The second type of information passed between blocks is called an entity. Entities are special objects
in Simulation Studio and have a unique role in this discrete-event simulation application. Although
value information tends to flow between two blocks and is immediately consumed, entities usually
flow through the model and have a much longer life span. Entities can have properties or attributes
assigned to them, and these properties might be modified during the simulation execution. Blocks
can use property information assigned to entities in their internal processing and logic to affect
simulation execution.

Consider the simple M/M/1 example presented in Chapter 1, “Overview of SAS Simulation Studio.”
Suppose this example represents customers waiting to check out at a cashier, and the entities that
flow through the model represent customers. You could modify this model to assign a property to
the customers (entities) to represent how many items the customer is purchasing and then use this
information to determine how long it takes the customer to check out at the cashier.

Additional information about entities and their role in Simulation Studio is given in Chapter 7,
“Entities.”

Building a Model

Using the Simulation Studio GUI to build a simulation model is straightforward. It consists of
dragging icons from the Template Palette window into a Model window and then creating links
between the appropriate ports on the various blocks in the model. (Of course, the hard part is
actually determining the appropriate composition of the model.)

To create an instance of a specific block in a Model window, you drag the appropriate icon or text
in the Template Palette window into the Model window to the location where you want the block to
be created. During the drag, a transparent icon is attached to the pointer. (You can always drag the
new block instance around in the Model window to move it to another position.) You can modify
the properties on any block in your model by using the properties dialog box associated with each
block. You can open this dialog by right-clicking the block and selecting the Block Properties
menu item. Double-clicking the block icon also causes the properties dialog box to open.

After you have some blocks in your Model window, you can begin to create links between the ports
on the various blocks to enable the flow of values and entities between blocks. To create a link,
position the pointer over a port you want to be an endpoint of the link and hold down the left mouse

30 F Chapter 3: Simulation Models

button. (Note that the port size enlarges when the pointer is over it, indicating port selection.) A
rubberband line appears connecting the selected port with the pointer. While holding down the left
mouse button, move the pointer until it is positioned over the port you want to connect to and then
release the left mouse button. If the types associated with the two selected ports are compatible, a
link is created between them.

Running a Model

Before you can run your simulation model, you must have an active model and an active experi-
ment, and the active experiment must have at least one design point selected or highlighted in the
Experiment window. (For more information about experiments, see Chapter 4, “Experiments.”) Al-
though a project can have multiple models and experiments associated with it and multiple windows
visible in the Project window, only one model and one experiment are considered active at any par-
ticular time. The active model and active experiment are identified by bold text for their names in
the Project Explorer window. To activate a model or experiment, you can either select the name in
the Project Explorer window or select the window associated with the model or experiment in the
Project window.

After you have a valid model and experiment selected (that is, active), you can use any of the
following methods to start the simulation running. You can select the icon on the toolbar or
select RunIStart from the main menu. You can also select the icon on the toolbar or select
RunIAugment. (See Chapter 4, “Experiments,” for additional information about augment run.)

Simulation Studio attempts to synchronize the active model and active experiment, initializes the
model by using the experiment, and begins running the simulation. If this process is successful, the
active model and experiment transition into the running state, and their labels are displayed using a
red font in the Project Explorer.

You can stop or pause a running simulation at any point by selecting either the icon on the toolbar
or RunIPause from the main menu. While the simulation model is running, only the Pause and

Reset icons are selectable on the toolbar. When the simulation has finished running, the Pause
icon is not selectable. NOTE: The simulation clock might not be advancing and no animation might
be visible, but the simulation engine might still be processing data.

During the early stages of developing and validating your simulation model, it is often useful to
employ the animation feature in Simulation Studio. Animation can be switched on and off using
the toolbar icon or through the Animate check box on the Run menu. When animation is acti-
vated, the flow of information is graphically depicted in the Model window, with value movement
visualized with blue icons and entity movement with red icons. These blue and red icons are shown
traversing the various links in the model. Although animation slows the execution of the model, it
can provide valuable insight when debugging your model or demonstrating the mechanics of your
model to others.

Another option is the ability to display the simulation clock and replication count while the simula-
tion is running. These values can provide you valuable feedback on the status and progress of your
model execution. Controls for these options are provided under the RunIShow menu.

Saving a Project F 31

Finally, selecting the icon or RunIReset reinitializes the states of the simulation clock and
random number stream, and also invokes any reset method on any blocks in the active model.

Saving a Project

Saving models, experiments, and factor/response definitions is currently done on a project basis.
That is, only entire projects can be saved. All models, experiments, and factor and response defini-
tions that are associated with a project are saved when a project is saved. To save a project, select
FileISave or FileISaveAs from the main menu. A File dialog box opens where you select the
folder or directory location in which to save the project.

Opening a Project, Model, or Experiment

Although you can save only an entire project, Simulation Studio enables you to open an individual
project, model, or experiment.

Opening a project results in opening all models and experiments associated with that project. To
open a project, model, or experiment, select File from the main menu. There are options to open
a project, model, or experiment. When you open a project, a new entry is created in the Project
Explorer tree for that project along with subentries for any models and experiments that reside in
that particular project.

When you open an individual model or experiment, that item is included in the currently active
project and a new leaf is created in the Project Explorer under the appropriate project node.

32

Chapter 4

Experiments

Contents
Overview of Experiments . 33
Factors, Responses, and Anchors . 33
Experiment Window . 38

Design Points . 40
Replicate Rows . 41

Running an Experiment . 42
Augment Run . 42
Saving and Loading Design Data . 43

Overview of Experiments

The concept of an experiment can have a variety of meanings or connotations in different contexts
and fields of study. In Simulation Studio, an experiment provides a facility to automate the ini-
tialization and running of simulation models and also to record measures from a simulation run.
That is, you can use an experiment to set parameters on blocks in your model before you run the
model (without manually editing the individual blocks) and also to extract and record measures
from blocks at the end of each simulation run. This feature provides you with a powerful facility to
automate running a wide range of simulation scenarios and the capability to conduct full design of
experiment testing.

Factors, Responses, and Anchors

In keeping with traditional design of experiments terminology, the term factors describes the vari-
ables or parameters that are manipulated or changed for each experimental design point. The term
responses refers to measures that are recorded for each experimental run. In Simulation Studio, fac-
tors and responses are defined on a project basis. You use the Factors and Responses dialog boxes
(Figure 4.1 and Figure 4.2, respectively) to define factors and responses for a specific Simulation
Studio project. To open a Factors or Responses dialog box, right-click the Project window back-
ground (or right-click the project name in the Project Explorer) and select Factors or Responses.

34 F Chapter 4: Experiments

Figure 4.1 Factors Dialog Box

Figure 4.2 Responses Dialog Box

The process of creating factor and response definitions essentially creates a factor and response
database for the project. This database facilitates the reuse of these definitions across experiments
and models. Any factor or response defined on a project can be included in any experiment in the
project. To include a factor and response in (or remove it from) an experiment, right-click in an
Experiment window and select Factor Inclusion or Response Inclusion from the pop-up menu
shown in Figure 4.3. In the resulting dialog box, select or clear the factor or response as desired.

Factors, Responses, and Anchors F 35

Figure 4.3 Experiment Menu

Figure 4.4 Factor Inclusion Dialog Box

Simulation Studio must map the factors and responses included in an experiment to block param-
eters and measures in the simulation model. This is accomplished using an anchor, which defines
the link between a factor or response defined on a project and an actual block parameter or measure
in a specific model. Anchor information is used to associate factors and responses in an experiment
with simulation models in a particular project at run time.

To demonstrate the anchor definition process, consider the simple M/M/1 model depicted in
Figure 4.5 for simulating waiting in line for a bank teller to become available. To open the An-
chor dialog box (Figure 4.6), which defines both factor and response anchors, right-click in the
Model window and select Anchors from the pop-up menu. The Anchors dialog box presents sepa-
rate tabs for displaying the factor anchors and the response anchors. In Figure 4.6, no anchors have
been defined on this model yet.

36 F Chapter 4: Experiments

Figure 4.5 Simple Bank Teller Model

Figure 4.6 Sample Anchors Dialog Box

The processes for creating response and factor anchors are completely analogous, so this section
discusses only creating response anchors. Click New on the Response Anchors tab in the Anchors
dialog box to cause the New Anchor dialog box for responses to be displayed. (See Figure 4.7.)
The Responses list in the upper right area of the New Anchor dialog box displays the names of all
the responses defined on this project. In this example the project has five defined responses. (Recall

Factors, Responses, and Anchors F 37

that factors and responses are defined on a project basis.) When you select a response name in this
list, the details associated with that response are displayed in the Details table of the dialog box
below the Responses list.

Figure 4.7 Sample New Anchor Dialog Box for Responses

The Blocks area contains a hierarchical representation of the names of all blocks in the model
that contain potential response anchors. Selecting a block name causes the Candidates list to be
populated with the names of the possible response anchors associated with the selected block. In
Figure 4.8 the block named FIFO Queue is selected and all of its potential response anchors appear
in the Candidates list. The details for any item selected in the Candidates list are displayed in the
Details table below the Candidates list.

Figure 4.8 New FIFO Queue Response Anchor Dialog Box

38 F Chapter 4: Experiments

To create an anchor link between a response anchor candidate from a block in your model to a
response defined in your project, select an item in the Candidates list and also an item in the
Responses list. Then click OK. This results in an entry being added to the Anchors dialog box.
(See Figure 4.9.) You can edit or remove an entry from this table by selecting the appropriate row
in the table and then clicking either Edit or Remove.

Figure 4.9 Populated Anchors Dialog Box

When you attempt to run a simulation model-experiment combination, Simulation Studio attempts
to map the factor and response anchors defined on the model to the factors and responses included in
the experiment. If a mismatch exists, Simulation Studio writes an error message to the Log window
and stops the model execution.

Experiment Window

Figure 4.10 shows a sample Experiment window. This table is sometimes referred to as the design
matrix for an experiment. All the information associated with an experiment is displayed in the
design matrix. Each row in the matrix is called a design point, and it can contain values for a label,
execution controls, factor settings, and responses measured during model execution. You can add or
remove design points by using the pop-up menu available on the Experiment window background.

The design matrix is initially populated with four default columns labeled PointName, StartTime,
EndTime, and Replicates. The PointName column assigns a label to the design point. Although a
default value (pointN) is generated for this field when the design point is created, you can edit this
field to be any text you choose. The StartTime and EndTime values control the execution start and
end time (on the simulation clock) for an individual simulation run. The simulation clock begins
running at the value displayed in the StartTime field for the design point, and the simulation ends or
stops when the simulation clock reaches the time entered in the EndTime field. (Note that time has
no unit in Simulation Studio.) The final default column in the design matrix is labeled Replicates.

Experiment Window F 39

The value contained in this field represents how many times you want to run this particular design
point. You can edit the default values for the StartTime, EndTime, and Replicates by selecting
Properties from the Experiment window pop-up menu and modifying the values in the resulting
properties dialog box. Each replication of a design point uses the same factor settings. However,
different random substreams are used in each replication. Additional details about replicates are
provided in Appendix C, “Design of Experiments.”

Figure 4.10 Sample Experiment Window

Only the default columns in the design matrix are necessary to actually run a simulation model.
Figure 4.10 shows a design matrix with one additional factor, maxentities, and one response, Num-
ber Serviced. Any factors or responses defined on a project can be added to the design matrix by
using the Factor Inclusion or Response Inclusion dialog boxes, respectively. You can open these
dialog boxes via menu entries in the Experiment window pop-up menu. Figure 4.11 shows a sam-
ple Factor Inclusion dialog box. The names of all the factors defined on the project are listed in the
Factors list along with an individual check box for each entry. In this example three factors have
been defined on the project. When you select the factor name, the details associated with that factor
are displayed on the right side of the dialog box. The check box adjacent to the factor name controls
inclusion of the factor into the design matrix. In Figure 4.11 only the factor named NumServers is
included in the experiment. The Response Inclusion dialog box works analogously to the Factor
Inclusion dialog.

Color coding in the column header of the design matrix indicates which role that column plays in
the experiment. The default columns have gray headers; any added factors are denoted by yellow
background headers; and a pink background header is used for response columns.

40 F Chapter 4: Experiments

Figure 4.11 Sample Factor Inclusion Dialog Box

Design Points

You can run an experiment with only one design point and only the default execution control pa-
rameters. In fact, this is often the case when you are first building, debugging, and validating your
model. However, after you have confidence in your simulation model and you want to use it for
investigating the process you are trying to model, automating the manipulation of block parameters
and running the corresponding simulations becomes very important and useful.

After you have determined what factors and responses you want to include in your experiment, the
next step is to determine how many design points you need in your experiment and what values are
assigned to the individual cells in your design matrix. The factors you are manipulating, the number
of levels in each of the factors, the goals of the experiment, and so on, all contribute in determining
the number of design points and the contents of the individual cells in your design matrix. Options
are available in the Experiment window pop-up menu to add (and delete) design points to the design
matrix. You can manually create new rows in the matrix and then edit the individual cells to enter
the desired parameter or factor values.

If you are interested in an automated approach to designing your experiment and possibly develop-
ing a metamodel for your simulation model, Simulation Studio provides a link to the JMP design
of experiments capabilities. To access this functionality, select Make Design from the Experiment
window pop-up menu. The details about using JMP software to populate your design matrix and
create a metamodel for your simulation model are discussed in Appendix C, “Design of Experi-
ments.”

Replicate Rows F 41

Replicate Rows

One of the default columns in the experiment design matrix is labeled Replicates. The value in this
column represents how many times you want to run the associated design point in this experiment.
The default value for the entire column is 1 replicate. To edit the default replicate value, right-click
in the Experiment window to open the properties dialog box. Each replication run for a given design
point uses the same factor levels. However, different random streams (if random streams are used
in the model) are used for each replicate.

If the number of replicates for a given design point is greater than 1 (and you have included re-
sponses in your experiment), a small blue triangle precedes the replication value in the design ma-
trix replication cell. Clicking this triangle causes the replication rows to be expanded or collapsed
in the matrix. Figure 4.12 and Figure 4.13 show the different display states.

Figure 4.12 Replicate Rows Collapsed

Figure 4.13 Replicate Rows Expanded

The factor level values are not displayed for each of the replicate rows—only the replication number
and any measured response values are displayed. If a design point has replicate rows and it is in a
collapsed state, the value displayed for any response value is a summary statistic calculated from all
the values collected for that design point for that response. The average value is displayed by default.
You can change the summary statistic displayed by right-clicking the appropriate response column
heading in the Experiment window and selecting from the statistics available. (See Figure 4.14.)

42 F Chapter 4: Experiments

Figure 4.14 Response Summary Menu

Running an Experiment

After you have created and populated the design points in your Experiment window, you are ready
to run your simulation model. (You must have identified the active experiment, and it must have
at least one valid design point.) You can select one or more design points to automatically run
in sequence. You can select a collection of design points either by dragging the pointer over the
desired design points or by using the Control or Shift key in combination with clicking to perform
standard extended selection of design points. Selected design points are highlighted in the design
matrix.

You can start running the selected design points in any of the following ways. You can select the
icon on the toolbar or select RunIStart from the main menu. You can also select the icon from
the toolbar or the RunIAugment from the main menu. (Augment run is discussed in more detail
in the following section.)

Selected design points are run in the order in which they appear in the design matrix. The currently
running design point is indicated by a red font in the design matrix. You can pause or suspend a
simulation run by selecting the icon on the toolbar or by selecting RunIPause from the main
menu. To restart the simulation execution, simply select the icon or RunIStart again.

Consider the following when you run an experiment:

� It is often useful to display the simulation clock and replication count to monitor the progress
of the experiment. Use the options under the RunIShow menu to display these values.

� Random number streams (substreams) advance with each replication of a design point but
reset when moving on to the next design point.

� Messages can be written to the Log window while the simulation is running. Messages with
a SEVERE level are displayed on the GUI in addition to being written to the log.

Augment Run

Suppose you have created an experiment, run it, and then decide you need additional design points
or more replicates for individual design points. After you have modified your experiment to reflect
these needs, you can select the RunIStart from the main menu (or use the corresponding toolbar

Saving and Loading Design Data F 43

option) to run the simulation again. Simulation Studio clears any previous results and proceeds to
run or rerun every selected design point and replication in the experiment. If no design points are
selected, all points in the entire experiment are rerun.

Alternatively, you can manually select the design points you need to run or rerun and then select
RunIStart or use the corresponding toolbar option. This second approach also has limitations
because you cannot select replications within an individual design point.

Simulation Studio provides another alternative, called augment run, to facilitate this simulation
scenario. When you select the icon from the toolbar or select RunIAugment from the main
menu, Simulation Studio attempts to run any design points and replication rows that have not been
previously run in the experiment. This unique approach provides you an option for incrementally
expanding your design matrix results.

Saving and Loading Design Data

Options are available on the Experiment window pop-up menu (Figure 4.3) to save and load exper-
iment design data. Selecting Save Design from the pop-up menu opens a File Chooser dialog box
where you select or type the filename to which you want to save the data. The data in the experiment
design matrix is saved to either a SAS data set or JMP data table, depending on your configuration
data settings or the filename extension specified. Unlike the data displayed in the Experiment win-
dow, all individual replicate rows are completely populated with all the factor values along with the
response values. Any rows that contain summary information for replication rows are not included
in the saved data. The resulting saved data is in a format that can be passed to SAS procedures or
JMP routines.

You can also load saved experiment data into a Simulation Studio Experiment window. Selecting
Load Design from the Experiment window pop-up menu opens a File Chooser dialog box where
you enter the filename for the previously saved data. Simulation Studio attempts to load the data
into an Experiment window. From there, you can select Analyze Results from the Experiment
window pop-up menu to pass the data back to a JMP routine for design of experiments analysis (if
the experiment has factors included).

44

Chapter 5

Blocks

Contents
Overview of Blocks . 45
Block Labels . 45
Block Pop-up Menu and Dialog Boxes . 46

Managing Anchors . 46
Managing Block Properties . 48
Saving a Block Instance . 49

RankValue . 49

Overview of Blocks

The block represents the fundamental component of Simulation Studio simulation models. All
blocks in the base template are either directly or indirectly derived from a base block class. The base
block class implements the message handling protocols and defines how blocks communicate with
each other through ports. Each block is responsible for creating any ports it needs to perform the
functionality required by the block. From a GUI perspective, ports completely define the interface
to most blocks. Port management and related port message handling are two vital functions required
of all blocks.

For the most part, blocks communicate with other blocks by using links between ports. When
using the Simulation Studio GUI, you can create a link from an output port only to an input port
of compatible type. If you have multiple links on a given port, logic in the port determines which
connections are used and in what order. The default behavior is to use the connections in the order
in which they were created.

Block Labels

A default label is generated for each instance of a block. If only one instance of a particular block
appears in a model, the block name is used as the default label. Otherwise, an integer is appended
to the default label to indicate how many instances of the block have previously been created in the
model. The block label is used to identify individual blocks in any lists, dialogs, and so on. The

46 F Chapter 5: Blocks

label can be displayed next to the block icon in the Model window, but by default, a block label is
not visible.

Block Pop-up Menu and Dialog Boxes

Each block has a pop-up menu and several dialog boxes associated with it. The pop-up menu is
shown in Figure 5.1. Selecting Delete removes the corresponding block from the model. Select
Toggle Label to show or hide the block’s label. You can modify a block’s label by selecting Edit
Label and using the controls in the resulting dialog box to change the label text, specify whether
the label is visible or not, and reposition the label around the block icon.

Figure 5.1 Sample Block Menu

The three remaining pop-up menu items, Anchors, Block Properties, and Save, all produce their
own dialog boxes when selected.

Managing Anchors

As mentioned in Chapter 4, “Experiments,” anchors are used in association with experiments. Each
project has a collection of factors and responses defined on it, and each experiment in that project
might include any of these factors and responses. Simulation Studio must know how to map the
factors and responses in an experiment to block parameters in the simulation model under inves-
tigation. This is accomplished through anchors. The Anchors dialog box (Figure 5.2) shows all
factor and response anchors defined on the model. Use the New, Edit, and Remove buttons in this
dialog box to manipulate the entries in these tables.

Managing Anchors F 47

Figure 5.2 Sample Anchors Dialog Box

Clicking New opens the New Anchor dialog box (Figure 5.3) where you can associate block pa-
rameters in your model to factor and response definitions in the project. Selecting a block label in
the model tree on the left side of the New Anchor dialog box causes the names of any factor (or
response) parameter candidates associated with the block to be displayed in the center Candidates
list. To match a parameter with a project factor (or response), you must select both the parameter
name in the Candidates list and the project factor name in the Factors list, and then click OK. A
new entry is then created in the Anchors dialog box. The anchors are matched to the experiment
factors and responses when you attempt to run an experiment.

48 F Chapter 5: Blocks

Figure 5.3 New Anchor Dialog Box

Managing Block Properties

Selecting Block Properties from the block pop-up menu opens a tabbed dialog box, usually with at
least two tabs. (You can also open the Block Properties dialog box for a block by double-clicking
the block.) One tab is labeled Overview, and it contains a brief description of the block along with
information about any block parameters. The other tabs usually provide controls for manipulating
or editing block parameters. Figure 5.4 shows the parameter controls for an Entity Generator block.
If the block supports the saving of data, another tab labeled Save is available with options related to
saving data.

Saving a Block Instance F 49

Figure 5.4 Entity Generator Block Properties

Saving a Block Instance

Selecting Save from the block pop-up menu opens a dialog box that provides options for saving
the instance of the block to disk for reuse with a template. This dialog is essentially a file selec-
tion control for choosing the filename for saving the block. By default, blocks are saved into the
Resources\blocks folder and the default filename extension .blk is automatically added to the
saved block name for the default filename.

RankValue

Some blocks in Simulation Studio schedule events in the application’s event queue. For example,
an Entity Generator block schedules when to generate its next entity, and a Server block schedules
when service will be completed for an entity it is holding. Events are placed in the event queue
based on the time the event is scheduled to occur. It is possible for different blocks to schedule
events to occur at exactly the same simulation time, resulting in an event scheduling tie.

50 F Chapter 5: Blocks

If an event is put in the event queue with the same scheduled time as an event already in the event
queue, the relative order in which those events actually occur is unpredictable, although repro-
ducible. To address this potential event timing issue, some blocks provide a RankValue property or
factor. The RankValue property of a block is an integer value that can be used to resolve ties for
events that are scheduled in the application’s event queue. For events scheduled to occur at the same
simulation time, the event associated with a higher RankValue value is given precedence over an
event with a lower RankValue value. You can set the RankValue property of a specific block in your
model at run time by including it as a factor in an Experiment window and assigning the desired
value in the Experiment window. (See Chapter 4, “Experiments,” for details about experiments and
factors.)

The following blocks support a RankValue property: Delay, Entity Generator, Queue, Server, and
Resource Scheduler. Most blocks use the value 0 for their default RankValue value. The Resource
Scheduler block, however, uses the largest positive integer value in the system to have the highest
priority available.

Chapter 6

Compound Blocks

Contents
Overview of Compound Blocks . 51
Assembling and Disassembling a Compound Block 52
Collapsing and Expanding a Compound Block 52
Labeling and Saving a Compound Block . 53
Tunnels . 53

Overview of Compound Blocks

Simulation models have the potential to become very large, possibly incorporating hundreds of
blocks. Simulation Studio provides the ability to assemble blocks into larger aggregates called
compound blocks. This feature encourages hierarchical model building and information hiding and
also facilitates component reuse. Figure 6.1 shows a small model that contains a compound block
which encapsulates a Numeric Source and Server block. Figure 6.2 displays the same model, this
time with the compound block collapsed. For very large complicated models, compound blocks can
greatly reduce the visual complexity and improve the interpretability of the model.

Figure 6.1 Sample Compound Block

52 F Chapter 6: Compound Blocks

Figure 6.2 Sample Compound Block—Collapsed

Assembling and Disassembling a Compound Block

To create or assemble blocks into a compound block:

1. With the pointer positioned in the appropriate Model window, hold down the Shift + Ctrl
keys while simultaneously holding down the left mouse button and sweep out a rectangular
area in the Model window encompassing the blocks you want to assemble into a compound
block. When you release the mouse button and Shift + Ctrl keys, a red rectangle appears in
the Model window replacing the sweep rectangle. All the blocks entirely within the rectangle
also have a red highlight or selection box around them.

2. Right-click within this red rectangle, and select Assemble Compound. Selecting this menu
item creates a new compound block that contains all the highlighted blocks.

To disassemble a compound block, right-click a compound block and select Disassemble Com-
pound from the resulting pop-up menu.

Collapsing and Expanding a Compound Block

To hide the contents of a compound block, double-click the compound block. This causes the visual
representation of the compound block to be replaced with a small yellow square similar in size to a
basic block icon. This is sometimes referred to as a collapsed compound block.

To expand a collapsed compound block to its original size, double-click the collapsed compound
block.

Labeling and Saving a Compound Block F 53

Labeling and Saving a Compound Block

As with basic blocks, you can edit the label associated with a compound block and switch between
displaying and hiding it. It is often useful to give a compound block a descriptive, concise label that
reflects its functionality or usage. Since the contents of a compound block are usually not visible, a
good label can be particularly helpful for understanding its functionality in a simulation model.

The procedure for saving a compound block to disk and also for adding it to a template for reuse
purposes is identical to the procedure described in Chapter 5, “Blocks,” for basic blocks. The
default filename extension for a saved compound block is .cblk and the default save folder is
Resources\block.

Tunnels

How do you connect ports on blocks external to a compound block with ports on blocks within a
compound block? If the visual for the compound block is in an expanded state (as in Figure 6.1),
then you can simply connect ports from any block to ports on blocks within the compound block as
you would for any other block. However, if the compound block is collapsed, you have no way of
knowing what blocks or ports are available to you inside the compound block.

Usually when you create a compound block you have some specific functionality you want your
group of blocks to perform, and you connect them in a very specific manner. You also know which
blocks require inputs from outside of the compound block and which blocks pass output from the
compound block. That is, you know which ports you are going to use as input ports and which
ports you are going to use as output ports for the compound block to make it function as designed.
Additional connections could potentially alter the desired functionality of your compound block in
unpredictable ways.

Simulation Studio provides a feature called a tunnel to facilitate input and output for a compound
block. You can think of tunnels as special ports for a compound block. Blocks (and their ports)
located outside the compound block that need to send information to the compound block connect
to input tunnels defined on the compound block. Similarly, blocks expecting information from the
compound block connect to its output tunnels. Blocks internal to the compound block that need
connections outside the compound block also connect through tunnels. You add or remove tunnels
for a compound block using the Add/Remove Tunnels dialog box (Figure 6.3) available through the
pop-up menu on a compound block. This dialog box provides options for creating various types of
ports on a compound block. You can also edit the default name given to a tunnel to something more
meaningful for your compound block. The name cannot contain spaces.

54 F Chapter 6: Compound Blocks

Figure 6.3 Tunnels Dialog Box

Figure 6.4 depicts a compound block with an input entity tunnel, an output entity tunnel, and an
input value tunnel. The placement of the various tunnel types around the compound block is au-
tomatic and is analogous to that of ports on basic blocks. The graphic used to depict a tunnel is a
combination of the graphics used for an input port and output port because the tunnel serves both
functions depending on whether your perspective is from inside the compound block or outside it.

Figure 6.4 Compound Block with Tunnels

If you collapse the compound block, as shown in Figure 6.5, the compound block appears much the
same as a basic block. A compound block can be treated essentially as a “black box” in terms of
functionality.

Tunnels F 55

Figure 6.5 Collapsed Compound Block with Tunnels

What happens to tunnels if you decide to disassemble the compound block? They turn into Con-
nector blocks so that no functionality is lost in the simulation model. Figure 6.6 shows the result of
disassembling the compound block in Figure 6.5.

Figure 6.6 Result of Disassembling a Compound Block with Tunnels

56

Chapter 7

Entities

Contents
Overview of Entities . 57
Entity Types . 57
Creating Entities . 58
Disposing of Entities . 59
Entity Attributes . 59
Entity Groups . 59

Overview of Entities

Entities are discrete objects that can traverse a simulation model or network. They can be used to
represent physical or conceptual items in your model such as cars in a traffic model, telephone calls
in a telecommunications system, customers in a retail environment, and so on. You can use various
Simulation Studio blocks to assign attributes to entities as they flow through your simulation model
and use other blocks to read entity attributes and act on them.

When you have the animation feature turned on in Simulation Studio, you can view the movement
of entities through your simulation model while it is executing. If the Tracer is enabled, entity
information is also displayed on the Trace tab in Simulation Studio.

Entity Types

All of the examples in this document so far have used the default regular entity type. If you do not
specify an EntityType in the Entity Generator block, then the default regular entity type is used.

The Entity Types dialog box shown in Figure 7.1 enables you to add attributes to the default entity
types, and it also enables you to create new entity types. Entity types can be defined at the model
level. To open the Entity Types dialog box, right-click the model name in the Project Explorer and
then select Entity Types.

58 F Chapter 7: Entities

Figure 7.1 Entity Types Dialog Box

User-created entity types can be either regular entities or resource entities. Both regular and re-
source entities can be processed using any of the blocks provided in the basic modeling template.
Resource entities, however, also have capabilities that will be used by the blocks provided in the
resource modeling template, which will be available in a future release of Simulation Studio.

Unless otherwise specified, the term entity refers generically to either a regular entity or resource
entity.

Creating Entities

The default basic modeling template provided with Simulation Studio contains two blocks capable
of generating entities: the Entity Generator block and the Clone block. These blocks are
described in Appendix A, “Templates.” Entity Generator blocks are usually the primary source of
entities in your simulation models. You can specify the quantity and type of entities you want your
Entity Generator blocks to generate. You also need to have a connection to the Entity Generator
block’s InterArrivalTime input port so the Entity Generator can determine when to schedule the
next entity creation event. Multiple entities can be created at each entity creation event by using
the BatchSize input port on the Entity Generator block. (See the Entity Generator details in Ap-
pendix A, “Templates.”) There is no limit on the number of Entity Generator blocks you can have
in your simulation model, and the limit on the number of entities of a given type you can generate
is the Java programming language value Integer.MAX_VALUE.

Disposing of Entities F 59

Disposing of Entities

Although it is possible to generate an almost endless number of entities, each entity has associated
memory costs. It is important to let Simulation Studio know when you are finished with an entity
so that it can efficiently manage any memory issues related to entities. In a simulation model, you
indicate you are finished using an entity by routing it to a Disposer block . Each simulation model
should have at least one Disposer block. When an entity enters a Disposer block, it is marked as
free and reduces memory allocation costs at run time in the application.

Entity Attributes

Entities can have attributes associated with them. Attribute names must be unique, are case sensi-
tive, and cannot contain spaces or blanks. Attribute values can be strings, numbers, or Java objects.

Each entity has two default attributes named Id and BirthTime. The Id value is a unique integer
assigned (in sequence) when the entity is created, and the BirthTime value is the simulation clock
time when the entity was created. You can add additional default attributes (along with their default
values) to an entity type by using the Entity Types dialog box at design time. (See Figure 7.1.)
Each new entity created of that type automatically has all the attributes defined on that entity type
as shown in the Entity Types dialog box.

The Modifier block in your simulation model can also be used to add or modify other entity
attributes at simulation time. Other blocks are provided in Simulation Studio to read entity attribute
values and use this information in their processing. Individual blocks are discussed in Appendix A,
“Templates.”

As a simple example of using entity attributes, consider the scenario where you want to model an
electronics repair shop. Your entities could represent customers coming into the repair shop, and
you could assign attributes to each of these customers to represent what type of equipment they need
repaired, an indicator of the severity of the problem, warranty information, and so on. You could
then use these attributes to route customer entities to different technicians in the shop depending on
the values of the attributes. You could use the severity attribute to calculate a time-to-repair value.

Attributes are intended to give your entities unique characteristics that you can use to make your
simulation model more representative of the system that you are investigating.

Entity Groups

Simulation Studio implements an object named entity group that is a collection of entity references.
An entity reference contains information that uniquely identifies a particular entity. Therefore, an

60 F Chapter 7: Entities

entity group holds information about a collection of entities, but not the actual entities themselves.
Entity groups add another level of modeling sophistication to your simulation modeling environ-
ment.

Most holding-type blocks, such as the Queue, Server, and Delay blocks, provide an OutHoldings
output port that you can use to pull an entity group that contains references to the entities currently
held by the block. Other Simulation Studio blocks can use this information to inspect the contents
of a holding block and then act on that information, possibly preempting specific entities from
the holding block. Some blocks (the Queue and Server blocks, for example) have an InPreempt
input port that accepts an entity group as input. These blocks compare the entity references in the
incoming entity group to the entities currently being held by the block and preempt any matches.

The Entity Group Holder block can be used to create a new entity group (with characteristics specific
to your model needs) that can then be used by other blocks in your model. The Gate and Seize
blocks also make use of entity groups. See Appendix A, “Templates,” for details about these and
other blocks that use entity group objects.

Chapter 8

Resources

Contents
Overview of Resources . 61
An M/M/1 Queuing Model That Uses Resources 62
Common Resource Usage Pattern . 67

Creating Resource Entities . 67
Storing Resource Entities . 68
Locating Resource Entities . 69
Allocating Resource Entities . 69
Using Resource Entities . 70
Deallocating Resource Entities . 71
Disposing Resource Entities . 71

A Second Resources Example . 71
Additional Resource Functionality . 76

Merging and Splitting Resource Entities 77
Collecting Resource Entity Statistics . 78
Scheduling Resource Entity Adjustments 78
Preempting Resource Entities . 81

Overview of Resources

Depending on the context in which it is used, the term resource can have many different meanings.
The dictionary defines a resource as a source of supply, support, or aid that can be readily drawn on
when needed. Examples of resources include a laborer used to assemble a machine, an operating
room required by a patient, or a truck needed to transport supplies. In some simulation packages a
resource is considered a supply of items while in others resources are entities that provide a service
to other items in the simulation model. In some models the resources might be unlimited while in
other models the number of units of a resource might be limited or fixed. The number of available
resource units can vary throughout a simulation run as well. The availability of resources can affect
the flow of entities during a simulation run.

In Simulation Studio, resources are special objects that provide services or materials to entities.
Often the availability of resources facilitates the flow of the other entities in the system during
simulation, and a shortage of resources could restrain the flow of these entities.

62 F Chapter 8: Resources

Systems modeled in Simulation Studio can use two kinds of resource objects: stationary resources
and mobile resources. Some entity holding blocks (such as the Queue, Server, and Delay blocks)
represent stationary resources in a simulation model. These are static and created at model building
time. Mobile resources, which are dynamic and created during the experimental run of the simu-
lation model, are the resource objects that flow in the model. The mobile resources are defined as
a special type of entity and possess all the capability and attributes of regular entities. They can
be processed and managed by the facilities and blocks for the regular entity objects in many parts
of a simulation model. The resource entity and related subjects are the main focus of this chapter.
Unless stated otherwise, the term resource refers to a resource entity.

Like other entities, resources entities are objects that can carry attributes. Resources often have a
capacity (number of units) value associated with them; therefore, all resource entities in Simulation
Studio have a predefined entity attribute named ResourceUnits. While the ResourceUnits attribute
has special uses for resource entities, it can also be used as an ordinary numeric entity attribute
for modeling purposes. In addition to the ResourceUnits attribute, each resource entity also has
run-time state information, such as resource state and seizing status, that is used by the simula-
tion system to perform resource management during simulation. From a user’s point of view, the
resource state can be either Functional or Nonfunctional (such as Failed, Maintenance, and Offline).

An M/M/1 Queuing Model That Uses Resources

In Chapter 1, “Overview of SAS Simulation Studio,” an M/M/1 queueing system was used to model
a simple banking system with one teller to illustrate some of the basic concepts involved in building
models in Simulation Studio. In this section the same system is modeled with the resource facilities
provided by Simulation Studio. In this modeling scenario, the bank teller is the resource required
by the customers. These two examples demonstrate the conceptual difference between a stationary
resource and a mobile resource. All blocks used in these models can be found in the Standard and
Resource templates provided in Simulation Studio.

To summarize the modeling requirements for this banking system, these models assume that cus-
tomers arrive at the bank at a rate of 10 per hour (so that the interarrival time between customers is
a sample from the exponential distribution with a mean of 6 minutes). Customers wait in a single
line on a first-come, first-served basis. The models also assume that the teller has a service rate of
12 customers per hour (so that the service time for each customer is a sample from the exponential
distribution with a mean of 5 minutes).

Figure 8.1 shows the original version of the model from Chapter 1, “Overview of SAS Simulation
Studio.” The customer arrival process to the bank is modeled identically in both the original and the
new resource-based model, with an Entity Generator block that creates the customers and then sends
them directly to a FIFO Queue to wait for service from the bank teller. The bank teller (represented
by the Server block) is a stationary resource in the original model and is created during the model
building phase. As a stationary resource, the bank teller never flows or moves throughout the model.
A customer arrives at the bank teller, the bank teller services the customer, and the customer moves
on—in this case exiting the system.

An M/M/1 Queuing Model That Uses Resources F 63

Figure 8.1 An M/M/1 Queueing Model

Figure 8.2 shows the same system modeled by using resources. The following description of the
model highlights the functionality of the model and does not go into all of the details of the indi-
vidual blocks used in the model. See Appendix A, “Templates,” for more information about the
individual blocks.

The customer arrival process is the same as in the original model—an Entity Generator block creates
customers and sends them to a FIFO Queue block to wait for service. However, the similarity
between the two models ends here. In this second model, the bank teller is modeled as a mobile
resource. Mobile resources are special entity objects; therefore, they must be created at run time.
For this model a new resource entity type named BankTellers is created on the model by using
the Entity Types dialog box. (See Chapter 7, “Entities,” for information about creating new entity
types.) Figure 8.3 shows the attributes associated with the BankTellers resource entity type.

64 F Chapter 8: Resources

Figure 8.2 An M/M/1 Queueing Model That Uses Resources

Figure 8.3 BankTellers Entity Type

Using the EntityTypes tab in the Block Properties for Create Teller dialog box, you select “Bank-
Tellers” as the type of entity to generate. (See Figure 8.4.)

An M/M/1 Queuing Model That Uses Resources F 65

Figure 8.4 EntityTypes Tab in Block Properties for Create Teller Dialog Box

You can also override the default attribute values for this entity type by using the Attributes tab
in this dialog box. Since the model requires only one bank teller, you set the Maximum Number
of Entities field value to 1. (See Figure 8.5.) The bank teller resource must be created before the
simulation clock begins to advance. Therefore, you need to set the Start Time property to 0 and
also select the At Start Time option in the First Entity Creation area of the Block Properties for
Create Teller dialog box. As soon as the bank teller resource entity is created, it is sent to a Resource
Pool block (Teller Pool) to wait until it is needed by a customer.

66 F Chapter 8: Resources

Figure 8.5 Block Properties for Create Teller Dialog Box

In this example, a Seize block (Seize Teller), Resource Pool block (Teller Pool), Delay block (Hold
Teller), and Release block (Release Teller) work together to mimic the functionality of the Server
block (Teller) in the original model, When a customer entity arrives at the FIFO Queue block, the
FIFO Queue block notifies the Seize Teller block that a customer is waiting. The Seize Teller block
then checks whether the bank teller resource entity is available in the Teller Pool block. If it is not
available, the customer entity stays in the queue. If the bank teller resource is available, the Seize
Teller block accepts the customer entity from the Queue block, pulls the bank teller resource entity
from the Teller Pool block, and attaches it to the customer entity. The customer entity is then sent to
the Hold Teller block where the customer entity (along with the bank teller resource entity) resides
until its service is completed, and then it is routed on to the Release Teller block. The Release Teller
block then extracts the bank teller resource entity from the customer entity and sends the customer
entity to the Disposer block to exit the model. In this example, the bank teller resource entity is
routed back to the Teller Pool block.

A quick inspection of the values in the NumberHolder blocks in both models at the end of a simula-
tion run reveals that both the original model and the new resource model produce the same results.

Why would you use this modeling paradigm over the simpler model depicted in the original bank
teller model that made use of the Server block? Some modeling capabilities that mobile resources
offer you over stationary resources include:

� seizing multiple resources simultaneously

Common Resource Usage Pattern F 67

� preempting resources

� releasing partial resources

� routing resources to various locations

� keeping statistics on select resources with specific attributes

In general, mobile resources offer more modeling flexibility and options, at a cost of additional
modeling complexity and possibly run-time performance.

The resource-based banking system model is also an example of a closed system where resources
are reused throughout the model execution. In some models of open systems, such as one where
the resources are parts used to assemble a larger component, the resources leave the system as part
of the larger component and the resource inventory potentially needs to be repopulated during the
simulation execution.

Common Resource Usage Pattern

A common usage pattern for resources is demonstrated by this second example. The pattern consists
of the following steps for resource entities:

1. creating

2. storing

3. locating

4. allocating

5. using

6. deallocating

7. disposing

Each of these areas might use one or more Simulation Studio blocks. The following sections provide
a high level overview of each of these steps. See the descriptions in Appendix A, “Templates,” about
the individual blocks mentioned in each of these sections for additional functionality details.

Creating Resource Entities

Resource entities can be generated by an Entity Generator block as regular entities are. The Name
field in the EntityType tab in the block properties dialog box for an Entity Generator block lists all
the entity types defined by Simulation Studio and also those defined by the user on the simulation
model under investigation. (See Figure 8.4.) The list includes DefaultResourceEntity type for
resource entities by default. Choose this entity type and set the desired initial units count to direct

68 F Chapter 8: Resources

the Entity Generator to create default resource entities accordingly. The resource state of all new
resource entities is Functional. The default ResourceUnits value is 1.0, but it can be changed to any
nonnegative value.

New types of resource entities can be defined by the Entity Types dialog box associated with each
model and later used by Entity Generator blocks. See Chapter 7, “Entities,” for more information
about this topic.

Resource entities can also be created by the Resource Pool and Release blocks as a result of split-
ting other resource entities. Sometimes, it is convenient to create few resource entities with large
amounts of units by an Entity Generator block and store these resource entities in the Resource Pool
blocks with the merging/splitting units option enabled. Later, when a request of smaller units oc-
curs, the Resource Pool splits the desired amount of units from the large resource units and creates
new resource entities of the original types to satisfy the request.

Similarly, a Release block can obtain a small fragment of resource units by splitting a large amount
of units from a resource entity and allocate the small units to a newly created resource entity of
same type to release.

Although resource entities can also be cloned with Clone block, it is usually not recommended.
The Clone block clones the entity attributes from the original but might ignore the other run-time
information such as the resource state and seize/unseize status set by the resource management
blocks.

Note that creating resource entities with the Entity Generator and Clone blocks affects the total
resource capacity, but doing so with the Resource Pool and Release block does not.

Storing Resource Entities

After a resource entity is created or customized (or both) with desired attributes, it should be sent
to a Resource Pool block for storage, even if for a very short time period, before these resources
are allocated to meet resource demands. The Resource Pool block performs resource management
tasks, such as maintaining correct seize/unseize status, processing resource requests, and merging
or splitting resource units, for the resource entities.

A resource entity is considered unseized if it resides in a resource pool; it is considered seized if it
leaves the pool and is not directly held by any other resource pool. A newly created resource entity
is also considered unseized even before it enters a Resource Pool block.

Occasionally, a common Queue block might be used to hold resource entities, if the resource man-
agement tasks performed by a Resource Pool block are not needed. However, this approach should
be used discreetly because resource management capabilities are not provided by Queue blocks.

Locating Resource Entities F 69

Locating Resource Entities

Resources are usually stored in the resource storage blocks, such as Resource Pool blocks. Re-
sources need to be located, requested, and allocated to serve other entities. Locating resources is
also essential for other resource operations, including scheduling, statistics collection, and preemp-
tion. For example, the resources of interest need to be identified so their statistics can be collected
during simulation.

Simulation Studio primarily uses attribute-based rules to locate resource entities. An attribute rule
is a Boolean expression that the attributes of the targeted resource entities must satisfy. Sometimes,
run-time resource information, such as resource state and seize/unseize status, is also used to locate
and identify resource entities.

The resource needs or constraints of an entity that enters a Seize block (referred to as a controlling
entity) can be specified as attribute rules in the Seize blocks. A Seize block provides an input
resource entity port for each resource need or constraint. The input resource ports of a Seize block
can be connected with resource storage blocks, such as a Resource Pool block. During a simulation
run, the Seize block uses the links to its input resource ports to locate and request resource entities
from resource storage blocks to satisfy the resource needs that are associated with its input resource
ports.

It is also possible to locate resource entities by their object references. Resource entities can flow
through an Entity Group Holder to form a resource entity group, which holds a group of references
to these resource entities. The entity group and its subgroups can be queried later for locating and
requesting the corresponding resource entity objects.

In some situations, it is also feasible to use multiple dedicated resource storage blocks for resources
with specific characteristics. The resources are routed to the appropriate storage blocks by routing
blocks, such as the Entity Filter and Switch blocks.

Allocating Resource Entities

In Simulation Studio, the Seize blocks requests resources after locating the resources in the Re-
source Pool blocks, and the Resource Pool blocks process the requests and allocate the resources
to the Seize blocks. In Resource Pool blocks, only the currently functional resources participate in
allocation process.

The Resource Pool block delivers resource entities for allocation. If the pool has its merg-
ing/splitting units option disabled, the requested resource entities are delivered without alteration,
even when the delivered resources have more units than requested. If the option is enabled, the
resource pool delivers the new resource entities as the result of splitting process. The delivered re-
source entities contain the exact amount of units as requested. The merging and splitting feature of
the Resource Pool block is discussed in more detail in the section “Merging and Splitting Resource
Entities” on page 77.

To decrease the likelihood of resource deadlock, the Seize block in Simulation Studio does not

70 F Chapter 8: Resources

support partial allocation. All resources constraints must be satisfied before resources are actually
allocated to a controlling entity. Otherwise, the Seize block does not accept the request to take the
controlling entity in the first place.

In Simulation Studio, using the Seize block to seize resources is treated as a special entity-batching
operation. For this reason, the Batch block can also be used sometimes to seize resources, even
partially. For example, if all resource entities have the same capacity and are of the same type (and
deadlock is not a concern), the Batch block can be used to allocate resources to a carrier entity as
the resources become available. This approach enables the Batch block to hold a carrier entity with
a partially completed allocation when there is a resource shortage and then wait for the additional
resource entities to arrive. For this kind of usage, the batch carrier entity used by the Batch block
performs the same role as the controlling entity does for a Seize block, and the entities batched with
the carrier entity are resource entities. When a Batch block is used, resources do not all need to
be available at the same time. The resource entities can be allocated or batched as they become
available, one after another, even at different simulation times. See the description of the Batch
block in Appendix A, “Templates,” for additional information about its usage.

The modeling constraints and requirements of the particular system being simulated determine
whether a Seize block or Batch block is appropriate for allocating resource entities. The Batch
block offers a more simplistic approach, but it also provides fewer options than the Seize block
might provide.

Using Resource Entities

After the resource entities have been allocated to a controlling entity (or in the case of a Batch block,
a carrier entity), the controlling entity typically continues flowing through the model to represent
some behavior of the system under investigation. In the simplest case, as in the previous banking
system example, the controlling entity might move on to a Delay block for a period of time and
then be routed to a Release block to have the resource entity deallocated from the controlling entity.
However, if you are modeling a more complicated system, such as an emergency room, it is not
hard to imagine resource entities staying with a controlling entity as it flows through various parts
of the model. When a patient enters an emergency room, the patient might be assigned a nurse, a
doctor, a surgery room, and then go into surgery for time period. After the surgery, the doctor and
surgery room might be released from the patient, but the nurse might stay with the patient and a
recovery room might be added as a resource entity.

In a manufacturing example, parts could be modeled as resources and they could be continually
added to the controlling entity as it progressed down the virtual assembly line.

The idea is that after you have allocated resource entities to a controlling entity, you are probably
going to want to do something with the resources in your model for a period of time.

Deallocating Resource Entities F 71

Deallocating Resource Entities

Resources seized by controlling entities can be released (deallocated) by using the Release block.
Resource constraints can be defined on the Release block to locate targeted resource entities within
the controlling entity to be released. The Release block provides an output resource entity port
for each constraint defined on it. During a simulation run, for each controlling entity that enters the
Release block, the block uses the resource constraints to locate and deallocate the targeted resources
among the resources held by the controlling entity that it is processing. The deallocated resources
flow out the appropriate output resource ports.

Analogous to the seize process in Simulation Studio, releasing resources is treated as a special entity
unbatching operation. Therefore, if the deallocation process does not require partial resources to be
released from the controlling entity (no manipulation of resource units) or to have different types of
resource entities flow to different locations (no multiple output ports), the Unbatch block can also
be used to release resources. The released resource entities from an Unbatch block flow out the
same output port, one after another.

Released resources can be routed to either a Disposer block to be disposed or to a resource storage
block, such as a Resource Pool block, to be reused later. The former setup is often used to simulate
an open (resource) system, and the latter is used in a closed (resource) system.

Disposing Resource Entities

Resource entities can be disposed by the Disposer block just as the regular entities are. With the
merging/splitting units option enabled, the Resource Pool block disposes a newly arrived resource
entity if the pool can merge the units of this resource into a compatible resource entity in the pool.
Merging and splitting in a Resource Pool block is discussed in more detail in the section “Merging
and Splitting Resource Entities” on page 77.

Resource entities that are attached to a controlling entity (or carrier entity) that enters a Disposer
block are disposed along with the controlling entity.

Disposing resource entities with a Disposer block affects the total resource capacity available in the
model, but doing so with the Resource Pool and Release block does not.

A Second Resources Example

The resource facilities in Simulation Studio provide more advanced functionality than demonstrated
in the previous simple banking system example. To illustrate some of this additional functionality,
the previous bank system model has been extended by using other resource related blocks. The basic
premise remains the same for this model—customers arrive at the bank and wait to be served by a
bank teller. However, in this new model there are three bank tellers, not all of which are available

72 F Chapter 8: Resources

during the entire simulation run. This model also collects a utilization statistic for the bank teller
resource entities.

Figure 8.6 shows the new model. The most obvious difference between this resource model and
the previous one is the addition of the Resource Agenda, Resource Scheduler, and Resource Stats
Collector blocks. The not-so-obvious difference is the creation, storage, and allocation approach
used here for the three bank teller resources.

Figure 8.6 Resources Model That Uses Scheduling

There are two options for creating the three bank teller resources. Recall the EntityTypes tab on
the Create Teller block properties dialog box which displays the BankTellers resource entity type.
(See Figure 8.5.) All resource entities have an attribute named ResourceUnits. The default value
for ResourceUnits is 1. This model requires three bank teller resources. So the options are either to
create three BankTeller resource entity objects, each with a ResourceUnits value of 1, or to create
one BankTeller resource entity object with a ResourceUnits value of 3. To demonstrate additional
resource features of Simulation Studio, this model uses the latter approach.

So the Create Teller block generates one BankTeller resource entity object and passes it to the Teller
Pool block just as in the previous model. This time the resource entity object has 3 ResourceUnits
associated with it instead of 1. To make efficient use of the ResourceUnits in the BankTeller resource
entity object, it is necessary to use the Resource Pool block’s merging and splitting resource entities
capabilities. Selecting the Merge/Split resource units among resource entities of same type
check box in the Block Properties for Teller Pool dialog box (see Figure 8.7) enables the block to
look at the ResourceUnits attribute of its held resource entities and possibly subdivide a resource
entity into two resource entities, one of which matches the needs of an incoming resource request.
In this example the Seize Teller block requests a BankTeller resource entity with one ResourceUnit.
With the merge/split option selected, the Teller Pool block can take a BankTeller resource entity
with, say, a ResourceUnits value of 3 and create a new BankTeller resource entity object with a

A Second Resources Example F 73

ResourceUnits value of 1 and decrease the ResourceUnits value of the existing BankTeller resource
entity (already in the pool) to 2. The new BankTeller resource entity object (with a ResourceUnits
value of 1) is sent to the Seize Teller block to satisfy its request.

Similarly, when the BankTeller resource entity object returns to the Teller Pool block, its Resource-
Units can be merged with a BankTeller resource entity already in the pool and then the incoming
BankTeller resource entity object can be disposed.

Figure 8.7 Teller Pool Block Properties Dialog Box

For this model, all three bank tellers might not be available during the entire simulation—maybe
they take a staggered lunch break. The previous model used a total simulation time of 9 hours (540
minutes). Assume for this model that for the first 4 hours (240 minutes) of the work day all three
bank tellers are available. For the next hour two of the tellers go on lunch break and when they
return the third teller takes an hour lunch break. When the third teller returns from lunch break, all
three tellers are available for the remainder of the work day.

A Resource Agenda block and a Resource Scheduler block are used together to implement this
scheduling functionality in this model. A Resource Agenda block is used to create a list of resource
adjustment actions (collectively known as a resource agenda) to be performed during the simula-
tion run. The resource agenda information is passed to a Resource Scheduler block to arrange and
perform the resource adjustment actions on specific resource entities. The resource agenda for this
model is shown in Figure 8.8. Each row or entry in the agenda represents a resource adjustment
action and consists of three pieces of information: Duration, Value, and Value Type. A complete
description of each of these fields is available in the Resource Agenda block description in Ap-
pendix A, “Templates.” For this model these entries are used to represent the changes in the number
of bank tellers available throughout the simulation period.

74 F Chapter 8: Resources

Figure 8.8 Resource Agenda Block Properties Dialog Box

The Resource Scheduler block receives the resource agenda at the beginning of the simulation
run through its InAgenda input value port, and the scheduler performs the sequence of resource
adjustments on a specified group of targeted resource entities. The block properties dialog box
associated with the Resource Scheduler block in this model is shown in Figure 8.9. Each row in
the Appointments table is called an appointment. The details for using the Resource Scheduler
block can be found in Appendix A, “Templates.” Only the Start Time, Agenda. and Search
Targets By fields are discussed here. The Start Time field specifies the simulation time to activate
the associated agenda. The Agenda field supplies the name of the incoming agenda to use for
this appointment. (Multiple Resource Agenda blocks can be linked to the same Resource Scheduler
block, each sending a named agenda to the scheduler.) The Entity Type field under Search Targets
By indicates which resource entities the associated agenda in the appointment applies to. For this
model the agenda created in the Resource Agenda block is activated at a Start Time of 0 (when the
simulation run begins) and is applied to the BankTellers resource entity objects in the model. The
Immediate Actions options selected here indicate that resource entities that are in a seized state
are not preempted. (For additional discussion on preemption, see the section “Preempting Resource
Entities” on page 81.)

A Second Resources Example F 75

Figure 8.9 Resource Scheduler Block Properties Dialog Box

The final new block added to this resource model is the Resource Stats Collector block. As you
might expect, this block is used to collect statistics on resource entities during a simulation run. The
Resource Stats Collector requires a minimum of two pieces of information: the resource entities
you want to collect statistics on and the statistics you want to collect. The Resource Stats Collector
block properties dialog box provides separate tabs for you to enter this information. The Groups
tab is used to identify the targeted resource entities for statistics collection. (See Figure 8.10.) In
this case instances of the BankTellers Entity Type have been targeted. The Statistics tab is used to
specify the details on the individual statistics you want to collect. (See Figure 8.11.) Values in the
Statistics column are selected from a list that contains the names of the resource statistics available
in Simulation Studio. The details for all the columns in this table can be found in the Resource Stats
Collector block overview in Appendix A, “Templates.”

Figure 8.10 Groups Tab in Resource Stats Collector Block Properties Dialog Box

76 F Chapter 8: Resources

Figure 8.11 Statistics Tab in Resource Stats Collector Block Properties Dialog Box

The Resource Stats Collector block provides an option to have the statistics saved to a file at the
end of each run (that option was selected for this example). You can also attach a plot block to the
OutData outport of the Resource Stats Collector block to display the statistics during the simulation
run.

This example provides a glimpse into the modeling capabilities and potential applications of the
Resource Agenda, Resource Scheduler and Resource Stats Collector blocks in simulation models.
Although these blocks are more sophisticated than many of the previously demonstrated blocks,
they also provide powerful and flexible modeling functionality.

Additional Resource Functionality

This example demonstrates more advanced features available for resource entities in Simulation
Studio including the following:

1. merging and splitting

2. statistics

3. scheduling adjustments

Each of these topics is discussed in further detail in the following sections, along with the notion of
resource preemption.

Merging and Splitting Resource Entities F 77

Merging and Splitting Resource Entities

The Resource Pool and Release blocks provide a unique capability referred to as resource entity
merging and splitting. All resource entities have a numeric ResourceUnits attribute which can be
assigned any nonnegative value. The value contained in this attribute represents the capacity or
available units that are associated with the individual resource entity object. The default value for
the ResourceUnits attribute is 1. Therefore by default, each new resource entity that is created
represents one unit of that particular resource.

The Teller Pool block in the previous example used the merging/splitting feature of the Resource
Pool block. When the merging/splitting option is selected in a Resource Pool block, mini-pools
of entities based on a user defined criteria are kept. A common criteria is to merge and split the
resource entities based on resource entity type. Merging and splitting helps reduce the number of
resource entity objects needed in a model during a simulation run. Figure 8.7 shows the Block
Properties for Teller Pool dialog box.

If you want to use the merging/splitting feature of a Resource Pool block, you have to specify the
criteria to use for grouping the resource entities in the pool. The simplest approach is to select the
Merge/Split resource units among resource entities of same type check box in the Resource Pool
block properties dialog box. This uses the resource entity type as the grouping criteria. You can
also specify more definitive grouping criteria by using the Key Entity Attribute Fields section of
the dialog box.

With the merging/splitting option enabled on a Resource Pool block, the first resource entity for any
defined group that enters the block remains in the block for the duration of the simulation run. It
effectively becomes the mini-pool for that group. Any other resource entities that enter the Resource
Pool block and are a match for the criteria for that group are merged with the first resource entity
of that group. That is, the value of the ResourceUnits attribute of the resource entity just coming
into the Resource Pool is added to the value of the ResourceUnits attribute of the existing, matching
resource entity, and the incoming resource entity is disposed.

When a resource request comes into the Resource Pool block, the block looks for a resource entity
in its possession with the matching criteria. If it finds a matching resource entity, it then looks at
the ResourceUnits attribute on the matching resource to see whether sufficient units are available to
fill the request. If enough units are available, the Resource Pool block creates a new resource entity
from the matching resource entity, populates its ResourceUnits value with the requested number of
units, and decreases the value of the ResourceUnits in the original resource entity accordingly. (The
original resource entity might end up with a ResourceUnits value of 0.)

Although the Release block does not have (or need) any resource entity merging capabilities, it does
provide an option for splitting resource entities. When the Splittable option is selected on a Re-
lease block, you can deallocate or release some of the ResourceUnits associated with an incoming
resource entity. Again, fields are available in the Release Block Properties dialog box for defining
the criteria to use for releasing and splitting resource entities. If the Splittable option is selected
and an incoming resource entity meets the Splittable criteria you have defined on the Release block,
the Release block looks for the ResourceUnits attribute value on the incoming resource entity and
compares it to the value you specified to be deallocated from the resource entity. If the value to
be deallocated is less than the value of units available in the incoming resource entity, the Release

78 F Chapter 8: Resources

block creates a new resource entity from the incoming resource entity, populates its ResourceUnits
value with the specified number of units, and decreases the value of the ResourceUnits in the incom-
ing resource entity accordingly. The newly created resource entity then flows out the appropriate
Release block output port.

When the simulation model does not have the merging and splitting options enabled in its Resource
Pool and Release blocks, the model is sometimes referred to as an object-based resource model.
When the merging or splitting options in either of these types of blocks are enabled, the model is
called a units-based resource model. The Resource Pool and Release blocks provide special options
that take advantage of the ResourceUnits attribute in a resource entities for units-based models.

Additional details about the Resource Pool and Release blocks can be found in Appendix A,
“Templates.”

Collecting Resource Entity Statistics

The resource entities usually scatter throughout the modeled system during a simulation run. For
example, some might be stored in resource storage blocks, others allocated to and held by control-
ling entities somewhere, and some might be being serviced or delayed in a Server or Delay block.
A Resource Stats Collector block can organize any resource entities of any interest and location
as different resource groups, and it can calculate and report capacity utilization statistics for each
group. For each resource group, resource constraints can be defined on the Resource Stats Collector
block to locate and monitor the group’s targeted resource entities during a simulation run. Several
types of standard capacity utilization statistics (such as time average) can be chosen to be collected
for all resource groups. Each chosen statistic can also be assigned with its own resource constraints
to further limit the computation to a subset of a resource group. For example, you could decide
to collect a statistic on a particular resource entity type that has an attribute set to a specific value.
Suppose you create a resource entity type called DoctorEntity to represent doctors in a medical
simulation, and one of the attributes you define on this DoctorEntity entity type is named specialty.
Valid values for this specialty attribute might be cardiologist, neurologist, ENT, an so on. You could
use the Resource Stats Collector block to calculate statistics for all instances of the DoctorEntity
resource entity that have a specialty attribute value of “neurologist.” To accomplish this, you could
define a Group for neurologists and then use it to calculate your statistics without using an Attribute
Rule on your statistics definition. Alternatively, you could define a Group for all doctors and use an
Attribute Rule on the statistics definition to constrain the statistics calculation to neurologists.

The Resource Stats Collector block reports its results as a data table, with each group as a data row
and each column containing statistics.

Scheduling Resource Entity Adjustments

Resources often undergo routine adjustments or changes, and the effects of such adjustments often
last for a limited period of time. Examples are a truck in routine maintenance, a worker on lunch
break, and adding salespeople for weekend or a holiday shopping season.

Scheduling Resource Entity Adjustments F 79

The scheduling of a resource adjustment often needs to address the following issues:

� what kind of adjustment to make—either capacity or state change, or duration of change

� what resources to adjust—locate the targeted resources

� when to adjust

� whether the adjustment is preemptive (disruptive)

� where and how the adjustment takes place—in resource pools (unseized) or in other entity
holding blocks (seized)

� how to proceed to the next related adjustment, if any—temporally constrained or not

� whether to repeat this adjustment in the future—repeatable or not

In Simulation Studio, resource scheduling is supported by the Resource Agenda and Resource
Scheduler blocks together. The Resource Agenda block is used to address the first issue listed
above and the Resource Scheduler block addresses the other issues.

Resource adjustments are often related and happen in an orderly fashion. In Simulation Studio,
related adjustment actions can be grouped together. A special type of value object called a Resource
Agenda defines a sequence of related resource adjustment actions based on a relative simulation
time starting at time zero. Each resource adjustment action includes a change to either the resource
capacity value or the resource state value in targeted resource entities over certain time period; it
is defined as a resource agenda entry. The Resource Agenda block provides a resource agenda to
describe what kind of resource adjustments to make during a simulation run.

The Resource Scheduler block accepts and stores resource agenda objects during a simulation run.
This block also accepts scheduling requests to perform resource adjustments. The resource agen-
das are later activated and processed by the Resource Scheduler block as specified by scheduling
requests. Such a request tells the Resource Scheduler about the resource agenda to use for resource
adjustments and how to deal with the second through last issues in the preceding list. After a re-
source agenda is activated, its entries are activated and processed sequentially. A scheduling request
is fulfilled when all entries in the specified resource agenda are processed and all associated resource
adjustments are actually completed.

There are two ways to provide a request to the Resource Scheduler block: statically or dynamically.
A static request can be entered at the design or modeling time as an appointment by using the
Appointments tab of the Resource Scheduler block properties dialog box. (See Figure 8.9.) At
simulation time, appointments are processed as the initial requests by the Resource Scheduler block.

After an unrepeatable request is processed and all associated adjustments are completed, the request
is discarded by the Resource Scheduler block. If a request is repeatable, the Resource Scheduler
block sends a resource schedule entity out the OutRequest port to represent the request to be used
again later. If the request is an appointment, the Resource Scheduler block creates the resource
schedule entity based on the appointment. Later, these resource schedule entities can be submit-
ted to a Resource Scheduler block through its InRequest port as dynamic requests. Before being
submitted back to Resource Scheduler block, these resource schedule entities can be processed (de-
layed, modified, counted, stored, and so on) with the facilities for the regular entities to simulate
complicated scheduling situations.

80 F Chapter 8: Resources

Sometimes, the contents of the resource agenda entries in a resource agenda are fixed and can be
specified completely at the design time. Yet at other times, the duration or capacity changes of
some adjustment action are not fixed or cannot be specified in the corresponding resource agenda
entries at the design time. For example, the downtime or duration of a machine failure is not fixed
but follows a certain statistical distribution (such as a normal distribution). In Simulation Studio,
the numeric contents (such as duration, units, and units offset) of a resource agenda entry can be
left unspecified or blank. Such an agenda entry is called a dynamic agenda entry. The Resource
Agenda block populates the unspecified values by pulling these values dynamically though the
InDuration or InValue input ports (or both) during simulation. The desired values can be created
through submodels that are connected to these input ports.

The rule of the “immediate actions” in a scheduling request enables the Resource Scheduler block
to address the fourth through sixth issues in the preceding list. When a resource agenda entry is
activated, the Resource Scheduler block performs the appropriate immediate actions as specified
by the rule without any delay. The resource entities are usually either unseized in resource storage
blocks or seized by controlling entities. The seized resources are busy and in use. The unseized and
functional resources are free to be allocated upon requested. Usually, the seized resource entities
are not adjusted before they become unseized and free. Otherwise, the resource adjustment is
preemptive if it decreases the capacity or switches to a nonfunctional state. When the state value
of unseized resources is changed to nonfunctional, these resources cannot participate in resource
allocation until they become functional again. Therefore, the adjustment is disruptive to these
resources.

Currently, when permitted by the specification of a resource adjustment request, the Resource
Scheduler block uses several heuristics to process the request. For an increase of capacity, the
Resource Scheduler block divides the increased units evenly among targets it deems suitable. For
a decrease of capacity, the block tries to decrease as much capacity as possible from a first targeted
resource before moving to the next target, and so on. In general, the Resource Scheduler block
always attempts to finish processing a resource agenda entry in less simulation time without pre-
emptive changes. For capacity changes, the Resource Scheduler block adjusts the currently unseized
resources first. This “unseized first” heuristic decreases the waiting time for the seized resources
to become unseized and avoids unnecessary preemptive adjustments. When the merging/splitting
units option is enabled on a Resource Pool block, the first entrant of compatible resource entities
always remains inside the Resource Pool block even when its resource capacity reaches zero after
splittings. Therefore, the “unseized first” heuristic might result in capacity changes to the resource
entities in the Resource Pool blocks being more likely than elsewhere, which makes it easier to
model inventory replenishment situations in some simulations.

Usually the entries in a resource agenda are related, and a succeeding entry cannot be processed
unless the preceding entries are finished. For this kind of temporally constrained situation, the
Resource Scheduler block should not advance the agenda to process its next entry if the current
entry is not completed. The actual simulation time period to finish the whole resource agenda can
be much longer than the sum of the original duration values specified in the agenda entries. Choose
the option to advance the agenda to the next entry if the resource agenda entries in the agenda are
not temporally constrained, which might result in a shorter processing time for the resource agenda.

Choose to adjust the currently unseized resources immediately if the adjustment is intended to
change free resources without any delay. This is useful in many modeling situations. Examples
include increasing inventory levels immediately at all inactive warehouses, or putting all trucks

Preempting Resource Entities F 81

currently in the garage under routine maintenance.

If you choose not to adjust currently unseized resource immediately, the Resource Scheduler block
adjusts these resource later, after all the currently seized resources become unseized. This is useful
in the situation where all or most of the resources need to be gathered before they can be adjusted
at the same time collectively.

Choose to adjust the currently seized resources immediately if adjustment is preemptive and the
seized resources need to be deallocated from their current controlling entities for further processing
or different allocation.

For more information about the functionality of the Resource Agenda and Resource Scheduler
blocks, see Appendix A, “Templates.”

Preempting Resource Entities

In Simulation Studio, the stationary resources (including most of the entity holding blocks, such as
the Queue, Server, and Delay blocks) support two common types of resource preemptions: priority-
based and scheduled.

Priority-based preemption is primarily for preempting stationary resources, which are the entity
holding blocks such as the Queue, Server, and Delay blocks. The entity that wants to enter such a
holding block is considered a consumer of the static resource represented by that block. Allocation
of static resources is usually about accepting entering entities into the holding blocks to take up
space in the blocks. Preemption of static resources forces out some entities currently in holding
blocks to give spaces to some other entities. The selected holding blocks (Queue, Server, and
Delay) provide an InPreempt input port that accepts an EntityGroup object as input. These blocks
compare the entity references in the EntityGroup to the entities currently held by the block and
preempt any matches. This type of preemption is often triggered by the higher priority of the new
entities attempting to enter these blocks.

Scheduled preemption is primarily for preempting mobile resources, which are resource entities,
and is based on a resource adjustment agenda. Sometimes, the allocated and seized resource entities
need to be preempted from their current controlling entities so that these resource entities can be re-
allocated to other controlling entities if necessary. This type of preemption can be triggered by the
preemptive resource adjustments that are arranged and processed by a Resource Scheduler block.
Most entity holding blocks, including the Queue, Server, and Delay blocks, provide OutPreempt
and OutResource output ports. If a resource entity allocated to a controlling entity that is currently
held in a holding block is adjusted preemptively, the holding block attempts to force the controlling
entity out of the block’s OutPreempt port and the resource entity out of the OutResource port. If the
OutPreempt port is not connected, the controlling entity remains in the entity holding block. If the
OutResource port is not connected, the adjusted resource entity remains allocated to its controlling
entity.

The post-preemption processing of preempted entities and resources is often highly specific to the
application. For example, when a job is preempted from a service, some applications might resume
the job to finish its remaining service time, some might restart the job from beginning, some other

82 F Chapter 8: Resources

applications might simply scrap the job, and so on. The modeling facilities provided by Simulation
Studio make it possible to construct suitable solutions to handle these situations.

Additional examples that demonstrate preemption and other resource modeling techniques are pro-
vided in Appendix E, “Examples of Simulation Studio Models.”

Chapter 9

Log and Trace

Contents
Overview of Logging and Tracing . 83
Log Tab . 83
Trace Tab . 84
Tracing Configuration . 85

Overview of Logging and Tracing

The Log and Trace tabs (which can be expanded at the bottom of the Project window) provide
feedback during the execution of a simulation model. Both the application and individual blocks can
post model execution state, event, and error information to these tabs while the model is running.
The Log tab contains messages regarding potential configuration and execution state anomalies,
warnings, and so on. The Trace tab (if the Tracer is enabled) usually displays simulation clock
timestamps and state information for individual blocks as execution progresses. You can customize
the content of the Trace tab to filter out unwanted trace messages.

Log Tab

Messages can be posted to the Log tab by both the application framework and the individual blocks.
Each message consists of four components: level, description, source, and time.

The value in the Level column represents the severity of the log message; possible values are SE-
VERE, WARNING, and INFO. A SEVERE log message indicates that a major problem has been
encountered with the simulation model, and execution is terminated.

Figure 9.1 displays a SEVERE log message from an Entity Generator block. To function properly,
an Entity Generator block requires a connection to its InterArrivalTime input port from which it can
pull numeric values. That connection appears to be missing in this example.

84 F Chapter 9: Log and Trace

Figure 9.1 Sample Log Tab

A WARNING message usually suggests that a condition has occurred that warrants further inves-
tigation. An example of such a condition might be a block receiving a negative number when it
was expecting a nonnegative value. An INFO message simply contains information but does not
indicate a potential problem.

The Time column in the Log tab displays the (simulation clock) time when the message was logged.
Some messages, such as the one in the SEVERE log message example in Figure 9.1, can be logged
before the model execution actually begins; therefore the Time value is empty for these messages.

The Description column contains the message text, and the Source column displays the label of the
block that generated the message. Clicking an entry in the Source column causes the associated
block to be highlighted in the Model window.

Trace Tab

Trace messages provide details about state changes, events, and execution flow within individual
blocks; they are useful for debugging or tuning your simulation models. The Tracer must be enabled
before any trace messages are generated. You can enable the Tracer by using the pop-up menu
available on the Trace tab background.

The following types of entries are displayed on the Trace tab:

� simulation clock timestamps (displayed in black)

� entity information (displayed in red)

� value information (displayed in blue)

When the Tracer is enabled, a timestamp is posted to the Trace tab every time the simulation clock
advances. All other trace messages are generated by the individual blocks. Each block is responsible
for the content of its trace messages and for determining when to generate trace messages.

Although it is possible (and likely) for any simulation model execution to generate a considerable
volume of trace messages, the Trace tab has a limited size buffer associated with it to store the
messages. Therefore, only the most recent trace messages are retained in the trace buffer after the
buffer is full. Figure 9.2 shows a sample Trace tab.

Tracing Configuration F 85

Figure 9.2 Sample Trace Tab

Tracing Configuration

You can control the amount of information that is displayed on the Trace tab by using the Tracing
Configuration dialog box. To open the Tracing Configuration dialog box, right-click on the Trace
tab background and select Tracer Configuration.

You can use the Tracing Configuration dialog box to filter trace messages according to various
criteria: the blocks that generate trace messages, the entities that are mentioned in trace messages,
and the simulation clock time of trace messages. You can combine more than one of these criteria
to further refine the number of trace messages that appear on the Trace tab. Changes made in the
Tracing Configuration dialog box apply only to the model that is active when you open the Tracing
Configuration dialog box. These settings last only while Simulation Studio is open. They are not
saved when you close Simulation Studio.

Figure 9.3 shows a sample Tracing Configuration dialog box.

86 F Chapter 9: Log and Trace

Figure 9.3 Tracing Configuration Dialog Box

The following sections appear in the Tracing Configuration dialog box:

� Blocks

� Entities

� Simulation Time

By default, all trace messages that are generated during simulation execution appear on the Trace
tab. Therefore, when you open the Tracing Configuration dialog box for the first time, the default
options are selected to show all block tracing, show all entity tracing, and show tracing for all
simulation times.

If you clear the Show All Block Tracing check box, the Block Tracing button becomes enabled.
Click Block Tracing to open the Block Tracing dialog box. Figure 9.4 shows a sample Block
Tracing dialog box.

Tracing Configuration F 87

Figure 9.4 Block Tracing Dialog Box

In this dialog box, select the blocks for which you want to see trace messages and click OK. For
trace messages that are generated by blocks, only trace messages generated by the selected blocks
are displayed on the Trace tab. If you want to display trace messages generated by all blocks,
simply check the Show All Block Tracing check box in the Tracing Configuration dialog box.

If you clear the Show All Entity Tracing check box, the Entity Tracing button becomes enabled.
Click Entity Tracing to open the Entity Tracing dialog box. Figure 9.5 shows a sample Entity
Tracing dialog box.

88 F Chapter 9: Log and Trace

Figure 9.5 Entity Tracing Dialog Box

In this dialog box, select the entity types for which you want to see trace messages. Also, you
can specify a range of Id numbers for each selected entity type, which causes only trace messages
for entities with Id numbers in the specified range to be displayed on the Trace tab. Click OK to
apply the settings and close the Entity Tracing dialog box. For trace messages regarding entities,
only trace messages regarding the selected entity types and Id ranges are displayed on the Trace
tab. If you want to display trace messages regarding all entities, simply check the Show All Entity
Tracing check box in the Tracing Configuration dialog box.

To show trace messages only for a specified range of simulation clock time, you can specify a
start time, an end time, or both. To specify a start time, clear the Zero check box in the Tracing
Configuration dialog box and enter a positive integer value in the Start field. Trace messages that
are generated before the specified start time are not displayed on the Trace tab. To specify an end
time, clear the Infinity check box and enter a positive integer value in the End field. Trace messages
that are generated after the specified end time are not displayed on the Trace tab.

The settings in the Blocks, Entities, and Simulation Time sections of the Tracing Configuration
dialog box combine to determine what is ultimately displayed on the Trace tab. For example, if
you select to show tracing for only the Entity Generator A block, select to show tracing for only the
Default entity type, and select to show tracing for only time 10 to 20 on the simulation clock, then
the Trace tab displays only messages that are generated by block Entity Generator A. Furthermore,
if this block generates messages for entity types other than Default, they are not displayed. Lastly, no
trace messages are displayed before time 10 or after time 20, regardless of the block that generated

Tracing Configuration F 89

the trace message or the entity type that is referred to by the trace message.

90

Chapter 10

Block Templates

Contents
Overview of Block Templates . 91
Using the Template Menu . 92
Using the Template Palette Pop-up Menu . 92
Template Document Format . 93

Overview of Block Templates

Simulation Studio templates provide a facility for managing the blocks you use to build your simu-
lation models, and the Simulation Studio template palette offers a visual representation of template
content. A Simulation Studio template contains information about a collection of blocks. This in-
formation is stored as an XML document. There is no limit on the number of templates you can load
into Simulation Studio. The content of any loaded template can be viewed in the Template Palette
area of the application. As discussed in Chapter 3, “Simulation Models,” you drag an item from the
Simulation Studio palette into a Model window to create an instance of the associated block in your
simulation model.

When Simulation Studio starts, it automatically loads a series of default templates named Standard,
Advanced, Data and Display, Resource, and Output Analysis. These templates provide collections
of blocks useful for building queuing simulation models. These blocks include Entity Generators,
Queues, Servers, and so on; they are described in detail in Appendix A, “Templates.” These collec-
tions of blocks will continue to evolve in succeeding Simulation Studio releases.

You can also create a custom template and save it to a data file for later use either by using selections
described in “Using the Template Palette Pop-up Menu” on page 92 to modify an existing template
or by creating a template XML document as described in “Template Document Format” on page 93.

Although there are no constraints on the contents of a template (other than the element format de-
scribed in “Template Document Format” on page 93), you usually create a collection of blocks that
have some theme in common. For example, you might create a template with blocks for simulating
a manufacturing environment, or you might create a template with blocks specifically designed to
address health care services simulation.

92 F Chapter 10: Block Templates

Using the Template Menu

You use the Template menu to load an existing template that is saved on disk, create a new (empty)
template, or save a loaded (probably modified) template back to disk. To load an existing template
into Simulation Studio, select Open. This opens a File Selection dialog box where you choose the
template filename and then click Open. The chosen template is then loaded into the application, and
the template name is added to the Templates list box. Selecting a template name in the Templates
list box causes the Template Palette area of Simulation Studio to be populated with the items
contained in the associated template. Only one template is active at any time.

Using the Template Palette Pop-up Menu

A pop-up menu is available on the Template Palette window area background with options for
various palette display formats with various combinations of icons and labels. (See Figure 10.1.)

Figure 10.1 Template Palette Menu

In addition to the palette formatting options, this menu contains three other items: Block Info,
Remove Block, and Import Block. Select Block Info to view template information that is related
to a particular item displayed in the palette. Editing the values in the Block Info dialog box changes
those values for all current and future instances of the associated block in your models. Select
Remove Block to delete an item from the palette. Select Import Block to add a new entry to the
currently visible template (that is, the template displayed in the palette). Selecting Import Block
opens a dialog box that contains fields where you enter the same information found in the Block
Info dialog box. (This is the same information found in a block element entry in a template XML
document.)

Template Document Format F 93

Template Document Format

Figure 10.2 shows a simple template XML document that contains one block. The <block> el-
ement in a template document represents a single item in the template. The <block> element
attributes and child elements are listed and described in the header in Figure 10.2. Only the name

and type attributes are required in each <block> element. The information in any <tabbed_page>
child elements in a <block> element represent the dialog pages that are associated with the Block
Properties dialog box for each block.

Figure 10.2 Sample Template Document

94

Chapter 11

Data Collection, Analysis, and Reporting

Contents
Overview . 95
Data Collection . 95
Block Data Storage . 96
Data Analysis and Reporting . 98

Overview

Running simulation models has the potential to generate large volumes of data. The subject matter
of your simulation investigation or the sophistication of your model often dictates what type of data
you need to collect from each of your simulation runs along with the amount of data required to
perform an appropriate analysis. Different stages of model development might also have different
data collection requirements. For example, when you are initially building and debugging your
model, you might collect data that are not necessary after the model is validated.

Simulation Studio provides various blocks with data collection capabilities and plots for displaying
data. The experiment features in Simulation Studio provide another way to collect data. (See
Chapter 4, “Experiments.”) After you have collected and saved your data from simulation runs,
SAS and JMP software offer many options for analyzing the data and generating reports. Since
data analysis and reporting requirements vary widely for different simulation scenarios, this chapter
focuses on the data collection aspects of Simulation Studio.

Data Collection

For the purposes of this document, data collection refers to the process of collecting values while
a simulation model is running and also to saving the values to data files for later analysis and
reporting. Although plot and chart blocks (Histogram, Scatter Plot, and so on) can display data in
Simulation Studio, they do not collect any data. Therefore, they are not considered part of the data
collection process.

96 F Chapter 11: Data Collection, Analysis, and Reporting

There are currently five blocks in the basic template that can collect and save data: the Bucket,
Number Holder, Probe, Queue Stats Collector, and Server Stats Collector blocks. The specifics on
the functionality of these blocks, along with the types of information they can collect, are provided
in Appendix A, “Templates.” Two features that all these blocks have in common (in addition to
being able to collect data) are the ability to save their collected data to a file and an option to
automatically save the data at the end of each simulation run. After the data are stored in a file (a
SAS data set or JMP table), you can use your favorite analysis software to investigate your data and
generate reports.

Each of these blocks accumulates data in an internal Java object referred to as a data model. This
data model can be accessed by other blocks via the OutData port on the data collection blocks. The
contents of the data model can also be saved to an external data file.

Block Data Storage

Simulation Studio saves the data collected by blocks on a project basis and employs a hierarchical
approach for data storage. For each project you can supply the root directory name for any data
collection results by using the Results menu item available on the project pop-up menu in the
Project Explorer window. (See Figure 11.1.)

Figure 11.1 Project Menu

Selecting Results opens the Results dialog box where you enter the name of the root directory to be
used for storing model execution results. You can supply the filename associated with an individual
block’s data storage by using the block’s Block Properties dialog box. If you do not provide a
filename, a default one is generated automatically. Simulation Studio creates a hierarchical directory
structure to store any results based on the hierarchical structure of the model. This structure reflects
any nesting of blocks due to the use of compound blocks.

Another Simulation Studio feature provided to facilitate data collection is the Auto Save Re-
sults menu item available from the model pop-up menu in the Project Explorer window. (See
Figure 11.2.)

Block Data Storage F 97

Figure 11.2 Model Menu

Recall that all blocks capable of collecting and saving data provide an option to automatically
save any collected data at the end of each simulation run. This option is usually set in the Block
Properties dialog box for each individual block. If you have a considerable number of blocks that
are collecting data in your model or the collection blocks are nested in compound blocks, it might
take a considerable amount of effort to open all the individual dialog boxes and make the appropriate
selections. Using a hierarchical format, the Auto Save Results dialog box displays all the blocks in
the model with data collection capabilities. (See Figure 11.3.) From here you can set the automatic
save option for any of these blocks by selecting the appropriate check boxes in the dialog box. This
enables you to avoid opening the individual block dialog boxes.

Figure 11.3 Auto Save Results Dialog Box

A Simulation Studio experiment provides another option for collecting data on simulation runs.
Recall from Chapter 4, “Experiments,” that experiments are composed of factors and responses
where factors are set prior to running an experiment and responses are values extracted from the
model at the end of a simulation run. Since experiments can be saved to a file, this offers another

98 F Chapter 11: Data Collection, Analysis, and Reporting

means of collecting simulation data. As discussed in Appendix C, “Design of Experiments,” you
can pass experiment data to JMP software (if available) using the Analyze Results menu item from
an Experiment window pop-up menu.

Data Analysis and Reporting

Each block that collects data provides an output port (usually labeled OutData) that other blocks can
use to access its data. The plot blocks (Histogram, Scatterplot, and so on) are the usual recipients of
this data, and these blocks can provide some real-time data analysis while the simulation is running.
However, usually you want to use SAS or JMP software to analyze the data you have saved to
data sets during your simulation runs. If you collected data using the Simulation Studio experiment
features in coordination with JMP routines for design of experiments, you probably want to pass the
experimental results back to the JMP program for analysis. This process is described in Appendix C,
“Design of Experiments.”

Chapter 12

Batch Execution

Contents
Overview of Batch Execution . 99
Command Line Interface . 99
Log Messages . 100

Overview of Batch Execution

Everything in this document so far has focused on using the Simulation Studio GUI to construct
and run simulation models. You build your simulation model in the Model window, create your
experiment, and then save and run your simulation model. To rerun a saved model, you reload it
into a project (along with an associated experiment) and start the model execution process.

Simulation Studio provides an alternative method for running saved models and experiments that
does not involve using the GUI. Simulation Studio is a Java application, and it contains a Java class
named Simulation that enables you to run models in batch mode.

Command Line Interface

The Java class Simulation accepts two command line arguments: -m and -e. The -m argument
specifies the pathname for a Simulation Studio model you want to execute, and the -e argument
specifies the experiment pathname. You can use this Java class with the Java interpreter to run
simulation models from a Microsoft Windows command prompt.

Usually, you want to change directories to the directory where you installed Simulation Stu-
dio and launch the Java interpreter from that point. (The current default installation location is
\Program Files\SAS\SimulationStudio\<release_number>.)

A sample command line for executing a model-experiment pair looks like this:

$java -classpath SASSimulation.jar com.sas.analytics.simulation.Simulation

-m projectsnMyProjectnMyModel.simmdl -e projectsnMyProjectnMyExperiment.simexp

100 F Chapter 12: Batch Execution

You must supply the appropriate classpath arguments for the Java interpreter to be able to locate
the Java classes in your model. The classpath options provided in the previous example should be
sufficient for the Java interpreter to locate any classes provided in the basic template delivered with
Simulation Studio.

Log Messages

Any log messages generated during the execution of a model are directed to the command prompt
window.

Appendix A

Templates

Contents
Overview of Templates . 102
Overview of the Standard Template . 103

Entity Generator Block . 103
Value Generator Block . 106
Disposer Block . 108
Queue Block . 109
Delay Block . 114
Server Block . 116
Modifier Block . 119
Extractor Block . 120
Switch Block . 122
Selector Block . 124
Number Holder Block . 126
String Holder Block . 129
Numeric Source Block . 130
Text Source Block . 132
Counter Block . 134
Time Now Block . 135

Overview of the Advanced Template . 136
Batch Block . 136
Unbatch Block . 138
Clone Block . 140
Gate Block . 142
Valve Block . 143
Formula Block . 145
SAS Program Block . 147
Entity Filter Block . 149
Entity Group Holder Block . 151

Overview of the Data and Display Template . 154
Bucket Block . 154
Probe Block . 156
Queue Stats Collector Block . 158
Server Stats Collector Block . 160
Resource Stats Collector Block . 162

102 F Appendix A: Templates

Histogram Block . 166
Bar Chart Block . 167
Scatter Plot Block . 168
Box Plot Block . 169
Comment Block . 170

Overview of the Resource Template . 171
Seize Block . 171
Release Block . 173
Resource Pool Block . 175
Resource Scheduler Block . 177
Resource Agenda Block . 181

Overview of the Output Analysis Template . 183
Steady State Block . 183

Overview of Templates

Simulation Studio templates provide collections of blocks you can use to build simulation mod-
els. The following sections are overviews of the blocks provided in the various Simulation Studio
templates. Each block description includes a brief summary of what the block does along with a
description of the fixed ports for the block and the controls in the block’s properties dialog box.
Also included are the Factor and Response candidates associated with each block for use with the
design-of-experiment features in Simulation Studio.

Entity Generator Block F 103

Overview of the Standard Template

The Simulation Studio Standard template provides a fundamental collection of the blocks that are
most commonly used to build simulation models.

Entity Generator Block

Description

The Entity Generator block generates entities. You can control when the entities are created, the
total number of entities created, and how many entities are created simultaneously.

After an entity is created, the Entity Generator block attempts to send the new entity out the OutEn-
tity port. If this fails, it then tries to push the entity out the OutBalk port. If this also fails, the entity
is destroyed and a message is sent to the Tracer.

Multiple entities can be generated every time an entity creation event occurs in an Entity Generator
block. The number of entities to create at an entity creation event is referred to as the batch size.
When the Entity Generator block is preparing to schedule an entity creation event, it attempts to pull
a value from its BatchSize port and associate this value with the entity creation event. (If nothing
is connected to the BatchSize port, it uses a default batch size of 1.) When the entity creation event
occurs in the Entity Generator block, the Entity Generator block creates the number of entities
specified by the associated batch size value (within the constraints of the maximum limits described
in the next paragraph). All entities are sent out individually either through the OutEntity port or the
OutBalk port.

You can specify the maximum number of entities that the Entity Generator block can generate in
addition to the maximum number of batches. The Entity Generator block stops creating entities
whenever either of these limits is reached. Fields are also provided to set the start and end time (in
terms of the simulation clock) for controlling the duration of operation of the block.

The Boolean Signal port can be used to initiate entity creation as well. When a true value arrives
at the Signal port, the Entity Generator block pulls values from its InterArrivalTime and BatchSize
ports and schedules an entity creation event.

You can use the Entity Types dialog box to specify the types of entities the Entity Generator block

104 F Appendix A: Templates

can create. To open the Entity Types dialog box, right-click in the Project Explorer window and
select Entity Types. You can enter default values for any of the editable entity attribute fields
(indicated by a check in the Editable column) in the Entity Types dialog box.

Fixed Ports

InterArrivalTime Input numeric port for how long to wait before the next entity creation event.

BatchSize Input integer port for how many entities to create at the next entity creation event.

Signal Input Boolean port that schedules an entity creation event (when true is passed
in).

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the OutEntity port.

Attributes Dialog Box Controls

Limits The Maximum Number of Entities field specifies the maxi-
mum number of entities this Entity Generator block is permit-
ted to generate. Selecting the Infinite check box supersedes the
value of the Maximum Number of Entities field. Similarly,
the Maximum Number of Batches field specifies the maxi-
mum number of batches of entities this Entity Generator block
is permitted to generate. Selecting the Infinite check box su-
persedes the value of the Maximum Number of Batches field.
By default, both Infinite check boxes are checked. If both the
Maximum Number of Entities field and the Maximum Num-
ber of Batches field contain valid values, the Entity Generator
block stops creating new entities as soon as either of the criteria
has been met.

Timing The Start Time field designates the simulation time at which
the first entity is generated by this Entity Generator block. This
value must be greater than or equal to 0. The default Start Time
is 0. Similarly, the End Time field specifies the simulation time
when no more entities can be generated by the Entity Generator
block. The End Time must be greater than or equal to the Start
Time. Selecting the Infinite check box supersedes the value of
the End Time field.

First Entity Creation Specifies when the first entity is created by the Entity Genera-
tor block. Select At Start Time to cause the first entity to be
created at the time specified in the Start Time field. This is the
default selection. If you select At First Interarrival Time, then
at Start Time the Entity Generator block pulls the first interar-
rival time value from the InterArrivalTime port and schedules
the first entity to be created at that time. The pulled value de-
termines how long the Entity Generator block waits before gen-
erating the first entity. (Whenever the interarrival time value is

Entity Generator Block F 105

not a number, the simulation terminates. If the value is a num-
ber less than 0, the Entity Generator block logs a warning and
uses a value of 0.) If you select After Signal Arrival, the En-
tity Generator block waits until a true value arrives at the Signal
port before scheduling the first entity creation.

To Schedule the Creation of Next Entity If you check this check box, after the Entity Generator
block has created a new entity and pushed it downstream it au-
tomatically pulls a value from its InterArrivalTime port and uses
this value to schedule the generation of the next entity creation.
If you clear this check box, future entity creation events can be
scheduled only by using the Signal port. By default, this check
box is checked.

EntityType Dialog Box Controls

Name Specifies the name of the EntityType used for entity creation.

Fields Displays the default attributes associated with the selected En-
tityType. You can set the default value for editable entity at-
tributes directly in the table.

Candidates for Design of Experiments

Factors StartTime (double), EndTime (double), MaxEntities (integer), MaxBatches (in-
teger), RankValue (double)

Responses None

106 F Appendix A: Templates

Value Generator Block

Description

The Value Generator block generates numeric, text, or Boolean values. The Value Generator block
pulls a value from its InterValueTime port to determine how long it waits before generating the next
value. (If the intervalue time value is not a number, the simulation terminates. If the value is less
than 0, the Value Generator block logs a warning and uses a value of 0.) After the Value Generator
block has a valid intervalue time value, it pulls a value from its InValue port and passes it out the
OutValue port. If there are no connections to the InValue port, the value specified in the Default
Value field is passed out the OutValue port.

You can specify the maximum number of values the Value Generator block can generate, the default
value generated, and the start and end times (in terms of the simulation clock) for controlling the
operation of the block. You can also specify when the first value is created.

Fixed Ports

InterValueTime Input numeric port for how long to wait before the next value creation event.

InValue Input value port for the next value to create.

OutValue Output value port for the created values.

Properties Dialog Box Controls

Values The Maximum Number of Values field specifies the maximum
number of values the Value Generator block is permitted to gen-
erate. Selecting the Infinite check box supersedes the value in
the Maximum Number of Values field. The Value Type field
specifies the type of value that the Value Generator block gen-
erates. The Default Value field specifies the value to use when
the InValue port has no connections.

Timing The Start Time field designates the simulation time at which
the first value is generated by the Value Generator block. This
value must be greater than 0. Similarly, the End Time field

Value Generator Block F 107

specifies the simulation time when no more values can be gen-
erated by the Value Generator block. This must be greater than
or equal to the Start Time. Selecting the Infinite check box
supersedes the value in the End Time field.

First Value Determines when the first value is created by the Value Gen-
erator block. Select Start Time to cause the first value to be
created at the time specified in the Start Time field. If you se-
lect First Intervalue Time, then at the Start Time the Value
Generator block pulls the first intervalue time value from the
InterValueTime port and schedules the first value to be created
at that time.

Candidates for Design of Experiments

Factors StartTime (double), EndTime (double), MaxValues (integer)

Responses None

108 F Appendix A: Templates

Disposer Block

Description

The Disposer block disposes of entities after they are no longer needed in the model, reducing
memory usage. Each simulation model should have at least one Disposer block. A count of the
number of entities that have entered the disposer is kept in the block. If there are connections to the
block’s OutCount port, the count is pushed out the port every time its value changes.

Fixed Ports

InEntity Input entity port for entities to be disposed.

OutCount Output integer port for the number of entities that have been disposed.

Candidates for Design of Experiments

Factors None

Responses OutCount (integer)

Queue Block F 109

Queue Block

Description

The Queue block is used for transient storage of entities. Three types of queueing policies are
available for a Queue block: FIFO, LIFO, and Priority.

When a request to send (or push) an entity arrives at a Queue block, the Queue block determines
whether it has room to store the entity. If its buffer is full, the Queue block rejects the request to
have the entity sent to it. If space is available in its buffer, the Queue block responds that it can
accept the entity.

When an entity arrives at a Queue block that uses a FIFO or LIFO queueing policy, the entity
is stored at the appropriate end of the buffer. For Queue blocks that use a Priority policy, the
Queue block extracts the priority value from an attribute defined for the entity and uses that value to
determine where to place the entity in the buffer. The Queue block then sequentially notifies each
block connected to its OutEntity port to ask whether it is ready to receive an entity. The Queue
block selects an entity (based on the queueing policy—FIFO, LIFO, or Priority) to send out through
the OutEntity port to the first downstream block that responds affirmatively. (Entities can also be
pulled out through the Queue block’s OutEntity port by a downstream block. In this case the Queue
block also selects the entity to release according to the queueing policy.)

When a Queue block’s buffer is no longer full (due to an entity leaving the Queue block or the
Queue block’s capacity being increased), the Queue block attempts to pull entities from upstream
through the InEntity port until it is at capacity or no entities are available to pull.

If the Queue block’s reneging option is activated (by selecting the Reneging option in the properties
dialog box), then after an entity enters the Queue block, the Queue block attempts to pull a numeric
value from its InRenegeWait port. If the Queue block pulls a nonnegative number from the port, it
schedules a time for the entity to exit the Queue block via the OutRenege port if the entity is still in
the Queue block’s buffer at that time. Otherwise no time for reneging is scheduled. If there is no
connection to the OutRenege port, no reneging occurs.

Any time an entity enters or exits the Queue block, the Queue block pushes the value of its buffer’s
length (the number of entities being held by the Queue block) to the OutLength port. Any time an
entity exits the Queue block via its OutEntity port, the Queue block pushes a value that represents
how long that entity waited in the buffer to the OutWait port.

An integer value can be pushed through the InCapacity port to set the capacity for the Queue

110 F Appendix A: Templates

block (the size of its buffer). Valid incoming values for this port are integers in the range of 0
to 2,147,483,647. If the capacity of a Queue block is reduced dynamically during the simulation
run, any excess entities are removed from the Queue block (according to the queueing policy being
used) and are sent out the OutBalk port. If there are no connections to the OutBalk port, the entities
are destroyed.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term
controlling entity denotes an entity that holds other entities, and the term root entity denotes an
entity that is not held by another entity. Each entity held by another entity has one root entity
associated with it. The root entity for any held entity is found by traversing up the entity hierarchy
from the held entity.

Entities being held by a Queue block can be preempted either by input to the block’s InPreempt
port or by a scheduled resource entity event. In order for a root entity that is held by a Queue
block to be preempted, the OutPreempt port (or OutBalk port) must have at least one link attached
to it. Similarly, for a resource entity that is held by a controlling entity that is in turn held by the
Queue block to be preempted, the OutResource port (or OutBalk port) must have at least one link
connected to it.

The Queue block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is
a collection of references to entities.) When an Entity Group object is pushed to a Queue block’s
InPreempt port, the Queue block iterates through the Entity Group collection looking for matches
to root entities held by the Queue block. For any matched entity, the Queue block first tries to push
that entity out its OutPreempt port. If this push is not successful, the block attempts to push the
entity out the OutBalk port. If this also fails, the entity continues to be held by the Queue block
until either it exits out the OutEntity port or it is preempted again.

The Queue block, like all entity holding blocks, detects potential preemptive changes (such as those
scheduled by a Resource Scheduler block) to resource entities it holds (either directly or indirectly
through a controlling entity).

If the number of units associated with a held resource entity decreases or the state of a held resource
entity becomes nonfunctional, the Queue block attempts to preempt that resource entity. If the
resource entity identified for preemption is a root entity, then the Queue block follows the same
protocol for pushing an entity out its OutPreempt port that the InPreempt port uses. If the resource
entity is part of a controlling entity, the Queue block removes the resource entity from the controlling
entity and attempts to push the associated root entity out the OutPreempt port. The Queue block
then attempts to push the preempted resource entity out its OutResource port, or if that fails, out its
OutBalk port. If there is a connection to the Queue block’s OutResource port and the Queue block
cannot push the resource entity out either the OutResource or OutBalk port, the resource entity is
disposed.

The Queue block also provides an OutHoldings port that other blocks can use to pull an Entity
Group object that contains a collection of references to entities held by the Queue block.

Queue Block F 111

Fixed Ports

InEntity Input entity port for entities to be added to the Queue block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutRenege Output entity port for entities that are reneged and can be accepted by a down-
stream block.

OutPreempt Output entity port for root entities that are preempted and can be accepted by a
downstream block.

OutResource Output entity port for resource entities held by controlling entities that are pre-
empted and can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the other output entity
ports.

InRenegeWait Numeric input value port that sets the amount of time to wait before an entering
entity is reneged.

InCapacity Numeric input value port that dynamically sets the capacity of the Queue block.

InPreempt Entity Group input port that causes the Queue block to preempt any root entities
it is holding that match entities in the incoming Entity Group.

OutLength Numeric output value port for the number of root entities held in the Queue
block’s buffer.

OutWait Numeric output value port for the amount of time an exiting entity waited in the
Queue block’s buffer.

OutHoldings Entity Group output port from which a group of entity references can be pulled,
representing the entities in the Queue block’s buffer.

Properties Dialog Box Controls

Capacity Specifies the maximum number of entities the Queue block is permitted to store
in its buffer. Valid values for this field are integers in the range from 0 to
2,147,483,647. Selecting the Infinite check box supersedes any Capacity value.

Reneging Selecting this check box activates the Queue block’s automatic reneging func-
tionality.

Queueing Policy Selecting a policy type in the Type list box specifies the queueing policy that
is used by this Queue block in determining the order in which entities leave
the Queue block. Some policies have additional parameters that can be specified
when the policy is selected from the list box. The FIFO policy has no parameters
and uses a first-in-first-out policy for determining the order of entities leaving
the Queue block. The LIFO policy has no parameters and uses a last-in-first-
out policy for determining the order of entities leaving the Queue block. The
Priority policy allows entities to exit the Queue block based on entity priority.
It has the following parameters:

Entity Attribute Type Specifies the type of the attribute (Number or String)
used to extract the priority value from an entity.

112 F Appendix A: Templates

Default Priority Number If Entity Attribute Type is Number, this field spec-
ifies the numeric priority value to use for an entity when the
Queue block cannot extract a valid priority value from the
specified Entity Attribute.

Default Priority String If Entity Attribute Type is String, this field specifies
the string priority value to use for an entity when the Queue
block cannot extract a valid priority value from the specified
Entity Attribute.

Entity Attribute Specifies the name of the attribute to use when extracting the
priority value from an entity.

Priority Order Specifies whether higher values or lower values are inter-
preted to have a higher priority.

Tie Breaking Policy Specifies the algorithm to use for placing entities in the
Queue block’s buffer when entities have the same priority
value. Algorithm options include FIFO, LIFO, and Random
(for random placement).

Random Stream Seed If the Tie Breaking Policy is Random, this field speci-
fies the random number generator seed.

Candidates for Design of Experiments

Factors Capacity (integer), RankValue (double), QueueingPolicy (text)
The format for specifying the value of the QueueingPolicy factor is as follows:
Type==policyType;Entity Attribute Type==attributeType;Default Priority
Number==priorityNumber;Default Priority String==priorityString;Entity At-
tribute==attributeName;Priority Order==priorityOrder;Tie Breaking Pol-
icy==tieBreakingPolicy;Random Stream Seed==seed
where:

policyType is FIFO, LIFO, Priority, or the fully-qualified Java class name
of a queueing policy class.

attributeType is Number or String.

priorityNumber is a decimal number.

priorityString is a string value.

attributeName is the name of an entity attribute.

priorityOrder is one of the following: Highest Value Has Highest Priority,
Lowest Value Has Highest Priority.

tieBreakingPolicy is one of the following: FIFO, LIFO, Random.

seed is an integer number.

Each name==value parameter within the factor value is optional. If it is not
specified, it is assigned the value specified in the properties dialog box if possi-
ble; otherwise it is assigned a default value.

Queue Block F 113

Responses AverageWait (double), MaximumWait (double), AverageLength (double), Max-
imumLength (integer), BalkCount (integer), RenegeCount (integer)

114 F Appendix A: Templates

Delay Block

Description

The Delay block delays the progression of an entity through a simulation model. When an entity
enters a Delay block via its InEntity port, the Delay block pulls a value (the delay time) from its
InDelay port. If the delay time value is not a number, the simulation terminates. If the value is less
than 0, the Delay block logs a warning and uses a value of 0. The Delay block holds the entity for
the duration of the delay time and then releases it through its OutEntity port. If the push through
the OutEntity port fails, the Delay block attempts to push the entity out the OutBalk port. If this is
not successful, the entity is destroyed and a message is posted to the Tracer.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term
controlling entity denotes an entity that holds other entities, and the term root entity denotes an
entity that is not held by another entity. Each entity held by another entity has one root entity
associated with it. The root entity for any held entity is found by traversing up the entity hierarchy
from the held entity.

Entities being held by a Delay block can be preempted either by input to the block’s InPreempt
port or by a scheduled resource entity event. In order for a root entity that is held by a Delay block
to be preempted, the OutPreempt port (or OutBalk port) must have at least one link attached to
it. Similarly, for a resource entity that is held by a controlling entity that is in turn held by the
Delay block to be preempted, the OutResource port (or OutBalk port) must have at least one link
connected to it.

The Delay block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is
a collection of references to entities.) When an Entity Group object is pushed to a Delay block’s
InPreempt port, the Delay block iterates through the Entity Group collection looking for matches to
root entities held by the Delay block. For any matched entity, the Delay block first tries to push that
entity out its OutPreempt port. If this push is not successful, the block attempts to push the entity
out the OutBalk port. If this also fails, the entity continues to be held by the Delay block until either
it exits out the OutEntity port or it is preempted again.

The Delay block, like all entity holding blocks, detects potential preemptive changes (such as those
scheduled by a Resource Scheduler block) to resource entities it holds (either directly or indirectly

Delay Block F 115

through a controlling entity).

If the number of units associated with a held resource entity decreases or the state of a held resource
entity becomes nonfunctional, the Delay block attempts to preempt that resource entity. If the
resource entity identified for preemption is a root entity, then the Delay block follows the same
protocol for pushing an entity out its OutPreempt port that the InPreempt port uses. If the resource
entity is part of a controlling entity, the Delay block removes the resource entity from the controlling
entity and attempts to push the associated root entity out the OutPreempt port. The Delay block
then attempts to push the preempted resource entity out its OutResource port, or if that fails, out its
OutBalk port. If there is a connection to the Delay block’s OutResource port and the Delay block
cannot push the resource entity out either the OutResource or OutBalk port, the resource entity is
disposed.

The Delay block also provides an OutHoldings port that other blocks can use to pull an Entity Group
object that contains a collection of references to entities held by the Delay block.

Fixed Ports

InEntity Input entity port for entities to be added to the Delay block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutPreempt Output entity port for root entities that are preempted and can be accepted by a
downstream block.

OutResource Output entity port for resource entities held by controlling entities that are pre-
empted and can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the other output entity
ports.

InDelay Input numeric port for how long the Delay block should delay the next entity.

InPreempt Entity Group input port that causes the Delay block to preempt any root entities
it is holding that match entities in the incoming Entity Group.

OutHoldings Entity Group output port from which a group of entity references can be pulled,
representing the entities held by the Delay block.

Candidates for Design of Experiments

Factors RankValue (double)

Responses None

116 F Appendix A: Templates

Server Block

Description

The Server block models a resource used by an entity for a specified period of time. An entity can
enter a Server block only when the Server block is not busy. A Server block is deemed busy if all of
its capacity is being used to service entities. After an entity enters the Server block, the Server block
pulls a value from its InServiceTime port. If the service time value is not a number, the simulation
terminates. If the value is less than 0, the Server block logs a warning and uses a value of 0. The
entity is held for the duration of the service time and then released out the OutEntity port.

The InCapacity port can be used to set the capacity for a Server block. This value represents the
number of entities the Server can service simultaneously. Prior to the beginning of each experi-
mental run, the Server block determines whether anything is connected to the InCapacity port. If
a connection exists, the Server block attempts to pull a value from whatever is connected to the
InCapacity port in order to initialize the capacity of the Server block. If it pulls a valid value, the
Server block initializes its capacity to that value; otherwise, it ignores the pulled value and logs a
warning message. During simulation time, an integer value can be pushed through the InCapacity
port to dynamically change the capacity. If the value from the port is less than the currently busy
capacity, capacity reduction is deferred until the currently busy capacity is reduced; entities are not
balked in this case.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term
controlling entity denotes an entity that holds other entities, and the term root entity denotes an
entity that is not held by another entity. Each entity held by another entity has one root entity
associated with it. The root entity for any held entity is found by traversing up the entity hierarchy
from the held entity.

Entities being held by a Server block can be preempted either by input to the block’s InPreempt
port or by a scheduled resource entity event. In order for a root entity that is held by a Server
block to be preempted, the OutPreempt port (or OutBalk port) must have at least one link attached
to it. Similarly, for a resource entity that is held by a controlling entity that is in turn held by the
Server block to be preempted, the OutResource port (or OutBalk port) must have at least one link
connected to it.

Server Block F 117

The Server block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is
a collection of references to entities.) When an Entity Group object is pushed to a Server block’s
InPreempt port, the Server block iterates through the Entity Group collection looking for matches
to root entities held by the Server block. For any matched entity, the Server block first tries to push
that entity out its OutPreempt port. If this push is not successful, the block attempts to push the
entity out the OutBalk port. If this also fails, the entity continues to be held by the Server block
until either it exits out the OutEntity port or it is preempted again.

The Server block, like all entity holding blocks, detects potential preemptive changes (such as those
scheduled by a Resource Scheduler block) to resource entities it holds (either directly or indirectly
through a controlling entity).

If the number of units associated with a held resource entity decreases or the state of a held resource
entity becomes nonfunctional, the Server block attempts to preempt that resource entity. If the
resource entity identified for preemption is a root entity, then the Server block follows the same
protocol for pushing an entity out its OutPreempt port that the InPreempt port uses. If the resource
entity is part of a controlling entity, the Server block removes the resource entity from the controlling
entity and attempts to push the associated root entity out the OutPreempt port. The Server block
then attempts to push the preempted resource entity out its OutResource port, or if that fails, out its
OutBalk port. If there is a connection to the Server block’s OutResource port and the Server block
cannot push the resource entity out either the OutResource or OutBalk port, the resource entity is
disposed.

The Server block also provides an OutHoldings port that other blocks can use to pull an Entity
Group object that contains a collection of references to entities held by the Server block.

Fixed Ports

InEntity Input entity port for entities to enter the Server block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutPreempt Output entity port for root entities that are preempted and can be accepted by a
downstream block.

OutResource Output entity port for resource entities held by controlling entities that are pre-
empted and can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the other output entity
ports.

InServiceTime Input numeric port for how long the next entity should remain in the Server
block.

InCapacity Input integer port for the number of entities the Server block can service simul-
taneously.

InPreempt Entity Group input port that causes the Server block to preempt any root entities
it is holding that match entities in the incoming Entity Group.

OutUtilization Output numeric port for the current utilization of the Server block’s capacity.

OutAvailable Output integer port for the Server block’s capacity that is not currently busy.

OutNumberBusy Output integer port for the Server block’s capacity that is currently busy.

118 F Appendix A: Templates

OutHoldings Entity Group output port from which a group of entity references can be pulled,
representing the entities held by the Server block.

Properties Dialog Box Controls

Values The Capacity field specifies the capacity of the Server block.

Candidates for Design of Experiments

Factors RankValue (double), Capacity (integer)

Responses AvgUtilization (double), MaxUtilization (double)

Modifier Block F 119

Modifier Block

Description

The Modifier block assigns attributes to an entity as it passes through the block. Each attribute has
an input value port associated with it. When an entity enters the block, values are pulled from the
input value ports and assigned to the associated attributes in the entity. If there is no connection to
an input value port, the Modifier block assigns the default value specified for the attribute.

Fixed Ports

InEntity Input entity port for entities to enter the Modifier block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the OutEntity port.

Properties Dialog Box Controls

Add Adds a new attribute with a default Name, Type, and Default value to the At-
tribute table. You can change the Name, Type, and Default value of the at-
tribute directly in the table. The attribute names in the Modifier block’s At-
tribute table must be unique. You can change the attribute Type through a drop-
down box on the cell in the table. (An attribute Type cannot be changed in the
table after the Apply button is clicked. If you want to change an attribute Type
after Apply has been clicked, you must remove the attribute, add it again, and
then modify the Type of the newly added attribute before clicking Apply again.)

Remove Deletes the selected attribute from the Attribute table.

Apply Updates all attributes in the Modifier block as specified in the Attribute table,
and creates or deletes value ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

120 F Appendix A: Templates

Extractor Block

Description

The Extractor block extracts attribute values from an entity as it passes through the block. Each
attribute has an output value port associated with it. When an entity enters the block, entity attribute
values are retrieved from the entity and pushed to their respective output value ports.

You can also connect an Extractor block’s output value port to an input value port of another block
without any connections to the Extractor block’s InEntity port. For example, you can connect an
output value port of an Extractor block to the InServiceTime port of a Server block. After an entity
enters the Server block, it is passed to the Extractor block (via the InServiceTime port) to extract
the appropriate entity attribute value to be used for the InServiceTime value.

Fixed Ports

InEntity Input entity port for entities to enter the Extractor block.

OutEntity Output entity port for entities to exit the Extractor block.

Properties Dialog Box Controls

Add Adds a new attribute with a default Name and Type to the Attribute table. You
can change the Name and Type of the attribute directly in the table. The attribute
names in the Extractor block’s Attribute table must be unique. You can change
the attribute Type through a drop-down box on the cell in the table. (An attribute
Type cannot be changed in the table after the Apply button is clicked. If you
want to change an attribute Type after Apply has been clicked, you must remove
the attribute, add it again, and then modify the Type of the newly added attribute
before clicking Apply again.)

Remove Deletes the selected attribute from the Attribute table.

Apply Updates all attributes in the Extractor block as specified in the Attribute table,
and creates or deletes value ports as needed.

Extractor Block F 121

Candidates for Design of Experiments

Factors None

Responses None

122 F Appendix A: Templates

Switch Block

Description

The Switch block directs the flow of an entity through a simulation model. You define switch cases
on the Switch block. The case names must be unique, and each switch case must have an integer
value (called the switch value) associated with it. When an entity enters a Switch block, the block
calculates the switch value to be used for the entity. Depending on the Switch block configuration,
the block either attempts to extract the switch value from an attribute in the entity or pulls it from
the InSwitchValue port. After the switch value is acquired, the Switch block searches the cases in
its Cases table until it finds a case with the same switch value. The entity is then pushed out the
entity out port associated with the matching case. If a match is not found, the entity is sent out the
OutDefault port.

Fixed Ports

InEntity Input entity port for entities to enter the Switch block.

OutDefault Output entity port for entities that do not match a switch case defined for the
Switch block.

OutBalk Output entity port for entities that cannot leave using the other output entity
ports.

InSwitchValue Input integer port for the switch value to be used for the next entity, if the Switch
block is configured to obtain the switch value from this port rather than from an
entity attribute.

Properties Dialog Box Controls

Add Adds a new switch case to the Cases table with a default Name and Value. You
can edit the Name and Value of the switch case directly in the table. The case
names and values used by a Switch block must be unique.

Remove Deletes the selected switch case from the Cases table.

Switch Value If you select the Port option, the Switch block pulls the switch value from the
InSwitchValue port. If you select the Entity option, you must also supply the

Switch Block F 123

name of an attribute in the Entity Attribute field. The Switch block attempts to
extract the switch value from the appropriate attribute on the entity.

Apply All values in the Cases table are saved to the Switch block and any entity output
ports are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

124 F Appendix A: Templates

Selector Block

Description

The Selector block selects and outputs entities from one of its input entity ports based on its case
values. Each input entity port is associated with a unique case value. Every time the block receives
a request from downstream to output an entity, the InCaseValue input value port checks the current
case value to determine which input entity port to use to fetch an entity. Similarly, when an entity
from upstream attempts to enter the block through one of the input entity ports, the InCaseValue
input value port checks the current case value to verify that its value matches with the input entity
port.

By default, the Selector block provides one input entity port named InDefault. You can create
additional input entity ports in the properties dialog box by adding new cases to the Cases table.
Each entry in the table specifies the case’s Name and Value. At experiment run time, the Value
is compared to the current InCaseValue. If the two match, the corresponding input entity port is
active. If the current case value from the InCaseValue port does not match any case value in the
Cases table, an entity is allowed only to enter or be pulled through the InDefault input entity port.

The case names and values must be unique within each Selector block.

Fixed Ports

InDefault Input entity port that allows entities to enter the block if the value pulled from
the InCaseValue input value port does not match any cases in the Selector block.

OutEntity Output entity port for entities to leave.

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InCaseValue Numeric input value port used to determine which of the input entity ports allows
entities to enter.

Properties Dialog Box Controls

Add Adds a new case to the Cases table with a default Name and Value. The Name
and Value can be edited directly in the table.

Remove Deletes the selected case from the Cases table.

Selector Block F 125

Apply All values in the Cases table are saved to the Selector block, and any input entity
ports are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

126 F Appendix A: Templates

Number Holder Block

Description

The Number Holder block displays a number that represents some user-defined state information.
Values can be pushed to or pulled from a Number Holder block via its InData and OutData ports,
respectively. A Number Holder block automatically attempts to push any value received at its InData
port out its OutData port. Similarly, when a request comes in to pull a value from the OutData port,
a Number Holder block by default attempts to pull a value from upstream using its InData port. You
can modify this default behavior by using the Propagation controls in the properties dialog box.

By default, a Number Holder block displays the last value to enter through its InData port. However,
options are available to display the minimum value, maximum value, mean value, sum of all values,
or a count of how many values have entered the block. A Number Holder block attempts to push
the displayed value out its OutDisplayed port every time the value is updated.

The data collection facility of the Number Holder block provides the capability of storing values
that enter it. These data can be saved to a SAS data set or JMP table. Values (along with time
stamps) are stored in a SimDataModel, and the SimDataModel can be accessed through the block’s
OutCollected port. The SimDataModel has two variables: Time (for the simulation clock time
when the value was stored) and Value (for the value that was stored). Display blocks, such as the
Histogram block, are often connected to a Number Holder block’s OutCollected port to visualize
the data. Any block connected to the OutCollected port is automatically notified when the data in
the SimDataModel are modified.

Fixed Ports

InData Input numeric port for the value to be held by the Number Holder block.

OutData Output numeric port for the value currently held by the Number Holder block.

OutDisplayed Output numeric port for the value currently being displayed by the Number-
Holder block.

OutCollected Output port for the SimDataModel representing the data that have been collected
by the Number Holder block.

Number Holder Block F 127

Attributes Dialog Box Controls

Current Specifies the last value to enter the Number Holder block. The value
entered here is displayed in the block (if the Display option is set to
Value) until a new value enters the block.

Default Specifies the current value for the Number Holder block when the block
is initialized.

Display Controls which value is displayed on the Number Holder block. Options
include the current Value, Minimum, Maximum, or Mean value, the
Sum of all values, or the Count of how many values have entered the
block.

Propagation The To Downstream check box controls propagation of values sent to
the InData port of a Number Holder block. If the check box is selected,
any values that enter the InData port are automatically sent out the Out-
Data port. Otherwise, the value propagation stops at the Number Holder
block. If the From Upstream check box is selected, then any attempt
to pull a value from the OutData port of a Number Holder block results
in the Number Holder block attempting to pull a value from any blocks
connected to its InData port. Both check boxes are checked by default.

Data Collection The Collect Data check box turns data collection on or off. The value
entered in the Capacity field determines how many values are saved in
the SimDataModel. If the capacity is exceeded, a warning message is
logged and the oldest values are overwritten in the SimDataModel. This
check box is cleared by default.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each
design point replication run. If automatic saving is turned on, data are
saved to a file with the base filename specified in the Base File Name
field. Simulation Studio automatically determines the pathname of the
folder for this file based on the pathname of the folder that contains your
saved project.

Save Now Forces the Number Holder block to attempt an immediate save of any
collected data. Data are saved to the same location as when automatic
saving is turned on.

Location Displays the pathname of the folder for the file in which to save any
collected data.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used
to save any collected data. This name is the prefix of the actual filename.
The zero-based index of the design point and the zero-based index of the
replication number are added as suffixes to the filename, separated by
underscore characters. For example, the data for the first replication of
the first design point are saved in a file named BaseFileName_0_0, and
the data for the second replication of the first design point are saved in a
file named BaseFileName_0_1.

128 F Appendix A: Templates

Candidates for Design of Experiments

Factors DefaultValue (double)

Responses Value (double), MeanValue (double), SumOfValues (double), MinimumValue
(double), MaximumValue (double), Count (integer)

String Holder Block F 129

String Holder Block

Description

The String Holder block displays a string that represents user-defined state information. Values can
be pushed to or pulled from a String Holder block via its InData and OutData ports. A String Holder
block displays the last value to enter through its InData port. A String Holder block automatically
attempts to push any value received at its InData port out its OutData port. Similarly, when a request
comes in to pull a value from the OutData port, a String Holder block by default attempts to pull a
value from upstream using its InData port.

Fixed Ports

InData Input text port for the value to be held by the String Holder block.

OutData Output text port for the value currently held by the String Holder block.

Properties Dialog Box Controls

Current Displays the last value to enter the String Holder block. The value entered here
is displayed in the block until a new value enters the block.

Default Specifies the current value for the String Holder block when the block is initial-
ized.

Candidates for Design of Experiments

Factors None

Responses None

130 F Appendix A: Templates

Numeric Source Block

Description

The Numeric Source block uses a pseudo-random number generator to provide a source of random
variation. It also provides the ability to read numbers from a SAS data set or JMP table. You can
select from a collection of discrete and continuous distributions, or you can provide the pathname
for a SAS data set or JMP table along with a numeric variable column name.

Fixed Ports

OutValue Output numeric port from which the value can be pulled. The value is either
a sample from the Numeric Source block’s related distribution or a value read
from the Numeric Source block’s related data set, depending on the Numeric
Source block’s type. If the last observation of a data set is reached, the process
resets to the first observation.

Properties Dialog Box Controls

Type Specifies the distribution from which to sample. (See Appendix B, “Random
Variation in a Model,” for a description of available distributions.) The Param-
eters area is updated to reflect the selected Type.

Parameters Provides fields for modifying the parameter values associated with the selected
distribution. Each distribution has a Random Stream Seed entry field. You
can specify a seed value in this field instead of allowing Simulation Studio to
automatically assign a different seed for each source of randomness. The value
in this field can be any integer in the range from 0 to the value of the Java constant
Long.MAX_VALUE. For a SAS data set or JMP table, fields to enter File Path,
Variable Name, Lazy Loading, and Reset At Updated are displayed.

Candidates for Design of Experiments

Factors DataStreamDescription (text)
The format for specifying the value of the DataStreamDescription factor is as
follows:

Numeric Source Block F 131

class==dataStreamClass;attribute1==attribute1Value;...;attributeN==attributeNValue
where:

dataStreamClass is the fully-qualified Java class name of a data stream type.

attribute1 is the name of the first parameter associated with the specified
data stream type.

attribute1Value is the value of the first parameter associated with the specified
data stream type.

attributeN is the name of the last parameter associated with the specified
data stream type.

attribute1Value is the value of the last parameter associated with the specified
data stream type.

Responses None

132 F Appendix A: Templates

Text Source Block

Description

The Text Source block provides the ability to read strings from a SAS data set or JMP table. You
supply the pathname for the SAS data set or JMP table along with the text variable column name.
Each time a value is pulled from the OutValue port of a Text Source block, the block reads a value
from the data set.

Fixed Ports

OutValue Output text port from which the value can be pulled. The value is read from
the Text Source block’s related data set. If the last observation of a data set is
reached, the process resets to the beginning of the column.

Properties Dialog Box Controls

FilePath Opens a File Chooser dialog box for selecting the pathname for the SAS data set
or JMP table.

Column Name Specifies the column name from the SAS data set or JMP table.

Candidates for Design of Experiments

Factors DataStreamDescription (text)
The format for specifying the value of the DataStreamDescription factor is as
follows:
class==dataStreamClass;File Path==filePathValue;Variable Name==variableNameValue;Lazy
Loading==true
where:

dataStreamClass is com.sas.analytics.simulation.datastream.file.SASTextDataColumn
or the fully-qualified Java class name of another text data
stream type.

filePathValue is the pathname for the SAS data set or JMP table.

variableNameValue is the column name from the SAS data set or JMP table.

Text Source Block F 133

Responses None

134 F Appendix A: Templates

Counter Block

Description

The Counter block counts the number of entities that pass through it. If the OutCount value port has
any connections to it, the Counter block pushes its count value to the port every time it changes.

After an entity enters the Counter block, the block determines whether any block downstream of
the Counter block’s OutEntity port can accept the entity before pushing the entity out the OutEntity
port. If this acceptance fails, the entity is either pushed out the OutBalk port or destroyed if there
are no connections to the OutBalk port.

Fixed Ports

InEntity Input entity port for entities to enter the Counter block.

OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the OutEntity port.

OutCount Output integer port for the number of entities that have passed through the
Counter block.

Candidates for Design of Experiments

Factors None

Responses Count (integer)

Time Now Block F 135

Time Now Block

Description

Use the Time Now block to access the current simulation time while the model is running by pulling
a value from the OutValue port.

Fixed Ports

OutValue Output numeric port for the current simulation time.

Candidates for Design of Experiments

Factors None

Responses None

136 F Appendix A: Templates

Overview of the Advanced Template

The Simulation Studio Advanced template provides a collection of blocks used to build more com-
plex simulation models.

Batch Block

Description

The Batch block groups entities so that they flow together through a simulation model. Entities
arrive at a Batch block individually through its InEntity input entity port. The Batch block holds
the entities until the number of entities it is holding reaches the value specified in the Batch block’s
batch size parameter. At this point, the Batch block attaches the held entities to a carrier entity that
carries the group of entities through the simulation model, and attempts to send the carrier entity out
through the OutCarrier output entity port. Downstream in the simulation model, an Unbatch block
can be used to separate the individual entities from the batch carrier.

If nothing is attached to the InCarrier input entity port, a Default entity is created and used as the
carrier entity whenever a batch of entities is ready to be sent out through the OutCarrier port. If there
is a connection to the InCarrier port, the entities that arrive at that port are used as the carriers. If
there is a connection to the InCarrier port, the Batch block waits until it has both a carrier entity and
a complete batch of entities before it attempts to send the carrier entity out through the OutCarrier
port. The Batch block can hold only a single carrier and a single batch of entities at any given
time. Therefore, if there is a connection to the Batch block’s InCarrier port and the Batch block
is holding a carrier entity but is not holding a complete batch of entities, the Batch block does not
accept another carrier entity through its InCarrier port. Similarly, if there is a connection to the
Batch block’s InCarrier port and the Batch block is holding a complete batch of entities but is not
holding a carrier entity, the Batch block does not accept another entity through its InEntity port.

The InSignal input value port is used to force the Batch block to send out a carrier regardless of
the number of entities it is holding. If a true value arrives at the InSignal port, the Batch block
attempts to attach any entities it is holding to a carrier entity and send the carrier entity out through
the OutCarrier port. In this case the carrier might not hold any entities or it might hold a smaller
number of entities than the batch size. If there is a connection to the InCarrier port and a true value

Batch Block F 137

arrives at the InSignal port but the Batch block is not holding a carrier, the signal is ignored. A
false signal arriving at the InSignal port is always ignored since it signifies that no action needs to
be taken.

An integer value can be pushed through the InBatchSize port to set the batch size for the Batch
block. If the batch size is decreased while the Batch block is holding more entities than the new
batch size, the existing entities are batched together according to the new batch size, and the Batch
block attempts to send a carrier entity out through its OutCarrier port for each smaller batch of
entities. If there is a connection to the Batch block’s InCarrier port, the Batch block waits for a
carrier to arrive before sending out each smaller batch of entities.

Fixed Ports

InEntity Input entity port for entities that are batched together.

InCarrier Input entity port for entities used as carriers for entity batches.

OutCarrier Output entity port for carriers (containing batches of entities) that can be ac-
cepted by a downstream block.

OutBalk Output entity port for carriers (containing batches of entities) that cannot leave
using the OutCarrier port.

InSignal Boolean input port that forces the Batch block to send out a carrier (if one is
available) that contains any entities being held by the Batch block. The carrier
can be empty (containing no entities).

InBatchSize Numeric input port that dynamically sets the batch size of the Batch block.

Properties Dialog Box Controls

Batch Size Specifies the number of entities the Batch block stores in its buffer before at-
tempting to send out those entities on a carrier. Valid values for this field are
integers in the range from 0 to 2,147,483,647. Selecting the Infinite check box
supersedes any value entered. If the Infinite check box is selected, a connection
should be made to the InSignal port of the Batch block to determine when the
Batch block should attempt to release a carrier containing a batch of entities.

Queueing Policy Specifies the queueing policy for the queue used internally by the Batch block.
See the Queueing Policy control in the section “Queue Block” on page 109 for
details.

Candidates for Design of Experiments

Factors QueueingPolicy (text)
See the Queueing Policy design-of-experiment factor in the section “Queue
Block” on page 109 for details.

Responses None

138 F Appendix A: Templates

Unbatch Block

Description

The Unbatch block is used to separate individual entities from a batch carrier entity. Carrier entities
(populated with a group of zero or more entities by a Batch block) arrive at an Unbatch block
through its InCarrier input entity port. The Unbatch block first separates individual entities from
the carrier entity. Then it attempts to send the carrier entity (which might or might not be empty
depending on whether the Unbatch block separated all of the individual entities from the carrier) out
its OutCarrier output entity port. It also attempts to send each of the separated individual entities (if
any) out its OutEntity port.

Fixed Ports

InCarrier Input entity port for carrier entities that contain a batch of zero or more entities.

OutCarrier Output entity port for a carrier to leave that can be accepted by a downstream
block.

OutEntity Output entity port for each of the individual entities separated from the carrier to
leave that can be accepted by a downstream block.

OutCarrierBalk Output entity port for a carrier to leave that cannot leave using the OutCarrier
port.

OutEntityBalk Output entity port for each of the individual entities separated from the carrier to
leave that cannot leave using the OutEntity port.

Properties Dialog Box Controls

Identify Candidate Entities Use these fields to define the criteria for selecting possible entities
to be separated from the carrier. The Unbatch block considers separating from
the carrier only entities that satisfy all of the criteria specified in this section.
For Primary Usage, you can select to have entities of either type Regular En-
tity or Resource Entity separated from the carrier.
For Entity Type (optional), you can specify the name of a particular entity type
for entities to be separated from the carrier.
For Attribute Rule (optional), you can specify a Boolean expression that

Unbatch Block F 139

involves attribute values for entities to be separated from the carrier. For
more information about how to write the Boolean expression, see Appendix F,
“Expressions.”
If you select Resource Entity for Primary Usage, then you can specify a Re-
source State (optional) for entities to be separated from the carrier. Valid values
are Functional, Failed, Maintenance, and Offlined.

Unbatch Entities among Candidates Use these fields to specify which entities meeting the cri-
teria specified in the Identify Candidate Entities section should be separated
from the carrier.
Begin At specifies where in the buffer of entities to begin separating them from
the carrier and attempting to send them out through the OutEntity port. First
means to start with the first entity in the buffer and then proceed with the fol-
lowing entities in order, stopping if the end of the buffer is reached. Last means
to start with the last entity in the buffer and then proceed backwards through the
entities, stopping if the beginning of the buffer is reached. Middle means to start
with the entity at the index specified in the entry field and then proceed with the
following entities in order, stopping if the end of the buffer is reached.
Count specifies a maximum number of entities to separate from the carrier.
Checking All causes any Count value to be ignored. If All is checked and Begin
At is set to First or Last, all of the entities that meet the criteria in the Identify
Candidate Entities section are separated from the carrier. If All is checked and
Begin At is set to Middle, all of the entities except the ones before the specified
middle index are separated from the carrier.

Candidates for Design of Experiments

Factors None

Responses None

140 F Appendix A: Templates

Clone Block

Description

The Clone block creates clones of entities that pass through it. A clone is a new entity with the
same type and all of the same attributes as the original entity. When an entity enters a Clone block,
the block first determines whether anything is connected to its NumClonesPerPort port. If it finds a
connection, the Clone block attempts to pull a value from the NumClonesPerPort port. This value
represents the number of clones of the original entity that the Clone block generates for each clone
output port. If this value is greater than 1, multiple clones flow sequentially out of each clone output
port.

If there are no connections to the NumClonesPerPort port, the Clone block uses the value specified
in its ClonesPerPort properties dialog box field for the number of clones to generate per clone
output port.

You can set the number of clone output ports in the properties dialog box. If no clone output ports
exist, the new clone entities are pushed through the OutEntity port. The original entity is always
the first entity to exit the Clone block, and it exits via the OutEntity port. If the original entity or a
clone cannot be accepted downstream, it flows out through the OutBalk port.

Fixed Ports

InEntity Input entity port for entities to enter the Clone block.

OutEntity Output entity port for the input entity if it can be accepted by a downstream
block. If there are no clone output ports, clone entities that can be accepted by a
downstream block also go out through this port.

OutBalk Output entity port for any entities that cannot be accepted by a downstream
block.

NumClonesPerPort Input integer port for the number of clone entities for the clone block to
generate for each clone output port.

Clone Block F 141

Properties Dialog Box Controls

Clones Per Port Specifies how many clones are generated for each clone output port.
This value is used only if there are no connections to the NumClones-
PerPort port.

Cloning Ports Specifies how many clone output ports are available on this block.

Candidates for Design of Experiments

Factors ClonesPerPort (integer)

Responses None

142 F Appendix A: Templates

Gate Block

Description

The Gate block provides a facility to pull and push multiple values every time an entity passes
through the block. For each action defined on a Gate block, an input value port and an output value
port is created on the block. When an entity enters a Gate block, the block steps through its list of
actions, first pulling from the input value port associated with the action and then pushing the value
retrieved to the output value port associated with the action. If there is no connection to an input
value port, the Gate block uses the default value associated with that action.

Fixed Ports

InEntity Input entity port for entities to enter the Gate block.

OutEntity Output entity port for entities to exit the Gate block.

Properties Dialog Box Controls

Add Adds a new action with a default Name, Type, and Default value to the Actions
table. You can change the Name, Type, and Default value of the action directly
in the table. The action names in the Gate block’s Actions table must be unique.
You can change the action Type through a drop-down box on the cell in the table.
(An action Type cannot be changed in the table after the Apply button is clicked.
If you want to change an action Type after Apply has been clicked, you must
remove the action, add it again, and then modify the Type of the newly added
action before clicking Apply again.)

Remove Deletes the selected action from the Actions table.

Apply Updates all actions in the Gate block as specified in the Actions table, and creates
or deletes input and output value ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Valve Block F 143

Valve Block

Description

The Valve block controls the flow of entities through a simulation model. If the Valve block is
closed, an entity cannot flow through the Valve block. If the Valve block is opened, its behavior
depends on which flow directions are enabled:

� If the Push To Downstream option is enabled, a block connected to the InEntity port can
push entities through the Valve block to a block connected to the OutEntity port. If disabled,
pushing is not allowed through the Valve block.

� If the Pull From Upstream option is enabled, a block connected to the OutEntity port can
pull entities through the Valve block from a block connected to the InEntity port. If disabled,
pulling through the Valve block is not allowed.

Fixed Ports

InEntity Input entity port for entering entities.

OutEntity Output entity port for entities to leave that can be accepted by a downstream
block.

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InSignal Boolean input port that allows the Valve block to be dynamically opened (true)
or closed (false).

InFlowTrigger Boolean input port that (by passing in true) can trigger the flow of entities
through the Valve block. The flow of entities is still subject to the settings spec-
ified in the Flow Directions section of the Valve block’s properties dialog box
and whether the Valve block is opened or closed. An input value of false is
ignored.

OutOpened Boolean output port that pushes out whether the Valve block is opened (true)
or closed (false) each time the Valve block changes state between opened and
closed.

144 F Appendix A: Templates

Properties Dialog Box Controls

Initial State Specifies whether the Valve block is Opened or Closed when the model starts
executing.

Flow Directions Specifies the flow directions supported by the Valve block: Push To Down-
stream and Pull From Upstream can be enabled or disabled independently.

Candidates for Design of Experiments

Factors None

Responses None

Formula Block F 145

Formula Block

Description

The Formula block can evaluate an expression based on state or model information. You create
variables to be used in the expression (called input variables) and you formulate them into an
expression that is evaluated every time a value is pulled from the Formula block’s OutValue port.
The expression is also evaluated and pushed out of the Formula block’s OutValue port every time
input is pushed into one of the Formula block’s input value ports. The value associated with an
input variable can come either from an entity attribute or from an input value port. If the source
for an input variable is designated to be a port, an input value port is created on the block and is
associated with the appropriate input variable. Whenever a value is requested from a Formula block,
or new input arrives at a Formula block, the Formula block first determines which values associated
with its input variables need to be acquired (based on the setting for the To Acquire Port Values
Only When Needed properties dialog box option), and then attempts to evaluate its expression.
The result of this evaluation leaves through the OutValue port.

Fixed Ports

OutValue Output value port for the result of evaluating the Formula block’s expression.

Properties Dialog Box Controls

Add Adds a new input variable with a default Name, Type, and Source to
the Input Variables table. You can edit the Name, Type, and Source
of the variable directly in the table. The variable names listed in the
Formula block’s Input Variables table must be unique. You can change
the Type through a drop-down box on the cell in the table. (A variable
Type cannot be changed in the table after the Apply button is clicked. If
you want to change a variable Type after Apply has been clicked, you
must remove the variable, add it again, and then modify the Type of the
newly added variable before clicking Apply again.)

Remove Deletes the selected variable from the Input Variables table.

To Acquire Port Values Only When Needed If this option is turned off, the Formula block al-
ways acquires values for all of its input variables. If this option is turned

146 F Appendix A: Templates

on, the Formula block acquires only the values for its input variables
that are required in order to determine the result of the expression.

Expression Contains the expression to be evaluated for the Formula block. Any
variables used in the expression must be defined in the Input Variables
table. For more information about how to write the Boolean expression,
see Appendix F, “Expressions.”

Expression Result Identifies the value type that results from evaluating the expression. The
selected option generates the appropriate output port type for the For-
mula block.

Apply Validates the expression and saves the input variables, the expression,
and the expression result. Input value ports are created or deleted and
the type of the output value port is set as needed.

Candidates for Design of Experiments

Factors None

Responses None

SAS Program Block F 147

SAS Program Block

Description

The SAS Program block can be used to execute a SAS program or a JMP script. Optionally, the
InQueueData and InServerData ports can be used to generate custom SAS reports based on the
output of a Queue Stats Collector or Server Stats Collector block, respectively.

Fixed Ports

InQueueData Input data port for the pathname of a folder that contains the output data set of
a Queue Stats Collector block. This port is typically connected to the ResultLo-
cation output data port of a Queue Stats Collector block. A SAS program can
use the Queue library reference name (libref) to access the Queue Stats Collector
data set location. This port is ignored for JMP scripts.

InServerData Input data port for the pathname of a folder that contains the output data set of a
Server Stats Collector block. This port is typically connected to the OutResult-
Location output data port of a Server Stats Collector block. A SAS program can
use the Server library reference name (libref) to access the Server Stats Collector
data set location. This port is ignored for JMP scripts.

InSubmitCode Input Boolean data port that starts the execution of the SAS program or JMP
script if the value true is passed in. For example, a Value Generator block that
produces Boolean data can have its OutValue port connected to a SAS Program
block’s InSubmitCode port.

Properties Dialog Box Controls

SAS Code Path Specifies the pathname of the SAS program or JMP script to be exe-
cuted.

Auto Submit If selected, causes the SAS program or JMP script to automatically exe-
cute at the end of each design point replication run.

Candidates for Design of Experiments

Factors None

148 F Appendix A: Templates

Responses None

Entity Filter Block F 149

Entity Filter Block

Description

The Entity Filter block routes incoming entities to one of two output paths: one for entities that pass
the filter criteria and another for entities that do not.

When an entity arrives at the InEntity port of an Entity Filter block, the Entity Filter block tests
the entity against a set of filter criteria including primary usage, entity type, attribute rule, and (if
the primary usage is resource entity) resource state. If any filter criterion does not have a value,
that criterion is ignored. If the entity matches all of the specified criteria, the entity is sent out the
OutPassed output entity port. Otherwise, the entity is sent out the OutFailed output entity port.

Fixed Ports

InEntity Input entity port for entering entities.

OutPassed Output entity port for entities that meet the Entity Filter block’s criteria.

OutFailed Output entity port for entities that do not meet the Entity Filter block’s criteria.

Properties Dialog Box Controls

Primary Usage Selects whether an entity must be a Regular Entity or a Resource En-
tity in order to meet the filter criteria.

Entity Type (optional) Specifies the name of a particular entity type that an entity
must have in order to meet the filter criteria.

Attribute Rule (optional) Specifies a Boolean expression that involves attribute values
of an entity that must evaluate to true in order to meet the filter criteria.
For more information about how to write the Boolean expression, see
Appendix F, “Expressions.”

Resource State If you select Resource Entity for Primary Usage, then you can specify
a Resource State (optional) that a resource entity must have in order to
meet the filter criteria. Valid values are Functional, Failed, Maintenance,
and Offlined.

150 F Appendix A: Templates

Candidates for Design of Experiments

Factors None

Responses None

Entity Group Holder Block F 151

Entity Group Holder Block

Description

The Entity Group Holder block serves as a holding facility for an entity group, which is a collection
of entity references. Rather than holding each actual entity in an entity group, an entity reference
(which is information that uniquely identifies a particular entity) is held.

The Entity Group Holder block stores only references to entities that pass a set of filter criteria
defined in the properties dialog box. When a single entity enters the block through the InEntity
port and passes the input filter criteria, a single entity reference for the entity is added to the Entity
Group Holder block. When a group of entity references arrives through the InGroup port, those
entity references that pass the input filter criteria can either replace any existing entity references
being held by the block or be merged with the existing group of entity references (combining the
new and existing entity references but not storing duplicate entity references), depending on how
the Entity Group Holder block is configured in the properties dialog box.

OutSubgroup ports can be configured for the Entity Group Holder block that allow a group of entity
references to be pulled from the block, based on a set of output filter criteria. When a pull request
arrives at an OutSubgroup port, the Entity Group Holder block applies the output filter criteria
associated with that port to the group of entities it is currently holding. The resulting entity group
is then passed out through the OutSubgroup port.

Fixed Ports

InEntity Input entity port for entering entities. An entity reference for the entity is added
to the Entity Group Holder block’s set of entity references if the entity passes the
input filter criteria.

OutEntity Output entity port for entities to leave that can be accepted by a downstream
block.

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InGroup Input data port for an incoming entity group. For entities in the incoming entity
group that pass the input filter criteria, entity references for those entities either
replace any existing entity references being held by the block or are merged with
the existing group of entity references, depending on the setting of Handling of
Input Entity Group in the properties dialog box.

152 F Appendix A: Templates

InUpdate Input Boolean port that, if true is passed in, forces the EntityGroup block to pull
an entity group from the first (zero ordered) link connected to its InGroup port.

InClear Input Boolean port that, if true is passed in, clears the Entity Group Holder
block’s set of entity references.

Properties Dialog Box Controls

Input Filter These fields define the criteria for selecting the incoming entity refer-
ences to be stored by the Entity Group Holder block.
For Primary Usage, select to have references to either entity type Regu-
lar Entity or Resource Entity stored by the Entity Group Holder block.
For Entity Type (optional), you can restrict the Entity Group Holder
block to store only references to entities of a particular entity type.
For Attribute Rule (optional), you can restrict the Entity Group Holder
block to store only references to entities that satisfy a Boolean expres-
sion that involves entity attribute values. For more information about
how to write the Boolean expression, see Appendix F, “Expressions.”
If you select Rsource Entity for Primary Usage, then you can specify
a Resource State (optional) that entities must have in order to be stored
by the Entity Group Holder block. Valid values are Functional, Failed,
Maintenance, and Offlined.

Handling of Input Entity Group Select Override the current group to make the Entity Group
Holder block replace its current entity group with a new entity group
whenever an entity group arrives through the InGroup port.
Select Merge with the current group to make the Entity Group Holder
block add any nonduplicate entity references to its current entity group
whenever an entity group arrives through the InGroup port.
For entities that arrive through the InEntity port, an entity reference is
always merged with the current group if the entity passes the input filter
criteria.

Query Outputs The Query Outputs table defines the entity group output ports for the
Entity Group Holder block. Each output port has an associated name and
set of filter criteria that determine which entity references are included
in the entity group to be pulled from the port. Click Add Query to add a
new row to the Query Outputs table that represents a new entity group
output port. The column values for the new row can be edited directly
in the table:

� Port Name uniquely names the entity group output port for the
Entity Group Holder block.

� Key Attribute (optional) sets the name of the key attribute in the
group of entity references. In order for an entity reference in the
group to match this filter criterion, the referenced entity must have
an attribute by this name, and the attribute value must be equal
to the value of an attribute by the same name that is defined on
an entity that enters an input entity port of another block that the

Entity Group Holder Block F 153

entity group output port is connected to. In other words, an entity
attribute name/value pair for an entity that enters some other block
is used as a key to search the holdings of the Entity Group Holder
block in order to determine which entity references can be included
in the entity group to be pulled from the port by the other block.

� Entity Type (optional) restricts the port to allow only references to
entities of a particular entity type to be included in the entity group
to be pulled from the port.

� Attribute Rule (optional) restricts the port to allow only refer-
ences to entities that satisfy a Boolean expression for entity at-
tribute values to be included in the entity group to be pulled from
the port. For more information about how to write the Boolean
expression, see Appendix F, “Expressions.”

� Offset (optional) specifies an index into the group of references be-
ing held by the Entity Group Holder block. The entity references
that are selected to exit through the output port begin at this index,
and any entity references that occur prior to this index are not in-
cluded in the output entity group. A value of 0 or 1 is equivalent
to a blank value, causing the first entity reference to be selected
first. A negative value is an index that starts at the end of the en-
tity references. For example, an index of –1 causes the last entity
reference to be selected first. A negative value causes entity ref-
erences to be selected by traversing backwards through the list of
entity references. If the absolute value of the offset is larger than
the number of entity references that satisfy the criteria, an empty
entity group exits the port. The ordering of the entity references
within the Entity Group Holder block reflects the ordering of the
holding block that originally generated the entity references.

� Maximum Count (optional) specifies a maximum number of en-
tity references that can be included in the entity group that exits
the port.

Click Remove Query to remove the selected row from the Query Out-
puts table, indicating that the corresponding entity group output ports
should be removed.

Apply Saves all information to the Entity Group Holder block, creating or re-
moving entity group output ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

154 F Appendix A: Templates

Overview of the Data and Display Template

The Simulation Studio Data and Display template provides a collection of blocks used to collect
and display data in simulation models.

Bucket Block

Description

The Bucket block extracts and stores entity attribute values from entities that enter the block. At-
tributes to be extracted from the entity are identified in the Bucket block’s Attributes table in the
properties dialog box. When an entity enters the block, entity attribute values are retrieved from the
entity and stored in a SimDataModel. By default, the Bucket block extracts the Time (current sim-
ulation clock time) and Age (elapsed time since the entity was created) attributes from each entity
that passes through it. The age of each entity is pushed through the bucket’s OutLatestAge port.

The SimDataModel that contains the extracted attributes can be accessed through the block’s Out-
Data port. Display blocks, such as the Histogram block, are often connected to a Bucket block’s
OutData port to visualize the data. Any block connected to the OutData port is automatically noti-
fied when the data in the SimDataModel are modified.

The Bucket block can save values it extracts to a SAS data set or JMP table. Saving options are
available on the Save tab of the properties dialog box.

Fixed Ports

InEntity Input entity port for entities to enter the Bucket block.

OutEntity Output entity port for entities to exit the Bucket block.

OutData Output port for the latest updated SimDataModel that contains the data held by
the Bucket block.

OutLatestAge Output numeric port for the age of the last entity that passed through the Bucket
block.

Bucket Block F 155

Attributes Dialog Box Controls

Add Adds a new attribute with a default Name and Type to the Attributes table. You
can edit the Name and Type of the attribute directly in the table. The attribute
names listed in the Bucket block’s Attributes table must be unique. You can
change the attribute type through a drop-down box on the cell in the table. (An
attribute Type cannot be changed in the table after the Apply button is clicked.
If you want to change an attribute Type after Apply has been clicked, you must
remove the attribute, add it again, and then modify the Type of the newly added
attribute before clicking Apply again.)

Remove Deletes the selected attribute from the Attributes table.

Capacity Value controls how many observations the Bucket block stores. If the capacity
is exceeded, a warning is logged and the oldest observations are overwritten.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each
design point replication run. If automatic saving is turned on, data are
saved to a file with the base filename specified in the Base File Name
field. Simulation Studio automatically determines the pathname of the
folder for this file based on the pathname of the folder that contains your
saved project.

Save Now Forces the Bucket block to attempt an immediate save of any collected
data. Data are saved to the same location as when automatic saving is
turned on.

Location Displays the pathname of the folder for the file in which to save any
collected data.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used
to save any collected data. This name is the prefix of the actual filename.
The zero-based index of the design point and the zero-based index of the
replication number are added as suffixes to the filename, separated by
underscore characters. For example, the data for the first replication of
the first design point are saved in a file named BaseFileName_0_0, and
the data for the second replication of the first design point are saved in a
file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors Capacity (integer)

Responses None

156 F Appendix A: Templates

Probe Block

Description

The Probe block pulls and stores state information values from other blocks at specified time in-
tervals. Attributes to be pulled from other blocks are named in the Probe block’s Attributes table
in its properties dialog box. The names are arbitrary but must be unique within each Probe block.
When values are pulled from the ports of other blocks, the values are stored in a SimDataModel.
The SimDataModel can be accessed through the block’s OutData port. Display blocks, such as the
Histogram block, are often connected to a Probe block’s OutData port to visualize the data. Any
block connected to the OutData port is automatically notified when the data in the SimDataModel
are modified.

Each attribute in the Probe block’s Attributes table in its properties dialog box has an input value
port associated with it. At the specified time interval, the Probe block attempts to pull values from
each of its attribute input ports and store those values in its SimDataModel instance. You can control
the frequency with which the Probe block pulls values, and you can save the values it extracts to a
SAS data set or JMP table.

Fixed Ports

InPollInterval Input numeric port for how long to wait before the next time the Probe block
pulls and stores data from its input attribute value ports. This port is used only if
the Probe block is configured to use the Port option for its Poll Interval in the
properties dialog box.

OutData Output port for the latest updated SimDataModel that contains the data held by
the Probe block.

Attributes Dialog Box Controls

Add Adds a new attribute with a default Name and Type to the Attributes table. You
can edit the Name and Type of the attribute directly in the table. The attribute
names listed in the Probe block’s Attributes table must be unique. You can
change the attribute type through a drop-down box on the cell in the table. (An
attribute Type cannot be changed in the table after the Apply button is clicked.
If you want to change an attribute Type after Apply has been clicked, you must

Probe Block F 157

remove the attribute, add it again, and then modify the Type of the newly added
attribute before clicking Apply again.)

Remove Deletes the selected attribute from the Attributes table.

Capacity Value controls how many observations the Probe block stores. If the capacity is
exceeded, a warning is logged and the oldest observations are overwritten.

Poll Interval Selecting the Constant option and entering a numeric value in the Interval field
causes the Probe block to pull at a constant time interval. Selecting the Port
option causes the Probe block to pull a value from the InPollInterval port to
determine its next sampling time. If you select the Port option, a valid numeric
source, such as a Numeric Source block, must be connected to the Probe block’s
InPollInterval port. By default, the Constant option is selected and the Interval
is set to 100.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each
design point replication run. If automatic saving is turned on, data are
saved to a file with the base filename specified in the Base File Name
field. Simulation Studio automatically determines the pathname of the
folder for this file based on the pathname of the folder that contains your
saved project.

Save Now Forces the Probe block to attempt an immediate save of any collected
data. Data are saved to the same location as when automatic saving is
turned on.

Location Displays the pathname of the folder for the file in which to save any
collected data.

Base File Name Specifies the base filename for the SAS data set or JMP table that is used
to save any collected data. This name is the prefix of the actual filename.
The zero-based index of the design point and the zero-based index of the
replication number are added as suffixes to the filename, separated by
underscore characters. For example, the data for the first replication of
the first design point are saved in a file named BaseFileName_0_0, and
the data for the second replication of the first design point are saved in a
file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors Capacity (integer), PollingInterval (double)

Responses None

158 F Appendix A: Templates

Queue Stats Collector Block

Description

The Queue Stats Collector block accumulates statistics generated by blocks in your model that
implement the QueueStatsGenerator interface. In the properties dialog box associated with the
Queue Stats Collector block, you can select from a list of available (QueueStatsGenerator) blocks
the ones from which you want to collect statistics.

By default, statistics are gathered from the selected blocks at the end of each design point replication
run. Options are provided to collect statistics on a continuous basis (whenever the statistics change)
or to force an instantaneous update of the statistics.

The Queue Stats Collector block uses its data collection facility to store values it collects. The
statistics can be saved to a SAS data set or JMP table. The statistics are stored in a SimDataModel,
which can be accessed through the block’s OutData port. To visualize the statistics, you can connect
a display block (such as the Bar Chart block) to the OutData port. Any block connected to the
OutData port is automatically notified when the statistics in the SimDataModel are modified.

Fixed Ports

OutData Output port for the latest updated SimDataModel that contains the statistics held
by the Queue Stats Collector block.

ResultLocation Output text port for the pathname of a folder that contains the output data set, if
the Queue Stats Collector block is configured to save its statistics.

Attributes Dialog Box Controls

Add Adds the selected blocks to the list of blocks from which to collect statistics.

Remove Removes the selected blocks from the list of blocks from which to collect statis-
tics.

Continuous Collection Turns on or off statistics collection whenever a monitored block changes
state.

Now Forces the Queue Stats Collector block to attempt an immediate collection of
any statistics.

Queue Stats Collector Block F 159

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end
of each design point replication run. If automatic saving is turned on,
statistics are saved to a file with the base filename specified in the Base
File Name field. Simulation Studio automatically determines the path-
name of the folder for this file based on the pathname of the folder that
contains your saved project.

Save Now Forces the Queue Stats Collector block to attempt an immediate save of
any collected statistics. Statistics are saved to the same location as when
automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any
collected statistics.

Base File Name Specifies the base filename for the SAS data set or JMP table that is
used to save any collected statistics. This name is the prefix of the actual
filename. The zero-based index of the design point and the zero-based
index of the replication number are added as suffixes to the filename,
separated by underscore characters. For example, the statistics for the
first replication of the first design point are saved in a file named Base-
FileName_0_0, and the statistics for the second replication of the first
design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

160 F Appendix A: Templates

Server Stats Collector Block

Description

The Server Stats Collector block accumulates statistics generated by blocks in your model that
implement the ServerStatsGenerator interface. In the properties dialog box associated with the
Server Stats Collector block, you can select from a list of available (ServerStatsGenerator) blocks
the ones from which you want to collect statistics.

By default, statistics are gathered from the selected blocks at the end of each design point replication
run. Options are provided to collect statistics on a continuous basis (whenever the statistics change)
or to force an instantaneous update of the statistics.

The Server Stats Collector block uses its data collection facility to store statistics it collects. The
statistics can be saved to a SAS data set or JMP table. The statistics are stored in a SimDataModel,
which can be accessed through the block’s OutData port. To visualize the statistics, you can connect
a display block (such as the Bar Chart block) to the OutData port. Any block connected to the
OutData port is automatically notified when the statistics in the SimDataModel are modified.

Fixed Ports

OutData Output port for the latest updated SimDataModel that contains the statistics held
by the Server Stats Collector block.

OutResultLocation Output text port for the pathname of a folder that contains the output data
set, if the Server Stats Collector block is configured to save its statistics.

Attributes Dialog Box Controls

Add Adds the selected blocks to the list of blocks from which to collect statistics.

Remove Removes the selected blocks from the list of blocks from which to collect statis-
tics.

Continuous Collection Turns on or off statistics collection whenever a monitored block changes
state.

Now Forces the Server Stats Collector block to attempt an immediate collection of
any statistics.

Server Stats Collector Block F 161

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end
of each design point replication run. If automatic saving is turned on,
statistics are saved to a file with the base filename specified in the Base
File Name field. Simulation Studio automatically determines the path-
name of the folder for this file based on the pathname of the folder that
contains your saved project.

Save Now Forces the Server Stats Collector block to attempt an immediate save of
any collected statistics. Statistics are saved to the same location as when
automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any
collected statistics.

Base File Name Specifies the base filename for the SAS data set or JMP table that is
used to save any collected statistics. This name is the prefix of the actual
filename. The zero-based index of the design point and the zero-based
index of the replication number are added as suffixes to the filename,
separated by underscore characters. For example, the statistics for the
first replication of the first design point are saved in a file named Base-
FileName_0_0, and the statistics for the second replication of the first
design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

162 F Appendix A: Templates

Resource Stats Collector Block

Description

The Resource Stats Collector block accumulates statistics about resource entities in your model.
In the properties dialog box associated with the Resource Stats Collector block, you specify the
resources for which you want to collect statistics and the types of statistics you want to collect.
Statistics are gathered on a continuous basis (whenever the statistics change).

You can use the Resource Stats Collector block to capture valuable information about the behav-
ior of your resources when your experiment executes. This information might help you discover
unintended behavior of your resources or provide insight that helps you fine-tune the behavior of
resources in your model. The Resource Stats Collector block is very flexible and enables you to
define groups of resources based on both resource entity type and Boolean rules about resource
attribute values. Within each group of resources you define, you can collect statistics such as the
average, current, minimum, or maximum proportion of resources in the group that meet certain cri-
teria. Possible criteria include whether the resources in the group are seized, whether the resources
in the group are in a particular resource state, and whether the attribute values of the resources in
the group satisfy a particular Boolean expression.

The Resource Stats Collector block uses its data collection facility to store values it collects. The
statistics can be saved to a SAS data set or JMP table. The statistics are stored in a SimDataModel,
which can be accessed through the block’s OutData port. To visualize the statistics, you can connect
a display block (such as the Bar Chart block) to the OutData port. Any block connected to the
OutData port is automatically notified when the statistics in the SimDataModel are modified.

Fixed Ports

OutData Output port for the latest updated SimDataModel that contains the statistics held
by the Resource Stats Collector block.

Groups Dialog Box Controls

Use the Groups table to define the groups (collections of resource entities) for which you want to
collect statistics. Each group is represented by a single row in the Groups table. For each group,
you can set criteria (columns in the Groups table) to restrict the resources included in the group.

Resource Stats Collector Block F 163

Add Defines a new group for which to collect statistics. Each group rep-
resents one observation (row) in the collected data. A group has the
following properties: Name, Entity Types, and Attribute Rule. You
can edit each property directly in the Groups table.

� Name specifies a name for the group of resource entities. This
name appears as the first variable in the observation, with the title
GroupName.

� Entity Types (optional) restricts the group to include only those
resource entities that have a particular entity type.

� Attribute Rule (optional) restricts the group to include only those
resource entities that satisfy the specified Boolean expression for
their attributes. For more information about how to write the
Boolean expression, see Appendix F, “Expressions.”

If Entity Types and Attribute Rule are left blank, all resource entities
in your model are included in the group.

Remove Removes the selected groups from the collected data.

Statistics Dialog Box Controls

Use the Statistics table to name and define the statistics to be gathered for the defined groups. Each
statistic is represented by a single row in the Statistics table. For each statistic, you set properties
(columns in the Statistics table) that define the rules for how the statistic is calculated.

Add Defines a new statistic in the collected data. Each statistic represents
one variable (column) in the collected data. A statistic has the following
properties: Name, Statistics, Seized, State, and Attribute Rule. You
can edit each property directly in the Statistics table.

� Name specifies the name of the statistic in the SimDataModel.

� Statistics specifies how to calculate the statistic for each defined
resource entity group:

– TimeAverage is the proportion (a number between zero and
one) over time of the resource units in the group that meet the
criteria for the statistic.

– Current is the current proportion of resource units in the
group that meet the criteria for the statistic. At the end of
a design point replication, it holds the proportion of resource
units in the group that meet the criteria for the statistic when
the design point replication ends.

– Min is the minimum proportion over time of the resource
units in the group that meet the criteria for the statistic.

– Max is the maximum proportion over time of the resource
units in the group that meet the criteria for the statistic.

164 F Appendix A: Templates

– Count is the current number of resource units in the group
that meet the criteria for the statistic. At the end of a design
point replication, it holds the number of resource units in the
group that meet the criteria for the statistic when the design
point replication ends.

Seized, State, and Attribute Rule are the resource criteria used in cal-
culating the statistic. A resource unit must meet all of the specified
criteria in order to be included in the statistic.

� For the Seized criterion, false means a resource unit is available
in a resource pool, true means a resource unit is not available in
a resource pool, and an empty value means a resource unit can be
either seized or unseized.

� For the State criterion, you can specify that a resource must have a
particular state. Valid values are Functional, Failed, Maintenance,
and Offlined. An empty value means a resource can be in any state.

� For the Attribute Rule criterion, you can specify that a resource’s
attribute values satisfy a Boolean expression. For more informa-
tion about how to write the Boolean expression, see Appendix F,
“Expressions.” An empty value means a resource’s attributes can
have any values.

Remove Removes the selected statistics from the collected data.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end
of each design point replication run. If automatic saving is turned on,
statistics are saved to a file with the base filename specified in the Base
File Name field. Simulation Studio automatically determines the path-
name of the folder for this file based on the pathname of the folder that
contains your saved project.

Save Now Forces the Resource Stats Collector block to attempt an immediate save
of any collected statistics. Statistics are saved to the same location as
when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any
collected statistics.

Base File Name Specifies the base filename for the SAS data set or JMP table that is
used to save any collected statistics. This name is the prefix of the actual
filename. The zero-based index of the design point and the zero-based
index of the replication number are added as suffixes to the filename,
separated by underscore characters. For example, the statistics for the
first replication of the first design point are saved in a file named Base-
FileName_0_0, and the statistics for the second replication of the first
design point are saved in a file named BaseFileName_0_1.

Resource Stats Collector Block F 165

Candidates for Design of Experiments

Factors None

Responses None

166 F Appendix A: Templates

Histogram Block

Description

The Histogram block creates a visual estimate of the distribution of data from a discrete or contin-
uous variable. The range of the variable is divided into a certain number of subintervals (bins). The
height of the bar in each bin is proportional to the number of data points that have values in that
bin. The Histogram block expects a SimDataModel as input via its InData port. Some examples
of blocks that can produce SimDataModels as output are the Bucket, Number Holder, and the Stats
Collector blocks. You must supply the name of the variable from the SimDataModel to be used to
construct the histogram bins or bars. Context-sensitive pop-up menus are available on the plot for
manipulating various aspects of the plot such as axis scaling; right-click on the histogram display
to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Name Specifies the name of the variable from the SimDataModel to use to create the
histogram.

Candidates for Design of Experiments

Factors None

Responses None

Bar Chart Block F 167

Bar Chart Block

Description

The Bar Chart block graphically depicts the distribution of data from a discrete variable. The height
of each bar represents the frequency, which is either the number of data points in each category
or the sum of the attribute values of a particular attribute in each category. The Bar Chart block
expects a SimDataModel as input via its InData port. Some examples of blocks that can produce
SimDataModels as output are the Bucket, Number Holder, and the Stats Collector blocks. You
must supply the names of the X and Frequency (optional) variables from the SimDataModel to be
used to construct the bar chart display. Context-sensitive pop-up menus are available on the plot for
manipulating various aspects of the plot such as axis scaling; right-click on the bar chart display to
access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Variables X specifies the name of the variable from the SimDataModel used to categorize
data on the X axis. Frequency specifies the value to show on the Y axis for each
category. You can choose By Count to calculate frequency as the total number
of items in each category. Alternatively, you can choose By Variable to calculate
frequency as the sum of a particular Variable for all items in each category.

Candidates for Design of Experiments

Factors None

Responses None

168 F Appendix A: Templates

Scatter Plot Block

Description

A Scatter Plot block displays a graphical representation of the relationship between two variables.
The Scatter Plot block expects a SimDataModel as input via its InData port. Some examples of
blocks that can produce SimDataModels as output are the Bucket, Number Holder, and the Stats
Collector blocks. You must supply the names of the X and Y variables from the SimDataModel to
be used to construct the scatter plot display. Context-sensitive pop-up menus are available on the
plot for manipulating various aspects of the plot such as axis scaling; right-click on the scatter plot
display to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Variables Specifies the names of the X and Y variables from the SimDataModel to use to
create the scatter plot.

Candidates for Design of Experiments

Factors None

Responses None

Box Plot Block F 169

Box Plot Block

Description

The Box Plot block is a schematic summary of the distribution of data from a continuous numeric
variable. The central line in a box plot indicates the median of the data, and the bottom and top of
the box indicate the first and third quartiles (that is, the 25th and 75th percentiles). Extending from
the box are whiskers that represent data that are a certain distance from the median. Beyond the
whiskers are outliers—observations that are relatively far from the median.

The Box Plot block expects a SimDataModel as input via its InData port. Some examples of blocks
that can produce SimDataModels as output are the Bucket, Number Holder, and the Stats Collector
blocks. You must supply the name of the Y variable from the SimDataModel to be used to construct
the box plot display. Optionally you can also provide the name of a variable to be used as a group
variable for producing individual box plots for each unique category found in the group variable.
Context-sensitive pop-up menus are available on the plot for manipulating various aspects of the
plot such as axis scaling; right-click on the scatter plot display to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Variables Specifies the name of the Y variable from the SimDataModel to use to create
the box plot. Optionally you can select the Use Groups option and provide the
name of the Group variable from the SimDataModel to use to create multiple
box plots.

Candidates for Design of Experiments

Factors None

Responses None

170 F Appendix A: Templates

Comment Block

Description

The comment block is used to hold text comments that describe the model or a portion of the model.
This block is for visual purposes only and has no effect on running the model.

To enter or edit the comment, first click on the icon in the upper left corner in order to activate the
comment block. Then click in the editor area to activate the editor.

The comment can contain multiple lines of text, and it can be resized by clicking and dragging any
edge or corner while the comment is active for editing.

Candidates for Design of Experiments

Factors None

Responses None

Seize Block F 171

Overview of the Resource Template

The Simulation Studio Resource template provides a collection of blocks used to manipulate re-
sources in a simulation model.

Seize Block

Description

The Seize block obtains resource entities from resource holding blocks (for example, Resource Pool
blocks) and allocates them to a controlling entity. The controlling entity must have acquired all the
required resources before it can pass through the Seize block.

The required resources are specified by one or more resource constraints. Each resource constraint
is defined in the Seize block’s ResourcePorts properties dialog box table and associated with an
input resource entity port on the block. The input resource ports are meant to be connected to
resource holding blocks. When a controlling entity attempts to enter a Seize block, the resource
constraints associated with all resource ports are checked for availability. If all needed resources
are available, they are pulled from the resource input ports and allocated to the controlling entity. If
any of the resource constraints cannot be satisfied, the controlling entity is not allowed to enter the
block.

The InFocusedResources port, if connected, can be used to provide a reference group of resource
entities as the initial set of the resources to be examined and seized from resource input ports. If
no qualified resources are found among these focused resources to satisfy a resource constraint, the
Seize block attempts to look for other resources to seize from the resource holder blocks connected
to the input resource entity ports.

Fixed Ports

InEntity Input entity port for entering controlling entities.

OutEntity Output entity port for exiting controlling entities.

172 F Appendix A: Templates

InFocusedResources Input entity group port for pulling the references of a group of resource
entities to be used as initial resource entity candidates to seize from the resource
input ports.

Properties Dialog Box Controls

Add port Adds a new resource port (with default values for its fields) to the Re-
sourcePorts table. Each field can be edited directly in the table.

� The PortName field of the entry is the name of the input resource
entity port to use when attempting to seize a resource entity for use
by a controlling entity.

� The Units field specifies the desired amount of resource units in
the resource to be seized using the port. Its default value is 1. If
the Units field is left blank, a numeric port is created, from which
the Seize block dynamically pulls the units value for the current
controlling entity during simulation.

� The Separable flag indicates whether the needed resource units
can be provided by two or more resource entities jointly.

� The optional Attributes field can be used to specify a Boolean
expression based on the attributes in the targeted resource entities.
For more information about how to write the Boolean expression,
see Appendix F, “Expressions.”

� The optional Entity Type field specifies the type of the resource
entity to be seized.

The optional fields are available by clicking the down arrow next to the
ResourcePorts table.

Remove port Deletes the selected resource ports from the ResourcePorts table.

Apply All entries in the ResourcePorts table are saved to the Seize block, and
ports are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

Release Block F 173

Release Block

Description

The Release block releases resource entities from a controlling entity as the controlling entity passes
through the block.

The released resources are specified by one or more resource constraints. Each resource constraint
is associated with an output resource port defined in the ResourcePorts properties dialog box table.
When a controlling entity enters the block, the resource constraints associated with all resource ports
are checked for matches. If matched resources are found, they are released from the controlling
entity and pushed through the corresponding resource output ports. If a matched resource cannot
flow out through the corresponding output resource port, the resource remains with the controlling
entity.

Fixed Ports

InEntity Input entity port for entering controlling entities.

OutEntity Output entity port for exiting controlling entities.

Properties Dialog Box Controls

Add port Adds a new resource port (with default values for its fields) to the Re-
sourcePorts table. Each field can be edited directly in the table.

� The PortName field of the entry is the name of the output resource
entity port to use to release a resource entity from a controlling
entity.

� The Units field specifies the desired amount of resource units in
the resource to be released from the controlling entity. Its default
value is blank, which allows any resource that satisfies the other
constraints to be released.

� The Splittable flag indicates whether the desired resource units
can be obtained by splitting a resource with more units than de-
sired.

174 F Appendix A: Templates

� The Separable flag indicates whether the desired resource units
can be provided by two or more resource entities jointly.

� The optional Attributes field can be used to specify a Boolean
expression based on the attributes in the targeted resource entities.
For more information about how to write the Boolean expression,
see Appendix F, “Expressions.”

� The optional Entity Type field specifies the type of the resource
entity to be released.

The optional fields are available by clicking the down arrow next to the
ResourcePorts table.

Remove port Deletes the selected resource ports from the ResourcePorts table.

Apply All entries in the ResourcePorts table are saved to the Release block,
and output resource entity ports are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

Resource Pool Block F 175

Resource Pool Block

Description

The Resource Pool block accepts and maintains unseized resource entities. These resource entities
can be seized later by other blocks. The Resource Pool block also processes resource requests
from other blocks (a Seize block, for example) that can result in a distribution of unseized resource
entities from the Resource Pool block.

A resource entity is considered unseized if it resides in a resource pool. Once it leaves a resource
pool (and is not directly held by any other resource pool), it is treated as seized. Any newly created
resource entity (generated outside a resource pool) is also considered unseized, even if it has not yet
entered a Resource Pool block.

The Resource Pool block manages resource entities as objects. More than one type of resource
entity can be maintained by an individual resource pool. The number of resource entity objects in a
Resource Pool block can be monitored using its OutLength port. The Resource Pool block can also
manage compatible resource entities with its merging/splitting units option.

To process a resource request from another block, the Resource Pool block chooses resource en-
tities (from those it is maintaining) with enough units to satisfy the capacity needs of the request.
Sometimes, resource entities with more units than are requested are chosen and distributed.

When the merging/splitting units option is enabled, the Resource Pool block can split resource
units held in a resource entity currently in the resource pool into smaller units to satisfy a request
and assign the smaller units to new resource entities. The new resource entities created by the
Resource Pool block have the same entity type and attribute values as the existing resource entity,
but are assigned the smaller resource units. The new resource entities are then distributed out of
the resource pool. The original resource entity remains in the pool, even if its capacity reaches zero
units after splittings. Similarly, when a resource entity enters the pool, its units can be merged into a
compatible resource entity currently in the pool. The newly arrived resource entity is disposed and
ceases to exist as an object in the simulation run. To be considered compatible resource entities,
the resource entities must first be of the same entity type; in addition, you can specify optional key
attribute fields to use for merging resources. Units merging between resource entities can take place
only if their entity types and all of their key attribute fields, if any, match.

176 F Appendix A: Templates

Fixed Ports

InEntity Input entity port for entering resource entities.

OutEntity Output entity port for exiting resource entities

OutLength Output integer port for the number of resource entity objects currently in the
pool.

Units Dialog Box Controls

Merge / split resource units among resource entities of same types Turns on or off optional
merging and splitting of resource units.

Key Entity Attribute Fields for Merging Units Specifies optional key attribute fields to use dur-
ing the units merging process when the merge/split units check box is
checked.
There are two ways to specify key attribute fields for a resource entity
type. For specific entity types, the key field table can be used to list
key fields for any specific resource entity type. Each entry in the ta-
ble contains a Resource Entity Type value and the corresponding Key
Attribute Field. The latter lists either one attribute name or multiple
comma-separated attribute names. You can create a new entry by click-
ing Add beside the table. Entries can be deleted from the table by se-
lecting the entry rows in the table and then clicking Remove.
For any unspecified resource entity types, you can either choose the
key attribute fields to be All adjustable fields or use No key fields.
In the latter case, different resource entities are considered compatible
for merging if and only if they are of the same resource entity type. In
the former case, all adjustable attribute fields must match as well.

ResourceQueue Dialog Box Controls

Queueing Policy Specifies the queueing policy for the queue used internally by the Re-
source Pool block. See the Queueing Policy control in the section
“Queue Block” on page 109 for details.

Candidates for Design of Experiments

Factors QueueingPolicy (text)
See the Queueing Policy design-of-experiment factor in the section “Queue
Block” on page 109 for details.

Responses None

Resource Scheduler Block F 177

Resource Scheduler Block

Description

The Resource Scheduler block arranges and performs sequences of resource adjustments over tar-
geted resource entities. The description of an adjustment sequence is specified in a resource agenda
object received through the InAgenda port from an agenda provider (for example, a Resource
Agenda block). Using the properties dialog box controls, an appointment with various schedul-
ing options can be scheduled to request the Resource Scheduler block to process a resource agenda.
The Resource Scheduler block activates its appointments and conducts the resource adjustment se-
quences in the corresponding resource agendas based on the scheduling options during a simulation
run.

When all the adjustment actions within the sequence of an activated appointment are conducted and
the resulting changes pass their respective duration periods, the current processing of the appoint-
ment by the Resource Scheduler block is considered finished.

If needed, the Resource Scheduler block can activate multiple appointments and process their re-
spective sequences of resource adjustments at the same time.

In addition to the appointments scheduled through the properties dialog box controls, resource
scheduling entities can also be used to request a Resource Scheduler block to process resource
agendas dynamically through the InRequest port during a simulation run. These resource schedul-
ing entities can be produced by the same or other Resource Scheduler blocks at a different simula-
tion time. See the To Repeat description in the following section “Properties Dialog Box Controls”
on page 178 for more information.

Fixed Ports

InAgenda Input object port to receive a resource agenda object.

InRequest Input entity port to receive resource scheduling entities to dynamically schedule
resource adjustments.

OutRequest Output entity port for repeating resource scheduling entities to leave the block.

OutBalk Output entity port for resource scheduling entities that cannot leave through the
OutRequest port.

178 F Appendix A: Templates

Properties Dialog Box Controls

Add Adds a new appointment entry (with default values) to the Appoint-
ments table. The appointments in the table are used as the initial set of
appointments to be processed by the Resource Scheduler block during a
simulation run. Each appointment entry has the following fields:

� Start Time specifies the time to activate the adjustment sequence
listed in the specified agenda.

� Agenda specifies the identifier of the agenda to use for this ap-
pointment.

� To Repeat specifies whether to repeat this appointment at a later
time.
When the Resource Scheduler finishes an appointment marked as
To Repeat, the block automatically reschedules the appointment
with the current simulation time as the new Start Time if the
block’s OutRequest port is not connected. Otherwise, the block
sends a resource scheduling entity out its OutRequest port for that
repeating appointment. This entity can be sent to the InRequest
port of a Resource Scheduler block to repeat the appointment at a
different time.
The resource scheduling entity is a special type of entity, which
is defined and generated by the Resource Scheduler block. It has
a numeric StartTime attribute field and an object Agenda attribute
field that can be adjusted dynamically for complicated scheduling
needs. If the StartTime value in a newly arrived scheduling entity
already passes the current simulation time, the repeating appoint-
ment is activated immediately with the current simulation time as
the actual StartTime.

� Immediate Actions contains three check boxes that specify the
immediate actions taken by the Resource Scheduler block when it
processes a resource agenda entry.
The Adjust Resources check boxes specify the adjustment types,
which consist of the following:

– Unseized indicates the immediate change to the targeted re-
source entities if they are currently unseized.

– Seized indicates the immediate change to the targeted re-
source entities if they are currently seized. This results in
preemptive changes, which might trigger preemptions in the
holding blocks where the changed resource entities reside.

The Advance Agenda check box specifies whether the Resource
Scheduler block moves to schedule the next agenda entry immedi-
ately.
The value of the Adjust Resources/Unseized, Adjust Re-
sources/Seized, and Advance Agenda check boxes results in
eight different combinations of values. Each combination is pre-
sented below as a triple of three Boolean values, corresponding

Resource Scheduler Block F 179

to the Adjust Resources/Unseized, Adjust Resources/Seized,
and Advance Agenda check boxes, with T for true (checked) and
F for false (cleared). For example, the triple (T, F, F) represents
Adjust Resources/Unseized = T, Adjust Resources/Seized = F,
and Advance Agenda = F. All the triple combinations and their
effects on resource adjustment during simulation are described as
follows:

– (T, F, F) specifies to immediately adjust the unseized resource
targets, if any, and wait for the seized targets, if any, to be-
come unseized. As soon as a seized target becomes unseized,
it is adjusted. The Resource Scheduler block waits for all the
seized and unseized targets, if any, to be actually adjusted be-
fore moving on to process the next agenda entry. This is the
default combination for a new appointment entry.

– (T, F, T) specifies to immediately adjust the unseized resource
targets, if any, and wait for the seized targets, if any, to become
unseized. As soon as a seized target becomes unseized, it is
adjusted. The Resource Scheduler block moves on to process
next agenda entry without waiting for the adjustments to ac-
tually happen.

– (F, F, F) specifies that no unseized targets, if any, are adjusted
until all seized targets, if any, become unseized. Adjustments
for seized targets also do not happen until all seized targets
become unseized. That means adjustments are made to all
targets at the same time once there are no more seized targets.
The Resource Scheduler block waits for all the seized and un-
seized targets, if any, to be actually adjusted before moving
on to process the next agenda entry.

– (F, F, T) specifies that no unseized targets, if any, are adjusted
until all seized targets, if any, become unseized. Adjustments
for seized targets also does not happen until all seized targets
become unseized. That means adjustments are made to all
targets at the same time once there are no more seized tar-
gets. The Resource Scheduler block moves on to process next
agenda entry without waiting for the adjustments to actually
happen.

– (F, T, F) specifies that adjustments for unseized targets hap-
pen only after all seized targets, if any, become unseized. Ad-
justments for seized targets happen immediately and therefore
are preemptive. The Resource Scheduler block waits for all
the seized and unseized targets to be actually adjusted before
moving on to process the next agenda entry.

– (F, T, T) specifies that adjustments for unseized targets hap-
pen only after all seized targets, if any, become unseized. Ad-
justments for seized targets happen immediately and therefore
are preemptive. The Resource Scheduler block moves on to

180 F Appendix A: Templates

process next agenda entry without waiting for the adjustments
to actually happen.

– (T, T, F) specifies to immediately adjust the unseized and
seized resource targets, if any. The Resource Scheduler block
waits for all the adjustments to complete before moving on to
process the next agenda entry, but the waiting does not actu-
ally occur because all targets are adjusted immediately.

– (T, T, T) has the same effects as the above (T, T, F) combina-
tion.

The last four combinations are for preemptive adjustments of
seized targets, while the first four are not.
If the Advance Agenda option is not checked, the Resource
Scheduler block waits for seized or unseized targets, if any, to be
actually adjusted before moving on to process the next agenda en-
try. As a result, the time between resource adjustments could be
longer than the duration time specified in the resource agenda, and
it could delay other succeeding adjustments. Otherwise, it could
result in a shorter time between actual resource adjustments.
When the targets of a resource units adjustment action include both
unseized and seized resource entities, the unseized targets are usu-
ally assigned their units allotment first.

� Search Targets By specifies the criteria to identify a collection of
resource entities as the adjustment targets of this appointment:

– Entity Type identifies the type of targeted resource entities to
adjust.

– Attribute Rule specifies a filtering rule that the targeted re-
source entities must satisfy. The rule is a Boolean expression
that involves attribute values of a candidate resource entity
that must evaluate to true for the entity to be considered as an
adjustment target. For more information about how to write
the Boolean expression, see Appendix F, “Expressions.”

Remove Deletes the selected appointment entries from the Appointments table.

Candidates for Design of Experiments

Factors RankValue (double)

Responses None

Resource Agenda Block F 181

Resource Agenda Block

Description

The Resource Agenda block holds a resource agenda that describes and organizes a series of re-
source adjustment actions sequentially.

An adjustment action is a change to either the resource units or the resource state of one or more
targeted resource entities. Each action is specified as a resource agenda entry, which lists the
change type and value, in a resource agenda. The entry also lists a duration value to indicate how
long the new value is expected to be effective starting from the change time. An agenda organizes
its entries based on a relative starting time of 0. The agenda can be used and activated by a resource
scheduling facility, such as a Resource Scheduler block, to schedule resource adjustments with an
absolute starting time during a simulation run. The targeted resource entities are identified by the
scheduling facility at simulation time.

The Resource Agenda block also supports dynamic entries with dynamic durations or adjustment
values or both that are not prespecified. When a dynamic entry is activated by a resource scheduling
facility to become the current entry at simulation time, the dynamic values are pulled dynamically
through the InDuration port or InValue port or both.

Fixed Ports

InDuration Input numeric port to pull the dynamic duration value, if needed, of the agenda
entry being activated.

InValue Input numeric port to pull the dynamic adjustment value, if needed, of the agenda
entry being activated.

OutAgenda Output object port to provide an instance of the resource agenda held in this
block.

OutCurrentEntry Output integer port for the zero-based index of the entry being activated.

Properties Dialog Box Controls

ID Specifies a textual identifier for the agenda.

182 F Appendix A: Templates

Entries Specifies the table of agenda entries.
You can create a new resource agenda entry by clicking Add beside the
Entries table. This results in a new agenda entry (with default values)
being added to the Entries table. You can edit the field values directly
in the table:

� Duration specifies how long the result of the resource adjustment
is expected to last.

� Value specifies the adjustment value.

� Value Type specifies the adjustment type, which is one of the fol-
lowing:

– UNITS indicates the adjustment of total resource units for tar-
geted resource entities. The adjustment value is the new units
count, which is a nonnegative number.

– UNITS_OFFSET indicates the adjustment of total resource
units for targeted resource entities by offsetting the current
units. The adjustment value is the units offset amount. A
positive offset increases the units count, and a negative offset
decreases it. Because resource units should never be negative,
the maximum amount of units to decrease is the existing units
count.

– STATE indicates the adjustment of resource state for targeted
resource entities. The adjustment value is the new resource
state, which can be one of Functional, Failed, Maintenance,
and Offlined.

To create a dynamic entry with a dynamic numeric value for duration or
adjustment value, erase the current contents of the Duration or Value
field, leaving it blank. If an agenda contains dynamic entries, it is rec-
ommended to limit its use to only one resource scheduling facility to
ease the modeling task of providing the needed dynamic values. For the
same reason, when your model uses the transient entry index from the
OutCurrentEntry port of a Resource Agenda block, the modeling pro-
cess might be easier if the agenda block provides its agenda to only one
resource scheduling facility.
You can delete agenda entries from the Entries table by selecting the
entry rows in the table and then clicking Remove.

Candidates for Design of Experiments

Factors None

Responses None

Steady State Block F 183

Overview of the Output Analysis Template

The Simulation Studio Output Analysis template provides a collection of blocks used to analyze the
output of a simulation model.

Steady State Block

Description

The Steady State block provides an automated procedure for producing a confidence interval es-
timator for a steady-state mean response in a nonterminating simulation model. The procedure is
based on space batch means. You specify the precision and coverage-probability requirements for
the desired confidence interval. Currently, the Steady State block can be used only for observation
based statistics.

The Steady State block requires a link to its InData port from which it can pull a data model at
simulation start-up time. If there are no connections to the InData port or the Steady State block
cannot pull a data model from its InData port, the block does not start. Using the properties dialog
box, you specify the name of the data model variable that contains the numeric values to use to
construct a confidence interval. You also use controls in the properties dialog box to set the desired
relative precision of the half-width of the confidence interval along with the coverage-probability
parameter.

The Steady State block controls the length of the simulation run within the limits of the EndTime
system parameter specified in the current Experiment window. If the Steady State block fails to
acquire sufficient data needed to calculate the desired confidence interval before reaching the End-
Time value of the experimental design point, the simulation terminates and no confidence interval
is output. If the block is successful in calculating the desired confidence interval, it pushes the
lower and upper limits of the confidence interval out its OutLowerLimit and OutUpperLimit ports,
respectively.

The Steady State block pushes the simulation time value associated with the last data value of the
estimated warm-up period out its OutWarmUpTime port at the point its algorithm detects this value.

Since the Steady State block controls the running of the simulation, only one Steady State block

184 F Appendix A: Templates

should be used per model.

Fixed Ports

InData Input port for a SimDataModel.

OutLowerLimit Output numeric port for the lower limit of the confidence interval.

OutUpperLimit Output numeric port for the upper limit of the confidence interval.

OutWarmUpTime Output numeric port for the simulation clock time associated with the last
data value of the estimated warm-up period.

Properties Dialog Box Controls

Variable Name Specifies the name of the variable in the SimDataModel to be used for
data values.

Desired Precision Specifies the desired relative half-width of the calculated confidence in-
terval. For example, a desired precision of 0.075 indicates that you want
the final confidence interval half-width to be within +/– 7.5% of the es-
timated mean.

Beta Specifies the coverage probability for the confidence interval. For ex-
ample, a Beta value of 0.05 indicates you want a 95% (1.0 – 0.05) con-
fidence interval.

Candidates for Design of Experiments

Factors DesiredPrecision (double), PrecisionRelative (Boolean), Beta (double)

Responses LowerLimit (double), UpperLimit (double)

Appendix B

Random Variation in a Model

Contents
Overview of Random Variation . 185
Discrete Distributions . 189

Binomial . 189
Discrete Uniform . 189
Geometric . 189
Negative Binomial . 190
Poisson . 190

Continuous Distributions . 191
Beta . 191
Chi-Square . 191
Erlang . 191
Exponential . 192
Gamma . 192
Johnson Bounded Distribution (JohnsonSB) 192
Johnson Unbounded Distribution (JohnsonSU) 193
Lognormal . 194
Normal . 194
Pearson Type V . 194
Pearson Type VI . 194
Triangular . 195
Uniform . 195
Weibull . 196

Overview of Random Variation

Random and exogenous sources of variation play a central role in discrete event simulation. Blocks
such as the Entity Generator, Value Generator, Server, and Delay blocks usually require a connection
to a numeric source of variation in Simulation Studio models. The principal sources of variation
are the Numeric Source and Formula blocks. The functionality of these blocks is described in
Appendix A, “Templates,” but this section also provides a quick overview. Both the Numeric Source
and Formula blocks provide an OutValue output port to which other blocks can connect to pull

186 F Appendix B: Random Variation in a Model

numeric values. The values produced by these blocks are dependent on their parameter settings.
Figure B.1 shows the Block Properties dialog box for a Numeric Source block with the default
settings. The Type list box provides a list of the statistical distributions available in Simulation
Studio for sampling purposes. You select a distribution from the Type list and then supply the
desired parameters in the approripate fields for the distribution that you have chosen. (The details
about the distributions available in Simulation Studio are presented later in this appendix.) When a
request for a sample comes into the Numeric Source block, the block generates a value based on its
parameter settings.

Figure B.1 Sample Numeric Source Block Dialog Box

The Type list also includes an option, SAS Data Column, to read values from a SAS data set or
JMP data table as opposed to generating a value itself. You can use this feature when you have
created or collected data from a source outside Simulation Studio that you now want to use as your
source of variation. When using this option in the Numeric Source block, you must supply the file
pathname along with the column or variable name in the data set. (See Figure B.2.) Simulation
Studio uses the filename extension to determine whether the file is a SAS data set or JMP data table.
If a filename extension is not specified, Simulation Studio assumes the file is of the type (SAS data
set or JMP table) specified in the Default Data Format section of the SAS Simulation Configuration
dialog box.

Overview of Random Variation F 187

Figure B.2 Sample Numeric Source Block That Uses a SAS Data Set

You can also use the Formula block to write a function that returns a number to be used as a sample.
Figure B.3 shows a sample Block Properties dialog box for the Formula block. You define input
variables in the Input Variables area and then use these variables to write an algebraic expression
in the Expression area. The values associated with the input variables can come either from ports
on the Formula block or from attributes defined on the incoming entity. You can formulate the
expression to represent the source of variation that you require. Each time a value is pulled from the
Formula block, its expression is evaluated and the resulting value is passed out the OutValue port.
See the description of the Formula block in Appendix A, “Templates,” for additional details about
this block.

188 F Appendix B: Random Variation in a Model

Figure B.3 Sample Formula Block Dialog Box

Discrete Distributions F 189

Discrete Distributions

Binomial

The probability mass function of the binomial distribution is

p.x/ D
nŠ

xŠ.n � x/Š
px.1 � p/n�x

for x 2 Œ0; 1; : : : ; n�.

Parameters:

n is a positive integer that represents the number of independent Bernoulli trials.

p 2 Œ0; 1� is the probability of success on each trial.

Discrete Uniform

The probability mass function of the discrete uniform distribution is

p.x/ D
1

j � i C 1

for x 2 Œi; i C 1; : : : ; j �, where i and j are integers with i � j .

Parameters:

i is a location parameter.

j � i is a scale parameter.

Geometric

The probability mass function of the geometric distribution is

p.x/ D p.1 � p/x�1

for x 2 f1; 2; : : : g.

190 F Appendix B: Random Variation in a Model

Parameter:

p 2 .0; 1/ is the probability of success on each trial.

Negative Binomial

The probability mass function of the negative binomial distribution is

p.x/ D
.n C x � 1/Š

xŠ.n � 1/Š
pn.1 � p/x

for x 2 f0; 1; : : : g.

Parameters:

n is a positive integer � 1 which represents the number

of successes in a series of independent Bernoulli trials.

p 2 .0; 1/ is the probability of success on each trial.

Poisson

The probability mass function of the Poisson distribution is

p.x/ D
e���x

xŠ

for x 2 f0; 1; : : : g.

Parameter:

� is the mean, � > 0.

Continuous Distributions F 191

Continuous Distributions

Beta

The density function of the beta distribution is

f .x/ D
�.˛ C ˇ/

�.˛/�.ˇ/.b � a/˛Cˇ�1
.x � a/˛�1.b � x/ˇ�1

for a � x � b. The gamma function �.z/ is defined for any real number z > 0 as

�.z/ D

Z 1

0

tz�1e�tdt

Parameters:

a is the minimum value, a < b.

b is the maximum value.

˛ > 0 is a shape parameter.

ˇ > 0 is a shape parameter.

Chi-Square

The chi-square distribution with k degrees of freedom is the same as the gamma distribution with
˛ D

k
2

and � D 2.

Parameter:

k is an integer � 1 which represents the degrees of freedom.

Erlang

The Erlang distribution is a special case of the gamma distribution. The density function of the
Erlang distribution is

f .x/ D
1

.k � 1/Š
�kxk�1e� x

�

192 F Appendix B: Random Variation in a Model

where x � 0.

Parameters:

� is a real number > 0.

k is an integer � 1.

If X1; X2; : : : ; Xk are independent exponential random variables with mean �, then X1 C X2 C

� � � C Xk has the k-Erlang distribution.

Exponential

The density function of the exponential distribution is

f .x/ D
1

�
e� x

�

where x � 0.

Parameter:

� is the mean, � > 0.

Gamma

The density function of the gamma distribution is

f .x/ D
��˛x˛�1e� x

�

�.˛/

where x � 0. The function �.z/ is defined in the section “Beta” on page 191.

Parameters:

˛ is the shape parameter, ˛ > 0.

� is the scale parameter, � > 0.

Johnson Bounded Distribution (JohnsonSB)

The density function of the Johnson bounded distribution (JohnsonSB) is

Johnson Unbounded Distribution (JohnsonSU) F 193

f .x/ D
ı

�
p

2�
g0

�
x � �

�

�
exp

�

1

2

�

 C ı C

�
x � �

�

��2
!

where

g.y/ D ln
�

y
1�y

�
g0.y/ D

1
y.1�y/

and x 2 Œ�; � C ��.

Parameters:

ı (delta) is a shape parameter, ı > 0.

 (gamma) is a shape parameter.

� (xi) is the location parameter.

� (lambda) is the scale parameter, � > 0.

Johnson Unbounded Distribution (JohnsonSU)

The density function of the Johnson unbounded distribution (JohnsonSU) is

f .x/ D
ı

�
p

2�
g0

�
x � �

�

�
exp

�

1

2

�

 C ı C

�
x � �

�

��2
!

where

g.y/ D ln
h
y C

p
y2 C 1

i
g0.y/ D

1p
y2C1

and x 2 .�1; 1/.

Parameters:

ı (delta) is a shape parameter, ı > 0.

 (gamma) is a shape parameter.

� (xi) is the location parameter.

� (lambda) is the scale parameter, � > 0.

194 F Appendix B: Random Variation in a Model

Lognormal

The density function of the lognormal distribution is

f .x/ D
1

x
p

2��2
exp

�
�.ln.x/ � �/2

2�2

�
where x > 0.

Parameters:

� is the mean of ln.x/ � Normal.�; �2/.

� is the standard deviation of ln.x/ � Normal.�; �2/, � > 0.

Normal

The density function of the normal distribution is

f .x/ D
1

p
2��2

e
�.x��/2

2�2

for all real values of x.

Parameters:

� is the mean, � 2 .�1; 1/.

� is the standard deviation, � > 0.

Pearson Type V

The Pearson Type V distribution has the same density function as the gamma distribution with shape
parameter ˛ and scale parameter � D

1
ˇ

.

Parameters:

˛ is the shape parameter, ˛ > 0.

ˇ is the scale parameter, ˇ > 0.

Pearson Type VI

The density function of the Pearson Type VI distribution is

Triangular F 195

f .x/ D

�
x
ˇ

�˛1�1

ˇG.˛1; ˛2/
h
1 C

�
x
ˇ

�i˛1C˛2

where x > 0 and

G.˛1; ˛2/ D
�.˛1/�.˛2/

�.˛1 C ˛2/

The function �.z/ is defined in the section “Beta” on page 191.

Parameters:

˛1 is a shape parameter, ˛1 > 0.

˛2 is a shape parameter, ˛2 > 0.

ˇ is a scale parameter, ˇ > 0.

If X1 and X2 are independent random variables with X1 � Gamma.˛1; ˇ/ and X2 �

Gamma.˛2; 1/, then Y D
X1

X2
� PearsonTypeVI.˛1; ˛2; ˇ/.

Triangular

The density function of the triangular distribution is

f .x/ D

(
2.x�a/

.m�a/.b�a/
a � x � m

2.b�x/
.b�m/.b�a/

m < x � b

where a, b, and m are real numbers with a < m < b.

Parameters:

a is the minimum.

b is the maximum.

m is the mode.

Uniform

The density function of the uniform distribution is

196 F Appendix B: Random Variation in a Model

f .x/ D

(
1

b�a
a � x � b

0 otherwise

where a and b are real numbers with a < b.

Parameters:

a is the minimum.

b is the maximum.

Weibull

The density function of the Weibull distribution is

f .x/ D ˛ˇ�˛x˛�1e�. x
ˇ

/˛

for x > 0.

Parameters:

˛ is the shape parameter, ˛ > 0.

ˇ is the scale parameter, ˇ > 0.

Appendix C

Design of Experiments

Contents
Define Factors and Responses . 197
Set Model Anchors . 198
Set Up the Experiment Window . 200
Generate a Design Using JMP Software . 202
Run the Experiment . 203
Analyze the Simulated Results . 204

This chapter uses the repair shop example in Chapter 1, “Overview of SAS Simulation Studio,”
to demonstrate how you can use JMP software to generate experimental designs for a Simulation
Studio model. One of the goals in that example is to ease the bottleneck at the quality control
station. Suppose you have the option of adding additional workers at the service desk, repair desk,
and quality control station so that each station can have one, two, or three workers. These are the
factors of your experiment. The responses you could monitor are the average utilizations at all
three stations (to make sure workers are not idle or overworked), the number of fixed parts, and the
average waiting time at each of the three stations. Since you now have three factors, each defined
at three levels, you might want to generate an experimental design (such as a full or fractional
factorial design) to guide your simulation runs. This is a more efficient way to explore the effects
of different parameters on your model responses than just randomly selecting combinations of your
factor values to try. You can do this with the Simulation Studio Experiment window and JMP
software.

Define Factors and Responses

To set up your experimental design, first define three factors for the project: NumQC, NumRepair,
and NumService to represent the number of workers at each of the three stations. See Chapter 4,
“Experiments,” for more details about factors. To define the factors, first right-click the project
name in the project window and select Factors to open the Factor Creation dialog box. Also define
seven responses for the project by right-clicking the project name again and selecting Responses to
open the Response Creation dialog box. Figure C.1 and Figure C.2 show the Factor Creation and
Response Creation dialog boxes for the repair shop model.

198 F Appendix C: Design of Experiments

Figure C.1 Factor Creation Dialog Box

Figure C.2 Response Creation Dialog Box

Set Model Anchors

After you have established the database of factors and responses for the project, you need to link
each factor and response to a specific block in the model. To do this, right-click in the Model
window and select Anchors to open the Anchors dialog box. Click New to open the New Anchor
dialog box where you can link a block in your model to your defined factor. For example, as shown
in Figure C.3, the capacity of the Service Desk block is linked to the factor NumService. The

Set Model Anchors F 199

responses are linked to blocks in a similar fashion, as shown in Figure C.4. You can also define new
factors and responses for the project directly from the New Anchor window.

Figure C.3 Factor Anchors

200 F Appendix C: Design of Experiments

Figure C.4 Response Anchors

Set Up the Experiment Window

After all factors and responses have been linked to blocks in the model, you need to include them
in the experiment. To include factors, right-click in the Experiment window and select Factor
Inclusion. In the Factor Inclusion dialog box, you can select the factors defined for your project
that you want to include in the experiment. See Figure C.5. Include responses in the experiment in
similar fashion by right-clicking in the Experiment window and selecting Response Inclusion. See
Figure C.6.

The Experiment window with all factors and responses included is shown in Figure C.7. The end
time for all design points has been changed to 2700 minutes, and the number of replications has been
changed to 5 by right-clicking in the Experiment window and selecting Properties. The Properties
dialog box for the Experiment window enables you to set default values for StartTime, EndTime,
and Replicates. Each new design point has the default values for these parameters.

Set Up the Experiment Window F 201

Figure C.5 Including Factors in the Experiment

Figure C.6 Including Responses in the Experiment

Figure C.7 Experiment Window with Factors and Responses Included

202 F Appendix C: Design of Experiments

Generate a Design Using JMP Software

Now you are ready to generate a JMP experimental design. First, ensure that the JMP server has
been launched. See Chapter 2, “Introduction to SAS Simulation Studio.” Then, right-click in the
Experiment window and select Make Design from the pop-up menu. To use the Make Design
option, the Experiment window must include at least one factor and one response. The default
design created by the JMP custom designer is automatically passed back to the Experiment window
in Simulation Studio. You can alter the JMP design by adding additional design points, replicates, or
interaction terms. See the JMP documentation for specific information about design of experiments.
However, you must create all factors and responses in Simulation Studio since they must be linked
to specific model blocks. If you create new factors or responses in the JMP program, they will not
be passed back to Simulation Studio. If any changes are made to the JMP design, you must click the
Commit button in the JMP Simulation Studio DOE window to automatically pass the new design
back to Simulation Studio. Figure C.8 shows the JMP Simulation Studio DOE window with the
Commit button in the top left corner.

Run the Experiment F 203

Figure C.8 JMP Simulation Studio DOE Window for the Repair Shop Model

Run the Experiment

To run the experiment in Simulation Studio, highlight all the rows in the table by holding down the
left mouse button on the first design point and dragging the mouse to highlight all the remaining
design points. Now click the Play icon on the toolbar to run all replications of all the design points.

Figure C.9 shows the Experiment window after running all 12 design points. By default, the value
reported for each response is the average over all five replications. To view the minimum or max-
imum value over all replications, right-click in the column header for a response and select Sum-
mary. The resulting dialog box enables you to display the average, minimum, or maximum value
for the selected response. You can view the individual response values for each of the five repli-
cations for each design point by clicking the blue arrow next to the number of replications within

204 F Appendix C: Design of Experiments

a design point. Figure C.10 shows the five replications for design point 1. To hide the replication
results, click the blue arrow again.

Figure C.9 Experiment Window Showing Simulated Results

Figure C.10 Experiment Window Showing Results for All Five Replications of Design Point 1

Analyze the Simulated Results

From the results in Figure C.9, design point 6 (which represents three workers at quality control,
one worker at the repair desk, and two workers at the service desk) seems to satisfy the goal of
reducing the bottleneck at the quality control station while providing a reasonable balance between
the waiting time and the utilization at all three stations. However, you can also use the JMP soft-
ware to conduct a more formal statistical analysis of the results. For example, you can estimate a
statistical model (or metamodel) that can be used for prediction purposes.

To pass the simulated results in the Experiment window back to the JMP GUI, right-click in the
Experiment window (be sure the Reset button has been pushed) and select the Analyze Results
option. This automatically creates a JMP data table with the results for all replications of all the
design points. The Experiment window must include at least one factor and one response in order
to use the Analyze Results option. Note that the JMP table for this experiment has 60 rows, one for
each of the five replicates for each design point. See Figure C.11.

Analyze the Simulated Results F 205

To fit a model to the results, click Model and then Run Script in the JMP Simulation Studio DOE
Analyzer window to open the Model Specification window. See the JMP documentation for specific
details about how to estimate models.

Figure C.11 JMP Simulation Studio DOE Analyzer Window

From the JMP Simulation Studio DOE Analyzer window, you can also choose to augment the
design. Select the Run Script option from the Augment This Design menu (in the upper left
corner of Figure C.11) to open the JMP Augment Design window. See Figure C.12. See the JMP
documentation for details about using the JMP augment design feature. If you make any changes
in the Augment Design window, you can click Commit to pass the augmented design back to
Simulation Studio. Figure C.13 shows the Experiment window in Simulation Studio after selecting
the JMP default augmented design. Six design points are added, and one replication is added to
design point 2.

You can run the new design points by highlighting all rows in the Experiment window and then
clicking Augment on the Run menu or the Augment icon on the toolbar. Only points with new or
additional replications (such as point 2) are run. For example, one additional run of point 2 is made,
and then the new points 13–18 are run. Notice that the design points in the Experiment window
might now be in a different order than they were before augmenting the design. For example,
design point 1 in Figure C.10 is now design point 4 in Figure C.13, but the results are the same.

206 F Appendix C: Design of Experiments

Figure C.12 JMP Augment Design Window

Figure C.13 Experiment Window after Using the JMP Augment Design Feature

Appendix D

Input Analysis

Contents
Overview of Input Analysis . 207
Input Analysis Using JMP Software . 207

Overview of Input Analysis

When you build a simulation model of a system, part of the process is likely to include analyzing
data in various formats so that they can be used as inputs to drive the simulation model. This
data might be in the form of raw data sets that must be read directly by the simulation model or
from which a statistical distribution must be estimated and then sampled in the model. In any case,
extreme care must be taken to determine appropriate inputs for a simulation model because the
accuracy of a model’s output data is directly dependent on how accurately the inputs are estimated.

Input Analysis Using JMP Software

In the case where data are available and you want to estimate a statistical distribution from them,
you can use the JMP distribution fitting tool. From Simulation Studio, you can quickly access
the JMP distribution fitting tool by selecting Input Analysis from the Analyze menu, as shown
in Figure D.1. Before you select this option, make sure the JMP server has been launched. (See
the section “Launching SAS and JMP Servers” on page 18 in Chapter 2, “Introduction to SAS
Simulation Studio,” for details.)

Figure D.1 Input Analysis Menu Entry

208 F Appendix D: Input Analysis

After you select Input Analysis, Simulation Studio displays a message box to alert you that the
JMP server is waiting for input from you. (See Figure D.2.)

Figure D.2 JMP Request Message

After you click OK in this message box, change focus to your JMP window where you are directed
to an Open Data File dialog box. In this dialog box, select the location of the data file that you want
to analyze. After you open the data file, the JMP distribution fitting tool opens and you then select
appropriate variables from your data set. Figure D.3 shows an example of this step for a data set
that contains one variable labeled bvar.

Figure D.3 JMP Distribution Fitting Dialog

After you have selected the data set and variables, you can use the JMP distribution fitting tool to
estimate an appropriate statistical distribution for the data. See the JMP documentation for specific
information about fitting distributions to data. After you have decided on the distribution you want
to use to approximate your data, you select the entry for that distribution in the appropriate Numeric
Source Block Properties dialog box in your Simulation Studio model. You then manually enter

Input Analysis Using JMP Software F 209

the parameters for that distribution into the appropriate fields in the dialog box. Note that the
JMP definition for some distributions might be different from the Simulation Studio definition, so
be careful when mapping distribution parameters from a JMP distribution to a Simulation Studio
distribution. It is also possible that JMP software provides support for distributions that Simulation
Studio does not, and vice versa.

210

Appendix E

Examples of Simulation Studio Models

Contents
Overview of Simulation Studio Model Examples 211
A Simple M/M/1 Queueing Model . 211
Routing to Shortest Queue . 213
Reneging from a Queue . 217
Repair Shop Model . 220
PERT Network Model . 222
Priority-Based Preemption of Service . 225
A Model of an Incoming Call Center . 228
Modeling Assembly Operation and Parts Inventory System 231
Using the SAS Program Block to Analyze Simulation Results 235

Overview of Simulation Studio Model Examples

This chapter provides examples of several modeling structures and illustrates uses and combinations
of various blocks. The examples are meant only to show how you can use Simulation Studio to
model various applications. They are not meant to show how you would analyze or evaluate these
models or identify optimal parameterizations. The actual model construction process is not included
in these example descriptions.

A Simple M/M/1 Queueing Model

Chapter 1, “Overview of SAS Simulation Studio,” first introduced this example, and it is discussed
here because of its wide applicability. An M/M/1 queueing model can be used to represent many
different real-life situations such as customers checking out at a supermarket, customers at a bank,
and so on. This model illustrates the basic concepts involved in building models in Simulation Stu-
dio, and it is a good starting point for constructing more sophisticated models. In some ways this
example is analogous to the “hello, world” introductory example used to illustrate many program-
ming languages.

212 F Appendix E: Examples of Simulation Studio Models

Figure E.1 An M/M/1 Queueing Model

The details for building and running the M/M/1 queueing model depicted in Figure E.1 are provided
in Chapter 1, “Overview of SAS Simulation Studio”; rather than repeating them here, this section
provides suggestions for experimenting with this model to familiarize yourself with various features
and functionality in Simulation Studio.

This model provides a good vehicle for acquainting yourself with the Log and Trace features in
Simulation Studio. If you delete the link between the blocks labeled Interarrival Time and Arriving
Customers and then attempt to run the model, a SEVERE level message is posted to the log with
the description “Arriving Customers has no inter-arrival time connections.” The model does not run
because SEVERE log messages always halt the execution of the simulation model.

Reconnect the Interarrival Time and Arriving Customer blocks and change the distribution asso-
ciated with the Interarrival Time block to one that is likely to produce negative numbers, such as
the uniform distribution with parameters min=–2 and max=2. When you run the model now, you
see WARNING messages posted to log with the message “Arriving Customers inter-arrival time
value is negative; using 0.0 instead.” The simulation continues to run after WARNING messages
are posted.

If you enable the Tracer (Chapter 9, “Log and Trace”) and then run the model, trace messages
are generated by the various blocks and displayed in the Trace window. Each line in the Trace
window contains the name of the block that creates the message and a short description of the
event. An example trace message here might be “Numeric Source: Sampling, value = 0.136.” The
Tracer facility can generate many, many trace messages. See the section “Tracing Configuration”
on page 85 for details about how to reduce the number of generated trace messages.

Routing to Shortest Queue F 213

You can also use this model to practice defining factors, responses, and anchors and then use them
to set up a simple experiment. Details are found in Chapter 4, “Experiments.” For this example
you can define a factor for changing the capacity of the Teller block and a response for recording
the average wait time at the Queue block. After you create anchors between the new factor and
response to the appropriate blocks in the model, you can include the factor and response in an
Experiment window. After the factor and response are included in an Experiment window, you can
create multiple design points with different values for the capacity factor, run the experiment, and
compare the results.

It is easy to extend this M/M/1 model to incorporate many other Simulation Studio blocks and
features such as data collection, plots, and so on to familiarize yourself with these capabilities so
that you can apply them later in more sophisticated models.

Routing to Shortest Queue

This example demonstrates how to use Switch and Formula blocks to route entities to the queue that
has the shortest length when multiple queues are available. It also uses the Queue Stats Collector
block, the Bucket block, and various Plot blocks to illustrate statistics collection and visualization.
Entities are created according to an exponential distribution with a mean of 1. Figure E.2 shows
three queues in which entities wait for a single server. Entities are routed to the queue with the
shortest length. If all three queues have the same length, the entity routes to Queue1. The time
it takes for each entity to be served is sampled from an exponential distribution with a mean of
1. The simulation is run for 5,000 time units, and the Entity Generator block shuts down after
4,970 time units to make sure that entities are being pulled from all three queues. (By default, the
server checks Queue1 first to determine whether any entities are waiting, and then Queue2, and then
Queue3. Thus entities move out of Queue3 only if Queue1 and Queue2 are empty.)

214 F Appendix E: Examples of Simulation Studio Models

Figure E.2 Routing Example

After the Entity Generator block creates an entity, the entity flows to the Switch block for routing
to the desired queue. When an entity arrives at the Switch block, the Switch block pulls a value
from the Formula block attached to the Switch block’s InData port. Figure E.3 shows the Formula
block’s expression. The Formula block pulls the queue length from each of the queues in the model
and then returns a value of 1, 2, or 3 (indicating the shortest queue) to the Switch block based on
the comparison of the queue lengths.

Routing to Shortest Queue F 215

Figure E.3 Routing Formula

The Switch block attempts to match the value returned by the Formula block with the cases defined
on the Switch block. (See Figure E.4.) The entity is then pushed out the port associated with the
matched case.

Figure E.4 Routing Switch Cases

When the Server block becomes available, it attempts to pull an entity from a link connected to its
InEntity port. In this example, three links are connected to the Server block’s InEntity port. By
convention in Simulation Studio, the pull is attempted from the first link connected to the Server
block’s InEntity port during the model construction process. If this is unsuccessful, the Switch
block attempts to pull from the second link, and so on. In this example, the link from Queue1 to the

216 F Appendix E: Examples of Simulation Studio Models

Server block was created first, followed by the link from Queue2 to the Server block, and finally
from Queue3 to the Server block.

Figure E.5 shows the model in Figure E.2, extended to use the Queue Stats Collector block and the
Bucket block to collect statistics and data.

Figure E.5 Sample Routing Example Results

The Bucket block is configured to collect the age attribute of every entity that passes through it and
store the value in a SimDataModel. The SimDataModel is passed to a Histogram block where the
user has selected to display a histogram of the age variable from the incoming SimDataModel.

The Queue Stats Collector block in the model has been configured to collect data on all three queues.
(See Figure E.6.)

Reneging from a Queue F 217

Figure E.6 Queue Stats Collector Dialog Box

By default, the Queue Stats Collector block saves the following information for each queue it mon-
itors:

Time time the statistic was recorded

BlockName name of the queue

BlockId numeric ID of the queue

InCount number of entities that enter the queue

OutCount number of entities that exit the queue via the OutEntity port

BalkCount number of entities that exit the queue via the OutBalk port

RenegeCount number of entities that exit the queue via the OutRenege port

QLength length of the queue at time Time

AvgQLength average length of the queue

MaxQLength maximum length of the queue

AvgWait average wait time in the queue

MaxWait maximum wait time in the queue

The data is saved in a SimDataModel that is accessible through the OutData port of the Queue Stats
Collector block. For this example the Queue Stats Collector block sends its SimDataModel to a Bar
Chart block, where the AvgQLength is displayed for each queue. (See Figure E.5.)

Reneging from a Queue

This model demonstrates the reneging feature of a Queue block along with the use of the Modifier,
Extractor, and Gate blocks. Two very different applications of the Extractor block are depicted in

218 F Appendix E: Examples of Simulation Studio Models

this example. A special feature of the Number Holder block is also illustrated here.

This example models a queueing system in which customers arrive randomly over time with one
server to process customers. Individual customers wait in the queue for service on a first-in-first-out
basis.

After waiting 5 minutes in the queue, a customer reneges (that is, leaves the queue and the system)
if the amount of time that customer requires for service is greater than 3.5. The goal is to estimate
the average time between customers who renege.

Figure E.7 Reneging Example

The arrival of customers is modeled by using an Entity Generator block with a Numeric Source
block attached to its InterArrivalTime port. In the Numeric Source block, an exponential distribution
with a mean of 5 is specified.

After entities are generated, they are sent to a Modifier block where an attribute called servicetime
is assigned. The servicetime for each entity is sampled from an exponential distribution with a
mean of 4.651. (The Extractor block immediately following the first Modifier block is used only to
verify that the value is set in the Modifier block; it serves no other purpose in this model.)

Next the entities are sent to the Queue block (FIFO policy). As each entity enters the queue, a renege
time is computed and assigned using a Formula block. Figure E.8 shows the properties dialog box
for the Formula block connected to the Queue block. In the Formula block, the servicetime attribute
for the entity is compared to the value 3.5. If the servicetime is greater than 3.5, then a renege time

Reneging from a Queue F 219

of 5 is returned. Otherwise, a very large renege time (specifically, 5,000,000) is returned. For those
entities with a servicetime of 3.5 or less, their renege time is set sufficiently large to ensure that
they wait until they can be serviced and do not leave the queue. Note that the reneging option in the
Queue block properties dialog box must be selected for reneging to be used by the queue.

Figure E.8 Renege Time Formula Dialog Box

Entities that do not renege are processed in the Server block. The InServiceTime port of the Server
block is connected to an Extractor block. When an entity arrives at the Server block, the Server
block passes the entity to the Extractor block. The Extractor block extracts the servicetime attribute
from the entity and passes the value to the Server block for use as the server processing time. Note
that use of the Extractor block here does not require connections to its InEntity or OutEntity ports.

Entities that renege from the Queue block are sent out its OutRenege port, and the time at which they
renege is stored in the entity by using a Modifier block. In this Modifier block the entity attribute
renegetime is assigned the value Time Now. The entity is then sent to a Count block to determine
whether it is the first entity to renege. The value of Count is passed to a Switch block. If the entity is
the first entity to renege, the Switch block returns a value of 1 and the entity is sent to an Extractor
block where the renegetime attribute value is extracted and passed into the Number Holder block
labeled Last Renege Time.

If the entity is not the first entity to renege, it is sent to a Gate block, and a Formula block com-
putes the time between reneging entities by subtracting the previous entity’s renegetime from the
current entity’s renegetime. The renegetime for the previous entity is stored in the Number Holder
block labeled LastRenegeTime. In order for this computation to work, the From Upstream option
in the LastRenegeTime Number Holder block properties dialog box must be cleared, as shown in
Figure E.9. If the From Upstream option is selected, then the Number Holder block pulls a value
from upstream, which in this case means it pulls the value from the Extractor block. If this hap-
pens, the value of the previous entity’s renegetime is replaced with the current entity’s renegetime,
resulting in a value of zero for the time between reneging customers.

220 F Appendix E: Examples of Simulation Studio Models

Figure E.9 LastRenegeTime Number Holder Dialog Box

After the time between reneging entities is computed, the value is passed from the Gate block to
the Number Holder block labeled AvgTimeBetweenRenegingEntities. The entity is then sent to the
Extractor block. The renegetime attribute for the entity is extracted and sent to the Number Holder
block LastRenegeTime, to be used when the next entity reneges from the system. The entity is then
destroyed.

Repair Shop Model

Like the M/M/1 Queueing Model example discussed earlier, this model was also first introduced
in Chapter 1, “Overview of SAS Simulation Studio,” and the details and motivation for the model
are found there. This section presents several possible enhancements to the original Repair Shop
Model, which is shown in Figure E.10.

Repair Shop Model F 221

Figure E.10 The Repair Shop Model

One change to this model might be to add an attribute (named PartType) to the Part entities and
then use this attribute to dynamically generate a service time for a particular Part entity at each of
the Server blocks in this model. To accomplish this you could insert a Modifier block between the
first Arrivals block and the first Delay block and assign a PartType attribute to each Part entity. This
attribute could be a numeric or character code that uniquely identifies the various part types. You
could then replace any or all of the Numeric Source blocks linked to the Server blocks (for example,
Service Desk) with a Formula block and create an expression in the Formula block to generate a
numeric value for the service time based on the PartType attribute in the incoming entity.

Another possible enhancement to the model might be to reroute some Part entities back to the
RepairDeskQ block after the Quality Control block to simulate failures at Quality Control that
require repairing the part again. Adding another Chance compound block between the Quality
Control Server block and the Fixed block and configuring it to reroute some Part entities back to the
RepairDeskQ block could achieve this functionality.

The Repair Shop model also provides an appropriately sized model for exploring the Simulation
Studio linkage with the JMP routines for design of experiments. You could define factors for the
capacity values for each of the Server blocks (Service Desk, Repair Men, Quality Control) and
define responses for the waiting times at each of the Queue blocks (ServiceDeskQ, RepairDeskQ,
QualityControlQ) and utilization rates at each of the Server blocks. (Details for defining factors and
responses are found in Chapter 4, “Experiments.”) After you include these factors and responses

222 F Appendix E: Examples of Simulation Studio Models

in an Experiment window associated with the model, you can select Make Design from the Exper-
iment window pop-up menu to retrieve the default experimental design for these factors from the
JMP software. (This assumes you have previously launched the JMP server to establish the connec-
tion to Simulation Studio.) After running the experiment you can pass the recorded experimental
results back to the JMP package for analysis by selecting Analyze Results from the Experiment
window pop-up menu. See the JMP software documentation for more information about using JMP
software to analyze data.

PERT Network Model

This example is a program evaluation and review technique (PERT) network model of a repair and
retrofit project. All activity times are assumed to be triangularly distributed. The activities relate to
power units, instrumentation, and a new assembly, and they involve standard types of operations.

At the beginning of the project, three parallel activities can be performed: the disassembly of power
units and instrumentation (Activity 1), the installation of a new assembly (Activity 2), and the
preparation for a retrofit check (Activity 3). Cleaning, inspecting, and repairing the power units
(Activity 4) and calibrating the instrumentation (Activity 5) can be done only after the power units
and instrumentation have been disassembled. Thus, Activities 4 and 5 must follow Activity 1 in the
network. Following the installation of the new assembly (Activity 2) and after the instruments have
been calibrated (Activity 5), a check of interfaces (Activity 6) and a check of the new assembly
(Activity 7) can be made. The retrofit check (Activity 9) can be made after the assembly is checked
(Activity 7) and the preparation for the retrofit check (Activity 3) has been completed. The assembly
and test of power units (Activity 8) can be performed following the cleaning and maintenance of
power units (Activity 4). The project is considered completed when all nine activities are completed.
Since Activities 6, 8, and 9 require the other activities to precede them, their completion signifies
the end of the project. The goal is to estimate the project completion time.

PERT Network Model F 223

Figure E.11 PERT Network Model

This model uses a common compound block (which consists of a Numeric Source block and a
Delay block) to model the individual activities. Figure E.12 shows the structure of this compound
block.

Figure E.12 PERT Model Activity Compound Block

As was mentioned earlier, a triangular distribution is associated with each Numeric Source block.
The distributional parameters for each of the activities are shown in Figure E.13.

224 F Appendix E: Examples of Simulation Studio Models

Figure E.13 PERT Model Activity Table

A Clone block is used to initiate parallel activities. When an entity enters a Clone block, the Clone
block makes copies of the original entity and sends them out its various ports, depending on the
cloning directives in Clone block. Figure E.14 shows the cloning directives for the first Clone block
an entity encounters in this model. This Clone block has two additional output ports and sends
one cloned entity out each port. This simulates the initiation of the disassembly of power units and
instrumentation (Activity 1), the installation of a new assembly (Activity 2), and the preparation for
a retrofit check (Activity 3) from the initial entity.

Figure E.14 PERT Network Cloning Directives

The combination of a Counter block with a Switch block is used in multiple places in the model.

Priority-Based Preemption of Service F 225

The Counter block simply counts how many entities have flowed through it and makes this count
available via its OutCount port. Every time an entity enters a Switch block, the Switch block pulls
the count value from its associated Counter block and then routes the entity accordingly. Each
Switch block is essentially waiting until N entities have reached it (indicating completion of all
preceding activities) before initiating the next activity in the model.

Each execution of the simulation model results in one estimate of how long it might take to complete
the project. A large number of replications of the model execution are needed to produce enough
data to construct a valid estimate for project completion time.

Priority-Based Preemption of Service

This example illustrates how to use several of the more advanced Simulation Studio blocks (Gate,
Clone, Entity Group, Entity Filter) to model a system in which higher-priority customers can pre-
empt lower-priority customers who are already receiving service. The preempted customers do not
leave the system but instead wait for a server to become available again so that they can complete
their service at a later time. Figure E.15 below depicts this model.

Figure E.15 Priority-Based Preemption Example

Entities are created by two distinct Entity Generator blocks—one for Priority 1 (lower priority) and

226 F Appendix E: Examples of Simulation Studio Models

one for Priority 2 (higher priority). Five Priority 1 entities are created (arrive) at time zero and five
Priority 2 entities arrive one per time unit, starting at time 2. All entities are created from the entity
type named Arrival, defined for this model with additional attributes ServiceTime and Priority, as
shown in Figure E.16. ServiceTime for each entity is assigned a value of 10 units, and the Priority
attribute is defined with a default value of 0 that is overwritten with 1 or 2 by the respective Entity
Generator blocks.

Figure E.16 Entity Types Dialog Box for the Priority-Based Preemption Model

The entities enter a Queue block (Priority queueing policy) and await service from one of three
servers. Priority 1 entities enter the Queue block immediately, but due to the fact that Priority 2
entities can preempt Priority 1 entities, their path (through the Preemption Logic section of the
model) is more complex. A Priority 2 entity first enters a Switch block that receives input on
available servers in the Server block (via output from the OutAvailable port on the Server block, fed
through a Number Holder block for monitoring and then via a Formula block that evaluates whether
the number of available servers is zero or positive). If a server is available, then the entity is routed
to the Priority Queue block via a Connector; if no server is available, then the model must check to
see whether a Priority 1 entity is currently in service that can be preempted.

First, the Priority 2 entity is sent through a Clone block, which creates an additional copy of the
entity. The original entity is routed to the Priority Queue block via the Connector, awaiting possible
preemption of a Priority 1 entity, while its clone is sent to a Gate block. The Gate block is designed
to pull and push values each time an entity passes through it. In this case, the Gate block pushes
a true value to the InUpate port of an Entity Group block, causing it to pull values to create a new
entity group. This link is made via Connectors for visual simplicity. This Entity Group block is
intended to identify one Priority 1 entity in service that can be preempted. It pulls values from
the OutHoldings port of the Server block, which supplies data on entities currently in service, and
selects one with Priority value less than 2, as shown in the properties dialog box in Figure E.17.

Priority-Based Preemption of Service F 227

Figure E.17 Properties Dialog Box for Entity Group Block

This dialog box specifies that the group be created from entities with a Priority value less than 2
(here, that is equivalent to Priority=1) and that the group has a maximum count of 1. Thus the Entity
Group block either identifies a single Priority 1 entity currently in service that can be preempted or
finds that none exists. In either case, it sends its entity group (with either one member or none)
back to the Gate block via a connection between the OutSubgroup1 port of the Entity Group block
and the InServiceIn port of the Gate block. The Gate block then sends the entity group out its
InServiceOut port to the InPreempt port of the Server block, effectively telling the Server block
which in-service entity (if any) it should preempt.

The InServiceIn and InServiceOut ports on the Gate block are created by defining an attribute
InService for the Gate block with type Entity Group; the InSignal port is created similarly by
defining a Boolean attribute Signal. A corresponding OutSignal port is also created but is not
needed in this model. The properties dialog box for the Gate block is shown in Figure E.18. Note
that the checked box in the Default column for Signal indicates that its value is true by default—
needed in order to signal the Entity Group block to attempt to find a Priority 1 entity to preempt.

228 F Appendix E: Examples of Simulation Studio Models

Figure E.18 Defining InService and Signal Attributes for the Gate Block

A Model of an Incoming Call Center

This example demonstrates the use of both regular entities and resource entities to model the oper-
ations and performance of an incoming call center, in which a finite number of telephone lines are
allocated among callers who want to conduct one of two types of business. Several of the standard
Simulation Studio blocks are used along with some advanced blocks and some blocks specialized
for resource entities. The model is shown in Figure E.19. Callers choose whether to use the call
center’s automated call routing system or to speak with an operator. They also choose one of two
activities: placing an order or speaking with customer service. Calls might be lost initially due to a
lack of open phone lines (the caller gets a busy signal) or when a caller is forced to wait an excessive
amount of time to speak with an operator or service representative.

A Model of an Incoming Call Center F 229

Figure E.19 Incoming Call Center Model

NOTE: Although the time units of the simulation clock in Simulation Studio do not denote any
specific time units, for the purposes of this model each time unit represents one second.

The Manage Phone Lines section of the model creates and maintains the resource entities in this
model, representing the available telephone lines in the call center. An Entity Generator block
creates 15 Telephone Line resource entities at time zero and routes them to the Resource Pool block
labeled Phone Lines; the Number Holder block attached to its OutLength port reports the current
number of available lines.

In the Call Arrival section, incoming calls are created as regular entities. Calls arrive via an Entity
Generator block according to an exponential distribution with mean 30. Each entity is created as a
member of an entity type named Caller, with an attribute named Choice that is used to designate the
type of business that the caller wishes to conduct. A second attribute, Operator, specifies whether
the caller wishes to speak with an operator or use the automated routing system solely.

These Caller entities proceed immediately to a Seize block, which attempts to allocate one Tele-
phone Line resource entity to the Caller entity. If no telephone lines are available, the caller receives
a busy signal and hangs up; this is modeled by the Caller entity exiting its Entity Generator block
via the OutBalk port to a Disposer block. A Number Holder blocks tallies these calls.

If a Telephone Line is allocated, the Caller entity moves next to the Route Call section of the model.
A Delay block simulates the time (5 seconds) taken by the initial dialogue of the automated an-
swering system, and the Caller entity moves next to a Modifier block that randomly assigns values
to the Choice attribute (1=place order, 2=customer service) and the Operator attribute (0=use au-
tomated system, 1=speak with operator). An Entity Filter block checks the value of the Operator

230 F Appendix E: Examples of Simulation Studio Models

attribute, and routes the Caller entity accordingly. The properties dialog box for this Entity Filter
block, shown in Figure E.20, show that it simply checks whether the value of Operator is equal to
zero.

Figure E.20 Properties Dialog Box for Entity Filter

If the caller prefers to speak with an operator (the value of the Operator attribute is not zero), the
Caller entity is routed to the lower section of the model, which consists chiefly of a Queue block
(FIFO queueing policy) and a Server block (capacity 2, indicating two operators on staff). The
Caller entity might renege from this queue, indicating a hang-up by a caller who has been waiting
too long to speak with an operator. The distribution of the renege time is uniformly distributed
from 75 to 120; this indicates that each caller waits at this point between 75 and 120 seconds before
hanging up. Service time with an operator is exponentially distributed with mean 45 seconds.

If the caller hangs up while awaiting an operator, the Caller entity passes out the OutRenege port of
the Queue block to a Release block that frees up the Telephone Line resource entity, sending it back
to the Phone Lines Resource Pool block via a Connector. The Caller entity proceeds to a disposer,
is counted, and exits the system.

If the caller completes service with the operator, the Caller entity moves next to the Operator Switch
block, which routes the Caller entity according to the value of the Choice attribute. An identical
Switch block, labeled Automatic, is encountered by Caller entities that exit the Entity Filter block
with an Operator attribute value of zero. These two Switch blocks could easily be combined but
are modeled separately for the sake of clarity.

The Switch blocks route Caller entities to either the Order queue or the Cust. Svc. queue, both
located in the upper right corner of the model. The model is identical in each case, except for

Modeling Assembly Operation and Parts Inventory System F 231

differences in renege time and service time distribution parameters. For each, the Caller entity
might renege (the caller might hang up) and if so is routed (via a Connector) to the Hang Ups
section of the model. Otherwise the Caller entity eventually proceeds to the corresponding Server
block (capacity 4 for Order and 3 for Cust. Svc.) and then is routed (via a Connector) to the
Completed Calls section of the model.

In both the Hang Ups section and the Completed Calls section the treatment of the Caller entity
is identical. First, a Release block releases the Telephone Line resource entity back to the Phone
Lines Resource Pool block. Next, a Switch block routes the Caller entity to a specific Disposer
block and Number Holder block based on the value of the Choice attribute; this enables hang ups
and completed calls according to the type of service desired or provided.

The model is run for 86,400 seconds, equal to 24 hours of continuous operation of the call center.
Tracking of the number of busy signals, hang ups, and completed calls in each category can provide
invaluable information about the performance of the call center under varying conditions. This
model can be made even more useful by specifying key controls (number of lines, staffing levels,
service times, and so on) as factors and key performance indicators (the aforementioned counts,
staff utilization, queue lengths, and so on) as responses so that experimental design can be used to
create a number of different scenarios for which the simulation can be run and the results tracked.

Modeling Assembly Operation and Parts Inventory System

This example shows how regular entities and resource entities, along with both standard and
resource-oriented Simulation Studio blocks, can be used to model an assembly system and an as-
sociated parts inventory system. Each order (subassembly) arrives with a need for a given number
of each of two parts. The parts needed are withdrawn from inventory and the assembly operation is
executed; the completed order leaves the system. The parts inventories are checked and replenished
on a periodic basis. If the needed parts for an order are not immediately available, then the order
must await inventory replenishment before it can proceed to the assembly operation. The model of
this system is shown in Figure E.21.

232 F Appendix E: Examples of Simulation Studio Models

Figure E.21 Assembly and Parts Inventory Model

Entities that represent orders are created by the Entity Generator block labeled Order Arrival. Next,
a Modifier block creates attributes NumPart1 and NumPart2, which correspond to the quantities
of Part1 and Part2 needed, for each order, drawing values from the Numeric Source blocks in the
Part Requirements compound block. The order then proceeds to a Queue block (FIFO policy) where
it waits until its needed parts are available. The length of the queue is monitored.

Following the Queue block is a Seize block that executes the procurement of needed parts. For this
Seize block two resource ports, Part1 and Part2, were created as shown in the properties dialog box
in Figure E.22. Each defined resource port for a Seize block creates a resource entity input port
through which units of the corresponding resource entity enter the Seize block and are given to the
requesting entity (the order). Because the Units column for each port is left blank, an additional
entry port is created for each so that the Seize block can pull the needed units of each resource for
the current requesting entity. In this model, an Extractor block supplies the values of the NumPart1
and NumPart2 attributes.

Modeling Assembly Operation and Parts Inventory System F 233

Figure E.22 Properties Dialog Box for Seize Block

The order proceeds next to a Delay block that models the time needed for assembly (distributed uni-
formly between 30 and 60). Now assembly is complete, and a Release block releases the previously
seized units of the resource entities Part1 and Part2. In this case, since the parts are consumed dur-
ing the assembly operation, they are routed to a Disposer block upon release. If the resource entities
represented nondisposable resources, then they would be routed back to their respective resource
pools or elsewhere in the model upon release.

Finally, the order proceeds to a Bucket block, which records the current age (time in the model) of
each entity and (via a connection to the Bucket block’s OutLatestAge port) passes the information
to a Number Holder block for reporting and possible data collection. The order entity then exits the
system via a Disposer block.

In the lower half of the model are two areas (expanded compound blocks) labeled Part1 Inventory
and Part 2 Inventory; these sections of the model simulate inventory management and replenishment
for the two parts. The functionality for both parts is identical; so this example focuses on Part1.
Inventory is checked every 180 time units and, if the inventory of Part1 is below the Part1 reorder
level, an order equal to the Part1 reorder level is placed.

In order to simulate this inventory policy, a Number Holder block supplies a constant value of 180
as the InterValue Time for a Value Generator block. Thus, every 180 time units the Value Generator
block pulls a Boolean value through its InValue port from a Formula Block that compares the current
Part1 inventory level to its reorder level. The formula produces a true value (indicating the need
for inventory replenishment) if inventory is under the reorder level and a false value otherwise. The

234 F Appendix E: Examples of Simulation Studio Models

details are shown in the properties dialog box for the Formula Block in Figure E.23.

Figure E.23 Comparing Current Inventory to Reorder Level in the Formula Block

This Boolean value flows out the OutValue port of the Value Generator block to the Signal input port
of an Entity Generator block that represents inventory replenishment; if the value is true, it signals
the Entity Generator block to produce entities according to its configuration—to replenish the Part1
inventory. The BatchSize input port of the Entity Generator is connected to the Number Holder
block that holds the reorder level (10) for Part1, and the InterArrivalTime input port is attached to
a Number Holder block that holds the value zero. Collectively, this means that upon receiving a
true value from the Value Generator block, the Entity Generator block creates 10 Part1 resource
entities immediately, sending them to the Part1 Resource Pool block. This completes the inventory
replenishment operation, and all units of Part1 are available to be given to requesting order entities
via the Seize block.

The reorder levels for Part1 and Part2 are declared as factors, and the order completion time is
declared as a response; these factors and responses are included in the Experiment window. Three
design points, with varying reorder levels for Part1 and Part2, are run for 10,080 time units, equal
to one week if each time unit corresponds to one minute. Details about creating factors and re-
sponses and including them in the Experiment window are provided in Appendix C, “Design of
Experiments.”

Each design point is run for ten replications and the results are recorded. The Experiment win-
dow for this model is shown in Figure E.24. The first design point is expanded to show all ten

Using the SAS Program Block to Analyze Simulation Results F 235

replications.

Figure E.24 Experiment Window for Assembly and Inventory Model

Using the SAS Program Block to Analyze Simulation
Results

This very simple model illustrates the use of the SAS Program block to receive data from a run of
the simulation model, analyze the data using SAS procedures, and produce SAS graphical output
from the analyses. Note that although a SAS program is used in this example, the SAS Program
block can also be used with a program written in JMP Script. This model simulates an M/M/1
system; arrivals and service times are exponentially distributed and there is a single server. The
model is shown in Figure E.25.

236 F Appendix E: Examples of Simulation Studio Models

Figure E.25 M/M/1 Model with a SAS Program Block

Two additional blocks gather data from the model: a Queue Stats Collector block and a Server Stats
Collector block. The Queue Stats Collector block can collect data from every Queue block in the
model, and the Server Stats Collector block can do the same for every Server block. For this model
there is only one Queue block and one Server block, and so the properties dialog box for the Queue
Stats Collector block lists only one possible source of data, as shown in Figure E.26.

Using the SAS Program Block to Analyze Simulation Results F 237

Figure E.26 Properties Dialog Box for Queue Stats Collector Block

The remaining block in the model is the SAS Program block labeled Analyze Results, which pulls
data from the Queue Stats Collector and Server Stats Collector blocks via its InQueueData and In-
ServerData input ports, respectively. The SAS Program block then runs the SAS program specified
in the SAS Code Path field of its properties dialog box, as shown in Figure E.27.

238 F Appendix E: Examples of Simulation Studio Models

Figure E.27 Properties Dialog Box for SAS Program Block

The SAS program generatereportmm1.sas uses the Base SAS MEANS and UNIVARIATE
procedures to analyze the waiting times and length for the queue and the utilization of the sin-
gle server. It produces output in HTML format, excerpts of which are shown in Figure E.28 and
Figure E.29. In order to generate data for these analyses, the model is run for 50 replications of
10,000 time units each.

Figure E.28 PROC MEANS Output for M/M/1 Model

Using the SAS Program Block to Analyze Simulation Results F 239

Figure E.29 PROC UNIVARIATE Analysis of Queue Waiting Times for M/M/1 Model

240

Appendix F

Expressions

Contents
Overview of Expressions . 241
Operators . 241
Functions . 242
Examples . 244

Overview of Expressions

Expressions are used in various places in Simulation Studio, both for writing equations to be eval-
uated (such as the Expression field for a Formula block) and for writing Boolean criteria to apply
to attribute values (such as the Attribute Rule field for an Unbatch block, Entity Filter block,
Entity Group Holder block, Resource Stats Collector block, or Resource Scheduler block, or the
Attributes field of a Seize block or Release block). This appendix documents the operators and
functions for Simulation Studio expressions.

Operators

The following Boolean operators can be used in an expression.
The syntax is operand1 operator operand2 or operator operand.

&& logical and (valid for two Boolean operands)

|| logical or (valid for two Boolean operands)

! logical not (valid for one Boolean operand)

The following arithmetic operators can be used in an expression.
The syntax is operand1 operator operand2 or operator operand.

+ add (valid for two numeric operands)

242 F Appendix F: Expressions

– subtract (valid for one or two numeric operands)

* multiply (valid for two numeric operands)

/ divide (valid for two numeric operands)

% remainder (valid for two numeric operands)

The following equality or inequality operators can be used in an expression.
The syntax is operand1 operator operand2.

== equal to (valid for two numeric, Boolean, or text operands)

!= not equal to (valid for two numeric, Boolean, or text operands)

< less than (valid for two numeric operands)

> greater than (valid for two numeric operands)

<= less than or equal to (valid for two numeric operands)

>= greater than or equal to (valid for two numeric operands)

Functions

The following arithmetic functions can be used in an expression.
The syntax is function_name(argument, argument, ...).

abs returns the absolute value of a single numeric argument.

floor returns the largest integer that is less than or equal to a single numeric argument.

ceil returns the smallest integer that is greater than or equal to a single numeric argu-
ment.

round returns the integer that is closest to a single numeric argument.

min returns the minimum value among two or more numeric arguments.

max returns the maximum value among two or more numeric arguments.

power returns the first numeric argument raised to the power of the second numeric
argument.

sin returns the trigonometric sine of a single numeric radians argument.

cos returns the trigonometric cosine of a single numeric radians argument.

tan returns the trigonometric tangent of a single numeric radians argument.

asin returns the trigonometric arc sine of a single numeric radians argument.

acos returns the trigonometric arc cosine of a single numeric radians argument.

atan returns the trigonometric arc tangent of a single numeric radians argument.

sinh returns the trigonometric hyperbolic sine of a single numeric radians argument.

Functions F 243

cosh returns the trigonometric hyperbolic cosine of a single numeric radians argu-
ment.

tanh returns the trigonometric hyperbolic tangent of a single numeric radians argu-
ment.

log returns the base 10 logarithm of a single numeric argument.

ln returns the natural logarithm of a single numeric argument.

exp returns e (Euler’s number) raised to the power of a single numeric argument.

The following text functions can be used in an expression.
The syntax is function_name(argument, argument, ...).

concat returns the concatenation of two or more text arguments.

The following conversion functions can be used in an expression.
The syntax is function_name(argument).

degrees returns the degrees equivalent of a single numeric radians argument.

radians returns the radians equivalent of a single numeric degrees argument.

The following argument-index functions can be used in an expression.
The syntax is function_name(argument, argument, ...).

minindex returns the zero-based index of the argument with the smallest value among two
or more numeric arguments.

maxindex returns the zero-based index of the argument with the largest value among two
or more numeric arguments.

The following logical functions can be used in an expression.
The syntax is function_name(argument, argument, ...).

cond has the following syntax: cond(Boolean expression, true return value, false re-
turn value). The value returned by this function is determined by evaluating the
Boolean expression that is the first argument. If the Boolean expression evalu-
ates to true, the second argument is returned. Otherwise, the third argument is
returned.

switch has the following syntax: switch(Boolean expression 1, value 1, Boolean expres-
sion 2, value 2, ..., default value). The value returned by this function is the
value argument immediately following the first Boolean expression argument
that evaluates to true. The default value is returned if none of the Boolean ex-
pression arguments evaluate to true.

244 F Appendix F: Expressions

Examples

The following examples provide some sample expressions.

(AttributeA || AttributeB) && (! AttributeC) This evaluates to true if the following two condi-
tions are both satisfied: either AttributeA or AttributeB is true, and AttributeC is
false.

((Attribute + Attribute2 – Attribute3) * Attribute4 / Attribute5) % Attribute 6 Assuming
the following values:

� Attribute = 1

� Attribute2 = 2

� Attribute3 = 1

� Attribute4 = 5

� Attribute5 = 2

� Attribute6 = 4

This evaluates to 1, because 1 + 2 – 1 is 2, multiplied by 5 is 10, divided by 2 is
5, and the remainder of 5 divided by 4 is 1.

Attribute2 == Attribute5 Assuming the same values as the previous example, this evaluates to
true, because both Attribute2 and Attribute 5 have the same value, namely the
value 2.

max(Attribute6,Attribute5,Attribute4) Assuming the same values as the previous example, this
evaluates to 5, because Attribute4 has a value of 5, which is larger than the values
of the other two attributes.

maxindex(Attribute6,Attribute5,Attribute4) Assuming the same values as the previous exam-
ple, this evaluates to 2, because Attribute4 has a value of 5, which is larger than
the values of the other two attributes, and the zero-based index of Attribute4 in
the list of arguments is 2. (Attribute6 has index 0 and Attribute5 has index 1.)

abs(floor(MyNum)) Assuming MyNum is –13.5, this evaluates to 14, because the floor of –13.5
is –14, and the absolute value of –14 is 14.

concat(A,B,C) Assume the following values:

� A="One"

� B="Two"

� C="Three"

This evaluates to "OneTwoThree".

cond(X,Y,Z) Assume the following values:

� X=false

� Y=1

� Z=2

Examples F 245

This evaluates to 2, because the Boolean expression in the first argument is false,
so the third argument is returned, which is 2.

switch(v1,v2,v3,v4,v5) Assume the following values:

� v1=false

� v2=1

� v3=true

� v4=2

� v5=3

This evaluates to 2, because the first Boolean expression that evaluates to true is
the third argument, so the fourth argument is returned.

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	Contents
	Overview of SAS Simulation Studio
	What Is Simulation?
	What Is SAS Simulation Studio?
	A Simple M/M/1 Queueing Model
	Running the Model
	Collecting Statistics

	Repair Shop Example
	Compound Blocks
	Model Logic
	Collecting Data

	Introduction to SAS Simulation Studio
	Simulation Studio Graphical User Interface
	Installing and Starting Simulation Studio
	Installing Simulation Studio
	Starting Simulation Studio
	Configuring Simulation Studio
	Launching SAS and JMP Servers

	Simulation Studio Menu and Toolbar
	Block Template Display Area
	Simulation Studio Projects
	Project Explorer
	Project Window
	Log and Trace Window
	Project Status Bar

	Simulation Models
	Overview of Models
	Blocks
	Ports
	Entities and Values
	Building a Model
	Running a Model
	Saving a Project
	Opening a Project, Model, or Experiment

	Experiments
	Overview of Experiments
	Factors, Responses, and Anchors
	Experiment Window
	Design Points
	Replicate Rows

	Running an Experiment
	Augment Run
	Saving and Loading Design Data

	Blocks
	Overview of Blocks
	Block Labels
	Block Pop-up Menu and Dialog Boxes
	Managing Anchors
	Managing Block Properties
	Saving a Block Instance

	RankValue

	Compound Blocks
	Overview of Compound Blocks
	Assembling and Disassembling a Compound Block
	Collapsing and Expanding a Compound Block
	Labeling and Saving a Compound Block
	Tunnels

	Entities
	Overview of Entities
	Entity Types
	Creating Entities
	Disposing of Entities
	Entity Attributes
	Entity Groups

	Resources
	Overview of Resources
	An M/M/1 Queuing Model That Uses Resources
	Common Resource Usage Pattern
	Creating Resource Entities
	Storing Resource Entities
	Locating Resource Entities
	Allocating Resource Entities
	Using Resource Entities
	Deallocating Resource Entities
	Disposing Resource Entities

	A Second Resources Example
	Additional Resource Functionality
	Merging and Splitting Resource Entities
	Collecting Resource Entity Statistics
	Scheduling Resource Entity Adjustments
	Preempting Resource Entities

	Log and Trace
	Overview of Logging and Tracing
	Log Tab
	Trace Tab
	Tracing Configuration

	Block Templates
	Overview of Block Templates
	Using the Template Menu
	Using the Template Palette Pop-up Menu
	Template Document Format

	Data Collection, Analysis, and Reporting
	Overview
	Data Collection
	Block Data Storage
	Data Analysis and Reporting

	Batch Execution
	Overview of Batch Execution
	Command Line Interface
	Log Messages

	Templates
	Overview of Templates
	Overview of the Standard Template
	Entity Generator Block
	Value Generator Block
	Disposer Block
	Queue Block
	Delay Block
	Server Block
	Modifier Block
	Extractor Block
	Switch Block
	Selector Block
	Number Holder Block
	String Holder Block
	Numeric Source Block
	Text Source Block
	Counter Block
	Time Now Block

	Overview of the Advanced Template
	Batch Block
	Unbatch Block
	Clone Block
	Gate Block
	Valve Block
	Formula Block
	SAS Program Block
	Entity Filter Block
	Entity Group Holder Block

	Overview of the Data and Display Template
	Bucket Block
	Probe Block
	Queue Stats Collector Block
	Server Stats Collector Block
	Resource Stats Collector Block
	Histogram Block
	Bar Chart Block
	Scatter Plot Block
	Box Plot Block
	Comment Block

	Overview of the Resource Template
	Seize Block
	Release Block
	Resource Pool Block
	Resource Scheduler Block
	Resource Agenda Block

	Overview of the Output Analysis Template
	Steady State Block

	Random Variation in a Model
	Overview of Random Variation
	Discrete Distributions
	Binomial
	Discrete Uniform
	Geometric
	Negative Binomial
	Poisson

	Continuous Distributions
	Beta
	Chi-Square
	Erlang
	Exponential
	Gamma
	Johnson Bounded Distribution (JohnsonSB)
	Johnson Unbounded Distribution (JohnsonSU)
	Lognormal
	Normal
	Pearson Type V
	Pearson Type VI
	Triangular
	Uniform
	Weibull

	Design of Experiments
	Define Factors and Responses
	Set Model Anchors
	Set Up the Experiment Window
	Generate a Design Using JMP Software
	Run the Experiment
	Analyze the Simulated Results

	Input Analysis
	Overview of Input Analysis
	Input Analysis Using JMP Software

	Examples of Simulation Studio Models
	Overview of Simulation Studio Model Examples
	A Simple M/M/1 Queueing Model
	Routing to Shortest Queue
	Reneging from a Queue
	Repair Shop Model
	PERT Network Model
	Priority-Based Preemption of Service
	A Model of an Incoming Call Center
	Modeling Assembly Operation and Parts Inventory System
	Using the SAS Program Block to Analyze Simulation Results

	Expressions
	Overview of Expressions
	Operators
	Functions
	Examples

