
SAS/SHARE® 9.2
User’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008.
SAS/SHARE® 9.2 User’s Guide, Cary, NC: SAS Institute Inc.

SAS/SHARE® 9.2 User’s Guide
Copyright © 2008 by SAS Institute Inc., Cary, NC, USA
ISBN 978-1–59994—334-3
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

SAS/SHARE and the SAS Intelligence Platform Environment vii

Changes to PROC SERVER vii

A Method to Free a Library That Contains a Locked Data Set viii

Relocated Information about SAS Data Security Technologies viii

P A R T 1 Usage 1

Chapter 1 � Getting Started with SAS/SHARE 3
SAS/SHARE: Learning to Use 4

Frequently Asked Questions (FAQs) about SAS/SHARE 13

Chapter 2 � Using SAS/SHARE Software 19
SAS/SHARE Is a Multi-User Data Server 19

Accessing SAS Files through an Operating Environment 23

Accessing SAS Files through a SAS/SHARE Server 23

Remote Library Services Provides Remote File Access 25

SAS/SHARE and the SAS Intelligence Platform 25

SAS/SHARE Software Components 26

SAS/SHARE Users 27

Migration and Cross-Version Compatibility (SAS 6 through SAS 9.2) 27

Chapter 3 � Managing a SAS/SHARE Server (Server Administrators) 29
Starting a Server: A Fast-Track Approach 29

Specifying a Communications Access Method 30

Predefining SAS Libraries to the Server 32

Starting a Server 33

Server Security 36

Writing a SAS Program to Start a Server 39

Automating Server Start-Up 39

Managing a Server, Its Libraries, and Its Users 39

Chapter 4 � Writing End-User Applications to Access Shared Data 43
Accessing Libraries through a Server 43

Locking Data Objects in your Programming Environment 45

SAS Programming Considerations 45

SQL Programming Considerations 49

SCL Programming Considerations 50

SAS Data View Programming Considerations 54

Using SAS Catalog Entries in Programs 58

Using SAS/CONNECT with SAS/SHARE 58

iv

Chapter 5 � Locking SAS Data Objects 61
SAS/SHARE Lock Manager Facility 61

Locking and SAS Data Object Hierarchy 62

Types of Locks 64

Locking Objects Explicitly (LOCK Statement) 65

Locking Explicitly in a SAS Window (LOCK Command) 70

How Implicit Locking Works in SAS Program Steps 72

Defaults for Selected SAS Operations 73

Chapter 6 � SAS/SHARE Macros for Server Access 77
Using Macros for Server Library Access 77

Macros Generated by the SHRMACS Macro 79

The APPLSYS Macro Library 81

Chapter 7 � Interpreting SAS/SHARE Server Log Messages 89
The SAS/SHARE Server Log 89

Starting the Server Log 89

Usage Statistics in the Server Log 90

Server Log Message Components 92

Reading the Server Log 94

Chapter 8 � Analyzing the Server Log 99
Starting the Server Log 99

Using the Server Log Analysis Tools 100

Customizing Server Log Analysis Programs 100

Executing the Driver Program (SAS/SHARE) 101

SLTOOL1 Sample Program (SAS/SHARE) 101

SLTOOL2 Sample Program (SAS/SHARE) 102

SLTOOL3 and SLTOOL4 Sample Programs 104

P A R T 2 Reference 105

Chapter 9 � The SERVER Procedure 107
Overview of the SERVER Procedure 107

Syntax: SERVER Procedure 108

Chapter 10 � Remote Library Services 123
Overview of Remote Library Services 123

Chapter 11 � The OPERATE Procedure 133
Overview of the OPERATE Procedure 133

Syntax: OPERATE Procedure 134

PROC OPERATE Statement 134

Library Management Commands 136

Server Management Commands 140

User Management Commands 146

Specifying a Server 148

v

Specifying a Server-Access Password 148

Specifying a User 148

Chapter 12 � Remote SQL Pass-Through (RSPT) Facility 151
Overview of the RSPT Facility 151

Syntax: RSPT SQL Procedure 151

Examples 157

Chapter 13 � The LOCK Statement and the LOCK Command 159
Overview of the LOCK Statement and the LOCK Command 159

Chapter 14 � SAS/SHARE Macros 163

Chapter 15 � SAS/SHARE General SAS System Options 175

P A R T 3 Appendix 179

Appendix 1 � Cross-Architecture Access 181
Audience for Cross-Architecture Access 182

Cross-Architecture Access: Overview 182

Cross-Architectural Differences 183

Cross-Architecture Restrictions and Limitations 183

Implications of Data Translation 185

Identical Architectural Groups 190

Numeric Architectural Groups 192

Character Architectural Groups 194

Appendix 2 � Creating the SAS/SHARE Server Environment 197
Audience for SAS/SHARE Server Start-Up 197

All Operating Environments: Setting SAS System Performance and Logging
Options 198

OpenVMS: Creating the Server Environment 198

z/OS: Creating the Server Environment 201

UNIX: Creating the Server Environment 204

Windows: Creating the Server Environment 206

Appendix 3 � Tuning Tips for Applications That Use SAS/SHARE Software 211
Authors 212

Introduction to Tuning Tips for Applications That Use SAS/SHARE Software 212

Overview of Tuning Tips for Applications That Use SAS/SHARE Software 212

The SAS Library Model 213

How Data Flows When You Use SAS Files 213

Concurrent Access: Update versus Read-only 215

Computer Resources Used by a Server 216

Minimizing and Optimizing Resource Consumption 220

Using Operating Environment Tools 229

Conclusion 231

vi

Appendix 4 � SAS Component Language (SCL) Application 233
Introduction to the SAS Component Language (SCL) Application 233

Audience 233

Inventory and Order System 234

The Inventory/Order System SCL Application 235

Appendix 5 � SAS/SHARE Cross-Version Issues, SAS 9.2 241
Limitations of Cross-Version Client/Server Access 241

Consequences of a Client/Server Upgrade to SAS 9.2 241

Observations and Variables: SAS 9.2 and SAS 8 Differences 243

SAS Files Access in a Mixed Client/Server Environment 244

Appendix 6 � Recommended Reading 247
Recommended Reading 247

Glossary 249

Index 259

vii

What’s New

Overview

SAS/SHARE has the following changes and enhancements in this release:

� an introduction to the role of SAS/SHARE in a SAS Intelligence Platform
environment, a new system option, and a new option in the LIBNAME statement

� several new or improved options and a new value for an option in the PROC
SERVER statement

� a method to free a library that contains a locked data set

� relocated information about SAS data security technologies

SAS/SHARE and the SAS Intelligence Platform Environment

� The SAS/SHARE server and server libraries can be configured and made available
for access in a SAS Intelligence Platform environment. A SAS/SHARE server’s
metadata can be managed in a SAS Metadata Repository, but an instance of a
running server is managed using the SAS/SHARE OPERATE procedure.

� In a SAS Intelligence Platform environment, the SHARESESSIONCNTL= system
option is used to specify the number of connections between SAS clients and a
SAS/SHARE server via a SAS server. There can be a single connection for all SAS
clients or a separate connection for each SAS client.

� The AUTHDOMAIN= option in the LIBNAME statement is a convenient way to
obtain the SAS metadata-based user credentials rather than having to explicitly
supply them when accessing a server library.

Changes to PROC SERVER

� The WORKTASKS= option in the PROC SERVER statement specifies the initial
and maximum number of work tasks for the SAS/SHARE server to execute.

� The value REM can be assigned to the LOG= option in the PROC SERVER
statement, which causes the server to log the total number of connections and

viii What’s New

maximum concurrent number of connections from thin clients that access the
SAS/SHARE server.

� Experimental option THREADEDTCP in the PROC SERVER statement now
enables threaded TCP to be compatible with the collection of active-time usage
statistics.

� The FILELOCKWAITMAX= system option is set to zero, by default, when the
PROC SERVER statement is used. A SAS session will not wait to access a SAS
file that is currently locked by another process.

� The NOXCMD system option is enabled, by default, when the PROC SERVER
statement is used to invoke a SAS session. NOXMCD prevents operating system
commands from being executed during a SAS session.

A Method to Free a Library That Contains a Locked Data Set
If the administrator needs to free a server library that contains a locked data set, the

administrator can perform a series of steps that will ultimately free the library so that
the lock can be cleared.

Relocated Information about SAS Data Security Technologies
All information relating to SAS Proprietary, SAS/SECURE, and SSL, including SAS

system options, is relocated to Data Security Technologies in SAS.
The following SAS system options are relocated:
� NETENCRYPT
� NETENCRYPTALGORITHM=
� NETENCRYPTKEYLEN=
� SSLCALISTLOC=
� SSLCERTISS=
� SSLCERTLOC=
� SSLCERTSERIAL=
� SSLCERTSUBJ=
� SSLCLIENTAUTH=
� SSLCRLCHECK
� SSLCRLLOC=
� SSLPVTKEYLOC=
� SSLPVTKEYPASS=

1

P A R T1

Usage

Chapter 1.Getting Started with SAS/SHARE 3

Chapter 2.Using SAS/SHARE Software 19

Chapter 3.Managing a SAS/SHARE Server (Server Administrators) 29

Chapter 4.Writing End-User Applications to Access Shared Data 43

Chapter 5.Locking SAS Data Objects 61

Chapter 6.SAS/SHARE Macros for Server Access 77

Chapter 7.Interpreting SAS/SHARE Server Log Messages 89

Chapter 8.Analyzing the Server Log 99

2

3

C H A P T E R

1
Getting Started with SAS/SHARE

SAS/SHARE: Learning to Use 4
Introduction 4

Setting Up Your Operating Environment 4

Invoking SAS for Client/Server Sessions (All New Users) 5

Starting a SAS/SHARE Server (All New Users) 5

Defining a SAS Library to a Server (All New Users) 6
Creating a SAS Data Set (All New Users) 7

Locking an Observation (All New Users) 8

Accessing a Locked Observation (All New Users) 8

Releasing a Locked Observation (All New Users) 9

Retrying Access to a Locked Observation (All New Users) 9

Stopping the Server (All New Users) 9
Identifying the Server (Server Administrators and Applications Developers) 10

Viewing the Server Libraries (Server Administrators and Applications Developers) 10

Viewing Information about Clients (Server Administrators and Applications Developers) 11

Disconnecting Clients from the Server (Server Administrators and Applications Developers) 11

Examining the Server Log (Server Administrators and Applications Developers) 11
Accessing a Closed Server (Server Administrators and Applications Developers) 12

Stopping the Server (Server Administrators and Applications Developers) 12

Closing the SAS Sessions (Server Administrators and Applications Developers) 12

Frequently Asked Questions (FAQs) about SAS/SHARE 13

General Questions 13
What is SAS/SHARE software? Why would I use it? 13

Where can I read about SAS/SHARE software? 13

Do people have to use a new SAS procedure to share their data? 13

Does each person responsible for maintaining data have to run an individual SAS/SHARE
server? 13

Three people? I hope this software doesn’t require the effort of a large team of people. 14
FAQs by End Users 14

How do I get started with SAS/SHARE? 14

How can I find out if I’m accessing a SAS library through a SAS/SHARE server? 14

FAQs by Applications Developers 14

How do I get started with SAS/SHARE? 14
What do I have to do to a SAS library so that users can access it through a SAS/SHARE

server? 15

Can a SAS/SHARE server access a SAS library across a network? 15

I’ve used servers before. A SAS/SHARE server is similar to the file servers we have on our
network, isn’t it? 15

Can a server use more than one communications access method? 15

Do I have to use a different SAS/SHARE server for each file that is updated by the users of
my application? 16

4 SAS/SHARE: Learning to Use � Chapter 1

Is there a limit on how many users or libraries a SAS/SHARE server can support? 16
Do I need to ask my server administrator to start and stop my application’s server each

day? 16

FAQs by Server Administrators 16

How do I get started with SAS/SHARE software? 16

I’ve used servers before. A SAS/SHARE server is similar to the file servers we have on our
network, isn’t it? 16

Is being a SAS/SHARE server administrator a full-time job? 16

Can a server administrator control access to a server? 17

Can a server administrator control which libraries users can access through a server? 17

How can I terminate a user’s connection to a SAS/SHARE server? 17

How can I stop a SAS/SHARE server? 17
Can a server use more than one communications access method? 17

How can I determine when I need to create a second SAS/SHARE server? 17

Accessibility Features in SAS Products 18

SAS/SHARE: Learning to Use

Introduction
If you’re a new user of SAS/SHARE, this section provides answers to frequently

asked questions (FAQs). A step-by-step example exercise shows the different types of
activities that are involved when using SAS/SHARE. Where applicable, operating
environment specifics are provided.

Note: The following exercise is an example only and should not be used to set up
production applications. �

If you have some experience with SAS/SHARE and choose not to perform this exercise
or read the FAQs, proceed to Chapter 2, “Using SAS/SHARE Software,” on page 19.

Setting Up Your Operating Environment
The SAS sessions that you use in this exercise exchange data by using a

communications access method. For this exercise, the TCP/IP communications access
method is used for all operating environments. SAS/SHARE also supports other
communications access methods, which are described in detail in Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

To use the TCP/IP access method, you must verify that a SAS/SHARE server ID has
been added to the TCP/IP SERVICES file. To find the location of the SERVICES file for
your operating environment, see Communications Access Methods for SAS/CONNECT
and SAS/SHARE and the documentation for your TCP/IP software.

� If a SAS/SHARE server ID has already been added to the SERVICES file, proceed
to the next section, “Invoking SAS for Client/Server Sessions (All New Users)” on
page 5, and use an existing server ID from the SERVICES file in place of
&servername in the remainder of this exercise.

� If a SAS/SHARE server ID has not already been added to the SERVICES file, edit
the SERVICES file and add a line similar to the following:

demoserv port-number/tcp # SAS/SHARE server

For port-number, specify a number that is not already specified in the
SERVICES file.

Getting Started with SAS/SHARE � Starting a SAS/SHARE Server (All New Users) 5

Execute the following statement in the server, the client, and the operator
sessions:

%let servername=demoserv;

� If you do not have authority to edit the SERVICES file, ask your server
administrator to add demoserv to the SERVICES file. A server administrator
ensures that SAS/SHARE servers are identified in the SERVICES file on each
operating environment that accesses SAS/SHARE.

� The TCP/IP access method allows you to specify syntax that uses two consecutive
underscores with a port number, in place of a server ID that has been defined in
the client TCP/IP SERVICES file. As an alternative to editing the TCP/IP
SERVICES file, execute the following statement in the server, the client, and the
operator sessions:

%let servername=_ _port-number;

for port-number specify a number that is not already used in the TCP/IP
SERVICES file. Do not space after the first underscore or the second underscore.

Note: If you choose to use a communications access method that is different from
TCP/IP, some configuration of your operating environment might be required. For more
information, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE. �

Invoking SAS for Client/Server Sessions (All New Users)
You need to invoke three SAS sessions for this example exercise. You can run these

SAS sessions by logging on to three different machines or by logging on to the same
machine three times. To invoke a SAS session for two clients and the SAS/SHARE
server, use the commands that are specific to your operating environment.

Note: Arrange your SAS sessions so that you can see and use all of them while you
are doing this exercise, because you will perform specific tasks in the Program Editor
window of the user or server sessions. �

In this example, one user logs on to the same machine three times.

USER1 is john(1).

USER2 is john(2).

SERVER is demoserv.

Note: Be sure to issue the SAS statements that are appropriate for the specific SAS
session. Each step in this example clearly identifies the session for which the
instruction is intended. �

Starting a SAS/SHARE Server (All New Users)
Note: Usually, a server administrator starts the server so that it is available when

end users and applications developers need to share SAS files. It is recommended that
the server be run in non-interactive mode. For the z/OS operating environment, the
server should be run in line mode. �

Note: In this example exercise, the data is logged for a UNIX operating
environment, and the TCP/IP communications access method is used. If you choose a
different method, replace tcp in every occurrence of the COMAMID= option with the
appropriate access method value. �

6 Defining a SAS Library to a Server (All New Users) � Chapter 1

1 In the SERVER session, submit the following statements from the Program Editor
window:

options comamid=tcp;
libname demo (work);
proc server id=&servername authenticate=optional;
run;

The LIBNAME statement associates a SAS library reference (libref) with a SAS
library.

The omission of the USER= and PASSWORD= options in the LIBNAME
statement means that the SAS/SHARE client/server session is running unsecured.

The COMAMID= option specifies the access method that is used to
communicate between a client SAS session and the server. You must specify the
COMAMID= option before you invoke PROC SERVER.

PROC SERVER manages concurrent update access to SAS libraries and the
members in those libraries. PROC SERVER runs in its own SAS session, which
serves client SAS sessions by executing input and output requests to SAS libraries.

The value OPTIONAL for the AUTHENTICATE= option allows users with valid
access permission to connect to a server without requiring verification. See
“Ensuring That User IDs Are Valid” on page 38. For more information about the
AUTHENTICATE= option, see the PROC SERVER statement.

2 Examine the SERVER Log window, which now contains information similar to this:

NOTE: Libref DEMO was successfully assigned as follows:
Engine: V9
Physical Name: /local/u/john

1 options comamid=tcp;
2 libname demo (work);
3 proc server id=&servername authenticate=optional;
4 run;

30Apr2007:15:12:09.095 SAS server DEMOSERV started.

Defining a SAS Library to a Server (All New Users)
When you access a SAS library through a server, your SAS session reads from and

writes to that data library through the server instead of reading and writing directly to
the library.

The first LIBNAME statement, which specifies a name for the server, connects your
SAS session to that server. For a client session, you must specify the COMAMID=
option before you try to connect to the server.

1 In the USER1 session, submit the following from the Program Editor window:

options comamid=tcp;
libname demo server=&servername;

Note: If you are connecting to a server on a remote operating environment, you
must specify the network node name in the SERVER= option as follows:

server=network-node-name.&servername

�

See the TCP/IP chapter for your specific operating environment in Communications
Access Methods for SAS/CONNECT and SAS/SHARE for more information.

Getting Started with SAS/SHARE � Creating a SAS Data Set (All New Users) 7

Examine the USER1 Log window, which contains the following information:

NOTE: Libref DEMO was successfully assigned as follows:
Engine: REMOTE
Physical Name: /local/u/john

1 options comamid=tcp;
2 libname demo server=&servername;

For convenience in this exercise, the libref DEMO is associated with the server
library WORK. In SAS, the default name WORK means that the data files that
are created are temporary.

2 Examine the SERVER Log window, which now contains information similar to the
following lines about your connection to the server. The messages include the
server name, the name of the server library that you specified, and the user
identification in the form user-ID(n), where n is the server connection number.

30Apr2007:15:16:46.521 User john(1) has connected to server demoserv.
30Apr2007:15:16:52.566 User john(1) has created "DMS Process"(1)
under "Kernel"(0).

30Apr2007:15:16:59.079 Server library (’/local/u/john’ V9) accessed as
DEMO by user john(1).

Creating a SAS Data Set (All New Users)
1 In the USER1 session, submit the following from the Program Editor window:

data demo.test;
do i=1 to 5;

output;
end;

run;

This DATA step creates a SAS data set that contains five observations and one
variable that you will use in the remainder of this example. The Log window
displays information about the DATA step and the name of the SAS data set that
is opened for output and then closed.

2 Examine the SERVER Log window again.

30Apr2007:15:23:17.110 User john(1) has created "DATASTEP"(2)
under "DMS Process"(1).

30Apr2007:15:23:20.719 DEMO.TEST.DATA(1) opened for output via
engine V9 by "DATASTEP"(2) of user john(1).

30Apr2007:15:23:26.835 DEMO.TEST.DATA(1) closed by "DATASTEP"(2)
of user john(1).

30Apr2007:15:23:27.194 User john(1) has terminated "DATASTEP"(2)
(under "DMS Process"(1)).

8 Locking an Observation (All New Users) � Chapter 1

Locking an Observation (All New Users)
1 In the USER2 session, submit the following from the Program Editor window:

options comamid=tcp;
libname demo server=&servername;
proc fsedit data=demo.test;
run;

An FSEDIT window appears in the center of the screen. It shows the value 1 in
the first observation.

i: 1

Examine the USER2 Log window, which contains the following information:

NOTE: Libref DEMO was successfully assigned as follows:
Engine: REMOTE
Physical Name: /local/u/sasvcl

1 options comamid=tcp;
2 libname demo server=shr9;
3 proc fsedit data=demo.test;
4 run;

2 Examine the SERVER Log window, to which information similar to the following
lines was added:

30Apr2007:15:29:39.116 User john(2) has connected to server demoserv.
30Apr2007:15:29:42.483 User john(2) has created "Process"(1)
under "Kernel"(0).

30Apr2007:15:29:48.155 Server library (’/local/u/john’ V9) accessed as
DEMO by user john(2).

30Apr2007:15:29:54.124 User john(2) has created "FSEDIT"(2)
under "DMS Process"(1).

30Apr2007:15:29:56.109 DEMO.TEST.DATA(1) opened for input/2 via
engine V9 by "FSEDIT"(2) of user john(2).

30Apr2007:15:29:56.933 DEMO.TEST.DATA(1) reopened for update/R by
"FSEDIT"(2) of user john(2).

The FSEDIT procedure accesses the data set that was created by USER1 in the
previous section. The first observation is currently locked by USER2 for update
access.

3 In the FSEDIT window in the USER2 session, change the value in the first
observation by placing the cursor over the value 1 and typing 5, but do not save it.

The FSEDIT window of USER2 now looks like this:

i: 5

Accessing a Locked Observation (All New Users)
In the USER1 session, submit the following from the Program Editor window:

proc fsedit data=demo.test;
run;

PROC FSEDIT also accesses the data set that was created by USER1.
When the FSEDIT window opens, the following message is displayed because the

first observation is already locked by the PROC FSEDIT statement in USER2’s session:

Getting Started with SAS/SHARE � Stopping the Server (All New Users) 9

WARNING: User john(2) (server connection 2) is using this observation.

USER1 cannot update the observation until after USER2 releases it. Notice that the
value of i is still 1 because USER2 did not save the change in the previous step.

Releasing a Locked Observation (All New Users)
In the USER2 session, close the FSEDIT window by selecting File � Close from the

menu. This action releases the observation that was locked by USER2.

Retrying Access to a Locked Observation (All New Users)
1 After the FSEDIT window in the USER2 session closes, return to the USER1

FSEDIT session, reread the observation by selecting View � Observation
Number from the menu, and type 1 in the resulting pop-up window. Click OK and
the USER1 FSEDIT window now looks like this:
i: 5

Notice that the observation was updated to reflect USER2’s change from 1 to 5.
2 In the FSEDIT window in the USER1 session, change the value from 5 to 4.

The USER1 FSEDIT window now looks like this:
i: 4

Stopping the Server (All New Users)
Note: In the real world, servers are usually stopped by server administrators, not by

end users. �

For this example exercise, if you are an end user, stop the server and close all SAS
sessions.

1 In the USER1 session, close the FSEDIT window by selecting File � Close from
the menu.

2 Also, in the USER1 session, stop the server by submitting the following code from
the Program Editor window:

proc operate server=&servername;
stop server;
quit;

Examine the USER1 Log window, which now contains the following information:

16 proc operate server=&servername;
PROC OPERATE is set to default server DEMOSERV.
==
17 stop server;
Default server DEMOSERV is now stopped.
PROC OPERATE was previously set to default server
DEMOSERV but is not set to any server now.
==
18 quit;

10 Identifying the Server (Server Administrators and Applications Developers) � Chapter 1

Note: If you are not on the same machine as the server, you must specify the
network node name in the SERVER= option in the PROC OPERATE statement:

proc operate server=network_node_name.&servername;

�

3 In the SERVER Program Editor window, close the server session by submitting
the following:

endsas;

4 On the command lines of both the USER1 and USER2 Program Editor windows,
close the user sessions by issuing the following command:

bye

For SAS/SHARE end users, you have finished the example exercise. See “Frequently
Asked Questions (FAQs) about SAS/SHARE” on page 13.

Identifying the Server (Server Administrators and Applications
Developers)

Note: Usually, the OPERATE procedure is used by a server administrator;
sometimes an applications developer has responsibilities that include server
administration. �

The remainder of the steps in this section are mainly here for applications developers
and server administrators who are continuing this exercise. In the USER2 session,
submit the following from the Program Editor window:

proc operate server=&servername;

PROC OPERATE is an interactive procedure that is terminated by a QUIT statement.
A RUN statement is not used or needed with a PROC OPERATE statement.

PROC OPERATE manages the execution of a SAS/SHARE server. You must identify
which SAS/SHARE server you want to manage, even if there is only one server
executing. If you are not on the same machine as the server, you must specify the
network node name in the SERVER= option in the PROC OPERATE statement:

proc operate server=network_node_name.&servername;

Examine the USER2 Log window, which contains the following information:

proc operate server=&servername;
PROC OPERATE is set to default server DEMOSERV.

Usually, you should specify the COMAMID= option before using PROC OPERATE to
connect to a server. If you know that you will use the default access method on your
operating environment, you might omit the COMAMID= option. You do not need to
specify a value for the COMAMID= option in this step because it was already specified
for this SAS session in an earlier step. See “Locking an Observation (All New Users)”
on page 8.

Viewing the Server Libraries (Server Administrators and Applications
Developers)

PROC OPERATE has several commands. You will use some of the commands in the
next steps. All output generated by PROC OPERATE is displayed in the Log window.

Getting Started with SAS/SHARE � Examining the Server Log (Server Administrators and Applications Developers) 11

In the USER2 session, submit the following from the Program Editor window:

display library _all_;

The DISPLAY LIBRARY command in the PROC OPERATE step displays information
about the libref, status, the number of users, and the library name of all SAS libraries
that have been defined to the server.

Examine the USER2 Log window.

Viewing Information about Clients (Server Administrators and
Applications Developers)

In the USER2 session, submit the following from the Program Editor window:

display user _all_;

The DISPLAY USER command displays information about the user ID, the status,
and the number of libraries that have been defined by each connected client.

Examine the USER2 Log window, which now contains the following information:

USER NUMBER OF
ID STATUS LIBRARIES

john ACTIVE 0
john ACTIVE 1
john ACTIVE 1
==============================
7 display user _all_;

Disconnecting Clients from the Server (Server Administrators and
Applications Developers)

In the USER2 session, submit the following from the Program Editor window:

quiesce user 1 2;

The QUIESCE USER command gradually terminates a user’s access to a server by
denying new user requests for resources and moving the user from active status to
stopped status. The user can continue the SAS program step or window that is
currently in use but will not be able to use the server after that step terminates or after
the window closes.

Users can be identified by user IDs or connection numbers. For example, user
JOHN(1) can be quiesced by executing either of the following:

quiesce user 1;
quiesce user john;

Examining the Server Log (Server Administrators and Applications
Developers)

1 In the USER1 session, because the FSEDIT window is still opened, USER1 can
still edit the data set that was created in an earlier step. See “Creating a SAS
Data Set (All New Users)” on page 7. Close the USER1 FSEDIT window by
selecting File � Close from the menu.

12 Accessing a Closed Server (Server Administrators and Applications Developers) � Chapter 1

2 Examine the SERVER Log window, which displays information similar to the
following:

30Apr2007:15:56:57.207 PROC OPERATE command from user john(3):
QUIESCE USER 1 2;

30Apr2007:15:59:52.065 DEMO.TEST.DATA(1) closed by "FSEDIT"(3)
of user john(1).

30Apr2007:15:00:02.161 User john(1) has terminated "FSEDIT"(3)
(under "DMS Process"(1)).

Accessing a Closed Server (Server Administrators and Applications
Developers)

In the USER1 session, resubmit the following from the Program Editor window:

proc fsedit data=demo.test;
run;

Examine the USER1 Log window, which contains the following information:

10 proc fsedit data=demo.test;
You cannot open data set DEMO.TEST.DATA because user JOHN(1)
is quiesced on server DEMOSERV.
11 run;

NOTE: The SAS System stopped processing this step because of errors.

The messages in the Log window tell you that the attempt by USER1 to communicate
with the server is rejected. Because USER1 is stopped, you cannot access the data set.

Stopping the Server (Server Administrators and Applications
Developers)

In the USER2 session, submit the following from the Program Editor window:

stop server;
quit;

The STOP SERVER command in the PROC OPERATE step terminates a server as
quickly as possible. If users are connected to the server when you execute a STOP
SERVER command, changes that they have not saved are lost. The QUIT command
terminates PROC OPERATE in interactive mode.

Closing the SAS Sessions (Server Administrators and Applications
Developers)

1 In the SERVER Program Editor window, close the server session by submitting
the following:

endsas;

2 On the command lines of both the USER1 and USER2 Program Editor windows,
close the user session by submitting the following:

bye

Getting Started with SAS/SHARE � General Questions 13

Frequently Asked Questions (FAQs) about SAS/SHARE

General Questions

What is SAS/SHARE software? Why would I use it?
You use SAS/SHARE software in the following situations

� More than one user needs to update a SAS file (or several SAS files) at the same
time.

� Users want to access SAS files on a server without having to use a separate
SAS/CONNECT remote login for each user.

Where can I read about SAS/SHARE software?
You can read about SAS/SHARE in the following documents:

� This document, which explains SAS/SHARE software, describes the parts of the
software, and applies to all operating environments. It also includes basic and
detailed reference material for PROC SERVER, PROC OPERATE, the LIBNAME
statement, and the LOCK statement.

� Also see Communications Access Methods for SAS/CONNECT and SAS/SHARE
for information about using a communications access method to connect from a
client session to a server session and for instructions to configure the access
method.

Do people have to use a new SAS procedure to share their data?
No. The users who add and maintain data continue to use the SAS procedures and

windows that they already know: PROC FSEDIT, PROC APPEND, PROC FSVIEW,
and so on.

Instead of requiring users to change the SAS tools they already know and use,
SAS/SHARE takes advantage of the SAS Multiple Engine Architecture (MEA) to allow
those SAS tools to access data through a “traffic cop” that is formally known as a
SAS/SHARE server. A SAS/SHARE server allows many users to read and update data
concurrently in one or multiple SAS files by tracking locks on observations, catalog
entries, and SAS files.

Does each person responsible for maintaining data have to run an
individual SAS/SHARE server?

No. There are three roles that users assume with respect to SAS/SHARE:

End user
reads, adds, and updates data.

Applications developer
writes SAS programs used by the end users.

Server administrator
makes sure SAS/SHARE servers are available to the end users.

14 FAQs by End Users � Chapter 1

The three roles can be performed by the same person, or one person might perform
two roles, or each role might be assigned to a separate group of people.

It’s not unusual for the same person to perform the tasks of an applications developer
and a server administrator, for example, when the person who develops an application
is responsible for the SAS/SHARE server or servers used by that application.

Three people? I hope this software doesn’t require the effort of a large
team of people.

No, three roles. The three roles help organize the efforts so that shared maintenance
of data is possible. In real life, the responsibilities of the various people involved in a
project might overlap. Often, the same person who develops an application also
maintains a SAS/SHARE server.

To help you keep track of how responsibilities usually are divided when multiple
users need to update a SAS file at the same time, the remainder of this section answers
the questions most frequently asked by end users, application developers, and server
administrators.

FAQs by End Users

How do I get started with SAS/SHARE?
You use an application that someone else developed to read, add, or update data in

one or in multiple SAS files. Occasionally, you find that an observation, a catalog entry,
a file, or a library is locked by another user. If that happens, a message appears and
you cannot modify the data. SAS/SHARE keeps track of which users have which data
locked, so users cannot cause each other’s changes to become mysteriously “lost.”

How can I find out if I’m accessing a SAS library through a SAS/SHARE
server?

The SERVER= option is required in a LIBNAME statement (or, in SCL programs,
any LIBNAME() function) for a library to be accessed through a SAS/SHARE server.

When a library is accessed through a server, the information that is displayed in the
Log window about the LIBNAME statement shows you that the engine that was used
to access the library is named REMOTE, and the physical name is a subdirectory
accessed by the server SAS session.

Use the LIST option in a LIBNAME statement to obtain information about how a
SAS library is defined to a SAS session. This information includes the following:

� the name of the server through which the library is accessed.

� the libref used by the server to refer to the library. (This libref might be the same
as or different from the user’s libref for that library.)

� the engine used in the server SAS session to read and write files in the library.

� the operating environment and machine type on which the server is running.

FAQs by Applications Developers

How do I get started with SAS/SHARE?
See “SAS/SHARE: Learning to Use” on page 4.

Getting Started with SAS/SHARE � FAQs by Applications Developers 15

Topics of importance for applications developers include SAS library access, locking
data objects, and SAS programming considerations. See Chapter 4, “Writing End-User
Applications to Access Shared Data,” on page 43. For a sample SCL application, see
Appendix 4, “SAS Component Language (SCL) Application,” on page 233. For complete
details about locking, see Chapter 5, “Locking SAS Data Objects,” on page 61.

You might also find helpful information about how server administrators manage
SAS/SHARE servers. See Chapter 3, “Managing a SAS/SHARE Server (Server
Administrators),” on page 29. For specific details about creating a SAS/SHARE server
and setting SAS options to enhance performance and to establish logging parameters,
by operating environment, see Appendix 2, “Creating the SAS/SHARE Server
Environment,” on page 197.

What do I have to do to a SAS library so that users can access it through a
SAS/SHARE server?

You have to add a SERVER= option to each LIBNAME statement that a user will
use to access the library.

You might want to predefine one or more libraries to a server. Include a LIBNAME
statement for each library before executing the PROC SERVER statement. Including a
LIBNAME statement removes the requirement for a physical name in each user’s
LIBNAME statement that accesses any of those libraries. This can make it easier to
maintain your application.

For more information about server libraries, see Chapter 3, “Managing a SAS/
SHARE Server (Server Administrators),” on page 29. For details about the LIBNAME
statement, see Chapter 10, “Remote Library Services,” on page 123.

Can a SAS/SHARE server access a SAS library across a network?
Yes, but you usually do not want to organize it that way.

Even though a SAS/SHARE server is not exactly like other file servers that you
might be familiar with, it is still a process that generates a lot of disk I/O because a
server generates I/O to files on behalf of a large number of users. Therefore, you want
the path length between the server SAS session and the physical disk to be as short as
possible. Try to store data on the same computer as the server that is used to access
that data, whenever possible.

I’ve used servers before. A SAS/SHARE server is similar to the file servers
we have on our network, isn’t it?

Not really. Usually, file servers are not aware of the content of the files they
manage, but a SAS/SHARE server allows several users to update the same copy of a
SAS file at the same time.

SAS/SHARE is tuned to manage locking conflicts within SAS files, such as two users
attempting to update the same observation of a SAS data file or two users attempting
to modify the same entry in a SAS catalog. SAS/SHARE is not optimized to provide the
bulk data transfer services at which many file servers excel.

Can a server use more than one communications access method?
Yes. A server administrator uses SAS options to enable this.

If your application requires the use of more than one communications access method,
ask your server administrator to set up the server for your application with the access
methods that you need. For more information about access methods, see “Specifying a
Communications Access Method” on page 30.

16 FAQs by Server Administrators � Chapter 1

Do I have to use a different SAS/SHARE server for each file that is updated
by the users of my application?

No. A server can share many files in the same SAS library and in many different
SAS libraries at the same time.

Is there a limit on how many users or libraries a SAS/SHARE server can
support?

No. There are no limits coded into the software, and you do not need to use SAS
options to specify how many users or files a server will support at one time.

However, a server is the same as any other process on a computer; as it is asked to
handle greater workloads it takes longer to do the work. It is possible to put so much
traffic through a server that users complain about response time. If any of your servers
become that busy, you should consider creating one or more additional servers and
dividing the files among the servers.

See your server administrator about creating additional servers.

Do I need to ask my server administrator to start and stop my application’s
server each day?

Probably not. As with other processes on a computer, SAS/SHARE servers can
usually run for long periods of time without intervention. Sometimes periodic
maintenance or backup activity requires processes to be stopped for a period of time
and then restarted. Servers are not immune to such interruptions.

FAQs by Server Administrators

How do I get started with SAS/SHARE software?
Read Chapter 1, “Getting Started with SAS/SHARE,” on page 3, giving special

attention to when PROC SERVER is started and stopped. Occasionally, you might need
to use PROC OPERATE, so you should read those tasks in this exercise.

Usually, a SAS/SHARE server is started when initialization of the operating
environment is completed, and it continues to run until the computer is shut down or
the server is terminated. You should be familiar with creating and managing those
types of processes. Of course, a server only generates I/O or uses the processor while
users are accessing data through it; a server doesn’t process a residual amount of work
when it is not processing work on behalf of other users.

Because a server executes within a SAS session, you need to know how to invoke
SAS on each computer on which a server will run.

I’ve used servers before. A SAS/SHARE server is similar to the file servers
we have on our network, isn’t it?

Not really. Ordinarily, file servers are not aware of the content of the files they
manage, but a SAS/SHARE server allows several users to update a single copy of a SAS
file at the same time. Also, SAS/SHARE servers automatically translate transmitted
data when the client operating environment represents data differently from the server
operating environment.

Is being a SAS/SHARE server administrator a full-time job?
No! SAS/SHARE is designed to require no regular maintenance or other

administrative activity.

Getting Started with SAS/SHARE � FAQs by Server Administrators 17

Can a server administrator control access to a server?
Yes. By default, SAS/SHARE does not restrict who can connect to a server or which

files they can access, but you can restrict access to a server with the OAPW= and
UAPW= options in the PROC SERVER statement. The OAPW= option specifies a
password, which the server administrator must supply (in the OPERATE procedure), to
connect to the server. The UAPW= option specifies a password that the user must
supply in the LIBNAME statement to connect to the server. Of course, your file system
restricts a server’s access to files based on the access permission set for the files and the
server’s process. You can also set up a secured server. For more information, see
“Server Security” on page 36.

Can a server administrator control which libraries users can access
through a server?

Yes. For each server, you can prevent users from defining libraries to the server and
restrict them to using only those libraries that you define. To do this, use the
NOALLOC option in the PROC SERVER statement. See “Limiting the Libraries a
Server Can Access” on page 37.

Remember that passwords can be used to restrict access to individual SAS files. See
the PW= data set option in SAS Language Reference: Dictionary for more information
about data set passwords.

How can I terminate a user’s connection to a SAS/SHARE server?
First, decide whether you want the access terminated immediately or as soon as it is

convenient for the user.
The QUIESCE USER command disconnects a user from a server when the user ends

the SAS program step currently being executed or closes the window currently being
used. The STOP USER command immediately terminates a user’s connection to a
server and might cause loss of updates that have not been communicated to the server.

In either instance, the user cannot reconnect to the server until a START USER
command is executed, which lets the user reconnect, or until the server is restarted.
Servers do not retain a list of stopped users when they are terminated and restarted.

See “Quiescing User Access to a Server” on page 147 and “Terminating User
Connections to a Server” on page 148.

How can I stop a SAS/SHARE server?
The QUIESCE SERVER command causes a server to stop when all users have

disconnected from the server. The STOP SERVER command immediately stops the
server and might cause loss of updates that have not been communicated to the server.

See “Quiescing a Server” on page 141 and “Stopping a Server” on page 145.

Can a server use more than one communications access method?
Yes, if your operating environment supports more than one communications access

method. See “Specifying a Communications Access Method” on page 30 for information
about the communications access methods available on your operating environment.

How can I determine when I need to create a second SAS/SHARE server?
You need to create a second server when the traffic on a server becomes so heavy

that an application’s performance is less efficient.

18 Accessibility Features in SAS Products � Chapter 1

Just as you periodically check the resource consumption of the other service processes
on a computer, you should, from time-to-time, consider the amount of CPU, I/O, and
virtual storage the servers are using. Using operating environment management tools,
you might notice that a server is executing a very large number of disk I/O operations
or needs a very high percentage of the processor. When you observe those conditions,
consider moving some of the work from that server to another, possibly new, server.

Distributing the workload among servers must be a cooperative effort between server
administrators and applications developers. SAS provides a set of autocall macros that
assign resources to servers symbolically. These macros can make moving resources from
one server to another much easier. See Chapter 6, “SAS/SHARE Macros for Server
Access,” on page 77.

Accessibility Features in SAS Products
For information about accessibility for any of the products mentioned in this book,

see the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

19

C H A P T E R

2
Using SAS/SHARE Software

SAS/SHARE Is a Multi-User Data Server 19
SAS/SHARE Enables Concurrent Update Access 19

SAS/SHARE Provides a Path to Remote Data 20

SAS/SHARE Is the Hub between Data and Clients 20

Accessing SAS Files through an Operating Environment 23

Accessing SAS Files through a SAS/SHARE Server 23
Remote Library Services Provides Remote File Access 25

SAS/SHARE and the SAS Intelligence Platform 25

About the SAS Metadata Repository and the SAS Intelligence Platform 25

Configuring a SAS/SHARE Server and Server Libraries in a SAS Intelligence Platform
Environment 26

Managing a SAS/SHARE Server 26
SAS/SHARE Software Components 26

SAS/SHARE Users 27

Migration and Cross-Version Compatibility (SAS 6 through SAS 9.2) 27

SAS/SHARE Is a Multi-User Data Server

SAS/SHARE Enables Concurrent Update Access
SAS/SHARE is a multi-user data server that provides several advantages for local

and remote SAS clients and external clients (that is, not SAS applications). The
multi-user SAS/SHARE server enables two or more clients to write to the same SAS file
at the same time. This is called concurrent update access.

Often, SAS/SHARE is run in an environment in which multiple client sessions want
to share (read from and write to) records in the same SAS data set.

The following list gives a sample of operations that multiple clients can perform
concurrently:

� While one user is creating a member in a data library, other users can create,
read, delete, and update members in the same library.

� While one user is using the SAS Explorer window on a data library, other users
can open the same window to browse, delete, edit, or re-name members in the
same library. You can also copy a member from the SAS Explorer window.

� While one user opens the CATALOG window on a catalog, other users can open the
CATALOG window to browse, copy, delete, or rename entries in the same catalog.

20 SAS/SHARE Provides a Path to Remote Data � Chapter 2

� While one or more users are using the FSEDIT procedure, the FSVIEW procedure
in edit mode, the UPDATE statement in the SQL procedure, or an SCL program to
update a SAS data set, other users can perform the following activities:

� update the SAS data set by using the MODIFY, REMOVE, or REPLACE
statement in a DATA step

� read the SAS data set as input data by using the SET statement in a DATA
step

� add observations to the SAS data set by using the APPEND or SQL
procedure or remove observations by using the SQL procedure

� copy the SAS data set that is being updated (and copy other members of the
library) into another library by using the COPY or the CATALOG procedure

SAS/SHARE Provides a Path to Remote Data
The multi-user SAS/SHARE server also provides remote clients a path to shared

data, even if they want only to read that data, without the overhead of a
SAS/CONNECT sign-on.

In this scenario, you might have a network of client machines that need read access
to a data set that resides on a central server system machine. You have two choices.
You can use SAS/CONNECT and have each client create a SAS/CONNECT server
session on the central server machine. However, if you need to read only a
small-to-moderate amount of data, the overhead for each client that is signing on to the
central server and starting a SAS/CONNECT server session might be significant. Also,
the additional load on the central machine that comes with each of these server sessions
might have a negative impact. Alternatively, you can have those client sessions access
data through a SAS/SHARE server that is running on the central machine and avoid
the overhead and additional load. Because the server is already running and it serves
multiple users, connecting to the server and accessing the data takes very little time.

SAS/SHARE Is the Hub between Data and Clients
Think of a SAS/SHARE server as a hub that serves clients with data from many

different sources. For example, a server must use a SAS/ACCESS engine to Oracle in
order to access data that is stored in an Oracle DBMS. Or, a server can access SAS data
through a Native Library engine. See your SAS/ACCESS documentation for details
about using an engine to access specific data. Figure 2.1 on page 21 shows a sample of
the data sources that a SAS/SHARE server can provide to its clients.

Using SAS/SHARE Software � SAS/SHARE Is the Hub between Data and Clients 21

Figure 2.1 Data Sources for a SAS/SHARE Server

With an identified DBMS, a SAS/SHARE server provides data to the requesting
client for its data processing needs. Beginning with SAS 8, this support extends to
clients other than the classic SAS client.

Licensing SAS/SHARE*NET software enables you to send requests to a SAS/SHARE
server from a client that is not a SAS application. A SAS/SHARE*NET server is a
SAS/SHARE server that includes the Data Services component of SAS/IntrNet software.

Here are some examples of clients that are not SAS applications:

htmSQL
runs a Web server and provides a gateway to your SAS data from a Web browser.
It enables you to incorporate data into a Web page by using SQL queries.

Java applets or applications
use SAS/SHARE*NET Driver for JDBC, which enables you to write Java applets
or applications that can view and update data through a direct connection to a
SAS/SHARE*NET server.

C programs
use the SAS SQL Library for C, which is an API that enables you to create
applications that use SQL queries and statements to access data in SAS data sets
and in other database management systems.

Applications that use the ODBC driver, such as Microsoft Excel
use the ODBC driver, which provides ODBC-compliant Windows applications with
read-and-write access to local and remote SAS data sets.

OLE DB consumer or ADO applications
(beginning in SAS 8) use ShareProvider to view and update data through a direct
connection to a SAS/SHARE*NET server. ShareProvider implements the Microsoft
OLE DB specification and can be used by OLE DB-compliant or ADO-enabled
applications.

Each of the preceding client interfaces or applications has its own documentation.
Figure 2.2 on page 22 shows a sample of the types of clients that a SAS 8 (and later)

server supports and a SAS/SHARE server that is running in a SAS session in a
supported operating environment. A server administrator starts the SAS/SHARE
server session. SAS/SHARE clients can connect to the server from any machine on your

22 SAS/SHARE Is the Hub between Data and Clients � Chapter 2

network. SAS clients use the REMOTE engine to access data through a SAS/SHARE
server.

Figure 2.2 SAS/SHARE Server Clients

“Other client” refers to a client that is not a SAS application. For each of these
clients, the appropriate client-side drivers and libraries must be invoked.

Using SAS/SHARE Software � Accessing SAS Files through a SAS/SHARE Server 23

Accessing SAS Files through an Operating Environment

Figure 2.3 on page 23 illustrates two client sessions that are accessing SAS files
without using a SAS/SHARE server.

Figure 2.3 SAS Library Access through an Operating Environment

In this instance, your operating environment provides two types of access: read-only
and read-write. With read-only access, multiple users can simultaneously read the
same member or different members in the same library.

SAS files that have read-write access are usually associated with only one user.
Some operating environments support only read access to libraries that are accessed
directly by more than one user. Other operating environments permit two users to
write to different files in the same SAS library but do not permit them to write to the
same file simultaneously. Still other operating environments permit multiple users to
write to the same file at the same time, even though doing so is not safe and often
results in lost changes made by one or more users.

The only safe way for more than one user to share a SAS file (and on some operating
environments an entire library) is to use a common third-party process to sequentially
access the low-level parts of the file and coordinate updates to the data. SAS/SHARE is
a product that regulates access to SAS files. For more information about the SAS
library model, see SAS Language Reference: Concepts.

Accessing SAS Files through a SAS/SHARE Server

Figure 2.4 on page 24 illustrates two client sessions that are accessing SAS files by
using a SAS/SHARE server.

24 Accessing SAS Files through a SAS/SHARE Server � Chapter 2

Figure 2.4 SAS Library Access through a SAS/SHARE Server

The SAS/SHARE server enables multiple clients to effectively share the same SAS
file at the same time. In this context, “share” means to allow access by multiple clients
to a different unit (for example, an observation) in the same SAS file. In the preceding
figure, Client 1 can read from and write to observation 1, and Client 2 can read from
and write to observation 2 in the same SAS file. Both clients can also read the same
observation at the same time. However, only one client at a time can write to an
observation.

The server enables client access to the lowest unit of the SAS library hierarchy
through its powerful lock manager facility. Locks are applied in either of two ways:

� A client might specify an explicit lock with a LOCK command or a LOCK
statement.

� A client operation might automatically submit a request for an implicit lock.

The SAS/SHARE server evaluates each incoming client request to access a specific
SAS library unit (for example, a data library, a data set, or an observation) against a
complex set of locking rules whose application seems transparent to clients. The server
balances the client requests for access to data while ensuring the integrity of that data.
The server grants permission to a qualifying client and denies a conflicting request.
The denied client receives an informational message. For more information about
server locking rules, see Chapter 5, “Locking SAS Data Objects,” on page 61. For
information about the use of the LOCK command and the LOCK statement, see
“Locking Objects Explicitly (LOCK Statement)” on page 65, and “Locking Explicitly in a
SAS Window (LOCK Command)” on page 70.

CAUTION:
Although a SAS/SHARE server can effectively control multi-client access to a SAS library,
independent direct access to the data from other SAS sessions or operating environments
can interfere with the SAS/SHARE server. Simultaneous and unregulated access to a
common SAS library causes unpredictable results and possibly corrupt data. Your
site policies should prohibit unregulated data access. Make sure that your data
access policies are clearly communicated. �

Using SAS/SHARE Software � About the SAS Metadata Repository and the SAS Intelligence Platform 25

Remote Library Services Provides Remote File Access
SAS/SHARE provides remote file access through its Remote Library Services (RLS).

RLS provides transparent access to remote data libraries for moving data through the
network as the local SAS session requests it.

This access to remote data is provided through the REMOTE engine. Therefore, SAS
products can gain single-user or multi-user access to remote SAS data or third-party
DBMS data, as applicable, by invoking a SAS/SHARE server and assigning a library to
the server through the REMOTE engine.

The LIBNAME statement associates a SAS library reference (libref) with a
permanent SAS library, which can be specified by using an operating
environment-specific full physical name. Usually, the SAS/SHARE server uses the
BASE engine to access data; however, alternative engines can be assigned by using the
RENGINE= option. Attributes for the BASE or alternative engine can be supplied by
using the ROPTIONS= option. For information about the LIBNAME statement in SAS/
SHARE, see Chapter 10, “Remote Library Services,” on page 123; for the LIBNAME
statement in SAS/CONNECT, see the syntax for the LIBNAME statement in
SAS/CONNECT User’s Guide. For information about the LIBNAME statement in SAS/
ACCESS, see the LIBNAME statement for relational databases in SAS/ACCESS for
Relational Databases: Reference.

SAS/SHARE and the SAS Intelligence Platform

About the SAS Metadata Repository and the SAS Intelligence Platform
The SAS Metadata Repository is a collection of files that store metadata that is used

by SAS client applications that are deployed in a SAS Intelligence Platform
environment. Objects that define SAS/SHARE servers and their access to specified SAS
libraries through various engines are examples of metadata that is available to client
applications.

The SAS/SHARE objects that are configured as metadata using the user interface
SAS Management Console are similar to the arguments that can be specified in PROC
SERVER and LIBNAME statements in a SAS/SHARE application. SAS/SHARE
applications that execute in the traditional SAS interactive and batch execution modes
do not typically access and use SAS/SHARE metadata that has been configured in a
SAS Metadata Repository. However, a LIBNAME statement for the METADATA engine
can be used to programmatically access and use SAS/SHARE metadata that is stored in
a SAS Metadata Repository. For details, see SAS Language Interfaces to Metadata.
Also, the AUTHDOMAIN= option in the LIBNAME statement can be used obtain a
user ID and password that is stored in the SAS Metadata Repository. For details, see
AUTHDOMAIN= option on page 125.

For information about SAS/SHARE in a SAS Intelligence Platform environment, see the
SAS Intelligence Platform: Overview. For details about using SAS/SHARE in the
traditional interactive or batch modes, use the information in this document.

26 Configuring a SAS/SHARE Server and Server Libraries in a SAS Intelligence Platform Environment � Chapter 2

Configuring a SAS/SHARE Server and Server Libraries in a SAS
Intelligence Platform Environment

A SAS/SHARE server can be included during the installation and configuration of a
SAS Intelligence Platform environment. For details, see the SAS Intelligence Platform:
System Administration Guide. To add an instance of another SAS/SHARE server after
the SAS Intelligence Platform is operational, you can use the SAS Management Console
and invoke the New Server wizard, which prompts the user for connection information
about the SAS/SHARE server, such as the communications protocol, the address of the
computer that the server will run on, and the server ID. For more information, see the
Help for SAS Management Console.

After a SAS/SHARE server is configured, you can associate data sources with the
SAS/SHARE server that will be available for shared access. You can use the Data
Library Manager in SAS Management Console to define server libraries that are
accessible via the SAS/SHARE server. For more information, see the SAS Intelligence
Platform: Data Administration Guide.

Managing a SAS/SHARE Server
There are two basic meanings of the term SAS/SHARE management. You can

manage the metadata about client access to SAS/SHARE servers and libraries in a SAS
Intelligence Platform environment, and you can manage an instance of an active
SAS/SHARE server in the SAS Intelligence Platform environment or in a traditional
SAS interactive or batch execution environment:

� In a SAS Intelligence Platform environment, you can manage SAS/SHARE
metadata using the user interface SAS Management Console to add and modify a
SAS/SHARE server and access to libraries. These objects are stored and managed
as metadata in the SAS Metadata Repository.

� You can manage an instance of an active SAS/SHARE server.
� In a SAS Intelligence Platform environment, scripts are generated during a

phase of the installation that can be invoked to start, stop, restart, and pause
a SAS/SHARE server. For details, see the SAS Intelligence Platform: System
Administration Guide.

� In the traditional SAS interactive or batch modes of program execution, you
can use the OPERATE procedure in SAS/SHARE in order to monitor and
control the SAS/SHARE server, server libraries, and server users. For
example, you can use PROC OPERATE to define a SAS library to a server
after a server session has started, to display information about assigned
libraries, to terminate access to a library, and to display user IDs of users
who are connected to the current server session. For details, see Chapter 11,
“The OPERATE Procedure,” on page 133.

Note: You cannot monitor and control an active instance of a SAS/SHARE
server using SAS Management Console. �

SAS/SHARE Software Components
SAS/SHARE software consists of the following procedures and engine:

SERVER procedure
manages and performs input and output requests to SAS files on behalf of SAS
clients and clients that are not SAS applications.

Using SAS/SHARE Software � Migration and Cross-Version Compatibility (SAS 6 through SAS 9.2) 27

OPERATE procedure
manages server, library, and client resources. For example, you can allocate a
library to a server, free a library, stop a server, restart a server, and display
information about clients.

REMOTE engine
enables a client SAS session to access SAS data by means of a SAS/SHARE server.
(The REMOTE engine is also licensed and distributed as part of SAS/CONNECT
software.)

The REMOTE engine does not operate directly on files in a SAS library; it
communicates with a SAS/SHARE server. Each client runs a private copy of the
REMOTE engine to communicate with a server.

A server uses one or more library engines or view engines to operate directly on
files in SAS libraries that clients access through the server. The server routes
requests from the REMOTE engine to the appropriate engine for the SAS library
or the file that the client accesses. A server’s default library engine is specified in
the ENGINE= system option. You might override the default and specify another
engine when you start a server. Other engines are documented in the SAS
documentation for your operating environment.

SAS/SHARE Users
SAS/SHARE users are divided into three groups:

End users
update or use concurrently accessed data in other ways. End users might not even
be aware of SAS/SHARE. They just need some basic information about how to
update data sets and search for observations that they want to modify.

Programmers or developers
write applications that use a server to access shared data. They must know how to
define a libref for a SAS library that is accessed through a SAS/SHARE server and
have knowledge of how the server handles locking.

Server administrators
start a server, manage its session, and evaluate its performance. They give a
server access to SAS libraries (taking into account library security) and supply
clients with information to access these libraries. Server administrators also make
a server accessible to clients who have permission to use it. At some sites, a server
administrator might delegate specific functions to other personnel and work with
systems personnel to automate administrative functions.

Migration and Cross-Version Compatibility (SAS 6 through SAS 9.2)
Accessing your data is a primary concern when migrating to a new version of SAS. If

the server (and clients) have been upgraded to SAS 9.2, and you want the SAS data and
SAS applications to run at the same level as the server and clients, you can migrate the
data to the version that the server runs. For complete details about migration, see
http://support.sas.com/rnd/migration.

If you do not migrate your SAS data and applications to the new version of SAS, you
will be accessing SAS files and using SAS applications in a cross-version environment.
Therefore, it is important to be aware of any restrictions when operating in a
cross-version environment.

28 Migration and Cross-Version Compatibility (SAS 6 through SAS 9.2) � Chapter 2

Note: SAS 9.2 has many of the same features as Version 8, but a SAS 9.2 client
cannot access a SAS 6 server, and a SAS 6 client cannot access a SAS 9.2 server.
Because SAS 8 can communicate with both SAS 6 and SAS 9.2, SAS 8 serves as the
intermediate release. �

Access to data depends on the following:

� the SAS data object being accessed (library, file, view, or catalog).

� the version and release of SAS being used (SAS 6 through SAS 9.2) to create the
data that is being accessed or to develop the client application.

� the version and release of SAS being used by the client session or by the server
session.

For more information about cross-version issues, see Appendix 5, “SAS/SHARE
Cross-Version Issues, SAS 9.2,” on page 241.

29

C H A P T E R

3
Managing a SAS/SHARE Server
(Server Administrators)

Starting a Server: A Fast-Track Approach 29
Specifying a Communications Access Method 30

Predefining SAS Libraries to the Server 32

Advantages of Predefining Libraries 32

Methods for Predefining a Server Library 32

Predefining a Server Library by Using the LIBNAME Statement 32
Predefining a Server Library by Using the ALLOCATE LIBRARY Command in PROC

OPERATE 33

Starting a Server 33

PROC SERVER Statement 33

Identifying the Server 33

Limiting Users to Predefined Libraries 34
Validating Server Users 34

Selecting How Clients Are Identified in the Log 34

Logging Server Usage Statistics 34

Specifying the Format for the Server Log Datetime Stamp 35

Using the SAS Console Log To Analyze Server Errors 36
Specifying a Time Limit on SAS File Availability for Client Access 36

Server Security 36

Controlling Administrator Access to a Server 36

Controlling Access to Data through a Server 36

Setting Server Security 36
Assigning a User Password to a Server 37

Limiting the Libraries a Server Can Access 37

Operating Environment or File System Protections 37

Ensuring That User IDs Are Valid 38

Using Encryption Services 38

Writing a SAS Program to Start a Server 39
Automating Server Start-Up 39

Managing a Server, Its Libraries, and Its Users 39

Server Management: OPERATE Procedure 39

Server Log Reporting: OPERATE Procedure 39

Freeing a Library that Contains a Locked Data Set 41

Starting a Server: A Fast-Track Approach

You might need to start a new server quickly if in the following situations:

� You are installing SAS/SHARE for the first time.

� A new application presents a sudden demand.

30 Specifying a Communications Access Method � Chapter 3

� System resources become overloaded and require that the workload be shifted to a
new server.

If you are a new user of SAS/SHARE, there are various issues to consider as you
fine-tune your server environment, such as system options, predefined libraries, and
automated start-up. However, you might want to defer some of these issues and start a
server right away so that your applications developers can begin to create new
applications or migrate old ones to the multi-user environment.

To get a server started and running with minimal effort, perform the following tasks
in a SAS session on the server machine:

1 After the necessary configuration is completed for the communications access
method, specify the access method to be used between a SAS/SHARE server and
its clients by using the COMAMID= option in an OPTIONS statement at SAS
invocation or in a SAS configuration file. For example:

options comamid=tcp;

2 Start the server and assign it the name that you just configured. For example,
start a server named SHARE1 as follows:

proc server authenticate=optional id=share1;
run;

The following message appears in the server SAS log with a default time stamp:

30Apr2003:09:47:30.000 SAS server SHARE1 started.

The server SHARE1 can now be used by SAS clients and other clients that are not
SAS applications.

CAUTION:
Here are two limitations to the fast-track approach to starting a server. Server security is
not set. It might be possible for a client that accesses the server to have the same
permissions as the server to access data. Also, any SAS client that can access the
server can manage the server by using PROC OPERATE statements. This means
that a client can stop the server or stop access to any library through the server. For
details about setting server and library security, see “Server Security” on page 36.

If you run a server SAS session interactively, the SAS session assumes that, by
using a dialog box, you can resolve any problems that it encounters. While the SAS
session waits for a response to its query, the server might not be able to continue to
service client requests until the query is answered. However, you might not be aware
that a response is required if the window in which the server is running is not visible
or is not being monitored. Therefore, it is recommended that you specify the SAS
system option NOTERMINAL so that SAS does not display dialog boxes and
performs whatever is required without prompting. �

Specifying a Communications Access Method

A communications access method is the interface between SAS and the network
protocol that you use to connect two operating environments. The access method that
you use is determined by the network protocols that you have available at your site and
the operating environments that you are connecting. Supported access methods for SAS
9.2 are TCP/IP (Transmission Control Protocol/Internet Protocol) and XMS (Cross
Memory Services).

Managing a SAS/SHARE Server (Server Administrators) � Specifying a Communications Access Method 31

For a complete list of valid connections among operating environments and access
methods for SAS/SHARE, see Communications Access Methods for SAS/CONNECT
and SAS/SHARE.

Operating environments and access methods usually require the configuration of
access method resources on the operating environments on which the server will run.
Consult your network administrator about this configuration. For details about
configuring access method resources, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Server administrators should also be aware of special considerations and limitations
when the server is accessed by clients on an operating environment that is different
from that of the server. For information about cross-architecture limitations and
considerations, see Appendix 1, “Cross-Architecture Access,” on page 181.

After you verify that access method resources have been configured but before you
start a server, you must specify the access method by using the following syntax:

OPTIONS COMAMID=access-method;

access-method is the abbreviation for the method that is used by the server to
communicate with a client. In SAS 9.2, the supported access-method identifiers are
TCP/IP and XMS.

For a server that runs under an operating environment on which only one access
method is available, use only the COMAMID option. For example:

options comamid=tcp;

You might specify the COMAMID= option in an OPTIONS statement, at SAS
invocation, or in a SAS configuration file.

If the operating environment on which the server runs supports multiple access
methods, you can use the COMAUX1 option to specify alternate auxiliary access
methods by which clients can access the server.

All of the access methods initialize when the server initializes. The activation of
multiple access methods makes a server available to several groups of clients, each
group using a different access method simultaneously.

The COMAUX option can be specified only at a SAS invocation or in a SAS
configuration file. Here is the syntax for the COMAUX option:

COMAUX1=alternate-method

Here is an example of configuration file entries for a server that is running under z/
OS:

-comamid tcp
-comaux1 xms

When the server starts, all of the communications access methods are initialized.
The server is simultaneously available to client sessions that use the TCP/IP access
method and to clients that use the XMS access method.

For more information about access methods, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

32 Predefining SAS Libraries to the Server � Chapter 3

Predefining SAS Libraries to the Server

Advantages of Predefining Libraries
Although it is not required, predefining one or more selected SAS libraries to the

server for use by client applications provides the following advantages:
� Applications can use the libref that you define to identify the library. This protects

the applications against changes to the library’s physical pathname.
� The library is available to all clients that use the server’s SQL services, including

SAS clients that use the Remote SQL Pass-Through (RSPT) facility, and other
clients that use the SAS ODBC driver, the JDBC driver, or the SQL library for C.

� The server administrator can refer to the library with a libref in PROC OPERATE
commands.

Be aware that the user ID from which the server runs must have the appropriate
permissions to access the SAS library that you want to predefine to a server. You
should be familiar with the permissions requirements of the operating environment, the
network, and the security software before you predefine a library. For information
about server security, see “Server Security” on page 36.

Methods for Predefining a Server Library

Predefining a Server Library by Using the LIBNAME Statement
In your server program, prior to specifying the PROC SERVER step, you can

predefine one or more SAS libraries to the server by using the following syntax:

LIBNAME libref ’SAS-data-library’ <options>;

How you specify the physical pathname of the SAS library and options depends on
your operating environment. For details about the LIBNAME statement and options
specific to your operating environment, see SAS Language Reference: Concepts and the
SAS documentation for your operating environment.

Here is an example of how to predefine a library to the server for a UNIX operating
environment by using the LIBNAME statement:

libname mylib ’/payroll/div2/emp’;

After you define a library to the server, a message is displayed in the SAS log. For
example, here is a message for a server on a UNIX operating environment:

1 libname mylib ’.’;
NOTE: Libref MYLIB was successfully assigned as follows:
Engine: V9
Physical Name: /payroll/div2/emp

CAUTION:
You are discouraged from using the FILELOCKWAIT= option in the LIBNAME statement,
which specifies the maximum length of time that a SAS/SHARE client or server will
wait for a SAS file that has been locked by another process to become available for
use. If the wait time expires before the file becomes available, the SAS/SHARE
request to open the file will fail and a message is written to the log. When using
SAS/SHARE to access SAS files, do not perform additional jobs that might contend
for access to the same files. For details about the FILELOCKWAIT= option in the

Managing a SAS/SHARE Server (Server Administrators) � Identifying the Server 33

LIBNAME statement, see the SAS Companion for UNIX Environments or the SAS
Companion for the Microsoft Windows Environment, as appropriate. �

Predefining a Server Library by Using the ALLOCATE LIBRARY Command in
PROC OPERATE

In a server administrator session, while the server is running, you can predefine one
or more SAS libraries to the server by using the following syntax:

PROC OPERATE SERVER=server-ID;

ALLOCATE LIBRARY libref ’SAS-data-library’ <options>;

How you specify the physical pathname of the SAS library and options depends on
your operating environment. For details about the ALLOCATE LIBRARY command,
see “Defining a Library to a Server That Is Running” on page 136. For details about
options specific to an operating environment, see SAS Language Reference: Dictionary
and the SAS documentation for your operating environment.

Here is an example of using the ALLOCATE LIBRARY command in a PROC
OPERATE step under Windows:

proc operate server=share1;
allocate library mylib ’\payroll\dev2\emp’;

Note: In addition to these recommended methods, you can also define a libref
externally to SAS. For this information, see the SAS documentation for your operating
environment. �

Starting a Server

PROC SERVER Statement
To start a server, execute the PROC SERVER statement, which enables multiple

clients to simultaneously access and use SAS libraries and members in those libraries.
As part of server start-up, you must assign a server name, but specifying operational
attributes is optional.

To start a server with selected options, use the following syntax:

PROC SERVER <ID=server-ID> <ALLOC|NOALLOC>
<AUTHENTICATE=OPT|REQ> <CLIENTID=SECURITY|SESSION>
<LOG=value > <DTF=SAS-datetime-format> ;

The following sections explain the preceding options. For complete information about
server options, see Chapter 9, “The SERVER Procedure,” on page 107. For an example
of a typical log, see “Sample Log for SAS/SHARE Server SHARE2” on page 90.

Identifying the Server
ID=server-ID assigns a valid SAS name to the server. In SAS, valid names can

contain a maximum of eight alphanumeric characters and can include the following
special characters: dollar sign ($), at sign (@), and pound sign (#). For more information
about the rules for naming SAS variables, see SAS Language Reference: Concepts.

Server names are also constrained by the operating environment under which that
server runs and the access method that is used. For complete information about server

34 Limiting Users to Predefined Libraries � Chapter 3

IDs by operating environment, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Here is an example of specifying a server ID:

proc server id=share1;

Limiting Users to Predefined Libraries
Use the NOALLOC option to limit users to accessing only libraries that you

predefine to the server and to control which data users can access through the server.

Validating Server Users
Use the AUTHENTICATE= option to control whether the server will require clients

to provide valid user IDs and passwords before they are connected to the server. See
“Ensuring That User IDs Are Valid” on page 38.

Selecting How Clients Are Identified in the Log
Use the CLIENTID= option to specify whether clients are identified in the server log

by their session names or their secured names. For more information, see “PROC
SERVER Statement” on page 108.

Logging Server Usage Statistics
Usage statistics can be requested for each client that accesses a server. These

statistics are useful for debugging and tuning server applications. Usage statistics also
enable you to charge users for the amount of server resources that they consume. By
default, the server writes a client’s usage statistics to the server log when the client
disconnects from the server. Here are some of the statistics that you can request:

Number of messages processed
shows the number of messages (requests and replies) that a client exchanges with
a server in a single session.

Bytes transferred
shows the cumulative number of bytes that are received from a client and that are
sent to a client in a single session.

Active and elapsed time
shows the cumulative elapsed time during which the server processed requests on
behalf of a client in a single session. Although this figure is not CPU time, it is
related to CPU time. Whereas CPU time for a specific operation usually is
relatively independent of other server usage, this figure increases with an
increased level of server activity. However, active time should give a good
indication of the CPU usage by the client compared with other clients’ values that
are tracked during similar levels of server activity. The active time value can
exceed the elapsed time value, especially in the server totals, because many server
requests can be active (therefore, they are being timed) concurrently.

Here are examples of setting log usage:

proc server id=share1 log=message;
proc server id=share1 log=bytecount;

Managing a SAS/SHARE Server (Server Administrators) � Specifying the Format for the Server Log Datetime Stamp 35

proc server id=share1 log=(message bytecount activetime elapsedtime);
proc server id=share1 log=all;

Here is an example of a client log for all statistics:

Usage statistics for user mike(1):
Messages processed: 5,143
Bytes transferred: 10,578K
Active time: 1:47:23.6148
Elapsed time: 3:28:64.7386

For complete information about the LOG option, see Chapter 9, “The SERVER
Procedure,” on page 107. For a more complete example of a SAS log, see “Usage
Statistics in the Server Log” on page 90.

To charge users for the amount of server resources that they consume, allocate
consumption proportionately according to the usage statistics. You can allocate
consumption based on a single statistic or on a combination of statistics. The most
useful statistics for this purpose are the number of messages that are processed, the
number of bytes that are transferred, and the amount of active time used.

You might need to experiment with the relative weights of these statistics in your
charge-back formula. These statistics are sensitive to the specific operating
environment, access method, level of server activity, and types of applications.

The number of messages that are processed represents actual, billable work by the
server. When used together, the MESSAGE, BYTECOUNT, and ACTIVETIME values
in the LOG= option report data that characterizes the work that a user asked the
server to perform. Here are some examples:

� Small BYTECOUNT and MESSAGE values and a large ACTIVETIME value
might indicate that a small amount of data was selected from a large file by
sequentially searching the file or by interpreting a complex view.

� Moderate or large BYTECOUNT values and a large MESSAGE value might
indicate that a small amount of data is being read by the user on each message
that is exchanged with the server. This might be caused by random access or
exceptionally long observations and might suggest taking a snapshot of the data
for the user’s analysis.

� Small ACTIVETIME values and a large BYTECOUNT value suggest that the user
is exchanging data “in bulk” with the server. Usually, that does not indicate a
problem, but if the server is overloaded, you might want to suggest that the user
try another bulk-data transfer technique.

Specifying the Format for the Server Log Datetime Stamp
You can prepend a datetime stamp of a specific format to each message that is

written to the server log, or you can suppress the datetime stamp. The default format
DATETIME22.3 presents the date and time in the form DDMMMYYYY:hh:mm:ss.ddd.

Here are examples of how to set the datetime stamp:

proc server id=share1 alloc log=cpu dtformat=time11.2;
proc server id=share1 noalloc log=io dtformat=_NODTS_;

Here is an example of a datetime format:

30Apr2003:14:02.39.186

36 Using the SAS Console Log To Analyze Server Errors � Chapter 3

Using the SAS Console Log To Analyze Server Errors
If the SAS/SHARE server encounters problems at SAS initialization or at SAS

termination, the server log might not be available to receive error messages. If the
server log is not available, error messages are written to the SAS console log. For
details about the SAS console log, see the companion documentation that is appropriate
for the operating environment that you are using.

Specifying a Time Limit on SAS File Availability for Client Access
The client can specify a maximum time to wait for a SAS file to be unlocked and

available for access. In this example, the client specifies a limit of 15 seconds.

libname sales ’.’ server=shr1 rengine=base roptions="filelockwait=15";

When you invoke SAS on the computer on which the SAS/SHARE server will run,
you can negate the possibility of a stalled server by explicitly setting the maximum wait
time to zero. This value will override the value that the client specifies for the
FILELOCKWAIT= option in the LIBNAME statement.

c:\Program Files\SAS2\SASFoundation\9.2\sas.exe -dmr -noterminal
-nosyntaxcheck -sasuser work -icon -nosplash -filelockwaitmax=0

Server Security

Controlling Administrator Access to a Server
By default, any user can send administrator requests to a SAS/SHARE server to stop

the server or to display and modify its characteristics, such as who can access the server
and what SAS libraries it can serve. To prevent unauthorized users from sending these
types of requests, you can assign an administrator password to a server when you start
it by using the OAPW= option in the PROC SERVER statement. Here is an example:

proc server id=share1 oapw=blue31;

To specify an administrator password when you use PROC OPERATE to send
administrator commands to the server, you must use the SAPW= option. For example:

proc operate id=share1 sapw=blue31;

You can also specify an administrator password in each PROC OPERATE server
management command. For details, see “Displaying Information about a Server” on
page 140.

Controlling Access to Data through a Server

Setting Server Security
A SAS/SHARE server must have valid access permission to read and write data that

is requested by any of the server’s clients. Usually, this means that a server is
authorized to access more libraries and data sets than any one of its clients. For this

Managing a SAS/SHARE Server (Server Administrators) � Controlling Access to Data through a Server 37

reason, you might want to set server security to prevent unauthorized access to data
through the server by using one or more of the following:

� assigning a single password on the server
� limiting which libraries the server can access
� setting passwords for SAS data sets, views, and catalogs
� placing operating environment or file system protections on libraries and data sets
� requiring user ID validation

Assigning a User Password to a Server
The simplest method that you can use to limit access to data through a server is to

assign a user password to the server when you start the server. This password must be
supplied whenever a client connects to the server. This method offers the broadest
control over who can access data through the server. It applies to all users regardless of
the data that they access or the operations that they perform.

To assign a user password to a server, use the UAPW= option in the PROC SERVER
statement. Here is an example:

proc server id=share1 uapw=hotwings;
run;

When a user specifies the server for the first time in a LIBNAME statement or in a
PROC SQL CONNECT TO statement, use the SAPW= option to specify the user
password. Here is an example:

libname invoice server=share1 sapw=hotwings;

Limiting the Libraries a Server Can Access
To prevent unauthorized access to libraries or data sets that should not be accessed

through a specific server, use the operating environment or file system security software
to deny access by the server to those libraries or files.

You can also use the NOALLOC option in the PROC SERVER statement to limit
users to accessing only those libraries that you predefine. For more information, see
“Predefining SAS Libraries to the Server” on page 32 and “Limiting Users to Predefined
Libraries” on page 34.

Operating Environment or File System Protections
When a user reads or writes SAS libraries and SAS files, most operating

environments and file systems validate the user’s authority to read from or write to
that data.

Because a server is interposed between a user and the data, checking access
permissions, which is usually performed by the operating environment or the file
system security software, must be performed in the server’s session to protect access to
that data through the server. For this reason, a SAS/SHARE server calls the operating
environment or the file system to validate a user’s authority whenever an attempt is
made to read from or write to a library through the server.

Providing a validated user ID and password as arguments in the LIBNAME
statement, the ALLOCATE LIBRARY command in the PROC OPERATE statement, or
the Remote SQL Pass-Through statement preempts earlier SAS methods of supplying a
user ID and password by using a communications access method. Regardless of the
method used for collecting a user ID and password, the server uses the validated user
ID in making the authority check. To permit access by user IDs that are not validated,
you can use the AUTHENTICATE=OPTIONAL option in the PROC SERVER

38 Using Encryption Services � Chapter 3

statement. For more information about setting options in the PROC SERVER
statement, see Chapter 9, “The SERVER Procedure,” on page 107. For more information
about user IDs and passwords, see “LIBNAME Statement” on page 123, “Syntax: RSPT
SQL Procedure” on page 151, or Chapter 11, “The OPERATE Procedure,” on page 133.

In order to validate a user ID, most access methods require using an access
method-specific mechanism to provide the user ID and corresponding password for the
server operating environment. The access method encrypts the user ID and password
and transmits them to the server session to be validated. For information about the
mechanisms that control whether an access method validates connecting users and the
mechanisms by which users can provide their user IDs and passwords, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

On most operating environments, to validate a user ID and to verify access
permissions, a SAS/SHARE server calls the operating environment or the file system
directly. Under UNIX, the server performs these functions by calling an external
program (that is, not a SAS application) that you can modify.

Ensuring That User IDs Are Valid
Because a SAS/SHARE server calls the operating environment or the file system to

verify a user’s access permission to data, the accuracy of the user ID that the server
presents to the operating environment or to the file system determines whether a user
is allowed to access data.

When all communications access methods are configured (see Communications Access
Methods for SAS/CONNECT and SAS/SHARE), on most operating environments each
user ID is validated by the communications access methods when a user connects to the
server. That validation is used for the duration of the connection. The server presents
that user ID to the operating environment or to the file system whenever the user
attempts to access data through the server.

Specifying the option AUTHENTICATE=OPTIONAL in a PROC SERVER statement
bypasses the requirement that the access methods validate a connecting user ID. Use
the option AUTHENTICATE=OPTIONAL to get a server running quickly with an
absolute minimum of work. Also, this use shows the value of configuring production
servers to run without the option AUTHENTICATE=OPTIONAL, which means that
production servers can run unattended while only allowing users to access data that
they have permission to access.

If you are running a SAS/SHARE server in an operating environment that does not
have a security facility that controls user access to files, or if you are running a
SAS/SHARE server in an operating environment in which every user should have full
access to every file that is available to the server, you might want to use the option
AUTHENTICATE=OPTIONAL instead of implementing security for each of the access
methods that is used by the server. For example, if a SAS/SHARE server is running
under UNIX without a security facility installed, it is not possible for communications
access methods to validate connecting user IDs, nor is it possible for the server to verify
access to files for each individual user ID.

Using Encryption Services
As an alternate form of security, you can implement encryption services that protect

data that is sent between operating environments across a network. For details, see
Data Security Technologies in SAS.

Managing a SAS/SHARE Server (Server Administrators) � Server Log Reporting: OPERATE Procedure 39

Writing a SAS Program to Start a Server

When you write a simple SAS program to start a server, you can set SAS options in
a configuration file, which is processed during SAS invocation, or you can set the
options explicitly in a server session. To enable communication between the server and
clients that are running under different operating environments, you must specify a
communications access method. Also, you can predefine SAS libraries to the server.
Finally, you start the server and specify the options that you want.

The following sample program shows how to start a server on UNIX. (The exact
syntax varies by operating environment.)

options comamid=tcp;
libname payable ’/dept/acct/pay’;
proc server authenticate=optional id=share1 msgnumber;

Automating Server Start-Up

An alternative to starting a server in interactive mode is to create a command file
that runs during system initialization and automates server start-up. The tasks that
you perform vary by operating environment. For more information about how to
automate server start-up under specific operating environments, see Appendix 2,
“Creating the SAS/SHARE Server Environment,” on page 197.

Managing a Server, Its Libraries, and Its Users

Server Management: OPERATE Procedure
Use commands in the OPERATE procedure to manage the following:

� an active server, or a server that is running. You can display information about a
server, quiesce a server, reset a server (for subsequent management operations),
restart a quiesced server, and stop a server. For information about managing a
server, see “Server Management Commands” on page 140.

� server libraries. You can allocate a library to an active server, display information
about a library, and free, quiesce, or stop a library. For information about
managing a library, see “Library Management Commands” on page 136.

� users. You can display information about users, quiesce a user’s access, restart a
quiesced or a stopped user, or terminate user connections to a server. For
information about managing users, see “User Management Commands” on page
146.

Server Log Reporting: OPERATE Procedure
Output 3.1 shows part of the server administrator’s log for PROC OPERATE. The log

reports client/server transactions for users John and Maria, who are working on a server
named SHARE1. For information about interpreting server logs that are generated by
users, see Chapter 7, “Interpreting SAS/SHARE Server Log Messages,” on page 89.

40 Server Log Reporting: OPERATE Procedure � Chapter 3

Output 3.1 Administrator’s Log for the OPERATE Procedure

LOG
Command ===>

1 proc operate serverid=share1;
==
2 display user _all_;

NUMBER OF
USER ID STATUS LIBRARIES

john(1) ACTIVE 1
maria(2) ACTIVE 2
myid(3) ACTIVE 0

==
3 stop user maria;
User maria(2) stopped from active state.
User maria is now disallowed from connecting to server SHARE1.
==
4 display user maria;

NUMBER OF
USER ID STATUS LIBRARIES

maria(2) STOPPED 0

==
5 quiesce user 1;
User john(1) quiesced from active state.
==
6 display user 1;

NUMBER OF
USER ID STATUS LIBRARIES

john(1) QUIESCED 1

User john(1) is accessing these libraries:

USER LIBREF SERVER LIBREF LIBRARY NAME

DATALIB SYSUSE <SAS-library-name>

User john(1) is accessing these data sets:

USER LIBREF SERVER LIBREF MEMBER TYPE OPEN MODE
--
DATALIB SYSUSE USAGE CATALOG UPDATE
==
7 start user maria;
User maria started from stopped state and therefore has become unknown
to server SHARE1.
==
8 quit;

1 PROC OPERATE executes commands 2 through 8 (shown in the preceding output).

2 The DISPLAY USER command requests general information about all users who
are currently accessing SHARE1. The users are listed by user ID, current status,
and the number of library assignments to the server.

3 The STOP USER command immediately disconnects user MARIA(2) from the
server. If Maria is using the FSEDIT procedure to update an observation when the
STOP command is issued, she loses the updates on her display, but she does not
lose previous updates. The STOP USER command terminates all attachments to
that server, and she is prohibited from accessing that server until the
administrator issues a START USER command.

Managing a SAS/SHARE Server (Server Administrators) � Freeing a Library that Contains a Locked Data Set 41

4 The DISPLAY USER command shows Maria’s current status. No libraries are
listed for Maria because the STOP USER command released them.

5 The QUIESCE USER command gradually terminates user JOHN(1), which allows
John to finish work in the data sets that he currently has open.

6 The subsequent DISPLAY USER command reports that John is still accessing
member USAGE in library DATALIB. When John closes USAGE in that library,
the server releases the library and disconnects John. Because John’s session was
quiesced by its connect number, John can reconnect to the server when he wants
to. He receives a new connection number at that time.

7 The START USER command allows Maria to access the server again. Note that
the START USER command does not establish a communication path between the
server and Maria. It only enables Maria to re-establish a path by using a
LIBNAME statement or an SQL CONNECT TO statement. She must explicitly
re-access the server.

8 The QUIT statement terminates PROC OPERATE.

Freeing a Library that Contains a Locked Data Set
An administrator might need to free a library from a server so that another process

can directly manipulate data in the library. Use these steps to free a library from a
server. For details about the commands used in these steps, see Chapter 11, “The
OPERATE Procedure,” on page 133.

1 Use the QUIESCE LIBRARY command to change the library’s status from active
to stopped.

The QUIESCE command returns immediately, but the quiesce process does not
complete until the final user has voluntarily released the library from use.

2 Use the DISPLAY LIBRARY command to find out the active users and their user
librefs.

Contact these users and ask them to release the library. Wait a sufficient period
of time for users to finish their work. Display library usage again to verify that all
users have released the library from access.

3 Use the STOP USER command to terminate all client sessions that reference SAS
views into the specified SAS library.

These views were identified using the DISPLAY LIBRARY commands. Client
sessions that hold open views into the specified library from another library should
also be terminated.

4 If the library has not yet stopped, use the STOP LIBRARY command to change the
library’s status to stopped. This command immediately terminates all remaining
user access to the specified library.

5 Use the FREE LIBRARY command to release the specified library from use.
The library should be freed from use.

42

43

C H A P T E R

4
Writing End-User Applications to
Access Shared Data

Accessing Libraries through a Server 43
Introduction 43

Using the LIBNAME Statement 44

Using Macros to Generate a LIBNAME Statement 44

Locking Data Objects in your Programming Environment 45

SAS Programming Considerations 45
DATA Step Processing 45

Using Ordered Data in a Shared Environment 47

Using Non-interactive SAS Applications in a Shared Environment 48

Concurrent Sorting: z/OS Only 49

SQL Programming Considerations 49

SCL Programming Considerations 50
Concurrent SCL Applications 50

Locking Rows in SAS Tables 51

Locking Rows in SCL 51

Programming with PROC FSEDIT and PROC FSBROWSE 52

Programming with the Data Table and Data Form Classes 52
Locating and Fetching Control Rows 52

Unlocking Rows 54

SAS Data View Programming Considerations 54

Data Sets of Type VIEW 54

Interpreting SAS Data Views 54
Example: Using RLS and a DATA Step View to Improve the Performance of PROC APPEND 55

Using SAS Catalog Entries in Programs 58

Using SAS/CONNECT with SAS/SHARE 58

SAS/CONNECT Used with SAS/SHARE 58

Example: Using a SAS/SHARE Server in a SAS/CONNECT Server Session 59

Accessing Libraries through a Server

Introduction

The information in this section is primarily directed to applications developers.
However, server administrators and end users might also find it of interest. For more
information about programming techniques and adjusting SAS system option values to
improve the performance of your client/server applications, see Appendix 3, “Tuning
Tips for Applications That Use SAS/SHARE Software,” on page 211.

44 Using the LIBNAME Statement � Chapter 4

Using the LIBNAME Statement

To access a SAS library or an external DBMS through a SAS/SHARE server, you
must use the REMOTE engine to define a libref for the library. In a LIBNAME
statement, specify the libref, which identifies the library or the DBMS, and the
SAS/SHARE server that you’ll use to access that library or DBMS.

In the following example, the engine name REMOTE, which is usually specified
between the libref and the pathname, is omitted because it is implied by the SERVER=
option.

libname invoice ’/dept/acct/data/invoice’ server=share1;

If the library is predefined to the server by a server administrator, you can omit the
pathname and use only the libref, which is defined for the library in the server SAS
session, to identify the library. Omitting the pathname protects your application if the
pathname for the library has changed.

In the following example, the REMOTE engine and the server assume that the libref
(invdata), which you defined for your SAS session, is the same libref that is defined by
the server administrator in the server SAS session.

libname invdata server=share1;

If the library is predefined to the server but you want to define a libref that is
different from the one that is defined in the server SAS session, use the SLIBREF=
option in the LIBNAME statement to specify a newly defined server libref, as shown in
the following example. However, if a server runs with the option NOALLOC in effect,
all libraries that are accessed through that server must be predefined by the server
administrator.

libname invoice server=share1 slibref=invdata;

For details about the LIBNAME statement syntax, see Chapter 10, “Remote Library
Services,” on page 123.

Using Macros to Generate a LIBNAME Statement

Hard coding the server name in a LIBNAME statement can be a problem if the
server administrator shifts one server’s traffic to another server, thereby invalidating
the server name.

You can avoid this problem by using a SAS macro to generate the required
LIBNAME statement. If you use a macro in your end-user application, you can change
the name of the server in one place, even though multiple applications access data
through that server. Using macros improves maintenance of your SAS programs.

SAS/SHARE provides macros for generating LIBNAME statements. To associate a
server name with a SAS library, register the library in the table that is maintained by
the server administrator. Instead of specifying a LIBNAME statement to access the
library, use the LIBDEF macro. When you invoke the LIBDEF macro, it searches the
table of registered data libraries for the specified library. When the LIBDEF macro
finds the library, it uses the associated server name and the specified libref to construct
the LIBNAME statement. Before the first invocation of the LIBDEF macro in a SAS
execution, you must invoke the SHRMACS macro with the keyword USER.

%shrmacs(user);

The SHRMACS macro generates and compiles other SAS/SHARE macros and builds
the SAS server-alias and library-alias tables in which server libraries are registered.

Writing End-User Applications to Access Shared Data � DATA Step Processing 45

To invoke the LIBDEF macro, specify the libref and the optional server library. Here
is an example:

%libdef(datalib<,SAS-data-library>);

For more information about using the LIBDEF macro, see “Generating a LIBNAME
Statement By Using the LIBDEF Macro” on page 86. For complete details about macro
syntax, see Chapter 14, “SAS/SHARE Macros,” on page 163. Contact your server
administrator for information about how the macros and tables are implemented and
how they are used at your site.

Locking Data Objects in your Programming Environment
The SAS/SHARE lock manager enables multiple clients to share the same SAS file

at the same time. The server’s ability to manage multi-client access of selected data
objects is contingent on a complex set of locking rules that are affected by many factors.
These locking rules must be considered in relation to each programming product (SAS
and other products) that you use to write applications that enable accessing data
through the SAS/SHARE server. For complete information about locking, see Chapter
5, “Locking SAS Data Objects,” on page 61.

SAS Programming Considerations

DATA Step Processing
John and Maria have concurrent access to the SAS data set FUEL in their

respective sessions. While Maria is editing the data set DATALIB.FUEL in an FSEDIT
window, John can use a SET, a MERGE, or an UPDATE statement in a DATA step to
read DATALIB.FUEL. Although John cannot create a new version of DATALIB.FUEL,
he can create other data sets or written reports.

The following program shows the effect of implicit locking when two clients access
the same SAS data set at the same time:

data _null_;
set datalib.fuel;
file report ps=24 n=ps;
...

run;

data composit;
merge datalib.fuel fuel96;

run;

46 DATA Step Processing � Chapter 4

If John uses a SET statement to read DATALIB.FUEL, he cannot specify the KEY=
or POINT= option unless he overrides the member-level control. By default,
member-level control is required when either of these options are included in a SET
statement. Here’s an example.

data pressure;
set fuel (keep=fuel maxpress);
set datalib.fuel (cntllev=rec) key=fuel;
...

run;

If John uses an UPDATE statement or a SET or a MERGE statement with a BY
statement to read DATALIB.FUEL, he should consider specifying member-level control
to ensure that the data set remains correctly ordered while his DATA step runs. Here’s
an example.

data composit;
merge datalib.fuel (cntllev=mem) fuel96;
by grade;

run;

John cannot create a new version of DATALIB.FUEL, but he can use a MODIFY
statement in a DATA step to update the shared data set. Here’s an example.

data datalib.fuel;
modify datalib.fuel;
if (grade=’03N’) then

do;
grade=’3Np’;
revised=today();
replace datalib.fuel;

end;
run;

When John uses the preceding DATA step to update an observation that Maria is
editing in her FSEDIT window, the replace operation for that observation fails because
Maria has the observation locked. This failure causes the DATA step to terminate as
soon as the locked observation is encountered. However, any observations that are
updated before the termination retain their updated values.

For applications that update shared data by using a MODIFY statement, it is very
important to include error-checking statements to prevent failure in the updating
process and premature termination. The automatic variable _IORC_ includes the
return codes from the read operation (performed by the MODIFY statement) and the
update operations (performed by the REPLACE, OUTPUT, and REMOVE statements).
The preceding DATA step would be more effective if it was written as follows:

data datalib.fuel;
modify datalib.fuel;
if (grade=’03N’) then

if (_iorc_ = 0) then
/* read with lock for successful update */

do;
grade=’3Np’;
revised=today();
replace datalib.fuel;

end;
else

put ’Observation’ _n_

Writing End-User Applications to Access Shared Data � Using Ordered Data in a Shared Environment 47

’(fuel’ fuel ’) was not replaced.’;
run;

The preceding DATA step checks the value of _IORC_ to determine whether a
warning or an error condition occurred while reading an observation in
DATALIB.FUEL. If the observation was read successfully, it can be replaced. If the
observation could not be read, a message is written to the SAS log to record the failure
and to identify the observation that was not updated.

To check for specific values of _IORC_, use the SYSRC macro. For example:

data datalib.fuel;
modify datalib.fuel;
if (grade=’03N’) then

if (_iorc_ = 0) then
/* read with lock for successful update */
do;

grade=’3Np’;
revised=today();
replace datalib.fuel;

end;
else if (_iorc_ = %sysrc(_SWNOUPD)) then

put ’Observation’ _n_
’(fuel’ fuel ’) was not replaced.’;

else
put ’Observation’ _n_

’(fuel’ fuel ’) read with rc’ _iorc_;
run;

For complete information about the MODIFY statement, see SAS Language
Reference: Dictionary. For information about the SYSRC macro and _IORC_ return
code checking, see SAS Macro Language: Reference.

Using Ordered Data in a Shared Environment
Many applications that use SAS data sets require the data to be stored in sorted

order according to the value (or values) of one or more variables. Beginning in SAS 6,
indexes can be defined for one or more variables in a SAS data file to help SAS
applications maintain the order of the observations in SAS data sets. This prevents the
application from having to sort the entire data set for each use. Because SAS detects if
indexes are used in its processing, indexes must be carefully defined to avoid
inadvertently causing less efficient SAS performance. For more information about
defining indexes, see SAS Language Reference: Concepts.

Shared SAS data sets are frequently ordered according to one or more variables.
Programmers who develop SAS applications that use shared, ordered data should be
aware of the following ways in which shared data can be used:

� concurrent-update applications

� reporting applications

Concurrent-update applications usually involve several users who repeat the
following type of cycle: select an observation, update data; select another observation,
update that data; and so on. If these users specify a WHERE clause to move to the next
observation and the variable (or variables) in the WHERE clause are indexed, indexing
can improve the server’s performance by minimizing the server’s effort to search for
each observation. Because the users’ access pattern when using the concurrent-update
applications is often random instead of sequential, processing with an index does not

48 Using Non-interactive SAS Applications in a Shared Environment � Chapter 4

usually increase the amount of physical I/O that is performed by the server for each
user.

Reporting applications frequently read the data of one or more shared data sets,
capturing the data as it is at that moment, and develop a report from that data. If the
application uses a BY statement to return the data in sorted order, the server’s
performance can vary greatly while the data is being read. The server’s performance is
based on multiple factors, such as whether the BY variable is indexed, and whether
options are added to the BY statement that result in the index not being used.

To optimize the server’s performance, the server needs to read the data in its
physical, unsorted order, and then sort the data in the SAS process that is used to
produce the report. You can do this by using the SORT procedure to read the data in
physical order through the server, and produce a sorted data file in your library WORK.
Here’s an example.

proc sort data=datalib.fuel out=fuel;
by area;

run;

Alternatively, you can use the SQL procedure to create a temporary SAS data file
and sort it by using an ORDER BY clause. Here’s an example.

proc sql;
create table fuel as

select * from datalib.fuel
order by area;

Defining more indexes than are necessary on shared SAS data sets can increase the
amount of memory that a server needs. Avoid defining indexes that will not be used by
your applications when they access shared data sets through a server.

Using Non-interactive SAS Applications in a Shared Environment
Shared data is sometimes maintained by SAS applications that use the batch or a

non-interactive method of processing. As in interactive applications, these
non-interactive applications update SAS files through a server. Non-interactive
applications can be written as one or more SCL programs or as a combination of DATA
steps and procedures.

Usually, it is important that no other users access any of the shared SAS files while
a non-interactive application runs. To ensure uninterrupted access, use the LOCK
statement or the SCL LOCK function (for SCL programs) at the beginning of your
program to get exclusive access to the SAS files that your application uses. After your
program has completed, be sure to release your exclusive access to these SAS files so
that other users can access them.

Here is a two-step SAS program that includes a LOCK statement that opens a
shared SAS data set and copies to another data set all data that has not been updated
for one month. Then the program deletes the data from the original data set. The
following example program gives exclusive access to a specific SAS file and clears the
exclusive lock after the program has completed processing.

%libdef(datalib);

/* Try to get exclusive access to the SAS data set. */
lock datalib.fuel;

/* Did we succeed? If not, stop here. */
data _null_;

Writing End-User Applications to Access Shared Data � SQL Programming Considerations 49

put "SYSLCKRC=&SYSLCKRC";
if "&SYSLCKRC" ^= ’0’ then

abort return;
run;

/* Copy any observations that have not been updated in */
/* 30 days to a different, locally-accessed library. */

data permlib.a;
drop now;
retain now;
if (_N_=1) then now=today();
set datalib.fuel;
if (accdate<(now− 30)) then output permlib.a;

run;

/* Now delete those observations from the master file. */

proc sql;
delete from datalib.fuel where (accdate<(today()− 30));
quit;

/* Tasks completed. Release the lock on the master file. */

lock datalib.fuel clear;

Concurrent Sorting: z/OS Only
SAS does not support concurrent host sorts under the z/OS operating environment.

Attempting to invoke a host sort while one is already running will cause SAS to revert
to the internal sort, which might have an adverse effect on performance. Attempts to
run concurrent sorts usually occur in a server environment, but running sorts in a
server environment is not recommended.

SQL Programming Considerations
The REMOTE engine supports the SQL procedure Pass-Through Facility (RSPT),

which allows you to pass SQL statements to a SQL server or a DBMS through a
SAS/SHARE or a SAS/CONNECT server.

You can use RSPT to reduce network traffic and to shift CPU load by sending
requests for data to a server.

Note: If the server is a SAS/CONNECT server, you can also remotely submit queries
by using the RSUBMIT statement and achieve the same goals. �

For example, consider the following statement:

select emptitle as title, avg(empyears), freq(empnum)
from sql.employee
group by title
order by title;

SQL is the libref for a library that is accessed through a SAS/SHARE or a
SAS/CONNECT server. Each row in the table EMPLOYEE must be returned to your

50 SCL Programming Considerations � Chapter 4

client in order for the summary functions AVG() and FREQ() to be applied to them.
However, you might specify the statement as follows:

select * from connection to remote
(select emptitle as title,

avg(empyears), freq(empnum)
from sql.employee
group by title
order by title);

In this case, the query is passed through the SAS/SHARE server to the SAS SQL
processor, which processes each row in the table EMPLOYEE and returns only the
summary rows to your client.

You can also use RSPT to join server data with client data. For example, you might
specify the statement as follows:

libname mylib ’c:\sales’;

proc sql;
connect to remote (server=mvs.shr1 dbms=db2
dbmsarg=(ssid=db2p));

select * from mylib.sales97,
connection to remote

(select qtr, division,sales, pct from revenue.all97
where region = ’Southeast’)

where sales97.div = division;

In this case, the subquery against the DB2 data is sent through the SAS/SHARE server
to the DB2 server. The rows for the divisions in the Southeast region are returned to
your SAS/SHARE client, where they are joined with the corresponding rows from the
client data set MYLIB.SALES97.

If your server is a SAS/CONNECT server, you can also use RSPT to send non-query
SQL statements to a DBMS. For example, the following statements send the DELETE
statement in PROC SQL through the SAS/SHARE server to the Oracle server.

proc sql;
connect to remote (server=sunserv dbms=oracle);

execute (delete from parts.inventory
where part_bin_number = ’093A6’)
by remote;

SCL Programming Considerations

Concurrent SCL Applications
You can use SAS Component Language (SCL) with SAS/SHARE software to access

data through a SAS/SHARE server. SCL has the ability to read and update SAS tables
that are used concurrently by other clients or SCL applications. For complete
information about SCL, see SAS Component Language: Reference.

A concurrent SCL application opens one SAS data table for update while other SAS
operations (possibly in different SAS sessions) have the same data table open for

Writing End-User Applications to Access Shared Data � Locking Rows in SCL 51

update. You can open other data tables for update by using other invocations of the first
SCL application, using a different SAS application or SCL application, or using the
FSEDIT or FSVIEW procedure on the table.

Consider the following issues when writing an SCL application that updates data
concurrently:

� locking rows in SAS tables
� implications of locking rows in SCL
� programming in PROC FSEDIT and PROC FSBROWSE
� locating and fetching control rows
� unlocking a row

For an application that uses SAS tables that contain inventory and ordering
information for each product in a store, see Appendix 4, “SAS Component Language
(SCL) Application,” on page 233. The purpose of the application is to automate a system
that develops orders and maintains the inventory list while sales representatives
simultaneously write orders for products.

Locking Rows in SAS Tables
A row in a SAS table is locked implicitly when it is read by a SAS procedure, a

DATA step, or an SCL application. A lock on a row is held until a different row is read
or until the SCL application calls the UNLOCK function.

When a SAS table is opened for update, only one row can be locked at a time.
However, a SAS table can be opened for update more than one time in the same SAS
session or in different SAS sessions (through a server), and a different row can be
locked by each user who opens the table. For example, if two users are running an SCL
application that calls the OPEN function to open a SAS table for update, row 7 can be
locked by one user and row 10 can be locked by the other user.

Locking Rows in SCL
Row locking can give a programmer an important advantage, and should be a key

consideration in concurrent SCL programming. While an SCL application has a row
locked, no other SAS operation (especially in another SAS session) can alter or delete
that row. After a lock on a row is released, your application cannot know that the
values in that row remain the same; another user might have already modified the
values. Any data modifications that you make that are based on the old values might
damage the data integrity of the system.

Therefore, you must never assume that the data values in a specific row will not
change in a shared table, even though only a very brief amount of time has elapsed
between consecutive reads and locks of the row.

When each row in a SAS table can represent a specific instance of a resource that the
application must govern, row locking provides a resource-specific, protected period of
time in which the application can safely test and modify the state of the resource.

An example of a specific-resource instance is information about one of your customers
or the number of items of a specific type that is currently in inventory. The SCL
example in Appendix 4, “SAS Component Language (SCL) Application,” on page 233
applies locks to its inventory table to maintain the correct inventory count for each item,
even if several sales representatives are simultaneously writing orders for those items.

52 Programming with PROC FSEDIT and PROC FSBROWSE � Chapter 4

Programming with PROC FSEDIT and PROC FSBROWSE
Unlike other SCL environments (such as SAS/AF software and the FSVIEW

procedure), PROC FSEDIT and PROC FSBROWSE give the SCL programmer multiple
labeled sections for structuring an SCL application. The sequence in which these
procedures run some of the sections has several implications for concurrent SCL
programming.

The INIT section is especially useful in applications that read and update shared
data. The initial values of the columns in a row (as currently stored in the SAS table)
can be preserved in SCL columns. Preserving initial values in SCL columns is
important for applications that update auxiliary tables that are based on the PROC
FSEDIT user’s modification or on the creation of a row in the primary table. SCL
applications that read and update data usually need to perform the following tasks:

� determine whether a modified window column actually contains a value that is
different from its initial, validated value

� explicitly restore the initial values if the user’s modifications to a row in the
primary table are not allowed because they could not be validated

� modify the auxiliary tables because changes (from their initial values) were made
to the values in a row in the primary table

Although the MAIN or TERM sections must validate the user’s modifications to a
row in the primary table and update auxiliary tables, it is usually best that no row of
an auxiliary table remain locked between executions of these sections. Such locks
prevent other users or applications from modifying the row while a user is working in
the current row in the primary table.

Programming with the Data Table and Data Form Classes
The Data Table and Data Form classes in SAS/AF FRAME entries allow you to

specify an SCL entry to use for the model SCL. This SCL entry is separate from the
frame’s SCL entry. Usually, model SCL is used to initialize computed columns and to
perform error checking and data validation.

As in PROC FSEDIT, the Data Table and the Data Form objects give the SCL
programmer multiple labeled sections for structuring the order in which events will
occur for each row in the table. These sections, which include INIT, MAIN, and TERM,
work in the same way as explained in “Programming with PROC FSEDIT and PROC
FSBROWSE” on page 52.

If multiple instances of the Data Table or the Data Form objects are displayed within
a single SAS/AF FRAME entry, the objects share data, then the model SCL for each
data table or data form runs separately. The application developer must remember
whether a previous object has a lock on a row that the current object attempts to read
or update. In addition, the frame SCL might also be working on the shared data, and
timing within the frame could be critical. For more information about when SCL labels
are run, see SAS Component Language: Reference.

Locating and Fetching Control Rows
SCL provides a set of functions that are useful for locating and fetching the required

auxiliary table rows (observations) in a data-concurrent SCL application. However, you
should use caution with these functions in applications that access shared data. The
return code, which is obtained directly from the called function or from the SYSRC
function, must be checked to ensure that a lock was obtained on the row or that an

Writing End-User Applications to Access Shared Data � Locating and Fetching Control Rows 53

update was successful. The return value, which is generated by the macro invocation
%SYSRC(_SWNOUPD), is generated when a fetch or update function fails to lock or
update the row because it is locked by another application.

The FETCHOBS table function is useful when the row number can serve as the row
identifier. Remember that the FETCHOBS function accepts a relative row number by
default. That number might or might not equate to the physical row number. If you can
delete rows in the auxiliary table, you probably want to use the ABS option in the
FETCHOBS function for absolute row numbering.

The LOCATEC and LOCATEN table functions can be useful for finding rows in small
tables when the data can remain sorted by a unique identifier (column) and a binary
search is specified. However, due to the overhead of searching with these SCL functions,
it is better to use the WHERE and FETCH functions to find the rows. In a shared-data
environment, when you use the LOCATEC and LOCATEN functions to find rows, each
row must be requested from the server and transmitted to the client’s SAS session.

The SYSRC function must be queried for warnings when the LOCATEC and
LOCATEN functions find a row because these functions only return a return code of 0
for either condition: row found or row not found. For more information about the
LOCATEC and LOCATEN functions, see SAS Component Language: Reference. The
following SCL program example checks whether the located row is locked by another
task:

gotrec=locatec(data-set-id,var-num,search-string,
sort-order);

if (gotrec<=0) then do;
/* Handle row not found */

end;
else if (sysrc()=%sysrc(_swnoupd)) then do;

/* Handle row locked */
end;

Note: The LOCATEC and LOCATEN functions cannot perform binary searches on
compressed tables, SAS data views, or SAS data files that have deleted rows. �

The more general and, usually, more efficient way to find a row is to use the
WHERE function followed by a FETCH function call. The WHERE clause is evaluated
in the server’s SAS session, and only the row that needs the specifications in the
WHERE clause is transmitted to the client’s SAS session.

If the WHERE clause does not find the specified row, the FETCH function returns a
−1 return code, which indicates that the end of the table has been reached. If the
WHERE clause is cleared by issuing a null WHERE function call, the next FETCH call
that the application issues fetches the first row in the table. The FETCH call, not the
WHERE clause, locks the row (if possible). Notice that the WHERE function returns a
harmless warning, %SYSRC(_SWWREP), when the WHERE clause is replaced.

The DATALISTC and DATALISTN selection-list functions help a client to select a
valid row. These functions actually fetch the entire selected row into the Table Data
Vector (DDV) and lock the row (if possible). Because these functions do not return a
system return code, the SYSRC function must be queried for warnings. The
DATALISTC and DATALISTN functions might cause the entire SAS table to be read,
which means that each row that is read is transferred individually from the server to
the client SAS session.

54 Unlocking Rows � Chapter 4

Unlocking Rows

In addition to releasing a lock on the current row by reading another row, an SCL
application can use the SCL function UNLOCK. The UNLOCK function leaves the
read-pointer at its current position in the table and does not update the DDV.

The OBSINFO function in SCL returns information about the primary table’s current
row in an FSEDIT application. You can query whether the row has been deleted, locked,
or newly created. A row does not attain deleted status until the DELETE command is
run on the client. For example, if you specified the CONTROL ENTER statement to
force your MAIN section to run, the OBSINFO function will not return a deleted status
when issued from the MAIN section (because the DELETE command that was executed
on the client has caused MAIN to be run.) However, the OBSINFO function will return
a deleted status when the MAIN statement or TERM section is run again.

SAS Data View Programming Considerations

Data Sets of Type VIEW

Beginning with SAS 6, SAS data sets can be classified as member type DATA (SAS
data file) or member type VIEW. A data set of type VIEW is called a SAS data view. It
contains a definition or description of data that is stored elsewhere. SAS data views can
be created by using a DATA step, the SQL procedure, or the ACCESS procedure in
SAS/ACCESS software. In most SAS programs, whether the data comes from a SAS
data view or data file is not important.

Many SAS/ACCESS interface products, such as DB2 or Oracle, enable you to update
product data by using a SAS/ACCESS view. However, for views that are interpreted in
the server’s session, whether you can update a view’s underlying DBMS data depends
on the specific SAS/ACCESS interface engine that you are using. For information about
how to use SAS/ACCESS engines in a SAS/SHARE server session, see the
SAS/ACCESS documentation.

Interpreting SAS Data Views

A SAS data view that is accessed by using a server can be interpreted in either the
server or the client session.

The user specifies where a SAS data view is interpreted by specifying the RMTVIEW=
option in the LIBNAME statement. When RMTVIEW= YES or the option is omitted, a
data view is interpreted in the server session. When RMTVIEW= NO, a data view is
interpreted in the client session. For more information about the LIBNAME statement
and its options, see Chapter 10, “Remote Library Services,” on page 123.

Interpreting a view consists of loading and calling the view engine to read the view’s
underlying data. When a view is interpreted in the client session, the view engine is
loaded and called by the client to read and present the underlying data and present it
as a SAS data set. When a view is interpreted in the server session, the view engine is
loaded and called by the server to read and present the underlying data.

Whether a SAS data view is interpreted in a client or a server session, the
underlying data must be accessible to its view engine. Data accessibility is based on
whether the view was created by using a DATA step, PROC SQL, or PROC ACCESS.

Writing End-User Applications to Access Shared Data � Example: Improving the Performance of PROC APPEND 55

For DATA step views, “accessible” means that any external file (or files) must be
available and that any filerefs and librefs that are stored in the view must be defined in
the SAS session in which the view is interpreted.

For PROC SQL views, “accessible” means that all librefs that are used in the view
must be predefined in the SAS session in which the view is interpreted, or included in
the USING clause of the query that is stored in the view. This libref can be associated
with a SAS library that is accessed through a server or a library that is stored at the
client. You do not have to specify a libref in a PROC SQL view for data sets that are in
the same data library as the view itself.

For PROC ACCESS views, “accessible” means that the interface product and its data,
as well as the SAS/ACCESS interface view engine, must be available to the SAS session
in which the view is interpreted.

Where SAS data views should be interpreted in a shared environment is based on
the following:

� how the view was created
� how the view’s data will be used
� specific site considerations

Is the underlying data accessible? If the data is accessible only from one of the
sessions, the view must be interpreted there.

If the data is accessible from the client session and the server session, then
performance must be a consideration. If interpreting the view requires the SAS session
to read a large number of rows in order to select a small subset, having the
SAS/SHARE server interpret the view greatly reduces the number of records that are
transmitted to the client session. This method reduces network load and might be
faster than having the client session interpret the view. However, putting a heavy
processing load on the server (especially if joins are involved) might adversely affect
server performance for other clients.

If the view selects most of the input rows or if the selection criteria are processed by
a DBMS server, interpreting the view in the client session is probably preferable.

Example: Using RLS and a DATA Step View to Improve the
Performance of PROC APPEND

The following code shows the creation and storage of a master data set on a
SAS/SHARE server:

libname share ’path-to-library’ server=shr1;

data share.master;
do key = 1 to 100000;

var = ’Original Value’ ;
output;

end;
array othervars {20};

run;

The following program creates a transaction data set, which PROC APPEND adds to
the master data set that is located on the server:

data transactions;
do key = 100001 to 200000 by 10;

var = ’New Value: ’||put(key,z6.);
output;

56 Example: Improving the Performance of PROC APPEND � Chapter 4

end;
run;

proc append base=share.master new=transactions force;
run;

With the following changes to the preceding code, append processing can be shifted to
a SAS/SHARE server.

Note: When using a SAS/SHARE server, you will see performance gains increase as
the size of the transaction data set increases. �

The SAS DATA step view can be created and stored on the server before the view is
actually used. In order to create the view, a copy of the transactions data set (in this
example, swork.transactions) must be available as a “template” for the expected
contents (for example, variables and variable length). The template does not have to
contain any observations.

Writing End-User Applications to Access Shared Data � Example: Improving the Performance of PROC APPEND 57

libname swork slibref=work server=shr1;

data swork.transactions;
do key = 100001 to 200000 by 10;

var = ’New Value: ’||put(key,z6.);
output;

end;
run;

data share.append_view share.master / view=share.append_view;
modify share.master;
set swork.transactions;
output;

run;

The following DATA step now references the view that is located on the server and
causes the view to be interpreted and run on the server:

data _null_;
set share.append_view;

run;

After the initial setup of the DATA step view, future production runs that use the
"append" view might appear as follows:

libname share ’’ server=shr1;
libname swork slibref=work server=shr1;

data swork.transactions;
do key = 100001 to 200000 by 10;

var = ’New Value: ’||put(key,z6.);
output;

end;
run;

data _null_;
set share.append_view;

run;

Although there are several ways to create SAS DATA step views in order to improve
the performance of the update process when using a SAS/SHARE server, the preceding
example shows a simple way to create views. The update process can be improved by
using the MODIFY statement in a DATA step view that gets interpreted at the server.

Note: You should consider the advantages and disadvantages of using the MODIFY
statement to create views. A primary advantage is that the MODIFY statement allows
locking at the observation level rather than at the member level. Locking at the
observation level is less restrictive than locking at the member level. However, the
MODIFY statement is not the most efficient query technique. �

58 Using SAS Catalog Entries in Programs � Chapter 4

Using SAS Catalog Entries in Programs
Many catalog entries of the following types are stored in the library SASUSER.

However, because you cannot access them through a SAS/SHARE server, you are
advised against storing them in a SAS library that is accessed through a server.

Table 4.1 Catalog Entry Types That Cannot Be Accessed through a SAS/SHARE
Server

AFCBT MODEL

AFGO MSYMTAB

AFPGM OLDMACRO

ENGINE PROFILE

GEDIT STATGRAP

GLOBAL TITLE

GOPTIONS WSAVE

Full access to all other types of entries is supported through a SAS/SHARE server.
You can obtain exclusive access to a catalog or to individual entries (other than the

types shown in Table 4.1 on page 58) by using the LOCK statement or the LOCK
command to lock the catalog or catalog entries. See Chapter 5, “Locking SAS Data
Objects,” on page 61 and Chapter 13, “The LOCK Statement and the LOCK Command,”
on page 159. You can also lock a catalog or catalog entry by using the SCL function
LOCK. See the LOCK function in SAS Component Language: Reference.

Using SAS/CONNECT with SAS/SHARE

SAS/CONNECT Used with SAS/SHARE
You can use SAS/CONNECT with SAS/SHARE to extend your access to SAS files

and execute SAS tasks on one or more servers. All output and messages that are
generated from that server session are directed back to the client for display. This
execution can be done in parallel to provide scalability of large jobs and reduce the
amount of time to completion.

SAS/CONNECT provides the connection between the client and the server that
enables you to run SAS statements on the server, and gives you the ability to perform
this execution in parallel. SAS/SHARE allows concurrent update access to data. You
must use SAS/SHARE with SAS/CONNECT if SAS files that are used in server
processing require concurrent update access. For complete details about SAS/
CONNECT, see the SAS/CONNECT User’s Guide.

Writing End-User Applications to Access Shared Data � Example: SAS/SHARE Server in a SAS/CONNECT Server Session 59

Example: Using a SAS/SHARE Server in a SAS/CONNECT Server Session
The following example shows the need to access a SAS/SHARE server in a

SAS/CONNECT server session.
You have to create a report from DATALIB.FUEL, but John and Maria are currently

accessing this data through a SAS/SHARE server. You can use SAS/CONNECT to
connect to the operating environment where the library DATALIB is stored. However,
because DATALIB is already being accessed through a SAS/SHARE server, you must
use the same SAS/SHARE server to access DATALIB.FUEL and generate the report.
Therefore, you connect to the SAS/SHARE server and submit the following code:

signon apex;
rsubmit;

libname datalib server=shr1;
proc print data=datalib.fuel;

where area=’TEX3’ and profits<=0;
title ’Losses in Texas, Area 3’;

run;
endrsubmit;

The LIBNAME statement identifies DATALIB as the library to access through the
same server that John and Maria are using. Your SAS/CONNECT server session
connects to the SAS/SHARE server and executes the PRINT procedure to produce the
report. The report is displayed at your client session. Except for some interactive
limitations that are imposed by SAS/CONNECT, you can remotely submit the same
SAS program statements to read from or write to the same data in DATALIB that other
users work on when they log on directly to the server.

CAUTION:
Do not remote submit the SERVER procedure when using SAS/CONNECT. �

60

61

C H A P T E R

5
Locking SAS Data Objects

SAS/SHARE Lock Manager Facility 61
Locking and SAS Data Object Hierarchy 62

SAS Data Object Hierarchy 62

Accessing and Using SAS Data Objects 63

Types of Locks 64

Locking Objects Explicitly (LOCK Statement) 65
LOCK Statement: Advantages 65

Syntax for the LOCK Statement 65

Locking a SAS Library 66

Locking a SAS Data Set 66

Locking a SAS Catalog 67

Locking a Catalog Entry 67
Clearing an Explicit Lock 67

Explicitly Locking and Clearing Each Data Object 67

Clearing a Higher-Level Data Object to Clear Multiple Lower-Level Objects 68

Locking a Higher-Level Data Object to Lock Multiple Lower-Level Data Objects and
Clearing the Higher-Level Lock 68

Listing Lock Status 69

Return Codes for the LOCK Statement 70

Locking Explicitly in a SAS Window (LOCK Command) 70

Advantages of Using the LOCK Command 70

Syntax for the LOCK Command 70
Locking and Clearing Locks on Data Objects 71

How Implicit Locking Works in SAS Program Steps 72

Defaults for Selected SAS Operations 73

Default Data Objects: Reference 73

Changing the Data Set Option Default Object 75

SAS/SHARE Lock Manager Facility

Note: In this documentation, the term “operation” refers to any SAS procedure,
statement, or command. �

The SAS/SHARE lock manager facility enables multiple clients to share the same
SAS file concurrently. Using a set of complex locking rules, the lock manager evaluates
each incoming client request for access to SAS data objects while monitoring the status
of all other client activities. The lock manager grants access to a specific data object by
locking the data object, and denies all other requests for the locked data object until an
operation has been executed or the lock has been cleared explicitly.

62 Locking and SAS Data Object Hierarchy � Chapter 5

Locking and SAS Data Object Hierarchy

SAS Data Object Hierarchy

The information in this section is primarily directed to applications developers, but it
might also be of interest to end users.

Knowing the concepts for locking SAS data objects and the SAS data object hierarchy
will help you to understand explicit locking, which is set by using the LOCK statement
or a LOCK command; and implicit locking, which is set automatically.

When you perform a SAS operation, the SAS/SHARE server controls which data
object is locked and how the data object is locked. This allows you to access data objects
and denies access to those data objects by other users for the duration of the operation.

Figure 5.1 Hierarchy of SAS Data Object Types

u SAS library is a collection of one or more SAS files that are recognized by SAS.
Each file is a member of the library.

v Member is a file in a SAS library that can be a SAS data file, a SAS data
view, a SAS utility file, or a SAS data catalog.

Locking SAS Data Objects � Accessing and Using SAS Data Objects 63

SAS data file
is a SAS data set that contains the data values and the
descriptor information. SAS data files are of member type
DATA.

SAS data view
is a SAS data set in which the descriptor information and
observations are obtained from other files. SAS data views
store only the information that is required to retrieve data
values or descriptor information. SAS data views are of
member type VIEW.

SAS utility file
is a SAS file that stores information that is exclusive to a
component of SAS. For example, SAS/ACCESS descriptors,
MDDB (Multi-Dimensional Database) files, and DMDB (Data
Mining Database) files.

SAS catalog
is a SAS file that stores many different types of information in
smaller units that are called entries. Some catalog entries
contain system information, such as the definitions of keys.
Other catalog entries contain application information, such as
window definitions, help windows, formats, informats, macros,
or graphics output.

w Observation is a row in a SAS data file that contains a collection of data values
that are associated with a single entity, such as a customer or a
state. Each row (observation) contains one data value for each
column (variable) in the data file.

x Entry is a unit of information that is stored in a SAS catalog.

Accessing and Using SAS Data Objects
The type of lock that a server sets on a member or an observation is affected by how

the operation accesses and uses the SAS data object type. Here are the ways to access a
data object:

input to read data

update to change the values of variables

output to add new variables with values

utility to change the header information of the file.

Each SAS operation has a default action for each object that is accessed and the way
that the object is accessed. For example, given that the server engine allows an
observation to be locked and the observation is not already locked, the server can open
and lock an observation in a data set. If the server engine does not allow an
observation to be locked, the engine locks the member (above the observation).

64 Types of Locks � Chapter 5

The lowest hierarchical level at which data can be locked varies according to the
engine that is used to access the data.

� V8 and V9 (the default) engines allow locking at the library, member, and
observation level.

� The V8TAPE engine, V9TAPE engine, and other sequential engines allow locking
only at and above the member level.

� If an engine does not allow access to SAS catalogs, that engine does not allow
locking at any level.

� The view engine default-locking action is based on how the view is created, that is
by using a DATA step, PROC SQL, or PROC ACCESS (available in SAS/ACCESS).
The specific SAS/ACCESS engine that is used is based on the DBMS. See the
SAS/ACCESS documentation for information about view engine default-locking
action.

Table 5.1 on page 64 shows the combinations of objects that are locked, how objects
are locked, and the effects on other client operations.

Table 5.1 Effects of Object Locking on Other Client Operations

Which Data Object
Is Locked Mode in Which Data Object Is Locked

Input Update Output

Member Other operations can read
the data set but cannot
open it for update or output.

No other operations can
access the data set.

No other operations can
access the data set.

Observation Other operations can read
or update the data set but
cannot open it for output.

Other operations can read or
update the data set but
cannot open it for output.

No other operations can
access the data set.

Types of Locks

The following types of locks can be used on a data object:

explicit lock
is set with the LOCK statement or the LOCK command for exclusive access to the
data object type. The action of the LOCK statement or the LOCK command is
restricted by the server engine, the object that is being accessed, and the way that
the object is accessed (for example, a data set is locked for writing). For details,
see Chapter 13, “The LOCK Statement and the LOCK Command,” on page 159.

implicit lock
is automatically set on the data object type as required by the SAS operation that
is being executed. Each SAS operation has default locking requirements that are
affected by two factors: the data object that is being accessed and the way that the
object is accessed. For example, a DATA step that includes a MODIFY statement
accesses an observation for update, by default.

Regardless of the type of lock that is attempted, in order to lock a selected data
object, the server must lock preceding levels of the hierarchy, as needed. This type of
lock is also referred to as an implicit lock.

When you specify a data object in a LOCK statement, you set an explicit lock on that
object. If you lock a lower-level object without explicitly locking the higher level or
levels, SAS locks the higher level (or levels) automatically.

Locking SAS Data Objects � Syntax for the LOCK Statement 65

For example, when you explicitly lock a SAS data set (lower-level lock) but not the
SAS library (higher-level lock) that contains it, the data library is locked implicitly. An
implicit lock allows other users to access the locked data library, even though you have
exclusive access to the locked data set.

Locking Objects Explicitly (LOCK Statement)

LOCK Statement: Advantages
Explicit locks protect data while it is being updated in a multi-step SAS program.

For example, a nightly update process that uses a DATA step to remove observations
that are no longer useful runs PROC SORT to sort the file and PROC DATASETS to
re-build the file’s indexes. No other users can be allowed to access the file between any
of these steps because the SORT and DATASETS procedures will fail if they cannot
acquire exclusive access to the file. An explicit lock provides the needed protection.

To set an explicit lock, execute a LOCK statement before the first DATA step to
acquire exclusive access to the file. If exclusive access cannot be obtained, the LOCK
statement return code &SYSLCKRC is issued to indicate that, and the update program
can reschedule the update for a later time, or it can signal an operator or an action that
its programmer thinks is appropriate. If the LOCK statement is successful, a user who
attempts to access the file before the corresponding LOCK CLEAR statement executes
(after the end of the PROC DATASETS step) will be denied access, and the batch
update will proceed uninterrupted.

You can use the LOCK statement to obtain exclusive access to the data object and an
explicit lock on data libraries, data sets, catalogs, and catalog entries. No other users
can read from or write to a data object that you have locked by using this statement.

When you use a LOCK statement to lock a data object, you can open that data object
as often as you want to and in any mode that you want. For example, you can create,
replace, update, or read from the object, if your PROC or DATA step does not conflict
with what is allowed by the engine that the server uses to access the data object. You
must first access a SAS library through a server before you can lock that library or any
data object in it. Also, you cannot lock a data object that another user has open.

Syntax for the LOCK Statement

LOCK libref<.member-name<.member-type
| .entry-name.entry-type>> <LIST | CLEAR>;

libref
is the name temporarily associated with a SAS library.

member-name
is the name of a member of the referenced SAS library.

member-type
is the type of the SAS file to be locked. Valid values are DATA, VIEW, and
CATALOG. The default value is DATA.

If member-type is omitted or is specified as the value DATA or VIEW, two locks
are obtained: one on libref.member-name.DATA and the other on
libref.member-name.VIEW.

66 Locking a SAS Library � Chapter 5

entry-name
is the name of the catalog entry to be locked.

entry-type
is the type of the catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom.
This argument is optional.

CLEAR
releases a lock on the specified data object that was acquired in your SAS session
by using the LOCK statement. This argument is optional.

For details about releasing locks, see “Clearing an Explicit Lock” on page 67.

Locking a SAS Library
The following statement locks the SAS library MYLIB.

lock mylib;

Locking a library prevents other users from reading, updating, or deleting existing
SAS files in the library or from creating new SAS files in the library. The lock also
prevents other users from obtaining a list of files in the library. It does not prevent
users from issuing LIBNAME statements to access the library, but it does prevent them
from accessing SAS files in the library while it is locked.

Locking a SAS Data Set
The following statements lock the SAS data set FUEL in the library MYLIB. All

these statements are equivalent.

lock mylib.fuel;
lock mylib.fuel.data;
lock mylib.fuel.view;

Locking a SAS data set (that is, a SAS data file or a SAS data view) prevents other
users from creating, reading, updating, deleting, or renaming a SAS data file and from
creating, reading, deleting, renaming, or interpreting a SAS data view.

Beginning with SAS 6.06, a SAS data set can be either a SAS data file (member type
DATA) or a SAS data view (member type VIEW). In most SAS programs, it does not
matter whether the data comes from a SAS data file or a data view.

Because of this transparency in users’ SAS programs, it is important that a SAS data
file and a SAS data view that have the same name be locked at the same time.
Therefore, when you execute the LOCK statement on one of these data sets, both of
them are automatically locked. In the statements given at the beginning of this section,
the server locks the SAS data file MYLIB.FUEL.DATA and the SAS data view
MYLIB.FUEL.VIEW concurrently. For more information about SAS data sets, see SAS
Language Reference: Concepts.

CAUTION:
The LOCK statement does not lock the source data of a data view. The LOCK statement
does not prevent a SAS data view’s underlying SAS file (or files) from being read or
updated by a SAS library engine or by a SAS view engine when a different view is
interpreted in the server session. �

Locking SAS Data Objects � Clearing an Explicit Lock 67

Locking a SAS Catalog
The following statement locks the member MYCAT in the library SCLLIB. The

member type CATALOG indicates that MYCAT is a SAS catalog.

lock scllib.mycat.catalog;

Locking a member of type CATALOG prevents other users from creating, deleting, or
renaming the catalog, or listing the entries in the catalog. It also prevents creating,
reading, updating, deleting, or renaming any of the entries in the catalog by other users.

While your SAS catalog or catalogs are locked, you can update an application that
uses many different catalog entries. For example, you can execute LOCK statements to
ensure exclusive access to the catalogs that contain your application’s entries. This
ensures that no other users are executing your application while you are updating its
entries. After you have updated all the entries and tested your application, you can
clear the lock by using the argument CLEAR in a LOCK statement. This allows other
users to gain access to your catalogs and to execute your application. For more
information, see “Clearing an Explicit Lock” on page 67.

Locking a Catalog Entry
The following statement locks the catalog entry JOHNCBT of type CMAP in the

catalog SCLLIB.MYCAT.

lock scllib.mycat.johncbt.cmap;

Locking an entry in a catalog prevents other users from creating, reading, updating,
or deleting that entry.

Clearing an Explicit Lock
How you clear an explicit lock depends on the level in the data object hierarchy at

which the lock was obtained. There are three ways to clear locks. Each is explained in
detail in the sections that follow.

� Explicitly lock and unlock each data object that you access.

� Explicitly lock lower-level data objects and unlock the higher-level data objects,
which implicitly unlocks its lower-level objects.

� Explicitly lock a higher-level data object that contains multiple lower-level data
objects that you want to access. This allows you to clear the single higher-level
lock after you have finished accessing the lower-level objects.

Explicitly Locking and Clearing Each Data Object
When you explicitly lock a specific data object, you must clear each lock individually.

Here is an example.

lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;

/* Update the two catalog entries */
/* as needed. */
lock educlib.mycat.choice1.menu clear;

68 Clearing an Explicit Lock � Chapter 5

lock educlib.mycat.choice2.menu clear;

The first LOCK statement in the preceding example sets implicit locks on the SAS
library EDUCLIB and on the SAS catalog EDUCLIB.MYCAT. Then it sets an explicit
lock on the catalog entry EDUCLIB.MYCAT.CHOICE1.MENU. Because the user
already has implicit locks on the catalog and library, the second LOCK statement does
not set additional implicit locks before it sets an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE2.MENU.

The first LOCK statement that contains the argument CLEAR releases the explicit
lock on the catalog entry CHOICE1.MENU, but it does not clear the implicit locks
because an entry in the catalog is still locked. The second LOCK statement that
contains the argument CLEAR releases the explicit lock on the catalog entry
CHOICE2.MENU. Because no catalog entries remain locked, the argument CLEAR
releases the implicit lock on the SAS catalog EDUCLIB.MYCAT. Also, because no
members of the library are locked, this argument clears the implicit lock on the SAS
library EDUCLIB.

Clearing a Higher-Level Data Object to Clear Multiple Lower-Level Objects
You can set explicit locks on data objects at low levels. However, when you clear a

higher-level implicit lock, all of the lower-level explicit locks are cleared automatically.
Here is an example.

lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;

/* Update the two catalog entries */
/* as needed. */
lock educlib.mycat clear;

The first LOCK statement in the preceding example sets implicit locks on the SAS
library EDUCLIB and on the SAS catalog EDUCLIB.MYCAT. Then it sets an explicit
lock on the catalog entry EDUCLIB.MYCAT.CHOICE1.MENU. Because the user
already has implicit locks on the catalog and the library, the second LOCK statement
does not set additional implicit locks before it sets an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE2.MENU.

The LOCK statement that contains the argument CLEAR releases the explicit locks
on both catalog entries and clears the implicit lock on the SAS catalog. Because no
members of the library remain locked, this argument also clears the implicit lock on the
SAS library.

Locking a Higher-Level Data Object to Lock Multiple Lower-Level Data
Objects and Clearing the Higher-Level Lock

To update several lower-level data objects without having to lock each one separately
when all the data objects fall under a single higher-level data object, you can lock the
higher-level data object to prevent access by other users to all of the data objects that
are included under that higher-level data object.

However, you might need to clear the lock on the higher-level data object before you
are finished with your work. For example, a co-worker wants to work on other
lower-level data objects under the same higher-level data object. In this instance, you
can explicitly lock the lower-level data objects that you need and clear your explicit lock
on the higher-level data object. You will retain an implicit lock on the higher-level data
object as long as you have lower-level data objects locked.

lock educlib;
/* Update various library members */

Locking SAS Data Objects � Listing Lock Status 69

/* and catalog entries. */

If one of your co-workers needs to work on some SAS files in the library EDUCLIB
that you are not updating, you can lock the SAS files in the library EDUCLIB that you
need, by using the following statements:

lock educlib.mycat.catalog;
lock educlib.mydata1;
lock educlib.mydata2;

Then, use the following statement to clear your explicit lock on the library to allow
your co-worker to use other members of the library:

lock educlib clear;

You retain an implicit lock on the library because you hold explicit locks on three
SAS files in the library.

You continue to update entries in the SAS catalog EDUCLIB.MYCAT and the SAS
data sets EDUCLIB.MYDATA1 and EDUCLIB.MYDATA2 that you have locked. After
you finish your updates, you can issue one LOCK statement to clear your explicit locks
on the three library members and your implicit lock on the library, as follows:

lock educlib clear;

Listing Lock Status
SAS/SHARE delivers an informational or an error message if you attempt to access

a data object that is already in use or that is locked by another operation. The message
is issued in the following form:

object is status by whom

object
SAS library | SAS data member | SAS data file observation or catalog

status
locked for exclusive access| in use | not locked

whom
you | user user(server-connection-number) |

n other users of this server|
task FSEDIT (server-connection-number)

The messages explain the status of the data object that is being accessed. To recover,
you usually must wait until the data object is available or find out when the data object
will be available by talking to the person who has locked the object. Here are some
examples of messages.

In the first example, the SAS library that is referenced by MYLIB is locked by user
SASUSER(1). A lock on a library prevents other users from reading, updating, or
deleting existing SAS files or from creating new SAS files in that library. The lock also
prevents other users from obtaining a list of files in the library. The lock does not
prevent users from issuing LIBNAME statements to access the library, but it does
prevent them from using SAS files in the library while it is locked. You must wait for
user SASUSER(1) to unlock the library before you can use it.

NOTE: SASUSER.MYLIB is not locked or in use by you,
but is locked for exclusive access by user sasuser(1).

In this example, because two users are already accessing the MYCAT member in the
MYLIB library, you can infer that no locks have been set on the catalog, and that users
are reading catalog entries or adding entries to the catalog. Although you can browse

70 Return Codes for the LOCK Statement � Chapter 5

the catalog or add entries to the catalog, you cannot attempt to lock the catalog until
there are no others using it.

NOTE: MYLIB.MYCAT.CATALOG is not locked or in use by you,
but is in use by 2 other users of this server.

The catalog entry MYCATENTRY of type CMAP in the catalog MYLIB.MYCAT is not
locked by user SASUSER(1). This message results when user SASUSER attempts to
unlock a catalog entry that another client has locked.

NOTE: MYLIB.MYCAT.MYCATENTRY.CMAP is not locked by sasuser(1).

The following LOCK statement lists in the SAS log whether a specified data object is
locked and by whom. The format used in the LOCK statement for listing lock status is

data-object is status by whom

lock educlib.mycat.catalog list;
EDUCLIB is locked by sasuser

Return Codes for the LOCK Statement

The SAS macro variable SYSLCKRC contains the return code from a LOCK statement.
A non-zero value in SYSLCKRC results when you use a LOCK statement with the
argument LIST to list a lock.

Locking Explicitly in a SAS Window (LOCK Command)

Advantages of Using the LOCK Command
The LOCK command provides a convenient way to lock data objects that are in a

SAS window. As with the LOCK statement, you can use the LOCK command to obtain
an explicit lock on data libraries, data sets, catalogs, and catalog entries.

You can specify the name of the data object that is to be locked on the command line
of a window, such as the Program Editor window.

Note: You must first access a SAS library through a server before you can lock that
library or any data object in it. �

Syntax for the LOCK Command

LOCK libref<.member-name<.member-type
| .entry-name.entry-type>><LIST | CLEAR>;

libref
is the name that is temporarily associated with a SAS library.

member-name
is the name that specifies a member of the referenced data library.

member-type
is the type of SAS file to be locked. Valid values include DATA, VIEW, and
CATALOG. The default is DATA.

Locking SAS Data Objects � Locking and Clearing Locks on Data Objects 71

If you omit member-type or if you specify either the value DATA or VIEW, two
locks are obtained automatically: one on libref.member-name.DATA and one on
libref.member-name.VIEW.

entry-name.entry-type
is the name and type of the SAS catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom.
This argument is optional.

CLEAR
releases a lock on a specified data object that was acquired in your SAS session by
using the LOCK command. This argument is optional.

For details about releasing locks, see “Clearing an Explicit Lock” on page 67.

Locking and Clearing Locks on Data Objects
You can issue the LOCK command in any SAS window. It works exactly like the

LOCK statement. For details about the LOCK statement, see Chapter 13, “The LOCK
Statement and the LOCK Command,” on page 159.

Output 5.1 shows the message in the Log window that lets you know that the catalog
MAPSLIB.MAPSCAT.EUROMAP.CMAP has been locked successfully. In the Program
Editor window, the LOCK command was issued to obtain a lock on the catalog
MAPSLIB.MAPSCAT.EUROMAP.CMAP.

Output 5.1 Locking a Catalog Entry

LOG
Command ===>

1 LIBNAME MAPSLIB ’SASXYZ.SHRTEST.SASDATA’ SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:

Engine: REMOTE
Physical Name: SASXYZ.SHRTEST.SASDATA

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for
exclusive access by you.

PROGRAM EDITOR
Command ===> LOCK MAPSLIB.MAPSCAT.EUROMAP.CMAP

00001
00002
00003
00004
00005
00006

Output 5.2 shows a LOCK command that contains the argument CLEAR to release
the lock on the catalog MAPSLIB.MAPSCAT.EUROMAP.CMAP.

72 How Implicit Locking Works in SAS Program Steps � Chapter 5

Output 5.2 Releasing a Lock on a Catalog Entry

PROGRAM EDITOR
Command ===> LOCK MAPSLIB.MAPSCAT.EUROMAP.CMAP CLEAR

00001
00002
00003
00004
00005
00006

In Output 5.3, the messages in the Log window show that
MAPSLIB.MAPSCAT.EUROMAP.CMAP was successfully unlocked. The log also
displays the name of the user who clears the lock. In this example, the user who set
and cleared the lock is referred to as “you.”

Output 5.3 SAS Log Message after the Lock Has Been Cleared

LOG
Command ===>

1 LIBNAME MAPSLIB ’SASXYZ.SHRTEST.SASDATA’ SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:

Engine: REMOTE
Physical Name: SASXYZ.SHRTEST.SASDATA

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for
exclusive access by you.

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is no longer locked
for exclusive access by you.

How Implicit Locking Works in SAS Program Steps
The following example shows the effect of implicit locking when two clients, John

and Maria, share access concurrently to the SAS data set FUEL in their respective
PROC FSEDIT sessions.

Maria is updating observation 6. John terminates his FSEDIT session to do some
data analysis. He wants a sorted report of fuel inventory data, so he submits
statements to sort and print the data set FUEL. Output 5.4 shows the SAS log for this
part of John’s session.

Locking SAS Data Objects � Default Data Objects: Reference 73

Output 5.4 Log Window - PROC SORT on a Locked Data Set

Command ===>

3 PROC SORT DATA=DATALIB.FUEL;
4 BY AREA;
5 RUN;

ERROR: You cannot open DATALIB.FUEL.DATA for output access
with member-level control because DATALIB.FUEL.DATA
is in use by FSEDIT.

NOTE: The SAS System stopped processing this step because
of errors.

NOTE: The PROCEDURE SORT used 0.03 CPU seconds and 3969K.

6 PROC PRINT DATA=DATALIB.FUEL;
7 BY AREA;
8 RUN;

ERROR: Data Set DATALIB.FUEL is not sorted in ascending
sequence. The current by-group has AREA = TEX1
and the next by-group has AREA = TEX2.

NOTE: The SAS System stopped processing this step because
of errors.

NOTE: The PROCEDURE PRINT used 0.03 CPU seconds and 4068K.

For details about error message formats, see “Listing Lock Status” on page 69 .
Because the OUT= option is not specified in the PROC SORT statement, the process

defaults to the data set named by the DATA= option and the SORT procedure tries to
replace the SAS data set. However, because Maria’s FSEDIT session has the data set
open for update, the SORT procedure cannot open it for output.

The SAS log shows that the PROC PRINT step executes because the PRINT
procedure opens its input data set with observation-level control. However, the PRINT
procedure terminates prematurely because the data set is not sorted correctly. Notice
that even if the data set were in sorted order when John terminated PROC FSEDIT,
Maria could have changed the value of AREA in one or more observations so that the
data set would not be sorted correctly when the PRINT procedure executed.

To avoid the conflict and ensure that John gets the report he wants, John can use the
OUT= option to write a copy of the sorted data set into his WORK library, as shown in
the following example:

proc sort data=datalib.fuel out=fuel;
by area;

run;

The preceding PROC SORT statement opens the data set DATALIB.FUEL only for
input with observation-level control. Then John can use the PRINT procedure to
display the temporary data set WORK.FUEL.

Defaults for Selected SAS Operations

Default Data Objects: Reference
Knowledge of the default data objects and how they are accessed will help you to

anticipate the results from specific operations when you write your application or issue
SAS statements in interactive mode. Table 5.2 on page 74 shows the defaults for some
frequently used SAS operations when locking is executed.

74 Default Data Objects: Reference � Chapter 5

Table 5.2 Defaults for Selected SAS Operations

SAS Operation What the Data Object Is Locked
For

The Data Object
Locked (Default)

DATA step

DATA statement

without MODIFY statement Output Member

with MODIFY statement Update Observation

SET statement

without POINT= and KEY= options Input Observation

with POINT= and KEY= options Input Member

MERGE statement Input Observation

MODIFY statement

without POINT= and KEY= options Update Observation

with POINT= and KEY= options Update Member

UPDATE statement Input Observation

Procedures

APPEND procedure

BASE= option Update Member* or
observation

DATA= option Input Observation

COPY procedure

IN= option Input Observation

IN= option with MOVE option Output Observation

OUT= option Output Member

FSBROWSE procedure

DATA= option Input Observation

FSEDIT procedure

DATA= option Update Observation

FSVIEW procedure

DATA= option without EDIT option Input Observation

DATA= option with EDIT option Update Observation

PRINT procedure

DATA= option Input Observation

UNIFORM= option Input Member

SORT procedure

DATA= option Input Observation

OUT= option Output Member

SQL procedure

Locking SAS Data Objects � Changing the Data Set Option Default Object 75

SAS Operation What the Data Object Is Locked
For

The Data Object
Locked (Default)

CREATE TABLE statement Output Member

DELETE statement Update Observation

INSERT statement Update Member

UPDATE statement Update Member

* If no other tasks are currently accessing the BASE= data set, then PROC APPEND opens the data set with a
member lock.

Changing the Data Set Option Default Object
In some SAS operations, you can change the SAS data set option default object.

When the syntax of a statement or a command allows you to specify SAS data set
options, you can use the CNTLLEV= option to override the default object and to specify
the object that you want. For example, in a SET statement that contains the POINT=
option, you can change the default from member to observation by specifying the
CNTLLEV= data set option. In this example, the value, REC (for record), means the
same as observation.

set datalib.fuel (cntllev=rec) point=obsnum;

Note: If you make this change, the values in a specific observation might differ each
time that you read the observation. �

You can also change the data object observation to member. You might do this to
ensure that a data set does not change while you are processing it. For example, if you
use a SET statement with a BY statement and you cannot use an index to retrieve the
observations in sorted order, you can use the CNTLLEV= option to reset the data object
observation to member.

set datalib.fuel (cntllev=mem);
by area;

In some SAS operations, you cannot override the default setting because the
statement or the command requires it. For example, a DATA statement requires a
member setting when the MODIFY statement is omitted from the DATA step. Without
the MODIFY statement, the data set that is specified in the DATA statement must be
opened for output. Therefore, even if you specify CNTLLEV=REC in such a DATA
statement, the DATA step tries to set the data object as member, but this will fail if
other operations are accessing the data set.

Note: Be careful when using the CNTLLEV= option in a procedure. Some
procedures make multiple passes through an input data set and require that the data
remains the same to guarantee the integrity of the output. If a procedure has this
requirement, a warning is issued but the procedure will allow its objects to be reset if
you use the CNTLLEV= option. �

For details about the syntax of the CNTLLEV= option in the SET statement, see the
CNTLLEV= data set option in SAS Language Reference: Dictionary.

76

77

C H A P T E R

6
SAS/SHARE Macros for Server
Access

Using Macros for Server Library Access 77
Overview of Macro Usage 77

Utility Macros 78

User Program Macro 79

Server Administrator (Operator) Macros 79

Macros Generated by the SHRMACS Macro 79
The APPLSYS Macro Library 81

Overview of the APPLSYS Macro Library 81

Specifying the APPLSYS Macro Library 82

Defining Server Aliases (SERVID) 82

Associating SAS Libraries with Server Aliases (SERVLIB) 83

Creating the Server Information Table (SERVINFO) 84
Customizing a Server Information Table 85

Generating a LIBNAME Statement By Using the LIBDEF Macro 86

Using APPLSYS= to Call the SHRMACS and LIBDEF Macros 87

Using Macros for Server Library Access

Overview of Macro Usage
The information in this section is recommended primarily for server administrators

and programmers who write applications that access shared data. For complete details
about each macro that you can use to access a server and its libraries, see Chapter 14,
“SAS/SHARE Macros,” on page 163.

Programs that use SAS/SHARE must include a LIBNAME statement that identifies
the SAS/SHARE server through which a specified library will be accessed. Adding
servers and changing server IDs can require users and server administrators to obtain
current server ID information each time they want to access a server. That could make
maintaining production or utility programs difficult.

Although there is no permanent connection between a SAS library and a specific
server, there is frequently a logical connection. Programmers, server administrators,
and users might always want to access a specific library through the same server
because only one server at a time can provide access to a library. The same logical
connection can also exist between a group of users and a server. This is an advantage if
all the members of a department needed to use the same server, especially if they are
sharing libraries.

To use SAS/SHARE most effectively without compromising performance,
administrators often need a dynamic and flexible server environment. They need to be
able to start and stop servers as the need arises, and to easily redistribute the load on

78 Utility Macros � Chapter 6

the servers. They want to be able to switch libraries and users from one server to
another quickly and easily. To balance the needs of both administrators and users,
SAS/SHARE includes macros to be defined through the autocall function of the SAS
macro facility.

These SAS/SHARE macros enable the administrator to define aliases for a server
and to associate an alias with a specific library. Programs issue these macros to
generate the requisite LIBNAME statements for accessing that library through the
server that is associated with the alias. Then, the administrator can add servers,
change server IDs, and switch libraries and users from one server to another with a
process that is totally transparent to the program or the SAS user.

SAS/SHARE macros can be used to do the following:
� generate and display the tables of macro variables that associate libraries with

server aliases and server aliases with server IDs
� generate part or all of a LIBNAME statement
� start and stop servers
� generate PROC OPERATE and SET SERVER statements

The server ID that is associated with an alias can be changed during any appropriate
server or application outage (for example, down time). You update only the file that
contains the table of macro variables that maps aliases to server IDs. Additionally, a
library can be logically associated with a different server by updating the table that
associates libraries with server aliases.

For example, a site might have four logical servers (that is, four different server
aliases) but only one physical server by having all the aliases map to the same server
ID. Whenever the load on that one server gets too heavy, the site can start an
additional server and shift specific libraries and users to it by simply pointing one of
the aliases to that new server.

Utility Macros
The following utility macros can be used by all SAS/SHARE programs and sessions:

SHRMACS
compiles all the other macros and builds the server-alias and library-alias tables.

SERVERID
takes a server alias and looks up the server ID in the server-alias table and
generates server-ID or SERVER=server-ID, as appropriate.

SERVIIDX
returns the index of the entry in the server information table for the specified
server.

LISTSRV
writes the server-alias table to the log.

LISTLIB
writes the library-alias table to the log.

LISTSRVI
writes the server information table to the log.

SAS/SHARE Macros for Server Access � Macros Generated by the SHRMACS Macro 79

User Program Macro
The following is a user program macro:

LIBDEF
takes a libref and an optional physical library name and looks up the SAS library
name in the library-alias table and generates a LIBNAME statement.

Server Administrator (Operator) Macros
The following server administrator macros are used in server administrator

programs.

STRTSRV
starts a server with the appropriate server ID by using the SERVERID macro to
convert the alias. The STRTSRV macro takes a server alias and PROC SERVER
statement options.

SHUTSRV
generates the PROC OPERATE statement and STOP SERVER command for the
appropriate server ID by using the SERVERID macro to convert the alias. The
SHUTSRV macro takes a server alias and an optional password.

OPERATE
generates PROC OPERATE statements for the appropriate server ID by using the
SERVERID macro to convert the alias. The OPERATE macro takes a server alias
and an optional password.

SETSRV
generates a SET SERVER server ID statement by using the SERVERID macro to
convert the alias. The SETSRV macro takes a server alias and an optional
password.

Macros Generated by the SHRMACS Macro

The SHRMACS macro compiles all other macros. A server administrator or an
applications programmer must always invoke %SHRMACS before invoking any other
macro. Use the following syntax:

%SHRMACS(category,< log-info,>
<APPLSYS=app-sys-lib-tab,>
<SASSAML=alt-sys-lib-tab>);

category
specifies the category of macros to be compiled. Valid values for category are
SERVER, USER, OPER, or ALL.

log-info
specifies whether descriptive information is written to the SAS log about each
macro. Valid values for log-info are NOMSG, MSG, or HELP. The default is MSG.

APPLSYS=
specifies an alternate applications systems library-alias table. For details, see
“The APPLSYS Macro Library” on page 81.

80 Macros Generated by the SHRMACS Macro � Chapter 6

SASSAML=
specifies an applications systems library, which is a set of files that specify SAS
libraries and servers. For details, see “The APPLSYS Macro Library” on page 81.

Table 6.1 SAS/SHARE Macros Generated by the SHRMACS Macro

SHRMACS Macro Categories

Server User Operator Implicit Macros Generated

• LIBDEF

• • • LISTLIB

• • • LISTSRV

• • • LISTSRVI

• OPERATE

• • • SERVERID

• • • SERVIIDX

• SETSRV

• SHUTSRV

• STRTSRV

For example, here are three possible macro definitions:
%SHRMACS(SERVER)
%SHRMACS(USER)
%SHRMACS(OPER)

All of these macro definitions generate these macros: LISTLIB, LISTSRV, LISTSRVI,
SERVERID, and SERVIIDX.

However, only %SHRMACS(USER) generates the LIBDEF macro, only
%SHRMACS(SERVER) generates the STRTSRV macro, and only %SHRMACS(OPER)
generates the OPERATE, SETSRV, and SHUTSRV macros.

In addition to compiling the requested macros, the SHRMACS macro also builds the
appropriate library-alias table and server-alias table. These tables are used for
generating the server name for the PROC SERVER, PROC OPERATE, and LIBNAME
statements. The SERVER category of macros generates the server-alias table; the
OPER category of macros generates the library-alias table; and the USER category of
macros generates both the server-alias and the library-alias tables.

Specifying the ALL category of macros generates all of the macros and both the
server-alias and library-alias tables.

Output 6.1 displays the information in the SAS log about the server macros.

SAS/SHARE Macros for Server Access � Overview of the APPLSYS Macro Library 81

Output 6.1 Server Macro Information

LOG
Command ===>

1085 %shrmacs (server,msg);

*** SAS/SHARE macros are now available ***

For further information about SAS/SHARE macros:

%SHRMACS(ALL,HELP) - for information on all macros
%SHRMACS(USER,HELP) - for information on macros used

in user applications
%SHRMACS(OPER,HELP) - for information on macros used

with PROC OPERATE
%SHRMACS(SERVER,HELP) - for information on macros used

with PROC SERVER
or %macro(HELP) - for information on a specific

macro
SAS/SHARE macros generated are:

SERVERID - translate server alias
LISTLIB - list library table
LISTSRV - list server alias table
STRTSRV - start a server

SERVER ALIAS TABLE

--- SERVER ALIAS ------- SERVERID ----------------------------
CESERV V6DSERVR
COMSERV MYSERV
DEVSERV MYSERV
GLOSSERV V6DSERVR
LIBSERV V6DSERVR
MISSERV MYSERV
PRDSERV V6DSERVR

--

For more information about the macros that are compiled by %SHRMACS, you can
specify the HELP keyword. For example:

%shrmacs(server,help);

HELP lists the syntax, a brief description, and an example for each macro that
SHRMACS defines in the SERVER category.

The APPLSYS Macro Library

Overview of the APPLSYS Macro Library
The data that is used by the macros is stored in tables in another macro library that

you maintain as you add and delete libraries, servers, and application systems. This
library is called the APPLSYS (an acronym for application system) macro library.

The tasks to customize macros are explained in the following sections.
See Chapter 14, “SAS/SHARE Macros,” on page 163 for complete information about

the syntax of the SAS/SHARE autocall macro library and how to use it.

82 Specifying the APPLSYS Macro Library � Chapter 6

Specifying the APPLSYS Macro Library
The default name of the APPLSYS macro library depends on the operating

environment. Here are the default macro library names:

OpenVMS
SAS$ROOT:[SASSAML]

z/OS
SAS.SASSAML

UNIX
!sasroot/saspgm/sassaml

Windows
!SASROOT\SHARE\SASMACRO

Files in the APPLSYS macro library are called members, and they must have a .SAS
extension.

To use the default library table, do not include the APPLSYS= argument in the
SHRMACS macro. For example,

%shrmacs(user);

To specify an alternate library-alias table, include the APPLSYS= argument in the
SHRMACS macro. For example,

%shrmacs(user, applsys=purchas);

It might be more convenient to allow different users or departments to maintain their
own APPLSYS macro libraries. To use an alternate APPLSYS macro library instead of
the default library, specify the SASSAML= argument in the SHRMACS macro.

The value for the SASSAML argument can be the operating environment-specific
physical name of the alternate library or the string _DEFINED_, which indicates that
the fileref SASSAML has already been assigned to the alternate library. For example:

%shrmacs(user,applsys=purchas,sassaml=library-path);

%shrmacs(user,applsys=_DEFINED_);

Here are some operating environment-specific examples to specify an alternate
APPLSYS macro library:

OpenVMS
%shrmacs(user,applsys,sassaml=MIS$:[applsys]);

UNIX
%shrmacs(user,applsys,sassaml=/dept/mis/applsys);

Windows
%shrmacs(user,applsys,sassaml=c:\dept\mis\applsys);

Defining Server Aliases (SERVID)
Server aliases can help you do the following tasks:
� use your existing SAS programs with new releases of SAS/SHARE without having

to change them. This is accomplished by using the name of the existing
SAS/SHARE server as an alias for the name of a SAS/SHARE server that is
executing the new release of SAS/SHARE.

SAS/SHARE Macros for Server Access � Associating SAS Libraries with Server Aliases (SERVLIB) 83

� shift server traffic easily. When you begin using SAS/SHARE, you might create
many aliases for a single server, with each alias used by only one or a small
number of applications. As server use increases, you’ll want to add a second server
and move some of your applications to that server. You can do this by changing
the entry in the SERVERID member to point to the new server for the
applications that you want to move.

To define server aliases, create a member named SERVERID in the APPLSYS macro
library. The member name must be SERVERID because the SHRMACS macro looks for
that specific name.

Define a server alias in the SERVERID member by using the following syntax:

%SERVID(alias,server-ID);

Example Code 6.1 on page 83 shows an example of a SERVERID member.

Example Code 6.1 Server-Alias Table

/***/
/* */
/* NAME: SERVERID */
/* */
/* SERVER ALIAS TABLE ENTRIES */
/* */
/* This member defines aliases for server names. */
/* The entries in this member are loaded into */
/* the server-alias table by the SHRMACS macro. */
/* This server-alias table is used by the */
/* SERVERID macro to translate an alias to an */
/* actual server ID. */
/* */
/* To add aliases to the table, specify each */
/* alias and its real server ID in a SERVID call */
/* at the end of this member. */
/* */
/***/
%servid(shr7,shrserv7)
%servid(share1,shrserv3)
%servid(pubserv,shrserv7)

Associating SAS Libraries with Server Aliases (SERVLIB)
Create a member in the APPLSYS macro library for each application system that is

specified by the APPLSYS= argument in the SHRMACS macro. Doing this defines
library-server pairs that a specific application will probably use. For example, you can
specify an APPLSYS library named PURCH in the SHRMACS macro as follows:

%SHRMACS(user,APPLSYS=purch);

If you do this, you also create a member in the APPLSYS library of the same name (in
this example, PURCH).

In a selected member, use the following syntax to specify the library and server name
pairs.

%SERVLIB(SAS-library, server-name);

SAS-library is specific to the operating environment. server-name can be a server ID or
its alias.

84 Creating the Server Information Table (SERVINFO) � Chapter 6

Example Code 6.2 on page 84 contains a member named PURCH, which references
operating environment-specific SAS library names.

Example Code 6.2 Library-Alias Table

/**/
/* */
/* NAME: PURCH */
/* */
/* LIBRARY TABLE ENTRIES - SPECIFIC APPLICATION */
/* */
/* This member associates server names with libraries. The entries */
/* in this member are loaded into the library table if the */
/* SHRMACS macro is called by using the argument APPLSYS=APPLSAMP.*/
/* If APPLSYS=APPLSAMP is specified, the entries can also be */
/* loaded by using a call to the LIBDEF. */
/* */
/* To add libraries to the definition table, add a SERVLIB call */
/* for each library at the end of this member. Specify the */
/* physical name for the library and the name of the server to be */
/* associated with the library. The name can be an alias or an */
/* actual server ID. */
/* */
/**/
%servlib(disk1$:[shrtest.appljan.lib1), testserv); # OpenVMS
%servlib(shrtest.appljan.lib1, testserv); # z/OS
%servlib(/shrtest/appljan/lib1, testserv); # UNIX
%servlib(d:\shrtest\appljan\lib1, testserv); # Windows

To add aliases to the table, use a SERVLIB call for each library-server pair.
Additionally, create a member in the APPLSYS macro library named DEFAULTS.

This member can be empty but must be created to avoid having error messages
generated from the SHRMACS macro.

The DEFAULTS member is used when the APPLSYS= argument is omitted in a call
to the SHRMACS and LIBDEF macros. The syntax of the PURCH and the DEFAULTS
members is identical.

Creating the Server Information Table (SERVINFO)

A server information table is created to store information about the servers at your
site. You can use this information in a program, or you can display it. By default, the
table contains the following information:

� a default value for the RMTVIEW= option in the REMOTE engine’s LIBNAME
statement

� a network node name that is represented in the two-level server name format:
node.server-id

You can use the server information table to store other attributes of the server, its
users, or its administrators, such as server access passwords, PROC SERVER
statement options, and the SAS release that the server runs under.

To add an entry to the server information table, use the SERVINFO macro as follows:

%SERVINFO (node.server-id, netnode=fully-qualified-node-name, RMTVIEW=NO);

SAS/SHARE Macros for Server Access � Customizing a Server Information Table 85

Usually, the SERVINFO macro is used to cause the SERVERID macro to generate an
alias for a node name that is not a valid SAS name. For example, you can specify the
two-level server name and the netnode in the server information table as follows:

%servinfo (hp.shrserv,netnode=hp103.dom2.acme.com);

When you do this, the server SHRSERV runs on HP103.DOM2.ACME.COM.
In resolving an alias for HP.SHRSERV, the SERVERID macro generates the following:

%let hp=hp103.dom2.acme.com;

Customizing a Server Information Table
The following example shows how to customize your server information table to

include the SAS software release number for the SAS/SHARE server. The tasks in this
example do the following:

� account for a new parameter in the SERVINFO macro
� reformat the table’s appearance
� add the new information to the table
� view the server information table with the LISTSRVI macro

The following six steps show how to alter the server information table for display only.
1 Add the new parameter SASREL= to the SERVINFO macro statement.

%macro servinfo(servid,version=,rmtview=,netnode=,sasrel=);

2 Add the new variable ISREL&SRVINUM to the %GLOBAL statement to account
for the new parameter SASREL.

%GLOBAL isrvr&srvinum irmtv&srvinum inode&srvinum isrel&srvinum;

3 Because the table is implemented as sets of macro variables, assign the value
&SASREL to the macro variable ISREL&SRVINUM.

%LET isrel&srvinum = &sasrel;

4 In the LISTSRVI macro, modify the line that prints the headers for the table.

%put &pline RMTVIEW %shrrpt(-,3)
NETWORK NODE %shrrpt(-,20) RELEASE %shrrpt(-,3);

5 You might want to change the %PUT statement in the LISTSRVI macro to extend
the dashed line following the table to match the length of the modified header line.

%put %shrrpt(-,78);

6 Change the loop that prints the table so that it looks like this:

%do i=1 %to &srvinum;
%let pline=%shrrpt(&blank,3)

%shrfmt(&&isrvr&i,16);
%let pline=&pline

%shrfmt(&&irmtv&i,11)
%shrfmt(&&inode&i,36);

86 Generating a LIBNAME Statement By Using the LIBDEF Macro � Chapter 6

%let pline=&pline &&isrel&i;
%put &pline;

%end;

7 If you want to be able to access and use the information in the table for a macro or
a program, you would have to use the SERVIIDX macro.

%let i=%serviidx(&new_id);
%if (&&isrel&i^=) %then
%do;
/* some use of &&isrel&i here */

%end;

8 After you have accounted for the new parameter and modified the format of the
server information table, you can add entries to the table for all parameters.

%servinfo(rmthost.share1,netnode=.acme.com,
rmtview=no,sasrel=6.12);

%servinfo(rmthost.share2,netnode=smith.acme.com,
rmtview=yes,sasrel=7);

When you invoke the LISTSRVI macro, the server information table is displayed in
the SAS log.

%listsrvi;

SERVER INFORMATION TABLE
--- SERVERID --- RMTVIEW -- NETWORK NODE --- RELEASE
RMTHOST.SHARE1 NO rmthost.acme.com 6.12
RMTHOST.SHARE2 YES smith.acme.com 7
--

Generating a LIBNAME Statement By Using the LIBDEF Macro
If your SAS application accesses a server library, use the LIBDEF macro instead of a

LIBNAME statement. Use the syntax that follows.

Note: Before you invoke the LIBDEF macro, you must first invoke the SHRMACS
macro. �

%LIBDEF(libref,SAS-library-name) <,APPLSYS=app-sys-lib-tab>;

CAUTION:
Do not enclose the SAS library name in quotation marks. Using quotation marks will cause
the generation of the LIBNAME statement to fail. �

The LIBDEF macro generates a LIBNAME statement by searching the library table
for the library name. Then it invokes the SERVERID macro to convert the server alias
into a server ID. Here are some operating environment-specific examples for using the
LIBDEF macro.

OpenVMS
%libdef(mylib,disk1$:[shrtest.appljan.lib1);

z/OS
%libdef(mylib,shrtest.appljan.lib1);

SAS/SHARE Macros for Server Access � Using APPLSYS= to Call the SHRMACS and LIBDEF Macros 87

UNIX
%libdef(mylib/shrtest/appljan/lib1);

Windows
%libdef(mylib,d:\shrtest\appljan\lib1);

Each macro invocation defines the library to the libref MYLIB. You can define
additional libraries without invoking the SHRMACS macro again.

If you want to use server aliases but you have not created the library- and
server-name pairs in the APPLSYS macro library yet, you can use a LIBNAME
statement and invoke the SERVERID macro in place of the SERVER= argument. For
more information, see Chapter 14, “SAS/SHARE Macros,” on page 163.

Using APPLSYS= to Call the SHRMACS and LIBDEF Macros
You can specify the APPLSYS= argument in either the SHRMACS or the LIBDEF

macro. The following example contains application excerpts that show how to access
libraries from three applications systems (PURCH, MAINT, and FACIL) by using the
APPLSYS= argument.

Note: For SAS-library, use the syntax convention that is appropriate for your
operating environment. �

Example Code 6.3 Using the APPLSYS= Argument to Call the SHRMACS and LIBDEF Macros

/* Most libraries will come from purchasing appl sys.*/
%shrmacs(user,nomsg,applsys=purch);

/* Access purchase order library.*/
%libdef(polib,SAS-data-library1);

.

.

.

.
/* Access vendor service library from maintenance appl sys.*/
%libdef(vndsvc,SAS-data-library2,applsys=maint);

.

.

.

.
/* Access vendor account library from purchasing appl sys. */
/* (Note: It is not necessary to specify APPLSYS= for this */
/* application system because it was specified above.) */
%libdef(vndacct,SAS-data-library3);

/* Access vendor contact library from maintenance appl sys.*/

88 Using APPLSYS= to Call the SHRMACS and LIBDEF Macros � Chapter 6

/* (Note: It is not necessary to specify APPLSYS= for this */
/* application system because it was specified above.) */
%libdef(vndcon,SAS-data-library4);

.

.

.

.
/* Access inventory library from facilities appl sys. */
%libdef(invlib,SAS-data-library5,applsys=facil);

/* Access invoice library from purchasing appl sys. */
%libdef(invoice,SAS-data-library6);

89

C H A P T E R

7
Interpreting SAS/SHARE Server
Log Messages

The SAS/SHARE Server Log 89
Starting the Server Log 89

Usage Statistics in the Server Log 90

Sample Log for SAS/SHARE Server SHARE2 90

Format for Server Log Messages 91

Server Log Message Components 92
Reading the Server Log 94

The Start Message 94

The Connect Message 94

The Create Message 94

The Access Message 95

The Open Message 95
The Close Message 96

The Release Message 96

The Terminate Message 96

The Disconnect Message 97

Accounting Information 97
The Stop Message 97

The SAS/SHARE Server Log

The server log displays messages that result from starting and stopping a server and
from intervening client/server transactions. This section gives an example of a server
log for multiple users and interprets some of the common messages that are seen in the
server log.

To make the raw data in the server log messages meaningful, you can use a set of
server log analysis programs to examine specific data resources and to create usable
reports. For more information, see Chapter 8, “Analyzing the Server Log,” on page 99.

Server administrator logs record messages that result from using the OPERATE
procedure. For more information, see “Managing a Server, Its Libraries, and Its Users”
on page 39.

Starting the Server Log

Use the PROC SERVER statement to explicitly start the server logging with the
specific features that you want. To prepare for server log analysis, set the message
numbering feature (MSGNUMBER).

90 Usage Statistics in the Server Log � Chapter 7

Message numbering assigns a number to each message that is recorded in the log.
The server log analysis programs parse messages by using the associated numbers.

Here is an example of specifying message numbering when the server is started:

proc server msgnumber id=demoserv;

For more information, see Chapter 9, “The SERVER Procedure,” on page 107.

Usage Statistics in the Server Log

Sample Log for SAS/SHARE Server SHARE2
The following server log shows that users JOHN(1), MARIA(2), and JOHN(3) started

and closed three separate server sessions. For details about the types of actions that
were performed by the users, which created specific messages in the log, see “Reading
the Server Log” on page 94. When each of the three sessions was closed, usage
statistics were generated. In addition, cumulative usage statistics were generated for
the server SHARE2. The usage statistics are controlled by values that you provide for
the LOG option in the PROC SERVER statement. For explanations of usage statistics
for messages processed (MESSAGE), bytes transferred (BYTECOUNT), active time
(ACTIVETIME), and elapsed time (ELAPSEDTIME), see Chapter 9, “The SERVER
Procedure,” on page 107.

Output 7.1 shows a typical server log with all logging statistics shown for the server
SHARE2 that is running under a UNIX operating environment.

Output 7.1 Sample Log for SAS/SHARE Server SHARE2

Command ===>
1? PROC SERVER ID=share2 LOG=(ACTIVETIME BYTECOUNT ELAPSEDTIME MESSAGE) msgnumber;
2? run;
30Apr2008:07:15:36.690 043131 SAS server SHARE2 started.
30Apr2008:07:16:20.048 043021 User john(1) has connected to server SHARE2.
30Apr2008:07:16:20.442 043143 User john(1) has created "Line Mode Process"(1)

under "Kernel"(0).
30Apr2008:07:16:21.206 043069 Server library TESTDATA

(’/local/u/john/server’ V9) accessed as
TESTDATA by user john(1).

30Apr2008:07:16:31.593 043021 User maria(2) has connected to server SHARE2.
30Apr2008:07:16:31.846 043143 User maria(2) has created "Line Mode Process"(1)

under "Kernel"(0).
30Apr2008:07:16:31.923 043069 Server library DEMOTEST

(’/local/u/john/server’ V9) accessed as
DEMOTEST by user maria(2).

30Apr2008:07:17:32.462 043143 User maria(2) has created "PRINT"(2) under
"Line Mode Process"(1).

30Apr2008:07:17:33.537 043100 DEMOTEST.X.DATA(1) opened for input/S via
engine V9 by "PRINT"(2) of user maria(2).

30Apr2008:07:17:40.361 043102 DEMOTEST.X.DATA(1) closed by "PRINT"(2)
of user maria(2).

30Apr2008:07:17:40.422 043144 User maria(2) has terminated "PRINT"(2)
(under "Line Mode Process"(1)).

30Apr2008:07:18:05.575 043143 User maria(2) has created "DATASTEP"(3)
under "Line Mode Process"(1).

30Apr2008:07:18:05.668 043100 DEMOTEST.DEMO.DATA(1) opened for output via
engine V9 by "DATASTEP"(3) of user maria(2).

Interpreting SAS/SHARE Server Log Messages � Format for Server Log Messages 91

30Apr2008:07:18:06.016 043102 DEMOTEST.DEMO.DATA(1) closed by "DATASTEP"(3)
of user maria(2).

30Apr2008:07:18:06.096 043144 User maria(2) has terminated "DATASTEP"(3)
(under "Line Mode Process"(1)).

30Apr2008:07:18:48.262 043143 User john(1) has created "PRINT"(2)
under "Line Mode Process"(1).

30Apr2008:07:18:48.313 043100 TESTDATA.DEMO.DATA(1) opened for input/S via
engine V9 by "PRINT"(2) of user john(1).

30Apr2008:07:18:49.734 043102 TESTDATA.DEMO.DATA(1) closed by "PRINT"(2)
of user john(1).

30Apr2008:07:18:49.765 043144 User john(1) has terminated "PRINT"(2)
(under "Line Mode Process"(1)).

30Apr2008:07:18:58.322 04306A Server library DEMOTEST (accessed as DEMOTEST)
released by user maria(2).

30Apr2008:07:18:58.338 043144 User maria(2) has terminated "Line Mode
Process"(1) (under "Kernel"(0)).

30Apr2008:07:18:58.909 043022 User maria(2) has disconnected from server SHARE2.
30Apr2008:07:18:59.886 043151 Usage statistics for user maria(2):

Messages processed: 24
Bytes transferred: 8,028
Active time: 0:00:02.7525
Elapsed time: 0:02:28.3527

30Apr2008:07:19:06.298 04306A Server library TESTDATA (accessed as TESTDATA)
released by user john(1).

30Apr2008:07:19:06.319 043144 User john(1) has terminated "Line Mode
Process"(1) (under "Kernel"(0)).

30Apr2008:07:19:06.411 043022 User john(1) has disconnected from server SHARE2.
30Apr2008:07:19:06.425 043151 Usage statistics for user john(1):

Messages processed: 14
Bytes transferred: 3,133
Active time: 0:00:01.8139
Elapsed time: 0:02:46.6840

30Apr2008:07:19:16.018 043021 User john(3) has connected to server SHARE2.
30Apr2008:07:19:16.569 0430A9 PROC OPERATE command from user john(3): STOP SERVER;
30Apr2008:07:19:16.603 043132 Normal termination of SAS server SHARE2 has occurred.
30Apr2008:07:19:17.212 043022 User john(3) has disconnected from server SHARE2.
30Apr2008:07:19:17.246 043151 Usage statistics for user john(3):

Messages processed: 2
Bytes transferred: 102
Active time: 0:00:01.0691
Elapsed time: 0:00:01.9230

30Apr2008:07:19:17.642 043150 Usage statistics for server SHARE2:
Messages processed: 40
Bytes transferred: 11,263
Active time: 0:00:05.6355
Elapsed time: 0:03:42.8948

NOTE: PROCEDURE SERVER used:
real time 3:45.51
cpu time 0.74 seconds

Format for Server Log Messages
In a server log, a message is posted for each significant client/server transaction. A

log message is presented in the following form:

dtformat msgnumber message

The dtformat and msgnumber fields are controlled by options that you provide in the
PROC SERVER statement. For explanations of these options, see Chapter 9, “The
SERVER Procedure,” on page 107.

92 Server Log Message Components � Chapter 7

Server Log Message Components
Server log messages consist of the following components, which are repeated

throughout the log:

engine-name
is the name of the engine that will process the SAS library in the server’s SAS
execution.

libref
is the name temporarily associated with a SAS library. You assign a libref by
using a LIBNAME statement or operating system control language.

libref.member-name.member-type (open sequence number)
libref is the first part of a multi-level SAS filename that is temporarily associated
with the SAS library in which the file is stored.

member name is the filename in a SAS library that references an access
descriptor, or a stored program.

member type is the name assigned by SAS that identifies the type of information
that is stored in a SAS file (for example ACCESS, DATA, CATALOG, PROGRAM,
or VIEW).

The open sequence number, in parentheses, is a counter that is used for
tracking.

open mode / access pattern
The following table shows the types of open mode and their functions.

Table 7.1 Open Modes

Open Mode Function

Input Opens files to read.

Output Creates or replaces files. (Do not use a slash when specifying the
Output mode.)

Update Modifies existing observations or adds new observations, or both.

Utility Modifies the header data (for example, assigning a new label or
format to a variable).

The following table shows the types of access pattern and their functions.

Table 7.2 Access Patterns

Access Pattern Function

Random (R) Processes observations according to the value of an indicator
variable without processing preceding observations.

Sequential (S) Processes observations one after the other, starting at the
beginning of the file and continuing to the end of the file.

Two-pass (2) Enables a SAS procedure to pass through the data more than
one time.

Interpreting SAS/SHARE Server Log Messages � Server Log Message Components 93

Access Pattern Function

BY-group rewind (B) Enables a SAS procedure to pass through the data more than
one time.

Contents type (C) Reads header data, such as names of variables, but does not
read observation data, such as data that PROC PRINT reads.

The two-pass and BY-group rewind access patterns both enable SAS procedures to
pass through the data more than one time. For example, during the initial pass a sum
or count is computed; during the second pass, the values of the variables in each
observation are compared to, added to, or subtracted from the value that was computed
in the first pass. The distinction between these two access patterns is subtle.

When a SAS data set contains only one BY group, there is no difference. When a SAS
data set contains multiple BY groups, rewinding a BY group after the first BY group is
processed requires the ability to position to a random location in the file, which is not
complicated when using disk devices but is almost impossible when using tape devices.
(The I/O supervisor is able to remember the starting position of the current BY group.)

Only the two-pass access patterns require the ability to rewind the entire SAS data
set.

resource environment (resource environment number)
is a structure that is used within SAS to scope and manage the usage of system
resources. Examples of resource environments include SAS procedures, SAS
windows, DATA steps, or other internal SAS activity.

The resource environment number, in parentheses, is a counter that starts at 1
for each connection. To precisely identify a resource environment in a server’s log,
you need the connection number and the resource environment number.

serverid
specifies a name for the server. The server name must meet the criteria for a valid
SAS name, which can include the following special characters: dollar sign ($), at
sign (@), and pound sign (#). For more information, see the rules for naming SAS
variables in SAS Language Reference: Concepts.

Naming a server must also include criteria that are imposed by the operating
environment and the access method that you specify for communication between a
server and a client session. For example, if you are using the TCP/IP
communications access method, the serverid that is specified must be a valid TCP/
IP service as defined in the TCP/IP SERVICES file.

For information about naming servers by operating environment, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

userid(connection number)
specifies a valid user ID for the accessing client on the server. The operating
environment on which the client runs can affect user naming conventions. For
details about specifying valid user IDs, see “User ID and Password Naming
Conventions” on page 129.

The connection number is shown in parentheses after the user ID. This number
begins at 1 and increases by 1 each time a user connects to the server. The server
maintains this counter. The connection number is shown in most of the messages
that are recording activity for each connection. If the same user ID is connected to
a server more than one time, it is possible to track the activity of each connection
separately.

94 Reading the Server Log � Chapter 7

Reading the Server Log

The Start Message

30Apr2008:07:15:36.690 043131 SAS server SHARE2 started.

A message such as this always appears in the log when the server starts. The
message tells the server administrator that the server initialization completed
successfully. In this example, server SHARE2 identifies which server was started. After
this message is printed, the server waits for clients to connect to it. For information
about starting a server, see “Starting a Server” on page 33. For information about
server IDs, see “Server Log Message Components” on page 92.

The Connect Message

30Apr2008:07:16:20.048 043021 User john(1) has connected to server SHARE2.

A message such as this appears when a client establishes a communication path with
the server. The message contains a user ID, a connection number, and a server ID that
tell which user has connected to which server. In this example, user john(1) has
connected to server SHARE2. For more information about user IDs and server IDs, see
“Server Log Message Components” on page 92. The Connect message is bracketed in
the log by the disconnect message. See “The Disconnect Message” on page 97.

The Create Message

30Apr2008:07:16:20.442 043143 User john(1) has created "Line Mode Process"(1)
under "Kernel"(0).

A message such as this shows that the user has created a resource environment.
During a connection, the user, in this example john(1), creates mirror resource
environments, which are used to maintain (track, scope) the resources that the user
consumes in the server’s session (or that the server consumes on the user’s behalf). The
number of each newly created resource environment will appear in later messages
about the resources that were consumed.

The quoted string, "Line Mode Process", is the name of the resource environment
that was created. The number in parenthesis is the resource environment number.

The quoted string "Kernel" is the name of another resource environment, and the
number in parenthesis is the resource environment number. "Kernel" is the parent
resource environment of the created resource environment that this message records.
In this example, the "Kernel" resource environment is the parent of the "Line Mode
Process" resource environment. It is possible to deduce a resource environment tree
that is in effect during a server’s session.

The "Kernel" (0) resource environment is automatically created when a user
connects to a server. The primary purpose for kernel resource environments is to create
child resource environments.

For more information, see “Server Log Message Components” on page 92.
The Create message is bracketed in the log by the Terminate message.

Interpreting SAS/SHARE Server Log Messages � The Open Message 95

For more information, see “The Terminate Message” on page 96.

The Access Message

30Apr2008:07:16:21.206 043069 Server library TESTDATA
(’/local/u/john/server’ V9) accessed as TESTDATA by user john(1).

A message such as this appears when a SAS client executes a LIBNAME statement,
or an external client (that is, a client that is not a SAS client) performs an action that
associates a libref with a SAS library. This message gives you an association between
the libref that you’ll see in subsequent messages and the physical name, engine, and
server’s libref of that library. Under z/OS, accessing a library results in a physical file
being opened; in other operating environments, accessing a library is similar to
changing directories.

The Access message begins with the libref that the server uses to reference the
library. In this example, the libref is TESTDATA. The information in parentheses (’/
local/u/john/server’ V9) is the physical name of the library (the quoted string),
and the name of the engine (V9) that is used in the server’s session to access the library.

The end of the message identifies the user who is accessing the library. In this
example, the user is john, and the number in parenthesis (1) is the connection
number, which is used for tracking a user’s activity on the connection.

For more information about librefs, engine names, and user IDs, see “Server Log
Message Components” on page 92. For information about accessing a SAS library, see
“Defining a SAS Library to a Server (All New Users)” on page 6.

The Access message is bracketed in the log by the Release message. See “The
Release Message” on page 96.

The Open Message

30Apr2008:07:17:33.537 043100 DEMOTEST.X.DATA(1) opened for input/S via
engine V9 by "PRINT"(2) of user maria(2).

A message such as this appears when a user opens a SAS data file.
Opening a SAS file allows the user to move around within the file, see which

variables are in the file, check the file size and the file formats, and so on.
Opening a SAS data view is more complicated than opening a data file. To open a

data view, the server gets help from the engine supervisor to do the following:
� load the engine that will interpret the view
� open the view file
� have the view engine open the underlying files and prepare to interpret the

instructions in the view file

The Open message begins with the libref.member-name.member-type. In this
example, DEMOTEST.X.DATA shows which file or view is being opened, and the number
in parenthesis (1)is the open sequence number. This number is a counter to track how
many times a data set is opened within a resource environment.

Input is the type of Open mode, and S is the access pattern for this open.
engine V9 identifies which engine is being used to interpret the view for the

member type VIEW.
"PRINT" (2) identifies the resource environment that is being used to open the file

or view. Openings are considered resources, so resource environments track them. The

96 The Close Message � Chapter 7

same resource environments also track the resources, such as memory, that are
consumed when a file or view is opened.

maria is the user ID, which shows who opened the file or view, and (2) is the
number of times that the file was opened. For more information about librefs, member
names, member types, open modes, access patterns, engine names, resource
environments, and user IDs, see “Server Log Message Components” on page 92.

The Open message is bracketed in the log by the Close message. See “The Close
Message” on page 96.

The Close Message

30Apr2008:07:17:40.361 043102 DEMOTEST.X.DATA(1) closed by "PRINT"(2)
of user maria(2).

A message such as this appears when a user closes a file. In this example, user
maria has closed the file DEMOTEST.X.DATA under the resource environment "PRINT".
For more information about librefs, member names, member types, resource
environments, and user IDs, see “Server Log Message Components” on page 92. See
also “The Open Message” on page 95.

The Release Message

30Apr2008:07:19:06.298 04306A Server library TESTDATA (accessed as TESTDATA)
released by user john(1).

A message such as this appears only if the user explicitly executes a LIBNAME
statement that includes the CLEAR option. For example:

libname TESTDATA clear;

In this example, user john has released the library TESTDATA. The Release message is
the opposite of the Access message. See “The Access Message” on page 95.

For more information about user IDs and librefs, see “Server Log Message
Components” on page 92.

The Terminate Message

30Apr2008:07:19:06.319 043144 User john(1) has terminated "Line Mode
Process"(1) (under "Kernel"(0)).

A message such as this appears when a user terminates a resource environment
which was previously created. See “The Create Message” on page 94. In this example,
user john terminated the resource environment "Line Mode Process" (1), which was
a child resource environment of "Kernel" (0). For more information about resource
environments and user IDs, see “Server Log Message Components” on page 92.

Interpreting SAS/SHARE Server Log Messages � The Stop Message 97

The Disconnect Message

30Apr2008:07:19:06.411 043022 User john(1) has disconnected from server SHARE2.

A message such as this appears when a user who was connected to the server has
ended that connection. In this example, user john has disconnected from server
SHARE2. For more information about user IDs and server IDs, see “Server Log Message
Components” on page 92.

Usually, the Close message appears before the Disconnect message. However, a
Disconnect message might appear before a Close message appears if the client’s session
with the server was ended abnormally (for example, if the line is disconnected or a
client’s machine crashes).

Accounting Information

30Apr2008:07:19:06.425 043151 Usage statistics for user john(1):
Messages processed: 14
Bytes transferred: 3,133
Active time: 0:00:01.8139
Elapsed time: 0:02:46.6840

By default, accounting data is written to the server’s log when a user disconnects
from the server. (See “The Disconnect Message” on page 97.) This data shows the usage
of server resources—that is, the messages processed, bytes transferred, active time, and
elapsed time—that resulted from a user’s activity while connected to the server. In this
example, the data shown is for user john while connected to server SHARE2.

For explanations of usage statistics for messages processed (MESSAGE), bytes
transferred (BYTECOUNT), active time (ACTIVETIME), and elapsed time
(ELAPSEDTIME), see Chapter 9, “The SERVER Procedure,” on page 107. For more
information about accounting level, see Chapter 9, “The SERVER Procedure,” on page
107. For more information about user IDs, see “Server Log Message Components” on
page 92.

The Stop Message
The Stop message appears in the log if an administrator uses the STOP command

under PROC OPERATE. The server stops all activity and shuts down; all processes end
normally. The server log shows that the STOP command was issued, and shows the
Close, Release, Terminate, and Disconnect messages that follow as the files, libraries,
resource environments, and the connection to the server are shut down. For more
information about the server administrator’s log and an example of what the STOP
command generates in the server administrator’s log, see “Managing a Server, Its
Libraries, and Its Users” on page 39.

98

99

C H A P T E R

8
Analyzing the Server Log

Starting the Server Log 99
Using the Server Log Analysis Tools 100

Customizing Server Log Analysis Programs 100

Executing the Driver Program (SAS/SHARE) 101

SLTOOL1 Sample Program (SAS/SHARE) 101

SLTOOL2 Sample Program (SAS/SHARE) 102
Overview of the SLTOOL2 Sample Program 102

SLOGDATA.SERVINFO 102

SLOGDATA.CONNINFO 102

SLOGINFO.CONNSUM 102

SLOGDATA.TASKINFO 102

SLOGDATA.LIBINFO 103
SLOGDATA.PHYSINFO 103

SLOGDATA.ENGSUM1 103

SLOGDATA.MEMINFO 103

SLOGDATA.OBJINFO 103

SLOGDATA.IDXINFO 103
SLOGDATA.DIRINFO 104

SLOGDATA.IDXSUM 104

SLOGDATA.ACCTINFO 104

SLTOOL3 and SLTOOL4 Sample Programs 104

Starting the Server Log

The information in this section is recommended for SAS/SHARE server
administrators who write SAS programs.

The server log records messages that result from starting and stopping a server and
from many intervening client/server transactions. The PROC SERVER statement is
used to explicitly start server logging with the specific features that you want . For
more information about the PROC SERVER statement, see Chapter 9, “The SERVER
Procedure,” on page 107. Here is the syntax for the PROC SERVER statement with two
options that you can use to start logging:

PROC SERVER MSGNUMBER ID=DEMOSERV;

To make the log’s raw data meaningful, you can use a set of server log analysis
programs to examine specific data resources and to create usable reports. Analysis of
the logged data resources of several SAS/SHARE servers allows you to compare server
performance and to balance workloads among them.

100 Using the Server Log Analysis Tools � Chapter 8

To prepare for server log analysis, set the message numbering feature. Message
numbering assigns a number to each message that is recorded in the log. The server log
analysis programs parse messages by using the associated numbers.

Using the Server Log Analysis Tools
SAS provides a set of sample programs that you can use as a basis for developing

your own programs to analyze server log data. The location of the sample programs
varies according to the operating environment.

OpenVMS
SAS$ROOT:[SAMPLES.SHARE]

UNIX
!SASROOT/samples/share

Windows
!SASROOT\Share\Sample

z/OS
&prefix.SAMPLE

Here are descriptions of the sample programs:

SLTOOLM.SAS
is a look-up table that associates a macro variable with each message number that
is generated in the server log. For example, the DINIMSG macro variable is
assigned to the 43131 message number, which corresponds to a PROC SERVER
start-up.

SLTOOL0.SAS
is a driver program that automates the execution of all the other programs.

SLTOOL1.SAS
converts the server’s log from a file into a SAS data set.

SLTOOL2.SAS
creates a set of SAS data files from the SAS data set that is generated by
SLTOOL1.SAS and stores the files in the library SLOGDATA. Each of the created
files relates to specific data that is collected in the log. For example,
SLOGDATA.SERVINFO is a data file that records the server’s name and the times
when it was started and stopped.

SLTOOL3.SAS
is a sample program.

SLTOOL4.SAS
is another sample program.

Before you use these programs, you must customize them to your site’s operating
environment and your log analysis needs. Running an untuned program produces
unpredictable results.

Customizing Server Log Analysis Programs
SLTOOL0.SAS is a sample driver program that you can use to automate the

execution of your set of programs at the same time. Alternatively, you can run them
individually in consecutive order. For example:

Analyzing the Server Log � SLTOOL1 Sample Program (SAS/SHARE) 101

FILENAME INLOG ’TESTLOG.LOG’;
LIBNAME SLOGDATA ’SLOGDATA’;
%INCLUDE(SLTOOLM);
%INCLUDE(SLTOOL1);
%INCLUDE(SLTOOL2);
%INCLUDE(SLTOOL3);
%INCLUDE(SLTOOL4);

The first line associates the fileref INLOG with an operating environment-specific
name for a file that contains the server log. In this example, ’TESTLOG.LOG’ is the
name of the file in a UNIX operating environment that contains the server log. In the
second line, the LIBNAME statement associates the libref SLOGDATA with the
operating environment-specific SAS library ’SLOGDATA’. The first two lines identify
the external file as input and specify a SAS library to write SAS data files to.

The remaining lines in the driver program are INCLUDE macro statements in SAS,
which read and execute each named program consecutively.

Modify the FILENAME and LIBNAME statements in SLTOOL0.SAS to specify your
server’s log and the repository for the SAS data files, respectively.

SLTOOLM.SAS, SLTOOL1.SAS, and SLTOOL2.SAS do not require modification.
They can be run as provided to produce SAS data files that contain information about
the server’s session. Those data files are the input to the analysis phase, which is
performed by the programs in SLTOOL3.SAS and SLTOOL4.SAS.

Usually, you customize the SLTOOL3.SAS and SLTOOL4.SAS programs to produce
the analyses of your server that are most relevant to your needs.

Executing the Driver Program (SAS/SHARE)

How you execute the driver program depends on your operating environment. The
following example runs the driver program on a UNIX operating environment:

sas pathname/sltool0.sas -log /pathname/logfile

sas invokes the SAS System. pathname specifies the location of SLTOOL0 and the
location of the log file.

SLTOOL1 Sample Program (SAS/SHARE)

Before you use the SLTOOL1 program, the server log must be in a file that can be
read by the INFILE and the INPUT statements in the DATA step. The FILENAME
statement points to the physical location that contains the server’s log.

Because SLTOOL1 produces a compressed SAS data file that contains the server log
and some additional data, it is recommended that you reserve an amount of space that
is twice the size of the server log file.

SLTOOL1 produces a data file that is stored in the library WORK. Because the
library WORK is temporary, it exists only for the duration of the SAS session and is
deleted at termination. To keep the data file that is produced by SLTOOL1 for use after
the session terminates, save it in a permanent library by specifying a valid, two-level
name. For example:

DATA SLOGDATA.CVTLOG (DROP=SERVREL ANALREL
COMPRESS=YES
LABEL=’Server Log’);

102 SLTOOL2 Sample Program (SAS/SHARE) � Chapter 8

SLTOOL2 Sample Program (SAS/SHARE)

Overview of the SLTOOL2 Sample Program
SLTOOL2 reads the SAS data file produced by SLTOOL1 and creates a group of SAS

data sets. Usually, SLTOOL2 is executed during the same SAS session as the SLTOOL1
program.

The libref SLOGDATA is associated with a SAS library by the LIBNAME statement
in SLTOOL0.SAS.

The data sets created by SLTOOL2 are stored in the SAS library and are associated
with the libref SLOGDATA. It is most efficient to run SLTOOL0.SAS one time to create
the data files in the library SLOGDATA, and then run multiple analysis programs that
access the library SLOGDATA. With large server logs, creating the data sets in the
library SLOGDATA can take quite a long time and should be done only one time for
each server log.

SLTOOL2 creates data sets with names that include either INFO or SUM. INFO files
contain observations that record specific SAS/SHARE activities, such as each time a
server is started and stopped. SUM files present the total number of times a specific
activity occurred, such as the total number of connections made to a server.

The following sections describe each data set that is created by SLTOOL2.

SLOGDATA.SERVINFO
The SERVINFO data set records the server name and the times at which it was

started and stopped. You can use this information to write a descriptive header on a
report that relates to that server.

SLOGDATA.CONNINFO
The CONNINFO data set contains one observation for each time a user connects to

the server and one observation for each time a user disconnects from the server.
From this data set, you can obtain a list that shows who connected to a server, how

long each user remained connected, or how many times each user connected to the
server. You can also chart the simultaneous number of connections to a server over a
period of time, which shows peaks and valleys in the number of users who access data
through a specific server.

SLOGINFO.CONNSUM
The CONNSUM data set contains only one observation with one variable that stores

the total number of connections to this server.

SLOGDATA.TASKINFO
The TASKINFO data set contains one observation for each creation of a mirror

resource environment and one observation for each termination of a mirror resource
environment.

Analyzing the Server Log � SLOGDATA.IDXINFO 103

The name of a resource environment in this data set corresponds to the name of a
SAS procedure or a window that is used to access data through the server. From this
data set, you can obtain a list of those SAS procedures and windows and the length of
time each procedure or each window remained active.

SLOGDATA.LIBINFO
The LIBINFO data set contains one observation for each time a user accesses a SAS

library and one observation for each time a user releases a SAS library.
From this file, you can determine how many times each library was accessed through

the server and the length of time that each library was accessed. You should use the
physical name for the library because each library can be referred to by different librefs
at various times. To obtain a list of the libraries accessed through a server, use
SLOGDATA.PHYSINFO.

SLOGDATA.PHYSINFO
The PHYSINFO data set contains a list of the physical names that correspond to the

libraries that were accessed through the server.

SLOGDATA.ENGSUM1
The ENGSUM1 data set contains a list of the engines that were used to access SAS

libraries through the server.

SLOGDATA.MEMINFO
The MEMINFO data set contains an observation for each time a SAS library

member is opened, reopened, closed, renamed, repaired, or deleted.
From this data set, which usually is very large, you can derive a list of members for

each library that has been accessed through the server; the length of time and how
many times each member was accessed; whether each member was created, read, or
updated; and the number of simultaneous users of each member over a period of time.

You should use the physical name for the library because each library can be referred
to by different librefs at various times.

SLOGDATA.OBJINFO
The OBJINFO data set contains an observation for each time a SAS catalog entry is

opened, closed, renamed, deleted, aliased, or has its directory information or options
changed.

This data set is similar to SLOGDATA.MEMINFO, but it contains information for
catalog entries instead of members of SAS libraries.

SLOGDATA.IDXINFO
The IDXINFO data set creates an observation for each time a user creates or deletes

an index through the server.
Because creating an index tends to be expensive, this data set is probably most

useful as a warning signal. Also, because indexes can be very helpful for SAS data sets

104 SLOGDATA.DIRINFO � Chapter 8

that are accessed concurrently, having a list of indexes that were deleted during a
server’s session can also be a warning signal.

SLOGDATA.DIRINFO
The DIRINFO data set contains an observation for each time the directory of a SAS

library or the directory of a SAS catalog is opened or closed through the server.

SLOGDATA.IDXSUM
The IDXSUM data set contains only one observation with two variables. One

variable counts how many indexes were created through the server; the other variable
counts how many indexes were deleted through the server.

SLOGDATA.ACCTINFO
The ACCTINFO data set contains one observation for each accounting message that

is written to the server’s log after a user disconnects. You must specify the LOG= option
in the PROC SERVER statement to collect this data.

SLTOOL3 and SLTOOL4 Sample Programs
You can examine the source code of these sample programs making the following

menu selections: Help � SAS Help and Documentation � Contents � SAS System
Documentation � Learning to Use SAS � Sample SAS Programs � SAS/SHARE

105

P A R T2

Reference

Chapter 9.The SERVER Procedure 107

Chapter 10.Remote Library Services 123

Chapter 11.The OPERATE Procedure 133

Chapter 12.Remote SQL Pass-Through (RSPT) Facility 151

Chapter 13.The LOCK Statement and the LOCK Command 159

Chapter 14.SAS/SHARE Macros 163

Chapter 15.SAS/SHARE General SAS System Options 175

106

107

C H A P T E R

9
The SERVER Procedure

Overview of the SERVER Procedure 107
Syntax: SERVER Procedure 108

PROC SERVER Statement 108

Syntax for the ALLOCATE SASFILE Command 119

Syntax for the ALLOCATE LIBRARY Command 121

Overview of the SERVER Procedure

The SERVER procedure is the core of SAS/SHARE. It is the component that enables
two or more clients to write concurrently to the same SAS file. To start a SAS/SHARE
server, invoke the SERVER procedure. Specify an ID for that server with a set of
optional parameters that define the server behavior.

You can use any SAS method of processing to invoke PROC SERVER: non-interactive
mode, interactive line mode, batch mode, or the SAS windowing environments. For
production, SAS/SHARE servers are usually run in batch mode; for interactive testing,
they are usually run in interactive line mode.

The SERVER procedure is interactive, which means that the parser processes
statements (that are called commands in PROC SERVER) as they are encountered. For
details about how to invoke the SERVER procedure and for an example of a SAS log,
see Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 29.

Note: Although the parser is accepting and processing commands, the SAS/SHARE
server is not available to users until the RUN statement (or another program step) is
executed. �

108 Syntax: SERVER Procedure � Chapter 9

Syntax: SERVER Procedure
PROC SERVER <options>;

ALLOCATE SASFILE SAS-data-set1 <(data-set-options) >

<SAS-data-set2> <(data-set-options) ... SAS-data-set8 <(data-set-options)>>

ALLOCATE LIBRARY libref <engine> ’SAS-data-library’ <LIBTYPE=library-type>
<CATCACHELIMIT=n><engine/system-options>;

Task Command

Specify data sets for the SAS/SHARE server to open and hold in memory. See “Syntax for the
ALLOCATE SASFILE
Command” on page 119.

Defines a SAS library to a SAS/SHARE server that is already running. See “Syntax for the
ALLOCATE LIBRARY
Command” on page 121.

PROC SERVER Statement

Starts a SAS/SHARE server session.

Valid in: server session

Category: Data Access

Syntax

PROC SERVER <options>;

Options

ALLOC | NOALLOC
determines whether clients can define additional SAS libraries to a server after a
server has started. The ALLOC option enables clients to define libraries to a server.
The NOALLOC option prevents clients from defining additional libraries to the server
and restricts clients to accessing libraries that are defined by a server administrator.

Default: ALLOC

ACCTLVL=value | (value 1 < ... value n >)
specifies the level of accounting. Use this option to specify the aggregation (or detail)
used in reporting server usage statistics. This option is useful for tuning an
application because it enables you to examine, in more detail, how various parts of

The SERVER Procedure � PROC SERVER Statement 109

the application use the server resources. The usage statistics also enable you to
charge users for the amount of server resources they consume.

The ACCTLVL= and LOG= options are closely related. The LOG= option specifies
which usage statistic is written to the log; the ACCTLVL= option specifies the level of
aggregation for that statistic (user, file, and resource environment). See the LOG=
option for more information.

You can specify multiple values for the ACCTLVL= option by enclosing the values
in parentheses and separating them with a space or a comma—for example,
ACCTLVL=(USER DATA). Here are the valid values for ACCTLVL=:

DATA
causes the server to log statistics every time a SAS file is closed by a user. These
statistics show the usage of server resources for each file by that user.

USER
causes the server to log statistics every time a user disconnects from the server.
These statistics show the usage of server resources for that client session.

RESOURCE_ENVIRONMENT
causes the server to log statistics every time a user terminates a resource
environment. Examples of resource environments include a SAS procedure, a SAS
window, a DATA step, a SAS process, or other internal SAS activity. These
statistics show the usage of server resources by requests that are made in the
context of that resource environment by that user.

ALL
causes the server to log statistics for all accounting levels (DATA, USER, and
RESOURCE_ENVIRONMENT).

Default: USER

ADMINLIBREF=value | _NONE_
specifies the libref associated with the library of administrative data for the server.
This option enables a client to handle a server’s administrative data in the same way
it handles any other SAS file, which enables the client to process that data
programmatically. To turn off this type of access to a server’s administrative data,
specify ADMINLIBREF=_NONE_.

/* This program segment creates the SAS data file WORK.A,
which is a list of all the libraries that clients of the
server are accessing. */

libname sasadmin server=shr1;
data a;

set sasadmin.library;
where users > ’0’;

run;

Default: SASADMIN

110 PROC SERVER Statement � Chapter 9

AUTHENTICATE=REQUIRED | OPTIONAL
controls whether a server requires connecting users to provide a valid user ID and
password when they connect to the server. You can use this option with a
communications access method security option (for example, use the TCPSEC option
for TCP/IP).

AUTHENTICATE=REQUIRED means that the security options of all the access
methods that are used by the server must be set to _SECURE_. Also, PROC
SERVER will not start unless all of the access methods guarantee that they require a
valid user ID and password combination before establishing a connection between a
client and the server.

AUTHENTICATE=OPTIONAL means that the communications access method
security options might be set to _SECURE_. Each access method can have a different
security option. This can be useful for a site that trusts the IDs of users that connect
through one access method but does not trust the IDs of users that connect through
another access method. In this instance, only the access method used by the
non-trusted clients would have its security option set to _SECURE_. Using the
parameter OPTIONAL allows trusted users to connect without requiring validation.

When an access method supplies a validated user ID (usually, by requiring a
connecting client to specify a valid user ID and password combination), the server
uses that validated ID to verify the user’s authorization to access SAS files. When
AUTHENTICATE=OPTIONAL and some access methods do not supply validated
user IDs, those clients are allowed to access only those SAS files that the server is
allowed to access. In this instance, you should run the server under a user ID that
does not have open access to the files on its computer.
Default: REQUIRED
Aliases: REQ, OPT

CLIENTID = SESSION | SECURITY
specifies the source of the client user ID to use in log messages that are written to the
server log. Your choice determines the search order that is used to locate the client
user ID. Choose the source of the client’s name to be used in the server log, as follows:

SESSION
specifies that the source of the client user ID is either the logon name or the batch
account name of the client session. The server uses the following search order:

� If a session name is located, the session name is used.
� If a session name is not located, but a secured name is located, the secured

name is used. (For details, see the SECURITY value.)
� If neither a session name nor a secured name is located, the string _U_ is

used as a generic identifier in the log messages.

The SERVER Procedure � PROC SERVER Statement 111

SECURITY
specifies that the source of the user ID is the secured name that the client used to
connect to the server. The server uses the following search order:

� If a client’s secured name is located, the secured name is used.

Note: A secured name is the user ID that is specified using the
USERNAME= and PASSWORD= options in the LIBNAME statement.

Example:

libname test userid=tbass password=_PROMPT_;

For details about the LIBNAME statement, see “LIBNAME Statement” on
page 123. �

� If a secured name is not located, but a session name is located, the session
name is used. (For details, see the SESSION value).

� If neither a session name nor a secured name is located, the string _U_ is
used as a generic identifier in the log messages.

DTFORMAT=SAS-datetime-format |_NODTS_
specifies the format for the date-and-time stamp at the beginning of each message
that is written to the server log. You can specify any SAS date, time, or
date-and-time format; or you can specify your own date-and-time format. For details
about specifying these formats, see the SAS formats in SAS Language Reference:
Dictionary.

If you specify your own date-and-time format in this option, a SAS datetime value
is supplied to the formatting routine. For an example of the date-and-time format in
the server log, see “Usage Statistics in the Server Log” on page 90.

Specifying the value _NODTS_ suppresses the date-and-time stamp.

Default: DATETIME22.3

Alias: DTF

LRPYIELD=value
indicates, to a long-running process in the server’s SAS session, how frequently the
process should yield so that others can use the server. The default is 10000; this
value has no units. Increase the value to have a long-running process yield more
frequently; decrease the value to have it yield less frequently. LRPYIELD=0 does not
yield at all. With a 0 value, the server can process other requests only after the
long-running process has finished.

Here are two examples of long-running processes:

� A client accesses a PROC SQL view that joins two large data sets which the
server is required to sort.

� A client issues a WHERE clause that requires the server to search millions of
observations, sequentially, to find the first observation that satisfies the
WHERE clause.

Default: 10000

LOG=value|(value 1 <... value n>)
causes the server to log specific usage statistics about client/server transactions and
SQL queries that it receives through the Remote SQL Pass-Through facility. This is
useful for application tuning and for charging clients for the amount of server
resources they consume. The server writes one line to its log for each resource
statistic that is specified.

When this option is used with the ACTIVETIME, BYTECOUNT, ELAPSEDTIME,
and MESSAGE values, the LOG= option is related to the ACCTLVL= option. The
LOG= option specifies which usage statistic is written to the log; the ACCTLVL=

112 PROC SERVER Statement � Chapter 9

option specifies the level of aggregation for that statistic (user, file, and resource
environment). See the ACCTLVL= option for more information.

The LOG=QUERY option allows you to track SQL queries that are submitted
through the Remote SQL Pass-Through facility. This is useful to applications
programmers for debugging and to server administrators to learn how the server is
being accessed.

You can specify multiple values for the LOG= option by enclosing the values in
parentheses and using a space or a comma to separate them—for example,
LOG=(MESSAGE BYTECOUNT).

Note: The log values IO and CPU are no longer valid. The data that was reported
by these options in SAS 6 offered limited accuracy, and the changes in resource
tracking in SAS 8 reduced the potential accuracy even further. If you previously set
the SAS options STIMER or FULLSTIMER because you had specified LOG=IO or
LOG=CPU, you can reset or delete these SAS options in order to improve your server
performance. �

Here are the valid values for LOG=:

ACTIVETIME
causes the server to log the cumulative elapsed time of server processing for the
specified event in the ACCTLVL= option. For example, if ACCTLVL=USER and
LOG=ACTIVE, the server logs the cumulative elapsed time of processing for that
client session when that client session ends. This value is printed using the SAS
format TIME15.3. Here is an example of a log message that is recorded for this
statistic:

30Apr2008:10:42:44.060 Usage statistics for user TIM(1):
Active time: 0:00:01.0394

Alias: ACTIVE

BYTECOUNT
causes the server to log the cumulative number of bytes that are transferred
between the client and the server for the event that is being logged. For example,
if ACCTLVL=USER and LOG=BYTE, the server logs the cumulative number of
bytes transferred between the client and the server for that client session when
that client session ends. The value for BYTE is automatically scaled to make it
easier to read and the appropriate character is appended to the data. K=Kilobytes
(1,024 bytes), M=Megabytes (1,048,576 bytes) and G=Gigabytes (1,073,741,824
bytes). The values are printed using the SAS format COMMA10.0. Here is an
example of a log message that is recorded for this statistic:

30Apr2008:10:52:31.040 Usage statistics for user MIKE(2):
Bytes transferred: 40,052 K

Alias: BYTE

The SERVER Procedure � PROC SERVER Statement 113

ELAPSEDTIME
causes the server to log the elapsed time of the recorded event. For example, if
ACCTLVL=DATA and LOG=ELAPSED, the server logs the length of time that a
file was open. If ACCTLVL=USER and LOG=ELAPSED, the server logs the length
of time that the user was connected to the server. This value is printed using the
SAS format TIME15.3. Here is an example of a log message that is recorded for
this statistic:

30Apr2008:11:15:44.020 Usage statistics for user JOE(3):
Elapsed time: 0:22:57.6912

Alias: ELAPSED

MESSAGE
causes the server to log the number of client requests that are processed by the
server for the recorded event. For example, if ACCTLVL=USER and
LOG=MESSAGE, the server logs the number of requests processed for the client
when that client session ends. This value is printed using the SAS format
COMMA15.0. Here is an example of a log message that is recorded for this
statistic:

30Apr2008:13:22:04.060 Usage statistics for user STEPHEN(4):
Messages processed: 15

Note: Do not confuse LOG=MESSAGE with the MSGNUMBER option. �

Alias: MSG

QUERY
causes the server to log each SQL query that it receives through the Remote SQL
Pass-Through facility from a SAS session or other client. By default, the server
logs only update and output SQL statements, not queries. If LOG= QUERY, you
will see messages similar to the following in your server log:

30Apr2008:15:14:12.898 GISELLE(14) in "SQL"(13) has issued select
flight, date, depart from home.chicago where
flight=’202’ to SQLVIEW.

ALL
causes the server to log all the usage statistics (ACTIVETIME, BYTECOUNT,
ELAPSEDTIME, and MESSAGE) for the corresponding accounting level. For
example, if ACCTLVL=USER and LOG=ALL, the server logs statistics for
ACTIVETIME, BYTECOUNT, ELAPSEDTIME, and MESSAGE for the client
session when that client session ends.

If you specify LOG=ALL, the server will also log SQL queries that it receives
through the Remote SQL Pass-Through facility. See the QUERY option for an
example of the SQL messages that are logged.

Here is an example of a log message that is recorded when ALL is specified:

30Apr2008:16:02:44.060 Usage statistics for user BILL(1):
Messages processed: 47
Bytes transferred: 104 K
Active time: 0:00:05.0394
Elapsed time: 0:22:57.6912

REM
is an acronym for REMOTE engine emulation; when the server terminates, this
value causes the server to log the total number of connections and maximum
concurrent number of connections from thin clients that access the SAS/SHARE
server. These clients include Share JDBC, ODBC, OLE DB, and SAS SQL.

114 PROC SERVER Statement � Chapter 9

MSGNUMBER
associates a unique message number (represented in hexadecimal notation) with
each type of operation for which a message is recorded in a server log.

CAUTION:
Avoid hardcoding message numbers in your applications. Use macros instead.
Message numbers can change from one software release to another. �

Message numbers are useful for server log analysis applications, which can count
the number of instances of an operation that occur in a specific client/server session.
Collection and analysis of these statistics might help with server load balancing. SAS
provides a set of server log analysis program prototypes that you can customize for
your needs. Among these prototypes is a file that maps message numbers to
operations. See “Starting the Server Log” on page 99 for information about the
server log analysis tools.

In the following example of a typical message written to a server log, the message
number 043131 identifies a PROC SERVER start-up operation.

30Apr2008:08:28:20.911 043131 SAS server SHR1 started

Note: Do not confuse the MSGNUMBER option with the LOG=MESSAGE
option. �
Alias: MSGN

NORMTVIEW
disables the ability of a server to interpret SAS data views.

By default, a SAS data view is interpreted in the server SAS session, and the data
that is produced by the view is transmitted to a client SAS session.

Occasionally, it is preferable to transmit the view (the instructions for producing
the data) to a client SAS session and to have the view interpreted and the data
assembled in the server SAS session. You can use the RMTVIEW option in a
LIBNAME statement to request this action on a library-by-library basis.

The NORMTVIEW option enforces transmission of the view (instead of the data)
for all users of the server, regardless of whether the RMTVIEW option is specified in
a LIBNAME statement.

Note: The NORMTVIEW option was developed for specific needs and is only
rarely appropriate for use. To use this option for a server, contact SAS Technical
Support to review the circumstances. �

OAPW=password | “encoded-password”
specifies a password that you must supply (by using the OPERATE procedure) to
connect to the server.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The SERVER Procedure � PROC SERVER Statement 115

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

PT2DBPW=password | “encoded-password”
specifies the client password for controlling pass-through access to a remote DBMS.
This password allows a connection between the SAS/SHARE server and another data
server (either a DMBS or another SAS/SHARE server) that contains the target
database.

Pass-through access to a remote database by means of a SAS/SHARE server
requires that you also run the CONNECT TO REMOTE statement in PROC SQL
with the DBMS= option and the PT2DBPW= option.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

SERVERID=server-ID | _ _port-number
specifies the name of a server.

server-ID
must be a valid SAS name that is 8 characters or less in length.

Server naming is also affected by the operating environment and the access
method that you specify for communication between a server and a client session.
For example, if you use the TCP/IP communications access method, server-ID must
be a valid TCP/IP service as defined in the TCP/IP SERVICES file.

For complete information about how to name servers by operating environment,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE. For
details about the SERVICES file, see SERVICES File in Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

116 PROC SERVER Statement � Chapter 9

_ _port-number
If you are using the TCP/IP access method, you can specify the server’s port
number that corresponds to the server ID in the TCP/IP SERVICES file. Precede
the port number with two consecutive underscores. For details, see the topic on
the SERVICES file in Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Note: Do not space after the first underscore or the second underscore. �
Example:

_ _1025

Note: Specifying a server by using a port number is not supported for ODBC
clients. �

Aliases: SERVER, ID

THREADEDTCP | NOTHREADEDTCP
specifies whether the threaded version of the TCP access method and associated
threaded infrastructure should be used when TCP/IP communication is specified.
The default is NOTHREADEDTCP.

When THREADEDTCP is specified, communication activity to and from the server
is processed primarily in a threaded context. Communication activity refers to the
work the server does to receive a request and to reply to the request, including any
necessary data representation conversion. Threading enables multiple, concurrent
reception and transmission activity when the server runs on SMP hardware.

Also, a portion of the main request processing, which occurs between the time the
request is received and the reply time, is performed in the threaded context for a
SAS 9, 9.1, or 9.2 client or a SAS 9, 9.1, or 9.2 OLE DB provider for SAS/SHARE.

Note: New in SAS 9.2, threaded TCP is now compatible with the collection of
active-time usage statistics. You specify the collection of statistics by setting either
the LOG=ALL or LOG=ACTIVETIME option in the PROC SERVER statement.
When THREADEDTCP is specified, active time can still be collected. �

Aliases: TTCP, NOTTCP

Default: NOTHREADEDTCP

Restriction: THREADEDTCP is an experimental option that was introduced in
SAS 9.1. Do not use this option in production jobs.

Restriction: THREADEDTCP is incompatible with network data encryption, which
is specified by using the NETENCRYPT and NETENCRYPTALGORITHM system
options. If network data encryption and THREADEDTCP are specified, an error
message is issued and server initialization fails. For details about the encryption
system options, see Data Security Technologies in SAS.

TBUFSIZE=value
specifies the suggested size of a buffer that the server uses to transmit information to
a client or receive information from a client. When this option is not specified in the
PROC SERVER statement, the value of the TBUFSIZE= SAS system option, if
specified, is used.

The use of these transmission buffers is for transmitting observations. The server
uses the value of the TBUFSIZE= option when computing the number of
observations to transmit in each multi-observation transfer between the server and
the client sessions. If the observation size, plus overhead, exceeds the value of the
TBUFSIZE= option, only single-observation transfers are executed. Specifying an
excessive value for the TBUFSIZE= option might cause your server or clients to run
out of memory and to terminate abnormally.

The SERVER Procedure � PROC SERVER Statement 117

You cannot calculate the number of observations per transfer by dividing the
observation length into the value that you specify for the TBUFSIZE= option. To
determine the effect of this option on your data sets, use the PROC SERVER options
LOG=MESSAGE and ACCTLVL=DATA and compare the number of messages
exchanged between the server and the client sessions as a function of the value of the
TBUFSIZE= option and the number of observations in the data set.

Default: 32k

UAPW=password | “encoded-password”
specifies a password that a client must supply in the LIBNAME statement to
establish communication with the server.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

WORKTASKS = initial | (<initial> <, maximum>)
specifies the initial and maximum number of work tasks for the SAS/SHARE server
to execute. A work task is typically a pair of lightweight threads that service
requests from SAS/SHARE clients. When the server receives a request for service
and no work task is available, the server spawns a new work task to service the
request, up to the maximum number specified.

More work tasks enable the SAS/SHARE server to service more asynchronous
requests. However, the majority of work tasks that request service will execute
synchronously. Also, the THREADEDTCP option facilitates asynchronous processing.

initial
specifies the initial number of work tasks for the SAS/SHARE server to execute.
The default is 3.

maximum
specifies the maximum number of work tasks for the SAS/SHARE server to
execute. The default is 16.

See Also: THREADEDTCP option on page 116

118 PROC SERVER Statement � Chapter 9

Interaction of PROC SERVER with Selected SAS System Options

Interaction between PROC SERVER and other File-Locking Processes
Under the OpenVMS, UNIX, and Windows operating environments, if the
FILELOCKWAITMAX= system option is not specified at SAS invocation, the
FILELOCKWAITMAX= system option is set to zero for the duration of a server session
that is started with PROC SERVER. This system option is used to specify the
maximum time for a SAS session to wait to access a SAS file that is currently locked by
another process.

Note: When using SAS/SHARE, you should not perform other processes that lock
SAS files or use the FILELOCKWAITMAX= system option and the FILELOCKWAIT=
option in the LIBNAME statement. �

For details about the FILELOCKWAITMAX= system option and the
FILELOCKWAIT= option in the LIBNAME statement, see the SAS Companion for
UNIX Environments or the SAS Companion for the Microsoft Windows Environment, as
appropriate.

PROC SERVER and the Default NOXCMD System Option
The XCMD and NOXCMD system options can be used to specify whether to enable
host-system mode in order to submit an operating system command without ending the
SAS session.

Using the XCMD option, an unauthorized user in a SAS/SHARE client session could
access privileged data through a SAS/SHARE server session.

Starting in SAS 9.2, to prevent unauthorized access, if the XCMD system option is
not specified at SAS invocation, the NOXCMD system option is set for the duration of a
server session that is started with PROC SERVER.

Note: For SAS releases before SAS 9.2, XCMD is the default. Therefore, you must
explicitly specify the NOXCMD system option in order to disable host-system mode. �

For details, see the XCMD system option in the SAS Companion for OpenVMS, the
SAS Companion for UNIX Environments, the SAS Companion for the Microsoft
Windows Environment, or the SAS Companion for z/OS, as appropriate.

PROC SERVER: Examples
The following statements start the server SHARE1:

proc server id=share1;
run;

The following statements start the server SHARE1 and prevent clients from defining
SAS libraries to the server:

proc server id=share1 noalloc;
run;

The following statements start the server SHARE1 and report all message counts to the
server log:

proc server id=share1 log=msg;
run;

The SERVER Procedure � Syntax for the ALLOCATE SASFILE Command 119

Syntax for the ALLOCATE SASFILE Command

Specifies SAS data sets to open and keep in memory for the duration of a SAS/SHARE server
session.

Valid In: PROC step
Tip: Keeping SAS data sets open can improve server performance by reducing the
overhead that normally occurs when users open and close the data sets during
application processing. A file remains open until the program or SAS session ends.

Syntax

ALLOCATE SASFILE SAS-data-set1 <(data-set-options) >
<SAS-data-set2 <(data-set-options)> ...
SAS-data-set8 <(data-set-options)>>;

Arguments

SAS-data-set
contains descriptor information and its related data values organized as a table of
observations and variables that can be processed by SAS.

data-set-options
specify actions that apply only to the SAS data set with which they appear. For
complete details about data set options, see SAS Language Reference: Dictionary.

Note: You must define all librefs before using them in an ALLOCATE SASFILE
command. �

ALLOCATE SASFILE Command Considerations
Consider the following when using the ALLOCATE SASFILE command with the

PROC SERVER statement:
� A maximum of 8 SAS data set names can be specified in each ALLOCATE

SASFILE command.
� The SAS data sets that you specify must exist before the ALLOCATE SASFILE

command is issued.
� Only SAS data sets can be specified. Other types of SAS files (for example,

catalogs) cannot be specified in an ALLOCATE SASFILE command.
� When you open a SAS data set by using the ALLOCATE SASFILE command, the

file is opened for input processing and can be used for subsequent input or update
processing. However, the file cannot be used for subsequent utility or output
processing, because utility and output processing require exclusive access to the
file (member-level locking). For example, you cannot replace the file or rename its
variables.

� The ALLOCATE SASFILE command can execute only in the server session.
� After the ALLOCATE SASFILE command executes, all users who subsequently

open the file will access the data that is held in memory instead of the data that is
stored on the disk.

120 Syntax for the ALLOCATE SASFILE Command � Chapter 9

� After the ALLOCATE SASFILE command executes, the file is closed and the
buffers are freed only after the SAS/SHARE server is terminated.

� Do not specify the same data set in both a SASFILE statement and an
ALLOCATE SASFILE command.

� You must execute the SASFILE statement before you execute the PROC SERVER
statement.

Comparison: ALLOCATE SASFILE Command and SASFILE Statement
The ALLOCATE SASFILE command is similar and complementary to the SASFILE

statement in Base SAS. The SASFILE statement can be used in a server session as well
as in a single-user session. Both statements used in a server session achieve
performance gains by providing in-memory processing using buffers.

A buffer is a reserved area of memory that holds a segment of data while it is
processed. The number of allocated buffers determines how much data can be held in
memory at one time.

The ALLOCATE SASFILE command offers limited buffering. The SASFILE
statement in Base SAS provides maximum buffering, and therefore, the best
performance. You can specify any of the following four levels of file buffering (shown in
Table 9.1 on page 120) for each data set.

Table 9.1 Levels of File Buffering

Level of File Buffering Memory Consumed Condition for Using

Neither the ALLOCATE
SASFILE command nor the
SASFILE statement is used.

The least amount of memory is
consumed. Each client that
accesses a file duplicates the
same overhead that is required
for a file open.

File access is limited and
memory is constrained.

Use the ALLOCATE SASFILE
command, and accept the
default number of buffers that
are pre-allocated.

The SAS/SHARE server opens
the file and keeps it open for all
client access, which eliminates
the duplicate overhead that is
required for a file open.

File access is frequent and
memory is constrained.

Use the ALLOCATE SASFILE
command, and use the
BUFNO= data set option to
specify the number of buffers
to pre-allocate.

Specify buffers according to
available memory and the
usage pattern of the file.

The file being accessed is large,
but only certain pages of the
data are accessed frequently.

Use the SASFILE statement to
read the entire data set into
memory.

The entire file resides in
memory.

File access is frequent and
there is sufficient memory for
reading in the entire file.

For details about the SASFILE statement in Base SAS, see the following topics in
SAS Language Reference: Dictionary: the BUFNO= system option, the BUFNO= data
set option, and the SASFILE statement.

Example
In the following example, server SHARE1 is started and eight data sets are specified

to be stored in memory for client access. The number of buffers that are used is
determined by the default value of the BUFNO= system option.

The SERVER Procedure � Syntax for the ALLOCATE LIBRARY Command 121

proc server id=share1;
allocate sasfile sas-dataset1 sas-dataset2 ... sas-dataset8;
run;

Syntax for the ALLOCATE LIBRARY Command

Defines a SAS library to a SAS/SHARE server that is already running.

Restrictions: The SERVER procedure
Tip: provides the same functionality as the ALLOCATE LIBRARY command in the
OPERATE procedure. In addition, it enables you to specify the library and a libref to
use for caching catalog files that have been accessed by using the option
LIBTYPE=CATCACHE, which is a Cross-Architecture Catalog Access feature.
See also: “Cross-Architecture Catalog Access in the SAS/SHARE Server” on page 184

Syntax

ALLOCATE LIBRARY libref <engine> ’SAS-data-library’<LIBTYPE=library-type>
<CATCACHELIMIT=n> <engine/system options>;

Required Arguments

libref
is a valid SAS name that is temporarily associated with a SAS library.

’SAS-data-library’
is the physical name of the SAS library that is being defined to the server. The name
is specific to your operating environment and must be enclosed in either single or
double quotation marks.

Options

engine
specifies the engine to be used to process the SAS library when the server executes
SAS.

Note: Usually, you do not have to specify this option because the server
automatically determines which engine to use for processing a data library. However,
you can specify this option to reduce the time that is used by the server when
determining which engine to use to access a specific SAS library. �

LIBTYPE=library-type
specifies the type of library to be allocated. The following library types are supported:

CATCACHE
specifies that this library will be used to cache catalogs that have been accessed by
means of the cross-architecture catalog access feature. This option gives you the
flexibility to specify a libref and a location for these files. Only one catalog cache
might be allocated per SAS/SHARE server invocation.

122 Syntax for the ALLOCATE LIBRARY Command � Chapter 9

By default, the SAS/SHARE server uses its WORK library as the location for
the catalog cache and assigns the libref SASCATCA to it. In most instances, the
default is suitable.

STANDARD
specifies a standard SAS data file library. This is the default.

CATCACHELIMIT=n
is a numeric value that specifies the maximum number of catalog files that are held
in the cache. The files are accessed by means of the cross-architecture catalog access
feature. The following values can be used:

0 specifies that the catalog files are not cached.

1 specifies that all catalog files are saved in the catalog cache.

n specifies that the cache is limited in size to n files. The cache is
maintained, and the files are discarded by using a
least-recently-used algorithm. The n argument is valid only when
specifying a library type of CATCACHE. By default, the server
limits the number of catalogs cached to 3.

engine/system-options
are options that apply to the SAS library. This argument is not required. You can
specify any option that is valid in the LIBNAME statement for a specific operating
environment and engine. Using the form keyword=value, you can specify as many
options as you need. Use a blank space to separate options. See the SAS
documentation for your operating environment for a complete list of the options that
are available for your operating environment and engine.

Examples
� The following example allocates the UNIX server library /data/sales that has the

libref SALES. It specifies that the server use the V9 engine to process this library.

ALLOC LIBRARY SALES V9 ’/data/sales’;

� The following example allocates the z/OS server library SAS.CATALOG (as a
catalog cache) that has the libref SRVCATS.

AL LIB SRVCATS ’SAS.CATALOG’ LIBTYPE=CATCACHE;

123

C H A P T E R

10
Remote Library Services

Overview of Remote Library Services 123
LIBNAME Statement 123

Overview of Remote Library Services
The LIBNAME statement implements the SAS/SHARE Remote Library Services

(RLS), which provides transparent access to remote data libraries to move data through
the network as it is requested by the local SAS session.

A LIBNAME statement associates a SAS library reference (libref) with a permanent
SAS library. In SAS/SHARE software, the SAS library is accessed through a SAS server
and is called a server library.

LIBNAME Statement

In a client session, associates a libref (a shortcut name) with a SAS library that is located on the
server for client access. In a server session, predefines a server library that clients are permitted
to access.

Valid in: client and server sessions
Category: Data Access

See: LIBNAME statement in the documentation for your operating environment
See Also: LIBNAME Statement in Base SAS documentation

Syntax
LIBNAME libref <engine> <’SAS-data-library’> SERVER=server-spec <options>;

Arguments

libref
For a server, specifies the name of a library reference (predefines a library) for client
access. One or more LIBNAME statements must be issued before the server is
started. If you predefine server libraries and want to limit client access to only the

124 LIBNAME Statement � Chapter 10

predefined server libraries, use the NOALLOC option in the PROC SERVER
statement. Specifying the ALLOC option in the PROC SERVER statement permits
clients to assign server libraries for use after a server is started.

For a client, specifies the name of a server library for client access.

CAUTION:
A client’s ability to access a SAS/SHARE server library depends on the permissions
granted at server start-up. If PROC SERVER ALLOC is specified, clients can access
both predefined libraries and libraries that have not already been allocated at
server start-up. If PROC SERVER NOALLOC is specified, client access is limited
to predefined server libraries. For details about the PROC SERVER statement, see
Chapter 9, “The SERVER Procedure,” on page 107. �

The libref that you specify is presumed to be the server libref for an existing
server library unless you specify the SLIBREF= option or the physical name of the
data library.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

engine
specifies the name of a valid SAS engine for a client to use to access the server
library. Usually, you should not use this option because the client automatically
determines which engine to use for accessing a SAS/SHARE server. Specify this
option only to override the SAS default for a specific server, or to reduce the time
that is needed to determine which engine to use to access a specific server.

For example, if the server library is located on a SAS/SHARE server that is
running SAS 9.2, you could specify REMOTE9. Specifying an explicit engine might
improve performance slightly.

Examples of engines include REMOTE, REMOTE8, and REMOTE9. For a list of
valid engines, see the SAS documentation for your operating environment. For
background information about engines, see SAS Language Reference: Concepts.

The engine parameter is positional. If you use it, it must follow the libref.

Note: Do not confuse the engine positional parameter with the RENGINE=
option. An engine is used by a client to access a server. An RENGINE is used by the
server to access its SAS library �

’SAS-library’
specifies the physical name for the SAS library (on the server) that the client will
access. If you specify a server library either as the libref or as the value for the
SLIBREF= option, you must omit the physical name.

If you specify ’SAS-library’, the name must be a valid SAS name, and it must be
enclosed in single or double quotation marks. For details about specifying a SAS
library, see the documentation that is appropriate to your operating environment.

SERVER=server-ID | _ _port-number
specifies the identifier for the SAS/SHARE server session that runs on the computer
where the SAS library is located.

server-ID
must be a valid SAS name that is 1 to 8 characters in length. For the value of
server-ID, consult your server administrator.

Server naming is also affected by the operating environment and the access
method that you specify for communication between a server and a client session.
For example, if you use the TCP/IP communications access method, the server-ID
must be a valid TCP/IP service as defined in the TCP/IP SERVICES file.

For complete information about how to name servers by operating environment,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE. For

Remote Library Services � LIBNAME Statement 125

details about the SERVICES file, see the topic on the SERVICES file in
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

_ _port-number
If you are using the TCP/IP access method, you can specify the server’s port
number that corresponds to the server ID in the TCP/IP SERVICES file. Precede
the port number with two consecutive underscores. (For details about the
SERVICES file, see the topic on the SERVICES file in Communications Access
Methods for SAS/CONNECT and SAS/SHARE.)

Note: Do not space after the first underscore or the second underscore. �
Example:

_ _1025

Options

ACCESS=READONLY
restricts a client’s access to a SAS library via a multi-user SAS/SHARE server. If
ACCESS=READONLY is specified in the client session, the client can read but not
update data in the library. However, other clients might have read/write access to
the library via the server.

If ACCESS=READONLY is specified in the server session, all clients are limited to
read-only access to the library via the server. No clients will have update access.

AUTHDOMAIN=auth-domain | “auth-domain”
specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the
specified domain. Specifying the authentication domain is a convenient way to obtain
the metadata-based user credentials rather than having to explicitly supply them
during server sign-on.

An administrator can define an authentication domain using the User Manager in
SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/SHARE Auth Domain"

Requirement: The authentication domain and the associated credentials must be
stored in a metadata repository, and the metadata server must be running in order
to resolve the metadata object specification.

Requirement: Enclose domain names that are not valid SAS names in double or
single quotation marks.

Interaction: If you specify AUTHDOMAIN=, do not also specify USERNAME= and
PASSWORD=.

See Also: For complete details about creating and using authentication domains,
see the SAS Intelligence Platform: Security Administration Guide.

See Also: SAS Management Console User’s Guide and SAS Management Console
online Help

HOSTNAME=node-name
is used to specify the name of the node that the SAS/SHARE server runs on. The
value for node-name can be specified as a quoted string that does not exceed 256
characters or as an unquoted SAS name that does not exceed 32 characters.

HOSTNAME= is used in conjunction with the SERVER= option, which specifies
the name of the SAS/SHARE server that runs on the node. If a two-level node name

126 LIBNAME Statement � Chapter 10

(node.server-ID) is assigned to the SERVER= option, and the HOSTNAME= option is
also specified, duplicate node names would result and seem to be ambiguous.
However, to resolve the ambiguity, the value that is specified as the final option in
the LIBNAME statement takes precedence.

Examples:

u libname test hostname=sirlancelot server=shr1;
v libname test hostname=’stones.unx.apex.com’ server=shr1;
w libname test server=d8433.shr1 hostname=defiant;
x libname test hostname=notused server=d8433.shr1;

u A server library is defined in the server session SHR1 that runs on the node
SIRLANCELOT. The node name is specified as an unquoted SAS name that has a
valid length.

v A server library is defined in the server session SHR1 that runs on the node
STONES.UNX.APEX.COM. The node name is specified as a quoted string that has a
valid length.

w A server library is defined in the server session SHR1 that runs on the node
DEFIANT. The node name is specified as an unquoted string that has a valid length.

If both the SERVER= option and the HOSTNAME= option specify the node name,
the option that is specified last takes precedence. In this example, the value
DEFIANT, which is assigned to the option HOSTNAME=, takes precedence over the
value d8433 in the two-level name that is assigned to the option SERVER=.

x A server library is defined in the server session SHR1 that runs on the node
d8433. The node name is specified as an unquoted string that has a valid length.

If both the SERVER= option and the HOSTNAME= option specify the node name,
the option that is specified last takes precedence. In this example, the value d8433,
in the two-level name that is assigned to the option SERVER=, takes precedence over
the value NOTUSED, which is assigned to the option HOSTNAME=.

PASSWORD=password| “encoded-password” | _PROMPT_
executed in the client session, specifies a password that is valid on the server. This
parameter is used by the server to validate the client on the server’s operating
environment (if authentication is enabled). For details about valid passwords, see
“User ID and Password Naming Conventions” on page 129.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Remote Library Services � LIBNAME Statement 127

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.
Here is an example of using an encoded password in a LIBNAME statement:

libname mylib server=shr1 user=jward password="{sas001}c2Vydm1hY2g=";

Aliases: PASSWD, PASS, PWD, PW

Interaction: If you specify PASSWORD=, do not also specify AUTHDOMAIN=.

See Also: AUTHDOMAIN= option on page 125

See Also: USERNAME= on page 129

RENGINE=engine-name
executed in the server session, specifies the engine to be used to process the SAS
library. Using this option is usually unnecessary because the server automatically
determines which engine to use to process the data library. Specify this option only
to override the SAS default for a specific library, or to reduce the time that is used by
the server to determine which engine to use.

Note: Do not confuse the RENGINE= option with the engine positional parameter.
An RENGINE is used by the server to access its SAS library. An engine is used by a
client to access a server. Do not use the SPD engine as a remote engine. �

RMTVIEW=YES|NO
specified in a client session, determines whether SAS data views are interpreted in
the server or in the client SAS session. Where a data view is interpreted determines
where the view engine is loaded and used. The default is YES.

SAS data views include DATA step views and PROC SQL views, which are created
by using the SQL procedure and the ACCESS procedure (in SAS/ACCESS software).
SAS data views are accessed through an engine just as other SAS data sets are.
DATA step views use the SASDSV engine. PROC SQL views use the SQLVIEW
engine. SAS/ACCESS views use a product-specific engine (supplied by SAS Institute)
for each SAS/ACCESS interface product.

RMTVIEW= YES (the default) causes views to be interpreted in the server’s SAS
execution. This uses more processing time and might increase the amount of memory
used. However, the amount of data transferred to the client SAS sessions might be
reduced.

RMTVIEW=NO causes views to be interpreted in the client SAS session. This
minimizes the processing time on the server but might increase the amount of data
transferred between the server and client SAS sessions. Also, if you specify
RMTVIEW=NO, there might be version incompatibilities when the client and server
are running different versions of SAS. For example, SAS 6 and SAS 9.2 views are not
always compatible. For details about view interpretation, see “Interpreting SAS Data
Views” on page 54.

Default: YES

ROPTIONS=“option=value <option=value> ...”
executed in the server session, specifies remote options and options that are specific
to an operating environment that the client passes to the engine on the server that
will process the SAS library. Specify as many options as you need by using the form
keyword=value. Use a blank space to separate options. You can specify options for
either the default engine or an alternative engine that you specify by using the
RENGINE= option. You can use the option ROPTIONS= to provide any valid option
for the targeted engine. For information about the options that are supported by a
specific engine, see the documentation for the engine that you will use. For details

128 LIBNAME Statement � Chapter 10

about options that are specific to an operating environment, see the documentation
that is appropriate for the operating environment that you use.

Restriction: If one or more client sessions that run under UNIX or Windows use
the FILELOCKWAIT= option in the ROPTIONS= statement to set the maximum
time limit that SAS will wait for a file to be unlocked (available for use), the effect
could cause the server session to stall. The SAS/SHARE server memory can
become inadvertently consumed by multiple tasks that are waiting for the release
of one or more locked files.

To prevent the server session from stalling, the SAS/SHARE server
administrator, when invoking the SAS session from which the server session will
run, can use the FILELOCKWAITMAX= system option to explicitly set the client
wait time to zero. Negating the client’s specified wait time prevents the server
from stalling.

See Also: For the client session FILELOCKWAIT= option in the LIBNAME
statement, see SAS Companion for UNIX Environments and SAS Companion for
the Microsoft Windows Environment.

See Also: For the server session FILELOCKWAITMAX= system option, see SAS
Companion for UNIX Environments and SAS Companion for the Microsoft
Windows Environment.

See Also: “Interaction between PROC SERVER and other File-Locking Processes”
on page 118

SAPW=server-access-password | “encoded-password”
executed in the client session, specifies a server access password. This option is
needed to access a SAS/SHARE server that is executing with the UAPW= option in
PROC SERVER in effect. SAPW= establishes communication with the server that is
used to access the library. Although this option is specified in the LIBNAME
statement, it does not control access to the server library itself. For details about
valid passwords, see “User ID and Password Naming Conventions” on page 129.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

Remote Library Services � LIBNAME Statement 129

SLIBREF=server-libref
executed in the client session, specifies an existing libref that was defined in the
server session that you want to reference (or copy) in the client session. Use this
option when you want to reference an existing server libref, but you want to use a
different name for that libref in the client session.
Restriction: Do not assign the physical name for the SAS library on the server to

SLIBREF=. SLIBREF=server-libref and ’SAS-data-library’ are mutually exclusive.
Interaction: In a client session, if you define a user library whose libref duplicates

a libref that has been predefined in the server session, the user libref overrides the
server’s predefined libref for the duration of the client session only. The server
inherits the client’s user libref.

CAUTION:
Avoid using duplicated librefs. Even though duplicated librefs are valid and the
resolution of duplicated librefs is logical, the practice can be confusing. �

Featured In: Example 6 on page 130
Featured In: Example 7 on page 131
Featured In: Example 8 on page 131
See Also: “Methods for Predefining a Server Library” on page 32

USERNAME=user-ID | _PROMPT_
executed in the client session, specifies a user ID that is valid on the server. This
parameter is used in two ways. The server uses it to validate the client on the server
operating environment (if authentication is enabled). The server also uses it to verify
access permission when the client accesses files on the server. For details about valid
user IDs, see “User ID and Password Naming Conventions” on page 129.

If USERNAME=_PROMPT_, a dialog box appears that contains a message that
prompts the user to enter a valid user ID. This enables you to specify the value at
program execution instead of coding it into the program. Using _PROMPT_ is a way
to enforce security.
Aliases: USERID, USER, UID
Interaction: If you specify USERNAME=, do not also specify AUTHDOMAIN=.
See Also: AUTHDOMAIN= option on page 125
See Also: PASSWORD= on page 126

User ID and Password Naming Conventions
Here are the general rules for creating user IDs and passwords:

� Mixed case is allowed (for example, user=JoeBlack).
� Quotation marks must enclose values that have the following characteristics:

� contain one or more spaces (for example, user=’joe black’).
� contain one or more special characters (for example, user=’joe?black’).
� contain one or more quotation marks (for example, password="It’s mine").
� begin with a numeric value (for example, password=’2BorNot2B’).
� do not conform to rules for user-supplied SAS names.
� are NULL values (for example, user=’’).

NULL values are sometimes used in a UNIX environment, when you want to
use the local ID. See Communications Access Methods for SAS/CONNECT and
SAS/SHARE for details.

� are user names that contain domain information (for example,
user=’apexdomain\joe’).

130 LIBNAME Statement � Chapter 10

Domain information is sometimes included in the Windows environment.

� The SAPW= option requires that you specify a password that is 1 to 8 characters
in length.

� Specify the value _PROMPT_ if you want SAS to prompt you for information (for
example, password=_prompt_).

Using _PROMPT_ increases security by causing SAS to prompt you for a
password instead of coding the password in the LIBNAME statement.

SAS limits each user name and password to 256 characters. The operating
environment in which SAS is running might also impose restrictions on user names and
passwords. For details, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Examples

Example 1: Client Using the Server’s Libref The client uses the existing server libref
SALES to point to a server library that is located on SERVER1.

libname sales server=server1;

Example 2: Client Assigning a Libref to a Physical Path The client assigns the libref
SQLDSLIB to the SAS library SASXYZ.VIEWLIB.SASDATA that is located in the
SAS/SHARE session SERVER7. In this example, the client is permitted to access a
server library that has not been predefined at the server.

libname sqldslib ’sasxyz.viewlib.sasdata’ server=server7;

Example 3: Using a Server Password to Access a Server Library The client associates
the libref EDUCLIB with the SAS library SASDEMO.EDUCCATS.SCREENS that is
located on the server ABCSERV. Users must specify the password DEMOPW in order to
access this server.

libname educlib ’sasdemo.educcats.screens’ server=abcserv sapw=demopw;

Example 4: Specifying a Prompt for a Password to Access a Server Library Rather
than hard-coding the user’s password to access a server library, the client specifies that
a prompt for password be displayed.

libname mygrade slibref=grades server=shr1 user=bass password=_prompt_;

Example 5: Specifying an Encoded Password in a LIBNAME Statement To prevent the
risk of exposing clear-text passwords in stored SAS programs, the client specifies an
encoded password.

libname sales server=server1 userid="myuserid" password="{sas001}c2Vydm1hY2g=;

Example 6: Associating a User Libref with a Server Libref The client associates the
new user libref MKTDATA with an existing server libref MARKETD in the
SAS/SHARE session SERVER1. The user libref MKDATA is a copy of the server libref
MARKETD. For this client, the server inherits the client’s user libref MKTDATA.

libname MKTDATA slibref=MARKETD server=server1;

Remote Library Services � LIBNAME Statement 131

Example 7: Duplicating a Server Libref Two predefined libraries are created in a
server session before the server session is started. These libraries are available to any
client to access through the SAS/SHARE server session.

libname shoe ’C:\myshoe’;
libname blue ’C:\myblue’;
proc server id=shr1;
run;

In the client session, the user defines a new libref BLUE, which is a copy of the
server libref SHOE, which points to C:\MYSHOE. The client’s user libref BLUE
overrides the server libref BLUE in this client session only. For this client , the server
has the server-defined libref SHOE, and the server has inherited the client’s user libref
BLUE. The user libref BLUE will override the server libref BLUE for this client only.

libname blue slibref=shoe server=shr1;

As another example, if the user defined a new user libref GLUE that referred to the
server libref BLUE, would libref BLUE refer to the client’s user libref BLUE or to the
original server libref BLUE? In this example, because the server has already inherited
the client’s user libref BLUE, GLUE will refer to the client’s user libref BLUE in this
client session only.

libname glue slibref=blue server=shr1;

The order in which the library assignments occurs is important. If libref GLUE were
assigned before libref BLUE, then libref GLUE would be assigned to C:\MYBLUE
rather than to C:\MYSHOE.

Example 8: Server Inheritance of User Librefs That Are Associated with Server
Librefs Here are two predefined libraries that are created in a server session:

libname zoo ’C:\blue’;
libname zoo ’C:\glue’;
proc server id=shr1;
run;

In this example, the user libref MYLIB is assigned to the server libref ZOO.

libname mylib slibref=zoo server=hrhost.shr1;

Because the server performs work on behalf of the client, the server inherits the user
libref MYLIB. The SAS logs, which can be viewed in the client and server sessions,
indicate that the librefs of the client and the server are identical. Libref MYLIB points
to two physical files C:\blue and C:\glue, which are concatenated.

34 libname mylib slibref=zoo server=hrhost.shr1;
NOTE: Libref MYLIB was successfully assigned as follows:

Engine: REMOTE
Physical Name: (’C:\blue’ ’C:\glue’)

35 proc datasets lib=mylib;
Directory

Libref MYLIB
Engine REMOTE
Physical Name (’C:\blue’ ’C:\glue’)
Accessed through server HRHOST.SHR1

132 LIBNAME Statement � Chapter 10

Server’s libref MYLIB
Server’s engine V9
Server’s SAS release 9.02
Server’s host type NET_SRV -
Server’s versus user’s data representation SAME
Views interpreted in server’s execution YES
File Name C:\ blue

133

C H A P T E R

11
The OPERATE Procedure

Overview of the OPERATE Procedure 133
Syntax: OPERATE Procedure 134

PROC OPERATE Statement 134

Options 134

Library Management Commands 136

Overview of Library Management Commands 136
Defining a Library to a Server That Is Running 136

Displaying Information about a Library 137

Freeing a Library 138

Quiescing a Library 139

Restarting a Library 139

Stopping a Library 140
Specifying a SAS Library 140

Server Management Commands 140

Displaying Information about a Server 140

Quiescing a Server 141

Setting the Current Server 142
Restarting a Quiesced Server 144

Stopping a Server 145

User Management Commands 146

Displaying Information about a User 146

Quiescing User Access to a Server 147
Restarting a Quiesced or a Stopped User 147

Terminating User Connections to a Server 148

Specifying a Server 148

Specifying a Server-Access Password 148

Specifying a User 148

Overview of the OPERATE Procedure

You can use the OPERATE procedure in any SAS method of processing
(noninteractive mode, interactive-line mode, batch mode, or windowing environment) to
manage a server, the server libraries, and the server users. Using PROC OPERATE,
you can do the following tasks:

� define a SAS library to a server after the server has started

� display information about assigned libraries

� release libraries from assignment

� terminate access to a library

134 Syntax: OPERATE Procedure � Chapter 11

� display IDs of users who are connected to the current server

� manage the server from a session other than the server session

The OPERATE procedure is interactive; that is, its statements are executed as they
are encountered. For this reason, statements used in the OPERATE procedure are
called commands. The OPERATE procedure executes until it is terminated by a QUIT
or a RUN command. The syntax for these commands is discussed later in this section.
Here is the syntax for the PROC OPERATE statement.

Syntax: OPERATE Procedure

PROC OPERATE <options>;

Library Management Commands

Server Management Commands

User Management Commands

PROC OPERATE Statement

PROC OPERATE <options>;

Options

SERVER=server-ID | _ _port-number
identifies the default server session to be managed. If this option is not specified,
you must identify the server in the SET SERVER command or in those PROC
OPERATE commands that allow you to identify the server to be managed. For
details, see “Specifying a Server” on page 148.

If you are using the TCP/IP access method, you can specify the server’s port
number that corresponds to the server ID in the TCP/IP SERVICES file. Precede
the port number with two consecutive underscores. (For details about the
SERVICES file, see the topic on the SERVICES file in Communications Access
Methods for SAS/CONNECT and SAS/SHARE.)

Note: Do not space after the first underscore or the second underscore. �
Example:

_ _1025

Aliases: ID, SERVERID

PRINTFILE=LOG | PRINT
directs the output from the OPERATE procedure. PRINTFILE=LOG directs the
output to the SAS log. PRINTFILE=PRINT directs the output to the procedure
output file or Output window.

Alias: PF

Default: LOG

The OPERATE Procedure � Options 135

SAPW=password | “encoded-password”
specifies a server-access password. This password is required to access a
SAS/SHARE server that is executing with the OAPW= option in PROC SERVER
in effect.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

USER=user-ID| _PROMPT_
specifies the user ID of the accessing client on the server. The operating
environment on which the client runs can also affect user ID conventions. For
details about user ID conventions that are imposed by the operating environment,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Here are the valid values for this option:

user-ID
For details about a valid user ID, see “User ID and Password Naming
Conventions” on page 129.

PROMPT
specifies that SAS prompt the user for a valid user ID. Using _PROMPT_ is a
way to enforce security.

Aliases: USERNAME, USERID, UID

PASSWORD=password | “encoded-password” | _PROMPT_
specifies the password of the accessing client on the server. The operating
environment on which the client runs can also affect password naming
conventions. For details about password naming conventions that are imposed by
the operating environment, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should

136 Library Management Commands � Chapter 11

use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

Aliases: PASSWD, PASS, PWD, PW

SETSASRC=(YES | NO)
causes the return code of PROC OPERATE to be surfaced to the operating
environment when SAS execution terminates. For example, when submitting
PROC OPERATE commands under batch mode under z/OS, SETSASRC=YES
specifies that a non-zero return code from PROC OPERATE cause a condition code
to be set in the JES message log for the batch job that invoked PROC OPERATE.

If SETSASRC=NO, the condition code for the batch job will be 0 regardless of
whether the PROC OPERATE commands executed successfully.
Default: NO (disabled)

Library Management Commands

Overview of Library Management Commands
Beginning with SAS 8, multiple users can define different SAS libraries with the

same libref name. Enhancements to SAS enable the server engine to differentiate
among multiple user sessions that might use the same libref and to manage them
appropriately.

Defining a Library to a Server That Is Running
You use the ALLOCATE LIBRARY command to define a SAS library to a server that

is already running. Each library that you define requires a separate ALLOCATE
LIBRARY command. Here is the syntax for this command:

ALLOCATE LIBRARY libref < ’SAS-data-lib’> <RENGINE=engine-name>
<engine/environment options>;

The OPERATE Procedure � Displaying Information about a Library 137

libref
identifies the SAS library that is specified in the ’SAS-lib’ argument.

’SAS-lib’
specifies the physical name of the SAS library that is being defined to the server.
This name is specific to the operating environment and must be enclosed in single
or double quotation marks. See “Specifying a SAS Library” on page 140 for
examples by operating environment.

RENGINE=engine-name
specifies the engine to be used to process the SAS library in the server’s SAS
execution. Usually, this option is not used because the server determines which
engine to use to process the data library. Specify this option only if you want to
override the SAS default or to reduce the search time that is required by the
server to determine which engine to use to access a specific SAS library.

engine/environment options
are options that apply to the SAS library. You can specify any option that is valid
in the LIBNAME statement for a specific operating environment and engine. You
can specify one or as many options as you need by using the form keyword=value.
Use a blank space to separate options. This argument is not required.

These options are effective in the server SAS session, not in the user SAS
session. For a complete list of options that are available for your operating
environment and engine, see the SAS documentation for your operating
environment.
Aliases: ALLOC, AL

Displaying Information about a Library
You use the DISPLAY LIBRARY command to display information about one or more

server libraries that are defined to the current server. The information includes the
server libref, the physical name of the data library, its status, and the number of users
that are accessing it. This information for a server library that is defined by an
operating environment-specific external method is reported only after the library
becomes active. A library becomes active after the user issues a LIBNAME statement
to access a server library. For information about methods to define libraries to the
server, see “Predefining SAS Libraries to the Server” on page 32. Here is the syntax for
this command:

DISPLAY LIBRARY libid-1<. . . libid-n>;

DISPLAY LIBRARY _ALL_ ;

libid
specifies either a libref for a predefined server library or a physical name for a
server library. Detailed information is displayed for the specified libid. For
example, this command produces detailed information, as follows:

display library ’SAS-lib’;

USER USER LIBREF

IAN(5) FEES

The column USER LIBREF contains the libref that is specified by the user in
the LIBNAME statement. The user’s libref is provided only to help communicate
with the user, if necessary.

138 Freeing a Library � Chapter 11

The following data set in library ’SAS-lib’ is active:

MEMBER TYPE STATUS USER OPEN MODE USER
LIBREF

PROD DATA ACTIVE IAN(5) INPUT FEES

The column STATUS is always ACTIVE. The column OPEN MODE indicates
whether the user is currently executing a SAS program step to read, update, or
create the member.

ALL
provides summary information about each server library that is currently defined
to the server. For example, this command produces this summary table, as follows:

proc operate serverid=share1;
display library _all_;

NUMBER
LIBREF STATUS OF USERS LIBRARY NAME
--
DATALIB QUIESCED 1 SAS-lib
POINT ACTIVE 6 SAS-lib
POINTS ACTIVE 4 SAS-lib
MAIN STOPPED 0 SAS-lib
MAPS INACTIVE 0 SAS-lib

The column LIBREF in the preceding example contains the server libref for a
SAS server. The server libref is the name that a server administrator assigns to
the library by using one of the following:

� a LIBNAME statement specified before the PROC SERVER statement

� an ALLOCATE LIBRARY command in a PROC OPERATE statement

� an operating environment-dependent external allocation

A library that is not defined by using one of the preceding methods does not have
a server libref. Therefore, administrative commands that subsequently refer to
that library must use a library name that is specific to the operating environment,
such as a UNIX pathname.

Aliases: DISP LIBRARY, D LIBRARY

Freeing a Library
You use the FREE LIBRARY command to free (or release) one or more server-defined

libraries. When you issue the FREE LIBRARY command, a library that is not in use is
freed immediately; a library that is in use is freed after it is no longer in use. Here is
the syntax for this command:

FREE LIBRARY libid-1 <. . . libid-n>;

FREE LIBRARY _ALL_;

libid
specifies a libref for a predefined server library or a physical name for a server
library.

The OPERATE Procedure � Restarting a Library 139

ALL
frees all SAS libraries that were defined to the SAS/SHARE server by using an
ALLOCATE LIBRARY command or the LIBNAME statement.

Note: To bring a library to a stopped status gradually, issue the QUIESCE
LIBRARY command. To bring the library to a stopped status immediately, issue
the STOP LIBRARY command. Descriptions of these commands are given later in
this section. �
Aliases: FR LIBRARY

Quiescing a Library
You use the QUIESCE LIBRARY command to move a library that is defined to the

current server from an active status to a stopped status. This command gradually
terminates access to a library by denying new requests to use the library. It
immediately stops libraries that do not currently have members open. If the library is
user-defined, after all users are released, the library is stopped and is no longer defined
to the server. Here is the syntax for the QUIESCE LIBRARY command:

QUIESCE LIBRARY libid-1 < . . . libid-n>;

QUIESCE LIBRARY _ALL_;

libid
specifies a libref for a predefined server library or a physical name for a server
library.

ALL
quiesces all the libraries that are defined to the server.
Alias: QUI LIBRARY, Q LIBRARY

Restarting a Library
You use the START LIBRARY command to restart one or more server libraries that

have been stopped or quiesced. Because server libraries are available by default, this
command is necessary to undo the effect of a STOP LIBRARY or a QUIESCE LIBRARY
command. Here is the syntax for this command:

START LIBRARY libid-1 < . . . libid-n>;

START LIBRARY _ALL_;

libid
specifies a libref for a predefined server library or a physical name for a server
library.

ALL
restarts all server libraries that are quiesced or stopped.
Alias: ST LIBRARY

If a library that was user-defined is stopped and then restarted with the START
LIBRARY command, the library is no longer defined to the server.

140 Stopping a Library � Chapter 11

Stopping a Library
You use the STOP LIBRARY command to immediately terminate user access to one

or more server libraries and bring the libraries to a stopped status. Here is the syntax
for this command:

STOP LIBRARY libid-1 < . . . libid-n>;

STOP LIBRARY _ALL_;

libid
specifies a libref for a predefined server library or a physical name for a server
library.

ALL
stops all libraries that are defined to the server.

If users are in the process of updating a data set, updates might be lost. Subsequent
attempts to access a stopped library are denied.

Specifying a SAS Library
The SAS-library argument is specified according to operating environment. For

SAS-library in the library management command examples throughout this section, see
the following list of examples for specific operating environments:

OpenVMS
’DISK1:[AREA2.WEATHER.STATS]’

z/OS
’AREA2.WEATHER.STATS’

UNIX
’/area2/weather/stats’

Windows
’G:\AREA2\WEATHER\STATS’

Server Management Commands

Displaying Information about a Server
You use the DISPLAY SERVER command to display summary information about the

current server. Here is the syntax for this command:

DISPLAY SERVER;

DISPLAY SERVER server-ID <(SAPW=password)>;

DISPLAY SERVER server-ID </ SAPW=password>;

server-ID
displays summary information about a specific server For more information, see
“Specifying a Server” on page 148.

SAPW= password | “encoded-password”

The OPERATE Procedure � Quiescing a Server 141

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

In the following example, the DISPLAY SERVER command displays information
about the server SHARE1.

proc operate;
display server share1;

Alternatively, you can use the SERVERID= option in the PROC OPERATE
statement to identify the default server. The default server is also the current
server unless you use the SET SERVER command and specify a different current
server. In the following example, the statements display information about the
default server SHARE1, which is also the current server.

proc operate serverid=share1;
display server;

Aliases: DISP SERVER, D SERVER

Quiescing a Server
You use the QUIESCE SERVER command to move a server from an active status to

a stopped status by gradually releasing libraries and users, and denying new requests
to access libraries through the server. Here is the syntax for this command:

QUIESCE SERVER;

QUIESCE SERVER server-ID <(SAPW=password)>;

QUIESCE SERVER server-ID </ SAPW=password>;

142 Setting the Current Server � Chapter 11

server-ID
specifies the server to be terminated. If you do not specify a server ID, this
command gradually terminates the current server. For information about
specifying a server ID, see “Specifying a Server” on page 148.

SAPW= password | “encoded-password”

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

A quiesced server accepts only PROC OPERATE commands. Current DATA and
PROC steps can continue to access files that are already open but cannot open new
files or members. After a user closes all members in a server library, the server
releases the library. If this is the only server library that the user has accessed,
that user is disconnected from it.

The QUIESCE SERVER command does not affect server administrators. When
a QUIESCE SERVER command is issued, server administrators who are executing
PROC OPERATE remain connected, and the server continues to accept
connections. Because the server terminates only after all users are disconnected, a
server administrator can keep the server quiesced indefinitely by remaining
connected to it. While a server is quiesced, an administrator can issue the START
SERVER command to change the status of the server back to active.

Aliases: QUI SERVER, Q SERVER

Setting the Current Server
You use the SET SERVER command to specify the current server and override the

server that was specified in a previous SET SERVER command. This specified server
also overrides the default server that was specified in a SERVERID= option in the
PROC OPERATE statement. The effect of a SET SERVER command is limited to the
current execution of PROC OPERATE. Here is the syntax for this command:

The OPERATE Procedure � Setting the Current Server 143

SET SERVER;

SET SERVER server-ID <(SAPW=password)>;

SET SERVER server-ID </ SAPW=password>;

server-ID
specifies the current server. For information, see “Specifying a Server” on page 148.

SAPW= password | “encoded-password”

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

If no server is specified, the SET SERVER command resets the current server to the
default server that is specified in the SERVERID= option in the PROC OPERATE
statement. However, if the SERVERID= option was not specified in the PROC
OPERATE statement, SET SERVER retains the current server value.

In the following example, the SET SERVER command establishes the current server
and displays information about that server without your having to specify a server ID.

proc operate;
set server share1;
display server;

In the following example, PROC OPERATE displays information about the server
libraries that are identified by LIB1 and LIB2 in the DISPLAY LIBRARY command.
These libraries are defined to the current server MYSHR. Next, the current server is
reset to SHARE, and information is displayed about the library LIBALPHA, which is
defined to the server SHARE.

proc operate serverid=share;
set server myshr;
display library lib1 lib2;
set server;

144 Restarting a Quiesced Server � Chapter 11

display library libalpha;

If you do not identify a server before you issue a command that acts on the current
server, PROC OPERATE issues the following message:

ERROR: PROC OPERATE is not currently set to any
server, so this command will be ignored. Use
the ’SET SERVER serverid;’ command to establish
communication with a server.

Restarting a Quiesced Server
You use the START SERVER command to restart a server from a quiesced state

only. If server-ID is not specified, this command starts the current server. Here is the
syntax for this command:

START SERVER;

START SERVER server-ID <(SAPW=password)>;

START SERVER server-ID </ SAPW=password>;

server-ID
specifies the name of the quiesced server. For more information, see “Specifying a
Server” on page 148.

SAPW= password | “encoded-password”

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

You cannot use the START SERVER command to restart a stopped server; instead,
you must execute the SERVER procedure.
Alias: ST SERVER

The OPERATE Procedure � Stopping a Server 145

Stopping a Server
You use the STOP SERVER command to terminate a server immediately. If users

are currently reading from or writing to members in the server library, the server closes
the members and updates might be lost. The server releases the libraries held by each
user and disconnects each user. Here is the syntax for this command:

STOP SERVER;

STOP SERVER server-ID <(SAPW=password)>;

STOP SERVER server-ID </ SAPW=password>;

server-ID
specifies the name of the server to be terminated. If server-ID is not specified, this
command terminates the current server. For more information, see “Specifying a
Server” on page 148.

SAPW= password | “encoded-password”

password
must be a valid SAS name that is 1 to 8 characters in length. The value for
this option is replaced by Xs in the log. To protect this password, you should
use the security software at your site to limit access to the SAS program
statements that create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-text
passwords.

To obtain an encoded password, specify the clear-text password as input to
the PROC PWENCODE statement. For details, see the Base SAS Procedures
Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated
output string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

Note: For Windows NT, Windows 2000, and z/OS operating environments, the
SAS/SHARE server also responds to console STOP commands. This means that you do
not have to use PROC OPERATE to terminate a SAS/SHARE server. For more
information, see “SAS/SHARE Server Can Run as a Windows Service” on page 206. �

146 User Management Commands � Chapter 11

User Management Commands

Displaying Information about a User
You use the DISPLAY USER command to display information about one or more

users who are accessing the current server. Summary information is followed by
detailed information for each user who has one or more libraries assigned. Here is the
syntax for this command:

DISPLAY USER user-ID-1 <. . . user-ID-n>;

DISPLAY USER _ALL_;

user-ID-1
specifies one user ID. user-ID-n specifies multiple user IDs. For more information,
see “Specifying a User” on page 148.

ALL
displays summary information for other administrators and for all users who were
connected and have been explicitly stopped.

The next example contains two types of librefs.

user libref
is a user-defined name for referring to a library. It is provided only as an aid for
communicating with the user, if necessary.

server libref
is a user-defined name that a server administrator assigns to the library by using
one of these methods:

� a LIBNAME statement specified before the PROC SERVER statement

� an ALLOCATE LIBRARY command in PROC OPERATE
� an operating environment-dependent external allocation

In SAS 9.2, a library that is not defined by using one of these methods does not
have a server libref. Therefore, administrative commands that subsequently refer
to that library must use the library name that is specific to the operating
environment (for example, a UNIX pathname).

DISPLAY USER 15;

USER ID STATUS LIBRARIES

MIKE(15) ACTIVE 2

The preceding summary information is followed by detailed information. For
example, user MIKE(15) is accessing the following libraries:

USER LIBREF SERVER LIBREF LIBRARY NAME

USAGE USAGE SAS-lib
MEM SAS-lib

User MIKE(15) is accessing the following data sets:

USER SERVER MEMBER TYPE OPEN MODE
LIBREF LIBREF

The OPERATE Procedure � Restarting a Quiesced or a Stopped User 147

USAGE USAGE USAGE CATALOG UPDATE
USAGE USAGE MODULE DATA INPUT
MEM MEMOBY DATA INPUT

In this example, MIKE(15) currently has files open in both of the libraries to
which he currently has access. If user MIKE(15) had no files opened when the
DISPLAY USER command was issued, only the first two parts of the output would
be displayed.

The SERVER LIBREF that is missing in the preceding output indicates that the
USER LIBREF MEM is not server-defined.
Aliases: DISP USER, D USER

Quiescing User Access to a Server
You use the QUIESCE USER command to gradually terminate a user’s access to a

SAS/SHARE server and deny new user requests for resources. This command moves
the user from an active status to a stopped status. When a quiesced user closes all files
in a server library, the server releases that user’s access to the library. If the user has
no open files in an accessed server library, the server terminates that user’s access to
the library immediately. When the user has released all server libraries, the user ID is
assigned a stopped status and is disconnected from the server. While a user is quiesced
or stopped, the START USER command can be issued to change the user’s status back
to active. Here is the syntax for this command:

QUIESCE USER user-ID-1 <. . . user-ID-n>;

QUIESCE USER _ALL_;

user-ID-1
specifies the ID of a user whose access to the server will be terminated. user-ID-n
specifies the IDs of multiple users whose access will be terminated. For more
information, see “Specifying a User” on page 148.

ALL
quiesces all users who are connected to the current server except the administrator
who issues the command. You cannot quiesce yourself. However, you can quiesce
other server administrators by name. When PROC OPERATE terminates and its
server session is quiesced, that administrator is assigned a stopped status.
Aliases: QUI USER, Q USER

Restarting a Quiesced or a Stopped User
You use the START USER command to restart any users who have been stopped or

quiesced. Because users are allowed access to a SAS/SHARE server by default, this
command is necessary only to undo the effect of a previous STOP USER or a QUIESCE
USER command. Here is the syntax for this command:

START USER user-ID-1 <. . . user-ID-n>;

START USER _ALL_;

user-ID-1
specifies the ID of a user whose access to the server was terminated. user-ID-n
specifies the IDs of multiple users whose access to the server was terminated.
When a stopped user ID is restarted, that user ID becomes unknown to the server.
For information, see “Specifying a User” on page 148.

148 Terminating User Connections to a Server � Chapter 11

ALL
restarts all users who are quiesced or stopped.
Alias: ST USER

Terminating User Connections to a Server
You use the STOP USER command to immediately terminate user connections to a

server. The server closes library members that the user has open, terminates the user’s
access to libraries that are accessed through the server, and terminates the user’s
communication path to the server. If the user is updating a data set when the command
is issued, updates might be lost. Because users are allowed access to a SAS/SHARE
server by default, this command can be useful as a security tool. Here is the syntax for
this command:

STOP USER user-ID-1 <. . . user-ID-n>;

STOP USER _ALL_;

user-id-1
specifies the user ID of a user whose status is currently active or quiesced, and
stops users who are not currently using the server. user-ID-n specifies the IDs of
multiple users who currently have access to the server. For more information, see
“Specifying a User” on page 148.

ALL
stops all users who are currently active or quiesced, except the administrator who
issues the command. You cannot stop yourself. However, you can stop other server
administrators.

Specifying a Server
A server-ID specifies a one- or two-level name for the server that you want to

manage. If you started the server, you should already know its name.
The server name must meet the criteria for a valid SAS name, but it can also include

the following special characters: dollar sign ($), at sign (@) and pound sign (#).
The operating environment and the access method that you specify for

communication between a server session and a user session might also impose
server-naming criteria. For complete server-naming details by operating environment,
see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Specifying a Server-Access Password
A server-access password (SAPW) is required if you are not already connected to the

server and the OAPW= option in the SERVER procedure is in effect. You can specify
the server-access password either as a resource ID option (SAPW=password) or as a
PROC OPERATE command option (/SAPW=password).

Specifying a User
A user ID identifies a specific user or a specific connection to a server. A user ID can

be specified as a number, an identifying connection, or a case-sensitive name. A user ID

The OPERATE Procedure � Specifying a User 149

name must meet the criteria for a valid SAS name, but the ID can also include the
following special characters: dollar sign ($), at sign (@), and pound sign (#). The
operating environment on which the client runs can also impose user-naming criteria.
For details, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE. The following are examples of user IDs:

maria

3

Each time a user accesses a SAS/SHARE server, the new connection is assigned a
number. A user is identified in the server SAS log and in PROC OPERATE output by a
combination of that number and the applicable user ID in the form user-ID(nnnn).

A USER command in which you specify a user connection number is restricted to
that user’s specific connection. For example, if Maria accesses the same server three
times, she is identified by the server as MARIA(3). To display information about that
connection only, you issue the following command:

display user 3;

A USER command in which you specify a user ID operates on all current connections
for that user. In addition, the QUIESCE, STOP, and START commands act on that
user’s future connections. For example, if Maria connects to the same server three
times and accesses the server a fifth time, the following command provides information
about both MARIA(3) and MARIA(5):

display user MARIA;

The following command terminates the maria(3) and maria(5) connections to the
server and prevents Maria from reconnecting to the server.

stop user maria;

150

151

C H A P T E R

12
Remote SQL Pass-Through
(RSPT) Facility

Overview of the RSPT Facility 151
Syntax: RSPT SQL Procedure 151

PROC SQL Statement 152

CONNECT TO REMOTE Statement 152

SELECT... FROM CONNECTION TO Statement 155

EXECUTE... BY Statement 156
DISCONNECT FROM Statement 156

Examples 157

Overview of the RSPT Facility
The Remote SQL Pass-Through (RSPT) enables you to pass PROC SQL statements

from the client to a server for processing. RSPT can be used to process SAS data or
DBMS data. When you access external databases through a server, you must reference
a SAS/SHARE server that has access to the database.

Syntax: RSPT SQL Procedure
Requirement: SAS/ACCESS software

PROC SQL;
CONNECT TO REMOTE <AS alias> (<options>);
SELECT object-item FROM CONNECTION TO server (dbms-select-expression);
EXECUTE (SQL-statement) BY server ;
DISCONNECT FROM server ;

152 PROC SQL Statement � Chapter 12

PROC SQL Statement

Initiates the SQL procedure.

PROC SQL;

CONNECT TO REMOTE Statement

Establishes a connection to a DBMS or to SAS data through a SAS server.

Requirement: SAS/ACCESS software

CONNECT TO REMOTE <AS alias> (<options>);

Syntax Description

AS alias
specifies an alias for the server.

Options

SERVER=server-ID | _ _port-number
specifies the name of the server. If the server is a multi-user server, server-ID is the
name specified in the ID= option in the PROC SERVER statement. If the server is a
single-user server that runs on a SAS/CONNECT server, server-ID is the name of the
SAS/CONNECT server. In either case, server-ID is the same server name that is
specified in the SERVER= option in a LIBNAME statement.

The TCP/IP access method enables you to specify syntax that uses two consecutive
underscores with a port number, in place of a server ID that has been defined in the
client TCP/IP SERVICES file.

Note: Do not space after the first underscore or the second underscore. �

For port-number, specify a number that is greater than 1024 and that is not already
used in the TCP/IP SERVICES file.

SAPW=password | “encoded-password” | _PROMPT_
specifies the password for controlling user access to a multi-user server. The
password must be a valid SAS name and must be 8 characters or less in length. This
password is in the UAPW= option in the PROC SERVER statement. If the UAPW=
option is specified when the server is started, you must specify the SAPW= option in
a CONNECT TO REMOTE statement that specifies the same server.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the

Remote SQL Pass-Through (RSPT) Facility � CONNECT TO REMOTE Statement 153

security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

PROMPT
specifies that SAS prompt the user for a valid password. A dialog box appears that
contains a message that prompts the user to enter a valid password. This enables
you to specify the value at program execution instead of coding it into the
program. Using _PROMPT_ is a way to enforce security.

USER=user-name | _PROMPT_
specifies the user ID of the accessing client on the server. The operating environment
in which the client runs can also affect user-naming conventions. For details about
user-naming conventions imposed by the operating environment, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

Here are the valid values for the USER= option:

user-name
for details about specifying a valid user name, see “User ID and Password Naming
Conventions” on page 129.

PROMPT
specifies that SAS prompt the user for a valid user name. Using _PROMPT_ is a
way to enforce security.

Aliases: USERNAME, USERID, UID

PASSWORD=password | “encoded-password” | _PROMPT_
specifies the password of the accessing client on the server. The operating
environment in which the client runs can also affect password-naming conventions.
For details about password-naming conventions imposed by the operating
environment, see Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Here are the valid values for the PASSWORD= option:

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

154 CONNECT TO REMOTE Statement � Chapter 12

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001
is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

PROMPT
specifies that SAS prompt the user for a valid password. A dialog box appears that
contains a message which prompts the user to enter a valid password. This
enables you to specify the value at program execution instead of coding it into the
program. Using _PROMPT_ is a way to enforce security.

Aliases: PASSWD, PASS, PWD, PW

DBMS=dbms-name
specifies the name of the server DBMS that you want to connect to. This is the same
name that you would specify in a CONNECT TO statement if you were connecting
directly to the DBMS. Use this option if you want to connect to a server DBMS
instead of the SAS SQL server.

PT2DBPW=password | “encoded-password”
specifies the password for controlling pass-through access to server DBMS databases
that are specified in the PT2DBPW= option in the PROC SERVER statement. If
PT2DBPW= is specified when the server is started, you must specify the PT2DBPW=
option in a CONNECT TO REMOTE statement that specifies the same server and
also specifies the DBMS= option.

password
must be a valid SAS name that is 1 to 8 characters in length. The value for this
option is replaced by Xs in the log. To protect this password, you should use the
security software at your site to limit access to the SAS program statements that
create the server.

“encoded-password”
is an encoded version of a password. Using encoded passwords promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password as input to the
PROC PWENCODE statement. For details, see the Base SAS Procedures Guide.

Here is an example of code for obtaining an encoded password:

proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password. sas001

Remote SQL Pass-Through (RSPT) Facility � SELECT... FROM CONNECTION TO Statement 155

is the key, which is used to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key. �

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)
specifies the arguments that are required by the server DBMS to establish the
connection. These are the same arguments that you would specify in a CONNECT
TO statement if you were connecting directly to the DBMS.

SELECT... FROM CONNECTION TO Statement
Specifies which data will be used.

See also: The documentation for the SQL Procedure in the Base SAS Procedures Guide

SELECT object-item FROM CONNECTION TO server (dbms-select-expression);

Syntax Description

object-item
specifies one or more columns or expressions. For more information, see the
documentation for the SELECT statement in the Base SAS Procedures Guide.

server
specifies the SAS SQL server or server DBMS where the data is stored. Here are the
valid values for server:

REMOTE
the server that is specified in the most recent CONNECT TO REMOTE statement
will be used.

alias
the server that you assigned the alias to (in the AS=alias option in the CONNECT
TO REMOTE statement) will be used. Specifying alias is useful if you are
connected to several SQL servers at the same time.

dbms-select-expression
specifies a SELECT expression that will be processed before the data is transmitted.
For server data that is accessed through the PROC SQL view engine,
dbms-select-expression is any valid PROC SQL SELECT statement. For a server
DBMS, dbms-select-expression is the same SQL query that you would specify if you
were connected directly to the DBMS. For more information about the PROC SQL
SELECT statement, see the documentation for the SELECT statement in the Base
SAS Procedures Guide.

156 EXECUTE... BY Statement � Chapter 12

EXECUTE... BY Statement
Submits SQL statements for server processing.

EXECUTE (SQL-statement) BY server ;

Syntax Description

SQL-statement
specifies an SQL statement for server processing. SQL-statement can be any valid
SAS SQL statement except SELECT. For a server DBMS that is accessed through a
single-user server in a SAS/CONNECT session, SQL-statement is the same SQL
statement that you would specify if you were connected directly to the DBMS.

server
specifies the server where the SQL statement will be processed. Here are the valid
values for server:

REMOTE
the server that is specified in the most recent CONNECT TO REMOTE statement
will be used.

alias
the server that you assigned the alias to (in the AS=alias option in the CONNECT
TO REMOTE statement) will be used. Specifying alias is useful if you are
connected to several SQL servers at the same time.

DISCONNECT FROM Statement
Closes the connection to the server.

DISCONNECT FROM server;

Syntax Description

server
specifies which server to disconnect from. Here are the valid values for server:

REMOTE
the server that is specified in the most recent CONNECT TO REMOTE statement
will be used.

Remote SQL Pass-Through (RSPT) Facility � Examples 157

alias
the server that you assigned the alias to (in the AS=alias option in the CONNECT
TO REMOTE statement) will be used. Specifying alias is useful if you are
connected to several SQL servers at the same time.

Examples

Here are examples of processing data by using RSPT.
The following program joins two server data sets (RSPT through a server).

proc sql;
connect to remote(server=sdcmvs.prx6xhsrv);
select *
from connection to remote

(select p.idnum label=’ID Number’
p.jobcode label=’Job Code’
s.city label=’City’

from rmtshr.staff s,
rmtshr.payroll p

where s.idnum=p.idnum
orderby jobcode);

The following program uses RSPT to connect to a remote server to read data from a
DB2 table (accessing a server DBMS with RSPT).

proc sql;
connect to remote(server=sdcmvs.mktserv

dbms=db2 dbmsarg=(ssid=db2));
select *
from connection to remote

(select flight#, orig, destination, delay
from educ.db2delay
where delay > 11);

158

159

C H A P T E R

13
The LOCK Statement and the
LOCK Command

Overview of the LOCK Statement and the LOCK Command 159
LOCK Statement 159

LOCK Command 161

Overview of the LOCK Statement and the LOCK Command
The LOCK statement and the LOCK command enable you to acquire, list, or release

locks on SAS data objects, which include SAS libraries, SAS data sets, SAS catalogs,
and SAS catalog entries.

Note: If you want to lock a SAS library or any object in it by using the LOCK
statement, you must first access the library through a SAS/SHARE server. �

Using a LOCK statement to lock a data object prevents other users from reading or
writing to that data object. However, you can open a locked data object as many times
as you want to and in any mode (for example, create, update, replace, or read) if your
PROC or DATA step does not conflict with what is allowed by the engine that was used
by the SAS/SHARE server to access the data object.

For more information about locking, see Chapter 5, “Locking SAS Data Objects,” on
page 61.

LOCK Statement

Places an exclusive lock on a specified data object.

See also: Chapter 5, “Locking SAS Data Objects,” on page 61

Syntax
LOCK

libref<.member-name<.member-type> | <.member-name.entry-name.entry-type>
<LIST | CLEAR>>;

160 LOCK Statement � Chapter 13

Syntax Description

libref
specifies the name of a SAS library that is currently accessed through a SAS/SHARE
server.

member-name
specifies the name of a member in the library libref that is to be locked.

member-type
specifies the type of SAS file to be locked. Valid values are DATA, VIEW, and
CATALOG. The default is DATA.

If member-type is omitted or is specified as the value DATA or VIEW, two locks are
obtained: one lock on libref.member-name.DATA and the other lock on
libref.member-name.VIEW.

entry-name
specifies the name of the catalog entry to be locked.

entry-type
specifies the type of the catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom. This
argument is optional.

Aliases: QUERY, SHOW

CLEAR
releases a lock on the specified data object that was acquired by using the LOCK
statement in your SAS session. This argument is optional.

For more information about how and when a lock is released, see Chapter 5,
“Locking SAS Data Objects,” on page 61.

Examples

In the following example, the first LOCK statement acquires implicit locks on the SAS
library EDUCLIB and on the SAS catalog EDUCLIB.MYCAT. It then acquires an
explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE1.MENU. The second
LOCK statement acquires an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE2.MENU.

lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;

In the following example, the first LOCK statement that contains the argument
CLEAR releases the explicit lock on the catalog entry CHOICE1.MENU, but it does not
release the implicit locks because an entry in the catalog is still locked. The second
LOCK statement that contains the argument CLEAR releases the explicit lock on the
catalog entry CHOICE2.MENU. Because no catalog entries remain locked, the second
statement that contains the argument CLEAR also releases the implicit lock on the
SAS catalog EDUCLIB.MYCAT. Because no other members of the library are locked, it
also releases the implicit lock on the SAS library EDUCLIB.

/* Update the two catalog entries as needed. */
lock educlib.mycat.choice1.menu clear;
lock educlib.mycat.choice2.menu clear;

The LOCK Statement and Command � LOCK Command 161

LOCK Command

Places an exclusive lock on a specified data object.

See also: Chapter 5, “Locking SAS Data Objects,” on page 61

Syntax
LOCK

libref<.member-name<.member-type> | <.member-name.entry-name.entry-type>
<LIST | CLEAR>>;

Syntax Description

libref
specifies the name of a SAS library that is currently accessed through a SAS/SHARE
server.

member-name
specifies the name of a member of the library libref that is to be locked.

member-type
specifies the type of the SAS file to be locked. Valid values are DATA, VIEW, and
CATALOG. The default is DATA.

If member-type is omitted or is specified as the value DATA or VIEW, two locks are
obtained: one lock on libref.member-name.DATA and the other lock on
libref.member-name.VIEW.

entry-name
specifies the name of the catalog entry to be locked.

entry-type
specifies the type of the catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom. This
argument is optional.

Aliases: QUERY, SHOW

CLEAR
releases a lock on the specified data object that was acquired by using the LOCK
statement in your SAS session. This argument is optional.

For more information about how and when a lock is released, see Chapter 5,
“Locking SAS Data Objects,” on page 61.

Examples
The following LOCK command locks SAS catalog entries of type CMAP. The SAS log
will show that one catalog entry has already been locked.

lock mapslib.mapscat.euromap.cmap

162 LOCK Command � Chapter 13

The following LOCK command releases the lock on the catalog entry EUROMAP.CMAP.
The SAS log will show that the lock on this catalog entry has been released and by
whom.

lock mapslib.mapscat.euromap.cmap clear

163

C H A P T E R

14
SAS/SHARE Macros

SHRMACS Macro 163
LIBDEF Macro 165

LISTLIB Macro 166

LISTSRV Macro 167

LISTSRVI Macro 167

OPERATE Macro 167
SERVERID Macro 168

SERVIIDX Macro 169

SERVINFO Macro 169

SERVLIB Macro 170

SETSRV Macro 172

SHUTSRV Macro 172
STRTSRV Macro 173

SHRMACS Macro
Compiles other SAS/SHARE macros.

Note: The SHRMACS macro must be invoked before invoking any other
SAS/SHARE macro. �
Category: None

Syntax
%SHRMACS (category,< log-info>,<APPLSYS=app-sys-lib-tab...>,<SASSAML=app-sys-

lib-tab...>);

Syntax Description

category
specifies the category of macros to be compiled. For details, see “Macros Generated
by the SHRMACS Macro” on page 79.
Valid Values: USER, SERVER, OPER, ALL

log-info
specifies whether descriptive information about each macro is written to the SAS log.
MSG displays the SAS/SHARE macros that are generated and the function of each

164 SHRMACS Macro � Chapter 14

macro. NOMSG specifies that no information is displayed. HELP displays detailed
information about the SAS/SHARE macros that are generated. This includes the
syntax, a brief description, and an example of each macro that is generated by the
first argument.

Valid Values: MSG, NOMSG, HELP

Default: MSG

APPLSYS=app-sys-lib-tab
specifies which applications systems tables should be loaded. You can specify one or
more tables. It is recommended that you use this argument to save initialization
time. If the APPLSYS= argument is not specified, the default applications systems
table is loaded. Using APPLSYS= is optional. For more information, see “The
APPLSYS Macro Library” on page 81.

SASSAML=app-sys-lib-tab
specifies an alternate APPLSYS macro library. If an alternate library is specified,
application systems tables are loaded from it instead of from the default library. The
value of SASSAML= can be a physical pathname or the string _DEFINED_, which
indicates that the fileref SASSAML is already assigned to the alternate APPLSYS
macro library. Using SASSAML= is optional. For more information, see “The
APPLSYS Macro Library” on page 81.

Details
The SHRMACS macro also loads the applications systems tables that associate aliases
with server names and associate libraries with aliases. These tables are used to
generate the server name for the PROC SERVER, PROC OPERATE, and LIBNAME
statements. Based on what is specified in the first argument, the server-alias and
library-alias tables can be written to the SAS log if you specify the MSG or the HELP
argument in the SHRMACS macro. For example,

%shrmacs(user);
%shrmacs(user,help);
%shrmacs(oper,help);
%shrmacs(server,msg);
%shrmacs(all,msg);

Early in its execution, the SHRMACS macro invokes PROC SQL to obtain the
current settings of the SAS options NOTE, SOURCE2, and LINESIZE= and saves them
in macro variables that are named _NOTES_, _SRC2_, and _LS_, respectively. The
original values of these options are restored after the settings have been changed by
SHRMACS or other SAS/SHARE macros. You can avoid the overhead of this PROC SQL
step by explicitly setting the macro variables to the values that you want. For example:

%let _notes_=notes;
%let _src2_=nosource2;
%let _ls_=70;

SAS/SHARE Macros � LIBDEF Macro 165

LIBDEF Macro

Generates a LIBNAME statement.

Category: User

Syntax
%LIBDEF (libref,<SAS-library>,<READONLY>,<RETRY>,<ENGINE=local-

engine>,<RENGINE=remote-engine>,<RMTVIEW=remote-engine-RMTVIEW=-
option>>,<SLIBREF=server-library>, <uapw>, <APPLSYS=appl-sys-lib-table>);

Syntax Description

READONLY
specifies that the server library can be accessed in read-only mode.

RETRY
If a LIBNAME statement that specifies the SERVER= option fails, %LIBDEF
generates a LIBNAME statement without the SERVER= option.

ENGINE=local-engine
specifies the local engine to be used in the user’s session to access the server library.
Omit this parameter unless you need to override the default engine.

Default: REMOTE

RENGINE=remote-engine
specifies the remote engine to be used in the server session to access the library. SAS
chooses an appropriate engine. Omit this parameter unless you need to override the
engine that is chosen by SAS.

Default: No default

RMTVIEW=remote-engine-RMTVIEW=-option
specifies the value of the REMOTE engine’s RMTVIEW= option in the LIBNAME
statement that is generated by the LIBDEF macro. You can use the RMTVIEW
parameter to override the default value of the RMTVIEW option for a specific library.
This parameter overrides the RMTVIEW= parameter in the SERVINFO and
SERVLIB macros.

SLIBREF=server-library
specifies the libref that references the specified library in the server session. If this
parameter is specified, the generated LIBNAME statement will include the
SLIBREF= option. This parameter overrides any value that is specified for the
SAS-data-library argument in the LIBDEF macro statement.

uapw
specifies that a user can access the server only by supplying a password.

APPLSYS=appl-sys-lib-table
specifies a new application system library table to be loaded. This argument is
ignored if the table has already been specified in the SHRMACS call or in a previous
LIBDEF call.

166 LISTLIB Macro � Chapter 14

Details
The LIBDEF macro generates a LIBNAME statement to define a SAS library that

will be accessed locally or through a server. The server administrator can specify a
physical name or a reserved libref in the APPLSYS macro library. If a physical name is
specified, the server administrator must specify that name as the second argument in
this macro; the physical name should not be enclosed in quotation marks. If a libref is
specified, the second argument (the physical name) is omitted.

If you specify a physical name that is not specified in the APPLSYS macro library, a
LIBNAME statement is generated without the SERVER= option.

After executing the LIBDEF macro, the automatic macro variable SYSLIBRC
contains the return code from the LIBNAME statement. For more information, see the
section about automatic macro variables in SAS Macro Language: Reference.

Examples

Here are three examples using the LIBDEF macro:

%libdef(mylib,SAS-data-library,applsys=qa);
%libdef(perm,SAS-data-library,readonly,retry,myuserpw);
%libdef(datalib);

LISTLIB Macro

Lists the current library-alias table.

Category: Operator, Server, User

Syntax
%LISTLIB <FULL>;

Syntax Description

FULL
an optional argument that writes the values that are specified for the SERVLIB
macro parameters to the SAS log. For more information about using the SERVLIB
macro parameters, see “Associating SAS Libraries with Server Aliases (SERVLIB)”
on page 83.

Details
The LISTLIB macro writes the library-alias table that is currently in use to the SAS

log. It shows the server alias that is associated with each SAS library.

SAS/SHARE Macros � OPERATE Macro 167

LISTSRV Macro

Lists the server-alias table.

Categories: Operator, Server, User

Syntax

%LISTSRV;

Details

The LISTSRV macro writes the server-alias table to the SAS log. It shows the server
ID that is associated with each defined alias.

LISTSRVI Macro

Lists the server information table.

Category: Operator, Server, User

Syntax

%LISTSRVI;

Details

The LISTSRVI macro writes the server information table to the SAS log. It shows
the REMOTE engine’s LIBNAME statement option RMTVIEW= and the network node
name, by default.

OPERATE Macro

Generates a PROC OPERATE statement.

Category: Operator

Syntax

%OPERATE(server-name,<oapw>);

168 SERVERID Macro � Chapter 14

Syntax Description

server-name
specifies the server name, which can be an alias or an actual server ID. This value
identifies the server to be controlled.

oapw
specifies the administrator password if one is required by the server. This value is
mapped to the SAPW= option in the PROC OPERATE statement.

Details
The OPERATE macro invokes the OPERATE procedure for a server that is identified

by the server-name argument.

SERVERID Macro

Converts a server alias to a server ID.

Category: Operator, Server, User

Syntax
%SERVERID(server-alias, <NEQ>);

Syntax Description

server-alias
The SERVERID macro converts the server-alias to an actual server ID in the
SERVER= option in the SERVER and OPERATE procedures and LIBNAME
statements.

NEQ
supplies only the server ID value (without the SERVER= option).

Details
Additionally, the SERVERID macro generates a %LET statement for a macro variable

whose name is the high-level qualifier in a two-level server name in the following form:

%LET high-level-qualifier=network-node;

SAS/SHARE Macros � SERVINFO Macro 169

Examples

The server name must be listed in the server information table and have a network
node name associated with it, as shown in the following examples:

libname mylib ’SAS-data-library’ %serverid(devserv);

set server %serverid(serv1,neq);

The first example generates the LIBNAME statement, which supplies the
SERVER=server-ID parameter. The second example generates a SET SERVER
statement, which supplies only the server-ID without the SERVER= parameter keyword.

SERVIIDX Macro

Returns the index of the entry for the specified server in the server identification table.

Category: Operator, Server, User

Syntax
%SERVIIDX(server-name);

Details
The SERVIIDX macro requires a server name and returns the index for that server

entry in the server information table. You can use this index to access the fields in the
table entry.

Note: server-name cannot be specified as an alias. �

SERVINFO Macro

Adds server attributes to the server information table.

Category: None

Syntax
%SERVINFO(two-level-server-name,<RMTVIEW=REMOTE-engine-RMTVIEW=-option>,

<NETNODE=network-node-name)>;

Syntax Description
Usually, the SERVINFO macro is used in the member SERVERID in the APPLSYS

macro library.

170 SERVLIB Macro � Chapter 14

A server information table is created to contain information about the servers at your
site. You can use this information in a program, or you can display it. By default, the
table contains the following type of information:

� a default value for the REMOTE engine’s RMTVIEW= option in the LIBNAME
statement

� a network node name that is represented by a fully-qualified node name (for
example, HP103.DOM2.ACME.COM).

You can also use the server information table to specify other characteristics of a
server, its users, or its administrators, such as server access passwords, PROC SERVER
statement options, and which release of SAS the server is running under. Here are the
optional arguments to %SERVINFO:

RMTVIEW=
specifies a default value for the REMOTE engine’s RMTVIEW= option in the
LIBNAME statement. If you specify this parameter, the LIBDEF macro, by default,
generates the RMTVIEW=value for any LIBNAME statement that specifies this
server. This parameter is overridden by the RMTVIEW= parameter in the SERVLIB
and LIBDEF macros.

NETNODE=
specifies a network node name that is represented by the high-level qualifier in a
two-level server name. When a two-level server name is specified in a PROC
OPERATE or a LIBNAME statement and the high-level qualifier cannot be found as
a network node, the server name is treated as the name of a macro variable whose
value is the node name. This substitution is useful when the node name is not a
valid SAS name. If you specify NETNODE= in the server information table, the first
time that it translates an alias for that server ID %SERVERID generates the
following code in an application:

%LEThigh-level-qualifier=network-node;

high-level-qualifier is the high-level qualifier in the server ID that is specified in
the positional parameter and network-node is the value of NETNODE=.

If the high-level qualifier in the server ID is also the high-level qualifier in the full
network node name, you can omit it from the value of NETNODE= by using a period
(.) at the beginning of the NETNODE= value. For example, if the server SHRSERV
runs on HP103.DOM2.ACME.COM, you would specify the following:

%servinfo (hp.shrserv,netnode=hp103.dom2.acme.com);

The SERVERID macro generates the following:

%let hp=hp103.dom2.acme.com;

SERVLIB Macro

Adds server-library pairs to the library table.

Category: None

Syntax
%SERVLIB(SAS-library-name,

server-name<RMTVIEW=REMOTE-engine-RMTVIEW=-option>,

SAS/SHARE Macros � SERVLIB Macro 171

<PHYSNAME=physical-name-of-library>,<SLIBREF=server-libref>,
<ENGINE=engine-in-user-session>, <RENGINE=engine-in-server-session>);

Syntax Description
The SERVLIB macro adds new libraries to the library table in the APPLSYS macro

library in the form SAS-library-name, server-name. How you specify the SAS library
name is based on your operating environment. Here are the optional arguments to
%SERVLIB:

RMTVIEW=
specifies the value of the REMOTE engine’s RMTVIEW= option in the LIBNAME
statement that is generated by the LIBDEF macro. You can use the RMTVIEW=
parameter in the SERVLIB macro to specify the default value of the RMTVIEW=
option for a specific library. This parameter overrides the RMTVIEW= parameter in
the SERVINFO macro; but, is overridden by the RMTVIEW= parameter in the
LIBDEF macro.

PHYSNAME=
specifies the physical name of a library. This parameter is used by the STRTSRV
macro to generate a LIBNAME statement in the server session. If this parameter is
used and the SLIBREF= parameter is not used, the first positional parameter in
%SERVLIB is assumed to be the server libref. If both PHYSNAME= and SLIBREF=
are specified, the first positional parameter is not used for generating the LIBNAME
statement. Instead, the first positional parameter can be used as a description of the
library that is specified in place of the physical name when the LIBDEF macro is
invoked in the application.

SLIBREF=
specifies the library’s libref in the server session. This parameter is used by the
STRTSRV macro to generate a LIBNAME statement in the server session. If this
parameter is used and the PHYSNAME= parameter is not used, the first positional
parameter in %SERVLIB is assumed to be the physical name of the library. If both
PHYSNAME= and SLIBREF= are specified, the first positional parameter is not used
for generating the LIBNAME statement. Instead, the first positional parameter can
be used as a description of the library that is specified in place of the physical name
when the LIBDEF macro is invoked in the application.

ENGINE=
specifies the engine to be used in the user session to access the library. The default is
ENGINE=REMOTE. Omit this parameter unless you need to override the engine
that is chosen by SAS.

RENGINE=
specifies the engine to be used in the server session to access the library. There is no
default for this option. SAS chooses an appropriate engine. Omit this parameter
unless you need to override the engine that is chosen by SAS.

For more information about the SERVLIB macro, see “Associating SAS Libraries with
Server Aliases (SERVLIB)” on page 83 and comments in the APPLSYS macro library.

172 SETSRV Macro � Chapter 14

SETSRV Macro

Generates a SET SERVER statement.

Category: Operator

Syntax
%SETSRV (server-name, <oapw>);

Syntax Description

server-name
specifies the name of a server. The server name can be an alias or an actual server ID.

oapw
specifies the operator-access password to be specified in the SAPW= option in the
SET statement.

Details
The SETSRV macro generates a SET SERVER statement in an OPERATE procedure

for a SAS server that is specified by using the server-name argument.

SHUTSRV Macro

Stops a server.

Category: Operator

Syntax
%SHUTSRV(server-name, <oapw>);

Syntax Description

server-name
specifies the server name. The name can be an alias or an actual server ID.

oapw
specifies the operator-access password to be mapped to the SAPW= option in the
PROC OPERATE statement.

Details
The SHUTSRV macro invokes the OPERATE procedure to terminate the server that

is specified in the server-name argument.

SAS/SHARE Macros � STRTSRV Macro 173

STRTSRV Macro

Starts a server.

Category: Server

Syntax
%STRTSRV(server-name, <options>, <uapw>, <oapw>);

Syntax Description

server-name
specifies the server name. The name can be an alias or an actual server ID.

options
specifies any PROC SERVER statement options. Use blank spaces to separate
options. For information about the PROC SERVER options, see Chapter 9, “The
SERVER Procedure,” on page 107.

uapw
specifies the user-access password.

oapw
specifies the operator-access password to be mapped to the UAPW= and OAPW=
options, respectively, in the PROC SERVER statement.

Details
The STRTSRV macro invokes the SERVER procedure. %STRTSRV generates a

LIBNAME statement for each library in the current library table for the server that is
being started (either directly or through an alias) for which either the SLIBREF= or the
PHYSNAME= parameters in %SERVLIB have been specified. For information about
%SERVLIB, see “SERVLIB Macro” on page 170. Using %STRTSRV to define a library
to the server at start-up automates the change to server start-up when the library is
moved to another server.

The STRTSRV macro also generates a LIBNAME statement for each library that is
listed in the current library-alias table for the server that is being started.

174

175

C H A P T E R

15
SAS/SHARE General SAS System
Options

COMAMID= System Option 175
COMAUX1= System Option 176

TBUFSIZE= System Option 176

SHARESESSIONCNTL= System Option 177

COMAMID= System Option

Identifies the communications access method to connect a SAS/SHARE client and server SAS
session.

Client: Required

Server: Required

Client: Valid in: configuration file, OPTIONS statement, SAS invocation

Server: Valid in: configuration file, OPTIONS statement, SAS invocation

Category: Communications: Networking and Encryption

PROC OPTIONS Group: Communications

Syntax
COMAMID=access-method-ID

Syntax Description

access-method-ID
specifies the name of the communications access method that is used by a client to
access a server.

Details
The COMAMID= system option specifies a communications access method that is used
by a SAS/SHARE client to connect to a SAS/SHARE server.

For find out about the supported access methods by operating environment (for
example, to connect a Windows client to a UNIX server, use the TCP/IP access method),
see Communications Access Methods for SAS/CONNECT and SAS/SHARE.

176 COMAUX1= System Option � Chapter 15

COMAUX1= System Option

Specifies the first alternate communication access method.

Client: Optional

Server: Optional

Client: Valid in: configuration file, SAS invocation

Server: Valid in: configuration file, SAS invocation

Category: Communications : Networking and Encryption

PROC OPTIONS Group: Communications

Syntax

COMAUX1=name

Details

The COMAUX1= option specifies the first auxiliary communication access method. For
example, you can specify COMAMID=XMS and COMAUX1=TCP. These specifications
indicate that the primary method of communication is cross-memory services. If this
access method is unable to establish a connection, TCP/IP communication is attempted.

If the COMAUX1= option is specified in a destination (server) session, it defines
additional communication support to be initialized. In an originating (user) session, it
specifies that the communication access method should try to connect to the destination
session if the initial COMAMID-based attempt is unsuccessful.

TBUFSIZE= System Option

Specifies the value of the default buffer size that the server uses for transferring data.

Client: Optional

Server: Optional

Default: 32K

Client: Valid in: configuration file, OPTIONS statement, SAS invocation

Server: Valid in: OPTIONS statement

Category: Communications : Networking and Encryption

PROC OPTIONS Group: Communications

Syntax

TBUFSIZE=value

SAS/SHARE General SAS System Options � SHARESESSIONCNTL= System Option 177

Syntax Description

value
specifies the suggested size of a buffer that the server uses for transmitting
information to or receiving information from a client.

Details
The TBUFSIZE= option specifies the suggested size of a buffer that the server uses for
transmitting information to or receiving information from a client. When this option is
not specified in the PROC SERVER statement, the value of the TBUFSIZE= SAS
system option, if specified, will be used.

SHARESESSIONCNTL= System Option

In a SAS Intelligence Platform environment, specifies the number of connections between SAS
clients and a SAS/SHARE server via a SAS server. There can be a single connection for all SAS
clients or a separate connection for each SAS client.

SAS Server: Optional

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window
Category: Communications: Networking and Encryption
PROC OPTIONS Group: Communications

Syntax
SHARESESSIONCNTL= SERVER | ENV

Syntax Description

SERVER
creates a single connection between the SAS/SHARE client and the SAS/SHARE
server. A typical connection occurs when a client uses a LIBNAME statement to
access data from a library on the computer that the SAS/SHARE server runs on.
This is the default.

ENV
in a SAS Intelligence Platform environment, creates a connection between each SAS
client that accesses data from SAS/SHARE server library via another SAS server. An
example of a SAS/SHARE server connection in the SAS Intelligence Platform
environment might involve several SAS Enterprise Guide clients that request data
sources from a SAS/SHARE server via a SAS Workspace Server. Each SAS
Enterprise Guide client (and other SAS clients) will establish a separate connection
to the SAS/SHARE server via the workspace server. Maintaining separate client
connections to a SAS/SHARE server ensures security and simplifies client
administration.

178 SHARESESSIONCNTL= System Option � Chapter 15

If ENV is not specified in a SAS Intelligence Platform environment, a single
connection is maintained between the SAS server (such as the workspace server) and
the SAS/SHARE server. All SAS clients that request data from the SAS/SHARE
server via a SAS server will communicate using a single connection. Not using ENV
reduces security and obscures the identities of the SAS clients that request access to
the SAS/SHARE server.

This option and value must be specified at the SAS server, which communicates on
behalf of the SAS clients to the SAS/SHARE server.

Details
This option is useful in a SAS Intelligence Platform environment in which the
administrator wants to maintain a separate security context for each SAS client (such
as a SAS Enterprise Guide client) that connects to the SAS/SHARE server.

The SHARESESSIONCNTL= option should be specified only in the SAS session of
the SAS server that will connect to the SAS/SHARE server. The option is effective
when it is specified in the SAS configuration file or in an OPTIONS statement in the
SAS server session and when it is executed before the SAS server completes its
initialization and connection to the SAS/SHARE server. The SHARESESSIONCNTL=
option should not be specified while the SAS server is already connected to a
SAS/SHARE server. Otherwise, this note is written to the SAS log:

The Remote engine is active.
The SHARESESSIONCNTL setting is referenced only if the engine is reloaded.

The REMOTE engine is active for the duration of the SAS client connections to the
SAS/SHARE server. The REMOTE engine is unloaded after all client connections to a
SAS/SHARE server are terminated. The REMOTE engine is reloaded when subsequent
SAS clients connect to the SAS/SHARE server.

179

P A R T3

Appendix

Appendix 1.Cross-Architecture Access 181

Appendix 2.Creating the SAS/SHARE Server Environment 197

Appendix 3.Tuning Tips for Applications That Use SAS/SHARE
Software 211

Appendix 4.SAS Component Language (SCL) Application 233

Appendix 5.SAS/SHARE Cross-Version Issues, SAS 9.2 241

Appendix 6.Recommended Reading 247

180

181

A P P E N D I X

1
Cross-Architecture Access

Audience for Cross-Architecture Access 182
Cross-Architecture Access: Overview 182

Cross-Architectural Differences 183

Cross-Architecture Restrictions and Limitations 183

Cross-Architecture Catalog Access in the Client SAS Session 183

Cross-Architecture Catalog Access in the SAS/SHARE Server 184
Concatenating Cross-Architecture Catalogs 184

Other SAS File Access 185

Short Numerics and Mixed-Type Variables 185

Implications of Data Translation 185

Translation of Data at the Client and the Server 185

Translation of Floating-Point Numbers between Computers 186
Loss of Numeric Precision and Magnitude 186

Avoiding Loss of Precision 186

Significance of Loss of Magnitude 186

Example 187

Character-Translation Tables 187
Data Translation Considerations 188

Problems Parsing Numeric Data in a Cross-Architecture Environment 188

Identical Architectural Groups 190

Overview of Identical Data Representation Groups 190

IBM System/390 Architecture Operating Environments 190
UNIX RISC Operating Environments 190

UNIX 64-bit Operating Environments 191

Windows 32-bit Operating Environments 191

OpenVMS 64-bit Operating Environments 191

UNIX 64–bit Little Endian Operating Environments 191

Intel ABI+ Operating Environments 191
Incompatible Operating Environments 191

Numeric Architectural Groups 192

Overview of Numeric Architectural Groups 192

Version 8 Numeric Architecture Groups 192

IBM System/390 Format Operating Environments 192
IEEE Format Operating Environments 192

OpenVMS VAX Operating Environment 193

SAS 9.2 Numeric Architecture Groups 193

IBM System/390 Format Operating Environment 193

IEEE Format Operating Environments 194
Character Architectural Groups 194

Overview of Character Architectural Groups 194

EBCDIC Format Operating Environments 194

182 Audience for Cross-Architecture Access � Appendix 1

ASCII-ISO Format Operating Environments 195
ASCII-ANSI Format Operating Environments 195

ASCII-OEM Format Operating Environment 195

Audience for Cross-Architecture Access

The information in this section is of interest to the following SAS/SHARE users:
� end users who use SAS/SHARE to update shared data across operating

environments that have different architectures

� programmers who develop SAS applications that access shared data when the
applications execute in one operating environment, and the shared data resides in
another operating environment that has a different architecture

� server administrators who create and maintain SAS servers that are accessible
from operating environments that have different architectures

Cross-Architecture Access: Overview
Cross-architecture access is a feature of SAS/SHARE software that enables a

SAS/SHARE server session and its client sessions to execute on machines that have
different architectures. For example, a server and its clients can execute on machines
that have different internal representations of data such as the IBM System/390 and
Intel Pentium, or Digital Equipment Alpha VMS and Hewlett-Packard Precision
Architecture.

Cross-architecture access enables you to move data or applications from one type of
operating environment to another. For example, a UNIX application that uses a SAS
library on z/OS issues a LIBNAME statement in the same way that a z/OS application
does—that is, by specifying the z/OS physical name for the SAS library and the name of
the z/OS server. Using cross-architecture access, you can do the following:

� move a SAS application from z/OS to UNIX, leave the data on z/OS, and continue
to access the data without changing the application

� move an application’s data from UNIX to z/OS, leave the application on UNIX, and
change only the LIBNAME statement that accesses the data

� duplicate the application on both operating environments and simultaneously
access the data on z/OS

Cross-architecture access enables users to read and write SAS data across
architecture boundaries. It enables applications that run in one type of operating
environment to read DBMS data that is accessed through server-managed
SAS/ACCESS views when that DBMS is available only under another operating
environment. For example, a SAS session on a Sun workstation can use a
SAS/ACCESS view to read the contents of a DB2 table on a machine that runs the z/OS
operating environment. For more information about using views under SAS/SHARE,
see “SAS Data View Programming Considerations” on page 54.

SAS/SHARE software is especially well-suited to the following types of applications:

� those that require access to a single record at a time

� those that use a WHERE clause to subset large data sets

� those that execute procedures against small data sets

An application that processes large quantities of data, especially through multiple
passes, might benefit from moving a copy of the data to the computer on which it

Cross-Architecture Access � Cross-Architecture Catalog Access in the Client SAS Session 183

executes, or from using SAS/CONNECT software to remotely execute SAS on the
computer on which the data is stored.

SAS/SHARE 9.1 supports access to some other types of SAS files, such as SAS
catalogs, when the architecture of the server machine differs from the architecture of
the client machine. For details, see “Cross-Architectural Differences” on page 183 and
“Cross-Architecture Restrictions and Limitations” on page 183.

Cross-Architectural Differences
� The internal data representations are different.

Cross-architecture access is used when the client session and the server session are
running on machines that internally represent data differently due to hardware
differences between two machines. For example, IBM mainframe machines represent
floating-point numbers differently than computers that use Intel CPUs. The code pages
that are used to represent character data also vary. For example, EBCDIC and ASCII
are two major character-encoding methods.

� The C-language compilers that are used are different.

Different operating environments and C-language compilers also cause differences in
data representation due to the varied alignment requirements of aggregate data types,
such as the inter-element padding in a specific C structure. Also, two compilers for the
same type of CPU might implement simple data types that have different lengths.

� Operating environments are the same, but the machine architectures are different.

It might not always be obvious when the cross-architecture feature of SAS/SHARE is
required. z/OS to CMS access is not cross-architecture because the underlying
representation of data in the two operating environments is the same. However,
sharing data between OpenVMS for VAX and OpenVMS for AXP uses cross-architecture
access because data is represented differently on the Digital VAX and Alpha AXP
architectures, even when the same operating environment is used. For complete details
about architectural compatibility, see “Identical Architectural Groups” on page 190.

Note: Although neither CMS nor OpenVMS VAX are supported in later versions of
SAS, they are included in the preceding example for backward compatibility. �

Cross-Architecture Restrictions and Limitations

Cross-Architecture Catalog Access in the Client SAS Session
In cross-architecture catalog access, clients have read-only access to the SAS

catalogs, but they cannot create, replace, or update SAS catalogs.
The client application specifies a catalog by using the libref and catalog names. This

causes the entire catalog to be stored in a transport file on the server and imported by
the client. The catalog is stored in the client’s WORK library under an automatically
generated name, such as the following:

WORK._SASXHST_00000000000001023144088.CATALOG

A maximum of three imported catalogs at a time might be stored in the client’s
WORK library. A subsequent read of the original catalog by using the libref and catalog
name might read from the imported copy of the catalog in the WORK library, depending

184 Cross-Architecture Catalog Access in the SAS/SHARE Server � Appendix 1

on whether the catalog on the server has been modified since the last read by the
cross-architecture client. If more than three cross-architecture catalogs are imported,
the least recently used catalog is deleted to make room for the most recently used
catalog.

The CONTENTS and the CATALOG procedures can be used to examine the imported
catalogs in the WORK library. The DATASETS procedure can be used to delete these
catalogs.

Cross-Architecture Catalog Access in the SAS/SHARE Server
By default, the SAS/SHARE server uses the library WORK to cache the transport

files on the server in the SAS library SASCATCA. However, you can use the SERVER
procedure ALLOCATE LIBRARY command to assign the cache to a different SAS data
library. The files in this library are stored in the transport format of SAS catalogs. For
example:

proc server id=shr1;
allocate library mycache ’/catalog/cache’ libtype=catcache;
run;

You might want to assign the cache to a different SAS library in order to accomplish
the following:

� minimize activity in the library WORK on the server so that other scratch uses of
that library (such as temporary sort files) are not competing for space.

� dedicate a specific amount of space to the cache. The allotted space might be
especially large or limited to a modest size by site considerations.

� save the SAS catalog files in transport format when the SAS/SHARE server is
stopped, so that you can avoid having the server repeatedly translate catalogs into
transport format.

Although the server caches a maximum of three transport files, an administrator can
change the default. The ALLOCATE LIBRARY command, issued in the SERVER
procedure, has a CATCACHELIMIT option in which you can specify the number of
catalogs that are stored in the library SASCATCA. For details, see “Syntax for the
ALLOCATE LIBRARY Command” on page 121.

Concatenating Cross-Architecture Catalogs
You can concatenate catalogs to minimize changes to an application and to increase

efficiency when accessing cross-architecture catalogs. Set up a catalog concatenation in
the client session that uses the same librefs and catalog names that the application
already uses.

Two new catalogs are used in a concatenation:

� One catalog, which is accessed through the SAS/SHARE server, contains catalog
entries that change frequently.

� Another catalog contains the entries that do not change frequently. These entries
can be built for and distributed to each client. Relocating catalog entries that do
not change frequently on each client maintains a low overhead.

Using catalog concatenation in the server session is not recommended, because a
client that reads an entry in the concatenation will retrieve the entire concatenation as
a single catalog, which could be large. Large catalogs can take a long time to read or
retrieve entries from.

Cross-Architecture Access � Translation of Data at the Client and the Server 185

Catalog concatenation on the server can be an advantage if you have many small
catalogs that will be accessed simultaneously. Having all of the catalogs concatenated
under one name enables the client to keep that catalog in the library WORK. Having a
single concatenated catalog reduces the possibility of thrashing, which can result if the
client needs more than three catalogs in the library WORK. Thrashing occurs when
catalogs are deleted and then retrieved.

Other SAS File Access
Direct access to PROC SQL views is provided, but SAS view files (type VIEW)

cannot be directly accessed across architectures. A DATA step or SAS/ACCESS view
can be read cross-architecture as long as it is interpreted in the server session. In this
case, you should not specify the RMTVIEW=NO option in the client LIBNAME
statement because that option requests interpretation in the client SAS session and
requires the SAS view file itself to be transferred to the client session. For more
information, see “SAS Data View Programming Considerations” on page 54.

Access descriptor files (type ACCESS) cannot be accessed across architectures.
Access descriptors are special files that are produced and used by SAS/ACCESS
products to describe data in other vendors’ databases, such as DB/2 or Oracle. Although
cross-architecture interpretation of a SAS/ACCESS view is supported, direct access to
the descriptor file is not. Therefore, you cannot use PROC ACCESS to create a SAS
access descriptor file on a computer that has a different architecture.

SAS files of type PROGRAM cannot be accessed across architectures. These files
contain compiled DATA step code. You cannot execute such a DATA step in your local
SAS session by using the PGM= option in the DATA step, nor can you write a DATA
step PROGRAM entry to a cross-architecture server. A DATA step PROGRAM entry
can be executed in a cross-architecture server session if it is referenced by a DATA step
view that is interpreted there.

Short Numerics and Mixed-Type Variables
In order for SAS data sets to be accessed across architectures, they should not

include two-byte numeric variables. This length is allowed on IBM mainframe
machines, but other operating environments that SAS runs on have a minimum numeric
variable length of three. As a result, a data set that contains a two-byte numeric cannot
be accessed across architectures from other types of operating environments.

With clever programming in the DATA step, it is possible to store numeric values in
character variables and character values in numeric variables. However, you should not
create data sets this way if you want to access them across architectures. SAS/SHARE
performs appropriate character translation of character variables and numeric
translation of numeric variables when crossing architectures. However, storing numeric
values in character variables and character values in numeric variables will not be
preserved. SAS/SHARE has no means to detect such usage.

Implications of Data Translation

Translation of Data at the Client and the Server
In SAS/SHARE, translation of numeric variables occurs when the server machine

and the client machine represent floating-point numbers differently. For character

186 Translation of Floating-Point Numbers between Computers � Appendix 1

variables, translation occurs when their character representations differ. Values are
dynamically translated directly from the source representation to the target
representation; they do not pass through transport format. Translation occurs both
when data flows from the server to the client and when it flows from the client to the
server. Therefore, data that flows across architectures from a server to a client and is
then sent back to the server is translated twice.

For all operating environments that SAS/SHARE runs on, the REMOTE engine
performs all data translations that are necessary in order to converse with the server.
The REMOTE engine translates outgoing data to the server format, and translates
incoming data from the server to its own format. The administrative procedure, PROC
OPERATE, works in the same way.

Note: For all SAS/SHARE clients other than SAS sessions, such as the SAS ODBC
driver, data translation occurs on the server, not on the client. �

Translation of Floating-Point Numbers between Computers

Loss of Numeric Precision and Magnitude

If you move SAS data between a client and a server session that run on computers
that have different architectures, numeric precision or magnitude can be lost. Precision
can be lost when the data value in the source representation contains more significant
digits than the target representation can store. A loss of magnitude results when data
values exceed the range of values that an operating environment can store.

For complete details about how SAS stores numeric values, see SAS Language
Reference: Concepts.

Avoiding Loss of Precision

To avoid loss of precision, do not store numeric values in short variables. Instead,
store numeric values using longer numeric variables (up to 8 bytes) according to the
number of significant digits that the target representation can store.

Significance of Loss of Magnitude

When you lose magnitude, SAS produces the following warning:

WARNING: The magnitude of at least one numeric value
was decreased to the maximum the target representation allows,
due to representation conversion.

A loss of magnitude is unlikely in many applications, but if you have data with
extremely large values or extremely small fractions, you might experience a loss of
magnitude during cross-architecture access. When you lose magnitude, SAS changes
the values that are out of range to the maximum or minimum value that the operating
environment can represent.

Table A1.1 Approximate Value Ranges by Operating Environment

Operating Environment Minimum Value Maximum Value

OpenVMS 2.3E-308 1.8E+308

UNIX 2.3E-308 1.8E+308

Cross-Architecture Access � Character-Translation Tables 187

Operating Environment Minimum Value Maximum Value

Windows 2.3E-308 1.8E+308

z/OS 5.4E-79 7.2E+75

Example
You create a data set under UNIX that contains the value 8.93323E+105. If you copy

the file to a z/OS operating environment, magnitude is lost and the value changes to
7.23701E+75, which is the maximum value that z/OS can represent.

Character-Translation Tables

Note: The use of translation tables is relevant only when you use the following:

� SAS 8 and SAS 9.2 cross-release access

� thin client and SAS 9.2 server access

�

The tables that are used for character translation in SAS/SHARE are stored in SAS
catalog entries of type TRANTAB. Each of these catalog entries contains two
translation tables. The first table is for import translation, and the second table is for
export conversion. For example, the EBCDIC/ASCII-OEM translation entry under z/OS
contains an import table for ASCII-OEM to EBCDIC translation and an export table for
EBCDIC to ASCII-OEM translation.

Table A1.2 Translation Tables and Catalog Entry Names

Translation Table Set Catalog Entry Name

EBCDIC/ASCII-ISO _0000030

EBCDIC/ASCII-ANSI _0000060

EBCDIC/ASCII-OEM _00000A0

EBCDIC/ASCII-MAC _0000120

ASCII-ISO/ASCII-ANSI _0000050

ASCII-ISO/ASCII-OEM _0000090

ASCII-ISO/ASCII-MAC _0000110

ASCII-ANSI/ASCII-OEM _00000C0

ASCII-ANSI/ASCII-MAC _0000140

ASCII-OEM/ASCII-MAC _0000180

Character-translation catalog entries are stored in the SASUSER.PROFILE and
SASHELP.HOST catalogs. The translation process locates a specific translation entry
by first searching the SASUSER.PROFILE catalog and then searching the
SASHELP.HOST catalog.

The client’s execution of the REMOTE engine and the client’s translation tables are
responsible for all data translations that occur between a SAS/SHARE client and a

188 Data Translation Considerations � Appendix 1

server. However, the SAS/SHARE server is responsible for the data translations that
occur between that server and all SAS/SHARE clients other than SAS sessions.

SAS site administrators can use the TRANTAB procedure to replace or update the
translation tables. For details, see the TRANTAB procedure and the TRANTAB=
system option in the SAS National Language Support (NLS): User’s Guide.

CAUTION:
Do not attempt to update a translation table in a client session while accessing the
SAS/SHARE server that the translation table will be applied against. You cannot ensure
that the new version of the table will be used for subsequent translations. �

Data Translation Considerations
Data translation in SAS/SHARE has some implications that users need to consider.

For example, suppose you assign two SAS libraries, ROO and ZOO, through a server on
an operating environment that has an architecture that is different from your machine.
You copy the data sets that are contained in ROO to ZOO:

proc copy in=roo out=zoo mt=data;
run;

The contents of the copied data sets in ZOO are not guaranteed to be identical to the
contents of the original data sets in ROO because the data sets in ZOO have been
translated twice. First, the data is translated from server representation to client
representation, then from client representation back to server representation.

As another example, suppose you are using the FSEDIT procedure to edit a data set
across architectures. You enter a DUP command and then modify the variable X before
saving the new record. You might find that, other than the value of the variable X, the
new record is not identical to the old record. The original values of the duplicated
record have been translated twice, from server-machine format to client-machine format
and back to server-machine format. The new value that was entered for the variable X
has been translated only one time, from user-machine format to server-machine format.

Note: When editing or updating a data set across architectures by using the
FSEDIT procedure, the FSVIEW procedure, or the MODIFY statement in the DATA
step, any variables that are not updated in an updated observation are exempt from
translation and will be unaltered. �

Problems Parsing Numeric Data in a Cross-Architecture Environment
SAS code (keywords and data) are submitted for execution as text. During parsing,

numeric data is converted to the floating-point representation that is used by the
operating environment and computer. For UNIX and Windows, numeric data is
represented in IEEE floating-point format. For z/OS, numeric data is represented in
IBM floating-point format.

When using SAS/CONNECT and Remote Library Services to process numeric data in
a cross-architecture client/server session, you might get unexpected, but logical, results.

Consider a scenario in which a SAS/CONNECT client session under Windows
accesses a server session under z/OS. In this code example, the value -6.14, which is
stored in a data set, is used in a WHERE clause. This number cannot be represented
exactly in either IEEE or IBM floating-point formats because -6.14 is a repeating
decimal, in binary. Regardless of whether -6.14 is stored under Windows or z/OS, its
representation is imprecise.

/* Start a server session on z/OS */
options comamid=tcp remote=zos;

Cross-Architecture Access � Problems Parsing Numeric Data in a Cross-Architecture Environment 189

filename rlink "c:\sas\v9\connect\saslink\tcptso.scr";
signon;

/* The following code is remotely submitted to the server session */
/* under z/OS. The text is passed to z/OS and is parsed on z/OS. */
/* When the text "-6.14" is parsed on z/OS, the resulting value */
/* is stored on z/OS in IBM floating-point format. */
rsubmit; u

data sasuser.test_4;
format RUE_H comma18.2;
RUE_H= --6.14; output;
RUE_H= --6.14; output;
RUE_H= --6.14; output;
RUE_H= --6.14; output;
run;

endrsubmit;

/* The following code assigns a server library on z/OS. */

libname test1 server=sdczos slibref=sasuser;

/* The following statements are parsed in the client session */
/* on Windows, and the results are stored in IEEE format. */
/* in the client session in IEEE format. */

/* You might expect the following WHERE clause to return zero */
/* records because the expression resolves to 0. */
/* However, this code execution returns 4. */
proc sql; v

create table xx2 as
select RUH_H
from test1.test_4
where RUE_H < -6.14 w;

quit;

u Parsing the string "-6.14" on z/OS produces a binary IBM representation of -6.14.
v Parsing the string "-6.14" on Windows produces a binary IEEE representation of

-6.14.
w The WHERE clause, which contains the Windows binary IEEE value, is sent to z/

OS via RLS, the IEEE representation of -6.14 is converted to its closest binary IBM
equivalent. However, when an IEEE binary representation of -6.14 is converted into
IBM format, the result is different from the IBM binary value that was obtained by
parsing and converting the string on z/OS.

The clause where RUE_H < -6.14 finds four observations because the binary IBM
value that is obtained by converting the binary IEEE value is slightly smaller than the
binary IBM value that was stored in the data set when "-6.14" was originally parsed.
Although you might expect the WHERE clause to return no observations, it returns
four observations because of the lack of precision that occurs when converting data
across operating environments.

To avoid cross-architecture problems, you could change the code so that PROC SQL is
remotely submitted to execute in the server session on z/OS. The text value, "-6.14", in
the WHERE clause would be parsed and converted on z/OS and would result in the
same binary representation that was used in the original data set, which was also
parsed and converted in the server session on z/OS. Therefore, the WHERE clause
would return no observations, as expected.

190 Identical Architectural Groups � Appendix 1

rsubmit;
proc sql;

create table xx2 as
select RUH_H
from test1.test_4
where RUE_H < -6.14 ;

quit;
endrsubmit;

When using SAS/CONNECT and RLS to process floating-point numbers in a
cross-architecture environment, ensure that all statements are parsed in the same
session, either the client or the server.

Identical Architectural Groups

Overview of Identical Data Representation Groups
The following sections contain lists of cross-version architecture groups for SAS 8

and SAS 9.2. These architectural groups are valid only for access between the following:
� a SAS 8 client (or server) and a SAS 9.2 server (or client)
� a SAS 8 client and a SAS 8 server.

The lists are grouped on the basis of identical data representation. No data translation
is required in communications between any two operating environments in the same
group. When two operating environments that are not in the same group communicate,
translation of at least one data type is required, and restrictions and limitations are
applied. For details, see “Cross-Architecture Restrictions and Limitations” on page 183.

Note: For backward compatibility, the following lists include architectures and
operating environments that were supported in earlier versions of SAS but are not
supported in SAS 9 and later. �

IBM System/390 Architecture Operating Environments

� CMS
� z/OS

UNIX RISC Operating Environments

� AIX
� HP-UX
� Solaris 2
� SGI

Cross-Architecture Access � Incompatible Operating Environments 191

UNIX 64-bit Operating Environments

� AIX 64
� HP 64
� HP-UX/Itanium
� Solaris 64

Windows 32-bit Operating Environments

� Windows Vista
� Windows XP
� Windows NT
� Windows 2000
� Windows 98
� Windows 95

OpenVMS 64-bit Operating Environments
� OpenVMS Alpha 64
� OpenVMS Intel 64

UNIX 64–bit Little Endian Operating Environments
� OSF Alpha/Compaq Tru 64 UNIX
� Red Hat Linux/Itanium
� Red Hat Linux/Intel 64
� Solaris 64/Intel 64

Intel ABI+ Operating Environments

� RedHat Linux/Intel
� IABI+ hosts

Incompatible Operating Environments
Data representation in the following operating environments is incompatible with all

other operating environments and each other:
� OpenVMS Alpha
� OpenVMS VAX
� OS/2
� Windows/Itanium

Note: None of the SAS 9.2 supported operating environments have identical
non-character representations. �

192 Numeric Architectural Groups � Appendix 1

Numeric Architectural Groups

Overview of Numeric Architectural Groups
The following sections contain lists of cross-version architecture groups for SAS 8 and

SAS 9.2. These architectural groups are valid only for access between the following:
� a SAS 8 client (or server) and a SAS 9.2 server (or client)
� a SAS 8 client and a SAS 8 server.

The following lists show the SAS 8 and SAS 9.2 operating environments that
SAS/SHARE software runs on. The lists are grouped on the basis of similar numerical
representation. No numeric (floating-point) translation is required in communications
between any two operating environments in the same group. When two operating
environments in different groups communicate, numeric translation is required, and
restrictions and limitations are applied. For details, see “Cross-Architecture
Restrictions and Limitations” on page 183.

Note: For backward compatibility, the following lists include architectures and
operating environments that were supported in earlier versions of SAS but are not
supported in SAS 9 and later. �

Version 8 Numeric Architecture Groups

IBM System/390 Format Operating Environments

� CMS
� z/OS

IEEE Format Operating Environments

� AIX
� AIX 64
� Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)
� HP-UX
� HP 64
� HP-UX/Itanium
� Intel ABI+ hosts
� OpenVMS Alpha
� OpenVMS Alpha 64
� OS/2
� RedHat Linux/Intel
� SGI
� Solaris 2
� Solaris 64
� Windows XP

Cross-Architecture Access � SAS 9.2 Numeric Architecture Groups 193

� Windows NT
� Windows 2000
� Windows 98
� Windows 95
� Windows/Itanium

Translation of numeric data is necessary between some of these operating
environments because byte-ordering or alignment requirements are different. However,
because they all use the same number of exponent and mantissa bits, loss of precision
or range does not occur.

OpenVMS VAX Operating Environment
OpenVMS VAX uses a unique numeric representation.

SAS 9.2 Numeric Architecture Groups

IBM System/390 Format Operating Environment

� z/OS

194 Character Architectural Groups � Appendix 1

IEEE Format Operating Environments

� AIX 64
� Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)
� HP 64
� HP-UX/Itanium
� OpenVMS Alpha 64
� OpenVMS Intel 64
� OSF Alpha
� RedHat Linux/Intel
� RedHat Linux/Itanium
� RedHat Linux/Intel 64
� Solaris 64
� Solaris 64/Intel 64
� Windows XP
� Windows NT
� Windows 2000
� Windows/Itanium

Translation of numeric data is necessary between some of these operating
environments because byte-ordering or alignment requirements are different. However,
because they all use the same number of exponent and mantissa bits, loss of precision
or range does not occur.

Character Architectural Groups

Overview of Character Architectural Groups
The following sections contain lists of cross-version architecture groups for SAS 8

and SAS 9.2. These architectural groups are valid only for access between the following:
� a SAS 8 client (or server) and a SAS 9.2 server (or client)
� a SAS 8 client and a SAS 8 server.

The lists are grouped on the basis of similar character representation. No character
translation is required when communicating between any two operating environments
in the same group. When two operating environments in different groups communicate,
character translation is required and restrictions and limitations are applied. For
details, see “Cross-Architecture Restrictions and Limitations” on page 183.

Note: For backward compatibility, the following lists include architectures and
operating environments that were supported in earlier versions of SAS but are not
supported in SAS 9 and later. �

EBCDIC Format Operating Environments

� CMS
� z/OS

Cross-Architecture Access � ASCII-OEM Format Operating Environment 195

ASCII-ISO Format Operating Environments

� AIX
� AIX 64
� Compaq Tru64 UNIX (formerly Compaq’s DIGITAL UNIX)
� HP-UX
� HP-UX 64
� HP-UX/Itanium
� Intel ABI+ hosts
� OpenVMS Alpha
� OpenVMS Alpha 64
� OpenVMS VAX
� RedHat Linux/Intel
� SGI
� Solaris 2
� Solaris 64

ASCII-ANSI Format Operating Environments

� Windows XP
� Windows NT
� Windows 2000
� Windows 98
� Windows 95
� Windows/Itanium

ASCII-OEM Format Operating Environment

� OS/2

Note: Because SAS 9.2 uses execution-time session encoding, operating
environments cannot be meaningfully grouped according to character representation for
SAS 9.2. �

196

197

A P P E N D I X

2
Creating the SAS/SHARE Server
Environment

Audience for SAS/SHARE Server Start-Up 197
All Operating Environments: Setting SAS System Performance and Logging Options 198

OpenVMS: Creating the Server Environment 198

Overview of Tasks to Create the Server Environment 198

Setting SAS System Performance and Logging Options 198

Creating a Command File for the Server 199
Executing the Command File for the Server 199

z/OS: Creating the Server Environment 201

Starting a Server Using a Started Task 201

Starting a Server Automatically 202

Using the Static Program Method 202

Using the Macro Method 203
Setting SAS System Performance and Logging Options 203

UNIX: Creating the Server Environment 204

Assigning the Server a User Account 204

Starting a Server Manually 205

Starting a Server Automatically 205
Setting SAS System Performance and Logging Options 206

Windows: Creating the Server Environment 206

SAS/SHARE Server Can Run as a Windows Service 206

Using SAS SCU to Install a SAS/SHARE Server as a SAS Service 206

Starting and Stopping a Service 210
Using the Windows Services Utility 210

Using DOS Commands 210

Removing or Changing an Installed SAS/SHARE Server Service 210

Removing the Service 210

Changing the Service 210

Audience for SAS/SHARE Server Start-Up
This information is designed for system administrators or server administrators who

are responsible for preparing the operating environment to accommodate a SAS/SHARE
server. Requirements for successful server start-up and operation vary according to
operating environment type.

198 All Operating Environments: Setting SAS System Performance and Logging Options � Appendix 2

All Operating Environments: Setting SAS System Performance and
Logging Options

Several SAS system options can help you reduce the number of disk accesses that are
needed for SAS files and, therefore, enhance system performance. The SAS system
options that are listed here are valid for all operating environments. Options that are
operating environment-specific are documented in the sections that follow.

From a SAS session, run PROC OPTIONS to find the default settings for SAS system
options on your operating environment.

BUFNO=
specifies the number of buffers to use for SAS data sets.

BUFSIZE=
specifies the permanent buffer size for an output SAS data set.

CATCACHE=
specifies the number of SAS catalogs to keep open.

COMPRESS=
controls the compression of observations in output SAS data sets.

LOGPARM=
controls when SAS log files are opened and closed.

For details, see SAS system options in SAS Language Reference: Dictionary.

OpenVMS: Creating the Server Environment

Overview of Tasks to Create the Server Environment
You must perform the following tasks to create the server environment under an

OpenVMS operating environment:

1 Set SAS performance options.

2 Create a command file for the server.

3 Run the command file for the server.

4 Run the SUBMIT command to create the server.

Setting SAS System Performance and Logging Options
The following SAS system options can be used to tune server performance and

logging:

BUFNO=
specifies the number of buffers to use for SAS data sets. The default is 1.

BUFSIZE=
specifies the permanent buffer size for an output SAS data set. The default is 0.

Creating the SAS/SHARE Server Environment � Executing the Command File for the Server 199

LOG=
specifies a destination to which the SAS log is written in batch mode. The default
is SYS$PRINT (the default printer queue) or SYS$OUTPUT (the default output
stream).

LOGPARM=
controls when SAS log files are opened and closed.

For details, see system options in the SAS Companion for OpenVMS.

Creating a Command File for the Server
The command file performs any necessary process setup and invokes SAS. SAS runs

a program that contains any setup that is needed for the server environment and then
runs the PROC SERVER statement. For details about how to write a SAS program to
start a server, see Chapter 3, “Managing a SAS/SHARE Server (Server
Administrators),” on page 29.

Use the following syntax to create a command file for a server:

$set noon
$!
$ SAS /ALTLOG=SYS$OUTPUT

/ALTPRINT=SYS$OUTPUT
/COMAMID=access-method
sas-input-file

$!
$exit

ALTLOG=SYS$OUTPUT and ALTPRINT=SYS$OUTPUT
specifies the files to which SAS writes copies of the log and the procedure output,
respectively. These copies of the log and the procedure output are in addition to
the default .LOG and .LIS files. Specifying /ALTLOG=SYS$OUTPUT and
/ALTPRINT=SYS$OUTPUT causes all SAS output from the server process to be
written to the SYS$OUTPUT file, which produces a single file that contains the
OpenVMS record of the process execution and the SAS record of the server
execution.

How the logical name SYS$OUTPUT is defined depends on how the command
file is executed. For this information, see “Executing the Command File for the
Server” on page 199.

COMAMID=access-method
specifies the access method that the server uses to communicate with its clients.
Assign TCP to the COMAMID= option.

sas-input-file
specifies the name of the file that contains the SAS statements to start the server.
For details about writing a program to start a server, see Chapter 3, “Managing a
SAS/SHARE Server (Server Administrators),” on page 29.

Executing the Command File for the Server
You can execute the command file for a server by using the SUBMIT command to

submit a batch job. The batch job creates a detached process, which then executes the
command file.

200 Executing the Command File for the Server � Appendix 2

Use the SUBMIT command to start the server during start-up of your OpenVMS
operating environment or start a server by executing a command.

Because of its nature, a server usually runs in a detached process. Instead of
executing the RUN command directly during system start-up or at other times, you
should execute the RUN command in a batch command file that you submit with the
SUBMIT/USER= command. This ensures that the server is created with appropriate
privileges and file access authority. The SUBMIT/USER= command requires the
CMKRNL privilege.

Here is the syntax of the SUBMIT command:

$ SUBMIT/USER=user-name batch-filename

user-name
specifies the name of the user that executes the batch job that creates the process
in which the server runs.

batch-filename
specifies the batch job to be executed. The purpose of the batch job is to create a
detached process in which the server executes. Therefore, this batch job usually
consists of one RUN command. For example:

$ RUN /DETACHED -
/AUTHORIZE -

/INPUT=command-input-file -
/OUTPUT=command-output-file -
/ERROR=error-file -
/PROCESS_NAME=process-name -
/SYS$SYSTEM:LOGINOUT.EXE

command-input-file
specifies the name of the file that contains the commands that are executed in the
detached process. For details about the contents of this file, see “Creating a
Command File for the Server” on page 199.

Note: This file must also contain device or directory specifications. If the file
does not contain these specifications, then the detached process might fail. �

output-file
specifies the name of the file to which the record of the execution of the detached
process is written. This file should be accessible to any administrator of the server
and to developers of applications that use the server. This file contains any
information that is written to SYS$OUTPUT.

Note: This file must also contain device or directory specifications. If the file
does not contain these specifications, then the detached process might fail. �

error-file
specifies the file to which OpenVMS errors are written. This should be accessible
to any administrator of the server and to developers of applications that use the
server. This file contains information that is written to SYS$ERROR.

Note: This file must also contain device or directory specifications. If the file
does not contain these specifications, then the detached process might fail. �

Creating the SAS/SHARE Server Environment � Starting a Server Using a Started Task 201

process-name
specifies a descriptive name of the detached process in which the server executes.
This value can be the same as the server name that you specify for the
SERVERID= option in the PROC SERVER statement.

z/OS: Creating the Server Environment

Starting a Server Using a Started Task
You can invoke SAS from a TSO session, a batch job, or a started task. However, it is

best to use a started task to invoke SAS in order to run the PROC SERVER statement.

Note: If you use the XMS access method, do not invoke SAS and create the server in
a batch environment. Doing this might drain the batch initiator when the server
execution ends. The address space (ASID) would not be usable. �

1 To start the server, create a cataloged started task procedure that contains the
JCL, as follows:

Example Code A2.1 Example JCL in the z/OS Started Task Procedure Library

//SHRSTART PROC ENTRY=entry,ID=id,SERVOPT=’ ’,UAPW=,OAPW=,OPTIONS=
//SAS EXEC PGM=&ENTRY,DYNAMNBR=50,REGION=40M,
// PARM=’IS="%SHRMACS(SERVER);%STRTSRV(&ID’,
// ’%STR(&SERVOPT),%UAPW,%OAPW",&options’)
//STEPLIB DD DISP=SHR,DSN=&prodfix.LIBRARY
//CONFIG DD DISP=SHR,DSN=&prodfix.CNTL(BATW0)
// DD DISP=SHR,DSN=&prodfix.CNTL(SRVCNFG)
//SASAUTOS DD DISP=SHR,DSN=&prodfix.AUTOLIB
//SASHELP DD DISP=SHR,DSN=&prodfix.SASHELP
//SASMSG DD DISP=SHR,DSN=&prodfix.SASMSG
//WORK DD UNIT=SYSDA,SPACE=(6144,(500,200),,,ROUND)
//SASLOG DD SYSOUT=*,DCB=(BLKSIZE=141,LRECL=137,RECFM=VBA)
//SASCLOG DD SYSOUT=*
//SASSNAP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD DUMMY

entry
is the value that is specified for the ENTRY= parameter in the cataloged
procedure that is used to invoke SAS from a batch job. This procedure was
created when Base SAS was installed.

ID=id
is the server name (default or otherwise) that is passed to the PROC
statement in the STRTSRV macro.

SERVOPT=’ ’
can be any valid option in the PROC SERVER statement. For information
about PROC SERVER options, see Chapter 9, “The SERVER Procedure,” on
page 107.

UAPW=uapw
is the user-access password for the server.

202 Starting a Server Automatically � Appendix 2

OAPW=oapw
is the operator (or server administrator) password for the server.

2 Notice that the PARM= parameter uses the macro STRTSRV to start a server.
%STRTSRV is a standard SAS/SHARE autocall macro. For more information, see
“Using Macros for Server Library Access” on page 77 and “STRTSRV Macro” on
page 173. Alternatively, you can use the SERVER macro to start a server.
%SERVER executes faster than %STRTSRV. For more information, see Chapter 9,
“The SERVER Procedure,” on page 107.

To use %SERVER instead of %STRTSRV in the PARM= parameter, change the
EXEC statement as follows:

// PARM=’IS=’’%SERVER(&ID,&SERVOPT,&UAPW,&OAPW)’’’

3 After the member SERVER that contains this JCL has been created, the console
operator issues the following command to create the server as a started task:

START SHRSTART

The cataloged procedure name for the SAS/SHARE server is SHRSTART.

4 When this command executes, the procedure passes the appropriate parameters to
the SAS macro, STRTSRV or SERVER, which invokes the PROC SERVER
statement.

5 To create a new server (one whose name is different from the ID= parameter in
the JCL), enter the following:

START SHRSTART,ID=server-ID

6 To enter the default PROC SERVER options that are indicated in the SERVOPT=
parameter in the JCL, enter the following:

START SHRSTART,SERVOPT=’options’

7 To override the user- and operator-access passwords in the START command and
to override those that are specified in the UAPW= and OAPW= parameters in the
JCL, enter the following:

START SHRSTART,UAPW=uapw,OAPW=oapw

8 To enter all of these specifications in one START command and to override those in
the JCL, enter the following:

START SHRSTART,ID=server-ID,SERVOPT=’options’
UAPW=uapw,OAPW=oapw

Starting a Server Automatically

Using the Static Program Method

To use the static program method, store a SAS program that contains PROC SERVER
in an external file. For information about writing a SAS program to start a server, see
Chapter 3, “Managing a SAS/SHARE Server (Server Administrators),” on page 29.
Invoke SAS by specifying the program as the primary input data stream. To use the
program in the started task, locate the following line in the previous JCL code example.

//SYSIN DD DUMMY

Creating the SAS/SHARE Server Environment � Setting SAS System Performance and Logging Options 203

Change it to read as follows:

//SYSIN DD DSN=data-set-name,DISP=SHR

This method creates a server in the same way each time the program runs.

Using the Macro Method
Although it is recommended that you use the STRTSRV macro from the SAS macro

autocall library (see Chapter 6, “SAS/SHARE Macros for Server Access,” on page 77),
you can also create and use the SERVER macro, which executes faster than %STRTSRV.

Before you can use the SERVER macro, you must create a member named SERVER
in the SAS macro autocall library and add the following statements:

%MACRO SERVER(id,servopt,uapw,oapw);
%**;
%* This macro invokes PROC SERVER to create *;
%* a server with the specified ID. *;
%**;
PROC SERVER ID=&id &servopt

%if (&uapw NE) %then
%do;

UAPW=&uapw
%end;

%if (&oapw NE) %then
%do;

OAPW=&oapw
%end;

;
run;
endsas;

%MEND;

Setting SAS System Performance and Logging Options
The following options affect the operation of the server.
Default values for these options are set in the SAS/SHARE server configuration file.

BUFNO=
specifies the number of buffers to use for SAS data sets. The default value is 1.

LOGPARM=
controls when SAS log files are opened and closed.

LOG=
specifies a file to which the SAS log is written when executing SAS programs
outside the windowing environment.

MEMLEAVE=
specifies the amount of memory that is reserved for cleanup in the event of an
abnormal termination of SAS.

MEMSIZE=
specifies the total amount of memory that SAS can use.

STAE
prevents a system abend exit when recoverable errors occur. STAE is the default.

204 UNIX: Creating the Server Environment � Appendix 2

SVC0SVC=
SVC0R15=

The SAS SVC Routine 0 is required for SAS/SHARE. You must specify the SAS
system options SVC0SVC= and SVC0R15= to accurately reflect the way the SVC
was installed. Get this information from the person who installed Base SAS.

SYNCHIO
specifies whether synchronous IO is enabled.

CAUTION:
Do not specify the SYNCHIO option. The SYNCHIO option prevents SAS/SHARE
servers from working properly. NOSYNCHIO is the default. �

VMCTLISA
specifies the size of the initial storage allocation (ISA) for SAS memory
management and control blocks.

VMPAISA
specifies the size of the ISA for permanent memory above the 16-Mb line.

VMPAOSA
specifies the size of the overflow storage allocation (OSA) for permanent memory
above the 16-Mb line.

VMTAISA
specifies the size of the ISA for temporary memory above the 16-Mb line.

VMTAOSA
specifies the size of the OSA for temporary memory above the 16-Mb line.

VMPBISA
specifies the size of the ISA for permanent memory below the 16-Mb line.

VMPBOSA
specifies the size of the OSA for permanent memory below the 16-Mb line.

VMTBISA
specifies the size of the ISA for temporary memory below the 16-Mb line.

VMTBOSA
specifies the size of the OSA for temporary memory below the 16-Mb line.

For details, see information about system options in the SAS Companion for z/OS.

UNIX: Creating the Server Environment

Assigning the Server a User Account
Rather than run the server process under root, assign a specific user account to the

server process. Identify all SAS libraries that will be shared. Consider the appropriate
file permissions that should be granted based on both the server and user account
access. At minimum, the server account will need read and write permissions to the
SAS libraries that it shares. By default, the processes that are initiated from /etc/
inittab and /etc/rc will start under root ownership.

Creating the SAS/SHARE Server Environment � Starting a Server Automatically 205

Starting a Server Manually
You can invoke SAS and start a server manually by using a UNIX script command.

Here is the command line syntax used to invoke SAS and start a server:

nohup sas -sysin sas-input-file -noterminal -logparm "write=immediate"
-log "/u/system/server%W.log" -logparm "rollover=auto" &

nohup
causes the associated SAS process to ignore HUP or HangUp signals that are sent
from the operating system.

sas
specifies a site-specific path to the SAS executable that initiates the process.

-sysin sas-input-file
specifies the file that contains the SAS statements to start a server. For
information about the content of this file, see Chapter 3, “Managing a SAS/SHARE
Server (Server Administrators),” on page 29.

-noterminal
specifies that no physical terminal is associated with this process.

-logparm "write=immediate"
writes server log messages to the server log immediately (without buffering).

-log "/u/system/server%W.log"
directs all log messages to the log file that is named by replacing %W with the
current numeric week of the year.

For example, server02.log identifies a log that was generated during the
second week of the year.

-logparm "rollover=auto"
if the pathname of the log file changes (for example, when %W is used to name
weekly logs), the log is automatically saved in the current file, and a new file is
opened to store the new content. For details, see “LOG system option” and “SYSIN
system option” in the SAS Companion for UNIX Environments, and “LOGPARM
system option” and “TERMINAL system option” in SAS Language Reference:
Dictionary.

& (ampersand symbol)
allows the SAS process to run in background mode in the UNIX operating
environment.

The following is an example of a SAS command that invokes SAS and starts a server:

nohup /u/system/sas -sysin /u/system/startsrv.sas -noterminal -logparm
"write=immediate" -log "/u/system/server%W.log" -logparm "rollover=auto" &

Starting a Server Automatically
You can configure a SAS/SHARE server to start automatically whenever the UNIX

machine that the server runs on is re-started. The UNIX system administrator can
insert the script command (outlined in Starting a Server Manually) into the last portion
of either the /etc/inittab or /etc/rc UNIX system files. For a typical script
command, see “Starting a Server Manually” on page 205.

206 Setting SAS System Performance and Logging Options � Appendix 2

Note: The nohup parameter should be omitted from the server’s UNIX script
command when it is part of the /etc/inittab or /etc/rc system file. �

Setting SAS System Performance and Logging Options
The following options affect the operation of the server:

BUFNO=
specifies the number of buffers to use for SAS data sets. The default is 1.

BUFSIZE=
specifies the permanent buffer size for an output SAS data set. The default is 0.

LOG=
specifies a destination to which the SAS log is written in batch mode.

MEMSIZE=
specifies a limit on the total amount of memory that SAS uses at any one time.
The default is 32M.

For more information, see the chapter about system options in the SAS Companion
for UNIX Environments.

For best performance, run the server on the machine where the shared SAS data
resides. Do not run production servers in SAS foreground mode using the SAS
windowing environment.

Note: The windowing environment supports a maximum of 32,767 lines that can be
written to the SAS log. �

Windows: Creating the Server Environment

SAS/SHARE Server Can Run as a Windows Service
You can configure a SAS/SHARE server as a Windows service, which enables the

automatic start-up of the server when the Windows operating environment is started.
To configure a SAS/SHARE server as a Windows service, use the SAS Service

Configuration Utility (SAS SCU), which is shipped with Base SAS for Windows. For
information about using SAS SCU, see the online Help that is provided with the utility.

Note: The complete instructions for installing and using the SAS SCU are provided
in the document "Installation Instructions for 9.2 of the SAS System for Microsoft
Windows," which is included with the software. �

Using SAS SCU to Install a SAS/SHARE Server as a SAS Service
Configure the Server Service using these steps:

1 Start the SAS Service Configuration Utility (SAS SCU): Start � Programs �
your- SAS- System- folder � SAS Service Configuration Utility

2 In the SAS SCU window, click the Install tab and complete the following fields:

Creating the SAS/SHARE Server Environment � Using SAS SCU to Install a SAS/SHARE Server as a SAS Service 207

Service Name
is used to create the service name as recorded in the Windows registry.

Display Name
is used to create the service name that is displayed in the Windows Service
Control Manager. In the example, the server ID SHR1 is included to make it
easier to identify among the multiple SAS/SHARE servers that might be
configured.

Start Type
is used to specify whether the server is started automatically or manually.
Automatic causes the SAS/SHARE server to start automatically when the
Windows operating environment is started. Select Manual to enable the
service to be started and stopped by an administrator using the Windows
Service Control Manager.

Service Path
identifies the SAS invocation command line to be executed with
corresponding system options for server-specific behavior. The following is an
example of a service path specification:

C:\Program Files\SAS\SAS System\9.1\sas.exe
-noterminal -logparm "write=immediate" -sysin "C:\shr1.sas"
-log "C:\shr1%W.log" -logparm "rollover=auto"

208 Using SAS SCU to Install a SAS/SHARE Server as a SAS Service � Appendix 2

C:\Program Files\SAS\SAS System\9.1\sas.exe
identifies the SAS executable.

-noterminal
prevents interaction with the console.

-logparm "write=immediate"
writes messages to the server log immediately (without buffering).

-sysin "C:\shr1.sas"
specifies a batch file to start the SAS/SHARE server. The file shr1.sas
contains the following SAS program:

%let tcpsec=_secure_;
proc server id=shr1 authenticate=required;
run;

The PROC SERVER statement starts the SAS/SHARE server SHR1.
The TCPSEC=_SECURE_ system option and the
AUTHENTICATE=REQUIRED option specify that each client must be
authenticated before accessing the server.

For more information about the TCP/IP access method, see
Communications Access Methods for SAS/CONNECT and SAS/SHARE.

-log "C:\shr1%W.log"
directs all log messages to the log file that is named by replacing %W
with the current numeric week of the year. For example, shr102.log
identifies a log that was generated during the second week of the year.

-logparm "rollover=auto"
if the pathname of the log file changes (for example, when %W is used to
name weekly logs), the log is automatically saved in the current file, and
a new file is opened to store the new content.

For more information, see the documentation for the LOG and SYSIN system
options in the SAS Companion for the Microsoft Windows Environment and
the documentation for the LOGPARM= and TERMINAL system options in
SAS Language Reference: Dictionary.

Dependencies
specifies a list of Windows services, which will be started before the SHARE
server service.

3 In the SAS SCU window, click the Account tab and complete the following fields:

Creating the SAS/SHARE Server Environment � Using SAS SCU to Install a SAS/SHARE Server as a SAS Service 209

This Account
specifies a valid Windows user account that the service will run under. The
value for this field should be in the format Domain\Account. For example,
CORPSALES\ServAcct.

Password
specifies a valid password for the user account that is specified in the This
Account field.

Confirm Password
confirms the value that you entered in the Password field.

4 In the SAS SCU window, click the Install tab again and select Install.

A message window appears and confirms that the service was installed
successfully.

Click OK to close the message window.

5 Click OK in the SAS Service Configuration Utility window to complete the
configuration and installation of the service.

Note: To start the SAS/SHARE server service either manually or automatically, the
account that you specified in the This Account field on the Account tab must be
assigned the Log on as a service and Act as part of the operating system rights.

The administrative interface that is used to assign user rights is dependent on the
version of Windows that you are using. See the documentation for your Windows
operating environment for instructions about assigning user rights. �

210 Starting and Stopping a Service � Appendix 2

Starting and Stopping a Service

Using the Windows Services Utility

From the Services utility in the Windows Control Panel, you can monitor Windows
services, including the SAS/SHARE server service that you set up by using the SAS
SCU.

To start or stop a service, click Start or Stop, as appropriate.

Using DOS Commands

You can also start or stop a service by using commands at a DOS prompt.
To start a service, type NET START service-name, where service-name is the name

of the service that you want to start.
To stop a service, type NET STOP service-name, where service-name is the name of

the service that you want to stop.

Removing or Changing an Installed SAS/SHARE Server Service

Removing the Service

To remove the server service:

1 If the service is active, stop the service by using one of the methods described in
“Starting and Stopping a Service” on page 210.

2 Start the SAS Service Configuration Utility (SAS SCU):Start � Programs �
your-SAS-System-folder � SAS Service Configuration Utility.

3 In the SAS SCU window, click the Remove tab. Click the down arrow under
Choose the installed SAS service you want to remove and select the
service that you want to remove.

4 Click Remove.

Changing the Service

To change the configuration for a service, remove the service and install it again.

211

A P P E N D I X

3
Tuning Tips for Applications
That Use SAS/SHARE Software

Authors 212
Introduction to Tuning Tips for Applications That Use SAS/SHARE Software 212

Overview of Tuning Tips for Applications That Use SAS/SHARE Software 212

The SAS Library Model 213

How Data Flows When You Use SAS Files 213

Introduction 213
SAS Data Files 214

SAS Data Views 215

SAS Catalogs 215

Concurrent Access: Update versus Read-only 215

Computer Resources Used by a Server 216

CPU 217
I/O 218

Overlapping I/O 219

Memory 219

Messages 220

Minimizing and Optimizing Resource Consumption 220
Programming Techniques 221

Clean Up Your Data Files 221

Choose the Appropriate Subsetting Strategy 221

Index Wisely 222

Look at a Clock Before You Create an Index 222
Choose Page Size Wisely 222

Understand and Control Random Access 222

Specify Sequential Access When an SCL Program Doesn’t Need Random Access 223

Limit the Number of Files Open During Execution of an SCL Program 223

Evaluate Each Report’s Timeliness Requirement 224

Be Aware of How Frequently Each File Is Updated 224
Know Your Application’s DATA Step Views 225

Tuning Options in SAS/SHARE Software 225

TBUFSIZE= Option in PROC SERVER 226

TOBSNO= Data Set Option 226

RMTVIEW= and NORMTVIEW Options 227
LRPYIELD= Option in PROC SERVER 228

Multiple Servers 228

SAS System Options 228

BUFSIZE= Option 229

COMPRESS= Option 229
Using Operating Environment Tools 229

Introduction 229

Managing CPU 230

212 Authors � Appendix 3

Managing I/O 230
Managing Memory 231

Conclusion 231

Authors
This appendix is based on a paper by Steve Beatrous, Bill Brideson, Dan Squillace,

and Jan Squillace. The original paper, which was published in the Proceedings of the
Twenty-First Annual SAS Users Group International Conference, Chicago, Illinois, 1996,
has been updated with new information about I/O resources and the TBUFSIZE=
option in PROC SERVER.

Introduction to Tuning Tips for Applications That Use SAS/SHARE
Software

SAS has many tuning options, most of which are left at their default values. When
an application accesses data through a SAS/SHARE server, sometimes the default
values provide adequate performance and sometimes they do not.

SAS software is delivered to you properly tuned for a typical application that uses
SAS/SHARE software. SAS makes some assumptions about the kind of processing that
is going to take place in a typical application. Recognizing that your application might
not be typical, SAS supplies tuning options that you can use to override default behavior.

This paper discusses programming techniques and option value adjustments that you
can use to improve the performance of your applications that access data through
servers. The information in this paper is the result of tuning several large applications
that are in use at SAS.

Overview of Tuning Tips for Applications That Use SAS/SHARE Software

This paper was originally presented at SUGI 18. Since that time, client/server
applications have become more common. The paper is being updated and presented
again because there is a growing audience interested in tuning their client/server
applications.

This paper will give you some ideas to help you develop SAS applications that make
the most efficient use of concurrent access to SAS files. Because this audience consists
of people with different amounts of experience developing applications that use
concurrent access to data, the first part of the paper will focus on overviewing the
general model for accessing data in SAS. The later parts of the paper will draw on the
general data model to describe how to tune a client/server application.

Since introducing SAS/SHARE software in 1987, SAS has compared two contrasting
images to show the additional capability that SAS/SHARE software brings to SAS. One
image shows a user’s SAS session accessing files directly; the other image shows a
user’s SAS session connected to a server’s session and the server’s session accessing the
files directly. The essential difference is that the data in a file that is accessed through
a server travels through two SAS sessions whenever it is accessed. Of course, a server
controls concurrent access to the data that is read and written through it, so its
overhead has an important purpose. But it is important to remember that data accessed
through a server requires more computing resources than data accessed directly.

Tuning Tips for Applications That Use SAS/SHARE Software � Introduction 213

One or more servers can execute at the same time on a single computer or in a
network of computers. You can use different servers for different applications, or you
can use a few servers to distribute the load of many applications.

When you use more than one server, each server performs only part of the work load.
This allows each server to respond to requests more quickly. On the other hand, every
process on a computer requires a certain amount of overhead simply to exist, and
servers are no different from other processes in this regard. You must balance the
performance improvement that using multiple servers gives your users against the
increased load on your system as more servers execute. The later parts of this paper
will discuss measuring how much work a server is doing; you can use that information
to determine when to add or delete servers.

The SAS Library Model
You should make sure you thoroughly understand the material about the SAS

library model in SAS Language Reference: Concepts before you attempt to tune SAS
applications and servers at your installation. Here are some of the terms defined in
that material that are most important to understanding this paper:

A SAS library can have five types of members, DATA, VIEW, CATALOG, PROGRAM,
ACCESS, MDDB, and FDB. This paper will deal only with the types DATA, VIEW, and
CATALOG.

A library member of type DATA is a SAS data file. Through SAS 5, SAS referred to
such files as SAS data sets. A SAS data file can be compressed, and it can have zero or
more indexes.

A SAS data view is a set of directions that tells a SAS view engine how to combine
data from one or more sources into observations.

A SAS catalog is a file that contains smaller files; the files contained in a catalog are
catalog entries. Some types of entries you might be familiar with are PROGRAM
(SAS/AF programs), SCREEN (PROC FSEDIT screens), and FORMAT (user-written
formats).

How Data Flows When You Use SAS Files

Introduction
To tune applications that access data concurrently, it is to your advantage to

understand how data is read and written in the different types of members of SAS
libraries that can be accessed through a server.

It is important to remember that an application cannot run any faster when it
accesses data through a server than it can when it accesses data directly. This might
seem obvious, but it is surprisingly easy to simply blame an application’s sluggish
performance on the server without ever testing the application while accessing the data
without going through a server. For many applications, the difference in performance
between accessing the data directly versus accessing the data through a server will not
be large. Whenever you develop a new application, verify that the application runs
acceptably while accessing its data directly before you add a server to the application’s
data access.

214 SAS Data Files � Appendix 3

SAS Data Files
When a SAS session reads from a SAS data file that is accessed directly:
1 The procedure or DATA step requests an observation from the engine.
2 The engine requests the SAS host interface to read the page of the data file that

contains the observation.
3 The engine extracts the observation from the page and returns it to the procedure.

When a SAS session updates or adds to a SAS data file that is accessed directly:
1 The procedure calls the engine to replace or add the observation.
2 The engine replaces or adds the observation in the page.
3 The engine calls the host interface to write the updated or new page to disk.

When a SAS session reads from a SAS data file that is accessed through a server:
1 The procedure or DATA step requests the observation from the REMOTE engine.
2 The REMOTE engine determines whether the requested observation is already

available in its transmission buffer in the user’s SAS session. If the observation is
available, it is returned to the procedure.

3 If the observation is not already available in the user’s SAS session, the REMOTE
engine sends a message to the server to get a buffer full of observations, including
the observation requested by the procedure.

4 The server fills the transmission buffer by requesting one or more observations
from the engine that accesses the data file in the server’s SAS session.

5 For each observation, the engine in the server’s session requests the SAS host
interface to read the page of the data file that contains the observation.

6 The engine in the server’s SAS session extracts each observation from its page and
returns it to the server.

7 After filling the transmission buffer, the server sends the buffer to the REMOTE
engine.

8 The REMOTE engine extracts the selected observation from the transmission
buffer and returns it to the procedure or DATA step.

When a SAS session updates or adds to a SAS data file that is accessed through a
server:

1 The procedure calls the REMOTE engine to replace or add the observation.
2 The REMOTE engine replaces the observation in its transmission buffer or adds

the observation to its transmission buffer.
3 If the data file is open for update access, the REMOTE engine sends a message to

the server that carries the new or updated observation and requests that it be
updated in or added to the data file.

4 If the data file is open for output access, the REMOTE engine adds observations to
its transmission buffer until the buffer is full. After the transmission buffer is full,
the REMOTE engine sends it to the server.

5 The server requests the engine that accesses the library in the server’s SAS session
to replace the observation in the data file or add the observation(s) to the data file.

6 The engine in the server’s SAS session replaces or adds each observation by
updating and creating pages in the data file.

7 The engine requests the SAS host interface to write each updated and new page to
the data file.

Tuning Tips for Applications That Use SAS/SHARE Software � Concurrent Access: Update versus Read-only 215

8 The engine in the server’s SAS session returns to the server.

9 The server replies to the REMOTE engine indicating that the updated or new
observation has been stored in the data file.

10 The REMOTE engine returns to the procedure.

SAS Data Views
The flow of data as a SAS data view is processed can be complex, because a view is a

set of instructions that tells how to select and combine data from one or more sources.
A SAS data view can be interpreted in a user’s SAS session or a server’s SAS session.

When a view is interpreted in a user’s SAS session, the view file and none, some, or all
of the data read by the view can be accessed through a server. When a view is
interpreted in a server’s SAS session, the view file and all of the data read by the view
must be accessed by the server.

There are three types of SAS views:

� PROC SQL views, which are interpreted by the SQL engine

� SAS/ACCESS views, which are interpreted by SAS/ACCESS interface engines

� DATA step views, which are interpreted by the DATA step view engine

A view created by the SQL procedure can read SAS data sets (SAS data files and any
kind of SAS data view).

When a SAS/ACCESS view engine is used in a multi-user server’s session, the view
engine can read only from the database; it cannot update the database. The flow of data
is one-way: from the database to the interface engine to the server to the user.

A DATA step view can, like a PROC SQL view, combine data from SAS data files and
SAS data views. In addition, DATA step views can include sophisticated calculations
and read data from external files. A DATA step view can produce data exclusively by
calculation, without reading any data.

SAS Catalogs
SAS catalogs are containers for many different types of entries, and the data in each

type of entry is accessed in a pattern unique to the entry type. Like the observations in
SAS data sets, the REMOTE engine will combine records in a catalog entry into groups.
The combination of records for catalog entries is done only for INPUT opens (OUTPUT
and UPDATE opens transmit one record at a time).

Concurrent Access: Update versus Read-only

Many applications use several SAS files. It is to your advantage if, while designing
your application, you identify and divide the following:

� the set of files which must be updatable by more than one user at a time

� the files that will be updated by only one user, but while other users are reading
the files

� the files that will be updated so infrequently that access to those files by all users
is practically read-only

216 Computer Resources Used by a Server � Appendix 3

The files in the first group are excellent candidates for access through a server. The
files in the second group are often good candidates for access through a server, but for
some applications the performance improvement from not accessing the files through a
server might make it worthwhile to use a more complicated procedure to update those
files while the users are not around. The files in the third group are almost always poor
candidates for access through a server because all of the operating environments that
SAS runs under provide shared read-only access to files, and that direct access is
almost always faster than access through a server.

Here is a summary of the advantages and disadvantages of dividing files into read
only and concurrently updated libraries:

� A SAS file that is accessed through a server usually costs more, in terms of
computing resources, for users of the application to use than a SAS file that is
stored in a library that is accessed directly by the users.

� Reduced traffic through a server optimizes response time for the users of the
concurrently updated files.

� Simpler, more direct access to read-only copies of files reduces the cost of an
application’s query and reporting functions. Note that such a copy might be a
subset instead of the entire file.

� A SAS file that is accessed through a server can be updated while it is being
queried or reported on.

� Copies of files require disk space.
� A file in a SAS library that is accessed directly by users cannot be updated while a

user executes the part of the application that uses that file.

Computer Resources Used by a Server
The information in this paper so far has been about SAS files and how they are used

by an application. You will be a more effective application developer if, in addition to
understanding how to make optimum use of SAS files, you also understand the
computer resources that a server consumes. That understanding will allow you to
design your applications to make optimum use of a server and optimum use of SAS files.

A server is an independently running SAS session that brokers requests for data from
other SAS sessions. There are four types of computer resources that a server consumes:

� CPU (the computer’s processor)
� I/O (input from and output to the computer’s permanent storage)

� memory (the computer’s working storage)
� messages (passing data between a server and its users)

CPU, I/O, and memory resources are consumed by every SAS session. Messages is a
name for one measurable aspect of the complex area of communications resources;
communications resources are consumed by SAS/SHARE software and SAS/CONNECT
software because these two products enable SAS sessions to communicate with one
another.

Any work done by a server consumes more than one kind of resource (if you are
looking for simple uncomplicated truths, you might want to skip this section). A server
can do several types of work and, as you might expect, not all types of work consume
resources in the same relative amounts. For example, some work a server can do
consumes much of the CPU resource but little of the other resources, while other work

Tuning Tips for Applications That Use SAS/SHARE Software � CPU 217

consumes much of the memory resource, less of the CPU resource, and very little of the
other resources.

CPU
A server creates processes as users connect to it and execute DATA steps,

procedures, and windows. These processes (created on users’ behalf) are assigned the
work that is actually performed in the server’s SAS session. This allows a process in a
server’s session to do work requested by one user and then yield control so that another
process can do work for another user.

Most requests handled by the processes in a server require small bursts of CPU time.
But there are several requests that can consume especially large amounts of CPU time:

� processing a WHERE clause
� interpreting a SAS DATA step view
� processing a compressed SAS data file

When a SAS data set is accessed through a server, every WHERE clause used to
select observations from that data set is evaluated by a process in the server’s SAS
session. This increases the server’s overall use of the CPU resource to reduce its use of
the messages resource. Often, evaluation of a WHERE clause can be optimized by using
an index to locate the selected observations. But when an index is not used, or selects
more observations than satisfy the WHERE clause, the process in the server’s session
must search for observations that completely satisfy the WHERE clause. Searching can
consume a significant amount of the CPU resource. While a process conducts a search,
it yields periodically to allow other processes in the server’s session to do work for other
users.

A PROC SQL view can consume quite a bit of the CPU resource. The SQL view
engine can join tables, it might need to sort intermediate files, and there might be
several WHERE clauses in the view that require evaluation. The process in which the
SQL view engine executes yields periodically while a view is interpreted.

DATA step views and SAS/ACCESS views also consume the CPU resource. The
process in which either of these engines executes does not yield to allow other processes
to run, although the server itself allows other processes to run when a group of
observations has been prepared for transmission to a user’s SAS session. A DATA step
view that does a great deal of calculation while preparing each observation can have a
visibly harmful impact on a server’s response time to other users’ requests.

When a compressed SAS data file is read, processes in the server’s session
decompress each observation; when a compressed SAS data file is created or replaced, a
process in the server’s session compresses each observation. In many cases the time
required to decompress (or compress) is shorter than the time required to read the
additional pages of an uncompressed file. In other words, trading increased use of the
CPU resource for decreased use of the I/O resource can, on balance, reduce the length of
time users wait for a server to respond. While a user processes a compressed data file
through a server, other processes in the server’s session can execute between groups of
observations requested by that user; a SAS data file is not compressed or decompressed
in its entirety in a single operation.

The "Programming Techniques" section of this paper offers ideas for reducing the
CPU consumption of processes in a server’s session under the following topics:

� “Choose the Appropriate Subsetting Strategy”
� “Index Wisely”
� “Know Your Application’s DATA Step Views”

218 I/O � Appendix 3

I/O
Because most work done by the processes in a server’s SAS session involves I/O

activity, those processes can spend a significant amount of time waiting for I/O activity
to complete. (This time includes moving the head of a disk drive to the correct position,
waiting for the disk to spin around to the position of the requested data, and
transferring the data from the disk to the computer’s working storage.) In the current
release of SAS/SHARE software, while a process in a server’s session waits for I/O
activity to complete, other processes in the server’s session do not perform other work
that uses a different (CPU, memory, or messages) resource.

That waiting could, it would seem, become a bottleneck for a server, and in a few
situations this problem is realized. But in practice most of a server’s memory is used
for I/O buffers and processes in a server’s session usually satisfy most requests for data
from I/O buffers that are already in memory.

A server usually allocates memory for one page of a file each time the file is opened,
up to the number of pages in the file. For example, if the application being executed by
a user opens a file twice, enough of the server’s memory to contain two pages of the file
is allocated; if ten users run the application, space for 20 pages of the file is allocated in
the server’s memory. The number of buffers allocated for a file will not exceed the
number of pages in the file.

Of course, the pages of the file maintained in memory are not the same set of pages
all the time: as users request pages of the file that are not in memory, pages that are in
memory are written back to the file on disk if they have been modified, or if an
in-memory page has not been modified its buffer is simply used to read the new page.

A larger page size can reduce the number of I/O operations required to process a SAS
data file. But it takes longer to read a large page than it takes to read a small one, so
unless most of the observations in a large page are likely to be accessed by users, large
page sizes can increase the amount of time required to perform I/O activity in the
server’s SAS session.

There are two patterns in which data is read from or written to SAS files:

� sequential

� random

When an application processes a SAS file in sequential order, no page of the file is
read into or written from the server’s memory more than once each time the file is read
or written. Also, observations are transmitted to and from users’ sessions in groups,
which conserves the messages resource.

In many applications that are used with concurrently accessed files, data is accessed
in random order, that is, a user reads the 250th observation, then the 10,000th
observation, then the 5th observation, and so forth. When a file is processed in random
order, it is much more difficult to predict how many times each page of the file will be
read into or written from the memory of a server’s SAS session. In addition, only one
observation is transmitted on each message between server and user, which does not
conserve the messages resource.

The "Programming Techniques" section of this paper offers ideas for reducing the I/O
load of a server under the following topics:

� “Clean Up Your Data Files”

� “Choose the Appropriate Subsetting Strategy”

� “Choose Page Size Wisely”

� “Specify Sequential Access When an SCL Program Doesn’t Need Random Access”

Tuning Tips for Applications That Use SAS/SHARE Software � Memory 219

Overlapping I/O
Overlapping I/O for sequential read operations is a performance enhancement for

applications that use the remote engine. This enhancement was made for SAS 8.1 by
improving the internal functions of the remote engine to support the use of multiple
data buffers for sequential I/O operations.

When the remote engine is reading sequential data from the SAS/SHARE server, it
requests a buffer of data from the server and while it is waiting, it starts the I/O for a
second buffer of data. When the server returns the first buffer of data, the remote
engine passes it to the requesting application.

While the application is reading observations from the first buffer, the server is
returning the observations in the second buffer. When the application has read all of
the observations in the first buffer and has started reading observations from the
second buffer, the REMOTE engine sends a message to the server to retrieve a third
buffer of observations. The REMOTE engine reuses the memory that was allocated for
the first buffer to store the third buffer of observations.

This sequence continues until all of the requested data has been read. This reduces
the elapsed time for applications that read data sequentially by overlapping reading
and processing.

Memory
A computer’s working storage is used by a server to load programs, hold I/O buffers,

and maintain control information. When a server’s working set becomes large compared
to the amount of memory installed on a computer, a significant amount of the server’s
working storage can be stored on disk by the operating environment’s virtual memory
manager.

Large amounts of a server’s memory are consumed by the following:

� a SAS data view that contains an ORDER BY clause

� many indexes on data files accessed through a server

� a large number of files open at the same time

� data files that have large page sizes

Because the ORDER BY clause causes the observations produced by a view to be
sorted every time the view is interpreted, it requires memory to be used for a work area
for the sorting step. Your application should use this clause only in its views when it
has a clear benefit for your users.

When a SAS data file is opened, all indexes on the file are opened. Therefore, when a
SAS data file has many indexes, a large amount of memory in the server’s SAS session
can be used to store pages of the index file and related control information. Of course,
when many SAS data files that are accessed through a server each have many indexes,
this effect is multiplied.

At SAS, we have observed that the majority of servers’ memory has been consumed
by I/O buffers. Carefully selecting the number of times each file is opened by your
application and the page size of each file can have considerable impact on the amount of
memory required by a server.

The "Programming Techniques" section of this paper offers ideas for reducing the
memory requirements of a server under the following topics:

� “Choose Page Size Wisely”

� “Index Wisely”

� “Limit the Number of Files Open During Execution of an SCL Program”

220 Messages � Appendix 3

Messages
Messages are the communication events between users’ SAS sessions and a server.

Whenever a piece of information (for example, an observation) is moved from a server to
a user, a message is sent from the user to the server and a reply is sent back from the
server to the user.

Messages and replies are transmitted by communications access methods. The cost of
a message varies greatly with access method. Memory-to-memory communication
within a single computer, for example by means of the Cross-Memory Services
(COMAMID=XMS) access method is very rapid, while messages that flow on cables
between computers, for example by means of the TCP/IP (COMAMID=TCP) access
method take much longer to travel between SAS sessions.

At SAS, we have observed that the cost of sending data by means of most
communications access methods is more directly a function of the number of messages
than the amount of data. In other words, to move a million characters of data between
a user and a server, it takes less time to send the data in 100 messages than to send
the data in 10,000 messages.

SAS/SHARE software conserves the messages resource by doing the following:

� transmitting data between servers and users in groups

� evaluating WHERE clauses in servers’ sessions

� interpreting SAS data views in servers’ sessions

The "Programming Techniques" section of this paper offers some ideas for conserving
the messages resource under the following topics:

� “Choose the Appropriate Subsetting Strategy”

� “Understand and Control Random Access”

The "Tuning Options" section shows options you can use to control the grouping of
observations in messages between servers and users:

� TBUFSIZE=

� TOBSNO=

Minimizing and Optimizing Resource Consumption

Now that you understand how SAS and SAS/SHARE software use files and computer
resources, it’s time to apply that knowledge to the design and implementation of your
applications.

The most productive way to optimize the performance of your application is
programming it to work as efficiently as possible. You can almost always realize more
performance improvement by coding your application to exploit features of SAS than
you can gain by adjusting the operation of SAS.

When you decide to adjust SAS to operate differently, remember that tuning is a
balancing act and invariably requires compromise. Of course, to effectively tune SAS
you must understand what your application’s bottlenecks are.

This section will first list some programming techniques that are based on the
information presented earlier in this paper. After that, the tuning options of
SAS/SHARE software and SAS will be described.

Tuning Tips for Applications That Use SAS/SHARE Software � Programming Techniques 221

Programming Techniques

Clean Up Your Data Files

The most obvious way to reduce the amount of work done by a server is eliminating
unused variables and observations from the files that are accessed through the server.
To make sure that your files are no larger than they need to be, periodically remove or
archive unused data.

As a SAS data file matures, users add new observations, update existing observations,
and forget about old observations. In most cases the level of activity is greatest on the
newest observations. If the users of your application do not frequently access older
information, consider moving older observations from files that are concurrently
updated to archive files that are accessed directly (instead of through a server).

Also as a SAS data file matures, new variables are added, some variables turn out to
be larger than they need to be, and some variables lose their usefulness. Periodically
check your application’s SAS data files for variables that are longer than they need to
be and for variables that are no longer used.

While compressing a SAS data file reduces the number of pages in it, compression
cannot be as efficient at eliminating unused space as you can be by deleting unused
observations and variables and by shortening variables that are longer than necessary.

Smaller data files improve the performance of all SAS sessions by reducing the
amount of disk space required by each file, by reducing the number of I/O operations
required to process the data in each file, and by reducing the number and size of
messages required to transmit the data in a file between a server and its users.

Choose the Appropriate Subsetting Strategy

Creating a subset of the observations in a SAS file can consume large amounts of the
I/O and messages resources. There are several subsetting techniques available in SAS:

� any WHERE clause that is optimized by the use of an index

� any WHERE clause that is not optimized by the use of an index

� the subsetting IF statement in the SAS DATA step

� the FIND, SEARCH, and LOCATE commands in SAS/FSP procedures

When an index is not used to locate directly the observations that satisfy a WHERE
clause, the process in the server’s session must read observations from the data file
until it finds one that matches the WHERE clause. This can consume a very large
amount of the I/O and CPU resources. Those resource requirements can be greatly
reduced when the variables in the WHERE clause are indexed.

The subsetting IF statement in the DATA step and the FIND, SEARCH, and
LOCATE commands in SAS/FSP procedures perform the specified comparison in the
user’s SAS session instead of in a process in a server. This requires that every
observation in the SAS data set be transmitted from the server’s session to the user’s
session, which can consume a very large amount of the messages resource, in addition
to the I/O and CPU resources required to read the data file. Because the comparisons of
a WHERE clause are performed in the server’s session, only the selected observations
are transmitted to the user’s session and the message resource is conserved.

The I/O resource consumption is the same unoptimized WHERE, subsetting IF, and
FSP’s FIND, SEARCH, and LOCATE. Using WHERE clauses is recommended,
however, because the messages resource consumption is higher for the subsetting IF
statement and the FIND, SEARCH, and LOCATE commands.

222 Programming Techniques � Appendix 3

Index Wisely

Indexing is a tool that optimizes WHERE clause selection of observations from SAS
data sets. A WHERE clause without an index requires the process in the server to read
every observation in a SAS data set to find the observations that match the WHERE
selection criteria. An index often enables the server to locate the records that satisfy a
WHERE clause without having to read the records that do not match.

Adding indexes might be a good idea if your application seems to be taking too long
to execute WHERE clauses. However, indexes require extra memory and might present
a problem for a server that is memory constrained.

A complete description of index usage can be found in the paper "Effective Use of
Indexes in the SAS System," in the Proceedings of the SAS User’s Group International
Sixteenth Annual Conference.

Look at a Clock Before You Create an Index

When a SAS data file is accessed through a server, creating an index on it prevents
the server from responding to other users’ requests. While it can be useful to create an
index while a data file is accessed through a server, indexes on large files should be
created after hours. Indexes on large data files should not be created while a server is
expected to respond quickly to users’ requests.

Choose Page Size Wisely

Larger page sizes can be used to reduce the number of I/O operations required to
process a SAS data file. But it takes longer to read a large page than it takes to read a
small one and larger pages can increase the memory load on a server.

Large page sizes can be useful if most of the observations on each page are likely to
be accessed each time the page is read into the server’s memory, or if a large page size
causes all or most of a SAS data file to be kept in the server’s memory. Otherwise, large
page sizes can increase the amount of time required to perform I/O activity in the
server’s SAS session to the detriment of the server’s ability to provide timely response
to users’ requests.

Understand and Control Random Access

It is often worth the effort to study the order in which the users of your application
access the data in your application’s files. That tells you how widely dispersed your
users’ patterns of reference are. Sometimes you can reduce the amount of dispersal by
sorting one or more files by a variable (like date last updated) that happens to correlate
(even to a small degree) with your users’ pattern of access.

Here are the components of SAS that are used most frequently to access data in a
random order:

� the "n" (position to observation number) command of a SAS procedure

� the POINT= option in the SET and MODIFY statements in the DATA step

� the KEY= option in the SET and MODIFY statements in the DATA step

� the FETCHOBS() function in SAS Component Language

� the SETKEY() function in SAS Component Language

� the use of an indexed variable as a BY variable

Tuning Tips for Applications That Use SAS/SHARE Software � Programming Techniques 223

Specify Sequential Access When an SCL Program Doesn’t Need Random
Access

The SCL OPEN() function allows you to specify that a file will be sequentially
accessed (the default is random access). There are two types of sequential access that
can be requested with SCL OPEN():

� strict sequential (’IS’ for input and ’US’ for update)
� limited sequential (’IN’ for input and ’UN’ for update)

The server will by default transmit multiple observations per read for either ’IS’ or
’IN’ open modes.

If the application’s use of data is predominantly sequential, but you occasionally need
to reread a previously read observation, then use a mode of ’IN’ or ’UN’ in your SCL
OPEN() function. If the application’s use of data is strictly sequential (you will never
revisit a previously read observation) then use the open mode ’IS’ or ’US’. The ’IS’ and
’US’ open modes are the most efficient for SCL. An ’IS’ or ’US’ open mode, however, will
restrict an SCL application to those functions that access data sequentially. Here are
the SCL functions that access data in a random pattern:

� FETCHOBS()
� DATALISTC()
� DATALISTN()
� POINT()

Specifying an access pattern in an SCL OPEN() function is documented in the OPEN
function section in SAS Component Language: Reference. Here is an example of
specifying a sequential access pattern in an SCL OPEN() function:

DSID = OPEN(’MYLIB.A’, ’IN’);

Limit the Number of Files Open During Execution of an SCL Program
An open file consumes memory in both users’ and servers’ SAS sessions. If a server

consumes too much memory, check the applications that access data through that
server to see if any of them open files before they are needed or leave files open when
they are not being used.

There are three strategies for using SAS data sets in an SCL program:
� open during initialization of the application and leave open until the application

terminates
� open as needed, then leave open until the application terminates
� open as needed, then close as soon as possible

The initialization code of an application is the place to open the SAS data sets that
will be used throughout the execution of the application. But if an application’s
initialization code must open a large number of files, the time it takes to get started can
be long. By studying how an application is used, you might discover some SAS data
sets that can be opened as functions are requested while the application executes,
which can reduce the amount of time the application takes to initialize and reduces the
concentration of time required to open files.

Whether they are opened during initialization or later, lookup tables that are small
should usually not be closed until an application terminates because the single I/O
buffer required by such a lookup table does not require a large amount of memory. In
such a case it is frequently economical to use a small amount of the memory resource to
conserve the CPU resource that would be required to open and close the lookup table
over and over.

224 Programming Techniques � Appendix 3

Larger SAS data sets, and SAS data sets that are used extremely infrequently (for
example, once during initialization) or during a seldom-used function (for example, a
lookup table on a rarely updated field), should usually be left closed whenever they are
not being used.

Evaluate Each Report’s Timeliness Requirement
Consider how frequently each of your application’s reports is generated and how

timely the data summarized by the report must be. If a report must be based on
current information, it must be based on files that are concurrently updated. A report
that does not require up-to-the-second information can be generated from files that are
directly (and inexpensively) accessed instead of files that are accessed through a server.

For example, a travel agent making reservations or a stock broker making trades
require every query to show up-to-the-second information. On the other hand, daily
reports or analysis of long-term trends can use data that are out of date by several
hours, several days, or even several weeks or months.

When copying data from a server, it can be subset horizontally with a WHERE
clause, and it can be subset vertically with a DROP= or KEEP= data set option. (In
relational terminology, the horizontal subsetting is selection and vertical subsetting is
projection.) Be sure to take advantage of both methods when copying a file from a
server to make the copy of the file as small as possible and, therefore, ensure that
reports are generated as efficiently as possible.

Don’t forget that files can be stored in users’ WORK libraries. It can be most efficient
to copy a file that is concurrently updated from a server to a user’s WORK library and
then use that file more than one time to generate reports. Such a copy of a file contains
very timely data yet is not especially expensive to create or use.

A SAS data file that is accessed directly is almost always less costly to use than a file
that is accessed through a server.

Be Aware of How Frequently Each File Is Updated
Many applications contain one or more query functions that use a lookup file to offer

a user a set of values that are valid to enter into a field. Such a file is read, but never
updated, by the majority of the users of the application. Occasionally, values must be
added to and removed from the lookup files as the valid input data for the application
changes.

A lookup file that is used frequently and updated less often than once a week is likely
to be a good candidate for not being accessed through a server, if it would be easy to
find some time during the week when the files can be updated because the application
is not being used. On the other hand, a lookup file that is updated many times each day
should, in many cases, be accessed through a server because updating the file will be
convenient: the lookup file can be updated while users use it to perform queries.

SAS catalog entries illustrate another way that update frequency can change.
An application might use only a few or many catalog entries. Like lookup files,

catalog entries that are updated frequently are likely candidates for access through a
server. But catalog entries that are never changed, or only changed very infrequently,
should not be accessed through a server.

The update frequency might change for some of an application’s catalog entries over
time. For example, while an application is under development and being tested, it can
be extremely convenient for the developers of the application to be able to update any
catalog entry while those testing the application continue with their work. During this
phase, the convenience of accessing the catalog entries through a server can more than
pay for the cost of the overhead of server access. After the testing is completed and the
application has stabilized, some or all of the application’s catalogs can be moved to a
SAS library that is accessed directly by the users of the application; in this phase

Tuning Tips for Applications That Use SAS/SHARE Software � Tuning Options in SAS/SHARE Software 225

efficient access by the users is more important than being able to update the catalog
entries conveniently.

Remember that not all of an application’s catalog entries must be accessed the same
way. Catalog entries that must be frequently updated can continue to be accessed
through a server, while other catalog entries that change very seldom can be stored in
SAS catalogs that are accessed directly by the users of the application.

Know Your Application’s DATA Step Views

While it is creating each observation, a process in a server’s session that is
interpreting a DATA step view does not yield control to allow other processes in the
server to execute other users’ requests. While DATA step views can be useful in a
server, they must be used carefully. A DATA step view that requires a small amount of
processing to create each observation will not prevent other processes in a server’s SAS
session from responding to other users’ requests. But a DATA step view that contains
many DO loops with many calculations, and reads (or even writes) many records in
external files or SAS data sets, can take a very long time to create each observation.
Such a DATA step view should not be interpreted in a server’s session because it does
not yield control until each observation is created.

If it is advantageous to your application for its DATA step views to be interpreted in
a server’s session, be sure that any external files read by the DATA step view are
available to the server’s SAS session.

Tuning Options in SAS/SHARE Software

SAS/SHARE software makes some assumptions about the relative values of
resources. For example, SAS/SHARE software considers messages to be more expensive
than memory so it attempts to use more memory to reduce the number of messages.
The default values and behavior might not be optimum for your application, so you
have the opportunity to adjust the following:

� when and in what amounts observations are transmitted in groups instead of
individually

� which SAS data views are interpreted in users’ SAS sessions and which are
interpreted in the server’s SAS session

� how frequently a long-running process in a server’s SAS session yields to allow
other users’ requests to be processed

SAS/SHARE software automatically attempts to conserve the message resource by
transmitting observations in groups whenever possible. Observations can always be
transmitted in groups when a data set is being created or replaced, but when a data set
is opened for update access it is never appropriate to transmit more than one
observation at a time. The grouping of observations when a data set is opened for input
depends on the situation; you control whether observations are transmitted in groups
according to these factors:

� whether the data set is opened for random or sequential access

� the control level of the data set

� the use of the TOBSNO= data set option to override the default behavior

226 Tuning Options in SAS/SHARE Software � Appendix 3

Here are the factors that control how many observations are transmitted in each
group:

� the value specified for the TBUFSIZE= option in the PROC SERVER statement
� the value specified for the TOBSNO= data set option

TBUFSIZE= Option in PROC SERVER
The TBUFSIZE= system option in the PROC SERVER statement specifies the

suggested size of a buffer that the server uses for transmitting information to or
receiving information from a client. When this option is not specified in the PROC
SERVER statement, the value of the TBUFSIZE SAS system option, if specified, is
used. The default value is 32K.

A key use of these transmission buffers is in transmitting observations. The server
uses the TBUFSIZE value when computing the number of observations to transmit in
each multi-observation transfer between the server and the client sessions. However if
the observation size, plus overhead, exceeds the TBUFSIZE value, only
single-observation transfers are done. Specifying an excessive value for TBUFSIZE=
might cause your server or clients to run out of memory and to terminate abnormally.

You cannot calculate the number of observations per transfer by dividing the
observation length into the value that you specify for the TBUFSIZE= option. To
determine the effect of this option on your data sets, use the PROC SERVER options
LOG=MESSAGE and ACCTLVL=DATA and compare the number of messages
exchanged between the server and the client sessions as a function of the value of the
TBUFSIZE= option and the number of observations in the data set.

Here is an example of using the TBUFSIZE= option:

PROC SERVER TBUFSIZE=128K
<other PROC SERVER options>;

TOBSNO= Data Set Option
Independently of the TBUFSIZE= option’s effect on a server’s overall behavior, you

can control the number of observations per group for individual data sets that are
accessed through the server. For example, if you specify TOBSNO=3, three observations
will be sent in each message.

The TOBSNO= option can be specified wherever SAS data set options are accepted:
as an argument to the OPEN() function of SAS Component Language, in the DATA=
option in a SAS procedure, and in the SET, MERGE, UPDATE, and MODIFY
statements in the DATA step. It must be specified for each data set for which you want
grouping behavior that is different from the default.

When a data set is opened for input with a sequential access pattern, a server
calculates the number of observations per group as the smallest of the following:

� the number of observations in the data set
� 100
� the number of observations that will fit into an MOTB

When a SAS data set is opened for input with a random access pattern, the default
behavior is transmitting observations individually (the group size is one). This ensures
that a user always receives up-to-date data when they position to an observation, and it
reduces wasted communications bandwidth because no observations are transmitted to
a user’s session except the specific observations requested.

At other times, the TOBSNO= data set option can be used to increase the number of
observations transferred in each group. For example, consider an SCL program in

Tuning Tips for Applications That Use SAS/SHARE Software � Tuning Options in SAS/SHARE Software 227

which the SAS data set DSID is passed to a DATALISTC() or DATALISTN() function.
The data set is read from beginning-to-end by the function, and then the observation
chosen by the user is reread. Because by default the OPEN() function of SCL specifies a
random access pattern, observations for that DSID are transmitted individually. But
the access pattern of the DATALISTC() and DATALISTN() functions is really skip
sequential, so transmitting observations individually is not optimum. TOBSNO=4 could
be specified in a case like this to reduce the number of messages by three-quarters.
(Note that the user could change the open mode from ’I’ to ’IN’ as an alternative to
specifying the TOBSNO= data set option.)

The number of observations transmitted when a data set is opened for input is
summarized below. Here is an example of using the TOBSNO= data set option:

PROC FSVIEW DATA=MYLIB.A(TOBSNO=10);

RMTVIEW= and NORMTVIEW Options
Consider each SAS data view used by your application and determine whether the

view should be interpreted in the server’s SAS session or the users’ SAS sessions. You
decide where to have a view interpreted according to these considerations:

� How many observations does the view produce?

� How much data is read by the view?

� Where is the data that is read by the view?

� How much work must the computer do to interpret the view?

Some PROC SQL views are especially good candidates for interpretation in a server’s
SAS session because the number of observations produced by the view is much smaller
than the number of observations read by the view, the data sets read by the view are
available to the server and the amount of processing necessary to build each
observation is not large.

Other PROC SQL views should be interpreted in users’ SAS sessions because the
number of observations produced by the view is not appreciably smaller than the
number of observations read by the view, some of the data sets read by the view can be
directly accessed by the users’ SAS sessions, and the amount of processing done by the
view is considerable.

By default, SAS data views are interpreted in a server’s SAS session, but the
RMTVIEW= option in the LIBNAME statement enables you to have the views in a
library interpreted in users’ SAS sessions instead. The NORMTVIEW option in the
PROC SERVER statement enables you to prevent all SAS data views from being
interpreted in the server’s session.

SAS/ACCESS views do not provide update access to the underlying database when
they are interpreted in a server’s session, so it is often more practical to interpret
SAS/ACCESS views in users’ SAS session.

If it is useful for your application to have a SAS/ACCESS view interpreted in a
server’s session, ensure that all of the necessary database interface components are
available to the server’s session.

If a user’s SAS session is capable of using a SAS/ACCESS interface engine to access
the underlying database, it is more efficient to execute the SAS/ACCESS interface
engine in the user’s SAS session. Note that in this case it might be convenient to store
the view file in a SAS library that is accessed through a server if the view will be
updated frequently and used by more than one user.

Like SAS/ACCESS views, DATA step views are very often most useful when
interpreted in users’ SAS sessions. For more information about interpreting DATA step
views in a server’s session, see “Know Your Application’s DATA Step Views” on page 225.

228 SAS System Options � Appendix 3

For a complete description of the RMTVIEW= option in the LIBNAME statement,
see Chapter 10, “Remote Library Services,” on page 123.

Here are some examples of specifying the RMTVIEW= and NORMTVIEW options:

LIBNAME MYLIB ’my SAS library’
RMTVIEW=YES
<other LIBNAME options>;

PROC SERVER NORMTVIEW
<other PROC SERVER options>;

LRPYIELD= Option in PROC SERVER
Some components of SAS yield control periodically and can be directed to do so more

or less frequently than their default rate. These components are called long-running
processes and include evaluating WHERE clauses and interpreting PROC SQL views.

Changing the rate at which control is yielded is delicate because the act of yielding
control consumes some CPU resource: increasing the frequency at which control is
yielded increases a server’s CPU consumption all by itself. You can change the rate at
which the processes in a server yield control by varying the value of the PROC SERVER
option LRPYIELD=. The default value of this option is 10,000; the option has no units.

To make long-running processes yield relatively more frequently, specify a value
greater than 10,000. While a higher value might have the effect of providing more even
response time to a server’s users, this comes at the expense of increased consumption of
the server’s CPU resource. Also, the processes that run for a long time run even longer
when they are asked to yield more frequently.

To make a long-running process yield less frequently, specify a value smaller than
10,000. A lower LRPYIELD= value might make some individual user requests (like an
SQL join with a sort) complete sooner, but the server’s other users are forced to wait as
the long-running process does more work before it yields control. Response time can
become more uneven when long-running processes are allowed to yield less frequently.

This option is documented in Chapter 9, “The SERVER Procedure,” on page 107.
Here is an example of specifying the LRPYIELD= option:

PROC SERVER LRPYIELD=5000
<other PROC SERVER options>;

Multiple Servers
This is not an option you specify in a SAS program statement; instead it is a method

of managing the workload of concurrent access to SAS data sets.
If you determine that a server is consuming too much of a resource and you can not

reduce the server’s consumption of that resource any further, creating an additional
server allows you to divide your applications’ workload among several servers.

SAS/SHARE software includes a family of SAS macros that help you manage SAS
file access through multiple servers. Those macros are documented in Chapter 6, “SAS/
SHARE Macros for Server Access,” on page 77.

SAS System Options
SAS has several SAS I/O tuning options. These options are most relevant to

applications that access data through a server:
� the BUFSIZE= data set and system option
� the COMPRESS= data set and system option

Tuning Tips for Applications That Use SAS/SHARE Software � Introduction 229

BUFSIZE= Option
When a file is created, use the BUFSIZE= data set option to specify the size of the

pages of the file. The SAS default page size is optimum for files that are processed
sequentially, but it might not be optimum when the observations of a file are accessed
in random order. PROC CONTENTS shows the page size of a SAS data file.

You might find it useful to balance the pattern in which a file is randomly accessed
against the number of observations stored on each page of the file. If most random
access sequences access observations in very different locations in the file, then a small
page size will improve performance because most of the observations on each page are
not used. On the other hand, if most random access sequences are likely to be to
observations that are physically near each other in the file, you might be able to take
advantage of a large page size to have many of the observations read from the file into
the server’s memory at once.

If you want to keep all or most of a SAS data file in memory, you can choose a very
large page size. Of course, this can consume a lot of the server’s memory so you should
use such a page size only when you really want to. If you expect that not much data
from a large file will need to be in memory at one time, choose a small page size to
make reading and writing each page as fast as possible.

If you find that your server is spending a significant amount of time waiting for I/O
operations to complete, consider recreating the files that are not used for sequential
access with a smaller page size.

Here is an example of using the BUFSIZE= data set option:

DATA MYLIB.A(BUFSIZE=6K);
SET MYLIB.A;

RUN;

COMPRESS= Option
This option is used to cause a SAS data file to be stored in compressed format.

Compressing files usually makes them smaller, so a server is able to read more
observations per I/O request when a file is compressed. The reduction in file size for a
compressed file (which conserves the I/O resource) is paid for, though, by an increase in
the consumption of the CPU resource (which is used to decompress the observations as
the file is read). If your server is CPU-bound, compression could do more harm than
good, but if your server is I/O-bound, compression could reduce its consumption of the I/
O resource.

Using Operating Environment Tools

Introduction
Up to this point, we have been looking at SAS application and server performance

from an internal point of view. Now we turn to an external point of view. By
performance externals, we mean several things. First, at what rate is a server
consuming resources such as CPU, memory, and DASD I/O? Second, with what other
workloads is a server competing for these resource? And third, what policy is being
used to manage a server’s access to resources with respect to other work in the system?

There are several monitors available for MVS and VM to help you analyze a server’s
resource utilization and contention with other workloads. On MVS, most sites license
the IBM RMF product. RMF Monitor II and Monitor III support interactive analysis of
SAS/SHARE performance. Also available on MVS are Candle Corporation’s Omegamon

230 Managing CPU � Appendix 3

and Landmark System’s TMON for MVS. Prominent products on VM include
Omegamon from Candle Corporation and XAMAP and XAMON from Velocity Software.

These monitors can help you answer the following questions:
� Are my servers getting appropriate access to resources?
� Is another workload causing a severe contention problem for one of my servers?

For example, is my server fighting with another application over access to the
same disk drive?

� What resource bottlenecks are most critical to my applications? Where should I
direct my tuning efforts?

Often, solutions to resource utilization problems result in making trade-offs among
resources. For example, you might be able to reduce I/O by allocating additional
buffers. But the additional buffer allocation will take more memory. Use of one of these
monitors can help you evaluate the effectiveness of the trade-off.

It is beyond the scope of this paper to tell you exactly how to use specific operating
environment performance monitors. We are making the non-trivial assumption that you
or someone else on your staff have that knowledge. Basically, every system has three
principal resources: CPU, I/O, and memory. We will look at examples of managing each
of these for servers:

Managing CPU
The most critical factor here is assuring that your servers are getting a reasonable

share of the available CPU time. Servers in general ought to run at a higher (for
example, transaction monitors and database servers). You can tune your SAS/SHARE
application meticulously only to be foiled if a background process (for example) is
preventing your servers from getting CPU time.

If CPU time is a scarce resource on your system, that is your system is usually
running at very high CPU utilizations, then you need to consider SAS/SHARE tuning
actions which can reduce CPU time. Two specific examples are type of server
connection and whether to use data compression.

Managing I/O
The first thing to consider here is the amount of contention with other work on the

system. Are your SAS libraries competing with other work on channels, disk
controllers, or disk drives which are too busy? Too busy on I/O channels and control
units is highly specific to each operating environment and hardware vendor. But in
general it is safe to say that if a disk drive is consistently above twenty percent busy,
then off-loading work from that drive ought to be considered.

If there is no significant contention with other work, then you need to consider
spreading application libraries using SAS/SHARE across multiple disks.

If waiting for I/O is still a problem for your servers, then you need to consider
SAS/SHARE tuning options which can reduce I/O time. These include using smaller
page sizes for randomly accessed data, adding indexes for randomly accessed data, and
possibly using data compression. Data compression is a specific example of the resource
trade-off problem mentioned earlier. Data compression can reduce I/O and disk storage
but will increase CPU time.

Tuning Tips for Applications That Use SAS/SHARE Software � Conclusion 231

Managing Memory
Memory is an interesting resource in that it directly affects both CPU and I/O

resource consumption. Too little memory increases both. Additional memory can reduce
both. The most critical factor here is to ensure that your servers have sufficient memory
to prevent excessive wait for paging. Most operating environments have controls to
differentiate the amount of memory given to various workloads on the system.

If real memory is a scarce resource on your system, then you need to consider
SAS/SHARE tuning actions which reduce memory consumption. Chief among these are
reducing data set page sizes to reduce I/O buffer memory requirements and using
shared SAS system images where possible.

Conclusion

The concurrent access capabilities that SAS/SHARE software adds to SAS give
developers opportunities to create applications that allow their users to have up-to-date
data and to be more productive.

Such applications use SAS in new ways. This paper has discussed areas to be aware
of and ways to trade usage of one resource for another. This information enables
developers of applications that take advantage of concurrently accessed data to write
those applications to use the available computer resources in the most efficient ways
possible.

232

233

A P P E N D I X

4
SAS Component Language (SCL)
Application

Introduction to the SAS Component Language (SCL) Application 233
Audience 233

Inventory and Order System 234

Overview 234

Customer Information 234

Inventory Information 234
Orders Information 234

The Inventory/Order System SCL Application 235

Introduction to the SAS Component Language (SCL) Application
The SAS Component Language (SCL) application that is presented in this appendix,

when used with the FSEDIT procedure or the FSEDIT command, implements an
order-processing and inventory-maintenance system. Because the purpose of this
example is to illustrate SCL programming techniques, some error-handling and
user-friendly enhancements were omitted to keep the example as clear as possible.

This example exploits the features of SAS/SHARE that allow several users to update
a SAS data set at the same time. That capability automates maintenance of the
inventory data and allows data about the orders to be maintained centrally, which can
facilitate analysis of the orders that have been received.

Audience
This example is for SAS application programmers who are familiar with SCL and

with the FSEDIT procedure and FSEDIT command.

234 Inventory and Order System � Appendix 4

Inventory and Order System

Overview
There are three general types of data that are involved in an order-processing

system:
� customer information, which includes name, address, and a customer number that

uniquely identifies the customer
� inventory information, which tracks the amount of each item that is in stock at

any specific time
� orders information, which identifies items in inventory that a customer has placed

an order for

Customer Information
In order to simplify this example, the application in this section does not include a

customer data set. This SCL program, which is expanded for use in an actual
order-processing system, would open the customer data set during the FSEINIT step
and close it during the FSETERM step.

The customer data set is ideal to access through a SAS/SHARE server to keep
information up-to-date, such as customers’ address changes, and contact information.

For the purpose of entering orders, the customer data set would usually be opened
for read-only access through the server, because customer information is not usually
updated at the time an order is taken.

Updating the customer data would ordinarily be done by using a second FSEDIT
application that would also access the data set through the server. That application
would be available to customer service representatives and administrative personnel.

Inventory Information
In this example, the inventory data is accessed through a SAS/SHARE server. The

data is completely hidden from the user of the order-entry application. The purpose of
this example is to show how to maintain information automatically in a SAS data set.

The inventory file is also ideal for accessing through a SAS/SHARE server to keep
the available quantity of each item current.

In the order-processing example, the inventory data set is opened for update access
through the server. Read-only access to the inventory data set might be given for the
reporting programs that are run either nightly or on-demand, which would also access
the data set through the server. The inventory reporting and analysis programs are not
included in this example.

In a mature inventory-management system, there would be additional access to the
inventory data by employees who receive merchandise. This example shows only the
order-processing side (the “inventory depletion” process), but it is important to
remember that replenishing inventory must also take place. Accessing the inventory
data by using a SAS/SHARE server allows both the ordering and the receiving
operations to maintain current information in the inventory file.

Orders Information
The orders data set is a series of transactions. When a product is ordered, that event

is recorded in the orders data set. This makes the orders data set a time-based record

SAS Component Language (SCL) Application � The Inventory/Order System SCL Application 235

of events, which is quite different from the type of information that is maintained in the
customer and the inventory data sets.

Accessing the orders data set through a SAS/SHARE server allows all order
information to be captured in a single file. This enables simplified reporting and
analysis of the orders data, which can be performed on current information at any time.

In this example, the data set ORDERS is updated by the users of the application.
Reporting and analysis of the orders data, which is not shown here, can be
accomplished with read-only access to the data set ORDERS through the server.

The Inventory/Order System SCL Application

The following sample application is referred to in “SCL Programming
Considerations” on page 50. See that section for more information about updating
concurrently shared data in SCL applications.

/*--

* Inventory/Order System SCL application for use with PROC FSEDIT

* when editing an orders data set.

*

* CAUTION:

* + The deletion of a non-null order (quantity>0) results in an

* error message being written to the SAS log because the inventory

* data set will not have been updated to reflect the returned

* inventory.

* + Do not issue a DELETE command to cancel a new order (not yet added to the

* data set ORDERS). In this case, the

* program will not detect a cancel or delete condition and will

* debit the inventory for the quantity in the cancelled order.

*

* The SCL program included here is designed to run with the following

* set up and data set prototype:

*

* The data set ORDERS has these variables:

*

* o PRODUCT type=character /* Product Code */

* o QUANTITY type=numeric /* Amount of Order */

*

* The INVENTOR data set has these variables:

*

* o CODE type=character /* Product Code */

* o DESC type=character /* Product Description */

* o INVENT type=numeric /* Stock on hand */

*

*

*

* For information about selecting a communications access method

* and server name, see Chapter 3.

* To start a SAS/SHARE server to access the data that is used by this

* example, execute these SAS statements in a SAS session:

*

* OPTIONS COMAMID=communications access method;

236 The Inventory/Order System SCL Application � Appendix 4

* LIBNAME DLIB ’physical name’;

* DATA DLIB.INVENTOR;

* CODE=’ABC’; DESC=’PRODUCT ABC’; INVENT=100;

* RUN;

* DATA DLIB.ORDERS;

* PRODUCT=’ABC’; QUANTITY=20;

* RUN;

* PROC SERVER ID=server name; RUN;

*

* To create a client SAS session that you can use to execute this

* example, execute these SAS statements in a second SAS session:

*

* OPTIONS COMAMID=communications access method;

* LIBNAME DLIB SERVER=optional computer name.server name;

* /* EDIT AND COMPILE SCL PROGRAM ON SCREEN AND RUN IT */

* PROC FSEDIT DATA=DLIB.ORDERS

* SCREEN=DLIB.DISPLAY.ORDERS.SCREEN; RUN;

--/

length rc 8 ; /* System return code storage */

length invent 8 ; /* Current n of items inventoried*/

FSEINIT:

/*--

/ Open the product control data set and save the needed variable

/ numbers. "Control term" ensures non-null deletions can be

/ detected in TERM.

/---*/

codeid=open(’dlib.inventor’,’U’);

vdesc=varnum(codeid,’desc’);

vinvent=varnum(codeid,’invent’);

control term;

return;

INIT:

/*--

/ Save initial order values for later. For a pre-existing order,

/ get the inventory info (item description) for the display, and

/ do not forget to unlock the record. Also prohibit *changing*

/ the product code on a pre-existing order by using the FIELD

/ function.

/---*/

msg=’ ’;

sav_prod=product; sav_quan=quantity;

if (obsinfo(’new’)) then do;

oldorder=0;

rc=field(’unprotect’,’product’);

if (product=’ ’) then link needcode;

return;

SAS Component Language (SCL) Application � The Inventory/Order System SCL Application 237

end;

oldorder=1;

link getrec;

rc=unlock(codeid);

rc=field(’protect’,’product’);

return;

MAIN:

/*--

/ For a change in quantity or for a new order, fetch (and lock) the

/ inventory record, validate the request, and update the

/ inventory data set. In either case, if all operations succeed,

/ issue a SAVE command in the primary data set so that the data set

/ cannot be made out-of-sync with the inventory due to a

/ subsequent CANCEL command from the user.

/---*/

if (_STATUS_=’C’) then return;

else if (product=’ ’) then link needcode;

else if (sav_quan^=quantity or ^oldorder) then do;

/* Try to lock inventory record to update. */

loop_cnt=0;

lokloop: loop_cnt=loop_cnt+1;

link getrec;

if (not gotrec) then return;

if (rc=%sysrc(_swnoupd)) then do;

if (loop_cnt<500) then goto lokloop;

msg=’Error: Product was locked.’;

erroron product;

return;

end;

/* Check and debit the inventory. */

link chkquan;

if (not quanok) then goto unlok;

invent=invent-quantity;

call putvarn(codeid,vinvent,invent);

rc=update(codeid);

if (sysrc()>0) then do;

msg=sysmsg();

erroron product;

goto unlok;

end;

/* Force FSEDIT to save the observation so that */

/* the primary data set will be up-to-date now. */

call execcmd(’save;’);

/* In case user did not leave observation, */

238 The Inventory/Order System SCL Application � Appendix 4

/* clarify that this order is saved. */

sav_prod=product; sav_quan=quantity;

oldorder=1;

unlok: rc=unlock(codeid);

end;

return;

getrec:

/*--

/ Usually, this section fetches the record of the inventory

/ data set that you want. If it is successful, ’gotrec’

/ will have value 1; else, 0. This section leaves the fetched

/ record locked.

/---*/

gotrec=0;

rc=WHERE(codeid,"code=’"||product||" ’");

if (rc>0) then do;

msg=’WHERE: ’||sysmsg();

erroron product; return;

end;

rc=FETCH(codeid);

if (rc>0) then do; /* Error! */

msg=’FETCH: ’||sysmsg();

erroron product; return;

end;

else if (rc=-1) then do;

/* Product not found but no error. */

msg=’ERROR: The product code is invalid. Please re-enter’;

erroron product; return;

end;

else gotrec=1;

desc=getvarc(codeid,vdesc);

invent=getvarn(codeid,vinvent);

return;

chkquan: /* Check the amount available */

/*--

/ This section checks that the available inventory is sufficient

/ for the quantity that is being requested. If so, ’quanok’ will

/ have value 1; else, 0. This section may modify ’invent’ if a

/ quantity change is being verified.

/---*/

quanok=1;

/* If just a quantity change, add back old quantity. */

if (oldorder) then invent=invent+sav_quan;

if (quantity=0) then do;

msg=’This order is null due to a zero quantity’;

cursor quantity;

end;

else if (quantity>invent) then do;

SAS Component Language (SCL) Application � The Inventory/Order System SCL Application 239

msg=’ERROR: Available stock is ’ || put(invent,best.);

erroron quantity;

quanok=0;

end;

return;

needcode:

/*--

/ Ask user to enter product code. Set ERRORON to prevent exiting

/ the observation.

/---*/

msg=’Please enter a product code’;

desc=’ ’;

erroron product;

return;

TERM:

/*--

/ For safety, check if the user accidentally deleted a non-null

/ observation, which we are leaving, and log an error message if so.

/---*/

if (oldorder & sav_quan & obsinfo(’deleted’)) then

put ’ERROR: Order consisting of ’ sav_quan

’units of product number ’ sav_prod ’has been deleted.’;

return;

FSETERM:

/*--

/ Termination: Close the lookup data set if it was

/ successfully opened.

/---*/

if (codeid>0) then rc=close(codeid);

return;

240

241

A P P E N D I X

5
SAS/SHARE Cross-Version
Issues, SAS 9.2

Limitations of Cross-Version Client/Server Access 241
Consequences of a Client/Server Upgrade to SAS 9.2 241

Upgrade: Definition 241

Data Migration 242

Access Restrictions Following an Upgrade to SAS 9.2 242

Observations and Variables: SAS 9.2 and SAS 8 Differences 243
Resolving the Number of Observations and Variables Supported across Versions 243

Number of Variables Supported 243

Number of Observations Supported 243

SAS Files Access in a Mixed Client/Server Environment 244

SAS File Format: Definition 244

Client/Server Access to Version-Specific SAS Files 244
SAS 8 Clients Accessing SAS Files Created on SAS 9.2 Servers 244

Limitations of Cross-Version Client/Server Access
� SAS/SHARE 9 clients and servers can communicate with SAS/SHARE 8 clients

and servers.
� SAS/SHARE 8 clients and servers can communicate with SAS/SHARE 6 clients

and servers.
� SAS/SHARE 9 clients and servers cannot communiate with SAS/SHARE 6 clients

and servers.

The following topics explain how to accommodate these limitations.

Consequences of a Client/Server Upgrade to SAS 9.2

Upgrade: Definition
An upgrade is the process of installing a later version of SAS software over an

existing version of SAS software at the customer site (for example, from SAS 8.2 to SAS
9.2). A system manager at your site is responsible for performing the upgrade.

The result of an upgrade can affect the ability of SAS/SHARE clients and servers to
connect and share data.

242 Data Migration � Appendix 5

Data Migration
Accessing your data is a primary concern after upgrading to a new version of SAS. If

the server (and clients) have been upgraded to SAS 9.2, and you want to make all new
I/O engine features available, you can migrate the data to the release that the server
runs. For complete details about migration, see http://support.sas.com/rnd/
migration.

Access Restrictions Following an Upgrade to SAS 9.2
If you do not migrate your SAS data and applications to the new version of SAS, you

will be accessing SAS files and using SAS applications in a cross-version environment.
Therefore, it is important to be aware of any restrictions when operating in a
cross-version environment. The following tables identify the combinations of
SAS/SHARE clients and servers, the SAS version that they run, and their ability for
access.

Table A5.1 Results of a SAS/SHARE Server Upgrade

Version of SAS/
SHARE

SAS/SHARE Client to Server Access Restrictions after an Upgrade
from One SAS Release to Another SAS Release

SAS 6 to SAS 8 SAS 6 to SAS 9 SAS 8 to SAS 9

SAS 6 Yes1 No2 No2

SAS 8 Yes1 Yes1 Yes1

SAS 9 Required3 Required3 Yes1

1 Yes. After SAS has been upgraded, the client and server can connect and exchange data.
2 No. After SAS has been upgraded, the client and server cannot connect.
3 Required. If SAS is not upgraded, the SAS application cannot run.

Some example results of a SAS/SHARE server upgrade are:
� If a SAS/SHARE server is upgraded from SAS 6 to SAS 9.2, a SAS/SHARE client

that runs SAS 6 cannot access the SAS/SHARE server.
� If a SAS/SHARE client that runs SAS 9.2 and uses applications that are written in

SAS 9.2 wants to access a SAS/SHARE server that runs SAS 6, the SAS 6
SAS/SHARE server must be upgraded to SAS 9.2. If the SAS/SHARE server is not
upgraded, the SAS/SHARE client’s SAS 9.2 applications cannot run.

Some example results of a SAS/SHARE client upgrade are:
� If a SAS/SHARE client is upgraded from SAS 8 to SAS 9.2, a SAS/SHARE server

that runs SAS 9.2 can be accessed by the SAS/SHARE client.
� If a SAS/SHARE client that runs SAS 6 wants to access a SAS/SHARE server that

runs SAS 9.2 and uses applications that are written in SAS 9.2, the SAS 6
SAS/SHARE client must be upgraded to SAS 9.2. If the SAS/SHARE client is not
upgraded, the SAS/SHARE server’s SAS 9.2 applications cannot run on the client.

SAS/SHARE Cross-Version Issues, SAS 9.2 � Number of Observations Supported 243

Observations and Variables: SAS 9.2 and SAS 8 Differences

Resolving the Number of Observations and Variables Supported across
Versions

More observations and variables are supported in SAS 9.2 than in SAS 8.
For example:
� If a SAS 9.2 client accesses SAS files on a SAS 8 server, the client can access as

many observations and variables as the server.
� If a SAS 8 client accesses SAS files on a SAS 9.2 server, the client cannot access as

many observations and variables as the server can store in the file or supply to the
client.

To resolve differences between the number of observations and variables that are
supported in a cross-version environment, SAS/SHARE will support the older version.
For example, a SAS 9.2 server will not present more variables or observations to a SAS
8 client than the client is capable of accessing. Conversely, SAS 8 clients might not be
able to access all the variables or observations in SAS files that are on a SAS/SHARE
9.2 server.

Number of Variables Supported
The maximum number of variables that can be defined in a SAS data set and

accessed by a SAS/SHARE client varies according to the SAS version that is used. The
number of variables that can be defined and accessed in a data set is greater in SAS 9.2
than in SAS 8.

Consequently, a SAS/SHARE 9.2 client can access all the variables in a SAS 9.2 data
set that is on a SAS 9.2 server. Also, a SAS/SHARE 8 client can access all the variables
in a SAS 8 data set that is on a SAS 8 server. However, a SAS/SHARE 8 client can
access only a maximum of 32,767 variables in a SAS 9.2 data set that is on a
SAS/SHARE 9.2 server. Attempts to exceed this limit will result in failure.

Number of Observations Supported
The number of observations in a file is a consideration only if a SAS 8 client must

access observations by number (for example, if the POINT= option in the SET
statement is used). A SAS 8 SAS client that reads through a SAS file sequentially is
not limited by the number of observations in the file.

A SAS 9.2 client that accesses SAS files on a SAS 8 server can randomly access any
observation.

244 SAS Files Access in a Mixed Client/Server Environment � Appendix 5

SAS Files Access in a Mixed Client/Server Environment

SAS File Format: Definition
A SAS file format is the collection of attributes of a SAS file that are specific to the

SAS release. The following are different file formats:
� SAS 9.2
� SAS 8
� SAS 6

The following are characteristics of newer file formats (SAS 9.2 and SAS 8):
� long variable names
� long variable labels
� long data set labels
� integrity constraints
� data set generations

For details about newer file formats, see the topic about comparing SAS 9.2 to earlier
releases in SAS Language Reference: Concepts.

Client/Server Access to Version-Specific SAS Files
Regardless of the version of SAS that the SAS/SHARE client or the SAS/SHARE

server runs, the server automatically selects the correct engine for the format of the
library. An automatic engine selection means that newer clients can access older (SAS
6) SAS files on newer servers (and older clients can access newer files when the files
don’t use new features). To override the server’s automatic engine selection, a SAS
client can specify the RENGINE= option in the LIBNAME statement to tell the server
which engine to use. For example, a SAS 8 client can use the V6 remote engine to
access a SAS 6 file on a SAS 8 server.

For example:

libname grades ’SAS-data-library’ server=shr1 rengine=V6;

However, a SAS/SHARE client cannot access a SAS 9.2 file on a SAS 8 or a SAS 6
server.

A SAS/SHARE 9.2 server can use any SAS library or view engine to search for and
retrieve the SAS files of the specified version. The capabilities of each engine when it is
used by a SAS/SHARE server are the same as the engine’s capabilities when it is used in
a single-user SAS session. For details about the capabilities of each engine in a SAS 9.2
session, see the topic about SAS 9.2 compatibility in SAS Language Reference: Concepts.

SAS 8 Clients Accessing SAS Files Created on SAS 9.2 Servers
Consider the following:
� The SAS/SHARE server has been upgraded to SAS 9.2.
� SAS 9.2 SAS files are being created on the SAS 9.2 server.
� A SAS 8 client has not been upgraded to SAS 9.2.
� Until the SAS 8 client is upgraded to SAS 9.2, the client needs to access the SAS

files that have been created on the SAS 9.2 server.

SAS/SHARE Cross-Version Issues, SAS 9.2 � SAS 8 Clients Accessing SAS Files Created on SAS 9.2 Servers 245

� The SAS 8 client cannot access the SAS 9.2 SAS files on the SAS 9.2 server if the
files contain SAS 9.2 features, such as long format names.

How can the SAS 8 client, which has not yet upgraded to SAS 9.2, but must continue
client/server processing, be accommodated?

As a temporary measure, SAS files on the SAS 9.2 server can be created in SAS 8
format to ensure that SAS 8 clients can access them.

In the SAS application that creates a SAS file, specify the VALIDFMTNAME= option
to ensure that format names are restricted to the length that is supported in SAS 8.
For more information, see the VALIDFMTNAME= System Option in SAS Language
Reference: Dictionary.

246

247

A P P E N D I X

6
Recommended Reading

Recommended Reading 247

Recommended Reading
Here is the recommended reading list for this title:
� SAS/CONNECT User’s Guide

� Moving and Accessing SAS Files
� SAS Language Reference: Dictionary
� SAS ODBC Driver: User’s Guide and Programmer’s Reference

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

248

249

Glossary

access descriptor
a SAS/ACCESS file that describes data that is managed by SAS, by a database
management system, or by a PC-based software application such as Microsoft Excel,
Lotus 1-2-3, or dBASE. After creating an access descriptor, you can use it as the
basis for creating one or more view descriptors. See also SAS/ACCESS view and view
descriptor.

access method
See communications access method.

architectural compatibility
a characteristic shared by two or more operating environments that use identical
internal representations for storing numeric data, character data, or both.
Compatible operating environments use the same standards or conventions for
storing floating-point numbers (IEEE or IBM 390); for character encoding (ASCII or
EBCDIC); for the ordering of bytes in memory (big Endian or little Endian); for word
alignment (4-byte boundaries or 8-byte boundaries); and for data-type length (16- bit,
32-bit, or 64- bit).

architecture
the manner in which numeric data and character data are represented internally in
a particular operating environment. See also architectural compatibility.

authentication
the process of verifying the identity of a person or process within the guidelines of a
specific security policy.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to your computer, and
you can perform other tasks. Batch mode is sometimes referred to as running in the
background. The program output can be written to files or printed on an output
device.

buffer
See transfer buffer.

catalog entry
See SAS catalog entry.

250 Glossary

client
a SAS session that receives services, data, or other resources from a specified server.
The server can run on the same computer as the client or on a different computer
(across a network). See also server, SAS/CONNECT server, SAS/CONNECT client,
SAS/SHARE client, and SAS/SHARE server.

communications access method
an interface between SAS and the network protocol or interface that is used to
connect two operating environments. Depending on the operating environments,
SAS/SHARE and SAS/CONNECT use either the TCP/IP or XMS communications
access method. See also TCP/IP and Cross-Memory Services.

concurrent
pertaining to the simultaneous use of resources by multiple users or applications.

control level
one of the determinants in the kind of lock that a task obtains on a SAS data set or
on an observation in the data set. The control level specifies how other SAS tasks
can access the SAS data set concurrently. Every SAS task has an open mode (input,
output, or update) and a default control level (either member-level control or
observation-level control) for each SAS data set that it accesses, based on how the
task operates on that data set. See also open mode and locking.

Cross-Memory Services
a cross-task communication interface that is part of z/OS. XMS is used by programs
that run within a single z/OS operating environment. XMS is also the name of the
SAS communications access method that uses XMS for client/server communication.
Short form: XMS.

DATA step view
a type of SAS data set that consists of a stored DATA step program. A DATA step
view contains a definition of data that is stored elsewhere; the view does not contain
the physical data. The view’s input data can come from one or more sources,
including external files and other SAS data sets. Because a DATA step view only
reads (opens for input) other files, you cannot update the view’s underlying data.

data value
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation. For example, the variable LASTNAME
might contain the data value Smith.

database management system
a software application that enables you to create and manipulate data that is stored
in the form of databases. Short form: DBMS. See also relational database
management system.

database management system
a software application that enables you to create and manipulate data that is stored
in the form of databases. Short form: DBMS. See also relational database
management system.

DBMS
See database management system.

encryption
the act of transforming intelligible data (plaintext) into an unintelligible form
(ciphertext) by means of a mathematical process.

Glossary 251

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format. There are several types of
engines. See also interface view engine, library engine, and REMOTE engine.

entry type
a characteristic of a SAS catalog entry that identifies the catalog entry’s structure
and attributes to SAS. When you create a SAS catalog entry, SAS automatically
assigns the entry type as part of the name. See also SAS catalog entry.

external file
a file that is created and maintained by a host operating system or by another
vendor’s software application. SAS can read data from and route output to external
files. External files can contain raw data, SAS programming statements, procedure
output, or output that was created by the PUT statement. A SAS data set is not an
external file. See also fileref (file reference).

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS. See also libref.

incompatible operating environments
See architectural compatibility.

index
a component of a SAS data set that enables SAS to access observations in the SAS
data set quickly and efficiently. The purpose of SAS indexes is to optimize
WHERE-clause processing and to facilitate BY-group processing.

interactive line mode
a method of running SAS programs in which you enter one line of a SAS program at
a time at the SAS session prompt. SAS processes each line immediately after you
press the ENTER or RETURN key. Procedure output and informative messages are
returned directly to your display device.

interface view engine
a SAS engine that retrieves data directly from files that have been formatted by
another vendor’s software and which presents the data to SAS in the form of a SAS
data set. Interface view engines are transparent to users and are not specified in
LIBNAME statements. See also engine.

Internet Protocol Version 4
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the predecessor of Internet Protocol
Version 6, uses dot-decimal notation to represent 32-bit address spaces. An example
of an Internet Protocol Version 4 address is 10.23.2.3. Short form: IPv4. See also IP
address and Internet Protocol Version 6.

Internet Protocol Version 6
a protocol that specifies the format for network addresses for all computers that are
connected to the Internet. This protocol, which is the successor of Internet Protocol
Version 4, uses hexadecimal notation to represent 128-bit address spaces. The format
can consist of up to eight groups of four hexadecimal characters, delimited by colons,
as in FE80:0000:0000:0000:0202:B3FF:FE1E:8329. As an alternative, a group of
consecutive zeros could be replaced with two colons, as in
FE80::0202:B3FF:FE1E:8329. Short form: IPv6. See also IP address and Internet
Protocol Version 4.

252 Glossary

IP address
a unique network address that is assigned to each computer that is connected to the
Internet. The IP address can be specified in either of two formats: Internet Protocol
Version 4 (IPv4) or Internet Protocol Version 6 (IPv6). The IPv4 format consists of
four parts in dot-decimal notation, as in 123.456.789.0. The IPv6 format can consist
of up to eight groups of four hexadecimal characters, delimited by colons, as in
FE80:0000:0000:0000:0202:B3FF:FE1E:8329. See also Internet Protocol Version 4
and Internet Protocol Version 6.

IPv4
See Internet Protocol Version 4.

IPv6
See Internet Protocol Version 6.

library engine
an engine that accesses groups of files and puts them in the correct form for
processing by SAS utility windows and procedures. A library engine also determines
the fundamental processing characteristics of the library, presents lists of files for the
library directory, and supports view engines. See also engine, REMOTE engine, and
view engine.

libref
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

locking
a technique for preventing conflicts among requests from different SAS tasks. A task
obtains a lock on a member (for example, a SAS data set) or record (observation)
based on the open mode and control level for that SAS data set. In SAS/SHARE
software, you can lock a SAS library, data set, catalog, or catalog entry by using the
LOCK statement or the LOCK command. See also control level and open mode.

member
a SAS file in a SAS library.

member name
a name that is assigned to a SAS file in a SAS library. See also member type.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB, INDEX,
ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

noninteractive mode
a method of running SAS programs in which you prepare a file of SAS statements
and submit the program to the operating system. The program runs immediately
and comprises your current session.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains either one
data value or a missing-value indicator for each variable.

Glossary 253

open mode
the way in which a SAS task accesses and operates on a member in a SAS library.
There are three open modes for SAS files: input, update, and output. See also control
level and locking.

operating environment
a computer, or a logical partition of a computer, and the resources (such as an
operating system and other software and hardware) that are available to the
computer or partition.

port
in a network, a communications endpoint that is specified by a unique number and a
service name. The port number and the associated service name are configured in a
services file (/etc/services on UNIX). A port enables a SAS client to access a
SAS/CONNECT spawner, an MP CONNECT pipe, a SAS/SHARE server, or a firewall
server. See also SASESOCK engine, pipeline parallelism, firewall, SAS/SHARE
server, and services file.

PROC SQL view
a SAS data set that is created by the SQL procedure. A PROC SQL view contains no
data. Instead, it stores information that enables it to read data values from other
files, which can include SAS data files, SAS/ACCESS views, DATA step views, or
other PROC SQL views. The output of a PROC SQL view can be either a subset or a
superset of one or more files. See also SAS data view.

quiesce
(1) to gradually cause an active server or server library to become inactive by
disallowing new requests to use the resource. (2) to move a user from an active
status to a stopped status. When a quiesced user closes all files in a server library,
the server releases that user’s access to the library. If the user has no open files in an
accessed server library, the server terminates that user’s access to the library
immediately.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. The main characteristic of a relational database
management system is the two-dimensional table. Examples of relational database
management systems are DB2, Oracle, SYBASE, and Microsoft SQL Server.

REMOTE engine
a SAS library engine for SAS/SHARE software. Using the REMOTE engine enables
a client SAS session to access shared data by communicating with a SAS/SHARE
server. See also SAS/SHARE server.

Remote Library Services
a feature of SAS/SHARE and SAS/CONNECT software that enables you to read,
write, and update remote data as if it were stored on the client. RLS can be used to
access SAS data sets on computers that have different architectures. RLS also
provides read-only access to some types of SAS catalog entries on computers that
have different architectures. Short form: RLS. See also architecture.

RLS
See Remote Library Services.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain several different types of catalog
entries. See also SAS catalog entry.

254 Glossary

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS. Some catalog entries contain system information such
as key definitions. Other catalog entries contain application information such as
window definitions, Help windows, SAS formats and informats, macros, or graphics
output. See also entry type.

SAS console log
a file that contains information, warning, and error messages if the SAS log is not
active. The SAS console log is normally used only for fatal system initialization
errors or for late-termination messages. See also SAS log.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set and SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats. See also descriptor information.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the SAS DATA step and by the SAS SQL
procedure. See also SAS data set, SAS/ACCESS view, DATA step view, and PROC
SQL view.

SAS library
a collection of one or more files that are recognized by SAS and that are referenced
and stored as a unit. Each file is a member of the library.

SAS log
a file that contains a record of the SAS statements that you enter, as well as
messages about the execution of your program. See also SAS console log.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Repository
a repository that is used by the SAS Metadata Server to store and retrieve metadata.
See also SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories.

SAS system option
an option that affects the processing of an entire SAS program or interactive SAS
session from the time the option is specified until it is changed. Examples of items
that are controlled by SAS system options include the appearance of SAS output, the
handling of some files that are used by SAS, the use of system variables, the

Glossary 255

processing of observations in SAS data sets, features of SAS initialization, and the
way SAS interacts with your host operating environment.

SAS task
a logical process that is executed by a SAS session. A task can be a procedure, a
DATA step, a window, or a supervisor process.

SAS windowing environment
an interactive windowing interface to SAS software. In this environment you can
issue commands by typing them on the command line, by pressing function keys, or
by selecting items from menus or menu bars. Within one session, you can perform
many different tasks, including preparing and submitting programs, viewing and
printing results, and debugging and resubmitting programs.

SAS/ACCESS view
a type of file that retrieves data values from files that are stored in other software
vendors’ file formats. You use the ACCESS procedure of SAS/ACCESS software to
create SAS/ACCESS views. See also view descriptor.

SAS/CONNECT client
a SAS/CONNECT session that acts as a client. The user that runs a SAS/CONNECT
client requests services from a SAS/CONNECT server that can run on a remote
single-processor machine or on a local or remote multi-processor machine. The
following services are supported: Remote Library Services, which enables access to
SAS files; Compute Services, which uses fast processing resources; and Data Transfer
Services, which enables the upload or download of selected data for processing. See
also client, server, and SAS/CONNECT server.

SAS/CONNECT server
a SAS/CONNECT session that acts as a server. The SAS/CONNECT server runs a
SAS session on a computer that receives requests for services from a SAS/CONNECT
client. The server can run on a remote, single-processor computer or on a local or
remote SMP computer. SAS/CONNECT servers provide Remote Library Services (for
accessing SAS files), Compute Services (for rapid computational processing), and
Data Transfer Services (for uploading and downloading selected data). See also
client, server, SAS/CONNECT client, and symmetric multiprocessing.

SAS/SECURE
an add-on product that uses the RC2, RC4, DES, and TripleDES encryption
algorithms. SAS/SECURE requires a license, and it must be installed on each
computer that runs a client and a server that will use the encryption algorithms.
SAS/SECURE provides a high level of security.

SAS/SHARE client
a SAS/SHARE session that acts as a client. The user who runs a SAS/SHARE client
accesses data on a SAS/SHARE server through Remote Library Services (RLS). See
also client, server, SAS/SHARE server, and Remote Library Services.

SAS/SHARE server
the result of an execution of the SERVER procedure. The SERVER procedure is part
of SAS/SHARE software. A server runs in a separate SAS session that services users’
SAS sessions by controlling and executing input and output requests to one or more
SAS data libraries. See also client, server, and SAS/SHARE client.

SAS/SHARE server library
a SAS library that has been defined to a SAS/SHARE server. The SAS/SHARE
server controls access to the library.

256 Glossary

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

server
a SAS session that delivers services, data, or other resources to a requesting client.
The server can run on the same computer as the client or on a different computer
(across a network). See also SAS/CONNECT server, SAS/SHARE server,
SAS/CONNECT client, SAS/SHARE client, and server.

server library
See SAS/SHARE server library.

server session
See server, SAS/CONNECT server, SAS/SHARE server.

services file
a file that contains a list of service names and the TCP/IP ports that are mapped to
those services. The services file is stored on both the SAS client and the SAS server.
The UNIX services file is located in /etc/services. A service can be specified for any of
the following: a SAS/CONNECT spawner, a SAS/SHARE server, an MP CONNECT
pipe, and a firewall server. See also port, SASESOCK engine, pipeline parallelism,
firewall, and SAS/SHARE server.

SMP
See symmetric multiprocessing.

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate objects in a database management
system. SAS implements SQL through the SQL procedure. Short form: SQL.

SQL
See Structured Query Language.

SSL (Secure Sockets Layer)
a protocol that provides network security and privacy. SSL uses encryption
algorithms RC2, RC4, DES, TripleDES, and AES. SSL provides a high level of
security. It was developed by Netscape Communications.

SQL
See Structured Query Language.

symmetric multiprocessing
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller. Short form: SMP.

system option
See SAS system option.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

Glossary 257

thin client
an application that is deployed across a network, thereby reducing the need for disk
space on client machines. Thin-client development tools reduce the cost of deploying
and maintaining applications. Costs are lower because thin-client applications need
to be updated only on the server. Otherwise, multiple user machines that perhaps
run multiple operating systems would have to be updated.

threaded processing
processing that is performed in multiple threads in order to improve the speed of
CPU-bound applications. See also symmetric multiprocessing.

TLS
See Transport Layer Security.

transfer buffer
a temporary holding area in computer memory that is used when data is transferred
between clients and servers across a network.

Transport Layer Security
the successor to Secure Sockets Layer (SSL) V3.0. The Internet Engineering Task
Force (IETF) adopted SSL V3.0 as the de facto standard, made some modifications,
and renamed it TLS. TLS is virtually SSLV3.1. Short form: TLS. See also Secure
Sockets Layer.

view
a generic term (used by many software vendors) for a definition of a virtual data set
(or table). The definition is named and stored for later use. A view contains no data;
it merely describes or defines data that is stored elsewhere. See also SAS data view.

view descriptor
a SAS/ACCESS file that defines part or all of the DBMS data that is described by an
access descriptor. See also access descriptor.

work task
a SAS/SHARE server resource that consists of a pair of lightweight threads that
service requests from SAS/SHARE clients. More work tasks enable the SAS/SHARE
server to service more asynchronous requests. See also threaded processing.

XMS
See Cross-Memory Services.

258

259

Index

A
access control 17

data 36
end users 17
SAS libraries 17, 34, 37, 44, 125
server administrator 36
server libraries, read-only access 165
users 17

access descriptor files
cross-architecture restrictions 185

ACCESS= option
LIBNAME statement 125

ACCESS procedure
cross-architecture restrictions 185

accessibility features 18
ACCTLVL= option

PROC SERVER statement 108
ADMINLIBREF= option

PROC SERVER statement 109
ADO clients 21
ALLOC option

PROC SERVER statement 108
ALLOCATE LIBRARY command 121

examples 122
pre-defining SAS libraries 33

ALLOCATE SASFILE command 119
example 120
vs. SASFILE statement 120

application system library 165
applications developers 28

frequently asked questions (FAQs) 14
applications systems tables

loading 164
APPLSYS= argument

LIBDEF macro 87, 165
SHRMACS macro 79, 87, 164

APPLSYS macro library 81
default library names 82
defining server aliases 82
server-alias table 82
specifying 82
specifying alternate 164
specifying alternate library-alias table 82

architectural groups
character 194
numeric 192
table of 190

ASCII-ANSI translation 187
ASCII-ISO translation 187

ASCII-Mac translation 187
ASCII-OEM translation 187
AUTHENTICATE= option

PROC SERVER statement 110
auxiliary tables

modifying 52

B
batch processing 48
Beatrous, Steve 212
Brideson, Bill 212
buffer size 177

for transmission buffers 116
tuning tips 229

BUFSIZE= system option 229

C
C program clients 21
catalog entries

end-user applications 58
locking 67

catalogs
locking 67
tuning 215

CATCACHELIMIT= option
ALLOCATE LIBRARY command 122

character-translation tables
cross-architecture access 187

CIMPORT procedure
cross-architecture access 185

CLEAR option
LOCK command 161
LOCK statement 160

client information
viewing 11

client/server access
cross-version 241
limitations on 241
observations and variables 243
SAS files 244
upgrade to Version 9 SAS 241

client user ID 110
CLIENTID= option

PROC SERVER statement 110
clients

disconnecting from server 11
CNTLLEV= data set option 75

260 Index

COMAMID option
OPTIONS statement 31

COMAMID= system option 175
COMAUX option 31
COMAUX1= system option 176
communications access methods 175, 176

multiple per server 15
specifying 30

COMPRESS= system option 229
concurrent-update applications 47
CONNECT TO REMOTE statement 152
control rows

locating and fetching 52
CPORT procedure

cross-architecture access 185
CPU management 217, 230
cross-architecture access 182

access descriptor file restrictions 185
ACCESS procedure restrictions 185
architectural groups 190
audience for 182
capabilities 182
character architectural groups 194
character-translation tables 187
CIMPORT procedure 185
CPORT procedure 185
DATA step restrictions 185
data translation 185, 188
DOWNLOAD procedure 185
host differences 183
loss of magnitude 186
loss of precision 186
mixed-type variable restrictions 185
numeric architectural groups 192
numeric data parsing problems 188
numeric translation 186
PROGRAM file restrictions 185
SAS file access restrictions 185
short numeric restrictions 185
UPLOAD procedure 185
view file restrictions 185

cross-version client/server access 241

D
data access

controlling 36
data sets

creating (example) 7
holding in memory 119
locking 66

DATA step
cross-architecture restrictions 185

DATA step processing 45
DATA step views

tuning 225
data tables 52
data translation

cross-architecture access 185, 188
data views

disabling 114
interpretation location 127

DATALISTC function 53
DATALISTN function 53
date-time stamps, formatting 35, 111

DBMS= option
CONNECT TO REMOTE statement 154

DBMSARG= option
CONNECT TO REMOTE statement 155

DISCONNECT FROM statement 156
DISPLAY LIBRARY command 137
DISPLAY SERVER command 140
DISPLAY USER command 146

example 39
DOWNLOAD procedure

cross-architecture access 185
driver program

server logs 101
DTFORMAT= option

PROC SERVER statement 111

E
EBCDIC translation 187
end-user applications

batch processing 48
catalog entries 58
checking lock status of observations 53
checking return codes 47
concurrent-update applications 47
DATA step processing 45
data tables 52
detecting modified window values 52
error-checking 46
external DBMS access 44
FSBROWSE procedure 52
FSEDIT procedure 52
joining remote and local data 50
library access 44
locating and fetching control rows 52
locking SAS data objects 45
locking SAS files 48
locking SAS table rows 51
macro-generated LIBNAME statements 44
model SCL 52
modifying auxiliary tables 52
non-interactive processing 48
reporting applications 48
restoring window values 52
SAS/CONNECT programs 58
SAS programming 45
sorting shared data 47
SQL Pass-Through Facility (RSPT) 49
SQL programming 49
unlocking observations 54
updating shared data 46
validating user changes 52

end user connections
terminating 17

end user roles 13
end users

access control 17
frequently asked questions (FAQs) 14

ENGINE= argument
LIBDEF macro 165
SERVLIB macro 171

engines
remote options for 127
specifying 171
specifying local engine 165
specifying remote engine 165

Index 261

error-checking 46
EXECUTE BY statement 156
explicit locks

clearing 67
in SAS windows 70
setting 65

external DBMS access 44

F
FAQs (frequently asked questions)

See frequently asked questions (FAQs)
FETCHOBS table function 53
file formats 244

compatibility issues 244
file system protections 37
FREE LIBRARY command 138
frequently asked questions (FAQs) 13

applications developers 14
end users 14
general 13
server administrators 16

FSBROWSE procedure 52
FSEDIT procedure 52
FULL argument

LISTLIB macro 166

H
host protections 37
host-specific libraries 140
HOSTNAME= option

LIBNAME statement 125
htmSQL client 21

I
I/O management 218, 230
implicit locks 64

in SAS program steps 72
indexes

tuning 222
inventory maintenance 234
IORC variable

checking 47

J
Java clients 21
joining remote and local data 50

L
LIBDEF macro 79, 165

generating LIBNAME statements 44
LIBNAME statement, SAS/SHARE 123

example 130
generating with LIBDEF macro 165
macro-generated 44
pre-defining libraries 32

library access, restricting 37
library-alias tables

listing 166
logging 166
specifying alternate 82

library tables
adding server-library pairs 171

librefs 129
for library of administrative data 109
specifying in server session 165, 171

LIBTYPE= option
ALLOCATE LIBRARY command 121

LIST option
LOCK command 161
LOCK statement 160

LISTLIB macro 78, 166
LISTSRV macro 78, 167
LISTSRVI macro 78, 167
local engines

specifying 165
LOCATEC table function 53
LOCATEN table function 53
LOCK command 70, 161

overview 159
setting/clearing locks 71

lock manager facility 24, 61
LOCK statement 65, 160

locking SAS files 48
overview 159
return codes 70
source data and 66

locked observations
checking for 53
modifying 8

locked status
logging 160, 161

locking
observations 8
SAS data objects 45
SAS files in SAS programs 48
SAS table rows in SCL programs 51

locks
clearing 71
listing 69
types of 64

LOG= option
PROC SERVER statement 111

LRPYIELD= option
PROC SERVER statement 111, 228

M
macro libraries

APPLSYS macro library 81
macros

server administrator macros 79
user program macros 79
utility macros 78

macros, compiling
See SHRMACS macro

macros, for server access
adding servers 78
changing serverids 78
defining aliases 78
logical connections 77
redistributing server load 77
switching libraries between servers 78
switching users between servers 78

magnitude
loss of 186

memory management 219, 231

262 Index

message formats
locking 69

messages
tuning 220

metadata repository 25
mixed-type variables

cross-architecture restrictions 185
model SCL 52
MOTBs (multi-observation transfer buffers) 226
MSGNUMBER option

PROC SERVER statement 114
multi-observation transfer buffers (MOTBs) 226

N
NETNODE= argument

SERVINFO macro 170
non-interactive processing 48
NORMTVIEW option

PROC SERVER statement 114, 227
numeric data

cross-architecture parsing problems 188
numeric magnitude

loss of 186
numeric precision

loss of 186
numeric translation

cross-architecture access 186

O
OAPW= option

PROC SERVER statement 114
observations

changing to members 75
checking lock status 53
compatibility issues 243
grouping 226
locked, modifying 8
locking 8
unlocking 54

OBSINFO function 54
ODBC clients 21
OLE DB clients 21
OpenVMS Alpha

ALTLOG= system option 199
ALTPRINT= system option 199
creating server command files 199
creating server environment 198
executing server command files 199
starting server 200
SUBMIT command 200

OPERATE macro 79, 168
OPERATE procedure 27
order processing 234

P
page size

tuning 222
PASSWORD= option

CONNECT TO REMOTE statement 153
LIBNAME statement 126
PROC OPERATE statement 135

passwords 37

See also access control
naming conventions 129
remote connections and 115
RSPT 152, 154
server 114, 117, 128
server access 135
system administrator 168
user 37
user authentication 110

PF= option
PROC OPERATE statement 134

PHYSNAME= argument
SERVLIB macro 171

precision
loss of 186

PRINTFILE= option
PROC OPERATE statement 134

PROC OPERATE statement 134
generating with OPERATE macro 168
identifying default server 141

PROC SERVER statement 108
example 118
starting server logs 99
starting servers 33

PROC SQL statement 152
processes

yield frequency 111, 228
PROGRAM files

cross-architecture restrictions 185
program macros 79
programmers 28
PT2DBPW= option

CONNECT TO REMOTE statement 154
PROC SERVER statement 115

Q
QUERY option

LOCK command 161
LOCK statement 160

QUIESCE LIBRARY command 139
QUIESCE SERVER command 141
QUIESCE USER command 147

example 39
quiesced servers

re-starting 144
quiesced user access

re-starting 147
quiescing

libraries 139
servers 141
user access 147

R
random access

tuning 222
READONLY argument

LIBDEF macro 165
remote DBMS access 151
REMOTE engine 27

default value for RMTVIEW= option 170
specifying RMTVIEW= option 165, 171
SQL Pass-Through Facility (RSPT) 49
SQL programming 49

Index 263

remote engines
passing options to 127
specifying 165

remote file access 25
Remote Library Services (RLS) 25, 123
Remote SQL Pass-Through Facility (RSPT) 49, 151
RENGINE= argument

LIBDEF macro 165
SERVLIB macro 171

RENGINE= option
LIBNAME statement 127

reporting applications 48
RETRY argument

LIBDEF macro 165
return codes

checking 47
RLS (Remote Library Services) 25, 123
RMTVIEW= argument

LIBDEF macro 165
SERVINFO macro 170
SERVLIB macro 171

RMTVIEW= option
LIBNAME statement 127, 227

ROPTIONS= option
LIBNAME statement 127

RSPT (Remote SQL Pass-Through Facility) 49, 151
RSPT SQL procedure 151

S
SAPW= option

CONNECT TO REMOTE statement 152
LIBNAME statement 128
PROC OPERATE statement 135

SAS Component Language (SCL) 233
SAS/CONNECT software

end-user applications 58
programming considerations 58

SAS data files
compressing 229

SAS data hierarchy
locking data objects and 62

SAS data library model
tuning 213

SAS data objects
changing defaults 75
defaults for SAS operations 73

SAS data objects, locking 75
accessing objects 63
catalog entries 67
catalogs 67
clearing explicit locks 67
data sets 66
effects of 64
explicit locks 64
explicitly, in SAS windows 70
implicit locks 64
implicitly, in SAS program steps 72
individual objects 67
listing locks 69
lock types 64
logging locked status 160
message formats 69
multiple objects 68
SAS data hierarchy 62
SAS libraries 66

setting explicit locks 65
SAS data objects, unlocking

clearing locks 71
individual objects 67
multiple objects 68
with LOCK command 161
with LOCK statement 160

SAS data view interpretation 54, 55, 227
SAS data views

DATA step views 55
defining 54
interpreting 54, 55
PROC ACCESS views 55
PROC SQL views 55
tuning 215

SAS files
accessing with SAS/SHARE server 23
accessing without SAS/SHARE server 23
compatibility issues 244
concurrent access and tuning 215
cross-architecture access restrictions 185
data flow and tuning 213

SAS Intelligence Platform 25
SAS libraries

access restrictions 17, 34, 37
accessing across networks 15
allocating to running server 136
allowing client definition of 108
associating with server aliases 83
controlling user access 125
defining 6
determining server type 14
displaying information about 137
end-user applications 44
freeing 41, 138
locking 66
managing 39, 136
maximum per server 16
pre-defining 32
preparing for SAS/SHARE server access 15
quiescing 139
re-starting 139
specifying host-specific 140
specifying physical names 171
stopping 140

SAS Metadata Repository 25
SAS programming

end-user applications 45
SAS sessions

closing 12
invoking 5

SAS/SHARE
tuning options 225

SAS/SHARE servers 16
access control, SAS libraries 17
access control, user 17
accessing SAS files 23
configuring in SAS Intelligence Platform 26
data sources 20
determining need for a second 17
determining use of 14
disabling data views 114
disconnecting clients 11
displaying information about 140
getting started, server administrators 16
identifying 10

264 Index

identifying default server 141
libraries, access restrictions 34, 37
libraries, managing 39
libraries, pre-defining 32
logging 111
logging statistics 34
loss of magnitude and 186
managing 26, 39
maximum libraries 16
maximum users 16
multiple communications access methods 15, 17
naming 33, 124, 148
preparing SAS libraries for 15
printing accounting data 108
quiescing 141
re-starting quiesced server 144
remote data access 20
retrying access 12
SAS libraries, access control 17
SAS libraries, accessing across networks 15
server administrator duties 16
serverids 33, 35, 124, 148
setting current server 142
sharing files with 16
specifying communications access methods 30
specifying date-time stamps 35
stalled 128
starting 5
stopping 12, 17, 145
storing information about 84
user connections, terminating 17
vs. file servers 15, 16
waiting for locked files 128
waiting for user response 30

SAS/SHARE servers, security
controlling data access 36
controlling server administrator access 36
file system protections 37
host protections 37
restricting library access 37
user passwords 37

SAS/SHARE servers, starting
automation 39
example 5, 118
fast-track method 29
OpenVMS Alpha 200
PROC SERVER statement 33
recommended frequency 16
security 30
SERVER procedure 33
STRTSRV macro 79, 173
with SAS programs 39
z/OS 202

SAS/SHARE servers, stopping
recommended frequency 16
SHUTSRV macro 79, 172
STOP SERVER command 145

SAS/SHARE software 13
as multi-user data server 19
components 26
FAQs 13
getting started, applications developers 14
getting started, end users 14
information resources 13
remote file access 25
required SAS procedures 13

staffing requirements 14
user roles 13

SASFILE statement
vs. ALLOCATE SASFILE command 120

SASSAML= argument
LIBDEF macro 87
SHRMACS macro 80, 87, 164

SCL (SAS Component Language) 233
security

starting servers 30
user authentication 110

SELECT FROM CONNECTION TO statement 155
sequential access, tuning 223
server administrator macros 79
server administrators 28

controlling access by 36
duties 16
frequently asked questions (FAQs) 16

server-alias tables
defining server aliases 82
listing 167
logging 82

server aliases
associating with SAS libraries 83
defining 82

server information tables 78
adding server attributes 84, 169
creating 84
customizing 85
getting indexes 78
listing 167
returning entry index 169

server libraries
read-only access 165
viewing 11

server logs 89
Access message 95
accounting information 97
analysis tools for 100
Close message 96
Connect message 94
Create message 94
customizing analysis programs 100
Disconnect message 97
driver program 101
examining 11
message components 92
message numbers 114
messages 89
Open message 95
reading 94
Release message 96
Start message 94
starting 89, 99
Stop message 97
Terminate message 96
usage statistics in 90

SERVER= option
CONNECT TO REMOTE statement 152
LIBNAME statement 124

SERVER procedure 26, 107
SAS/CONNECT software and 59
starting servers 33

SERVERID macro 78, 82, 168
SERVERID= option

PROC OPERATE statement 134

Index 265

PROC SERVER statement 115
serverids, specifying

naming conventions 33, 148
SERVER= option 124

servers
See SAS/SHARE servers

SERVIIDX macro 78, 169
SERVINFO macro 84, 169
SERVLIB macro 83, 171
SET SERVER command 142
SET SERVER statement

generating 79
SETSASRC= option

PROC OPERATE statement 136
SETSRV macro 79, 172
SHARESESSIONCNTL= system option 177
short numeric restrictions

cross-architecture access 185
SHOW option

LOCK command 161
LOCK statement 160

SHRMACS macro 78, 79, 163
generating LIBNAME statements 44

SHUTSRV macro 79, 172
SLIBREF= argument

LIBDEF macro 165
SERVLIB macro 171

SLIBREF= option
LIBNAME statement 129

SLTOOL1 sample program 101
SLTOOL2 sample program 102
SLTOOL3 sample program 104
SLTOOL4 sample program 104
sorting shared data 47
SQL Pass-Through Facility (RSPT) 49
SQL procedure

RSPT 151
SQL programming

end-user applications 49
Squillace, Dan 212
Squillace, Jan 212
START LIBRARY command 139
START SERVER command 144
START USER command 147
STOP LIBRARY command 140
STOP SERVER command 145
STOP USER command 39, 148
STRTSRV macro 79, 173
subsetting strategies

tuning 221
system options

SAS/SHARE 175
tuning options 228

T
TBUFSIZE= option

PROC SERVER statement 116, 226
TBUFSIZE= system option 177
TCP access method

threaded version 116
TCP/IP access method

setting up 4
THREADEDTCP option

PROC SERVER statement 116
timestamps 35, 111

TOBSNO= data set option 226
translation tables

cross-architecture updates 188
TRANTAB catalog entries 187
tuning

buffer size 229
catalogs 215
cleaning up data files 221
compressing SAS data files 229
concurrent access 215
CPU management 217, 230
data flow for SAS files 213
DATA step views 225
grouping observations 226
I/O management 218, 230
indexes 222
limiting open files 223
memory 219, 231
messages 220
multi-observation transfer buffers (MOTBs) 226
page size 222
programming techniques 221
random access 222
SAS data library model 213
SAS data view interpretation 227
SAS data views 215
SAS/SHARE options 225
sequential access 223
subsetting strategies 221
system options for 228
timing of reports 224
tools for 229
update frequency 224
yield frequency 228

U
UAPW= option

PROC SERVER statement 117
UNIX

creating server environment 205
UNLOCK function 54
UPLOAD procedure

cross-architecture access 185
usage statistics

in server logs 90
user access

quiescing 147
re-starting quiesced user 147
terminating 148

user authentication 110
user names

naming conventions 129
USER= option

CONNECT TO REMOTE statement 153
LIBNAME statement 129
PROC OPERATE statement 135

userids
specifying 148

users 146
displaying information about 146

utility macros 78

V
VIEW data set type 54

266 Index

view files
cross-architecture restrictions 185

W
Web servers

htmSQL client 21
WHERE function 53
Windows

creating server environment 206
work tasks 117
WORKTASKS= option

PROC SERVER statement 117

Y
yield frequency 111, 228

Z
z/OS

creating server environment 201
starting server 202

Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing delivers!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We
currently produce the following types of reference documentation: online help that is built into the software,
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®,
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2008 SAS Institute Inc. All rights reserved. 474059_1US.0108

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview
	SAS/SHARE and the SAS Intelligence Platform Environment
	Changes to PROC SERVER
	A Method to Free a Library That Contains a Locked Data Set
	Relocated Information about SAS Data Security Technologies

	Usage
	Getting Started with SAS/SHARE
	SAS/SHARE: Learning to Use
	Introduction
	Setting Up Your Operating Environment
	Invoking SAS for Client/Server Sessions (All New Users)
	Starting a SAS/SHARE Server (All New Users)
	Defining a SAS Library to a Server (All New Users)
	Creating a SAS Data Set (All New Users)
	Locking an Observation (All New Users)
	Accessing a Locked Observation (All New Users)
	Releasing a Locked Observation (All New Users)
	Retrying Access to a Locked Observation (All New Users)
	Stopping the Server (All New Users)
	Identifying the Server (Server Administrators and Applications Developers)
	Viewing the Server Libraries (Server Administrators and Applications Developers)
	Viewing Information about Clients (Server Administrators and Applications Developers)
	Disconnecting Clients from the Server (Server Administrators and Applications Developers)
	Examining the Server Log (Server Administrators and Applications Developers)
	Accessing a Closed Server (Server Administrators and Applications Developers)
	Stopping the Server (Server Administrators and Applications Developers)
	Closing the SAS Sessions (Server Administrators and Applications Developers)

	Frequently Asked Questions (FAQs) about SAS/SHARE
	General Questions
	FAQs by End Users
	FAQs by Applications Developers
	FAQs by Server Administrators
	Accessibility Features in SAS Products

	Using SAS/SHARE Software
	SAS/SHARE Is a Multi-User Data Server
	SAS/SHARE Enables Concurrent Update Access
	SAS/SHARE Provides a Path to Remote Data
	SAS/SHARE Is the Hub between Data and Clients

	Accessing SAS Files through an Operating Environment
	Accessing SAS Files through a SAS/SHARE Server
	Remote Library Services Provides Remote File Access
	SAS/SHARE and the SAS Intelligence Platform
	About the SAS Metadata Repository and the SAS Intelligence Platform
	Configuring a SAS/SHARE Server and Server Libraries in a SAS Intelligence Platform Environment
	Managing a SAS/SHARE Server

	SAS/SHARE Software Components
	SAS/SHARE Users
	Migration and Cross-Version Compatibility (SAS 6 through SAS 9.2)

	Managing a SAS/SHARE Server (Server Administrators)
	Starting a Server: A Fast-Track Approach
	Specifying a Communications Access Method
	Predefining SAS Libraries to the Server
	Advantages of Predefining Libraries
	Methods for Predefining a Server Library

	Starting a Server
	PROC SERVER Statement
	Identifying the Server
	Limiting Users to Predefined Libraries
	Validating Server Users
	Selecting How Clients Are Identified in the Log
	Logging Server Usage Statistics
	Specifying the Format for the Server Log Datetime Stamp
	Using the SAS Console Log To Analyze Server Errors
	Specifying a Time Limit on SAS File Availability for Client Access

	Server Security
	Controlling Administrator Access to a Server
	Controlling Access to Data through a Server
	Using Encryption Services

	Writing a SAS Program to Start a Server
	Automating Server Start-Up
	Managing a Server, Its Libraries, and Its Users
	Server Management: OPERATE Procedure
	Server Log Reporting: OPERATE Procedure
	Freeing a Library that Contains a Locked Data Set

	Writing End-User Applications to Access Shared Data
	Accessing Libraries through a Server
	Introduction
	Using the LIBNAME Statement
	Using Macros to Generate a LIBNAME Statement

	Locking Data Objects in your Programming Environment
	SAS Programming Considerations
	DATA Step Processing
	Using Ordered Data in a Shared Environment
	Using Non-interactive SAS Applications in a Shared Environment
	Concurrent Sorting: z/OS Only

	SQL Programming Considerations
	SCL Programming Considerations
	Concurrent SCL Applications
	Locking Rows in SAS Tables
	Locking Rows in SCL
	Programming with PROC FSEDIT and PROC FSBROWSE
	Programming with the Data Table and Data Form Classes
	Locating and Fetching Control Rows
	Unlocking Rows

	SAS Data View Programming Considerations
	Data Sets of Type VIEW
	Interpreting SAS Data Views
	Example: Using RLS and a DATA Step View to Improve the Performance of PROC APPEND

	Using SAS Catalog Entries in Programs
	Using SAS/CONNECT with SAS/SHARE
	SAS/CONNECT Used with SAS/SHARE
	Example: Using a SAS/SHARE Server in a SAS/CONNECT Server Session

	Locking SAS Data Objects
	SAS/SHARE Lock Manager Facility
	Locking and SAS Data Object Hierarchy
	SAS Data Object Hierarchy
	Accessing and Using SAS Data Objects

	Types of Locks
	Locking Objects Explicitly (LOCK Statement)
	LOCK Statement: Advantages
	Syntax for the LOCK Statement
	Locking a SAS Library
	Locking a SAS Data Set
	Locking a SAS Catalog
	Locking a Catalog Entry
	Clearing an Explicit Lock
	Listing Lock Status
	Return Codes for the LOCK Statement

	Locking Explicitly in a SAS Window (LOCK Command)
	Advantages of Using the LOCK Command
	Syntax for the LOCK Command
	Locking and Clearing Locks on Data Objects

	How Implicit Locking Works in SAS Program Steps
	Defaults for Selected SAS Operations
	Default Data Objects: Reference
	Changing the Data Set Option Default Object

	SAS/SHARE Macros for Server Access
	Using Macros for Server Library Access
	Overview of Macro Usage
	Utility Macros
	User Program Macro
	Server Administrator (Operator) Macros

	Macros Generated by the SHRMACS Macro
	The APPLSYS Macro Library
	Overview of the APPLSYS Macro Library
	Specifying the APPLSYS Macro Library
	Defining Server Aliases (SERVID)
	Associating SAS Libraries with Server Aliases (SERVLIB)
	Creating the Server Information Table (SERVINFO)
	Customizing a Server Information Table
	Generating a LIBNAME Statement By Using the LIBDEF Macro
	Using APPLSYS= to Call the SHRMACS and LIBDEF Macros

	Interpreting SAS/SHARE Server Log Messages
	The SAS/SHARE Server Log
	Starting the Server Log
	Usage Statistics in the Server Log
	Sample Log for SAS/SHARE Server SHARE2
	Format for Server Log Messages

	Server Log Message Components
	Reading the Server Log
	The Start Message
	The Connect Message
	The Create Message
	The Access Message
	The Open Message
	The Close Message
	The Release Message
	The Terminate Message
	The Disconnect Message
	Accounting Information
	The Stop Message

	Analyzing the Server Log
	Starting the Server Log
	Using the Server Log Analysis Tools
	Customizing Server Log Analysis Programs
	Executing the Driver Program (SAS/SHARE)
	SLTOOL1 Sample Program (SAS/SHARE)
	SLTOOL2 Sample Program (SAS/SHARE)
	Overview of the SLTOOL2 Sample Program
	SLOGDATA.SERVINFO
	SLOGDATA.CONNINFO
	SLOGINFO.CONNSUM
	SLOGDATA.TASKINFO
	SLOGDATA.LIBINFO
	SLOGDATA.PHYSINFO
	SLOGDATA.ENGSUM1
	SLOGDATA.MEMINFO
	SLOGDATA.OBJINFO
	SLOGDATA.IDXINFO
	SLOGDATA.DIRINFO
	SLOGDATA.IDXSUM
	SLOGDATA.ACCTINFO

	SLTOOL3 and SLTOOL4 Sample Programs

	Reference
	The SERVER Procedure
	Overview of the SERVER Procedure
	Syntax: SERVER Procedure

	Remote Library Services
	Overview of Remote Library Services

	The OPERATE Procedure
	Overview of the OPERATE Procedure
	Syntax: OPERATE Procedure
	PROC OPERATE Statement
	Options

	Library Management Commands
	Overview of Library Management Commands
	Defining a Library to a Server That Is Running
	Displaying Information about a Library
	Freeing a Library
	Quiescing a Library
	Restarting a Library
	Stopping a Library
	Specifying a SAS Library

	Server Management Commands
	Displaying Information about a Server
	Quiescing a Server
	Setting the Current Server
	Restarting a Quiesced Server
	Stopping a Server

	User Management Commands
	Displaying Information about a User
	Quiescing User Access to a Server
	Restarting a Quiesced or a Stopped User
	Terminating User Connections to a Server

	Specifying a Server
	Specifying a Server-Access Password
	Specifying a User

	Remote SQL Pass-Through (RSPT) Facility
	Overview of the RSPT Facility
	Syntax: RSPT SQL Procedure
	Examples

	The LOCK Statement and the LOCK Command
	Overview of the LOCK Statement and the LOCK Command

	SAS/SHARE Macros
	SAS/SHARE General SAS System Options
	Appendix
	Cross-Architecture Access
	Audience for Cross-Architecture Access
	Cross-Architecture Access: Overview
	Cross-Architectural Differences
	Cross-Architecture Restrictions and Limitations
	Cross-Architecture Catalog Access in the Client SAS Session
	Cross-Architecture Catalog Access in the SAS/SHARE Server
	Concatenating Cross-Architecture Catalogs
	Other SAS File Access
	Short Numerics and Mixed-Type Variables

	Implications of Data Translation
	Translation of Data at the Client and the Server
	Translation of Floating-Point Numbers between Computers
	Character-Translation Tables
	Data Translation Considerations
	Problems Parsing Numeric Data in a Cross-Architecture Environment

	Identical Architectural Groups
	Overview of Identical Data Representation Groups
	IBM System/390 Architecture Operating Environments
	UNIX RISC Operating Environments
	UNIX 64-bit Operating Environments
	Windows 32-bit Operating Environments
	OpenVMS 64-bit Operating Environments
	UNIX 64–bit Little Endian Operating Environments
	Intel ABI+ Operating Environments
	Incompatible Operating Environments

	Numeric Architectural Groups
	Overview of Numeric Architectural Groups
	Version 8 Numeric Architecture Groups
	SAS 9.2 Numeric Architecture Groups

	Character Architectural Groups
	Overview of Character Architectural Groups
	EBCDIC Format Operating Environments
	ASCII-ISO Format Operating Environments
	ASCII-ANSI Format Operating Environments
	ASCII-OEM Format Operating Environment

	Creating the SAS/SHARE Server Environment
	Audience for SAS/SHARE Server Start-Up
	All Operating Environments: Setting SAS System Performance and Logging Options
	OpenVMS: Creating the Server Environment
	Overview of Tasks to Create the Server Environment
	Setting SAS System Performance and Logging Options
	Creating a Command File for the Server
	Executing the Command File for the Server

	z/OS: Creating the Server Environment
	Starting a Server Using a Started Task
	Starting a Server Automatically
	Setting SAS System Performance and Logging Options

	UNIX: Creating the Server Environment
	Assigning the Server a User Account
	Starting a Server Manually
	Starting a Server Automatically
	Setting SAS System Performance and Logging Options

	Windows: Creating the Server Environment
	SAS/SHARE Server Can Run as a Windows Service
	Using SAS SCU to Install a SAS/SHARE Server as a SAS Service
	Starting and Stopping a Service
	Removing or Changing an Installed SAS/SHARE Server Service

	Tuning Tips for Applications That Use SAS/ SHARE Software
	Authors
	Introduction to Tuning Tips for Applications That Use SAS/SHARE Software
	Overview of Tuning Tips for Applications That Use SAS/SHARE Software
	The SAS Library Model
	How Data Flows When You Use SAS Files
	Introduction
	SAS Data Files
	SAS Data Views
	SAS Catalogs

	Concurrent Access: Update versus Read-only
	Computer Resources Used by a Server
	CPU
	I/O
	Memory
	Messages

	Minimizing and Optimizing Resource Consumption
	Programming Techniques
	Tuning Options in SAS/SHARE Software
	SAS System Options

	Using Operating Environment Tools
	Introduction
	Managing CPU
	Managing I/O
	Managing Memory

	Conclusion

	SAS Component Language (SCL) Application
	Introduction to the SAS Component Language (SCL) Application
	Audience
	Inventory and Order System
	Overview
	Customer Information
	Inventory Information
	Orders Information

	The Inventory/Order System SCL Application

	SAS/SHARE Cross-Version Issues, SAS 9.2
	Limitations of Cross-Version Client/Server Access
	Consequences of a Client/Server Upgrade to SAS 9.2
	Upgrade: Definition
	Data Migration
	Access Restrictions Following an Upgrade to SAS 9.2

	Observations and Variables: SAS 9.2 and SAS 8 Differences
	Resolving the Number of Observations and Variables Supported across Versions
	Number of Variables Supported
	Number of Observations Supported

	SAS Files Access in a Mixed Client/Server Environment
	SAS File Format: Definition
	Client/Server Access to Version-Specific SAS Files
	SAS 8 Clients Accessing SAS Files Created on SAS 9.2 Servers

	Recommended Reading
	Recommended Reading

	Glossary
	Index

