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Chapter 1
Getting Started

SAS/INSIGHT software is a tool for data exploration and analysis. With it you can
explore data through graphs and analyses linked across multiple windows. You can
analyze univariate distributions, investigate multivariate distributions, and fit explana-
tory models using analysis of variance, regression, and the generalized linear model.

This introduction summarizes important features, describes how to use the product,
and explains how to learn more about SAS/INSIGHT software.

Figure 1.1. Brushing Observations in SAS/INSIGHT Software
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Summary of Features
SAS/INSIGHT software provides a comprehensive set of exploratory and analytical
tools.

To explore data, you can

• identify observations in plots

• brush observations in linked scatter plots, histograms, box plots, line plots,
contour plots, and three-dimensional rotating plots

• exclude observations from graphs and analyses

• search, sort, and edit data

• transform variables

• color observations based on the value of a variable

To analyze distributions, you can

• compute descriptive statistics

• create quantile-quantile plots

• create mosaic plots of cross-classified data

• fit parametric (normal, lognormal, exponential, Weibull) and kernel density
estimates for distributions

• fit parametric and empirical cumulative distribution functions

• test hypotheses of completely specified (known parameters) or specific (un-
known parameters) parametric distributions based on Kolmogorov’s D statistic

To analyze relationships between a response variable and a set of explanatory vari-
ables, you can

• fit curves with polynomials, kernels, and smoothing splines

• fit curves with nonparametric local polynomial smoothers using either a fixed
bandwidth or loess smoothing

• add confidence bands for mean and predicted values

• fit surfaces with polynomials, kernels, and smoothing splines

• create residual and leverage plots

• fit the general linear model, including classification effects for analysis of vari-
ance and analysis of covariance

• fit the generalized linear model, including logistic regression, Poisson regres-
sion, and other models
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Summary of Features

To analyze relationships between variables, you can

• calculate correlation matrices and scatter plot matrices with confidence ellipses
for relationships among pairs of variables

• reduce dimensionality of interval variables with principal component analysis

• examine relationships between two sets of interval variables with canonical
correlation analysis and maximum redundancy analysis

• examine relationships between a nominal variable and a set of interval variables
with canonical discriminant analysis

In addition, you can

• process data by groups

• process multiple data sets

• store option settings to customize SAS/INSIGHT operation

• store results as SAS data sets, SAS/GRAPH catalogs, and text files

• record and submit SAS/INSIGHT statements

• obtain context-sensitive help

Finally, because it is a part of the SAS System, you can use SAS/INSIGHT soft-
ware to explore results from any SAS procedure. Conversely, you can use any SAS
procedure to analyze results from SAS/INSIGHT software.

7
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Of Mice and Menus
This section describes how to operate SAS/INSIGHT software and defines terms used
in the rest of this book.

Some details depend on your host, the specific system of computing hardware and
software you use. For example, all hosts present SAS/INSIGHT software in a system
of windows on the host’s display, but the appearance of your windows may differ
from the figures in this book. You can find more information in the SAS companion
for your host and in your host system documentation. On most hosts, you can point
to objects on the display by using a mouse. A mouse is a physical device that controls
the location of a cursor, a small moveable symbol on the display. The mouse also has
buttons that work like keys on the computer keyboard. By pointing with the mouse
and clicking a button, you can indicate any object on the display. In SAS/INSIGHT
software, all operations you may want to perform are listed in menus. So to perform
any task, you point with the mouse and click the buttons to select objects and choose
operations from menus.

Selecting Objects

Objects you can use in SAS/INSIGHT software include variables, observations, val-
ues, graphs, curves, and tables. You select an object to indicate that it is an object
you want to work with. On most hosts, you can select an object by pointing to it
and clicking the leftmost button on the mouse. To click, press the button down and
release it without moving the mouse. Figure 1.2 illustrates the selection of a variable
by pointing and clicking.

Figure 1.2. Selecting by Clicking

You can select multiple objects by dragging the mouse. To drag, press the leftmost
mouse button down, move the mouse across the objects of interest, then release the
mouse button. This selects the object at the cursor location when you pressed the

8
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mouse button, the object where you released the button, and all objects in between.
Figure 1.3 illustrates the selection of three variables by pointing and dragging.

Figure 1.3. Selecting by Dragging

When objects are far apart, it is convenient to use modifier keys with the mouse button.
On many hosts, you can use the Shift key to extend a selection. In Figure 1.4, the first
observation was clicked on, then the one hundredth observation was clicked on while
holding down the Shift key. This selects the first observation, the one hundredth
observation, and all observations in between.

Figure 1.4. Extended Selection

On many hosts, you can use the Ctrl key to make a noncontiguous selection – that is,
a selection of multiple objects not located next to each other. In Figure 1.5, the first
observation was clicked on, then the fifth observation was clicked on while holding
down the Ctrl key. This selects the first observation and the fifth observation without

9
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selecting the observations in between.

Figure 1.5. Noncontiguous Selection

Some hosts use different modifier keys instead of the Shift and Ctrl keys, so these
names do not appear in the remainder of this book. Instead, the terms extended se-
lection and noncontiguous selection are used. Using single, multiple, extended, and
noncontiguous selection, you can precisely indicate the objects you want to work
with.

Choosing from Menus

In SAS/INSIGHT software, operations you can perform include creating
graphs and analyses, transforming variables, fitting curves, and saving re-
sults. On most hosts, you can choose these operations by pulling down
a menu from a menu bar. To pull down a menu, press the left mouse
button and hold it down while you drag the cursor across the menu.
Figure 1.6 shows the Analyze menu pulled down to create a scatter plot.

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 1.6. Analyze Menu

Depending on your host, each window may display its own menu bar or all windows
may share a single menu bar. Workstations with large displays usually provide mul-
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Of Mice and Menus

tiple menu bars. Personal computers with small displays may allow only one menu
bar.

Your host may provide additional choices on the menu bar and within the File and
Help menus. These additional menu choices, if present, are described in the SAS
companion for your host.

Pop-up Menus

Pop-up menus enable fast action by providing choices appropriate for the object you
point to. Pop-up menus operate on all appropriate selected objects. If no objects are
selected, they operate on the object at the cursor location.

Pop-up menus are displayed when you click on menu buttons in the data window
and in the corners of graphs and tables. On some hosts, you can also display pop-up
menus by pressing the right mouse button.

The data window displays a variety of pop-up menus. To display the pop-up menu
for data, either click the left mouse button in the upper left corner, as in Figure 1.7,
or click and hold the right mouse button anywhere in the data window. See Chapter
31, “Data Windows,” for a complete description of the pop-up menu choices in the
data window.

Figure 1.7. Data Pop-up Menu

To display pop-up menus in a graph or table, either click and hold the right mouse
button anywhere in the graph or table, or click on the menu button in the corner of the
graph or table. Figure 1.8 shows the pop-up menu for a histogram in a distribution
analysis.

11
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Figure 1.8. Histogram Pop-up Menu

When you are not pointing at a table, graph, or other object, the right mouse button
displays the central menu bar, as in Figure 1.9. For more information on pop-up menu
choices, see the chapter for the graph or table of interest in the Reference part of this
manual.

File �

Edit �

Analyze �

Tables �

Graphs �

Curves �

Vars �

Help �

Figure 1.9. Default Pop-up Menu
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Menu State Indicators

Menu state indicators are either check marks or radio marks. The graphic represen-
tation of these marks depends on your host.

Menus with check marks always act as toggles: they turn a feature on or off. The
presence of a check mark indicates the presence of that feature. Toggles are especially
useful in graphs, since most graphic features are either on or off.

Menus with radio marks do not toggle; they indicate the current state among multiple
choices. As with check marks, radio marks help when the current state is not obvious.

13
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For example, the pop-up menu in Figure 1.10 is from a scatter plot. The check marks
indicate that axes and observations are displayed and that the marker size is chosen
automatically to fit the graph. The radio mark indicates that the current marker size
is 4.

Ticks...
� Axes
� Observations

Reference Lines
Marker Sizes �

1
2
3

� 4
5
6
7
8

� Size to Fit

Figure 1.10. Scatter Plot Pop-up Menu
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Learning More

Using This Manual

The remainder of this manual is divided into two parts: Techniques and Reference.

Techniques are instructional chapters that explain how to accomplish particular tasks.
These chapters use sample data sets shipped with the product, so you can read the
techniques and follow the steps on your host at the same time. For more information
about sample data sets, see the “Sample Data Sets” section in this chapter.

Reference chapters provide comprehensive descriptions of data, graphs, and analyses
in SAS/INSIGHT software. Use these chapters to answer specific questions about
product features.

If you are experienced with SAS/INSIGHT software or experienced using mice and
menus, you may learn most quickly by just invoking SAS/INSIGHT software and
exploring its capabilities. Use the Table of Contents and the Index to find specific
techniques and reference information.

Conventions

This user’s guide employs three special symbols:

=⇒ This symbol and font marks one step in a technique.

⊕ Related Reading: This symbol and label marks a reference to a related chapter.

† Note: This symbol and label marks an important note or performance tip.

This user’s guide employs four special typefaces:

• Bold is used for steps in techniques.

• Italic is used for definitions and for emphasis.

• Helvetica is used for words you see on the display.

• Courier is used for examples of SAS statements.

Menu items in this user’s guide are separated by colons. For example, the Bar Chart
( Y ) item in the Analyze menu is written as Analyze:Bar Chart ( Y ).

Getting Help

Both beginning and expert users can take advantage of SAS/INSIGHT software’s
context-sensitive help system. To receive context-sensitive help, select any graph or
table by clicking on its border. Then choose Help:Help on Selection, as illustrated
in Figure 1.11. Figure 1.12 shows the context-sensitive help when the Quantiles table
is selected.

15
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File Edit Analyze Tables Graphs Curves Vars Help

Help on Selection
Introduction
New in SAS/INSIGHT
Techniques
Reference �

Index
SAS System
Create Samples
What’s New...
About...

Figure 1.11. Help Menu

Figure 1.12. Context Sensitive Help

You can also get context-sensitive help with the SAS System Help key. This key, usu-
ally F1 on your keyboard, displays help on the object at your present cursor position.
You can get context-sensitive help in any SAS/INSIGHT data or analysis window by
simply placing the cursor on the item of interest and pressing the Help key. Within
any help window, you can point and click on individual topics to get further informa-
tion.

16
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The Help menu entries correspond to parts of this manual. Choose
Help:Introduction to learn about SAS/INSIGHT software; Help:Techniques
to learn how to perform a particular task; Help:Reference to look up detailed
information; or Help:Index to see an index of all SAS/INSIGHT topics.

Figure 1.13. Help Index

Choose Help:SAS System to see a general index of SAS System topics. Choose
Help:Create Samples to create sample data sets; examples throughout this manual
refer to these data sets. See the following section for more information.

17
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Sample Data Sets
The following sample data sets are included with SAS/INSIGHT software.

The AIR data set contains measurements of pollutant concentrations from a city in
Germany during a week in November 1989. Variables are

DATETIME date and hour in SAS DATETIME format

DAY day of the week

HOUR hour of the day

CO carbon monoxide concentration

O3 ozone concentration

SO2 sulfur dioxide concentration

NO nitrogen oxide concentration

DUST dust concentration

WIND wind speed

The BASEBALL data set contains performance measures and salary levels for reg-
ular hitters and leading substitute hitters in major league baseball for the year 1986
(Collier 1987). There is one observation per hitter. Variables are

NAME the player’s name

NO–ATBAT number of times at bat in 1986

NO–HITS number of hits in 1986

NO–HOME number of home runs in 1986

NO–RUNS number of runs in 1986

NO–RBI number of runs batted in in 1986

NO–BB number of bases on balls in 1986

YR–MAJOR years in the major leagues

CR–ATBAT career at bats

CR–HITS career hits

CR–HOME career home runs

CR–RUNS career runs

CR–RBI career runs batted in

CR–BB career bases on balls

LEAGUE player’s league at the end of 1986

DIVISION player’s division at the end of 1986

18



Sample Data Sets

TEAM player’s team at the end of 1986

POSITION positions played in 1986

NO–OUTS number of put outs in 1986

NO–ASSTS number of assists in 1986

NO–ERROR number of errors in 1986

SALARY salary in thousands of dollars

The POSITION variable in the BASEBALL data set is encoded as follows:

13 first base, third base CS center field, shortstop
1B first base DH designated hitter
1O first base, outfield DO designated hitter, outfield
23 second base, third base LF left field
2B second base O1 outfield, first base
2S second base, shortstop OD outfield, designated hitter
32 third base, second base OF outfield
3B third base OS outfield, shortstop
3O third base, outfield RF right field
3S third base, shortstop S3 shortstop, third base
C catcher SS shortstop

CD center field, designated hitter UT utility
CF center field

The BUSINESS data set contains information on publicly-held German, Japanese,
and U.S. companies in the automotive, chemical, electronics, and oil refining indus-
tries. There is one observation for each company. Variables are

NATION the nationality of the company

INDUSTRY the company’s principal business

EMPLOYS the number of employees

SALES sales for 1991 in millions of dollars

PROFITS profits for 1991 in millions of dollars

The DRUG data set contains results of an experiment to evaluate drug effectiveness
(Afifi and Azen 1972). Four drugs were tested against three diseases on six subjects;
there is one observation for each test. Variables are

DRUG the drug used in treatment

DISEASE the disease present

CHANG–BP the change in systolic blood pressure due to treatment

19
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The GPA data set contains data collected to determine which applicants at a large
midwestern university were likely to succeed in its computer science program
(Campbell and McCabe 1984). There is one observation per student. Variables are

GPA the grade point average of students in the computer science pro-
gram

HSM the average high school grade in mathematics

HSE the average high school grade in English

HSS the average high school grade in science

SATM the score on the mathematics portion of the SAT exam

SATV the score on the verbal portion of the SAT exam

SEX the student’s gender

The IRIS data set is Fisher’s Iris data (Fisher 1936). Sepal and petal size were mea-
sured for fifty specimens from each of three species of iris. There is one observation
per specimen. Variables are

SEPALLEN sepal length in millimeters

SEPALWID sepal width in millimeters

PETALLEN petal length in millimeters

PETALWID petal width in millimeters

SPECIES the species

The MINING data set contains results of an experiment to determine whether drilling
time was faster for wet drilling or dry drilling (Penner and Watts 1991). Tests were
replicated three times for each method at different test holes. There is one observation
per five-foot interval for each replication. Variables are

DRILTIME the time in minutes to drill the last five feet of the current depth

METHOD the drilling method, wet or dry

REP the replicate number

DEPTH the depth of the hole in feet

The MININGX data set is a subset of the MINING data set. It contains data from only
one of the test holes.

20
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The PATIENT data set contains data collected on cancer patients (Lee 1974). There
is one observation per patient. Variables are

REMISS 1 if remission occurred and 0 otherwise

CELL

SMEAR

INFIL

LI

TEMP

BLAST measures of patient characteristics

The SHIP data set contains data from an investigation of wave damage to cargo ships
(McCullagh and Nelder 1989). The purpose of the investigation was to set standards
for future hull construction. There is one observation per ship. Variables are

Y the number of damage incidents

YEAR year of construction

TYPE the type of ship

PERIOD the period of operation

MONTHS the aggregate months of service

Choose Help:Create Samples to create the sample data sets in your sasuser
directory. When you have created the sample data sets, turn to the Techniques part of
this manual to learn how to enter your data and begin exploring it with SAS/INSIGHT
software.

† Note: If you have an existing data set in your sasuser library with the same name
as a sample data set, it will be overwritten if you create the sample.
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Entering Data

A SAS data set consists of variables and observations. Variables are quantities or
characteristics being measured. Observations are sets of variable values for a single
entity.

In SAS/INSIGHT software, your data are presented in a window with variables dis-
played in columns and observations displayed in rows, as in Figure 2.1. You can enter
data directly in the data window.

Figure 2.1. Entering Data in the Data Window
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Invoking SAS/INSIGHT Software
You can invoke SAS/INSIGHT software in any of three ways.

=⇒ You can type insight on the command line.

Figure 2.2. Command Line

=⇒ If you have menus, you can choose Solutions:Analyze:Interactive Data
Analysis.

· · · Run Solutions Help

Analysis �

Development & Programming �

Reporting �

Accessories �

ASSIST
Desktop
EIS / OLAP Application Builder

3D Visual Analysis
Analyst
Design of Experiments
Geographic Information Systems
Guided Data Analysis
Interactive Data Analysis
Investment Analysis
Market Research
Project Management
Quality Improvement
Queueing Simulations
Time Series Forecasting System
Time Series Viewer

Figure 2.3. SAS Analysis Menu

=⇒ You can invoke SAS/INSIGHT software as a SAS procedure.
Choose Run:Submit to submit the procedure statement in the Program Editor.
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Figure 2.4. Entering a PROC Statement
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You may want to access SAS data sets that are located in different libraries than
the standard ones. As an example, if you have SAS data sets in a directory named
mypath, then enter the lines

libname mylib ’mypath’;
proc insight;
run;

in the Program Editor window and choose Run:Submit. The data set dialog (dis-
cussed later) will contain an additional library mylib to choose from.

You can invoke SAS/INSIGHT software from the Program Editor window and auto-
matically open a new data window. Enter the lines

proc insight data;
run;

in the Program Editor window and choose Run:Submit. The data set dialog is
skipped and a new data window appears.

You can specify a data set directly. For example, if you have a SAS data set named
mydata in the mylib directory, enter the lines

libname mylib ’mypath’;
proc insight data=mylib.mydata;
run;

in the Program Editor window and choose Run:Submit. Again the data set dialog
is skipped and a data window appears with the specified SAS data set.

Finally, if you have raw data that you want to analyze, you most likely need to use the
INFILE and INPUT statements in a DATA step. Refer to SAS Language Reference:
Dictionary for information on how to read in raw data.

† Note: It is best to invoke SAS/INSIGHT software from the command line or from the
Solutions menu. This enables you to use SAS/INSIGHT software simultaneously
with other components in the SAS System. If you invoke it as a procedure, you cannot
use any other SAS component until you exit SAS/INSIGHT.

Upon invoking SAS/INSIGHT software, you are prompted with a data set dialog.
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Figure 2.5. Data Set Dialog

=⇒ Click the New button.
This opens a new data window in which you can enter data.

Figure 2.6. New Data Window

31



Techniques � Entering Data

Entering Values
By default, the first value in a new data window is selected and is displayed with a
frame around it. This active value marks your current location in the data window.
To enter data, simply begin typing.

=⇒ Enter the name “Bob” in the active value.

Figure 2.7. Entering a Value

As you type, variables and observations are created for you. The count of variables
and observations is shown in the upper left of the data window.

=⇒ Press the Tab key.

This moves the active value one position to the right.

=⇒ Enter the salary “200000” in the active value.
Again, a variable is created.

Figure 2.8. A Second Value

=⇒ Press the down arrow key, then press the left arrow key.

This moves the active value to the first column of the second row.

=⇒ Enter the name “Sue” in the active value.
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Figure 2.9. A New Observation

A new observation is created, increasing the observations count to 2. The period (.)
in the second value indicates a missing value for the numeric variable.

=⇒ Press the Tab key to move to the right.

=⇒ Enter the salary “300000” to replace the missing value. Then press the down
arrow key.

Figure 2.10. Replacing the Missing Value
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Navigating the Data Window
You can use Tab, BackTab, Enter, Return, and arrow keys to navigate the data win-
dow. Tab moves the active value to the right. BackTab, usually defined as Shift-Tab,
moves the active value to the left. Enter or Return moves the active value down. Up
and down arrow keys move the active value up or down.

When you are not editing any value, left and right arrow keys move the active value
left and right. When you are editing a value, left and right arrow keys move the cursor
within the active value.

When you have values, variables, or observations selected, the Tab, BackTab, and
Return keys navigate within the selected area. This reduces keystrokes when you
enter data.

=⇒ Drag a rectangle through several values to select them.

Figure 2.11. Selected Range

=⇒ Press Tab repeatedly.

=⇒ Press Return repeatedly.

The active value moves within the range you selected. By default, the Tab key navi-
gates horizontally, and the Return key navigates vertically.

† Note: See the section “Data Options” at the end of this chapter for information on
defining the direction of Tab and Enter keys.
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Adding Variables and Observations
When you have a lot of data to enter, it is more efficient to specify the approximate
number of observations rather than to create them one at a time.

=⇒ Click in the upper left corner of the data window.
This displays the data pop-up menu.

Find Next
Move to First
Move to Last
Sort...
New Observations
New Variables
Define Variables...
Fill Values...
Extract
Data Options...

Figure 2.12. Data Pop-up Menu

=⇒ Choose New Observations from the pop-up menu.
This displays a dialog to prompt you for the number of observations to create.

=⇒ Enter “10” in the observations dialog, then click OK.

Figure 2.13. Observations Dialog

Observations with missing values are added at the bottom of the data window, increas-
ing the observations count to 12. In the new observations, character values default to
blank, while numeric values default to missing.
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Figure 2.14. New Observations

The New Variables menu works like the New Observations menu. You can
choose New Variables to create several variables at once.
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Defining Variables
Each variable has a measurement level shown in the upper right portion of the column
header. By default, numeric values are assigned an interval (Int) measurement level,
indicating values that vary across a continuous range. Character values default to a
nominal (Nom) measurement level, indicating a discrete set of values.

=⇒ Click on the Int measurement level indicator for variable B.
This displays a pop-up menu.

�Interval
Nominal

Figure 2.15. Measurement Levels Menu

The radio mark beside Interval shows the current measurement level. Because B is
a numeric variable, it can have either interval or nominal measurement level.

=⇒ Choose Nominal in the pop-up menu to change B’s measurement level.

Figure 2.16. Nominal B

You can adjust other variable properties as well. Click in the upper left corner of the
data window to display the data pop-up menu.

Find Next
Move to First
Move to Last
Sort...
New Observations
New Variables
Define Variables...
Fill Values...
Extract
Data Options...
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Figure 2.17. Data Pop-up Menu

=⇒ Choose Define Variables from the pop-up menu.
This displays a dialog. Using this dialog, you can assign variable storage type, mea-
surement level, default roles, name, and label.

Figure 2.18. Define Variables Dialog

=⇒ Enter “NAME” for the name of variable A.

=⇒ Click the Apply button.
In the data window, the variable receives the name you entered.

Figure 2.19. Naming a Variable

=⇒ Select B in the variables list at the left.
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=⇒ Enter “SALARY” for the name of variable B.

=⇒ Click the Interval measurement level.
Interval measurement level is appropriate for a variable like salary.

=⇒ Click the OK button.
This closes the dialog. In the data window, the variable receives the name and mea-
surement level you entered.

Figure 2.20. Name and Measurement Level Assigned
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Fast Data Entry
When you have a lot of data to enter, it is important to be able to do it quickly. Using
information from the preceding sections, here is the fastest way to enter data.

=⇒ Open a new data window.
You can do this when you invoke SAS/INSIGHT software, or you can choose
File:New.

Figure 2.21. New Data Window

=⇒ Create all variables.
The easiest way to do this is to enter the first observation. Variable types and mea-
surement levels are assigned automatically.

Figure 2.22. Variables Created Automatically

An alternate way to create variables and assign types and measurement levels yourself
is by using the data pop-up menu.

=⇒ Click in the upper left corner of the data window.
This displays the data pop-up menu.
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Find Next
Move to First
Move to Last
Sort...
New Observations
New Variables
Define Variables...
Fill Values...
Extract
Data Options...

Figure 2.23. Data Pop-up Menu

=⇒ Choose New Variables from the pop-up menu.
This displays a dialog to prompt you for the number of variables to create.

=⇒ Enter “3” in the New Variables dialog, then click OK.

Figure 2.24. New Variables Dialog

The data window should appear as shown in the next figure.

Figure 2.25. Variables Created Manually

The variable names and measurement levels can be selected as shown in the last
section.

You can create observations using the following steps.
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=⇒ Click in the upper left corner of the data window.
This displays the data pop-up menu.

Find Next
Move to First
Move to Last
Sort...
New Observations
New Variables
Define Variables...
Fill Values...
Extract
Data Options...

Figure 2.26. Data Pop-up Menu

=⇒ Choose New Observations.
This displays a dialog prompting you for the number of observations to create.

Figure 2.27. Observations Dialog

Enter the number of observations, then click OK. If you don’t know the number
of observations, make it a little larger than you will need. You can delete unused
observations later.

Figure 2.28. Observations Created
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=⇒ Select all variables.
Click the variable count in the upper left corner of the data window.

Figure 2.29. Variables Selected

=⇒ Select the active cell.
Use Ctrl-click to avoid deselecting the variables.

Figure 2.30. Active Value Selected

Now you can enter data, using Tab and BackTab to navigate within the selected vari-
ables. You can also fill in blocks of values by using the Fill Values option described
in the next section. If your keyboard has a numeric keypad, this method enables you
to enter numeric data without moving your hand from the keypad.

On some keyboards, the Enter key is easier to hit than the Tab key. So, you may be
able to optimize data entry a bit further by defining the direction of the Tab and Enter
keys. You can do this by setting the Data Options described in the next section.
With these options, you can tailor SAS/INSIGHT’s data entry to suit your keyboard.

When you have finished entering data, delete any unused observations by selecting
them and choosing Edit:Delete. If you have not already done so, assign variable
names, labels, and other information by choosing Define Variables.
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Other Options
The pop-up data menu has a couple of useful options for filling in blocks of data and
for selecting the actions taken by the Enter and Tab keys.

Click on the button at the upper left corner of the data window to display the data
pop-up menu. Choose Fill Values to modify selected values in the data window. If
you have variables, observations, or values selected, you are prompted to specify a
Value and an Increment. If you have no selections, you are prompted to specify
variables and observations.

Figure 2.31. Fill Values Dialog

In the Fill Values dialog, the Value field can be either character or numeric. If the
value is numeric, you can use the Increment field to specify an increment or step
value. For example, to fill 10 values with ordinals 1 through 10, you can select the
values, choose Fill Values, and enter 1 for both Value and Increment.

Choose Data Options in the data pop-up menu to set options that control the ap-
pearance and operation of the data window. This displays the Data Options dialog,

Figure 2.32. Data Options

The dialog contains the following options:

Show Variable Labels
This option controls whether variable labels are displayed. The default is off. If you
turn on this option, variable labels are displayed.
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Direction of “Enter”
This option controls the interpretation of the Enter and Return keys in the data win-
dow. By default, the Enter key moves the active value one position down. If you
choose Right, the Enter key moves one position to the right. If you choose Down
and Left, the Enter key moves one position down, and left to the first position.

Direction of “Tab”
This option controls the interpretation of the Tab and BackTab keys in the data win-
dow. By default, the Tab key moves the active value one position to the right. If you
choose Down, the Tab key moves one position down. If you choose Right and Up,
the Tab key moves one position to the right, and up to the first position.

The options Down and Left and Right and Up were added in Release 6.11. Not
all hosts define a BackTab key, and not all hosts define Enter and Return as the same
key. Consult your host documentation for information on key definitions.

You can save data window options by choosing File:Save:Options. This enables
you to use your preferred option settings as defaults in future SAS/INSIGHT sessions.
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SAS/INSIGHT software displays your data as a table of rows and columns in which
the rows represent observations and the columns represent variables. You can use
SAS/INSIGHT software to view your data, arrange variables, sort observations, and
find and examine observations of interest.

Figure 3.1. Data Window
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Invoking SAS/INSIGHT Software
Using one of the methods mentioned in Chapter 2, “Entering Data,” invoke
SAS/INSIGHT software to display the data set dialog. =⇒ In the dialog, point
and click to choose a library and data set.
A library is a location where data sets are stored. Point to the list on the left and click
on any library to see a list of data sets stored there. Point to the list on the right and
click on any data set to select it for opening. Then click on Open to open a window
on the data.

Figure 3.2. Data Set Dialog

As a shortcut, you can click twice rapidly on the data set (a double-click) instead of
clicking once on the data set and once on the Open button.
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Figure 3.3. Data Window

Each variable in SAS/INSIGHT software has a measurement level that determines
the way it is treated in graphs and analyses. The measurement level for each variable
appears above the variable name. You can assign two measurement levels: interval
and nominal.

Interval variables contain values that vary across a continuous range. For
example, NO–ATBAT is an interval variable in Figure 3.3.

Nominal variables contain a discrete set of values. For example, NAME is a
nominal variable in Figure 3.3.

Each observation in SAS/INSIGHT software has a marker, a graphic shape that iden-
tifies the observation in graphs. The marker for each observation appears to the left
of the observation number.

The number of observations and the number of variables in the data set appear in
the upper left corner of the data window. The data window in Figure 3.3 shows that
SASUSER.BASEBALL has 322 observations and 22 variables.

Scrolling the Data Window
Most data sets are too large to fit in a data window, so the window contains scroll
bars to scroll the data through the window. The appearance of scroll bars varies
depending on your host. Most scroll bars have small arrow buttons at the ends and
a slider between the buttons to indicate the current position and relative size of the
displayed area.

=⇒ Click the arrow button at the bottom of the vertical scroll bar.
This scrolls down one observation.

Figure 3.4. Scrolling Down One Observation
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=⇒ Drag the slider on the vertical scroll bar all the way down.
This scrolls to the last observation.

Figure 3.5. Scrolling to the Last Observation

Similarly, clicking the arrow button at the top of the vertical scroll bar scrolls up
one observation, and dragging the slider all the way to the top scrolls to the first
observation. The horizontal scroll bar works the same way, except that it moves the
data by variable instead of by observation.

† Note: On many hosts you can click within the scroll bar to scroll the width or height
of the window. Some hosts offer additional buttons on the scroll bars, and some hosts
respond to more than one button on the mouse. Refer to your host documentation for
details and experiment by clicking on the scroll bars in the data window.

Arranging Variables
Using scroll bars, you can view all of your data, but the variables and observations
may not always be arranged as you would like. For example, suppose you are inter-
ested in the salaries of the players in the data set SASUSER.BASEBALL. To move
the SALARY variable to the first position in the data window, follow these steps.

=⇒ Scroll the data window to the SALARY variable.
SALARY is the last variable, so drag the slider on the horizontal scroll bar all the
way to the right.

=⇒ Point to the SALARY variable name.
Then click with the mouse to select the variable SALARY. The variable becomes
highlighted when you select it.
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Figure 3.6. Selecting the Last Variable

=⇒ Click on the menu button in the upper left corner.
This opens the data pop-up menu. Click on Move to First.

Figure 3.7. Data Pop-up Menu

This moves the selected variable to the first position. Note that the Data menu also
has a Move to Last choice, so you can easily move variables to the last position.
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Figure 3.8. Variable in First Position

You can also move individual variables to different locations by using the hand tool.

=⇒ Choose Edit:Windows:Tools.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 3.9. Edit:Windows Menu

The tools window is shown in the next figure.
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Figure 3.10. Tools Window

=⇒ Click the Hand tool at the top of the Tools window.
The cursor changes to a hand. Move the hand to the variable named Salary.

=⇒ Press the left mouse button and hold it down.
A dotted rectangle should appear as the outline of the variable column.

=⇒ Drag the rectangle so that its middle is on the border between Name and Team.

=⇒ Release the left mouse button.
The Salary variable has become the second variable in the data window.
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Figure 3.11. Variable in Second Position

=⇒ Use the Hand tool to move Salary back to the first position.

=⇒ Click the arrow tool in the Tools window to restore the cursor.

Sorting Observations
It is often useful to examine data ordered by the values of a variable. Suppose you
want to sort the baseball data by players’ salaries stored in the SALARY variable.
Follow these steps.

=⇒ Point and click to select the SALARY variable.
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Figure 3.12. Selecting a Variable

=⇒ Click on the menu button in the upper left corner.
This opens the data pop-up menu. Click on Sort.

Figure 3.13. Sorting Observations

The data are now sorted by SALARY in ascending order.
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Figure 3.14. Sorted Data

The periods (.) displayed in the observations for SALARY are missing values.
Missing values are placeholders that indicate no data are available. Missing values
are treated as less than any other value, so when the data are sorted, missing values
appear first. If you scroll the data, you can see that the missing values are followed
by the smallest salaries.

Figure 3.15. Sorted Data, Missing and Nonmissing
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Finding Observations
Sometimes you want to find observations that share some characteristic. For example,
you might want to find all the baseball players who primarily played first base. To do
so, follow these steps. The figures in this section are based on the NAME variable
appearing as the first variable. If you just completed the previous two sections on
moving variables and sorting observations, move the SALARY variable to the last
position and sort the observations on NAME. Make sure no variables are selected.

=⇒ Choose Edit:Observations:Find.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Find...
Examine...
Label in Plots
Unlabel in Plots
Show in Graphs
Hide in Graphs
Include in Calculations
Exclude in Calculations
Invert Selection

Figure 3.16. Finding Observations

This displays the Find Observations dialog.

Figure 3.17. Find Observations Dialog
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=⇒ Select the POSITION variable.
Scroll the list of variables at the left to see the POSITION variable. Then point and
click to select POSITION. Notice that the list of values at the right now contains all
the unique values of the POSITION variable. By default, the equal (=) test and the
first value are selected.

Figure 3.18. Selecting POSITION

=⇒ Select the values 13, 1B, and 1O.
On most hosts, you can either Shift-click or CTRL-click to select these values. The
players selected primarily played first base. Note that players with POSITION = O1
also played some first base, but they played primarily in the outfield.

=⇒ Click the Apply button to find the data.
This selects observations without closing the Find Observations dialog. Clicking
the OK button closes the Find Observations dialog after selecting the observa-
tions.

Figure 3.19. Selecting First Basemen
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Now all observations where POSITION is 13, 1B, or 1O are highlighted.

Figure 3.20. First Basemen Found

=⇒ Choose Find Next from the data pop-up menu.
The data window scrolls so the next observation with POSITION = 13, 1B, or 1O
is at the top.

Figure 3.21. Finding the Next Observation

=⇒ Choose Move to First from the data pop-up menu.
This enables you to see all the selected observations in one place, in this case at the
top of the data window.
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Figure 3.22. Collecting the Selected Observations
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Examining Observations
You can examine selected observations in detail by following these steps. The figures
in this section are based on the data being sorted on the NAME variable and the
observations selected where POSITION is 13, 1B, or 1O. The previous sections on
sorting and finding observations provide examples of how to sort and select.

=⇒ Choose Edit:Observations:Examine.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Find...
Examine...
Label in Plots
Unlabel in Plots
Show in Graphs
Hide in Graphs
Include in Calculations
Exclude in Calculations
Invert Selection

Figure 3.23. Finding Observations

This displays the Examine Observations dialog. The list on the left shows the
observation number for the selected observations: first basemen. The list on the right
displays the variable values for the highlighted observation.
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Figure 3.24. Examine Observations Dialog

Scroll down the list on the right to see the rest of Mike Aldrete’s statistics. Point and
click on observation number 58 to see Will Clark’s statistics. Scroll down the list on
the left until you can point and click on observation number 246 to see Pete Rose’s
statistics. Click OK to close the dialog.

You can also use the Examine Observations dialog directly from a graph or chart.
To examine observations from a box plot of player salaries, follow these steps.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).
This calls up the Box Plot/Mosaic Plot dialog.

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 3.25. Creating a Box Plot

=⇒ Assign SALARY the Y role and LEAGUE the X role.
Click on SALARY in the variable list on the left, then click on Y at the top. Similarly,
click on LEAGUE in the list on the left, then click on X at the top.

=⇒ Click OK to create a box plot of SALARY by LEAGUE.
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Figure 3.26. Box Plot Variable Roles

=⇒ Double-click on the marker representing the highest salary in the National
League.

Figure 3.27. Box Plot of SALARY by LEAGUE

Clicking on the observation identifies the point in the graph with its observation num-
ber. Double-clicking displays the Examine Observations dialog for the selected
observation. In 1986, Mike Schmidt had the highest salary in the National League.
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Figure 3.28. Examining Observations

=⇒ Double-click on the upper whisker for the American League.
This displays the values for all observations within the whisker. Then click in the
Observation list to see the values for each observation.

Figure 3.29. Examining Whisker Observations

=⇒ Click OK to close the dialog.
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Closing the Data Window
There are several other features of the data window, and you can find them by explor-
ing the data pop-up menu on your own. For detailed information, see Chapter 31,
“Data Windows,” in the Reference part of this manual. One more feature important
enough to describe here concerns what happens when you close a data window.

† Note: When you close the data window, you close all windows using that data set.
When you close all your data windows, you exit SAS/INSIGHT software.

You can open as many data windows as you like by choosing File:Open. You can
close any window by choosing File:End. Depending on your host, there may be
other ways to close windows as well.

You will be prompted with a dialog to confirm that you want to close the data window.
In the Confirm dialog, you can click OK to close the data window, or you can click
Cancel to abort the action and leave the data window open. Try it to be sure you
know how to exit SAS/INSIGHT software when you are ready, but click Cancel in
the Confirm dialog to abort the closing.

=⇒ Choose File:End.

File Edit Analyze Tables Graphs Curves Vars Help

New
Open...
Save �

Print...
Print setup...
Print preview
End

Figure 3.30. File Menu

Choosing File:End displays the Confirm dialog.

Figure 3.31. Confirm Dialog

=⇒ Click Cancel.
This aborts the closing and returns you to the data window. If you had clicked OK,
you would have closed the data window and exited SAS/INSIGHT software.
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Now that you know how to examine data in a data window, turn to the next chapter
to learn how to explore data in one dimension.

⊕ Related Reading: Data Windows, Chapter 31.
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In SAS/INSIGHT software, you can explore distributions of one variable using bar
charts and box plots. Bar charts display distributions of interval or nominal variables.
Box plots display concise summaries of interval variable distributions and show ex-
treme values.

Figure 4.1. A Bar Chart and Box Plot
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Bar Charts
Interval variables contain values distributed over a continuous range. For example,
in Figure 4.2 baseball players’ salaries are stored in SALARY, an interval variable.
To create a bar chart of players’ salaries, follow these steps.

=⇒ Select SALARY in the data window.
Scroll all the way to the right to find the SALARY variable. Point and click on the
variable name.

Figure 4.2. Selecting the SALARY Variable

=⇒ Choose Histogram/Bar Chart ( Y ) from the Analyze menu.

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 4.3. Creating a Bar Chart

This creates a bar chart, as shown in Figure 4.4.
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Figure 4.4. Bar Chart

=⇒ Point and click on any bar
This labels the bar with its frequency and selects all the observations in the bar.

Figure 4.5. Clicking on a Bar
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Notice that the observations are selected in the data window as well as in the bar chart
window. Windows in SAS/INSIGHT software are just different views of the same
data, so observations you select in one window are selected in all other windows.

Figure 4.6. Selecting Observations in Multiple Windows

From this bar chart, you can see that the distribution of players’ salaries is skewed
to the right, with a few players earning high salaries. To find the number of players
making the highest salaries, you can label all bars with their heights.

=⇒ Click on the menu button in the bottom left corner of the chart.
This displays the bar chart pop-up menu in Figure 4.7. Click on Values.

Ticks...
� Axes
� Observations

Values
Reference Lines

Figure 4.7. Bar Chart Pop-up Menu.

This toggles the display of values for all bar heights. There are three players making
salaries above $2,000,000.
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Figure 4.8. Bar Heights

It would be interesting to determine whether salaries differ in the American and
National leagues. To compare the distribution of salaries from both leagues, follow
these steps.

=⇒ Select LEAGUE in the data window.

Figure 4.9. Selecting LEAGUE

Note that LEAGUE is a nominal variable. Nominal variables contain a discrete set of
values. For example, LEAGUE contains only two values, American and National,
for the American and National leagues.
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=⇒ Choose Histogram/Bar Chart ( Y ) from the Analyze menu.
From the bar chart in Figure 4.10 you can see that the BASEBALL data set has more
observations from the American League.

Figure 4.10. Bar Chart of LEAGUE

=⇒ Select Values from the bar chart pop-up menu in the new bar chart.
This displays the frequencies for each of the leagues at the top of the bars on the bar
chart.
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Figure 4.11. Bar Chart with Frequency Values
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=⇒ Arrange the windows so you can see both bar charts.

=⇒ Click on the bar that represents the American League.
This selects all observations for players in the American League.

Figure 4.12. Selecting American League Observations

=⇒ Click on the bar that represents the National League.
This selects all observations for players in the National League.
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Figure 4.13. Selecting National League Observations

Both leagues have a broad distribution of SALARY with most players earning below
$1,000,000 and a few earning much more.

You can examine the distributions in more detail by creating box plots.

⊕ Related Reading: Bar Charts, Chapter 32.
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Box Plots
Box plots are an effective way to compare distributions of interval data. To create
side-by-side box plots comparing the distributions of salaries for the American and
National Leagues, follow these steps.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).

File Edit Analyze Tables Graphs Curves Vars Help
HistogramBar Chart ( Y )
Box PlotMosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 4.14. Creating a Box Plot

The ( Y ) in the Box Plot/Mosaic Plot ( Y ) menu indicates that a Y variable is
required to create a box plot. Since you have no variables selected, a variables dialog
prompts you to select at least one Y variable. Selecting a nominal variable for Y
creates a mosaic plot; selecting an interval variable for Y creates a box plot.

Y is one of several roles you can assign to variables in analyses. The variables dialog
shows that box plots and mosaic plots can also use X, Group, Label, and Freq
variables.

Figure 4.15. Box Plot Variables Dialog
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† Note: You can select variables before choosing from the Analyze menu, or you can
choose from the Analyze menu before selecting variables. Selecting variables first
is faster. If you select variables first, they are assigned to the required variable roles
listed in the Analyze menu. Choosing the analysis first gives you more flexibility. If
you choose the analysis first, you can assign optional variable roles such as Group
and Label.

=⇒ Select SALARY in the list at the left, then click the Y button.
This assigns the Y role to SALARY. The box plot displays the distribution of the Y
variable.

=⇒ Select LEAGUE in the list at the left, then click the X button.
This assigns the X role to LEAGUE. The box plot displays one schematic distribution
plot side-by-side for each unique value of the X variable.

=⇒ Select NAME in the list at the left, then click the Label button.
This assigns the Label role to NAME. The label variable is used to identify extreme
values in the box plot.

Figure 4.16. Assigning Variable Roles

=⇒ Click OK to create the Box Plot.

The box plot gives a concise picture of the distributions and places them side-by-side
for easy comparison. The horizontal line in the middle of a box marks the median or
50th percentile. The top and bottom edges of a box mark the quartiles, or the 25th and
75th percentiles. The narrow boxes extending above and below are called whiskers.
Whiskers extend from the quartiles to the farthest observation not farther than 1.5
times the distance between the quartiles. More extreme data values are plotted with
individual markers.

The box plot shows long whiskers above with individual observations beyond the
whiskers indicating severe skewness. These are the players making extremely high
salaries.
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Figure 4.17. Side-By-Side Box Plots

=⇒ Point and click at the extreme values to identify them.
Eddie Murray and Jim Rice were the highest paid players in the American league,
while Mike Schmidt was the highest paid player in the National League.

Figure 4.18. Identifying Extreme Values
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You can also use a box plot to see the sample mean of a distribution.

=⇒ Click on the menu button in the lower left corner of the plot.
This displays the box plot pop-up menu. Click on Means.

Ticks...
� Axes
� Observations

Means
Comparison Circles
Serifs
Values
Reference Lines
Marker Sizes �

Figure 4.19. Box Plot Pop-up Menu

This toggles the display of mean diamonds on the box plot.

Figure 4.20. Box Plot with Mean Diamonds

The horizontal line in a mean diamond marks the mean salary for each league. The
height of a mean diamond is two standard deviations (one on either side of the mean).
In this case, the means and standard deviations for each league are almost identical.
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You can use other choices on the box plot pop-up menu to adjust axis tick marks and
marker sizes and to toggle the display of observations, axes, serifs, and values. When
there are two or more categories, you can toggle the display of comparison circles,
which enable you to graphically compare the means of multiple categories.

⊕ Related Reading: Box Plots, Chapter 33.
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SAS/INSIGHT software provides mosaic plots, scatter plots, and line plots for ex-
ploring data in two dimensions. Mosaic plots are pictorial representations of fre-
quency counts of nominal variables. Scatter plots are graphic representations of the
relationship between two interval variables. Line plots show the relationships of mul-
tiple Y variables to a single X variable.

Figure 5.1. A Mosaic Plot, Scatter Plot, and Line Plot
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Mosaic Plots
This example illustrates how to create mosaic plots for the BASEBALL data cross-
classified by LEAGUE and DIVISION.

=⇒ Open the BASEBALL data set.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).

=⇒ Assign LEAGUE the Y role and DIVISION the X role. Then click OK.

Figure 5.2. Assigning Variables for a Mosaic Plot

This creates a mosaic plot containing four boxes. The areas of the boxes in the mosaic
plot are proportional to the number of observations in each category. You can see that,
for these data, there are more players in the American League than in the National
League and about the same number of players in the East and West Divisions.

You can find out more about specific categories by selecting the boxes.

=⇒ Click on the box at the lower left (American League East).
This selects all the observations in the box and labels the box with its frequency and
percentage. For this data, there are 85 players from the East Division of the American
League, and these are 26.4% of the total.
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Figure 5.3. Clicking on a Box

=⇒ Double-click on the box to examine the observations.
This selects all the observations in the box and displays the Examine Observations
dialog. By clicking in the Examine Observations dialog, you can get detailed infor-
mation on all the selected observations.

Figure 5.4. Examine Observation Dialog

You can add more information to the mosaic plot by displaying frequency counts and
percentages.

=⇒ Choose Values from the pop-up menu.
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Ticks...
� Axes
� Observations

Means
Comparison Circles
Serifs
Values
Reference Lines
Marker Sizes �

Figure 5.5. Mosaic Plot Pop-up Menu

This toggles the display of frequencies and percentages for all boxes in the mosaic
plot.

Figure 5.6. Mosaic Plot with Frequencies and Percentages
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Scatter Plots
Scatter plots show the relationship between two variables. For example, you can
explore the relationship between students’ scores on standardized tests of math and
verbal ability by following these steps.

=⇒ Open the GPA data set.

=⇒ Select both the SATM and SATV variables.
To select both variables, press the mouse button on SATM, move the mouse to SATV,
then release the mouse button.

Figure 5.7. Selecting Two Variables

=⇒ Choose Analyze:Scatter Plot ( Y X ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 5.8. Creating a Scatter Plot
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This creates a scatter plot, as shown in Figure 5.9. Note that the first variable you
selected, SATM, is plotted on the Y axis, while the second variable selected, SATV,
is plotted on the X axis.

Figure 5.9. Scatter Plot Each marker in the scatter plot represents an observation,
and its position shows the values of SATM and SATV for that observation. You can
click on any marker to determine which observation it represents.

=⇒ Click on a marker.
This selects the marker and displays its observation number. For example, observa-
tion 20 is selected in Figure 5.10.

Clicking also selects the observation in the data window because windows are linked
to their data. Any change to the data is automatically reflected in all windows.
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Figure 5.10. Selecting Observations in Multiple Windows

=⇒ Double-click on a marker.
This selects the marker and displays the Examine Observation dialog. You can ex-
amine the values of all variables for the selected observation.

Figure 5.11. Examine Observations Dialog

93



Techniques � Exploring Data in Two Dimensions

Scatter Plot Matrices
A scatter plot matrix shows relationships among several variables taken two at a time.
Scatter plot matrices can reveal a wealth of information, including dependencies,
clusters, and outliers.

You can explore the relationships among students’ college grade point averages and
standardized test scores by following these steps.

=⇒ Select SATM, SATV, and GPA in the data window.
To select these variables, use noncontiguous selection. On most hosts, you can use
the Ctrl key to make a noncontiguous selection, as described in Chapter 1, “Getting
Started.”

Figure 5.12. Selecting Three Variables

=⇒ Choose Analyze:Scatter Plot ( Y X ).
This creates the scatter plot matrix shown in Figure 5.13.
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Figure 5.13. Scatter Plot Matrix

The plots are organized in a matrix of all pairwise combinations of the variables
SATM, SATV, and GPA. Plots are arranged so that adjacent plots share a common
axis. All plots in a row share a common Y axis, and all plots in a column share a
common X axis. The diagonal cells of the matrix contain the names of the variables
and their minimum and maximum values.

=⇒ Click on a marker in any scatter plot.
The observation label is displayed and corresponding markers in all scatter plots are
selected, as shown in Figure 5.14. This enables you to explore observations to see,
for example, if an outlier in one scatter plot is an outlier in other scatter plots.
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Figure 5.14. Selecting Observations in a Scatter Plot Matrix

Brushing Observations

Brushing is a dynamic method of selecting groups of observations simultaneously in
all views of the data. Brushing is an effective technique for investigating multivariate
data (Becker, Cleveland, and Wilks, 1987). For example, you can use brushing to
find students who performed poorly on their SATs but still had relatively high grade
point averages.

=⇒ Select observations with low values for SATM and SATV.
Press the mouse button down, move the mouse, then release the mouse button to
create a rectangle in the plot of SATM by SATV. This rectangle is your brush. The
observations in the rectangle are selected. Notice that corresponding observations are
also highlighted in the other plots.
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Figure 5.15. Brushing in a Scatter Plot Matrix

Examine one of the scatter plots involving GPA. Several of the selected observations
have GPA values of 4 or above, indicating that SAT scores are not always good
indicators of success in the school’s computer science program.

You can change the size of your brush to select different observations.

=⇒ Place the cursor on the corner of the brush and drag the cursor.
The brush changes size as you drag until you release the mouse button.
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Figure 5.16. Changing the Size of a Brush

You can move the brush to select observations dynamically.

=⇒ Place the cursor in the brush and drag the brush across the plot.
As observations enter the brush they become selected, and as they leave they are
deselected. The corresponding observations in all the other scatter plots are also
selected and deselected as you move the brush.

If you release the mouse button while you are moving the brush, the brush continues
to move. Throwing the brush in this way removes the burden of eye-hand coordina-
tion, enabling you to take your eyes off the brush and more easily see its effect in
other plots.

You can also brush with extended selection. This is a convenient way to select a set of
observations that does not fit the rectangular shape of the brush. Extended selection,
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described in Chapter 1, uses the Shift key on most hosts.

=⇒ Using extended selection, create another brush.
The observations that were in the previous brush remain selected.

=⇒ Using extended selection, move the brush.
Observations become selected as they enter the brush, but they are not deselected
when they leave the brush, as illustrated in Figure 5.17.

Figure 5.17. Brushing with Extended Selection

=⇒ To remove the brush, click in any empty area of the window.
Clicking on nothing deselects all selected objects.

⊕ Related Reading: Scatter Plots, Chapter 35.
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Line Plots
Line plots are often used to show trends over time. For example, you can explore the
patterns in pollutant concentrations in the AIR data set by following these steps.

=⇒ Open the AIR data set.
This data set contains measurements of air quality as indicated by concentrations of
various pollutants. Among the pollutants are carbon monoxide (CO), ozone (O3),
sulfur dioxide (SO2), nitrogen oxide (NO), and DUST.

Figure 5.18. AIR Data

=⇒ Choose Analyze:Line Plot ( Y X ).
This displays the line plot variables dialog.

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 5.19. Creating a Line Plot

=⇒ Assign CO and SO2 the Y role, and DATETIME the X role.

=⇒ Assign DATETIME the Label role also. Then click OK.
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Figure 5.20. Assigning Line Plot Variables

This creates a line plot with one line for each Y variable.

Figure 5.21. Line Plot

To associate lines with variables, simply select the variable.

=⇒ Click on the SO2 variable.
This highlights both the variable and the corresponding line.
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Figure 5.22. SO2 Selected

By clicking on the variables, you can see that the SO2 concentration rises to a peak
on the 17th of November and then falls. The CO concentration shows a regular
pattern of peaks and valleys up until the 16th; then it falls also.

To show more information, you can add observation markers to the line plot.

=⇒ Click on the menu button in the lower left corner of the plot. Choose
Observations.

Ticks...
� Axes

Observations
Reference Lines
Marker Sizes �

Figure 5.23. Line Plot Pop-up Menu

This displays the line plot with observation markers.
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Figure 5.24. Line Plot with Observations

=⇒ Point and click to identify observations with the highest pollutant concentra-
tions.

Figure 5.25. Identifying Observations
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Most of the peaks for CO occur in the morning and evening, around hours 08:00 or
18:00. Carbon monoxide pollution is often caused by automobiles, so these peaks
might be caused by rush-hour traffic.

The SO2 concentration follows a different pattern. Sulfur dioxide is a pollutant given
off by power plants. Perhaps there was a peak demand for electricity on the 17th.

The drop in pollutants after the 17th can be partly explained by noting that the 18th
and 19th were Saturday and Sunday. The weekend eliminates rush-hour traffic pat-
terns. However, the CO level dropped on the 16th also, which was Thursday. There
is an additional factor at work here.

=⇒ Choose Edit:Windows:Renew to re-create the line plot.

=⇒ Add WIND to the Y variable list. Then click OK.

Figure 5.26. Adding WIND Variable

=⇒ In the line plot, click on the WIND variable.
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Figure 5.27. WIND Speed

Not only were the 18th and 19th a weekend, but there were high winds on the 16th,
17th, 18th, and 19th. These winds cleared much of the pollutants from the local
atmosphere.

⊕ Related Reading: Mosaic Plots, Chapter 33.

⊕ Related Reading: Scatter Plots, Chapter 35.

⊕ Related Reading: Line Plots, Chapter 34.
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SAS/INSIGHT software provides rotating plots, surface plots, and contour plots for
exploring data in three dimensions. A rotating plot is a three-dimensional scatter
plot, so it shows a graphic representation of the relationship among three interval
variables. A surface plot is a rotating plot with a surface that models a third variable
as a function of two other variables. A contour plot shows how the values of one
variable may depend on the values of two other variables.

Figure 6.1. A Rotating Plot, Surface Plot, and Contour Plot
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Rotating Plots
Using rotation you can obtain unique views into the data that can reveal structure not
visible with static plots or not detectable with analytic methods.

Follow these steps to explore the relationships among students’ SAT verbal scores,
SAT math scores, and college grade point averages.

=⇒ Open the GPA data set.

=⇒ Choose Analyze:Rotating Plot ( Z Y X ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 6.2. Creating a Rotating Plot

A rotating plot variables dialog appears, as shown in Figure 6.3. The ( Z Y X ) in the
menu indicates that Z, Y, and X variables are required to create the rotating plot.

=⇒ Select GPA in the variables list at the left. Then click Z.
This assigns the Z role to the GPA variable. Using the same method, assign SATM
the Y role and SATV the X role.

Figure 6.3. Rotating Plot Variables Dialog
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=⇒ Click OK to create a rotating plot.
The GPA axis is not visible when the rotating plot first appears on the display because
the Z dimension is projected into the X-Y plane.

Figure 6.4. Rotating Plot

SAS/INSIGHT software provides both control buttons and a hand tool to rotate the
plot. First, examine the control buttons at the left of the plot. The top two buttons
rotate the plot up and down. The next two buttons rotate the plot left and right. The
last two buttons rotate the plot clockwise and counter-clockwise. You can use these
buttons by clicking, pressing, Shift-clicking, and Ctrl-clicking.

=⇒ Click the top rotation button and release it.
The plot rotates a small increment and stops when you release the button.

=⇒ Press the clockwise rotation button and hold it down.
The plot rotates clockwise as long as you hold the button down.

=⇒ Press the Shift key and click any of the buttons.
The plot rotates continuously until you click another button.

=⇒ Press the Ctrl key and click any of the buttons.
This also rotates the plot continuously until you click another button.

Below the directional buttons is a slider to control the speed of rotation. When the
slider is at the top, rotation is at maximum speed.

=⇒ Drag the slider, then try the control buttons again to rotate at different speeds.
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Figure 6.5. Slider at Maximum

The buttons offer precise control of rotation, but the hand tool offers greater flexibil-
ity. Using the hand tool, you can rotate about any axis.

=⇒ Choose Edit:Windows:Tools to display the tools window.

Figure 6.6. Tools Window

=⇒ Click the Hand tool at the top of the Tools window.
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The cursor changes to a hand.

=⇒ Click and drag the hand in the rotating plot.

When you use the hand tool, the plot acts as a freely rotating sphere. When you click
with the hand, the plot rotates a small increment. When you drag the hand, the plot
follows your motion. The plot rotates as long as you press the mouse button and hold
it down. If you release the button while you are dragging the hand, the plot continues
rotating in the direction you were dragging.

You can use the hand without displaying the Tools window. The hand is active in
each corner of the plot.

=⇒ Click the Arrow tool at the top of the Tools window.
The cursor changes to an arrow.

=⇒ Move the Arrow tool to any corner of the rotating plot.
The cursor changes to a hand. Click or drag the hand to rotate the plot.

Figure 6.7. Hand Tool

=⇒ Click on the button in the lower left corner of the plot.
This calls up the rotating plot pop-up menu. You can customize the appearance of the
rotating plot with the choices on this menu.

=⇒ Choose Cube.

113



Techniques � Exploring Data in Three Dimensions
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Figure 6.8. Rotating Plot Pop-up Menu

This draws a cube around the point cloud. The cube shows the range of the data and
aids in maintaining visual orientation.

Figure 6.9. Rotating Plot with Bounding Cube

=⇒ Choose Depth from the pop-up menu.
This draws distant markers smaller than near markers to serve as a visual cue for
depth perception.
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Figure 6.10. Depth Cueing

Both the Cube and the Depth choices serve as toggles, so you can choose them
again to remove the cube or to return all markers to the same size. You can use other
choices on the pop-up menu to toggle the display of observations and rays and to set
ticks, axes, and marker sizes.

You can create a matrix of rotating plots just as you created a matrix of scatter plots
in the preceding chapter. If you select more than three variables in the data window
and then choose Analyze:Rotating Plot ( Z Y X ), you create a matrix containing
one rotating plot for every unique combination of three variables.

You can also identify observations in rotating plots just as in other plots. Click once
on an observation marker to select it and to see its label. Double-click on an observa-
tion marker to display the examine observations dialog.

⊕ Related Reading: Rotating Plots, Chapter 37.
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Rotating Plot with Fitted Surface
When you suspect that the values of one variable may be predicted by the values of
two other variables, you can choose to fit a response surface to your data.

Follow these steps to explore how dust concentration varies with the wind speed and
with the time of day in the AIR data set.

=⇒ Open the AIR data set.

=⇒ Choose Analyze:Rotating Plot ( Z Y X ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 6.11. Creating a Rotating Plot with Fitted Surface

A rotating plot variables dialog appears, as shown in Figure 6.12.

=⇒ Select DUST in the variables list at the left. Then click Z.
This assigns the Z role to the DUST variable. Similarly, assign HOUR the Y role
and WIND the X role.

Figure 6.12. Rotating Plot Variables Dialog

=⇒ Click Output to display the Output dialog, as shown in Figure 6.13.
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Figure 6.13. Output Dialog for Rotating Plot

=⇒ Select Fit Surface and click OK.

=⇒ Click Method to display the Method dialog, as shown in Figure 6.14.

Figure 6.14. Method Dialog for Rotating Plot

=⇒ Select Fit:Thin-Plate Smoothing Spline and click OK.

=⇒ Click OK to create a surface plot.

=⇒ Click on the menu button in the lower left corner of the plot.
Choose Drawing Modes:Smooth Color and Axes:At Minima.
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=⇒ Rotate the plot as described in the previous section.
You see a surface that models the response of dust concentration as a function of the
wind speed and the time of day.

Figure 6.15. Rotating Plot with Fitted Surface

Contour Plots
The contour plot provides an alternative graphical method for examining the vari-
ations of a response surface. The contour plot displays the geometric features of
the response surface as a family of contours or level sets lying in the domain of the
predictor variables.

If the AIR data set is not already open, open it now.

=⇒ Choose Analyze:Contour Plot ( Z Y X ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 6.16. Creating a Contour Plot
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Contour Plots

A contour plot variables dialog appears, as shown in Figure 6.17.

=⇒ Assign the Z role to the DUST variable, assign HOUR the Y role, and assign
WIND the X role.

Figure 6.17. Contour Plot Variables Dialog

=⇒ Click Method to display the Method dialog.
This dialog looks exactly like the Method dialog for the rotating plot, as shown in
Figure 6.14.

=⇒ Select Fit:Thin-Plate Smoothing Spline and click OK.

=⇒ Click OK to create a contour plot.

=⇒ Click on the menu button in the lower left corner of the plot. Choose
Observations.
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Figure 6.18. Contour Plot

By default, the contour lines of the response surface are evenly spaced in the units of
the response variable. For this example, each contour represents about 1.3 units of
change in the dust concentration. Note that regions where the contour lines are close
together indicate regions in which small changes in the wind speed or the time of day
will lead to relatively large changes in the modeled response for dust.

The response model indicates that peak dust concentrations for this data primarily
occur when there are only gentle winds during the mid-morning and late afternoon.
To see if this prediction qualitatively fits the AIR data set, you can examine the ob-
servations with high dust values.

=⇒ Select Edit:Observations:Find .
The Find Observations dialog appears.
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Figure 6.19. Find Observations dialog

=⇒ Select DUST in the left-hand column, the greater-than test (>) in the middle
column, and the value 6.763 in the right-hand column.
This selects all observations that have dust values greater than 6.763.

Figure 6.20. Selecting High DUST Values

121



Techniques � Exploring Data in Three Dimensions

All but one of the selected observations occur in the mid-morning or late afternoon on
days with light winds. However, note that there are also observations in those regions
that have small dust concentration values.

Consult Chapter 39, “Fit Analyses,” to determine whether a model response surface
provides a good quantitative fit to your data.

⊕ Related Reading: Contour Plots, Chapter 36.

⊕ Related Reading: Fit Analysis, Chapter 39.
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Chapter 7
Adjusting Axes and Ticks

With SAS/INSIGHT software, you have control over the appearance of axes. In all
graphs, you can specify major and minor tick marks. In two-dimensional graphs, you
can adjust axis position dynamically. In three-dimensional graphs, you can place axes
at the center or the minimum of the data range.

Figure 7.1. Adjusting Histogram Ticks
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Adjusting Ticks
Major tick marks have an associated tick label, if space permits. Minor tick marks are
smaller marks evenly spaced between the major tick marks. By default, the number
of minor tick marks is 0.

You can change the default tick marks in a histogram of verbal SAT scores by follow-
ing these steps.

=⇒ Open the GPA data set and create a histogram of verbal SAT scores.

=⇒ Select the variable on the axis of interest.

Figure 7.2. Selecting Variable SATV

=⇒ Click on the button in the lower left corner to display the histogram pop-up
menu.
Choose Ticks from the pop-up menu to display the Ticks dialog.

Ticks...
� Axes
� Observations

Values

Figure 7.3. Histogram Pop-up Menu

Figure 7.4 shows the Ticks dialog for the SATV axis in the histogram.
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Figure 7.4. Ticks Dialog

=⇒ Change the values in the Ticks dialog.
Set the first tick to 200, the last tick to 800, the axis minimum to 175, and the axis
maximum to 825.

Figure 7.5. Changing Ticks

=⇒ Click OK to redraw the histogram with the new tick specifications.
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Figure 7.6. Histogram with New Ticks

You can use the Ticks dialog similarly to scale axes in all other two-dimensional and
three-dimensional graphs.
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Adjusting 2D Axes
You can adjust horizontal and vertical axes in all two-dimensional graphs. For exam-
ple, Figure 7.7 shows tick labels truncated because the axis does not have space to
show them completely. To increase the axis space, point to the axis with the mouse.
Note that the cursor changes to a hand when it is positioned over the axis.

Figure 7.7. Adjusting an Axis

Press the mouse button and drag the axis to a new position. When you release the
mouse button, the axis moves to its new position.
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Figure 7.8. Axis at New Position
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Adjusting 3D Axes
The rotating plot pop-up menu provides control over the position of the axes. Display
the pop-up menu and choose from the Axes submenu.

Ticks...
Axes �

� Observations
Rays
Cube
Depth
Fast Draw
Marker Sizes �

�At Midpoints
At Minima
Off

Figure 7.9. Rotating Plot Pop-up Menu

If you are doing exploratory work and are primarily interested in the shape of the
point cloud, choose Axes:At Midpoints to display the axes centered in the plot.
This display minimizes interference of the axes with your view of the data, in part
because tick marks and tick labels are not displayed.

Choose Axes:At Minima to display axes at the minimum data values if you have
spatial data and are interested in observation positions. These axes span the range of
the data. All tick marks and tick labels are also displayed.

Figure 7.10. Axes at Midpoints and at Minima

Axes:At Midpoints is the default setting. To change the default, click the Output
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button in the Rotating Plot Variables dialog and set the Axes:At Minima option.
Choose File:Save:Options to save your options.
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Chapter 8
Labeling Observations

Labels identify observations in plots. You can label observations by number or by the
value of a variable. You can assign temporary or permanent labels.

Figure 8.1. Labeling Observations
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Temporary and Permanent Labels
When you click on an observation, you display its temporary label. To see this, follow
these steps.

=⇒ Open the GPA data set.

=⇒ Choose Analyze:Scatter Plot ( Y X ).
This displays a scatter plot variables dialog, as shown in Figure 8.2.

=⇒ Select SATM and SATV as X variables and GPA as the Y variable.

Figure 8.2. Scatter Plot Variables Dialog

=⇒ Click the OK button.
This creates two scatter plots, as shown in Figure 8.3.

=⇒ Click on an observation in one of the plots.
The observation is highlighted in both plots, and a label appears beside the observa-
tion in the plot in which you clicked. This label is temporary; it disappears when you
deselect the observation.
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Temporary and Permanent Labels

Figure 8.3. Temporary Label

You can turn this label into a permanent label.

=⇒ Choose Edit:Observations:Label in Plots.
This labels the observation in all plots, and the label remains if you deselect the
observation.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Find...
Examine...
Label in Plots
UnLabel in Plots
Show in Graphs
Hide in Graphs
Include in Calculations
Exclude in Calculations
Invert Selection

Figure 8.4. Edit: Observations Menu
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Figure 8.5. Permanently Labeled Observations

Notice in the data window that the observation is displayed with a picture of a label.
This indicates that a label will always be displayed for this observation in all plots.

If you change your mind, you can remove the permanent label by choosing
Edit:Observations:UnLabel in Plots.
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Using Label Variables
SAS/INSIGHT software shows the observation number as the label by default. You
can choose a variable to supply the label text by specifying a label variable.

=⇒ Choose Edit:Windows:Renew to redisplay the scatter plot variables dialog.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 8.6. Edit:Windows Menu

=⇒ In the dialog, select SEX and then click the Label button.

Figure 8.7. Assigning Label Role
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=⇒ Click the OK button.

Now the value of SEX, instead of the observation number, labels the observation.

Figure 8.8. Observation Labeled by SEX
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Setting a Default Label Variable
In addition to specifying label variables for individual plots, you can specify a label
variable that will automatically be used in all future plots.

=⇒ Click on the upper left corner of the variable SEX in the data window.
This displays a pop-up menu. Choose Label from the pop-up menu.

Group
Label
Freq
Weight

Figure 8.9. Variable Role Pop-up Menu

Now SEX is the default label variable, and future plots will use SEX for labels. In the
data window, the word Label appears above the variable name, as shown in Figure
8.10.

Figure 8.10. Label Variable Role

⊕ Related Reading: Variable Roles, Chapter 31, “Data Windows.”
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Chapter 9
Hiding Observations

You can hide observations to prevent them from appearing in graphs. You can toggle
the display of observations to keep them from appearing in a graph unless they are
selected. You can slice observations by dynamically toggling their display. These
techniques are useful for adjusting the range of data displayed and for showing sub-
sets of your data.

Figure 9.1. Slicing Observations
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Hiding Individual Observations
You can adjust the range of data displayed and show subsets of your data by hiding
observations.

† Note: Hiding observations in graphs does not exclude them from calculations. To
exclude observations from calculations, see Chapter 21, “Comparing Analyses.”

=⇒ Open the GPA data set.

=⇒ Create a scatter plot of SATM versus SATV.
Use the techniques described in Chapter 5, “Exploring Data in Two Dimensions.”

=⇒ Select the two observations with values of SATM below 400.
Use extended selection or drag a rectangle around both observations.

Figure 9.2. Observations Selected

=⇒ Choose Edit:Observations:Hide in Graphs.
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File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Find...
Examine...
Label in Plots
UnLabel in Plots
Show in Graphs
Hide in Graphs
Include in Calculations
Exclude in Calculations
Invert Selection

Figure 9.3. Edit: Observations Menu

This causes the selected observations to disappear from the graph. The graph rescales
automatically. The new SATM axis starts at 400.

Figure 9.4. Observations Hidden

=⇒ Choose Find Next from the data window pop-up menu.
This scrolls to the next selected observation and shows that the hidden observation
has no marker. The absence of the marker in the data window indicates that the
observation is hidden in all graphs.
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Figure 9.5. Data Window after Hiding Observations

=⇒ Choose Edit:Observations:Show in Graphs.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Find...
Examine...
Label in Plots
UnLabel in Plots
Show in Graphs
Hide in Graphs
Include in Calculations
Exclude in Calculations
Invert Selection

Figure 9.6. Edit: Observations Menu

This makes the observations visible again. The scatter plot rescales.
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Toggling the Display of Observations
You can show subsets of your data by toggling the display of observations. This
causes observations to be displayed only when they are selected.

=⇒ Deselect all observations by clicking in any open area of a graph.

=⇒ Choose Edit:Windows:Renew to redisplay the scatter plot variables dialog.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �
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Formats �

Copy
Delete
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Fonts
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Window Options...
Graph Options...

Figure 9.7. Edit:Windows Menu

=⇒ Click on GPA in the variables list and then click on the X button.
This adds GPA to the X variables list.

Figure 9.8. Variable Roles Assigned
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=⇒ Click the OK button.
This creates two scatter plots, as shown in Figure 9.9.

Figure 9.9. Scatter Plots

=⇒ Click on the button at the lower left to display the scatter plot pop-up menu.
Choose Observations to turn off the display of observations in the scatter plot.

Ticks...
� Axes
� Observations

Reference Lines
Marker Sizes �

Figure 9.10. Scatter Plot Pop-up Menu

Do the same thing for the scatter plot on the right side. All the observation markers
disappear, as shown in Figure 9.11.
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Figure 9.11. Turning Off Observations Display

=⇒ Choose Edit:Observations:Find
This displays the Find Observations dialog. Select the variable SEX. With the default
values in the other lists, this creates a test for SEX = Female.

Figure 9.12. Find Observations Dialog

=⇒ Click the OK button.
This selects all Female observations and displays them in the scatter plots.
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Figure 9.13. Female Observations

=⇒ Choose Edit:Observations:Invert Selection.
Invert Selection deselects all selected observations and selects all deselected ob-
servations. Now the scatter plots show all observations where SEX is Male.

Figure 9.14. Male Observations

Toggling observations in the scatter plots shows there are more females than males in
these data. The female students appear to have slightly higher scores on the mathe-
matics portion of the SAT exam.
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Slicing
Slicing is a dynamic technique for subsetting your data based on a range of values for
one variable. You can create a brush both to restrict the range of values in one plot and
to select observations in all plots. You can slice dynamically to explore relationships
in more than two dimensions.

Follow these steps to see how GPA is related to the two SAT scores.

=⇒ Drag a rectangle with the mouse in the scatter plot of SATM versus GPA.
This selects the observations within the rectangle and creates a rectangular brush.

=⇒ Move the brush by dragging with the mouse inside the brush.
Observations that are selected by the brush become visible in both scatter plots. The
second plot shows the conditional distribution of the data as restricted by the position
of the brush in the first plot.

Figure 9.15. Brushing Invisible Observations

=⇒ Drag the corners of the brush to make it tall and thin.
This restricts selected observations to a narrow range of values for GPA.

=⇒ Move the brush to the left and right.
The scatter plot of SATM versus SATV in Figure 9.16 shows the joint distribution of
the two SAT scores when GPA is near 4.0. By sliding the brush, you can see whether
the distributions change significantly as GPA increases or decreases.
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Figure 9.16. Slicing Observations

=⇒ Use the scatter plot pop-up menu to make observations visible again.

Ticks...
� Axes
� Observations

Reference Lines
Marker Sizes �

Figure 9.17. Scatter Plot Pop-up Menu
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Chapter 10
Marking Observations

You can assign markers to use for displaying observations in box plots, scatter plots,
and rotating plots. The markers appear with each observation in the data window.
You can assign markers for observations you select, and you can let SAS/INSIGHT
software assign markers automatically based on the value of a variable. You can
control the size of the markers in any plot.

Figure 10.1. Marking Observations
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Marking Individual Observations
You can set the marker shape for any observations you select.

=⇒ Open the GPA data set.

=⇒ Create a scatter plot of SATM versus SATV.
Use the techniques described in Chapter 5, “Exploring Data in Two Dimensions.”

=⇒ Click on an observation to select it.

Figure 10.2. Scatter Plot
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=⇒ Choose Edit:Windows:Tools.
This toggles the display of the tools window, as shown in Figure 10.4.

File Edit Analyze Tables Graphs Curves Vars Help
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Fonts
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Graph Options...

Figure 10.3. Edit:Windows Menu

=⇒ Click on the upward-pointing triangle in the tools window.
This changes the marker for the selected observation from a square to a triangle. The
marker also changes to a triangle in the data window and in any other windows.

Figure 10.4. Changing a Marker

Similarly, you can select a group of observations in a brush and assign markers for the
group. Markers provide a convenient way to track observations across multiple win-
dows. They also enable you to keep track of observations when they are deselected.
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Marking by Nominal Variable
You can assign markers automatically based on the value of a nominal variable. This
is a good way to distinguish quickly between groups of observations.

=⇒ Select SEX in the data window.

=⇒ Click on the multiple markers button at the bottom of the markers window.
SAS/INSIGHT software assigns a different marker for each value of the nominal
variable. In this case, observations with a value of MALE are displayed with crosses,
and observations with a value of FEMALE are displayed with squares.

Figure 10.5. Assigning Markers by SEX
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Marking by Interval Variable
You can also assign markers based on the value of an interval variable.

=⇒ Select GPA in the data window.

=⇒ Click on the multiple markers button at the bottom of the markers window.
SAS/INSIGHT software assigns three markers to the observations depending on the
value of GPA for that observation. Observations with values in the upper third of the
range of GPA are assigned upward-pointing triangles. Observations with values in
the middle third of the range of GPA are assigned squares. Observations with values
in the lower third of the range of GPA are assigned downward-pointing triangles.
These markers show a rough picture of the correlation between grade point average
and SAT scores.

Figure 10.6. Assigning Markers by GPA
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Adjusting Marker Size
You can adjust marker size by using the scatter plot pop-up menu.

=⇒ Click on the button in the lower left corner of the scatter plot.
Choose Marker Sizes:1. This assigns markers their minimum size.

Ticks...
� Axes
� Observations

Marker Sizes � 1
2
3
4
5

�6
7
8
Size to Fit

Figure 10.7. Marker Sizes Menu

Figure 10.8. Markers at Minimum Size

162



Adjusting Marker Size

=⇒ Choose Marker Sizes:8 from the pop-up menu.
This assigns markers their maximum size.

Figure 10.9. Markers at Maximum Size

=⇒ Choose Marker Sizes:Size to Fit from the pop-up menu.
This assigns markers their default size.
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Figure 10.10. Default Marker Size
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Adjusting Marker Size

The default marker size is determined by the size of your graph, the resolution of
your display, and the setting of the Marker Size option. You can set the Marker
Size option as described in Chapter 29, “Configuring SAS/INSIGHT Software.”

† Note: For large data sets, markers require plenty of memory. If your data set contains
hundreds of observations and your host has insufficient memory, you can improve
performance by using the default square marker for all observations.

If you have a color display, it is often clearer to distinguish observations by color.
Turn to the next chapter to see how to assign colors.
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Chapter 11
Coloring Observations

You can assign the colors for displaying observations in plots. You can assign colors
for the observations you select, and you can let SAS/INSIGHT software assign colors
automatically based on the value of a variable.

Figure 11.1. Coloring Observations
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Coloring Individual Observations
You can set the color for any observations you select.

=⇒ Open the GPA data set.

=⇒ Create a scatter plot of SATM versus SATV.
Use the techniques described in Chapter 5, “Exploring Data in Two Dimensions.”

=⇒ Click on an observation to select it.

Figure 11.2. Scatter Plot
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=⇒ Choose Edit:Windows:Tools.
This toggles the display of the tools window, shown in Figure 11.4.

File Edit Analyze Tables Graphs Curves Vars Help
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Figure 11.3. Edit:Windows Menu

=⇒ Click on the red button in the tools window.
This causes the selected observation to turn red. The marker also becomes red in the
data window and in any other windows.

Figure 11.4. Changing a Color

You can similarly select a group of observations in a brush and assign colors for the
group. Colors, like markers, provide a convenient way to track observations through
multiple windows.
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Coloring by Nominal Variable
You can set observation colors based on the value of a nominal variable. This is a
good way to display subsets of the data.

=⇒ Click on SEX in the data window.

=⇒ Click on the large multiple colors button in the tools window.
SAS/INSIGHT software automatically assigns a different color for each value of the
nominal variable.

Figure 11.5. Assigning Colors by SEX
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Coloring by Interval Variable
You can also set the marker colors based on the value of an interval variable.

=⇒ Click on GPA in the data window.

=⇒ Click on the large multiple colors button in the tools window.
SAS/INSIGHT software assigns a color to each observation depending on the value
of GPA for that observation. The color varies smoothly between the two colors at the
ends of the button. This use of color adds an extra dimension to the plot.

Figure 11.6. Assigning Colors by GPA

† Note: Some hosts do not support color blending. On these hosts, SAS/INSIGHT
software uses a discrete set of colors instead of a smooth blend. You may also see
this behavior when running multiple applications that do not share color resources.
When the host does not support blending, or insufficient colors are available, the
multiple colors button shows discrete bands of colors instead of a smooth blend.

On hosts that support color blending, you can choose the range over which the color
varies. The left end of the multiple colors button defaults to white or black, whichever
contrasts with the background color. The right end of the multiple colors button
defaults to red. To use a range from blue to red, follow these steps.

=⇒ Place the cursor on the blue button in the tools window.

=⇒ Drag the blue color down to the left end of the large button.
Then release the mouse button. The colors in the button change to a smooth blend
between blue and red.
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You can also drag colors to the right side of the button to make other blends. This
lets you choose colors that have meaning for your data, for example, blue-to-red for
cold-to-hot or brown-to-green for arid-to-tropical.

Multiple Color Blends
Color blending applies to all observations if none are selected. If observations are
selected, color blending applies only to the selected observations. This enables you
to assign multiple color blends for a single variable.

=⇒ Create a scatter plot of GPA versus SATV.

=⇒ Create a blue-to-yellow blend in the tools window.
Drag the blue color to the left end of the multiple colors button, and drag the yellow
color to the right end.

=⇒ Select observations with values of GPA less than or equal to 4.

Figure 11.7. Selecting Observations Where GPA≤4

=⇒ Click the multiple colors button.
This displays a variables dialog, as shown in Figure 11.8.

174



Multiple Color Blends

Figure 11.8. Variables Dialog

=⇒ In the variables dialog, select GPA, then click OK.
This assigns the blue-to-yellow blend to observations with values of GPA less than
or equal to 4.

You can use similar steps to assign a yellow-to-red blend to all observations with
values of GPA greater than 4. To save time, select both observations and variables
using extended selection instead of using the variables dialog.

=⇒ Create a yellow-to-red blend in the tools window.
Drag the yellow color to the left end of the multiple colors button, and drag the red
color to the right end.

=⇒ Select observations with values of GPA greater than or equal to 4.

=⇒ Using extended selection, select the variable GPA.
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Figure 11.9. Selecting Variable GPA and Observations Where GPA≥4

=⇒ Click the multiple colors button.
This assigns the yellow-to-red blend to observations with values of GPA greater than
or equal to 4. Now all observations are assigned a color based on their value for GPA,
with colors smoothly blended from blue through yellow to red.

† Note: In addition to the two-color blends described above, you can create a blended
color strip based on the interpolation of up to five colors.
To do this, follow these steps:

• Bring up the tools window by using Edit:Window:Tools.

• Choose a color in the tools window and place the cursor over that color button.
For the sake of this example, choose the white button.

• Hold down the shift key.

• Shift-drag the white button onto the large multiple colors button.

• Release the mouse button while the cursor is in the middle of the multiple
colors button. One of the existing colors that make up the multiple color button
is replaced by white.

• You can further modify the color strip by shift-dragging other color buttons to
varying positions along the length of the multiple color button.
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In Chapter 4, “Exploring Data in One Dimension,” you examined distributions using
bar charts and box plots. In this chapter, you examine the distribution of an interval
variable using graphs and statistical tables.

You can examine box plots and histograms of the data along with Moments and
Quantiles tables. You can superimpose density curves on the histogram. You can
carry out tests to determine whether the data are from specific parametric distribu-
tions, such as normal or lognormal.

Figure 12.1. Distribution Analysis
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Creating the Distribution Analysis
The distribution of a variable is the pattern of variation of its numerical values (Moore
and McCabe 1989). In this example, you examine a distribution of scores on the
mathematics portion of the SAT exam.

=⇒ Open the GPA data set.

=⇒ Select the variable SATM by clicking on its name in the data window.

Figure 12.2. Data Window with SATM Selected

=⇒ Choose Analyze:Distribution ( Y ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 12.3. Analyze Menu

This creates a distribution window, as shown in Figure 12.4. A box plot, histogram,
Moments table, and Quantiles table appear by default. With these graphs and
tables, you can examine important features of a distribution.
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Figure 12.4. Distribution Analysis
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Box Plot

A box plot is a schematic representation of a distribution. The vertical lines in the
box mark the 25th, 50th, and 75th percentiles of the data. The pth percentile of a
distribution is the value such that p percent of the observations fall at or below it. The
50th percentile is also called the median, and the 25th and 75th percentiles are called
quartiles.

The narrow boxes extending to the left and right are called whiskers. Whiskers extend
from the quartiles to the farthest observation not farther than 1.5 times the distance
between the quartiles (the interquartile range). Beyond the whiskers, extreme obser-
vations are plotted individually.

The box plot gives a concise picture of the distribution and emphasizes any extreme
values. This particular box plot appears fairly symmetric, with median around 600.
You can see two extreme values.

=⇒ Identify the extreme observations by clicking on them.

Figure 12.5. Identifying Extreme Observations

These are observations 40 and 217. When you click on them, the observations are
selected in the box plot, the histogram, and the data window as well.

⊕ Related Reading: Box Plots, Chapter 33.
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=⇒ Click in the upper left corner of the data window.
This displays the data pop-up menu.

Find Next
Move to First
Move to Last
Sort...
New Observations
New Variables
Define Variables...
Fill Values...
Extract
Data Options...

Figure 12.6. Data Pop-up Menu

=⇒ Choose Find Next from the pop-up menu.
This scrolls the data window to the next selected observation, as shown in Figure
12.7. By choosing Find Next again, you can examine all values for the extreme
observations.

Figure 12.7. Extreme Observation in Data Window
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Histogram

A histogram is a bar chart of an interval variable. In a histogram, the interval repre-
sented by a bar is called a bin. Instead of a frequency axis, histograms in a distribution
analysis use a density axis to measure the fractional distribution over a given interval.

Examine the histogram of SATM. The shape of the distribution is fairly symmetric
except for slight skewing in the left tail. The distribution’s center is around 600.

Figure 12.8. Histogram of SATM

A histogram is a good tool for visually examining the distribution. However, changes
in the width and position of the bars can greatly affect your perception of the shape of
the distribution. The histogram illustrated in Figure 12.8 is only one representation
of the distribution of SATM. It is easy to change the bar widths and positions with
SAS/INSIGHT software to explore many different histograms.

=⇒ Choose Edit:Windows:Tools.
This displays the tools window, as shown in Figure 12.9.

=⇒ Click on the hand in the tools window.
The cursor changes shape from an arrow to a hand.
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Figure 12.9. Tools Window

=⇒ Move the cursor back to the distribution window and click on the histogram.
This changes the width of the bars in proportion to the distance of the hand tool from
the base of the bars. If the hand tool is close to the base of the bars, the bars are wide,
as shown in Figure 12.10.

Figure 12.10. Clicking Close to the Base of the Bars

If the hand tool is far from the base of the bars, clicking makes the bars narrow, as
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shown in Figure 12.11.

Figure 12.11. Clicking Far from the Base of the Bars

=⇒ Press the mouse button and hold it down as you move horizontally over the bars.
Notice how the histogram changes as you move the hand. As you move horizontally,
the bin width does not change, but the bins start at different locations. When the hand
is at the left of the histogram, the bins start at an integral multiple of the bin width.
When the hand moves toward the right, the bins are offset an amount proportional to
the distance of the hand across the histogram.

=⇒ Drag the hand horizontally and vertically in the histogram.
Release the mouse button when you find a histogram that captures the dominant shape
of the distribution.

=⇒ Click on the arrow in the tools window before proceeding.

⊕ Related Reading: Bar Charts, Chapter 32.
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Moments and Quantiles Tables

The Moments and Quantiles tables give descriptive information that quantifies
what you observe in the box plot and histogram.

Figure 12.12. Moments and Quantiles Tables

In the Moments table, N is the number of nonmissing observations, Mean is the
arithmetic mean, Std Dev is the standard deviation, and Variance is the variance.
Skewness and Kurtosis are both measures of the shape of the distribution.

Skewness is a measure of the tendency of the deviations from the mean to be larger
in one direction than in the other. A positive value for Skewness indicates that the
data are skewed to the right. A negative value indicates that the data are skewed to
the left. The distribution of SATM is skewed slightly to the left, as you observed
previously; thus, the value for Skewness is negative.

Kurtosis is primarily a measure of the heaviness of the tails of a distribution. Large
values of Kurtosis indicate that the distribution has heavy tails. This statistic is
standardized so that a normal distribution has a kurtosis of 0.

The Quantiles table gives information about the variability in the data as well as
about the center of the data. Two distributions having the same center can look quite
different if the variability in the two distributions is different. This variability is
shown by the percentiles in the Quantiles table. The Quantiles table also shows
the Range of the data, the interquartile range Q3-Q1, and the Mode.
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Adding Density Estimates
A cumulative distribution function gives the proportion of the data less than each
possible value. A density function is the derivative of the cumulative distribution
function. Density estimation is the construction of an estimate of the density function
from the observed data.

Histograms are one type of density estimation. You can also plot the density function
to construct density curves. Density curves are sometimes preferred because they do
not contain the discontinuous steps present in histograms.

Distribution ( Y ) provides two types of density estimation: parametric and ker-
nel. In parametric estimation, the data are assumed to be from a known parametric
family of distributions. The normal distribution is one of the most commonly used
parametric distributions. Others include lognormal, exponential, and Weibull.

In kernel estimation, little is assumed about the functional form of the data. The data
more completely determine the shape of the density curve. Kernel estimation is a
type of nonparametric estimation.

Normal Density Curve

Begin by adding a normal density curve.

=⇒ Choose Curves:Parametric Density.

File Edit Analyze Tables Graphs Curves Vars Help

Parametric Density...
Kernel Density...
Empirical CDF
CDF Confidence Band �

Parametric CDF...
Test for a Specific Distribution...
Test for Distribution...
QQ Ref Line...

Figure 12.13. Normal Density Menu

This displays the parametric density estimation dialog in Figure 12.14. You can select
one of four distribution families, and you can use sample parameter estimates or you
can specify your own.
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Figure 12.14. Parametric Density Estimation Dialog

=⇒ Click OK in the dialog.

This requests the default density estimate: a normal distribution using the sample
estimates as parameter values. The density curve is superimposed on the histogram,
as illustrated in Figure 12.15.

Figure 12.15. Parametric Normal Density Estimation

In addition, a Parametric Density Estimation table that contains parameter in-
formation appears in the window. You can change the specified parameters and the
corresponding curve using the sliders next to the parameter values.
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Note that the values of Mean / Theta and Sigma are equal to the sample Mean and
Std Dev displayed in the Moments table illustrated in Figure 12.12. The density
curve follows the shape of the distribution fairly well.

=⇒ Select the density curve.
You can select the curve by clicking on either the curve in the histogram or the legend
on the table. Both the curve and the legend become highlighted.

=⇒ Choose Edit:Delete.

The selected curve and its associated table are deleted from the window.

Kernel Density Curve

A kernel density curve may follow the shape of the distribution more closely. To
construct a normal kernel density curve, one parameter is required: the bandwidth
λ. The value of λ determines the degree of smoothing in the estimate of the density
function. You can either specify a value of λ, or you can let SAS/INSIGHT software
find a value based on minimizing an estimate of the mean integrated square error
(MISE).

=⇒ Choose Curves:Kernel Density.

Figure 12.16. Kernel Density Estimation Dialog

=⇒ Click OK in the dialog.

The kernel density curve is constructed with a bandwidth based on the approximated
mean integrated square error (AMISE), and it provides a good visual representation
of the distribution, as illustrated in Figure 12.17. A table containing the bandwidth
and the AMISE is also added to the window.
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Figure 12.17. Kernel Density Estimate

The C Value slider in the table can be used to change the C value of the kernel
estimate. You can use the slider in three ways:

• click the arrow buttons

• click within the slider

• drag within the slider

=⇒ Click the left arrow button in the slider.
This decreases the C value by half. As the C value decreases, the density estimate
becomes less smooth, as illustrated in Figure 12.18.

=⇒ Click within the slider, just to the right of the slider control.
This moves the slider control to the position where you click. The C value is set
to a value proportional to the slider position. On most personal computers, clicking
within the slider is the fastest way to adjust a curve.

=⇒ Drag the slider control left and right.
When you drag the slider, its speed depends on the number of data points, the type
of curve, and the speed of your host. Depending on your host, you may be able to
improve the speed of the dynamic graphics with an alternate drawing algorithm. To
try this, choose Edit:Windows:Graph Options, and set the Fast Draw option.
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Figure 12.18. Kernel Density Estimate with a Smaller C Value
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Testing Distributions
You can add a graph to examine the cumulative distribution function, and you can
test for distributions by using the Kolmogorov statistic.

=⇒ Choose Curves:CDF Confidence Band:95%.

File Edit Analyze Tables Graphs Curves Vars Help

Parametric Density...
Kernel Density...
Empirical CDF
CDF Confidence Band �

Parametric CDF...
Test for a Specific Distribution...
Test for Distribution...
QQ Ref Line...

99%
98%
95%
90%
80%
Other...

Figure 12.19. Confidence Band Menu

This adds a graph of the cumulative distribution function with 95% confidence bands,
as illustrated in Figure 12.20.
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Figure 12.20. Cumulative Distribution Function

=⇒ Choose Curves:Test for Distribution.
This displays the test for distribution dialog. The default settings test whether the
data are from a normal distribution.

Figure 12.21. Test for Distribution Dialog

=⇒ Click OK in the dialog.
This adds a curve to the graph and a Test for Distribution table to the window, as
illustrated in Figure 12.22.
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Figure 12.22. Test for Normal Distribution

The smooth curve in the graph represents the fitted normal distribution. It lies quite
close to the irregular curve representing the empirical distribution function. The Test
for Distribution table contains the mean (Mean / Theta) and standard deviation
(Sigma) for the data along with the results of Kolmogorov’s test for normality. This
tests the null hypothesis that the data come from a normal distribution with unknown
mean and variance. The p-value (Prob > D), also referred to as the probability value
or observed significance level, is the probability of obtaining a D statistic greater than
the computed D statistic when the null hypothesis is true. The smaller the p-value,
the stronger the evidence against the null hypothesis. The computed p-value is large
(>0.15), so there is no reason to conclude that these data are not normally distributed.

⊕ Related Reading: Distributions, Chapter 38.
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You can use Fit (Y X) to fit curves when you have one X variable. Curve-fitting
helps you identify trends and relationships in two-dimensional data. SAS/INSIGHT
software offers both parametric and nonparametric methods to fit curves. You can
generate confidence ellipses, fit parametric polynomials with confidence curves, and
fit nonparametric curves using spline, kernel, and loess estimators.

Figure 13.1. Fit Window with Several Curves
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Parametric Regression Fits
Fitting a curve produces a visual display that reflects the systematic variation of the
data. In this section, you will fit polynomial curves using a subset of the MINING
data set described in Chapter 1, “Getting Started.”

=⇒ Open the MININGX data set.

=⇒ Choose Analyze:Fit ( Y X ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 13.2. Analyze Menu

The fit variables dialog appears, as shown in Figure 13.3.

Figure 13.3. Fit Variables Dialog
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=⇒ Select the variable DRILTIME, then click the Y button.
DRILTIME appears in the Y variables list.

=⇒ Select the variable DEPTH, then click the X button.
DEPTH appears in the X variables list.

=⇒ Click the Output button.
The fit output options dialog, shown in Figure 13.4, appears on your display.

Figure 13.4. Fit Output Options Dialog

In the output options dialog, you specify which curves and tables will appear in the
fit window. The default curve is a polynomial of degree one, that is, a line. The
options set by default in this dialog are appropriate aids to a careful modeling of the
data. They are not needed here where the purpose is to produce a visual display that
reflects the trend of the data.

=⇒ Turn off all check boxes by clicking on any that are highlighted.

=⇒ Click the OK button in all dialogs.
A fit window appears, as shown in Figure 13.5.
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Figure 13.5. Fit Window with Line

The fit window contains a plot of DRILTIME by DEPTH along with a table sum-
marizing the fit. A simple regression line is superimposed on the plot; it follows the
linear trend of the data. Notice, though, that the plot shows curvature that a straight
line cannot follow.

First examine the Parametric Regression Fit table corresponding to these data.
The R-Square value is 0.5802, which means that 58% of the variation in drilling
times is explained by DEPTH. The rest of this table contains statistics pertinent to
hypothesis testing, and they are discussed in Chapter 14, “Multiple Regression.”

Changing the Polynomial Degree

Examine the Parametric Regression Fit table in Figure 13.6. Note that next to
the polynomial degree is a slider that enables you to change the degree of polynomial
fit to try to account for the curvature in the plot not explained by the straight line.

You can use the slider in three ways to adjust curves:

• click the arrow buttons

• click within the slider
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• drag within the slider

=⇒ Click the left arrow button in the slider.
This decreases the degree of the polynomial to zero. A zero-degree polynomial fit is
just a mean line.

Figure 13.6. Fit Window with Mean Line

=⇒ Click twice on the right arrow button in the slider.
This increases the polynomial degree to 2, a quadratic fit, as shown in Figure 13.7.
The quadratic fit does a much better job accounting for the curvature in the plot. Note
also that the R-Square value for the quadratic polynomial has increased to over
70%. You can fit successively higher-degree polynomials that continue to increase
the R-Square value; but beyond a certain degree, small increases in R-Square do
not compensate for the intuitive appeal in fitting a low degree polynomial.
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Figure 13.7. Quadratic Fit

=⇒ Click within the slider, just to the right of the slider control.
This moves the slider control to the position where you click. The polynomial degree
is set to a value proportional to the slider position. On most personal computers,
clicking within the slider is the fastest way to adjust a curve.

=⇒ Drag the slider control left and right.
When you drag the slider, its speed depends on the number of data points, the type
of curve, and the speed of your host. Depending on your host, you may be able to
improve the speed of the dynamic graphics with an alternate drawing algorithm. To
try this, choose Edit:Windows:Graph Options, and set the Fast Draw option.

† Note: The Degree(Polynomial) is the degree being specified in the polynomial fit,
and the Model DF is the polynomial degree actually fitted.

To avoid unnecessary computation, the maximum degree that can be actually fitted
is not calculated, and the maximum Degree(Polynomial) in the slider is set to be
the number of unique X variable values minus 1. When a polynomial term for the X
variable in the specified polynomial fit is a linear combination of its lower polynomial
terms, the Degree(Polynomial) will be greater than the Model DF; that is, the
degree actually fitted is less than the degree specified in these cases..
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Adding Curves

You can add curves to a scatter plot in the fit window in two ways. You can choose
from the Curves menu or you can select Edit:Windows:Renew to reset the fit
output options. When you add a curve from the Curves menu, SAS/INSIGHT adds
either a new table entry or a whole new table that contains a summary of the new
curve fit. Suppose you want to compare polynomial fits of different degree directly
on the scatter plot. Begin by adding a second polynomial fit to the plot.

=⇒ Choose Curves:Polynomial.

File Edit Analyze Tables Graphs Curves Vars Help

Confidence Ellipse �

Confidence Curves �

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Figure 13.8. Curves Menu

This displays the polynomial fit dialog shown in Figure 13.9.

Figure 13.9. Polynomial Fit Dialog

=⇒ Set the degree for the new polynomial to 3 and click OK.
This adds a cubic polynomial fit to the scatter plot, as shown in Figure 13.10.

Now you have two polynomial fits in the window. Note that an entry for the cubic
polynomial has been added to the Parametric Regression Fit table. Each entry
in the table has its own slider so that you can adjust the degree of either polynomial
to compare any pair of fits.
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Figure 13.10. Fit Window with Two Polynomial Fits

Line Colors, Patterns, and Widths

Notice in Figure 13.10 that it is difficult to distinguish the two polynomial curves.
On color displays, curve colors are chosen by default to contrast with the window
background color and with existing curves. Curves are always drawn as solid lines
by default. You can set default curve widths with display options. You can use the
Tools window to change any of these curve features.

=⇒ Choose Edit:Windows:Tools to display the tools window.
The tools window displays a palette of colors, three line patterns, and five curve
widths that you can choose for the selected curve, as shown in Figure 13.11
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Figure 13.11. Tools Window

=⇒ Click on the cubic fit curve legend to select the curve.
Clicking on either the legend or the curve highlights both the legend and the curve.

Figure 13.12. Cubic Fit Curve Selected

=⇒ In the Tools window, click on the dotted line pattern.
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Again note that the legend in the table matches the new curve pattern.

Figure 13.13. New Pattern for Cubic Fit

=⇒ Click in any blank area of the fit window to deselect the curve.
You can select a curve again and try various colors, patterns, or widths.

=⇒ Select the Parametric Regression Fit table.

=⇒ Choose Edit:Delete.
The selected parametric regression fit table and its associated curves are deleted from
the window.

Nonparametric Fits
SAS/INSIGHT software provides nonparametric curve-fitting estimates from
smoothing spline, kernel, loess, and fixed bandwidth local polynomial estimators
that are alternatives to fitting polynomials. Because nonparametric methods allow
more flexibility for the functional dependence of Y on X than a typical parametric
model does, nonparametric methods are well suited for situations where little is
known about the process under study.

To carry out a nonparametric regression, you need first to determine the smooth-
ness of the fit. With SAS/INSIGHT software, you can specify a particular value
for a smoothing parameter, specify a particular degrees of freedom for a smoother,
or request a default best fit. The data are then smoothed to estimate the regression
curve. This is in contrast to the parametric regression where the degree of the poly-
nomial controls the complexity of the fit. For the polynomial, additional complexity
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can result in inappropriate global behavior. Nonparametric methods allow local use
of additional complexity and thus are better tools to capture complex behavior than
polynomials.

Normal Kernel Fit

To add a normal kernel estimate in the MININGX fit window from the preceding
section, follow these steps.

=⇒ Choose Curves:Kernel.
This displays the kernel fit dialog, as shown in Figure 13.14.

Figure 13.14. Kernel Fit Dialog

=⇒ Click on OK in the dialog to display the kernel fit, as shown in Figure 13.15.
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Figure 13.15. Normal Kernel Fit

By default, the optimal kernel smoothness is estimated based on mean square error
using generalized cross validation (GCV). Cross validation leaves out points (xi, yi)
one at a time and computes the kernel regression at xi based on the remaining n-1
observations. Generalized cross validation is a weighted version of cross validation
and is easier to compute. This estimation is carried out for a number of different
values of the smoothing parameter, and the value that minimizes the estimated mean
square error is selected (Hastie and Tibshirani 1990). This technique is described in
detail in Chapter 39, “Fit Analyses.” Note that in Figure 13.15, the Kernel Fit table
shows the Method as GCV.

You can change the degree of smoothness by using the slider in the Kernel Fit table
to change the value of c. Higher values of c result in smoother curves closer to
a straight line; smaller values produce more flexible curves. It is often necessary to
experiment with several values before finding one that fits your data well. See Chapter
39, “Fit Analyses,” for detailed information about kernels and the c parameter. Note
that if you use the slider to change the value of c, the Method entry also changes.

The Kernel Fit table contains several statistics for comparing the kernel fit to other
fits. The table contains the bandwidth or smoothing parameter of the kernel that cor-
responds to the value of c. The column labeled DF gives the approximate degrees
of freedom for the kernel fit. Smoother curves have fewer degrees of freedom and
result in lower values of R2 and possibly higher values of mean square error. R-
square measures the proportion of the total variation accounted for by the kernel fit.
MSE(GCV) is an estimate of the mean square error using generalized cross valida-
tion. These statistics are also discussed in Chapter 39, “Fit Analyses.”

This kernel tracks the data fairly well. The fit requires 20.759 degrees of freedom, in-
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dicating that the model may still be under-smoothed. The generalized cross validation
method often results in under-smoothed fits, particularly with small data sets (Hastie
and Tibshirani 1990). In this case, the data were collected from a single drilling hole,
and this can lead to spurious cyclical patterns in the data caused by autocorrelation.
The curve may be tracking these cycles. A smoother fit is probably desirable.

=⇒ Click three times on the right arrow in the slider.
This results in a smoother kernel fit, as shown in Figure 13.16.

Figure 13.16. Normal Kernel Fit Made Smoother

Loess Smoothing

Loess smoothing is a curve-fitting technique based on local regression (Cleveland
1993). To fit a loess curve to the mining data, follow these steps:

=⇒ Choose Curves:Loess to display the loess fit dialog.
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Figure 13.17. Loess Fit Dialog

=⇒ Click on OK in the dialog to display the loess fit, as shown in Figure 13.18.
As with the kernel fit, the best fit for loess smoothing is determined by general-
ized cross validation (GCV). GCV and other aspects of curve-fitting are described
in Chapter 39, “Fit Analyses.”

You can also output predicted values from fitted curves. To output predicted values
from the preceding loess fit, do the following:

=⇒ Choose Vars:Predicted Curves:Loess.
This displays the same loess fit dialog as shown in Figure 13.17.

=⇒ Click on OK in the dialog to output the predicted values from the loess fit
A new variable, PL–DRILT, should now be added to the data window.
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Figure 13.18. Loess Fit

You can use the slider control to adjust the loess curve just as with other curves. For
loess, the slider controls the α value for the fit. The greater the α value, the smoother
the fit.

On rare occasions, you may want to fit a curve for α values outside the bounds of the
slider. For loess and other curves, the bounds of the slider are chosen for best fit in
most cases. If you need to fit a curve with unusual parameter values, you can specify
these values in the curve dialog.

⊕ Related Reading: Fit Curves, Chapter 39.
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You can create multiple regression models quickly using the fit variables dialog. You
can use diagnostic plots to assess the validity of the models and identify potential out-
liers and influential observations. You can save residuals and other output variables
from your models for future analysis.

Figure 14.1. Multiple Regression Analysis
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Creating the Analysis
The GPA data set contains data collected to determine which applicants at a large
midwestern university were likely to succeed in its computer science program. The
variable GPA is the measure of success of students in the computer science program,
and it is the response variable. A response variable measures the outcome to be
explained or predicted.

Several other variables are also included in the study as possible explanatory variables
or predictors of GPA. An explanatory variable may explain variation in the response
variable. Explanatory variables for this example include average high school grades
in mathematics (HSM), English (HSE), and science (HSS) (Moore and McCabe
1989).

To begin the regression analysis, follow these steps.

=⇒ Open the GPA data set.

=⇒ Choose Analyze:Fit (Y X).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 14.2. Analyze Menu

The fit variables dialog appears, as shown in Figure 14.3. This dialog differs from
all other variables dialogs because it can remain visible even after you create the fit
window. This makes it convenient to add and remove variables from the model. To
make the variables dialog stay on the display, click on the Apply button when you are
finished specifying the model. Each time you modify the model and use the Apply
button, a new fit window appears so you can easily compare models. Clicking on OK
also displays a new fit window but closes the dialog.
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Figure 14.3. Fit Variables Dialog

=⇒ Select the variable GPA in the list on the left, then click the Y button.
GPA appears in the Y variables list.

=⇒ Select the variables HSM, HSS, and HSE, then click the X button.
HSM, HSS, and HSE appear in the X variables list.
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Figure 14.4. Variable Roles Assigned

=⇒ Click the Apply button.
A fit window appears, as shown in Figure 14.5.

222



Creating the Analysis

Figure 14.5. Fit Window

This window shows the results of a regression analysis of GPA on HSM, HSS, and
HSE. The regression model for the ith observation can be written as

GPAi = β0 + β1HSMi + β2HSSi + β3HSEi + εi
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where GPAi is the value of GPA; β0 to β3 are the regression coefficients (parameters);
HSMi, HSSi, and HSEi are the values of the explanatory variables; and εi is the ran-
dom error term. The εi’s are assumed to be uncorrelated, with mean 0 and variance
σ2.
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By default, the fit window displays tables for model information, Model Equation,
Summary of Fit, Analysis of Variance, Type III Tests, and Parameter
Estimates, and a residual-by-predicted plot, as illustrated in Figure 14.5. You can
display other tables and graphs by clicking on the Output button on the fit variables
dialog or by choosing menus as described in the section “Adding Tables and Graphs”
later in this chapter.

Model Information

Model information is contained in the first two tables in the fit analysis. The first table
displays the model specification, the response distribution, and the link function. The
Model Equation table writes out the fitted model using the estimated regression
coefficients β̂0 to β̂3:

ˆGPA = 2.5899 + 0.1686 HSM + 0.0343 HSS + 0.0451 HSE

Summary of Fit

The Summary of Fit table contains summary statistics including Root MSE and
R-Square. The Root MSE value is 0.6998 and is the square root of the mean
square error given in the Analysis of Variance table. Root MSE is an estimate of
σ in the preceding regression model.

The R-Square value is 0.2046, which means that 20% of the variation in GPA
scores is explained by the fitted model. The Summary of Fit table also contains an
adjusted R-square value, Adj R-Sq. Because Adj R-Sq is adjusted for the number
of parameters in the model, it is more comparable over models involving different
numbers of parameters than R-Square.

Analysis of Variance

The Analysis of Variance table summarizes information about the sources of vari-
ation in the data. Sum of Squares represents variation present in the data. These
values are calculated by summing squared deviations. In multiple regression, there
are three sources of variation: Model, Error, and C Total. C Total is the total sum
of squares corrected for the mean, and it is the sum of Model and Error. Degrees
of Freedom, DF, are associated with each sum of squares and are related in the same
way. Mean Square is the Sum of Squares divided by its associated DF (Moore
and McCabe 1989).

If the data are normally distributed, the ratio of the Mean Square for the Model to
the Mean Square for Error is an F statistic. This F statistic tests the null hypoth-
esis that none of the explanatory variables has any effect (that is, that the regression
coefficients β1, β2, and β3 are all zero). In this case the computed F statistic (labeled
F Stat) is 18.8606. You can use the p-value (labeled Pr > F) to determine whether
to reject the null hypothesis. The p-value, also referred to as the probability value
or observed significance level, is the probability of obtaining, by chance alone, an F
statistic greater than the computed F statistic when the null hypothesis is true. The
smaller the p-value, the stronger the evidence against the null hypothesis.
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In this example, the p-value is so small that you can clearly reject the null hypothesis
and conclude that at least one of the explanatory variables has an effect on GPA.

Type III Tests

The Type III Tests table presents the Type III sums of squares associated with the
estimated coefficients in the model. Type III sums of squares are commonly called
partial sums of squares (for a complete discussion, refer to the chapter titled “The
Four Types of Estimable Functions” in the SAS/STAT User’s Guide). The Type III
sum of squares for a particular variable is the increase in the model sum of squares
due to adding the variable to a model that already contains all the other variables in
the model. Type III sums of squares, therefore, do not depend on the order in which
the explanatory variables are specified in the model. Furthermore, they do not yield
an additive partitioning of the Model sum of squares unless the explanatory variables
are uncorrelated (which they are not for this example).

F tests are formed from this table as explained previously in the “Analysis of
Variance” section. Note that when DF = 1, the Type III F statistic for a given param-
eter estimate is equal to the square of the t statistic for the same parameter estimate.
For example, the T Stat value for HSM given in the Parameter Estimates table
is 4.7494. The corresponding F Stat value in the Type III Tests table is 22.5569,
which is 4.7494 squared.

Parameter Estimates

The Parameter Estimates table, as shown in Figure 14.5, displays the parameter
estimates and the corresponding degrees of freedom, standard deviation, t statistic,
and p-values. Using the parameter estimates, you can also write out the fitted model:

ˆGPA = 2.5899 + 0.1686HSM + 0.0343HSS + 0.0451HSE.

The t statistic is used to test the null hypothesis that a parameter is 0 in the model.
In this example, only the coefficient for HSM appears to be statistically significant
(p ≤ 0.0001). The coefficients for HSS and HSE are not significant, partly because
of the relatively high correlations among the three explanatory variables. Once HSM
is included in the model, adding HSS and HSE does not substantially improve the
model fit. Thus, their corresponding parameters are not statistically significant.

Two other statistics, tolerance and variance inflation, also appear in the Parameter
Estimates table. These measure the strength of interrelationships among the ex-
planatory variables in the model. Tolerances close to 0 and large variance inflation
factor values indicate strong linear association or collinearity among the explana-
tory variables (Rawlings 1988, p. 277). For the GPA data, these statistics signal
no problems of collinearity, even for HSE and HSS, which are the two most highly
correlated variables in the data set.
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Residuals-by-Predicted Plot

SAS/INSIGHT software provides many diagnostic tools to help you decide if your
regression model fits well. These tools are based on the residuals from the fitted
model. The residual for the ith observation is the observed value minus the predicted
value:

GPAi − ˆGPAi.

The plot of the residuals versus the predicted values is a classical diagnostic tool used
in regression analysis. The plot is useful for discovering poorly specified models or
heterogeneity of variance (Myers 1986, pp. 138–139). The plot of R–GPA versus
P–GPA in Figure 14.5 indicates no such problems. The observations are randomly
scattered above and below the zero line, and no observations appear to be outliers.
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Adding Tables and Graphs
The menus at the top of the fit window enable you to add tables and graphs to the fit
window and output variables to the data window. When there is only one X variable,
you can also fit curves as described in Chapter 13, “Fitting Curves.”

Following are some examples of tables and graphs you can add to a fit window.

Collinearity Diagnostics Table

=⇒ Choose Tables:Collinearity Diagnostics.

File Edit Analyze Tables Graphs Curves Vars Help

� Model Equation
X’X Matrix

� Summary of Fit
� Analysis of Variance/Deviance

Type I/I (LR) Tests
� Type III (Wald) Tests

Type III (LR) Tests
� Parameter Estimates

C.I. (Wald) for Parameters �

C.I. (LR) for Parameters �

Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

Figure 14.6. Tables Menu

This displays the table shown in Figure 14.7.

Figure 14.7. Collinearity Diagnostics Table
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When an explanatory variable is nearly a linear combination of other explanatory
variables in the model, the estimates of the coefficients in the regression model are
unstable and have high standard errors. This problem is called collinearity. The
Collinearity Diagnostics table is calculated using the eigenstructure of the X ′X
matrix. See Chapter 13, “Fitting Curves,” for a complete explanation.

A collinearity problem exists when a component associated with a high condition
index contributes strongly to the variance of two or more variables. The highest
condition number in this table is 17.0416. Belsley, Kuh, and Welsch (1980) propose
that a condition index of 30 to 100 indicates moderate to strong collinearity.

Partial Leverage Plots

Another diagnostic tool available in the fit window is partial leverage plots. When
there is more than one explanatory variable in a model, the relationship of the resid-
uals to one explanatory variable can be obscured by the effects of other explanatory
variables. Partial leverage plots attempt to reveal these relationships (Rawlings 1988,
pp. 265–266).

=⇒ Choose Graphs:Partial Leverage.

File Edit Analyze Tables Graphs Curves Vars Help

� Residual by Predicted
Residual Normal QQ
Partial Leverage
Surface Plot

Figure 14.8. Graphs Menu

This displays the graphs shown in Figure 14.9.

Figure 14.9. Partial Leverage Plots
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In each plot in Figure 14.9, the x-axis represents the residuals of the explanatory vari-
able from a model that regresses that explanatory variable on the remaining explana-
tory variables. The y-axis represents the residuals of the response variable calculated
with the explanatory variable omitted.

Two reference lines appear in each plot. One is the horizontal line Y=0, and the
other is the fitted regression line with slope equal to the parameter estimate of the
corresponding explanatory variable from the original regression model. The latter
line shows the effect of the variable when it is added to the model last. An explanatory
variable having little or no effect results in a line close to the horizontal line Y=0.

Examine the slopes of the lines in the partial leverage plots. The slopes for the plots
representing HSS and HSE are nearly 0. This is not surprising since the coefficients
for the parameter estimates of these two explanatory variables are nearly 0. You will
examine the effect of removing these two variables from the model in the section
“Modifying the Model” later in this chapter.

Curvilinear relationships not already included in the model may also be evident in
a partial leverage plot (Rawlings 1988). No curvilinearity is evident in any of these
plots.

Residual-by-Hat Diagonal Plot

The fit window contains additional diagnostic tools for examining the effect of ob-
servations. One such tool is the residual-by-hat diagonal plot. Hat diagonal refers to
the diagonal elements of the hat matrix (Rawlings 1988). Hat diagonal measures the
leverage of each observation on the predicted value for that observation.

Choosing Fit (Y X) does not automatically generate the residual-by-hat diagonal plot,
but you can easily add it to the fit window. First, add the hat diagonal variable to the
data window.

=⇒ Choose Vars:Hat Diag.
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File Edit Analyze Tables Graphs Curves Vars Help

Hat Diag
Predicted
Linear Predictor
Predicted Surface �

Predicted Curves �

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals �

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Figure 14.10. Vars Menu

This adds the variable H–GPA to the data window, as shown in Figure 14.11. (The
residual variable, R–GPA, is added when a residual-by-predicted plot is created.)

Figure 14.11. GPA Data Window with H–GPA Added

=⇒ Drag a rectangle in the fit window to select an area for the new plot.
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Figure 14.12. Selecting an Area

=⇒ Choose Analyze:Scatter Plot (Y X).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 14.13. Analyze Menu

This displays the scatter plot variables dialog.

=⇒ Assign R–GPA the Y role and H–GPA the X role, then click on OK.
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Figure 14.14. Scatter Plot Variables Dialog

The plot appears in the fit window in the area you selected.

Figure 14.15. Residual by Hat Diagonal Plot

Belsley, Kuh, and Welsch (1980) propose a cutoff of 2p/n for the hat diagonal values,
where n is the number of observations used to fit the model and p is the number
of parameters in the model. Observations with values above this cutoff should be
investigated. For this example, H–GPA values over 0.036 should be investigated.
About 15% of the observations have values above this cutoff.

There are other measures you can use to determine the influence of observations.
These include Cook’s D, Dffits, Covratio, and Dfbetas. Each of these measures ex-
amines some effect of deleting the ith observation.
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=⇒ Choose Vars:Dffits.
A new variable, F–GPA, that contains the Dffits values is added to the data window.

Large absolute values of Dffits indicate influential observations. A general cutoff to
consider is 2. It is, thus, useful in this example to identify those observations where
H–GPA exceeds 0.036 and the absolute value of F–GPA is greater than 2. One way
to accomplish this is by examining the H–GPA by F–GPA scatter plot.

=⇒ Choose Analyze:Scatter Plot (Y X).
This displays the scatter plot variables dialog.

=⇒ Assign H–GPA the Y role and F–GPA the X role, then click on OK.
This displays the H–GPA by F–GPA scatter plot.

Figure 14.16. H–GPA by F–GPA Scatter Plot

None of the observations identified as potential influential observations (H–GPA >
0.036) are, in fact, influential for this model using the criterion |F–GPA| > 2.
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Modifying the Model
It may be possible to simplify the model without losing explanatory power. The
change in the adjusted R-square value is one indicator of whether you are losing
explanatory power by removing a variable. The estimate for HSS has the largest
p-value, 0.3619. Remove HSS from the model and see what effect this has on the
adjusted R-square value.

From the fit variables dialog, follow these steps to request a new model with HSS
removed. Remember, if you click Apply in the variables dialog, the dialog stays on
the display so you can easily modify the regression model. You may need to rearrange
the windows on your display if the fit variables dialog is not visible.

=⇒ Select HSS in the X variables list, then click the Remove button.
This removes HSS from the model.

Figure 14.17. Removing the Variable HSS

=⇒ Click the Apply button.
A new fit window appears, as shown in Figure 14.18.
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Figure 14.18. Fit Window with HSM and HSE as Explanatory Variables

Reposition the two fit windows so you can compare the two models. Notice that
the adjusted R-square value has actually increased slightly from 0.1937 to 0.1943.
Little explanatory power is lost by removing HSS. Notice that within this model the
p-value for HSE is a modest 0.0820. You can remove HSE from the new fit window
without creating a third fit window.

=⇒ Select HSE in the second fit window.

=⇒ Choose Edit:Delete in the second fit window.
This recomputes the second fit using only HSM as an explanatory variable.
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Figure 14.19. Fit Window with HSM as Explanatory Variable

The adjusted R-square value drops only slightly to 0.1869. Removing HSE from
the model also appears to have little effect. So, of the three explanatory variables you
considered, only HSM appears to have strong explanatory power.
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Saving the Residuals
One of the assumptions made in carrying out hypothesis tests in regression analy-
sis is that the errors are normally distributed (Myers 1986). You can use residuals
to check assumptions about errors. For this example, the studentized residuals are
used because they are somewhat better than ordinary residuals for assessing normal-
ity, especially in the presence of outliers (Weisberg 1985). You can create a distri-
bution window to check the normality of the residuals, as described in Chapter 12,
“Examining Distributions.”

=⇒ Choose Vars:Studentized Residual.
A variable called RT–GPA–1 is placed in the data window, as shown in Figure
14.20.

Figure 14.20. GPA Data Window with RT–GPA–1 Added

Notice the names of the last three variables. The number you see at the end of the
variable names corresponds to the number of the fit window that generated the vari-
ables. See Chapter 39, “Fit Analyses,” for detailed information about how generated
variables are named.

⊕ Related Reading: Linear Models, Residuals, Chapter 39.
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In this chapter, you consider analyses that use least-squares methods to fit the general
linear model. Such analyses include regression, analysis of variance, and analysis of
covariance. You can choose Analyze:Fit (Y X) to carry out an analysis of variance.
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You can use box plots to examine individual group means.

Figure 15.1. Fit Window with Analysis of Variance Results
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Assigning Measurement Levels
The DRUG data set contains results of an experiment carried out to evaluate the ef-
fect of four drugs (DRUG) with three experimentally induced diseases (DISEASE).
Each drug by disease combination was applied to six randomly selected dogs. The
response variable is the increase in systolic blood pressure (CHANG–BP) due to the
drug treatment. DRUG and DISEASE are classification or class variables; that is,
variables that identify distinct levels or groups. DRUG contains four levels or classes
and DISEASE contains three.

=⇒ Open the DRUG data set.

Figure 15.2. Data Window

A variable’s measurement level determines the way it is treated in analyses. In the
data window, measurement levels appear above the variable names, in the upper right
portion of the column header. SAS/INSIGHT software supports two measurement
levels: interval (Int) and nominal (Nom).

Interval variables contain values that vary across a continuous range. In this data set,
the change in blood pressure (CHANG–BP) is an interval variable.

Nominal variables contain a discrete set of values. In this data set, both DRUG
and DISEASE contain a discrete set of values. However, since these are numeric
variables, by default they have interval measurement levels (Int).

You need to assign both these variables the nominal measurement level (Nom) in
order to treat them as classification variables. To do so, use the data measurement
level pop-up menu.
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=⇒ Click on the Int measurement level indicator for the variable DRUG.
This displays a pop-up menu.

�Interval
Nominal

Figure 15.3. Measurement Levels Menu

The radio mark beside Interval shows the current measurement level. Because
DRUG is a numeric variable, it can use either an interval or a nominal measurement
level.

=⇒ Choose Nominal in the pop-up menu to change DRUG’s measurement level.

=⇒ Repeat these steps to change the measurement level for DISEASE.

Check the measurement levels for DRUG and DISEASE in the data window. Both
have Nom measurement levels.

Figure 15.4. Data with Nominal Variables DRUG and DISEASE

246



Creating the Analysis of Variance

Creating the Analysis of Variance
Consider the two-way analysis of variance model Kutner (1974) proposed for these
data:

CHANG–BPijk = µ + γi + τj + (γτ)ij + εijk

where µ is the overall mean effect, γi is the effect of the ith level of DRUG, τj is
the effect of the jth level of DISEASE, (γτ)ij is the joint effect of the ith level of
DRUG with the jth level of DISEASE, and εijk is the random error term for the
kth observation in the ith level of DRUG and jth level of DISEASE. The εijk’s are
assumed to be normally distributed and uncorrelated and to have mean 0 and common
variance σ2.

The effects for DRUG and DISEASE are often referred to as the main effects in
the model and the DRUG*DISEASE effect as an interaction effect. The interaction
effect enables you to determine whether the level of DRUG affects the change in
blood pressure differently for different levels of DISEASE.

To begin the analysis of variance, follow these steps.

=⇒ Choose Analyze:Fit (Y X).

=⇒ Select CHANG–BP in the variables list on the left, then click the Y button.
CHANG–BP appears in the Y variables list and is now defined as the response vari-
able.

=⇒ Select DRUG and DISEASE, then click the Expand button.
Your variables dialog should now appear, as shown in Figure 15.5.
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Figure 15.5. Fit Variables Dialog with Variable Roles Assigned

248



Creating the Analysis of Variance

The Expand button provides a convenient way to specify interactions of any order.
The degree of expansion is controlled by the value below the Expand button. The
order 2 is the default, so clicking Expand constructs all possible effects from the
selected variables up to second-order effects. This adds DRUG, DISEASE, and
DRUG*DISEASE to the effects list.

† Note: You could have added the same effects by using the X and Cross buttons,
but the Expand button is faster. There is also a Nest button for specifying nested
effects. For more information on the effects buttons, see Chapter 39, “Fit Analyses.”

=⇒ Click the OK button.
A fit window appears, as shown in Figure 15.6.

You can control which tables and graphs the fit window contains by clicking the
Output button in the fit variables dialog or by choosing from the Tables and
Graphs menus. By default, the fit window contains tables for model specification,
Nominal Variable Information, Parameter Information, Model Equation,
Summary of Fit, Analysis of Variance, Type III Tests, and Parameter
Estimates, as well as a residual-by-predicted plot.
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Figure 15.6. Fit Window - Model Information

Model Information

The first four tables in the fit analysis contain model information. The first table
displays the model specification, the response distribution, and the link function. The
Nominal Variable Information table shows the levels of the nominal variables.
The levels are determined from the formatted values of the nominal variables.

An additional Parameter Information table shows the variable indices for the pa-
rameters in the model equation, the X’X matrix, the estimated covariance matrix,
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and the estimated correlation matrix. The Model Equation table gives the fitted
equation for the model.

Summary of Fit

The Summary of Fit table, as shown in Figure 15.7, contains summary statistics.
The Mean of Response 19.1667 is the overall mean of CHANG–BP. The Root
MSE 9.7886 is the square root of the mean square error given in the Analysis of
Variance table. Root MSE is an estimate of σ in the preceding analysis of variance
model.

The R-Square value is 0.5250, which means that 52% of the variation in
CHANG–BP is explained by the fitted model. Adj R-Sq is an alternative to R-
Square, adjusted for the number of parameters in the model.

Figure 15.7. Fit Window - Summary of Fit
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Analysis of Variance

The Analysis of Variance table summarizes the information related to the sources
of variation in the data. Sum of Squares measures variation present in the data.
It is calculated by summing squared deviations. There are three sources of variation:
Model, Error, and C Total. The Model row in the table corresponds to the variation
among class means. The Error row corresponds to ε in the model and represents
variation within class means. C Total is the total sum of squares corrected for the
mean, and it is the sum of Model and Error. Degrees of Freedom, DF, are associated
with each sum of squares and are related in the same way. Mean Square is the Sum
of Squares divided by its associated DF (Moore and McCabe 1989, p.685).

If the data are normally distributed, the ratio of the Mean Square for the Model to
the Mean Square for Error is an F statistic. This F statistic tests the null hypothesis
that all the class means are the same against the alternative hypothesis that the means
are not all equal. Think of the ratio as a comparison of the variation among class
means to variation within class means. The larger the ratio, the more evidence that
the means are not the same. The computed F statistic (labeled F Stat) is 6.0276. You
can use the p-value (labeled Pr > F) to determine whether to reject the null hypoth-
esis. The p-value, also referred to as the probability value or observed significance
level, is the probability of obtaining (by chance alone) an F statistic greater than the
computed F statistic when the null hypothesis is true. The smaller the p-value, the
stronger the evidence against the null hypothesis.

In this example, the p-value is so small that you can clearly reject the null hypothesis
and conclude that at least one of the class means is different. At this point, you have
demonstrated statistical significance but cannot make statements about which class
means are different.

Type III Tests

The Type III Tests table is a further breakdown of the variation due to MODEL. The
Sum of Squares and DF for Model are broken down into terms corresponding to
the main effect for DRUG, the main effect for DISEASE, and the interaction effect
for DRUG*DISEASE. The sum of squares for each term represents the variation
among the means for the different levels of the factors.

The Type III Tests table presents the Type III sums of squares associated with the
effects in the model. The Type III sum of squares for a particular effect is the amount
of variation in the response due to that effect after correcting for all other terms in
the model. Type III sums of squares, therefore, do not depend on the order in which
the effects are specified in the model. Refer to the chapter on “The Four Types of
Estimable Functions,” in the SAS/STAT User’s Guide for a complete discussion of
Type I–IV sums of squares.
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F tests are formed from this table in the same fashion that was explained previously
in the section “Analysis of Variance.” In this case, there are three null hypotheses
being tested: class means are all the same for the main effect DRUG, the main effect
DISEASE, and the interaction effect DRUG*DISEASE. Begin by examining the
test for the interaction effect since a strong interaction makes the interpretation of
main effects difficult if not impossible. The computed F statistic is 1.7406 with a
p-value of 0.1271. This gives little evidence for an interaction effect. Now examine
the main effects. The computed F statistic for DRUG is 15.8053 with a p-value less
than or equal to 0.0001. The computed F statistic for DISEASE is 4.2220 with a
p-value of 0.0193. While both effects are significant, the DRUG effect appears to be
stronger.

Now you have more information about which means are significantly different. The
results of the F test in the Analysis of Variance table indicated only that at least
one of the class means is different from the others. Now you know that the difference
in means can be associated with the different levels of the main effects, DRUG and
DISEASE.

Parameter Estimates

Parameter estimates resulting from analysis of variance models where the effects are
all classification variables are different from those observed in a regression model.
They represent a non-unique solution to the normal equations, and thus the individual
elements in the table are not as easily interpretable as they are in multiple regression.
For a complete discussion of parameter estimates involving classification variables,
refer to the chapter “Details of the Linear Model: Understanding GLM Concepts,” in
SAS System for Linear Models, Third Edition.
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Figure 15.8. Fit Window - Parameter Estimates

Residuals-by-Predicted Plot

It is appropriate to examine the residuals from the fitted model for analysis of variance
just as you did with the multiple regression model you fit in Chapter 14, “Multiple
Regression.” The residuals-by-predicted graph illustrated in Figure 15.8, along with
several other diagnostic plots, are available for examining residuals. Since this topic
is discussed in Chapter 14, residual plots are not examined here.
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Examining the Means
Before you can interpret the results for the significant main effects you observed in
the Type III Tests table, you need to examine the means for the different levels of
these effects. Box plots are an excellent tool for displaying means because means and
standard deviations for each level of a variable can be placed side-by-side for easy
comparison.

Follow these steps to add box plots for each level of DRUG to the Fit(Y X) window.

=⇒ Select an area for the box plot.
Drag the cursor until you have a rectangle of suitable size.

Figure 15.9. Selecting an Area

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).

=⇒ Select CHANG–BP in the list at the left, then click the Y button.
This assigns the Y role to this variable.

=⇒ Select DRUG in the list at the left, then click the X button.
This assigns the X role to this variable and requests a separate box plot for each level
of DRUG. Your variables dialog should now appear, as shown in Figure 15.10.
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Figure 15.10. Box Plot Variables Dialog with Variable Roles Assigned

=⇒ Click the Output button.
The output options dialog shown in Figure 15.11 appears on your display. In this
dialog, you can specify options to determine the output produced by the box plot.

Figure 15.11. Box Plot Output Options Dialog

=⇒ Click on Means.
Means displays mean diamonds for all boxes. The central line in the mean diamond
marks the mean; the size of the mean diamond is two standard deviations, one above
and one below the mean.

=⇒ Click OK in both dialogs to create the Box Plots.
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Figure 15.12. Box Plots for different DRUG Levels

Examine the box plot representing the four levels of DRUG. Recall that the central
line in each mean diamond marks the mean while the height of the mean diamond
shows one standard deviation on either side of the mean. The box and whiskers
display percentiles for the data. (See Chapter 4, “Exploring Data in One Dimension,”
for a complete description of the parts of the box plot.)

Follow these steps to hide the display of box and whiskers in order to display the
means and standard deviations better.

=⇒ Click on Observations in the box plot pop-up menu.
This toggles the display of observations and thus turns off the display of the box,
whiskers, and individual observations in the box plot.

Ticks...
� Axes
� Observations
� Means

Comparison Circles
Serifs
Values
Reference Lines
Marker Sizes �

Figure 15.13. Box Plot Pop-up Menu

=⇒ Click on Values in the box plot pop-up menu.
This toggles the display of values of the mean for each box plot.
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Figure 15.14. Mean Diamonds for DRUG

The largest effect noted in these plots is that drugs 1 and 2 have a higher average
increase in systolic blood pressure than drugs 3 and 4 (averaged over all three levels
of DISEASE). This difference resulted in the significant main effect for DRUG that
was observed in the Type III Tests table.

=⇒ Repeat the preceding steps and display box plots for the levels of DISEASE.

Figure 15.15. Mean Diamonds for DISEASE

The differences between the three DISEASE levels are not as pronounced as those
observed for DRUG. Disease 3 is associated with a lower average increase in systolic
blood pressure than the other two diseases (averaged over all four levels of DRUG).
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The smaller p-value observed for the DRUG main effect is more evidence that the
mean differences for DISEASE are not as pronounced as those for DRUG.

This example illustrates one way to use Analyze:Fit to fit the general linear model.
Turn to the next chapter to see how to fit the generalized linear model.

⊕ Related Reading: Box Plots, Chapter 33.

⊕ Related Reading: Linear Models, Chapter 39.
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Chapter 16
Logistic Regression

In the last two chapters, you used least-squares methods to fit linear models. In this
chapter, you use maximum-likelihood methods to fit generalized linear models. You
can choose Analyze:Fit ( Y X ) to carry out a logistic regression analysis. You can
use the fit variables and method dialogs to specify generalized linear models and to
add and delete variables from the model.
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Figure 16.1. Logistic Regression Analysis
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Displaying the Logistic Regression Analysis
The PATIENT data set, described by Lee (1974), contains data collected on 27 cancer
patients. The response variable, REMISS, is binary and indicates whether cancer
remission occurred:

REMISS = 1 indicates success (remission occurred)

REMISS = 0 indicates failure (remission did not occur)

Several other variables containing patient characteristics thought to affect cancer re-
mission were also included in the study. For this example, consider the following
three explanatory variables: CELL, LI, and TEMP. (You may want to carry out a
more complete analysis on your own.)

=⇒ Open the PATIENT data set.

Figure 16.2. Data Window

The generalized linear model has three components:

• a linear predictor function constructed from explanatory variables. For this
example, the function is

θi = β0 + β1CELLi + β2LIi + β3TEMPi

where β0, β1, β2 and β3 are coefficients (parameters) for the linear predictor,
and CELLi, LIi, and TEMPi are the values of the explanatory variables.

• a distribution or probability function for the response variable that depends on
the mean µ and sometimes other parameters as well. For this example, the
probability function is binomial.
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• a link function, g(.), that relates the mean to the linear predictor function. For
logistic regression, the link function is the logit

g(pi) = logit(pi) = log(
pi

1 − pi
) = θi

where pi = Pr(REMISS=1 | xi) is the response probability to be modeled, and
xi is the set of explanatory variables for the ith patient.

You can specify these three components to fit a generalized linear model by following
these steps.

=⇒ Choose Analyze:Fit ( Y X ) to display the fit variables dialog.

=⇒ Select REMISS in the list at the left, then click the Y button.

=⇒ Select CELL, LI, and TEMP in the variables list, then click the X button.

Your variables dialog should now appear, as shown in Figure 16.3.

Figure 16.3. Fit Variables Dialog with Variable Roles Assigned

To specify the probability distribution for the response variable and the link function,
follow these steps.

=⇒ Click the Method button in the variables dialog to display the method dialog.
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Figure 16.4. Fit Method Dialog

=⇒ Click on Binomial under Response Dist to specify the probability distribu-
tion.
You do not need to specify a Link Function for this example. Canonical, the de-
fault, allows Fit ( Y X ) to choose a link dependent on the probability distribution.
For the binomial distribution, as in this example, it is equivalent to choosing Logit,
which yields a logistic regression.

=⇒ Click the OK button to close the method dialog.

=⇒ Click the Apply button in the variables dialog.
This creates the analysis shown in Figure 16.5. Recall that the Apply button causes
the variables dialog to stay on the screen after the fit window appears. This is conve-
nient for adding and deleting variables from the model.

By default, the fit window displays tables for model information, Model Equation,
Summary of Fit, Analysis of Deviance, Type III (Wald) Tests, and
Parameter Estimates, and a residual-by-predicted plot. You can control the ta-
bles and graphs displayed by clicking on the Output button in the fit variables dialog
or by choosing from the Tables and Graphs menus.

The first table displays the model information. The first line gives the model speci-
fication. The second and third lines give the error distribution and the link function
you specified in the Method dialog.
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Figure 16.5. Fit Window
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Model Equation

The Model Equation table writes out the fitted model using the estimated regression
coefficients:

logit(Prob(REMISS = 1))

= 67.6399 + 9.6521*CELL + 3.8671*LI − 82.0737*TEMP
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Summary of Fit

The Summary of Fit table contains summary statistics for the fit of the model in-
cluding values for Deviance and Pearson’s Chi-Squared statistics. These values
contrast the fit of your model to that of a saturated model that allows a different fit
for each observation. If the data are sparse in the sense that most observations have a
different set of explanatory variables, as in this set of data, then the quality of these
measures is likely to be poor. Inferences drawn from these measures should be treated
cautiously.

Analysis of Deviance

The Analysis of Deviance table summarizes information about the variation in the
response for the set of data. Some of the variation can be explained by the Model.
The Error is the remainder that is not systematically explained. C Total (the total
corrected or adjusted for the mean) is the sum of Model and Error. The probability
values give a measure of whether the amount of variation is consistent with chance
alone or whether there is evidence of additional variation. In this case the Deviance
associated with the Model shows a significant effect for the model, (p = 0.0061).

Type III (Wald) Tests

Wald tests are Chi-square statistics that test the null hypothesis that a parameter is 0;
in other words, that the corresponding variable has no effect given that the other vari-
ables are in the model. These are approximate tests that are more accurate with larger
sample sizes. In this example, only the coefficient for LI is statistically significant (p
= 0.0297).

Parameter Estimates Table

The Parameter Estimates table shows the estimate, standard error, Chi-square
statistic and associated degrees of freedom, and p-value for each of the parameters
estimated.

Residuals-by-Predicted Plot

In the diagnostic plot of residuals versus predicted values, you can examine residuals
for the model. You can point and click to identify individual observations. Because
the observed response must either be 0 or 1, the plot of the residuals versus predicted
values must lie along two straight lines. Plots of residuals versus the independent
variables and other possible explanatory variables may be more useful. You can
create scatter plots by selecting the response and explanatory variables in the data
window and choosing Analyze:Scatter Plot ( Y X ).
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Modifying the Model
Plots of the residuals against other variables may suggest extensions of the model.
Alternatively you may be able to remove some variables and thus simplify the model
without losing explanatory power. The Type III (Wald) Tests table or the possibly
more accurate Type III (LR) Tests table contains statistics that can help you decide
whether to remove an effect. If the p-value associated with the test is large, then there
is little evidence for any explanatory value of the corresponding variable.

=⇒ Choose Tables:Type III (LR) Tests.

File Edit Analyze Tables Graphs Curves Vars Help

� Model Equation
X’X Matrix

� Summary of Fit
� Analysis of Variance/Deviance

Type I/I (LR) Tests
� Type III (Wald) Tests

Type III (LR) Tests
� Parameter Estimates

C.I. (Wald) for Parameters �

C.I. (LR) for Parameters �

Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

Figure 16.6. Tables Menu

This displays the table shown in Figure 16.7.

Figure 16.7. Likelihood Ratio Type III Tests
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The p-values for TEMP and CELL are relatively large, suggesting these effects could
be removed. Although the numbers are different, the same conclusions would be
reached from the corresponding Wald tests. In the Fit Variables dialog, follow these
steps to request a new model with TEMP removed.

=⇒ Select TEMP in the effects list, then click the Remove button.
TEMP disappears from the effects list.

=⇒ Click on Apply, and a new fit window appears, as shown in Figure 16.8.
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Figure 16.8. Fit Window with CELL and LI as Explanatory Variables
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=⇒ Choose Tables:Type III (LR) Tests in the new fit window.
This displays a Type III (LR) Tests table in the window.

Figure 16.9. Likelihood Ratio Type III Tests

The p-value for CELL in the LR test suggests that this effect could also be removed.

=⇒ Click on the variable CELL in the effects list in the Fit Dialog.
Then click on Remove. CELL disappears from the effects list.

=⇒ Click on Apply, and a new Fit window appears, as shown in Figure 16.10.
Since the new model contains only one X variable, the fit window displays a plot of
REMISS versus CELL.

Using the Apply button, you have quickly created three logistic regression models.
Logistic regression is only one special case of the generalized linear model. Another
case, Poisson regression, is described in the next chapter.

⊕ Related Reading: Generalized Linear Models, Chapter 39.
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Figure 16.10. Fit Window with LI as the Only Explanatory Variable
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Poisson Regression

In Chapter 16, “Logistic Regression,” you examined logistic regression as an exam-
ple of a generalized linear model.

In this chapter, you will examine another example of a generalized linear model,
Poisson regression. You can choose Analyze:Fit ( Y X ) to carry out a Poisson
regression analysis when the response variable represents counts. You can use the fit
variables and methods dialogs to specify this generalized linear model.
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Figure 17.1. Poisson Regression Analysis
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Displaying the Poisson Regression Analysis
The SHIP data shown in Figure 17.2 represent damage caused by waves to the for-
ward section of certain cargo-carrying vessels. The purpose of the investigation was
to set standards for future hull construction. In order to do so, the investigators needed
to know the risk of damage associated with five ship types (TYPE), year of con-
struction (YEAR), and period of operation (PERIOD). These three variables are the
classification variables. MONTHS is the aggregate number of months in service and
is an explanatory variable. Y is the response variable and represents the number of
damage incidents (McCullagh and Nelder 1989).

Figure 17.2. SHIP Data Set

Recall from Chapter 16 that the generalized linear model has three basic components:

• a linear function of explanatory variables. For this example, the function is

β0 + β1 log(MONTHS) + γi + τj + δk + (γτ)ij + (γδ)ik + (τδ)jk

where log(MONTHS) is a variable whose coefficient β1 is believed to be 1. An
effect such as this is commonly referred to as an offset. γi is the effect of the
ith level of TYPE, τj is the effect of the jth level of YEAR, δk is the effect
of the kth level of PERIOD, (γτ)ij is the effect of the ijth level of the TYPE
by YEAR interaction, (γδ)ik is the effect of the ikth level of the TYPE by
PERIOD interaction, and (τδ)jk is the effect of the jkth level of the YEAR by
PERIOD interaction.

• a probability function for the response variable that depends on the mean and
sometimes other parameters as well. For this example, the probability function
of the response variable is Poisson.
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• a link function that relates the mean to the linear function of explanatory vari-
ables. For this example, the link function is the log

log(expected number of damage incidents)

= β0 + β1 log(MONTHS) + γi + τj + δk + (γτ)ij + (γδ)ik + (τδ)jk

=⇒ Open the SHIP data set.

Recall from the previous equation that Y is assumed to be directly proportional to
MONTHS. Since log(Y ) is being modeled, you need to carry out a log transforma-
tion on MONTHS. Follow these steps to create a new variable that represents the log
of MONTHS.

=⇒ Select MONTHS in the data window.

=⇒ Choose Edit:Variables:log( Y ).

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

log( Y )
sqrt( Y )
1 / Y
Y * Y
exp( Y )
Other...

Figure 17.3. Edit:Variables Menu

A new variable, L–MONTHS, now appears in the data window.
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Figure 17.4. Data Window with L–MONTHS Added
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=⇒ Deselect L–MONTHS in the data window. Some values of MONTHS are 0,
meaning that this kind of ship has not seen service. You need to restrict these observa-
tions from entering into the model fit. The log transformation does this automatically
since log(MONTHS) becomes a missing value for the observations with a value of 0
for MONTH. Observations with missing values for the explanatory variables or the
response variable are not used in the model fit.

Now you are ready to begin the analysis.

=⇒ Choose Analyze:Fit ( Y X ) to display the fit variables dialog

=⇒ Select Y in the list at the left, then click the Y button.
Y appears in the Y variables list.

=⇒ Select TYPE, YEAR, and PERIOD, then click the Expand button.
TYPE, YEAR, and PERIOD, along with all two-way interaction effects, appear in
the X variables list. Your variables dialog should now appear as shown in Figure 17.5.

Figure 17.5. Fit Variables Dialog with Variable Roles Assigned

The Expand button provides a convenient way to specify interactions of any order.
The order 2 is the default. You can change the order by entering a different value to
replace the 2 or by clicking on the buttons to the right or left of the 2 to increase or
decrease the order, respectively.

=⇒ Click the Method button to display the fit method dialog
This dialog enables you to specify the probability function or the quasi-likelihood
function for the response variable and the link function.
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Overdispersion is a phenomenon that occurs occasionally with binomial and Poisson
data. For Poisson data, it occurs when the variance of the response Y exceeds the
Poisson variance Var(y)=µ. To account for the overdispersion that might occur in the
SHIP data set, a quasi-likelihood function with variance function Var(µ)=µ (Poisson
variance) will be used for the response variable. The variance is given by

Var(y) = σ2µ

where σ2 is the dispersion parameter with value greater than 1 for overdispersion.

=⇒ Select the check box for Quasi-Likelihood.

=⇒ Click on Poisson under Response Dist.
This uses the Poisson variance function Var(µ) = µ for the quasi-likelihood function.

=⇒ Click on Pearson under Scale.
This uses the scale parameter based on the Pearson χ2 statistic.

=⇒ Select L–MONTHS in the list at the left, then click the Offset button.
L–MONTHS appears in the Offset variables list. Your method dialog should now
appear as shown in Figure 17.6.

Figure 17.6. Fit Method Dialog

It is not necessary to specify a Link Function. Canonical is the default and allows

Fit ( Y X ) to choose an appropriate link. For this example, it is equivalent to choosing
Log as the Link Function.
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=⇒ Click the OK button to close both dialogs and display the analysis.

Figure 17.7. Fit Window

By default, the window includes many tables, but only a few are shown in Figure
17.7. These tables are described in the following sections. For more information
about the other tables and graphs in the window, see Chapter 39, “Fit Analyses.”

† Note: A warning message—The negative of the Hessian is not positive definite. The
convergence is questionable—appears when the specified model does not converge,
as in this example. The output tables, graphs, and variables are based on the results
from the last iteration.
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Model Information

Begin by examining the table at the top of the fit window that describes the model.
The first line gives the effects in the model. The second line gives the response
distribution from which the variance function used in the quasi-likelihood function is
obtained. The third line gives the link function of Y. When an Offset variable is also
specified in the fit method dialog, the fourth line gives the offset in the model.

The Nominal Variable Information table contains the levels of the nominal vari-
ables. The Parameter Information table, as displayed in Figure 17.1, shows the
variable indices for the parameters.

Summary of Fit

The Summary of Fit table contains summary statistics including Mean of
Response, Deviance, and Pearson Chi-Square. SCALE (Pearson) gives
the scale parameter estimated from the Pearson χ2 statistic.

Analysis of Deviance

The Analysis of Deviance table summarizes the information related to the sources
of variation in the data. Deviance represents variation present in the data. Error
gives the deviance for the current model, and C Total, corrected for an overall mean,
is the deviance for the model with intercept only. Model gives the variation modeled
by the explanatory variables, and it is the difference between C Total and Error
deviances.

Type III (Wald) Tests

The Type III (Wald) Tests table in this example is a further breakdown of the vari-
ation due to MODEL. The DF for Model are broken down into terms corresponding
to the main effects for YEAR, TYPE, and PERIOD, and the interaction effects for
TYPE*YEAR, YEAR*PERIOD, and TYPE*PERIOD. The composite explanatory
power of the set of parameters associated with each effect is measured by the Chi-
Square statistic. The p-value corresponding to each Chi-Square statistic is the
probability of observing a statistic of equal or greater value, given that the corre-
sponding parameters are all 0.
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Modifying the Model
For this model and this set of data, there does not appear to be sufficient explanatory
power in the YEAR*PERIOD effect to include it in the model.

=⇒ Click on YEAR*PERIOD in the fit window.

=⇒ Choose Edit:Delete from the menu.

Figure 17.8. Modified Fit Model
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Follow the previous steps to remove the other two interaction terms from the model.
The resulting main effects model is shown in Figure 17.9.

Figure 17.9. Main Effects Model

The estimate of the dispersion parameter φ = σ2 = 1.6910 suggests that overdisper-
sion exists in the model. Type III (Wald) Tests table shows that all of the main
effects are significant.
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Parameter Estimates

Analyses where some effects are classification variables yield different parameter
estimates from those observed in a regression setting. They represent a different ad-
ditive contribution for each level value (or combination of level values for interaction
effects), and thus the individual elements in the table are not as easily interpretable as
they are in multiple regression.

Figure 17.10. Parameter Estimates Table
Because the overall level is set by the INTERCEPT parameter, the set of parameters
associated with an effect is redundant. This shows up in the Parameter Estimates
table as parameters with degrees of freedom (DF) that are 0 and estimates that are 0.
An example of this is the parameter for the e level of the TYPE variable.

From the Parameter Estimates table, ships of types b and c have the lowest risk,
and ships of type e the highest. The oldest ships (built between 1960 and 1964) have
the lowest risk and ships built between 1965 and 1974 have the highest risk. Ships
operated between 1960 to 1974 have a lower risk than ships operated between 1975
to 1979.

The analysis provides a table for the complete fitted model, but you should not use
these parameter estimates and their associated statistics individually to determine
which parameters have an effect. For further information on parameter estimates
and other features of the Fit window, see Chapter 39, “Fit Analyses.”

⊕ Related Reading: Generalized Linear Models, Chapter 39.
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Chapter 18
Examining Correlations

In this chapter you examine relationships between pairs of variables by looking at
correlations.

You can use correlation coefficients to measure the strength of the linear association
between two variables. You can also use confidence ellipses in scatter plots as a visual
test for bivariate normality and an indication of the strength of the correlation.

Figure 18.1. Multivariate Window with Correlation Analysis
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Creating the Analysis
The GPA data set contains information collected to determine which applicants at
a university were likely to succeed in its computer science program. The variable
GPA is the grade point average; HSM, HSS, and HSE are average high school
grades in mathematics, science, and English; and SATM and SATV are scores on the
mathematics and verbal portion of the SAT exam (Moore and McCabe 1989).

Follow these steps to create a correlation analysis of the GPA data.

=⇒ Open the GPA data set.

Figure 18.2. GPA Data

=⇒ Choose Analyze:Multivariate ( Y’s ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 18.3. Analyze Menu
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=⇒ Select GPA, HSM, HSS, HSE, SATM, and SATV. Then click the Y button to
assign these variables the Y role.
Your variables dialog should now appear, as shown in Figure 18.4.

Figure 18.4. Multivariate Variables Dialog

=⇒ Click OK to create the multivariate window.
By default, the multivariate window contains tables of Univariate Statistics and
the Correlation Matrix.
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Figure 18.5. Multivariate Window
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Correlation Matrix

Examine the Correlation Matrix table. The correlation coefficient is a numerical
measure that quantifies the strength of linear relationships. GPA, the grade point
average, shows a correlation of 0.4365 with HSM, the high school math average.
This is not surprising since you would expect the more successful computer science
majors to have stronger quantitative skills.

GPA is not as strongly correlated with the other variables and shows a correlation of
only 0.1145 with SATV. The verbal portion of the SAT exam does not measure the
quantitative skills needed by computer science majors.

Confidence Ellipses

To learn more about correlations in the data, add a scatter plot matrix with confidence
ellipses for all of the variables under consideration.

=⇒ Choose Curves:Confidence Ellipse:Prediction: 80%.

File Edit Analyze Tables Graphs Curves Vars Help
Confidence Ellipse � Mean: 99%

95%
90%
80%
50%
Other...

Prediction: 99%
95%
90%
80%
50%
Other...

Figure 18.6. Curves Menu

The lower half of the scatter plot matrix for the six variables appears on your display
with the 80% prediction confidence ellipses drawn, as shown in Figure 18.7.
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Figure 18.7. Multivariate Window with Confidence Ellipses

There are two ways to interpret the ellipses: as confidence curves for bivariate normal
distributions and as indicators of correlation.

As confidence curves, the ellipses show where the specified percentage of the data
should lie, assuming a bivariate normal distribution. Under bivariate normality, the
percentage of observations falling inside the ellipse should closely agree with the
specified confidence level. You can examine the effect of increasing or decreasing
the confidence level by adjusting the slider in the Confidence Ellipses table below
the scatter plot matrix.

Confidence ellipses can also serve as visual indicators of correlations. The confidence
ellipse collapses diagonally as the correlation between two variables approaches 1 or
-1. The confidence ellipse is more circular when two variables are uncorrelated.

In this case the scatter plots for high school scores (HSM, HSS, and HSE) show a
granular appearance that indicates the data are not continuous. These scatter plots
clearly do not follow a bivariate normal distribution; therefore, it is not appropriate to
interpret confidence ellipses.
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The confidence ellipses for GPA, SATM, and SATV can be interpreted. These con-
fidence ellipses contain observations appropriate to the 80% confidence level you
specified. The nearly circular appearance of the confidence ellipse in the plot of GPA
versus SATV reflects the small correlation you observed in the Correlation Matrix
table. The ellipse in the plot of GPA versus SATM is somewhat more elongated,
reflecting a higher correlation.

† Note: Visual interpretation of correlations can be subjective because changes in scale
affect your perception (Moore and McCabe 1989). When examining correlations,
you should use correlation coefficients as well as confidence ellipses.

⊕ Related Reading: Correlation Coefficients, Confidence Ellipses,Chapter 40.
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Chapter 19
Calculating Principal Components

Principal component analysis is a technique for reducing the complexity of high
dimensional data. You can use principal component analysis to approximate high
dimensional data with a few dimensions so you can examine them visually. In
SAS/INSIGHT software you can calculate principal components, store them, and
plot them in two and three dimensions.

Figure 19.1. Principal Component Analysis
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Calculating Principal Components
Principal component analysis summarizes high dimensional data into a few dimen-
sions. Each dimension is called a principal component and represents a linear combi-
nation of the variables. The first principal component accounts for as much variation
in the data as possible. Each succeeding principal component accounts for as much
of the variation unaccounted for by preceding principal components as possible.

Consider the BASEBALL data set. These data contain performance measures and
salary levels for regular hitters and leading substitute hitters in the major leagues
in 1986. Suppose you are interested in exploring the relationship between players’
performances and their salaries.

If you can first reduce the six career hitting and fielding variables into two or three
dimensions—that is, two or three linear combinations of these variables—then graph-
ing these against the SALARY variable would be useful. You can then look for
relationships between performance and salary.

To create the principal component analysis, follow these steps.

=⇒ Open the BASEBALL data set.

=⇒ Choose Analyze:Multivariate (Y’s).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 19.2. Analyze Menu

=⇒ Select the six career hitting variables in the list at the left.
These are CR–ATBAT, CR–HITS, CR–HOME, CR–RUNS, CR–RBI, and
CR–BB. Click the Y button. The selected variables appear in the Y variables list.

=⇒ Select NAME in the list at the left, then click the Label button.
NAME appears in the Label variables list. Your variables dialog should now appear
as shown in Figure 19.3.
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Figure 19.3. Variables Dialog with Variable Roles Assigned

=⇒ Click the Output button.
The output options dialog appears.

=⇒ Click the Principal Component Analysis check box in the output options
dialog
This requests a principal component analysis. Your output options dialog should now
appear as shown in Figure 19.4.
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Figure 19.4. Multivariate Output Options Dialog
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=⇒ Click the Principal Component Options button in the output options dialog
A principal component options dialog should now appear as shown in Figure 19.5.

Figure 19.5. Principal Component Options Dialog

=⇒ Click the Eigenvectors check box in the principal component options dialog

=⇒ Click the radio mark 2 in the options dialog
This requests that the first two principal components are used for tables of eigenvec-
tors and correlations.

† Note: By default, the analysis is carried out on the correlation matrix. You can
use the covariance matrix instead by setting options with the Method button in the
Multivariate variables dialog. The covariance matrix is recommended only when all
the variables are measured in comparable units.

=⇒ Click OK in all dialogs.
A multivariate window appears. At the bottom of the window is the principal com-
ponent analysis, as shown in Figure 19.6.
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Figure 19.6. Multivariate Window
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Principal Component Tables

The Eigenvalues (CORR) table illustrated in Figure 19.7 contains all the eigenval-
ues of the correlation matrix, differences between successive eigenvalues, the propor-
tion of variance explained by each eigenvalue, and the cumulative proportion of the
variance explained. Eigenvalues correspond to each of the principal components and
represent a partitioning of the total variation in the sample. Because correlations are
used, the sum of all the eigenvalues is equal to the number of variables. The first row
of the table corresponds to the first principal component, the second row to the second
principal component, and so on. In this example, the first two principal components
account for over 97% of the variation.
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Figure 19.7. Principal Component Tables

The Eigenvectors (CORR) table illustrated in Figure 19.7 contains the first two
eigenvectors of the correlation matrix. Eigenvectors correspond to each of the eigen-
values and associated principal components and are used to form linear combinations
of the Y variables. The first column of the table corresponds to the first principal
component, and the second column to the second principal component.

Now examine the coefficients making up the eigenvectors. The first component
(PCR1) appears to be a measure of the player’s overall performance as is evidenced
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by approximately the same magnitude of the coefficients corresponding to all six
variables.

Next examine the coefficients making up the eigenvector for the second principal
component (PCR2). Only the coefficients associated with the variables CR–HOME
and CR–RBI are positive, and the remaining coefficients are negative. The coef-
ficient with the variable CR–HOME is considerably larger than any of the other
coefficients. This indicates a measure of career home runs performance versus other
performance for 1986.

One way to quantify the strength of the linear relationship between the original Y
variables and principal components is through the Correlations (Structure) table,
as shown in Figure 19.7. This correlation matrix contains the correlations between
the Y variables and the principal components.

Eigenvector coefficients of a relatively large magnitude translate into larger corre-
lations and vice versa. For example, PCR2 has one coefficient substantially larger
than other coefficients in the same eigenvector, CR–HOME. The correlation of the
variable with this PCR2 is also large.

Principal Component Plots

Examine the scatter plot of the first two principal components shown in Figure 19.6.
Each marker on the plot represents two principal component scores. The output com-
ponent scores are a linear combination of the standardized Y variables with coeffi-
cients equal to the eigenvectors of the correlation matrix.

=⇒ Click on the observations with the four highest values for PCR1.
The resulting scatter plot should now appear as shown in Figure 19.8.

These four observations correspond to Mike Schmidt, Reggie Jackson, Tony Perez,
and Pete Rose. The label for Mike Schmidt is not shown because the observation is
too close to Reggie Jackson. This is not unexpected since the first principal compo-
nent is a measure of the player’s overall career performance.

Now examine observations in the second principal component direction on the scatter
plot. Recall that the second component appeared to be a measure of the combined
performance of home runs and runs batted in versus other career performance. The
observations with large values of PCR2 correspond to Mike Schmidt and Reggie
Jackson. As one might expect, both players have high career-long home runs and
runs batted in.
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Figure 19.8. Scatter Plot of First Two Principal Components

Plotting Against Original Variables
Now that you have reduced the dimensionality of the career performance variables to
two dimensions, you can easily examine scatter plots of these principal components
versus the SALARY variable. The two principal component scores are automatically
stored in the data window.

=⇒ Choose Analyze:Scatter Plot ( Y X ).
This displays the scatter plot variables dialog.

=⇒ Select SALARY in the list at the left, then click the Y button.
SALARY appears in the Y variables list.

=⇒ Select PCR1 and PCR2, then click the X button.
PCR1 and PCR2 appear in the X variables list.

=⇒ Select NAME in the list at the left, then click the Label button.
NAME appears in the LABEL variables list.
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A scatter plot variables dialog should now appear as in Figure 19.9.

Figure 19.9. Variable Roles Assigned

=⇒ Click the OK button.
A scatter plot window appears, as shown in Figure 19.10.

Figure 19.10. SALARY versus First Two Principal Components

Examine the scatter plot of SALARY versus PCR1, recalling that PCR1 is highly
associated with overall career performance. The linear trend evident in the plot in-
dicates a strong linear relationship between a player’s salary and his overall perfor-

315



Techniques � Calculating Principal Components

mance. On the other hand, if you examine the scatter plot of SALARY versus PCR2
(which is the contrast between the combined performance of career home runs and
runs batted in versus the other performance), you can see that there is no evident
relationship.

You can also examine these scatter plots for potential outliers. Click on the observa-
tions with large values of PCR1 in the scatter plot of SALARY versus PCR1. These
observations correspond to players who have had outstanding careers.

Saving Principal Components
This completes the principal component analysis. You began with a high dimensional
set of data (six variables) and reduced it to two dimensions (two variables represent-
ing principal component scores) that accounted for over 95% of the variation. You
were then able to plot the principal component scores against the variable of interest,
SALARY.

At this point, you may want to save the principal component scores for use in subse-
quent analyses.

=⇒ Choose Vars:Principal Components:2.

· · · Curves Vars Help
Principal Components �

Component Rotation
Canonical Correlations �

Maximum Redundancy �

Canonical Discrimination �

1
2
3
All
Other...

Figure 19.11. Vars Menu

This causes the two variables, PCR1 and PCR2, to be retained in the data window
even after you delete the multivariate window. You can then include these variables
in later analyses.

⊕ Related Reading: Principal Components, Chapter 40.
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Chapter 20
Transforming Variables

A transformation generates a new variable from existing variables according to
a mathematical formula. SAS/INSIGHT software provides a variety of variable
transformations. The most commonly used transformations are available from the
Edit:Variables menu. You can perform other more complex transformations using
the Edit Variables dialog.

Figure 20.1. Edit Variables Dialog
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Common Transformations
The most common transformations are available in the Edit:Variables menu. For
example, log transformations are commonly used to linearize relationships, stabilize
variances, or reduce skewness. Perform a log transformation in a fit window by
following these steps:

=⇒ Open the BASEBALL data set.

=⇒ Create a fit analysis of SALARY versus CR–HOME.

Figure 20.2. Fit Analysis of SALARY versus CR–HOME

You might expect players who hit many home runs to receive high salaries. However,
most players do not hit many home runs, and most do not have high salaries. This ob-
scures the relationship between SALARY and CR–HOME. Most of the observations
appear in the lower left corner of the scatter plot, and the regression line does not fit
the data well. To make the relationship clearer, apply a logarithmic transformation.
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=⇒ Select both variables in the scatter plot.
Use your host’s method for noncontiguous selection.

Figure 20.3. SALARY and CR–HOME Selected

=⇒ Choose Edit:Variables:log(Y).

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

log( Y )
sqrt( Y )
1 / Y
Y * Y
exp( Y )
Other...
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Figure 20.4. Edit:Variables Menu
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This performs a log transformation on both SALARY and CR–HOME and trans-
forms the scatter plot to a log-log plot. Now the regression fit is improved, and the
relationship between salary and home run production is clearer.

Figure 20.5. Fit Analysis of L–SALARY versus L–CR–HOM

The degrees of freedom (DF) is reduced from 261 to 258. This is due to missing
values resulting from the log transformation, described in the following step.

=⇒ Scroll the data window to display the last four variables.
Notice that in addition to residual and predicted values from the regression, the log
transformations created two new variables: L–SALARY and L–CR–HOM.

323



Techniques � Transforming Variables

Figure 20.6. New Variables

The log transformation is useful in many cases. However, the result of log( Y ) is
undefined where Y is less than or equal to 0. In such cases, SAS/INSIGHT software
cannot transform the value, so a missing value (.) is generated. To see this, sort the
data in the data window.

=⇒ Select L–CR–HOM in the data window, and choose Sort from the data pop-up
menu.

Figure 20.7. Missing Values in Log Transformation

Missing values in the SAS System are considered to be less than any other value, so
they appear first in the sorted variable. These values represent players who have never
hit home runs. Their value for CR–HOME is 0, so the log of this value cannot be
calculated. This means the log transformation has removed data from the fit analysis.
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The following steps circumvent this problem.

=⇒ Select CR–HOME in the data window.

Figure 20.8. CR–HOME Selected

=⇒ Choose Edit:Variables:Other.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

log( Y )
sqrt( Y )
1 / Y
Y * Y
exp( Y )
Other...

Figure 20.9. Edit:Variables Menu

This displays the Edit Variables dialog shown in Figure 20.10. In the dialog you can
see that the variable CR–HOME is already assigned as the Y variable.

=⇒ Scroll down the transformation window, and select log( Y + a ).
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Figure 20.10. Edit Variables Dialog

=⇒ In the field for a enter the value 1, then press the Return key.
Notice that the Label value changes from log( CR–HOME ) to log( CR–HOME
+ 1 ) to reflect the new value of a. Setting a to 1 avoids the problem of generating
missing values because (CR–HOME + 1) is greater than zero in all cases for this
data.

Figure 20.11. Edit Variables Dialog

=⇒ Click OK to perform the transformation.

=⇒ Scroll all the way to the right to see the new variable, L–CR–H–1.
Notice that the new variable contains no missing values.
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Figure 20.12. New Variable

=⇒ Select L–SALARY and L–CR–H–1, then choose Analyze:Fit (Y X).
At the lower left corner of the scatter plot, you can see observations that were not
used in the previous fit analysis. Also note that the degrees of freedom (DF) is back
to 261.
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Figure 20.13. New Fit Analysis

⊕ Related Reading: Linear Models, Chapter 39.
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Other Transformations
You can use the Edit Variables dialog to create other types of transformations. Most
transformations require one selected variable, as in the previous example. Here is an
example using two variables. Suppose you are interested in batting averages, that is,
the number of hits per batting opportunity. Calculate batting averages by following
these steps.

=⇒ Choose Edit:Variables:Other to display the Edit Variables dialog

=⇒ Assign NO–HITS the Y role and NO–ATBAT the X role.

Figure 20.14. Edit Variables Dialog

=⇒ Click on the Y / X transformation.
Notice that the Label value is now NO–HITS / NO–ATBAT. You might want to
enter a more mnemonic value for Name.

=⇒ Enter BAT–AVG in the Name field.
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Figure 20.15. Creating the Transformation

=⇒ Click the OK button to calculate the batting average.
The new BAT–AVG variable appears at the last position in the data window.

Figure 20.16. New BAT–AVG Variable

Now look at the distribution of batting averages for each league by creating a box
plot.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).
Specify BAT–AVG as the Y variable, LEAGUE as the X variable, and NAME for
the Label role in the box plot variables dialog. Then click on OK.
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Figure 20.17. Box Plot Dialog

Figure 20.18. Box Plot of Batting Averages

Most players are batting between .200 and .300. There are, however, a few extreme
observations.

=⇒ Select the upper extreme observations for each league.
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Figure 20.19. Examining the Extreme Observations

Don Mattingly and Wade Boggs led the American League in batting, while Tim
Raines and Hubie Brooks led the National League.

The Edit:Variables menu and dialog offer many other transformations. Here is the
complete list of transformations in the Edit:Variables menu:

log( Y ) calculates the natural logarithm of the Y variable.

sqrt( Y ) calculates the square root of the Y variable.

1 / Y calculates the reciprocal of the Y variable.

Y * Y calculates the square of the Y variable.

exp( Y ) raises e (2.718...) to the power given by the Y variable.

Here is the complete list of transformations in the Edit:Variables dialog:

Y + X
Y - X
Y * X
Y / X

These four transformations perform addition, subtraction,
multiplication, and division on the specified Y and X
variables.

a + b * Y
a - b * Y
a + b / Y
a - b / Y

These four transformations create linear transformations of
the Y variable. Using the default values a=0 and b=1, the
second and third transformations create additive and multi-
plicative inverses -Y and 1 / Y.
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Y ** b is the power transform. b can be positive or negative.

(( Y + a ) ** b - 1 ) / b is the Box-Cox transformation. This transformation raises
the sum of the Y variable plus a to the power b, then sub-
tracts 1 and divides by b.

a <= Y <= b creates a variable with value 1 when the value of Y is be-
tween a and b inclusively, and value 0 for all other values
of Y. Values for a and b can be character or numeric; char-
acter values should not be in quotations. You can use this
transformation to create indicator variables for subsetting
your data.

(Y - mean(Y)) /
std(Y)

standardizes the Y variable by subtracting its mean and di-
viding by its standard deviation. Standardizing changes the
mean of the variable to 0 and its standard deviation to 1.

abs( Y ) calculates the absolute value of Y.

arccos( Y ) calculates the arccosine (inverse cosine) of Y. The value is
returned in radians.

arcsin( Y ) calculates the arcsine (inverse sine) of Y. The value is re-
turned in radians.

arcsin( sqrt( Y )) calculates the arcsine of the square root of Y. The value is
returned in radians.

arctan( Y ) calculates the arctangent (inverse tangent) of Y. The value
is returned in radians.

ceil( Y ) calculates the smallest integer greater than or equal to Y.

cos( Y ) calculates the cosine of Y.

exp( Y ) raises e (2.718...) to the power given by the Y variable.

floor( Y ) calculates the largest integer less than or equal to Y.

log( Y + a ) calculates the natural logarithm of the Y variable plus an
offset a.

log2( Y + a ) calculates the logarithm base 2 of the Y variable plus an
offset a.

log10( Y + a ) calculates the logarithm base 10 of the Y variable plus an
offset a.

log(( Y - a ) / ( b - Y
))

calculates the natural logarithm of the quotient of the Y vari-
able minus a divided by b minus the Y variable. When a =
0 and b = 1, this is a logit transformation.
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ranbin( a, b ) generates a binomial random variable containing values ei-
ther 0 or 1. a is the seed value for the random transforma-
tion. b is the probability that the generated value will be 1.
If a is less than or equal to 0, the time of day is used. This
is a special case of the SAS function RANBIN where n, the
number of trials, is 1.

ranexp( a ) generates a random variable from an exponential distribu-
tion. a is the seed value for the random transformation. If a
is less than or equal to 0, the time of day is used.

rangam( a, b ) generates a random variable from a gamma distribution. a
is the seed value for the random transformation, and b is the
shape parameter. If a is less than or equal to 0, the time of
day is used.

rannor( a ) generates a random variable from a normal distribution with
mean 0 and variance 1. a is the seed value for the random
transformation. If a is less than or equal to 0, the time of
day is used.

ranpoi( a, b ) generates a random variable from a Poisson distribution. a
is the seed value for the random transformation, and b is the
mean parameter. If a is less than or equal to 0, the time of
day is used.

ranuni( a ) generates a uniform random variable containing values be-
tween 0 and 1. a is the seed value for the random transfor-
mation. If a is less than or equal to 0, the time of day is
used.

round( Y ) calculates the nearest integer to Y.

sin( Y ) calculates the sine of Y.

sqrt( Y + a ) calculates the square root of the Y variable plus an offset a.

tan( Y ) calculates the tangent of Y.

If your work requires other transformations that do not appear in the Edit:Variables
menu or in the Edit Variables dialog, you can perform many kinds of transfor-
mations using the SAS DATA step. For more complete descriptions of the ranbin,
ranexp, rangam, rannor, ranpoi, and ranuni transformations and for complete
information on the DATA step, refer to SAS Language Reference: Dictionary.

334



References

References
Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983), Graphical

Methods for Data Analysis, Belmont, CA: Wadsworth International Group.

335



Techniques � Transforming Variables

336



Chapter 21
Comparing Analyses

Chapter Contents

COMPARING ANALYSES OF DIFFERENT OBSERVATIONS . . . . . . 340
Extracting Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Excluding Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

COMPARING ANALYSES OF DIFFERENT VARIABLES . . . . . . . . . 349
Deleting Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Transforming Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352



Techniques � Comparing Analyses

338



Chapter 21
Comparing Analyses

You can compare analyses that use different observations or variables. For example,
you can exclude certain observations from a model and see how that affects the fit.
You can delete and transform variables to create and compare different models.

Figure 21.1. Comparing two Regression Analyses
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Comparing Analyses of Different Observations
There are two ways to compare analyses that use different observations. You can
extract observations or you can exclude them.

Extracting Observations

You can compare analyses made with different observations by extracting a subset,
that is, by creating a new data set that contains a subset of observations from the
original data set. Then you can request separate analyses for each data set.

Consider the MINING data. This data set contains results of an experiment to ex-
amine drilling times (DRILTIME) for different drilling methods (METHOD). As it
turned out, the experimenters encountered difficulties due to changing rock types af-
ter a depth of about 200 feet. It might be worthwhile to compare the distribution of
DRILTIME for depths greater than 200 feet to the distribution of DRILTIME for the
entire data set. To compare the two distributions, you need to select the observations
where DEPTH is greater than 200 feet and extract them into a new data window.

=⇒ Open the MINING data set.

Figure 21.2. MINING Data

=⇒ Choose Edit:Observations:Find.
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Figure 21.3. Finding Observations

This displays the Find Observations dialog.

Figure 21.4. Find Observations Dialog

=⇒ Select > in the Test list and 200 in the Value list.
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Figure 21.5. Finding DEPTH > 200

=⇒ Click the OK button.
This selects all observations where DEPTH is greater than 200 feet. To see the
selected observations, either choose Find Next from the data pop-up menu or scroll
down using the vertical scroll bar on the right (as indicated by the arrow in the figure).

Figure 21.6. Observations where DEPTH > 200

=⇒ Choose Extract from the data pop-up menu.

A new data set containing observations where DEPTH is greater than 200 feet ap-
pears, as shown in Figure 21.7. The new data window is named automatically by
adding a subscript to the original name. You may have to scroll to the top of the data
window to duplicate the next figure.
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Figure 21.7. MINING1 Data

Now create distribution analyses for both data sets.

=⇒ Select DRILTIME in the MINING data window.

=⇒ Choose Analyze:Distribution (Y).
A distribution analysis using all the observations appears on your display.

=⇒ Select DRILTIME in the MINING1 data window.

=⇒ Choose Analyze:Distribution (Y).
A distribution analysis using the subset of observations appears on your display.

=⇒ Move the two analysis windows side-by-side to compare the distributions.
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Figure 21.8. Comparing Two Distribution Analyses

The mean drilling time at depths greater than 200 feet was 9.9601, while the mean
overall was only 8.8589. The drills may have found harder rock at greater depths.
You may want to create an additional analysis to compare depths greater than 200
feet with depths less than or equal to 200 feet.

=⇒ Choose File:End to delete MINING1 and the two analysis windows.

† Note: Sometimes you will want to compare analyses that use different subsets of
observations based on the values of some variable. If this is the case, you can assign
the variable the Group role, as described in Chapter 22, “Analyzing by Groups.”

⊕ Related Reading: Distributions, Chapter 38.

Excluding Observations

Another way to compare analyses using different observations is to exclude obser-
vations, that is, to remove them from calculations in the analysis. The observations
still appear in graphs. To illustrate this technique, consider a simple linear regres-
sion model with DRILTIME as the response variable and DEPTH as the explanatory
variable.
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=⇒ Select DRILTIME, then DEPTH, then choose Analyze:Fit (Y X).
This displays a fit window.

Figure 21.9. Fit Window

=⇒ Choose Edit:Windows:Copy Window in the fit window.
This creates a copy of the fit window.
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Figure 21.10. Edit:Windows Menu

=⇒ Move the two fit windows side by side.

=⇒ Choose Edit:Windows:Freeze in the fit window on the left.
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Figure 21.11. Edit:Windows Menu

This freezes the window, as indicated by the frost in the corners of the window.
Freezing a window converts the window to a static image that ignores any changes
to the data. Normally, all SAS/INSIGHT windows are linked to their data, and any
changes to the data are automatically reflected in all analyses. By freezing a window,
you can compare windows using different observations without creating additional
data sets.
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Figure 21.12. Two Windows, One Frozen

Now exclude a few observations from the window on the right.

=⇒ Select the three observations with the largest values of DRILTIME in the scatter
plot.

=⇒ Choose Edit:Observations:Exclude in Calculations.
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Figure 21.13. Edit: Observations Menu
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This recalculates the fit analysis without the selected observations. Normally, both
windows would be recalculated, but since the window on the left is frozen, it does
not change. Now you can compare the two fit windows.

Figure 21.14. Comparing Two Fit Windows

To thaw a frozen window, follow these steps.

=⇒ Choose Edit:Windows:Freeze again.
This recalculates the frozen window and restores its dynamic behavior.

=⇒ Close all analysis windows before proceeding to the next section.
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Comparing Analyses of Different Variables
You have already seen one easy way to compare analyses using different variables.
The Apply button , discussed in Chapter 14, “Multiple Regression,” and Chapter 16,
“Logistic Regression,” , enables you to create models quickly with different effects.

In this section, you will see two additional ways to compare analyses using different
variables. In any analysis, you can delete variables or you can transform them.

Deleting Variables

You can delete any effect in a fit analysis. To see this, do the following:

=⇒ Select DRILTIME, then DEPTH, then METHOD in the data window.

=⇒ Choose Analyze:Fit (Y X).

A fit window appears, as shown in Figure 21.15.
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Figure 21.15. Fit Window
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=⇒ Choose Edit:Windows:Copy Window.
Now you have two identical fit windows.

=⇒ Select METHOD in one of the fit windows.

Figure 21.16. Two Fit Windows, METHOD Selected in One

=⇒ Choose Edit:Delete.
This recalculates the fit window without the effect you deleted. Now you have two fit
windows for two different models.
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Figure 21.17. Comparing Two Models

Deleting METHOD caused the adjusted R-square value to drop from 0.4218 to
0.3332. It was expected that different drilling methods might produce different
drilling times.

Transforming Variables

You can compare analyses by transforming variables in any window.

=⇒ Create identical fit windows for DRILTIME = DEPTH.
Either delete METHOD from the first window or choose Edit:Windows:Copy
Window in the second window.

=⇒ Select DRILTIME in one of the fit windows.
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Figure 21.18. Two Fit Windows, DRILTIME Selected

=⇒ Choose Edit:Variables:log( Y ).
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Figure 21.19. Edit:Variables Menu

This recalculates the fit window using the log of the response variable (L–DRILTI).
Now you have two fit windows for two different models.
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Figure 21.20. Comparing Two Fit Analyses

In this case, the log transform did not improve the fit. To undo the log transform, you
can choose Edit:Windows:Renew.

In this chapter you have seen how to compare analysis windows that use different
observations by extracting and excluding. You have also compared analyses using
different variables by deleting and transforming. In the next chapter, you will see
how to compare analyses using Group variables.

⊕ Related Reading: Transformations, Chapter 20.

⊕ Related Reading: Linear Models, Chapter 39.

354



Chapter 22
Analyzing by Groups

Chapter Contents

USING GROUP VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . 358

COMPARING GROUPS BY COPYING WINDOWS . . . . . . . . . . . . 360

SETTING DEFAULT GROUP VARIABLES . . . . . . . . . . . . . . . . . 363

FORMATTING GROUP VARIABLES . . . . . . . . . . . . . . . . . . . . 366



Techniques � Analyzing by Groups

356



Chapter 22
Analyzing by Groups

In SAS/INSIGHT software, you can use a group variable to process your data sepa-
rately for each value of the group variable. You can use multiple group variables to
process your data separately for each unique combination of grouping values.

Figure 22.1. Analyzing by Groups
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Using Group Variables
You can learn more about the distribution of drilling times by constructing a distribu-
tion analysis using group variables.

=⇒ Choose Analyze:Distribution (Y).

This displays the distribution variables dialog.

Figure 22.2. Distribution Variables Dialog

=⇒ In the dialog, select DRILTIME, then click the Y button.
This assigns DRILTIME the required Y role.

=⇒ Select METHOD and REP, and click the Group button.
This assigns METHOD and REP the Group role. You can scroll the Group list to
see both variables. Because there are two values for Method and three values for
Rep, this produces six groups.

=⇒ Click OK to create the distribution window, as shown in Figure 22.3.

The distribution window shows detailed information on the distributions, including
box plots, histograms, moments, and quantiles. At the top of the distribution window
is a table indicating the unique combination of values of the two group variables. You
can scroll the distribution window to the right to see other levels.
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Figure 22.3. Distribution Window with Group Variables
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Comparing Groups by Copying Windows
Because there are six groups, it is difficult to compare two groups side by side. Also,
the axes are scaled to fit the data, so by default graphs use different axes.

To compare two groups side by side using the same axes, you can create a copy of
the distribution analysis, set tick marks, and align the axes.

=⇒ Choose Edit:Windows:Copy Window in the Distribution analysis.
This creates a copy of the distribution analysis.

=⇒ Move the two analyses side by side.
Now you can scroll the windows horizontally to compare any two groups. Figure
22.4 shows the first and last groups side by side.

Figure 22.4. Comparing Distribution Analyses

The Moments and Quantiles tables below the histograms present statistics you can
compare. The box plots and histograms, however, are difficult to compare because
they use different axes. You can customize the axes with the following steps.
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=⇒ Select DRILTIME in the first distribution window.

=⇒ Choose Ticks from the histogram pop-up menu in the first window.
This displays the Ticks dialog.

=⇒ Make the adjustments shown in the following figure, and click the OK button.
This scales the DRILTIME axis for all histograms.

Figure 22.5. Ticks Dialog

=⇒ Repeat these steps for the box plots in the first window.
This scales the DRILTIME axis for all box plots.

=⇒ Repeat these steps for the second window.
Now you can compare box plots and histograms in both windows.
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Figure 22.6. Comparing Distribution Analyses

† Note: By default, axes in SAS/INSIGHT software are scaled to fit the data. You
can choose Edit:Windows:Align in any analysis window to align axes that use the
same variable. Aligning affects only the axis scale, not the tick marks. When aligning
histogram axes as in the preceding example, you should use the Ticks dialog to give
histogram bars the same width and position.

⊕ Related Reading: Distributions, Chapter 38.
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Setting Default Group Variables
Often you will want to assign Group roles to the same group variables throughout a
SAS/INSIGHT session. You can save time by setting default Group roles in the data
window so that you do not have to set them in every variables dialog.

To set default Group roles for SASUSER.MINING, follow these steps.

=⇒ Choose Define Variables from the data pop-up menu.
This displays the Define Variables dialog.

=⇒ In the dialog, click on METHOD, then click on Group under Default Role.
This assigns the Group role to the METHOD variable.

Figure 22.7. Assigning Group Role

=⇒ Click the Apply button.
This assigns the Group role to METHOD but leaves the Define Variables window
open so that you can assign roles to other variables as well.

=⇒ Click on REP, then click on Group under Default Role.
This assigns the Group role to the REP variable as well.

=⇒ Click the OK button to close the dialog

The Group role now appears above both METHOD and REP in the data window.
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Figure 22.8. Two Group Roles Assigned

† Note: Order is significant. The order in which you assign roles is the order in which
your group variables are used in analyses.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).
Notice that the Group roles are already assigned. Only METHOD is visible, but you
can scroll the Group list to see REP.

Figure 22.9. Box Plot Variables Dialog

Now every analysis you create will use the default Group roles you assigned in the
data window. If you want to create an analysis without these variables, you can select
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them in the variables dialog and click the Remove button.
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Formatting Group Variables
Usually, SAS formats in SAS/INSIGHT software determine only how data are visu-
ally displayed. Group variables, however, can use SAS formats to combine different
values into a larger group. For example, suppose you are interested only in approxi-
mate depths, not in the exact values of DEPTH. You can use a format to combine the
values of DEPTH into three groups:

• DEPTH ≤ 100

• 100 < DEPTH ≤ 300

• 300 < DEPTH

Once you have assigned this format to DEPTH, you can assign DEPTH a Group
role and use it as described earlier in this section. Each use of DEPTH creates three
groups containing values in the three ranges you specified.

⊕ Related Reading: Formats, Chapter 24.
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Chapter 23
Animating Graphs

SAS/INSIGHT software provides two ways to animate graphs.

You can animate selected observations in all graphs simultaneously. This produces
the same visual effect as brushing but gives you precise control over the display.

You can animate selected graphs individually. This restricts the animation to one
graph and animates observations and other graph features.

Animating Selection of Observations
To animate the selection of observations, follow these steps.

=⇒ Open the AIR data set.
This data set contains measurements of carbon monoxide and sulfur dioxide in city
air over various times and dates. Since these data are time-dependent, they are a good
subject for animation.

Figure 23.1. AIR Data

=⇒ Select CO, then SO2 in the data window using extended selection.

=⇒ Choose Analyze:Scatter Plot ( Y X ).
This creates a scatter plot of CO versus SO2.

=⇒ Choose Edit:Windows:Animate.
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Figure 23.2. Edit:Windows Menu

This displays the animation dialog. The animation dialog contains a list of variables,
a list of values, and a slider to control speed.

Figure 23.3. Animation Dialog

=⇒ Select DAY in the list of variables, then click the Apply button.
This animates the selection of observations over all values of DAY in the order in
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which they are displayed in the animation dialog. Observations are selected in both
the scatter plot and the data window, and the current value is selected in the animation
dialog.

Figure 23.4. Animating Selection of Observations

=⇒ Adjust speed by clicking or dragging on the slider.
When the slider is at the extreme left, speed is slowest; at the right, speed is fastest.
Animation speed also depends on the speed of your host, the number of observations
in your data set, and the number of graphs displayed.

=⇒ Click the Pause button to stop the animation.

You can make the pattern of animation clearer by toggling the display of observations.

=⇒ Choose Observations from the scatter plot pop-up menu.
This turns off the display of all deselected observations.

=⇒ Click the Apply button to restart the animation.
You should begin to see the conditional distributions of CO and SO2 as DAY varies
over the day of the week.

=⇒ Click in the Value list in the animation dialog
This enables you to stop the animation on particular values. You can click in the
Value list to compare pollutant concentrations on different days.
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Figure 23.5. Animating Only Selected Observations

The concentrations of CO and SO2 vary widely through most of the days but are
much lower on Saturday and Sunday. Carbon monoxide is produced primarily by
automobile exhaust, and automobile traffic appears to be reduced on the weekends.
Sulfur dioxide concentrations are also lower; this pollutant is produced by power
plants that operate at a reduced rate on weekends.
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Animating Selected Graphs
Line plots are an effective way to look at time-dependent data. You can animate line
plots and other graphs by selecting them before using the animation dialog. This
animates lines and other features in the graph, not just selected observations.

=⇒ Select CO, then SO2, then HOUR in the data window.
The last variable you select, HOUR, will receive the X role in the line plot.

=⇒ Choose Analyze:Line Plot ( Y X ).
This creates a plot with two overlaid lines. The lines are jagged because the data
contain seven observations for each hour.

=⇒ Select the line plot by clicking on any edge.

Figure 23.6. Selected Line Plot

=⇒ Select DAY in the animation dialog, then click the Apply button.
This animates the line plot, showing pollutant concentrations for each day of the
week.
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Figure 23.7. Animating a Line Plot

Notice the peak CO concentrations on weekday mornings and afternoons. These
might be caused by increased automobile emissions during rush-hour traffic.

=⇒ When you are finished, click Cancel to close the animation dialog
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Chapter 24
Formatting Variables and Values

Formats determine how variables and values are displayed. In group variables and
model effects, formats can also determine how values are used in calculations.

You can use formats to set the width of displayed values, the number of decimal
points displayed, the handling of blanks, zeroes, and commas, and other details. The
SAS System provides many standard formats for displaying character and numeric
values.

In addition, you can use the FORMAT procedure to create your own formats.

Figure 24.1. Assigning a Format
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Assigning Formats
By default, SAS/INSIGHT software displays each variable using the format supplied
in your SAS data set. If your data set contains numeric variables with no formats,
SAS/INSIGHT software chooses a format based on that variable’s values. When
you save the data, formats chosen by SAS/INSIGHT software are not automatically
saved, but any formats you assign are saved.

You can assign formats by using the Edit:Formats menu.

=⇒ Open the BASEBALL data set.
This data set contains statistics and salaries of major league baseball players.

=⇒ Select the variable SALARY.

Figure 24.2. SALARY Selected
=⇒ Choose Edit:Formats:9.1.
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Figure 24.3. Edit:Formats Menu
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This gives the variable SALARY a width of nine character positions, including the
decimal and one position after the decimal. The actual data values for SALARY
continue to be stored with double precision.

Figure 24.4. Format 9.1

=⇒ Choose Edit:Formats:E12.
This gives the variable SALARY a width of 12 character positions and expresses
each value in exponential notation.

Figure 24.5. Format E12.

The Edit:Formats menu provides quick access to frequently used formats. There
are many other standard formats provided by the SAS System.

=⇒ Choose Edit:Formats:Other.
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Figure 24.6. Edit:Formats Menu

This displays the Format dialog. In the dialog, the fields w and d specify the width
and decimal places to be used by the formats. Note that the SALARY variable and
the E12. format are currently selected.

Figure 24.7. Format Dialog

=⇒ Select DOLLARw.d in the Format list.
Formats are listed alphabetically, so the DOLLARw.d format is above the Ew. for-
mat.
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Figure 24.8. Format DOLLARw.d

The example in the upper right corner of the dialog illustrates the format you have se-
lected. DOLLAR is the standard format for display of currency in the United States.
There is also a DOLLARX format sometimes preferred in European countries.

=⇒ Click OK to set the format you prefer.

Figure 24.9. SALARY Formatted

Now the variable SALARY uses the format you assigned. By default, this format is
also used for axes in subsequent analyses. You can modify the axes, however, to use
other formats.

=⇒ Choose Analyze:Distribution ( Y ).
This creates a distribution analysis of SALARY. The box plot and histogram axes
use the format you assigned to the SALARY variable in the data window.

=⇒ Select SALARY in the distribution window.
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Figure 24.10. Distribution Analysis, SALARY Selected

=⇒ Choose Edit:Formats:8.0.
This assigns the 8.0 format to SALARY on axes in the distribution window. In the
data window, SALARY continues to use the DOLLAR format.
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Figure 24.11. SALARY Axes Formatted

You can also format individual values in analysis tables. For example, suppose you
need to see greater precision for the mean and standard deviation.

=⇒ Select the values for Mean and Std Dev in the Moments table.
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Figure 24.12. Moments Table, Values Selected

=⇒ Choose Edit:Formats:14.6.
Now the mean and standard deviation show six digits after the decimal.

Figure 24.13. Moments Table, Values Formatted
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Creating Formats
Although there are many formats available in the SAS System, occasionally you will
want to create your own. To do this, use the FORMAT procedure.

For example, suppose you want to consider certain groupings of baseball players
based on the length of their careers. You can combine the values of YR–MAJOR
into four groups, as follows.

=⇒ Enter PROC FORMAT statements in the Program Editor.

Figure 24.14. Program Editor

=⇒ Choose Run:Submit.
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Figure 24.15. Run Menu

=⇒ Select YR–MAJOR.
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Figure 24.16. YR–MAJOR Selected

=⇒ Choose Edit:Formats:Other.
This displays the Format Dialog.

Figure 24.17. Format Dialog

=⇒ Enter YEARFMT in the Name field.

=⇒ Enter 12 in the w field, then press the Return key.
Now the example in the upper right of the dialog shows a value formatted with
YEARFMT.
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Figure 24.18. YEARFMT Entered

=⇒ Click OK to close the Format dialog
Now YEARFMT is used to display the values of YR–MAJOR.

Figure 24.19. YEARFMT Assigned

By default, the new format is used to display values wherever you use YR–MAJOR.
Formats are not used in calculations except for nominal variables in model effects or
for group variables. In these cases, the format is used to determine the groups. You
can see this use of formats by creating a box plot.

=⇒ Deselect YR–MAJOR in the data window.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).
This displays the box plot variables dialog.

=⇒ Assign YR–MAJOR the X role and CR–HITS the Y role.
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Figure 24.20. Box Plot Variables Dialog

=⇒ Click the OK button to create the box plot.

Figure 24.21. Box Plot of CR–HITS by YR–MAJOR

388



Creating Formats

Since YEARFMT defines four formatted values, there are four boxes in the box plot.
One of the boxes has no whiskers because it represents only two observations. Pete
Rose and Tony Perez, ballplayers of exceptional hitting ability and longevity, are in a
class by themselves.

To learn more about SAS formats, refer to SAS Language Reference: Dictionary. To
learn more about creating your own formats with PROC FORMAT, refer to the SAS
Procedures Guide.

⊕ Related Reading: Box Plots, Chapter 33.
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Chapter 25
Editing Windows

SAS/INSIGHT software provides many ways to edit the contents of your analysis
windows. You can zoom in and out to see more or less detail. You can move, resize,
add, and delete graphs and tables. You can align graphs. If you change your mind
about your window layout, you can renew any window to restore its original state.

Figure 25.1. Adding a Graph to a Window
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Zooming Windows
Zooming a window means adjusting the focus to make objects in the window larger
or smaller. Zooming is most useful when you want to see more detail. For example,
you may use zooming to explore data in a scatter plot matrix.

=⇒ Open the GPA data set.
This data set contains college grade point averages, high school math, science, and
English averages, and SAT scores of first-year college students.

=⇒ Select all the variables.
Click on the variables count in the upper left corner.

Figure 25.2. Selecting All Variables

=⇒ Choose Analyze:Scatter Plot ( Y X ).
This creates a seven-by-seven scatter plot matrix.
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Figure 25.3. Scatter Plot Matrix

Some of these plots show interesting patterns. However, it is difficult to see the plots
when they are so small. To change the size of the plots, follow these steps.

=⇒ Choose Edit:Windows:Tools.
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Figure 25.4. Edit:Windows Menu

This displays the Tools window. At the top, the window contains three tools, each
indicating a different mode of operation. To select and identify objects, use the arrow.
To manipulate objects, use the hand. To zoom, use the magnifying glass.

=⇒ Click on the magnifying glass in the Tools window.
Now the magnifying glass in the window is highlighted, and the cursor changes from
an arrow to a magnifying glass.

Figure 25.5. Tools Window

=⇒ Move the magnifying glass to the center of the window and click several times.
When it is near the center of the window, the magnifying glass is large.
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Clicking near the center makes objects larger.

Figure 25.6. Zooming In

=⇒ Move the magnifying glass to the edge of the window and click several times.
When it is near the edge of the window, the magnifying glass is small.

Clicking near the edge makes objects smaller until all objects fit in the window.
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Figure 25.7. Zooming Out

=⇒ Click several times between the center and the edge of the window.
The degree of magnification is proportional to the distance of your cursor from the
center or the edge of the window. Clicking between the center and the edge makes
fine adjustments. By clicking in this area, you can give the plots exactly the size you
want.
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Figure 25.8. Making Fine Adjustments

To zoom in on a specific area, you can drag a rectangle with the magnifying glass.

=⇒ Drag a rectangle around the plot of GPA versus HSM.
On some hosts, to drag a rectangle it is necessary to begin moving the mouse as soon
as you depress the mouse button.
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Figure 25.9. Zooming in on GPA versus HSM

You can restore the original size of the plots by clicking repeatedly near the edge of
the window. If you prefer, instead of clicking repeatedly, you can press the mouse
button down and hold it down. On most hosts, holding has the same effect as repeated
clicks.

When you have zoomed in far, you may find it easier to Renew the window, as
described in the next section.
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Renewing Windows
Renewing restores the original state of the window. Renewing also gives you the
opportunity to change the variables and options used to create the window.

=⇒ Restore the arrow tool by clicking on the arrow button in the Tools window.

=⇒ Choose Edit:Windows:Renew.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 25.10. Edit:Windows Menu

This displays the Scatter Plot variables dialog used to create the window.

Figure 25.11. Scatter Plot Variables Dialog
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=⇒ Click OK to re-create the scatter plot matrix at its original size, as shown in
Figure 25.3.

You can also use Edit:Windows:Renew to adjust variables and options associated
with your window.

=⇒ Choose Edit:Windows:Renew again to display the variables dialog

=⇒ In the dialog, select SATM, SATV, and SEX in both Y and X lists.

=⇒ Click Remove to remove these variables.

Figure 25.12. Removing Variables

=⇒ Click Output to display the output options dialog

=⇒ In the options dialog, click on the Labels button to display variable labels.

Figure 25.13. Setting Variable Labels
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=⇒ Click OK in both dialogs to renew the window.
The matrix that was seven-by-seven is now four-by-four, and it displays variable la-
bels instead of names.

Figure 25.14. Renewed Window

To reset the scatter plot output to display variable names again, follow the same steps
to display the scatter plot options dialog, then click on the Names button under
Variable: in the dialog.

⊕ Related Reading: Scatter Plot Matrix, Chapter 5, Chapter 35.
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Adding and Deleting
Many windows contain Graphs and Tables menus that enable you to add the most
commonly used graphs and tables to any window. For example, in the Fit window you
can add residual plots; in the Distribution window you can add tests for distributions.

If a graph you need is not listed in the Graphs menu, you can use the Analyze menu
to add any graph to any window. For example, suppose you want to create a scatter
plot with marginal histograms. To create this combination of graphs, first create a
distribution analysis on two variables.

=⇒ Choose Analyze:Distribution ( Y ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 25.15. Analyze Menu

This displays the Distribution variables dialog.

=⇒ Select GPA and HSM, then click the Y button.
This assigns GPA and HSM the Y role in the Distribution analysis.

Figure 25.16. Distribution Variables Dialog
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=⇒ Click the Output button.
This displays the output options dialog.

=⇒ In the output dialog, turn off all options except Histogram/Bar Chart.

Figure 25.17. Output Options Dialog
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=⇒ Click OK in both dialogs to create the distribution analysis.

Figure 25.18. Distribution Window

Now you have a distribution window with two histograms. To add a scatter plot of
both variables, follow these steps.

=⇒ Drag the bottom right corner of the window to the right.

406



Adding and Deleting

This increases the window size to provide blank space to the right of the histograms.

=⇒ Drag a rectangle to select an area in the window.

Figure 25.19. Area Selected

=⇒ Choose Analyze:Scatter Plot ( Y X ).
This displays the scatter plot variables dialog.

=⇒ In the dialog, assign GPA the Y role, and HSM the X role.

=⇒ Click OK to add the scatter plot to the distribution window.
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Figure 25.20. Distribution Window with Scatter Plot

You can delete any graph or table in the distribution window. For example, in this
window the two small tables that contain variable names are not needed.

=⇒ Click on any edge of the GPA table to select it.

=⇒ Use extended selection to select the HSM table also.

408



Adding and Deleting

Figure 25.21. Tables Selected

=⇒ Choose Edit:Delete to delete the tables.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Figure 25.22. Edit:Windows Menu
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Figure 25.23. Tables Deleted

By choosing from the Analyze menu and choosing Edit:Delete, you have created
a window containing one scatter plot and two histograms. In the same manner, you
can add any graph and delete any graph or table in a window.
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Moving and Sizing
Now you have a window containing one scatter plot and two histograms. To make
marginal histograms, you should position the graphs so that common axes are paral-
lel.

You can move any graph or table by dragging on its side.

=⇒ Drag the HSM histogram below the scatter plot.
Press the mouse button down on any side of the histogram. Move the mouse to the
right. Release the mouse button when you have the histogram positioned below the
scatter plot.

Figure 25.24. Histogram Moved

Now the histogram is in approximately the right place, but it is too large and its
orientation is wrong. A marginal histogram should be smaller and the bars should be
pointing downward.

You can resize and reorient any graph by dragging on a corner.

=⇒ Drag the lower right corner of the HSM histogram upward.
Press the mouse button down on the lower right corner. Move the mouse upward.
Release the mouse button when the histogram is about half its original size.
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Figure 25.25. Histogram Resized

To change the orientation of the histogram, you can flip it over by dragging one corner
across another.

=⇒ Drag the upper right corner down past the lower right corner.
This flips the histogram so that the bars are pointing downward.
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Figure 25.26. Histogram Reoriented

Now you have a scatter plot and one marginal histogram. To orient the other his-
togram correctly requires two flips.

=⇒ Drag the upper left corner of the GPA histogram past the lower right corner.
This flips the histogram across its diagonal. The bars that were vertical are now
horizontal.
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Figure 25.27. Histogram Reoriented

=⇒ Drag the upper right corner left past the upper left corner.
This flips the histogram so that the bars are pointing to the left.
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Figure 25.28. Histogram Reoriented

=⇒ Size and move both histograms to the margins of the scatter plot.
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Figure 25.29. Scatter Plot with Marginal Histograms

Now both histograms are correctly oriented and placed at the margins of the scatter
plot.
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Aligning Graphs
Now that you have created a scatter plot with marginal histograms, you may notice
that the axes are not perfectly aligned. For example, the tick label 1.5 in the HSM
histogram appears to the right of the tick label 2 in the scatter plot. Similarly, the tick
label 6.20 in the GPA histogram appears below the tick label 6.00 in the scatter plot.
This occurs because, by default, axes are chosen to maximize the display of the data.
You can override this behavior to align axes in different graphs.

=⇒ Click once in any empty area to deselect the histogram.

=⇒ Choose Edit:Windows:Align.
This aligns the HSM and GPA axes in all graphs.

Figure 25.30. Graphs Aligned

You can align any axes that display the same variable. When you do not
want to align all axes in a window, select the axes of interest before choosing
Edit:Windows:Align.

Once you have moved, sized, added, deleted, and aligned objects in your windows,
you will often want to save and print them. The next three chapters describe how to
save and print data, graphs, and tables.
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Chapter 26
Saving and Printing Data

Saving a data set means copying the data from a SAS/INSIGHT data window to a
SAS data set. SAS/INSIGHT software automatically saves observation colors, mark-
ers, and other states as a variable in the SAS data set.

You can print the contents of any SAS data set to the SAS Output window and to a
hardcopy device by using the PRINT procedure.

Figure 26.1. PROC PRINT Output
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Saving Data
All data analysis in SAS/INSIGHT software uses a copy of a SAS data set stored in
memory. Since your original SAS data set is not stored in memory, it is not affected
by changes you make in the data window.

When you save the data, you copy the data in memory to a SAS data set stored on
disk. Saving the data makes a copy of

• all data values, including any you have edited with the Data:Fill menu

• all variables and observations, including any you have created

• measurement levels for up to 250 variables

• all observation states, including color, marker shape, show/hide, in-
clude/exclude, label/nolabel, and select states

Observation states are stored in a special variable –OBSTAT– that is automatically
read in the next time you open the data set. Thus, if you have colored, marked, hidden,
excluded, and labeled observations, you can save all these states, exit SAS/INSIGHT
software, and invoke SAS/INSIGHT software again later without losing your work.
You can also set the values of the –OBSTAT– variable to initialize observation
states. For an example of this, see Chapter 30, “Working with Other SAS Products.”

The following steps illustrate how to save data to a SAS data set.

=⇒ Open the DRUG data set.

Figure 26.2. DRUG data

=⇒ Choose File:Save:Data.
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File Edit Analyze Tables Graphs Curves Vars Help

New
Open...
Save �

Print...
Print setup...
Print preview
End

Data...
Graphics Catalog...
Graphics File...
Tables
Initial Tables
Statements
Options

Figure 26.3. File:Save Menu

This displays a dialog. By default, the data set you save to has the same name as the
data window in your SAS/INSIGHT session. If you prefer, you can select another
library and enter another data set name in the dialog.

=⇒ Click OK to save the data.
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Figure 26.4. Save Dialog

424



Printing Data

Printing Data
You can print the contents of the data window by saving it as a SAS data set and using
the PRINT procedure. PROC PRINT sends its output to the Output window. You can
send the contents of the Output window to a file or printer.

=⇒ Enter a PROC PRINT statement in the Program Editor.

Figure 26.5. Program Editor

=⇒ Choose Run:Submit.

File Edit View Tools Run Solutions Help
Submit
Recall Last Submitted
Submit Top Line
Submit N Lines...
Submit Clipboard
Signon...
Remote Submit...
Remote Get
Remote Display
Signoff...

Figure 26.6. Run Menu

This displays the observations in the Output window.
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Figure 26.7. Output Window

You can send the contents of the Output window to a file or to a printer by choosing
File:Print in the Output window. On many hosts, the SAS System is installed so
that this menu sends the contents of the Output window to a default printer. You can
also choose this menu to save the window contents to a file and later route them to a
printer using appropriate host commands.
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File Edit View Tools Solutions Help
New
Open...
Open Object...
Save
Save As...
Save As Object...
Import Data...
Export Data...
Print Setup...
Print Preview...
Print utilities
Print
Send Mail...
Close

Figure 26.8. File Menu
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Alternatively, you can redirect SAS System output from the Output window to a text
file by using the PRINTTO procedure.

For more information on printing from the Output window, refer to the SAS com-
panion for your host. For more information on PROC PRINT and PROC PRINTTO,
refer to the SAS Procedures Guide.
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Saving and Printing Graphics

If you have SAS/GRAPH software installed, you can save any SAS/INSIGHT win-
dow to a graphics catalog. You can modify graphics using the Graphics Editor and
print them on any SAS/GRAPH device. You can save graphics files in bitmap formats
including GIF, TIFF, and PostScript™.

On Windows and OS/2 hosts, SAS/INSIGHT software prints using host printing fa-
cilities. On other hosts, you can print using SAS/GRAPH software or host-provided
screen-dumping utilities.

To improve your output, you can choose proportional fonts and set display options.

Figure 27.1. Printed Output with Title
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Choosing Fonts
Proportional fonts make your output more readable. Choose Edit:Windows:Fonts
to display the fonts dialog.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 27.2. Edit:Windows Menu
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Figure 27.3. Fonts Dialog
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The appearance of the fonts dialog depends on your host, and its contents depend on
the fonts you have installed. On most hosts, you can simply click on a font name,
click on other settings if desired, then click OK to set the font.

The font you choose is used to display tables, data values, and axis labels in graphs.

Tick labels in graphs use a slightly smaller font from the same font family.

Figure 27.4. Fit Analysis with Proportional Font
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Setting Display Options
To improve presentation output, SAS/INSIGHT software provides display options.
Choose Edit:Windows:Display Options to produce the display options dialog.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 27.5. Edit:Windows Menu

Figure 27.6. Display Options Dialog

The Background option enables you to choose a Black or White background.
Because they provide maximum contrast, black and white are the best background
colors for exploratory data analysis.

Printing on black-and-white printers may translate colors to shades of gray. If gray
shades do not reproduce well on your printer, choose Foreground:Monochrome
to improve your output. The figures in this book are set as in Figure 27.6.
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The remaining display options are described in detail in Chapter 29, “Configuring
SAS/INSIGHT Software.” You can choose File:Save:Options to save all option
settings to use as defaults in subsequent SAS/INSIGHT sessions.

Saving Graphics
If you have SAS/GRAPH software installed, you can save graphics catalogs in either
Graph or Image format. You can use SAS/GRAPH software to save graphics files
in a variety of bitmap formats.

Saving Graphics Catalogs

To save SAS/GRAPH catalogs from SAS/INSIGHT software, follow these steps.

=⇒ Select any graphs or tables you want to save.
If no graphs or tables are selected, you will save all objects visible in the
active window. To save all objects in the window, visible or not, choose
Edit:Windows:Select All. Choosing this menu selects all graphs and tables in the
active window.

=⇒ Choose File:Save:Graphics Catalog.
This calls up the save graphics catalog dialog.

File Edit Analyze Tables Graphs Curves Vars Help

New
Open...
Save �

Print...
Print setup...
Print preview
End

Data...
Graphics Catalog...
Graphics File...
Tables
Initial Tables
Statements
Options

Figure 27.7. File:Save Menu

=⇒ Click the Graph or Image radio button to set your preference.
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Figure 27.8. Graphics Catalog Dialog

You can also specify catalog, entry, and description for your graphics output.

Set the One Per Entry option if you want to store each graph and table as a separate
catalog entry. Entry names are derived from the name of the graph or table.

Set the Titles and Footnotes option if you want to use SAS titles and footnotes.

If you set both One Per Entry and Titles and Footnotes options, and if your
window contains group variables, an additional title is generated to show the group.
The group title is similar to the BY-group title in SAS/GRAPH output.

=⇒ Click OK to save the catalog

Saving Graphics Files

You can use SAS/GRAPH software to save graphics files in a variety of bitmap for-
mats. To save bitmaps, follow these steps.

=⇒ Select any graphs or tables you want to save.
If no graphs or tables are selected, you will save all objects visible in the active
window.

=⇒ Choose File:Save:Graphics File to display the graphics file dialog
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File Edit Analyze Tables Graphs Curves Vars Help
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Figure 27.9. File:Save Menu

Figure 27.10. Graphics File Dialog

=⇒ Enter your file name, choose a format, and set additional options.
Use the Full Color or Grey Scale options to control the colors stored in graphics
files. Usually Grey Scale produces smaller files for faster printing.

Set the One Per File option if you want to store each graph and table in a sepa-
rate file. If you set this option, the directory name is derived from the name you
enter. Eight-character file names are derived from the name of the graph or table; for
example, “scatter” for scatter plots, or “parametr” for parameter estimates.

Set the Titles and Footnotes option if you want to use SAS titles and footnotes.

If you set both One Per File and Titles and Footnotes options, and if your
window contains group variables, an additional title is generated to show the group.
The group title is similar to the BY-group title in SAS/GRAPH output.
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=⇒ Click OK to save the graphics file.

† Note: Clicking OK overwrites any files with the same file name.

For more information on saving graphics in bitmap formats, refer to the chapter on
“Exporting SAS/Graph Output” in SAS/GRAPH Software: Reference.

Printing
Methods of printing vary greatly among different hosts. This section describes briefly
the typical steps in printing on most personal computers and workstations. For more
information on printing, refer to your host documentation and to the SAS companion
for your host. See also the host changes and enhancements reports for Releases 6.10
and 6.11, as several hosts have improved printing in these releases.

Briefly, SAS/INSIGHT supports three ways of printing. If your host provides screen-
dumping utilities, you can print anything that is visible on the display. Alternatively,
on many hosts you can copy graphs and tables to the clipboard and then print the
clipboard. Finally, you can use host printing facilities or SAS/GRAPH software to
print directly from SAS/INSIGHT windows.

Printing from the Display

Many hosts provide tools or interfaces to print directly from the display. On UNIX
hosts, tools such as xwd and xv deliver high-quality output. On Windows hosts, you
can print the active window directly from the display by following these steps.

=⇒ Choose File:Print.

=⇒ Set the Print as Bitmap check box.

=⇒ Click OK.

Printing from the display restricts you to printing objects that are visible. For more
flexibility, you can print from the clipboard.

Printing from the Clipboard

Windows hosts support printing from the clipboard. To print graphs and tables from
the clipboard, follow these steps.

=⇒ Select any graphs or tables you wish to print
Drag a rectangle through the graphs and tables, or click on their edges. If no graphs
or tables are selected, you will print all objects visible in the active window.
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Figure 27.11. Selected Graphs and Tables

=⇒ Choose Edit:Copy to copy selected objects to the clipboard.

=⇒ Choose File:Print.

=⇒ Set the Print as Bitmap check box.

=⇒ Set the Contents of list to Clipboard (bitmap).

=⇒ Click OK.

Printing from the clipboard is not supported on all hosts. For a more general way of
printing, you can print directly from a SAS/INSIGHT window.

Printing from the Window

Printing from the window is the most flexible way to print. To print from a
SAS/INSIGHT window, follow these steps.

=⇒ Select any graphs or tables you wish to print
If no graphs or tables are selected, you will print all objects visible in the
active window. To print all objects in the window, visible or not, choose
Edit:Windows:Select All to select all graphs and tables in the window.
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=⇒ Choose File:Print.
On Windows and OS/2, this displays a host Print dialog, with options such as the
Print as Bitmap option in the preceding sections. If you receive a host Print dialog,
click OK. This displays the SAS/INSIGHT Print dialog.

Figure 27.12. SAS/INSIGHT Print Dialog

In the SAS/INSIGHT Print dialog, the Fill Page option expands your output to fill
the area of the page. The One Per Page option prints each graph and table on
a separate page. The Titles and Footnotes option prints using SAS titles and
footnotes.

If you set both One Per Page and Titles and Footnotes options, and if your
window contains group variables, an additional title is generated to show the group.
The group title is similar to the BY-group title in SAS/GRAPH output. An example
of the group title for histograms of YR–MAJOR by LEAGUE is shown in Figure
27.13.

=⇒ Set options as needed, then click OK in the Print dialog

Clicking OK in the Print dialog routes your printing through host printing facilities
if they are provided. Windows and OS/2 provide such facilities, and they are docu-
mented in SAS companions and host changes and enhancements reports.

If your host does not support host printing, your printing is routed through
SAS/GRAPH software. You will be prompted for an output device if you have not
specified one with the GOPTIONS TARGETDEVICE= option.
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Figure 27.13. Output with Title and Group Title

An alternative way of printing is to save your graphics to catalogs and print them
from SAS/GRAPH software. This enables you to edit your output before printing.
SAS/GRAPH printing and graphics catalogs are described in SAS/GRAPH Software:
Reference.
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Chapter 28
Saving and Printing Tables

SAS/INSIGHT software uses the Output Delivery System (ODS) to save tables. Thus
you can save and print analysis tables to keep records of your SAS/INSIGHT session.
You can also save tables as SAS data sets to use them as input for further analysis.

Figure 28.1. Output Tables
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Saving and Printing Tables as Output Objects
SAS/INSIGHT software saves and prints tables using the Output Delivery System.
The Output Delivery System enables you to save tables as output objects. You can
edit and manipulate output objects using the OUTPUT procedure, and you can save
output objects as text files, catalogs, or SAS data sets.

=⇒ Invoke SAS/INSIGHT software, create analyses, and select any tables of interest.
To select tables, drag a rectangle across the tables or click on their edges. If you have
no tables selected, you will save or print all tables in the window.

Figure 28.2. Tables Selected

=⇒ Choose File:Save:Tables.
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File Edit Analyze Tables Graphs Curves Vars Help
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Figure 28.3. File:Save Menu

=⇒ From the Program Editor menu, select View:Results to create the Results
Window.

File Edit View Tools Run Solutions Help
Program Editor
Log
Output
Graph
Results
Explorer
Contents Only
My Favorite Folders

Figure 28.4. View Menu
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Figure 28.5. Results Window

=⇒ Selecting the name of a table in the results window displays that table in the
Output window.

You can save all tables at the creation of each analysis by choosing File:Save:Initial
Tables. This menu is a toggle; choosing it again turns off the automatic saving of
tables.

File Edit Analyze Tables Graphs Curves Vars Help
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Figure 28.6. File:Save Menu

Also, each table has a pop-up menu to save just that table. Click on the menu button
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at the upper left of the table to display the pop-up menu.

Format �

Save

Figure 28.7. Table Pop-up Menu

Saving tables to the Output Delivery System converts your tables to output objects.
Variables in output objects have names derived from the table headers. Where con-
flicts occur, a new unique name is generated. Variables in the output object are as-
signed formats derived from the tables.

You can send the contents of the Output window to a file or printer by choosing
File:Print in the Output window. On many hosts, the SAS System is installed so
that this menu sends the contents of the Output window to a default printer. You can
also choose this menu to save the window contents to a file and later route them to a
printer using appropriate host commands.

File Edit View Tools Solutions Help
New
Open...
Open Object...
Save
Save As...
Save As Object...
Import Data...
Export Data...
Print Setup...
Print Preview...
Print utilities
Print
Send Mail...
Close

Figure 28.8. File Menu

Alternatively, you can redirect SAS System output from the Output window to a text
file by using the PRINTTO procedure.

For more information on printing from the Output window, refer to the SAS com-
panion for your host. For more information on PROC PRINTTO, refer to the SAS
Procedures Guide.
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Output Objects
By default, tables are saved in text format. It is also possible to save SAS/INSIGHT
tables as SAS data sets, or in other formats such as HTML.

For example, the following steps illustrate how to create a data set from the Moments
table in a distribution analysis.

=⇒ In the Program Editor, submit the following ODS command:

ods output Moments = MOMENTS;

This command instructs ODS to create a SAS data set called MOMENTS from a
table named “Moments”.

=⇒ Create a Moments table.
One way to do this is to open the DRUG data set, select the CHANG–BP vari-
able, and select Analyze:Distribution ( Y ) to obtain a distribution analysis. The
Moments table is generated by default.

=⇒ Open the MOMENTS data set .
Select File:Open, and look under the WORK library. Select the MOMENTS data
set and click Open.

† Note: You can find out the name of any table created in SAS/INSIGHT. To do
this, submit the following ODS command in the Program Editor prior to creating the
table.

ods trace output;

When you create a table, the name of that table is printed to the Log window.

You can also redirect all of your SAS/INSIGHT tables to an HTML file. Prior to
creating any tables, submit an ODS command such as

ods html body="tables.htm";

Any tables you now save are written as HTML. When you are finished saving tables,
submit the ODS command

ods html close;

To view the table’s values, select View:Results from the Program Editor menu.
Then select the name of a table to view.

For more information on the Output Delivery System, refer to the chapter on “Using
the Output Delivery System” in the SAS/STAT User’s Guide or refer to The Complete
Guide to the SAS Output Delivery System.
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You can configure SAS/INSIGHT software in two ways. You can tailor
SAS/INSIGHT software to the way you work by saving option settings for
future use. You can also set host resources to improve SAS/INSIGHT software’s
performance on your host.

Figure 29.1. Setting Output Options
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Setting Options
With SAS/INSIGHT software, you can set options in two ways. You can set options
in an analysis window that affect the calculations and output displayed only in that
window. Alternatively, you can set options that affect the display of all windows.

Setting Method and Output Options

Method options and output options affect only the individual analysis window for
which they are set. You can set method options to determine how SAS/INSIGHT
software performs calculations for a particular analysis. You can set output options
to control the output produced in a graph or analysis. To modify method and output
options for a box plot, follow these steps.

=⇒ Open the BASEBALL data set.

=⇒ Choose Analyze:Box Plot/Mosaic Plot ( Y ).

File Edit Analyze Tables Graphs Curves Vars Help
Histogram/Bar Chart ( Y )
Box Plot/Mosaic Plot ( Y )
Line Plot ( Y X )
Scatter Plot ( Y X )
Contour Plot ( Z Y X )
Rotating Plot ( Z Y X )
Distribution ( Y )
Fit ( Y X )
Multivariate ( Y X )

Figure 29.2. Analyze Menu

This displays the box plot variables dialog, as shown in Figure 29.3. Note that both
a Method and an Output button are displayed in this dialog. You can set Output
options for each of the choices in the Analyze menu in Figure 29.2. You can set
Method options for each of these choices except for line plots, scatter plots, and
rotating plots. You can find details on options for each analysis in the reference
chapters.

=⇒ Assign NO–RBI the Y role by clicking on NO–RBI, then on Y.
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Figure 29.3. Box Plot Variables Dialog

=⇒ Click the OK button to create the box plot.

Figure 29.4. Box Plot

=⇒ Choose Edit:Windows:Renew in the box plot window.
This redisplays the box plot variables dialog.
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File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 29.5. Edit:Windows Menu

=⇒ Click on the Method button to display the box plot method dialog

Figure 29.6. Variables and Method Dialogs

=⇒ Change the whisker length to 1.0 and click the OK button in the method dialog

=⇒ Click the Output button to display the box plot output dialog

=⇒ Click the Means, Labels, and Y Axis Vertical buttons.
The Means and Y Axis Vertical buttons are toggles. The display of a means dia-
mond is now on, and the Y axis is set to be displayed horizontally instead of vertically.
The Labels button is a state indicator showing that variable labels are set to be dis-
played.
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Figure 29.7. Box Plot Output Dialog

=⇒ Click OK in both the output dialog and the variables dialog
This displays the new box plot in Figure 29.8. Note that the box plot is displayed
horizontally with a mean diamond. The upper whisker is now only the same length
as the box, showing more points as individual outliers. Also, the RBI axis shows the
variable label instead of the variable name.

Figure 29.8. Modified Box Plot

457



Techniques � Configuring SAS/INSIGHT Software

Setting Display, Window, and Graph Options

Display options, window options, and graph options modify aspects of the software
that affect every analysis. To set display options, choose Edit:Windows:Display
Options. Note that you also set window options and graph options from the
Edit:Windows menu.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Renew...
Copy Window
Align
Animate...
Freeze
Select All
Tools
Fonts
Display Options...
Window Options...
Graph Options...

Figure 29.9. Edit:Windows Menu

This displays the display options dialog, as shown in Figure 29.10.

Figure 29.10. Display Options Dialog
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The dialog contains the following options:

Background specifies either Black or White background.

Foreground specifies either Color or Monochrome foreground.
Monochrome display improves printed output by remov-
ing shades of gray used to approximate color.

Show Menu
Buttons

governs the display of pop-up menu buttons in all windows. Turn
this option off to remove menu buttons.

Show
Buttons
and Sliders

governs the display of all buttons and sliders except menu buttons.
Turn this option off to remove buttons and sliders.

Fill Bars
and Boxes

specifies the use of pattern fill in bar charts, box plots, and mosaic
plots. Turn this option off to display empty bars and boxes. On
slower hosts, turning this option off improves display speed as well
as printed output.

Show Graph
Frames

In nonrotating plots, this option specifies whether the two axes are
displayed as two disjoint line segments or are joined together as
part of a frame.

Curve Width sets the default width of curves in pixels. On most hosts, a width
of 1 pixel maximizes display speed.

Border Width sets the default width of graph and table borders in pixels. When
you are printing with a black background, increasing border width
improves the display of graphs and tables.

Interior Lines sets the display of lines within the data window and analysis tables.
Solid produces solid lines; Halftone produces a dimmer line;
None removes interior lines. Solid and None settings improve
display speed on personal computers.

The figures in this book are produced with Foreground set to Monochrome and
Curve Width set to 2 pixels. Most figures have Show Graph Frames turned off.

To set window options, choose Edit:Windows:Window Options. This displays
the window options dialog.
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Figure 29.11. Window Options

The dialog contains the following options:

Layout sets the algorithm for positioning windows. Spread
spreads the windows so that the maximum number of ta-
bles and graphs are visible. Cascade causes each window
to be offset a small distance from the previous window. On
some hosts, the effect of this option is overridden by the
host window manager.

Show Tools at Startup causes the Tools window to display automatically when
you invoke SAS/INSIGHT software.

Zoom/Scroll Speed (%) sets the speed of the zoom tool and the speed of auto-
matic scrolling when you drag a selection past the window
border. The speed is a percentage value between 0 and
100. Some hosts override this option.

Default Margin (mm.) sets the spacing in millimeters between graphs and tables
in analysis windows. If your display is small, reduce this
value to maximize the display of information.

Number of Groups sets the number of groups you can use in an analysis with-
out getting a request for confirmation.

Zoom/Scroll Speed, Default Margin, and Number of Groups can be con-
trolled by sliders to the right of the option. To set these options, either click or drag
on the sliders or type in the entry field.

To set graph options, choose Edit:Windows:Graph Options. This displays the
graph options dialog.
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Figure 29.12. Graph Options

The dialog contains the following options:

Default Marker sets the default marker shape. On personal computers, Square
and Plus are the best choices; these markers are the fastest to
display. On fast workstations, Circle is preferable to minimize
interference between plotted observations.

Excluded Marker sets the marker shape for observations that are excluded from
calculations. X is the default. If you choose None, marker shape
is not affected by exclusion.

Fast Draw sets display algorithms for rotation, brushing, manipulation of
histograms, and dynamic curve fitting. By default, this option is
off, which produces slower but smoother dynamic effects. If this
option is on, speed is improved but, on some hosts, the display
may flicker. The better choice of algorithms depends on your
host, the size of your graphs, and the number of observations.

Marker Size (%) sets the default size of markers in plots. This is the marker size
used when you choose Marker Sizes:Size to Fit. This is a
percentage value between 0 and 100.

Graph Size (%) sets the default size of windows and graphs. This is a percentage
value between 0 and 100. If your display is small, reduce this
value to display more graphs.

To see the effects of various display, window, and graph options, follow these steps.

=⇒ Create a fit analysis for the model NO–RBI = NO–HITS.
Use the techniques described in Chapter 13, “Fitting Curves.” This creates the fit
analysis shown in Figure 29.13.

461



Techniques � Configuring SAS/INSIGHT Software

Figure 29.13. Fit Analysis

=⇒ Choose Edit:Windows:Display Options to display the display options dialog

=⇒ Click on the toggle button for Show Menu Buttons.
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Recall that the figures here already have Foreground set to Monochrome and
Curve Width set to 2 pixels.

Figure 29.14. Setting Display Options

=⇒ Click OK to set the display options and close the dialog

=⇒ Choose Edit:Windows:Window Options to display the window options dialog

=⇒ Set the Default Margin to 1 mm.

Figure 29.15. Setting Window Options

=⇒ Click OK to set the window options and close the dialog

=⇒ Choose Edit:Windows:Graph Options to display the graph options dialog

=⇒ Set the Marker Size to 100%.
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Figure 29.16. Setting Graph Options

=⇒ Click OK to set the graph options and close the dialog

=⇒ Choose Edit:Windows:Renew in the fit analysis window.
This displays the fit analysis variables dialog.
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=⇒ Click OK in the variables dialog
This redisplays the fit analysis with the modified option settings. Contrast Figure
29.17 with Chapter 39. Note that the menu buttons are no longer displayed, the space
between the tables and graphs is reduced, and the marker size is increased.

Figure 29.17. Modified Fit Analysis
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Saving Options
Once you set any option, it remains in effect for the rest of your SAS/INSIGHT ses-
sion. You can also save options so they become the default for future SAS/INSIGHT
sessions by choosing File:Save:Options.

File Edit Analyze Tables Graphs Curves Vars Help

New
Open...
Save �

Print...
Print setup...
Print preview
End

Data...
Graphics Catalog...
Graphics File...
Tables
Initial Tables
Statements
Options

Figure 29.18. File:Save Menu

This saves options for all graphs and analyses, as well as display, window, and
graph options, and stores these options in your SASUSER.PROFILE catalog. Option
settings are read from SASUSER.PROFILE.INSIGHT and used as default settings
the next time you invoke SAS/INSIGHT software. This enables you to tailor
SAS/INSIGHT software to the way you work.
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Setting Host Resources
You can modify the operation and appearance of SAS/INSIGHT software in ways
that are specific to your host by setting host resources. For details on host resources,
refer to the SAS companion for your host.

If you are on a UNIX host running X Windows, the behavior of the SAS System is
determined by X resources. The following X resources improve the performance of
SAS/INSIGHT software.

# SAS resources
SAS.windowUnitType: percentage
SAS.windowHeight: 90
SAS.windowWidth: 100
SAS.maxWindowHeight: 90
SAS.maxWindowWidth: 100
SAS.sessionGravity: NorthWestGravity

# Motif resources
Mwm*IconPlacement: right bottom
Mwm*InteractivePlacement: false
Mwm*ClientAutoPlace: false
Mwm*KeyboardFocusPolicy: pointer

These SAS resources and Motif resources enable the SAS System to use 90% of the
display and enable SAS/INSIGHT software to place windows efficiently when you
set the Window Layout:Spread option. If your host does not use the Motif win-
dow manager, it may use another window manager with similarly named resources.

Resource names are case-sensitive. You can load X resources at system initialization
or use the UNIX xrdb command. For more information on X resources, refer to the
SAS companion for the UNIX environment or your host documentation.
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Working with Other SAS Products

This chapter illustrates how to use SAS/INSIGHT software with other components
of the SAS System.

A typical usage is to create an analysis in another SAS product and then view the
results using SAS/INSIGHT software. For example, you can use SAS/STAT software
to create an analysis and use SAS/INSIGHT software to display its results. This
enables you to take advantage of the strengths of both products.

You can also use grammar statements to drive SAS/INSIGHT software from other
SAS products. This enables you to save time by automating repetitive tasks.

Figure 30.1. Viewing Results from SAS/STAT Software
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Viewing Results from SAS/STAT Software
The IRIS data, published by Fisher (1936), have been used widely for examples in
discriminant analysis. The goal of the analysis is to find functions of a set of quan-
titative variables that best summarize the differences among groups of observations
determined by the classification variable. The IRIS data contain four quantitative
variables measured on 150 specimens of iris plants. These include sepal length
(SEPALLEN), sepal width (SEPALWID), petal length (PETALLEN), and petal
width (PETALWID). The classification variable, SPECIES, represents the species
of iris from which the measurements were taken. There are three species in the data:
Iris setosa, Iris versicolor, and Iris virginica.

Figure 30.2. IRIS Data Set

Linear combinations of the four measurement variables best summarize the differ-
ences among the three species, assuming multivariate normality with covariance con-
stant among groups. This requires a canonical discriminant analysis that is available
in both SAS/INSIGHT software and SAS/STAT software. The following steps illus-
trate how to create an output data set that contains scores on the canonical variables
in SAS/STAT software and how to use SAS/INSIGHT software to plot them.

=⇒ If you are running the SAS System in interactive line mode, exit the SAS System
and reenter under the display manager.
You must invoke SAS/INSIGHT software from a command line or from the
Solutions menu to use SAS/INSIGHT software and the Program Editor concur-
rently.

=⇒ In the Program Editor, enter the statements shown in Figure 30.3.
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Figure 30.3. Program Editor with PROC Statement

The OUT= option in the PROC DISCRIM statement puts the scores and the original
variables in the SASUSER library in a data set called CAN–SCOR. For complete
documentation on the DISCRIM procedure, refer to the chapter titled “The DISCRIM
Procedure,” in the SAS/STAT User’s Guide.

=⇒ In the Program Editor, enter the statements in Figure 30.4.
These statements create the –OBSTAT– variable, which stores observation colors,
shapes, and other states. If you create the –OBSTAT– variable as shown, SETOSA
observations will be red triangles, VERSICOLOR observations will be blue circles,
and VIRGINICA observations will be magenta squares.

Figure 30.4. Program Editor with DATA Step

–OBSTAT– is a character variable. You can use it to set other observation states in
addition to color and shape. The format of the –OBSTAT– variable is as follows.

Character 1 stores the observation’s selection state. It is ’1’ for selected obser-
vations and ’0’ for observations that are not selected.

Character 2 stores the observation’s Show/Hide state. It is ’1’ for observations
that are displayed in graphs and ’0’ for observations that are not
displayed in graphs.
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Character 3 stores the observation’s Include/Exclude state. It is ’1’ for observa-
tions that are included in calculations and ’0’ for observations that
are excluded from calculations.

Character 4 stores the observation’s Label/UnLabel state. It is ’1’ for observa-
tions whose label is displayed by default, and ’0’ for observations
whose label is not displayed by default.

Character 5 stores the observation’s marker shape, a value between ’1’ and ’8’:

1 Square

2 Plus

3 Circle

4 Diamond

5 X

6 Up Triangle

7 Down Triangle

8 Star

Characters 6–20 store the observation’s color as Red-Green-Blue (RGB) compo-
nents. The RGB color model represents colors as combinations
of the colors red, green, and blue. You can obtain intermediate
colors by varying the proportion of these primary colors.

Each component is a 5-digit decimal number between 0 and 65535.
Characters 6–10 store the red component. Characters 11–15 store
the green component. Characters 16–20 store the blue component.

The –OBSTAT– variable can be used to create color blends as well as discrete col-
ors. For an example of this usage, refer to Robinson (1995).

=⇒ Choose Run:Submit to submit the SAS statements.

File Edit View Tools Run Solutions Help
Submit
Recall Last Submitted
Submit Top Line
Submit N Lines...
Submit Clipboard
Signon...
Remote Submit...
Remote Get
Remote Display
Signoff...

Figure 30.5. Run Menu
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This produces the PROC DISCRIM output shown in Figure 30.6 and creates the
CAN–SCOR data set.

Figure 30.6. PROC DISCRIM Output

=⇒ Invoke SAS/INSIGHT software, and open the CAN–SCOR data set.

=⇒ Scroll to the right to see the canonical variables CAN1, CAN2, and CAN3.
These variables represent the linear combinations of the four measurement variables
that summarize the differences among the three species.

Figure 30.7. CAN–SCOR Data

By plotting the canonical variables, you can visualize how well the variables discrimi-
nate among the three groups. Canonical variables, having more discriminatory power,
show more separation among the groups in their associated axes on a plot, while vari-
ables having little discriminatory power show little separation among groups.
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=⇒ Choose Analyze:Rotating Plot ( Z Y X ). Assign CAN3 the Z role, CAN2 the
Y role, and CAN1 the X role.
This produces a plot with the CAN3 axis pointing toward you, showing clear separa-
tion of the species.

Figure 30.8. Rotating Plot Dialog

=⇒ Click OK in the dialog to create the rotating plot.

Figure 30.9. Rotating Plot, CAN3 Toward Viewer
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=⇒ Rotate the plot so the axis representing CAN1 points toward you.
Refer to Chapter 6, “Exploring Data in Three Dimensions,” for information on how
to rotate plots. This orientation shows little, if any, differentiation among species.
This is because CAN2 and CAN3 contribute little information towards separating
the groups.

Figure 30.10. Rotating Plot, CAN1 Toward Viewer

Another way of illustrating this would be to create a scatter plot matrix of CAN1,
CAN2, and CAN3. Only plots involving CAN1 would show much group differenti-
ation. The CAN2-by-CAN3 plot would show little or no group differentiation.

⊕ Related Reading: Rotating Plots, Chapter 6, Chapter 37.
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Submitting SAS/INSIGHT Statements
If this analysis were a task you perform frequently, you could save time by automating
the creation of the rotating plot. To do this, you can submit SAS/INSIGHT statements
in the Program Editor.

You can submit statements when SAS/INSIGHT is executing either as a procedure or
as a task. To submit statements to the procedure, do the following.

=⇒ Choose File:End in the data window to exit SAS/INSIGHT.

=⇒ In the Program Editor, enter the statements shown in Figure 30.11.

The DATA option opens the CAN–SCOR data set. The ROTATE statement creates
the rotating plot.

Figure 30.11. SAS/INSIGHT Statements in Program Editor

=⇒ Choose Run:Submit to submit the SAS statements.
This opens the data set and creates the plot.
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Figure 30.12. Data Window and Rotating Plot

It is often preferable to invoke SAS/INSIGHT as a task instead of a procedure.
It is sometimes preferable to open a data set without displaying it. To invoke
SAS/INSIGHT as a task and display a rotating plot without a data window, follow
these steps.

=⇒ Store the following three statements in a text file called myfile.

open sasuser.can_scor / nodisplay;
rotate can3 * can2 * can1;
run;

=⇒ In the Program Editor, enter the FILENAME statement shown in Figure 30.13.
The FILENAME statement assigns a fileref.
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Figure 30.13. Submitting a FILENAME statement

=⇒ Choose Run:Submit to submit the statement

=⇒ Invoke SAS/INSIGHT as a task with the INFILE= option.
You can invoke SAS/INSIGHT on the command line with the statement

insight infile=test

This opens the data set SASUSER.CAN–SCOR without displaying it and then
creates a rotating plot of CAN3 versus CAN2 versus CAN1.

Figure 30.14. Rotating Plot
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You can use grammar statements such as these to drive SAS/INSIGHT software from
SAS/AF software. For portability, statements can be stored in catalog entries by using
a FILENAME statement with the keyword LIBRARY. For example, if you stored
statements in a catalog entry sasuser.insight.test.source, you could assign the
fileref with the statement

filename test library ’sasuser.insight.test.source’;

For SAS/AF applications, you can improve the display of SAS/INSIGHT windows
by suppressing the display of menus, buttons, and confirmation dialogs. You can
also save options to configure your graphs and analyses. These techniques are de-
scribed in Chapter 41, “SAS/INSIGHT Statements,” and Chapter 29, “Configuring
SAS/INSIGHT Software.”

Recording SAS/INSIGHT Statements
SAS/INSIGHT statements also provide a record of the analyses you create, in-
cluding model equations. You can record your SAS/INSIGHT session using the
File:Save:Statements menu or the FILE= option.

To create a record of your SAS/INSIGHT session, follow these steps.

=⇒ Invoke SAS/INSIGHT and open the BUSINESS data set.

=⇒ Choose File:Save:Statements.
This toggles the recording of statements to the SAS log.

File Edit Analyze Tables Graphs Curves Vars Help

New
Open...
Save �

Print...
Print setup...
Print preview
End

Data...
Graphics Catalog...
Graphics File...
Tables
Initial Tables
Statements
Options

Figure 30.15. File:Save Menu

=⇒ Create graphs and analyses as you like.
The Log window displays a record of your actions. For example, a record of three
model fits might look like the following.
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Figure 30.16. Log Window

Recorded output uses the same syntax as statement input, so you can replay the state-
ments you record. However, intermediate events such as transformation of variables,
exclusion of observations, and data entry are not recorded. Therefore, replaying will
not always reproduce the original analysis.

As an alternative to the File:Save:Statements menu, you can use the FILE= option
when you invoke SAS/INSIGHT. The FILE= option and other options are described
in Chapter 41, “SAS/INSIGHT Statements.”

References
Fisher, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems,”

Annals of Eugenics, 7, 179–188.

Robinson, H. (1995), “Batch Processing in SAS/INSIGHT Software,” Proceedings of
the 20th Annual SAS Users Group International Conference, Cary, NC: SAS Institute
Inc., 560.

482



Part 3
Reference

Contents

Chapter 31. Data Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Chapter 32. Histograms and Bar Charts . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Chapter 33. Box Plots and Mosaic Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Chapter 34. Line Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Chapter 35. Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Chapter 36. Contour Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Chapter 37. Rotating Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Chapter 38. Distribution Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Chapter 39. Fit Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Chapter 40. Multivariate Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Chapter 41. SAS/INSIGHT Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 777



Reference

484



Chapter 31
Data Windows

Chapter Contents

OPENING A DATA WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . 488

VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

OBSERVATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

THE DATA MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493



Reference � Data Windows

486



Chapter 31
Data Windows

A data window displays a SAS data set as a table, with columns of the table contain-
ing variables and rows containing observations.

In a data window, you can sort, search, edit, and extract subsets of your data. You can
also assign measurement levels and default roles that determine how your variables
are used in graphs and analyses.

Figure 31.1. Data Window
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Opening a Data Window
You can open data windows in several ways. One way is to specify a data set with
the DATA= option when you invoke SAS/INSIGHT software. If you do not specify
a data set, a data set dialog appears.

Figure 31.2. Data Set Dialog

This dialog displays two lists: Library and Data Set. A library is a location
where data sets are stored. The Library list always contains the standard libraries
WORK, MAPS, SASHELP, and SASUSER. You can define other libraries using
the LIBNAME statement. For more information on the LIBNAME statement, refer
to SAS Language Reference: Dictionary.

By default, SASUSER is selected in the Library list. To see the data sets in any
other library, click on the library’s name. This causes the Data Set list to display all
data sets in that library. For information on how to create SAS data sets, see Chapter
2, “Entering Data.”

By default, the first data set in the Data Set list is selected. To select another data
set, click on its name. Then click on OK to display the data window. On many hosts,
instead of clicking on the data set name, then on OK, you can double-click on the
data set name to open the data set and close the dialog.

The Options button on the dialog enables you to enter WHERE clauses and other
SAS data set options. For information on data set options, refer to SAS Language
Reference: Dictionary.

You can also open a data window with the File:Open menu.
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Figure 31.3. File Menu

This displays the data set dialog as described previously.

You can open any number of data windows on different data sets, but you can open
only one data window on each data set.

Variables
The column headings in a data window give information on each variable, includ-
ing the name, label, default roles, and measurement level. The number of variables
appears in the upper left corner of the data window.

Figure 31.4. Variables

A variable’s default role assigns the role a variable plays by default in graphs and
analyses. Click in the upper left portion of the variable header to display a pop-up
menu of variable roles.

Group
� Label

Freq
Weight

Figure 31.5. Variable Roles Pop-up Menu
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You can assign four default roles:

Group enables you to process your data by groups. You can use multiple
group variables to process your data by groups for each unique
combination of values of the group variables.

Label labels observations in scatter plots, rotating plots, and box plots.

Frequency represents the frequency of occurrence for other values in each ob-
servation.

Weight supplies weights for each observation.

You can assign Freq, Weight, and Label roles to only one variable at a time. You
can assign the Group role to more than one variable. The order in which you assign
the group role determines the order in which the variables are used to define groups.

A variable’s measurement level determines the way it is treated in graphs and analy-
ses.

� Interval
Nominal

Figure 31.6. Measurement Levels Pop-up Menu

You can assign two measurement levels:

Interval contains values that vary across a continuous range. For example,
a variable measuring temperature would likely be an interval vari-
able. Numeric variables default to the interval measurement level
but can be changed to nominal.

Nominal contains a discrete set of values. For example, a variable indicating
gender would be a nominal variable. Character variables can use
only the nominal measurement level.

Up to 250 variable measurement levels can be stored with a data set.

Default roles and measurement levels are displayed in the column headings above
the variable names. The default role appears at the upper left of the column heading
and the measurement level appears at the upper right. If a variable has more than one
default role, then only the first character of each role appears.

In Figure 31.4, NAME has a label default role, and TEAM has a group default role.
NAME and TEAM both have a nominal measurement level, while the remaining
variables have an interval measurement level.

† Note: Up to 250 measurement levels can be stored in the SAS data set. You can
use the data pop-up menu to create new variables or to change the default role or
measurement level of existing variables. For more information, see the section
“Data Menu” later in this chapter.
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You can use the Edit:Variables menu to create new variables that are transforma-
tions of existing variables. See Chapter 20, “Transforming Variables,” for more
information.

Observations
The row headings in a data window give information on each observation, including
the observation states and observation number. The total number of observations
appears in the upper left corner of the data window.

Figure 31.7. Observations

SAS/INSIGHT software supports the following observation states:

Marker shows the shape of the marker used in scatter plots, rotating plots,
and box plots.

Color shows the color of the observation.

Label/UnLabel tells whether a label is displayed by default.

Show/Hide tells whether an observation is displayed in graphs.

Include/Exclude tells whether an observation is included in calculations for curves
and analysis tables.

Select tells whether an observation is selected.

An observation’s marker and color appear at the left side of the row heading, as shown
in Figure 31.7.

An observation’s Label/UnLabel state is shown by a picture of a label around the
observation number if the observation’s label is displayed by default. In Figure 31.7,
observations 2, 4, and 8 are labeled.

An observation’s Show/Hide state is shown by whether or not a marker is displayed
in the row heading. In Figure 31.7, observations 2, 3, and 6 are hidden.
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An observation’s Include/Exclude state is shown by the way the observation number
is displayed. The observation number is grayed-out for observations that are excluded
from calculations. In Figure 31.7, observations 5 and 6 are excluded.

An observation’s select state is shown by whether the row heading is highlighted or
not. In Figure 31.7, observations 1, 2, 6, and 8 are selected.

You can use the Edit:Observations menu to set all of these observation states. This
menu also enables you to find observations meeting a specific search criterion or to
examine observations in detail.

File Edit Analyze Tables Graphs Curves Vars Help

Windows �

Variables �

Observations �

Formats �

Copy
Delete

Find...
Examine...
Label in Plots
Unlabel in Plots
Show in Graphs
Hide in Graphs
Include in Calculations
Exclude in Calculations
Invert Selection

Figure 31.8. Edit Observations Menu

You can also use the observation pop-up menu to set observation states. To see this
menu for a particular observation, click on the observation’s marker.

Label in Plots
� Show in Graphs
� Include in Calculations

Figure 31.9. Observation Pop-up Menu

† Note: SAS/INSIGHT software saves observation states when you save a data set and
restores them when you read a data set.

⊕ Related Reading: Label/Unlabel, Chapter 8.

⊕ Related Reading: Show/Hide, Chapter 9.

⊕ Related Reading: Include/Exclude, Chapter 21.

⊕ Related Reading: Saving Observation States, Chapter 30.
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The Data Menu
The data pop-up menu provides a variety of ways to manipulate your data. Display
the data pop-up menu by clicking on the button in the upper left corner of the data
window.

Figure 31.10. Displaying the Data Pop-up Menu

Find Next
Move to First
Move to Last
Sort...
New Observations
New Variables
Define Variables...
Fill Values...
Extract
Data Options...

Figure 31.11. Data Pop-up Menu

Choose Find Next to scroll the data window to the next selected observation. If no
observations are selected, it scrolls the data window one observation.

Choose Move to First to move selected observations to the top of the data window
and to move selected variables to the left side of the data window.

Choose Move to Last to move selected observations to the bottom of the data win-
dow and to move selected variables to the right side of the data window.

† Note: In addition to Move to First and Move to Last, you can use the hand tool
to move variables and observations. Drag on the column or row heading, then release
the mouse at the new location.

Choose Sort to sort observations on one or more variables. If any variables are
selected, your data are sorted in ascending order on the unformatted values of those
variables. If no variables are selected, you are prompted with a dialog to select some.
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Figure 31.12. Sort Dialog

In the dialog, select variables and click the Y button to assign variables to the sort list.
You can select variables in the sort list and click the Asc/Des and Unf/For buttons
to toggle the sort order and formatting. If you select multiple variables for the sort,
they are used in the order in which you select them.

Choose New Observations to add space to enter values for new observations.

Choose New Variables to add space To enter values for new variables.

Choose Define Variables to display the dialog in Figure 31.13. Use this dialog to
set variable type, default roles, measurement level, name, and label.

Figure 31.13. Define Variables Dialog

Choose Fill Values to modify data values in the data window.
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Choose Extract to create a new data window from an existing data window. You
can Extract any subset of your data. If you have variables, observations, or values
selected, your selections are extracted to fill the new data window. If you have no
selections, you are prompted to select variables.

Choose Data Options to set options that control the appearance and operation of
the data window.

⊕ Related Reading: Fill Values, Data Options, Chapter 2.

⊕ Related Reading: Find, Move to First, Sort, Chapter 3.

⊕ Related Reading: Define Variables, Chapter 8, Chapter 15, Chapter 22.

⊕ Related Reading: Extract, Chapter 21.
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Chapter 32
Histograms and Bar Charts

Bar charts are pictorial representations of the distribution of values of a variable.

You can use bar charts to show distributions of interval or nominal variables. Bar
charts of interval variables are also called histograms.

You can label the heights of the bars in a bar chart, control the orientation, and control
the information shown on the axes. For bar charts of interval variables, you can also
control the width and offset of the bars.

Figure 32.1. Bar Chart
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Variables
To create a bar chart, choose Analyze:Histogram/Bar Chart ( Y ). Bar charts
require a Y variable. If you have already selected one or more variables, they are
assigned the Y variable role, and a bar chart is created for each selected variable. If
you have not selected any variables, a variables dialog appears.

Figure 32.2. Bar Chart Variables Dialog

In the dialog, select at least one Y variable. A separate bar chart is created for each Y
variable you select.

You can select one or more Group variables if you have grouped data. This creates
one bar chart for each group.

You can select a Freq variable. If you select a Freq variable, each observation is
assumed to represent n observations, where n is the value of the Freq variable.
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Method
Observations with missing values for Y variables are not used. Observations with
Freq values that are missing or that are less than or equal to 0 are not used. Only the
integer part of Freq values is used.

For nominal variables, values that represent less than 4% of the total frequency are
grouped together in an “Other” category by default. Clicking on the Method button
in the variables dialog displays the dialog in Figure 32.3. This dialog enables you to
change the threshold at which values are grouped into the Other category.

Figure 32.3. Bar Chart Method Options Dialog

For interval variables, values that fall on the boundary between two bars are added to
the upper bar. For example, if two bars span ranges ( 1 to 2 ) and ( 2 to 3 ), the value
2 is considered to fall in the range ( 2 to 3 ).

By default, bar width and offset are calculated using an algorithm developed from
Terrell and Scott (1985). Bar width is the distance along the Y axis represented by
one bar. Bar offset is the distance from the start of the bar to the nearest multiple of
the bar width. For example, if a bar starts at 1.2 and has a width of 1, then the offset
is 0.2.
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Output
For nominal variables, bars are distinguished by different colors. For interval vari-
ables, all bars have the same color.

To view or modify output options associated with your bar chart, click on the Output
button of the variables dialog. This displays the options dialog shown in Figure 32.4.

Figure 32.4. Bar Chart Output Options Dialog

Bar Heights labels all bars with their heights.

Variable:Names labels the Y axis with variable names.

Variable:Labels labels the Y axis with variable labels.

Variable:Both labels the Y axis with both names and labels.

Orientation:
Y Axis Vertical

draws the axis for the Y variable vertically. If this option is
turned off, the Y axis is horizontal.

Orientation:
Vertical Axis at
Left

places the vertical axis at the left side of the chart. If this
option is turned off, the vertical axis is at the right side of the
chart.

Orientation:
Horizontal Axis at
Bottom

places the horizontal axis at the bottom of the chart. If this
option is turned off, the horizontal axis is at the top of the
chart.

You can modify other aspects of the bar chart using the bar chart pop-up menu. Click
on the button at the lower left corner of the bar chart to display the pop-up menu.
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Ticks...
� Axes
� Observations

Values
Reference Lines

Figure 32.5. Bar Chart Pop-up Menu

Ticks... displays the dialog in Figure 32.6 to set tick values for the vari-
able being charted. In histograms, you can use this menu to set
bar width and offset. You can set tick values for the frequency
axis by clicking on the Frequency label before selecting Ticks
from the pop-up menu.

Axes toggles the display of axes.

Observations toggles the display of observations (bars). When this menu is
toggled off, observations are displayed only if selected.

Values toggles the display of values for bar heights.

Reference Lines toggles the display of lines that indicate the position of major
ticks on the frequency axis. This option is not available unless
the axes are visible.

Figure 32.6. Bar Chart Ticks Dialog

You can adjust bar width and offset interactively with the Hand Tool, as described
in Chapter 12, “Examining Distributions.” You can also add density curves to bar
charts in distribution analyses, as described in Chapter 38, “Distribution Analyses.”

⊕ Related Reading: Bar Charts, Chapter 4.

⊕ Related Reading: Distributions, Chapter 12, Chapter 38.
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Chapter 33
Box Plots and Mosaic Plots

Box plots are pictorial representations of the distribution of values of a variable. The
central line in each box marks the median value and the edges of the box mark the
first and third quartiles.

The median value of a distribution is the 50th percentile: It is the value less than
and greater than 50% of the data. The first and third quartiles are the 25th and 75th
percentiles. By combining these three values in a schematic diagram and plotting
individual markers for extreme data values, the box plot provides a concise display
of a distribution (Tukey 1977).

Mosaic plots are pictorial representations of frequency counts of a single nominal
variable or cross-classified nominal variables. Because mosaic plots display the fre-
quencies graphically, they are easier to understand than crosstabulations. You can
select and brush mosaic plots to explore dependencies between variables.
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Figure 33.1. Box Plot and Mosaic Plot
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Variables

Variables
To create a box plot or mosaic plot, choose Analyze:Box Plot/Mosaic Plot ( Y ).
If you have previously selected one or more variables, they are assigned the required
Y variable role. A single plot is created containing a separate schematic diagram for
each Y variable selected. For interval Y variables, box plots are created. For nominal
Y variables, mosaic plots are created.

If you have not selected any variables, a variables dialog appears.

Figure 33.2. Box Plot/Mosaic Plot Variables Dialog

In the dialog, select at least one Y variable.

You can select one or more X variables to compare distributions. If you do not select
X variables, you get one plot containing one schematic diagram for each Y variable.
If you select X variables, you get one plot for each Y variable, and each plot contains
one schematic diagram for each combination of X values. For example, Figure 33.3
shows the box plot created using the BASEBALL data set with NO–HITS as the Y
variable and LEAGUE as the X variable.

You can select one or more Group variables if you have grouped data. This creates a
separate box or mosaic plot for each group. For example, Figure 33.4 shows the box
plots created using the BASEBALL data set with NO–HITS as the Y variable and
LEAGUE as the Group variable.

You can select a Label variable to label extreme values in box plots.

If you select a Freq variable, each observation is assumed to represent n observations,
where n is the value of the Freq variable.

You can identify extreme values in the box plot and display the mean or average
value. You can also control the marker size of extreme values and the information
shown in the box plot axes.
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Figure 33.3. Box Plot Using X Variable

Figure 33.4. Box Plot Using Group Variable
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Method
Observations with missing values for Y variables are not used. Observations with
Freq values that are missing or that are less than or equal to 0 are not used. Only the
integer part of Freq values is used.

The following method is used to compute the median and quartiles. Let

n be the number of data values

y1, y2, . . . , yn be the data values listed in increasing order

p be the desired percentile (25, 50, or 75)

i be the integer part, and f the fractional part, of the ordinal of the desired per-
centile:

i + f = n ∗ p/100

Then the value of the desired percentile is

(yi + yi+1)/2 if f = 0
yi+1 if f > 0

You can adjust three calculation methods by clicking on the Method button in the
variables dialog. This displays the method options dialog.

Figure 33.5. Box Plot/Mosaic Plot Method Options Dialog

By default, whiskers on the box plot are drawn from the quartiles to the farthest
observation not farther than 1.5 times the distance between the quartiles. Type your
preferred whisker length factor in the entry field. The figures in this chapter were
created using whisker lengths that were 1.0 times the distance between the quartiles;
this results in more observations being classified as outliers.

By default, for variables in mosaic plots, values that represent less than 4% of the total
frequency are grouped together in an “Other” category. The Method dialog enables
you to change the threshold at which values are grouped in the Other category.

By default, X variable values are sorted by their formatted value. Turn off the Sort
X Formatted check box to sort X variable values by their unformatted value.
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Output
To view or modify output options associated with your plot, click on the Output
button of the variables dialog. This displays the output options dialog.

Figure 33.6. Box Plot/Mosaic Plot Output Options Dialog

Values:Frequency labels mosaic boxes with the frequency of observations rep-
resented in each box.

Values:Percentage labels mosaic boxes with the percentage of observations
represented in each box.

Values:Both labels mosaic boxes with both frequency and percentage.

Means displays mean diamonds on box plots. The central line in
the diamond marks the mean. The size of the diamond is
two standard deviations, one on either side of the mean.

Serifs displays serifs at the ends of box plot whiskers.

Multiple
Comparison of
Means

displays a comparison circle (Sall 1992) for each box. The
center of each circle marks the mean of each box. The color
and line style of each circle indicates how the mean value
of one box compares with the means of other boxes. A
selected circle is highlighted and is drawn in red on color
monitors. Circles corresponding to categories whose mean
values are significantly different from a selected group are
drawn in cyan on color monitors. Circles corresponding to
categories whose mean values are not different are drawn
with a dashed line and are red on color monitors. See the
section “Multiple Comparison Circles” later in this chapter.
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Multiple
Comparison
Options

displays the Multiple Comparison Options dialog window.

Variable:Names labels the axes with variable names.

Variable:Labels labels the axes with variable labels.

Variable:Both labels the axes with both names and labels.

Orientation:
Y Axis Vertical

draws the axis for the Y variable vertically. If this option is
off, the Y axis is horizontal.

Orientation:
Vertical Axis at Left

places the vertical axis at the left side of the plot. If this
option is off, the vertical axis is at the right side.

Orientation:
Horizontal Axis at
Bottom

places the horizontal axis at the bottom of the plot. If this
option is off, the horizontal axis is at the top.

You can modify other aspects of box and mosaic plots with the pop-up menu.

Ticks...
� Axes
� Observations

Means
Comparison Circles
Serifs
Values
Reference Lines
Marker Sizes � 1

2
3
4

� 5
6
7
8

� Size to Fit

Figure 33.7. Box Plot/Mosaic Plot Pop-up Menu

Ticks... specifies tick labels on the Y axis.

Axes toggles the display of axes.

Observations toggles the display of observations (boxes and extreme val-
ues). When this menu is toggled off, observations are dis-
played only if selected.
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Means toggles the display of mean diamonds in box plots.

Comparison Circles toggles the display of comparison circles in box plots.

Serifs toggles the display of serifs at the ends of box plot whiskers.

Values toggles the display of values for means, medians, quartiles,
and ends of whiskers in box plots. Toggles the display of fre-
quency and percentage counts in mosaic plots.

Reference Lines toggles the display of lines that indicate the position of major
ticks on the Y axis. This option is not available unless the axes
are visible.

Marker Sizes sets the size of markers that display extreme values in box
plots.

Multiple Comparison Options

Box plots enable you to examine means in different groups. Statistical questions you
might have about the group means include

• Which underlying group means are likely to be different?

• Which group means are better than the mean of a standard group?

• Which group means are statistically indistinguishable from the best?

From the Multiple Comparison Options dialog, you can select a multiple com-
parison of means test and a confidence level for the test. Multiple comparison tests
enable you to infer differences between means and also to construct simultaneous
confidence intervals for these differences.

All of the tests implemented in SAS/INSIGHT software are constructed assuming
that the displayed variables are independent and normally distributed with identical
variance. For details, refer to Hsu (1996).

Each of the tests available in SAS/INSIGHT software is described below. In the
descriptions that follow, k is the number of categories (that is, the number of boxes in
the box plot), ni is the number of observations for the ith category, µi is the true mean
for the ith category, µ̂i is the sample mean for the ith category, ν =

∑k
i=1(ni − 1) is

the total degrees of freedom, and σ̂ is the root mean square error, also known as the
pooled standard deviation. Each test creates a table showing 100(1−α)% confidence
intervals for the difference µ̂i − µ̂j , i �= j, i = 1 . . . k.
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Figure 33.8. Multiple Comparison Options

The Pairwise t-test is not a true simultaneous comparison test, but rather uses
a pairwise t test to provide confidence intervals about the difference between two

means. These intervals have a half-width equal to tα/2,ν σ̂
√

n−1
i + n−1

j . Although
each confidence interval was computed at the 100(1 − α)% level, the probabil-
ity that all of your confidence intervals are correct simultaneously is less than
100(1 − α)%. The actual simultaneous confidence for the t-based intervals is ap-
proximately 100(1 − kα)%. For example, for five groups the actual simultaneous
confidence for the t-based intervals is approximately only 75%.

The Tukey-Kramer method is a true “multiple comparison” test, appropriate when
all pairwise comparisons are of interest; it is the default test used. The test is an
exact α-level test if the sample sizes are the same, and it is slightly conservative for
unequal sample sizes. The confidence interval around the point-estimate µ̂i − µ̂j has

half-width q∗σ̂
√

n−1
i + n−1

j . It is a common convention to report the quantity
√

2q∗

as the Tukey-Kramer quantile, rather than just q∗.

The Pairwise Bonferroni method is also appropriate when all pairwise compar-
isons are of interest. It is conservative; that is, Bonferroni tests performed at a nom-
inal significance level of α actually have a somewhat greater level of significance.
The Bonferroni method uses the t distribution, like the pairwise t test, but returns

smaller intervals with half-width tα/(k(k−1)),ν σ̂
√

n−1
i + n−1

j . Note that the t proba-
bility (α/2, since this is a two-sided test) is divided by the total number of pairwise
comparisons (k(k − 1)/2). The Bonferroni test produces wider confidence intervals
than the Tukey-Kramer test.

Dunnett’s Test with Control is a two-sided multiple comparison method used to
compare a set of categories to a control group. The quantile that scales the confidence
interval is usually denoted |d|. If the ith confidence interval does not include zero,
you may infer that the ith group is significantly different from the control. A control
group may be a placebo or null treatment, or it may be a standard treatment. While
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the interactive nature of SAS/INSIGHT enables you to select any category to use as
the basis of comparison in Dunnett’s test, you should select a category only if it truly
is the control group. To select a category, click on the corresponding comparison
circle.

Hsu’s Test for Best can be used to screen out group means that are statistically less
than the (unknown) largest true mean. It forms nonsymmetric confidence intervals
around the difference between the largest sample mean and each of the others. If
an interval does not properly contain zero in its interior, then you may infer that the
associated group is not among the best.

Similary, Hsu’s Test for Worst can be used to screen out group means that are
statistically greater than the (unknown) smallest true mean. If an interval does not
properly contain zero in its interior, then you may infer that the true mean of that
group is not equal to the (unknown) smallest true mean.

Multiple Comparison Circles

In addition to a table that summarizes the statistics for simultaneous multiple com-
parison of means, SAS/INSIGHT software provides a graphical technique to help
visualize which groups are significantly different from a selected group. Each test is
accompanied by a comparison circles plot that graphically illustrates the comparisons
(Sall 1992).

There is a circle next to the box plot and centered at each category’s sample mean.
The radius of the ith circle is qσ̂/

√
ni, where q is a quantile used to scale the circles

according to the test being used. For details on how each quantile is computed, see
refer to Hsu (1996).

If the jth group is selected (by clicking on its circle), then its circle is highlighted.
This circle is red on color monitors. You can determine whether another group is
significantly different than the selected group based on how much their corresponding
circles overlap. If their circles are nested or nearly overlap so that the external angle
of intersection is greater than 90 degrees, then you cannot claim that the means of
the two groups are different. If, however, the two circles are disjoint or just barely
overlap so that their external angle of intersection is less than 90 degrees, then you
can conclude that the means of the two groups are significantly different at the given
confidence level.

Circles corresponding to categories that are significantly different from the selected
group are drawn in cyan on color monitors. Circles corresponding to categories that
are not different are drawn with a dashed line and are red on color monitors.

The geometry behind comparison circles is based on the Pythagorean Theorem: since
the radius of the ith circle is ri = qσ̂/

√
ni, and since the circle is centered at µ̂i, then

if the two circles meet at right angles, the distance between centers is the hypotenuse
of the right triangle formed by the circles’ radii. Therefore, when the circles meet at

right angles, |µ̂i − µ̂j | = qσ̂
√

n−1
i + n−1

j . Statistically, this geometry corresponds
to the critical case in which zero happens to fall on the boundary of the confidence

interval about µ̂i − µ̂j . If |µ̂i − µ̂j | > qσ̂
√

n−1
i + n−1

j , then the external intersection
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of the circles is less than 90 degrees, and zero is not contained in the confidence
interval about µ̂i − µ̂j . Thus the circles are significantly different.
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Figure 33.9. The Geometry of Multiple Comparison Circles

The statistics for Hsu’s Test for Best and Hsu’s Test for Worst are computed differ-
ently from the other tests. First, the comparison circles are not selectable. The Test
for Best automatically selects the category with the largest sample mean; the Test for
Worst selects the category with the smallest sample mean. Second, the quantile used
to scale the comparison circles is the maximum of the quantiles computed by running
Dunnett’s one-sided test k − 1 times, with each “non-best” (or “non-worst”) group
serving in turn as the “control” for Dunnett’s test.

Because Hsu’s Test for Best does not provide symmetric intervals about µ̂i − µ̂j ,
the comparison circle technique must be modified. While the statistical table reports
exactly which groups can be inferred not to be the best, the comparison circles are
more conservative because the quantile used to scale the circle radii is the maximum
of all quantiles encountered during Hsu’s test. The same is true for Hsu’s Test for
Worst.

⊕ Related Reading: Box Plots, Chapter 4.

⊕ Related Reading: Mosaic Plots, Chapter 5.

⊕ Related Reading: Distributions, Chapter 12.
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Chapter 34
Line Plots

You can create line plots to show the path of a variable over time. You can control the
orientation of the plot, the information shown on the axes, and the color of the lines.

Figure 34.1. Line Plot
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Variables
To assign variables for a line plot, choose Analyze:Line Plot ( Y X ). If you have
already selected two or more variables, you obtain a line plot. The last variable you
selected is assigned the X role, and all other variables are assigned the Y role.

If you have not selected any variables, a variables dialog appears.

Figure 34.2. Line Plot Variables Dialog

In the dialog, select at least one Y variable and at least one X variable. You will obtain
one line plot for each X variable, while multiple Y variables are represented on each
plot as multiple lines.

You can select one or more Group variables if you have grouped data. This creates
line plots for each group.

You can select a Label variable to label observations in the plots.

Method
Observations with missing values for X variables are not used. Observations with
missing values for a Y variable are not used in the line for that Y variable but are used
in lines for other Y variables.
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Output
To view or modify output options associated with your line plot, click on the Output
button of the variables dialog. This displays the options dialog.

Figure 34.3. Line Plot Output Options Dialog

Variable:Names labels the axes with variable names.

Variable:Labels labels the axes with variable labels.

Variable:Both labels the axes with both names and labels.

Orientation:
Y Axis Vertical

draws the axis for the Y variable vertically. If this option is
turned off, the Y axis is horizontal.

Orientation:
Vertical Axis at
Left

places the vertical axis at the left side of the plot. If this option
is turned off, the vertical axis appears at the right side of the
plot.

Orientation:
Horizontal Axis at
Bottom

places the horizontal axis at the bottom of the plot. If this
option is turned off, the horizontal axis appears at the top of
the plot.
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You can modify other aspects of the line plot by using the pop-up menu.

Ticks...
� Axes
� Observations

Reference Lines
Marker Sizes � 1

2
3
4

� 5
6
7
8

� Size to Fit

Figure 34.4. Line Plot Pop-up Menu

Ticks... specifies tick labels on either axis.

Axes toggles the display of axes.

Observations toggles the display of observations. When this menu is tog-
gled off, observations are displayed only if selected.

Reference Lines toggles the display of lines that indicate the position of major
ticks on the axes. This option is not available unless the axes
are visible.

Marker Sizes sets the size of markers used to display observations.

You can select and brush observations in the line plot even when they are not visible.
If you click on a line at the location of an observation, you select that observation. If
you click on a line between two observations, you select the line.

Lines in the plot are linked to variables on the Y axis. Click either on the line or on a
Y variable to select both the line and its associated variable.

Finally, you can set colors, patterns, and widths of lines the same way you set these
attributes for curves. See Chapter 13, “Fitting Curves,” for examples of setting pat-
terns, widths, and colors.
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Chapter 35
Scatter Plots

A scatter plot is a graphic representation of the relationship between two variables.

You can identify and label observations in the scatter plot, control the orientation of
the plot, and control the information shown on the axes. You can explore multivariate
data in a scatter plot matrix.

Figure 35.1. Scatter Plot and Scatter Plot Matrix
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Variables
To create a scatter plot, choose Analyze:Scatter Plot ( Y X ). If you have already
selected two or more variables, you obtain a scatter plot matrix. A scatter plot matrix
consists of all pairwise scatter plots of the selected variables. If you assign Y and X
roles to the same set of variables, variable names and minimum and maximum values
appear in the diagonal panels.

If you have not selected any variables, a variables dialog appears.

Figure 35.2. Scatter Plot Variables Dialog

In the dialog, select at least one Y variable and at least one X variable.

You can select one or more Group variables if you have grouped data. This creates
scatter plots for each group.

You can select a Label variable to label observations in the plots.

Method
Observations with missing values for Y or X variables are not used.
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Output
To view or modify output options associated with your scatter plot, click on the
Output button of the variables dialog. This displays the options dialog shown in
Figure 35.3.

Figure 35.3. Scatter Plot Output Options Dialog

Variable:Names labels the axes with variable names.

Variable:Labels labels the axes with variable labels.

Variable:Both labels the axes with both names and labels.

Orientation:
Y Axis Vertical

draws the axis for the Y variable vertically. If this option is
turned off, the Y axis is horizontal.

Orientation:
Vertical Axis at
Left

places the vertical axis at the left side of the plot. If this option
is turned off, the vertical axis is at the right side of the plot.

Orientation:
Horizontal Axis at
Bottom

places the horizontal axis at the bottom of the plot. If this
option is turned off, the horizontal axis is at the top of the
plot.

You can modify other aspects of a scatter plot or scatter plot matrix using the pop-up
menu. For scatter plots, the pop-up menu has the following choices.
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Ticks...
� Axes
� Observations

Reference Lines
Marker Sizes � 1

2
3
4

� 5
6
7
8

� Size to Fit

Figure 35.4. Scatter Plot Pop-up Menu

Ticks... specifies tick labels on either axis.

Axes toggles the display of axes.

Observations toggles the display of observations. When this menu is tog-
gled off, observations are displayed only if selected.

Reference Lines toggles the display of lines that indicate the position of major
ticks on the axes. This option is not available unless the axes
are visible.

Marker Sizes sets the size of markers used to display observations.

When Marker Sizes:Size to Fit is checked, marker sizes are chosen to fit the
graph.

You can manipulate square scatter plot matrices as a unit. For example, you can resize
the entire matrix by dragging a corner. Pop-up menus act on all plots in the matrix.

If you have created a brush, an additional pop-up menu is available, as shown in
Figure 35.5. (See Chapter 5, “Exploring Data in Two Dimensions,” for more infor-
mation on brushing.)

� uniform
fisheye

Figure 35.5. Scatter Plot Lens Pop-up Menu

uniform specifies that observations beneath the brush are seen as if the
brush were a typical camera lens. The relative positions of
brushed observations are not distorted by the presence of the
brush.
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fisheye specifies that observations beneath the brush are seen as if
the brush were a fisheye camera lens. The relative positions
of brushed observations are transformed so that observations
near the center of the brush are magnified, whereas observa-
tions away from the center appear small. The fisheye lens
may be useful for discerning individual observations within
densely clustered data.

⊕ Related Reading: Scatter Plots, Chapter 5.

⊕ Related Reading: Fitting Curves, Chapter 13.

⊕ Related Reading: Confidence Ellipses, Chapter 18.
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Chapter 36
Contour Plot

A contour plot is a graphic representation of the relationships among three numeric
variables in two dimensions. Two variables are for X and Y axes, and a third variable
Z is for contour levels. The contour levels are plotted as curves; the area between
curves can be color coded to indicate interpolated values.

You can interactively identify, label, color, and move contour levels, and change the
resolutions of rectangular grids to get better contouring quality and performance. You
can choose linear interpolation or thin-plat smoothing spline to fit contour surface
functions.

You can also toggle, identify and label observations in the contour plot, control the
orientation of the plot, and control the information shown on the axes.



Reference � Contour Plot

Figure 36.1. Contour Plot

536



Variables

Variables
To create a contour plot, choose Analyze:Contour Plot ( Z Y X ). If you have al-
ready selected three or more numeric variables, a contour plot for each unique triplet
of variables appears. If you have not selected any variables, a variables dialog ap-
pears.

Figure 36.2. Contour Plot Variables Dialog

In the dialog, select at least one Z, Y, X variable. If you select more than three
variables, you obtain a matrix of contour plots. If the X variable and Y variable are
the same, you get a plot without contours.

You can select one or more Group variables if you have grouped data. This creates
contour plots for each group.

You can select a Label variable for labeling observations in the plots.
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Method
Observations that have missing values for any of the Z, Y, X variables are not used.

If two or more observations have the same (x, y) values, their mean Z value is used
as the Z value at point (x, y).

Clicking on the Method button in the variable dialog displays the dialog in Figure
36.3.

Figure 36.3. Contour Plot Method Dialog

Grid Size:
Horizontal Size

specifies the horizontal resolution of the rectangular grid over
which contour function is evaluated.

Grid Size:
Vertical Size

specifies the vertical resolution of the rectangular grid over
which contour function is evaluated.

Fit:Linear
Interpolation

linearly interpolates contour function across rectangular grid
cells.

Fit:Thin-Plate
Smoothing Spline

fits contour function over rectangular grid using thin-plate
smoothing spline fitting. The process may be much slower
than linear interpolation. It usually produces very smooth
contours. See “Smoothing Spline Surface Plot” in Chapter
39, “Fit Analyses,” for more information on thin-plate
splines.

Number of
Contour Levels

specifies the number of contour levels to be drawn in a con-
tour plot. The contour levels are initially spaced evenly within
the range of the Z variable.
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Output
To view or modify output options associated with your contour plot, click on the
Output button of the rotating plot variables dialog. This displays the options dialog
in Figure 36.4.

Figure 36.4. Contour Plot Output Options Dialog

Variable:Names labels the axes with variable names.

Variable:Labels labels the axes with variable labels.

Variable:Both labels the axes with both names and labels.

Orientation:
Y Axis Vertical

draws the axis for the Y variable vertically. If this option is
turned off, the Y axis is horizontal.

Orientation:
Vertical Axis at
Left

places the vertical axis at the left side of the plot. If this option
is turned off, the vertical axis appears at the right side of the
plot.

Orientation:
Horizontal Axis at
Bottom

places the horizontal axis at the bottom of the plot. If this
option is turned off, the horizontal axis appears at the top of
the plot.
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You can modify other aspects of a contour plot by using the pop-up menu.

Ticks...
� Axes
� Observations

Reference Lines
� Contour Lines

Labels
Fill Areas
Color Blending
Marker Sizes � 1

2
3
4

� 5
6
7
8

� Size to Fit

Figure 36.5. Contour Plot Pop-up Menu

Ticks... specifies tick labels on either axis.

Axes toggles the display of axes.

Observations toggles the display of observations. When this menu is tog-
gled off, observations are displayed only if selected.

Reference Lines toggles the display of lines that indicate the position of major
ticks on the axes. This option is not available unless the axes
are visible.

Contour Lines toggles the display of contours (level curves).

Labels toggles the display of contour level labels.

Fill Areas toggles the display of filled contour areas. When this menu
item is toggled on, an area between two adjacent contour lev-
els is filled in with the color of the lower level.

Color Blending applies color blending to all contour levels. The color blend
in the tools window is used.

Marker Sizes sets the size of markers used to display observations.

You can select and brush observations in the contour plot even when they are not
visible. If you click on a curve at the location of an observation, you select that
observation. If you click on a contour curve between two observations, you select the
curve.
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Output

You can use the hand tool to add contour curves at new locations. To add a new level
curve, click at some (x, y) position; the level curve that passes through that location
is computed and displayed. To move a contour level, drag on the level curve, then
release the mouse at a new location (x′, y′). Mathematically, this process results in
seeing the level set that passes through (x′, y′).

Finally, you can set colors, patterns, and widths of contour lines the same way you
set these attributes for curves. See Chapter 13, “Fitting Curves,” for examples of
setting patterns, widths, and colors. See also Chapter 11, “Coloring Observations,”
for instructions on color blending.
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Chapter 37
Rotating Plot

A rotating plot is a graphic representation of the relationships among three variables.
Rotating plots enable you to see structure in the data that is not apparent in two-
dimensional scatter plots. Surface characteristics and general dependencies of one
variable on the other two variables can be brought out by the three-dimensional rep-
resentation (Becker, Cleveland, and Weil 1989).



Reference � Rotating Plot

Figure 37.1. Rotating Plot
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Variables

A surface plot is a rotating plot with a fit surface. It is a graphic representation of the
relationships among three or four variables. A fourth variable can be used to color
surface contours along Z direction in three-dimensional space. You can use linear
interpolation or a thin-plate smoothing spline to fit surface functions.

Various drawing modes are provided to view a surface. For example, you can interac-
tively color contour levels, and you can control the resolution of the rectangular grid
used to compute a fitted surface.

You can toggle the display of axes and rays in any rotating plot. You can add a
bounding cube to the display to show the range of the data and to provide perspective
to the axes. You can adjust parameters that control depth cueing, the use of color, and
the algorithm used for rotation.

Variables
To create a rotating plot, choose Analyze:Rotating Plot ( Z Y X ). If you have
already selected three or more variables, a rotating plot for each unique triplet of
variables appears. If you have not selected any variables, a variables dialog appears.

Figure 37.2. Rotating Plot Variables Dialog

In the dialog, select at least one Z, Y, X variable. If you select more than three
variables, you obtain a matrix of rotating plots.

You can select one or more Group variables if you have grouped data. This creates
rotating plots for each group.

You can select a Label variable for labeling observations in the plots.

To create a surface plot, select the Fit Surface option in the Output dialog as shown
in Figure 37.3. If the X variable and Y variable are the same, you get a rotating plot
without surface.
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You can select one or more ZColor variables to color surfaces. This creates surface
plots for each color variable. The hues in the multiple colors button in the tools
window are applied to the surface, according to interpolated values of the ZColor
variable.

Method
Observations with missing values for Z, Y, X variables are not used.

If there are observations that all share the same values for the X and Y variables, then
the mean Z value of the set is used for the purpose of fitting a surface to the data set.

Clicking on the Method button in the variables dialog displays the dialog in Figure
37.3.

Figure 37.3. Rotating Plot Methods Dialog

Grid Size:
Horizontal Size

specifies the horizontal resolution of the rectangular grid over
which surface and ZColor functions are evaluated.

Grid Size:
Vertical Size

specifies the vertical resolution of the rectangular grid over
which surface and ZColor functions are evaluated.

Fit:Linear
Interpolation

linearly interpolates surface and ZColor functions across
rectangular grid cells.

Fit:Thin-Plate
Smoothing Spline

fits surface and ZColor functions over the rectangular grid
using thin-plate smoothing spline fitting. The process may
be much slower than linear interpolation. It usually produces
very smooth surfaces and colors.

Number of
Contour Levels

specifies the number of contour levels to be drawn on the sur-
face. The contour levels are spaced evenly within the range
of the ZColor variable, or the range of the Z variable if no
ZColor variable is specified.
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Output
To view or modify output options associated with your rotating plot, click on the
Output button of the rotating plot variables dialog. This displays the options dialog
in Figure 37.4.

Figure 37.4. Rotating Plot Output Options Dialog

Rays draws a line segment from the center of the plot to each ob-
servation. These segments may help show the structure of the
data.

Cube displays a perspective cube around the observations to show
the range of the data.

Depth displays observations in two sizes (larger for near obser-
vations and smaller for distant observations) to aid three-
dimensional visualization. If the marker size is 1 while
Depth is in effect, only near observations are displayed.

Variable:Names labels the axes with variable names.

Variable:Labels labels the axes with variable labels.

Variable:Both labels the axes with both names and labels.

Axes:At
Midpoints

positions axes at the midpoints of the data, with no ticks. This
is the best position for exploratory data analysis, as it mini-
mizes interference of the axes with the point cloud.

Axes:At
Minima

positions axes at the minima of the data, with ticks. This is
the best position for viewing spatial or volumetric data.

Axes:Off removes axes from the rotating plot.
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Fit Surface fits a surface in the rotating plot.

You can modify other aspects of the rotating plot by using the rotating plot pop-up
menu. Click the menu button at the lower left corner of the plot to display the pop-up
menu.

The pop-up menu for a rotating plot without surface is shown in Figure 37.5.

Ticks...
Axes �

� Observations
Rays
Cube
Depth
Fast Draw
Marker Sizes �

�At Midpoints
At Minima
Off

Figure 37.5. Rotating Plot without Surface Pop-up Menu

Ticks... specifies tick labels on any axis.

Axes, Rays,
Cube, Depth

set the display of axes, observation vectors, perspective cube,
and depth cueing as described in the previous section on out-
put options.

Observations toggles the display of observations. When this menu item is
toggled off, observations are displayed only if selected.

Fast Draw toggles the use of drawing algorithms that may be faster, de-
pending on your host. The effect of these algorithms also de-
pends on the size of your data set. On some hosts, this menu
improves rotation speed for large data sets.

Marker Sizes sets the size of markers used to display observations.
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The pop-up menu of a rotating plot with a fitted surface is shown in Figure 37.6.

Ticks...
Axes �

� Observations
Rays
Cube
Depth
Color Blending
Drawing Modes �

Marker Sizes �

Fast Draw
�Hidden Line Removal
Block Color
Smooth Color
Off

Figure 37.6. Rotating Plot with Surface Pop-up Menu

In addition to the menu items shown in Figure 37.5, the following items are specific
for the surface plot.

Axes:Three
Sections

positions axes, with ticks, on the edges of a bounding cube
surrounding the data and fitted surface. The axes are placed
so that the tick labels minimally interfere with viewing the
data.

Color Blending applies color blending to all contour levels. The color blends
in the tools window are used. The surface is colored when the
Block Color or Smooth Color display modes are on.

Drawing Modes:
Fast Draw

toggles the use of drawing algorithms that may be faster, de-
pending on your host. The effect of these algorithms also de-
pends on the size of your data set. On some hosts, this menu
improves rotation speed for large data sets.

Drawing Modes:
Hidden Line
Removal

draws the surface in wireframe with hidden line removal. The
front and back faces are in two different colors.

Drawing Modes:
Block Color

fills each surface grid cell with a color block by using color
interpolation at the grid cell level.

Drawing Modes:
Smooth Color

fills the surface by using smooth color interpolation at the
screen pixel level.

Drawing Modes:
Off

toggles the display of the fitted surface.
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† Note: In color drawing modes, a color legend bar is drawn along the Z axis in 3D
space if no ZColor variable is specified. Otherwise, a 2D color bar is drawn at the
right side of the plot for the ZColor variable.

† Note: You can create a blended color strip based on the interpolation of up to five
colors, as described in Chapter 11, “Coloring Observations.”

With large data sets, rotation speed can be slow. The most reliable ways to optimize
rotation speed are as follows:

• Use only square observation markers.

• Use only one color for observations.

• Use a small marker size, 1 if possible.

• Use Fast Draw or Hidden Line Removal drawing modes for surface.

When modeling with two explanatory variables, you may want to display a fitted
plane in the rotating plot. You can write SAS statements to add planes and surfaces
to the data set and rotate them with the original data. Muenchen (1992) has developed
and documented a flexible set of SAS statements for this purpose.

References
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Multivariate Data Display,” Proceedings of the 11th Conference on Probability and
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Chapter 38
Distribution Analyses

Choosing Analyze:Distribution ( Y ) gives you access to a variety of distribution
analyses. For nominal Y variables, you can generate bar charts, mosaic plots, and
frequency counts tables.

For interval variables, you can generate univariate statistics, such as moments, quan-
tiles, confidence intervals for the mean, standard deviation, and variance, tests for
location, frequency counts, robust measures of the scale, tests for normality, and
trimmed and Winsorized means.

You can use parametric estimation based on normal, lognormal, exponential, or
Weibull distributions to estimate density and cumulative distribution functions and
to generate quantile-quantile plots. You can also generate nonparametric density es-
timates based on normal, triangular, or quadratic kernels.

You can use Kolmogorov statistics to generate confidence bands for the cumulative
distribution and to test the hypothesis that the data are from a completely specified
distribution with known parameters. You can also test the hypothesis that the data are
from a specific family of distributions but with unknown parameters.

Figure 38.1. Distribution Analysis
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Parametric Distributions
A parametric family of distributions is a collection of distributions with a known form
that is indexed by a set of quantities called parameters. Methods based on parametric
distributions of normal, lognormal, exponential, and Weibull are available in a distri-
bution analysis. This section describes the details of each of these distributions. Use
of these distributions is described in the sections “Graphs” and “Curves” later in this
chapter.

You can use both the density function and the cumulative distribution function to
identify the distribution. The density function is often more easily interpreted than
the cumulative distribution function.

Normal Distribution

The normal distribution has the probability density function

f(y) =
1√
2πσ

exp

(
−1

2

(
y − µ

σ

)2
)

for −∞ < y < ∞

where µ is the mean and σ is the scale parameter.

The cumulative distribution function is

F (y) = Φ
(

y − µ

σ

)
where the function Φ is the cumulative distribution function of the standard normal
variable: Φ(z) = 1√

2π

∫ z
−∞ exp

(−u2/2
)
du

Lognormal Distribution

The lognormal distribution has the probability density function

f(y) =
1

y − θ

1√
2πσ

exp

(
−1

2

(
log(y − θ) − ζ

σ

)2
)

for y > θ

where θ is the threshold parameter, ζ is the scale parameter, and σ is the shape pa-
rameter.

The cumulative distribution function is

F (y) = Φ
(

log(y − θ) − ζ

σ

)
for y > θ
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Exponential Distribution

The exponential distribution has the probability density function

f(y) =
1
σ

exp
(
−y − θ

σ

)
for y > θ

where θ is the threshold parameter and σ is the scale parameter.

The cumulative distribution function is

F (y) = 1 − exp
(
−y − θ

σ

)
for y > θ

Weibull Distribution

The Weibull distribution has the probability density function

f(y) =
c

σ

(
y − θ

σ

)c−1

exp
(
−

(
y − θ

σ

)c)
for y > θ, c > 0

where θ is the threshold parameter, σ is the scale parameter, and c is the shape pa-
rameter.

The cumulative distribution function is

F (y) = 1 − exp
(
−

(
y − θ

σ

)c)
for y > θ
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Variables
To create a distribution analysis, choose Analyze:Distribution ( Y ). If you have al-
ready selected one or more variables, a distribution analysis for each selected variable
appears. If you have not selected any variables, a variables dialog appears.

Figure 38.2. Distribution Variables Dialog

Select at least one Y variable for each distribution analysis.

You can select one or more Group variables if you have grouped data. This creates
one distribution analysis for each group.

You can select a Label variable to label observations in the plots.

You can select a Freq variable. If you select a Freq variable, each observation is
assumed to represent n observations, where n is the value of the Freq variable.

You can select a Weight variable to specify relative weights for each observation in
the analysis. The details of weighted analyses are explained in the individual sections
of this chapter.
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Method
Observations with missing values for a Y variable are not used in the analysis for that
variable. Observations with Weight or Freq values that are missing or that are less
than or equal to zero are not used. Only the integer part of Freq values is used.

The following notation is used in the rest of this chapter:

• n is the number of nonmissing values.

• yi is the ith observed nonmissing value.

• y(i)is the ith ordered nonmissing value, y(1)≤y(2)≤ . . .≤y(n).

• y is the sample mean,
∑

i yi/n.

• d is the variance divisor.

• s2 is the sample variance,
∑

i (yi − y)2/d.

• zi is the standardized value, (yi − y)/s.

The summation
∑

i represents a summation of
∑n

i=1.

Based on the variance definition, vardef, the variance divisor d is computed as

• d = n − 1 for vardef=DF, degrees of freedom

• d = n for vardef=N, number of observations

The skewness is a measure of the tendency of the deviations from the mean to be
larger in one direction than in the other. The sample skewness is calculated as

• g1 = c3n
∑

i z3
i for vardef=DF

• g1 = 1
n

∑
i z3

i for vardef=N

where c3n = n
(n−2)

1
(n−1) .

The kurtosis is primarily a measure of the heaviness of the tails of a distribution. The
sample kurtosis is calculated as

• g2 = c4n
∑

i z4
i − 3cn for vardef=DF

• g2 = 1
n

∑
i z4

i − 3 for vardef=N

where c4n = n(n+1)
(n−2)(n−3)

1
(n−1) and cn = (n−1)2

(n−2)(n−3) .
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When the observations are independently distributed with a common mean and un-
equal variances, σ2

i = σ2/wi, where wi are individual weights, weighted analyses
may be appropriate. You select a Weight variable to specify relative weights for
each observation in the analysis.

The following notation is used in weighted analyses:

• wi is the weight associated with yi.

• w(i) is the weight associated with y(i).

• w is the average observation weight,
∑

i wi/n.

• yw is the weighted sample mean,
∑

i wiyi/
∑

i wi.

• s2
w is the weighted sample variance,

∑
i wi(yi − yw)2/d.

• zwi is the standardized value, (yi − yw)/(sw/
√

wi).

In addition to vardef=DF and vardef=N, the variance divisor is also computed as

• d =
∑

i wi − 1 for vardef=WDF, sum of weights minus 1

• d =
∑

i wi for vardef=WGT, sum of weights

With V ar(yi) = σ2
i = σ2/wi, V ar(yw) = σ2/

∑
i wi and the expected value

E

(∑
i

wi(yi − yw)2
)

= E

(∑
i

wi(yi − µ)2 −
∑

i

wi(yw − µ)2
)

= (n − 1)σ2

† Note: The use of vardef=WDF/WGT may not be appropriate since it is the weighted
average of individual variances, σ2

i , which have unequal expected values.

For vardef=DF/N, s2
w is the variance of observations with unit weight and may not be

informative in the weighted plots of parametric normal distributions. SAS/INSIGHT
software uses the weighted sample variance for an observation with average weight,
s2
a = s2

w/w, to replace s2
w in the plots.

The weighted skewness is computed as

• gw1 = c3n
∑

i zwi
3 = c3n

∑
i w

3
2
i (yi−y

sw
)3 for DF

• gw1 = 1
n

∑
i zwi

3 = 1
n

∑
i w

3
2
i (yi−y

sw
)3 for N

The weighted kurtosis is computed as
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• gw2 = c4n
∑

i zwi
4 − 3cn = c4n

∑
i w2

i (
yi−y
sw

)4 − 3cn for DF

• gw2 = 1
n

∑
i zwi

4 − 3 = 1
n

∑
i w2

i (
yi−y
sw

)4 − 3 for N

561



Reference � Distribution Analyses

The formulations are invariant under the transformation w∗
i = cwi, c > 0. The sam-

ple skewness and kurtosis are set to missing if vardef=WDF or vardef=WGT.

To view or change the divisor d used in the calculation of variances, or to view or
change the use of observations with missing values, click on the Method button
from the variables dialog to display the method options dialog.

Figure 38.3. Distribution Method Options Dialog

By default, SAS/INSIGHT software uses vardef=DF, degrees of freedom to com-
pute the variance divisor.

When multiple Y variables are analyzed, and some Y variables have missing values,
the Use Obs with Missing Values option uses all observations with nonmissing
values for the Y variable being analyzed. If the option is turned off, observations with
missing values for any Y variable are not used for any analysis.
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Output
To view or change the options associated with your distribution analysis, click on the
Output button from the variables dialog. This displays the output options dialog.

Figure 38.4. Distribution Output Options Dialog

The options you set in this dialog determine which tables and graphs appear in
the distribution window. A distribution analysis can include descriptive statistics,
graphs, density estimates, and cumulative distribution function estimates. By default,
SAS/INSIGHT software displays a moments table, a quantiles tables, a box plot, and
a histogram. Individual tables and graphs are described following this section.

You can specify the α coefficient in the Parameters:Alpha: entry field. The
100(1 − α)% confidence level is used in the basic confidence intervals and the
trimmed/Winsorized means tables. You can specify µ0 in the Parameters: Mu0:
entry field. µ0 is used in the tests for location and the trimmed/Winsorized means
tables. You can also specify θ in the Parameters: Theta: entry field. The pa-
rameter θ is used in the parametric density estimation and cumulative distribution for
lognormal, exponential, and Weibull distributions.

If you select a Weight variable, tables of weighted moments, weighted quan-
tiles, weighted confidence intervals, weighted tests for location, and weighted fre-
quency counts can be generated. Robust measures of scale, tests for normality,
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and trimmed/Winsorized means are not computed. Graphs of weighted box plot,
weighted histogram, and weighted normal QQ plot can also be generated.
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The Trimmed/Winsorized Means button enables you to view or change
the options associated with trimmed and Winsorized means. Click on
Trimmed/Winsorized Means to display the Trimmed/Winsorized Means
dialog.

Figure 38.5. Trimmed / Winsorized Means Dialog

In the dialog, you choose the number of observations trimmed or Winsorized in each
tail in (1/2)N and the percent of observations trimmed or Winsorized in each tail in
(1/2)Percent. If you specify a percentage, the smallest integer greater than or equal
to np is trimmed or Winsorized.

The Density Estimation button enables you to set the options associated with both
parametric density and nonparametric kernel density estimation. Click on Density
Estimation to display the Density Estimation dialog.

565



Reference � Distribution Analyses

Figure 38.6. Density Estimation Dialog

If you select Parametric Estimation:Normal, a normal distribution with the
sample mean and standard deviation is created. For the lognormal, exponen-
tial, and Weibull distributions, you specify the threshold parameter θ in the
Parameters:Theta: entry field in the distribution output options dialog, as shown
in Figure 38.4, and have the remaining parameters estimated by the maximum-
likelihood estimates.

566



Output

If you select a Weight variable, the weighted parametric normal density and
weighted kernel density are generated. The parametric lognormal, exponential, and
Weibull density are not computed.

The Cumulative Distribution button enables you to set the options associated with
cumulative distribution estimation. Click on Cumulative Distribution to display
the Cumulative Distribution dialog.

Figure 38.7. Cumulative Distribution Dialog

If you select Fit Parametric:Normal, a normal distribution with the sample mean
and standard deviation is created. For the lognormal, exponential, and Weibull dis-
tributions, you specify the threshold parameter θ in the Parameters:Theta: entry
field in the distribution output options dialog, as shown in Figure 38.4, and have the
remaining parameters estimated by the maximum-likelihood estimates.

If you select a Weight variable, weighted empirical and normal cumulative distri-
bution functions can be generated. The confidence bands, the parametric lognormal,
exponential, and Weibull cumulative distributions, and tests for distribution are not
computed.

Click on OK to close the dialogs and create your distribution analysis.
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Tables
You can generate distribution tables by setting the options in the output options dialog
or by choosing from the Tables menu.

File Edit Analyze Tables Graphs Curves Vars Help
� Moments
� Quantiles

Basic Confidence Intervals �

Tests for Location...
Frequency Counts
Robust Measures of Scale
Tests for Normality
Trimmed/Winsorized Mean �

Figure 38.8. Tables Menu

The tables of robust measures of scale, tests for normality, and trimmed/Winsorized
mean are not created for weighted analyses.

Moments

The Moments table, as shown in Figure 38.9, includes the following statistics:

• N is the number of nonmissing values, n.

• Sum Wgts is the sum of weights and is equal to n if no Weight variable is
specified.

• Mean is the sample mean, y.

• Sum is the variable sum,
∑

i yi.

• Std Dev is the standard deviation, s.

• Variance is the variance, s2.

• Skewness is the sample skewness, g1.

• Kurtosis is the sample kurtosis, g2.

• USS is the uncorrected sum of squares,
∑

i y2
i .

• CSS is the sum of squares corrected for the mean,
∑

i (yi − y)2.

• CV is the percent coefficient of variation, 100s/y.

• Std Mean is the standard error of the mean, s/
√

n. The value is set to missing
if vardef �=DF.
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Figure 38.9. Moments and Quantiles Tables

For weighted analyses, the Weighted Moments table includes the following statis-
tics:

• N is the number of nonmissing values, n.

• Sum Wgts is the sum of weights,
∑

i wi.

• Mean is the weighted sample mean, yw.

• Sum is the weighted variable sum,
∑

i wiyi.

• Std Dev is the weighted standard deviation, sw.

• Variance is the weighted variance, s2
w.

• Skewness is the weighted sample skewness, gw1.

• Kurtosis is the weighted sample kurtosis, gw2.

• USS is the uncorrected weighted sum of squares,
∑

i wiy
2
i .

• CSS is the weighted sum of squares corrected for the mean,
∑

i wi(yi − yw)2.

• CV is the percent coefficient of variation, 100sw/yw .

• Std Mean is the standard error of the weighted mean, sw/
∑

i wi.

The value is set to missing if vardef�=DF.
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Quantiles

It is often convenient to subdivide the area under a density curve so that the area to
the left of the dividing value is some specified fraction of the total unit area. For a
given value of p between 0 and 1, the pth quantile (or 100pth percentile) is the value
such that the area to the left of it is p.

The pth quantile is computed from the empirical distribution function with averaging:

y =

⎧⎨⎩ 1
2(y(i) + y(i+1)) if f = 0

y(i+1) if f > 0

where i is the integer part and f is the fractional part of np = i + f .

If you specify a Weight variable, the pth quantile is computed as

y =

⎧⎪⎨⎪⎩
1
2(y(i) + y(i+1)) if

∑i
j=1 w(j) = p

∑n
j=1 w(j)

y(i+1) if
∑i

j=1 w(j) < p
∑n

j=1 w(j) <
∑i+1

j=1 w(j)

When each observation has an identical weight, the weighted quantiles are identical
to the unweighted quantiles.

The Quantiles table, as shown in Figure 38.9, includes the following statistics:

• 100% Max is the maximum, y(n).

• 75% Q3 is the upper quartile (the 75th percentile).

• 50% Med is the median.

• 25% Q1 is the lower quartile (the 25th percentile).

• 0% Min is the minimum, y(1).

• 99%, 97.5%, 95%, 90%, 10%, 5%, 2.5%, and 1% give the corresponding
percentiles.

• Range is the range, y(n) − y(1).

• Q3-Q1, the interquartile range, is the difference between the upper and lower
quartiles.

• Mode is the most frequently occurring value. When there is more than one
mode, the lowest mode is displayed. When all the distinct values have fre-
quency one, the value is set to missing.
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Basic Confidence Intervals
Assuming that the population is normally distributed, the Confidence Intervals
table gives confidence intervals for the mean, standard deviation, and variance at the
confidence coefficient specified. You specify the confidence intervals either in the
distribution output options dialog or from the Tables menu.

File Edit Analyze Tables Graphs Curves Vars Help
� Moments
� Quantiles

Basic Confidence Intervals �

Tests for Location...
Frequency Counts
Robust Measures of Scale
Tests for Normality
Trimmed/Winsorized Mean �

99%
98%
95%
90%
80%
Other...

Figure 38.10. Basic Confidence Intervals Menu

The 100(1 − α)% confidence interval for the mean has upper and lower limits

y±t(1−α/2)
s√
n

where t(1−α/2) is the (1 − α/2) critical value of the Student’s t statistic with n − 1
degrees of freedom.

For weighted analyses, the limits are

yw±t(1−α/2)
sw√∑

i wi

For large values of n, t(1−α/2) acts as z(1−α/2), the (1 − α/2) critical value of the
standard normal distribution.

The 100(1− α)% confidence interval for the standard deviation has upper and lower
limits

s

√
n − 1
cα/2

and s

√
n − 1

c(1−α/2)

where cα/2 and c(1−α/2) are the α/2 and (1 − α/2) critical values of the chi-square
distribution with n − 1 degrees of freedom.

For weighted analyses, the limits are

sw

√
n − 1
cα/2

and sw

√
n − 1

c(1−α/2)
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The 100(1 − α)% confidence interval for the variance has upper and lower limits
equal to the squares of the corresponding upper and lower limits for the standard
deviation.

Figure 38.11 shows a table of the 95% confidence intervals for the mean, standard
deviation, and variance.

Figure 38.11. Basic Confidence Intervals and Tests for Location Tables

† Note: The confidence intervals are set to missing if vardef�=DF.

Tests for Location

The location tests include the Student’s t, sign, and signed rank tests of the hypothesis
that the mean/median is equal to a given value µ against the two-sided alternative that
the mean/median is not equal to µ. The Student’s t test is appropriate when the data
are from an approximately normal population; otherwise, nonparametric tests such
as the sign or signed rank test should be used.

The Student’s t gives a Student’s t statistic

t =
y − µ0

s /
√

n
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For weighted analyses, the t statistic is computed as

t =
yw − µ0

sw /
√∑

i wi

Assuming that the null hypothesis (H0: mean = µ) is true and the population is nor-
mally distributed, the t statistic has a Student’s t distribution with n − 1 degrees of
freedom. The p-value is the probability of obtaining a Student’s t statistic greater in
absolute value than the absolute value of the observed statistic t.

† Note: The t statistic and p-value are set to missing if vardef�=DF.

The Sign statistic is

M =
1
2
(n+ − n−)

where n+ is the number of observations with values greater than µ, and n− is the
number of observations with values less than µ.

Assuming that the null hypothesis (H0: median = µ0) is true, the p-value for the
observed statistic M is

Prob{|M| >= |M|} = (
1
2
)nt−1

min(n+,n−)∑
i=0

(
nt

i

)

where nt = n+ + n− is the number of yi values not equal to µ0.

The Signed Rank test assumes that the distribution is symmetric. The signed rank
statistic is computed as S = Σr+

i − nt(nt + 1)/4 where r+
i is the rank of |yi − µ0|

after discarding yi values equal to µ0, and the sum is calculated for values of yi > µ0.
Average ranks are used for tied values.

The p-value is the probability of obtaining a signed rank statistic greater in absolute
value than the absolute value of the observed statistic S. If nt <= 20, the p-value
of the statistic S is computed from the exact distribution of S. When nt > 20, the
significance level of S is computed by treating

√
nt − 1

S√
ntV − S2

as a Student’s t variate with nt − 1 degrees of freedom, where V is computed as

V =
1
24

{nt(nt + 1)(2nt + 1) − 1
2

n∑
j=1

tj(tj + 1)(tj − 1)}.

The sum is calculated over groups tied in absolute value, and tj is the number of tied
values in the jth group (Iman 1974, Lehmann 1975).
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You can specify location tests either in the distribution output options dialog or in
the Location Tests dialog after choosing Tables:Tests for Location from the
menu.

Figure 38.12. Location Tests Dialog

In the dialog, you can specify the parameter µ0. Figure 38.11 shows a table of the
three location tests for µ0 = 60. Here, Num Obs != Mu0 is the number of ob-
servations with values not equal to µ0, and Num Obs > Mu0 is the number of
observations with values greater than µ0.

For weighted analyses, the sign and signed rank tests are not generated.

Frequency Counts

The Frequency Counts table, a portion of which is shown in Figure 38.13, in-
cludes the variable values, counts, percentages, and cumulative percentages. You can
generate frequency tables for both interval and nominal variables.

If you specify a Weight variable, the table also includes the weighted counts. These
weighted counts are used to compute the percentages and cumulative percentages.
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Figure 38.13. Frequency Counts Table
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Robust Measures of Scale

The sample standard deviation is a commonly used estimator of the population scale.
However, it is sensitive to outliers and may not remain bounded when a single data
point is replaced by an arbitrary number. With robust scale estimators, the estimates
remain bounded even when a portion of the data points are replaced by arbitrary
numbers.

A simple robust scale estimator is the interquartile range, which is the difference be-
tween the upper and lower quartiles. For a normal population, the standard deviation
σ can be estimated by dividing the interquartile range by 1.34898.

Gini’s mean difference is also a robust estimator of the standard deviation σ. It is
computed as

G =
1(
n
2

) ∑
i<j

|yi − yj |

If the observations are from a normal distribution, then
√

πG/2 is an unbiased esti-
mator of the standard deviation σ.

A very robust scale estimator is the median absolute deviation (MAD) about the me-
dian (Hampel 1974).

MAD = medi(|yi − medj(yj)|)

where the inner median, medj(yj), is the median of the n observations and the outer
median, medi, is the median of the n absolute values of the deviations about the
median.

For a normal distribution, 1.4826 MAD can be used to estimate the standard deviation
σ.

The MAD statistic has low efficiency for normal distributions and it may not be ap-
propriate for symmetric distributions. Rousseeuw and Croux (1993) proposed two
new statistics as alternatives to the MAD statistic, Sn and Qn.

Sn = 1.1926 medi( medj(|yi − yj |))

where the outer median, medi, is the median of the n medians of

{|yi − yj |; j = 1, 2, .., n}.

To reduce small-sample bias, csnSn is used to estimate the standard deviation σ,
where csn is a correction factor (Croux and Rousseeuw 1992).
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The second statistic is computed as

Qn = 2.2219{|yi − yj |; i < j}(k)

where k =
(
h
2

)
, h = [n/2] + 1 and [n/2] is the integer part of n/2. That is, Qn is

2.2219 times the kth order statistic of the
(
n
2

)
distances between data points.

The bias-corrected statistic cqnQn is used to estimate the standard deviation σ, where
cqnis the correction factor.

A Robust Measures of Scale table includes the interquartile range, Gini’s mean
difference, MAD, Sn, and Qn, with their corresponding estimates of σ, as shown in
Figure 38.14.

Figure 38.14. Robust Measures of Scale and Tests for Normality
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Tests for Normality

SAS/INSIGHT software provides tests for the null hypothesis that the input data val-
ues are a random sample from a normal distribution. These test statistics include the
Shapiro-Wilk statistic (W) and statistics based on the empirical distribution function:
the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics.

The Shapiro-Wilk statistic is the ratio of the best estimator of the variance (based on
the square of a linear combination of the order statistics) to the usual corrected sum
of squares estimator of the variance. W must be greater than zero and less than or
equal to one, with small values of W leading to rejection of the null hypothesis of
normality. Note that the distribution of W is highly skewed. Seemingly large values
of W (such as 0.90) may be considered small and lead to the rejection of the null
hypothesis.

The W statistic is computed when the sample size is less than or equal to 2000. When
the sample size is greater than three, the coefficients for computing the linear combi-
nation of the order statistics are approximated by the method of Royston (1992).

With a sample size of three, the probability distribution of W is known and is used to
determine the significance level. When the sample size is greater than three, simula-
tion results are used to obtain the approximate normalizing transformation (Royston
1992)

Zn =

⎧⎪⎪⎨⎪⎪⎩
(− log(γ − log(1 − Wn)) − µ)/σ if 4 ≤ n ≤ 11

(log(1 − Wn) − µ)/σ if 12 ≤ n ≤ 2000

where γ, µ, and σ are functions of n, obtained from simulation results, and Zn is a
standard normal variate with large values indicating departure from normality.

The Kolmogorov statistic assesses the discrepancy between the empirical distribution
and the estimated hypothesized distribution. For a test of normality, the hypothesized
distribution is a normal distribution function with parameters µ and σ estimated by
the sample mean and standard deviation. The probability of a larger test statistic is
obtained by linear interpolation within the range of simulated critical values given by
Stephens (1974).
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The Cramer-von Mises statistic ( W 2) is defined as

W 2 = n

∫ ∞

−∞
(Fn(x) − F (x))2dF (x)

and it is computed as

W 2 =
n∑

i=1

(
U(i) −

2i − 1
2n

)2

+
1

12n

where U(i) = F (y(i)) is the cumulative distribution function value at y(i), the ith or-
dered value. The probability of a larger test statistic is obtained by linear interpolation
within the range of simulated critical values given by Stephens (1974).

The Anderson-Darling statistic (A2) is defined as

A2 = n

∫ ∞

−∞
(Fn(x) − F (x))2{F (x)(1 − F (x))}−1dF (x)

and it is computed as

A2 = −n − 1
n

n∑
i=1

{(2i − 1)(log(U(i) + log(1 − U(n+1−i)))}

The probability of a larger test statistic is obtained by linear interpolation within the
range of simulated critical values in D’Agostino and Stephens (1986).

A Tests for Normality table includes the Shapiro-Wilk, Kolmogorov, Cramer-von
Mises, and Anderson-Darling test statistics, with their corresponding p-values, as
shown in Figure 38.14.
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Trimmed and Winsorized Means
When outliers are present in the data, trimmed and Winsorized means are robust es-
timators of the population mean that are relatively insensitive to the outlying values.
Therefore, trimming and Winsorization are methods for reducing the effects of ex-
treme values in the sample.

The k-times trimmed mean is calculated as

ytk =
1

n − 2k

n−k∑
i=k+1

y(i)

The trimmed mean is computed after the k smallest and k largest observations are
deleted from the sample. In other words, the observations are trimmed at each end.

The k-times Winsorized mean is calculated as

ywk =
1
n
{(k + 1)y(k+1) +

n−k−1∑
i=k+2

y(i) + (k + 1)y(n−k)}

The Winsorized mean is computed after the k smallest observations are replaced by
the (k + 1)st smallest observation, and the k largest observations are replaced by the
(k +1)st largest observation. In other words, the observations are Winsorized at each
end.

For a symmetric distribution, the symmetrically trimmed or Winsorized mean is an
unbiased estimate of the population mean. But the trimmed or Winsorized mean does
not have a normal distribution even if the data are from a normal population.

The Winsorized sum of squared deviations is defined as

s2
wk = (k + 1)(y(k+1) − ywk)

2 +
n−k−1∑
i=k+2

(y(i) − ywk)
2 + (k + 1)(y(n−k) − ywk)

2

A robust estimate of the variance of the trimmed mean ytk can be based on the
Winsorized sum of squared deviations (Tukey and McLaughlin 1963). The result-
ing trimmed t test is given by

ttk =
ytk

STDERR(ytk)

where STDERR(ytk) is the standard error of ytk:

STDERR(ytk) =
swk√

(n − 2k)(n − 2k − 1)

A Winsorized t test is given by

twk =
ywk

STDERR(ywk)

where STDERR(ywk) is the standard error of ywk:

STDERR(ywk) =
n − 1

n − 2k − 1
swk√

n(n − 1)
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When the data are from a symmetric distribution, the distribution of the trimmed
t statistic ttk or the Winsorized t statistic twk can be approximated by a Student’s
t distribution with n − 2k − 1 degrees of freedom (Tukey and McLaughlin 1963,
Dixon and Tukey 1968).

You can specify the number or percentage of observations to be trimmed or
Winsorized from each end either by using the Trimmed/Winsorized Means op-
tions dialog or by using the Trimmed/Winsorized Means dialog after choosing
Tables:Trimmed/Winsorized Mean:(1/2)N or Tables:Trimmed/Winsorized
Mean:(1/2)Percent from the menus.

Figure 38.15. (1/2)N Menu
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Figure 38.16. (1/2)Percent Menu

If you specify a percentage, 100p%, 0 < p < 1, the smallest integer greater than or
equal to np is trimmed or Winsorized from each end.
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The Trimmed Mean and Winsorized Mean tables, as shown in Figure 38.17,
contain the following statistics:

• (1/2)Percent is the percentage of observations trimmed or Winsorized at each
end.

• (1/2)N is the number of observations trimmed or Winsorized at each end.

• Mean is the trimmed or Winsorized mean.

• Std Mean is the standard error of the trimmed or Winsorized mean.

• DF is the degrees of freedom used in the Student’s t test for the trimmed or
Winsorized mean.

• Confidence Interval includes Level (%): the confidence level, LCL: lower
confidence limit, and UCL: upper confidence limit.

• t for H0: Mean=Mu0 includes Mu0: the location parameter µ0, t Stat:
the trimmed or Winsorized t statistic for testing the hypothesis that the pop-
ulation mean is µ0, and p-value: the approximate p-value of the trimmed or
Winsorized t statistic.

Figure 38.17. Trimmed Means and Winsorized Means Tables
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Graphs
You can generate a histogram, a box plot, or a quantile-quantile plot in the distribution
output options dialog or from the Graphs menu.

File Edit Analyze Tables Graphs Curves Vars Help
� Box Plot/Mosaic Plot
� Histogram/Bar Chart

QQ Plot...

Figure 38.18. Graphs Menu

If you select a Weight variable, a weighted box plot/mosaic plot, a weighted his-
togram/bar chart, and a weighted normal QQ plot can be generated.

Box Plot/Mosaic Plot

The box plot is a stylized representation of the distribution of a variable, and it is
shown in Figure 38.19. You can also display mosaic plots for nominal variables, as
shown in Figure 38.37.

In a box plot, the sample mean and sample standard deviation computed with
vardef=DF are used in the construction of the mean diamond, as shown in Figure
38.19.

If you select a Weight variable, a weighted box plot based on weighted quantiles is
created. The weighted sample mean and the weighted sample standard deviation of
an observation with average weight for vardef=DF is used in the construction of the
mean diamond.

⊕ Related Reading: Box Plots, Chapter 33.

Histogram/Bar Chart

The histogram is the most widely used density estimator, and it is shown in Figure
38.19. You can also display bar charts for nominal variables, as shown in Figure
38.37.

⊕ Related Reading: Bar Charts, Chapter 32.
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Figure 38.19. Box Plot and Histogram

QQ Plot

A quantile-quantile plot (QQ plot) compares ordered values of a variable with quan-
tiles of a specific theoretical distribution. If the data are from the theoretical distri-
bution, the points on the QQ plot lie approximately on a straight line. The normal,
lognormal, exponential, and Weibull distributions can be used in the plot.

You can specify the type of QQ plot from the QQ Plot dialog after choosing
Graphs:QQ Plot from the menu.
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Figure 38.20. QQ Plot Dialog

In the dialog, you must specify a shape parameter for the lognormal or Weibull dis-
tribution. The normal QQ plot can also be generated with the graphs options dialog.
As described later in this chapter, you can also add a reference line to the QQ plot
from the Curves menu.

The following expression is used in the discussion that follows:

vi =
i − 0.375
n + 0.25

for i = 1, 2, . . . , n

where n is the number of nonmissing observations.

For the normal distribution, the ith ordered observation is plotted against the normal
quantile Φ−1(vi), where Φ−1 is the inverse standard cumulative normal distribution.
If the data are normally distributed with mean µ and standard deviation σ, the points
on the plot should lie approximately on a straight line with intercept µ and slope
σ. The normal quantiles are stored in variables named N–name for each variable,
where name is the Y variable name.

For the lognormal distribution, the ith ordered observation is plotted against the log-
normal quantile exp

(
σΦ−1(vi)

)
for a given shape parameter σ. If the data are log-

normally distributed with parameters θ, σ, and ζ, the points on the plot should lie
approximately on a straight line with intercept θ and slope exp(ζ). The lognormal
quantiles are stored in variables named L–name for each variable, where name is
the Y variable name.

For the exponential distribution, the ith ordered observation is plotted against the
exponential quantile −log(1 − vi). If the data are exponentially distributed with pa-
rameters θ and σ, the points on the plot should lie approximately on a straight line
with intercept θ and slope σ. The exponential quantiles are stored in variables named
E–name for each variable, where name is the Y variable name.

For the Weibull distribution, the ith ordered observation is plotted against the Weibull
quantile (−log(1 − vi))

1
c for a given shape parameter c. If the data are from a Weibull
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distribution with parameters θ, σ, and c, the points on the plot should lie approx-
imately on a straight line with intercept θ and slope σ. The Weibull quantiles are
stored in variables named W–name for each variable, where name is the Y vari-
able name.

A normal QQ plot is shown in Figure 38.21. You can also add a reference line to
the QQ plot from the Curves menu. You specify the intercept and slope for the
reference line from the Curves menu.

Figure 38.21. Normal QQ Plot

Further information on interpreting quantile-quantile plots can be found in Chambers
et al. (1983).

If you select a Weight variable, a weighted normal QQ plot can be generated.
Lognormal, exponential, and Weibull QQ plots are not computed.

For a weighted normal QQ plot, the ith ordered observation is plotted against the
normal quantile Φ−1(vi), where

vi =
(
∑i

j=1 w(j))(1 − 0.375/i)
W (1 + 0.25/n)
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When each observation has an identical weight, w(j) = w0, the formulation reduces
to the usual expression in the unweighted normal probability plot

vi =
i − 0.375
n + 0.25

If the data are normally distributed with mean µ and standard deviation σ and if
each observation has approximately the same weight (w0), then, as in the unweighted
normal QQ plot, the points on the plot should lie approximately on a straight line
with intercept µ and slope σ for vardef=WDF/WGT and with slope σ/

√
w0 for

vardef=DF/N.
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Curves
Density estimation is the construction of an estimate of the density function from
the observed data. The methods provided for univariate density estimation include
parametric estimators and kernel estimators.

Cumulative distribution analyses include the empirical and the parametric cumula-
tive distribution function. The empirical distribution function is a nonparametric es-
timator of the cumulative distribution function. You can fit parametric distribution
functions if the data are from a known family of distributions, such as the normal,
lognormal, exponential, or Weibull.

You can use the Kolmogorov statistic to construct a confidence band for the unknown
distribution function. The statistic also tests the hypotheses that the data are from
a completely specified distribution or from a specified family of distributions with
unknown parameters.

You can generate density estimates and cumulative distribution analysis in the output
options dialog, as described previously in the section “Output,” or by choosing from
the Curves menu, as shown in Figure 38.22. You can also generate QQ reference
lines from the Curves menu.

File Edit Analyze Tables Graphs Curves Vars Help

Parametric Density...
Kernel Density...
Empirical CDF
CDF Confidence Band �

Parametric CDF...
Test for a Specific Distribution...
Test for Distribution...
QQ Ref Line...

Figure 38.22. Curves Menu

If you select a Weight variable, curves of parametric weighted normal density,
weighted kernel density, weighted empirical CDF, parametric weighted normal CDF,
and weighted QQ reference line (based on weighted least squares) can be generated.
CDF confidence band, test for a specific distribution, and test for distribution are not
computed.
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Parametric Density

Parametric density estimation assumes that the data are from a known family of dis-
tributions, such as the normal, lognormal, exponential, and Weibull. After choosing
Curves:Parametric Density from the menu, you specify the family of distribu-
tions in the Parametric Density Estimation dialog, as shown in Figure 38.23.

Figure 38.23. Parametric Density Dialog

The default uses a normal distribution with the sample mean and standard deviation
as estimates for µ and σ. You can also specify your own µ and σ parameters for the
normal distribution by choosing Method:Specification in the dialog.

For the lognormal, exponential, and Weibull distributions, you can specify your
own threshold parameter θ in the Parameter:MLE, Theta entry field and have
the remaining parameters estimated by the maximum-likelihood estimates (MLE) by
choosing Method:Sample Estimates/MLE. Otherwise, you can specify all the
parameters in the Specification fields and choose Method:Specification in the
dialog.

If you select a Weight variable, only normal density can be created. For
Method:Sample Estimates/MLE, yw and sw are used to display the den-
sity with vardef=WDF/WGT; yw and sa are used with vardef=DF/N. For
Method:Specification, the values in the entry fields Mean/Theta and Sigma
are used to display the density with vardef=WDF/WGT; the values of Mean/Theta
and Sigma/

√
w are used with vardef=DF/N.
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Figure 38.24 displays a normal density estimate with µ = 58.4333 (the sample mean)
and σ = 8.2807 (the sample standard deviation). It also displays a lognormal density
estimate with θ = 30 and with σ and ζ estimated by the MLE.

Figure 38.24. Parametric Density Estimation

The Mode is the point with the largest estimated density. Use sliders in the table to
change the density estimate. When MLE is used for the lognormal, exponential, and
Weibull distributions, changing the value of θ in the Mean/Theta slider also causes
the remaining parameters to be estimated by the MLE for the new θ.
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Kernel Density

Kernel density estimation provides normal, triangular, and quadratic kernel density
estimators. The general form of a kernel estimator is

f̂λ(y) =
1

nλ

n∑
i=1

K0

(
y − yi

λ

)

where K0 is a kernel function and λ is the bandwidth.

Some symmetric probability density functions commonly used as kernel functions
are

• Normal K0(t) = 1√
2π

exp
(−t2/2

)
for −∞ < t < ∞

• Triangular K0(t) =

⎧⎨⎩ 1 − |t|
0

for |t| ≤ 1

otherwise

• Quadratic K0(t) =

⎧⎨⎩ 3
4(1 − t2)

0

for |t| ≤ 1

otherwise

Both theory and practice suggest that the choice of a kernel function is not crucial
to the statistical performance of the method (Epanechnikov 1969). With a specific
kernel function, the value of λ determines the degree of averaging in the estimate of
the density function and is called a smoothing parameter. You select a bandwidth λ
for each kernel estimator by specifying c in the formula

λ = n− 1
5 Qc

where Q is the sample interquartile range of the Y variable. This formulation makes
c independent of the units of Y.

For a specific kernel function, the discrepancy between the density estimator f̂λ(y)
and the true density f(y) can be measured by the mean integrated square error

MISE(λ) =
∫

y
{E(f̂λ(y)) − f(y)}2dy +

∫
y
Var(f̂λ(y)) dy

which is the sum of the integrated square bias and the integrated variance.

An approximate mean integrated square error based on the bandwidth λ is

AMISE(λ) =
1
4
λ4(

∫
t
t2K(t)dt)2

∫
y
(f ′′(y))2 dy +

1
nλ

∫
t
K(t)2dt

592



Curves

If f(y) is assumed normal, then a bandwidth based on the sample mean and variance
can be computed to minimize AMISE. The resulting bandwidth for a specific kernel is
used when the associated kernel function is selected in the density estimation options
dialog. This is equivalent to choosing MISE from the normal, triangular, or quadratic
kernel menus. If f(y) is not roughly normal, this choice may not be appropriate.

SAS/INSIGHT software divides the range of the data into 128 evenly spaced inter-
vals, then approximates the data on this grid and uses the fast Fourier transformation
(Silverman 1986) to estimate the density.

If you select a Weight variable, the kernel estimator is modified to include the indi-
vidual observation weights.

f̂λ(y) =
1∑

i wiλ

n∑
i=1

wiK0

(
y − yi

λ

)

You can specify the kernel function in the density estimation options dialog or from
the Curves menu. When you specify the kernel function in the density estimation
options dialog, AMISE is used. After choosing Curves:Kernel Density from the
menu, you can specify the kernel function and use either AMISE or a specified C
value in the Kernel Density Estimation dialog.

Figure 38.25. Kernel Density Dialog

The default uses a normal kernel density with a c value that minimizes the AMISE.
Figure 38.26 displays normal kernel estimates with c = 0.7852 (the AMISE value)
and c = 0.25. Small values of c (and hence small values of the smoothing parameter
λ) provide jagged estimates as the curve more closely follows the data points. Large
values of c provide smoother estimates. The Mode is the point with the largest
estimated density. Use the slider to change the smoothing parameter, c.

593



Reference � Distribution Analyses

Figure 38.26. Kernel Density Estimation

Empirical CDF
The empirical distribution function of a sample, Fn(y), is the proportion of observa-
tions less than or equal to y.

Fn(y) =
1
n

n∑
i=1

I(yi≤y)

where n is the number of observations, and I(yi ≤ y) is an indicator function with
value 1 if yi ≤ y and with value 0 otherwise.

The Kolmogorov statistic D is a measure of the discrepancy between the empirical
distribution and the hypothesized distribution.

D = Maxy|Fn(y) − F(y)|
where F (y) is the hypothesized cumulative distribution function. The statistic is the
maximum vertical distance between the two distribution functions. The Kolmogorov
statistic can be used to construct a confidence band for the unknown distribution
function, to test for a hypothesized completely known distribution, and to test for a
specific family of distributions with unknown parameters.

If you select a Weight variable, the weighted empirical distribution function is the
proportion of observation weights for observations less than or equal to y.

Fw(y) =
1∑
i wi

n∑
i=1

wiI(yi≤y)
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CDF Confidence Band

The confidence band gives a confidence region for the population distribution. The
critical values given by Feller (1948) for the completely specified hypothesized distri-
bution are used to generate the confidence band. All parameters in the hypothesized
distribution are known. The null hypothesis that the population distribution is equal
to a given completely specified distribution is rejected if the hypothesized distribution
falls outside the confidence band at any point.

You specify the confidence coefficient in the cumulative distribution options dialog
or by choosing Curves:CDF Confidence Band.

File Edit Analyze Tables Graphs Curves Vars Help

Parametric Density...
Kernel Density...
Empirical CDF
CDF Confidence Band �

Parametric CDF...
Test for a Specific Distribution...
Test for Distribution...
QQ Ref Line...

99%
98%
95%
90%
80%
Other...

Figure 38.27. CDF Confidence Band Menu
Figure 38.28 displays an empirical distribution function and a 95% confidence band
for the cumulative distribution function. Use the Coefficient slider to change the
coefficient for the confidence band.
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Figure 38.28. CDF Confidence Band
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Parametric CDF

You can fit the normal, lognormal, exponential, and Weibull distributions to your
data. You specify the family of distributions either in the cumulative distribution
options dialog or from the Parametric CDF Estimation dialog after choosing
Curves:Parametric CDF from the menu.

Figure 38.29. Parametric CDF Dialog

For the normal distribution, you can specify your own µ and σ parameters from
the Fit Parametric menu. Otherwise, you can use the sample mean and stan-
dard deviation as estimates for µ and σ by selecting Fit Parametric:Normal in
the cumulative distribution options dialog or by choosing Distribution:Normal and
Method:Sample Estimates/MLE in the Parametric CDF Estimation dialog.

For the lognormal, exponential, and Weibull distributions, you can specify your
own threshold parameter θ and have the remaining parameters estimated by the
maximum- likelihood method, or you can specify all the distribution parameters
in the Parametric CDF Estimation dialog. Otherwise, you can have the
threshold parameter set to 0 and the remaining parameters estimated by the
maximum-likelihood method. To do this, select Lognormal, Exponential, or
Weibull in the Cumulative Distribution Output dialog or choose Method:Sample
Estimates/MLE and Parameter:MLE, Theta:0 in the Parametric CDF
Estimation dialog.

If you select a Weight variable, only normal CDF can be created. For
Method:Sample Estimates/MLE, yw and sw are used to display the cu-
mulative distribution function with vardef=WDF/WGT; yw and sa are used
with vardef=DF/N. For Method:Specification, the values in the entry fields
Mean/Theta and Sigma are used to display the cumulative distribution function
with vardef=WDF/WGT; the values of Mean/Theta and Sigma/

√
w are used with

vardef=DF/N.
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Figure 38.30 displays a normal distribution function with µ = 58.4333 (the sample
mean) and σ = 8.2807 (the sample standard deviation); it also displays a lognormal
distribution function with θ = 30 and σ and ζ estimated by the MLE.

Figure 38.30. Parametric CDF

Use sliders to change the CDF estimate. When MLE is used for the lognormal, ex-
ponential, and Weibull distributions, changing the value of θ in the slider also causes
the remaining parameters to be estimated by the MLE for the new θ.
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Test for a Specific Distribution

You can test whether the data are from a specific distribution with known parameters
by using the Kolmogorov statistic. The probability of a larger Kolmogorov statistic is
given in Feller (1948). After choosing Curves:Test for a Specific Distribution
from the menu, you can specify the distribution and its parameters in the Test for a
Specific Distribution dialog.

Figure 38.31. Test for a Specific Distribution Dialog

The default tests that the data are from a normal distribution with µ = 0 and σ = 1.
Figure 38.32 shows a test for a specified normal distribution (µ = 60, σ = 10).
Use sliders to change the distribution parameters and have the test results updated
accordingly.
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Figure 38.32. Test for a Specific Distribution
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Test for Distribution

You can test that the data are from a specific family of distributions, such as the nor-
mal, lognormal, exponential, or Weibull distributions. You do not need to specify
the distribution parameters except the threshold parameters for the lognormal, expo-
nential, and Weibull distributions. The Kolmogorov statistic assesses the discrepancy
between the empirical distribution and the estimated hypothesized distribution F .

For a test of normality, the hypothesized distribution is a normal distribution function
with parameters µ and σ estimated by the sample mean and standard deviation. The
probability of a larger test statistic is obtained by linear interpolation within the range
of simulated critical values given by Stephens (1974).

For a test of whether the data are from a lognormal distribution, the hypothesized
distribution is a lognormal distribution function with a given parameter θ and param-
eters ζ and σ estimated from the sample after the logarithmic transformation of the
data, log(y− θ). The sample mean and standard deviation of the transformed sample
are used as the parameter estimates. The test is therefore equivalent to the test of
normality on the transformed sample.

For a test of exponentiality, the hypothesized distribution is an exponential distribu-
tion function with a given parameter θ and a parameter σ estimated by y − θ. The
probability of a larger test statistic is obtained by linear interpolation within the range
of simulated critical values given by Stephens (1974).

For a test of whether the data are from a Weibull distribution, the hypothesized dis-
tribution is a Weibull distribution function with a given parameter θ and parameters
c and σ estimated by the maximum-likelihood method. The probability of a larger
test statistic is obtained by linear interpolation within the range of simulated critical
values given by Chandra, Singpurwalla, and Stephens (1981).

You specify the distribution in the cumulative distribution options dialog or in the
Test for Distribution dialog after choosing Curves:Test for Distribution from
the menu, as shown in Figure 38.33. You can also specify a threshold parameter other
than zero for lognormal, exponential, and Weibull distributions.

Figure 38.33. Test for Distribution Dialog
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The default tests that the data are from a normal distribution. A test for normality
and a test for lognormal distribution with θ = 30 are given in Figure 38.34. You
can use the Mean/Theta slider to adjust the threshold parameter, θ, for lognormal,
exponential, and Weibull distributions.

Figure 38.34. Tests for Distribution
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QQ Ref Line

After choosing Curves:QQ Ref Line, you can use the QQ Ref Line dialog to add
distribution reference lines to QQ plots.

Figure 38.35. QQ Ref Line Dialog
The default adds a least squares regression line. You can also specify your own
reference line by choosing Method:Specification and specifying both the intercept
and slope.

If you select a Weight variable, you can add a weighted least squares regression
line to the normal QQ plot. If the data are normally distributed with mean µ and
standard deviation σ and if each observation has approximately the same weight (w0),
then the least squares regression line has approximately intercept µ and slope σ for
vardef=WDF/WEIGHT and slope σ/

√
w0 for vardef=DF/N.

A normal QQ plot with a least squares reference line is shown in Figure 38.36. Use
the sliders to change the intercept and slope of the reference line.
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Figure 38.36. Normal QQ Plot with a Reference Line

604



Analysis for Nominal Variables

Analysis for Nominal Variables
You can generate a frequency table, display a bar chart, and display a mosaic plot for
each nominal variable in the distribution analysis, as shown in Figure 38.37.
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Figure 38.37. Nominal Variable Output

⊕ Related Reading: Bar Charts, Chapter 32.

⊕ Related Reading: Mosaic Plots, Chapter 33.
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Chapter 39
Fit Analyses

Choosing Analyze:Fit ( Y X ) gives you access to a variety of techniques for fitting
models to data. These provide methods for examining the relationship between a
response (dependent) variable and a set of explanatory (independent) variables.

You can use least-squares methods for simple and multiple linear regression with
various diagnostic capabilities when the response is normally distributed.

You can use generalized linear models to analyze the data when the response is from a
distribution of the exponential family and a function can be used to link the response
mean to a linear combination of the explanatory variables.

You can use spline and kernel smoothers for nonparametric regression when the
model has one or two explanatory variables.

Figure 39.1. Fit Analysis
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Statistical Models
The relationship between a response variable and a set of explanatory variables can
be studied through a regression model

yi = f(xi) + εi

where yi is the ith observed response value, xi is the ith vector of explanatory values,
and εi’s are uncorrelated random variables with zero mean and a common variance.

If the form of the regression function f is known except for certain parameters, the
model is called a parametric regression model. Furthermore, if the regression func-
tion is linear in the unknown parameters, the model is called a linear model.

In the case of linear models with the error term εi assumed to be normally distributed,
you can use classical linear models to explore the relationship between the response
variable and the explanatory variables.

A nonparametric model generally assumes only that f belongs to some infinite- di-
mensional collection of functions. For example, f may be assumed to be differen-
tiable with a square-integrable second derivative.

When there is only one explanatory X variable, you can use nonparametric smooth-
ing methods, such as smoothing splines, kernel estimators, and local polynomial
smoothers. You can also request confidence ellipses and parametric fits (mean, linear
regression, and polynomial curves) with a linear model. These are added to a scatter
plot generated from Y by a single X and are described in the “Fit Curves” section.

When there are two explanatory variables in the model, you can create parametric
and nonparametric (kernel and thin-plate smoothing spline) response surface plots.
With more than two explanatory variables in the model, a parametric profile response
surface plot with two selected explanatory variables can be created.

When the response yi has a distribution from the exponential family (normal, inverse
Gaussian, gamma, Poisson, binomial), and the mean µi of the response variable yi is
assumed to be related to a linear predictor through a monotone function g

g(µi) = x′
iβ

where β is a vector of unknown parameters, you can explore the relationship by using
generalized linear models.
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Linear Models
SAS/INSIGHT fit analysis provides the traditional parametric regression analysis as-
suming that the regression function is linear in the unknown parameters. The rela-
tionship is expressed as an equation that predicts a response variable from a linear
function of explanatory variables.

Besides the usual estimators and test statistics produced for a regression, a fit analysis
can produce many diagnostic statistics. Collinearity diagnostics measure the strength
of the linear relationship among explanatory variables and how this affects the stabil-
ity of the estimates. Influence diagnostics measure how each individual observation
contributes to determining the parameter estimates and the fitted values.

In matrix algebra notation, a linear model is written as

y = Xβ + ε

where y is the n × 1 vector of responses, X is the n × p design matrix (rows are
observations and columns are explanatory variables), β is the p×1 vector of unknown
parameters, and ε is the n × 1 vector of unknown errors.

Each effect in the model generates one or more columns in a design matrix X. The
first column of X is usually a vector of 1’s used to estimate the intercept term. In
general, no-intercept models should be fit only when theoretical justification exists.
Refer to the chapter on the GLM procedure in the SAS/STAT User’s Guide for a
description of the model parameterization.

The classical theory of linear models is based on some strict assumptions. Ideally, the
response is measured with all the explanatory variables controlled in an experimen-
tally determined environment. If the explanatory variables do not have experimen-
tally fixed values but are stochastic, the conditional distribution of y given X must be
normal in the appropriate form.

Less restrictive assumptions are as follows:

• The form of the model is correct (all important X variables have been included).

• Explanatory variables are measured without error.

• The expected value of the errors is 0.

• The variance of the errors (and thus the response variable) is constant across
observations (denoted by σ2).

• The errors are uncorrelated across observations.

If all the necessary assumptions are met, the least-squares estimates of β are the
best linear unbiased estimates (BLUE); in other words, the estimates have minimum
variance among the class of estimators that are unbiased and are linear functions of
the responses. In addition, when the error term is assumed to be normally distributed,
sampling distributions for the computed statistics can be derived. These sampling
distributions form the basis for hypothesis tests on the parameters.
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The method used to estimate the parameters is to minimize the sum of squares of the
differences between the actual response values and the values predicted by the model.
An estimator b for β is generated by solving the resulting normal equations

(X′X)b = X′y

yielding

b = (X′X)−1X′y

Let H be the projection matrix for the space spanned by X, sometimes called the hat
matrix,

H = X(X′X)−1X′

Then the predicted mean vector of the n observation responses is

ŷ = Xb = Hy

The sum of squares for error is

SSE = (y − ŷ)′(y − ŷ) =
n∑

i=1

(yi − xib)2

where xi is the ith row of the X matrix.

Assume that X is of full rank. The variance σ2 of the error is estimated by the mean
square error

s2 = MSE =
SSE

n − p

The parameter estimates are unbiased:

E(b) = β

E(s2) = σ2.

The covariance matrix of the estimates is

Var(b) = (X′X)−1σ2

The estimate of the covariance matrix, V̂ar(b), is obtained by replacing σ2 with its
estimate, s2, in the preceding formula:

V̂ar(b) = (X′X)−1s2
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The correlations of the estimates,

S−1/2(X′X)−1S−1/2

are derived by scaling to one on the diagonal, where S = diag ( (X′X)−1).

If the model is not full rank, the matrix X’X is singular. A generalized (g2) inverse
(Pringle and Raynor 1971), denoted as (X′X)−, is then used to solve the normal
equations, as follows:

b = (X′X)−X′Y

However, this solution is not unique, and there are an infinite number of solutions
using different generalized inverses. In SAS/INSIGHT software, the fit analysis
chooses a basis of all variables that are linearly independent of previous variables
and a zero solution for the remaining variables.

⊕ Related Reading: Multiple Regression, Chapter 14.

⊕ Related Reading: Analysis of Variance, Chapter 15.
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Generalized Linear Models
Generalized linear models assume that the response yi has a distribution from the ex-
ponential family (normal, inverse Gaussian, gamma, Poisson, binomial) and a func-
tion can be used to link the expected response mean and a linear function of the X
effects. In SAS/INSIGHT software, a generalized linear model is written as

y = µ + ε

η = g(µ) = η0 + Xβ

where y is the n×1 vector of responses, µ is the n×1 expected response means, and
ε is the n × 1 vector of unknown errors.

The monotone function g links the response mean µ with a linear predictor η from
the effects, and it is called the link function. The n× 1 vector η0 is the offset, X is the
n × p design matrix, and β is the p × 1 vector of unknown parameters. The design
matrix is generated the same way as for linear models.

You specify the response distribution, the link function, and the offset variable in the
fit method options dialog.

The Exponential Family of Distributions

The distribution of a random variable Y belongs to the exponential family if its prob-
ability (density) function can be written in the form

f(y; θ, φ) = exp
(

yθ − b(θ)
a(φ)

+ c(y, φ)
)

where θ is the natural or canonical parameter, φ is the dispersion parameter, and a, b
and c are specific functions.

The mean and variance of Y are then given by (McCullagh and Nelder 1989)

E(y) = µ = b′(θ)

Var(y) = a(φ)b′′(θ)

The function b′′(θ) can be expressed as a function of µ, b′′(θ) = V (µ), and it is
called the variance function. Different choices of the function b(θ) generate different
distributions in the exponential family. For a binomial distribution with m trials, the
function a(φ) = φ/m. For other distributions in the exponential family, a(φ) = φ.
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SAS/INSIGHT software includes normal, inverse Gaussian, gamma, Poisson, and bi-
nomial distributions for the response distribution. For these response distributions,
the density functions f(y), the variance functions V (µ), and the dispersion parame-
ters φ with function a(φ) are

Normal f(y) = 1√
2πσ

exp
(−1

2(y−µ
σ )2

)
for −∞ < y < ∞

V (µ) = 1

a(φ) = φ = σ2

Inverse Gaussian f(y) = 1√
2πy3σ

exp
(
− 1

2µ2y
(y−µ

σ )2
)

for y > 0

V (µ) = µ3

a(φ) = φ = σ2

Gamma f(y) = 1
yΓ(ν)(

νy
µ )ν exp(−νy

µ ) for y > 0

V (µ) = µ2

a(φ) = φ = ν−1

Poisson f(y) = µye−µ

y! for y = 0, 1, 2, . . .

V (µ) = µ

a(φ) = φ = 1

Binomial f(y) =
(
m
r

)
µr(1 − µ)m−r for y = r/m, r = 0, 1, 2, ..., m

V (µ) = µ(1 − µ)

a(φ) = φ/m = 1/m

Link Function

The link function links the response mean µ to the linear predictor η. SAS/INSIGHT
software provides six types of link functions:

Identity g(µ) = µ

Log g(µ) = log(µ)

Logit g(µ) = log( µ
1−µ)

Probit g(µ) = Φ−1(µ)

Comp. Log-log g(µ) = log(− log(1 − µ))

Power g(µ) = µλ where λ is the value in the Power entry field.
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For each response distribution in the exponential family, there exists a special link
function, the canonical link, for which θ = η. The canonical links expressed in terms
of the mean parameter µ are

Normal g(µ) = µ

Inverse Gaussian g(µ) = µ−2

Gamma g(µ) = µ−1

Poisson g(µ) = log(µ)

Binomial g(µ) = log( µ
1−µ)

† Note: Some links are not appropriate for all distributions. For example, logit, probit,
and complementary log-log links are only appropriate for the binomial distribution.

The Likelihood Function and Maximum-Likelihood
Estimation

The log-likelihood function

l(θ, φ; y) = log f(y; θ, φ) =
yθ − b(θ)

a(φ)
+ c(y, φ)

can be expressed in terms of the mean µ and the dispersion parameter φ:

Normal l(µ, φ; y) = −1
2 log(φ) − 1

2φ(y − µ)2 for −∞ < y < ∞

Inverse Gaussian l(µ, φ; y) = − log(y3φ) − (y−µ)2

2yµ2φ
for y > 0

Gamma l(µ, φ; y) = − log(yΓ( 1
φ)) + 1

φ log( y
µφ) − y

µφ for y > 0

Poisson l(µ, φ; y) = y log(µ) − µ for y = 0, 1, 2, . . .

Binomial l(µ, φ; y) = r log(µ) + (m − r) log(1 − µ)

for y = r/m, r = 0, 1, 2, ..., m

† Note: Some terms in the density function have been dropped in the log-likelihood
function since they do not affect the estimation of the mean and scale parameters.
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SAS/INSIGHT software uses a ridge stabilized Newton-Raphson algorithm to maxi-
mize the log-likelihood function l(µ , φ ; y) with respect to the regression parameters.
On the rth iteration, the algorithm updates the parameter vector b by

b(r) = b(r−1) − H−1
(r−1)u(r−1)

where H is the Hessian matrix and u is the gradient vector, both evaluated at
β = b(r−1).

H = (hjk) =
(

∂2l

∂βj∂βk

)

u = (uj) =
(

∂l

∂βj

)
.

The Hessian matrix H can be expressed as

H = −X′WoX

where X is the design matrix, Wo is a diagonal matrix with ith diagonal element

woi = wei + (yi − µi)
Vig

′′
i + V ′

i g′i
V 2

i (g′i)3ai(φ)

wei = E(woi) =
1

ai(φ)Vi(g′i)2

where gi is the link function, Vi is the variance function, and the primes denote deriva-
tives of g and V with respect to µ. All values are evaluated at the current mean
estimate µi. ai(φ) = φ/wi, where wi is the prior weight for the ith observation.

SAS/INSIGHT software uses either the full Hessian matrix H = - X’ Wo X or the
Fisher’s scoring method in the maximum-likelihood estimation. In the Fisher’s scor-
ing method, Wo is replaced by its expected value We with ith element wei.

H = X′WeX

The estimated variance-covariance matrix of the parameter estimates is

Σ̂ = −H−1

where H is the Hessian matrix evaluated at the model parameter estimates.

The estimated correlation matrix of the parameter estimates is derived by scaling the
estimated variance-covariance matrix to 1 on the diagonal.

† Note: A warning message appears when the specified model fails to converge. The
output tables, graphs, and variables are based on the results from the last iteration.
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Scale Parameter

A scale parameter is related to the dispersion parameter φ and is given by

Normal σ =
√

φ

Inverse Gaussian σ =
√

φ

Gamma ν = 1/φ

Poisson 1

Binomial 1

The scale parameter is 1 for Poisson and binomial distributions. SAS/INSIGHT soft-
ware provides different scale parameter estimates for normal, inverse Gaussian, and
gamma distributions:

MLE the maximum-likelihood estimate

Deviance the mean deviance

Pearson the mean Pearson χ2

Constant the value in the Constant entry field

When maximum-likelihood estimation is used, the Hessian H and the gradient u also
include the term for the scale parameter.

† Note: You can request an exponential distribution for the response variable by spec-
ifying a gamma distribution with scale parameter set to 1.

Goodness of Fit

The log-likelihood can be expressed in terms of the mean parameter µ and the log-
likelihood-ratio statistic is the scaled deviance

D∗(y; µ̂) = −2(l(µ̂; y) − l(µ̂max; y))

where l(µ̂; y) is the log-likelihood under the model and l(µ̂max; y) is the log-
likelihood under the maximum achievable (saturated) model.

For generalized linear models, the scaled deviance can be expressed as

D∗(y; µ̂) =
1
φ

D(y; µ̂)

where D(y; µ̂) is the residual deviance for the model and is the sum of individual
deviance contributions.
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The forms of the individual deviance contributions, di, are

Normal (y − µ̂)2

Inverse Gaussian (y − µ̂)2/(µ̂2y)

Gamma −2 log(y/µ̂) + 2(y − µ̂)/µ̂

Poisson 2y log(y/µ̂) − 2(y − µ̂)

Binomial 2(r log(y/µ̂) + (m − r) log((1 − y)/(1 − µ̂))

where y=r/m, r is the number of successes in m trials.

For a binomial distribution with mi trials in the ith observation, the Pearson χ2 statis-
tic is

χ2 =
n∑

i=1

mi
(yi − µi)2

V (µi)

For other distributions, the Pearson χ2 statistic is

χ2 =
n∑

i=1

(yi − µi)2

V (µi)

The scaled Pearson χ2 statistic is χ2 / φ. Either the mean deviance D(y; µ̂)/(n − p)
or the mean Pearson χ2 statistic χ2/(n − p) can be used to estimate the dispersion
parameter φ. The χ2 approximation is usually quite accurate for the differences of
deviances for nested models (McCullagh and Nelder 1989).

Quasi-Likelihood Functions

For binomial and Poisson distributions, the scale parameter has a value of 1. The
variance of Y is Var(y) = µ(1 − µ)/m for the binomial distribution and Var(y) = µ
for the Poisson distribution. Overdispersion occurs when the variance of Y exceeds
the Var(y) above. That is, the variance of Y is σ2V (µ), where σ>1.

With overdispersion, methods based on quasi-likelihood can be used to estimate the
parameters β and σ. A quasi-likelihood function

Q(µ; y) =
∫ µ

y

y − t

σ2V (t)
dt

is specified by its associated variance function.

623



Reference � Fit Analyses

SAS/INSIGHT software includes the quasi-likelihoods associated with the variance
functions V (µ) = 1, µ, µ2, µ3, and µ(1 − µ). The associated distributions (with the
same variance function), the quasi-likelihoods Q(µ; y), the canonical links g(µ), and
the scale parameters σ and ν for these variance functions are

V (µ) = 1 Normal

σ2Q(µ; y) = −1
2(y − µ)2 for −∞ < y < ∞

g(µ) = µ

σ =
√

φ

V (µ) = µ Poisson

σ2Q(µ; y) = y log(µ) − µ for µ > 0, y ≥ 0

g(µ) = log µ

σ =
√

φ

V (µ) = µ2 Gamma

σ2Q(µ; y) = −y/µ − log(µ) for µ > 0, y ≥ 0

g(µ) = µ−1

ν = φ−1

V (µ) = µ3 Inverse Gaussian

σ2Q(µ; y) = −y/(2µ2) + 1/µ for µ > 0, y ≥ 0

g(µ) = µ−2

σ =
√

φ

V (µ) = µ(1 − µ) Binomial

σ2Q(µ; y) = r log(µ) + (m − r) log(1 − µ)

for 0 < µ < 1, y = r/m, r = 0, 1, 2, . . . , m

g(µ) = log( µ
1−µ)

σ =
√

φ
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SAS/INSIGHT software uses the mean deviance, the mean Pearson χ2, or the value
in the Constant entry field to estimate the dispersion parameter φ. The conventional
estimate of φ is the mean Pearson χ2 statistic.

Maximum quasi-likelihood estimation is similar to ordinary maximum-likelihood es-
timation and has the same parameter estimates as the distribution with the same vari-
ance function. These estimates are not affected by the dispersion parameter φ, but φ
is used in the variance-covariance matrix of the parameter estimates. However, the
likelihood-ratio based statistics, such as Type I (LR), Type III (LR), and C.I.(LR)
for Parameters tables, are not produced in the analysis.

⊕ Related Reading: Logistic Regression, Chapter 16.

⊕ Related Reading: Poisson Regression, Chapter 17.
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Nonparametric Smoothers
For a simple regression model with one or two explanatory variables,

yi = f(xi) + εi

a smoother f̂λ(x) is a function that summarizes the trend of Y as a function of X. It
can enhance the visual perception of either a Y-by-X scatter plot or a rotating plot.
The smoothing parameter λ controls the smoothness of the estimate.

With one explanatory variable in the model, f̂λ(x) is called a scatter plot smoother.
SAS/INSIGHT software provides nonparametric curve estimates from smoothing
spline, kernel, loess (nearest neighbors local polynomial), and fixed bandwidth lo-
cal polynomial smoothers.

For smoothing spline, kernel, and fixed bandwidth local polynomial smoothers,
SAS/INSIGHT software derives the smoothing parameter λ from a constant c that
is independent of the units of X. For a loess smoother, the smoothing parameter λ is
a positive constant α.

With two explanatory variables in the model, f̂λ(x) is called a surface smoother.
SAS/INSIGHT software provides nonparametric surface estimates from thin-plate
smoothing spline and kernel smoothers. The explanatory variables are scaled by their
corresponding sample interquartile ranges. The smoothing parameter λ is derived
from a constant c and both are independent of the units of X.

Similar to parametric regression, the R2 value for an estimate is calculated as

R2 = 1 −
∑n

i=1 (yi − f̂λ(xi))2∑n
i=1 (yi − y)2

You can use the following methods to choose the λ value:

DF uses the λ value that makes the resulting smoothing estimate have
the specified degrees of freedom (df).

GCV uses the λ value that minimizes the generalized cross validation
(GCV) mean squared error.

C Value uses the λ value derived from the specified c value for nonparamet-
ric smoothers other than the loess smoother.

Alpha uses the specified α value for the loess estimator.
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If you specify a DF value for a smoother, an iterative procedure is used to find the
estimate with the specified df. You can choose a convergence criterion γ based on
either the relative difference or the absolute difference. A smoother satisfying the
following conditions is then created:

|df(fitted) − df(specified)|
df(specified)

< γ for relative difference

|df(fitted) − df(specified)| < γ for absolute difference

Smoother Degrees of Freedom

For a nonparametric smoother with a parameter λ, the fitted values can be written as

ŷ = Hλy

where y is the n × 1 vector of observed responses yi, ŷ is the n × 1 vector of fitted
values ŷi = f̂λ(xi), and the smoother matrix Hλ is an n × n matrix that depends on
the value of λ.

The degrees of freedom, or the effective number of parameters, of a smoother can be
used to compare different smoothers and to describe the flexibility of the smoother.
SAS/INSIGHT software defines the degrees of freedom of a smoother as

dfλ = trace(Hλ)

which is the sum of the diagonal elements of Hλ.

† Note: Two other popular definitions of degrees of freedom for a smoother are
trace(HλH′

λ) and trace(2Hλ − HλH′
λ) (Hastie and Tibshirani 1990).
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Smoother Generalized Cross Validation

With the degrees of freedom of an estimate dfλ, the mean squared error is given as

MSE(λ) =
1

n − dfλ

n∑
i=1

(yi − f̂λ(xi))2

Cross-validation (CV) estimates the response at each xi from the smoother that uses
only the remaining n − 1 observations. The resulting cross validation mean squared
error is

MSECV(λ) =
1
n

n∑
i=1

(yi − f̂λ(i)(xi))2

where f̂λ(i)(xi) is the fitted value at xi computed without the ith observation.

The cross validation mean squared error can also be written as

MSECV(λ) =
1
n

n∑
i=1

(
yi − f̂λ(xi)

1 − hλi

)2

where hλi is the ith diagonal element of the Hλ matrix (Hastie and Tibshirani 1990).

Generalized cross validation replaces hλi by its average value, 1
ndfλ. The generalized

cross validation mean squared error is

MSEGCV(λ) =
1

n(1 − dfλ/n)2

n∑
i=1

(yi − f̂λ(xi))2

† Note: The function MSEGCV(λ) may have multiple minima, so the value estimated
by SAS/INSIGHT software may be only a local minimum, not the global minimum.
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Variables
To create a fit analysis, choose Analyze:Fit ( Y X ). If you have already selected one
or more variables, the first variable selected is the response or dependent variable,
and it is assigned the Y variable role. The remaining variables are explanatory or
independent variables, and they are assigned the X variable role. If you do not select
any X effects, a model with only an intercept term (mean) is fit.

If you have not selected any variables, a variables dialog appears.

Figure 39.2. Fit Variables Dialog

In the dialog, select one Y variable for each fit analysis. Create X effects in the
model by using the X, Cross, Nest, and Expand buttons. An effect is a variable or
combination of variables that constitutes a term in the model. There are four ways to
specify effects in SAS/INSIGHT software. In the following discussion, assume that
X1 and X2 are interval variables and A and B are nominal variables.

You can use the X button to create regressor effects of the interval variables and main
effects of the nominal variables. Select any variable, then click the X button. For
example, selecting A and then clicking the X button adds A to the effects list.

You can use the Cross button to create crossed effects. These include polynomial
effects of the interval variables, interactions of the nominal variables, and interaction
effects of interval and nominal variables. Select two or more variables, then click
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the Cross button. For example, selecting X1 and X2 and then clicking the Cross
button generates the crossed effect X1*X2.

You can use the Nest button to create nested effects. In a nested effect, a variable or
crossed effect is nested within the effects of one or more nominal variables. Select
a variable or crossed effect and one or more nominal variables, then click the Nest
button. For example, selecting X1*X2, A, and B and then clicking the Nest button
generates the nested effect X1*X2(A B).

You can use the Expand button and the associated entry field to create expanded
effects. These include response surface effects for interval variables and factorial
effects for nominal variables. The Expand button expands all possible effects to the
degree of expansion specified in the entry field below the Expand button. The value
2 is the default degree of expansion. You can click the right button of the entry field
to increase the expansion degree by 1 or the left button to decrease it by 1.

Choose the degree of expansion, then select variables or effects and click the Expand
button. For example, with degree of expansion 2 and variables A and B selected,
clicking the Expand button generates three effects

A B A*B

With degree of expansion 2 and variables X1 and X2 selected, clicking the Expand
button generates five effects

X1 X2 X1*X1 X1*X2 X2*X2

Intercept is checked by default to include the intercept term in the model. As a
general rule, no-intercept models should be fit only when theoretical justification
exists.

You can select one or more Group variables if you have grouped data. This creates
a fit analysis for each group.

You can select a Label variable to label observations in the plots.

You can select a Freq variable. If you select a Freq variable, each observation is
assumed to represent n observations, where n is the value of the Freq variable.

You can select a Weight variable to assign relative weights for each observation
in the analysis. The details of weighted analyses are explained in the “Weighted
Analyses” section at the end of this chapter.

The fit variables dialog provides an Apply button. The Apply button displays the
fit window without closing the fit variables dialog. This makes it easy to modify the
model by adding or removing variables. Each time you modify the model using the
Apply button, a new fit window is displayed so you can easily compare models. The
OK button also displays a new fit window but closes the dialog.
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Method
Observations with missing values for Y, X, Weight, or Freq variables are not used.
Observations with nonpositive Weight or Freq values are not used. Only the integer
part of Freq values is used.

To view or change the response distribution and link function, click the Method
button in the variables dialog. This displays the dialog shown in Figure 39.3.

Figure 39.3. Fit Method Options Dialog

You can choose the response distribution and link function of the Y variables. If you
choose a binomial distribution, specify either

• a Y variable with values 1 or 0 indicating success or failure

• a Y variable giving the number of successes in a certain number of trials, and a
Binomial variable to give the corresponding number of trials

If you choose a power link function, specify the power value in the Power entry
field.

If you select an Offset variable, it is treated as an X variable with coefficient fixed at
1.0.

You can choose the scale parameter for the response distribution. If you choose a
Constant scale, specify the constant value in the Constant entry field.
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With overdispersion in the model, you can specify the Quasi-Likelihood option to
fit the generalized linear model using the quasi-likelihood functions.

632



Method

If you choose a normal response distribution with a canonical link (identity for normal
distributions), you can specify the Exact Distribution option to fit the linear model
using the usual exact distributions for the test statistics.

You can specify the Fisher’s Scoring option to use the Fisher’s scoring method in
the maximum-likelihood estimation for the regression parameters.

By default, SAS/INSIGHT software uses the Normal response distribution and
Canonical link with the Exact Distribution option to perform a fit analysis for
the linear model.
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Output
To view or change the options associated with your fit analysis, click the Output
button in the variables dialog. This displays the output options dialog shown in Figure
39.4.

Figure 39.4. Fit Output Options Dialog

The options you set in this dialog determine the tables and graphs that appear in
the fit window. Provided by default are tables of the model equation, summary of
fit, analysis of variance or deviance, type III or type III (Wald) tests, and parameter
estimates and a plot of residuals by predicted values.

When there are two explanatory variables in the model, a parametric response surface
plot is created by default. You can also generate a nonparametric kernel or a thin-plate
smoothing spline response surface plot. With more than two explanatory variables in
the model, a parametric profile response surface plot with the first two explanatory
variables can be created. The values of the remaining explanatory variables are set to
their corresponding means in the plot. You can use the sliders to change these values
of the remaining explanatory variables.
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Click on the Output Variables button in the fit dialog to display the Output
Variables dialog shown in Figure 39.5. The Output Variables dialog enables
you to specify variables that can be saved in the data window. Output variables in-
clude predicted values and several influence diagnostic variables based on the model
you fit.

Figure 39.5. Output Variables Dialog

When there is only one explanatory variable in the model, a Y-by-X scatter plot is
generated. The Parametric Curves and Nonparametric Curves (GCV) buttons
display dialogs that enable you to fit parametric and nonparametric curves to this
scatter plot.

Click on Parametric Curves to display the Parametric Curves dialog.
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Figure 39.6. Parametric Curves Dialog
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A regression line fit is provided by default. You can request an 80% prediction el-
lipse and other polynomial fits in the dialog. You can also request polynomial equa-
tion tables, parameter estimates tables, and 95% mean confidence curves for fitted
polynomials.

The Nonparametric Curves (GCV) dialog in Figure 39.7 includes a smoothing
spline, a kernel smoother, and a local polynomial smoother. You must specify the
method, regression type, and weight function for a local polynomial fit.

Figure 39.7. Nonparametric Curves Dialog
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Tables
You can generate tables that present the results of a model fit and diagnostics for as-
sessing how well the model fits the data. Set options in the output dialog as described
in the “Output” section or choose from the Tables menu.

File Edit Analyze Tables Graphs Curves Vars Help

� Model Equation
X’X Matrix

� Summary of Fit
� Analysis of Variance/Deviance

Type I / I(LR) Tests
� Type III / III(Wald) Tests

Type III(LR) Tests
� Parameter Estimates

C.I. / C.I.(Wald) for Parameters �

C.I.(LR) for Parameters �

Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

Figure 39.8. Tables Menu

Model Information

The first table in the fit analysis contains the model specification, the response distri-
bution, and the link function, as illustrated in Figure 39.9.

When the model contains nominal variables in its effects, the levels of the nominal
variables are displayed in the Nominal Variable Information table, as shown in
Figure 39.9. The levels are determined from the formatted values of the nominal
variables. An additional Parameter Information table, as illustrated in Figure
39.9, shows the variable indices for the parameters in the model equation, the X’X
matrix, the estimated covariance matrix, and the estimated correlation matrix.

Model Equation

The model equation table gives the fitted equation for the model. Figure 39.9 shows
an equation for a model with nominal variables, and Chapter 39 shows an equation
for a model without nominal variables
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Figure 39.9. Model Information Tables

X’X Matrix

The X’X matrix table, as illustrated by Figure 39.10, contains the X’X crossproducts
matrix for the model.
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Figure 39.10. X’X Matrix for Linear Models

Summary of Fit for Linear Models

The Summary of Fit table for linear models, shown in Figure 39.11, includes the
following:

Mean of Response is the sample mean, y , of the response variable.

Root MSE is the estimate of the standard deviation of the error term. It
is calculated as the square root of the mean square error.

R-Square R2, with values between 0 and 1, indicates the proportion of
the (corrected) total variation attributed to the fit.

Adj R-Sq An adjusted R2 is a version of R2 that has been adjusted for
degrees of freedom.
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Figure 39.11. Summary of Fit, Analysis of Variance Tables for Linear Models

With an intercept term in the model, R2 is defined as

R2 = 1 − (SSE/CSS)

where CSS =
∑n

i=1 (yi − y)2 is the corrected sum of squares and SSE =∑n
i=1 (yi − ŷ)2 is the sum of squares for error.

The R2 statistic is also the square of the multiple correlation, that is, the square of the
correlation between the response variable and the predicted values.

The adjusted R2 statistic, an alternative to R2, is adjusted for the degrees of freedom
of the sums of squares associated with R2. It is calculated as

AdjR2 = 1 − SSE/(n − p)
CSS/(n − 1)

= 1 − n − 1
n − p

(1 − R2)
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Without an intercept term in the model, R2 is defined as

R2 = 1 − (SSE/TSS)

where TSS =
∑n

i=1 y2
i is the uncorrected total sum of squares.

The adjusted R2 statistic is then calculated as

AdjR2 = 1 − SSE/(n − p)
TSS/n

= 1 − n

n − p
(1 − R2)

† Note: Other definitions of R2 exist for models with no intercept term. Care should
be taken to ensure that this is the definition desired.

Summary of Fit for Generalized Linear Models

For generalized linear models, the Summary of Fit table, as illustrated by Figure
39.12, includes the following:

Mean of Response is the sample mean, y , of the response variable.

SCALE is the constant scale parameter specified in the method dia-
log or a value of 1.0 for maximum-likelihood estimation for
Poisson or binomial distributions.

SCALE (MLE) is the maximum-likelihood estimate of the scale parameter
for normal, gamma, and inverse Gaussian distributions.

SCALE (Deviance) is the scale parameter estimated by the mean error deviance.

SCALE (Pearson) is the scale parameter estimated by the mean Pearson χ2.

Deviance is the error deviance.

Deviance/DF is the mean error deviance, the error deviance divided by its
associated degrees of freedom.

Pearson ChiSq is the Pearson χ2 statistic.

Pearson ChiSq / DF is the mean Pearson χ2, the Pearson χ2 divided by its asso-
ciated degrees of freedom.

When the scale parameter is a constant specified in the method dialog, or when the
response has a Poisson or binomial distribution, the table also contains the scaled
deviance and the scaled Pearson χ2:

Scaled Dev is the error deviance divided by the dispersion parameter.

Scaled ChiSq is the Pearson χ2 divided by the dispersion parameter.
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Figure 39.12. Summary of Fit and Analysis of Deviance Tables for Generalized
Linear Models

Analysis of Variance for Linear Models

The Analysis of Variance table for linear models, shown in Figure 39.11, includes
the following:

Source indicates the source of the variation. Sources include Model
for the fitted regression and Error for the residual error. C
Total is the sum of the Model and Error components, and it
is the total variation after correcting for the mean. When the
model does not have an intercept term, the uncorrected total
variation (U Total) is displayed.

DF is the degrees of freedom associated with each source of varia-
tion.

Sum of Squares is the sum of squares for each source of variation.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.

F Stat is the F statistic for testing the null hypothesis that all param-
eters are 0 except for the intercept. This is formed by dividing
the mean square for model by the mean square for error.

Pr > F is the probability of obtaining a greater F statistic than that
observed if the null hypothesis is true. This quantity is also
called a p-value. A small p-value is evidence for rejecting the
null hypothesis.
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Analysis of Deviance for Generalized Linear Models

The Analysis of Deviance table for generalized linear models, as illustrated by
Figure 39.12, includes the following:

Source indicates the source of the variation. Sources include Model for
the fitted regression and Error for the residual error. C Total is
the sum of the Model and Error components, and it is the total
variation after correcting for the mean. When the model does not
have an intercept term, the uncorrected total variation (U Total) is
printed.

DF is the degrees of freedom associated with each source of variation.

Deviance is the deviance for each source of variation.

Deviance/DF is the deviance divided by its associated degrees of freedom.

When the scale parameter is a constant specified in the method dialog, or when the
response has a Poisson or binomial distribution, the table also contains the following:

Scaled Dev is the deviance divided by the dispersion parameter.

Pr>Scaled Dev is the probability of obtaining a greater scaled deviance statistic
than that observed if the null hypothesis is true. Under the null
hypothesis, all parameters are 0 except for the intercept, and the
scaled deviance has an approximate χ2 distribution.

Type I Tests

Type I tests examine the sequential incremental improvement in the fit of the model
as each effect is added. They can be computed by fitting the model in steps and
recording the difference in error sum of squares (linear models) and log-likelihood
statistics (generalized linear models). The Type I Tests table for linear models, as
illustrated by Figure 39.13, includes the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

Sum of Squares is the incremental error sum of squares for the model as each
effect is added.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.

F Stat is the F statistic for testing the null hypothesis that the param-
eters for the added effect are 0. This is formed by dividing the
mean square for the effect by the mean square for error from the
complete model.

Pr > F is the probability of obtaining a greater F statistic than that ob-
served if the null hypothesis is true.
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Figure 39.13. Type I Tests Table

The Type I (LR) Tests table for generalized linear models, as illustrated by Figure
39.14, includes the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

ChiSq is the χ2 value for testing the null hypothesis that the parameters for
the added effect are 0. This is evaluated as twice the incremental
log-likelihood for the model as each effect is added, and it has an
asymptotic χ2 distribution under the null hypothesis.

Pr > ChiSq is the probability of obtaining a greater χ2 statistic than that ob-
served, if the null hypothesis is true.

Figure 39.14. Type I Likelihood Ratio Tests
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Type III Tests

Type III tests examine the significance of each partial effect, that is, the significance
of an effect with all the other effects in the model. They are computed by constructing
a type III hypothesis matrix L and then computing statistics associated with the hy-
pothesis Lβ = 0. Refer to the chapter titled “The Four Types of Estimable Functions,”
in the SAS/STAT User’s Guide for the construction of the matrix L.

For linear models, the type III or partial sum of squares

(Lb)′(L(X′X)−1L′)−1(Lb)

is used to test the hypothesis Lβ = 0.

The Type III Tests table for linear models, as illustrated by Figure 39.15, includes
the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

Sum of Squares is the partial sum of squares for each effect in the model.

Mean Square is the sum of squares divided by its associated degrees of free-
dom.

F Stat is the F statistic for testing the null hypothesis that the linear
combinations of parameters described previously for the hy-
pothesis matrix L are 0. This is formed by dividing the mean
square for the hypothesis matrix L by the mean square for error
from the complete model.

Pr > F is the probability of obtaining a greater F statistic than that
observed if the null hypothesis is true.

Figure 39.15. Type III Tests Table for Linear Models
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For generalized linear models, either the Wald statistic or the likelihood-ratio statistic
can be used to test the hypothesis Lβ = 0. For the linear model, the two tests are
equivalent.

The Wald statistic is given by

(Lb)′(LV̂ar(b)L′)−1(Lb)

where V̂ar(b) is the estimated covariance matrix of the parameters. The
likelihood-ratio statistic is computed as twice the difference between the maximum
log-likelihood achievable under the unconstrained model and the maximum log-
likelihood for the model under the restriction or constraint Lβ = 0. Both the Wald
statistic and the likelihood-ratio statistic have an asymptotic χ2 distribution.

The Type III (Wald) Tests and Type III (LR) Tests tables, as illustrated by Figure
39.16, include the following:

Source is the name for each effect.

DF is the degrees of freedom associated with each effect.

ChiSq is the Wald statistic for the Wald tests or the likelihood-ratio statis-
tic for the LR tests of the null hypothesis that the parameters for
the effect are 0. This has an asymptotic χ2 distribution.

Pr > ChiSq is the probability of obtaining a greater χ2 statistic than that ob-
served, if the null hypothesis is true.
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Figure 39.16. Type III Tests Tables for Generalized Linear Models
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Parameter Estimates for Linear Models

The Parameter Estimates table for linear models, as illustrated by Figure 39.17,
includes the following:

Variable names the variable associated with the estimated parameter. The
name INTERCEPT represents the estimate of the intercept param-
eter.

DF is the degrees of freedom associated with each parameter estimate.
There is one degree of freedom unless the model is not of full rank.
In this case, any parameter whose definition is confounded with
previous parameters in the model has its degrees of freedom set to
0.

Estimate is the parameter estimate.

Std Error is the standard error, the estimate of the standard deviation of the
parameter estimate.

t Stat is the t statistic for testing that the parameter is 0. This is computed
as the parameter estimate divided by the standard error.

Pr > |t| is the probability of obtaining (by chance alone) a t statistic greater
in absolute value than that observed given that the true parameter
is 0. This is referred to as a two-sided p-value. A small p-value is
evidence for concluding that the parameter is not 0.

Tolerance is the tolerance of the explanatory variable on the other variables.

Var Inflation is the variance inflation factor of the explanatory variable.

Figure 39.17. Parameter Estimates Table for Linear Models

649



Reference � Fit Analyses

The standard error of the jth parameter estimate bj is computed using the equation

STDERR(bj) =
√

(X′X)−1
jj s2

where (X′X)−1
jj is the jth diagonal element of (X′X)−1.

Under the hypothesis that βj is 0, the ratio

t =
bj

STDERR(bj)

is distributed as Student’s t with degrees of freedom equal to the degrees of freedom
for the mean square error.

When an explanatory variable is nearly a linear combination of other explanatory
variables in the model, the affected estimates are unstable and have high standard
errors. This problem is called collinearity or multicollinearity. A fit analysis provides
several methods for detecting collinearity.

Tolerances (TOL) and variance inflation factors (VIF) measure the strength of inter-
relationships among the explanatory variables in the model. Tolerance is 1 − R2

for the R2 that results from the regression of the explanatory variable on the other
explanatory variables in the model. Variance inflation factors are diagonal elements
of (X′X)−1 after X’X is scaled to correlation form. The variance inflation measures
the inflation in the variance of the parameter estimate due to collinearity between the
explanatory variable and other variables. These measures are related by VIF = 1 /
TOL.

If all variables are orthogonal to each other, both tolerance and variance inflation are
1. If a variable is closely related to other variables, the tolerance goes to 0 and the
variance inflation becomes large.

When the X’X matrix is singular, least-squares solutions for the parameters are not
unique. An estimate is 0 if the variable is a linear combination of previous explana-
tory variables. The degrees of freedom for the zeroed estimates are reported as 0. The
hypotheses that are not testable have t tests printed as missing.
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Parameter Estimates for Generalized Linear Models

The Parameter Estimates table for generalized linear models, as illustrated by
Figure 39.18, includes the following:

Variable names the variable associated with the estimated parameter. The
name INTERCEPT represents the estimate of the intercept param-
eter.

DF is the degrees of freedom associated with each parameter estimate.
There is one degree of freedom unless the model is not full rank. In
this case, any parameter that is confounded with previous parame-
ters in the model has its degrees of freedom set to 0.

Estimate is the parameter estimate.

Std Error is the estimated standard deviation of the parameter estimate.

ChiSq is the χ2 test statistic for testing that the parameter is 0. This is
computed as the square of the ratio of the parameter estimate di-
vided by the standard error.

Pr > ChiSq is the probability of obtaining an χ2 statistic greater than that ob-
served given that the true parameter is 0. A small p-value is evi-
dence for concluding that the parameter is not 0.

Figure 39.18. Parameter Estimates Table for Generalized Linear Models
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C.I. for Parameters

The C.I. for Parameters table gives a confidence interval for each parameter for
each confidence coefficient specified. You choose the confidence interval for param-
eters either in the fit output options dialog or from the Tables menu, as shown in
Figure 39.19.

File Edit Analyze Tables Graphs Curves Vars Help
� Model Equation

X’X Matrix
� Summary of Fit
� Analysis of Variance/Deviance

Type I / I(LR) Tests
� Type III / III(Wald) Tests

Type III(LR) Tests
� Parameter Estimates

C.I. / C.I.(Wald) for Parameters �

C.I.(LR) for Parameters �

Collinearity Diagnostics
Estimated Cov Matrix
Estimated Corr Matrix

99%
98%
95%
90%
80%
Other...

Figure 39.19. C.I. for Parameters Menu

Selecting 95% C.I. / C.I.(Wald) for Parameters or 95% C.I.(LR) for
Parameters in the fit output options dialog produces a table with a 95% confidence
interval for the parameters. This is the equivalent of choosing Tables:C.I. /
C.I.(Wald) for Parameters:95% or Tables:C.I.(LR) for Parameters:95%
from the Tables menu. You can also choose other confidence coefficients from
the Tables menu. Figure 39.20 illustrates a 95% confidence intervals table for the
parameters in a linear model.

652



Tables

Figure 39.20. C.I. for Parameters Table
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For linear models, a 100(1 − α)% confidence interval has upper and lower limits

bj ± t(1−α/2)sj

where t(1−α/2) is the (1−α/2) critical value of the Student’s t statistic with degrees of
freedom n-p, used in computing sj , the estimated standard deviation of the parameter
estimate bj .

For generalized models, you can specify the confidence interval based on either a
Wald type statistic or the likelihood function.

A 100(1 − α)% Wald type confidence interval is constructed from

(
βj − bj

sj

)2

≤ χ2
(1−α),1

where χ2
(1−α),1 is the (1 − α) critical value of the χ2 statistic with one degree of

freedom, and sj is the estimated standard deviation of the parameter estimate bj .

Thus, 100(1 − α)% upper and lower limits are

bj ± z(1−α/2)sj

where z(1−α/2) is the (1 − α/2) critical value of the standard normal statistic.

A table of 95% Wald type confidence intervals for the parameters is shown in Figure
39.21.
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Figure 39.21. C.I. for Parameters Tables

655



Reference � Fit Analyses

The likelihood ratio test statistic for the null hypothesis

H0: βj = βj0

where βj0 is a specified value, is

λ = −2(l(β̂0) − l(β̂))

where l(β̂0) is the maximized log likelihood under H0 and l(β̂) is the maximized log
likelihood over all β.

In large samples, the hypothesis is rejected at level α if the test statistic λ is greater
than the (1−α) critical value of the chi-squared statistic with one degree of freedom.

Thus a 100(1 − α)% likelihood-based confidence interval is constructed using re-
stricted maximization to find upper and lower limits satisfying

l(β̂0) = l(β̂) − 1
2
χ2

(1−α),1

An iterative procedure is used to obtain these limits. A 95% likelihood-based confi-
dence interval table for the parameters is illustrated in Figure 39.21.
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Collinearity Diagnostics

The Collinearity Diagnostics table is illustrated by Figure 39.22.

Figure 39.22. Collinearity Diagnostics Table

Number is the eigenvalue number.

Eigenvalue gives the eigenvalues of the X’X matrix.

Condition Index is the square root of the ratio of the largest eigenvalue to the
corresponding eigenvalue.

Variance Proportion is the proportion of the variance of each estimate accounted
for by each component.

Detailed collinearity diagnostics use the eigenstructure of X’X, which can be written
as

X′X = VD2V′ where V is an orthogonal matrix whose columns are the eigenvec-
tors of X’X, and D2 is a diagonal matrix of eigenvalues

d2
1≥d2

2≥ . . .≥d2
p

After scaling (X’X) to correlation form, Belsley, Kuh, and Welsch (1980) construct
the condition indices as the square roots of the ratio of the largest eigenvalue to each
individual eigenvalue, d1/dj , j = 1, 2, . . . , p.

The condition number of the X matrix is defined as the largest condition index, d1/dp.
When this number is large, the data are said to be ill conditioned. A condition index
of 30 to 100 indicates moderate to strong collinearity.

For each variable, the proportion of the variance of its estimate accounted for by each
component dj can be evaluated. A collinearity problem occurs when a component
associated with a high condition index contributes strongly to the variance of two
or more variables. Thus, for a high condition index (>30), the corresponding row
should be examined to see which variables have high values. Those would indicate
near-linear dependence.
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Estimated COV Matrix and Estimated CORR Matrix

The Estimated COV Matrix table contains the estimated variance-covariance ma-
trix of the parameters. The Estimated CORR Matrix table contains the estimated
correlation matrix of the parameters. Sample tables are shown in Figure 39.23.

Figure 39.23. Estimated COV and CORR Matrices
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Residual and Surface Plots
Residual plots provide visual displays for assessing how well the model fits the data,
for evaluating the distribution of the residuals, and for identifying influential observa-
tions. Surface plots are three-dimensional displays of continuous response surfaces
on the regular grids of the explanatory variables. They are much easier to comprehend
than rotating plots.

File Edit Analyze Tables Graphs Curves Vars Help
Residual by Predicted
Residual Normal QQ
Partial Leverage
Surface Plot � Parametric

Spline...
Kernel...
Parametric Profile

Figure 39.24. Graphs Menu

Residual-by-Predicted Plot

A residual-by-predicted plot is commonly used to diagnose nonlinearity or noncon-
stant error variance. It is also used to find outliers. A residual-by-predicted plot, as
illustrated by the plot on the left in Figure 39.25, is a plot of residuals versus predicted
response for each observation. See the “Predicted Values” and “Residuals” sections
for a further explanation of the axis variables.
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Figure 39.25. Residual-by-Predicted and Residual Normal QQ Plots
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Residual Normal QQ Plot
A normal quantile-quantile plot of residuals is illustrated by the plot on the right in
Figure 39.25. See the “Residual Normal Quantiles” section for an explanation of the
X axis variable.

The empirical quantiles are plotted against the quantiles of a standard normal distri-
bution. If the residuals are from a normal distribution with mean 0, the points tend
to fall along the reference line that has an intercept of 0 and a slope equal to the
estimated standard deviation.

Partial Leverage Plots
For linear models, the partial leverage plot for a selected explanatory variable can
be obtained by plotting the residuals for the response variable against the residuals
for the selected explanatory variable. The residuals for the response variable are
calculated from a model having the selected explanatory variable omitted, and the
residuals for the selected explanatory variable are calculated from a model where the
selected explanatory variable is regressed on the remaining explanatory variables.

Let X[j] be the n×(p−1) matrix formed from the design matrix X by removing the jth
column, Xj . Let ry[j] be the partial leverage Y variable containing the residuals that
result from regressing y on X[j] and let rx[j] be the partial leverage X variable con-
taining the residuals that result from regressing Xj on X[j]. Then a partial leverage
plot is a scatter plot of ry[j] against rx[j]. Partial leverage plots for two explanatory
variables are illustrated by Figure 39.26.

Figure 39.26. Partial Leverage Plots
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In a partial leverage plot, the partial leverage Y variable ry[j] can also be computed as

ry[j]i = rx[j]ibj + (yi − µ̂i)

For generalized linear models, the partial leverage Y is also computed as

ry[j]i = rx[j]ibj + (yi − µ̂i)g′(µ̂i)

Two reference lines are also displayed in the plots. One is the horizontal line of Y =
0, and the other is the fitted regression of ry[j] against rx[j]. The latter has an intercept
of 0 and a slope equal to the parameter estimate associated with the explanatory vari-
able in the model. The leverage plot shows the changes in the residuals for the model
with and without the explanatory variable. For a given data point in the plot, its resid-
ual without the explanatory variable is the vertical distance between the point and
the horizontal line; its residual with the explanatory variable is the vertical distance
between the point and the fitted line.

Parametric Surface Plot

With two explanatory interval variables in the model, a parametric surface plot is a
continuous surface plot of the predicted responses from the fitted parametric model
on a set of regular grids of the explanatory variables. Figure 39.27 shows a response
surface plot of oxy as a quadratic function of age and weight.

662



Residual and Surface Plots

Figure 39.27. Parametric Surface Plot

The response surface is displayed with options Drawing Modes:Smooth Color
and Axes:Three Sections.

Smoothing Spline Surface Plot

Two criteria can be used to select an estimator f̂λ for the function f :

• goodness of fit to the data

• smoothness of the fit

A standard measure of goodness of fit is the mean residual sum of squares

1
n

n∑
i=1

(yi − f̂λ(xi))2

A measure of the smoothness of a fit is an integrated squared second derivative

J2(fλ) =
∫ ∞

−∞

∫ ∞

−∞
((

∂2fλ

∂x2
1

)2 + 2(
∂2fλ

∂x1∂x2
)2 + (

∂2fλ

∂x2
2

)2)dx1dx2
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A single criterion that combines the two criteria is then given by

S (λ) =
1
n

n∑
i=1

(yi − f̂λ(xi))2 + λJ2(fλ)

where f̂λ belongs to the set of all continuously differentiable functions with square
integrable second derivatives, and λ is a positive constant.

The estimator that results from minimizing S(λ) is called a thin-plate smoothing
spline estimator. Wahba and Wendelberger (1980) derived a closed form expression
for the thin-plate smoothing spline estimator.

† Note: The computations for a thin-plate smoothing spline are time intensive, espe-
cially for large data sets.

The smoothing parameter λ controls the amount of smoothing; that is, it controls the
trade-off between the goodness of fit to the data and the smoothness of the fit. You
select a smoothing parameter λ by specifying a constant c in the formula

λ = c/100

The values of the explanatory variables are scaled by their corresponding interquartile
ranges before the computations. This makes the computations independent of the
units of X1 and X2.
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After choosing Graphs:Surface Plot:Spline from the menu, you specify a
smoothing parameter selection method in the Spline Fit dialog.

Figure 39.28. Spline Surface Fit Dialog

The default Method:GCV uses a c value that minimizes the generalized cross val-
idation mean squared error MSEGCV(λ). Figure 39.29 displays smoothing spline
estimates with c values of 0.0000831 (the GCV value) and 0.4127 (DF=6). Use the
slider in the table to change the c value of the spline fit.
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Figure 39.29. Smoothing Spline Surface Plot
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Kernel Surface Plot

A kernel estimator uses an explicitly defined set of weights at each point x to produce
the estimate at x. The kernel estimator of f has the form

f̂λ(x) =
n∑

i=1

W (x,xi; λ,Vx)yi

where W(x,xi; λ,Vx) is the weight function that depends on the smoothing param-
eter λ and the diagonal matrix Vx of the squares of the sample interquartile ranges.

The weights are derived from a single function that is independent of the design

W (x,xi; λ,Vx) =
K0((x − xi)/λ,Vx)∑n

j=1 K0((x − xj)/λ,Vx)

where K0 is a kernel function and λ is the bandwidth or smoothing parameter. The
weights are nonnegative and sum to 1.

Symmetric probability density functions commonly used as kernel functions are

• Normal K0(t,V) = 1
2π exp(−1

2t
′V−1t) for all t

• Quadratic K0(t,V) =

⎧⎨⎩ 2
π (1 − t′V−1t)

0

for t′V−1t ≤ 1

otherwise

• Biweight K0(t,V) =

⎧⎨⎩ 3
π (1 − t′V−1t)2

0

for t′V−1t ≤ 1

otherwise

• Triweight K0(t,V) =

⎧⎨⎩ 4
π (1 − t′V−1t)3

0

for t′V−1t ≤ 1

otherwise

You select a bandwidth λ for each kernel estimator by specifying c in the formula

λ = n− 1
6 c

where n is the sample size. Both λ and c are independent of the units of X.

SAS/INSIGHT software divides the range of each explanatory variable into a number
of evenly spaced intervals, then estimates the kernel fit on this grid. For a data point
xi that lies between two grid points, a linear interpolation is used to compute the
predicted value. For xi that lies inside a square of grid points, a pair of points that lie
on the same vertical line as xi and each lying between two grid points can be found.
A linear interpolation of these two points is used to compute the predicted value.
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After choosing Graphs:Surface Plot:Kernel from the menu, you specify a kernel
and smoothing parameter selection method in the Kernel Fit dialog.

Figure 39.30. Kernel Surface Fit Dialog

By default, SAS/INSIGHT software divides the range of each explanatory variable
into 20 evenly spaced intervals, uses a normal weight, and uses a c value that min-
imizes MSEGCV(λ). Figure 39.31 illustrates normal kernel estimates with c values
of 0.5435 (the GCV value) and 1.0. Use the slider to change the c value of the kernel
fit.
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Figure 39.31. Kernel Surface Plot
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Parametric Profile Surface Plot

With more than two explanatory interval variables in the model, a parametric profile
surface plot is a continuous surface plot of the predicted responses from the fitted
parametric model on a set of regular grids of a pair of explanatory variables. The
values of the remaining explanatory variables are initially set at their means and can
be adjusted with the sliders.

By default, the first two explanatory variables are used in the surface plot. You
can also create profile surface plots for other explanatory variables by selecting the
two variables before choosing Graphs:Surface Plot:Parametric profile. Figure
39.32 shows a parametric profile surface plot of oxy as a quadratic function of run-
pulse and maxpulse with rstpulse = 53.4516.

Figure 39.32. Parametric Profile Surface Plot
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Fit Curves
When you are working with one explanatory variable, you can fit curves to the Y-by-
X scatter plot generated when the analysis is first created. Use the output dialog (see
Figure 39.4, Figure 39.6, and Figure 39.7) or the Curves menu in Figure 39.33 to fit
curves to the scatter plot.

File Edit Analyze Tables Graphs Curves Vars Help

Confidence Ellipse �

Confidence Curves �

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Figure 39.33. Curves Menu

There are two types of fitting techniques: parametric and nonparametric. Parametric
techniques enable you to add confidence ellipses, fit regression polynomials, and add
confidence curves of fitted polynomials to the Y-by-X scatter plot. Nonparametric
techniques enable you to add spline, kernel, and local polynomial fits to the Y-by-X
scatter plot.

Parametric Curves: Confidence Ellipses

SAS/INSIGHT software provides two types of confidence ellipses for each pair of X
and Y variables assuming a bivariate normal distribution. One is a confidence ellipse
for the population mean, and the other is a confidence ellipse for prediction.

Let Z and S be the sample mean and the unbiased estimate of the covariance matrix
of a random sample of size n from a bivariate normal distribution with mean µ and
covariance matrix Σ.

The variable Z − µ is distributed as a bivariate normal variate with mean 0 and co-
variance n−1Σ, and it is independent of S. The confidence ellipse for µ is based on
Hotelling’s T 2 statistic:

T 2 = n(Z − µ)′S−1(Z − µ)

A 100(1 − α)% confidence ellipse for µ is defined by the equation

(Z − µ)′S−1(Z − µ) =
2(n − 1)
n(n − 2)

F2,n−2(1 − α)

where F2,n−2(1 − α) is the (1 − α) critical value of an F variate with degrees of
freedom 2 and n − 2.
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A confidence ellipse for prediction is a confidence region for predicting a new obser-
vation in the population. It also approximates a region containing a specified percent-
age of the population.

Consider Z as a bivariate random variable for a new observation. The variable Z−Z
is distributed as a bivariate normal variate with mean 0 and covariance (1 + 1/n)Σ,
and it is independent of S.

A 100(1 − α)% confidence ellipse for prediction is then given by the equation

(Z − Z)′S−1(Z − Z) =
2(n + 1)(n − 1)

n(n − 2)
F2,n−2(1 − α)

The family of ellipses generated by different F critical values has a common center
(the sample mean) and common major and minor axes.

The ellipses graphically indicate the correlation between two variables. When the
variable axes are standardized (by dividing the variables by their respective standard
deviations), the ratio of the two axis lengths (in Euclidean distances) reflects the
magnitude of the correlation between the two variables. A ratio of 1 between the
major and minor axes corresponds to a circular confidence contour and indicates that
the variables are uncorrelated. A larger value of the ratio indicates a larger positive
or negative correlation between the variables.

You can choose the level of the confidence region from the Confidence Ellipse
menus, as illustrated by Figure 39.34.

· · · Graphs Curves Vars Help
Confidence Ellipse �

Confidence Curves �

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Mean: 99%
95%
90%
80%
50%
Other...

Prediction: 99%
95%
90%
80%
50%
Other...

Figure 39.34. Confidence Ellipse Menu
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A confidence ellipse for the population mean is displayed with dashed lines, and a
confidence ellipse for prediction is displayed with dotted lines. Figure 39.35 displays
a scatter plot with 50% and 80% confidence ellipses for prediction. Use the sliders in
the Confidence Ellipses table to change the coefficient of the confidence ellipses.

Figure 39.35. Confidence Ellipses for Prediction
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Parametric Curves: Polynomial

Choose Curves:Polynomial from the menu to add a polynomial regression fit to
the Y-by-X scatter plot. This displays the Polynomial Fit dialog in Figure 39.36.

Figure 39.36. Polynomial Fit Dialog

In the Polynomial Fit dialog, you enter the degree for the polynomial fit. Select the
Polynomial Equation or Parameter Estimates options to create a Polynomial
Equation or Parameter Estimates table for the fitted curve.

Information about the polynomial fit is displayed in a table, as illustrated by Figure
39.37 The information includes the R2 value and an F statistic and its associated p-
value for testing the null hypothesis that all parameters are 0 except for the intercept.
A parametric regression fit table includes the following:

Curve is the curve in the Y-by-X scatter plot.

Degree(Polynomial) is the degree for the polynomial fit.

Model DF is the degrees of freedom for model.

Model Mean Square is the mean square for model.

Error DF is the degrees of freedom for error.

Error Mean Square is the mean square for error.

R-Square is the proportion of the (corrected) total variation attributed
to the fit.
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F Stat is the F statistic for testing the null hypothesis that all pa-
rameters are zero except for the intercept. This is formed
by dividing the mean square for model by the mean square
for error.

Pr > F is the probability under the null hypothesis of obtaining a
greater F statistic than that observed.
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Figure 39.37 displays a quadratic polynomial fit with Polynomial Equation and
Parameter Estimates tables.

Figure 39.37. A Quadratic Polynomial Fit

You can use the Degree(Polynomial) slider in the Parametric Regression Fit
table to change the degree of the polynomial curve fit. However, these will not change
the Polynomial Equation and Parameter Estimates tables. You can produce
a new Polynomial Equation or Parameter Estimates table by selecting the
Polynomial Equation or Parameter Estimates option from the Polynomial
Fit dialog.
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Parametric Curves: Confidence Curves

You can add two types of confidence curves for the predicted values. One curve
is for the mean value of the response, and the other is for the prediction of a new
observation.

For the ith observation, a confidence interval that covers the expected value of the
response with probability 1 − α has upper and lower limits

xib± t(1−α/2)

√
his

where t(1−α/2) is the (1− α/2) critical value of the Student’s t statistic with degrees
of freedom equal to the degrees of freedom for the mean squared error and hi is the
ith diagonal element of the hat matrix H. The hat matrix H is described in the section
“Output Variables” later in this chapter.

The 100(1 − α)% upper and lower limits for prediction are

xib± t(1−α/2)

√
1 + his

You can generate confidence curves for a parametric regression fit by choosing the
confidence coefficient from the Curves:Confidence Curves menu.

· · · Graphs Curves Vars Help
Confidence Ellipse �

Confidence Curves �

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Mean: 99%
95%
90%
80%
50%
Other...

Prediction: 99%
95%
90%
80%
50%
Other...

Figure 39.38. Confidence Curves Menu
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Figure 39.39 displays a quadratic polynomial fit with 95% mean confidence curves
for the response. Use the Coefficient slider to change the confidence coefficient.

Figure 39.39. A Quadratic Polynomial Fit with 99% Mean Confidence Curves
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Nonparametric Smoothing Spline

Two criteria can be used to select an estimator f̂λ for the function f :

• goodness of fit to the data

• smoothness of the fit

A standard measure of goodness of fit is the mean residual sum of squares

1
n

n∑
i=1

(yi − f̂λ(xi))2

A measure of the smoothness of a fit is the integrated squared second derivative∫ ∞

−∞
(f̂λ

′′
(x))2dx

A single criterion that combines the two criteria is then given by

S (λ) =
1
n

n∑
i=1

(yi − f̂λ(xi))2 + λ

∫ ∞

−∞
(f̂λ

′′
(x))2dx

where f̂λ belongs to the set of all continuously differentiable functions with square
integrable second derivatives, and λ is a positive constant.

The estimator that results from minimizing S(λ) is called the smoothing spline esti-
mator. This estimator fits a cubic polynomial in each interval between points. At
each point xi, the curve and its first two derivatives are continuous (Reinsch 1967).

The smoothing parameter λ controls the amount of smoothing; that is, it controls the
trade-off between the goodness of fit to the data and the smoothness of the fit. You
select a smoothing parameter λ by specifying a constant c in the formula

λ = (Q/10)3c

where Q is the interquartile range of the explanatory variable. This formulation makes
c independent of the units of X.
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After choosing Curves:Spline, you specify a smoothing parameter selection
method in the Spline Fit dialog.

Figure 39.40. Spline Fit Dialog

The default Method:GCV uses a c value that minimizes the generalized cross val-
idation mean squared error MSEGCV(λ). Figure 39.41 displays smoothing spline
estimates with c values of 0.0017 (the GCV value) and 15.2219 (DF=3). Use the
slider in the table to change the c value of the spline fit.
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Figure 39.41. Smoothing Spline Estimates
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Nonparametric Kernel Smoother

A kernel estimator uses an explicitly defined set of weights at each point x to produce
the estimate at x. The kernel estimator of f has the form

f̂λ(x) =
n∑

i=1

W (x, xi; λ)yi

where W(x, xi; λ) is the weight function that depends on the smoothing parameter λ.

The weights are derived from a single function that is independent of the design

W (x, xi; λ) =
K0(x−xi

λ )∑n
j=1 K0(

x−xj

λ )

where K0 is a kernel function and λ is the bandwidth or smoothing parameter. The
weights are nonnegative and sum to 1.

Symmetric probability density functions commonly used as kernel functions are

• Normal K0(t) = 1√
2π

exp(−t2/2) for −∞ < t < ∞

• Triangular K0(t) =

⎧⎨⎩ 1 − |t|
0

for |t| ≤ 1

otherwise

• Quadratic K0(t) =

⎧⎨⎩ 3
4(1 − t2)

0

for |t| ≤ 1

otherwise

You select a bandwidth λ for each kernel estimator by specifying c in the formula

λ = n− 1
5 Qc

where Q is the sample interquartile range of the explanatory variable and n is the
sample size. This formulation makes c independent of the units of X.

SAS/INSIGHT software divides the range of the explanatory variable into 128 evenly
spaced intervals, then approximates the data on this grid and uses the fast Fourier
transformation (Silverman 1986) to estimate the kernel fit on this grid. For a data
point xi that lies between two grid points, a linear interpolation is used to compute
the predicted value. A small value of λ (relative to the width of the interval) may give
unstable estimates of the kernel fit.
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After choosing Curves:Kernel, you specify a kernel and smoothing parameter se-
lection method in the Kernel Fit dialog.

Figure 39.42. Kernel Fit Dialog

The default Weight:Normal uses a normal weight, and Method:GCV uses a c
value that minimizes MSEGCV(λ). Figure 39.43 illustrates normal kernel estimates
with c values of 0.0944 (the GCV value) and 0.7546 (DF=3). Use the slider to change
the c value of the kernel fit.

Figure 39.43. Kernel Estimates
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Nonparametric Local Polynomial Smoother

The kernel estimator fits a local mean at each point x and thus cannot even estimate
a line without bias (Cleveland, Cleveland, Devlin and Grosse 1988). An estimator
based on locally-weighted regression lines or locally-weighted quadratic polynomials
may give more satisfactory results.

A local polynomial smoother fits a locally-weighted regression at each point x to
produce the estimate at x. Different types of regression and weight functions are used
in the estimation.

SAS/INSIGHT software provides the following three types of regression:

• Mean a locally-weighted mean

• Linear a locally-weighted regression line

• Quadratic a locally-weighted quadratic polynomial regression

The weights are derived from a single function that is independent of the design

W (x, xi; λi) = K0(
x − xi

λi
)

where K0 is a weight function and λi is the local bandwidth at xi.

SAS/INSIGHT software uses the following weight functions:

• Normal K0(t) =

⎧⎨⎩ exp(−t2/2)

0

for |t| ≤ 3.5

otherwise

• Triangular K0(t) =

⎧⎨⎩ 1 − |t|
0

for |t| ≤ 1

otherwise

• Quadratic K0(t) =

⎧⎨⎩ 1 − t2

0

for |t| ≤ 1

otherwise

• Tri − Cube K0(t) =

⎧⎨⎩ (1 − |t|3)3

0

for |t| ≤ 1

otherwise

† Note: The normal weight function is proportional to a truncated normal density
function.

SAS/INSIGHT software provides two methods to compute the local bandwidth λi.
The loess estimator (Cleveland 1979; Cleveland, Devlin and Grosse 1988) evaluates
λi based on the furthest distance from k nearest neighbors. A fixed bandwidth local
polynomial estimator uses a constant bandwidth λ at each xi.
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For a loess estimator, you select k nearest neighbors by specifying a positive constant
α. For α ≤ 1, k is αn truncated to an integer, where n is the number of observations.
For α > 1, k is set to n.
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The local bandwidth λi is then computed as

λi =

⎧⎨⎩ d(k)(xi) for 0 < α ≤ 1

αd(n)(xi) for α > 1

where d(k)(xi) is the furthest distance from xi to its k nearest neighbors.

† Note: For α ≤ 1, the local bandwidth λi is a function of k and thus a step function
of α.

For a fixed bandwidth local polynomial estimator, you select a bandwidth λ by spec-
ifying c in the formula

λ = n− 1
5 Qc

where Q is the sample interquartile range of the explanatory variable and n is the
sample size. This formulation makes c independent of the units of X.

† Note: A fixed bandwidth local mean estimator is equivalent to a kernel smoother.

By default, SAS/INSIGHT software divides the range of the explanatory variable into
128 evenly spaced intervals, then it fits locally-weighted regressions on this grid. A
small value of c or α may give the local polynomial fit to the data points near the grid
points only and may not apply to the remaining points.

For a data point xi that lies between two grid points xi[j] ≤ xi < xi[j+1], the predicted
value is the weighted average of the two predicted values at the two nearest grid
points:

(1 − dij)ŷi[j] + dij ŷi[j+1]

where ŷi[j] and ŷi[j+1] are the predicted values at the two nearest grid points and

dij =
xi − xi[j]

xi[j+1] − xi[j]

A similar algorithm is used to compute the degrees of freedom of a local polynomial
estimate, dfλ = trace(Hλ). The ith diagonal element of the matrix Hλ is

(1 − dij)hi[j] + dijhi[j+1]

where hi[j] and hi[j+1] are the ith diagonal elements of the projection matrices of the
two regression fits.
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After choosing Curves:Loess from the menu, you specify a loess fit in the Loess
Fit dialog.

Figure 39.44. Loess Fit Dialog

In the dialog, you can specify the number of intervals, the regression type, the
weight function, and the method for choosing the smoothing parameter. The default
Type:Linear uses a linear regression, Weight:Tri-Cube uses a tri-cube weight
function, and Method:GCV uses an α value that minimizes MSEGCV(λ).

Figure 39.45 illustrates loess estimates with Type=Linear, Weight=Tri-Cube, and
α values of 0.0930 (the GCV value) and 0.7795 (DF=3). Use the slider to change the
α value of the loess fit.
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Figure 39.45. Loess Estimates
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The loess degrees of freedom is a function of local bandwidth λi. For α ≤ 1, λi is
a step function of α and thus the loess df is a step function of α. The convergence
criterion applies only when the specified df is less than df (α=1), the loess df for
α = 1. When the specified df is greater than df (α=1), SAS/INSIGHT software uses
the α value that has its df closest to the specified df.

Similarly, you can choose Curves:Local Polynomial, Fixed Bandwidth from
the menu to specify a fixed bandwidth local polynomial fit.

Figure 39.46. Fixed Bandwidth Local Polynomial Fit Dialog

Figure 39.47 illustrates fixed bandwidth local polynomial estimates with
Type=Linear, Weight=Tri-Cube, and c values of 0.2026 (the GCV value)
and 2.6505 (DF=3). Use the slider to change the c value of the local polynomial fit.
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Figure 39.47. Fixed Bandwidth Local Polynomial Estimates
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Output Variables
Output variables based on the model you fit can be saved in the data window. From
the data window, you can store these variables in a SAS data set. This enables you,
for example, to perform additional analyses using SAS/STAT software.

Axis variables in residual plots are automatically saved in the data window used to
create the analysis. For example, when you create a residual-by-predicted plot, resid-
ual and predicted variables are always generated. These variables are deleted when
you close the analysis window.

You can save variables permanently by using the fit output options dialog or the Vars
menu shown in Figure 39.48. Such variables remain stored in the data window after
you close the analysis window.

· · · Curves Vars Help
Hat Diag
Predicted
Linear Predictor
Predicted Surfaces �

Predicted Curves �

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals �

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Deviance Residual
Standardized Deviance Residual
Studentized Deviance Residual
Pearson Residual
Standardized Pearson Residual
Studentized Pearson Residual
Anscombe Residual
Standardized Anscombe Residual
Studentized Anscombe Residual

Figure 39.48. Vars Menu

SAS/INSIGHT software provides predicted and residual variables, a linear predictor,
a residual normal quantile variable, partial leverage X and Y variables, and influence
diagnostic variables.

Influence diagnostics are measures of the influence of each observation on the pa-
rameter estimates. These diagnostics include the hat diagonal values, standardized
residuals, and studentized residuals. Cook’s D, Dffits, Covratio, and Dfbetas also
measure the effect of deleting observations.

Some influence diagnostics require a refit of the model after excluding each obser-
vation. For generalized linear models, numerical iterations are used for the fits, and
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the process can be expensive. One-step methods are used to approximate these diag-
nostics after each fit. The process involves doing one iteration of the fit without the
excluded observation, starting with the final parameter estimates and weights from
the complete fit.

You can also create generalized residuals such as Pearson, deviance, and Anscombe
residuals with generalized linear models. These residuals are applicable to the non-
normal response distributions.

Generated variables use the naming conventions described later in this section. If a
resulting variable name has more than 32 characters, only the first 32 characters are
used. Generated variables also follow the same numbering convention as the analysis
window when you create more than one fit analysis from the same data window. If
the generated variable name is longer than 32 characters, the original variable name
is truncated to the necessary length.

Hat Matrix Diagonal

Data points that are far from the centroid of the X-space are potentially influential. A
measure of the distance between a data point, xi, and the centroid of the X-space is
the data point’s associated diagonal element hi in the hat matrix. Belsley, Kuh, and
Welsch (1980) propose a cutoff of 2p/n for the diagonal elements of the hat matrix,
where n is the number of observations used to fit the model, and p is the number
of parameters in the model. Observations with hi values above this cutoff should be
investigated.

For linear models, the hat matrix

H = X(X′X)−1X′

can be used as a projection matrix. The hat matrix diagonal variable contains the
diagonal elements of the hat matrix

hi = xi(X′X)−1x′
i

For generalized linear models, an approximate projection matrix is given by

H = W1/2X(X′WX)−1X′W1/2

where W = Wo when the full Hessian is used and W = We when Fisher’s scoring
method is used.

The values of hi are stored in a variable named H–yname, where yname is the
response variable name.
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Predicted Values

After the model has been fit, the predicted values are calculated from the estimated
regression equation.

For linear models, the predicted mean vector of the n observation responses is

µ̂ = Xb = Hy

µ̂i = xib

For generalized linear models,

µ̂i = g−1(η0i + xib)

where η0i is the offset for the ith observation.

The predicted values are stored in variables named P–yname for each response
variable, where yname is the response variable name.

Linear Predictor

The linear predictor values are the linear function values, xib, in the predicted val-
ues. The linear predictor values are stored in variables named LP–yname for each
response variable, where yname is the response variable name.

Residuals

The residuals are calculated as actual response minus predicted value,

ri = yi − µ̂i

The residuals are stored in variables named R–yname for each response variable,
where yname is the response variable name.

Residual Normal Quantiles

The normal quantile of the ith ordered residual is computed as

Φ−1

(
i − 0.375
n + 0.25

)

where Φ−1 is the inverse standard cumulative normal distribution.
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If the residuals are normally distributed, the points on the residual normal quantile-
quantile plot should lie approximately on a straight line with residual mean as the
intercept and residual standard deviation as the slope.

The normal quantiles of the residuals are stored in variables named RN–yname for
each response variable, where yname is the response variable name.

Predicted Surfaces

You can output predicted values from fitted kernel and thin-plate smoothing spline
surfaces by choosing Vars:Predicted Surfaces from the menu.

· · · Curves Vars Help
Hat Diag
Predicted
Linear Predictor
Predicted Surfaces �

Predicted Curves �

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals �

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Spline...
Kernel...

Figure 39.49. Predicted Surfaces Menu

For predicted values from a spline or kernel fit, you specify the surface fit in the
dialogs, as shown in Figure 39.28 or Figure 39.30, respectively.

The predicted values for each response variable are stored in variables named
PS–yname for spline and PK–yname for kernel, where yname is the response
variable name.
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Predicted Curves

You can output predicted values from fitted curves by choosing Vars:Predicted
Curves from the menu.

· · · Curves Vars Help
Hat Diag
Predicted
Linear Predictor
Predicted Surfaces �

Predicted Curves �

Residual
Residual Normal Quantile
Standardized Residual
Studentized Residual
Generalized Residuals �

Partial Leverage X
Partial Leverage Y
Cook’s D
Dffits
Covratio
Dfbetas

Polynomial...
Spline...
Kernel...
Loess...
Local Polynomial, Fixed Bandwidth...

Figure 39.50. Predicted Curves Menu

After choosing Vars:Predicted Curves:Polynomial from the menu, you can
specify the degree of polynomial in the Polynomial Fit dialog.

Figure 39.51. Predicted Polynomial Fit Dialog

For predicted values from a spline, kernel, loess, or fixed bandwidth local polynomial
fit, you specify the curve fit in the dialogs, as shown in Figure 39.40, Figure 39.42,
Figure 39.44, or Figure 39.46, respectively.

The predicted values for each response variable are stored in variables named
PP–yname for polynomial, PS–yname for spline, PK–yname for kernel, and
PL–yname for loess and fixed bandwidth local polynomial, where yname is the
response variable name.
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Standardized and Studentized Residuals

For linear models, the variance of the residual ri is

Var(ri) = σ2(1 − hi)

and an estimate of the standard error of the residual is

STDERR(ri) = s
√

1 − hi

Thus, the residuals can be modified to better detect unusual observations. The ratio
of the residual to its standard error, called the standardized residual, is

rsi =
ri

s
√

1 − hi

If the residual is standardized with an independent estimate of σ2, the result has a
Student’s t distribution if the data satisfy the normality assumption. If you estimate
σ2 by s2

(i), the estimate of σ2 obtained after deleting the ith observation, the result is
a studentized residual:

rti =
ri

s(i)

√
1 − hi

Observations with |rti| > 2 may deserve investigation.

For generalized linear models, the standardized and studentized residuals are

rsi =
ri√

φ̂(1 − hi)

rti =
ri√

φ̂(i)(1 − hi)

where φ̂ is the estimate of the dispersion parameter φ, and φ̂(i) is a one-step approxi-
mation of φ after excluding the ith observation.

The standardized residuals are stored in variables named RS–yname and the
Studentized residuals are stored in variables named RT–yname for each response
variable, where yname is the response variable name.
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Deviance Residuals

The deviance residual is the measure of deviance contributed from each observation
and is given by

rDi = sign(ri)
√

di

where di is the individual deviance contribution.

The deviance residuals can be used to check the model fit at each observation for gen-
eralized linear models. These residuals are stored in variables named RD–yname
for each response variable, where yname is the response variable name.

The standardized and studentized deviance residuals are

rDsi =
rDi√

φ̂(1 − hi)

rDti =
rDi√

φ̂(i)(1 − hi)

The standardized deviance residuals are stored in variables named RDS–yname and
the studentized deviance residuals are stored in variables named RDT–yname for
each response variable, where yname is the response variable name.

Pearson Residuals

The Pearson residual is the raw residual divided by the square root of the variance
function V (µ).

The Pearson residual is the individual contribution to the Pearson χ2 statistic. For a
binomial distribution with mi trials in the ith observation, it is defined as

rPi =
√

mi
ri√

V (µ̂i)

For other distributions, the Pearson residual is defined as

rPi =
ri√

V (µ̂i)

The Pearson residuals can be used to check the model fit at each observation for gen-
eralized linear models. These residuals are stored in variables named RP–yname
for each response variable, where yname is the response variable name.
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The standardized and studentized Pearson residuals are

rPsi =
rPi√

φ̂(1 − hi)

rPti =
rPi√

φ̂(i)(1 − hi)

The standardized Pearson residuals are stored in variables named RPS–yname and
the studentized Pearson residuals are stored in variables named RPT–yname for
each response variable, where yname is the response variable name.

Anscombe Residuals

For nonnormal response distributions in generalized linear models, the distribution
of the Pearson residuals is often skewed. Anscombe proposed a residual using a
function A(y) in place of y in the residual derivation (Anscombe 1953, McCullagh
and Nelder 1989). The function A(y) is chosen to make the distribution of A(y) as
normal as possible and is given by

A(µ) =
∫ µ

−∞
V −1/3(t)dt

where V (t) is the variance function.

For a binomial distribution with mi trials in the ith observation, the Anscombe resid-
ual is defined as

rAi =
√

mi
A(yi) − A(µ̂i)
A′(µ̂i)

√
V (µ̂i)

For other distributions, the Anscombe residual is defined as

rAi =
A(yi) − A(µ̂i)
A′(µ̂i)

√
V (µ̂i)

where A′(µ) is the derivative of A(µ).
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For the response distributions used in the fit analysis, Anscombe residuals are

Normal rAi = yi − µ̂i

Inverse Gaussian rAi = (log(yi) − log(µ̂i))/µ̂i
1/2

Gamma rAi = 3((yi/µ̂i)1/3 − 1)

Poisson rAi = 3
2(y2/3

i µ̂i
−1/6 − µ̂i

1/2)

Binomial rAi =
√

mi

(
B(yi,

2
3 , 2

3) − B(µ̂i,
2
3 , 2

3)
)
(µ̂i(1 − µ̂i))−1/6

where B(z, a, b) =
∫ z
0 ta−1(1 − t)b−1 dt

You can save Anscombe residuals to your data set by using the Output Variables
dialog, as shown in Figure 39.5, or the Vars menu, as shown in Figure 39.48. These
residuals are stored in variables named RA–yname for each response variable,
where yname is the response variable name.

The standardized and studentized Anscombe residuals are

rAsi =
rAi√

φ̂(1 − hi)

rAti =
rAi√

φ̂(i)(1 − hi)

where φ̂ is the estimate of the dispersion parameter φ, and φ̂(i) is a one-step approxi-
mation of φ after excluding the ith observation.

The standardized Anscombe residuals are stored in variables named RAS–yname
and the studentized Anscombe residuals are stored in variables named RAT–yname
for each response variable, where yname is the response variable name.

Partial Leverage Variables

The partial leverage output variables are variables used in the partial leverage plots.
For each interval X variable, the corresponding partial leverage X variable is named
X–xname, where xname is the X variable name. For each pair of Y and X
variables, the corresponding partial leverage Y variable is named yname–xname,
where yname is the Y variable name and xname is the X variable name. Up to the
first three characters of the response variable name are used to create the new variable
name.
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Cook’s D

Cook’s D measures the change in the parameter estimates caused by deleting each
observation. For linear models,

Di =
1

ps2
(b − b(i))

′(X′X)(b − b(i))

where b(i) is the vector of parameter estimates obtained after deleting the ith obser-
vation.

Cook (1977) suggests comparing Di to the F distribution with p and n − p degrees
of freedom.

For generalized linear models,

Di =
1

pφ̂
(b − b(i))

′(X′WX)(b − b(i))

where W = Wo when the full Hessian is used and W = We when Fisher’s scoring
method is used.

Cook’s D statistics are stored in variables named D–yname for each response vari-
able, where yname is the response variable name.

Dffits

The Dffits statistic is a scaled measure of the change in the predicted value for the ith
observation. For linear models,

Fi =
µ̂i − µ̂(i)

s(i)

√
hi

where µ̂(i) is the ith value predicted without using the ith observation.

Large absolute values of Fi indicate influential observations. A general cutoff to
consider is 2; a recommended size-adjusted cutoff is 2

√
p/n.

For generalized linear models,

Fi =
µ̂i − µ̂(i)√

φ̂(i)hi

The Dffits statistics are stored in variables named F–yname for each response vari-
able, where yname is the response variable name.
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Covratio

Covratio measures the effect of observations on the covariance matrix of the param-
eter estimates. For linear models,

Ci =
|s2

(i)(X
′
(i)X(i))−1|

|s2(X′X)−1|

where X(i) is the X matrix without the ith observation.

Values of Ci near 1 indicate that the observation has little effect on the precision of the
estimates. Observations with |Ci − 1|≥3p/n suggest a need for further investigation.

For generalized linear models,

Ci =
|φ̂(i)(X′

(i)W(i)X(i))−1|
|φ̂(X′WX)−1|

where W(i) is the W matrix without the ith observation, W = Wo when the full
Hessian is used, and W = We when Fisher’s scoring method is used.

The Covratio statistics are stored in variables named C–yname for each response
variable, where yname is the response variable name.

Dfbetas

Dfbetas is a normalized measure of the effect of observations on the estimated regres-
sion coefficients. For linear models,

Bj,i =
bj − bj(i)

s(i)

√
(X′X)−1

jj

where (X′X)−1
jj is the jth diagonal element of (X′X)−1. Values of Bj,i > 2 indicate

observations that are influential in estimating a given parameter. A recommended
size-adjusted cutoff is 2/

√
n.

For generalized linear models,

Bj,i =
bj − bj(i)√

φ̂(i)(X′WX)−1
jj

where W = Wo when the full Hessian is used and W = We when the Fisher’s
scoring method is used.

The dfbetas statistics are stored in variables named Byname–xname for each pair
of response and explanatory variables, where yname is the response variable name
and xname is the explanatory variable name. Up to the first two characters of the
response variable name are used to create the new variable name.
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Weighted Analyses
If the errors εi do not have a common variance in the regression model

yi = f(xi) + εi

a weighted analysis may be appropriate. The observation weights are the values of
the Weight variable you specified.

In parametric regression, the linear model is given by

y = Xβ + ε

Let W be an n × n diagonal matrix consisting of weights w1 > 0, w2 > 0, . . ., and
wn > 0 for the observations, and let W1/2 be an n×n diagonal matrix with diagonal
elements w

1/2
1 , w

1/2
2 , . . ., and w

1/2
n .

The weighted fit analysis is equivalent to the usual (unweighted) fit analysis of the
transformed model

y∗ = X∗β + ε∗

where y∗ = W1/2y, X∗ = W1/2X, and ε∗ = W1/2ε.

The estimate of β is then given by

bw = (X′WX)−1X′Wy

For nonparametric weighted regression, the minimizing criterion in spline estimation
is given by

S(λ) =
1∑n

i=1 wi

n∑
i=1

wi{yi − f̂λ(xi)}2 + λ

∫ ∞

−∞
{f̂λ

′′
(x)}2dx

In kernel estimation, individual weights are

W (x, xi; λ) =
wiK0(x−xi

λ )∑n
j=1 wjK0(

x−xj

λ )

For generalized linear models, the function ai(φ) = φ/(miwi) for binomial distribu-
tion with mi trials in the ith observation, ai(φ) = φ/wi for other distributions. The
function ai(φ) is used to compute the likelihood function and the diagonal matrices
Wo and We.
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The individual deviance contribution di is obtained by multiplying the weight wi by
the unweighted deviance contribution. The deviance is the sum of these weighted
deviance contributions.

The Pearson χ2 statistic is

χ2 =
n∑

i=1

wimi(yi − µi)2/V (µi)

for binomial distribution with mi trials in the ith observation,

χ2 =
n∑

i=1

wi(yi − µi)2/V (µi)

for other distributions.
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Choosing Analyze:Multivariate ( Y X ) gives you access to a variety of multivari-
ate analyses. These provide methods for examining relationships among variables
and between two sets of variables.

You can calculate correlation matrices and scatter plot matrices with confidence el-
lipses to explore relationships among pairs of variables. You can use principal compo-
nent analysis to examine relationships among several variables, canonical correlation
analysis and maximum redundancy analysis to examine relationships between two
sets of interval variables, and canonical discriminant analysis to examine relation-
ships between a nominal variable and a set of interval variables.

Figure 40.1. Multivariate Analysis
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Variables
To create a multivariate analysis, choose Analyze:Multivariate ( Y’s ). If you have
already selected one or more interval variables, these selected variables are treated
as Y variables and a multivariate analysis for the variables appears. If you have not
selected any variables, a variables dialog appears.

Figure 40.2. Multivariate Variables Dialog

Select at least one Y variable. With canonical correlation analysis and maximum
redundancy analysis, you need to select a set of X variables. With canonical discrim-
inant analysis, you need to select a nominal Y variable and a set of X variables.

Without X variables, sums of squares and crossproducts, corrected sums of squares
and crossproducts, covariances, and correlations are displayed as symmetric matrices
with Y variables as both the row variables and the column variables. With a nominal
Y variable, these statistics are displayed as symmetric matrices with X variables as
both the row variables and the column variables. When both interval Y variables and
interval X variables are selected, these statistics are displayed as rectangular matrices
with Y variables as the row variables and X variables as the column variables.

You can select one or more Partial variables. The multivariate analysis analyzes Y
and X variables using their residuals after partialling out the Partial variables.

You can select one or more Group variables, if you have grouped data. This creates
one multivariate analysis for each group. You can select a Label variable to label
observations in the plots.

You can select a Freq variable. If you select a Freq variable, each observation is
assumed to represent ni observations, where ni is the value of the Freq variable.
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You can select a Weight variable to specify relative weights for each observation in
the analysis. The details of weighted analyses are explained in the “Method” section,
which follows, and the “Weighted Analyses” section at the end of this chapter.
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Method
Observations with missing values for any of the Partial variables are not used.
Observations with Weight or Freq values that are missing or that are less than or
equal to 0 are not used. Only the integer part of Freq values is used.

Observations with missing values for Y or X variables are not used in the analysis ex-
cept for the computation of pairwise correlations. Pairwise correlations are computed
from all observations that have nonmissing values for any pair of variables.

The following notation is used in this chapter:

• n is the number of nonmissing observations.

• np, ny, and nx are the numbers of Partial, Y, and X variables.

• d is the variance divisor.

• wi is the ith observation weight (values of the Weight variable).

• yi and xi are the ith observed nonmissing Y and X vectors.

• y and x are the sample mean vectors,
∑n

i=1 yi/n,
∑n

i=1 xi/n.

The sums of squares and crossproducts of the variables are

• Uyy =
∑n

i=1 yiy′
i

• Uyx =
∑n

i=1 yix′
i

• Uxx =
∑n

i=1 xix′
i

The corrected sums of squares and crossproducts of the variables are

• Cyy =
∑n

i=1 (yi − y)(yi − y)′

• Cyx =
∑n

i=1 (yi − y)(xi − x)′

• Cxx =
∑n

i=1 (xi − x)(xi − x)′

If you select a Weight variable, the sample mean vectors are

y =
∑n

i=1 wiyi/
∑n

i=1 wi x =
∑n

i=1 wixi/
∑n

i=1 wi

The sums of squares and crossproducts with a Weight variable are

• Uyy =
∑n

i=1 wiyiy′
i

• Uyx =
∑n

i=1 wiyix′
i

• Uxx =
∑n

i=1 wixix′
i
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The corrected sums of squares and crossproducts with a Weight variable are

• Cyy =
∑n

i=1 wi(yi − y)(yi − y)′

• Cyx =
∑n

i=1 wi(yi − y)(xi − x)′

• Cxx =
∑n

i=1 wi(xi − x)(xi − x)′

The covariance matrices are computed as

Syy = Cyy/d Syx = Cyx/d Sxx = Cxx/d

To view or change the variance divisor d used in the calculation of variances and
covariances, or to view or change other method options in the multivariate analysis,
click on the Method button from the variables dialog to display the method options
dialog.

Figure 40.3. Multivariate Method Options Dialog

The variance divisor d is defined as
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• d = n − np − 1 for vardef=DF, degrees of freedom

• d = n for vardef=N, number of observations

• d =
∑

i wi − np − 1 for vardef=WDF, sum of weights minus number
of partial variables minus 1

• d =
∑

i wi for vardef=WGT, sum of weights

By default, SAS/INSIGHT software uses DF, degrees of freedom.
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The correlation matrices Ryy, Ryx, and Rxx, containing the Pearson product-
moment correlations of the variables, are derived by scaling their corresponding co-
variance matrices:

• Ryy = D−1
yy SyyD−1

yy

• Ryx = D−1
yy SyxD−1

xx

• Rxx = D−1
xx SxxD−1

xx

where Dyy and Dxx are diagonal matrices whose diagonal elements are the square
roots of the diagonal elements of Syy and Sxx:

• Dyy = (diag(Syy))1/2

• Dxx = (diag(Sxx))1/2

Principal Component Analysis

Principal component analysis was originated by Pearson (1901) and later developed
by Hotelling (1933). It is a multivariate technique for examining relationships among
several quantitative variables. Principal component analysis can be used to summa-
rize data and detect linear relationships. It can also be used for exploring polynomial
relationships and for multivariate outlier detection (Gnanadesikan 1997).

Principal component analysis reduces the dimensionality of a set of data while try-
ing to preserve the structure. Given a data set with ny Y variables, ny eigenvalues
and their associated eigenvectors can be computed from its covariance or correlation
matrix. The eigenvectors are standardized to unit length.

The principal components are linear combinations of the Y variables. The coefficients
of the linear combinations are the eigenvectors of the covariance or correlation matrix.
Principal components are formed as follows:

• The first principal component is the linear combination of the Y variables that
accounts for the greatest possible variance.

• Each subsequent principal component is the linear combination of the Y vari-
ables that has the greatest possible variance and is uncorrelated with the previ-
ously defined components.

For a covariance or correlation matrix, the sum of its eigenvalues equals the trace of
the matrix, that is, the sum of the variances of the ny variables for a covariance matrix,
and ny for a correlation matrix. The principal components are sorted by descending
order of their variances, which are equal to the associated eigenvalues.
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Principal components can be used to reduce the number of variables in statistical
analyses. Different methods for selecting the number of principal components to
retain have been suggested. One simple criterion is to retain components with associ-
ated eigenvalues greater than the average eigenvalue (Kaiser 1958). SAS/INSIGHT
software offers this criterion as an option for selecting the numbers of eigenvalues,
eigenvectors, and principal components in the analysis.

Principal components have a variety of useful properties (Rao 1964; Kshirsagar
1972):

• The eigenvectors are orthogonal, so the principal components represent jointly
perpendicular directions through the space of the original variables.

• The principal component scores are jointly uncorrelated. Note that this prop-
erty is quite distinct from the previous one.

• The first principal component has the largest variance of any unit-length linear
combination of the observed variables. The jth principal component has the
largest variance of any unit-length linear combination orthogonal to the first
j − 1 principal components. The last principal component has the smallest
variance of any linear combination of the original variables.

• The scores on the first j principal components have the highest possible gen-
eralized variance of any set of unit-length linear combinations of the original
variables.

• In geometric terms, the j-dimensional linear subspace spanned by the first j
principal components gives the best possible fit to the data points as measured
by the sum of squared perpendicular distances from each data point to the sub-
space. This is in contrast to the geometric interpretation of least squares re-
gression, which minimizes the sum of squared vertical distances. For example,
suppose you have two variables. Then, the first principal component minimizes
the sum of squared perpendicular distances from the points to the first princi-
pal axis. This is in contrast to least squares, which would minimize the sum of
squared vertical distances from the points to the fitted line.

SAS/INSIGHT software computes principal components from either the correlation
or the covariance matrix. The covariance matrix can be used when the variables
are measured on comparable scales. Otherwise, the correlation matrix should be
used. The new variables with principal component scores have variances equal to
corresponding eigenvalues (Variance=Eigenvalues) or one (Variance=1). You
specify the computation method and type of output components in the method op-
tions dialog, as shown in Figure 40.3. By default, SAS/INSIGHT software uses the
correlation matrix with new variable variances equal to corresponding eigenvalues.
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Principal Component Rotation

Orthogonal transformations can be used on principal components to obtain factors
that are more easily interpretable. The principal components are uncorrelated with
each other, the rotated principal components are also uncorrelated after an orthogonal
transformation. Different orthogonal transformations can be derived from maximiz-
ing the following quantity with respect to γ:

nf∑
j=1

⎛⎝ ny∑
i=1

b4
ij −

γ

ny

( ny∑
i=1

b2
ij

)2
⎞⎠

where nf is the specified number of principal components to be rotated (number of
factors), b2

ij = r2
ij/

∑nf

k=1 r2
ik, and rij is the correlation between the ith Y variable

and the jth principal component.

SAS/INSIGHT software uses the following orthogonal transformations:

Equamax γ = nf

2

Orthomax γ

Parsimax γ = ny(nf−1)
(ny+nf−2)

Quartimax γ = 0

Varimax γ = 1

To view or change the principal components rotation options, click on the Rotation
Options button in the method options dialog shown in Figure 40.3 to display the
Rotation Options dialog.

Figure 40.4. Rotation Options Dialog
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You can specify the type of rotation and number of principal components to be rotated
in the dialog. By default, SAS/INSIGHT software uses Varimax rotation on the first
two components. If you specify Orthomax, you also need to enter the γ value for
the rotation in the Gamma: field.
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Canonical Correlation Analysis

Canonical correlation was developed by Hotelling (1935, 1936). Its application is
discussed by Cooley and Lohnes (1971), Kshirsagar (1972), and Mardia, Kent, and
Bibby (1979). It is a technique for analyzing the relationship between two sets of
variables. Each set can contain several variables. Multiple and simple correlation
are special cases of canonical correlation in which one or both sets contain a single
variable, respectively.

Given two sets of variables, canonical correlation analysis finds a linear combina-
tion from each set, called a canonical variable, such that the correlation between the
two canonical variables is maximized. This correlation between the two canonical
variables is the first canonical correlation. The coefficients of the linear combina-
tions are canonical coefficients or canonical weights. It is customary to normalize the
canonical coefficients so that each canonical variable has a variance of 1.

The first canonical correlation is at least as large as the multiple correlation between
any variable and the opposite set of variables. It is possible for the first canonical
correlation to be very large while all the multiple correlations for predicting one of
the original variables from the opposite set of canonical variables are small.

Canonical correlation analysis continues by finding a second set of canonical vari-
ables, uncorrelated with the first pair, that produces the second highest correlation
coefficient. The process of constructing canonical variables continues until the num-
ber of pairs of canonical variables equals the number of variables in the smaller group.

Each canonical variable is uncorrelated with all the other canonical variables of ei-
ther set except for the one corresponding canonical variable in the opposite set. The
canonical coefficients are not generally orthogonal, however, so the canonical vari-
ables do not represent jointly perpendicular directions through the space of the origi-
nal variables.

The canonical correlation analysis includes tests of a series of hypotheses that each
canonical correlation and all smaller canonical correlations are zero in the population.
SAS/INSIGHT software uses an F approximation (Rao 1973; Kshirsagar 1972) that
gives better small sample results than the usual χ2 approximation. At least one of the
two sets of variables should have an approximately multivariate normal distribution
in order for the probability levels to be valid.

Canonical redundancy analysis (Stewart and Love 1968; Cooley and Lohnes 1971;
van den Wollenberg 1977) examines how well the original variables can be predicted
from the canonical variables. The analysis includes the proportion and cumulative
proportion of the variance of the set of Y and the set of X variables explained by their
own canonical variables and explained by the opposite canonical variables. Either
raw or standardized variance can be used in the analysis.
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Maximum Redundancy Analysis

In contrast to canonical redundancy analysis, which examines how well the origi-
nal variables can be predicted from the canonical variables, maximum redundancy
analysis finds the variables that can best predict the original variables.

Given two sets of variables, maximum redundancy analysis finds a linear combi-
nation from one set of variables that best predicts the variables in the opposite set.
SAS/INSIGHT software normalizes the coefficients of the linear combinations so
that each maximum redundancy variable has a variance of 1.

Maximum redundancy analysis continues by finding a second maximum redundancy
variable from one set of variables, uncorrelated with the first one, that produces the
second highest prediction power for the variables in the opposite set. The process of
constructing maximum redundancy variables continues until the number of maximum
redundancy variables equals the number of variables in the smaller group.

Either raw variances (Raw Variance) or standardized variances (Std Variance)
can be used in the analysis. You specify the selection in the method options dialog as
shown in Figure 40.3. By default, standardized variances are used.

Canonical Discriminant Analysis

Canonical discriminant analysis is a dimension-reduction technique related to princi-
pal component analysis and canonical correlation. Given a classification variable and
several interval variables, canonical discriminant analysis derives canonical variables
(linear combinations of the interval variables) that summarize between-class variation
in much the same way that principal components summarize total variation.

Given two or more groups of observations with measurements on several interval
variables, canonical discriminant analysis derives a linear combination of the vari-
ables that has the highest possible multiple correlation with the groups. This maximal
multiple correlation is called the first canonical correlation. The coefficients of the
linear combination are the canonical coefficients or canonical weights. The variable
defined by the linear combination is the first canonical variable or canonical compo-
nent. The second canonical correlation is obtained by finding the linear combination
uncorrelated with the first canonical variable that has the highest possible multiple
correlation with the groups. The process of extracting canonical variables can be re-
peated until the number of canonical variables equals the number of original variables
or the number of classes minus one, whichever is smaller.

The first canonical correlation is at least as large as the multiple correlation between
the groups and any of the original variables. If the original variables have high within-
group correlations, the first canonical correlation can be large even if all the multiple
correlations are small. In other words, the first canonical variable can show substan-
tial differences among the classes, even if none of the original variables does.
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For each canonical correlation, canonical discriminant analysis tests the hypothesis
that it and all smaller canonical correlations are zero in the population. An F ap-
proximation is used that gives better small-sample results than the usual χ2 approx-
imation. The variables should have an approximate multivariate normal distribution
within each class, with a common covariance matrix in order for the probability levels
to be valid.

The new variables with canonical variable scores in canonical discriminant analysis
have either pooled within-class variances equal to one (Std Pooled Variance) or
total-sample variances equal to one (Std Total Variance). You specify the selection
in the method options dialog as shown in Figure 40.3. By default, canonical variable
scores have pooled within-class variances equal to one.
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Output
To view or change the output options associated with your multivariate analysis, click
on the Output button from the variables dialog. This displays the output options
dialog.

Figure 40.5. Multivariate Output Options Dialog

The options you set in this dialog determine which tables and graphs appear in the
multivariate window. SAS/INSIGHT software provides univariate statistics and cor-
relation matrix tables by default.

Descriptive statistics provide tables for examining the relationships among quantita-
tive variables from univariate, bivariate, and multivariate perspectives.

Plots can be more informative than tables when you are trying to understand multi-
variate data. You can display a matrix of scatter plots for the analyzing variables. You
can also add a bivariate confidence ellipse for mean or predicted values to the scatter
plots. Using the confidence ellipses assumes each pair of variables has a bivariate
normal distribution.

With appropriate variables chosen, you can generate principal component analysis
(interval Y variables), canonical correlation analysis (interval Y, X variables), maxi-
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mum redundancy analysis (interval Y, X variables), and canonical discriminant anal-
ysis (one nominal Y variable, interval X variables) by selecting the corresponding
checkbox in the Output Options dialog.
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Principal Component Analysis

Clicking the Principal Component Options button in the Output Options dialog
shown in Figure 40.5 displays the dialog shown in Figure 40.6.

Figure 40.6. Principal Components Options Dialog

The dialog enables you to view or change the output options associated with principal
component analyses and save principal component scores in the data window.

In the dialog, you need to specify the number of components when selecting tables of
Eigenvectors, Correlations (Structure), Covariances, Std Scoring Coefs,
and Raw Scoring Coefs. Automatic uses principal components with correspond-
ing eigenvalues greater than the average eigenvalue. By default, SAS/INSIGHT soft-
ware displays a plot of the first two principal components, a table of all the eigen-
values, and a table of correlations between the Y variables and principal components
with corresponding eigenvalues greater than the average eigenvalue.

You can generate principal component rotation analysis by selecting the
Component Rotation checkbox in the dialog.
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Principal Component Rotation

Clicking the Rotation Options button in the Principal Components Options
dialog shown in Figure 40.6 displays the Rotation Options dialog shown in Figure
40.7.

Figure 40.7. Principal Components Rotation Options Dialog

The number of components rotated is specified in the Principal Components
Rotation Options dialog shown in Figure 40.4. By default, SAS/INSIGHT soft-
ware displays a plot of the rotated components (when the specified number is two or
three), a rotation matrix table, and a table of correlations between the Y variables and
rotated principal components.
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Canonical Correlation Analysis

Clicking the Canonical Correlation Options button in the Output Options dialog
shown in Figure 40.5 displays the dialog shown in Figure 40.8.

Figure 40.8. Canonical Correlation Options Dialog

This dialog enables you to view or change the options associated with canonical
correlation analyses and save maximum redundancy variable scores in the data win-
dow. You specify the number of components when selecting tables of Correlations
(Structure), Std Scoring Coefs, Raw Scoring Coefs, Redundancy (Raw
Variance), and Redundancy (Std Variance).

By default, SAS/INSIGHT software displays a plot of the first two canonical vari-
ables, plots of the first two pairs of canonical variables, a canonical correlations ta-
ble, and a table of correlations between the Y, X variables and the first two canonical
variables from both Y variables and X variables.
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Maximum Redundancy Analysis

Clicking the Maximum Redundancy Options button in the Output Options dia-
log shown in Figure 40.5 displays the dialog shown in Figure 40.9.

Figure 40.9. Maximum Redundancy Options Dialog

This dialog enables you to view or change the options associated with canonical
correlation analyses and save maximum redundancy variable scores in the data win-
dow. You specify the number of components when selecting tables of Correlations
(Structure), Covariances, Std Scoring Coefs, and Raw Scoring Coefs.

By default, SAS/INSIGHT software displays a plot of the first two canonical redun-
dancy variables, a canonical redundancy table, and a table of correlations between the
Y, X variables and the first two canonical redundancy variables from both Y variables
and X variables.
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Canonical Discriminant Analysis

Clicking the Canonical Discriminant Options button in the Output Options dia-
log shown in Figure 40.5 displays the dialog shown in Figure 40.10.

Figure 40.10. Canonical Discriminant Options Dialog

You specify the number of components when selecting tables of Correlations
(Structure), Std Scoring Coefs, and Raw Scoring Coefs.

By default, SAS/INSIGHT software displays a plot of the first two canonical vari-
ables, a bar chart for the nominal Y variable, a canonical correlation table, and a table
of correlations between the X variables and the first two canonical variables.
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Tables
You can generate tables of descriptive statistics and output from multivariate analyses
by setting options in output options dialogs, as shown in Figure 40.5 to Figure 40.10,
or by choosing from the Tables menu shown in Figure 40.11.

File Edit Analyze Tables Graphs Curves Vars Help

� Univariate
SSCP
CSSCP
COV

� CORR
CORR P-Values
CORR Inverse
Pairwise CORR
Principal Components...
Component Rotation...
Canonical Correlations...
Maximum Redundancy...
Canonical Discrimination...

Figure 40.11. Tables Menu

Univariate Statistics

The Univariate Statistics table, as shown in Figure 40.12 contains the following
information:

• Variable is the variable name.

• N is the number of nonmissing observations, n.

• Mean is the variable mean, y or x.

• Std Dev is the standard deviation of the variable, the square root of the corre-
sponding diagonal element of Syy or Sxx.

• Minimum is the minimum value.

• Maximum is the maximum value.

• Partial Std Dev (with selected Partial variables) is the partial standard devi-
ation of the variable after partialling out the Partial variables.

Sums of Squares and Crossproducts

The Sums of Squares and Crossproducts (SSCP) table, as illustrated by
Figure 40.12, contains the sums of squares and crossproducts of the variables.

727



Reference � Multivariate Analyses

Corrected Sums of Squares and Crossproducts

The Corrected Sums of Squares and Crossproducts (CSSCP) table, as
shown in Figure 40.12, contains the sums of squares and crossproducts of the vari-
ables corrected for the mean.

Figure 40.12. Univariate Statistics, SSCP, and CSSCP Tables

Covariance Matrix

The Covariance Matrix (COV) table, as shown in Figure 40.13, contains the es-
timated variances and covariances of the variables, with their associated degrees of
freedom. The variance measures the spread of the distribution around the mean, and
the covariance measures the tendency of two variables to linearly increase or decrease
together
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Correlation Matrix
The Correlation Matrix (CORR) table contains the Pearson product-moment cor-
relations of the Y variables, as shown in Figure 40.13. Correlation measures the
strength of the linear relationship between two variables. A correlation of 0 means
that there is no linear association between two variables. A correlation of 1 (-1) means
that there is an exact positive (negative) linear association between the two variables.

Figure 40.13. COV and CORR Tables

P-Values of the Correlations
The P-Values of the Correlations table contains the p-value of each correla-
tion under the null hypothesis that the correlation is 0, assuming independent and
identically distributed (unless weights are specified) observations from a bivariate
distribution with at least one variable normally distributed. This table is shown in
Figure 40.14. Each p-value in this table can be used to assess the significance of the
corresponding correlation coefficient.

The p-value of a correlation r is obtained by treating the statistic

t =
√

n − 2
r√

1 − r2

as having a Student’s t distribution with n − 2 degrees of freedom. The p-value of the
correlation r is the probability of obtaining a Student’s t statistic greater in absolute
value than the absolute value of the observed statistic t.
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With partial variables, the p-value of a correlation is obtained by treating the statistic

t =
√

n − np − 2
r√

1 − r2

as having a Student’s t distribution with n − np − 2 degrees of freedom.
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Inverse Correlation Matrix

For a symmetric correlation matrix, the Inverse Correlation Matrix table contains
the inverse of the correlation matrix, as shown in Figure 40.14.

The diagonal elements of the inverse correlation matrix, sometimes referred to as
variance inflation factors, measure the extent to which the variables are linear com-
binations of other variables. The jth diagonal element of the inverse correlation ma-
trix is 1/(1 − R2

j ), where R2
j is the squared multiple correlation of the jth variable

with the other variables. Large diagonal elements indicate that variables are highly
correlated.

When a correlation matrix is singular (less than full rank), some variables are linear
functions of other variables, and a g2 inverse for the matrix is displayed. The g2
inverse depends on the order in which you select the variables. A value of 0 in the jth
diagonal indicates that the jth variable is a linear function of the previous variables.

Figure 40.14. P-values of Correlations and Inverse Correlation Matrix
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Pairwise Correlations

SAS/INSIGHT software drops an observation with a missing value for any variable
used in the analysis from all calculations. The Pairwise CORR table gives corre-
lations that are computed from all observations that have nonmissing values for any
pair of variables. Figure 40.15 shows a table of pairwise correlations.

Figure 40.15. Pairwise CORR Table
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Principal Component Analysis

You can generate tables of output from principal component analyses by setting op-
tions in the principal component options dialog shown in Figure 40.6 or from the
Tables menu shown in Figure 40.11. Select Principal Components from the
Tables menu to display the principal component tables dialog shown in Figure 40.16.

Figure 40.16. Principal Component Tables Dialog

Choose Automatic to display principal components with eigenvalues greater than
the average eigenvalue. Selecting 1, 2, or 3 gives you 1, 2, or 3 principal components.
All gives you all eigenvalues. Selecting 0 in the principal component options dialog
suppresses the principal component tables.

The Eigenvalues (COV) or Eigenvalues (CORR) table includes the eigenvalues
of the covariance or correlation matrix, the difference between successive eigenval-
ues, the proportion of variance explained by each eigenvalue, and the cumulative
proportion of variance explained.

Eigenvalues correspond to each of the principal components and represent a parti-
tioning of the total variation in the sample. The sum of all eigenvalues is equal to
the sum of all variable variances if the covariance matrix is used or to the number of
variables, p, if the correlation matrix is used.

The Eigenvectors (COV) or Eigenvectors (CORR) table includes the eigenvec-
tors of the covariance or correlation matrix. Eigenvectors correspond to each of the
principal components and are used as the coefficients to form linear combinations of
the Y variables (principal components).
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Figure 40.17 shows tables of all eigenvalues and eigenvectors for the first two princi-
pal components.

Figure 40.17. Eigenvalues and Eigenvectors Tables

The Correlations (Structure) and Covariances tables include the correlations
and covariances, respectively, between the Y variables and principal components. The
correlation and covariance matrices measure the strength of the linear relationship
between the derived principal components and each of the Y variables. Figure 40.18
shows the correlations and covariances between the Y variables and the first two
principal components.
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Figure 40.18. Correlations and Covariances Tables
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The scoring coefficients are the coefficients of the Y variables used to generate prin-
cipal components. The Std Scoring Coefs table includes the scoring coefficients
of the standardized Y variables, and the Raw Scoring Coefs table includes the
scoring coefficients of the centered Y variables.

The regression coefficients are the coefficients of principal components used to gen-
erate estimated Y variables. The Std Reg Coefs (Pattern) and Raw Reg Coefs
tables include the regression coefficients of principal components used to generate
estimated standardized and centered Y variables. Figure 40.19 shows the regression
coefficients of the principal components for the standardized Y variables, as well
as the scoring coefficients of the standardized Y variables for the first two principal
components.

Figure 40.19. Regression Coefficients and Scoring Coefficients Tables
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Principal Components Rotation

You can generate tables of output from principal component rotation by setting op-
tions in the Rotation Options dialog shown in Figure 40.7 or from the Tables
menu shown in Figure 40.11. Select Component Rotation from the Tables menu
to display the principal component rotation dialog shown in Figure 40.20.

Figure 40.20. Principal Components Rotation Dialog

You specify the number of components and type of rotation in the Rotation
Options dialog, as shown in Figure 40.4.

The Orthogonal Rotation Matrix is the orthogonal rotation matrix used to com-
pute the rotated principal components from the standardized principal components.

The Correlations (Structure) and Covariances tables include the correlations
and covariances between the Y variables and the rotated principal components.

Figure 40.21 shows the rotation matrix and correlations and covariances between the
Y variables and the first two rotated principal components.

The scoring coefficients are the coefficients of the Y variables used to generate rotated
principal components. The Std Scoring Coefs table includes the scoring coeffi-
cients of the standardized Y variables, and the Raw Scoring Coefs table includes
the scoring coefficients of the centered Y variables.

The Communality Estimates table gives the standardized variance of each Y vari-
able explained by the rotated principal components.

The Redundancy table gives the variances of the standardized Y variables ex-
plained by each rotated principal component.
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Figure 40.22 shows the scoring coefficients of the standardized Y variables, commu-
nality estimates for the Y variables, and redundancy for each rotated component.

Figure 40.21. Rotation Matrix, Correlation, and Covariance Tables
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Figure 40.22. Scoring Coefficients, Communality, and Redundancy Tables
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Canonical Correlation Analysis

You can generate tables of output from canonical correlation analyses by setting op-
tions in the Canonical Correlation Options dialog shown in Figure 40.8 or from the
Tables menu shown in Figure 40.11. Select Canonical Correlations from the
Tables menu to display the canonical correlation dialog shown in Figure 40.23.

Figure 40.23. Canonical Correlation Dialog

The Canonical Correlations table contains the following:

• CanCorr, the canonical correlations, which are always nonnegative

• Adj. CanCorr, the adjusted canonical correlations, which are asymptotically
less biased than the raw correlations and may be negative. The adjusted canon-
ical correlations may not be computable, and they are displayed as missing
values if two canonical correlations are nearly equal or if some are close to
zero. A missing value is also displayed if an adjusted canonical correlation is
larger than a previous adjusted canonical correlation.

• Approx Std. Error, the approximate standard errors of the canonical corre-
lations

• CanRsq, the squared canonical correlations

• Eigenvalues, the eigenvalues of the matrix R−1
yy RyxR−1

xx R′
yx. These eigen-

values are equal to CanRsq/(1−CanRsq), where CanRsq is the correspond-
ing squared canonical correlation. Also printed for each eigenvalue is the dif-
ference from the next eigenvalue, the proportion of the sum of the eigenvalues,
and the cumulative proportion.
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• Test for H0: CanCorrj=0, j>=k, the likelihood ratio for the hypothesis that
the current canonical correlation and all smaller ones are zero in the population

• Approx F based on Rao’s approximation to the distribution of the likelihood
ratio

• Num DF and Den DF (numerator and denominator degrees of freedom) and
Pr > F (probability level) associated with the F statistic
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Figure 40.24 shows tables of canonical correlations.

Figure 40.24. Canonical Correlations Tables

The Correlations (Structure) table includes the correlations between the input Y,
X variables and canonical variables.

The scoring coefficients are the coefficients of the Y or X variables that are used to
compute canonical variable scores. The Std Scoring Coefs table includes the scor-
ing coefficients of the standardized Y or X variables and the Raw Scoring Coefs
table includes the scoring coefficients of the centered Y or X variables.

Figure 40.25 shows a table of correlations between the Y, X variables and the first two
canonical variables from the Y and X variables and the tables of scoring coefficients
of the standardized Y and X variables.
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Figure 40.25. Correlations and Scoring Coefficients Tables

The Redundancy table gives the canonical redundancy analysis, which includes
the proportion and cumulative proportion of the raw (unstandardized) and the stan-
dardized variance of the set of Y and the set of X variables explained by their own
canonical variables and explained by the opposite canonical variables. Figure 40.26
shows tables of redundancy of standardized Y and X variables.
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Figure 40.26. Redundancy Tables

744



Tables

Maximum Redundancy Analysis

You can generate tables of output from maximum redundancy analysis by setting
options in the Maximum Redundancy Options dialog shown in Figure 40.9 or from
the Tables menu shown in Figure 40.11. Select Maximum Redundancy from the
Tables menu to display the maximum redundancy dialog shown in Figure 40.27.

Figure 40.27. Maximum Redundancy Dialog

Either the raw (centered) or standardized variance is used in the maximum redun-
dancy analysis, and it is specified in the Multivariate Method Options dialog in Figure
40.3. The Redundancy table includes the proportion and cumulative proportion of
the variance of the set of Y variables and the set of X variables explained by the oppo-
site canonical variables. Figure 40.28 shows tables of redundancy of the standardized
Y and X variables.
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Figure 40.28. Maximum Redundancy Tables
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The Correlations (Structure) or Covariances table includes the correlations
or covariances between the Y, X variables and the maximum redundancy variables.
Figure 40.29 shows the correlations and covariances between the Y, X variables and
the first two maximum redundancy variables from the Y variables and the X variables.

Figure 40.29. Correlation and Covariance Tables

The scoring coefficients are the coefficients of the Y or X variables that are used to
compute maximum redundancy variables. The Std Scoring Coefs table includes
the scoring coefficients of the standardized Y or X variables, and the Raw Scoring
Coefs table includes the scoring coefficients of the centered Y or X variables. Figure
40.30 shows tables of the scoring coefficients of the standardized Y and X variables.
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Figure 40.30. Standardized Scoring Coefficients Tables
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Canonical Discriminant Analysis

You can generate tables of output from canonical discriminant analyses by setting op-
tions in the Canonical Discriminant Options dialog shown in Figure 40.10 or from the
Tables menu shown in Figure 40.11. Select Canonical Discrimination from the
Tables menu to display the canonical discriminant analysis dialog shown in Figure
40.31.

Figure 40.31. Canonical Discriminant Analysis Dialog

The Canonical Correlations table, as shown in Figure 40.32, contains the follow-
ing:

• CanCorr, the canonical correlations, which are always nonnegative

• Adj. CanCorr, the adjusted canonical correlations, which are asymptotically
less biased than the raw correlations and may be negative. The adjusted canon-
ical correlations may not be computable and are displayed as missing values
if two canonical correlations are nearly equal or if some are close to zero. A
missing value is also displayed if an adjusted canonical correlation is larger
than a previous adjusted canonical correlation.

• Approx Std. Error, the approximate standard errors of the canonical corre-
lations

• CanRsq, the squared canonical correlations

• Eigenvalues, eigenvalues of the matrix E−1H , where E is the matrix of
the within-class sums of squares and crossproducts and H is the matrix of the
between-class sums of squares and crossproducts. These eigenvalues are equal
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to CanRsq/(1−CanRsq), where CanRsq is the corresponding squared canon-
ical correlation. Also displayed for each eigenvalue is the difference from the
next eigenvalue, the proportion of the sum of the eigenvalues, and the cumula-
tive proportion.

750



Tables

• Test for H0: CanCorrj=0, j>=k, the likelihood ratio for the hypothesis that
the current canonical correlation and all smaller ones are zero in the population

• Approx F based on Rao’s approximation to the distribution of the likelihood
ratio

• Num DF and Den DF (numerator and denominator degrees of freedom) and
Pr > F (probability level) associated with the F statistic

Figure 40.32. Canonical Correlations Tables

The Correlations (Structure) table includes the correlations between the input X
variables and the canonical variables. The scoring coefficients are the coefficients of
the X variables that are used to compute canonical variable scores. The Std Scoring
Coefs table includes the scoring coefficients of the standardized X variables, and
the Raw Scoring Coefs table includes the scoring coefficients of the centered X
variables.
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Figure 40.33 shows tables of correlations between the X variables and the first two
canonical variables, and the scoring coefficients of the standardized X variables.

Figure 40.33. Correlations and Scoring Coefficients Tables
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Graphs
You can create a scatter plot matrix and plots corresponding to various multivariate
analyses by setting options in the Output Options dialogs, as shown in Figure 40.5 to
Figure 40.10, or by choosing from the Graphs menu, as shown in Figure 40.34.

File Edit Analyze Tables Graphs Curves Vars Help

Scatter Plot Matrix
Principal Components...
Component Rotation �

Canonical Correlations �

Maximum Redundancy...
Canonical Discrimination �

Figure 40.34. Graphs Menu

Scatter Plot Matrix

Scatter plots are displayed for pairs of variables. Without X variables, scatter plots are
displayed as a symmetric matrix containing each pair of Y variables. With a nominal
Y variable, scatter plots are displayed as a symmetric matrix containing each pair of X
variables. When both interval Y variables and interval X variables are selected, scatter
plots are displayed as a rectangular matrix with Y variables as the row variables and
X variables as the column variables.
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Figure 40.35 displays part of a scatter plot matrix with 80% prediction confidence
ellipses.

Figure 40.35. Scatter Plot Matrix with 80% Prediction Confidence Ellipses

Principal Component Plots

You can use principal component analysis to transform the Y variables into a smaller
number of principal components that account for most of the variance of the Y vari-
ables. The plots of the first few components can reveal useful information about the
distribution of the data, such as identifying different groups of the data or identifying
observations with extreme values (possible outliers).

754



Graphs

You can request a plot of the first two principal components or the first three principal
components from the Principal Components Options dialog, shown in Figure 40.6, or
from the Graphs menu, shown in Figure 40.34. Select Principal Components
from the Graphs menu to display the Principal Component Plots dialog.

Figure 40.36. Principal Component Plots Dialog

In the dialog, you choose a principal component scatter plot (Scatter Plot), a princi-
pal component biplot with standardized Y variables (Biplot (Std Y)), or a principal
component biplot with centered Y variables (Biplot (Raw Y)).

A biplot is a joint display of two sets of variables. The data points are first displayed
in a scatter plot of principal components. With the approximated Y variable axes
also displayed in the scatter plot, the data values of the Y variables are graphically
estimated.

The Y variable axes are generated from the regression coefficients of the Y variables
on the principal components. The lengths of the axes are approximately proportional
to the standard deviations of the variables. A closer parallel between a Y variable
axis and a principal component axis indicates a higher correlation between the two
variables.
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For a Y variable Y1, the Y1 variable value of a data point y in a principal component
biplot is geometrically evaluated as follows:

• A perpendicular is dropped from point y onto the Y1 axis.

• The distance from the origin to this perpendicular is measured.

• The distance is multiplied by the length of the Y1 axis; this gives an approxi-
mation of the Y1 variable value for point y.
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Two sets of variables are used in creating principal component biplots. One set is the
Y variables. Either standardized or centered Y variables are used, as specified in the
Principal Component Plots dialog, shown in Figure 40.36.

The other set is the principal component variables. These variables have variances
either equal to one or equal to corresponding eigenvalues. You specify the principal
component variable variance in the Multivariate Method Options dialog, shown in
Figure 40.3.

† Note: A biplot with principal component variable variances equal to one is called a
GH’ biplot, and a biplot with principal component variable variances equal to corre-
sponding eigenvalues is called a JK’ biplot.

A biplot is a useful tool for examining data patterns and outliers. Figure 40.37 shows
a biplot of the first two principal components from the correlation matrix and a ro-
tating plot of the first three principal components. The biplot shows that the variable
SEPALWID (highlighted axis) has a moderate negative correlation with PCR1 and a
high correlation with PCR2.

Figure 40.37. Principal Component Plots
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Component Rotation Plots

You can request a plot of the rotated principal components from the Principal
Components Rotation Options dialog, shown in Figure 40.7, or from the
Component Rotation menu, shown in Figure 40.38.

File Edit Analyze Tables Graphs Curves Vars Help

Scatter Plot Matrix
Principal Components...
Component Rotation �

Canonical Correlations �

Maximum Redundancy...
Canonical Discrimination �

Scatter Plot
Biplot (Std Y)
BiPlot (Raw Y)

Figure 40.38. Component Rotation Menu
In the menu, you select a rotated component scatter plot (Scatter Plot), a rotated
component biplot with standardized Y variables (Biplot (Std Y)), or a rotated com-
ponent biplot with centered Y variables (Biplot (Raw Y)).

In a component rotation plot, the data points are displayed in a scatter plot of rotated
principal components. With the approximated Y variable axes also displayed in the
scatter plot, the data values of the Y variables are graphically estimated, as described
previously in the “Principal Component Plots” section.

Figure 40.39 shows a biplot of the rotated first two principal components with stan-
dardized Y variables. The biplot shows that the variable SEPALWID (highlighted
axis) has a high correlation with RT2 and that the other three Y variables all have
high correlations with RT1.
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Figure 40.39. Rotated Principal Component Biplots
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Canonical Correlation Plots

You can request pairwise canonical variable plots and a plot of the first two canon-
ical variables or the first three canonical variables from each variable set from the
Canonical Correlation Options dialog, shown in Figure 40.8, or from the Graphs
menu, shown in Figure 40.40.

· · · Graphs Curves Vars Help
Scatter Plot Matrix
Principal Components...
Component Rotation �

Canonical Correlations �

Maximum Redundancy...
Canonical Discrimination �

Pairwise Plot �

Canonical Plot...
1
2
3
All
Other...

Figure 40.40. Canonical Correlations Menu

Figure 40.41 shows scatter plots of the first two pairs of canonical variables. The first
scatter plot shows a high canonical correlation (0.7956) between canonical variables
CX1 and CY1 and the second scatter plot shows a low correlation (0.2005) between
CX2 and CY2.

Figure 40.41. Canonical Correlation Pairwise Plots
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Select Canonical Plot from the Canonical Correlations menu in Figure 40.40
to display a Canonical Correlation Component Plots dialog.

Figure 40.42. Canonical Correlation Component Plots Dialog

In the dialog, you choose a canonical correlation component scatter plot (Scatter
Plot), a component biplot with standardized Y and X variables (Biplot (Std Y X)),
or a component biplot with centered Y and X variables (Biplot (Raw Y X)).

In a canonical correlation component biplot, the data points are displayed in a scatter
plot of canonical correlation components. With the approximated Y and X variable
axes also displayed in the scatter plot, the data values of the Y and X variables are
graphically estimated, as described previously in the “Principal Component Plots”
section.
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Figure 40.43 shows a biplot of the first two canonical variables from the Y vari-
able sets with standardized Y and X variables. The biplot shows that the variables
WEIGHT and WAIST (highlighted axes) have positive correlations with CY1 and
negative correlations with CY2. The other four variables have negative correlations
with CY1 and positive correlations with CY2.

Figure 40.43. Canonical Correlation Component Biplot
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Maximum Redundancy Plots

You can request a plot of the first two canonical variables or the first three canon-
ical variables from each variable set from the Maximum Redundancy Options di-
alog, shown in Figure 40.9, or from the Graphs menu, shown in Figure 40.34.
Select Maximum Redundancy from the Graphs menu to display a Maximum
Redundancy Component Plots dialog.

Figure 40.44. Maximum Redundancy Component Plots Dialog

In the dialog, you choose a maximum redundancy component scatter plot (Scatter
Plot), a component biplot with standardized Y and X variables (Biplot (Std Y X)),
or a component biplot with centered Y and X variables (Biplot (Raw Y X)).

In a maximum redundancy component biplot, the data points are displayed in a scatter
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plot of maximum redundancy components. With the approximated Y and X variable
axes also displayed in the scatter plot, the data values of the Y and X variables are
graphically estimated, as described previously in the “Principal Component Plots”
section.

Figure 40.45 shows scatter plots of the first two canonical variables from each set of
variables. The canonical variables in each plot are uncorrelated.

Figure 40.45. Maximum Redundancy Component Scatter Plots
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Canonical Discrimination Plots

You can request a bar chart for the Y variable and a plot of the first two canonical
variables or the first three canonical variables from the canonical discriminant options
dialog, shown in Figure 40.10, or from the Graphs menu, shown in Figure 40.46.

File Edit Analyze Tables Graphs Curves Vars Help

Scatter Plot Matrix
Principal Components...
Component Rotation �

Canonical Correlations �

Maximum Redundancy...
Canonical Discrimination � Y Var Bar Chart

Component Plot...

Figure 40.46. Canonical Discrimination Menu

Figure 40.47 shows a bar chart for the variable SPECIES.

Figure 40.47. Y Var Bar Chart
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Select Component Plot from the Canonical Discriminant menu in Figure 40.48
to display a Canonical Discriminant Component Plots dialog.

Figure 40.48. Canonical Discriminant Component Plots Dialog

In the dialog, you choose a canonical discriminant component scatter plot (Scatter
Plot), a component biplot with standardized X variables (Biplot (Std X)), or a com-
ponent biplot with centered X variables (Biplot (Raw X)).

In a canonical discriminant component biplot, the data points are displayed in a scat-
ter plot of canonical discriminant components. With the approximated X variable
axes also displayed in the scatter plot, the data values of the X variables are graphi-
cally estimated, as described previously in the “Principal Component Plots” section.

Figure 40.49 shows a biplot of the first two canonical variables from the X vari-
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able set with centered X variables. The biplot shows that the variable SEPALWID
(highlighted axis) has a moderate negative correlation with CX1 and the other three
variables have high correlation with CX1.

† Note: Use caution when evaluating distances in the biplot when the axes do not have
comparable scales.

Figure 40.49. Canonical Discrimination Component Plot
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Confidence Ellipses
SAS/INSIGHT software provides two types of confidence ellipses for pairs of anal-
ysis variables. One is a confidence ellipse for the population mean, and the other is
a confidence ellipse for prediction. A confidence ellipse for the population mean is
displayed with dashed lines, and a confidence ellipse for prediction is displayed with
dotted lines.

Using these confidence ellipses assumes that each pair of variables has a bivariate
normal distribution. Let Z and S be the sample mean and the unbiased estimate of the
covariance matrix of a random sample of size n from a bivariate normal distribution
with mean µ and covariance matrix Σ.

The variable Z − µ is distributed as a bivariate normal variate with mean 0 and co-
variance n−1Σ, and it is independent of S. The confidence ellipse for µ is based on
Hotelling’s T 2 statistic:

T 2 = n(Z − µ)′S−1(Z − µ)

A 100(1 − α)% confidence ellipse for µ is defined by the equation

(Z − µ)′S−1(Z − µ) =
2(n − 1)
n(n − 2)

F2,n−2(1 − α)

where F2,n−2(1 − α) is the (1 − α) critical value of an F variate with degrees of
freedom 2 and n − 2.

A confidence ellipse for prediction is a confidence region for predicting a new obser-
vation in the population. It also approximates a region containing a specified percent-
age of the population.

Consider Z as a bivariate random variable for a new observation. The variable Z−Z
is distributed as a bivariate normal variate with mean 0 and covariance (1 + 1/n)Σ,
and it is independent of S.

A 100(1 − α)% confidence ellipse for prediction is then given by the equation

(Z − Z)′S−1(Z − Z) =
2(n + 1)(n − 1)

n(n − 2)
F2,n−2(1 − α)

The family of ellipses generated by different F critical values has a common center
(the sample mean) and common major and minor axes.

The ellipses graphically indicate the correlation between two variables. When the
variable axes are standardized (by dividing the variables by their respective standard
deviations), the ratio of the two axis lengths (in Euclidean distances) reflects the
magnitude of the correlation between the two variables. A ratio of 1 between the
major and minor axes corresponds to a circular confidence contour and indicates that
the variables are uncorrelated. A larger value of the ratio indicates a larger positive
or negative correlation between the variables.
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Scatter Plot Confidence Ellipses

You can generate confidence ellipses by setting the options in the multivariate output
options dialog, shown in Figure 40.5, or by choosing from the Curves menu, shown
in Figure 40.50.

· · · Curves Vars Help

Scatter Plot Conf. Ellipse �

Canonical Discrim. Conf. Ellipse �

Mean: 99%
95%
90%
80%
50%
Other...

Prediction: 99%
95%
90%
80%
50%
Other...

Figure 40.50. Curves Menu

Only 80% prediction confidence ellipses can be selected in the multivariate output
options dialog. You must use the Curves menu to display mean confidence ellipses.
You can use the confidence coefficient slider in the Confidence Ellipses table to
change the coefficient for these ellipses.

Figure 40.35 displays part of a scatter plot matrix with 80% prediction confidence
ellipses and the Correlation Matrix table with corresponding correlations high-
lighted. The ellipses graphically show a small negative correlation (−0.1176) be-
tween variables SEPALLEN and SEPALWID, a moderate negative correlation
(−0.4284) between variables SEPALWID and PETALLEN, and a large positive cor-
relation (0.8718) between variables SEPALLEN and PETALLEN.

† Note: The confidence ellipses displayed in this illustration may not be appropriate
since none of the scatter plots suggest bivariate normality.
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Canonical Discriminant Confidence Ellipses

You can also generate class-specific confidence ellipses for the first two canonical
components in canonical discriminant analysis by setting the options in the Canonical
Discriminant Options dialog, shown in Figure 40.10, or by choosing from the pre-
deeding Curves menu.

Figure 40.51 displays a scatter plot of the first two canonical components with class-
specific 80% prediction confidence ellipses. The figure shows that the first canonical
variable CX1 has most of the discriminntory power between the two canonical vari-
ables.

Figure 40.51. Canonical Discriminant Confidence Ellipses
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Output Variables
You can save component scores from principal component analysis, component ro-
tation, canonical correlation analysis, maximum redundancy analysis, and canonical
discriminant analysis in the data window for use in subsequent analyses. For compo-
nent rotation, the number of component output variables is the number of components
rotated, as specified in Figure 40.4. For other analyses, you specify the number of
component output variables in the Output Options dialogs, shown in Figure 40.6 to
Figure 40.10, or from the Vars menu, shown in Figure 40.52. For component rota-
tion, you specify the number of output rotated components in the Rotation Options
dialog, shown in Figure 40.4.

· · · Curves Vars Help
Principal Components �

Component Rotation
Canonical Correlations �

Maximum Redundancy �

Canonical Discrimination �

1
2
3
All
Other...

Figure 40.52. Vars Menu

Selecting 1, 2, or 3 gives you 1, 2, or 3 components. All gives you all components.
Selecting 0 in the component options dialogs suppresses the output variables in the
corresponding analysis. Selecting Other in the Vars menu displays the dialog shown
in Figure 40.53. You specify the number of components you want to save in the
dialog.

Figure 40.53. Output Components Dialog
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Principal Components

For principal components from a covariance matrix, the names of the variables con-
taining principal component scores are PCV1, PCV2, PCV3, and so on. The output
component scores are a linear combination of the centered Y variables with coeffi-
cients equal to the eigenvectors of the covariance matrix.

For principal components from a correlation matrix, the names of the variables con-
taining principal component scores are PCR1, PCR2, PCR3, and so on. The output
component scores are a linear combination of the standardized Y variables with co-
efficients equal to the eigenvectors of the correlation matrix.

If you specify Variance=Eigenvalues in the multivariate method options dialog,
the new variables of principal component scores have mean zero and variance equal
to the associated eigenvalues. If you specify Variance=1, the new variables have
variance equal to one.

Principal Component Rotation

The names of the variables containing rotated principal component scores are RT1,
RT2, RT3, and so on. The new variables of rotated principal component scores have
mean zero and variance equal to one.

Canonical Variables

The names of the variables containing canonical component scores are CY1, CY2,
CY3, and so on, from the Y variable list, and CX1, CX2, CX3, from the X variable
list. The new variables of canonical component scores have mean zero and variance
equal to one.

Maximum Redundancy

The names of the variables containing maximum redundancy scores are RY1, RY2,
RY3, and so on, from the Y variable list, and RX1, RX2, RX3, from the X variable
list. The new variables of maximum redundancy scores have mean zero and variance
equal to one.

Canonical Discriminant

The names of the variables containing canonical component scores are CX1, CX2,
CX3, and so on. If you specify Std Pooled Variance in the multivariate method
options dialog, the new variables of canonical component scores have mean zero and
pooled within-class variance equal to one. If you specify Std Total Variance, the
new variables have total-sample variance equal to one.
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Weighted Analyses
When the observations are independently distributed with a common mean and un-
equal variances, a weighted analysis may be appropriate. The individual weights are
the values of the Weight variable you specify.

The following statistics are modified to incorporate the observation weights:

• Mean yw, xw

• SSCP Uyy, Uyx, Uxx

• CSSCP Cyy, Cyx, Cxx

• COV Syy, Syx, Sxx

• CORR Ryy, Ryx, Rxx

The formulas for these weighted statistics are given in the “Method” section earlier
in this chapter. The resulting weighted statistics are used in the multivariate analyses.
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Chapter 41
SAS/INSIGHT Statements

You can submit SAS/INSIGHT statements to create graphs and analyses automati-
cally. This saves time when you have repetitive analyses to perform or when you
work with large data sets.

SAS/INSIGHT statements also provide a record of the analyses you create, including
model equations. You can store statements in a text file or in the SAS log.

Included in this release are the new WINDOW statement, the OTHER= option, the
MARKERSIZE= option, and axis options.

Figure 41.1. SAS/INSIGHT Statements and Output
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Details
You can use the following statements when invoking SAS/INSIGHT either as a pro-
cedure or as a task. Brackets (<>) denote optional parameters.

PROC INSIGHT < INFILE=fileref > < FILE<=fileref> >
< DATA=SAS-data-set > < TOOLS >
< NOMENU > < NOBUTTON > < NOCONFIRM >;

WINDOW < x y width height > < / NOSCROLL >;
OPEN SAS-data-set < / NODISPLAY >;
BY < variable-list >;
CLASS variable-list;
BAR variable-list

< / < FREQ=variable > < OTHER=value >
< XAXIS=axis > < YAXIS=axis > >;

BOX variable-list < * variable-list >
< / < FREQ=variable > < LABEL=variable >
< OTHER=value > < < MARKERSIZE | MS >=value >
< YAXIS=axis > >;

LINE variable-list * variable
< / < LABEL=variable > < < MARKERSIZE | MS >=value >
< XAXIS=axis > < YAXIS=axis > >;

SCATTER variable-list * variable-list
< / < LABEL=variable > < < MARKERSIZE | MS >=value >
< XAXIS=axis > < YAXIS=axis > >;

ROTATE variable-list * variable-list * variable-list
< / < LABEL=variable > < < MARKERSIZE | MS >=value >
< XAXIS=axis > < YAXIS=axis > < ZAXIS=axis > >;

DIST variable-list
< / < FREQ=variable > < WEIGHT=variable >
< LABEL=variable > >;

MULT variable-list
< / < FREQ=variable > < WEIGHT=variable >
< LABEL=variable > >;

FIT variable-list < = effects-list >
< / < FREQ=variable > < WEIGHT=variable >
< LABEL=variable > < NOINT >
< RESP=response > < BINOM=variable >
< OFFSET=variable > < LINK=link >
< POWER=value > < NOEXACT > < FISHER >
< QUASI > < SCALE=scale > < CONSTANT=value > >;

TABLES;
RUN;
QUIT;
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Unless you override them with the options listed above, graph and analysis statements
use options stored in your SASUSER.PROFILE catalog. For more information on
SAS/INSIGHT options, see Chapter 30, “Working with Other SAS Products.”

The WINDOW statement and the NODISPLAY, OTHER=, MARKERSIZE=, and
axis options can be used as input, but they are not recordable.

PROC INSIGHT Statement

PROC INSIGHT < INFILE=fileref > < FILE<=fileref > >

< DATA=SAS-data-set > < TOOLS >

< NOMENU > < NOBUTTON > < NOCONFIRM >;

PROC INSIGHT options apply to both the procedure and the task. When invoking
SAS/INSIGHT from the command line, you can follow the INSIGHT command with
any of the PROC INSIGHT options.

INFILE=fileref
The INFILE= option directs SAS/INSIGHT software to read additional statements
from the specified text file. For examples using the INFILE= option, see Chapter 30,
“Working with Other SAS Products.”

FILE | FILE=fileref
The FILE option directs SAS/INSIGHT software to write statements to the SAS log.
FILE=fileref directs SAS/INSIGHT software to write statements to the text file fil-
eref. For examples using the FILE option, see Chapter 30, “Working with Other SAS
Products.”

DATA | DATA=SAS-data-set
The DATA option opens a SAS data set and displays it in a window. If DATA is used
without =SAS-data-set, a new data window is created. You can use either the DATA
option or the OPEN statement to specify an initial data set. If you use neither, but
simply enter “insight” or “proc insight; run;”, a data set dialog prompts you to choose
an initial data set.

You can specify data set options in parentheses after the data set name. For example,
to see all businesses that had large profits, you might enter

insight data=sasuser.business(where=(profits>=2000))

Alternatively, you can enter data set options by pressing the Options button in
the data set dialog. Data set options are described in SAS Language Reference:
Dictionary.

TOOLS
The TOOLS option causes the Tools window to be displayed by default. If you use
tools frequently, this option saves the step of choosing Edit:Windows:Tools.
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NOMENU | NOMEN
The NOMENU option suppresses the display of menu bars. If your host defines a
pop-up key, menu bars are still available when you press the pop-up key in an area
containing no graphs or tables.

NOBUTTON | NOBUT
The NOBUTTON option suppresses the display of pop-up menu buttons. If your host
defines a pop-up key, pop-up menus are still available when you press the pop-up key
on graphs or tables.

NOCONFIRM | NOCON
The NOCONFIRM option suppresses the display of confirmation dialogs for poten-
tially harmful user actions. Such actions include deleting variables, closing data win-
dows, and exiting SAS/INSIGHT. By default, confirmation dialogs provide a chance
to cancel these actions.

WINDOW Statement

WINDOW < x y width height > < / NOSCROLL >;

The WINDOW statement specifies the position of subsequently created windows.
Parameters are percentage values between 0 and 100. If parameters are omitted, the
next created window uses a default position.

For example, to position a window in the upper left corner, covering one quarter of
the display, you might enter

window 0 0 50 50;

To restore default positioning, use

window;

You can use the NOSCROLL option to create windows without scroll bars. On most
hosts, this option simplifies your display. However, it should be used only when
creating single graphs for which scrolling is not needed.

OPEN Statement

OPEN SAS-data-set < / NODISPLAY >;

The OPEN statement opens a SAS data set and displays it in a window. An OPEN
statement with the NODISPLAY option opens a data set without displaying a win-
dow.

You can use the OPEN statement to open multiple data sets at the same time. BY,
CLASS, graph, and analysis statements apply only to the most recently opened data
set.
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You can specify data set options in parentheses after the data set name. For example,
to see all businesses that had large profits, you might enter

open sasuser.business(where=(profits>=2000));

Data set options are described in SAS Language Reference: Dictionary.

BY Statement

BY < variable-list >;

The BY statement assigns variables the group role in subsequent graphs and analyses.

To de-assign group roles, use the BY statement without specifying variables.

CLASS Statement

CLASS variable-list;

The CLASS statement sets the measurement level of the specified variables to nomi-
nal. Use this statement to override the default interval measurement level of numeric
variables.

BAR Statement

BAR variable-list

< / < FREQ=variable > < OTHER=value >

< XAXIS=axis > < YAXIS=axis > >;

The BAR statement creates bar charts or histograms for the specified Y variables.
You can use the FREQ= option to assign a Frequency variable.

Use the OTHER= option to set the “Other” threshold for nominal bar charts. The
“Other” threshold is a percentage between 0 and 100.

Use the XAXIS= and YAXIS= options to specify axes for numeric variables with
interval measurement level. The axis specification is a list of six numeric values:
First Tick, Last Tick, Tick Increment, Number of Minor Ticks, Axis Minimum, and
Axis Maximum.

For example, to specify tick marks ranging from 2 to 8, with tick increment 2, 1 minor
tick, and Y axis ranging from 0 to 10, you could use

bar age / yaxis = 2 8 2 1 0 10;
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Note that the “X” and “Y” prefixes refer to variable roles, not vertical or horizontal
orientation. For the BAR statement, the YAXIS= option specifies the axis of the Y
variable, and the XAXIS= option specifies the Frequency axis.

BOX Statement

BOX variable-list < * variable-list >

< / < FREQ=variable > < LABEL=variable >

< OTHER=value > < < MARKERSIZE | MS >=value >

< YAXIS=axis > >;

The BOX statement creates box or mosaic plots. The BOX statement requires at least
one list of Y variables, optionally followed by an asterisk (*) and a list of X variables.
If the Y variables have interval measurement level, the BOX statement creates box
plots. If the Y variables are nominal, the BOX statement creates mosaic plots.

If you use X variables, you get one plot for each Y variable, and each plot contains
one schematic diagram for each combination of X values. If you use no X variables,
you get one plot containing one schematic diagram for each Y variable.

You can use the FREQ= and LABEL= options to assign Frequency and Label
variables.

Use the OTHER= option to set the “Other” threshold for mosaic plots. The “Other”
threshold is a percentage between 0 and 100.

Use the MARKERSIZE= or MS= option to specify the size of observation markers.
Marker size is a number between 1 and 8.

Use the YAXIS= option to specify a numeric axis for the Y variable. The syntax for
axis options is described under the BAR statement.

LINE Statement

LINE variable-list * variable

< / < LABEL=variable > < < MARKERSIZE | MS >=value >

< XAXIS=axis > < YAXIS=axis > >;

The LINE statement creates overlaid line plots, with one line for each Y variable.

Use at least one Y variable, followed by an asterisk, followed by a single X variable.
You can use the LABEL= option to assign a Label variable.

Use the MARKERSIZE= or MS= option to specify the size of observation markers.
Marker size is a number between 1 and 8.

Use the XAXIS= and YAXIS= options to specify numeric axes. The syntax for axis
options is described under the BAR statement.
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SCATTER Statement

SCATTER variable-list * variable-list

< / < LABEL=variable > < < MARKERSIZE | MS >=value >

< XAXIS=axis > < YAXIS=axis > >;

The SCATTER statement creates two-dimensional scatter plots.

Use at least one Y variable, followed by an asterisk, followed by at least one X vari-
able. Use multiple Y and X variables to create a scatter plot matrix. For example, you
might use

scatter a b c * a b c;

to create a 3 × 3 scatter plot matrix for the variables a, b, and c.

You can use the LABEL= option to assign a Label variable.

Use the MARKERSIZE= or MS= option to specify the size of observation markers.
Marker size is a number between 1 and 8.

Use the XAXIS= and YAXIS= options to specify numeric axes. The syntax for axis
options is described under the BAR statement.

CONTOUR Statement

CONTOUR variable-list * variable-list *variable-list

< / < LABEL=variable > < < MARKERSIZE | MS >=value >

< XAXIS=axis > < YAXIS=axis > < ZAXIS=axis > >;

The CONTOUR statement creates level curves of a surface that fits the data, assuming
that the Z variable is a function of the X and Y variables.

Use at least one Z variable, followed by an asterisk, followed by at least one Y vari-
able, followed by an asterisk, followed by at least one X variable. Use multiple Z, Y,
and X variables to create a matrix of contour plots.

You can use the LABEL= option to assign a Label variable.

Use the MARKERSIZE= or MS= option to specify the size of observation markers.
Marker size is a number between 1 and 8.

Use the XAXIS=, YAXIS=, and ZAXIS= options to specify numeric axes. The syntax
for axis options is described under the BAR statement.
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ROTATE Statement

ROTATE variable-list * variable-list * variable-list

< / < LABEL=variable > < < MARKERSIZE | MS >=value >

< XAXIS=axis > < YAXIS=axis > < ZAXIS=axis > >;

The ROTATE statement creates three-dimensional rotating plots.

Use at least one Z variable, followed by an asterisk, followed by at least one Y vari-
able, followed by an asterisk, followed by at least one X variable. Use multiple Z, Y,
and X variables to create a rotating plot matrix. For example, you might use

rotate a b c d * a b c d * a b c d;

to create a matrix displaying all possible three-dimensional plots for the variables a,
b, c, and d.

You can use the LABEL= option to assign a Label variable.

Use the MARKERSIZE= or MS= option to specify the size of observation markers.
Marker size is a number between 1 and 8.

Use the XAXIS=, YAXIS=, and ZAXIS= options to specify numeric axes. Syntax of
axis options is described under the BAR statement.

DIST Statement

DIST variable-list

< / < FREQ=variable > < WEIGHT=variable >

< LABEL=variable > >;

The DIST statement creates a distribution analysis of the specified Y variables. You
can use the FREQ=, WEIGHT=, and LABEL= options to assign Freq, Weight, and
Label variables.

MULT Statement

MULT variable-list

< / < FREQ=variable > < WEIGHT=variable >

< LABEL=variable > >;

The MULT statement creates a multivariate analysis of the specified Y variables. You
can use the FREQ=, WEIGHT=, and LABEL= options to assign Freq, Weight, and
Label variables.
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FIT Statement

FIT variable-list < = effects-list >

< / < FREQ=variable > < WEIGHT=variable >

< LABEL=variable > < NOINT >

< RESP=response > < BINOM=variable >

< OFFSET=variable > < LINK=link >

< POWER=value > < NOEXACT > < FISHER >

< QUASI > < SCALE=scale > < CONSTANT=value > >;

The FIT statement creates a fit analysis.

You must specify at least one Y variable. You can follow the Y variables with an equal
sign (=) and a list of model effects, including simple, crossed, and nested effects:

Y = X
Y = X1 * X2
Y = X( A B )

If you do not specify an effects list, a model with only an intercept term (mean) is fit.

You can use the FREQ=, WEIGHT=, and LABEL= options to assign Freq, Weight,
and Label variables.

FIT statement options default to fit classical linear models, but you can set them to fit
the generalized linear model.

NOINT
Use the NOINT option to fit a model without an intercept term.

RESP=response
For response distribution, choose NORMAL, INVGAUSS, GAMMA, POISSON, or
BINOMIAL. By default, RESP= is NORMAL.

BINOM=variable
Use the BINOM= option to specify a Binomial variable when RESP=Binomial.
When RESP is not Binomial, the BINOM= option is not used.

OFFSET=variable
Use the OFFSET= option to specify an Offset variable.

LINK=link
For link function, choose CANONICAL, IDENTITY, LOG, LOGIT, PROBIT,
CLOGCLOG, or POWER. By default, LINK= is CANONICAL.

POWER=value
Use the POWER= option to set a value for the POWER link function. If LINK= is
not set to POWER, the POWER= option is not used.
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NOEXACT
Use the NOEXACT option to fit a linear model without using exact distributions for
the test statistics.

FISHER
Use the FISHER option to use Fisher’s scoring method in the maximum-likelihood
estimation for the regression parameters.

QUASI
If overdispersion is present in the model, you can use the QUASI option to fit the
generalized linear model using the quasi-likelihood functions. To use the QUASI op-
tion, you must also set the SCALE= option to a scale other than MLE.SCALE=scale
For scale, choose MLE, DEVIANCE, PEARSON, or CONSTANT. By default,
SCALE= is MLE (maximum-likelihood estimate).

CONSTANT=value
Use the CONSTANT= option to set a constant value when SCALE=CONSTANT. If
SCALE= is not set to CONSTANT, the CONSTANT= option is not used.

TABLES statement

TABLES;

The TABLES statement saves and prints all tables in the most recent analysis, using
the Output Delivery System.

You can redirect output to a text file by using the PRINTTO procedure.

For more information on PROC PRINTTO, refer to the SAS Procedures Guide.

RUN statement

RUN;

The RUN statement invokes SAS/INSIGHT software and executes all preceding
SAS/INSIGHT statements.

Use the RUN statement if you want SAS/INSIGHT to remain available after execut-
ing your statements. You must terminate the list of statements with either a RUN or
a QUIT statement.

788



Details

QUIT statement

QUIT;

The QUIT statement invokes SAS/INSIGHT software, executes all preceding state-
ments, and exits SAS/INSIGHT software.

Use the QUIT statement if you do not want SAS/INSIGHT to remain available after
executing your statements. You must terminate the list of statements with either a
QUIT or a RUN statement.
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Default
–OBSTAT– variable, 422, 474

A
adding

curves, 207
effects, 220, 247, 249, 630
graphs, 228
observations, 35
tables, 228
variables, 35

adding graphs, 404, 406, 407
to fit window, 230, 255

adding tables and graphs
multiple regression, 228

Adj R-Sq,
see adjusted R-square

adjust
speed of animation, 371

Adjusted R-Square, 640, 642
adjusted R-square, 225, 251, 352

in multiple regression, 235
adjusting

axes, 129, 131, 361
ticks, 126, 361

adjusting axes,
see aligning axes
see ticks

Afifi, A.A., 19
AIR data set, 18, 100, 116, 118, 369
algorithm,

see method
Align, 362, 417
aligning

axes, 417
graphs, 417
ticks, 417

AMISE,
see approximate mean integrated square error

analyses
comparing, 339

analysis, 5
analysis of covariance, 244
analysis of deviance, 643

logistic regression, 270
Poisson regression, 287

analysis of deviance for generalized linear models
fit analyses, 644

analysis of variance, 244

analysis of variance table, 252
assigning measurement levels, 245
examining the means, 255
multiple regression, 225
parameter estimates, 253
residuals-by-predicted plot, 254
summary of fit, 251
type III tests, 252

analysis of variance for linear models
fit analyses, 643

analysis of variance table
analysis of variance, 252

Analyze, 81, 410
Analyze:Bar Chart ( Y ), 500
Analyze:Box Plot ( Y ), 387
Analyze:Box Plot (Y), 330
Analyze:Box Plot/Mosaic Plot ( Y ), 80, 88,

255, 364, 454, 509
Analyze:Contour Plot ( Z Y X ), 118, 537
Analyze:Distribution ( Y ), 381, 404, 555, 558
Analyze:Distribution (Y), 343, 358
Analyze:Fit ( Y X ), 202, 263, 266, 279, 284, 613,

629
Analyze:Fit (Y X), 220, 244, 327, 345, 349
Analyze:Histogram/Bar Chart ( Y ), 72, 76
Analyze:Line Plot ( Y X ), 100, 522
Analyze:Multivariate ( Y’s ), 296, 707, 708
Analyze:Multivariate (Y’s), 306
Analyze:Rotating Plot ( Z Y X ), 110, 115,

116, 547
Analyze:Scatter Plot ( Y X ), 91, 94, 136, 270,

314, 394, 407, 528
Analyze:Scatter Plot (Y X), 232
analyzing by

groups, 357
analyzing by groups, 357
and group variables

formats, 366
Animate, 369
animating

graphs, 373
selections, 369

ANOVA,
see analysis of variance

Anscombe residuals
fit analyses, 698

Anscombe, F.J., 704
Apply button, 220, 267, 274

animation dialog, 371
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fit analyses, 630
approximate mean integrated square error

kernel estimation, 592
arranging,

see moving
arranging observations, 493
arrow buttons

on scroll bar, 51
arrow keys, 32
arrow tool, 396
Asc/Des button, 494
assigning

formats, 378
assigning measurement levels

analysis of variance, 245
assigning observation states, 474
assumptions

in linear models, 615
automatic

marker size, 163
Axes, 503, 549
axes

adjusting, 129, 131, 361
aligning, 362, 417
default scale, 362
in bar chart, 503
in rotating plot, 131

axis labels
in bar chart, 502
in box plots, 513
in contour plots, 539
in line plot, 523
in rotating plots, 549
in scatter plots, 529

Azen, S.P., 19

B
background, 435
bandwidth

kernel estimation, 592, 667, 682
bar chart, 499

distribution analyses, 584
graphs, 584
method, 501
orientation, 502
output, 502
variables, 500

Bar Chart ( Y ), 500
bar charts, 71, 72

bar heights in, 74
clicking in, 73, 78
features of, 74
labeling bars, 74

bar heights in
bar charts, 74

BAR statement, 783
Base SAS Software, 446
BASEBALL data set, 18, 306, 320, 378, 454
batting averages, 329

Becker, R.A., 96, 545
Belsley, D.A., 233, 239, 657, 692, 704
Bibby, J.M., 775
BINOM option, 787
Binomial, 619
binomial

deviance, 623
log-likelihood function, 620
response distribution, 619

binomial deviance
generalized linear models, 623

binomial distribution
generalized linear models, 619

binomial log-likelihood function
generalized linear models, 620

Binomial variable
fit analyses, 631

bivariate plots
confidence ellipses, 768
scatter plot matrix, 753

blending colors, 173, 174, 176
blends

five colors, 176
two colors, 173

Bonferroni method, 515
Both, 502, 513, 523, 529, 539, 549
box,

see cube
box plot

distribution analyses, 584
formatted values in, 387
graphs, 584

Box Plot ( Y ), 387
Box Plot (Y), 330
Box Plot/Mosaic Plot ( Y ), 80, 88, 255, 364,

454, 509
box plots, 71, 80, 507, 509

clicking in, 82
comparing distributions, 509
comparison circles, 84, 516
features of, 81, 83
mean diamonds, 83
method, 511
multiple comparison tests, 514
orientation, 513
output, 512
variables, 509

BOX statement, 784
brush, 96, 153

changing size of, 153
deleting, 99
dragging, 98
moving, 98
resizing, 97
throwing, 98

brushing, 96, 98
in scatter plots, 531
with extended selection, 99

brushing observations, 153
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BUSINESS data set, 19
by groups, 357

comparing analyses, 360
BY statement, 783
by variable,

see group variable
BY-group title, 437, 438

C
C.I.,

see confidence interval
C.I. for parameters,

see confidence interval for parameters
calculation of

quantiles, 570
calculations,

see transformations
Campbell, P.F., 20
Cancel button, 67
cancer

PATIENT data set, 21
canomical

link function, 620
Canonical, 267, 285
canonical correlation

multivariate analyses, 717
Canonical Correlation Options button, 724
canonical discriminant

multivariate analyses, 718
canonical link

quasi-likelihood, 624
canonical link function

generalized linear models, 620
canonical parameter

generalized linear models, 618
canonical scores, 475
canonical varaibles

components, 772
multivariate analyses, 772

cascading
window positions, 460

catalog
SAS/GRAPH, 431

CDF,
see cumulative distribution function

CDF:Confidence Band, 595
CDF:Fit Parametric:Normal:Sample

Mean, Std Dev, 597
cell,

of matrix, see scatter plot matrix
of data window, see editing data values

centroid, 692
Chambers, J.M., 609
Chandra, M., 601, 609
changing,

see editing
changing size of

brush, 153
chart,

see graph
Chi-squared statistic, 225, 251, 270, 287, 642, 651
choosing

from menus, 10
order of variables, 81

class,
see classification variable
see group

CLASS statement, 783
classification variables, 245
Cleveland, W.S., 96, 545, 609, 704
clicking, 8
closing windows, 67
clustered data, 531
coefficient of variation

distribution analyses, 568, 569
Collier Books, 18
collinearity, 229, 657

fit analyses, 650
Collinearity Diagnostics, 228
collinearity diagnostics

fit analyses, 615, 657
multiple regression, 228

color
of curves, 208

color blending
in contour plots, 540

color blends, 173, 176
color state, 491
coloring curves, 208
coloring observations, 169
colors, 474

assigning by variable, 172, 175
background, 435
modifying blend, 173, 176

columns
in data window, 489

command line, 28
Comp. Log-log, 619
comparing

analyses, 339
comparing analyses, 339

by groups, 360
comparison circles, 84, 512
complement log-log

link function, 619
complement log-log link function

generalized linear models, 619
component plots, 755

principal components, 754
components

canonical varaibles, 772
principal components, 771, 772

condition index, 657
fit analyses, 657

condition number
fit analyses, 657

conditional distribution, 153, 371
Confidence Band, 595
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confidence band
cumulative distribution, 595

confidence curves
mean, 677
predicted, 677

confidence ellipse
mean, 768
prediction, 672, 768

Confidence Ellipses, 672
confidence ellipses, 295, 299

bivariate plots, 768
creating, 299
fit analyses, 671
interpreting, 300
mean, 673
multivariate analyses, 768
predicted, 673

confidence interval
generalized linear models, 654
likelihood-based, 656
linear models, 654
Wald, 654

confidence interval for mean
descriptive statistics, 571

confidence interval for parameters
fit analyses, 652

confidence interval for std dev
descriptive statistics, 571

confidence interval for variance
distribution analyses, 571

confidence intervals
distribution analyses, 571

confidence levels, 514
configuring

axes, 131
SAS/INSIGHT software, 453

configuring SAS/INSIGHT software, 453
Confirm dialog

exiting SAS/INSIGHT software, 67
Conover, W.J., 609
Constant, 622, 631

fit analyses, 631
constant

scale parameter estimates, 622
constant for scale parameter

generalized linear models, 622
CONSTANT option, 788
continuous variable,

see interval variable
Contour Plot ( Z Y X ), 118, 537
contour plots, 118, 535

method, 538
output, 539
variables, 537

CONTOUR statement, 785
conventions

of user’s guide, 15
Cook’s D, 233

fit analyses, 700

Cook, R.D., 700, 704
Copy Window, 345, 351, 352, 360
copying

data to disk, 422
windows, 345

CORR,
see correlation

corrected sums of squares and crossproducts, 728
correlation, 295, 296, 729

and confidence ellipses, 672, 768
correlation coefficient, 299
correlation coefficients

in principal component analysis, 313
Correlation Matrix, 299
correlation matrix, 313, 773

descriptive statistics, 729
in principal component analysis, 309
multivariate analyses, 729

correlation matrix of the parameter estimates
generalized linear models, 621

correlations of the parameter estimates
fit analyses, 617

COV,
see covariance

covariance matrix, 773
descriptive statistics, 728
in principal component analysis, 309

covariance matrix of the parameter estimates
fit analyses, 616
generalized linear models, 621

Covratio, 233
fit analyses, 701

Cox, D.R., 704
creating

bar chart, 500
bar charts, 72
box plots, 80
confidence ellipses, 299
contour plots, 118
distribution analysis, 558
fit analysis, 629
formats, 385
line plots, 100
mosaic plots, 88
multivariate analysis, 708
rotating plots, 110
scatter plots, 91
surface plots, 116
variables, 319

creating custom color blends, 176
Cross button, 249, 630
cross validation, 628

fitting curves, 212
crossed effects

fit analyses, 630
CSS,

see corrected sums of squares
distribution analyses, 568, 569

CSSCP, 773,
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see corrected sums of squares and crossproducts
Ctrl key, 10
Cube, 113, 549
cube, 113
cubic spline estimator, 679
Cumulative Distribution, 567
cumulative distribution

confidence band, 595
empirical, 594
empirical distribution, 594
fit parametric, 597
Kolmogorov statistic, 594
parametric distribution, 597
test for a specific distribution, 599
test for distribution, 601

cumulative distribution function, 556
exponential distribution, 557
lognormal distribution, 556
normal distribution, 556
Weibull distribution, 557

currency format, 380
cursor, 8

distance from, 460
shape of, 396, 397

curve-fitting, 201
Curves, 207, 769
curves, 201, 671

adding, 207
colors, 208
distribution analyses, 589
fitting, 207
nonparametric, 210
patterns, 208
width, 208

Curves:Confidence Curves, 677
Curves:Kernel, 668, 683
Curves:Polynomial, 207
Curves:Prediction Confidence Ellipse,

299
Curves:Spline, 665, 680
CV,

see coefficient of variation
distribution analyses, 568, 569

D
D,

see Cook’s D
see Kolmogorov’s D
see Kolmogorov statistic

Data, 422
data

entering, 27
examining, 49
exploring, 71
extracting, 495
fast entry, 40
fill, 44
printing, 421, 425
saving, 421, 422

size of, 51
sorting, 56
subset of, 495
windows, 50

data analysis, 5
data exploration, 5
DATA option, 781
Data Set, 488
data set, 27, 487, 488,

see saving data
data set dialog, 50, 488
data values

editing, 494
data window, 487

opening, 488
scrolling, 51

Data:Fill, 422
Data:Move to Last, 53
Data:Sort, 494
DATA=, 488
decimal format, 378
default

variable role, 141
default options,

see configuring SAS/INSIGHT software
default role, 490
default roles

group variables, 363
default values,

see configuring SAS/INSIGHT software
default variables

group, 363
defaults

marker size, 165
Define Variables, 141, 363
deflist,

see markers
degree

of polynomial fit, 205
degree of expansion, 630
degrees of freedom, 212, 270, 323, 643, 644, 646, 647,

649, 651
Delete, 236, 288, 349, 351, 409, 410
deleting

brush, 99
effects, 349, 351
graphs, 408, 410
tables, 408, 410
variables, 349

density
parametric estimation, 590

Density Estimation, 565
density estimation

kernel estimation, 592
density function, 556, 619

exponential distribution, 557
lognormal distribution, 556
normal distribution, 556
Weibull distribution, 557
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dependent variable,
see response variable

Depth, 114, 549
depth cueing, 114
descriptive statistics

confidence interval for mean, 571
confidence interval for std dev, 571
correlation matrix, 729
covariance matrix, 728
frequency table, 574
inverse correlation matrix, 731
location tests, 572
moments, 568
p-values of the correlations, 729
quantiles, 570
univariate statistics, 727

deselecting, 99
design matrix, 615, 661
Deviance, 622
deviance, 225, 251, 270, 287, 642–644

binomial, 623
gamma, 623
generalized linear models, 622
inverse Gaussian, 623
normal, 623
Poisson, 623

deviance residuals
fit analyses, 697

Devlin, S.J., 704
DF,

see degrees of freedom
Dfbetas, 233

fit analyses, 701
Dffits, 233, 234

fit analyses, 700
diagnostic statistics, 615
differing means, 514
Dillon, W.R., 775
dimension

reducing, 306
dimensionality

reducing, 713
discrete variable,

see nominal variable
DISCRIM procedure, 473
discriminant analysis, 472
disease,

see DRUG data set
dispersion parameter, 619, 620

generalized linear models, 618, 622
quasi-likelihood, 625

display, 8
options, 458

Display Options, 435
Display options, 458
DIST statement, 786
distance from

cursor, 460
distribution

of response variable, 618
Distribution ( Y ), 381, 404, 555, 558
Distribution (Y), 343, 358
distribution analyses, 555

bar chart, 584
box plot, 584
coefficient of variation, 568, 569
confidence interval for variance, 571
confidence intervals, 571
CSS, 568, 569
curves, 589
CV, 568, 569
exponential distribution, 557
exponential quantile, 586
frequency table, 574
Gini’s mean difference, 576
histogram, 584
interquartile range, 570
kernel estimation, 592
kurtosis, 559, 568, 569
location tests, 572
lognormal distribution, 556
lognormal quantile, 586
maximum, 570
median, 570
method, 559
minimum, 570
mode, 570
moments, 568
mosaic plot, 584
nominal variable, 605
normal distribution, 556
normal quantile, 586
output, 563
parametric density, 590
parametric distributions, 556
Q1, 570
Q3, 570
QQ plot, 585
QQ ref line, 603
quantile-quantile plot, 585
quantiles, 570
range, 570
skewness, 559, 568, 569
standard error of the mean, 568, 569
sum of squares corrected for the mean, 568, 569
tables, 568
test for a specific distribution, 599
test for distribution, 601
trimmed mean, 580
trimmed means, 580
trimmed t statistic, 580
uncorrected sum of squares, 568, 569
USS, 568, 569
variables, 558
Weibull distribution, 557
Weibull quantile, 587
Weight variable, 558
Winsorized mean, 580
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Winsorized means, 580
Winsorized sum of squared deviations, 580
Winsorized t statistic, 580

distribution analysis
groups, 358

distribution location tests
sign statistic, 573
signed rank statistic, 573
Student’s t statistic, 573

distributions
comparing in box plots, 509

Dixon, W.J., 581, 609
Dobson, A.J., 704
DOLLAR format, 380
double-click, 50
double-clicking, 488
draftsman’s display,

see scatter plot matrix
dragging, 9, 91

brush, 98
creating a brush, 96

drilling
MINING data set, 20

DRUG data set, 19, 245, 422
Dunnett’s test with control, 516

E
E,

see exponential format
Edit:Delete, 236, 288, 351, 409
Edit:Formats, 378, 379, 382, 384
Edit:Formats:Other, 379, 386
Edit:Observations:Exclude in

Calculations, 347
Edit:Observations:Find, 59, 340
Edit:Observations:Hide in Graphs, 146
Edit:Observations:Invert Selection, 152
Edit:Observations:Label in Plots, 137
Edit:Observations:Show in Graphs, 148
Edit:Observations:UnLabel in Plots, 138
Edit:Variables, 320, 332
Edit:Variables:log( Y ), 282, 353
Edit:Variables:log(Y), 321
Edit:Variables:Other, 325, 329
Edit:Windows:Align, 362, 417
Edit:Windows:Animate, 369
Edit:Windows:Copy Window, 345, 351, 352,

360
Edit:Windows:Delete, 410
Edit:Windows:Display Options, 435, 458
Edit:Windows:Fonts, 432
Edit:Windows:Freeze, 346
Edit:Windows:Renew, 139, 149, 354, 401, 402
Edit:Windows:Tools, 159, 171, 395
editing

data values, 494
variables, 319

editing formats,
see formats

editing graphs,
see graphs

editing marker sizes,
see markers

editing observations
excluding, 347
hiding, 146
labeling, 137
showing in graphs, 148

editing windows, 393
effects

deleting, 236, 349
in model, 247
nominal, 251, 638
removing from model, 235, 272
specifying, 629

Eigenvalue, 657
Eigenvalues, 311
eigenvalues, 713
Eigenvectors, 312
eigenvectors, 713
ellipses

confidence, 299
empirical

cumulative distribution, 594
empirical distribution

cumulative distribution, 594
End, 67, 344
entering

numeric data with keypad, 43
Epanechnikov, V.A., 592, 609
error term

in linear model, 614
estimated CORR matrix

fit analyses, 658
estimated COV matrix

fit analyses, 658
Eubank, R.L., 704
Exact Distribution, 631, 633

fit analyses, 631, 633
examining

data, 49
examining the means

analysis of variance, 255
Exclude in Calculations, 347
excluding observations, 347
excluding observations from calculations, 344
exiting SAS/INSIGHT software, 67
Expand button, 249, 284, 630
expanded effects

fit analyses, 630
explanatory variable, 614, 615, 629
explanatory variables, 220
exploration, 5
exploring data, 71, 87, 110
exponential

quantile, 586
test for distribution, 601

exponential distribution
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distribution analyses, 557
fit parametric, 597
parametric distributions, 557
testing for, 601

exponential family of distributions
fit analyses, 618
generalized linear models, 618

exponential format, 379
exponential quantile

distribution analyses, 586
extended

selection, 9, 10
extended selection, 10

and color blends, 175
brushing, 99

Extract, 342, 495
extracted data windows

names of, 342
extracting

observations, 340
extracting data, 495

F
F statistic

in analysis of variance, 252, 253
in multiple regression, 225, 226

F test
in analysis of variance, 226, 253

F-statistic
in analysis of variance, 643
in type I tests, 644
in type III tests, 646

factorial expansion, 630
features of

bar charts, 74
box plots, 81
SAS/INSIGHT software, 6

Feller, W., 609
FILE option, 781
File:End, 67, 344
File:Open, 67, 488
File:Print, 426
File:Print:Print file, 449
File:Save:Data, 422
File:Save:Initial Tables, 448
File:Save:Options, 45
File:Save:Tables, 446
files

printing, 449
Fill Areas, 540
Fill Values, 494
Find, 59, 340
Find Next, 61, 493
finding

observations, 151
finding observations, 59, 340, 493
First 2 Components Plot, 755
First 3 Components Plot, 755
Fisher

IRIS data set, 20
FISHER option, 788
Fisher’s Scoring, 633

fit analyses, 633
Fisher’s scoring method

generalized linear models, 621
Fisher, R.A., 20, 472, 609, 775
fisheye lens, 531
Fit ( Y X ), 202, 263, 266, 279, 284, 613, 629
Fit (Y X), 220, 244, 327, 345, 349
fit analyses, 613

analysis of deviance for generalized linear mod-
els, 644

analysis of variance for linear models, 643
Anscombe residuals, 698
Apply button, 630
Binomial variable, 631
collinearity, 650
collinearity diagnostics, 615, 657
condition index, 657
condition number, 657
confidence ellipses, 671
confidence interval for parameters, 652
Constant, 631
Cook’s D, 700
correlations of the parameter estimates, 617
covariance matrix of the parameter estimates,

616
Covratio, 701
crossed effects, 630
deviance residuals, 697
Dfbetas, 701
Dffits, 700
estimated CORR matrix, 658
estimated COV matrix, 658
Exact Distribution, 631, 633
expanded effects, 630
exponential family of distributions, 618
Fisher’s Scoring, 633
fit curves, 671
Freq variable, 630
generalized linear models, 618
goodness of fit, 622
Group variables, 630
hat matrix, 616
hat matrix diagonal, 692
influence diagnostics, 691
kernel estimator, 667, 682
kernel function, 667, 682
Label variable, 630
leverage plots, 661
leverage variables, 699
likelihood function, 620
linear model, 614, 615
linear models, 615
link function, 619
maximum-likelihood estimation, 620
mean confidence curves, 677
mean square error, 616

798



Index

method, 631
model equation, 251, 638
model information, 250, 638
multicollinearity, 650
nested effects, 630
nominal variable information, 251, 638
nonparametric model, 614
nonparametric smoothers, 626
normal equation, 616
normal kernel, 667, 682
normal weight, 684
Offset variable, 631
output, 634
parameter estimates for generalized linear mod-

els, 651
parameter estimates for linear models, 649
parameter information, 251, 638
parametric confidence curves, 677
parametric polynomial, 674
parametric regression model, 614
partial leverage plots, 661
partial leverage variables, 699
Pearson residuals, 697
predicted curves, 695
predicted mean vector, 616
predicted surfaces, 694
predicted values, 693
prediction confidence curves, 677
prediction confidence ellipses, 672, 768
projection matrix, 616
quadratic kernel, 667, 682
quadratic weight, 684
Quasi-Likelihood, 632
quasi-likelihood functions, 623
residual normal QQ Plot, 661
residual normal quantiles, 693
residual plots, 659
residual-by-predicted plot, 659
residuals, 693
scale parameter, 622
scatter plot smoother, 626
smoother degrees of freedom, 627
smoother generalized cross validation, 628
smoothing spline, 663, 679
standardized residuals, 696
statistical models, 614
studentized residuals, 696
sum of squares for error, 616
summary of fit for generalized linear models,

642
summary of fit for linear models, 640
tables, 638
tolerance, 650
tri-cube weight, 684
triangular kernel, 667, 682
triangular weight, 684
type I tests, 644
type III tests, 646
variables, 629, 691

variance, 616
variance inflation factor, 650
Weight variable, 630
weighted analyses, 702
X variable, 629
X variable effects, 629
X’X matrix, 639
Y variable, 629

fit curves
fit analyses, 671
kernel, 682
nonparametric local polynomial smoother, 684
nonparametric smoothers, 626
parameter estimates, 674
parametric confidence curves, 677
parametric confidence ellipses, 671
parametric polynomial, 674
polynomial equation, 674
smoother degrees of freedom, 627
smoother generalized cross validation, 628
smoothing spline, 663, 679

fit parametric
cumulative distribution, 597

Fit Parametric:Normal:Sample Mean, Std
Dev, 597

FIT statement, 787
fitting curves, 201

cross validation, 212
generalized cross validation, 212
loess smoother, 213
loess smoother fit, 213
normal kernel fit, 211
parametric regression, 202
polynomial, 202

fitting techniques, 671
five-color blends, 176
flipping graphs, 412–414
focus,

see zooming
fonts

choosing, 432
footnotes, 437, 438, 441
FORMAT procedure, 377, 385
Formats, 378, 379, 382, 384
formats

and group variables, 366
assigning, 378
creating, 385
currency, 380
decimal, 378
exponential, 379
in analysis tables, 383
in data window, 382
in groups, 387
of axes, 381, 382
of values, 383
scientific, 379
sorting by, 494
use in calculations, 387
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Formats:Other, 379, 386
formatting, 377

group variables, 366
formula,

see transformation
Freedman, D., 239
Freeze, 346
freezing windows, 346
Freq,

see frequency
FREQ option, 784, 786, 787
Freq variable

fit analyses, 630
multivariate analyses, 708

frequency role, 490
frequency table

descriptive statistics, 574
distribution analyses, 574

frequency values
in bar charts, 501
in box plots, 511
in distribution analyses, 559
in fit analyses, 631
in multivariate analyses, 710

frequency variable
in box plot, 500
in box plots, 509
in distribution analyses, 558

G
Gamma, 619
gamma

deviance, 623
log-likelihood function, 620
response distribution, 619

gamma deviance
generalized linear models, 623

gamma distribution
generalized linear models, 619

gamma log-likelihood function
generalized linear models, 620

GCV,
see generalized cross validation

general linear model, 244,
see linear model

generalized cross validation
fitting curves, 212

generalized linear model, 613, 614
components of, 265, 266, 281, 282
logistic regression, 263
Poisson regression, 279
specifying, 266, 284

generalized linear models, 618
binomial deviance, 623
binomial distribution, 619
binomial log-likelihood function, 620
canonical link function, 620
canonical parameter, 618
complement log-log link function, 619

confidence interval, 654
constant for scale parameter, 622
correlation matrix of the parameter estimates,

621
covariance matrix of the parameter estimates,

621
deviance, 622
dispersion parameter, 618, 622
exponential family of distributions, 618
Fisher’s scoring method, 621
fit analyses, 618
gamma deviance, 623
gamma distribution, 619
gamma log-likelihood function, 620
goodness of fit, 622
gradient vector, 621
Hessian matrix, 621
identity link function, 619
inverse Gaussian deviance, 623
inverse Gaussian distributions, 619
inverse Gaussian log-likelihood function, 620
likelihood function, 620
linear predictor, 618
link function, 618, 619
log link function, 619
logit link function, 619
maximum quasi-likelihood estimation, 625
maximum-likelihood estimate for scale parame-

ter, 622
maximum-likelihood estimation, 620
mean deviance, 623
mean deviance for scale parameter, 622
mean Pearson chi-squared, 623
mean Pearson chi-squared for scale parameter,

622
natural parameter, 618
normal deviance, 623
normal distribution, 619
normal log-likelihood function, 620
offset, 618
overdispersion, 623
Pearson chi-squared, 623
Poisson deviance, 623
Poisson distribution, 619
Poisson log-likelihood function, 620
power link function, 619
probit link function, 619
quasi-likelihood functions, 623
response distribution, 619
scale parameter, 622
scale parameter estimates, 622
scaled deviance, 622
scaled Pearson chi-squared, 623
variance function, 618

generalized residuals, 692
Gini’s mean difference

distribution analyses, 576
robust estimation, 576

Goldstein, M., 775
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goodness of fit, 622, 663, 679
fit analyses, 622
generalized linear models, 622

GPA data set, 91, 110, 146, 158, 220, 296, 394
grade point average, 19

grabber,
see hand tool

grade point average
GPA data set, 19

gradient vector
generalized linear models, 621

graph
options, 458

Graph options, 458
graphics

printing, 431
saving, 431

Graphs, 249, 267, 584, 753
graphs

adding, 404, 406, 407
aligning, 417
bar chart, 584
box plot, 584
deleting, 408, 410
flipping, 412–414
growing, 411
histogram, 584
margin between, 460
mosaic plot, 584
moving, 411
multivariate analyses, 753
orienting, 412–414
QQ plot, 585
shrinking, 411
size of, 460
sizing, 411

Graphs:First 2 Components Plot, 755
Graphs:First 3 Components Plot, 755
Graphs:Partial Leverage, 229
Graphs:QQ Plot, 585, 587
Grosse, E., 704
group

default variables, 363
group role, 490
group variable

in box plots, 509
in line plot, 522
in rotating plots, 547

Group variables
fit analyses, 630
multivariate analyses, 708

group variables, 357, 358
default roles, 363
formatting, 366
in contour plots, 537
in distribution analyses, 558
in rotating plots, 528
order of, 364

groups

analyzing by, 357
order of, 490

H
hand

adjusting axes, 129
hand tool, 54, 493
Hastie, Y.J., 212, 213, 704
Hat Diag, 230
hat diagonal, 230
hat matrix

fit analyses, 616
hat matrix diagonal

fit analyses, 692
heights

of bars, 502
Help, 15
help

context-sensitive, 16
Help key, 16
help system, 15, 18

index, 17
SAS/INSIGHT software, 15, 18

Help:Index, 17
Help:Introduction, 17
Help:Reference, 17
Help:Techniques, 17
Hessian matrix

generalized linear models, 621
Hide in Graphs, 146
hiding observations, 145, 146
Hinkley, D.V., 704
histogram, 499

distribution analyses, 584
graphs, 584

Histogram/Bar Chart ( Y ), 72, 76
Hoaglin, D.C., 704
holding the mouse button, 400
horizontal,

see orientation
Horizontal Axis at Bottom, 502, 513, 523, 529,

539
host, 8

available colors, 173
host resources, 453, 467
Hotelling’s T-squared statistic, 671, 768
Hotelling, H., 775
Hsu’s test for best, 516
Hsu’s test for worst, 516
Hsu, J. C., 514, 516
HTML, 450
hypothesis testing, 225, 226, 252, 253, 270, 555, 572,

589, 594, 595, 615, 643–647, 650, 656

I
identifying observations, 92, 135, 313

in box plots, 82
Identity, 619
identity
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link function, 619
identity link function

generalized linear models, 619
ill conditioned, 657
Iman, R.L., 573, 609
in analysis of variance

mean, 255
in distribution analyses

frequency variable, 558
group variables, 558
label variable, 558

in multiple regression
parameter estimates, 226

in Multivariate analysis
scatter plot matrix, 299

in principal component analysis
correlation coefficients, 313

Include/Exclude state, 491
include/exclude state, 474
independent variable,

see explanatory variable
Index, 17
index

help system, 17
SAS/INSIGHT User’s Guide, 15

INFILE option, 781
influence diagnostics

fit analyses, 691
influential observations, 234, 692, 700, 701
Initial Tables, 448
initial values,

see default values
initializing,

see configuring SAS/INSIGHT software
input data set,

see DATA= option
INSIGHT, 23
interaction effect, 247
interaction effects

specifying, 284
Interactive Data Analysis, 28
Intercept, 630
intercept

QQ ref line, 603
interpreting

confidence ellipses, 300
interquartile range

distribution analyses, 570
interval variable, 490
interval variables, 51, 72

in analysis of variance, 245
Introduction, 17
inverse correlation matrix

descriptive statistics, 731
multivariate analyses, 731

Inverse Gaussian, 619
inverse Gaussian

deviance, 623
log-likelihood function, 620

response distribution, 619
inverse Gaussian deviance

generalized linear models, 623
inverse Gaussian distributions

generalized linear models, 619
inverse Gaussian log-likelihood function

generalized linear models, 620
Invert Selection, 152
invisible observations, 148
invoking

SAS/INSIGHT software, 50
IRIS data set, 472

Fisher, 20

J
Jobson, J.D., 775
Johnson, N.L., 609
joint distribution, 153
journaling SAS/INSIGHT session,

see saving tables

K
Kaiser, H.F., 714, 775
Kent, J.T.„ 775
kernel

fit curves, 682
normal, 211

kernel estimation
approximate mean integrated square error, 592
bandwidth, 592, 667, 682
density estimation, 592
distribution analyses, 592
mean integrated square error, 592
normal, 592
normal distribution, 592
quadratic, 592
quadratic distribution, 592
triangular, 592
triangular distribution, 592

kernel estimator
fit analyses, 667, 682
in fit analyses, 614

kernel function
choice of, 592
fit analyses, 667, 682
normal, 667, 682
quadratic, 667, 682
triangular, 667, 682

Kleiner, B., 609
Kolmogorov statistic, 599

cumulative distribution, 594
Kotz, S., 609
Krzanowski, W.J., 775
Kuh, E., 233, 239, 657, 692, 704
kurtosis, 568, 569

distribution analyses, 559, 568, 569
Kutner, M.H., 247
Kvalseth, T.O., 704
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L
label

in data window, 138
observations, 135
permanent, 137
removing, 138
temporary, 136, 137

Label button, 139
Label in Plots, 137
LABEL option, 784–787
label role, 490
Label variable

fit analyses, 630
multivariate analyses, 708

label variable, 139, 141
in box plot, 500
in box plots, 509
in contour plots, 537
in distribution analyses, 558
in line plot, 522
in rotating plots, 547

label variables
in box plots, 81
in rotating plots, 528

Label/UnLabel state, 491
label/unlabel state, 474
labeling observations, 92
Labels, 502, 513, 523, 529, 539, 549
labels

bar chart axes, 502
box plot axes, 513
contour plot axes, 539
line plot axes, 523
of transformed variables, 329
rotating plot axes, 549
scatter plot axes, 529

lack of fit,
see goodness of fit

layout
scatter plot matrix, 95

learning
SAS/INSIGHT software, 15

least-squares estimates, 615
Lee, E.T., 21
Lehmann, E.L., 573, 609
level,

see measurement level
see classification variable
see group

level sets, 118
leverage plots

fit analyses, 661
leverage variables

fit analyses, 699
LIBNAME statement, 488
Library, 488
library, 50
likelihood function

fit analyses, 620

generalized linear models, 620
likelihood ratio, 656
likelihood ratio test, 271
likelihood-based

confidence interval, 656
likelihood-ratio statistic

type III tests, 647
line fit, 204
line plot, 521

method, 522
output, 523
variables, 522

Line Plot ( Y X ), 100, 522
line plots, 87
LINE statement, 784
linear model, 614

fit analyses, 614, 615
linear models

confidence interval, 654
fit analyses, 615

linear predictor
generalized linear models, 618

linear regression, 204
Link Function, 631
link function, 618, 631, 638

canomical, 620
complement log-log, 619
fit analyses, 619
generalized linear models, 618, 619
identity, 619
log, 619
logit, 619
power, 619
probit, 619

LINK option, 787
linking of windows, 92, 346
local polynomial fit

weight function, 684
locating observations,

see finding observations
Location Tests, 574
location tests, 574

descriptive statistics, 572
distribution analyses, 572

loess fit
weight function, 684

loess smoother
fitting curves, 213

loess smoother fit
fitting curves, 213

Log, 619
log, 353

link function, 619
log link function

generalized linear models, 619
log transformation, 282, 320
log( Y ), 282, 353
log(Y), 321
log-likelihood function
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binomial, 620
gamma, 620
inverse Gaussian, 620
normal, 620
Poisson, 620

logistic regression, 263
analysis of deviance, 270
model equation, 269
modifying the model, 271
parameter estimates, 270
residuals-by-predicted plot, 270
summary of fit, 270
type III (LR) tests, 271
type III (Wald) tests, 270

Logit, 619
logit

link function, 619
logit link function

generalized linear models, 619
lognormal

quantile, 586
test for distribution, 601

lognormal distribution
distribution analyses, 556
fit parametric, 597
parametric distributions, 556
testing for, 601

lognormal quantile
distribution analyses, 586

LR,
see likelihood ratio

M
magnifying glass tool, 394–396
main effect, 247
major ticks, 126
manager, 471
Mardia, K.V.„ 775
margin between

graphs, 460
marginal histograms, 404, 416
marker, 51
Marker Sizes, 162, 163
marker sizes

in bar chart, 503
marker state, 491
markers, 92, 157, 159, 474

assigning by variable, 160
size of, 162

MARKERSIZE option, 784–786
matrix

of rotating plots, 115
matrix, correlation,

see correlation matrix
matrix, covariance,

see covariance matrix
matrix, design,

see design matrix
matrix, hat,

see hat matrix
matrix, Hessian,

see Hessian matrix
matrix, patter,

see pattern matrix
matrix, X’X,

see X’X matrix
maximum, 727

distribution analyses, 570
maximum quasi-likelihood estimation

generalized linear models, 625
maximum redundancy

multivariate analyses, 718
maximum-likelihood estimate

scale parameter estimates, 622
maximum-likelihood estimate for scale parameter

generalized linear models, 622
maximum-likelihood estimation

fit analyses, 620
generalized linear models, 620

McCabe, G.P., 20, 225, 239, 252, 296, 301
McCullagh, P., 21, 275, 281, 618, 623, 704
McLaughlin, D.H, 580, 581
McLaughlin, D.H., 609
Mean, 256, 512
mean, 225, 251, 270, 287, 383, 509, 568, 569, 597,

620, 640, 727, 773
box plot, 256
confidence curves, 677
confidence ellipse, 768
in analysis of variance, 255

mean confidence curves
fit analyses, 677

mean confidence ellipse
multivariate analyses, 768

mean confidence ellipses, 673
mean deviance

generalized linear models, 623
scale parameter estimates, 622

mean deviance for scale parameter
generalized linear models, 622

mean diamonds, 83, 258, 259
mean integrated square error

kernel estimation, 592
mean line fit, 205
mean Pearson chi-squared

generalized linear models, 623
scale parameter estimates, 622

mean Pearson chi-squared for scale parameter
generalized linear models, 622

mean square error, 212
fit analyses, 616

means, 83
measurement level, 51, 245, 490

assigning, 246
variables, 490

median, 81, 507, 511
distribution analyses, 570

memory
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storing data set in, 422
memory, optimizing, 165
menu, 8, 10

pulldown, 10
menu bar, 10
method

bar chart, 501
box plots, 511
contour plots, 538
distribution analyses, 559
fit analyses, 631
line plot, 522
multivariate analyses, 710
options, 454, 456
rotating plots, 548
scatter plots, 528

Method button, 284, 511, 562, 631, 711, 715
Method dialog

Fit window, 266, 284
method options, 454, 456
minimum, 727

distribution analyses, 570
MINING data set, 340

drilling, 20
MININGX data set, 20, 202
minor ticks, 126
MISE, 593,

see mean integrated square error
missing values, 58, 325

in bar charts, 501
in box plots, 511
in contour plots, 538
in distribution analyses, 559, 562
in fit analyses, 631
in line plots, 522
in multivariate analyses, 710
in rotating plots, 548
in scatter plots, 528

MLE, 622,
see maximum-likelihood estimate

MLE, Theta=0, 597
mode

distribution analyses, 570
parametric density, 591

model
modifying, 630
removing effects, 235, 272
specifying effects, 629

model effects, 247
model equation

fit analyses, 251, 638
logistic regression, 269
multiple regression, 225, 313

model information
fit analyses, 250, 638
in Fit window, 267, 287

modifying,
see editing

modifying the model

logistic regression, 271
multiple regression, 235
poisson regression, 288

moments, 570
descriptive statistics, 568
distribution analyses, 568

monochrome images, 435
Moore, D.S., 225, 239, 252, 296, 301
Morrison, D.F., 775
mosaic plot

distribution analyses, 584
graphs, 584

mosaic plots, 87, 509
Motif window manager

setting X resources, 467
mouse, 8
mouse button, 8
Move to First, 493
Move to Last, 53, 493
moving

columns, 56
graphs, 411
tables, 411

moving observations, 493
MSE,

see mean square error
Muenchen, R.A., 552
MULT statement, 786
multicollinearity

fit analyses, 650
multiple

selection, 9
multiple color blends, 174
multiple comparison circles, 516
Multiple Comparison of Means, 512
multiple comparison of means, 84
Multiple Comparison Options, 513, 514
Multiple Comparison Test, 514
multiple comparison tests

Dunnett’s test with control, 516
Hsu’s test for best, 516
Hsu’s test for worst, 516
pairwise Bonferroni, 515
pairwise t-test, 515
Tukey-Kramer all pairs, 515

multiple regression, 219
adding tables and graphs, 228
analysis of variance, 225
collinearity diagnostics, 228
model equation, 225, 313
modifying the model, 235
parameter estimates, 226
partial leverage plots, 229
residual-by-hat diagonal plot, 230
residual-by-predicted plot, 227
saving the residuals, 238
summary of fit, 225
type III tests, 226

Multivariate ( Y’s ), 296, 707, 708
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Multivariate (Y’s), 306
multivariate analyses, 707

canonical correlation, 717
canonical discriminant, 718
canonical varaibles, 772
confidence ellipses, 768
corrected sums of squares and crossproducts,

728
correlation matrix, 729
Freq variable, 708
graphs, 753
Group variables, 708
inverse correlation matrix, 731
Label variable, 708
maximum redundancy, 718
mean confidence ellipse, 768
method, 710
output, 720
p-values of the correlations, 729
prediction confidence ellipse, 768
principal component plots, 754
principal components, 713, 771, 772
principal components rotation, 715
scatter plot matrix, 753
sums of squares and crossproducts, 727
tables, 727
univariate statistics, 727
variables, 708
variance divisor, 712
Weight variable, 709
weighted analyses, 773

Multivariate analysis, 305
Myers, R.H., 238, 239

N
N, 727,

see number of observations
name mangling, 438
Names, 502, 513, 523, 529, 539, 549
names

of data windows, 342
of transformed variables, 329

names of
extracted data windows, 342

names of tables, 450
naming

catalog entries, 437, 438
Cook’s D variables, 700
Covratio variables, 701
data sets, 423
dfbetas variables, 701
Dffits variables, 700
partial leverage variables, 699
residual variables, 694, 696–699
variables, 692

natural parameter
generalized linear models, 618

navigating, 34
Nelder, J.A., 21, 275, 281, 618, 623, 704

Nest button, 630
nested effects

fit analyses, 630
New Observations, 494
New Variables, 494
NOBUTTON option, 782
NOCONFIRM option, 782
NOEXACT option, 788
NOINT option, 787
NOMENU option, 782
nominal variable, 490

distribution analyses, 605
nominal variable information

fit analyses, 251, 638
nominal variables, 51, 75

in analysis of variance, 245
noncontiguous

selection, 10
noncontiguous selection, 10
nonparametric curves, 210
Nonparametric Curves button, 635
nonparametric local polynomial smoother

fit curves, 684
nonparametric model

fit analyses, 614
nonparametric regression, 211
nonparametric smoothers

fit analyses, 626
fit curves, 626

Normal, 619
normal

deviance, 623
kernel estimation, 592
kernel function, 667, 682
log-likelihood function, 620
quantile, 586
response distribution, 619
test for distribution, 601
weight function, 684

normal deviance
generalized linear models, 623

normal distribution, 300
distribution analyses, 556
fit parametric, 597
generalized linear models, 619
kernel estimation, 592
parametric distributions, 556
testing for, 601

normal equation
fit analyses, 616

normal kernel
fit analyses, 667, 682

normal kernel fit
fitting curves, 211

normal log-likelihood function
generalized linear models, 620

normal quantile
distribution analyses, 586

normal quantile-quantile plot
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fit analyses, 661
normal quantiles, 694
normal weight

fit analyses, 684
NOSCROLL option, 782
null hypothesis,

see hypothesis testing
number of observations

as label, 137
as observation label, 92
in data window, 491
in Moments table, 568, 569

number of variables
in data window, 489

O
objects, 446

output, 450
observation, 27
observation number

as label, 137
as observation label, 92

observation state, 474
observation states, 474, 491

saving, 422, 492
Observations, 257, 503
observations, 491,

number of, see number of observations
adding, 35
brushing, 96, 153
coloring, 169
deselecting, 147
excluding, 344
extracting, 340
finding, 59, 151, 340, 493
hiding, 145, 146
identifying, 92
in bar chart, 503
invisible, 151
labeling, 92
markers, 51, 92
marking, 157
new, 494
querying for, 59
selecting, 92
slicing, 145, 153
sorting, 56, 494
states, 491
toggling display of, 145, 149, 257

Observations:Exclude in Calculations,
347

Observations:Hide in Graphs, 146
Observations:Invert Selection, 152
Observations:Label in Plots, 137
Observations:Show in Graphs, 148
Observations:UnLabel in Plots, 138
ODS,

see Output Delivery System
of data windows

names, 342
offset

generalized linear models, 618
of bars, 501, 503

OFFSET option, 787
Offset variable

fit analyses, 631
OK button, 220
Open, 67, 488
OPEN statement, 782
opening

data set, 488
data window, 488

operation of
SAS/INSIGHT software, 8

optimizing memory, 165
optional variables, 81
Options, 458
options, 454, 456

BINOM, 787
box plot, 256
CONSTANT, 788
DATA, 781
display, 435, 458
distribution, 405
FILE, 781
FISHER, 788
FREQ, 784, 786, 787
graph, 458
grey scale graphics, 438
in fit analysis, 203
INFILE, 781
LABEL, 784–787
LINK, 787
MARKERSIZE, 784–786
method, 454, 456
NOBUTTON, 782
NOCONFIRM, 782
NOEXACT, 788
NOINT, 787
NOMENU, 782
NOSCROLL, 782
OFFSET, 787
OTHER, 783, 784
output, 454, 456
POWER, 787
QUASI, 788
RESP, 787
SAS/INSIGHT, 454
saving, 453, 466
SCALE, 788
setting default, 45
TOOLS, 781
used in this book, 435
WEIGHT, 786, 787
window, 458, 459
XAXIS, 783–786
YAXIS, 783–786
ZAXIS, 785, 786
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order of expansion,
see degree of expansion

order of observations,
see moving, sorting

order of polynomial,
see degree of polynomial

order of variables,
see moving

orientation
of bar chart, 502
of box plots, 513
of contour plots, 539
of line plot, 523
of scatter plots, 529

Orientation:Horizontal Axis at Bottom,
502, 513, 523, 529, 539

Orientation:Vertical Axis at Left, 502, 513,
523, 529, 539

Orientation:Y Axis Vertical, 502, 513, 523,
529, 539

orienting graphs, 412–414
OTHER option, 783, 784
outlier, 580, 659, 754
outliers, 95, 316
output

bar chart, 502
box plots, 512
contour plots, 539
distribution analyses, 563
fit analyses, 634
line plot, 523
multivariate analyses, 720
objects, 450
options, 454, 456
rotating plots, 549
scatter plots, 529

Output button, 225, 502, 512, 523, 529, 549, 563,
634, 720

Output Components, 771
Output Delivery System, 446, 449
Output Principal Components:2, 316
Output Variables button, 635
output window, 425
overdispersion, 289

generalized linear models, 623
Poisson regression, 285

P
p-value

for F statistic, 225, 252
p-values

for likelihood ratio type III tests, 271
p-values of the correlations

descriptive statistics, 729
multivariate analyses, 729

pairwise Bonferroni, 515
pairwise t-test, 515
parameter estimates, 649

analysis of variance, 253

fit curves, 674
in multiple regression, 226
logistic regression, 270
multiple regression, 226
Poisson regression, 290

parameter estimates for generalized linear models
fit analyses, 651

parameter estimates for linear models
fit analyses, 649

parameter information
fit analyses, 251, 638

parametric
regression, 202

parametric confidence curves
fit analyses, 677
fit curves, 677

parametric confidence ellipses
fit curves, 671

Parametric Curves button, 635
parametric density

distribution analyses, 590
mode, 591

parametric distribution
cumulative distribution, 597

parametric distributions
distribution analyses, 556
exponential distribution, 557
lognormal distribution, 556
normal distribution, 556
Weibull distribution, 557

parametric estimation
density, 590

parametric polynomial
fit analyses, 674
fit curves, 674

parametric regression, 202, 204
fitting curves, 202

parametric regression model
fit analyses, 614

Partial Leverage, 229
partial leverage plots

fit analyses, 661
multiple regression, 229
residual plots, 661

partial leverage variables
fit analyses, 699

paste buffer,
see clipboard

PATIENT data set, 265
cancer, 21

pattern
of curves, 208

pause animation, 371
PC,

see principal component
PCA,

see principal component analysis
Pearson, 622
Pearson chi-squared
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generalized linear models, 623
Pearson chi-squared statistic,

see chi-squared statistic
Pearson product-moment correlations, 729
Pearson residuals

fit analyses, 697
Pearson, K., 775
Penner, R., 20
percentile, 507
permanent

label, 137
perspective,

see depth cueing
Pisani, R., 239
plane, rotating, 552
players, 18,

see BASEBALL data set
plot,

see graph
quantile-quantile, 585

plotting symbols,
see markers

pointer,
see cursor

pointing, 8
Poisson, 619

deviance, 623
log-likelihood function, 620
response distribution, 619

Poisson deviance
generalized linear models, 623

Poisson distribution
generalized linear models, 619

Poisson log-likelihood function
generalized linear models, 620

Poisson regression, 279
analysis of deviance, 287
overdispersion, 285
parameter estimates, 290
summary of fit, 287
type III (Wald) tests, 287

poisson regression
modifying the model, 288

pollutants, 18
Polynomial, 207
polynomial

fitting curves, 202
polynomial curves, 202
polynomial equation

fit curves, 674
polynomial expansion, 630
polynomial fit, 202
position of

windows, 460
position of windows, 460
Power, 619, 631
power

fit analyses, 631
link function, 619

power link function
generalized linear models, 619

POWER option, 787
precision

of formatted values, 380
predicted

confidence curves, 677
predicted confidence ellipses, 673
predicted curves

fit analyses, 695
predicted mean vector

fit analyses, 616
predicted surfaces

fit analyses, 694
predicted values

fit analyses, 693
prediction

confidence ellipse, 672, 768
prediction confidence curves

fit analyses, 677
Prediction Confidence Ellipse, 299
prediction confidence ellipse

multivariate analyses, 768
prediction confidence ellipses

fit analyses, 672, 768
pressing the mouse button, 400
principal component analysis, 305
principal component options, 720
Principal Component Options button, 722
principal component plots

multivariate analyses, 754
principal components, 306

component plots, 754
components, 771, 772
multivariate analyses, 713, 771, 772
saving, 316

principal components rotation
multivariate analyses, 715

Principal Components:Output
Components, 771

Pringle, R.M., 704, 775
Print, 426
Print file, 449
PRINT procedure, 421, 425
Print:Print file, 449
printing, 439

all contents of window, 436, 440
color images, 435
data, 421
files, 426, 449
from clipboard, 439
from window, 440
graphics, 431
selected portion of window, 436, 440
tables, 445

PRINTTO procedure, 428, 449
Probit, 619
probit

link function, 619
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probit link function
generalized linear models, 619

PROC DISCRIM, 473,
see DISCRIM procedure

PROC FORMAT, 377, 385,
see FORMAT procedure

proc insight, 28
PROC INSIGHT statement, 781
PROC OUTPUT,

see OUTPUT procedure
PROC PRINT, 421, 425,

see PRINT procedure
PROC PRINTTO, 428, 449,

see PRINTTO procedure
PROFILE catalog, 466
program editor, 385, 425, 471, 473

invoking SAS/INSIGHT software from, 28
projection matrix

fit analyses, 616
properties,

see variable properties
pulldown

menu, 10
pulldown menu, 10
purpose of

SAS/INSIGHT Software, 5
Purves, R., 239
Pythagorean theorem, 516

Q
Q1

distribution analyses, 570
Q3

distribution analyses, 570
QQ Plot,

see quantile-quantile plot
QQ plot

distribution analyses, 585
graphs, 585

QQ ref line, 603
distribution analyses, 603
intercept, 603
slope, 603

quadratic
kernel estimation, 592
kernel function, 667, 682
weight function, 684

quadratic distribution
kernel estimation, 592

quadratic kernel
fit analyses, 667, 682

quadratic polynomial fit, 205
quadratic weight

fit analyses, 684
qualitative variable,

see nominal variable
quantile

exponential, 586
lognormal, 586

normal, 586
Weibull, 587

quantile-quantile plot, 694
distribution analyses, 585
fit analyses, 661

quantiles
calculation of, 570
descriptive statistics, 570
distribution analyses, 570

quantitative variable,
see interval variable

quartiles, 81, 507, 511
QUASI option, 788
Quasi-Likelihood, 632

fit analyses, 632
quasi-likelihood, 285, 623, 624

canonical link, 624
dispersion parameter, 625
scale parameter, 624
variance function, 624

quasi-likelihood functions
fit analyses, 623
generalized linear models, 623

querying, 493
querying for observations, 59
QUIT statement, 789

R
R-Square, 640, 642
R-square, 204, 225, 251
range

distribution analyses, 570
of data displayed, 146

Rawlings, J.O., 230, 239, 704
Raynor, A.A., 704, 775
Rays, 549
recording SAS/INSIGHT session,

see saving tables
recording statements, 481
recreating,

see Renew
Reference, 17
reference, 15
Reference Lines, 503
reference lines

in bar chart, 503
regression, 244, 613–615

linear, 204
multiple, 219
nonparametric, 211
parametric, 202, 204
simple, 204

Reid, N., 704
Reinsch, C., 679, 704
removing,

see deleting
removing variable from model, 272
removing variables from model, 235
Renew, 139, 149, 354, 401, 402
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renewing windows, 401
repeated points

in contour plots, 538
required variables, 80, 110
residual, 227
residual normal QQ Plot

fit analyses, 661
residual plots, 661

residual normal quantiles
fit analyses, 693

residual plots
fit analyses, 659
partial leverage plots, 661
residual normal QQ Plot, 661
residual-by-predicted plot, 659

residual-by-hat diagonal plot
multiple regression, 230

residual-by-predicted plot
fit analyses, 659
multiple regression, 227
residual plots, 659

residuals, 691
fit analyses, 693
generalized, 692
saving, 238
studentized, 238

residuals-by-predicted plot
analysis of variance, 254
logistic regression, 270

resizing,
see sizing

resources, 467
RESP option, 787
Response Dist., 631
response distribution, 618, 631, 638

binomial, 619
gamma, 619
generalized linear models, 619
inverse Gaussian, 619
normal, 619
Poisson, 619

response surface, 116
response variable, 220, 614, 615, 629
results window, 447
robust estimation

Gini’s mean difference, 576
trimmed means, 580
Winsorized means, 580

role, 490
variables, 80

root mean square error, 225, 251, 640
Root MSE,

see root mean square error
ROTATE statement, 786
rotating planes and surfaces, 552
rotating plot, 110

features of, 114
matrix of, 115
of principal components, 754

Rotating Plot ( Z Y X ), 110, 115, 116, 547
rotating plots, 545

method, 548
of canonical scores, 476
output, 549
variables, 547

rows
in data window, 491

RUN statement, 788
Run:Submit, 28, 385, 425, 474

S
Sall, J., 512, 516
sample mean, 640, 642

in box plots, 83
Sample Mean, Std Dev, 597
SAS data set, 27
SAS/GRAPH software, 431, 436
SAS/INSIGHT, 23

options, 454
SAS/INSIGHT Software

purpose of, 5
SAS/INSIGHT software

configuring, 453
exiting, 67
features of, 6
help system, 15, 18
invoking, 28, 50
learning, 15
operation of, 8

SAS/INSIGHT statements, 779
SAS/STAT software, 472
SASHELP library, 488
SASUSER library, 488
SASUSER.PROFILE catalog, 466
Save:Data, 422
Save:Tables, 446
saving

bitmaps, 437
catalogs, 436
colors, 474
data, 421, 422
defaults, 131
formats, 378
graphics, 431, 436
graphics files, 437
include/exclude state, 474
label/unlabel state, 474
markers, 474
observation states, 422, 492
options, 453, 466
principal components, 316
residuals, 238
select state, 474
show/hide state, 474
tables, 445, 449, 450
tables as data sets, 450
tables as html, 450
variables, 316, 691
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Scale, 631
scale

of graphs, 147
SCALE option, 788
scale parameter, 642

fit analyses, 622
generalized linear models, 622
quasi-likelihood, 624

scale parameter estimates
constant, 622
generalized linear models, 622
maximum-likelihood estimate, 622
mean deviance, 622
mean Pearson chi-squared, 622

scale parameters, 624
scaled deviance

generalized linear models, 622
scaled Pearson chi-squared

generalized linear models, 623
scatter plot

adding curves, 207
confidence ellipses, 299, 768
of principal components, 314, 754

Scatter Plot ( Y X ), 91, 94, 136, 270, 314, 394,
407, 528

Scatter Plot (Y X), 232
scatter plot matrix, 94, 394, 527, 528

bivariate plots, 753
in Multivariate analysis, 299
layout, 95
multivariate analyses, 753

scatter plot smoother
fit analyses, 626

scatter plots, 87, 91, 527
clicking in, 92
method, 528
output, 529
variables, 528
viewing brushed observations, 531

SCATTER statement, 785
schematic plot,

see box plot
scientific format, 379
scientific notation,

see exponential format
Scott, D.W, 501
screen,

see display
scroll bar, 51, 52
scrolling, 52

data window, 51
searching, 493
searching for observations, 59
seed, random,

see random
select state, 474, 491
selecting, 8

area, 255, 406
comparison circles, 516

contours, 540
level curves, 540
observations, 92
tables, 446
values in tables, 383

selection, 8
extended, 9, 10, 99
multiple, 9
noncontiguous, 10
order of, 81

Serifs, 512
set properties, 141,

see variable properties
setting

default window options, 45
shape,

of observation markers, see marker
of cursor, see cursor

shape parameter, 586
Shift key, 9
SHIP data set, 281, 282, 434

wave damage, 21
Show in Graphs, 148
Show/Hide state, 491
show/hide state, 474
sign statistic

distribution location tests, 573
signed rank statistic

distribution location tests, 573
significance, 226, 252
Silverman, B.W., 593, 609, 704
simple regression, 204
simultaneous confidence intervals, 515
Singpurwalla, N.D., 601, 609
size of

graphs, 460
size of markers, 162
Size to Fit, 165
sizing

graphs, 411
skewness, 559, 568, 569

distribution analyses, 559, 568, 569
in box plots, 81

slicing
observations, 145, 153

slider
in scroll bar, 51

slope
QQ ref line, 603

Smirnov, N., 609
smoother degrees of freedom

fit analyses, 627
fit curves, 627

smoother generalized cross validation
fit analyses, 628
fit curves, 628

smoothing parameter, 626
kernel estimation, 592
of kernel curve, 212
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smoothing spline, 538, 548, 664, 679
fit analyses, 663, 679
fit curves, 663, 679

smoothness of fit, 664
Snell, E.J., 704
Solutions, 472
Sort, 494
sorting

data, 56
observations, 56, 494
order of, 494

spinning,
see rotating

spline, 614
Spread, 467
spreading

window positions, 460, 467
spreadsheet,

see data window
Sqrt,

see square root
SSCP, 773,

see sums of squares and crossproducts
standard deviation, 383, 512, 568, 569, 597, 651, 727

in box plots, 83
standard error, 270, 649, 650

trimmed mean, 580
Winsorized mean, 580

standard error of the mean
distribution analyses, 568, 569

standardized residuals
fit analyses, 696

statements
BAR, 783
BOX, 784
BY, 783
CLASS, 783
CONTOUR, 785
DIST, 786
FIT, 787
LINE, 784
MULT, 786
OPEN, 782
PROC INSIGHT, 781
QUIT, 789
recording, 481
ROTATE, 786
RUN, 788
SAS/INSIGHT, 779
SCATTER, 785
TABLES, 788
WINDOW, 782

states,
see observation states

statistical models
fit analyses, 614

statistical significance, 226, 252
statistics, descriptive,

see descriptive statistics

statistics, diagnostic,
see diagnostic statistics

statistics, summary,
see summary statistics

statistics, univariate,
see univariate statistics

Std Dev,
see standard deviation

Stephens, M.A., 601, 609
storing,

see saving
Student’s t statistic

distribution location tests, 573
studentized residuals, 238

fit analyses, 696
Submit, 28, 385, 425, 474
subsets

coloring observations, 172
group variables, 357
hiding observations, 146
marking observations, 160
of data, 495
of observations, 340
toggling display of observations, 149

sum, 568, 569
sum of squares, 225, 252, 643, 646
sum of squares corrected for the mean

distribution analyses, 568, 569
sum of squares for error

fit analyses, 616
sum of weights, 568, 569
summary of fit, 225, 251, 270, 643

analysis of variance, 251
logistic regression, 270
multiple regression, 225
Poisson regression, 287

summary of fit for generalized linear models
fit analyses, 642

summary of fit for linear models
fit analyses, 640

summary statistics, 225, 251, 270, 287
sums of squares

Type III, 226, 252
sums of squares and crossproducts, 727
surface plots, 116, 547
surface, rotating, 552
symbols,

see markers

T
Tab key, 32, 44
Tables, 249, 267, 446, 571, 638, 652, 727
tables

deleting, 408, 410
distribution analyses, 568
fit analyses, 638
html, 450
moving, 411
multivariate analyses, 727
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printing, 445
saving, 445, 450

TABLES statement, 788
Tables:Collinearity Diagnostics, 228
Tables:Location Tests, 574
Tables:Type III (LR) Tests, 271, 274
Techniques, 17
techniques, 15
temporary

label, 137
Terrell, G.R., 501
test for a specific distribution

cumulative distribution, 599
distribution analyses, 599

test for distribution
cumulative distribution, 601
distribution analyses, 601
exponential, 601
lognormal, 601
normal, 601
Weibull, 601

tests
type I, 644
type I (LR), 645
type III, 645, 646
type III (LR), 648
type III (Wald), 648

thin-plate smoothing spline, 664
thin-plate splines, 538, 548
threshold parameter, 597
throwing, 98
Tibshirani, R.J., 212, 213, 704
Ticks, 361, 503
ticks

adjusting, 126, 361
aligning, 417
font for labels, 434
in bar chart, 503
major, 126
minor, 126
size of labels, 434

titles, 437, 438, 441
toggling display of

observations, 145, 149
TOL,

see tolerance
tolerance, 649

fit analyses, 650
in multiple regression, 226

Tools, 159, 171, 395
tools

magnifying glass, 395
windows, 54

TOOLS option, 781
tools window, 395, 396
trace, 713
transformation, 319

log, 282
transformations, 332

transforming variables, 319, 352, 353
tri-cube weight

fit analyses, 684
triangular

kernel estimation, 592
kernel function, 667, 682
weight function, 684

triangular distribution
kernel estimation, 592

triangular kernel
fit analyses, 667, 682

triangular weight
fit analyses, 684

trimmed mean
distribution analyses, 580
standard error, 580

trimmed means
distribution analyses, 580
robust estimation, 580

trimmed t statistic
distribution analyses, 580

Trimmed/Winsorized Means, 565
Tukey, J.W., 507, 580, 581, 609
Tukey, P.A., 609
Tukey-Kramer method, 515
two-color blends, 173
type I tests

fit analyses, 644
Type III (LR) Tests, 271, 274
type III (LR) tests

logistic regression, 271
type III (Wald) tests

logistic regression, 270
Poisson regression, 287

type III tests
analysis of variance, 252
fit analyses, 646
likelihood-ratio statistic, 647
multiple regression, 226
Wald statistic, 647

U
uncorrected sum of squares

distribution analyses, 568, 569
undo,

see Renew
Renew, 354

Unf/For button, 494
uniform lens, 531
univariate statistics

descriptive statistics, 727
multivariate analyses, 727

UNIX operating system
setting X resources, 467

UnLabel in Plots, 138
Use Obs with Missing Values, 562
user’s guide

conventions of, 15
using, 15
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USS,
see uncorrected sums of squares
distribution analyses, 568, 569

V
Values, 257, 503
values

in bar chart, 503
variable roles, 500, 509
Variable:Both, 502, 513, 523, 529, 539, 549
Variable:Labels, 502, 513, 523, 529, 539, 549
Variable:Names, 502, 513, 523, 529, 539, 549
Variables, 320
variables, 27, 489

adding, 35
arranging, 52
bar chart, 500
box plots, 509
contour plots, 537
default role, 141
defining, 37
deleting, 349
distribution analyses, 558
editing, 319
explanatory, 220
fit analyses, 629, 691
frequency, 500, 509, 558, 630, 708
generated, 692
group, 509, 522, 528, 537, 547, 558, 630, 708
in box plot, 509
in scatter plots, 528
influence diagnostics, 691
interval, 51, 72
label, 500, 509, 522, 528, 537, 547, 548, 558,

630, 708
line plot, 522
measurement level, 51, 490
moving, 52
multivariate analyses, 708
names of, 692
new, 494
nominal, 51, 75
optional, 81
removing from model, 235, 272
response, 220
role, 80, 490
rotating plots, 547
saving, 316, 691
selected, 43
selecting, 53
transforming, 319, 352, 353
weight, 558, 630, 709
X, 522, 528, 537, 547
Y, 500, 509, 522, 528, 537, 547, 558
Z, 537, 547

Variables:log( Y ), 282, 353
Variables:log(Y), 321
Variables:Other, 325, 329
variance, 559, 568, 569

fit analyses, 616
variance divisor

multivariate analyses, 712
variance function, 619

generalized linear models, 618
quasi-likelihood, 624

variance inflation
in multiple regression, 226

variance inflation factor, 649
fit analyses, 650

variance proportion, 657
variation

sources of, 225, 252, 643, 644
Vars, 691
Vars:Dffits, 234
Vars:Hat Diag, 230
Vars:Output Principal Components:2, 316
Vars:Studentized Residual, 238
Velleman, P.F., 704
vertical,

see orientation
Vertical Axis at Left, 502, 513, 523, 529, 539
View:Results, 447
viewing clustered data, 531
VIF,

see variance inflation factor
visualization, 549

W
Wald

confidence interval, 654
Wald statistic

type III tests, 647
Wald tests, 270, 287
Watts, D.G., 20
wave damage

SHIP data set, 21
Weibull

quantile, 587
test for distribution, 601

Weibull distribution
distribution analyses, 557
fit parametric, 597
parametric distributions, 557
testing for, 601

Weibull quantile
distribution analyses, 587

weight function
local polynomial fit, 684
loess fit, 684
normal, 684
quadratic, 684
triangular, 684

WEIGHT option, 786, 787
weight role, 490
weight values

in distribution analyses, 559
in fit analyses, 631
in multivariate analyses, 710
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Weight variable
distribution analyses, 558
fit analyses, 630
multivariate analyses, 709

weight variable, 773
weighted analyses

fit analyses, 702
multivariate analyses, 773

Weil, G., 545
Weisberg, S., 238, 239, 704
Welsch, R.E., 233, 239, 657, 692, 704
Whisker Length, 511
whiskers, 81, 511
width

of bars, 501, 503
of curves, 208
of formattted values, 380

Wilks, A.R., 96
window, 8

options, 458, 459
Window Layout:Spread, 467
Window options, 458, 459
WINDOW statement, 782
windows

closing, 67
copying, 345
data, 50, 488
editing, 393
output, 425
position of, 460
printing, 440
renewing, 401, 402
results, 447
tools, 54, 396
zooming, 394

Windows:Align, 362, 417
Windows:Animate, 369
Windows:Copy Window, 345, 351, 352, 360
Windows:Delete, 410
Windows:Display Options, 435
Windows:Freeze, 346
Windows:Options, 458
Windows:Renew, 139, 149, 354, 401, 402
Windows:Tools, 159, 171, 395
Winsorized mean

distribution analyses, 580
standard error, 580

Winsorized means
distribution analyses, 580
robust estimation, 580

Winsorized sum of squared deviations
distribution analyses, 580

Winsorized t statistic
distribution analyses, 580

WORK library, 488
working with other SAS products, 471

X
X button, 629

X resources, 467
X variable

fit analyses, 629
in contour plots, 537
in line plot, 522
in rotating plots, 547

X variable effects
fit analyses, 629

X variables
in scatter plots, 528

X’X matrix, 650, 657
fit analyses, 639

XAXIS option, 783–786

Y
Y Axis Vertical, 502, 513, 523, 529, 539
Y variable

fit analyses, 629
in box plot, 500
in box plots, 509
in contour plots, 537
in distribution analyses, 558
in line plot, 522
in rotating plots, 547

Y variables
in scatter plots, 528

YAXIS option, 783–786

Z
Z variable

in contour plots, 537
in rotating plots, 547

ZAXIS option, 785, 786
ZColor variable

in rotating plots, 548
zooming, 394, 397–399
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Your Turn 

We welcome your feedback. 

• If you have comments about this book, please send them to 
yourturn@sas.com. Include the full title and page numbers (if 
applicable). 

• If you have comments about the software, please send them to 
suggest@sas.com. 
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