
Encryption in SAS® 9.2

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
Encryption in SAS ® 9.2. Cary, NC: SAS Institute Inc.

Encryption in SAS® 9.2
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-865-2
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication can be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009
2nd electronic book, May 2010

1st printing, February 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

General Enhancements v

P A R T 1 Encryption in SAS 9.2 1

Chapter 1 � Technologies for Encryption 3
Encryption: Overview 3

Providers of Encryption 4

Encryption Algorithms 9

Encryption: Comparison 10

Encryption: Implementation 11

Accessibility Features in SAS Products 11

Encrypting ODS Generated PDF Files 11

Chapter 2 � SAS System Options for Encryption 13

Chapter 3 � The PWENCODE Procedure 25
Overview: PWENCODE Procedure 25

Syntax: PWENCODE Procedure 25

Concepts: PWENCODE Procedure 26

Examples: PWENCODE Procedure 27

Chapter 4 � Encryption Technologies: Examples 31
SAS/SECURE for SAS/CONNECT: Example 32

SASProprietary for SAS/SHARE: Example 32

SSL for a SAS/CONNECT UNIX Spawner: Example 33

SSL for a SAS/CONNECT Windows Spawner: Example 35

SSL for SAS/SHARE under UNIX: Example 36

SSL for SAS/SHARE under Windows: Examples 37

SAS/SECURE for the IOM Bridge: Examples 39

SSH Tunnel for SAS/CONNECT: Example 40

SSH Tunnel for SAS/SHARE: Example 41

SSL for a SAS/CONNECT z/OS Spawner: Example 42

SSL for SAS/SHARE under z/OS: Example 44

P A R T 2 Installing and Configuring SSL 47

Appendix 1 � Installing and Configuring SSL under UNIX 49
SSL under UNIX: System and Software Requirements 49

Setting Up Digital Certificates for SSL under UNIX 50

Converting between PEM and DER File Formats for SSL 54

iv

Appendix 2 � Installing and Configuring SSL under Windows 55
SSL under Windows: System and Software Requirements 55

Setting Up Digital Certificates for SSL under Windows 56

Converting between PEM and DER File Formats for SSL 59

Appendix 3 � Installing and Configuring SSL under z/OS 61
SSL under z/OS: System and Software Requirements 61

Setting Up Digital Certificates for SSL under z/OS 61

Glossary 67

Index 71

v

What’s New

Overview
Here are the new and enhanced features supported for Encryption in SAS:
� encoded passwords for SAS data sets
� AES data encryption algorithm
� Secure Sockets Layer (SSL) for the z/OS operating environment
� Secure Shell (SSH) for the z/OS operating environment
� new system options, SSLPKCS12LOC= and SSLPKCS12PASS=, for the z/OS and

UNIX operating environments
� new PDFSECURITY= system option

General Enhancements
� This release introduces support of encoded passwords for SAS data sets. The

ability to accept encoded passwords is now supported by all areas of password
handling within SAS.

� The AES data encryption algorithm is new to SAS/SECURE and SSL.
� This release introduces support for SSL under the z/OS and OpenVMS operating

environments. Examples are provided for SAS/CONNECT and SAS/SHARE .
� This release introduces support for SSH under the z/OS operating environment.
� New system options introduced in this release are SSLPKCS12LOC= and

SSLPKCS12PASS=.
� The PDFSECURITY= option is introduced to allow encrypting of ODS generated

PDF files. This option along with other PDF system options can be used to restrict
or access PDF files.

vi What’s New

1

P A R T1

Encryption in SAS 9.2

Chapter 1.Technologies for Encryption 3

Chapter 2.SAS System Options for Encryption 13

Chapter 3.The PWENCODE Procedure 25

Chapter 4.Encryption Technologies: Examples 31

2

3

C H A P T E R

1
Technologies for Encryption

Encryption: Overview 3
Providers of Encryption 4

SASProprietary 4

SASProprietary Overview 4

SASProprietary System Requirements 4

SASProprietary Installation and Configuration 4
SAS/SECURE 5

SAS/SECURE Overview 5

SAS/SECURE System Requirements 5

Export Restrictions for SAS/SECURE 5

SAS/SECURE Installation and Configuration 5

Secure Sockets Layer (SSL) 6
Secure Sockets Layer (SSL) Overview 6

SSL System Requirements 6

SSL Concepts 6

SSL Installation and Configuration 7

SSH (Secure Shell) 7
SSH (Secure Shell) Overview 7

SSH System Requirements 8

SSH Tunneling Process 8

SSH Tunneling: Process for Installation and Setup 8

Encryption Algorithms 9
Encryption: Comparison 10

Encryption: Implementation 11

Accessibility Features in SAS Products 11

Encrypting ODS Generated PDF Files 11

Encryption: Overview
There is a great need to ensure the confidentiality of business transactions over a

network between an enterprise and its consumers, between enterprises, and within an
enterprise. SAS products and third-party strategies for protecting data and credentials
(user IDs and passwords) are exchanged in a networked environment. This process of
protecting data is called encryption. Encryption is the transformation of intelligible
data (plaintext) into an unintelligible form (ciphertext) by means of a mathematical
process. The ciphertext is translated back to plaintext when the appropriate key that is
necessary for decrypting (unlocking) the ciphertext is applied.

SAS offers two classes of encryption strength:
� If you do not have SAS/SECURE, only the SASProprietary algorithm is available.

SASProprietary uses 32-bit fixed encoding and is appropriate only for preventing

4 Providers of Encryption � Chapter 1

accidental exposure of information. SASProprietary is licensed with Base SAS
software and is available in all deployments.

� If you have SAS/SECURE, you can use an industry standard encryption algorithm
instead of the SASProprietary algorithm. SAS/SECURE is an add-on product that
is licensed separately.

Encryption helps to protect information on-disk and in-transit as follows:
� Over-the-wire encryption protects SAS data and data while in transit. Passwords

in transit to and from SAS servers are encrypted or encoded.
� On-disk encryption protects data at rest. Passwords in configuration files and the

metadata are encrypted or encoded. Configuration files and metadata repository
data sets are also host protected.

Providers of Encryption
� “SASProprietary” on page 4
� “SAS/SECURE” on page 5
� “Secure Sockets Layer (SSL)” on page 6
� “SSH (Secure Shell)” on page 7

SASProprietary

SASProprietary Overview
SASProprietary is a fixed encoding algorithm that is included with Base SAS

software. It requires no additional SAS product licenses. The SAS proprietary algorithm
is strong enough to protect your data from casual viewing. SASProprietary provides a
medium level of security. SAS/SECURE and SSL provide a high level of security.

SASProprietary System Requirements
SAS 9.2 supports SASProprietary under these operating environments:
� OpenVMS
� UNIX
� Windows
� z/OS

SASProprietary Installation and Configuration
SASProprietary is part of Base SAS. Separate installation is not required.
For an example of configuring and using SASProprietary in your environment, see

“SASProprietary for SAS/SHARE: Example” on page 32.

Technologies for Encryption � SAS/SECURE 5

SAS/SECURE

SAS/SECURE Overview

SAS/SECURE software is an add-on product that provides industry standard
encryption capabilities in addition to the SASProprietary algorithm. SAS/SECURE
requires a license, and it must be installed on each computer that runs a Foundation
SAS client and a server that will use the encryption algorithms.

Note: SAS/SECURE provides encryption of data in transit. It does not provide
authentication or authorization capabilities. �

SAS/SECURE System Requirements

SAS 9.2 supports SAS/SECURE under these operating environments:

� UNIX

� Windows

� z/OS

Export Restrictions for SAS/SECURE

For software licensing and delivery purposes, SAS/SECURE is the product within the
SAS System. For U.S. export licensing purposes, SAS designates each product based on
the encryption algorithms and the product’s functional capability. SAS/SECURE 9.2 is
available to most commercial and government users inside and outside the U.S.
However, some countries (for example, Russia, China, and France) have import
restrictions on products that contain encryption, and the U.S. prohibits the export of
encryption software to specific embargoed or restricted destinations.

SAS/SECURE for UNIX and z/OS includes the following encryption algorithms:

� RC2 using up to 128-bit keys

� RC4 using up to 128-bit keys

� DES using up to 56-bit keys

� TripleDES using up to 168-bit keys

� AES using 256-bit keys

SAS/SECURE for Windows uses the encryption algorithms that are available in
Microsoft CryptoAPI. The level of the SAS/SECURE encryption algorithms under
Windows depends on the level of the encryption support in Microsoft CryptoAPI under
Windows.

SAS/SECURE Installation and Configuration

SAS/SECURE must be installed on the SAS server computer, the client computer, and
possibly other computers, depending on the SAS software that requires encryption. For
installation details, see the SAS documentation for the software that uses encryption.

For examples of configuring and using SAS/SECURE in your environment, see
Chapter 4, “Encryption Technologies: Examples,” on page 31.

6 Secure Sockets Layer (SSL) � Chapter 1

Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL) Overview
SSL is an abbreviation for Secure Sockets Layer, which is a protocol that provides

network data privacy, data integrity, and authentication. Developed by Netscape
Communications, SSL uses encryption algorithms that include RC2, RC4, DES,
TripleDES, AES and others.

In addition to providing encryption services, SSL performs client and server
authentication, and it uses message authentication codes to ensure data integrity. SSL
is supported by Netscape Navigator, Internet Explorer, and Mozilla Firefox. Many Web
sites use the protocol to protect confidential user information, such as credit card
numbers. The SSL protocol is application independent and allows protocols such as
HTTP, FTP, and Telnet to be transparently layered above it. SSL is optimized for HTTP.
SSL includes software that was developed by the OpenSSL Project for use in the
OpenSSL Toolkit. For more information see www.OpenSSL.org.

Note: Transport Layer Security (TLS) is the successor to SSL V3.0. The Internet
Engineering Task Force (IETF) took SSL V3.0, which was the de facto standard,
modified it, renamed it TLS V1.0, and adopted it as a standard. �

SSL System Requirements
SAS 9 and later releases support SSL V2.0, SSL V3.0 and TLS V1.0.
SAS 9.2 supports SSL under these operating environments:
� UNIX
� Windows
� z/OS (new for SAS 9.2)
� OpenVMS

Note: The SAS/SECURE SSL software is included in the SAS installation software
only for countries that allow the importation of encryption software. �

SSL Concepts
The following concepts are fundamental to understanding SSL:

Certification Authorities (CAs)
Cryptography products provide security services by using digital certificates,
public-key cryptography, private-key cryptography, and digital signatures.
Certification authorities (CAs) create and maintain digital certificates, which also
help preserve confidentiality.

Various commercial CAs, such as VeriSign and Thawte, provide competitive
services for the e-commerce market. You can also develop your own CA by using
products from companies such as RSA Security and Microsoft or from the Open
Source Toolkit OpenSSL.

Note: z/OS provides the PACDCERT command and PKI Services for
implementing a CA. �

From a trusted CA, members of an enterprise can obtain digital certificates to
facilitate their e-business needs. The CA provides a variety of ongoing services to

Technologies for Encryption � SSH (Secure Shell) 7

the business client that include handling digital certificate requests, issuing digital
certificates, and revoking digital certificates.

Public and Private Keys
Public-key cryptography uses a public and a private key pair. The public key can
be known by anyone, so anyone can send a confidential message. The private key
is confidential and known only to the owner of the key pair, so only the owner can
read the encrypted message. The public key is used primarily for encryption, but
it can also be used to verify digital signatures. The private key is used primarily
for decryption, but it can also be used to generate a digital signature.

Digital Signatures
A digital signature affixed to an electronic document or to a network data packet
is like a personal signature that concludes a hand-written letter or that validates a
credit card transaction. Digital signatures are a safeguard against fraud. A
unique digital signature results from using a private key to encrypt a message
digest. Receipt of a document that contains a digital signature enables the
receiver to verify the source of the document. Electronic documents can be verified
if you know where the document came from, who sent it, and when it was sent.
Another form of verification comes from Message Authentication Codes (MAC),
which ensure that a document has not been changed since it was signed. A MAC
is attached to a document to indicate the document’s authenticity. Receipt of the
document that contains a MAC enables the receiver (who also has the secret key)
to know that the document is authentic.

Digital Certificates
Digital certificates are electronic documents that ensure the binding of a public
key to an individual or an organization. Digital certificates provide protection from
fraud.

Usually, a digital certificate contains a public key, a user’s name, and an
expiration date. It also contains the name of the Certification Authority (CA) that
issued the digital certificate and a digital signature that is generated by the CA.
The CA’s validation of an individual or an organization allows that individual or
organization to be accepted at sites that trust the CA.

SSL Installation and Configuration
The instructions that you use to install and configure SSL at your site depend on

whether you use UNIX, Windows, or z/OS. See the appropriate details:
� Appendix 1, “Installing and Configuring SSL under UNIX,” on page 49
� Appendix 2, “Installing and Configuring SSL under Windows,” on page 55
� Appendix 3, “Installing and Configuring SSL under z/OS,” on page 61

For examples of configuring and using SSL in your environment, see Chapter 4,
“Encryption Technologies: Examples,” on page 31.

SSH (Secure Shell)

SSH (Secure Shell) Overview
SSH is an abbreviation for Secure Shell, which is a protocol that enables users to

access a remote computer via a secure connection. SSH is available through various
commercial products and as freeware. OpenSSH is a free version of the SSH protocol
suite of network connectivity tools.

8 SSH (Secure Shell) � Chapter 1

Although SAS software does not directly support SSH functionality, you can use the
tunneling feature of SSH to enable data to flow between a SAS client and a SAS server.
Port forwarding is another term for tunneling. The SSH client and SSH server act as
agents between the SAS client and the SAS server, tunneling information via the SAS
client’s port to the SAS server’s port.

SSH System Requirements
OpenSSH supports SSH protocol versions 1.3, 1.5, and 2.0.

SAS 9.2 supports SSH under these operating environments:
� UNIX
� Windows
� z/OS

For additional resources, see
� www.openssh.com

� www.ssh.com

� ssh(1) UNIX manual page.

Under z/OS, the IBM Ported Tools for z/OS Program Product must be installed for
OpenSSH support. See www-03.ibm.com/servers/eserver/zseries/zos/unix/
port_tools.html.

SSH Tunneling Process
An inbound request from a SAS client to a SAS server is shown as follows:

Figure 1.1 SSH Tunneling Process

SAS Client SAS Server

SSH Server

4321

5555

Client Computer Server Computer

SSH Tunnel

SSH Client

1 3

2

u The SAS client passes its request to the SSH client’s port 5555.
v The SSH client forwards the SAS client’s request to the SSH server via an

encrypted tunnel.
w The SSH server forwards the SAS client’s request to the SAS server via port 4321.
Outbound, the SAS server’s reply to the SAS client’s request flows from the SAS

server to the SSH server. The SSH server forwards the reply to the SSH client, which
passes it to the SAS client.

SSH Tunneling: Process for Installation and Setup
SSH software must be installed on the client and server computers. Exact details

about installing SSH software at the client and the server depend on the particular
brand and version of the software that is used. See the installation instructions for
your SSH software.

Technologies for Encryption � Encryption Algorithms 9

The process for setting up an SSH tunnel consists of the following steps:
� SSH tunneling software is installed on the client and server computers. Details

about tunnel configuration depend on the specific SSH product that is used.
� The SSH client is started as an agent between the SAS client and the SAS server.
� The components of the tunnel are set up. The components are a “listen” port, a

destination computer, and a destination port. The SAS client will access the listen
port, which gets forwarded to the destination port on the destination computer.
SSH establishes an encrypted tunnel that indirectly connects the SAS client to the
SAS server.

For examples of setting up and using a tunnel, see “SSH Tunnel for SAS/CONNECT:
Example” on page 40 and “SSH Tunnel for SAS/SHARE: Example” on page 41.

Encryption Algorithms
The following encryption algorithms are used by SASProprietary and SAS/SECURE:

RC2
is a block cipher that encrypts data in blocks of 64 bits. A block cipher is an
encryption algorithm that divides a message into blocks and encrypts each block.
The RC2 key size ranges from 8 to 256 bits. SAS/SECURE uses a configurable key
size of 40 or 128 bits. (The NETENCRYPTKEYLEN= system option is used to
configure the key length.) The RC2 algorithm expands a single message by a
maximum of 8 bytes. RC2 is a proprietary algorithm developed by RSA Data
Security, Inc.

Note: RC2 is supported in SAS/SECURE and SSL. �

RC4
is a stream cipher. A stream cipher is an encryption algorithm that encrypts data
1 byte at a time. The RC4 key size ranges from 8 to 2048 bits. SAS/SECURE uses
a configurable key size of 40 or 128 bits. (The NETENCRYPTKEYLEN= system
option is used to configure the key length.) RC4 is a proprietary algorithm
developed by RSA Data Security, Inc.

Note: RC4 is supported in SAS/SECURE and SSL. �

DES (Data Encryption Standard)
is a block cipher that encrypts data in blocks of 64 bits by using a 56-bit key. The
algorithm expands a single message by a maximum of 8 bytes. DES was originally
developed by IBM but is now published as a U.S. Government Federal Information
Processing Standard (FIPS 46-3).

Note: DES is supported in SAS/SECURE and SSL. �

TripleDES
is a block cipher that encrypts data in blocks of 64 bits. TripleDES executes the
DES algorithm on a data block three times in succession by using a single, 56-bit
key. This has the effect of encrypting the data by using a 168-bit key. TripleDES
expands a single message by a maximum of 8 bytes. TripleDES is defined in the
American National Standards Institute (ANSI) X9.52 specification.

Note: TripleDES is supported in SAS/SECURE and SSL. �

SASProprietary
is a cipher that provides basic fixed encoding encryption services under all
operating environments that are supported by SAS. Included in Base SAS,

10 Encryption: Comparison � Chapter 1

SASProprietary does not require additional SAS product licenses. The algorithm
expands a single message to approximately one-third by using 32-bit encoding.

Note: SASProprietary is supported only by the SASProprietary encryption
provider. �

AES (Advanced Encryption Standard)
is a block cipher that encrypts data in blocks of 128 bits by using a 256-bit key.
AES expands a single message by a maximum of 16 bytes. Based on its DES
predecessor, AES has been adopted as the encryption standard by the U.S.
Government, and is one of the most popular algorithms that is used in symmetric
key cryptography. AES is published as a U.S. Government Federal Information
Processing Standard (FIPS 197).

Note: AES is supported in SAS/SECURE and SSL. �

Here is a summary of the encryption algorithms, by operating environment:

Table 1.1 Encryption Algorithms Supported by Operating Environments

Operating Environments

Encryption
Algorithms

OpenVMS UNIX Windows z/OS

SASProprietary X X X X

RC2 X X X

RC4 X X X

DES X X X

TripleDES X X X

SSL X X X X

AES X X X

Encryption: Comparison
The following table compares the features of the encryption technologies:

Table 1.2 Summary of SASProprietary, SAS/SECURE, SSL, and SSH Features

Features SASProprietary SAS/SECURE SSL SSH

License required No Yes No No

Encryption and
authentication

Encryption only Encryption only Encryption
and
authentication

Encryption
only

Encryption level Medium High High High

Algorithms supported SASProprietary
fixed encoding

RC2, RC4, DES,
TripleDES, AES

RC2, RC4,
DES,
TripleDES,
AES

Product
dependent

Installation required No (part of Base
SAS)

Yes Yes Yes

Technologies for Encryption � Encrypting ODS Generated PDF Files 11

Features SASProprietary SAS/SECURE SSL SSH

Operating
environments
supported

UNIX

Windows

z/OS

UNIX

Windows

z/OS

UNIX

Windows

z/OS *

OpenVMS*

UNIX

Windows

z/OS

SAS version support 8 and later 8 and later 9 and later 8.2 and later

* SAS 9.2 introduces support for SSL on z/OS and OpenVMS.

Encryption: Implementation

The implementation of the installed encryption technology depends on the
environment that you work in. If you work in a SAS enterprise intelligence
infrastructure, encryption might be transparent to you because it has already been
configured into your site’s overall security plan. After the encryption technology has
been installed, the site system administrator configures the encryption method (level of
encryption) to be used in all client/server data exchanges. All enterprise activity uses
the chosen level of encryption, by default. For an example, see “SAS/SECURE for the
IOM Bridge: Examples” on page 39.

If you work in a SAS session on a client computer that exchanges data with a SAS
server, you will specify SAS system options that implement encryption for the duration
of the SAS session. If you connect a SAS/CONNECT client to a spawner, you will
specify encryption options in the spawner start-up command. For details about SAS
system options, see Chapter 2, “SAS System Options for Encryption,” on page 13. For
examples, see Chapter 4, “Encryption Technologies: Examples,” on page 31.

Accessibility Features in SAS Products

For information about accessibility for any of the products mentioned in this book,
see the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com

Encrypting ODS Generated PDF Files

You can use ODS to generate PDF output. When these PDF files are not password
protected, any user can use Acrobat to view and edit the PDF files. In SAS 9.2, you can
encrypt and password-protect your PDF output files by specifying the PDFSECURITY
system option. Two levels of security are available: 40-bit (low) and 128-bit (high). With
either of these settings, a password will be required to open a PDF file that has been
generated with ODS.

You can find information on using the ODS PRINTER and PDF statements in the
SAS Output Delivery System: User’s Guide. The following table lists the PDF system
options that are available to restrict or allow users’ ability to access, assemble, copy, or
modify ODS PDF files. Other SAS system options control whether the user can fill in
forms and set the print resolution. These system options are documented in SAS
Language Reference: Dictionary.

12 Encrypting ODS Generated PDF Files � Chapter 1

Table 1.3 PDF System Options

Task System Option

Specifies whether text and graphics from PDF
documents can be read by screen readers for the
visually impaired

PDFACCESS | NOPDFACCESS

Controls whether PDF documents can be assembled PDFASSEMBLY | NOPDFASSEMBLY

Controls whether PDF document comments can be
modified

PDFCOMMENT | NOPDFCOMMENT

Controls whether the contents of a PDF document
can be changed

PDFCONTENT | NOPDFCONTENT

Controls whether text and graphics from a PDF
document can be copied

PDFCOPY | NOPDFCOPY

Controls whether PDF forms can be filled in PDFFILLIN | NOPDFFILLIN

Specifies the password to use to open a PDF
document and the password used by a PDF
document owner

PDFPASSWORD

Controls the resolution used to print the PDF
document

PDFPRINT

Controls the printing permissions for PDF
documents

PDFSECURITY

Note: The SAS/SECURE SSL software is included in the SAS installation software
only for countries that allow the importation of encryption software. �

13

C H A P T E R

2
SAS System Options for
Encryption

NETENCRYPT System Option 13
NETENCRYPTALGORITHM= System Option 14

NETENCRYPTKEYLEN= System Option 16

SSLCALISTLOC= System Option 17

SSLCERTISS= System Option 17

SSLCERTLOC= System Option 18
SSLCERTSERIAL= System Option 19

SSLCERTSUBJ= System Option 19

SSLCLIENTAUTH System Option 20

SSLCRLCHECK System Option 20

SSLCRLLOC= System Option 21

SSLPKCS12LOC= System Option 22
SSLPKCS12PASS= System Option 22

SSLPVTKEYLOC= System Option 23

SSLPVTKEYPASS= System Option 24

NETENCRYPT System Option

Specifies whether client/server data transfers are encrypted.

Client: Optional
Server: Optional
Default: NONETENCRYPT
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: OpenVMS, UNIX, Windows, z/OS
See also: NETENCRYPTALGORITHM
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
NETENCRYPT | NONETENCRYPT

14 NETENCRYPTALGORITHM= System Option � Chapter 2

Syntax Description

NETENCRYPT
specifies that encryption is required.

NONETENCRYPT
specifies that encryption is not required, but is optional.

Details
The default for this option specifies that encryption is used if the
NETENCRYPTALGORITHM option is set and if both the client and the server are
capable of encryption. If encryption algorithms are specified but either the client or the
server is incapable of encryption, then encryption is not performed.

Encryption might not be supported at the client or at the server in these situations:
� You are using a release of SAS (before SAS 8) that does not support encryption.
� Your site (the client or the server) does not have a security software product

installed.
� You specified encryption algorithms that are incompatible in SAS sessions on the

client and the server.

NETENCRYPTALGORITHM= System Option

Specifies the algorithm or algorithms to be used for encrypted client/server data transfers.

Client: Optional
Server: Required
Alias: NETENCRALG=
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: OpenVMS, UNIX, Windows, z/OS
See also: NETENCRYPT
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
NETENCRYPTALGORITHM=algorithm | (“algorithm-1”... “algorithm-n”)

Syntax Description

algorithm | (“algorithm–1”... “algorithm-n”)
specifies the algorithm or algorithms that can be used for encrypting data that is
transferred between a client and a server across a network. When you specify two or
more encryption algorithms, use a space or a comma to separate them, and enclose
the algorithms in parentheses.

The following algorithms can be used:

SAS System Options for Encryption � NETENCRYPTALGORITHM= System Option 15

� RC2
� RC4
� DES
� TripleDES
� SASProprietary
� SSL
� AES

Note: The SSL option is not applicable to the Integrated Object Model (IOM)
metadata, OLAP, and table servers. �

Details
The NETENCRYPTALGORITHM= option must be specified in the server session.

Use this option to specify one or more encryption algorithms that you want to use to
protect the data that is transferred across the network. If more than one algorithm is
specified, the client session negotiates the first specified algorithm with the server
session. If the client session does not support that algorithm, the second algorithm is
negotiated, and so on.

If either the client or the server session specifies the NETENCRYPT option (which
makes encryption mandatory) but a common encryption algorithm cannot be negotiated,
the client cannot connect to the server.

If the NETENCRYPTALGORITHM= option is specified in the server session only,
then the server’s values are used to negotiate the algorithm selection. If the client
session supports only one of multiple algorithms that are specified in the server session,
the client can connect to the server.

There is an interaction between either NETENCRYPT or NONETENCRYPT and the
NETENCRYPTALGORITHM= option.

Table 2.1 Client/Server Connection Outcomes

Server Settings Client Settings Connection Outcome

NONETENCRYPT

NETENCRALG=alg

No settings If the client is capable of encryption,
the client/server connection will be
encrypted. Otherwise, the connection
will not be encrypted.

NETENCRYPT

NETENCRALG=alg

No settings If the client is capable of encryption,
the client/server connection will be
encrypted. Otherwise, the client/
server connection will fail.

No settings NONETENCRYPT

NETENCRALG=alg

A client/server connection will not be
encrypted.

No settings NETENCRYPT

NETENCRALG=alg

A client/server connection will fail.

NETENCRYPT or NONETENCRYPT

NETENCRALG=alg–1

NETENCRALG=alg-2 Regardless of whether NETENCRYPT
or NONETENCRYPT is specified, a
client/server connection will fail.

Example
In the following example, the client and the server specify different values for the
NETENCRYPTALGORITHM= option.

16 NETENCRYPTKEYLEN= System Option � Chapter 2

The client specifies two algorithms in the following OPTIONS statement:

options netencryptalgorithm=(rc2 tripledes);

The server specifies three algorithms and requires encryption in the following
OPTIONS statement:

options netencrypt netencryptalgorithm=(ssl des tripledes);

The client and the server negotiate an algorithm that they share in common,
TripleDES, for encrypting data transfers.

NETENCRYPTKEYLEN= System Option

Specifies the key length that is used by the encryption algorithm for encrypted client/server data
transfers.

Client: Optional
Server: Optional
Alias: NETENCRKEY=
Default: 0
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: UNIX, Windows, z/OS
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
NETENCRYPTKEYLEN= 0 | 40 | 128

Syntax Description

0
specifies that the maximum key length that is supported at both the client and the
server is used.

40
specifies a key length of 40 bits for the RC2 and RC4 algorithms.

128
specifies a key length of 128 bits for the RC2 and RC4 algorithms. If either the client
or the server does not support 128-bit encryption, the client cannot connect to the
server.

Details
The NETENCRYPTKEYLEN= option supports only the RC2 and RC4 algorithms. The
SASProprietary, DES, TripleDES, SSL, and AES algorithms are not supported.

By default, if you try to connect a computer that is capable of only a 40-bit key length
to a computer that is capable of both a 40-bit and a 128-bit key length, the connection is

SAS System Options for Encryption � SSLCERTISS= System Option 17

made using the lesser key length. If both computers are capable of 128-bit key lengths,
a 128-bit key length is used.

Using longer keys consumes more CPU cycles. If you do not need a high level of
encryption, set NETENCRYPTKEYLEN=40 to decrease CPU usage.

SSLCALISTLOC= System Option

Specifies the location of digital certificates for trusted certification authorities (CA).

Client: Required
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: UNIX, z/OS
Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax
SSLCALISTLOC=“file–path”

Syntax Description

“file-path”
specifies the location of a file that contains the digital certificates for the trusted
certification authority (CA).

Details
The SSLCALISTLOC= option identifies the certification authority that SSL should
trust. This option is required at the client because at least one CA must be trusted in
order to validate a server’s digital certificate. This option is required at the server only
if the SSLCLIENTAUTH option is also specified at the server.

The CA list must be PEM-encoded (base64). Under z/OS, the file must be formatted
as ASCII and must reside in a UNIX file system.

SSLCERTISS= System Option

Specifies the name of the issuer of the digital certificate that SSL should use.

Client: Optional
Server: Optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

18 SSLCERTLOC= System Option � Chapter 2

Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTISS=“issuer-of-digital-certificate”

Syntax Description

“issuer-of-digital-certificate”
specifies the name of the issuer of the digital certificate that should be used by SSL.

Details
The SSLCERTISS= option is used with the SSLCERTSERIAL= option to uniquely
identify a digital certificate from the Microsoft Certificate Store.

SSLCERTLOC= System Option

Specifies the location of the digital certificate that is used for authentication.

Client: Optional
Server: Required
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: UNIX, z/OS
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTLOC=“file-path”

Syntax Description

“file-path”
specifies the location of a file that contains a digital certificate.

Details
The SSLCERTLOC= option is required for a server. It is required at the client only if
the SSLCLIENTAUTH option is specified at the server.

SAS System Options for Encryption � SSLCERTSUBJ= System Option 19

The certificate must be PEM-encoded (base64). Under z/OS, the file must be
formatted as ASCII and must reside in a UNIX file system.

SSLCERTSERIAL= System Option

Specifies the serial number of the digital certificate that SSL should use.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTSERIAL=“serial-number”

Syntax Description

“serial-number”
specifies the serial number of the digital certificate that should be used by SSL.

Details
The SSLCERTSERIAL= option is used with the SSLCERTISS= option to uniquely
identify a digital certificate from the Microsoft Certificate Store.

SSLCERTSUBJ= System Option

Specifies the subject name of the digital certificate that SSL should use.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTSUBJ=“subject-name”

20 SSLCLIENTAUTH System Option � Chapter 2

Syntax Description

“subject-name”
specifies the subject name of the digital certificate that SSL should use.

Details
The SSLCERTSUBJ= option is used to search for a digital certificate from the Microsoft
Certificate Store.

SSLCLIENTAUTH System Option

Specifies whether a server should perform client authentication.

Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: UNIX, Windows, z/OS
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCLIENTAUTH | NOSSLCLIENTAUTH

Syntax Description

SSLCLIENTAUTH
specifies that the server should perform client authentication.

NOSSLCLIENTAUTH
specifies that the server should not perform client authentication.

Details
Server authentication is always performed, but the SSLCLIENTAUTH option enables a
user to control client authentication. This option is valid only when used on a server.

SSLCRLCHECK System Option

Specifies whether a Certificate Revocation List (CRL) is checked when a digital certificate is
validated.

Client: Optional

SAS System Options for Encryption � SSLCRLLOC= System Option 21

Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: UNIX, Windows, z/OS
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCRLCHECK | NOSSLCRLCHECK

Syntax Description

SSLCRLCHECK
specifies that CRLs are checked when digital certificates are validated.

NOSSLCRLCHECK
specifies that CRLs are not checked when digital certificates are validated.

Details
A Certificate Revocation List (CRL) is published by a Certification Authority (CA) and
contains a list of revoked digital certificates. The list contains only the revoked digital
certificates that were issued by a specific CA.

The SSLCRLCHECK option is required at the server only if the SSLCLIENTAUTH
option is also specified at the server. Because clients check server digital certificates,
this option is relevant for the client.

SSLCRLLOC= System Option

Specifies the location of a Certificate Revocation List (CRL).

Client: Optional
Server: Optional
Operating Environment: UNIX, z/OS
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCRLLOC=“file-path”

22 SSLPKCS12LOC= System Option � Chapter 2

Syntax Description

“file-path”
specifies the location of a file that contains a Certificate Revocation List (CRL).

Details
The SSLCRLLOC= option is required only when the SSLCRLCHECK option is specified.

SSLPKCS12LOC= System Option

Specifies the location of the PKCS #12 encoding package file.

Client: Optional

Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: UNIX, z/OS
Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax
SSLPKCS12LOC=“file-path”

Syntax Description

“file-path”
specifies the location of the PKCS #12 DER encoding package file that contains the
certificate and the private key.

Note: If you run in a z/OS operating environment, this file must be in the UNIX
file system. The OpenSSL library cannot read MVS data sets. �

Details
If the SSLPKCS12LOC= option is specified, the PKCS #12 DER encoding package must
contain both the certificate and private key. The SSLCERTLOC= and
SSLPVTKEYLOC= options will be ignored.

SSLPKCS12PASS= System Option

Specifies the password that SSL requires for decrypting the private key.

SAS System Options for Encryption � SSLPVTKEYLOC= System Option 23

Client: Optional

Server: Optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Operating Environment: UNIX, z/OS

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax

SSLPKCS12PASS=password

Syntax Description

password
specifies the password that SSL requires in order to decrypt the PKCS #12 DER
encoding package file. The PKCS #12 DER encoding package is stored in the file that
is specified by using the SSLPKCS12LOC= option.

Details

The SSLPKCS12PASS= option is required only when the PKCS #12 DER encoding
package is encrypted. The z/OS RACDCERT EXPORT command always encrypts
package files when exporting the certificate and the private key.

SSLPVTKEYLOC= System Option

Specifies the location of the private key that corresponds to the digital certificate.

Client: Optional

Server: Optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Operating Environment: UNIX, z/OS

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax

SSLPVTKEYLOC=“file-path”

24 SSLPVTKEYPASS= System Option � Chapter 2

Syntax Description

“file-path”
specifies the location of the file that contains the private key that corresponds to the
digital certificate that was specified by using the SSLCERTLOC= option.

Details

The SSLPVTKEYLOC= option is required at the server only if the SSLCERTLOC=
option is also specified at the server.

The key must be PEM-encoded (base64). Under z/OS, the file must be formatted as
ASCII and must reside in a UNIX file system.

SSLPVTKEYPASS= System Option

Specifies the password that SSL requires for decrypting the private key.

Client: Optional

Server: Optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Operating Environment: UNIX, z/OS

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax

SSLPVTKEYPASS=“password”

Syntax Description

“password”
specifies the password that SSL requires in order to decrypt the private key. The
private key is stored in the file that is specified by using the SSLPVTKEYLOC=
option.

Details

The SSLPVTKEYPASS= option is required only when the private key is encrypted.
OpenSSL performs key encryption.

Note: No SAS system option is available to encrypt private keys. �

25

C H A P T E R

3
The PWENCODE Procedure

Overview: PWENCODE Procedure 25
Syntax: PWENCODE Procedure 25

PROC PWENCODE Statement 25

Concepts: PWENCODE Procedure 26

Using Encoded Passwords in SAS Programs 26

Encoding versus Encryption 27
Examples: PWENCODE Procedure 27

Example 1: Encoding a Password 27

Example 2: Using an Encoded Password in a SAS Program 28

Example 3: Saving an Encoded Password to the Paste Buffer 29

Example 4: Specifying an Encoding Method for a Password 30

Overview: PWENCODE Procedure

The PWENCODE procedure enables you to encode passwords. Encoded passwords
can be used in place of plaintext passwords in SAS programs that access relational
database management systems (RDBMSs) and various servers, such as SAS/CONNECT
servers, SAS/SHARE servers, and SAS Integrated Object Model (IOM) servers (such as
the SAS Metadata Server).

Syntax: PWENCODE Procedure

PROC PWENCODE IN=’password’ <OUT=fileref> <METHOD=encoding-method>;

PROC PWENCODE Statement

PROC PWENCODE IN=’password’ <OUT=fileref> <METHOD=encoding-method>;

26 Concepts: PWENCODE Procedure � Chapter 3

Required Argument

IN=’password’
specifies the password to encode. The password can contain up to a maximum of 512
characters, which include alphanumeric characters, spaces, and special characters. If
the password contains embedded single or double quotation marks, use the standard
SAS rules for quoting character constants (see “SAS Constants in Expressions” in
SAS Language Reference: Concepts for details).
Featured in: Example 1 on page 27, Example 2 on page 28, and Example 3 on page

29

Options

OUT=fileref
specifies a fileref to which the output string is to be written. If the OUT= option is
not specified, the output string is written to the SAS log.
Featured in: Example 2 on page 28

METHOD=encoding-method
specifies the encoding method. Here are the supported values for encoding-method:

Table 3.1 Supported Encoding Methods

Encoding Method Description Supported Data Encryption
Algorithm

sas001 Uses base64 to encode
passwords.

None

sas002, which can also
be specified as sasenc

Uses a 32-bit key to encode
passwords. This is the
default.

SASProprietary, which is included in
SAS software.

sas003 Uses a 256-bit key to encode
passwords.

AES (Advanced Encryption
Standard), which is supported in
SAS/SECURE*.

* SAS/SECURE is an add-on product that requires a separate license. For details
about SAS/SECURE, the SASProprietary algorithm, and the AES algorithm, see
Encryption in SAS.

If the METHOD= option is omitted, the default encoding method, sas002, is used
automatically.

Concepts: PWENCODE Procedure

Using Encoded Passwords in SAS Programs
When a password is encoded with PROC PWENCODE, the output string includes a

tag that identifies the string as having been encoded. An example of a tag is {sas001}.

The PWENCODE Procedure � Log 27

The tag indicates the encoding method. SAS servers and SAS/ACCESS engines
recognize the tag and decode the string before using it. Encoding a password enables
you to write SAS programs without having to specify a password in plaintext.

Encoding versus Encryption
PROC PWENCODE uses encoding to disguise passwords. With encoding, one

character set is translated to another character set through some form of table lookup.
Encryption, by contrast, involves the transformation of data from one form to another
through the use of mathematical operations and, usually, a “key” value. Encryption is
generally more difficult to break than encoding. PROC PWENCODE is intended to
prevent casual, non-malicious viewing of passwords. You should not depend on PROC
PWENCODE for all your data security needs; a determined and knowledgeable attacker
can decode the encoded passwords.

Examples: PWENCODE Procedure

Example 1: Encoding a Password

Procedure features: IN= argument

This example shows a simple case of encoding a password and writing the encoded
password to the SAS log.

Program

Encode the password.

proc pwencode in=’my password’;
run;

Log

Output 3.1

6 proc pwencode in=’my password’;
7 run;

{sas002}bXkgcGFzc3dvcmQ=

NOTE: PROCEDURE PWENCODE used (Total process time):
real time 0.31 seconds
cpu time 0.08 seconds

28 Example 2: Using an Encoded Password in a SAS Program � Chapter 3

Example 2: Using an Encoded Password in a SAS Program
Procedure features:

IN= argument
OUT= option

This example illustrates the following:
� encoding a password and saving it to an external file
� reading the encoded password with a DATA step, storing it in a macro variable,

and using it in a SAS/ACCESS LIBNAME statement

Program 1: Encoding the Password

Declare a fileref.

filename pwfile ’external-filename’

Encode the password and write it to the external file. The OUT= option specifies which
external fileref the encoded password will be written to.

proc pwencode in=’mypass1’ out=pwfile;
run;

Program 2: Using the Encoded Password

Declare a fileref for the encoded-password file.

filename pwfile ’external-filename’;

Set the SYMBOLGEN SAS system option. The purpose of this step is to show that the
actual password cannot be revealed, even when the macro variable that contains the encoded
password is resolved in the SAS log. This step is not required in order for the program to work
properly. For more information about the SYMBOLGEN SAS system option, see SAS Macro
Language: Reference.

options symbolgen;

Read the file and store the encoded password in a macro variable. The DATA step stores
the encoded password in the macro variable DBPASS. For details about the INFILE and INPUT
statements, the $VARYING. informat, and the CALL SYMPUT routine, see SAS Language
Reference: Dictionary.

data _null_;
infile pwfile obs=1 length=l;

The PWENCODE Procedure � Example 3: Saving an Encoded Password to the Paste Buffer 29

input @;
input @1 line $varying1024. l;
call symput(’dbpass’,substr(line,1,l));

run;

Use the encoded password to access a DBMS. You must use double quotation marks (“ ”) so
that the macro variable resolves properly.

libname x odbc dsn=SQLServer user=testuser password="&dbpass";

Log

28 data _null_;
29 infile pwfile obs=1 length=len;
30 input @;
31 input @1 line $varying1024. len;
32 call symput(’dbpass’,substr(line,1,len));
33 run;

NOTE: The infile PWFILE is:
File Name=external-filename,
RECFM=V,LRECL=256

NOTE: 1 record was read from the infile PWFILE.
The minimum record length was 20.
The maximum record length was 20.

NOTE: DATA statement used (Total process time):
real time 3.94 seconds
cpu time 0.03 seconds

34 libname x odbc
SYMBOLGEN: Macro variable DBPASS resolves to {sas002}bXlwYXNzMQ==
34 ! dsn=SQLServer user=testuser password="&dbpass";
NOTE: Libref X was successfully assigned as follows:

Engine: ODBC
Physical Name: SQLServer

Example 3: Saving an Encoded Password to the Paste Buffer

Procedure features:
IN= argument

OUT= option

Other features:
FILENAME statement with CLIPBRD access method

This example saves an encoded password to the paste buffer. You can then paste the
encoded password into another SAS program or into the password field of an
authentication dialog box.

30 Program � Chapter 3

Program

Declare a fileref with the CLIPBRD access method. For more information about the
FILENAME statement with the CLIPBRD access method, see SAS Language Reference:
Dictionary.

filename clip clipbrd;

Encode the password and save it to the paste buffer. The OUT= option saves the encoded
password to the fileref that was declared in the previous statement.

proc pwencode in=’my password’ out=clip;
run;

Example 4: Specifying an Encoding Method for a Password

Procedure features: METHOD= argument

This example shows a simple case of encoding a password using the sas003
encoding method and writing the encoded password to the SAS log.

Program

Encode the password.

proc pwencode in=’my password’ method=sas003;
run;

Log

Output 3.2

6 proc pwencode in=’my password’ encoding=sas003;
7 run;

{sas003}6EDB396015B96DBD9E80F0913A543819A8E5

NOTE: PROCEDURE PWENCODE used (Total process time):
real time 0.14 seconds
cpu time 0.09 seconds

31

C H A P T E R

4
Encryption Technologies:
Examples

SAS/SECURE for SAS/CONNECT: Example 32
SAS/CONNECT Client under UNIX 32

SAS/CONNECT Server under UNIX 32

SASProprietary for SAS/SHARE: Example 32

SAS/SHARE Client 32

SAS/SHARE Server 32
SSL for a SAS/CONNECT UNIX Spawner: Example 33

Startup of a UNIX Spawner on a SAS/CONNECT Server 33

Connection of a SAS/CONNECT Client to a UNIX Spawner 34

SSL for a SAS/CONNECT Windows Spawner: Example 35

Startup of a Windows Spawner on a Single-User SAS/CONNECT Server 35

Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/CONNECT Server 35
SSL for SAS/SHARE under UNIX: Example 36

Startup of a Multi-User SAS/SHARE Server 36

SAS/SHARE Client Access of a SAS/SHARE Server 37

SSL for SAS/SHARE under Windows: Examples 37

Startup of a Multi-User SAS/SHARE Server 37
SAS/SHARE Client Access of a SAS/SHARE Server 38

SAS/SECURE for the IOM Bridge: Examples 39

IOM Bridge Encryption Configuration 39

IOM Bridge for SAS Clients: Metadata Configuration 39

IOM Bridge for COM: Configuration in Code 39
IOM Bridge for Java: Configuration in Code 40

SSH Tunnel for SAS/CONNECT: Example 40

Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server 40

Connection of a SAS/CONNECT Client to a UNIX Spawner on a SAS/CONNECT Server 41

SSH Tunnel for SAS/SHARE: Example 41

Start-up of a Multi-User SAS/SHARE Server 41
SAS/SHARE Client Access of a SAS/SHARE Server 41

SSL for a SAS/CONNECT z/OS Spawner: Example 42

Startup of a z/OS Spawner on a SAS/CONNECT Server 42

Connection of a SAS/CONNECT Client to a z/OS Spawner 43

SSL for SAS/SHARE under z/OS: Example 44
Startup of a Multi-User SAS/SHARE Server 44

SAS/SHARE Client Access of a SAS/SHARE Server 44

32 SAS/SECURE for SAS/CONNECT: Example � Chapter 4

SAS/SECURE for SAS/CONNECT: Example

SAS/CONNECT Client under UNIX
The following statements configure the client. The NETEN3CRYPTALGORITHM=

option specifies the use of the RC4 algorithm.

options netencryptalgorithm=rc4;
options remote=unxnode comamid=tcp;
signon;

SAS/CONNECT Server under UNIX
The following command starts a spawner on the computer that runs the server. The

-NETENCRYPT option specifies that encryption is required for all clients that connect
to the spawner. The -NETENCRYPTALGORITHM option specifies the use of the RC4
algorithm for encrypting all network data. The -SASCMD option specifies the SAS
start-up command.

sastcpd -service spawner -netencrypt -netencryptalgorithm rc4 -sascmd mystartup

The spawner executes a UNIX shell script that executes the commands to start SAS.

#!/bin/ksh
#________________
mystartup
#________________
. ~/.profile
sas dmr -noterminal -comamid tcp $*

SASProprietary for SAS/SHARE: Example

SAS/SHARE Client
In this example, the NETENCRYPTALGORITHM= option is set to SASProprietary

to specify the use of the proprietary algorithm to encrypt the data between the client
and the server. The NETENCRYPTALGORITHM= option must be set before the
LIBNAME statement establishes the connection to the server.

options netencryptalgorithm=sasproprietary;
options comamid=tcp;
libname sasdata ’edc.prog2.sasdata’ server=rmthost.share1;

SAS/SHARE Server
This example shows how to set the options for encryption services on a SAS/SHARE

server. The NETENCRYPT option specifies that encryption is required by any client

Encryption Technologies: Examples � Startup of a UNIX Spawner on a SAS/CONNECT Server 33

that accesses this server. The NETENCRYPTALGORITHM= option specifies that the
SASProprietary algorithm be used for encryption of all data that is exchanged with
connecting clients.

options netencrypt netencryptalgorithm=sasproprietary;
options comamid=tcp;
proc server id=share1;
run;

SSL for a SAS/CONNECT UNIX Spawner: Example

Startup of a UNIX Spawner on a SAS/CONNECT Server

After digital certificates are generated for the CA, the server, and the client, and a
CA trust list for the client is created, you can start a UNIX spawner program that runs
on a server that SAS/CONNECT clients connect to.

For example:

% sastcpd -service unxspawn -netencryptalgorithm ssl
-sslcertloc /users/server/certificates/server.pem
-sslpvtkeyloc /users/server/certificates/serverkey.pem
-sslpvtkeypass starbuck1
-sslcalistloc /users/server/certificates/sas.pem
-sascmd /users/server/command.ksh

The following table explains the SAS commands that are used to start a spawner on
a SAS/CONNECT single-user server.

Table 4.1 SAS Commands and Arguments for Spawner Start-Up Tasks

SAS Commands and Arguments Function

sastcpd Starts the spawner

-service unxspawn Specifies the spawner service (configured in the
services file)

-netencryptalgorithm ssl Specifies the SSL encryption algorithm

-sslcertloc /users/server/certificates/server.pem Specifies the file path for the location of the
server’s certificate

-sslpvtkeyloc /users/server/certificates/
serverkey.pem

Specifies the file path for the location of the
server’s private key

-sslpvtkeypass password Specifies the password to access the server’s
private key

-sslcalistloc /users/server/certificates/sas.pem Specifies the CA trust list

-sascmd /users/server/command.ksh Specifies the name of an executable file that
starts a SAS session when you sign on without a
script file

34 Connection of a SAS/CONNECT Client to a UNIX Spawner � Chapter 4

Here is an example of an executable file:

#!/bin/ksh
#----------------------------------
mystartup
#----------------------------------

. ~/.profile
sas -dmr -noterminal $*
#------------------------------

For complete information about starting a UNIX spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a UNIX Spawner
After a UNIX spawner is started on a SAS/CONNECT server, a SAS/CONNECT

client can connect to it.
The following example shows how to connect a client to a spawner that is running on

a SAS/CONNECT server:

options netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
signon machine.spawner user=_prompt_;

The following table explains the SAS options that are used to connect to a
SAS/CONNECT server.

Table 4.2 SAS Options, Statements, and Arguments for Client Access to a SAS/
CONNECT Server

SAS Options, Statements, and Arguments Client Access Tasks

NETENCRYPTALGORITHM=ssl Specifies the encryption algorithm

SSLCALISTLOC=cacerts.pem Specifies the CA trust list

SIGNON=server-ID.service Specifies the server and service to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
digital certificate, must be identical.

For complete information about connecting to a UNIX spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

Encryption Technologies: Examples � Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/CONNECT Server 35

SSL for a SAS/CONNECT Windows Spawner: Example

Startup of a Windows Spawner on a Single-User SAS/CONNECT Server
After digital certificates for the CA, the server, and the client have been generated

and imported into the appropriate Certificate Store, you can start a spawner program
that runs on a server that SAS/CONNECT clients connect to.

Here is an example of how to start a Windows spawner on a SAS/CONNECT server:

spawner -security -netencryptalgorithm ssl -sslcertsubj "apex.pc.com"
-sascmd mysas.bat

The following table shows the SAS commands that are used to start a spawner on a
SAS/CONNECT single-user server.

Table 4.3 SAS Commands and Arguments for Spawner Start-Up Tasks

SAS Command and Arguments Function

spawner Starts the spawner

-security Specifies the requirement that a client provide a
user name and password to access the spawner

-netencryptalgorithm ssl Specifies the SSL encryption algorithm

-sslcertsubj "apex.pc.com" Specifies the subject name that is used to search
for a certificate from the Microsoft Certificate
Store

-sascmd mysas.bat Specifies the name of an executable file that
starts a SAS session when you sign on without a
script file

In order for the Windows spawner to locate the appropriate server digital certificate
in the Microsoft Certificate Store, you must specify the -SSLCERTSUBJ system option
in the script that is specified by the -SASCMD option. -SSLCERTSUBJ specifies the
subject name of the digital certificate that SSL should use. The subject that is assigned
to the -SSLCERTSUBJ option and the computer that is specified in the client signon
must be identical.

If the Windows spawner is started as a service, the -SERVPASS and -SERVUSER
options must also be specified in the Windows spawner start-up command in order for
SSL to locate the appropriate CA digital certificate.

For complete information about starting a Windows spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a Windows Spawner on a
SAS/CONNECT Server

After a spawner has been started on a SAS/CONNECT server, a SAS/CONNECT
client can connect to it.

Here is an example of how to make a client connection to a Windows spawner that is
running on a SAS/CONNECT server:

36 SSL for SAS/SHARE under UNIX: Example � Chapter 4

options comamid=tcp netencryptalgorithm=ssl;
%let machine=apex.pc.com;
signon machine user=_prompt_;

The computer that is specified in the client signon and the subject (the -SSLCERTSUBJ
option) that is specified at the server must be identical.

The following table shows the SAS options that are used to connect to a Windows
spawner that runs on a SAS/CONNECT server.

Table 4.4 SAS Options, Statements, and Arguments for Client Access to a SAS/
CONNECT Server

SAS Options, Statements, and Arguments Function

COMAMID=tcp Specifies the TCP/IP access method

NETENCRYPTALGORITHM=ssl Specifies the encryption algorithm

SIGNON=server-ID Specifies which server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
digital certificate, must be identical.

SSL for SAS/SHARE under UNIX: Example

Startup of a Multi-User SAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and a

CA trust list for the client has been created, you can start a SAS/SHARE server.
Here is an example of starting a secured SAS/SHARE server:

%let tcpsec=_secure_;
options netencryptalgorithm=ssl;
options sslcertloc="/users/johndoe/certificates/server.pem";
options sslpvtkeyloc="/users/johndoe/certificates/serverkey.pem";
options sslpvtkeypass="password";
proc server id=shrserv authenticate=opt;
run;

The following table lists the SAS option or statement that is used for each task to
start a server.

Table 4.5 SAS Options and Statements for Server Start-Up Tasks

SAS Options and Statements Server Start-Up Tasks

TCPSEC= _SECURE_ Secures the server

NETENCRALG=SSL Specifies SSL as the encryption algorithm

SSLCERTLOC=server.pem Specifies the filepath for the location of the server’s
certificate

Encryption Technologies: Examples � Startup of a Multi-User SAS/SHARE Server 37

SAS Options and Statements Server Start-Up Tasks

SSLPVTKEYLOC=serverkey.pem Specifies the filepath for the location of the server’s
private key

SSLPVTKEYPASS="password" Specifies the password to access server’s private
key

PROC SERVER ID=shrserv Starts the server

AUTHENTICATE=opt Allow trusted users to access the server without
authentication.

Note: As an alternative to using the SSLPVTKEYPASS= option to protect the
private key, you might prefer that the private key remain unencrypted, and use the file
system permissions to prevent read and write access to the file that contains the private
key. To store the private key without encrypting it, use the –NODES option when
requesting the certificate. �

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.
Here is an example of how to make a client connection to a secured SAS/SHARE

server:

options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
libname a ’.’ server=machine.shrserv user=_prompt_;

The following table lists the SAS options that are used to access a SAS/SHARE
server from a client.

Table 4.6 SAS Options and Arguments Tasks for Accessing a SAS/SHARE Server
from a Client

SAS Options and Arguments Client Access Tasks

SSLCALISTLOC=cacerts.pem Specifies the CA trust list

SERVER=machine.shrserv Specifies the machine and server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
certificate, must be identical.

SSL for SAS/SHARE under Windows: Examples

Startup of a Multi-User SAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and

imported into the appropriate certificate store, you can start a SAS/SHARE server.

38 SAS/SHARE Client Access of a SAS/SHARE Server � Chapter 4

Here is an example of how to start a secured SAS/SHARE server:

%let tcpsec=_secure_;
options comamid=tcp netencryptalgorithm=ssl;
options sslcertiss="Glenn’s CA";
options sslcertserial="0a1dcfa3000000000015";
proc server id=shrserv;
run;

The following table lists the SAS option or statement that is used for each task to
start a server.

Table 4.7 SAS Options, Statements, and Arguments for Server Start-Up Tasks

SAS Options, Statements, and Arguments Server Start-Up Tasks

TCPSEC= _SECURE_ Secures the server

COMAMID=tcp Specifies the TCP/IP access method

NETENCRALG=SSL Specifies SSL as the encryption algorithm

SSLCERTISS="Glenn’s CA" Specifies the name of the issuer of the digital
certificate that SSL should use

SSLCERTSERIAL="0a1dcfa3000000000015" Specifies the serial number of the digital certificate
that SSL should use

PROC SERVER ID=shrserv; Starts the server

SAS/SHARE Client Access of a SAS/SHARE Server

After a SAS/SHARE server has been started, the client can access it.
Here is an example of how to make a client connection to a secured SAS/SHARE

server:

options comamid=tcp;
%let machine=apex.server.com;
libname a ’.’ server=machine.shrserv user=_prompt_;

The following table lists the SAS options that are used for accessing a server from a
client.

Table 4.8 SAS Options and Arguments for Accessing a SAS/SHARE Server from
a Client

SAS Options and Arguments Client Access Tasks

COMAMID=tcp Specifies the TCP/IP access method

SERVER=machine.shrserv Specifies the machine and server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
certificate, must be identical.

Encryption Technologies: Examples � IOM Bridge for COM: Configuration in Code 39

SAS/SECURE for the IOM Bridge: Examples

IOM Bridge Encryption Configuration
The IOM Bridge for SAS clients can use SAS/SECURE to encrypt network data

between SAS and its clients.
SAS/SECURE must be installed at the SAS server and at the SAS client. SAS clients

include COM clients and Java clients.
You can configure encryption properties in either metadata or in code.
� “IOM Bridge for SAS Clients: Metadata Configuration” on page 39
� “IOM Bridge for COM: Configuration in Code” on page 39
� “IOM Bridge for Java: Configuration in Code” on page 40

IOM Bridge for SAS Clients: Metadata Configuration
In order to connect a SAS client to a SAS server, the CreateObjectByLogicalName

function must obtain encryption information from metadata that is stored in the
metadata repository. SAS Management Console can be used to configure encryption
properties into the metadata repository, as follows:

Required encryption level
In SAS Management Console, follow this path:

<Connection> � Options � Advanced Options � Encryption �
Required Encryption Level

Valid values for required encryption levels are as follows:

None
No encryption

Credentials
Only user credentials (ID and password) are encrypted. This is the default.

Everything
All client/server transfers, including credentials, are encrypted.

Server encryption algorithm
In SAS Management Console, follow this path:
<Connection> � Options � Advanced Options � Encryption �
Server Encryption Algorithms

Valid values for server encryption algorithms are RC2, RC4, DES, TRIPLEDES,
AES, and SASPROPRIETARY (the default).

For complete details about using SAS Management Console to configure the IOM
Bridge, visit supportexp.unx.sas.com/rnd/itech/doc9/admin_oma/sasserver/
iombridge.

IOM Bridge for COM: Configuration in Code
When using the CreateObjectByServer function to connect a Windows client to a SAS

server, specify the following properties in your client code in the ServerDef object:
� BridgeEncryptionLevel

40 IOM Bridge for Java: Configuration in Code � Chapter 4

� BridgeEncryptionAlgorithm

Here is an example:

obServerDef.BridgeEncryptionLevel=EncryptAll;
obServerDef.BridgeEncryptionAlgorithm="TripleDes";

EncryptAll
causes all data, including credentials (user IDs and passwords), to be encrypted in
client/server transfers.

TripleDes
is the specific encryption algorithm to be applied to data transfers.

For a complete list of encryption values, see the SAS Object Manager class reference
(sasoman.chm).

IOM Bridge for Java: Configuration in Code
When using the BridgeServer object to connect a Java client to a SAS server, use the

following functions to specify your encryption settings:
� setEncryptionContent
� setEncryptionAlgorithms
� setEncryptionPolicy

Here is an example:

obBridgeServer.setEncryptionContent(BridgeServer.ENCRYPTION_CONTENT_ALL);
obBridgeServer.setEncryptionAlgorithms(BridgeServer.ENCRYPTION_ALGORITHM_TRIPLEDES);
obBridgeServer.setEncryptionPolicy(BridgeServer.ENCRYPTION_POLICY_REQUIRED);

ENCRYPTION_CONTENT_ALL
causes all data, including credentials (user ID and password), to be encrypted in
client/server transfers.

ENCRYPTION_ALGORITHM_TRIPLEDES
is the specific encryption algorithm to be applied to data transfers.

ENCRYPTION_POLICY_REQUIRED
specifies that encryption is required. If the server does not support encryption, the
connection fails.

For a complete list of encryption values, see the Java reference for
com.sas.services.connection at www.support.sas.com.

SSH Tunnel for SAS/CONNECT: Example

Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server
Here is an example of code for starting a UNIX spawner program that runs on a

server that SAS/CONNECT clients connect to:

Encryption Technologies: Examples � SAS/SHARE Client Access of a SAS/SHARE Server 41

sastcpd -service 4321

The UNIX spawner is started and is listening on destination port 4321. For complete
details about starting a UNIX spawner, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a UNIX Spawner on a
SAS/CONNECT Server

After the UNIX spawner has been started on a SAS/CONNECT server,
a SAS/CONNECT client can connect to it.

Here is an example of code for setting up an SSH tunnel using OpenSSH and making
a client connection to the UNIX spawner that is running on a SAS/CONNECT server:

ssh -N -L 5555:SSH-client-computer:4321 SSH-server-computer

The SSH command is entered in the command line. The SSH software is started on
the computer on which the SSH client will run. The SSH client’s listen port is defined
as 5555. The SAS/CONNECT client will access the SSH client’s listen port that is
tunneled to the UNIX spawner, which runs on destination port 4321.

%let sshhost=SSH-client-computer 5555;
signon sshhost;

In SAS, the macro variable SSHHOST is assigned to the SSH client computer and its
listen port 5555. A sign-on is specified to a SAS/CONNECT client at listen port 5555.
The SSH client forwards the request from port 5555 through an encrypted tunnel to the
SSH server, which forwards the request to the UNIX spawner that is listening on
destination port 4321.

SSH Tunnel for SAS/SHARE: Example

Start-up of a Multi-User SAS/SHARE Server
Here is an example of code for starting a SAS/SHARE server:

proc server id=_4321; run;

A SAS/SHARE server is started and is ready to receive requests on destination port
4321.

SAS/SHARE Client Access of a SAS/SHARE Server
Here is an example of code for setting up an SSH tunnel and making a client

connection to a SAS/SHARE server:

ssh -N -L 5555:SSH-client-computer:4321 SSH-server-computer

The SSH command is entered in the command line. The SSH software is started on
the computer on which the SSH client will run. The SSH client’s listen port is defined
as 5555. The SAS/SHARE client will access the SSH client’s listen port that gets
tunneled to the SAS/SHARE server, which runs on destination port 4321.

42 SSL for a SAS/CONNECT z/OS Spawner: Example � Chapter 4

%let sshhost=SSH-client-computer 5555;
libname orion ’.’ server=sshhost;

In SAS, the macro variable SSHHOST is assigned to the SSH client computer and its
listen port 5555. A LIBNAME statement is specified to access the library that is located
on the SAS/SHARE server. The SSH client forwards the request from port 5555
through an encrypted tunnel to the SSH server, which forwards the request to
destination port 4321 on the SAS/SHARE server.

SSL for a SAS/CONNECT z/OS Spawner: Example

Startup of a z/OS Spawner on a SAS/CONNECT Server

After digital certificates are generated for the CA, the server, and the client, and a
CA trust list for the client is created, you can start a z/OS spawner program that runs
on a server that SAS/CONNECT clients connect to.

For example:

//SPAWNER EXEC PGM=SASTCPD,
// PARM=’-service 4321 =<//DDN:SYSIN’
//STEPLIB DD DISP=SHR,DSN=<customer.high.level.pfx>.LIBRARY
//STEPLIB DD DISP=SHR,DSN=<customer.high.level.pfx>.LIBE
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//TKMVSJNL DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
-netencryptalgorithm ssl
-sslpkcs12loc /users/server/certificates/server.p12
-sslpkcs12pass starbuck1
-sslcalistloc /users/server/certificates/sas.pem
-sascmd /users/server/command.sh

The following table explains the SAS commands that are used to start a spawner on
a SAS/CONNECT server.

Table 4.9 SAS Commands and Arguments for Spawner Start-Up Tasks

SAS Commands and Arguments Function

sastcpd Starts the spawner

-service 4321 Specifies the spawner service that is listening on
part 4321

-netencryptalgorithm ssl Specifies the SSL encryption algorithm

-sslpkcs12loc /users/server/certificates/
serverkey.p12

Specifies the file path for the location of the
server’s PKCS #12 DER encoding package

-sslpkcs12pass password Specifies the password to access the server’s
private key in the PKCS #12 package

Encryption Technologies: Examples � Connection of a SAS/CONNECT Client to a z/OS Spawner 43

SAS Commands and Arguments Function

-sslcalistloc /users/server/certificates/sas.pem Specifies the CA trust list

-sascmd /users/server/command.sh Specifies the name of an executable file that
starts a SAS session when you sign on without a
script file

Here is an example of an executable file, command.sh:

#!/bin/sh
args=$*
if [-n "$INHERIT"] ; then

args="$args -inherit $INHERIT"
fi
if [-n "$NETENCRALG"] ; then

args="$args -netencralg $NETENCRALG"
fi
if [-n "$SASDAEMONPORT"] ; then

args="$args -sasdaemonport $SASDAEMONPORT"
fi
if [-n "$SASCLIENTPORT"] ; then

args="$args -sasclientport $SASCLIENTPORT"
fi
export TSOOUT=
export SYSPROC=SAS.CLIST
/bin/tso -t %sas -dmr -noterminal $args

For complete information about starting a z/OS spawner, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a z/OS Spawner
After a z/OS spawner is started on a SAS/CONNECT server, a SAS/CONNECT client

can connect to it.
The following example shows how to connect a client to a spawner that is running on

a SAS/CONNECT server:

options netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
signon machine.spawner user=_prompt_;

The following table explains the SAS options that are used to connect to a
SAS/CONNECT server.

Table 4.10 SAS Options and Arguments for Client Access to a SAS/CONNECT
Server

SAS Options and Arguments Client Access Tasks

NETENCRYPTALGORITHM=ssl Specifies the encryption algorithm

SSLCALISTLOC=cacerts.pem Specifies the CA trust list

44 SSL for SAS/SHARE under z/OS: Example � Chapter 4

SAS Options and Arguments Client Access Tasks

SIGNON=server-ID.service Specifies the server and service to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server ID and the server’s Common Name, which was specified in the server’s
digital certificate, must be identical.

For complete information about connecting to a z/OS spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

SSL for SAS/SHARE under z/OS: Example

Startup of a Multi-User SAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and a

CA trust list for the client has been created, you can start a SAS/SHARE server.
Here is an example of starting a secured SAS/SHARE server:

%let tcpsec=_secure_;
options netencryptalgorithm=ssl;
options sslpkcs12loc="/users/johndoe/certificates/server.p12;
options sslpkcs12pass="password";
proc server id=shrserv authenticate=opt;
run;

The following table lists the SAS option or statement that is used for each task to
start a server.

Table 4.11 SAS Options, Statements, and Arguments for Server Start-Up Tasks

SAS Options, Statements, and Arguments Server Start-Up Tasks

TCPSEC= _SECURE_ Secures the server

NETENCRALG=SSL Specifies SSL as the encryption algorithm

SSLPKCS12LOC=server.p12 Specifies the filepath for the location of the server’s
private key

SSLPKCS12PASS="password" Specifies the password to access server’s private
key

PROC SERVER ID=shrserv Starts the server

AUTHENTICATE=opt Allows trusted users to access the server without
authentication

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.
Here is an example of how to make a client connection to a secured SAS/SHARE

server:

Encryption Technologies: Examples � SAS/SHARE Client Access of a SAS/SHARE Server 45

options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
libname a ’.’ server=machine.shrserv user=_prompt_;

The following table lists the SAS options that are used to access a SAS/SHARE
server from a client.

Table 4.12 SAS Options and Arguments for Accessing a SAS/SHARE Server from
a Client

SAS Options and Arguments Client Access Tasks

SSLCALISTLOC=cacerts.pem Specifies the CA trust list

SERVER=machine.shrserv Specifies the machine and server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
certificate, must be identical.

46

47

P A R T2

Installing and Configuring SSL

Appendix 1.Installing and Configuring SSL under UNIX 49

Appendix 2.Installing and Configuring SSL under Windows 55

Appendix 3.Installing and Configuring SSL under z/OS 61

48

49

A P P E N D I X

1
Installing and Configuring SSL
under UNIX

SSL under UNIX: System and Software Requirements 49
Setting Up Digital Certificates for SSL under UNIX 50

Step 1. Download and Build SSL 50

Step 2. Create a Digital Certificate Request 50

Step 3. Generate a Digital Certificate from the Request 52

Step 4. View Digital Certificates 53
Step 5. End OpenSSL 53

Step 6. Create a CA Trust List for the SSL Client Application 53

Converting between PEM and DER File Formats for SSL 54

SSL under UNIX: System and Software Requirements
The system and software requirements for using SSL under UNIX operating

environments are as follows:

� a computer that runs UNIX.
� Internet access and a Web browser such as Netscape Navigator or Internet

Explorer.

� the TCP/IP communications access method.
� access to the OpenSSL utility at www.openssl.org/source if you plan to use the

OpenSSL CA.

� knowledge of your site’s security policy, practices, and technology. The properties
of the digital certificates that you request are based on the security policies that
have been adopted at your site.

50 Setting Up Digital Certificates for SSL under UNIX � Appendix 1

Setting Up Digital Certificates for SSL under UNIX
Perform the following tasks to set up and use SSL:
1 Download and build SSL.
2 Create a digital certificate request.
3 Generate a digital certificate from the request.
4 View digital certificates.
5 End OpenSSL.
6 Create a CA trust list for the SSL client application.

Step 1. Download and Build SSL
If you want to use OpenSSL as your trusted Certification Authority (CA), follow the

instructions for downloading and building OpenSSL that are given at
www.openssl.org/source. For complete documentation about the OpenSSL utility,
visit www.openssl.org/docs/apps/openssl.html.

The following sites provide information about alternative CA:
� For VeriSign, see www.verisign.com
� For Thawte, see www.thawte.com

Step 2. Create a Digital Certificate Request
The tasks that you perform to request a digital certificate for the CA, the server, and

the client are similar; however, the values that you specify are different.
In this example, Proton, Inc. is the organization that is applying to become a CA by

using OpenSSL. After Proton, Inc. becomes a CA, it can serve as a CA for issuing
digital certificates to clients (users) and servers on its network.

Perform the following tasks:
1 Select the apps subdirectory of the directory where OpenSSL was built.
2 Initialize OpenSSL.

$ openssl

3 Issue the appropriate command to request a digital certificate.

Table A1.1 Open SSL Commands for Requesting a Digital Certificate

Request Certificate
for

OpenSSL Command

CA req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes

Server req -config ./openssl.cnf -new -out server.req -keyout serverkey.pem

Client req -config ./openssl.cnf -new -out client.req -keyout clientkey.pem

Table A1.2 Arguments and Values Used in OpenSSL Commands

OpenSSL Arguments and
Values

Functions

req Requests a certificate

-config ./openssl.cnf Specifies the storage location for the configuration
details for the OpenSSL program

Installing and Configuring SSL under UNIX � Step 2. Create a Digital Certificate Request 51

OpenSSL Arguments and
Values

Functions

-new Identifies the request as new

-out sas.req Specifies the storage location for the certificate request

-keyout saskey.pem Specifies the storage location for the private key

-nodes Prevents the private key from being encrypted

4 Informational messages are displayed and prompts for additional information
appear according to the specific request.

To accept a default value, press the ENTER key. To change a default value, type
the appropriate information and press the ENTER key.

Note: Unless the -NODES option is used in the OpenSSL command when
creating a digital certificate request, OpenSSL will prompt you for a password
before allowing access to the private key. �

The following is an example of a request for a digital certificate:
OpenSSL> req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes
Using configuration from ./openssl.cnf
Generating a 1024 bit RSA private key
............................++++++
..++++++
writing new private key to ’saskey.pem’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [North Carolina]:
Locality Name (city) [Cary]:
Organization Name (company) [Proton Inc.]:
Organizational Unit Name (department) [IDB]:
Common Name (YOUR name) []: proton.com
Email Address []:Joe.Bass@proton.com
Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
OpenSSL>

The request for a digital certificate is complete.

Note: For the server, the Common Name must be the name of the computer that the
server runs on; for example, apex.serv.com. �

52 Step 3. Generate a Digital Certificate from the Request � Appendix 1

Step 3. Generate a Digital Certificate from the Request
Perform the following tasks to generate a digital certificate for a CA, a server, and a

client.
1 Issue the appropriate command to generate a digital certificate from the digital

certificate request.

Table A1.3 OpenSSL Commands for Generating Digital Certificates under UNIX

Generate Certificate for OpenSSL Command

CA x509 req -in sas.req -signkey saskey.pem -out sas.pem

Server ca -config ./openssl.cnf -in server.req -out server.pem

Client ca -config ./openssl.cnf -in client.req -out client.pem

Table A1.4 Arguments and Values Used in OpenSSL Commands under UNIX

OpenSSL Arguments and Values Functions

x509 Identifies the certificate display and signing
utility

req Specifies that a certificate be generated from
the request

ca Identifies the Certification Authority utility

-config ./openssl.cnf Specifies the storage location for the
configuration details for the OpenSSL utility

-in filename.req Specifies the storage location for the input for
the certificate request

-out filename.pem Specifies the storage location for the
certificate

-signkey saskey.pem Specifies the private key that will be used to
sign the certificate that is generated by the
certificate request

2 Informational messages are displayed and prompts for additional information
appear according to the specific request.

To accept a default value, press the ENTER key. To change a default value, type
the appropriate information, and press the ENTER key.

Here is a sample of the messaging for creating a server digital certificate:

Note: The password is for the CA’s private key. �
Using configuration from ./openssl.cnf
Enter PEM pass phrase: password
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:’US’
stateOrProvinceName :PRINTABLE:’NC’
localityName :PRINTABLE:’Cary’
organizationName :PRINTABLE:’Proton, Inc.’
organizationalUnitName:PRINTABLE:’IDB’

Installing and Configuring SSL under UNIX � Step 6. Create a CA Trust List for the SSL Client Application 53

commonName :PRINTABLE:’proton.com’
Certificate is to be certified until Oct 16 17:48:27 2003 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries Data Base Updated

The subject’s Distinguished Name is obtained from the digital certificate request.
A root CA digital certificate is self-signed, which means that the digital

certificate is signed with the private key that corresponds to the public key that is
in the digital certificate. Except for root CAs, digital certificates are usually signed
with a private key that corresponds to a public key that belongs to someone else,
usually the CA.

The generation of a digital certificate is complete.

Step 4. View Digital Certificates
To view a digital certificate, issue the following command:

openssl> x509 -text -in filename.pem

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

Step 5. End OpenSSL
To end OpenSSL, type quit at the prompt.

Step 6. Create a CA Trust List for the SSL Client Application
After generating a digital certificate for the CA, the server, and the client (optional),

you must identify for the OpenSSL client application one or more CAs that are to be
trusted. This list is called a trust list.

If there is only one CA to trust, in the client application, specify the name of the file
that contains the OpenSSL CA digital certificate.

If multiple CAs are to be trusted, create a new file and copy-and-paste into it the
contents of all the digital certificates for CAs to be trusted by the client application.

Use the following template to create a CA trust list:

Certificate for OpenSSL CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Certificate for Keon CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

54 Converting between PEM and DER File Formats for SSL � Appendix 1

-----END CERTIFICATE-----

Certificate for Microsoft CA

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Because the digital certificate is encoded, it is unreadable. Therefore, the content of
the digital certificate in this example is represented as <PEM encoded certificate> .
The content of each digital certificate is delimited with a -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- pair. All text outside the
delimiters is ignored. Therefore, you might not want to use delimited lines for
descriptive comments. In the preceding template, the file that is used contains the
content of digital certificates for the CAs: OpenSSL, Keon, and Microsoft.

Note: If you are including a digital certificate that is stored in DER format, you
must first convert it to PEM format. For more information, see “Converting between
PEM and DER File Formats for SSL” on page 59. �

Converting between PEM and DER File Formats for SSL

By default, OpenSSL files are created in PEM (Privacy Enhanced Mail) format. SSL
files that are created in Windows operating environments are created in DER
(Distinguished Encoding Rules) format.

Under Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list under UNIX.

Here is an example of converting a server digital certificate from PEM input format
to DER output format:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out server.der

Here is an example of converting a server digital certificate from DER input format
to PEM output format:

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

55

A P P E N D I X

2
Installing and Configuring SSL
under Windows

SSL under Windows: System and Software Requirements 55
Setting Up Digital Certificates for SSL under Windows 56

Step 1. Configure SSL 56

Step 2. Request a Digital Certificate 56

Request a Digital Certificate from the Microsoft Certification Authority 56

Request a Digital Certificate from a Certification Authority That Is Not Microsoft 57
Import a Digital Certificate to a Certificate Store 57

Converting between PEM and DER File Formats for SSL 59

SSL under Windows: System and Software Requirements
The system and software requirements for using SSL under the Windows operating

environment are as follows:
� a computer that runs Windows 2000 (or later).
� depending on your configuration, access to the Internet and a Web browser such as

Netscape Navigator or Internet Explorer.
� the TCP/IP communications access method.
� Microsoft Certificate Services add-on software.
� if you will run your own CA, the Microsoft Certification Authority application

(which is accessible from your Web browser).
� for SAS/CONNECT, a client session that runs on a computer that has a Trusted

CA Certificate. This is necessary in order for a SAS/CONNECT client session to
connect to a SAS/CONNECT server session via a Windows spawner using SSL
encryption.

The Windows spawner must run on a computer that has a Trusted CA
Certificate and a Personal Certificate.

� knowledge of your site’s security policy, practices, and technology. The properties
of the digital certificates that you request will depend on the security policies that
have been adopted at your site.

56 Setting Up Digital Certificates for SSL under Windows � Appendix 2

Setting Up Digital Certificates for SSL under Windows
Perform the following tasks to set up digital certificates for SSL:
� Configure SSL.
� Request a digital certificate.

Step 1. Configure SSL
Complete information about configuring your Windows operating environment for

SSL is contained in the Windows installation documentation and at
www.microsoft.com.

The following keywords might be helpful when searching the Microsoft Web site:
� digital certificate services
� digital certificate authority
� digital certificate request
� site security planning

Step 2. Request a Digital Certificate
The method of requesting a digital certificate depends on the CA that you use:
� the Microsoft Certification Authority
� a certification authority that is not Microsoft

Request a Digital Certificate from the Microsoft Certification Authority
Perform the following tasks to request digital certificates that are issued by the

Microsoft Certification Authority:
1 System administrator: If you are running your own CA, use Microsoft Certificate

Services to create an active Certification Authority (CA).
2 User:

a Use the Certificate Request wizard to request a digital certificate from an
active enterprise CA. The Certificate Request wizard lists all digital
certificate types that the user can install.

b Select a digital certificate type.
c Select security options.
d Submit the request to an active CA that is configured to issue the digital

certificate.
After the CA issues the requested digital certificate, the digital certificate

is automatically installed in the Certificate Store. The installed digital
certificate is highlighted, as shown in Display A2.1 on page 57.

Installing and Configuring SSL under Windows � Step 2. Request a Digital Certificate 57

Display A2.1 Digital Certificate Installation in the Certificate Store

Request a Digital Certificate from a Certification Authority That Is Not
Microsoft

Users should perform the following tasks to request digital certificates that are not
issued by the Microsoft CA:

1 Request a digital certificate from a CA.

2 Import the digital certificate to a Certificate Store by using the Certificate
Manager Import wizard application from a Web browser.

A digital certificate can be generated by using the Certificate Request wizard or
any third-party application that generates digital certificates.

Note: The Windows operating environment can import digital certificates that
were generated in the UNIX operating environment. To convert from UNIX (PEM
format) to Windows (DER format) before importing, see “Converting between PEM
and DER File Formats for SSL” on page 59. �

For details about importing existing digital certificates, see “Import a Digital
Certificate to a Certificate Store” on page 57.

Import a Digital Certificate to a Certificate Store

Digital certificates that were issued by a Certification Authority that is not Microsoft
can be imported to an appropriate Certificate Store as follows:

Certificate Type Certificate Storage Location

Client Personal Certificate Store

Server Personal Certificate Store

CA (self-signed) Trusted Root Certification Authorities

58 Step 2. Request a Digital Certificate � Appendix 2

Perform the following tasks to import a digital certificate to a Certificate Store:

1 Access the Certificate Manager Import wizard application from your Web browser.
From the Tools drop-down menu, select Internet Options.

Then select the Content tab, and click Certificates.
Specify the digital certificate to import to a Certificate Store by selecting the

Personal tab in the Certificates window, as shown in Display A2.2 on page 58.

Display A2.2 Digital Certificate Selections for a Personal Certificate Store

2 Click Import and follow the instructions to import digital certificates.
Repeat this task in order to import the necessary digital certificates for the CA,

the server, and the client, as appropriate.
3 After you have completed the selections for your personal Certificate Store, select

the appropriate tab to view your selections.
4 To view the details about a digital certificate, select the digital certificate and click

View. Typical results are shown in Display A2.3 on page 59.

Installing and Configuring SSL under Windows � Converting between PEM and DER File Formats for SSL 59

Display A2.3 Digital Certificate Details Tab

Converting between PEM and DER File Formats for SSL

By default, OpenSSL files are created in Privacy Enhanced Mail (PEM) format. SSL
files that are created in Windows operating environments are created in Distinguished
Encoding Rules (DER) format.

Under Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list under UNIX.

Here is an example of converting a server digital certificate from PEM input format
to DER output format:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out server.der

Here is an example of converting a server digital certificate from DER input format
to PEM output format :

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

60

61

A P P E N D I X

3
Installing and Configuring SSL
under z/OS

SSL under z/OS: System and Software Requirements 61
Setting Up Digital Certificates for SSL under z/OS 61

Step 1. Authorize Access to the RACDCERT Command 62

Step 2. Create the Digital Certificate for the CA 62

Step 3. Create the Server and Client Digital Certificates 63

Step 4. View Digital Certificates 64
Step 5. Create a CA Trust List for the SSL Client Application 64

SSL under z/OS: System and Software Requirements
The system and software requirements for using SSL under z/OS operating

environments are as follows:
� a computer that runs z/OS.
� the TCP/IP communications access method.
� if you are planning to use a computer that runs z/OS as the CA, access to the

RACDCERT command on z/OS.
� knowledge of your site’s security policy, practices, and technology. The properties

of the digital certificates that you request are based on the security policies that
have been adopted at your site.

Setting Up Digital Certificates for SSL under z/OS
Perform these tasks to set up and use SSL:
1 Authorize access to the RACDCERT command.
2 Create a CA digital certificate.
3 Create server and client digital certificates.
4 View digital certificates.
5 Create a CA trust list for the SSL client application.

62 Step 1. Authorize Access to the RACDCERT Command � Appendix 3

Step 1. Authorize Access to the RACDCERT Command
To use z/OS as your trusted Certification Authority (CA), you must authorize access

to the RACDCERT command in order to set up the CA and to create and sign
certificates. Authorize the trusted administrator using CONTROL access to these
profiles in the FACILITY class:

� IRR.DIGTCERT.ADD

� IRR.DIGTCERT.DELETE

� IRR.DIGTCERT.EXPORT

� IRR.DIGTCERT.GENCERT

� IRR.DIGTCERT.LIST

The following sites provide information about alternative CAs:

� For VeriSign, see www.verisign.com

� For Thawte, see www.thawte.com

Step 2. Create the Digital Certificate for the CA
The tasks that you perform to generate a digital certificate for the CA, the server,

and the client are similar; however, the values that you specify are different.
In this example, Proton, Inc. is the organization that is applying to become a CA by

using RACDCERT. After Proton, Inc. becomes a CA, it can serve as a CA for issuing
digital certificates to clients (users) and servers on its network.

Perform these tasks:

1 Request a digital CA certificate. Here is an example of a request:

RACDCERT GENCERT CERTAUTH +
SUBJECTSDN(+
CN(’proton.com’) +
C(’US’) +
SP(’North Carolina’) +
L(’Cary’) +
O(’Proton Inc.’) +
OU(’IDB’) +

) +
ALTNAME(+
EMAIL(’Joe.Bass@proton.com’) +

) +
WITHLABEL(’Proton CA’)

2 Export the CA certificate in PEM format:

RACDCERT CERTAUTH EXPORT(LABEL(’Proton CA’)) +
DSN(CA.CERT)

3 Copy the certificate to the UNIX file system.

Note: SSL certificate and key files must reside in the z/OS UNIX file system.
The OpenSSL library cannot read MVS data sets. �

cp //ca.cert ca.cert

4 Convert the certificate file to ASCII format

� Step 3. Create the Server and Client Digital Certificates 63

Note: SSL PEM format certificate files must be converted to ASCII format.
The OpenSSL library code in SAS cannot read EBCDIC text. �

iconv -f ibm-1047 -t iso8859-1 ca.cert >ca.cert.ascii

The creation of the CA digital certificate is complete.
A root CA digital certificate is self-signed, which means that the digital certificate is

signed using the private key that corresponds to the public key that is in the digital
certificate. Except for root CAs, digital certificates are usually signed using a private
key that corresponds to a public key that belongs to someone else, usually the CA.

You will specify the CA digital certificate using the SSLCALISTLOC= system option.

Step 3. Create the Server and Client Digital Certificates
Perform these tasks to create a digital certificate for a server and a client. The steps

are identical for the server and the client. This example shows the tasks for the server.

1 Request a signed server certificate.

Here is an example of a request for a signed server certificate for user SERVER
that runs on proton.zos.com.

RACDCERT GENCERT ID(SERVER) +
SUBJECTSDN(+
CN(’proton.zos.com’) +
C(’US’) +
SP(’North Carolina’) +
L(’Cary’) +
O(’Proton Inc.’) +
OU(’IDB’) +

) +
ALTNAME(+
EMAIL(’Joe.Bass@proton.com’) +

) +
WITHLABEL(’Proton Server’) +
SIGNWITH(CERTAUTH LABEL(’Proton CA’))

2 Export the server certificate and key that are specified in PKCS #12 DER encoding
package format.

Note: The PKCS #12 DER encoding package is the format used by the
RACDCERT utility to encode the exported certificate and private key for an entity,
such as a server. It is a binary format. �

RACDCERT ID(SERVER) EXPORT(LABEL(’Proton Server’)) +
DSN(SERVER.P12) +
PASSWORD(’abcd’)

3 Copy the certificate to the UNIX file system.

Note: The PKCS #12 DER encoding package file must reside in the z/OS UNIX
file system. The OpenSSL library cannot read MVS data sets. Because the file is
already in binary format, its conversion to ASCII is unnecessary. �

cp //server.p12 server.p12

The creation of the server digital certificate and key is complete.

64 Step 4. View Digital Certificates � Appendix 3

A PKCS #12 DER encoding package is the format that RACDCERT uses to export a
certificate and a key for an entity. The exported package file contains both the
certificate and the key. The content of the package file is secure by using the password
that is specified in the RACDCERT EXPORT command.

Specify a server or client PKCS #12 package using the SSLPKCS12LOC= system
option. Specify the password for the package using the SSLPKCS12PASS= option.

Note: For the server, the Common Name must be the name of the computer that the
server runs on (for example, proton.zos.com.) �

Step 4. View Digital Certificates
To view a digital certificate, issue these commands:

RACDCERT CERTAUTH LIST(LABEL(’Proton CA’))
RACDCERT ID(SERVER) LIST(LABEL(’Proton Server’))

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

To read the certificate files, issue these commands:

RACDCERT CHECKCERT(CA.CERT)
RACDCERT CHECKCERT(SERVER.P12) PASS(’abcd’)

Step 5. Create a CA Trust List for the SSL Client Application
After generating a digital certificate for the CA, the server, and the client (optional),

you must identify for the OpenSSL client application one or more CAs that are to be
trusted. This list is called a trust list.

If there is only one CA to trust (for example, Proton CA), in the client application,
use the SSLCALISTLOC= option to specify the name of the file that contains the CA
digital certificate, which was created in Step 2.

If multiple CAs are to be trusted by the client application, use the UNIX cat
command to concatenate the contents of all the digital certificates for CAs. All the
certificates must be encoded in PEM format and in ASCII format.

As an alternative method for creating a CA trust list, use this template to copy and
paste the digital certificates into one file:

Certificate for Proton CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Certificate for Keon CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

� Step 5. Create a CA Trust List for the SSL Client Application 65

Certificate for Microsoft CA

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Because the digital certificate is encoded, it is unreadable. Therefore, the content of
the digital certificate in this example is represented as <PEM encoded certificate> .
The content of each digital certificate is delimited using a -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- pair. All text outside the
delimiters is ignored. Therefore, you might not want to use delimited lines for
descriptive comments. In the preceding template, the file that is used contains the
content of digital certificates for the CAs: Proton, Keon, and Microsoft.

66

67

Glossary

authentication
the process of verifying the identity of a person or process within the guidelines of a
specific security policy.

block cipher
a type of encryption algorithm that divides a message into blocks and encrypts each
block. See also stream cipher.

Certificate Revocation List
a list of revoked digital certificates. CRLs are published by Certification Authorities
(CAs), and a CRL contains only the revoked digital certificates that were issued by a
specific CA. Short form: CRL.

Certification Authority
a commercial or private organization that provides security services to the
e-commerce market. A Certification Authority creates and maintains digital
certificates, which help to preserve the confidentiality of an identity. Microsoft,
VeriSign, and Thawte are examples of commercial Certification Authorities.

ciphertext
unintelligible data. See also encryption.

CRL
See Certificate Revocation List.

cryptography
the science of encoding and decoding information to protect its confidentiality. See
also encryption.

data security technologies
software features that protect data that is exchanged in client/server data transfers
across a network.

DER
See Distinguished Encoding Rules.

digital certificate
an electronic document that binds a public key to an individual or an organization. A
digital certificate usually contains a public key, a user’s name, an expiration date,
and the name of a Certification Authority.

68 Glossary

digital signature
a digital code that is appended to a message. The digital signature is used to verify
to a recipient that the message was sent by a particular business, organization, or
individual, and that the message has not been changed en route. The message can be
any kind of file that is transmitted electronically.

Distinguished Encoding Rules
a format that is used for creating SSL files in Windows operating environments.
Short form: DER.

encryption
the act of transforming intelligible data (plaintext) into an unintelligible form
(ciphertext) by means of a mathematical process.

PEM (Privacy Enhanced Mail)
a format that is used for creating OpenSSL files.

PKCS #12
See Public Key Cryptography Standard #12.

plaintext
intelligible data. See also encryption and ciphertext.

port forwarding
See SSH tunnel.

private key
a number that is known only to its owner. The owner uses the private key to read
(decrypt) an encrypted message. See also public key and encryption.

public key
a number that is associated with a specific entity such as an individual or an
organization. A public key can be known by everyone who needs to have trusted
interactions with that entity. A public key is always associated with a single private
key, and can be used to verify digital signatures that were generated using that
private key.

Public Key Cryptography Standard #12
a personal information exchange syntax standard. It defines a file format that is
used to store private keys with accompanying public-key certificates. Short form:
PKCS #12. See also SSL (Secure Sockets Layer).

public-key cryptography
the science that uses public and private key pairs to protect confidential information.
The public key can be known by anyone. The private key is known only to the owner
of the key pair. The public key is used primarily for encryption, but it can also be
used to verify digital signatures. The private key is used primarily for decryption,
but it can also be used to generate a digital signature.

SAS/SECURE
an add-on product that uses the RC2, RC4, DES, and TripleDES encryption
algorithms. SAS/SECURE requires a license, and it must be installed on each
computer that runs a client and a server that will use the encryption algorithms.
SAS/SECURE provides a high level of security.

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

Glossary 69

Secure Shell
a protocol that enables users to access a remote computer via a secure connection.
SSH is available through various commercial products and as freeware. OpenSSH is
a free version of the SSH protocol suite of network connectivity tools. Short form:
SSH. See also SSH tunnel.

Secure Sockets Layer
See SSL (Secure Sockets Layer).

SSH
See Secure Shell.

SSH tunnel
a secure, encrypted connection between the SSH client, which runs on the same
computer as a SAS client, and an SSH server, which runs on the same computer as a
SAS server. The SSH client and server act as agents between the SAS client and the
SAS server, tunneling information via the SAS client’s port to the SAS server’s port.
Port forwarding is another term for tunneling. See also Secure Shell.

SSL (Secure Sockets Layer)
a protocol that provides network security and privacy. SSL uses encryption
algorithms RC2, RC4, DES, TripleDES, and AES. SSL provides a high level of
security. It was developed by Netscape Communications.

stream cipher
a type of encryption algorithm that encrypts data one byte at a time. See also block
cipher.

TLS (Transport Layer Security)
the successor to Secure Sockets Layer (SSL) V3.0. The Internet Engineering Task
Force (IETF) adopted SSL V3.0 as the de facto standard, made some modifications,
and renamed it TLS. TLS is virtually SSLV3.1. See also SSL (Secure Sockets Layer).

trust list
a file created by a user that contains the digital certificates for Certification
Authorities, if more than one Certification Authority is used.

70

71

Index

A
accessibility features 11
AES (Advanced Encryption Standard) 10
AES algorithm 5
algorithms 9

for client/server data transfers 14
key length for data transfers 16
SAS/SECURE 5, 9
SASProprietary 9
summary of 10

authentication
client authentication by server 20
location of digital certificate for 18

B
block cipher 9

C
Certificate Revocation List (CRL)

checking when digital certificate is validated 21
location of 22

Certificate Store
importing digital certificate to 57

certification authorities (CAs) 6
digital certificate location 17
trust lists 53, 64

client authentication
by server 20

client/server connection outcomes 15
client/server data transfers

algorithm for 14
encrypting 14
key length for algorithm 16

COM
SAS/SECURE for IOM Bridge example 39

configuration
metadata configuration 39
SAS/SECURE 5
SASProprietary 4
SSL 7

D
Data Encryption Standard (DES) 9
data transfers

algorithm for 14

encrypting 14
key length for algorithm 16

decrypting private keys 23, 24
DER format 54

Windows 59
DES algorithm 5
DES (Data Encryption Standard) 9
digital certificates 7

checking Certificate Revocation List when validating 21
converting between PEM and DER formats 54, 59
importing to Certificate Store 57
location for authentication 18
location for trusted certification authorities 17
name of issuer 18
OpenSSL under UNIX 50
OpenSSL under z/OS 62
private key location 24
requesting from Microsoft Certification Authority 56
serial number of 19
SSL under UNIX 50
SSL under Windows 56
SSL under z/OS 61
subject name of 20
viewing 53, 64

digital signatures 7

E
encoded passwords 25, 27

encoding methods 26, 30
in SAS programs 26, 28
saving to paste buffer 29

encoding
versus encryption 27

encoding methods 26, 30
encryption 3

classes of encryption strength 3
comparison of technologies 10
data transfers 14
over-disk 4
over-the-wire 4
SAS/CONNECT client under UNIX example 32
SAS/SECURE for IOM Bridge example 39
SAS/SHARE client example 32
versus encoding 27

export restrictions for SAS/SECURE 5

72 Index

I
implementation 11
importing digital certificates to Certificate Store 57
installation

SAS/SECURE 5
SASProprietary 4
SSL 7
tunneling 8

IOM Bridge
SAS/SECURE examples 39

J
Java

SAS/SECURE for IOM Bridge example 40

K
key length

for data transfer algorithm 16
keys

private 7, 23, 24
public 7

M
metadata configuration

SAS/SECURE for IOM Bridge example 39
METHOD= option

PROC PWENCODE statement 26
Microsoft Certification Authority

requesting digital certificate from 56
Microsoft CryptoAPI 5

N
NETENCRYPT system option 14
NETENCRYPTALGORITHM= system option 14
NETENCRYPTKEYLEN= system option 16

O
ODS generated PDF files 11
OpenSSL 50

arguments and values 50, 52
converting between PEM and DER formats 54, 59
creating digital certificates 62
digital certificates 50
ending 53
SSL under z/OS 62

OUT= option
PROC PWENCODE statement 26

over-disk encryption 4
over-the-wire encryption 4

P
passwords

encoding 25, 27
encoding methods 30
for decrypting private keys 23, 24

paste buffer
saving encoded passwords to 29

PDF files 11

PDF system options 11
PEM format 54
PKCS #12 DER encoding package file

password for decrypting private keys 23
PKCS #12 encoding package file

location of 22
port forwarding 8
private keys 7

location of 24
password for decrypting 23, 24

PROC PWENCODE statement 26
providers 4

SAS/SECURE 5
SASProprietary 4
SSH 7
SSL 6

public keys 7
PWENCODE procedure 25

concepts 26
encoded passwords in SAS programs 28
encoding methods 30
encoding passwords 27
encoding versus encryption 27
saving encoded passwords to paste buffer 29
syntax 25

R
RC2 algorithm 5, 9

key length for data transfer algorithm 16
RC4 algorithm 5, 9

key length for data transfer algorithm 16

S
SAS/CONNECT

client under UNIX example 32
SAS/SECURE example 32
server under UNIX example 32
SSH tunnel example 40
SSL UNIX spawner example 33
SSL Windows spawner example 35
SSL z/OS spawner example 42

SAS programs
encoded passwords in 26, 28

SAS/SECURE 5
algorithms 5, 9
comparison of technologies 10
configuration 5
export restrictions 5
installation 5
IOM Bridge examples 39
SAS/CONNECT example 32
system requirements 5
Windows and 5

SAS/SHARE
client example 32
SASProprietary example 32
server example 32
SSH tunnel example 41
SSL under UNIX example 36
SSL under Windows examples 37
SSL under z/OS example 44

SASProprietary 4
algorithms 9
comparison of technologies 10

Index 73

configuration 4
installation 4
SAS/SHARE example 32
system requirements 4

SASProprietary algorithm 9
Secure Shell

See SSH (Secure Shell)
Secure Sockets Layer

See SSL (Secure Sockets Layer)
serial number of digital certificate 19
servers

client authentication by 20
SAS/CONNECT under UNIX example 32
SAS/SHARE server example 32

software requirements
SSL under UNIX 49
SSL under Windows 55
SSL under z/OS 61

spawners
SSL SAS/CONNECT UNIX example 33
SSL SAS/CONNECT Windows example 35
SSL SAS/CONNECT z/OS example 42

SSH (Secure Shell) 7
comparison of technologies 10
system requirements 8
tunnel for SAS/CONNECT example 40
tunnel for SAS/SHARE example 41
tunneling 8
tunneling installation and setup 8

SSL (Secure Sockets Layer) 6
See also OpenSSL
comparison of technologies 10
concepts 6
configuration 7
digital certificates under UNIX 50
installation 7
name of issuer of digital certificate 18
overview 6
password for decrypting private key 23, 24
SAS/CONNECT UNIX spawner example 33
SAS/CONNECT Windows spawner example 35
SAS/CONNECT z/OS spawner example 42
SAS/SHARE under UNIX example 36
SAS/SHARE under Windows examples 37
SAS/SHARE under z/OS example 44
serial number of digital certificate 19
setting up digital certificates under Windows 56
setting up digital certificates under z/OS 61
subject name of digital certificate 20
system and software requirements under UNIX 49
system and software requirements under Windows 55
system and software requirements under z/OS 61
system requirements 6
trusted certification authorities 17

SSLCALISTLOC= system option 17
SSLCERTISS= system option 18
SSLCERTLOC= system option 18
SSLCERTSERIAL= system option 19
SSLCERTSUBJ= system option 20
SSLCLIENTAUTH system option 20
SSLCRLCHECK system option 21
SSLCRLLOC= system option 22
SSLPKCS12LOC= system option 22

SSLPKCS12PASS= system option 23
SSLPVTKEYLOC= system option 24
SSLPVTKEYPASS= system option 24
stream cipher 9
subject name of digital certificate 20
system options

PDF 11
system requirements

SAS/SECURE 5
SASProprietary 4
SSH 8
SSL 6
SSL under UNIX 49
SSL under Windows 55
SSL under z/OS 61

T
TLS (Transport Layer Security) 6
TripleDES algorithm 5, 9
trust lists 53, 64
trusted certification authorities (CAs)

digital certificate location 17
tunneling 8

installation and setup 8
SSH for SAS/CONNECT example 40
SSH for SAS/SHARE example 41

U
UNIX

converting between PEM and DER formats 54
creating a digital certificate request 50
digital certificates for SSL 50
OpenSSL under 50
SAS/CONNECT client example 32
SAS/CONNECT server example 32
SSL SAS/CONNECT spawner example 33
SSL SAS/SHARE example 36
SSL system and software requirements 49
SSL under 49

W
Windows

converting between PEM and DER formats 59
digital certificates for SSL 56
SAS/SECURE and 5
SSL SAS/CONNECT spawner example 35
SSL SAS/SHARE examples 37
SSL system and software requirements 55

Z
z/OS

creating digital certificates 62
digital certificates 61
setting up digital certificates for SSL 61
SSL SAS/CONNECT spawner example 42
SSL SAS/SHARE example 44
SSL system and software requirements 61
SSL under 61

Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview
	General Enhancements

	Encryption in SAS 9.2
	Technologies for Encryption
	Encryption: Overview
	Providers of Encryption
	SASProprietary
	SAS/SECURE
	Secure Sockets Layer (SSL)
	SSH (Secure Shell)

	Encryption Algorithms
	Encryption: Comparison
	Encryption: Implementation
	Accessibility Features in SAS Products
	Encrypting ODS Generated PDF Files

	SAS System Options for Encryption
	The PWENCODE Procedure
	Overview: PWENCODE Procedure
	Syntax: PWENCODE Procedure
	Concepts: PWENCODE Procedure
	Using Encoded Passwords in SAS Programs
	Encoding versus Encryption

	Examples: PWENCODE Procedure

	Encryption Technologies: Examples
	SAS/SECURE for SAS/CONNECT: Example
	SAS/CONNECT Client under UNIX
	SAS/CONNECT Server under UNIX

	SASProprietary for SAS/SHARE: Example
	SAS/SHARE Client
	SAS/SHARE Server

	SSL for a SAS/CONNECT UNIX Spawner: Example
	Startup of a UNIX Spawner on a SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a UNIX Spawner

	SSL for a SAS/CONNECT Windows Spawner: Example
	Startup of a Windows Spawner on a Single-User SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/CONNECT Server

	SSL for SAS/SHARE under UNIX: Example
	Startup of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	SSL for SAS/SHARE under Windows: Examples
	Startup of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	SAS/SECURE for the IOM Bridge: Examples
	IOM Bridge Encryption Configuration
	IOM Bridge for SAS Clients: Metadata Configuration
	IOM Bridge for COM: Configuration in Code
	IOM Bridge for Java: Configuration in Code

	SSH Tunnel for SAS/CONNECT: Example
	Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a UNIX Spawner on a SAS/CONNECT Server

	SSH Tunnel for SAS/SHARE: Example
	Start-up of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	SSL for a SAS/CONNECT z/OS Spawner: Example
	Startup of a z/OS Spawner on a SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a z/OS Spawner

	SSL for SAS/SHARE under z/OS: Example
	Startup of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	Installing and Configuring SSL
	Installing and Configuring SSL under UNIX
	SSL under UNIX: System and Software Requirements
	Setting Up Digital Certificates for SSL under UNIX
	Step 1. Download and Build SSL
	Step 2. Create a Digital Certificate Request
	Step 3. Generate a Digital Certificate from the Request
	Step 4. View Digital Certificates
	Step 5. End OpenSSL
	Step 6. Create a CA Trust List for the SSL Client Application

	Converting between PEM and DER File Formats for SSL

	Installing and Configuring SSL under Windows
	SSL under Windows: System and Software Requirements
	Setting Up Digital Certificates for SSL under Windows
	Step 1. Configure SSL
	Step 2. Request a Digital Certificate

	Converting between PEM and DER File Formats for SSL

	Installing and Configuring SSL under z/OS
	SSL under z/OS: System and Software Requirements
	Setting Up Digital Certificates for SSL under z/OS
	Step 1. Authorize Access to the RACDCERT Command
	Step 2. Create the Digital Certificate for the CA
	Step 3. Create the Server and Client Digital Certificates
	Step 4. View Digital Certificates
	Step 5. Create a CA Trust List for the SSL Client Application

	Glossary
	Index

