
SAS® Component 
Language 9.2 
Reference



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008.
SAS ® Component Language 9.2: Reference. Cary, NC: SAS Institute Inc.

SAS® Component Language 9.2: Reference
Copyright © 2008, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-984-1
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
2nd electronic book, March 2009

1st printing, March 2008
2nd printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.



Contents

P A R T 1 SCL Fundamentals 1

Chapter 1 � Introduction 3
Introduction to SCL 3

SCL Elements 3

Entering SCL Code 4

Compiling SCL Programs 4

Testing SCL Applications 5

Debugging SCL Programs 6

Saving SCL Programs 6

Optimizing the Performance of SCL Code 6

Using Other SAS Software Features in SCL Programs 7

SCL Compatibility Issues 7

Chapter 2 � The Structure of SCL Programs 9
Introduction to SCL Program Structure 9

Using Labeled Sections in SCL Programs 10

Defining Classes in SCL Programs 12

Defining and Using Methods in SCL Programs 13

USECLASS Blocks in SCL Programs 14

Defining Interfaces in SCL Programs 14

Using Macros in SCL Programs 15

Chapter 3 � SCL Fundamentals 17
Introduction to SCL Fundamentals 18

SCL Data Types 18

Names in SCL 21

SCL Keywords 22

SCL Variables 22

SCL Constants 26

SCL Operators 28

SCL Expressions 31

SCL Statements 32

SCL Comments 33

SCL Functions 34

SCL CALL Routines 34

Passing Arguments to SCL Functions and CALL Routines 34

Rules for SCL Statements 36

Chapter 4 � SCL Arrays 37
Introduction to SCL Arrays 37



iv

Declaring Arrays in SCL Programs 37

Referencing Array Elements in SCL Programs 38

Initializing the Elements of a Static Array in SCL Programs 39

Creating and Initializing Dynamic Arrays in SCL Programs 40

Resizing Dynamic Arrays in SCL Programs 41

Using Array Functions with Dynamic Arrays in SCL Programs 42

Copying Elements from One Array to Another in SCL Programs 42

Repeating an Action for Variables in an Array in SCL Programs 44

Passing Dynamic Arrays to Methods in SCL Programs 45

Returning Arrays from Methods in SCL Programs 46

Deleting Dynamic Arrays in SCL Programs 46

Using Temporary Arrays to Conserve Memory in SCL Programs 47

Chapter 5 � SCL Lists 49
Introduction to SCL Lists 49

Creating Data Dynamically in SCL 50

Identifying SCL Lists 50

Creating New SCL Lists 50

Initializing the Values in an SCL List 53

Manipulating SCL Lists 54

Determining the Type of an SCL List Item 55

Passing SCL Lists as Arguments for Methods 55

Inserting and Replacing Items in SCL Lists 55

Retrieving Values from SCL Lists 56

Deleting Lists and List Items from SCL Lists 56

Referencing SCL List Items by Index Number 57

Accessing Items Relative to the End of an SCL List 57

Index Errors in SCL Lists 57

Implementing SCL Sublists and Nested Structures 57

Assigning Names to SCL List Items 62

Using SCL Lists in Shared Data Environments 64

Using SCL Lists as Stacks and Queues 65

Assigning Attributes to SCL Lists and List Items 66

Using SCL List File Functions 66

Debugging SCL Lists 66

Chapter 6 � Controlling Program Flow 69
Introduction to SCL Program Flow 69

Using SCL DO Loops 70

Using SCL SELECT-WHEN/OTHERWISE Conditions 74

Using SCL IF-THEN/ELSE Conditions 76

Using the SCL RETURN Statement 76

Branching to a Labeled Section (LINK) in SCL Programs 77

Branching to Another Entry (GOTO) in SCL Programs 77

Calling SCL Entries 78



v

Stopping Execution of the Current Section in SCL Programs 78

Executing Methods in SCL Programs 79

Using the SCL CONTROL Statement 79

Chapter 7 � Using SCL with Other SAS Software Products 81
Introduction to Using SCL with SAS 81

Using SAS DATA Step Features in SCL Programs 82

Submitting SAS Statements and SQL Statements in SCL Programs 85

Submitting Statements Compared to Using SCL Features 85

Designating Submit Blocks in SCL Programs 85

How Submit Blocks Are Processed in SCL Programs 86

How Submitted Statements Are Formatted in SCL Programs 87

Modifying the Behavior of Submit Blocks in SCL Programs 87

Substituting Text in Submit Blocks in SCL Programs 89

Issuing Commands to Host Operating Systems from SCL Programs 91

Using Macro Variables in SCL Programs 91

SCL and DATA Step Graphics Interface Elements 93

P A R T 2 Developing Object-Oriented Applications 95

Chapter 8 � SAS Object-Oriented Programming Concepts 97
Introduction to Object-Oriented Programming 98

Object-Oriented Programming and the SAS Component Object Model 99

Classes 100

Methods 104

Attributes 120

Accessing Object Attributes and Methods with Dot Notation 124

Events and Event Handlers 130

Interfaces 134

Converting Version 6 Non-Visual Classes to SCOM Classes 137

Chapter 9 � Example: Creating An Object-Oriented Application in SCL 143
Introduction to the SCL Tutorial 143

Simple Class Syntax in SCL 143

Creating a Data Set Class in SCL 144

Extending Classes in SCL 148

Interfaces and Higher Levels of Abstraction 152

Other Classes and Further Abstraction 154

The SCL USECLASS Statement 156

Using SCL Class Syntax with SAS/AF Software 158

P A R T 3 Application Considerations 161

Chapter 10 � Handling Exceptions 163
Introduction to SCL Exception Handling 163

Using the SCL programHalt Handler 163



vi

Handling SCL Exceptions with CATCH and THROW 165

Chapter 11 � Using SAS Tables 173
Introduction to Using SAS Tables in SCL Programs 173

Accessing SAS Tables in SCL Programs 174

Assigning Librefs in SCL Programs 174

Opening SAS Tables in SCL Programs 174

SAS Tables and the SCL Data Vector 175

Reading SAS Tables in SCL Programs 177

Controlling Access to SAS Table Rows in SCL Programs 179

Changing the Sequence of Reading Rows in SCL Programs 181

Updating SAS Tables in SCL Programs 181

Closing SAS Tables in SCL Programs 183

Determining Attributes of SAS Tables and Columns in SCL Programs 183

Performing Other SAS Table Operations in SCL Programs 184

Preserving the Integrity of Table Data in SCL Programs 185

Manipulating SAS Table Indexes in SCL Programs 186

Chapter 12 � Using External Files 187
Introduction to Using External Files in SCL Programs 187

Accessing External Files in SCL Programs 188

Assigning Filerefs in SCL Programs 188

Opening Files in SCL Programs 189

File Data Buffers and SCL Data Vectors 190

Reading Values from External Files in SCL Programs 190

Modifying External Files in SCL Programs 192

Closing Files in SCL Programs 193

Changing the Sequence of Reading Records in SCL Programs 193

Other Ways SCL Interacts with External Files 193

Reading and Modifying Files in the Same Directory with SCL 194

P A R T 4 Reference 197

Chapter 13 � SAS Component Language Dictionary 199
SCL Elements by Category 200

Chapter 14 � The SCL Debugger 753
Overview of SCL Debugger Features and Capabilities 753

Establishing the SCL Debugging Environment 754

Invoking the SCL Debugger 755

Using the SCL Debugger Windows 755

Using SAS Macros with the SCL Debugger 756

SCL Debugger Commands by Functional Category 757

Chapter 15 � SAS System Return Codes 791
Introduction to SAS System Return Codes 791



vii

Using SAS System Return Codes 791

Testing for a Particular Error or Warning Condition 792

Mnemonics for SAS System Return Codes 793

P A R T 5 Appendices 801

Appendix 1 � Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 803

Appendix 2 � Image File Types and Associated Attributes 845
File Types 845

Attributes for Reading Image Files 847

Attributes for Writing Image Files 849

Attributes for Reading Images from TWAIN Scanners 853

Appendix 3 � Recommended Reading 855
Recommended Reading 855

Glossary 857

Index 867



viii



1

P A R T1

SCL Fundamentals

Chapter 1. . . . . . . . . .Introduction 3

Chapter 2. . . . . . . . . .The Structure of SCL Programs 9

Chapter 3. . . . . . . . . .SCL Fundamentals 17

Chapter 4. . . . . . . . . .SCL Arrays 37

Chapter 5. . . . . . . . . .SCL Lists 49

Chapter 6. . . . . . . . . .Controlling Program Flow 69

Chapter 7. . . . . . . . . .Using SCL with Other SAS Software Products 81



2



3

C H A P T E R

1
Introduction

Introduction to SCL 3
SCL Elements 3

Entering SCL Code 4

Compiling SCL Programs 4

Compiling Your SCL Program Interactively 4

Compiling Your SCL Program in Batch 5
The SCL Data Vector 5

Testing SCL Applications 5

Debugging SCL Programs 6

Saving SCL Programs 6

Optimizing the Performance of SCL Code 6

Using Other SAS Software Features in SCL Programs 7
SCL Compatibility Issues 7

Introduction to SCL
SAS Component Language (SCL) is a programming language designed to facilitate

the development of interactive applications using the SAS System. For example, you
can use SCL with other SAS software to create data entry applications, to display
tables and menus, and to generate and submit SAS source code. SCL is the scripting
language behind SAS/AF, SAS/FSP, and SAS/EIS software. Applications developed
using SCL with SAS/AF software can be run by users who have only licensed Base SAS
software. Previous to Version 7, SAS Component Language was known as SAS Screen
Control Language.

SCL Elements
SAS Component Language has statements, functions, CALL routines, operators,

expressions, and variables—elements that are common to the Base SAS language and
to many other programming languages. If you have experience writing DATA or PROC
steps in the Base SAS language, the basic elements of SCL are familiar to you. For
example, in SCL programs, you can use DO loops, IF-THEN/ELSE statements,
comparison operators such as EQ and LT, and SAS macros.

SCL provides additional statements, functions, and other features that make it easy
to create object-oriented, interactive applications. For example, SCL provides CLASS
and INTERFACE statements that enable you to define classes and interfaces to those
classes. You can use dot notation to access an object’s attributes directly and to invoke
methods instead of using the SEND and NOTIFY routines.



4 Entering SCL Code � Chapter 1

Chapter 2, “The Structure of SCL Programs,” on page 9 describes the organization of
an SCL application. Chapter 3, “SCL Fundamentals,” on page 17 describes the basic
elements of SCL and the rules that you must follow to put these elements together in a
program. Chapter 6, “Controlling Program Flow,” on page 69 describes the statements
and other features that you can use to control the flow of your application.

Entering SCL Code
You can enter your SCL code in four ways:
� In the SAS Explorer, select the catalog where you want to store your SCL code,

and select File � New... � SCL Program
� Issue the BUILD command followed by the name of the entry that you want to edit:

BUILD libref.catalog.entry.SCL

� In the Build window for the frame, select View � Frame SCL
� In the Build window for the program screen, selectTools � Source Window

Compiling SCL Programs
You must compile SCL programs before testing or executing an application. The

SCL compiler translates your SCL application into an intermediate form that can be
executed by the SCL interpreter. In the process of translating your application, the
compiler identifies any syntax errors that are present. You should correct these errors
and compile the code again until the program compiles without errors. If there are
errors in the program, then no intermediate code is produced, and running the entry
produces a message stating that the entry has no code.

The compiler produces a list of errors, warnings, and notes in the Log window. A
program that compiles with no errors or warnings produces a message like the
following in the message line of the Source window:

NOTE:
Code generated for SALES.FRAME. Code size=2649.

Compiling Your SCL Program Interactively
Note: You must save frames before you can compile them. �

You can compile frames, program screens, and SCL programs by issuing the
COMPILE command in the Build window or by selecting Compile from the pull-down
menus. In the Build window for frames or SCL programs, select Build � CompileIn
the Build window for program screens, selectRun � Compile

You can also compile FRAME, PROGRAM, and SCL entries from the SAS Explorer.
If your SCL code is associated with a frame or a program screen, then you must compile
the FRAME or PROGRAM entry in order for the associated code to be compiled
correctly. The SCL code is compiled when you compile the FRAME or PROGRAM entry.
If your SCL code is not associated with a FRAME or PROGRAM entry, then you
compile the SCL entry. To compile an entry from the Explorer, select the entry, then
select Compile from the pop-up menu.

If you compile a FRAME or PROGRAM entry that does not have any associated SCL
code, the SCL compiler displays an error message.



Introduction � Testing SCL Applications 5

Compiling Your SCL Program in Batch
To compile your SCL application in batch, run PROC BUILD with the COMPILE

option:

PROC BUILD CATALOG=libref.catalog BATCH;

COMPILE <ENTRYTYPE=entry-type>;

RUN;

The default entry type is PROGRAM. If you do not specify an entry-type, then all
PROGRAM, FRAME, and SCL entries in the catalog are compiled. All PROGRAM,
FRAME, and SCL entries in an application must be compiled before the application can
be executed.

If you compile a frame in batch, and the compiler cannot find the associated SCL
source, the frame will not compile.

The SCL Data Vector
Compiling an SCL program opens a temporary storage area called the SCL data

vector (SDV). The SDV holds the values of all window, nonwindow, and system
variables that are used in the application.* Areas in the SDV are created automatically
for system variables as well as for window variables for all controls in the application
window, even if the variables are not used in the SCL program. Figure 1.1 on page 5
shows the SDV for an application that uses the window variables NAME, HEIGHT,
AGE, and WEIGHT and the nonwindow variables HFACTOR and WFACTOR.

Figure 1.1 SCL Data Vector for a Typical Application

Testing SCL Applications
After an SCL program compiles successfully, you can test it. For catalog entries that

use the TESTAF, AF, or AFA command, you can issue the command from either the
Source window or the Display window. You must use the AF or AFA command if a
program contains SUBMIT statements, or if you are testing a FRAME entry that is in a
library accessed with SAS/SHARE software. It is recommended that you issue the
SAVE command before issuing the AF or AFA command.

* The SDV is similar to the program data vector (PDV) that is created by base SAS software when it compiles a DATA step.
The program data vector holds the values of the variables that are defined in the DATA step.



6 Debugging SCL Programs � Chapter 1

SCL programs for FSEDIT and FSVIEW applications run when you return to the
FSEDIT or FSVIEW window.

Debugging SCL Programs

SCL includes an interactive debugger for monitoring the execution of SCL programs.
The debugger enables you to locate logical errors while a program is executing. To use
the debugger, issue the DEBUG ON command before compiling. Then either use the
TESTAF command or use the AF or AFA command with the DEBUG=YES option to
run the entry under the debugger. To deactivate the SCL debugger, issue the DEBUG
OFF command followed by the COMPILE command. For more information about the
SCL debugger, see Chapter 14, “The SCL Debugger,” on page 753.

Saving SCL Programs

After you create an SCL program, use the SAVE command to save it. You should
also use SAVE /ALL to save the entry before issuing a TESTAF command if the entry
uses CALL DISPLAY to call itself. Also be sure to save all other open entries before
issuing a TESTAF command so that CALL DISPLAY and method calls will execute the
most recent versions of your SAS/AF entries.

Optimizing the Performance of SCL Code

You can optimize the performance of SCL programs in your applications with the
SCL analysis tools.

The following table lists the available tools and provides information about when you
might want to use each tool.

Use the... when you want to...

Coverage Analyzer monitor an executing application and access a
report that shows which lines of SCL code are
not executed during testing.

List Diagnostic Utility monitor an executing application and access
reports on the use of SCL lists, including any
lists that are left undeleted.

Performance Analyzer monitor an executing application and identify
any bottlenecks in the application’s SCL code.

Static Analyzer access reports that detail SCL code complexity;
variable, function, method and I/O usage; and
error and warning messages.

To display a menu of the SCL analysis tools, enter sclprof at the command prompt.
For detailed information about using these tools, see the SAS/AF online Help.



Introduction � SCL Compatibility Issues 7

Using Other SAS Software Features in SCL Programs

SCL supports most of the features of the Base SAS language. Some Base SAS
features are directly supported by SCL. Other Base SAS features have equivalent
features in SCL, although there may be small differences in functionality. For example,
the IN operator in SCL, returns the index of the element if a match is found rather
than a 1 (true).

Chapter 13, “SAS Component Language Dictionary,” on page 199 provides entries for
elements that have different functionality in SCL programs. The differences are
summarized in “Using SAS DATA Step Features in SCL Programs” on page 82.

Although SCL does not provide an equivalent for every command that is available
under your operating system, it does provide features that interact directly with SAS
software and with host operating systems. For example, you can use the SUBMIT
statement to access other features of SAS software, and you can use the SYSTEM
function to issue host operating system commands. SCL also supports the SAS macro
facility. For more information about these features, see Chapter 7, “Using SCL with
Other SAS Software Products,” on page 81.

SCL Compatibility Issues

The following are notable compatibility issues between Version 8 (and later) and
earlier versions or releases.

ACCESS routine
The functionality of ACCESS is available through the CALL BUILD routine. Both
ACCESS and BUILD now open the Explorer window. Old programs that use
ACCESS will still work, although the TYPE and MODE parameters are not
supported from the Explorer window. Using BUILD for new programs is
recommended because it provides additional functionality.

CALC routine
The CALL CALC routine is not supported in Version 7.

CARDS statement
The DATA step statement DATALINES replaces the CARDS statement.

CATALOG function
The functionality of CATALOG is now available through the CALL BUILD
routine. Like CATALOG, BUILD opens the Explorer window when a catalog is
specified as the first parameter. Old programs with the CATALOG function will
still run, although the SHOWTYPE and PMENU parameters are not supported
from the Explorer window. Using BUILD for new programs is recommended
because it provides additional functionality.

CATLIST, DIRLIST, and FILELIST, and IVARLIST functions
Version 7 tables may contain mixed-case names. If any existing application relies
on one of these functions to return an uppercased name, you may need to modify
the application. See Chapter 13, “SAS Component Language Dictionary,” on page
199 for more information.

CATLIST, DIRLIST, FILELIST, and LIBLIST windows
These windows have been replaced with host selector windows in which the
AUTOCLOSE option will now be ignored.



8



9

C H A P T E R

2
The Structure of SCL Programs

Introduction to SCL Program Structure 9
Using Labeled Sections in SCL Programs 10

Reserved Labels 10

Window Variable Sections 11

Correcting Errors in Window Variables 12

Defining Classes in SCL Programs 12
Defining and Using Methods in SCL Programs 13

Defining Method Blocks 13

Calling a Method That Is Stored in an SCL Entry 13

USECLASS Blocks in SCL Programs 14

Defining Interfaces in SCL Programs 14

Using Macros in SCL Programs 15
Example 15

Introduction to SCL Program Structure

An SCL application consists of one or more SCL entries. These SCL entries can
contain the following types of modules:

� labeled sections

� CLASS blocks

� METHOD blocks

� USECLASS blocks

� INTERFACE blocks

� macros.

For example, an SCL program may consist of only one labeled section, or it may
contain two labeled sections, a METHOD block, and a couple of macros. A complex
program may contain several CLASS, METHOD, USECLASS, and INTERFACE blocks.

Some types of modules can be stored together in one SCL entry, but others cannot.
One SCL entry may contain any one of the following:

� one or more labeled sections and/or one or more macros

� one CLASS block, which may also contain one or more METHOD blocks

� one INTERFACE block

� one or more USECLASS blocks, each of which may contain one or more METHOD
blocks

� one or more METHOD blocks (that are not contained within a CLASS or
USECLASS block).



10 Using Labeled Sections in SCL Programs � Chapter 2

In strictly object-oriented applications, METHOD blocks are contained within
CLASS or USECLASS blocks. If your application is not a strictly object-oriented
application, you can save METHOD blocks by themselves in SCL entries.

Object-oriented applications use CLASS, METHOD, USECLASS, and INTERFACE
blocks extensively. For information about designing and implementing object-oriented
applications see SAS Guide to Applications Development in addition to the information
contained in this documentation.

Using Labeled Sections in SCL Programs
SCL programs execute in phases, such as the initialization phase and the

termination phase. During each phase, control of the entry can pass to a different
segment of an SCL program. The segments of the program are identified by labels; that
is, the SCL program is divided into labeled sections.

Labeled sections are program segments that are designed to be called only within the
program in which they are defined. Labeled sections begin with a label and end with a
RETURN statement. A label may be one of the reserved labels such as INIT or MAIN;
it may correspond to a field name, window-variable name, or object name in your
application; or it may simply identify a module that is called repetitively, such as a
module that sorts data.

Labeled sections are a good solution when you are working within one SCL program
because they can help divide the program into smaller, simpler pieces.

For example, the following SCL program contains an INIT section that is executed
before the application window is displayed; two sections that correspond to window
variables, NAME and ADDRESS; and a MAIN section that is executed each time the
user updates a field in the window.

init:
...some SCL statements...
return;

name:
...some SCL statements...
return;

address:
...some SCL statements...
return;

main:
...some SCL statements...
return;

Reserved Labels
There are five reserved labels:

FSEINIT
An FSEINIT section, which is valid in FSEDIT and FSBROWSE applications only,
contains any statements that are needed to initialize the application. These
statements are executed one time only when the user invokes the FSEDIT or
FSBROWSE procedure and before the first row is displayed.



The Structure of SCL Programs � Window Variable Sections 11

INIT
The INIT section is executed before the application window is displayed to the
user. Typically, you use the INIT section to initialize variables, to import values
through macro variables, to open tables, and to define initial messages to display
when the window is opened. In FSEDIT and FSBROWSE applications, as well as
Data Table and Data Form controls, the INIT section is executed before each SAS
table row is displayed.

MAIN
The MAIN section is executed each time the user modifies a field in the window
and presses ENTER.

TERM
The TERM section is executed when the user issues the END command. You
might use the TERM section to close tables, to export values of macro variables,
and to construct and submit statements for execution. In FSEDIT applications,
Data Table controls, and Data Form controls, the TERM section is executed after
each SAS table row is displayed, provided that the MAIN section has been
executed for the row.

FSETERM
The FSETERM section is valid in FSEDIT applications only. This section executes
once after the user issues the END command and terminates the FSEDIT
procedure.

In FSVIEW applications, you write individual formulas consisting of one or more
lines of SCL code for each computed variable, rather than complete SCL programs.
These formulas are stored in FORMULA entries. The FSVIEW procedure automatically
adds a label before the formula and a RETURN statement after the formula. The label
is the same as the name of the variable whose value you are calculating.

An SCL program for FSEDIT or FSBROWSE applications must contain at least one
of the following reserved labels: INIT, MAIN, or TERM. If a program does not include
at least one of these three reserved labels, the procedure never passes control to your
SCL program. If a program does not contain all three of these reserved labels, you get
one or more warning messages when you compile the program.

The FSEINIT and FSETERM labels are optional. The compiler does not issue any
warnings if these labels are not present.

Neither SCL programs for FRAME entries nor programs in SCL entries that contain
method block definitions require any reserved sections.

For more information about the FSVIEW, FSEDIT, and FSBROWSE procedures, see
SAS/FSP Procedures Guide. For more information about FRAME applications, see
SAS Guide to Applications Development.

Window Variable Sections
SCL provides a special type of labeled section, called a window variable section, that

automatically executes when a user takes an action in a particular control or field. For
example, window variable sections might be used to verify values that users enter in
controls or fields. An SCL program can include labeled sections for any number of
window variables.

The sequence for executing window variable sections is determined by the physical
position of the window element. Window variable sections execute sequentially for each
window element, from left to right and from top to bottom. A window variable section
must be labeled with the name of the associated window variable. For more information
about window variables, see SAS Guide to Applications Development.



12 Defining Classes in SCL Programs � Chapter 2

Correcting Errors in Window Variables
To correct an error in a window variable, you can allow users to correct the error in

the window, or you can include a CONTROL ERROR statement along with statements
in the window variable section that make a correction, as shown in the following
example:

INIT:
control error;

return;

Name:
if error(Name) then do;

erroroff Name;
Name=default-value-assigned-elsewhere;
_msg_=

’Value was invalid and has been reset.’;
end;

return;

Using a window variable section in this manner reduces overhead because the
program’s MAIN section executes only after the window variable sections for all
modified window variables have executed correctly.

If a program also uses CONTROL ERROR, CONTROL ALWAYS, or CONTROL
ALLCMDS, then the MAIN section executes after the window variable sections even if
an error has been introduced. For more information about the CONTROL statement,
see “CONTROL” on page 279.

Defining Classes in SCL Programs
Classes define data and the operations that you can perform on that data. You

define classes with the CLASS statement. For example, the following code defines a
class, Simple, that defines an attribute named total and implements a method named
addNums:

Example Code 2.1 Example Class Definition

class Simple;
public num total;

addNums: public method n1:num n2:num return=num;
total=n1+n2;
return(total);

endmethod;

endclass;

The CLASS statement does not have to implement the methods. The methods may
be only declared. For example:

class Simple;
public num total;

addNums: public method n1:num n2:num return=num
/ (scl=work.a.simMeth.scl’);

endclass;



The Structure of SCL Programs � Calling a Method That Is Stored in an SCL Entry 13

The code to implement the method is contained in work.a.simMeth.scl (see Example
Code 2.2 on page 14).

For more information about defining and using classes, see Chapter 8, “SAS
Object-Oriented Programming Concepts,” on page 97; Chapter 9, “Example: Creating
An Object-Oriented Application in SCL,” on page 143; and “CLASS” on page 253.

Defining and Using Methods in SCL Programs
Methods define operations that you can perform on data. Methods are defined with

the METHOD statement. Methods can be implemented in CLASS blocks or in
USECLASS blocks. In addition, if you are not designing a strictly object-oriented
application, they can be stored in separate SCL entries.

Storing method implementations in SCL entries enables you to write methods that
perform operations that are common to or shared by other applications. You can call the
methods from any SAS/AF application.

For more information about defining and using methods in CLASS and USECLASS
blocks, see Chapter 8, “SAS Object-Oriented Programming Concepts,” on page 97 and
Chapter 9, “Example: Creating An Object-Oriented Application in SCL,” on page 143.

Defining Method Blocks
To define a method, use the METHOD statement. For example, the METHOD

statement in Example Code 2.1 on page 12 defines the public method addNums, which
takes two numeric parameters, adds them, and returns the total.

Note: Do not include window-specific statements or functions (for example, the
PROTECT and CURSOR statements and the FIELD and MODIFIED functions) in
method blocks that are stored in independent SCL entries. SCL entries that contain
window-specific statements or functions will not compile independently. They must be
compiled in conjunction with the associated FRAME entry. �

When you want to pass parameters between an SCL program and a method block,
you use the same principles as when you are passing parameters between a CALL
DISPLAY statement and an ENTRY statement. Unless the REST=, ARGLIST=, or
OPTIONAL= option is used in the METHOD statement, the parameter list for the
METHOD statement and the argument list for the associated ENTRY statement must
agree in the following respects:

� The number of parameters passed by the METHOD statement must equal the
number of arguments received by the ENTRY statement.

� The position of each parameter in the METHOD statement must be the same as
the position of the corresponding argument in the ENTRY statement.

� Each parameter in the METHOD statement and its corresponding argument in
the ENTRY statement must have the same data type.

The parameters and arguments do not have to agree in name. For more information,
see “METHOD” on page 539 and “ENTRY” on page 351.

Calling a Method That Is Stored in an SCL Entry
If the method module is stored in a PROGRAM entry or SCREEN entry, then you

must use a LINK or GOTO statement to call it. Although parameters cannot be passed
with LINK or GOTO statements, you can reference global values in those statements.



14 USECLASS Blocks in SCL Programs � Chapter 2

If the module is an SCL entry, then call the method module with a CALL METHOD
routine. The CALL METHOD routine enables you to pass parameters to the method.
For example, a program that needs to validate an amount can call the AMOUNT
method, which is stored in METHDLIB.METHODS.VALIDATE.SCL:

call method(’methdlib.methods.validate.scl’,
’amount’,amount,controlid);

After the method module performs its operations, it can return modified values to the
calling routine.

If the method module is stored in the SCL entry that is associated with the FRAME
entry, then you must compile the SCL entry as a separate entity from the FRAME
entry in addition to compiling the FRAME entry.

For more information about the CALL METHOD routine, see “METHOD” on page
537.

USECLASS Blocks in SCL Programs

USECLASS blocks contain method blocks. A USECLASS block binds the methods
that are implemented within it to a class definition. This binding enables you to use the
attributes and methods of the class within the methods that are implemented in your
USECLASS block. However, your USECLASS block does not have to implement all of
the methods defined in the class.

For example, the USECLASS block for the class defined in “Defining Classes in SCL
Programs” on page 12 would be stored in work.a.simMeth.scl and would contain the
following code:

Example Code 2.2 USECLASS Block for the addNums Method

useclass simple.class;
addNums: public method n1:num n2:num return=num;

total=n1+n2;
return(total);

endmethod;
enduseclass;

Using USECLASS blocks to separate the class definition from the method
implementations enables multiple programmers to work on method implementations
simultaneously.

For more information, see Chapter 8, “SAS Object-Oriented Programming Concepts,”
on page 97; “The SCL USECLASS Statement” on page 156; and “USECLASS” on page
715.

Defining Interfaces in SCL Programs

Interfaces are groups of method declarations that enable classes to possess a
common set of methods even if the classes are not related hierarchically. Interfaces are
especially useful when you have several unrelated classes that perform a similar set of
actions. These actions can be declared as methods in an interface, and each associated
class can provide its own implementation for each of the methods. In this way,
interfaces provide a form of multiple inheritance.



The Structure of SCL Programs � Example 15

For more information about defining and using interfaces, see Chapter 8, “SAS
Object-Oriented Programming Concepts,” on page 97; Chapter 9, “Example: Creating
An Object-Oriented Application in SCL,” on page 143; and “INTERFACE” on page 478.

Using Macros in SCL Programs

You can use the SAS macro facility to define macros and macro variables for your
SCL program. That is, you can use SAS macros and SAS macro variables that have
been defined elsewhere in the SAS session or in autocall libraries. You can then pass
parameters between macros and the rest of your program. In addition, macros can be
used by more than one program. However, macros can be more complicated to maintain
than the original program segment because of the symbols and quoting that are
required.

If a macro is used by more than one program, you must keep track of all the
programs that use the macro so that you can recompile all of them each time the macro
is updated. Because SCL is compiled (rather than interpreted like the SAS language),
each SCL program that calls a macro must be recompiled whenever that macro is
updated in order to update the program with the new macro code.

Macros and macro variables in SCL programs are resolved when you compile the
SCL program, not when a user executes the application. However, you can use the
SYMGET and SYMGETN functions to retrieve the value of a macro variable or to store
a value in a macro variable at execution time, and you can use the SYMPUT and
SYMPUTN functions to create a macro variable at execution time. For more
information, see “Using Macro Variables in SCL Programs” on page 91.

Note: Macros and macro variables within submit blocks are not resolved when you
compile the SCL program. Instead, they are passed with the rest of the submit block to
SAS software when the block is submitted. For more information about submit blocks,
see “Submitting SAS Statements and SQL Statements in SCL Programs” on page 85. �

Note: Using macros does not reduce the size of the compiled SCL code. Program
statements that are generated by a macro are added to the compiled code as if those
lines existed at that location in the program. �

Example
The following code defines two macros, VALAMNT and RATEAMNT, that validate

values entered in two text entry controls, Amount and Rate.

%macro valamnt;
if amount.text < 0 or amount.text > 500 then do;

amount._erroron();
_msg_=’Amount must be between $0 and $500.’;
stop;

end;
else amount._erroroff();

%mend;
%macro rateamnt;
if rate.text < 0 or rate.text > 1 then do;

rate._erroron();
_msg_=’Rate must be between 0 and 1.’;
stop;

end;



16 Example � Chapter 2

else rate._erroroff();
%mend;

To use these two macros, create a frame that contains two Text Entry controls,
Amount and Rate. Set the dataType attribute for each control to Numeric. Use the
following code in the frame SCL:

INIT:
control error;
amount.text=0;
rate.text=.5;

return;

MAIN:
payment=amount*rate;
put payment=;

return;

AMOUNT:
%valamnt

return;

RATE:
%rateamnt

return;



17

C H A P T E R

3
SCL Fundamentals

Introduction to SCL Fundamentals 18
SCL Data Types 18

Declaring Data Types 18

Numeric (NUM) Variables 18

Character (CHAR) Variables 19

Lists 19
Objects 19

Specific Objects (CLASS and INTERFACE) 20

Generic OBJECTs 20

Specifying the Object Type at Run Time 20

Names in SCL 21

SCL Keywords 22
SCL Variables 22

Window Variables 22

Name 22

Data Type 23

Length 23
Nonwindow Variables 23

Name 23

Data Type 23

Length 23

Scope 24
System Variables 24

SCL Constants 26

Numeric Constants 26

Character Constants 27

Numeric-to-Character Conversion 27

SCL Operators 28
Arithmetic Operators 28

Comparison Operators 28

Colon Modifier 29

IN Operator 29

Logical (Boolean) Operators 30
AND Operator 30

OR Operator 31

NOT Operator 31

SCL Expressions 31

Boolean Numeric Expressions 32
Using Functions in Expressions 32

SCL Statements 32

Executable and Declarative Statements 33



18 Introduction to SCL Fundamentals � Chapter 3

The Assignment Statement 33
SCL Comments 33

SCL Functions 34

SCL CALL Routines 34

Passing Arguments to SCL Functions and CALL Routines 34

Input, Output, and Update Parameters 35
Rules for SCL Statements 36

Introduction to SCL Fundamentals
Like any language, SAS Component Language has its own vocabulary and syntax.

An SCL program consists of one or more SCL statements, which can include keywords,
expressions, constants, and operators.

To be more consistent with database management terminology, SCL now uses the
terms table, row, and column in place of data set, observation, and variable. However,
you may still encounter the old terms in some SAS products and documentation.

SCL Data Types
SCL has the following data types:
� NUM
� CHAR
� LIST
� generic OBJECT
� specific object (CLASS or INTRFACE).

Declaring Data Types
You can use the DECLARE statement for declaring any type of SCL variable. You

can use the LENGTH statement for declaring numeric and character variables.
You can also declare data types when you use the ENTRY and METHOD statements.

In these statements, you must specify a colon before a named data type; with an
unnamed data type, (for example, $), the colon is optional. For example:

ENTRY: name :$20
location $20
zipcode :num
mybutton :mylib.mycat.button.class
return=char;

For details, see “DECLARE” on page 309, “LENGTH” on page 505, “ENTRY” on page
351, and “METHOD” on page 539.

Numeric (NUM) Variables
Numeric variables contain numbers and are stored as doubles. They are declared

with the keyword NUM.

/* declare a numeric variable AGE */
declare num age;



SCL Fundamentals � Objects 19

/* declare the numeric variables AGE and YEARS*/
declare num age, years;

/* declare numeric variables X and Y. */
/* Initialize X to 1 and Y to 20 plus the */
/* value of X. */

declare num x, y=20+x;

Character (CHAR) Variables
Character variables can contain up to 32,767 characters and are declared with the

keyword CHAR. A variable that is declared as CHAR without a specified length is
assigned a default length of 200.

/* declare a character variable NAME and */
/* assign the value ABC to it */

declare char name=’abc’;

/* declare a character variable NAME */
/* with a length of 20 */

declare char(20) name;

The STRING data type is an alias of the CHAR data type.

Lists
SCL lists are ordered collections of data. Lists are dynamic; they grow and shrink to

accommodate the number or size of the items that you store in them. Lists can contain
items of different data types.

To declare an SCL list, use the keyword LIST. The following example declares the list
MYLIST:

declare list mylist;

The function that creates the list (for example, MAKELIST) assigns the identifier for
the list to the variable, as shown below.

declare list mylist;
...more SCL statements...

mylist=makelist();

Note: To maintain compatibility with previous releases, the SCL compiler does not
generate error messages if a list is not declared or if it is declared as a numeric
variable. However, it is recommended that you declare lists so that the compiler can
identify errors. A list must be declared as type List when it is passed to a method that
requires an argument of type List. See “Overloading and List, Object, and Numeric
Types” on page 115. �

For information about using lists, see Chapter 5, “SCL Lists,” on page 49.

Objects
Objects can be declared in either of two ways:



20 Objects � Chapter 3

� as a specific object of type CLASS or INTRFACE. When an object is declared with
the name of the class, the compiler can validate attributes and methods for the
object and can return error messages if incorrect attributes or methods are used.

� as a generic object of type Object. The specific object class that is associated with
the generic object cannot be resolved until run time. The compiler reserves space
in the SAS Data Vector (SDV) for the object, but it cannot validate attributes or
methods for the object, because it does not know the names of classes. Instead,
this validation is deferred until program execution. Consequently, you should use
the OBJECT keyword to declare an object only when necessary, so that you can
obtain optimal run-time performance.

You can use dot notation for accessing attributes and methods for both specific
objects and generic objects.

Note: If you want to use dot notation to access the attributes or methods of a
Version 6 widget, then you need to declare its widget ID of OBJECT type, and you must
obtain its widget ID with the _getWidget method. For example, Text is a Version 6 text
entry widget. To access its methods or attributes with dot notation, you should use code
that looks like this:

dcl object obj;
/* dcl sashelp.fsp.efield.class obj; */
call notify ( ‘Text’, ‘_getWidget’, obj );
obj.backgroundColor = ‘blue’;

See “Accessing Object Attributes and Methods with Dot Notation” on page 124 for more
information. �

Specific Objects (CLASS and INTERFACE)
The following example declares an object named DataHolder as an instance of the

Collection class, which is provided with SAS software:

declare sashelp.fsp.collection.class DataHolder;

When you declare a class, you can also use the IMPORT statement to reference the
class and then use an abbreviated form of the class name in the DECLARE statement.
For example:

import sashelp.fsp.collection.class;
declare collection DataHolder;

Generic OBJECTs
In the following example, MyObject is recognized by the compiler as an object, but

the compiler has no information about the type of class instance that the object will
actually be:

declare object MyObject;

Specifying the Object Type at Run Time
The following example declares an object named PgmObj2 and then specifies one

condition under which PgmObj2 will be a collection object and another condition under
which PgmObj2 will be an object that is created from a class named Foo. The _NEW_
operator creates the object.

declare object PgmObj2,
num x;



SCL Fundamentals � Names in SCL 21

if x=1 then
PgmObj2=_new_ sashelp.fsp.collection.class;

else
PgmObj2=_new_ sashelp.fsp.foo.class;

As described above, you can use the IMPORT statement to reference a class
definition and then use an abbreviated class name when you create the class.

import sashelp.fsp.collection.class;
import sashelp.fsp.foo.class;
declare object PgmObj2,

num x;
if x=1 then

PgmObj2=_new_ collection();
end;

else
PgmObj2=_new_ foo();

Any errors that result from using incorrect methods or attributes for PgmObj2 and Foo
will cause the program to halt.

Names in SCL
In SCL, the rules for names are

1 Librefs and filerefs can have a maximum length of 8 characters. Other names —
including names of SCL variables, arrays, SCL lists, SAS tables, views, indexes,
catalogs, catalog entries, macros, and macro variables — can be 32 characters long.

2 The first character must be a letter (A, B, C, . . . , Z) or an underscore (_).
Subsequent characters can be letters, numeric digits (0, 1, . . . , 9), or underscores.

3 Names are stored in the case in which they are entered, which can be lower case,
mixed case, or upper case.

4 Names cannot contain blanks.
5 SCL honors the names that are reserved by SAS software for automatic variables,

lists of variables, SAS tables, and librefs. Thus, you cannot use these names in
your SCL programs.

a When creating variables, do not use the names of special SAS automatic
variables (for example, _N_ and _ERROR_) nor the names of lists of variables
(for example, _CHARACTER_, _NUMERIC_, and _ALL_).

b Do not use any of the following names as a libref:
� SASCAT
� SASHELP
� SASMSG
� SASUSER
� USER
� WORK

Use LIBRARY only as the libref to point to a SAS data library containing a
FORMATS catalog that was created with PROC FORMAT.

c Do not assign any of the following names to a SAS table:
� _NULL_
� _DATA_



22 SCL Keywords � Chapter 3

� _LAST_

Just as SCL recognizes keywords from position and context, it also recognizes names
in the same way. If SCL sees a word that meets the requirements for a user-supplied
SAS name and that is not used in a syntax that defines it as anything else, it interprets
the word as a variable name.

SCL Keywords
An SCL keyword is a word or symbol in an SCL statement that defines the

statement type to SAS software. Keywords are a fixed part of the SCL, and their form
and meaning are also fixed. Generally, keywords define the function or CALL routine
that you are using in an SCL program statement. For example, OPEN is the keyword in

table-id=OPEN(’MYLIB.HOUSES’);

SCL Variables
SCL variables have most of the same attributes as variables in the Base SAS

language:
� name
� data type
� length.

However, SCL variables do not have labels.
SCL provides three categories of variables:

window variables
are linked to a control (widget) or field in a window. They pass values between an
SCL program and the associated window.

nonwindow variables
are defined in an SCL program. They hold temporary values that users do not
need to see.

system variables
are provided by SCL. They hold information about the status of an application.

As in the Base SAS language, you can group variables into arrays to make it easier to
apply the same process to all the variables in a group. Arrays in SCL are described in
Chapter 4, “SCL Arrays,” on page 37.

Window Variables
Most SCL programs are associated with a window for interacting with users. An

SCL program for a window has variables that are associated with the controls and
fields in the window. These variables are called window variables, and they are the
means by which users and SCL programs communicate with each other. You can use
these variables in the SCL program without explicitly declaring them.

Name
The name of a window variable is the same as the name that is assigned to the

control or field. The SCL program for the window cannot change that name.



SCL Fundamentals � Nonwindow Variables 23

Data Type
A window variable also has a data type, which can be character, numeric, or an

object data type. The type is determined by the value of the Type attribute, which is
displayed in the Properties window (for a control) or in the Attributes window (for a
field). For more information about data types that are used in SAS/AF applications, see
the SAS/AF online Help and SAS Guide to Applications Development.

Length
Lengths of window variables are determined as follows:

� Numeric and object variables are stored internally as doubles.

� Character variables have a maximum length that equals the width of the
corresponding field in the application window. For example, if a field occupies 20
columns in the window, then the maximum length of the associated window
variable is 20.

SCL programs can use methods to alter the lengths of window variables for some
FRAME entry controls. Otherwise, you cannot alter the length of a window variable in
an SCL program. Specifying a length for a window variable in a DECLARE or
LENGTH statement produces an error message when you compile the program.

Nonwindow Variables
SCL programs can define and use variables that do not have associated controls or

fields in the window. These variables are called nonwindow variables, and they are
used to hold values that users do not need to see. SCL programs that do not have an
associated window use only nonwindow variables. Nonwindow variables are also
referred to as program variables. Because nonwindow variables are used only within an
SCL program, they have no informat or format.

Name
The name of a nonwindow variable is determined by the first assignment statement

that uses the variable, unless the variable is explicitly defined with a DECLARE or
LENGTH statement. Names of nonwindow variables can be up to 32 characters long.

Data Type
Nonwindow variables are numeric unless they are explicitly declared as a different

data type.

Length
Lengths of nonwindow variables are determined as follows:

� Numeric and object variables are stored as doubles.

� Character variables have a default length of 200. However, you can use the
DECLARE statement to change the length from a minimum length of 1 to a
maximum of 32K.

You can use the DECLARE or LENGTH statement to specify a different maximum
length for nonwindow character variables. This can significantly reduce memory
requirements if your program uses many nonwindow variables.



24 System Variables � Chapter 3

Scope

The scope of a variable determines when a value can be assigned to it and when its
value is available for use. In general, variables in an SCL program have program scope.
That is, their scope is local to the program. They are available for use within the SCL
program but not to other parts of SAS software. When the program finishes, the
variables no longer exist, so their values are no longer available.

SCL provides a feature for defining variables as local to a DO or SELECT block. To
define a variable with this type of scope, use a DECLARE statement inside a DO or
SELECT block. Any variable that you declare in this way exists only for the duration of
that DO or SELECT block, and its value is available only during that time. For
example, the following program uses two variables named SECOND. One variable is
numeric by virtue of the first assignment statement. The other is a character variable
that is local to the DO block. After the DO block ends, only the numeric SECOND
variable is available.

INIT:
first=10;
second=5;
put ’Before the DO block: ’ first= second=;
do;

/* Declare variable THIRD and new */
/* variable SECOND, which is local to */
/* the DO block and is CHAR data type */

declare char(3) second third;
second=’Jan’;
third =’Mar’;

/* FIRST is available because */
/* it comes from parent scope. */

put ’Inside the DO block: ’
first= second= third=;

end;
/* THIRD is not available because */
/* it ended when the DO block ended. */

put ’After the DO block: ’
first= second= third=;

return;

The example produces the following output:

Before the DO block: first=10 second=5
Inside the DO block: first=10 second=Jan third=Mar
After the DO block: first=10 second=5 third=.

Although program variables are available only while an SCL program is running,
SCL provides features for passing variables to other programs and also for receiving
returned values. For more information, see “ENTRY” on page 351 and “METHOD” on
page 537.

You can also use global macro variables to make variables available outside the SCL
program. See “Using Macro Variables in SCL Programs” on page 91 for details.

System Variables
System variables are created automatically when an SCL program compiles. These

variables communicate information between an SCL program and an application, and
you can use them in programs. System variables can be Character, Numeric, or Object



SCL Fundamentals � System Variables 25

data type variables. The Object data type facilitates compile-time checking for SCL
programs that use dot notation to invoke methods and to access attributes for objects.
Although the system variables _CFRAME_, _FRAME_, and _SELF_ are designated as
object variables in Version 8 and later, applications that were built with earlier releases
and that use these variables will continue to work.

Do not declare the _SELF_, _FRAME_, _CFRAME_, _METHOD_, or _EVENT_
system variables inside a CLASS or USECLASS block. SCL automatically sets these
values when it is running methods that are defined in CLASS or USECLASS blocks.
Redefining any of these system variables can introduce unexpected behavior.

With the exceptions of _EVENT_, _METHOD_, and _VALUE_, you can simply
reference a system variable in an SCL program without explicitly declaring it.

_BLANK_
reports whether a window variable contains a value or sets a variable value to
blank.

Type: Character

_CFRAME_
contains the identifier of the FRAME entry that is currently executing, when a
control is executing a method. Otherwise, it stores the identifier of the FRAME
entry that is executing.

Type: Object

_CURCOL_
contains the value of the first column on the left in an extended table object in a
FRAME entry. It is used to control horizontal scrolling.

Type: Numeric

_CURROW_
contains the number of the current row in an extended table.

Type: Numeric

_ERROR_
contains a code for the application’s error status.

Type: Numeric

_EVENT_
returns the type of event that occurred on a control. It is useful only during a
_select method. At other times, it may not exist as an attribute or it is blank.
_EVENT_ can have one of the following values:

’’ modification or selection

C command

D double click

P pop-up menu request

S selection or single click.
_EVENT_ must be explicitly declared in an SCL program. For example:

declare char(1) _event_;

Type: Character.

_FRAME_
contains the identifier of the FRAME entry that contains a control, when the
object is a FRAME entry control. Otherwise, it contains the identifier of the
FRAME entry that is currently executing. You can use this variable to send



26 SCL Constants � Chapter 3

methods to a FRAME entry from a control’s method. For example, a control
method can send a _refresh method to the FRAME entry, causing the FRAME
entry to refresh its display.

Type: Object

_METHOD_
contains the name of the method that is currently executing.

_METHOD_ must be explicitly declared in an SCL program. In the declaration
statement, specify the maximum length for the name of a method. For example:

declare char(40) _method_;

Type: Character.

_MSG_
assigns text to display on the message line, or contains the text to be displayed on
the window’s message line the next time the window is refreshed.

Type: Character

_SELF_
contains the identifier of the object that is currently executing a method.

Type: Object

_STATUS_
contains a code for the status of program execution. You can check for the value of
_STATUS_, and you can also set its value.

Type: Character

_VALUE_
contains the value of a control.

When _VALUE_ contains the value of a character control, it must be explicitly
declared in an SCL program. In the declaration statement, specify the maximum
length for a character window control. For example:

declare char(80) _value_;

Type: Character or Numeric.

SCL Constants

In SCL, a constant (or literal) is a fixed value that can be either a number or a
character string. Constants can be used in many SCL statements, including assignment
and IF-THEN statements. They can also be used as values for certain options.

Numeric Constants
A numeric constant is a number that appears in a SAS statement, and it can be

presented in the following forms:

� standard syntax, in which numeric constants are expressed as integers, can be
specified with or without a plus or minus sign, and can include decimal places.

� scientific (E) syntax, in which the number that precedes the E is multiplied by the
power of ten indicated by the number that follows the E.

� hexadecimal syntax, in which a numeric hex constant starts with a numeric digit
(usually 0), can be followed by more hexadecimal digits, and ends with the letter
X. The constant can contain up to 16 hexadecimal digits (0 to 9, A to F).



SCL Fundamentals � Numeric-to-Character Conversion 27

� special SAS date and time values, in which the date or time is enclosed in single
or double quotation marks, followed by a D (date), T (time), or DT (datetime) to
indicate the type of value (for example, ’15jan99’d).

Character Constants
A character constant can consist of 1 to 32,767 characters and must be enclosed in

quotation marks. Character constants can be represented in the following forms:

� hexadecimal form, in which a string of an even number of hex characters is
enclosed in single or double quotation marks, followed immediately by an X, as in
this example:

’534153’x

� bit form, in which a string of 0s, 1s, and periods is surrounded by quotation marks
and is immediately followed by a B. Zero tests whether a bit is off, 1 tests whether
a bit is on, and a period ignores a bit. Commas and blanks can be inserted in the
bit mask for readability without affecting its meaning.

In the following example, if the third bit of A (counting from the left) is on, and
the fifth through eighth bits are off, then the comparison is true and the expression
results in 1. Otherwise, the comparison is false and the expression results in 0.

if a=’..1.0000’b then do;

Bit constants cannot be used as literals in assignment statements. For example,
the following statement is not valid:

x=’0101’b; /* incorrect */

If a character constant includes a single quotation mark, then either write the
quotation mark as two consecutive single quotation marks or surround the entire value
with double quotation marks, as shown in the following examples:

possession=’Your’’s’;
company="Your’s and Mine"
company="Your""s and Mine"

To use a null character value as an argument to a function in SCL, either use
’’(without a space) or use a blank value with ’’(with a space).

Numeric-to-Character Conversion
If a value is inconsistent with the variable’s data type, SCL attempts to convert the

value to the expected type. SCL automatically converts character variables to numeric
variables and numeric variables to character variables, according to the following rules:

� A character variable is converted to numeric when the character variable is used
� with an operator that requires numeric operands (for example, the plus sign)
� with a comparison operator (for example, the equal sign) to compare a

character variable and a numeric variable
� on the right side of an assignment statement, when a numeric variable is on

the left side.

� A numeric variable is converted to character when the numeric variable is used
� with an operator that requires a character value (for example, the

concatenation operator)



28 SCL Operators � Chapter 3

� on the right side of an assignment statement, when a character variable is on
the left side.

When a variable is converted automatically, a message in the LOG window warns
you that the conversion took place. If a conversion from character to numeric produces
invalid numeric values, then a missing value is assigned to the result, an error message
appears in the LOG window, and the value of the automatic variable _ERROR_ is set to
1.

SCL Operators

Operators are symbols that request an arithmetic calculation, a comparison, or a
logical operation. SCL includes the same operators that are provided in the Base SAS
language. The only restrictions on operators in SCL are for the minimum and maximum
value operators. For these SAS operators, you must use the operator symbols (> < and
< >, respectively) rather than the mnemonic equivalents (MIN and MAX, respectively).

Arithmetic Operators
The arithmetic operators, which designate that an arithmetic calculation is

performed, are shown here:

Symbol Definition

+ addition

/ division

** exponentiation

* multiplication

- subtraction

Comparison Operators
Comparison operators propose a relationship between two quantities and ask

whether that relationship is true. Comparison operators can be expressed as symbols or
written with letters. An operator that is written with letters, such as EQ for =, is called
a mnemonic operator. The symbols for comparison operators and their mnemonic
equivalents are shown in the following table:

Symbol Mnemonic

Equivalent

Definition

= EQ equal to

^= * NE not equal to

= * NE not equal to

> GT greater than



SCL Fundamentals � Comparison Operators 29

Symbol Mnemonic

Equivalent

Definition

< LT less than

>= ** GE greater than or equal to

<= ** LE less than or equal to

<> maximum

>< minimum

|| concatenation

IN equal to one item in a list

* The symbol that you use for NE depends on your keyboard.
** The symbols =< and => are also accepted for compatibility with previous releases of SAS.

Colon Modifier
You can add a colon (:) modifier after any operator to compare only a specified prefix

of a character string. For example, the following code produces the message pen found,
because the string pen occurs at the beginning (as a prefix) of pencil:

var=’pen’;
if var =: ’pencil’

then put var ’found’;
else

put var ’not found’;

The following code produces the message phone not found because phone occurs at
the end (as a suffix) of telephone:

var=’phone’;
if var =: ’telephone’;

then put var ’found’;
else put var ’not found’;

The code produces these messages:

pen found
phone not found

IN Operator
The IN operator compares a value produced by an expression on the left side of the

operator to a list of values on the right. For example:

if age in (16, 21, 25);

If the IN operator returns 0 if the value on the left does not match a value in the list.
The result is 1 if the value on the left matches a value in the list. In the case of arrays,
the IN operator returns the index of the element if it finds a match.

The form of the comparison is

expression IN <value-1<, . . . ,value-n>)



30 Logical (Boolean) Operators � Chapter 3

The elements of the comparison are

expression
can be any valid SAS expression, but it is usually a variable name when used with
the IN operator.

value
must be a SAS constant. Value can be an array of constants.

Suppose you have the following program section:

init:
declare a[5] = (2 4 6 8 10);
b = 6;
if b in a then put ’B is in array A’;
c=b in a;
put c=;
return;

This code produces the following output:

B is in array A
c=3

Logical (Boolean) Operators
Logical operators (also called Boolean operators) are usually used in expressions to

link sequences of comparisons. The logical operators are shown in the following table:

Symbol Mnemonic

Equivalent

Definition

& AND AND comparison

| OR OR comparison

* NOT NOT comparison

^ * NOT NOT comparison

~ * NOT NOT comparison

* The symbol that you use for NOT depends on your keyboard.

AND Operator
If both conditions compared by an AND operator are true, then the result of the

AND operation is true. Two comparisons with a common variable linked by AND can be
condensed with an implied AND. For example, the following two subsetting IF
statements produce the same result:

if 16<=age and age<=65;
if 16<=age<=65;



SCL Fundamentals � SCL Expressions 31

OR Operator
If either condition compared by an OR operator is true, then the result of the OR

operation is true.
Be careful when using the OR operator with a series of comparisons (in an IF,

SELECT, or WHERE statement, for example). Remember that only one comparison in a
series of OR comparisons needs to be true in order to make a condition true. Also, any
nonzero, nonmissing constant is always evaluated as true. Therefore, the following
subsetting IF statement is always true:

if x=1 or 2;

Although X=1 may be either true or false, the 2 is evaluated as nonzero and nonmissing,
so the entire expression is true. In the following statement, however, the condition is
not necessarily true, because either comparison can evaluate as true or false:

if x=1 or x=2;

You can also use the IN operator with a series of comparisons. The following
statements are equivalent:

if x in (2, 4, 6);
if x=2 or x=4 or x=6;

NOT Operator
Putting NOT in front of a quantity whose value is false makes that condition true.

That is, negating a false statement makes the statement true. Putting NOT in front of
a quantity whose value is missing is also true. Putting NOT in front of a quantity that
has a nonzero, nonmissing value produces a false condition. That is, the result of
negating a true statement is false.

SCL Expressions
An SCL expression can be a sequence of operands and operators forming a set of

instructions that are performed to produce a result value, or it can be a single variable
name, constant, or function. Operands can be variable names or constants, and they
can be numeric, character, or both. Operators can be symbols that request a
comparison, a logical operation, or an arithmetic calculation. Operators can also be SAS
functions and grouping parentheses.

Expressions are used for calculating and assigning new values, for conditional
processing, and for transforming variables. These examples show SAS expressions:

� 3
� x
� age<100
� (abc)/2
� min(2,-3,1)

SCL expressions can resolve to numeric, character, or Boolean values. In addition, a
numeric expression that contains no logical operators can serve as a Boolean expression.



32 Boolean Numeric Expressions � Chapter 3

Boolean Numeric Expressions
In SCL programs, any numeric value other than 0 or missing is true, whereas a

value of 0 or missing is false. Therefore, a numeric variable or expression can stand
alone in a condition. If the value is a number other than 0 or missing, then the
condition is true; if the value is 0 or missing, then the condition is false.

A numeric expression can be simply a numeric constant, as follows:

if 5 then do;

The numeric value returned by a function is also a valid numeric expression:

if index(address,’Avenue’) then do;

Using Functions in Expressions
You can use functions almost any place in an SCL program statement where you can

use variable names or literal values. For example, the following example shows a way
to perform an operation (in this case, the FETCH function) and take an action, based on
the value of the return code from the function:

rc=fetch(dsid);
/* The return code -1 means the */
/* end of the file was reached. */

if (rc=-1) then
do;
...SCL statements to handle the
end-of-file condition...
end;

To eliminate the variable for the return code, you can use the function directly in the
IF statement’s expression, as shown in the following example:

if (fetch(dsid)=-1) then
do;
...SCL statements to handle the
end-of-file condition...
end;

In this case, the FETCH function is executed, and then the IF expression evaluates
the return code to determine whether to perform the conditional action.

As long as you do not need the value of the function’s return code for any other
processing, the latter form is more efficient because it eliminates the unnecessary
variable assignment.

SCL Statements
SCL provides all of the program control statements of the Base SAS language.

However, many Base SAS language statements that relate to the creation and
manipulation of SAS tables and external files are absent in SCL. In their place, SCL
provides an extensive set of language elements for manipulating SAS tables and
external files. These elements are described in Chapter 11, “Using SAS Tables,” on page
173 and in Chapter 12, “Using External Files,” on page 187.



SCL Fundamentals � SCL Comments 33

SCL also provides CLASS and INTERFACE statements, which enable you to design
and build true object-oriented applications. CLASS statements enable you to define
classes from which you can create new objects. The INTERFACE statement enables you
to define how applications can communicate with these objects.

Executable and Declarative Statements

As in the Base SAS language, SCL statements are either executable or declarative.

executable statements
are compiled into intermediate code and result in some action when the SCL
program is executed. (Examples of executable statements are the CURSOR,
IF-THEN/ELSE, and assignment statements.)

declarative statements
provide information to the SCL compiler but do not result in executable code
unless initial values are assigned to the declared variables. (Examples of
declarative statements are the DECLARE, LENGTH, and ARRAY statements.)

You can place declarative statements anywhere in an SCL program, but they typically
appear at the beginning of the program before the first labeled section.

CAUTION:
Do not place executable statements outside the program modules. Executable statements
outside a program module (labeled section, class definition file, method
implementation file, and so on) are never executed. See Chapter 2, “The Structure of
SCL Programs,” on page 9 for more information about program modules. �

The Assignment Statement

The assignment statement in SCL works like the assignment statement in Base SAS
except:

� You can specify an array name (without the subscript) in the left side of the
assignment statement. See “Using Assignment Statements” on page 42 and
“Returning Arrays from Methods in SCL Programs” on page 46 for more
information.

� You can use the assignment statement to initialize the values of an SCL list. See
“Initializing the Values in an SCL List” on page 53 for more information.

SCL Comments

You can include comments anywhere in your SCL programs. Comments provide
information to the programmer, but they are ignored by the compiler, and they produce
no executable code.

SCL allows the following two forms of comments:

� /* comment */

/* sort the data set and */
/* then do something else */

sysrc=sort(dsid,’year month’);



34 SCL Functions � Chapter 3

� * comment ;

* sort the data set and ;
* then do something else ;

sysrc=sort(dsid,’year month’);

SCL Functions
Like the functions in the Base SAS language, each SCL function returns a value

that is based on one or more arguments that are supplied with the function. Most of
the special features of SCL are implemented as functions. In addition, SCL provides all
of the functions of the Base SAS language except for the DIF and LAG functions. (The
DIF and LAG functions require a queue of previously processed rows that only the
DATA step maintains.)

SCL functions can be divided into the following groups according to the type of
information they return:

� functions that return a value representing the result of a manipulation of the
argument values. For example, the MLENGTH function returns the maximum
length of a variable.

� functions that perform an action and return a value indicating the success or
failure of that action. For these functions, the value that the function returns is
called a return code. For example, the LIBNAME function returns the value 0 if it
successfully assigns a libref to a SAS data library or directory. If the function
cannot assign the libref, it returns a nonzero value that reports the failure of the
operation. The SYSMSG function returns the text of the error message that is
associated with the return code.

Note: Some functions use a return code value of 0 to indicate that the
requested operation was successful, whereas other functions use a return code of 0
to indicate that the operation failed. �

SCL CALL Routines
Like functions, CALL routines perform actions, based on the values of arguments

that are supplied with the routine name. However, unlike functions, CALL routines do
not return values. Many halt the program if the call is unsuccessful. Use CALL
routines to implement features that do not require return codes.

SCL has a variety of CALL routines of its own. It also supports all of the CALL
routines that are provided by the Base SAS language.

Passing Arguments to SCL Functions and CALL Routines
Some additional restrictions apply to the values that you pass as arguments to SCL

functions and CALL routines. Some SCL functions and CALL routines accept only
names of variables as arguments, but for most arguments you can specify either a
literal value or the name of a variable that contains the desired value.

Note: For some functions, passing missing values for certain arguments causes the
SCL program to stop executing and to display an error message. Restrictions on



SCL Fundamentals � Input, Output, and Update Parameters 35

argument values are described in the entries in Chapter 13, “SAS Component Language
Dictionary,” on page 199. �

Input, Output, and Update Parameters
Parameters to functions and methods can be one of three types:

input
The value of the parameter is passed into the function, but even if the function
modifies the value, it cannot pass the new value out to the calling function.

output
Output parameters are used to return a value from a function.

update
Update parameters can be used to pass a value into a function, and the function
can modify its value and return the new value out to the calling function.

Note: If you use dot notation to specify a parameter to a method, then the
parameter is treated as an update parameter if the method does not have a signature or
if the object is declared as a generic object. SCL executes the _setAttributeValue method
for all update parameters, which could cause unwanted effects. See “What Happens
When Attribute Values Are Set or Queried” on page 128 for complete information. �

If you do not use dot notation to pass parameters to the functions and routines
documented in Chapter 13, “SAS Component Language Dictionary,” on page 199, then
all parameters are input parameters except for those listed in Table 3.1 on page 35.

Table 3.1 Functions With Update Parameters

Function Name Update Parameters

DELNITEM index

DIALOG all parameters other than entry

DISPLAY all parameters other than entry

FGET cval

FILEDIALOG filename

FILLIST description

LVARLEVEL n-level

CALL METHOD all parameters except entry and label

NAMEDIVIDE all parameters except name

NOTIFY all parameters except control-name and method-name

RGBDM RGB-color

SAVEENTRYDIALOG description

SEND all parameters except object-id and method-name

SETNITEMC index

SETNITEML index

SETNITEMN index

SETNITEMO index



36 Rules for SCL Statements � Chapter 3

Function Name Update Parameters

SUPER all parameters except object-id and method-name

VARLEVEL n-level

VARSTAT varlist-2

Note: The argument parameter of the DATA step SUBSTR (left of =) function is also
an update parameter. �

For all methods that you define with the METHOD statement, all parameters are
assumed to be update parameters unless either you specify input or output when you
define the method or you invoke the method with SEND, NOTIFY, SUPER, or CALL
METHOD. If you invoke the method with SEND, NOTIFY, SUPER, or CALL
METHOD, then the first two parameters (listed in Table 3.1 on page 35) are assumed to
be input parameters.

Rules for SCL Statements
The statements that you use in SCL programs must conform to the following rules:
� You must end each SCL program statement with a semicolon.
� You can place any number of SCL program statements on a single line as long as

you separate the individual statements with semicolons. If you plan to use the
SCL debugger, it is helpful to begin each statement on a separate line.

� You can continue an SCL program statement from one line to the next as long as
no keyword is split.

� You can begin SCL program statements in any column.
� You must separate words in SCL program statements with blanks or with special

characters such as the equal sign (=) or another operator.
� You must place arguments for SCL functions and CALL routines within

parentheses.
� If a function or CALL routine takes more than one argument, you must separate

the arguments with commas.
� Character arguments that are literal values must be enclosed in either single or

double quotation marks (for example, ’Y’ or ‘‘N’’).
� Numeric arguments cannot be enclosed in quotation marks.



37

C H A P T E R

4
SCL Arrays

Introduction to SCL Arrays 37
Declaring Arrays in SCL Programs 37

Referencing Array Elements in SCL Programs 38

Grouping Variables That Have Sequential Names 39

Initializing the Elements of a Static Array in SCL Programs 39

Assigning the Same Value to Multiple Elements 40
Initializing Static Multidimensional Arrays 40

Creating and Initializing Dynamic Arrays in SCL Programs 40

Resizing Dynamic Arrays in SCL Programs 41

Explicitly Resizing An Array With REDIM 41

Using Array Functions with Dynamic Arrays in SCL Programs 42

Copying Elements from One Array to Another in SCL Programs 42
Using Assignment Statements 42

Using The COPYARRAY Function 43

Repeating an Action for Variables in an Array in SCL Programs 44

Passing Dynamic Arrays to Methods in SCL Programs 45

Returning Arrays from Methods in SCL Programs 46
Deleting Dynamic Arrays in SCL Programs 46

Using Temporary Arrays to Conserve Memory in SCL Programs 47

Introduction to SCL Arrays
SCL supports two types of arrays: static and dynamic. The size of a static array is

set when you declare the array and cannot be changed at runtime. With dynamic
arrays, you do not specify a size when you declare the array, but you can use any one of
several different SCL functions to control the size of the array. With a dynamic array,
you can create an array of a specified size and resize the array explicitly as needed in
your program. You can also specify that the array is implicitly growable.

The differences between ARRAY statement execution in SCL and ARRAY statement
execution in the DATA step are described in Chapter 7, “Using SCL with Other SAS
Software Products,” on page 81.

Declaring Arrays in SCL Programs
You can use the DECLARE statement to declare static or dynamic arrays. Arrays

that are declared with the DECLARE statement are all temporary arrays. That is, they
default to the _TEMPORARY_ option. (See “Using Temporary Arrays to Conserve
Memory in SCL Programs” on page 47 for more information.) For example, the



38 Referencing Array Elements in SCL Programs � Chapter 4

following statement declares an array named MONTH that contains five character
variables that are each up to three characters in length:

declare char(3) month[5];

To declare a dynamic array, you must specify an asterisk (*) for the array dimensions:

declare char students[*];

This statement declares a one-dimensional array of type character. The DECLARE
statement does not set the array bounds or create any elements. Dynamic arrays are
only accessible within the scope in which they are declared.

You can use the ARRAY statement to declare indirect or non-temporary arrays. You
can declare only static arrays with the ARRAY statement. You can declare temporary
arrays by specifying the _TEMPORARY argument in the ARRAY statement. For
example:

array month[5] $;

The ARRAY statement (but not the DECLARE statement) enables you to assign
names to individual array elements. For example, the following statement assigns the
names JAN, FEB, MAR, APR, and MAY to the five elements in the MONTH array.:

array month[5] $ jan feb mar apr may;

You can use these names to refer to the array elements in your SCL program.
In contrast to the ARRAY statement, you cannot use the DECLARE statement to

assign names to individual array elements. The following DECLARE statement
declares an array named MONTH plus five more character variables named JAN, FEB,
MAR, APR, and MAY:

declare char month[5] jan feb mar apr may;

Referencing Array Elements in SCL Programs

To reference array elements, you can use the form array-name[position], where
position is the index position of the variable in the array. This form of array reference is
called subscripting. Subscripting is the only way to refer to array elements that were
declared with the DECLARE statement. For example, FACTOR[4] is the only way to
reference the fourth element of array FACTOR if it is created with the statement

declare num Factor[5];

This DECLARE statement also produces variables FACTOR[1] through FACTOR[5].
Because you must use the DECLARE statement to declare dynamic arrays, the only

way to reference the elements of a dynamic array is with subscripting. However, you
cannot reference the elements of a dynamic array until you have created the array. See
“Creating and Initializing Dynamic Arrays in SCL Programs” on page 40 for more
information.

You can also use subscripting to refer to elements of an array that is declared with
the ARRAY statement. For example, you can use MONTH[1] and MONTH[4] to refer to
the first and fourth elements of an array that is declared with the following statement:

array month[5] $;

If the array is declared with an ARRAY statement that does not assign individual
names to the array elements (as shown in this example), then you can also refer to
these array elements as MONTH1 and MONTH4.



SCL Arrays � Initializing the Elements of a Static Array in SCL Programs 39

If the ARRAY statement assigns names to the individual array elements, then you
can also use those names to refer to the array elements. For example, if you declare
your array with the following statement, then you can refer to the elements in the
array using the names JAN, FEB, and MAR:

array month[3] $ jan feb mar;

Grouping Variables That Have Sequential Names
If an application program or window has a series of variables whose names end in

sequential numbers (for example, SCORE1, SCORE2, SCORE3, and so on), then you
can use an array to group these variables. For example, the following ARRAY statement
groups the variables SCORE1, SCORE2, SCORE3, and SCORE4 into the array SCORE:

array score[4];

Note: If the variables do not already exist as window variables, then SCL defines
new, nonwindow, numeric variables with those names. �

Grouping the variables into an array is useful when your program needs to apply the
same operations to all of the variables. See “Repeating an Action for Variables in an
Array in SCL Programs” on page 44 for more information.

Initializing the Elements of a Static Array in SCL Programs
By default, all elements in a numeric array are initialized to numeric missing values

if the array elements did not previously exist.
You can define initial values for the elements of a static array by listing the initial

values in parentheses following the list of element names in the DECLARE or ARRAY
statements. Commas are optional between variable values. For example, the following
ARRAY statement creates a two-item array named COUNT, assigns the value 1 to the
first element, and assigns the value 2 to the second element:

array count[2] (1 2);

You can also initialize array elements with the DECLARE statement. For example,
the following program declares an array named MONTH, which contains five elements
that can each contain three characters, and it assigns initial values to the array
elements:

declare char(3) month[5]=(’jan’ ’feb’ ’mar’
’apr’ ’may’);

INIT:
put month;

return;

The example produces the following output:

month[1] = ’jan’
month[2] = ’feb’
month[3] = ’mar’
month[4] = ’apr’
month[5] = ’may’



40 Assigning the Same Value to Multiple Elements � Chapter 4

Assigning the Same Value to Multiple Elements
You can use repetition factors to initialize static arrays. Repetition factors specify

how many times the values are assigned in the array. They have the following form:

5 * (2 3 4)

In this example, 5 is the repetition factor and (2 3 4) is the list of initial values for
the array elements. If the list consists of only a single item, then you can omit the
parentheses.

For example, the following ARRAY and DECLARE statements both use repetition
factors to initialize the values of the array REPEAT:

array repeat[17] (0,3*1,4*(2,3,4),0);
declare num repeat[17]=(0,3*1,4*(2,3,4),0);

This example repeats the value 1 three times and the sequence 2, 3, 4 four times. The
following values are assigned to the elements of the array REPEAT:

0, 1, 1, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 0

Initializing Static Multidimensional Arrays
To initialize a static multidimensional array, use the ARRAY or DECLARE

statement to list values for the first row of the array, followed by values for the second
row, and so on. The following examples both initialize a two-dimensional array named
COUNT with two rows and three columns:

array count[2,3] (1 2 3 4 5 6);

dcl num count[2,3]=(1 2 3 4 5 6);

Figure 4.1 on page 40 shows the values of the elements of this array.

Figure 4.1 Elements of the COUNT Array

For more information about arrays, see “ARRAY” on page 227 and “DECLARE” on
page 309.

Creating and Initializing Dynamic Arrays in SCL Programs

Dynamic arrays can be created and initialized in five ways:

� with the COPYARRAY function. See “Using The COPYARRAY Function” on page
43 for more information.



SCL Arrays � Explicitly Resizing An Array With REDIM 41

� using simple assignment statements that copy the values of one array into another
array. For more information, see “Using Assignment Statements” on page 42.

� by a method that returns an array. See “Returning Arrays from Methods in SCL
Programs” on page 46 for more information.

� with the REDIM function. See “Resizing Dynamic Arrays in SCL Programs” on
page 41 for more information.

� with the MAKEARRAY function.

After you have declared a dynamic array, you can create the array with the
MAKEARRAY function. The MAKEARRAY function creates an array of the given size
with all elements in the array initialized to missing for numerics or blank for
characters. The number of dimensions must be the same as what was specified in the
DECLARE statement. The low bound for all dynamic arrays is 1, and the high bound is
determined at runtime by the values that you specify with the MAKEARRAY (or
REDIM) function. For example, the following statements create a one-dimensional
dynamic array named STUDENTS that has three elements and initializes these array
elements to Mary, Johnny, and Bobby:

Example Code 4.1 Dynamic STUDENTS Array

declare char students[*];
students = MAKEARRAY(3);
students[1] = ’Mary’;
students[2] = ’Johnny’;
students[3] = ’Bobby’;
put students;

The low bound for STUDENTS is 1, and the high bound 3. The output for this example
is

students[1] = ’Mary’
students[2] = ’Johnny’
students[3] = ’Bobby’

Resizing Dynamic Arrays in SCL Programs
You can use the REDIM function to explicitly change the high bound of any

dimension of a dynamic array at runtime. You can use the REDIMOPT function to
mark an array as implicitly growable.

Explicitly Resizing An Array With REDIM
With REDIM, you cannot change the number of dimensions or type of the array, only

the bounds. The REDIM function will also preserve the data in the array unless you
resize the array to a smaller size. If you reduce the size of an array, you will lose the
data in the eliminated elements.



42 Using Array Functions with Dynamic Arrays in SCL Programs � Chapter 4

For example, suppose that you have declared and initialized the STUDENTS array
as shown in Example Code 4.1 on page 41. To add another student, you must resize the
array. The following statements increase the high bound by 1 element, add the new
variable STUDENTS[4], and initialize this new element to Alice.

declare num rc;
rc = REDIM(students, DIM(students) + 1);
students[DIM(students)] = ’Alice’;
put students;

All of the existing data is preserved. The low bound for the array STUDENTS is 1, and
the new high bound is 4. The output for this example would be:

students[1] = ’Mary’
students[2] = ’Johnny’
students[3] = ’Bobby’
students[4] = ’Alice’

You can also use the REDIM function to create and initialize an array that has been
declared but not yet created by other means. For example, the following statements
declare, create, and initialize an array of five elements to numeric missing values:

dcl num rc;
dcl num a[*];
rc = redim(a,5);

There is no limit to the number of times that you can resize an array.

Note: You can use the MAKEARRAY function to resize an array, but all the data
will be lost. The MAKEARRAY function will reinitialize the elements to missing
numeric values or to blank character values. �

Using Array Functions with Dynamic Arrays in SCL Programs
You can use dynamic arrays with the other existing array functions (DIM, HBOUND,

LBOUND) as long as the array has been created with MAKEARRAY or REDIM. If your
program references a dynamic array before it has been created, a program halt will
occur. If you pass a dynamic array to a method by reference (that is, as an input
parameter), you cannot resize the array using MAKEARRAY, REDIM, or DELARRAY
within the method.

Copying Elements from One Array to Another in SCL Programs
There are two ways to copy an array:
� using an assignment statement. When assigning the values of one array to

another array, the two arrays must have the same size.
� using the COPYARRAY function. When using the COPYARRAY function, the

arrays do not have to be the same size.

Using Assignment Statements
You can assign values to an array from another array in an assignment statement.

For example, the following code copies the values of array A into array B:



SCL Arrays � Using The COPYARRAY Function 43

declare num a[3] = (1 3 5);
declare num b[3];
b = a;
put b;

These statements produce the following output:

b[1] = 1
b[2] = 3
b[3] = 5

When you use the assignment statement to copy an array, the two arrays must have
the same type, dimensions, and size; otherwise, an error condition will occur.

You can use an assignment statement to create and initialize a dynamic array that
has been declared but not yet created. If you specify a newly declared dynamic array as
the array to which values are to be assigned, then SCL will create the dynamic array
and copy the values of the existing array into the new array.

For example, the following statements create dynamic array B to the same size as A
and then copies the values of array A into dynamic array B.

declare num a[3] = (1 3 5);
declare num b[*];
b = a;
put b;

These statements produce the following output:

b[1] = 1
b[2] = 3
b[3] = 5

Using The COPYARRAY Function
You can also use the COPYARRAY function to copy elements from one array to

another. By default, the COPYARRAY function produces the same result as the
assignment statement and requires that the arrays be of the same type, dimension, and
size. For example, the following statements copy the array A into arrays B and C:

declare num a[3] = (1 3 5);
declare num b[3] c[3];
rc = COPYARRAY(a,b);
put b;
c = a;
put c;

The output for this code would be:

b[1] = 1
b[2] = 3
b[3] = 5
c[1] = 1
c[2] = 3
c[3] = 5

However, with the COPYARRAY function, you can copy an array to an array of a
different size if you set the IGNORESIZE parameter to Y in the call to COPYARRAY:

rc = COPYARRAY(array1,array2,’Y’);



44 Repeating an Action for Variables in an Array in SCL Programs � Chapter 4

The type and dimensions of the arrays must still match. For example, the following
statements will copy array A, which has three elements, into array B, which has five
elements.

declare num a[3] = (1 3 5);
declare num b[5];
rc = COPYARRAY(a,b,’Y’);
put b;

This code produces the following output:

b[1] = 1
b[2] = 3
b[3] = 5
b[4] = .
b[5] = .

The COPYARRAY can also be used to create dynamic arrays, just as you can create
them using assignment statements. For example, the following statements create and
initialize dynamic array B:

declare num a[3] = (1 3 5);
declare num b[*];
rc = COPYARRAY(a,b);
put b;

The output for this code would be:

b[1] = 1
b[2] = 3
b[3] = 5

Note: When you use the COPYARRAY function to create a new dynamic array, it is
good practice to delete the newly created array using the DELARRAY function.
However, if you do not delete the array with the DELARRAY function, SCL will delete
the array at the end of the routine like all other dynamic arrays. See “Deleting
Dynamic Arrays in SCL Programs” on page 46 for more information. �

Repeating an Action for Variables in an Array in SCL Programs

To perform an action on variables in an array, you can use an iterative DO
statement, using the index variable for the array subscript. A DO block is especially
convenient when arrays contain many elements. For example, you could use a program
like the following to sum the values of the array variables and to display the total in
the SUM field:

array month[5] jan feb mar apr may (1,2,3,4,5);
INIT:

do i=1 to 5;
sum+month[i];

end;
put month;
put sum=;

return;

The example produces the following output:



SCL Arrays � Passing Dynamic Arrays to Methods in SCL Programs 45

month[1] = 1
month[2] = 2
month[3] = 3
month[4] = 4
month[5] = 5
sum=15

The preceding DO block has the same effect as any one of the following assignment
statements:

sum1=jan+feb+mar+apr+may;
sum2=sum(of month[*]);
sum3=sum(of jan--may);
put sum1= sum2= sum3= ;

This example produces the following output:

sum1=15 sum2=15 sum3=15

Passing Dynamic Arrays to Methods in SCL Programs

Passing a dynamic array to a method is no different than passing a static array, but
the dynamic array must have been created by MAKEARRAY, REDIM, COPYARRAY, or
an assignment statement. If the dynamic array is not created before the method call,
then an error condition will occur.

Dynamic arrays can be resized via a method if the method’s parameter is a reference
array and an output parameter. See “ARRAY” on page 227 for more information on
reference arrays.

Suppose you have defined the resizeDynamicArray method as follows:

resizeDynamicArray:method parm1[*]:O:num;
declare num rc = redim(parm1, 5);
endmethod;

The parameter PARM1 is output parameter and a reference array. When you call this
method, it will resize the dynamic array passed to it into an array with a low bound 1
and a high bound of 5. In the following code, resizeDynamicArray resizes an array with
3 elements into an array with 5 elements:

declare num a[*] = MAKEARRAY(3);
object.resizeDynamicArray(a);
put a;

The output for this code would be:

a[1] = .
a[2] = .
a[3] = .
a[4] = .
a[5] = .

Because PARM1 is a reference array, it is using the same memory as the dynamic array
A.

You can now resize the array using MAKEARRAY, REDIM, COPYARRAY,
DELARRAY, or an assignment statement.



46 Returning Arrays from Methods in SCL Programs � Chapter 4

Returning Arrays from Methods in SCL Programs

Arrays can also be assigned values from a method that returns an array. The array
to which values are being assigned must have the same type, dimensions, and size as
the array returned from the method. Otherwise, an error condition will occur.

Suppose you define the getArrayValues method as follows:

getArrayValues:method return=num(*);
declare num a[3] = (1 3 5);
return a;
endmethod;

To assign the values that are returned by getArrayValues to an array, you could use the
following code:

declare num b[3];
b = object.getArrayValues();
put b;

The output for this example is

b[1] = 1
b[2] = 3
b[3] = 5

Dynamic arrays (that have not yet been created by other means) can be created when
an array is returned from a method call. If your program returns values into a dynamic
array that has been declared but not yet created, SCL will first create the new dynamic
array, then copy the returned values into the new array. For example, the following
code creates dynamic array B with the same size as the returned array and copies the
values of the returned array into B.

declare num b[*];
b = getArrayValues();
put b;

The output of these statements is

b[1] = 1
b[2] = 3
b[3] = 5

Deleting Dynamic Arrays in SCL Programs

The DELARRAY function is used to delete a dynamic array that has been created
using the MAKEARRAY or REDIM. The array’s contents cannot be accessed after the
array is deleted. If you do not delete the created dynamic array using DELARRAY, the
array will be automatically deleted when exiting the routine.



SCL Arrays � Using Temporary Arrays to Conserve Memory in SCL Programs 47

Using Temporary Arrays to Conserve Memory in SCL Programs

If you want to use an array in an SCL program but do not need to refer to array
elements by name, then you can add the _TEMPORARY_ argument to your ARRAY
statement:

array total[4] _temporary_;

When you use the _TEMPORARY_ argument, you must use subscripting to refer to
the array elements. For example, you must use TOTAL[2] to refer to the second
element in the array TOTAL, defined above. You cannot use the variable name TOTAL2
as an alternative reference for the array element TOTAL[2]. Using the _TEMPORARY_
argument conserves memory. By default, SCL allocates memory for both the name of
the array and the names of the individual array elements. However, when you use the
_TEMPORARY_ argument, SCL allocates memory only for the array name. For large
arrays, this can result in significant memory savings.

Note: Do not use the _TEMPORARY_ option if you plan to use the SET routine to
read values from a SAS table directly into array elements. You must use the GETVARN
or GETVARC function to read values from a SAS table into the elements of a temporary
array. �



48



49

C H A P T E R

5
SCL Lists

Introduction to SCL Lists 49
Creating Data Dynamically in SCL 50

Identifying SCL Lists 50

Creating New SCL Lists 50

Example: Creating an SCL List 51

Initializing the Values in an SCL List 53
Manipulating SCL Lists 54

Determining the Type of an SCL List Item 55

Passing SCL Lists as Arguments for Methods 55

Inserting and Replacing Items in SCL Lists 55

Retrieving Values from SCL Lists 56

Deleting Lists and List Items from SCL Lists 56
Referencing SCL List Items by Index Number 57

Accessing Items Relative to the End of an SCL List 57

Index Errors in SCL Lists 57

Implementing SCL Sublists and Nested Structures 57

Limitless Levels of Nesting 60
Simulating Multidimensional Arrays with Nested Lists 60

Saving Nested Lists to SCL Entries 60

Advantages of SAVELIST Recursiveness 62

Assigning Names to SCL List Items 62

Indexing a Named Item by its Position 63
Determining or Replacing an Item’s Name 63

Finding an Occurrence of a Name 63

Specifying Where the Search for an Item Starts 64

Using SCL Lists in Shared Data Environments 64

Local Data Environment 64

Global Data Environment 64
Using SCL Lists as Stacks and Queues 65

Using a List as a Stack 65

Using a List as a Queue 65

Assigning Attributes to SCL Lists and List Items 66

Using SCL List File Functions 66
Debugging SCL Lists 66

Introduction to SCL Lists
SCL supports data structures and functions for manipulating data in SCL lists. SCL

lists, like arrays, are ordered collections of data. However, lists are more flexible than
arrays in many ways. For example, SCL lists are dynamic. Therefore, a program can



50 Creating Data Dynamically in SCL � Chapter 5

create a list only when and if it is needed. Lists grow and shrink to accommodate the
number of items or the size of items that you assign to them. Also, an SCL list can
contain items of differing data types.

See also the SCL list functions“List” on page 209. Each function and the tasks it can
perform are described in Chapter 13, “SAS Component Language Dictionary,” on page
199.

Creating Data Dynamically in SCL
SCL lists are dynamic rather than static. That is, SCL programs create these lists

at run time. This means that list sizes are computed at run time rather than before the
list is created. Further, unlike arrays, which have a fixed size, a list’s length can grow
or shrink to accommodate the amount of data you want to maintain.

SCL lists can contain items of mixed types, whereas SCL arrays are fixed in type.
(Depending on its declaration, an array contains either numeric data or character data,
but not both). One item in an SCL list can be a number and the next item can be a
character string, while a third might be another list. Further, you have the freedom to
replace a numeric value with a character value in a list, and vice versa. Although you
can make lists that are of fixed type, you have the freedom to allow multiple types in
the same list.

Note: Character values that are stored in SCL lists can be up to 32,766 characters
per item. �

Identifying SCL Lists
You access lists with a list identifier, a unique value assigned to each list that you

create. You must store the list identifier in an SCL variable and then reference that
variable in each operation that you perform on the list. All the SCL functions that
manipulate lists use the list identifier as an argument.

Note: Assigning a list identifier to another variable does not copy the list. The two
variables simply refer to the same list. To copy the contents of a list to an existing or
new list, use the COPYLIST function. �

Creating New SCL Lists
SCL lists can be declared using the LIST data type, which is a reference type that

stores the identifier assigned when you create the list. You assign the LIST type with
the DECLARE statement. For example:

declare list carlist;

After you declare a list, you actually create it with the MAKELIST or MAKENLIST
function. You can then insert numbers, characters, other lists, or objects into the list
with the INSERTN, INSERTC, INSERTL, or INSERTO function, respectively. You can
also specify the default number of items in the initial list by supplying an argument to
the MAKELIST function. For example, the following statement makes a list that
contains n items:

carlist=makelist(n);



SCL Lists � Example: Creating an SCL List 51

Each of the n items is initialized to a numeric missing value. Note that n can be any
nonnegative SCL numeric expression that is computed at run time, or it can be a
simple nonnegative numeric constant such as 12, if you want to create a list with a
known initial number of items. No matter how you create the list, you are free to
expand or shrink it to contain as many items as you need, from 0 to as many items as
your computer has memory to hold. To determine the length of a list, use the LISTLEN
function.

Note: It is recommended that you declare lists with the LIST keyword to avoid
problems in calling overloaded methods. See “Overloading and List, Object, and
Numeric Types” on page 115 �

Example: Creating an SCL List
This section shows an SCL program that creates an SCL list, along with the output

that the program produces. The program reads the columns in DICTIONARY.TABLES,
a special read-only SQL view that stores information about all the SAS tables and SAS
views that are allocated in the current SAS session. The columns in this view are the
attributes (items of information) that are available for SAS tables. The example
program stores the column values in an SCL list that is sorted in table order (the order
of the columns in the ATTRIBUTES view), name order, and length order.

To create the view that lists the SAS tables, submit the following SQL procedure
from the PROGRAM EDITOR window:

/* Create the PROC SQL view ATTRIBUTES */
/* which contains information about all */
/* the members of type DATA in the SAS */
/* data libraries that are associated */
/* with the SAS session. */

proc sql noprint;
create view attributes as

select *
from dictionary.tables
where memtype="DATA";

quit;

The SCL program creates and displays an SCL list whose values come from the view
ATTRIBUTES.

/* Declare COLUMNS as a list */
declare list columns;
INIT:

/* Open the view ATTRIBUTES for reading */
attrs=open(’attributes’, ’I’);
if (attrs > 0) then do;

/* Make a list containing the same */
/* number of items as the number of */
/* columns in the view ATTRS. */

numcols=attrn(attrs, ’NVARS’);
columns=makelist(numcols);
do i=1 to numcols;

/* Set item I in list COLUMNS to */
/* the length of the column. The */
/* SETITEMN call is similar to */
/* the array assignment: */
/* array{i} = colLen; */



52 Example: Creating an SCL List � Chapter 5

colLen=varlen(attrs, i);
rc=setitemn(columns, colLen, i);

/* NAMEITEM gives item I the name */
/* of the Ith column */

colName=varname(attrs, i);
itemName=nameitem(columns, i, colName);

end;
sysrc=close(attrs);

/* Print the column names in their */
/* order in the SAS table. Sort by */
/* name and print. Then sort by */
/* length and print. */

rc=putlist(columns,’SAS Table Order:’,0);
columns=sortlist(columns, ’NAME ASCENDING’);
rc=putlist(columns, ’Name Order:’, 0);
vars=sortlist(columns,’value’);
rc=putlist(columns, ’Length Order:’, 0);

/* Cleanup: delete the list */
rc=dellist(columns);

end;
else

_msg_=sysmsg();
return;

This program produces the following output:

SAS Table Order:(LIBNAME=8
MEMNAME=32
MEMTYPE=8
MEMLABEL=256
TYPEMEM=8
CRDATE=8
MODATE=8
NOBS=8
OBSLEN=8
NVAR=8
PROTECT=3
COMPRESS=8
REUSE=3
BUFSIZE=8
DELOBS=8
INDXTYPE=9
)[5]

Name Order:(BUFSIZE=8
COMPRESS=8
CRDATE=8
DELOBS=8
INDXTYPE=9
LIBNAME=8
MEMLABEL=256
MEMNAME=32
MEMTYPE=8
MODATE=8
NOBS=8
NVAR=8



SCL Lists � Initializing the Values in an SCL List 53

OBSLEN=8
PROTECT=3
REUSE=3
TYPEMEM=8
)[5]

Length Order:(PROTECT=3
REUSE=3
BUFSIZE=8
COMPRESS=8
CRDATE=8
DELOBS=8
LIBNAME=8
MEMTYPE=8
MODATE=8
NOBS=8
NVAR=8
OBSLEN=8
TYPEMEM=8
INDXTYPE=9
MEMNAME=32
MEMLABEL=256
)[5]

Note: [5] is the list identifier that was assigned when this example was run and
may be different each time the example is run. �

Initializing the Values in an SCL List

You can initialize an SCL list

� in a DCL statement. For example, to create a list with the constants 1, 2, ’a’, 3, ’b’,
and ’c’, you can declare the list as follows:

DCL list mylist={1,2,’a’,3,’b’,’c’};

Your list may also contain sublists. For example:

DCL list mylist={1,2,’a’,mysub={’A’,’B’,’C’,
3,’b’,’c’}};

When you use the DECLARE statement to initialize an SCL list, you can use
either braces ({ and }) or brackets ([ and ])to enclose a series of list items. For
example, both of the following list definitions are valid:

dcl list x = {1,2,3};
dcl list z = [4,5,6];

� in an assignment statement after you have declared the list. For example, the
following assignment statement initializes the employee list with an employee ID,
name, and office location. The location is a sublist.

DCL list employee;
employee = {id=9999, name=’Thomas’,

locate={bldg=’R’, room=’4321’}};



54 Manipulating SCL Lists � Chapter 5

� by specifying the InitialValue attribute when you create a class. In the following
example, the class InitVal initializes three list attributes, which also contain
sublists.

class work.a.InitVal.class;
public list list1 / (InitialValue=
{COPY={

POPMENUTEXT=’Copy here’,
ENABLED=’Yes’,
METHOD=’_drop’
},

MOVE={
POPMENUTEXT=’Move here’,
ENABLED=’Yes’,
METHOD=’_drop’
}

}
);
public list list2 / (initialValue=
{1,2,3,{’abc’,’def’,{1,2,’abc’},3},’def’});

public list list3 / (initialValue=
{id=888,name=Rob,
answers={mchoice={’a’,’c’,’b’,’e’},
math={1,4,8,9,}}

}
);

For more information about creating classes, see “CLASS” on page 253.

Note: Even if you initialize a list with a DCL or assignment statement or with the
initialValue attribute (rather than using one of the INSERT functions), you must
still explicitly delete the list as described in “Deleting Lists and List Items from SCL
Lists” on page 56. �

Manipulating SCL Lists
You can create new lists and then insert numbers, character strings, objects, and

even other lists into them. You can replace or delete list items, and you can move them
around by reversing, rotating, or sorting a list. You can also assign names to the items
in a list, and you can refer to items by their names rather than by their index (position)
in the list. Thus, you can use a list to implement data structures and to access and
assign values to list items by their names. Using this feature, you can add new fields to
the list data structure or change the order of the list’s items without modifying your
SCL program.

SCL lists are maintained entirely in memory. Keep this in mind as you develop your
applications. If your data is more appropriately maintained in a SAS table, you will
probably want to design your application in that manner instead of trying to read the
entire SAS table into a list. However, if you know your SAS table will not contain a
large number of rows and many columns, and if you do not need to maintain data
sharing, then you may find it convenient to read the SAS table into a list. That is, you
can use SCL lists for data that you would have liked to put into an array but could not
because of the restrictions imposed by arrays.



SCL Lists � Inserting and Replacing Items in SCL Lists 55

Determining the Type of an SCL List Item
In general, SCL list functions that process data values are suffixed with either N, C,

L, or O to denote the item types of numeric, character, list, or object, respectively. You
can use the ITEMTYPE function to determine the type of a list element and then use a
condition statement to determine which functions are used.

Passing SCL Lists as Arguments for Methods
Lists that are not declared as LIST type are treated by the compiler as numeric

types in order to maintain compatibility with Version 6. However, the more accurate
specification of LIST should be used, particularly when using lists in conjunction with
method overloading. For example, suppose you use the list MYLIST as an argument for
a method that has one version that takes a numeric argument and another that takes a
list argument. If MYLIST is not declared as LIST type, then it is treated as a numeric
type and the wrong method is called: the one that takes the numeric argument, instead
of the one that takes the list argument.

When a list with type LIST is passed as an argument to a method, SCL seeks a
method that accepts a LIST argument. If no exact type match is found, the list is
passed to a method that accepts an numeric argument. For example, if MYLIST is
declared as LIST type and is passed as an argument to method MYMETHOD, SCL will
first search for a MYMETHOD that accepts lists as arguments. If none is found, SCL
will pass MYLIST to a MYMETHOD that accepts numeric arguments.

Inserting and Replacing Items in SCL Lists
To insert and replace items in a list, use the SETITEMN, SETNITEMN, SETITEMC,

SETNITEMC, SETITEML, SETNITEML, SETITEMO, or SETNITEMO function. These
functions can assign values to existing items or they can add new items.

With arrays, you use

A{i}=x;

but with SCL lists, you use

rc=setitemn(listid,x,i);

To add a new item to a list without replacing the existing items, use the INSERTC,
INSERTL, INSERTN, or INSERTO function.

See also “Assigning Names to SCL List Items” on page 62.



56 Retrieving Values from SCL Lists � Chapter 5

Retrieving Values from SCL Lists
To retrieve the value of an item in a list, use the GETITEMN, GETNITEMN,

GETITEMC, GETNITEMC, GETITEML, GETNITEML, GETITEMO, or GETNITEMO
function.

With arrays, you use

x=A{i};

but with SCL lists, you use

x=getitemn(listid,i);

See also “Assigning Names to SCL List Items” on page 62.

Deleting Lists and List Items from SCL Lists
You can delete items from SCL lists by specifying the position, or index, of the item

to delete; by clearing all of the values from a list; or by deleting the entire list. You can
also pop items from lists, which enables you to create queues or stacks. See “Using SCL
Lists as Stacks and Queues” on page 65.

� To delete a single list item, use the DELITEM or DELNITEM function, specifying
either the index or the name of the item to delete.

� To clear all the values from a list, use the CLEARLIST function, which leaves the
list with a length of 0.

� To delete an entire list, use the DELLIST function. This function returns to the
system the memory that was required for maintaining the list and its items.

Note: When you delete a list that has sublists, you should delete the list recursively
if you do not need to use the information in the sublists. When you do not delete a list,
the memory occupied by the list is not available for other tasks. To delete a list
recursively, specify Y as the value of the recursively argument in the DELLIST function.
For example:

rc=dellist(mylist,’Y’);

�

For more information, see “Assigning Names to SCL List Items” on page 62 and
“DELLIST” on page 316.



SCL Lists � Implementing SCL Sublists and Nested Structures 57

Referencing SCL List Items by Index Number
List indexing is similar to array indexing. An index I specifies the position of an item

in the list. The first item is at index I=1, and the last item is at index
I=LISTLEN(mylistid), which is the length of the list. Thus, you can use DO loops to
process all items in a list, as shown in the following example:

do i=1 to listlen(mylistid);
t=itemtype(mylistid,i);
put ’Item ’ i ’ is type ’ t;

end;

Accessing Items Relative to the End of an SCL List
It is also useful for you to be able to access items at or relative to the end of an SCL

list. You can use negative indices to index an item from the end of the list. Counting
from the end of a list, the last item is at index −1 and the first item is at position −n,
where n is the length of the list. Thus, you do not need to subtract indices from n to
access items relative to the end of the list. All of the SCL list functions recognize
negative indices.

Index Errors in SCL Lists
Indexing errors occur when you supply an invalid index to an SCL list function, just

as it is an error to use an invalid array index. Valid values for list indexes depend on
the function. Some functions do not accept 0 as the index, whereas other functions do.
Refer to the index or start-index arguments in the dictionary entries for the SCL list
functions.

Implementing SCL Sublists and Nested Structures
SCL allows you to put one list of items inside another SCL list, thereby making a

sublist. For example, you can read the columns of a SAS table row into a list. You could
then insert each row into another list, and repeat this process for a range of rows in the
SAS table. You then have a list of lists, where the "outer" list contains an element for
each row in the SAS table, and the "inner" sublists contain each row. These lists are
called nested lists.



58 Implementing SCL Sublists and Nested Structures � Chapter 5

To illustrate, consider the SAS table WORK.EMPLOYEES, created with the
following DATA step program:

data employees;
input fname $ 1-9 lname $ 10-18

position $ 19-28 salary 29-34;
datalines;
Walter Bluerock Developer 36000
Jennifer Godfrey Manager 42000
Kevin Blake Janitor 19000
Ronald Tweety Publicist 29000
;

The following example reads the WORK.EMPLOYEES table into an SCL list. The
outer list is the list in the variable OUTERLIST. Each time through the loop, a new
inner list is created. Its identifier is stored in the variable INNERLIST, and
INNERLIST is inserted at the end of OUTERLIST.

INIT:
/* Open the EMPLOYEES table and */
/* create the SCL list OUTERLIST */

dsid=open(’employees’);
outerList=makelist();

/* Read the first table row and */
/* find the number of its columns */

rc=fetch(dsid);
numcols=attrn(dsid,’NVARS’);

/* For each row, make a new INNERLIST */
/* and create and insert the sublists */

do while (rc=0);
innerList=makelist();

/* For each column, return the name */
/* and type. Insert a list item of */
/* that name and type into the */
/* row’s INNERLIST. */

do i=1 to numcols;
name=varname(dsid,i);
type=vartype(dsid,i);
if type=’N’ then

rc=insertn(innerList,(getvarn
(dsid,i)),-1,name);

else
rc=insertc(innerList,(getvarc

(dsid,i)),-1,name);
end;



SCL Lists � Implementing SCL Sublists and Nested Structures 59

/* Insert each INNERLIST as an item */
/* into OUTERLIST and read the next */
/* row of the EMPLOYEES table */

outerList=insertl(outerList,innerList,-1);
rc=fetch(dsid);

end;
/* Close the EMPLOYEES table. Print and */
/* then delete OUTERLIST and its sublists. */

sysrc=close(dsid);
call putlist(outerList,’Nested Lists’,2);
rc=dellist(outerList,’y’);
return;

This program produces the following output:

Nested Lists( ( FNAME=’Walter’
LNAME=’Bluerock’
POSITION=’Developer’
SALARY=36000
)[7] u

( FNAME=’Jennifer’
LNAME=’Godfrey’
POSITION=’Manager’
SALARY=42000
)[9] u

( FNAME=’Kevin’
LNAME=’Blake’
POSITION=’Janitor’
SALARY=19000
)[11] u

( FNAME=’Ronald’
LNAME=’Tweety’
POSITION=’Publicist’
SALARY=29000
)[13] u

)[5] u v

1 [5], [7], [9], [11], and [13] are the list identifiers that were assigned when this
example was run. These values may be different each time the example runs.

2 List identifier 5 identifies the "outer" list. Each row is an inner or nested list (list
identifiers 7, 9, 11, and 13).



60 Limitless Levels of Nesting � Chapter 5

Limitless Levels of Nesting
Nested lists are highly useful for creating collections of records or data structures.

There is no limit to the amount of nesting or to the number of sublists that can be placed
in a list, other than the amount of memory available to your SAS application. Further,
you can create recursive list structures, where the list A can contain other lists that
contain A either directly or indirectly. The list A can even contain itself as a list item.

Simulating Multidimensional Arrays with Nested Lists
You can declare multidimensional arrays in SCL, but all lists are one-dimensional.

That is, to access an item in a list, you specify only one index. However, you can use
nested lists to simulate multidimensional arrays. For example, to create a list structure
that mimics a 2 by 3 array, you can use the following example:

array a[2,3] 8 _temporary_;
init:

listid = makelist(2);
lista = setiteml(listid, makelist(3), 1);
listb = setiteml(listid, makelist(3), 2);
call putlist(listid);
do i = 1 to dim(a,1);

list=getiteml(listid,i);
do j = 1 to dim(a,2);

a[i, j] = 10*i + j;
put a[i,j]=;
rc = setitemn(list,a[i,j], j);

end;
end;
call putlist(listid);

return;

This example produces the following output:

((. . . )[7] (. . . )[9] )[5]
a[ 1 , 1 ]=11
a[ 1 , 2 ]=12
a[ 1 , 3 ]=13
a[ 2 , 1 ]=21
a[ 2 , 2 ]=22
a[ 2 , 3 ]=23
((11 12 13 )[7] (21 22 23 )[9] )[5]

Note: Not all of the program is shown here. You would need to delete these lists
before ending the program. [7], [9], and [5] are the list identifiers that were assigned
when this example was run and may be different each time the example is run. �

Saving Nested Lists to SCL Entries
When you save a list that contains sublists, both the list and its sublists are saved

in the same SLIST entry. Thus, if you create list data structures that are highly
recursive and have many cycles, you should be careful about saving your lists.



SCL Lists � Saving Nested Lists to SCL Entries 61

For example, suppose list A contains list B. When you save list A, you also save list
B; you do not need to save list B separately, because list B is already stored in list A. In
fact, if you store the lists in two separate SLIST entries and then try to read them back,
you do not get the same list structure that you stored originally.

The following example creates two lists, A and B, (with text values in them to
identify their contents) and inserts list B into list A. It then saves each list in separate
SLIST entries, A.SLIST and B.SLIST. Then, the program creates two more lists,
APRIME and BPRIME, reads the two saved SLIST entries into those two lists, and
then prints all the list identifiers and list values.

INIT:
/* Make lists A and B and insert an item */
/* of text into each list. Then, insert */
/* list B into list A. */

a = makelist();
a = insertc(a, ’This is list A’);
b = makelist();
b = insertc(b, ’This is list B’);
a = insertl(a, b);

/* Save lists A and B into separate */
/* SLIST entries. */

rc=savelist
(’CATALOG’,’SASUSER.LISTS.A.SLIST’, A);

rc=savelist
(’CATALOG’,’SASUSER.LISTS.B.SLIST’, B);

/* Make lists APRIME and BPRIME. Fill */
/* APRIME with the contents of A.SLIST */
/* and BPRIME with B.SLIST */

aPrime=makelist();
bPrime=makelist();
rc=fillist

(’CATALOG’,’SASUSER.LISTS.A.SLIST’, aPrime);
rc=fillist

(’CATALOG’,’SASUSER.LISTS.B.SLIST’, bPrime);
/* Store list APRIME into list BINA */

bInA = getiteml(aPrime);
put a= b= aPrime= bPrime= bInA= ;
call putlist(a, ’List A:’,0);
call putlist(b, ’List B:’,0);
call putlist(aPrime, "List aPrime:",0);
call putlist(bPrime, "List bPrime:",0);

/* Delete list A and its sublist B */
/* Delete lists APRIME, BPRIME, and BINA */

rc=dellist(a,’y’);
rc=dellist(aPrime);
rc=dellist(bPrime);

return;

Here is the output:

a=5 b=7 aPrime=9 bPrime=11 bIna=13
List A:((’This is list B

)[7]
’This is list A
)[5]



62 Assigning Names to SCL List Items � Chapter 5

List B:(’This is list B
)[7]

List aPrime:((’This is list B
)[13]

’This is list A
)[9]

List bPrime:(’This is list B
)[11]

Note that the sublist B (13) that was read from A.SLIST is not the same as the
sublist BPRIME (11) that was read from B.SLIST. That is, A contains B, but B does not
contain BPRIME. Therefore, changes made to B are inherently reflected in A, whereas
changes to BPRIME are not reflected in APRIME.

Also note that the structures of list A and list APRIME are the same, but the list
identifiers are different and do not match any of the list identifiers that were read from
B.SLIST.

Note: [5], [7], [9], [11], and [13] are the list identifiers that were assigned when this
example was run and may be different each time the example runs. �

Advantages of SAVELIST Recursiveness

There is an advantage to the recursive nature of the SAVELIST function. For
example, if list A contains sublists B and C, SAVELIST saves all three lists when you
save A to an SLIST entry. Your application can take advantage of this if you have
several unrelated lists that you want to save. By creating a new list and inserting the
lists that you want saved into the new list, you can save them all in one SLIST entry
with one SAVELIST call, instead of saving each sublist in a separate SLIST entry with
separate SAVELIST calls.

Assigning Names to SCL List Items

SCL supports a feature called named lists, which enable you to assign a name to
each item in a list, or only to some list items. The name can be any SCL character
string, not just character strings that are valid SAS column names, unless the list has
the SASNAMES attribute. The maximum length of an SCL list item name is 255
characters. As with SAS names, list item names can contain mixed-case characters—for
example, EmployeeLocation.

If you search a list for which the HONORCASE attribute has not been set, then SCL
will uppercase the item names for the search operation only. The item names are not
permanently changed to uppercase.

You can use the GETNITEMC, GETNITEMN, GETNITEML, and GETNITEMO
functions to access named list items by their name rather than by their position. This
feature enables you to vary the contents of the list according to your application needs
without having to keep track of where a particular item is located in a list. To assign or
replace values that are associated with a name, use the SETNITEMC, SETNITEMN,
SETNITEML, or SETNITEMO function. To delete an item by its name, use the
DELNITEM function.

Item names in a list do not have to be unique unless the NODUPNAMES attribute
has been assigned to the list. Item names are stored as they are entered. If the list has
the HONORCASE attribute (the default), then ’abc’ and ’Abc’ are two different item
names. Otherwise, if the list has the IGNORECASE attribute, these names are
duplicate names.



SCL Lists � Finding an Occurrence of a Name 63

To search for an item by its name, you use the NAMEDITEM function. If the list has
the HONORCASE attribute, this function searches for item names that match the case
specified for the search unless you use the FORCE-UP attribute for NAMEDITEM. This
attribute overrides the HONORCASE attribute and converts the item name to upper
case for the search. However, the case of the item name is converted only for the search;
the name continues to be stored as you entered it. The function ignores trailing blanks
when searching for a matching name. If a list contains duplicate names, the search
function finds the first occurrence of the name unless you have specified a different
occurrence of the item for the search. By inserting a new item at the beginning of the
list, you can ‘‘hide’’ a previous value because a named search will find your new item
first by default. To restore the previous value, simply delete the new item from the list.

You can freely mix named items with unnamed items in a list. You can also use both
kinds of indexing (by name or by index) in any list, regardless of how the list was
created or whether all, some, or no items have names.

Indexing a Named Item by its Position
To find the index of a named item in a list, use the NAMEDITEM function. This

enables you to access an item later by its index in the list, which is a faster search.
However, searching by index is not safe if the index of the item might change between
the time you find the index and the time you use the index.

The following statement replaces the value associated with the first occurrence of the
item named ACME in the list NUMBERS with the value (201) 555-2263. These
statements do not modify the list if the name ACME is not found:

i=nameditem(numbers,’Acme’);
if i>0 then

rc=setitemc(numbers,’(201) 555-2263’,i);

Determining or Replacing an Item’s Name
To replace the name of an item, use the NAMEITEM function. You can also use

NAMEITEM when you want to find out the name of an item but you do not want to
change the item’s name.

Finding an Occurrence of a Name
In general, the functions that enable you to access a list item by its name operate on

the first occurrence of the name by default. However, you can combine the optional
arguments occurrence, start-index, and ignore-case to refer to items other than the first
occurrence. Occurrence enables you to specify the number of the occurrence of a named
item that you want to find. For example, a value of three references the third
occurrence, and a value of ten references the tenth occurrence. The following example
demonstrates how to find the indexes of the first and third item named SCL:

/* default occurrence is 1 */
first=nameditem(listid,’SCL’);

/* Find the third occurrence */
third=nameditem(listid,’SCL’,3);



64 Specifying Where the Search for an Item Starts � Chapter 5

Specifying Where the Search for an Item Starts
The start-index argument specifies the position in the list in which to begin the

search for a named item. The default is 1, which starts the search at the first item in
the list. If the value for start-index is negative, then the search starts at position
ABS(start-index) from the end of the list and searches toward the front of the list. For
example, a start-index of −1 references the list’s last item, whereas a start-index of −2
references the list’s second-to-last item. Thus, to change the value of the last occurrence
of a list item named X to the value y, you can use a statement like the following:

listid=setnitemn(listid,y,’X’,1,-1);

Using SCL Lists in Shared Data Environments
SCL lists support shared data environments. (Without a shared data environment, if

you wanted an entry to pass data to many other entries, you had to pass the data
explicitly in each CALL DISPLAY statement, or else you had to put the values in macro
variables. However, macro variables are limited in the amount of data they can contain
(only scalar values), and their names must be valid SAS names.) By placing data in a
shared data environment, other programs and even other SAS applications can retrieve
the data via a name. These names can be any valid SCL string, and the value
associated with a name can be a numeric value, a character value, or an entire list.

The two kinds of shared data environments are implemented with local SCL lists and
global SCL lists.

Local Data Environment
Each SAS software application (such as an FSEDIT application, or a SAS/AF

application started with the AF command) maintains its own application environment
in a local environment list. You can store information that is local to the application,
but which you want to be shared among all of an application’s entries, in this local
environment list. The function ENVLIST(’L’) returns the list identifier of the
environment list for the current application. Other applications’ lists are maintained in
the memory of each application, and even though two lists in different applications may
have the same list identifier, the lists are actually different. This is analogous to the
same SAS table identifier being used by different SAS applications: the identifier
actually refers to different SAS tables that are opened at different times.

Global Data Environment
There is also a global environment list that stores data that can be shared across all

SAS applications started in the same SAS session or process. For example, one SAS
application may place some data in the global environment list and then close. Another
application may then open and read the data that was created by the first application.
To access the global environment list, use the list identifier returned by ENVLIST(’G’).



SCL Lists � Using a List as a Queue 65

Using SCL Lists as Stacks and Queues
You can create lists that function as stacks (first in, last out lists) or queues (first in,

first out lists).

Using a List as a Stack
To use a list as a stack, use the INSERTC, INSERTN, INSERTL, or INSERTO

function to insert items into a list. The default insertion position for these functions is
the beginning of the list, so you need only specify the list identifier and the data to be
inserted.

To pop (or delete) an item from a stack, use the POPN, POPC, POPL, or POPO
function. You can use the ITEMTYPE function to determine the type of the item at the
top of the stack if your application does not know the type. If your application always
puts the same data type onto your stack (for example, if the stack is a stack of character
strings and you use only INSERTC to put items into the list), then you do not need to
use ITEMTYPE to check the type of the item at the top of the stack before popping.

If you do not want to keep the top value, use the DELITEM or DELNITEM function
to delete the top item in the stack.

To replace the top item, use the SETITEMN, SETITEMC, SETITEML, or
SETITEMO function.

You should not attempt to pop or delete an item unless you are sure the list contains
at least one item. You can use the LISTLEN function to return the length of the list
before you use a function to pop or delete an item.

Using a List as a Queue
When you use a list as a queue, you also use the INSERTN, INSERTC, INSERTL,

or INSERTO function to put items in the list. However, you use an item index of −1 to
insert an item at the end of the list.

To remove an item from a queue, use the POPN, POPC, POPL, or POPO function. As
with stacks, you should use the ITEMTYPE and LISTLEN functions to verify the item’s
type and the list’s length before popping an item from the list. Here is an example:

INIT:
listid=makelist();
rc=insertc(listid,’1st’,-1);
rc=insertc(listid,’2nd’,-1);
rc=insertc(listid,’3rd’,-1);
rc=insertc(listid,’4th’,-1);
rc=insertc(listid,’5th’,-1);
put ’Test of first in, first out queue:’;
do i=1 to listlen(listid);

cval=popc(listid);
put ’Popping item’ i cval=;

end;
rc=dellist(listid);

return;



66 Assigning Attributes to SCL Lists and List Items � Chapter 5

This program produces the following output:

Test of first in, first out queue:
Popping item 1 cval=1st
Popping item 2 cval=2nd
Popping item 3 cval=3rd
Popping item 4 cval=4th
Popping item 5 cval=5th

Assigning Attributes to SCL Lists and List Items
You can assign attributes to lists or to items in a list. Attributes are useful for

controlling the use and modification of lists. For example, you can specify that a list is
not available for update, which means that other programs called by your program (for
example, via CALL DISPLAY) cannot change the data in the list or cannot add or delete
items from the list. You can also assign attributes such as NOUPDATE or NODELETE
to individual items in a list.

Because it is easy to change the type of any item in a list simply by replacing the
value with a new value, it would be quite easy for one application to accidentally
change a list in a way that you did not intend. To prevent this possibility, you may
want to specify that a list or items in a list have a fixed type. When you assign the
proper attributes to the lists and items that you create, you do not need to worry about
other parts of the application corrupting your data, and you can avoid adding data
validation statements to your programs.

Assigning list and item attributes is not required. However, doing so can facilitate
application development, because an attempt to violate an attribute, which indicates a
bug in the application, causes the application to stop with a fatal error.

To set the attributes of a list or item, use the SETLATTR function. The GETLATTR
function returns a string that describes the current attributes. The HASATTR function
returns 1 if the list or item has the specified attribute and 0 if it does not.

Using SCL List File Functions
Two SCL list functions enable you to store lists in SAS catalog entries or in external

files and to read lists from these files. The SAVELIST function stores a list, and the
FILLIST function reads data from a catalog entry or external file and fills a list with
the text from the file.

Debugging SCL Lists
SCL provides a List Diagnostic Utility (or list analyzer), which reports any SCL lists

that are not freed at the appropriate time in a program. SCL lists that are not deleted
when they are no longer needed can waste significant amounts of memory. The list
analyzer highlights every statement in an SCL program that creates an SCL list that is
not deleted directly or indirectly by the program.

To use the list analyzer, issue the command SCLPROF LIST ON from any SAS window
to start the data collection phase. Then invoke the window associated with the program
that you want to test. When you return to the window from which you issued the
SCLPROF LIST ON command, issue the command SCLPROF LIST OFF to end the data



SCL Lists � Debugging SCL Lists 67

collection phase. The data collected during this phase is stored in the SAS table
WORK.SCLTRAC1. If you end the task from which you started the data collection
phase, the data collection phase ends.

Note: To avoid collecting lists that are not deleted until the end of the task or
application, begin the data collection phase on the second invocation of the window that
you are testing. �

As soon as the data collection phase ends, the interactive data presentation phase
begins. From the data presentation phase, you can save the data by selecting Save As
from the File menu. To view the stored data, issue the command SCLPROF LIST
DATA=analysis-data-set.The interactive presentation phase opens two windows:

� The SUMMARY window displays summary statistics of the list analysis.

� The List Diagnostic Utility window lists the catalog entries containing SCL
programs that created lists that were not deleted during the analysis.

If warnings were generated during the analysis, a third window opens to display the
warning messages.



68



69

C H A P T E R

6
Controlling Program Flow

Introduction to SCL Program Flow 69
Using SCL DO Loops 70

DO Statement 70

Iterative DO Loops 70

Using UNTIL and WHILE Clauses 71

DO WHILE Statement 72
DO UNTIL Statement 72

Controlling DO Loops (CONTINUE and LEAVE) 73

Using SCL SELECT-WHEN/OTHERWISE Conditions 74

Using SCL IF-THEN/ELSE Conditions 76

Using the SCL RETURN Statement 76

Branching to a Labeled Section (LINK) in SCL Programs 77
Branching to Another Entry (GOTO) in SCL Programs 77

Calling SCL Entries 78

Stopping Execution of the Current Section in SCL Programs 78

Executing Methods in SCL Programs 79

Using the SCL CONTROL Statement 79

Introduction to SCL Program Flow
You can control the flow of execution of your SCL application by
� using any of several programming constructs such as DO loops and IF/

THEN-ELSE statements
� branching to labeled sections with the LINK statement
� branching to PROGRAM, FRAME, MENU, CBT, or HELP entries with the GOTO

statement
� branching to another SCL entry with CALL DISPLAY
� executing a method that is stored in a separate SCL entry with CALL METHOD
� executing an object method by using dot notation
� sending a method to an object with CALL SEND
� sending a method to a FRAME entry control with CALL NOTIFY
� specifying how labeled sections are executed, when and where submit blocks are

executed, and whether execution halts when errors are encountered in dot
notation with the CONTROL statement

� creating a program halt handler to control how run-time errors are processed.

For more information about controlling the flow of execution in applications that use
frames, refer to SAS Guide to Applications Development.



70 Using SCL DO Loops � Chapter 6

Using SCL DO Loops
There are four forms of the DO statement:
� The DO statement designates a group of statements that are to be executed as a

unit, usually as a part of IF-THEN/ELSE statements.
� The iterative DO statement executes a group of statements repetitively based on

the value of an index variable. If you specify an UNTIL clause or a WHILE clause,
then the execution of the statements is also based on the condition that you specify
in the clause.

� The DO UNTIL statement executes a group of statements repetitively until the
condition that you specify is true. The condition is checked after each iteration of
the loop.

� The DO WHILE statement executes a group of statements repetitively as long as
the condition that you specify remains true. The condition is checked before each
iteration of the loop.

For more information about DO statements, in addition to the information in this
documentation, refer to SAS Language Reference: Dictionary.

DO Statement
The DO statement designates a group of statements that are to be executed as a

unit. The simplest form of the DO loop is

DO;

. . .SAS statements. . .

END;

This simple DO statement is often used within IF-THEN/ELSE statements to designate
a group of statements to be executed if the IF condition is true. For example, in the
following code, the statements between DO and END are performed only when YEARS
is greater than 5.

if years>5 then
do;
months=years*12;
put years= months=;

end;

Iterative DO Loops
The iterative DO loop executes the statements between DO and END repetitively

based on the value of an index variable.

DO index-variable = start TO stop <BY increment>;

Note: In SCL applications, both start and stop are required, and start, stop, and
increment must be numbers or expressions that yield a number. The TO and BY clauses
cannot be reversed, and start cannot be a series of items separated by commas. You can
use only one start TO stop specification (with or without the BY clause) in a DO loop. �

If increment is not specified, then index-variable is increased by 1. If increment is
positive, then start must be the lower bound and stop must the be upper bound for the



Controlling Program Flow � Iterative DO Loops 71

loop. If increment is negative, then start must be the upper bound and stop must be the
lower bound for the loop.

The values of index-variable, stop, and increment are evaluated at each iteration of
the loop. Any changes made to index-variable, stop, or increment within the DO group
can affect the number of times that the loop executes. For example, if you change the
value of index-variable inside of the DO group, then index-variable may never equal the
value of stop, and the loop will not stop executing.

For more understanding of what DO LOOP elements are updated, examine the
following code and the generated output:

INIT:
dcl num k=18 n=11;

do i=k+2 to n-1 by -2;
put i=;

end;

dcl num s=1 e=25;
do i = s to e;
e = e - 5;
s = s + 10;
put i= e= s=;

end;
RETURN;

i=20
i=18
i=16
i=14
i=12
i=10
i=1 e=20 s=11
i=2 e=15 s=21
i=3 e=10 s=31
i=4 e=5 s=41
i=5 e=0 s=51

The following code uses the DOPEN and DNUM functions to execute SAS statements
once for each file in the current directory:

rc=filename(’mydir’,’.’);
dirid=dopen(’mydir’);
do i=1 to dnum(dirid);

...SAS statements...
end;
rc=dclose(dirid);

Using UNTIL and WHILE Clauses
You can add either an UNTIL clause or a WHILE clause to your DO statements.

DO index-variable = start TO stop <BY increment>

<WHILE (expression)> | <UNTIL (expression)>;

The UNTIL expression is evaluated after the statements in the DO loop have executed,
and the WHILE expression is evaluated before the statements in the DO loop have
executed. The statements in a DO UNTIL loop are always executed at least once, but



72 DO WHILE Statement � Chapter 6

the statements in a DO WHILE loop will not execute even once if the DO WHILE
expression is false.

If index-variable is still in the range between start and stop, then if you specify an
UNTIL clause, the DO group will execute until the UNTIL expression is true. If you
specify a WHILE clause, the loop will execute as long as the WHILE expression is true.

The following example uses an UNTIL clause to set a flag, and then it checks the flag
during each iteration of the loop:

flag=0;
do i=1 to 10 until(flag);

...SAS statements...
if expression then flag=1;

end;

The following loop executes as long as I is within the range of 10 to 0 and MONTH is
equal to JAN.

do i=10 to 0 by -1 while(month=’JAN’);
...SAS statements...

end;

DO WHILE Statement
The DO WHILE statement works like the iterative DO statement with a WHILE

clause, except that you do not specify an index-variable or start, stop, or increment.

DO WHILE (expression);

. . .SAS statements. . .

END;

Whether the loop executes is based solely on whether the expression that you specify
evaluates to true or false. The expression is evaluated before the loop executes, and if
the expression is false, then the loop is not executed. If the expression is false the first
time it is evaluated, then the loop will not execute at all.

For example, the following DO loop is executed once for each value of N: 0, 1, 2, 3,
and 4.

n=0;
do while(n<5);

put n=;
n+1;

end;

DO UNTIL Statement
The DO UNTIL statement works like the iterative DO statement with an UNTIL

clause, except that you do not specify an index variable nor start, stop, or increment.

DO UNTIL (expression);

. . .SAS statements. . .

END;

Whether the loop executes is based solely on whether the expression that you specify
evaluates to true or false. The loop is always executed at least once, and the expression
is evaluated after the loop executes.



Controlling Program Flow � Controlling DO Loops (CONTINUE and LEAVE) 73

For example, the following DO loop is executed once for each value of N: 0, 1, 2, 3,
and 4.

n=0;
do until(n>=5);
put n=;
n+1;

end;

Controlling DO Loops (CONTINUE and LEAVE)
You can use the CONTINUE and LEAVE statements to control the flow of execution

through DO loops.
The CONTINUE statement stops the processing of the current DO loop iteration and

resumes with the next iteration of the loop. For example, the following code reads each
row in the DEPT table, and if the status is not PT, it displays a frame that enables the
user to update the full-time employee’s salary.

deptid=open(’dept’);
call set(deptid);
do while (fetch(deptid) ne -1);
if (status=’PT’) then continue;
newsal=display(’fulltime.frame’);

end;

The LEAVE statement stops processing the current DO loop and resumes with the
next statement after the DO loop. With the LEAVE statement, you have the option of
specifying a label for the DO statement:

LEAVE <label>;

If you have nested DO loops and you want to skip out of more than one loop, you can
specify the label of the loop that you want to leave. For example, the following LEAVE
statement causes execution to skip to the last PUT statement:

myloop:
do i=1 to 10;
do j=1 to 10;

if j=5 then leave myloop;
put i= j=;

end;
end;
put ’this statement executes next’;
return;

In SCL applications, the LEAVE statement can be used only within DO loops, not in
SELECT statements (unless it is enclosed in a DO statement).

For more information, refer to “CONTINUE” on page 277, “LEAVE” on page 498, and
SAS Language Reference: Dictionary.



74 Using SCL SELECT-WHEN/OTHERWISE Conditions � Chapter 6

Using SCL SELECT-WHEN/OTHERWISE Conditions
The SELECT statement executes one of several statements or groups of statements

based on the value of the expression that you specify.

SELECT< (select-expression)>;

WHEN-1 (when-expression-1) statement(s);

<WHEN-n (when-expression-n) statement(s);>

<OTHERWISE statement;>

END;

SAS evaluates select-expression, if present, as well as when–expression-1. If the values
of both expressions are equal, then SAS executes the statements associated with
when-expression-1. If the values are not equal, then SAS evaluates when-expression-n,
and if the values of select–expression-1 and when-expression-1 are equal, SAS executes
the statements associated with when-expression-n. SAS evaluates each when expression
until it finds a match or until it has evaluated all of the when expressions without
finding a match. If you do not specify a select expression, then SAS evaluates each
when expression and executes only the statements associated with the first when
expression that evaluates to true.

If the value of none of the when expressions matches the value of the select
expression, or if you do not specify a select expression and all of the when expressions
are false, then SAS executes the statements associated with the OTHERWISE
statement. If you do not specify an OTHERWISE statement, the program halts.

In SCL applications, you cannot specify a series of when expressions separated by
commas in the same WHEN statement. However, separating multiple WHEN
statements with a comma is equivalent to separating them with the logical operator
OR, which is acceptable in SCL applications.

The statements associated with a when expression can be any executable SAS
statement, including SELECT and null statements. A null statement in a WHEN
statement causes SAS to recognize a condition as true and to take no additional action.
A null statement in an OTHERWISE statement prevents SAS from issuing an error
message when all of the when expressions are false.

Each WHEN statement implies a DO group of all statements until the next WHEN
or OTHERWISE statement. Therefore the following program is valid:

select (paycat);
when (’monthly’)
amt=salary;

when (’hourly’)
amt=hrlywage*min(hrs,40);
if hrs>40 then put ’Check timecard.’;

otherwise put ’problem observation’;
end;



Controlling Program Flow � Using SCL SELECT-WHEN/OTHERWISE Conditions 75

However, if you need to include a LEAVE statement as part of your WHEN statement,
then you must explicitly specify the DO statement in your WHEN statement.

You can specify expressions and their possible values in either of the following ways:
1

SELECT;

WHEN (variable operator value) statement(s);

END;

2

SELECT (variable);

WHEN (value) statement(s);

END;

For example, both of the following SELECT statements are correct:

select;
when (x<=5) put ’1 to 5’;
when (x>=6) put ’6 to 10’;

end;

select (x);
when (1) put ’one’;
when (2) put ’two’;

end;

The following code is incorrect because it compares the value of the expression X with
the value of the expression X=1. As described in “Boolean Numeric Expressions” on
page 32, in Boolean expressions, a value of 0 is false and a value of 1 is true. Therefore,
the expression X is false and the expression X=1 is false, so the program prints x is 1.

x=0;
select (x);
when (x=0) put ’x is 0’;
when (x=1) put ’x is 1’;
otherwise put x=;

end;

For more information about the SELECT statement, refer to “SELECT” on page 653
and to SAS Language Reference: Dictionary.



76 Using SCL IF-THEN/ELSE Conditions � Chapter 6

Using SCL IF-THEN/ELSE Conditions

The IF-THEN/ELSE statement executes a statement or group of statements based
on a condition that you specify.

IF expression THEN statement;

<ELSE statement;>

If expression is true, then SAS executes the statement in the THEN clause. If the
expression is false and if an ELSE statement is present, then SAS executes the ELSE
statement. The statement following THEN and ELSE can be either a single SAS
statement (including an IF-THEN/ELSE statement) or a DO group.

For example:

if (exist(table)) then
_msg_=’SAS table already exists.’;

else do;
call new(table,’’,1,’y’);
_msg_=’Table has been created.’;

end;

Suppose your application is designed to run in batch mode and you do not want to
generate any messages. You could use a null statement after THEN:

if (exist(table)) then;
else call new(table,’’,1,’y’);

For more information, refer to SAS Language Reference: Dictionary.

Using the SCL RETURN Statement

The RETURN statement stops the execution of the program section that is currently
executing.

RETURN <value>;

The RETURN statement at the end of a reserved program section (FSEINIT ,INIT,
MAIN, TERM, and FSETERM) sends control to the next program section in the
sequence.

The first RETURN statement after a LINK statement returns control to the
statement that immediately follows the LINK statement.

When the RETURN statement is encountered at the end of a window variable
section, control returns to the next section in the program execution cycle. That next
section may be another window variable section or it may be the MAIN section. When
the current program execution cycle finishes, control returns to the application window.

The RETURN statement at the end of a method returns control to the calling
program.

The RETURN statement for an ENTRY or METHOD block can return value if the
ENTRY or METHOD statement contains RETURN=data-type. The returned value has
no effect if control does not immediately return to the calling program.

For an example of the RETURN statement, see the example in “Branching to
Another Entry (GOTO) in SCL Programs” on page 77. For more explanation and an
additional example, see “RETURN” on page 624.



Controlling Program Flow � Branching to Another Entry (GOTO) in SCL Programs 77

Branching to a Labeled Section (LINK) in SCL Programs
The LINK statement tells SCL to jump immediately to the specified statement label.

LINK label;

SCL then executes the statements from the statement label up to the next RETURN
statement. The RETURN statement sends program control to the statement that
immediately follows the LINK statement. The LINK statement and the label must be
in the same entry.

The LINK statement can branch to a group of statements that contains another
LINK statement; that is, you can nest LINK statements. You can have up to ten LINK
statements with no intervening RETURN statements.

See “Branching to Another Entry (GOTO) in SCL Programs” on page 77 for an
example that includes LINK statements.

For more information, refer to SAS Language Reference: Dictionary.

Branching to Another Entry (GOTO) in SCL Programs
You can use the GOTO statement to transfer control to another SAS/AF entry.

CALL GOTO (entry<, action<, frame>>);

Entry specifies a FRAME, PROGRAM, MENU, CBT, or HELP entry. By default, when
the entry ends, control returns to the parent entry that was specified in entry. If a
parent entry is not specified, then the window exits.

For example, suppose WORK.A.A.SCL contains the following code:

INIT:
link SECTONE;
put ’in INIT after link to SECTONE’;

return;

SECTONE:
put ’in SECTONE before link to TWO’;
link TWO;
put ’in SECTONE before goto’;
call goto(’work.a.b.frame’);
put ’in SECTONE after goto to frame’;

return;

TWO:
put ’in TWO’;

return;

WORK.A.B.SCL contains the following code:

INIT:
put ’in WORK.A.B.FRAME’;

return;



78 Calling SCL Entries � Chapter 6

If you compile WORK.A.B.FRAME and WORK.A.A.SCL, and then test WORK.A.A.SCL,
you will see the following output:

in SECTONE before link to TWO
in TWO
in SECTONE before goto
in WORK.A.B.FRAME

The PUT statement in the INIT section of A.SCL and the last PUT statement in
SECTONE are never executed. After WORK.A.B.FRAME is displayed and the user
exits from the window, the program ends.

For more information, see “GOTO” on page 444.

Calling SCL Entries

SAS/AF software provides SCL entries for storing program modules. SCL programs
can access a module that is stored in another SCL entry. They can pass parameters to
the module and can receive values from the module. An SCL module can be used by
any other SCL program.

You call an SCL module with a CALL DISPLAY routine that passes parameters to it
and receives values that are returned by the SCL entry. The module’s ENTRY
statement receives parameters and returns values to the calling program.

For example, if you were creating an SCL module to validate amounts and rates that
are entered by users, you could store the labeled sections in separate SCL entries
named AMOUNT.SCL and RATE.SCL. Then, you could call either of them with a CALL
DISPLAY statement like the following:

call display(’methdlib.validate.amount.scl’,amount,error);

For more information, see “DISPLAY” on page 330.

Stopping Execution of the Current Section in SCL Programs

The STOP statement stops the execution of the current section. If a MAIN or TERM
section is present, control passes to MAIN or TERM. For example, in the following
program, control passes from INIT to SECTONE. Since X=1 is true, the STOP
statement is executed, so control never passes to TWO. Control passes directly from the
STOP statement in SECTONE to MAIN. The STOP statement at the end of MAIN has
no effect, and control passes to TERM.

INIT:
put ’beginning INIT’;
x=1;
link SECTONE;
put ’in INIT after link’;

stop;

MAIN:
put ’in MAIN’;

stop;

SECTONE:
put ’in SECTONE’;



Controlling Program Flow � Using the SCL CONTROL Statement 79

if x=1 then stop;
link TWO;

return;

TWO:
put ’in TWO’;

return;

TERM:
put ’in TERM’;

return;

This program produces the following output:

beginning INIT
in SECTONE
in MAIN
in TERM

For more information, see “STOP” on page 688.

Executing Methods in SCL Programs

In object-oriented applications, methods are implemented in CLASS blocks or
USECLASS blocks. These methods are usually invoked with dot notation. See
“Accessing Object Attributes and Methods with Dot Notation” on page 124 for
information about dot notation.

You can also send methods to an object by using CALL SEND, and you can send a
method to a control in a FRAME entry by using CALL NOTIFY. See “SEND” on page
656 and “NOTIFY” on page 575 for more information.

Methods may also be stored in SCL, PROGRAM, or SCREEN entries. If the method
is stored in an SCL entry, then call the method with the CALL METHOD routine. If the
method is stored in a PROGRAM or SCREEN entry, you can use the LINK or GOTO
statements to call it. See “Calling a Method That Is Stored in an SCL Entry” on page 13,
“Branching to a Labeled Section (LINK) in SCL Programs” on page 77, and “Branching
to Another Entry (GOTO) in SCL Programs” on page 77 for more information.

Using the SCL CONTROL Statement

The CONTROL statement enables you to specify options that control the execution
of labeled sections, the formatting of submit blocks, and whether an error in dot
notation causes a program halt.

CONTROL options;

You can specify the following options with the CONTROL statement:

ALLCMDS|NOALLCMDS
determines whether SCL can intercept procedure-specific or custom commands
that are issued in the application. This option also determines if and when the
MAIN section executes.



80 Using the SCL CONTROL Statement � Chapter 6

ALWAYS|NOALWAYS
determines whether the MAIN section executes if the user enters a command that
SCL does not recognize.

ASIS NOASIS
determines whether SCL eliminates unnecessary spaces and line breaks before
submit blocks are submitted.

BREAK label|NOBREAK
enables you to specify a labeled program section that will be executed if an
interrupt or break occurs while your program is executing.

HALTONDOATTRIBUTE|NOHALTONDOTATTRIBUTE
determines whether execution halts if SCL finds an error in the dot notation that
is used in your program.

ENDSAS|NOENDSAS
determines whether the TERM section executes when the user enters the
ENDSAS or BYE commands.

ENDAWS|NOENDAWS
determines whether the TERM section executes when a user ends a SAS session
by selecting the system closure menu in a FRAME entry that is running within
the SAS application workspace.

ENTER|NOENTER
determines whether the MAIN section executes when the user presses the ENTER
key or a function key without modifying a window variable.

ERROR|NOERROR
determines whether the MAIN section executes if a control or field contains a
value that causes an attribute error.

LABEL|NOLABEL
determines whether the MAIN section executes before or after the window
variable sections.

TERM|NOTERM
determines whether the TERM section executes even if a user does not modify any
columns in the current row of the SAS table.

For more information, see “CONTROL” on page 279.



81

C H A P T E R

7
Using SCL with Other SAS
Software Products

Introduction to Using SCL with SAS 81
Using SAS DATA Step Features in SCL Programs 82

Statements 82

Functions 83

Variables 83

Numeric Variables 84
Character Variables 84

Expressions 84

Submitting SAS Statements and SQL Statements in SCL Programs 85

Submitting Statements Compared to Using SCL Features 85

Designating Submit Blocks in SCL Programs 85

How Submit Blocks Are Processed in SCL Programs 86
How Submitted Statements Are Formatted in SCL Programs 87

Modifying the Behavior of Submit Blocks in SCL Programs 87

Controlling Where Submitted Code Is Executed 87

Controlling What Happens After a Submit Block Executes 88

Using SUBMIT CONTINUE in FSEDIT Applications 88
Submitting Statements to a Remote Host 89

Substituting Text in Submit Blocks in SCL Programs 89

How Values Are Substituted in Submit Blocks 89

Specifying Text for Substitutions 90

Using the REPLACE Statement 90
Using the Replace Attribute 90

Issuing Commands to Host Operating Systems from SCL Programs 91

Using Macro Variables in SCL Programs 91

Storing and Retrieving Macro Variable Values 91

Using the Same Name for Macro Variables and SCL Variables 92

Using Automatic Macro Variables 93
SCL and DATA Step Graphics Interface Elements 93

Introduction to Using SCL with SAS

SCL provides many of the same features as the Base SAS language. However, some
SCL features differ slightly in functionality from Base SAS language features. Also,
although SCL provides a rich set of features, it does not provide functions and
statements to accomplish directly all of the data access, management, presentation, and
analysis tasks that SAS software can perform, nor can it provide the equivalent for
every command that is available under your host operating system. However, SCL does
provide the following features:



82 Using SAS DATA Step Features in SCL Programs � Chapter 7

� the SUBMIT statement, which provides access to other features of SAS software
by generating SAS statements and then submitting them to SAS software for
processing.

� the SYSTEM function, which provides access to host operating systems by issuing
host operating system commands.

Using SAS DATA Step Features in SCL Programs
SCL supports the syntax of the SAS DATA step with the exceptions and additions

noted. Refer to SAS Language Reference: Dictionary for details about the SAS language
elements that are available in the DATA step.

SCL does not support the DATA step statements that relate specifically to creating
SAS data tables, such as the DATA, SET, INFILE, and DATALINES statements.
However, SCL does provide special functions that can perform equivalent SAS table
manipulations. See Chapter 11, “Using SAS Tables,” on page 173 for details.

Statements
“SCL Elements by Category” on page 200 lists the statements that are supported by

SCL and tells you where they are documented. The ARRAY, DO, LENGTH, PUT, and
SELECT statements are different in SCL. The differences are documented in their
entries in Chapter 13, “SAS Component Language Dictionary,” on page 199. The
following list shows the DATA step statements that are valid in SCL programs and
notes differences between a statement’s support in SCL and in the DATA step.

ARRAY (Explicit)
defines the elements of an explicit array. _NUMERIC_, _CHARACTER_, and
_ALL_ are not supported.

assignment
assigns values to variables.

comment
documents the purpose of a program.

CONTINUE
stops the processing of the current DO loop and resumes with the next iteration of
that DO loop. See the dictionary entries for DO as well as CONTINUE for
information about the differences in the behavior of this statement in SCL.

DO, iterative DO, DO-UNTIL, DO-WHILE
repetitively execute one or more statements. SCL does not support the DO-list
form of the DO statement, but it does support LEAVE and CONTINUE statements
that extend the capabilities of DO-group processing.

END
designates the end of a DO group or SELECT group.

GOTO
jumps to a specified program label.

IF-THEN-ELSE
enables conditional execution of one or more statements.

%INCLUDE
accesses statements (usually from an external file) and adds them to the program
when the SCL program compiles.



Using SCL with Other SAS Software Products � Variables 83

LEAVE
stops executing the current DO group and resumes with the next sequential
statement. See the dictionary entries for DO as well as LEAVE for information
about the differences in the behavior of this statement in SCL.

LENGTH
allocates storage space for character and numeric variables. In SCL, the LENGTH
statement can set only the lengths of nonwindow variables.

LINK
jumps to a specified program label but allows a return to the following statement.
SCL allows nesting of up to 25 LINK statements.

NULL
is an executable statement that contains a semicolon (;) and acts as a place holder.

PUT
writes text to the LOG window.

RETURN
returns control or a value to the calling routine or application. In SCL, RETURN
can also return a value from the execution of a method.

RUN
is an alias for the RETURN statement.

SELECT-WHEN
enables conditional execution of one or several statements or groups of statements.

STOP
is an alias for the RETURN statement.

SUM
adds the result of an expression to an accumulator variable.

Functions
The following list notes differences between a function’s support in SCL and in the

DATA step.

DIF
Not supported in SCL.

LAG
Not supported in SCL.

SUM
SCL does not support the colon modifier in the SUM function that is used to sum
all variables that start with a certain string.

See SAS Language Reference: Dictionary for details about other DATA step functions
that are supported by SCL.

Variables
Variables in SCL programs share most of the characteristics of variables in the

DATA step such as default length and type. However, you should be aware of the
differences described in the following sections. In addition, SCL variables can be
declared to be local in scope to a DO or SELECT block.



84 Expressions � Chapter 7

Numeric Variables
A variable is assigned the numeric data type if its data type is not explicitly declared.

Character Variables
In SCL, the length of a character variable is determined as follows:
� For window variables, the maximum length of a variable is equal to the length of

the corresponding control or field in the window.
� For character-type nonwindow variables, the length is 200 characters unless a

different length is explicitly declared. However, you can use the DECLARE or
LENGTH statement to change the length from a minimum of 1 character to a
maximum of 32K characters. The maximum length of a nonwindow variable is not
affected by the length of a string that is assigned to the variable in the SCL
program. For example, suppose your SCL program contains the following
statement and that the window for the application does not include a field named
LongWord:

LongWord=’Thisisaverylongword’;

As a result of this assignment statement, SCL creates a nonwindow variable
named LongWord with a maximum length of 200 characters. The length of the
string in the assignment statement has no effect on the maximum length of the
variable. By contrast, this same assignment in a DATA step would create a
variable with a maximum length of 19 characters.

As in the DATA step, the LENGTH function in SCL returns the current
trimmed length of a string (the position of the nonblank character at the right end
of the variable value). However, SCL also provides the MLENGTH function, which
returns the maximum length of a character variable, as well as the LENGTH
function with the NOTRIM option, which returns the untrimmed length of a string.

Expressions
SCL supports the standard DATA step expressions in an identical manner. The only

exception is the IN operator, which has the following syntax:

i=variable IN (list-of-values)|array-name;

In SCL, the IN operator returns the index of the element if a match is found, or it
returns 0 if no match is found. However, in the DATA step, the IN operator returns 1 if
a match is found and 0 if no match is found. The IN operator is valid for both numeric
and character lists as well as for arrays. If a list that is used with the IN operator
contains values with mixed data types, then those values are converted to the data type
of the first value in the list when the program is compiled.

In the following example, the statements using the IN operator are equivalent:

array list{3}$ (’cat’,’bird’,’dog’);
i=’dog’ in (’cat’,’bird’,’dog’);
i=’dog’ in list;

In SCL, this example produces I=3, whereas in the DATA step the example produces
I=1. Also, the DATA step does not support the form i=’dog’ in list.



Using SCL with Other SAS Software Products � Designating Submit Blocks in SCL Programs 85

Submitting SAS Statements and SQL Statements in SCL Programs
SCL programs can submit statements to execute both DATA steps and all the

procedures in any product in SAS software. SCL programs can also submit Structured
Query Language (SQL) statements directly to SAS software’s SQL processor without
submitting a PROC SQL statement. SQL statements enable you to query the contents
of SAS files and to create and manipulate SAS tables and SAS views. SCL programs
also enable you to submit command line commands to the Program Editor window for
processing. Finally, SCL programs can submit statements for processing on your local
host or on a remote host, if SAS/CONNECT software is installed at your site.

Submitting Statements Compared to Using SCL Features
You should submit statements when the task you want to perform is difficult or

impossible using SCL features alone. Whenever equivalent SCL features are available,
it is more efficient to use them than to submit SAS statements. For example, the
following two sets of statements produce the same result, opening an FSEDIT window
to display the SAS data table WORK.DATA1 for editing:

/* This uses the SCL Feature. */
call fsedit(’work.data1’);

/* This uses submitted statements. */
submit continue;

proc fsedit data=work.data1;
run;

endsubmit;

From within an application, fewer computer resources are required to execute the
CALL routine in SCL than to submit statements to SAS software. Thus, the CALL
routine is a better choice unless you need features of the procedure that the CALL
routine does not provide (for example, the VAR statement in PROC FSEDIT to select
which variables to display to the user).

Designating Submit Blocks in SCL Programs
In SCL programs, you designate statements to be submitted to SAS software for

processing by placing them in submit blocks. A submit block begins with a SUBMIT
statement, ends with an ENDSUBMIT statement, and consists of all the statements in
between. The following statements illustrate these characteristics:

SUBMIT; u

proc print data=work.data1; v

var a b c; v

run;
endsubmit; w

1 The SUBMIT statement starts the submit block.
2 These statements are submitted to SAS software when the program executes.



86 How Submit Blocks Are Processed in SCL Programs � Chapter 7

3 The ENDSUBMIT statement ends the submit block.

For details, see “SUBMIT” on page 691.

How Submit Blocks Are Processed in SCL Programs
Figure 7.1 on page 86 illustrates how submit blocks are processed when they are

executed (not when they are compiled). Submit blocks are not processed when you test
a SAS/AF application with the TESTAF command.

Figure 7.1 Default Processing of Submit Blocks

1 All of the code between a SUBMIT statement and the next ENDSUBMIT
statement is copied into a special storage area called the preview buffer. The
submitted code is not checked for errors when it is copied to the preview buffer.
Errors in the submitted code are not detected until the statements or commands
are executed.

2 The text in the preview buffer is scanned, and any requested substitutions are
made. Substitution is discussed in “Substituting Text in Submit Blocks in SCL
Programs” on page 89.



Using SCL with Other SAS Software Products � Controlling Where Submitted Code Is Executed 87

3 The contents of the preview buffer are submitted to SAS software for execution.
You can specify options to change where and when the contents of the preview
buffer are submitted and to specify the actions that the SCL program takes after
the statements are submitted. See “Modifying the Behavior of Submit Blocks in
SCL Programs” on page 87 for details.

Note: By default, code is not submitted immediately when the submit block is
encountered in an executing program. Also, when a nested entry (that is, an entry that
is called by another entry in the application) contains a submit block, the submitted
code is not executed until the calling task ends, or until another submit block with a
CONTINUE or IMMEDIATE option is encountered. Simply ending the entry that
contains the submit block does not process submitted code. �

Note: Issuing the DM command inside of a SUBMIT block may cause the submitted
statements to be executed in an unexpected order. You may want to use the CALL
EXECCMD or EXECCMDI routine instead to issue your command. �

How Submitted Statements Are Formatted in SCL Programs
By default, SCL reformats the submitted code when it copies it to the preview buffer.

To conserve space, all leading and trailing spaces in the submitted text are removed.
Semicolons in the submitted statements cause line breaks in the submitted text.

In some situations (for example, when the submitted code includes lines of raw data),
you may want to prevent this formatting by SCL. You can do this by using a CONTROL
statement with the ASIS option. When an SCL program contains a CONTROL ASIS
statement, SCL honors the indention and spacing that appears in the submit block.
Programs that use CONTROL ASIS are more efficient because the time spent on
formatting is reduced. A CONTROL NOASIS statement restores the default behavior.

Modifying the Behavior of Submit Blocks in SCL Programs
You can modify the default SCL processing of submit blocks by specifying options in

the SUBMIT statement. SUBMIT statement options control the following behaviors:
� when the code in the preview buffer is submitted for execution
� when the submitted code is processed and what happens after the submitted code

is executed
� whether the submitted code is executed in the local SAS session or in a remote

SAS session.

Controlling Where Submitted Code Is Executed
By default, code that is collected in the preview buffer using SUBMIT blocks is sent

to SAS software for execution. SCL provides options for the SUBMIT statement that
alter the default behavior. If you specify the CONTINUE option in the SUBMIT
statement, you can control where code is submitted with the following options:

COMMAND
submits the code in the preview buffer to the command line of the next window
that is displayed. The code should contain valid commands for that window;
otherwise, either errors are reported or the submitted commands are ignored.



88 Controlling What Happens After a Submit Block Executes � Chapter 7

EDIT
sends the code in the preview buffer to the Program Editor window. You can
modify your code in the Program Editor window and then submit it for execution.

SQL
submits the code in the preview buffer to SAS software’s SQL processor, from both
TESTAF and AF modes. The SUBMIT SQL option enables you to submit the SQL
statements without having to specify a PROC SQL statement. Submitting SQL
statements directly to the SQL processor is more efficient than submitting PROC
SQL statements.

Controlling What Happens After a Submit Block Executes
SCL also provides SUBMIT statement options that you can use to control what

action, if any, the application takes after a submit block executes. These options are
CONTINUE, IMMEDIATE, PRIMARY, and TERMINATE. Without one of these options,
the code in a submit block is simply passed to the preview buffer, the application
continues executing, and the code in the submit block is not processed by SAS software
until the application ends.

CONTINUE
suspends program execution while the submit block executes and then continues
program execution at the statement that immediately follows the ENDSUBMIT
statement. (CONTINUE is the only SUBMIT option that is valid in FSEDIT and
FSBROWSE applications.)

IMMEDIATE
stops program execution after the generated statements are submitted. Use this
option with caution. Using this option in a labeled section that is executed
individually when a CONTROL LABEL statement is in effect can prevent the
execution of other labeled sections. A program in a FRAME entry does not compile
if it contains a SUBMIT IMMEDIATE statement.

PRIMARY
returns the program to the application’s initial window after the generated
statements are submitted. This option is useful when you want all the
intermediate windows to close and you want control to return to a primary window
in the current execution stream. This option causes looping if the current program
is the primary window.

TERMINATE
stops the SAS/AF task after the statements in the submit block are processed.
This option is useful when an application does not need to interact with users
after the submitted statements are processed. However, use TERMINATE with
caution because re-invoking the application can be time-consuming.

Using SUBMIT CONTINUE in FSEDIT Applications
The behavior of a SUBMIT CONTINUE block in an FSEDIT application depends on

how the application was invoked.
� If you invoked the application with a PROC FSEDIT statement, then the

statements in the submit block cannot be processed until the FSEDIT session
ends, even when you specify SUBMIT CONTINUE. The statements cannot be
executed as long as the FSEDIT procedure is executing.

� If you invoked the application with an FSEDIT command or with a CALL FSEDIT
routine from another SCL program, then the statements in the submit block can
execute immediately as long as no other procedure is currently executing.



Using SCL with Other SAS Software Products � How Values Are Substituted in Submit Blocks 89

Submitting Statements to a Remote Host
By default, statements in a submit block are executed for processing on the local

host. If SAS/CONNECT software is available at your site, you can also submit
statements for processing on a remote host. To send submitted statements to a remote
host, use the following form of the SUBMIT statement:

submit remote;
...SAS or SQL statements to execute
on a remote host...
endsubmit;

In situations where an application user can switch between a remote host and the
local host, the user can issue the REMOTE command to force all submits to be sent to a
remote host. The syntax of the REMOTE command is REMOTE <ON|OFF>. If neither
ON nor OFF is specified, the command acts like a toggle.

The REMOTE option in the SUBMIT block takes precedence over a REMOTE
command that is issued by an application user. A SAS/AF application must have a
display window in order to issue and recognize the REMOTE command. Before SCL
submits the generated code for execution, it checks to see whether the user has issued
the REMOTE ON command. If a user has issued the command, SCL checks to see
whether the remote link is still active. If the remote link is active, SCL submits the
code for execution. If the remote link is not active, SCL generates an error message and
returns. The preview buffer is not cleared if the submit fails.

Substituting Text in Submit Blocks in SCL Programs

In interactive applications, values for statements in a submit block may need to be
determined by user input or program input in the application. An SCL feature that
supports this requirement is the substitution of text in submit blocks, based on the
values of fields or SCL variables.

How Values Are Substituted in Submit Blocks
SCL performs substitution in submit blocks according to the following rules:

� When SCL encounters a name that is prefixed with an ampersand (&) in a submit
block, it checks to see whether that name is the name of an SCL variable. If it is,
then SCL substitutes the value of that variable for the variable reference in the
submit block. For example, suppose a submit block contains the following
statement:

proc print data=&table;

If the application includes a variable named TABLE whose value is
work.sample, then this statement is passed to the preview buffer:

proc print data=work.sample;

� If the name that follows the ampersand does not match an SCL variable, then no
substitution occurs. The name is passed unchanged (including the ampersand)
with the submitted statements. When SAS software processes the statements, it
attempts to resolve the name as a macro variable reference. SCL does not resolve



90 Specifying Text for Substitutions � Chapter 7

macro variable references within submit blocks. For example, suppose a submit
block contains the following statement:

proc print data=&table;

If there is no SCL variable named TABLE in the application, then the
statement is passed unchanged to the preview buffer. SAS software attempts to
resolve &TABLE as a macro reference when the statements are processed.

CAUTION:
Avoid using the same name for both an SCL variable and a macro variable that you want to
use in submitted statements. SCL substitutes the value of the corresponding SCL
variable for any name that begins with an ampersand. To guarantee that a name is
passed as a macro variable reference in submitted statements, precede the name
with two ampersands (for example, &&TABLE). �

Specifying Text for Substitutions
If an SCL variable that is used in a substitution contains a null value, then a blank

is substituted for the reference in the submitted statements. This can cause problems if
the substitution occurs in a statement that requires a value, so SCL allows you to
define a replacement string for the variable. If the variable’s value is not blank, the
complete replacement string is substituted for the variable reference. To define a
replacement string, you can use either the Replace attribute (for a control or field) or
the REPLACE statement.

Using the REPLACE Statement
The REPLACE statement acts as an implicit IF-THEN statement that determines

when to substitute a specified string in the submit block. Consider the following
example:

replace table ’data=&table’;
...more SCL statements...

submit;
proc print &table;
run;

endsubmit;

If the SCL variable TABLE contains ’’(or _BLANK_), then these statements are
submitted:

proc print;
run;

If the SCL variable TABLE contains work.sample, then these statements are
submitted:

proc print data=work.sample;
run;

Using the Replace Attribute
In SAS/AF applications, you can also can define replacement strings for a window

variable using the Replace attribute in the properties window (for a control) or the
attribute window (for a field). The text that you specify for the Replace attribute is



Using SCL with Other SAS Software Products � Storing and Retrieving Macro Variable Values 91

substituted for the variable name when the variable name is preceded with an
ampersand in submitted statements.

Issuing Commands to Host Operating Systems from SCL Programs
SCL programs can use the SYSTEM function to issue commands to host operating

systems. For example, an SCL program may need to issue commands to the operating
system in order to perform system-specific data management or control tasks or to
invoke external applications.

An SCL program can issue any command that is valid for the operating system
under which an application runs. SCL places no restrictions on commands that are
issued to an operating system, nor does SCL check command strings for validity before
passing them to the operating system.

Using Macro Variables in SCL Programs
Macro variables, which are part of the macro facility in Base SAS software, can be

used in SCL programs. Macro variables are independent of any particular SAS table,
application, or window. The values of macro variables are available to all SAS software
products for the duration of a SAS session. For details, refer to macro variables in SAS
Macro Language: Reference. In SCL programs, you can

� store values in macro variables (for example, to pass information from the current
SCL program to subsequent programs in the application, to subsequent
applications, or to other parts of SAS software).

� retrieve values from macro variables (for example, to pass information to the
current SCL program from programs that executed previously or from other parts
of SAS software, or to pass values from one observation to another in FSEDIT
applications).

Examples of types of information that you frequently need to pass between entries in
an application include

� names of SAS tables to be opened
� names of external files to be opened
� identifiers of open SAS tables
� file identifiers of open external files
� the current date (instead of using date functions repeatedly)
� values to be repeated across rows in an FSEDIT session.

Storing and Retrieving Macro Variable Values
To assign a literal value to a macro variable in an SCL program, you can use the

standard macro variable assignment statement, %LET. For example, the following
statement assigns the literal value sales (not the value of an SCL variable named
SALES) to a macro variable named DSNAME:

%let dsname=sales;

Macro variable assignments are evaluated when SCL programs are compiled, not
when they are executed. Thus, the %LET statement is useful for assigning literal
values at compile time. For example, you can use macro variables defined in this



92 Using the Same Name for Macro Variables and SCL Variables � Chapter 7

manner to store a value or block of text that is used repeatedly in a program. However,
you must use a different approach if you want to store the value of an SCL variable in a
macro variable while the SCL program executes (for example, to pass values between
SCL programs).

Macro variables store only strings of text characters, so numeric values are stored as
strings of text digits that represent numeric values. To store values so that they can be
retrieved correctly, you must use the appropriate CALL routine. The following routines
store the value of a macro when an SCL program runs:

CALL SYMPUT
stores a character value in a macro variable.

CALL SYMPUTN
stores a numeric value in a macro variable.

For example, the following CALL routine stores the value of the SCL variable SALES
in the macro variable TABLE:

call symput(’table’,sales);

To retrieve the value of a macro variable in an SCL program, you can use a standard
macro variable reference. In the following example, the value of the macro variable
TABLE is substituted for the macro variable reference when the program is compiled:

dsn="&table";

The function that you use to retrieve the value of a macro variable determines how
the macro variable value is interpreted. The following functions return the value of a
macro variable when a program runs:

SYMGET
interprets the value of a macro variable as a character value.

SYMGETN
interprets the value of a macro variable as a numeric value.

Using the Same Name for Macro Variables and SCL Variables
Using the same name for a macro variable and an SCL variable in an SCL program

does not cause a conflict. Macro variables are stored in SAS software’s global symbol
table, whereas SCL variables are stored in the SCL data vector (SDV). However, if your
program uses submit blocks and you have both a macro variable and an SCL variable
with the same name, then a reference with a single ampersand substitutes the SCL
variable. To force the macro variable to be substituted, reference it with two
ampersands (&&). The following example demonstrates using a reference that contains
two ampersands:

dsname=’sasuser.class’;
call symput(’dsname’,’sasuser.houses’);
submit continue;

proc print data=&dsname;
run;
proc print data=&&dsname;
run;

endsubmit;



Using SCL with Other SAS Software Products � SCL and DATA Step Graphics Interface Elements 93

The program produces the following:

proc print data=sasuser.class;
run;
proc print data=sasuser.houses;
run;

Using Automatic Macro Variables
In addition to macro variables that you define in your programs, SAS software

provides a number of predefined macro variables for every SAS session or process.
These automatic macro variables supply information about the current SAS session or
process and about the host operating system on which the SAS session is running. For
example, you can use the automatic macro variable SYSSCP to obtain the name of the
current operating system. Automatic macro variables are documented in SAS Macro
Language: Reference.

When you use automatic macro variables, remember to use the appropriate routines
and functions to set and retrieve variable values. For example, consider the following
program statements. The first uses a macro variable reference:

jobid="&sysjobid";

The second uses an SCL function:

jobid=symget(’sysjobid’);

The macro variable reference, designated by the & (ampersand), is evaluated when
the program is compiled. Thus, the identifier value for the job or process that compiles
the program is assigned to the variable JOBID. Assuming that the preceding two
statements were compiled by an earlier SAS process, if you want the JOBID variable to
contain the identifier for the current process, then you must use the second form
(without the &). The SYMGET function extracts the macro variable value from the
global symbol table at execution.

Note: The values that are returned by SYSJOBID and other automatic macro
variables depend on your host operating system. �

SCL and DATA Step Graphics Interface Elements
If SAS/GRAPH software is installed at your site, you can use the functions and

CALL routines provided in the DATA Step Graphics Interface (DSGI) to create graphics
output from SAS Component Language programs. For more information about this
interface, refer to the documentation for SAS/GRAPH software.



94



95

P A R T2

Developing Object-Oriented Applications

Chapter 8. . . . . . . . . .SAS Object-Oriented Programming Concepts 97

Chapter 9. . . . . . . . . .Example: Creating An Object-Oriented Application in
SCL 143



96



97

C H A P T E R

8
SAS Object-Oriented
Programming Concepts

Introduction to Object-Oriented Programming 98
Object-Oriented Programming and the SAS Component Object Model 99

Classes 100

Relationships among Classes 100

Inheritance 100

Instantiation 101
Types of Classes 101

Abstract Classes 101

Models and Views 102

Metaclasses 102

Defining Classes 102

Generating CLASS Entries from CLASS Blocks 103
Generating CLASS Blocks from CLASS Entries 103

Referencing Class Methods or Attributes 103

Instantiating Classes 104

Methods 104

Defining Method Scope 105
Defining Method Names and Labels 106

Specifying a Name That Is Different from the Label 106

Using Underscores in Method Names 107

Specifying Parameter Types and Storage Types 107

Passing Objects as Arguments for Methods 108
Returning Values From Methods 109

Method Signatures 109

Signature Strings (SIGSTRINGs) 110

How Signatures Are Used 111

Altering Existing Signatures 111

Forward-Referencing Methods 112
Overloading Methods 112

Example: Different Parameter Types 113

Example: Different Numbers of Parameters 114

Defining One Implementation That Accepts Optional Parameters 115

Overloading and List, Object, and Numeric Types 115
Overriding Existing Methods 116

Defining Constructors 116

Overloading Constructors 117

Overriding the Default Constructor 118

Calling Constructors Explicitly 118
Specifying That a Method Is Not a Constructor 119

Implementing Methods Outside of Classes 120

Method Metadata 120



98 Introduction to Object-Oriented Programming � Chapter 8

Attributes 120
Creating Attributes Automatically 121

Specifying Where an Attribute Value Can Be Changed 121

Setting Initial Values and the List of Valid Values 122

Associating Custom Access Methods with Attributes 122

Linking Attributes 123
Attribute Metadata 123

Accessing Object Attributes and Methods with Dot Notation 124

Syntax 124

Using Nested Dot Notation 125

Examples 126

What Happens When Attribute Values Are Set or Queried 128
Setting Attribute Values 128

Querying Attribute Values 130

Events and Event Handlers 130

System Events 131

Defining and Sending Events 131
Defining Event Handlers 131

Example 131

Event and Event Handler Metadata 133

Interfaces 134

Defining Interfaces 134
Example 135

Converting Version 6 Non-Visual Classes to SCOM Classes 137

Removing Global Variables 138

Declaring Variables 138

Converting Labels and LINK Statements 139

Converting CALL SEND to Dot Notation 140
Converting Class Definitions with CREATESCL 140

Using Instance Variables 140

Introduction to Object-Oriented Programming
Object-oriented programming (OOP) is a technique for writing computer software.

The term object oriented refers to the methodology of developing software in which the
emphasis is on the data, while the procedure or program flow is de-emphasized. That
is, when designing an OOP program, you do not concentrate on the order of the steps
that the program performs. Instead, you concentrate on the data in the program and on
the operations that you perform on that data.

Advocates of object-oriented programming claim that applications that are developed
using an object-oriented approach

� are easier to understand because the underlying code maps directly to real-world
concepts that they seek to model

� are easier to modify and maintain because changes tend to involve individual
objects and not the entire system

� promote software reuse because of modular design and low interdependence
among modules

� offer improved quality because they are constructed from stable intermediate
classes

� provide better scalability for creating large, complex systems.

Object-oriented application design determines which operations are performed on
which data, and then groups the related data and operations into categories. When the



SAS Object-Oriented Programming Concepts � Object-Oriented Programming and the SAS Component Object Model 99

design is implemented, these categories are called classes. A class defines the data and
the operations that you can perform on the data. In SCL, the data for a class is defined
through the class’s attributes, events, event handlers, and interfaces. (Legacy classes
store data in instance variables.) The operations that you perform on the data are
called methods.

Objects are data elements in your application that perform some function for you.
Objects can be visual objects that you place on the frame—for example, icons, push
buttons, or radio boxes. Visual objects are called controls; they display information or
accept user input.

Objects can also be nonvisual objects that manage the application behind the scenes;
for example, an object that enables you to interact with SAS data sets may not have a
visual representation but still provides you with the functionality to perform actions on
a SAS data set such as accessing variables, adding data, or deleting data. An object or
component is derived from, or is an instance of, a class. The terms object, component,
and instance are interchangeable.

Software objects are self-contained entities that possess three basic characteristics:

behavior a collection of operations that an object can perform on itself or on
other objects. Methods define the operations that an object can
perform. For example, you can use the _onGeneric method in
sashelp.classes.programHalt.class to trap all generic errors.

state a collection of attributes and their current values. Two of the
programHalt component’s attributes are stopExecution (which
determines whether the program continues to execute after the
program halt occurs) and dump (which contains the program-halt
information). You can set these values through SCL.

identity a unique value that distinguishes one object from another. This
identifier is referred to as its object identifier. The object identifier is
created by SCL when you instantiate an object with the _NEW_
operator. This identifier is also used as the first-level qualifier in
SCL dot notation.

This chapter describes how object-oriented techniques and related concepts are
implemented in SCL.

Object-Oriented Programming and the SAS Component Object Model
The SAS Component Object Model (SCOM) provides a flexible framework for SCL

component developers. With SCOM, you can develop model components that
communicate with viewer components that are built with other SAS software (such as
SAS/AF and webAF) or with software from other vendors.

A component in SCOM is a self-contained, reusable object that has specific
properties, including

� a set of attributes and methods
� a set of events that the object sends
� a set of event handlers that execute in response to various types of events
� a set of supported or required interfaces.

With SCL, you can design components that communicate with each other, using any
of the following processes:*

* Drag and drop operations can be defined only through SAS/AF software, not through SCL.



100 Classes � Chapter 8

Attribute linking
enabling a component to change one of its attributes when the value of another
attribute is changed.

Model/view communication
enabling a view (typically a visual control) to communicate with a model, based on
a set of common methods that are defined in an interface.

Event handling
enabling a component to send an event that another component can respond to by
using an associated event handler.

Classes form the foundation of the SCOM architecture by defining these attributes,
methods, events, event handlers and interfaces. There are two ways to construct a class
that uses the SAS Component Object Model:

� You can build a class with the Class Editor that is available in SAS/AF software.
� You can use SCL class syntax to construct a class.

This chapter provides detailed information about using SCL to create and modify
classes.

Classes
A class defines a set of data and the operations you can perform on that data.

Subclasses are similar to the classes from which they are derived, but they may have
different properties or additional behavior. In general, any operation that is valid for a
class is also valid for each subclass of that class.

Relationships among Classes
Classes that you define with SCL can support two types of relationships:
� inheritance
� instantiation.

Inheritance
Generally, the attributes, methods, events, event handlers, and interfaces that

belong to a parent class are automatically inherited by any class that is created from it.
One metaphor that is used to describe this relationship is that of the family. Classes
that provide the foundation for other classes are called parent classes, and classes that
are derived from parent classes are child classes. When more than one class is derived
from the same parent class, these classes are related to each other as sibling classes. A
descendent of a class has that class as a parent, either directly or indirectly through a
series of parent-child relationships. In object-oriented theory, any subclass that is
created from a parent class inherits all of the characteristics of the parent class that it
is not specifically prohibited from inheriting. The chain of parent classes is called an
ancestry.



SAS Object-Oriented Programming Concepts � Types of Classes 101

Figure 8.1 Class Ancestry

Whenever you create a new class, that class inherits all of the properties (attributes,
methods, events, event handlers, and interfaces) that belong to its parent class. For
example, the Object class is the parent of all classes in SAS/AF software. The Frame
and Widget classes are subclasses of the Object class, and they inherit all properties of
the Object class. Similarly, every class you use in a frame-based application is a
descendent of the Frame, Object, or Widget class, and thus inherits all the properties
that belong to those classes.

Instantiation
In addition to the inheritance relationship, classes have an instantiation or an “is a”

relationship. For example, a frame is an instance of the Frame class; a radio box
control is an instance of the Radio Box Control class; and a color list object is an
instance of the Color List Model class.

All classes are instances of the Class class. The Class class is a metaclass. A
metaclass collects information about other classes and enables you to operate on other
classes. For more information about metaclasses, see “Metaclasses” on page 102.

Types of Classes
Some SAS/AF software classes are specific types of classes.

� Abstract classes

� Models and views

� Metaclasses.

Abstract Classes
Abstract classes group attributes and methods that are common to several subclasses.

These classes themselves cannot be instantiated; they simply provide functionality for
their subclasses.

The Widget class in SAS/AF software is an example of an abstract class. Its purpose
is to collect properties that all widget subclasses can inherit. The Widget class cannot
be instantiated.



102 Defining Classes � Chapter 8

Models and Views
In SAS/AF software, components that are built on the SAS Component Object Model

(SCOM) framework can be classified either as views that display data or as models that
provide data. Although models and views are typically used together, they are
nevertheless independent components. Their independence allows for customization,
flexibility of design, and efficient programming.

Models are non-visual components that provide data. For example, a Data Set List
model contains the properties for generating a list of SAS data sets (or tables), given a
specific SAS library. A model may be attached to multiple views.

Views are components that provide a visual representation of the data, but they have
no knowledge of the actual data they are displaying. The displayed data depends on the
state of the model that is connected to the view. A view can be attached to only one
model at a time.

It may be helpful to think of model/view components as client/server components.
The view acts as the client and the model acts as the server.

For more information on interfaces, see “Interfaces” on page 134. For more
information on implementing model/view communication, refer to SAS Guide to
Applications Development and to the SAS/AF online Help.

Metaclasses
As previously mentioned, the Class class (sashelp.fsp.Class.class) and any

subclasses you create from it are metaclasses. Metaclasses enable you to collect
information about other classes and to operate on those classes.

Metaclasses enable you to make changes to the application at run time rather than
only at build time. Examples of such changes include where a class’s methods reside,
the default values of class properties, and even the set of classes and their hierarchy.

Metaclasses also enable you to access information about parent classes, subclasses,
and the methods and properties that are defined for a class. Specifically, through
methods of the Class class, you can

� retrieve information about an application, such as information about the
application’s structure, which classes are being used, and which legacy classes use
particular instance variables. Each class has a super class that is accessed by the
_getSuper method. Every class also maintains a list of subclasses that is accessed
with the _getSubclassList and _getSubclasses methods.

� list the instances of a class and process all of those instances in some way. Each
class maintains a list of its instances. You can use _getInstanceList and
_getInstances to process all the instances.

� create objects and classes at run time with the _new method. Instances of the
metaclass are other classes.

For more information about metaclasses, see the Class class in the SAS/AF online
Help.

Defining Classes
You can create classes in SCL with the CLASS block. The CLASS block begins with

the CLASS statement and ends with the ENDCLASS statement:

<ABSTRACT> CLASS class-name<EXTENDS parent-class-name>
<SUPPORTS supports-interface-clause>
<REQUIRES requires-interface-clause>
< / (class-optional-clause)>
<(attribute-statements)>



SAS Object-Oriented Programming Concepts � Defining Classes 103

<(method-declaration-statements)>
<(method-implementation-blocks)>

<(event-declaration-statements)>
<(eventhandler-declaration-statements)>

ENDCLASS;

The CLASS statement enables you to define attributes, methods, events, and event
handlers for a class and to specify whether the class supports or requires an interface.
The remaining sections in this chapter describe these elements in more detail.

The EXTENDS clause specifies the parent class. If you do not specify an EXTENDS
clause, SCL assumes that sashelp.fsp.object.class is the parent class.

Using the CLASS block instead of the Class Editor to create a class enables the
compiler to detect errors at compile time, which results in improved performance during
run time.

For a complete description of the CLASS statement, see “CLASS” on page 253. For a
description of using the Class Editor to define classes, refer to SAS Guide to
Applications Development.

Generating CLASS Entries from CLASS Blocks
Suppose you are editing an SCL entry in the Build window and that the entry

contains a CLASS block. For example:

class Simple extends myParent;
public num num1;
M1: method n:num return=num / (scl=’work.a.uSimple.scl’);
M2: method return=num;

num1 = 3;
dcl num n = M1(num1);
return (n);

endmethod;
endclass;

To generate a CLASS entry from the CLASS block, issue the SAVECLASS command or
selectFile � Save as class...Generating the CLASS entry from the CLASS block is
equivalent to using the Class Editor to create a CLASS entry interactively.

Generating CLASS Blocks from CLASS Entries
The CLASS block is especially useful when you need to make many changes to an

existing class. To make changes to an existing class, use the CREATESCL function to
write the class definition to an SCL entry. You can then edit the SCL entry in the Build
window. After you finish entering changes, you can generate the CLASS entry by
issuing the SAVECLASS command or selecting File � Save as class...For more
information, see “CREATESCL” on page 293.

Referencing Class Methods or Attributes
Any METHOD block in a class can refer to methods or attributes in its own class

without specifying the _SELF_ system variable (which contains the object identifier for
the class). For example, if method M1 is defined in class X (and it returns a value),
then any method in class X can refer to method M1 as follows:

n=M1();

You do not need to use the _SELF_ system variable:

n=_SELF_.M1();



104 Instantiating Classes � Chapter 8

Omitting references to the _SELF_ variable (which is referred to as shortcut syntax)
makes programs easier to read and maintain. However, if you are referencing a method
or attribute that is not in the class you are creating, you must specify the object
reference.

Instantiating Classes
To instantiate a class, declare a variable of the specific class type, then use the

_NEW_ operator. For example:

dcl mylib.classes.collection.class C1;
C1 = _new_ Collection();

You can combine these two operations as follows:

dcl mylib.classes.collection.class C1 = _new_ Collection();

The _NEW_ operator combines the actions of the LOADCLASS function, which loads a
class, with the _new method, which initializes the object by invoking the object’s _init
method.

You can combine the _NEW_ operator with the IMPORT statement, which defines a
search path for references to CLASS entries, so that you can refer to these entries with
one or two-level names instead of having to use a four-level name in each reference.

For example, you can use the following statements to create a new collection object
called C1 as an instance of the collection class that is stored in
mylib.classes.collection.class:

/* Collection class is defined in */
/* the catalog MYLIB.MYCAT */

import mylib.mycat.collection.class;
/* Create object C1 from a collection class */
/* defined in MYLIB.MYCAT.COLLECTION.CLASS */

declare Collection C1=_new_ Collection();

For more information, see “_NEW_” on page 565 and “LOADCLASS” on page 522.

Methods
Methods define the operations that can be executed by any component that you

create from that class. In other words, methods are how classes (and instances of those
classes) do their work.

Methods can be declared in CLASS blocks. To declare a method, include the following
METHOD statement in your CLASS block:

label : <scope> METHOD <parameter-list></(method-options)>;

The statements that implement the method can either follow the declaration, or they
can reside in a separate SCL entry.

Methods are implemented in METHOD blocks. A METHOD block begins with the
METHOD statement, includes the SCL code that implements the method, and then
ends with the ENDMETHOD statement.

label : <scope> METHOD <parameter-list>
<OPTIONAL=parameter-list>

<ARGLIST=parm-list-id |REST=rest-list-id>
RETURN=limited-data-type
</ (method-options)>;



SAS Object-Oriented Programming Concepts � Defining Method Scope 105

. . . SCL statements that implement the method. . .

ENDMETHOD;

If your program is an object-oriented program, the METHOD blocks are contained
either in the CLASS block or in a USECLASS block that is stored in a separate SCL
entry from the CLASS block. To store the method implementation in a separate SCL
entry, when you declare the method in the CLASS block, you specify (with the
SCL=entry-name option) the name of another SCL entry that contains the method
implementation.

For example, the Add method can be implemented in the CLASS block as follows:

class Arithmetic;
add: method n1 n2:num;

return(n1 + n2);
endmethod;

endclass;

If you want to implement the Add method in a separate SCL entry, then the CLASS
block would contain only the method declaration:

class Arithmetic;
add: method n1 n2:num / (scl=’work.a.b.scl’);

endclass;

The work.a.b.scl entry would contain a USECLASS block that implements the Add
method:

useclass Arithmetic;
add: method n1 n2: num;

return (n1 + n2);
endmethod;

enduseclass;

See “METHOD” on page 539 for a complete description of implementing methods
with the METHOD statement. See Chapter 2, “The Structure of SCL Programs,” on
page 9; “Implementing Methods Outside of Classes” on page 120; and “USECLASS” on
page 715 for more information about implementing methods in USECLASS blocks.

Note: The method options that you specify in the CLASS block can also be specified
in the USECLASS block. Any option that is included in the CLASS block and is used to
specify a nondefault value must be repeated in the USECLASS block. For example, if
you specify State=’O’ or Signature=’N’ in the CLASS block, then you must repeat
those options in the USECLASS block. However, the SCL option will be ignored in the
USECLASS block. �

For compatibility with Version 6, you can also define METHOD blocks in a separate
SCL entry outside of CLASS and USECLASS blocks. However, such an application is
not a strictly object-oriented application. For these methods, SCL will not validate
method names and parameter types during compile time. See “Defining and Using
Methods in SCL Programs” on page 13 for more information about methods that are not
declared or implemented within a class.

Defining Method Scope
SCL supports variable method scope, which gives you considerable design flexibility.

Method scope can be defined as Public, Protected, or Private. The default scope is
Public. In order of narrowing scope,

� Public methods can be accessed by any other class and are inherited by subclasses.



106 Defining Method Names and Labels � Chapter 8

� Protected methods can be accessed only by the same class and its subclasses; they
are inherited by subclasses.

� Private methods can be accessed only by the same class and are not inherited by
subclasses.

For example, the Scope class defines two public methods (m1 and m4), one private
method (m2), and one protected method (m3):

class Scope;
m1: public method n:num return=num

/(scl=’work.a.uScope.scl’);
m2: private method :char;

/(scl=’work.b.uScope.scl’);
m3: protected method return=num;

num = 3;
dcl num n = m1(num);
return(n);

endmethod;
m4: method

/(scl=’work.c.uScope.scl’);
endclass;

By default, method m4 is a public method.

Defining Method Names and Labels
Method names can be up to 256 characters long. Method labels can be up to 32

characters long. The name of a method should match its label whenever possible.

Note: A method that has the same name as the class that contains it is called a
constructor. See “Defining Constructors” on page 116 for more information. �

Specifying a Name That Is Different from the Label
If you need the method name to be different from the method label, you must specify

either the METHOD or LABEL option in the METHOD statement. These options are
mutually exclusive.

Note: In dot notation, always use the method name. When implementing the
method, always use the method label. �

For example, a label of MyMethod may be sufficient, but if you want the method
name to be MySortSalaryDataMethod, you can declare the method as follows:

class a;
MyMethod: public method sal:num

/(Method=’MySortSalaryDataMethod’, SCL=’work.a.a.scl’);
endclass;

When you implement the method in work.a.a.scl, you identify the method by using
the method label as follows:

useclass a;
MyMethod: public method sal:num;

...SCL statements...
endmethod;

enduseclass;

You would reference this method in dot notation by using the method name as follows:



SAS Object-Oriented Programming Concepts � Specifying Parameter Types and Storage Types 107

obj.MySortSalaryDataMethod(n);

Alternatively, you can specify the LABEL option. For example, to specify a method
name of Increase and a method label of CalculatePercentIncrease, you could declare the
method as follows:

class a;
Increase: public method

/(Label=’CalculatePercentIncrease’, SCL=’work.a.b.scl’);
endclass;

As in the previous example, you use the method label when you implement the method,
and you use the method name when you refer to the method in dot notation. In
work.a.b.scl, you would implement the method as follows:

useclass a;
CalculatePercentIncrease: public method;

...SCL statements...
endmethod;

enduseclass;

You would reference the method in dot notation as follows:

obj.Increase();

Using Underscores in Method Names
In Version 6, SAS/AF software used underscores to separate words in method names

(for example, _set_background_color_). The current convention is to use a lowercase
letter for the first letter and to subsequently uppercase the first letter of any joined
word (for example, _setBackgroundColor).

The embedded underscores have been removed to promote readability. However, for
compatibility, the compiler recognizes _set_background_color_ as equivalent to
_setBackgroundColor. All Version 6 code that uses the old naming convention in CALL
SEND or CALL NOTIFY method invocations will still function with no modification.

Although it is possible for you to name a new method using a leading underscore, you
should use caution when doing so. Your method names may conflict with future
releases of SAS/AF software if SAS Institute adds new methods to the parent classes.

Specifying Parameter Types and Storage Types
When you define a method parameter, you must specify its data type. Optionally,

you can also specify its storage type: input,update, or output. The storage type
determines how methods can modify each other’s parameters:

input The values of the caller’s parameters are copied into the
corresponding parameters in the called method. When the called
method’s ENDMETHOD statement is executed, any updated values
are not copied out to the caller’s parameters. This is equivalent to
using CALL NOCHANGE() inside the METHOD block.

update The values of the caller’s parameters are copied into the
corresponding parameters in the called method. When the called
method’s ENDMETHOD statement is executed, any updated values
are copied out to the caller’s parameters (unless CALL NOCHANGE
is specified). An error condition results if the corresponding
parameter in the calling program is a constant, because a constant



108 Passing Objects as Arguments for Methods � Chapter 8

cannot receive a value. All Version 6 SCL method parameters are
update parameters.

output This storage type serves as an indication in the code that only the
returned value is significant, despite the fact that the input
parameter might change. Functionally, the output type is the same
as the update type.

The default parameter storage type is update.
You use the colon (:) delimiter to specify both the storage type and the data type for

each method parameter:

variables<:storage>:type

In the following example, the TypeStore class defines four methods:

import sashelp.fsp.collection.class;
class TypeStore;

m1: method n:num a b:update:char return=num
/(scl = ’work.a.uType.scl’);

m2: method n:output:num c:i:char
/(scl = ’work.b.uType.scl’);

m3: method s:i:Collection
/(scl = ’work.c.uType.scl’);

m4: method l:o:list
/(scl = ’work.d.uType.scl’);

endclass;

The parameter storage type and data type for each method are as follows:

Method Parameter Data Type Storage

m1 n numeric update

a character update

b character update

m2 n numeric output

c character input

m3 s Collection class input

m4 l list output

Note: If you specify the storage type for a parameter in the CLASS block, then you
must also specify the storage type in the USECLASS block. �

Passing Objects as Arguments for Methods
An object can be declared as an INTRFACE object, a CLASS object, or a generic

OBJECT. If you declare an object as a generic OBJECT, then the compiler cannot
validate attributes or methods for that object. Validation is deferred until run time.
Any error that results from using incorrect methods or attributes for the generic object
will cause the program to halt. For example, if you pass a listbox class to a method that
is expecting a collection object, the program will halt.



SAS Object-Oriented Programming Concepts � Method Signatures 109

Object types are treated internally as numeric values. This can affect how you
overload methods. See “Overloading and List, Object, and Numeric Types” on page 115
for more information.

Returning Values From Methods
When you declare or implement a method, you can specify the data type of the return

value with the RETURN option. If the method has a RETURN option, then the method
implementation must contain a RETURN statement. The method’s RETURN statement
must specify a variable, expression, or value of the same type. In the following example,
method m1 returns a numeric value:

class mylib.mycat.myclass.class;
/* method declaration */
m1: method n:num c:char return=num;

/* method implementation */
return(n+length(c));

endmethod;
endclass;

Method Signatures
A method’s signature is a set of parameters that uniquely identifies the method to

the SCL compiler. Method signatures enable the compiler to check method parameters
at compile time and can enable your program to run more efficiently. All references to a
method must conform to its signature definition. Overloaded methods must have
signatures. (See “Overloading Methods” on page 112.)

A signature is automatically generated for each SCOM class method unless you
specify Signature=’N’ in the method’s option list. By default, Signature=’Y’ for all
SCOM class methods. When you edit a class in the Build window, a signature is
generated for each method that is declared in that class when you issue the
SAVECLASS command or select File � Save as class...

For all Version 6 methods, the default is Signature=’N’. See “Converting Version 6
Non-Visual Classes to SCOM Classes” on page 137 for information about adding
signatures to Version 6 methods.

For example, the following method declarations show methods that have different
signatures:

Method1: method name:char number:num;
Method2: method number:num name:char;
Method3: method name:char;
Method4: method return=num;

Each method signature is a unique combination, varying by argument number and type:
� The first signature contains a character argument and a numeric argument.
� The second signature contains a numeric argument and a character argument.

� The third signature contains a single character argument.
� The fourth signature contains no arguments.



110 Method Signatures � Chapter 8

These four method signatures have the following sigstrings (see “Signature Strings
(SIGSTRINGs)” on page 110):

Method1 sigstring: (CN)V
Method2 sigstring: (NC)V
Method3 sigstring: (C)V
Method4 sigstring: ()N

The order of arguments also determines the method signature. For example, the
getColNum methods below have different signatures — (CN)V and (NC)V — because
the arguments are reversed. As a result, they are invoked differently, but they return
the same result.

/* method1 */
getColNum: method colname:char number:update:num;

number = getnitemn(listid, colname, 1, 1, 0);
endmethod;

/* method2 */
getColNum: method number:update:num colname:char;

number = getnitemn(listid, colname, 1, 1, 0);
endmethod;

You can also use the Class Editor to define method signatures. See SAS Guide to
Applications Development for more information.

Signature Strings (SIGSTRINGs)

Signatures are usually represented by a shorthand notation, called a sigstring. This
sigstring is stored in the method metadata as SIGSTRING.

A sigstring has the following compressed form:

(<argument-type-1 argument-type-2...argument-type-n>)return-type

Each argument type can be one of the following:

N Numeric

C Character string

L SCL list

O Generic object

O:<class-name>; Specific class. The class name should be preceded by O: and
followed by a semi-colon.

Return-type can be any of the above types, or V for void, which specifies that the
method does not return a value. The return type cannot be an array.

Arrays are shown by preceding any of the above types with a bracket ( [ ). For
example, a method that receives a numeric value and an array of characters and
returns a numeric value would have the signature(N[C)N.

Here are some examples of method signatures:

� A method that does not receive any parameters and does not return a value: ()V.
This sigstring is the default signature.

� A method that returns a numeric value and that requires three parameters,
numeric, character, and list: (NCL)N.



SAS Object-Oriented Programming Concepts � Method Signatures 111

� A method that does not have a return value and that requires an object of type
ProgramHalt and a numeric value:

(O:sashelp.classes.programHalt.class;N)V

� A method that returns a character value and receives a generic object and a
character value: (OC)C.

Note: Although the return type is listed as part of the sigstring, it is not used by
SCL to identify the method. Therefore, it is recommended that you do not define
methods that differ only in return type. See “Overloading Methods” on page 112 for
more information. �

How Signatures Are Used
Signatures are most useful when SCL has to distinguish among the different forms

of an overloaded method. The SCL compiler uses signatures to validate method
parameters. When you execute your program, SCL uses signatures to determine which
method to call.

For example, suppose your program contains the following class:

class Sig;
/* Signature is (N)C */

M1: method n:num return=char /(scl=’work.a.uSig.scl’);
/* Signature is ([C)V */

M1: private method n(*):char /(scl=’work.a.uSig.scl’);
/* Signature is ()V */

M1: protected method /(scl=’work.a.uSig.scl’);
/* Signature is (NC)V

M1: method n:num c:char /(scl=’work.a.uSig.scl’);
endclass;

Suppose also that your program calls M1 as follows:

dcl char ch;
ch = M1(3);

SCL will call the method with the signature (N)C. If your program calls M1 like this:

M1();

SCL will call the method with the signature ()V.

Altering Existing Signatures
After defining a signature for a method and deploying the class that contains it for

public use, you should not alter the signature of the method in future versions of the
class. Doing so could result in program halts for users who have already compiled their
applications. Instead of altering an existing signature, you should overload the method
to use the desired signature, leaving the previous signature intact.



112 Forward-Referencing Methods � Chapter 8

Forward-Referencing Methods
Within a CLASS block, if a method invokes a another method within that same class,

then either the second method must be implemented before the first, or the second
method must be declared with the Forward=’Y’ option.

Note: Any methods that are forward-referenced must be implemented in the class in
which they are declared. �

In the following example, m1 calls m2, so the compiler needs to know the existence of
m2 before it can compile m1.

class mylib.mycat.forward.class;
m2: method n:num c:char return=num / (forward=’y’);
m1: method n1 n2:num mylist:list return=num;

dcl num listLen = listlen(mylist);
dcl num retVal;
if (listLen = 1) then

retVal=m2(n1,’abc’);
else if (listLen = 2) then

retVal=m2(n2,’abc’);
endmethod;
m2:method n:num c:char return=num;

return(n+length(c));
endmethod;

endclass;

Overloading Methods
You can overload methods only for SCOM classes (classes created using Version 8 or

later). Method overloading is the process of defining multiple methods that have the
same name, but which differ in parameter number, type, or both. Overloading methods
enables you to

� use the same name for methods that are related conceptually.
� create methods that have optional parameters.

All overloaded methods must have method signatures because SCL uses the
signatures to differentiate between overloaded methods. If you call an overloaded
method, SCL checks the method arguments, scans the signatures for a match, and
executes the appropriate code. A method that has no signature cannot be overloaded.

If you overload a method, and the signatures differ only in the return type, the results
are unpredictable. The compiler will use the first version of the method that it finds to
validate the method. If the compiler finds the incorrect version, it generates an error. If
your program compiles without errors, then when you run the program, SCL will
execute the first version of the method that it finds. If it finds the incorrect version, SCL
generates an error. If it finds the correct version, your program might run normally.

Each method in a set of overloaded methods can have a different scope, as well.
However, the scope is not considered part of the signature, so you may not define two
methods that differ only by scope. (See “Defining Method Scope” on page 105.)



SAS Object-Oriented Programming Concepts � Overloading Methods 113

Example: Different Parameter Types
Suppose you have the following two methods, where each method performs a

different operation on its arguments:

CombineNumerics: public method a :num b :num
return=num;
endmethod;

CombineStrings: public method c :char d :char
return=char;
endmethod;

Assume that CombineNumerics adds the values of A and B, whereas CombineStrings
concatenates the values of C and D. In general terms, these two methods combine two
pieces of data in different ways based on their data types.

Using method overloading, these methods could become

Combine: public method a :num b :num
return=num;
endmethod;

Combine: public method c :char d :char
return=char;
endmethod;

In this case, the Combine method is overloaded with two different parameter lists:
one that takes two numeric values and returns a numeric value, and another that takes
two character parameters and returns a character value.

As a result, you have defined two methods that have the same name but different
parameter types. With this simple change, you do not have to worry about which
method to call. The Combine method can be called with either set of arguments, and
SCL will determine which method is the correct one to use, based on the arguments
that are supplied in the method call. If the arguments are numeric, SCL calls the first
version shown above. If the arguments are character, SCL calls the second version. The
caller can essentially view the two separate methods as one method that can operate on
different types of data.

Here is a more complete example that shows how method overloading fits in with the
class syntax. Suppose you create X.SCL and issue the SAVECLASS command, which
generates the X class. (Although it is true here, it is not necessary that the class name
match the entry name.)

class X;

Combine: public method a:num b:num return=num;
dcl num value;
value = a + b;
return value;

endmethod;

Combine: public method a:char b:char return=char;
dcl char value;
value = a || b;
return value;

endmethod;

endclass;



114 Overloading Methods � Chapter 8

You can then create another entry, Y.SCL. When you compile and execute Y.SCL, it
instantiates the X class and calls each of the Combine methods.

import X.class;
init:

dcl num n;
dcl char c;
dcl X xobject = _new_ X();
n = xobject.Combine(1,2);
c = xobject.Combine("abc","def");
put n= c=;

The PUT statement produces

n=3 c=abcdef

Example: Different Numbers of Parameters

Another typical use of method overloading is to create methods that have optional
parameters.

Note: This example shows two implementations of an overloaded method that each
accept different numbers of parameters. “Defining One Implementation That Accepts
Optional Parameters” on page 115 describes how to use the OPTIONAL option to create
a method with one implementation that accepts different numbers of parameters. �

For example, suppose we have a method that takes a character string and a numeric
value, where the numeric value is used as a flag to indicate a particular action. The
method signature would be (CN)V.

M: public method c :char f :num;
if (f = 1) then
/* something */

else if (f = 2)
/* something else */

else
/* another thing */

endmethod;

If method M is usually called with the flag equal to one, you can overload M as (C)V,
where that method would simply include a call to the original M. The flag becomes an
optional parameter.

M: public method c: char;
M(c, 1);

endmethod;

When you want the flag to be equal to one, call M with only a character string
parameter. Notice that this is not an error. Method M can be called with either a single
character string, or with a character string and a numeric — this is the essence of
method overloading. Also, the call M(c,1); is not a recursive call with an incorrect
parameter list. It is a call to the original method M.

This example can also be turned around for cases with existing code. Assume that
we originally had the method M with signature (C)V and that it did all the work.

M: public method c: char;
/* A lot of code for processing C. */

endmethod;



SAS Object-Oriented Programming Concepts � Overloading Methods 115

Suppose you wanted to add an optional flag parameter, but did not want to change
the (possibly many) existing calls to M. All you need to do is overload M with (CN)V
and write the methods as follows:

M: public method c: char f: num;
Common(c, f);

endmethod;

M: public method c: char;
Common(c, 0);

endmethod;

Common: public method c: char f: num;
if (f) then

/* Do something extra. */
/* Fall through to same old code for */
/* processing S. */
endmethod;

Notice that when you call M with a single character string, you get the old behavior.
When you call M with a string and a (non-zero) flag parameter, you get the optional
behavior.

Defining One Implementation That Accepts Optional Parameters
You can use the OPTIONAL option to create an overloaded method with only one

implementation that will accept different numbers of parameters, depending on which
arguments are passed to it.

In the following example, the method M1 will accept from two to four parameters:

class a;
M1: public method p1:input:num p2:output:char

optional=p3:num p4:char
/ (scl=’mylib.classes.old.scl’);

endclass;

SCL will generate three signatures for this method:
(NC)V

(NCN)V
(NCNC)V

Overloading and List, Object, and Numeric Types
Lists and objects (variables declared with either the OBJECT keyword or a specific

class name) are treated internally as Numeric values. As a result, in certain situations,
variables of type List, Numeric, generic Object, and specific class names are
interchangeable. For example, you can assign a generic Object or List to a variable that
has been declared as Numeric, or you can assign a generic Object to a List. This
flexibility enables Version 6 programs in which list identifiers are stored as Numeric
variables to remain compatible with SCOM classes.

The equivalence between objects, lists, and numeric variables requires that you
exercise caution when overloading methods with these types of parameters. When
attempting to match a method signature, the compiler first attempts to find the best
possible match by matching the most parameter types exactly. If no exact match can be
found, the compiler resorts to using the equivalence between List, generic Object, and
Numeric types.



116 Overriding Existing Methods � Chapter 8

For example, suppose you have a method M with a single signature (L)V. If you pass
a numeric value, a list, or an object, it will be matched, and method M will be called. If
you overload M with signature (N)V, then Numeric values will match the signature
(N)V, and List values will match the signature (L)V. However, List values that are
undeclared or declared as Numeric will now match the wrong method. Therefore, you
must explicitly declare them with the LIST keyword to make this example work
correctly. Also, if you pass an object, it will match both (L)V and (N)V, so the compiler
cannot determine which method to call and will generate an error message.

Overriding Existing Methods
When you instantiate a class, the new class (or subclass) inherits the methods of the

parent class. If you want to use the signature of one of the parent’s methods, but you
want to replace the implementation with your own implementation, you can override
the parent’s method. To override the implementation of a method, specify State=’O’ in
the method declaration and in the method implementation. Here is an example for a
class named State:

class State;
_init: method / (state=’o’);
_super();

endmethod;
endclass;

If the method you are overriding has no signature, be sure to specify signature=’N’
on the overriding method. For example:

class State2;
_init: method / (state=’o’, signature=’N’);
_super();

endmethod;
endclass;

Defining Constructors
Constructors are methods that are used to initialize an instance of a class. The

Object class provides a default constructor that is inherited for all classes. Unless your
class requires special initialization, you do not need to create a constructor.

Each constructor has the following characteristics:
� It has the same name as the class in which it is declared.
� It is run automatically when the class is instantiated with the _NEW_ operator. If

you do not create your own constructor, the default constructor is executed.

Note: Using the _NEW_ operator to instantiate a class is the only way to run
constructors. Unlike other user-defined methods, you cannot execute constructors
using dot notation. If you instantiate a class in any way other than by using the
_NEW_ operator (for example, with the _NEO_ operator), constructors are not
executed. �

� It is intended to run as an initializer for the instance. Therefore, only constructors
can call other constructors. A constructor cannot be called from a method that is
not a constructor.

� It cannot return a value; it must be void a method. The _NEW_ operator returns
the value for the new instance of the class; it cannot return a value from an
implicitly called constructor.



SAS Object-Oriented Programming Concepts � Defining Constructors 117

For example, you could define a constructor X for class X as follows:

class X;
X: method n: num;

put ’In constructor, n=’;
endmethod;

endclass;

You can instantiate the class as follows:

init:
dcl X x = _new_ X(99);

return;

The constructor is run automatically when the class is instantiated. The argument to
_NEW_, 99, is passed to the constructor. The output is

In constructor, n=99

Overloading Constructors
Like other methods, constructors can be overloaded. Any void method that has the

same name as the class is treated as a constructor. The _NEW_ operator determines
which constructor to call based on the arguments that are passed to it. For example,
the Complex class defines two constructors. The first constructor initializes a complex
number with an ordered pair of real numbers. The second constructor initializes a
complex number with another complex number.

class Complex;
private num a b;

Complex: method r1: num r2: num;
a = r1;
b = r2;

endmethod;

Complex: method c: complex;
a = c.a;
b = c.b;

endmethod;
endclass;

This class can be instantiated with either of the following statements:

dcl Complex c = _new_(1,2);
dcl Complex c2 = _new_(c);

These statements both create complex numbers. Both numbers are equal to 1 + 2i.



118 Defining Constructors � Chapter 8

Overriding the Default Constructor
The default constructor does not take any arguments. If you want to create your own

constructor that does not take any arguments, you must explicitly override the default
constructor. To override the default constructor, specify State=’o’ in the method
options list.

class X;
X: method /(state=’o’);

...SCL statements to initialize class X...
endmethod;

endclass;

Calling Constructors Explicitly
Constructors can be called explicitly only from other constructors. The _NEW_

operator calls the first constructor. The first constructor can call the second constructor,
and so on.

When a constructor calls another constructor within the same class, it must use the
_SELF_ system variable. For example, you could overload X as follows:

class X;
private num m;

X: method n: num;
_self_(n, 1);

endmethod;

X: method n1: num n2: num;
m = n1 + n2;

endmethod;

endclass;

The first constructor, which takes one argument, calls the second constructor, which
takes two arguments, and passes in the constant 1 for the second argument.

The following labeled section creates two instances of X. In the first instance, the m
attribute is set to 3. In the second instance, the m attribute is set to 100.

init:
dcl X x = _new_ X(1,2);
dcl X x2 = _new_ X(99);

return;

Constructors can call parent constructors by using the _SUPER operator. For
example, suppose you define class X as follows:

class X;
protected num m;

X: method n: num;
m = n * 2;

endmethod;

endclass;



SAS Object-Oriented Programming Concepts � Defining Constructors 119

Then, you create a subclass Y whose parent class is X. The constructor for Y overrides
the default constructor for Y and calls the constructor for its parent class, X.

class Y extends X;
public num p;

Y: method n: num /(state=’o’);
_super(n);
p = m - 1;

endmethod;

endclass;

You can instantiate Y as shown in the following labeled section. In this example, the
constructor in Y is called with argument 10. This value is passed to the constructor in X,
which uses it to initialize the m attribute to 20. Y then initializes the p attribute to 19.

init:
dcl Y y = _new_ Y(10);
put y.p=;

return;

The output would be:

y.p=19

Note: As with other overridden methods that have identical signatures, you must
explicitly override the constructor in Y because there is a constructor in X that has the
same signature. �

Specifying That a Method Is Not a Constructor
The compiler automatically treats as a constructor any void method that has the

same name as the class. If you do not want such a method to be treated as a
constructor, you can specify constructor=’n’ in the method declaration.

class X;
X: method /(constructor=’n’);

put ’Is not constructor’;
endmethod;

endclass;

init:
dcl X x = _new_ X();
put ’After constructor’;
x.x();

return;

This will result in the following output:

After constructor
Is not constructor



120 Implementing Methods Outside of Classes � Chapter 8

Implementing Methods Outside of Classes
You can define the implementation of methods outside the SCL entry that contains

the CLASS block that defines the class. This feature enables multiple people to work on
class methods simultaneously.

To define class methods in a different SCL entry, use the USECLASS statement
block. The USECLASS block binds methods that it contains to the class that is specified
in the USECLASS statement. The USECLASS statement also enables you to define
implementations for overloading methods. (See “Overloading Methods” on page 112. )

Method implementations inside a USECLASS block can include any SCL functions
and routines. However, the only SCL statements that are allowed in USECLASS blocks
are METHOD statements.

The USECLASS block binds the methods that it contains to a class that is defined in
a CLASS statement block or in the Class Editor. Therefore, all references to the methods
and the attributes of the class can bypass references to the _SELF_ variable completely
as long as no ambiguity problem is created. Because the binding occurs at compile time,
the SCL compiler can detect whether an undefined variable is a local variable or a class
attribute. See also “Referencing Class Methods or Attributes” on page 103.

Method Metadata
SCL stores metadata for maintaining and executing methods. You can query a class

(or a method within a class) to view the method metadata. For example, to list the
metadata for a specific method, execute code similar to the following:

init:
DCL num rc metadata;
DCL object obj;

obj=loadclass(’class-name’);

/* metadata is a numeric list identifier */
rc=obj._getMethod(’getMaxNum’,metadata);
call putlist(metadata,’’,2);

return;

Attributes
Attributes are the properties that specify the information associated with a

component, such as its name, description, and color. Attributes determine how a
component will look and behave. For example, the Push Button Control has an
attribute named label that specifies the text displayed on the button. You can create
two instances of the Push Button Control on your frame and have one display “OK” and
the other display “Cancel,” simply by specifying a different value for the label
attribute of each instance.



SAS Object-Oriented Programming Concepts � Specifying Where an Attribute Value Can Be Changed 121

You can define attributes with attribute statements in CLASS blocks:

scope data-type attribute-name/(attribute-options);

Attribute names can be up to 256 characters long.
Like methods, attributes can have public, private, or protected scope. The scope

works the same for attributes as it does for methods. See “Defining Method Scope” on
page 105 for more information.

Examples of attribute options include the attribute description, whether the attribute
is editable or linkable, custom access methods that are to be executed when the
attribute is queried or set, and whether the attribute sends events.

If an attribute is editable, you can use the Editor option to specify the name of the
FRAME, SCL, or PROGRAM entry that will be used to edit the attribute’s value. This
entry is displayed and executed by the Properties window when the ellipsis button (...)
is selected.

To specify an attribute’s category, use the Category attribute option. The category is
used for grouping similar types of options in the Class Editor or for displaying related
attributes in the Properties window. You can create your own category names.
Components that are supplied by SAS may belong to predefined categories.

Creating Attributes Automatically
With the Autocreate option, you can control whether storage for list attributes and

class attributes is automatically created when you instantiate a class. By default,
Autocreate=’Y’, which means that SCL automatically uses the _NEW_ operator to
instantiate class attributes and calls the MAKELIST function to create the list
attributes.

Note: Even when Autocreate=’Y’, storage is not created for generic objects
because the specific class is unknown. �

If you specify Autocreate=’N’, then storage is not automatically created, and it is
your responsibility to create (and later destroy) any list attributes or class attributes
after the class is instantiated.

import sashelp.fsp.collection.class;
class myAttr;
public list myList / (autocreate=’N’);
public list listTwo; /* created automatically */
public collection c1; /* created automatically */
public collection c2 / (autocreate=’N’);

endclass;

Specifying Where an Attribute Value Can Be Changed
An attribute’s scope and the value of its Editable option determines which methods

can change an attribute’s value.
� If the scope is public and Editable=’Y’, then the attribute can be accessed (both

queried and set) from any class method as well as from a frame SCL program.
� If the scope is public and Editable=’N’, then the attribute can only be queried

from any class method or frame SCL program. However, only the class or
subclasses of the class can modify the attribute value.

� If the scope is protected and Editable=’N’, then the class and its subclasses can
query the attribute value, but only the class itself can set or change the value. A
frame SCL program cannot set or query the value.



122 Setting Initial Values and the List of Valid Values � Chapter 8

� If the scope is private and Editable=’N’, then the attribute value can be queried
only from methods in the class on which it is defined, but it cannot be set by the
class. Subclasses cannot access these attributes, nor can a frame SCL program.
This combination of settings creates a private, pre-initialized, read-only constant.

Setting Initial Values and the List of Valid Values
Unless you specify otherwise, all numeric attributes are initialized to missing values,

and all character attributes are initialized to blank strings. You can use the initialValue
attribute option to explicitly initialize an attribute. For example:

class myAttr;
public num n1 / (initialvalue = 3);
public list list2 / (initialvalue = {1, 2, ’abc’, ’def’};

endclass;

Explicitly initializing attribute values improves the performance of your program.
You can use the ValidValues attribute option to specify a list of values that the

attribute can have. This list is used as part of the validation process that occurs when
the value is set programmatically by using either dot notation or the _setAttributeValue
method.

If you specify the ValidValues option and the InitialValue option, the value that you
specify with the InitialValue option must be included in the values that you specify with
the ValidValues option.

In the list of valid values, you can use blanks to separate values, or, if the values
themselves contain blanks, use a comma or a slash (/) as the separator. For example:

class business_graph_c;
public char statistic

/ (ValidValues=’Frequency/Mean/Cumulative Percent’,
InitialValue=’Mean’);

public char highlightEnabled
/ (ValidValues=’Yes No’,

InitialValue=’Yes’);
endclass;

You can also specify an SCL or SLIST entry to validate values. For more information
on how to use an SCL entry to perform validation, refer to SAS Guide to Applications
Development.

Associating Custom Access Methods with Attributes
A custom access method (CAM) is a method that is executed automatically when an

attribute’s value is queried or set using dot notation. When you query the value of an
attribute, SCL calls the _getAttributeValue method. When you set the value of an
attribute, SCL calls the _setAttributeValue method. These methods are inherited from
the Object class.

You can use the getCAM and setCAM attribute options to specify additional methods
that you want _getAttributeValue or _setAttributeValue to execute. For example:

class CAM;
public char A / (getCAM=’M1’);
public num B / (setCAM=’M2’);
protected M1: method c:char;
put ’In M1’;

endmethod;



SAS Object-Oriented Programming Concepts � Attribute Metadata 123

protected M2: method b:num;
put ’In M2’;

endmethod;
endclass;

When the value of A is queried, _getAttributeValue is called, then M1 is executed.
When the value of B is set, _setAttributeValue is called, then M2 is executed.

CAMs always have a single signature and cannot be overloaded. The CAM signature
contains a single parameter that is the same type as its associated attribute.

A CAM always returns a numeric value. If the returned value = 0, the CAM executed
successfully. A non-zero value indicates failure.

You should never call a CAM directly; instead, use the _getAttributeValue or
_setAttributeValue methods to call it automatically. To prevent CAMs from being called
directly, it is recommended that you define them as protected methods.

Linking Attributes
Attribute linking enables one component to automatically update the value of one of

its attributes when the value of another component attribute is changed. You can link
attributes between components or within the same component. Only public attributes
are linkable.

To implement attribute linking, you need to identify attributes as either source
attributes or target attributes. You can identify source and target attributes either in
the Properties window or with SCL. To identify an attribute as a source attribute with
SCL, specify SendEvent=’Y’ in the attribute’s option list. To identity an attribute as a
target attribute, specify Linkable=’Y’ in the attribute’s option list.

You can then link the attributes (specify the LinkTo option) in the Properties window.
When SendEvent=’Y’, SAS/AF software registers an event on the component. For

example, the textColor attribute has an associated event named “textColor Changed”.
You can then register an event handler to trap the event and to conditionally execute
code when the value of the attribute changes.

If you change the SendEvent value from ’Y’ to ’N’, and if Linkable=’Y’, then you
must send the “attributeName Changed” event programmatically with the attribute’s
setCAM in order for attributes that are linked to this attribute to receive notification
that the value has changed. If the linked attributes do not receive this event, attribute
linking will not work correctly. In the previous example, the setCAM for the textColor
attribute would use the _sendEvent method to send the “textColor Changed” event.

Refer to SAS Guide to Applications Development for more information on attribute
linking.

Attribute Metadata
SCL uses a set of attribute metadata to maintain and manipulate attributes. This

metadata exists as a list that is stored with the class. You can query a class (or an
attribute within a class) with specific methods to view attribute metadata. To list the
metadata for a specific attribute, execute code similar to the following:

init:
DCL num rc;
DCL list metadata;
DCL object obj;

obj=loadclass(’class-name’);



124 Accessing Object Attributes and Methods with Dot Notation � Chapter 8

rc=obj._getAttribute(’attribute-name’,metadata);
call putlist(metadata,’’,3);

return;

Accessing Object Attributes and Methods with Dot Notation
SCL provides dot notation for directly accessing object attributes and for invoking

methods instead of using the SEND and NOTIFY routines. Thus, dot notation provides
a shortcut for invoking methods and for setting or querying attribute values. Using dot
notation reduces typing and makes SCL programs easier to read.

Using dot notation enhances run-time performance if you declare the object used in
the dot notation as an instance of a predefined class instead of declaring it as a generic
object. The object’s class definition is then known at compile time, enabling the SCL
compiler to verify the method and to access attributes at that time. Moreover, since dot
notation checks the method signature, it is the only way to access an overloaded
method. SEND does not check method signatures. It executes the first name-matched
method, and the program might halt if the method signature does not match.

Syntax
The syntax for dot notation is as follows:

object.attribute

or

object.method(<arguments>)

Where

object
specifies an object or an automatic system variable (for example, _SELF_). An
object must be a component in a FRAME entry or a variable that is declared as an
Object type in the SCL program. Automatic system variables like _SELF_ are
declared internally as Object type, so they do not have to be declared explicitly as
such in a program.

attribute
specifies an object attribute to assign or query. It can be of any data type,
including Array. If the attribute is an array, use the following syntax to reference
its elements:

object.attributeArray[i]

You can also use parentheses instead of brackets or braces when referencing the
array elements. However, if you have declared the object as a generic object, the
compiler interprets it as a method name rather than an attribute array. If you
have declared a type for the object, and an attribute and method have the same
name, the compiler still interprets the object as a method. To avoid this ambiguity,
use brackets when referencing attribute array elements.



SAS Object-Oriented Programming Concepts � Syntax 125

method
specifies the name of the method to invoke. If an object is declared with a specific
class definition, the compiler can perform error checking on the object’s method
invocations.

If the object was declared as a generic object (with the OBJECT keyword), then
the method lookup is deferred until run time. If there is no such method for the
object, the program halts. If you declare the object with a specific definition, errors
such as this are discovered at compile time instead of at run time.

arguments
are the arguments passed to the method. Enclose the arguments in parentheses.
The parentheses are required whether or not the method needs any arguments.

You can use dot notation to specify parameters to methods. For example:

return-value = object.method (object.id);

However, if you use dot notation to specify an update or output parameter, then
SCL executes the _setAttributeValue method, which may produce side effects. See
“What Happens When Attribute Values Are Set or Queried” on page 128 for more
information.

Some methods may be defined to return a value of any SCL type. You can access this
returned value by specifying a variable in the left side of the dot notation. For example:

return-value = object.method (<arguments>);

or

if ( object.method (<arguments>) ) then ...

The return value’s type defaults to Numeric if it is not explicitly declared. If the
declared type does not match the returned type, and the method signature is known at
compile time, the compiler returns an error. Otherwise, a data conversion might take
place, or the program will halt at run time.

If you override an object’s INIT method, you must call _SUPER._INIT before you can
use dot notation to set attribute values or to make other method calls.

Dot notation is not available in the INPUT and PUT functions.
By default, your application halts execution if an error is detected in the dot notation

that is used in the application. You can control this behavior with the
HALTONDOTATTRIBUTE or NOHALTONDOTATTRIBUTE option in the CONTROL
statement. See “CONTROL” on page 279 for more information.

Using Nested Dot Notation
You can also use dot notation in nested form. For example,

value = object.attribute1.method1().attribute2;

is equivalent to the following:

dcl object object1 object2;
object1 = object.attribute1; /* attribute1 in object

is of OBJECT type */
object2 = object1.method1(); /* method1 in object1

returns an object */
value = object2.attribute2; /* assign the value of

attribute2 in object2
to the variable
’value’. */



126 Examples � Chapter 8

You can also specify the nested dot notation as an l-value. For example,

object.attribute1.method1().attribute2 = value;

is equivalent to the following:

dcl object object1 object2;

object1 = object.attribute1;
object2 = object1.method1();
object2.attribute2 = value; /* assume ’value’ has

been initialized.
This would set
attribute2 in object2
to the value */

Note: You cannot use nested dot notation inside SUBMIT blocks. �

Examples
An application window contains a text entry control named clientName. The

following examples show how to use dot notation to invoke methods and to query and
assign attribute values. For example, the following statement uses dot notation to
invoke the _gray method of the control:

clientName._gray();

This is equivalent to

call send(’clientName’,’_gray’);

You can change the text color to blue, using dot notation to set the value of its
textColor attribute:

name.textColor=’blue’;

You can also use dot notation to query the value of an attribute. For example:

color=clientName.textColor;

You can use dot notation in expressions. You can use a method in an expression only if
the method can return a value via a RETURN statement in its definition. For example,
suppose you create a setTable method, which is a public method and accepts an input
character argument (the name of a SAS table). The method determines whether a SAS
table exists and uses the RETURN statement to pass the return code from the EXIST
function.

setTable: public method dsname:i:char(41) return=num;
rc = exist(dsname, ’DATA’);
return rc;

endmethod;



SAS Object-Oriented Programming Concepts � Examples 127

Then you could use a statement like the following to perform actions that depend on the
value that the setTable method returned.

if (obj.setTable(’sasuser.houses’)) then
/* the table exists, perform an action */

else
/* the table doesn’t exist, */
/* perform another action */

The next example shows how to use dot notation with an object that you create in an
SCL program. Suppose class X is saved in the entry X.SCL, and the INIT section is
saved in the entry Y.SCL.

class x;
public num n;
m: public method n1: num n2: num return=num;

dcl num r;
r = n1 + n2;
/* return sum of n1 and n2 */
return r;

endmethod;
m: public method c1: char c2:char return=char;

dcl num s;
/* concatenate c1 and c2 */
s = c1 || c2;
return s;

endmethod;
endclass;

init:
dcl x xobj = _new_ x();
dcl num n;
dcl string s;
n = xobj.m(99,1);
s = xobj.m("abc","def");
put n= s=;
return;

If you compile and run Y.SCL, it produces

n=100 s=abcdef



128 What Happens When Attribute Values Are Set or Queried � Chapter 8

What Happens When Attribute Values Are Set or Queried
When you use dot notation to change or query an attribute value, SCL translates the

statement to a _setAttributeValue method call (to change the value) or to a
_getAttributeValue method call (to query the value). As a result, defining the attribute
with a getCAM or setCAM method could produce side effects.

When you use dot notation to specify a parameter to a method, SCL executes the
_setAttributeValue method if the parameter is an update or output parameter. SCL
executes the _getAttributeValue method if the parameter is an input parameter.
However, if the object is declared as a generic object or if the method does not have a
signature, then all of the method’s parameters are treated as update parameters.
Therefore, SCL will execute the _setAttributeValue method even if the parameter is an
input parameter, which could execute a setCAM method and send an event.

Note: If you use dot notation to access a class attribute, program execution halts if
any error is detected while the _getAttributeValue or _setAttributeValue method is
running. Explicitly invoking the _getAttributeValue or _setAttributeValue method
allows the program to control the halt behavior. The _getAttributeValue or
_setAttributeValue method also enables you to check the return code from the method.
For example:

rc = obj._setAttributeValue (‘abc’);
if ( rc ) then do;

/* error detected in the _setAttributeValue method */
...more SCL statements...
end;

�

Setting Attribute Values
When you use dot notation to set the value of an attribute, SCL follows these steps:
1 Verify that the attribute exists.
2 Verify that the type of the attribute matches the type of the value that is being set.
3 Check whether the attribute value is in the ValidValues list. If the ValidValues

metadata is an SCL entry, it is executed first to get the list of values to check the
attribute value against.

4 Run the setCAM method, if it is defined, which gives users a chance to perform
additional validation and to process their own side effects.

Note: If the Editable metadata is set to No, the custom set method is not called
(even if it was defined for the attribute). �

5 Store the object’s value in the attribute.
6 Send the “attributeName Changed” event if the SendEvent metadata is set to Yes.
7 sends the “contents Updated” event if the attribute is specified in the object’s

contentsUpdatedAttributes attribute. This event notifies components in a
model/view relationship that a key attribute has been changed.



SAS Object-Oriented Programming Concepts � What Happens When Attribute Values Are Set or Queried 129

Figure 8.2 Flow of Control for _setAttributeValue



130 Events and Event Handlers � Chapter 8

Querying Attribute Values
When you use dot notation to query the value of an attribute, SCL follows these steps:
1 Execute the getCAM method to determine the attribute value, if a getCAM method

has been defined.
2 Return the attribute value, if a value has been set.
3 Return the initial class value, if no attribute value has been set.

The following figure shows this process in detail.

Figure 8.3 Flow of Control for _getAttributeValue

_getAttributeValue
executes

If attribute is
defined and not accessed

outside its defined
scope  

rc=2; processing ends

rc=3; processing ends

rc=7; processing ends

If attribute type
is matched

If getCAM
is defined

If no

No

No

NogetCAM
executes

Attribute value is returned

rc is propagated as the value
for the 2nd argument on the 
_getAttributeValue call

Events and Event Handlers
Events alert applications when there is a change of state. Events occur when a user

action takes place (such as a mouse click), when an attribute value is changed, or when
a user-defined condition occurs. Events are essentially generic messages that are sent
to objects from the system or from SCL applications. These messages usually direct an
object to perform some action such as running a method.

Event handlers are methods that listen for these messages and respond to them.
Essentially, an event handler is a method that determines which method to execute
after the event occurs.

SCL supports both system events and user-defined events.



SAS Object-Oriented Programming Concepts � Example 131

System Events
System events include user interface events (such as mouse clicks) as well as

“attribute changed” events that occur when an attribute value is updated. SCL
automatically defines system events for component attributes when those attributes are
declared.

SCL can also automatically send system events for you when a component’s attribute
is changed. If you want “attribute changed” events to be sent automatically, specify
SendEvent=’Y’ in the options list for the attribute.

If you want an action to be performed when the system event occurs, then you need
to define the event handler that you want to be executed when the event occurs. You
define event handlers for system events in the same way that you define them for
user-defined events. See “Defining Event Handlers” on page 131 for more information.

Defining and Sending Events
You can create user-defined events through the Properties window in the Class

Editor or with event declaration statements in CLASS blocks.

EVENT event-name</(event-options)>;

Event names can be up to 256 characters long.
For the event options, you can specify the name of the method that handles the event

and when an object should send the event. Events can be sent automatically either
before (specify Send=’Before’) or after (Send=’After’) a method executes or they can
be programmed manually (’Manual’) with SCL. New events default to ’After’. You
must specify a method name for events that are to be sent automatically.

After an event is defined, you can use the _sendEvent method to send the event:

object._sendEvent("event-name"<, event-handler-parameters>);

For a complete description of _sendEvent, refer to the SAS/AF online Help.

Defining Event Handlers
You can define event handlers with event handler declaration statements in CLASS

blocks.

EVENTHANDLER event-handler-name</(event-handler-options)>;

As part of the event handler options, you can specify the name of the event, the name
of the method that handles the event, and the name of the object that generates the
event (the sender). As the sender, you can specify ’_SELF_’ or ’_ALL_’. When
Sender=’_SELF_’, the event handler listens only to events from the class itself. When
Sender=’_ALL_’, the event handler listens to events from any other class.

Using the _addEventHandler method, you can dynamically add a sender to trigger
the event. For a complete description of _addEventHandler, refer to the SAS/AF online
Help.

For more information about defining event handlers, see “CLASS” on page 253.

Example
This example demonstrates how to define and use events and event handlers.



132 Example � Chapter 8

This example creates two classes. The first class defines one event, three event
handlers, and the three methods that those handlers call. The second class defines one
event handler that listens for the event from the first class, and also defines a method
to execute when that event occurs. Lastly, there is separate code that exercises the
events and event handlers in the two classes. It is assumed that both classes are stored
in work.a.

The first class, EHclass1, defines a numerical attribute n, the event myEvent, and
the event handler for this event, M2. When this class is instantiated, the system event
name “n Changed” is automatically assigned to the attribute n and is registered with
EHclass1. When the value of the attribute n is changed, the system automatically
sends the “n Changed” event, and method M1 is executed.

Event handlers M2 and M3 and the corresponding methods are to demonstrate the
response to the _sendEvent method, explained later in this example.

The methods are not defined in sequential order to help demonstrate that the order
of definition has nothing to do with the order of execution.

class EHclass1;
public num n; /* An attribute with a system event. */
event ’myEvent’ / (method=’M2’);

eventhandler M1 / (sender = ’_SELF_’, event = ’n Changed’);

eventhandler M3 / (sender = ’*’, event=’myEvent’);

eventhandler M2 / (sender = ’_SELF_’, event = ’myEvent’);

M1: method a:list;
put "M1: Event is triggered by changing attribute n.";

endmethod;

M3: method;
put "M3: Event is triggered by _sendEvent / sender=*.";

endmethod;

M2: method;
put "M2: Event is triggered by _sendEvent /sender=SELF.";

endmethod;

endclass;

The second class, EHclass2, defines the event handler and corresponding method,
M4, that is also executed when myEvent is sent.

class EHclass2;
/* Sender=’*’ means that the sender is determined at run time. */
eventhandler M4 / (sender = ’*’, event=’myEvent’);

M4: method;
put "M4: Event myEvent is defined on another class";
put " that is triggered by _sendEvent / sender=*.";

endmethod;

endclass;



SAS Object-Oriented Programming Concepts � Event and Event Handler Metadata 133

The following code uses the two classes. The system event “n Changed” is triggered
when the value of the n attribute is modified. The user-defined event myEvent is
triggered with the _sendEvent method.

import work.a.EHclass1.class;
import work.a.EHclass2.class;
init:

/* Reverse the order of these two declarations to */
/* change the order of execution for ’*’ sender. */
dcl EHclass1 obj1 = _new_ EHclass1();
dcl EHclass2 obj2 = _new_ EHclass2();

/* Trigger the system event. */
obj1.n = 3;

/* Trigger the user-defined event. */
obj1._sendEvent("myEvent");

return;

The order in which the event handlers for myEvent are executed is determined by
the sender of the message. If the sender is _SELF_, the handling class, in this case
EHclass1, has priority, and executes its method first.

If the sender is *, the handlers are executed in the order in which their defining
classes were instantiated; the execution order is not defined by the order of the class
definitions or method definitions.

In this example, M1 is executed first when the "n changed" event occurs. Event
handler M2 is triggered by events from _SELF_, so when myEvent is sent, event
handler M2 is executed first, followed by the event handler M3.

M4 is executed after M3 because M3 is on EHclass1, which was instantiate first.
Reverse the order of the declarations of EHclass1 and EHclass2 to change the order in
which M3 and M4 are executed.

As written above, without the reversed declarations, the output is:

M1: Event is triggered by changing attribute n.
M2: Event is triggered by _sendEvent / sender=SELF.
M3: Event is triggered by _sendEvent / sender=*.
M4: Event myEvent is defined on another class

that is triggered by _sendEvent / sender=*.

Event and Event Handler Metadata
Events and event handlers are implemented and maintained with metadata. This

metadata exists as a list that is stored with the class. You can query a class (or an
event within a class) to view the event and event handler metadata. To list the
metadata for an event, execute code similar to the following:

init:
DCL num rc;
DCL list metadata;
DCL object obj;

obj=loadclass(’class-name’);

rc=obj._getEvent(’event-name’, metadata);
call putlist(metadata, ’’, 3);



134 Interfaces � Chapter 8

rc=obj._getEventHandler(’_self_’, ’event-handler-name’, ’_refresh’, metadata);
call putlist(metadata, ’’, 3);

return;

Interfaces

Interfaces are groups of method declarations that enable classes to possess a
common set of methods even if the classes are not related hierarchically. An interface is
similar to a class that contains only method declarations.

A class can either support or require an interface. A class that supports an interface
must implement all of the methods in the interface. A class that requires an interface
can invoke any of the methods in the interface.

Suppose you have the following interface:

interface I1;
M1: method;

endinterface;

If class A supports the interface, then it must implement the method M1:

class A supports I1;
M1: method;
put ’Implementation of M1’;

endmethod;
endclass;

Class B requires the interface, which means that it can invoke the methods declared in
the interface.

class B requires I1;
M2: method;

dcl I1 myObj = _new_ I1;
myObj.M1();

endmethod;
endclass;

Interfaces are especially useful when you have several unrelated classes that perform
a similar set of actions. These actions can be declared as methods in an interface, and
each class that supports the interface provides its own implementation for each of the
methods. In this way, interfaces provide a form of multiple inheritance.

A class can be defined to support or require one or more interfaces. If two
components share an interface, they can indirectly call each others’ methods via that
interface. For example, model/view component communication is implemented with the
use of interfaces. The model typically supports the interface, whereas the view requires
the same interface. The interfaces for the components must match before a model/view
relationship can be established. A class stores interface information as a property to
identify whether it supports or requires an interface. Refer to SAS Guide to
Applications Development for more information about model/view communication.

Although classes that support or require an interface are often used together, they are
still independent components and can be used without taking advantage of an interface.

Defining Interfaces
You define interfaces with the INTERFACE statement block:



SAS Object-Oriented Programming Concepts � Example 135

INTERFACE interface-name
<EXTENDS interface-name>
</ (interface-optional-clause)>;

<limited-method-declaration-statements>

ENDINTERFACE;

For more information about defining interfaces, see Chapter 9, “Example: Creating An
Object-Oriented Application in SCL,” on page 143 and “INTERFACE” on page 478.

Example
The following INTERFACE block declares two methods for reading and writing data.

interface Reader;
Read: method return=string;
Write: method data:string;

endinterface;

Only the method declarations are given in the INTERFACE block. The method
implementations are given in any class that supports the interface.

For example, the Lst and Ddata classes both implement the Read and Write
methods. These classes support the Reader interface. In the Lst class, these methods
read and write items from and to an SCL list.

class Lst supports Reader;
dcl list listid;
dcl num cur n rc;

/* Override the class constructor. */
/* Create a new list. */
Lst: method/(state=’o’);

listid = makelist();
cur = 0;
n = 0;

endmethod;

Read: method return=string;
if (cur >= n) then do;
put ’End of file’;
return "";
end;

else do;
cur + 1;
/* Get the current item from the list. */
dcl char item;
item=getitemc(listid,cur);
return item;

end;
endmethod;

Write: method c:string;
n + 1;

/* Insert a new item into the list. */
rc=insertc(listid,c,-1);



136 Example � Chapter 8

endmethod;

endclass;

The method implementations in the Ddata class read and write data from and to a SAS
table.

class Ddata supports Reader;
protected num fid;
protected num obs n;
dcl num rc;

/* Override the class constructor. */
/* Use the open function to open a SAS table. */
Ddata: method name: string mode: string;
fid = open(name, mode);
obs = 0;
n = 0;

endmethod;

Read: method return=string;
if (obs >= n) then do;

put ’End of file’;
return "";

end;
else do;

dcl string c;

/* Fetch an observation from the table. */
obs + 1;
rc=fetchobs(fid, obs);

/* Get the contents of table column 1. */
c = getvarc(fid, 1);
return c;

end;
endmethod;

Write: method c:string;
dcl num rc;

/* Add a new row to the table and */
/* write the contents of C into column 1. */
rc=append(fid);
call putvarc(fid, 1, c);
rc = update(fid);
n + 1;

endmethod;

endclass;

Using the interface, you can read and write data without knowing the data source. In
the following example, the Read class implements method M, which calls the method
that was declared in the Reader interface. The interface determines which method
implementation is executed.



SAS Object-Oriented Programming Concepts � Converting Version 6 Non-Visual Classes to SCOM Classes 137

class Read;
M: method r:Reader;

/* Write a string to the data source, */
/* then read it back. */
r.write("abc");
put r.read();

endmethod;
endclass;

The following labeled program section reads and writes data to both a list and a SAS
table. This code passes a Lst class and a Ddata class to the Read class, which treats the
list and the table in the same way. The data is read and written transparently. The
Read class does not need to know what the actual implementation of the Reader is — it
only needs to know the interface.

init:
dcl Lst L = _new_ Lst();
dcl Ddata D = _new_Ddata("test","un");
dcl read R = _new_ read();

R.M(L);
R.M(D);

return;

Converting Version 6 Non-Visual Classes to SCOM Classes
You do not need to convert Version 6 classes to SAS Component Object Model

(SCOM) classes in order to run programs from the previous versions. Version 6 classes
are automatically loaded into SCOM formats when they are instantiated. Existing
Version 6 SCL programs should run normally in Version 8 and beyond.

However, you can use the (SCOM) features that first appeared in Version 8 to make
your programs more object-oriented, easier to maintain, and more efficient. Using
SCOM features also enables you to reuse model classes in the future development of
client/server applications.

To convert Version 6 model classes to SCOM classes, you must modify the method
implementation files and regenerate the class files. To modify the method
implementation files, follow these steps:

1 Remove global variables. Declare them as private attributes or, if they are
referenced in only one method, declare them as local variables within that method.
See “Removing Global Variables” on page 138 for more information.

2 Declare all variables. See “Declaring Variables” on page 138 for more information.
3 Convert labels to method names and convert LINK statements to method calls.

Declare the labeled sections as private methods. If necessary, specify the
Forward=’Y’ option for the method. See “Converting Labels and LINK
Statements” on page 139 for more information.

4 Convert CALL SEND statements to dot notation. See “Converting CALL SEND to
Dot Notation” on page 140 for more information.

To regenerate the class files, follow these steps:
1 Use CREATESCL to convert Version 6 class files to SCOM class files. See

“Converting Class Definitions with CREATESCL” on page 140 for more
information.



138 Removing Global Variables � Chapter 8

2 Convert instance variables to attributes, if appropriate. See “Using Instance
Variables” on page 140 for more information.

3 Make sure signatures are generated for all methods. The best way to ensure that
signatures are generated is to delete the method declarations from the class files
and to replace them with the METHOD blocks from the method implementation
files.

4 Change the class names specified in the CLASS statements if you do not want to
overwrite the existing Version 6 classes.

5 Issue the SAVECLASS command to generate the new SCOM class.

Removing Global Variables
Remove all global variables from the Version 6 method implementation entries.

Convert them either to local variables through DECLARE or to private attributes in the
class definition file. For example, suppose that a Version 6 method implementation file
contains the variables N1, N2, C1 and C2 as shown:

length n1 n2 8;
length c1 c2 $200;

In this example, four attributes need to be added to mylib.classes.newclass.scl, as
follows:

Private num n1;
Private num n2;
Private char c1;
Private char c2;

After the attributes are added, issue the SAVECLASS command to generate the new
class.

Declaring Variables
Declare all of the variables in your program. Lists should be declared with the LIST

keyword rather than allowing them to default to a Numeric type. Objects should be
declared either as generic objects (with the OBJECT keyword) or as specific class
objects. You can use dot notation with an object only if it is declared as an object. Using
specific LIST and object declarations can avoid problems with overloading methods. For
more information, see “Overloading and List, Object, and Numeric Types” on page 115.

Whenever possible, classes should be declared with a specific class declaration such as

dcl work.a.listbox.class lboxobj;

Try to avoid using generic object declarations such as

dcl object lboxobj;

Also, the compiler cannot check method signatures or validate methods and attributes if
it does not know the specific class type. If the compiler is not able to do this checking
and validation at compile time, then SCL must do it at run time, which makes your
program less efficient.

For example, assume that you declare a generic object named SomeC that has a
method Get, which returns a numeric value. You also declare a class named XObj that
has a method M, which is overloaded as (N)V and (C)V. Suppose you need to pass the
return value of Get to the M method:



SAS Object-Oriented Programming Concepts � Converting Labels and LINK Statements 139

dcl object SomeC = _new_ someclass.class();
dcl work.a.xclass.class XObj = _new_ xclass.class();
XObj.M(SomeC.Get());

SomeC is declared as a generic object, so the compiler cannot determine what object it
contains at compile time. Even though there is a specific object assignment to SomeC,
the compiler cannot guarantee what type it will contain at any given point, because the
value could be changed elsewhere when the program runs.

Therefore, the compiler cannot look up the Get method to find that it returns a
Numeric value, and it cannot determine which method M in Xclass to call. This method
validation must be deferred until run time, when the return type of the Get method will
be known (because the actual call will have taken place and the value will have been
returned).

The problem can be remedied by declaring SomeC as a specific object:

dcl someclass SomeC = _new_ someclass.class();

If this is not possible, then you could declare a Numeric variable to hold the result of
the Get method, as shown in this example:

dcl object SomeC = _new_ someclass.class();
dcl xclass XObj = _new_ xclass.class();
dcl num n;
n = SomeC.Get();
XObj.M(n);

Even though the compiler cannot validate the Get method for the SomeC class, it can
validate the method name and parameter type for XObj.

Converting Labels and LINK Statements
The next step is to remove all link labels from the Version 6 method implementation

catalog entries. Convert them to private methods in the class definition file, and convert
the link to a method call. For example, suppose that myclass.classes.old.scl
contains the following:

m1: method;
link a1;

endmethod;

a1:
...SCL statements...

return;

To change the labeled section to a private method in mylib.classes.newclass.scl,
add the following:

a1: Private method;
...SCL statements...

endmethod;

If needed, you can also add parameters to the method. To change the link to a method
call, change the following:

m1: method;
a1();

endmethod;



140 Converting CALL SEND to Dot Notation � Chapter 8

In the old entry, the A1 labeled section is after the M1 method. In the new entry, the
labeled section has been converted to a method. However, you cannot call a method
before it is declared. To fix this problem, you must either move the A1 method before
the M1 method, or you can declare A1 with the Forward=’Y’ option:

a1: Private method / (Forward=’y’);
...SCL statements...

endmethod;

Converting CALL SEND to Dot Notation
The final step in modifying your method implementation files is converting CALL

SEND statements to METHOD calls that use dot notation.

Note: To use dot notation, the method that you specify must have a signature.
Therefore, you cannot convert CALL SEND statements to dot notation unless your class
files have been converted to SCOM class files. Also, the object that you specify should be
declared as a specific class type to enable the compiler to validate method parameters. �

For example, suppose that a Version 6 program contains the following line:

call send(obj1,’m1’,p1);

Converting this line to dot notation results in

obj1.m1(p1);

Converting Class Definitions with CREATESCL
Assume that the Version 6 class is mylib.classes.oldclass.class and that the

method implementation file is mylib.classes.old.scl.
1 Use CREATESCL to create an SCL entry that contains the following SCL

statements:

Init:
rc=createscl(’mylib.classes.oldclass.class’,

’mylib.classes.newclass.scl’);
return;

2 Issue the SAVECLASS command to generate the Version 6 class file
mylib.classes.newclass.class.

3 Open this entry in the Build window and modify the class definition as needed.
Reissue the SAVECLASS command to generate the new class file in SCOM format.

Using Instance Variables
The object model in Version 6 uses instance variables. In Version 8, instance

variables were replaced with attributes.
When a class is loaded, the class loader automatically converts Version 6 formats to

the SCOM format. This process includes converting instance variables to public or
private attributes with the option IV, which specifies the name of the Version 6 instance
variable.

In the following example, the Version 6 instance variable ABC is converted to the
SCOM attribute abc.



SAS Object-Oriented Programming Concepts � Using Instance Variables 141

class IVclass;
public char abc / (iv=’ABC’);

endclass;



142



143

C H A P T E R

9
Example: Creating An
Object-Oriented Application in
SCL

Introduction to the SCL Tutorial 143
Simple Class Syntax in SCL 143

Creating a Data Set Class in SCL 144

Class Data 145

The Data Set Class 145

Constructors 146
Using the Data Set Class 146

Extending Classes in SCL 148

Access Modifiers 148

The DDATA Class as a Subclass 149

The FDATA Class 150

Overloaded Methods 151
Interfaces and Higher Levels of Abstraction 152

Other Classes and Further Abstraction 154

The SCL USECLASS Statement 156

Using SCL Class Syntax with SAS/AF Software 158

Flexibility 160

Introduction to the SCL Tutorial
SCL provides many object-oriented programming features such as class and useclass

syntax, method overloading, and interfaces. This tutorial demonstrates how to use
many of these features by creating a class-based version of a simple data input facility
that is based on traditional SCL library functions.

Simple Class Syntax in SCL
Before beginning the tutorial, you must have a clear understanding of a simple SCL

class. A CLASS statement enables you to use SCL to create a SAS/AF class and to
define all the properties for the class, including attributes, methods, events, and
interfaces. An SCL class is created with SCL class syntax. The simplest class is an
empty class, which is defined using the following code:

class x;
endclass;

Enter the above code in an SCL entry such as X.SCL and then create the class by using
the SAVECLASS command. You should now see a CLASS entry for X in the current
catalog.



144 Creating a Data Set Class in SCL � Chapter 9

Note: The name of the entry does not have to match the name of the class, but for
beginners this is the easiest way to name an entry. �

To add functionality to this class, you can create a simple method by using the
following code:

class x;

m: method;
put ’Hello’;

endmethod;

endclass;

The PUT statement will write Hello to the SAS procedure output file or to a file that is
specified in the most recent FILE statement. To run this method, you need to create an
example of the class and call the method. In an SCL entry called Y.SCL, enter the
following code:

init:
dcl x x = _new_ x();
x.m();
return;

The _NEW_ operator is used to create an example of the class X and to assign it to the
variable x. The _NEW_ operator provides a faster and more direct way to create an
object by combining the actions of loading a class with LOADCLASS and initializing the
object with the _new method, which invokes the object’s _init method. You then call
method M using the object variable x in the dot notation expression x.m().

Note: Dot notation provides a shortcut for invoking methods and for setting or
querying attribute values. Using dot notation reduces typing and makes SCL programs
easier to read. It also enhances run-time performance if you declare the object used in
the dot notation as an example of a predefined class instead of a generic object. The
object’s class definition is then known at compile time. Because dot notation checks the
method signature, it is the only way to access an overloaded method as illustrated in
“Overloaded Methods” on page 151. �

Compile Y.SCL, and then use the TESTAF command to run it. You should see the
following output:

Hello

Creating a Data Set Class in SCL
In this exercise you will read a simple SAS data set that contains two character

variables. You will learn how to open the data set, fetch an observation, copy a data set
character variable, and close the data set. The SCL functions that will be used are

� OPEN
� FETCH

� GETVARC

� CLOSE

You will build a class that encapsulates these operations so that they can be called as
methods on any given data set. Because of this, the class itself should represent a data
set.



Example: Creating An Object-Oriented Application in SCL � The Data Set Class 145

Before you can begin converting these functions to class methods, you must create
the class data, as shown in the next section, “Class Data” on page 145.

Class Data
Class data is declared with the DCL statement by using the following code:

class x;
dcl num n;

endclass;

Here class X contains a numeric variable called n.
The DCL statement can be omitted when you provide a variable scope modifier such

as public, private or protected. Scope modifiers indicate how the variable is to be
accessed from locations outside the class. By default, the scope modifier is public, which
indicates that anyone can access the variable. Both private and protected scope
modifiers restrict access to the variable.

The Data Set Class
For the data set class, begin with the following class data:

class DDATA;
public string dname;
public string mode;
protected num fid;
protected num nvars;

endclass;

where

dname is the name of the data set

mode is the access mode

fid is the file identifier that will be returned from the OPEN call

nvars is the number of variables in the data set.

In this case, public access is given to dname and mode, but access is restricted for fid
and nvars.

You will create one method for each of the SCL functions OPEN, FETCH, GETVARC,
and CLOSE. The following example shows how to use the FETCH function to take an
action that is based on the value of its return code:

read: method return=num;
dcl num rc;
rc = fetch(fid);
return rc;

endmethod;

You can use a function such as GETVARC directly in the IF statement. In this case, the
VARTYPE function is executed, and then the IF expression evaluates the return code to
determine whether to perform the conditional action. The following method takes a
parameter n, which represents the variable number, and returns the character variable
c from GETVARC.

cpy: method n: num return=string;
dcl string c = "";



146 Constructors � Chapter 9

if (vartype(fid, n) = ’C’) then
c = getvarc(fid, n);

return c;
endmethod;

CLOSE is used to close a data set as soon as it is no longer needed by the
application. The method in this example for CLOSE is

_term: method /(state=’O’);
if (fid) then close(fid);
_super();

endmethod;

This method closes the data set represented by fid. It also contains two items that refer
to the parent class of DDATA (State=’O’ and _super()). A parent class is the class from
which a particular class was extended or derived. In this case, DDATA was implicitly
extended from OBJECT.CLASS. Since OBJECT.CLASS contains a _term method, you
must indicate that you are overriding it in DDATA by specifying State=’O’. Because
OBJECT.CLASS is being overridden, to ensure that the _term method in
OBJECT.CLASS is still executed, use the function call _super().

Constructors
The method that will be used for opening the data set is called a constructor. A

constructor is a method that is used to instantiate a class and provides a way for
initializing class data. In order for a method to be a constructor, it must be a void
method (one that does not have a return value), and it must have the same name as the
class. Here is the constructor for DDATA:

ddata: method n: string m:string nv:num;
fid = open(n, m);
dname = n;
mode = m;
nvars = nv;

endmethod;

where n is a parameter containing the name of the data set, m is the input mode, and
nv is the number of variables.

This constructor method will be called when an example of the DDATA class is
created using the _NEW_ operator. For example, the following code creates an example
of the DDATA class representing the data set sasuser.x. The data set will be opened
in input mode and has two variables.

init:
dcl ddata d = _new_ ddata("sasuser.x", "i", 2);
return;

Using the Data Set Class
The entire data set class is

class ddata;

/* Data */
public string dname;



Example: Creating An Object-Oriented Application in SCL � Using the Data Set Class 147

public string mode;
protected num fid;
protected num nvars;

/* Constructor method */
ddata: method n: string m:string nv:num;

fid = open(n, m);
dname = n;
mode = m;
nvars = nv;

endmethod;

/* FETCH method */
read: method return=num;

dcl num rc;
rc = fetch(fid);
return rc;

endmethod;

/* GETVARC method */
cpy: method n: num return=string;

dcl string c = "";
if (vartype(fid, n) = ’C’) then

c = getvarc(fid, n);
return c;

endmethod;

/* CLOSE method */
_term: method /(state=’O’);

if (fid) then close(fid);
_super();

endmethod;
endclass;

You can use this class as follows:

init:
dcl ddata d = _new_ ddata("sasuser.x", "i", 2);
dcl num more = ^d.read();
do while(more);

dcl string s s2;
s = d.cpy(1);
s2 = d.cpy(2);
put s s2;
more = ^d.read();

end;
d._term();
return;

In this example, the data set sasuser.x has two character variables, which you read
and print until the end of the file is reached.

Now suppose that you create the following data set:

data sasuser.x;
input city $1-14;
length airport $10;



148 Extending Classes in SCL � Chapter 9

if city=’San Francisco’ then airport=’SFO’;
else if city=’Honolulu’ then airport=’HNL’;
else if city=’New York’ then airport=’JFK’;
else if city=’Miami’ then airport=’MIA’;
cards;
San Francisco
Honolulu
New York
Miami
;

The output from the program will be

San Francisco SFO
Honolulu HNL
New York JFK
Miami MIA

Extending Classes in SCL

While designing the class structure, you might find that some classes share
functionality with other classes. In that case, you can extend classes by creating
subclasses to prevent duplication of functionality.

In “Constructors” on page 146, the DDATA class implicitly extended OBJECT.CLASS.
In fact, any class without an explicit EXTENDS clause in the CLASS statement extends
OBJECT.CLASS. To explicitly extend a class, add the EXTENDS clause shown below:

class y extends x;
endclass;

In this case, class Y extends the class X. Alternatively, Y is a subclass of X, and X is the
parent class of Y.

This enables Y to share X’s functionality. For example, if the class X were

class x;
m: method;

put ’Hello’;
endmethod;
endclass;

and the class y were

class y extends x;
endclass;

then you could call the method M using an example of the class Y:

init:
dcl y y = _new_ y();
y.m();
return;

Access Modifiers
The access modifiers that we mentioned above – public, private and protected – can

now be explained. A variable (or method) that is declared as public can be accessed



Example: Creating An Object-Oriented Application in SCL � The DDATA Class as a Subclass 149

anywhere. A variable (or method) that is declared as protected can be accessed only by
non-proper subclasses of the class in which its declared. Protected variables can be
accessed only from the class in which they are declared. This is also true for protected
variables that are accessed from the subclasses of those classes.

These modifiers restrict access to certain variables (or methods) that should not be
seen outside the class or class hierarchy in which they are declared. For example, there
is no need for any class outside the DATA class hierarchy to access the fid variable, so it
is declared as protected but could also be declared as private.

The DDATA Class as a Subclass
To illustrate how subclassing works with the DDATA class, this exercise creates a

similar class for external data files. The following SCL functions will be used:

� FOPEN

� FREAD
� FGET

� FCLOSE

These SCL functions will be used to create a class called FDATA to represent an
external file. It is important to note similarities to the DDATA class. In particular, each
class will have a name, input mode, and file identifier, so a class will be created to store
this information. Then the subclasses DDATA and FDATA will be created from the
DATA class. The parent data class will be

class data;
public num type;
public string dname;
public string mode;
protected num fid;

data: method f: num n: string m:string;
fid = f;
dname = n;
mode = m;

endmethod;

endclass;

In addition to the name, mode and file id, a type variable is stored to indicate whether
FDATA is an external file or a SAS data set.

The constructor DATA will be called whenever an example of the DATA class is
created. It will also be called automatically whenever any subclasses of data are
created if the constructor in the subclass has not be overridden. If the constructor has
been overridden, you must use _super to call the parent constructor. You must also use
_super if the argument list that is used in the _NEW_ operator does not match the
argument list of the parent constructor. This will be the case for DDATA and FDATA.



150 The FDATA Class � Chapter 9

To extend the DATA class, modify the DDATA CLASS statement, data declarations,
and constructor as follows:

class ddata extends data;

/* Class data */
protected num nvars;

/* Constructor method */
ddata: method n: string m:string nv:num;

fid = open(n, m);
_super(fid, n, m);
nvars = nv;
type = 1;

endmethod;

In this example, the DDATA constructor will call the data constructor via the _super
call. This sets the name, mode and file identifier that are stored in the parent class
data. The DDATA constructor still sets nvars and also sets the type field to indicate
that the file is a data set. The rest of the class will remain the same.

The FDATA Class
The declaration and constructor of the FDATA class will be similar to those of the

DDATA class, as shown in the following:

class fdata extends data;

/* Constructor method */
fdata: method n: string m: string;

dcl string ref = "";
dcl num rc = filename(ref, n);
fid = fopen(ref, m);
_super(fid, n, m);
type = 2;

endmethod;

/* FREAD method */
read: method return=num;

dcl num rc = fread(fid);
return rc;

endmethod;

/* FGET method */
cpy: method n: num return=string;

dcl string c = "";
dcl num rc = fget(fid, c);
return c;

endmethod;



Example: Creating An Object-Oriented Application in SCL � Overloaded Methods 151

/* FCLOSE method */
_term: method /(state=’O’);

if (fid) then fclose(fid);
_super();

endmethod;
endclass;

Use FDATA to read an external class by instantiating it and looping through the data:

init:
dcl fdata f = _new_ fdata("some_file", "i");
dcl num more = ^f.read();
do while(more);

dcl string s s2;
s = f.cpy(1);
s2 = f.cpy(2);
put s s2;
more = ^f.read();

end;
f._term();
return;

This code assumes that the external file is formatted with each line containing two
character variables separated by a blank. For example:

Geoffrey Chaucer
Samuel Johnson
Henry Thoreau
George Eliot
Leo Tolstoy

Overloaded Methods

Method overloading is the process of defining multiple methods that have the same
name, but which differ in parameter number, type, or both. Method overloading lets
you use the same name for methods that are related conceptually but take different
types or numbers of parameters.

For example, you may have noticed that the CPY method in FDATA has a numeric
parameter that apparently serves no useful purpose. You do not need to specify a
variable number for an external file. This parameter is used so that in the future when
you use interfaces, the CPY method in FDATA matches the one in DDATA. For now, the
parameter is not needed. One way of resolving this is to overload the CPY method by
creating another CPY method with a different parameter list, as shown in the following
code:

cpy: method return=string;
dcl string c="";
dcl num rc = fget(fid, c);
return c;

endmethod;

cpy: method n: num return=string;
return cpy();

endmethod;



152 Interfaces and Higher Levels of Abstraction � Chapter 9

In this example, the original CPY method ignores the parameter and calls a CPY
method that returns the character value. By doing this, you have defined two methods
that have the same name but different parameter types. With this simple change, you
do not have to worry about which method to call.

The CPY method can be used as follows:

s = f.cpy();

Overloaded methods can be used any time you need to have multiple methods with the
same name but different parameter lists. For example, you may have several methods
that are conceptually related but which operate on different types of data, or you may
want to create a method with an optional parameter, as in the CPY example.

To differentiate between overloaded methods, the compiler refers to the method
signature, which is a list of the method’s parameter types. A method signature provides
a means of extending a method name, so that the same name can be combined with
multiple different signatures to produce multiple different actions. Method signatures
are created automatically when a method is added to a class and when the compiler is
parsing a method call. Method signatures appear as part of the information that the
Class Editor displays about a method.

Interfaces and Higher Levels of Abstraction
The routines that use DDATA and FDATA are very similar. In fact, the set of

methods for each class is similar by design. The actual implementations of the methods
differ. For example, the CPY method in DDATA is different from the CPY method in
FDATA, but the basic concept of reading character data is the same. In effect, the
interface for both classes is essentially the same.

You can exploit this similarity to make it easier to use the two classes. In fact, you
can have one data loop that handles both types of classes by defining an SCL interface
for both classes. To define the interface, you generalize the functionality and create the
following SCL entry:

interface reader;
read: method return=num;
cpy: method n: num return=string;

endinterface;

Use SAVECLASS to create an interface entry with two abstract methods, READ and
CPY. The abstract methods are by definition the interface itself. Any class that
supports this interface will need to supply the implementations for these methods.

When you use the SAVECLASS command in an SCL entry that contains a CLASS
block, the class is generated and its CLASS entry is created. This is the equivalent of
using the Class Editor to interactively create a CLASS entry.

Once you have created the interface, you must modify the DDATA and FDATA
classes to support it. To do that, change the CLASS statements in each class as follows:

class ddata extends data supports reader;

and

class fdata extends data supports reader;

Since DDATA and FDATA contain READ and CPY methods, no other changes are
needed in the classes.



Example: Creating An Object-Oriented Application in SCL � Interfaces and Higher Levels of Abstraction 153

To use the new interface, you will create two helper classes. One is an iterator class
that will be used to abstract the looping process over both DDATA and FDATA. Use the
following code to create the two helper classes:

class iter;

private num varn nvars;
public reader r /(autocreate=’n’);

/* Constructor */
iter: method rdr: reader n: num;

varn = 1;
nvars = n;
r = rdr;

endmethod;

/* Check if there are more elements to iterate over */
more: method return=num;

dcl num more = ^r.read();
varn = 1;
return more;

endmethod;

/* Return the next element */
next: method return=string;

dcl string c = "";
c = r.cpy(varn);
varn + 1;
return c;

endmethod;

endclass;

Several things require explanation for this class. First, note that it has two private
variables, varn and nvars, to keep track of where it is in the iteration process.

It also has a variable r which is an interface type. Since we cannot create the
interface automatically when an example of ITER is created, we specify the
AUTOCREATE=’N’ option.

The iterator has three methods. In the first method, the constructor stores the reader
variable and the number of variables in the reader. A reader variable is any class that
supports the READER interface. The MORE method reads from the reader to check
whether there are any more elements. The NEXT method returns the next element.

The other helper class uses the iterator to loop over the data in a reader.

class read;

private iter i;

read: method r: reader;
i = _new_ iter(r, 2);

endmethod;

loop:method;
do while(i.more());
dcl string s s2;
s = i.next();



154 Other Classes and Further Abstraction � Chapter 9

s2 = i.next();
put s s2;

end;
endmethod;

_term: method /(state=’O’);
i._term();
_super();

endmethod;

endclass;

The constructor will create a new iterator, and the LOOP method will use it to loop over
the data.

The SCL to use these classes is

init:
dcl string filename;
dcl fdata f;
dcl ddata d;
dcl read r;

/* Read an external file */
filename = "some_file";
f = _new_ fdata(filename, "i");
r = _new_ read(f);
r.loop();
r._term();

/* Read a data set */
filename = "sasuser.x";
d = _new_ ddata(filename, "i", 2);
r = _new_ read(d);
r.loop();
r._term();
return;

This code will successively read an external file and a data set.

Other Classes and Further Abstraction
Given the reader interface, you can now use other classes – even ones outside the

data class hierarchy – as readers, as long as they support the reader interface. Using
the abstract reader interface enables you to read from many different types of objects as
well.

For example, consider the following class, which uses SCL lists to maintain data:

class lst supports reader;
private list listid;
private num nvars;
private num nelmts;
private num cur;

/* Constructor */
lst: method n:num;



Example: Creating An Object-Oriented Application in SCL � Other Classes and Further Abstraction 155

listid = makelist();
nvars = n;
nelmts = 0;
cur = 1;

endmethod;

/* Copy method */
cpy: method n: num return=string;

dcl string c = "";
if (cur <= nelmts) then do;
c = getitemc(listid, cur);
cur + 1;

end;
return c;

endmethod;

/* Read method */
read: method return=num;

if (cur > nelmts) then
return 1;

else
return 0;

endmethod;

/* Add an element to the list */
add: method c:string;

nelmts + 1;
rc = setitemc(listid, c, nelmts, ’Y’);

endmethod;

/* Add two elements to the list */
add: method c1:string c2:string;

add(c1);
add(c2);

endmethod;

/* Terminate the list */
_term: method /(state=’O’);

if listid then listid = dellist(listid);
_super();

endmethod;
endclass;

This class represents a list, and because it supports the READER interface, it can be
read in the same way as the DDATA and FDATA classes.

The SCL for reading from the list is

init:
dcl lst lstClassID;
dcl read r;
lstClassID = _new_ lst(2);

/* Notice the overloaded add method */
lstClassID.add("123", "456");
lstClassID.add("789", "012");



156 The SCL USECLASS Statement � Chapter 9

lstClassID.add("345", "678");

/* Create a read class and loop over the data */
r = _new_ read(lstClassID);
r.loop();

r._term();
return;

The output for this program will be

123 456
789 012
345 678

The SCL USECLASS Statement
This section presents the USECLASS statement and is intended for those users who

are unfamiliar with USECLASS. It is not required for the remainder of the tutorial.
A USECLASS statement binds methods that are implemented within it to the

specified class definition. USECLASS allows a class’s method implementations to reside
in different entries other than the class declaration’s entry. This is helpful if a class is
complex enough to require several developers to write its methods.

The DDATA class will be modified to use USECLASS. Although this class is certainly
not complex enough to require USECLASS, it illustrates its use.

First, rewrite the class specification, using the following code:

class ddata;

/* Data */
public string dname;
public string mode;
protected num fid;
protected num nvars;

/* Constructor method */
ddata: method n: string m:string nv:num /

(scl=’sasuser.a.constr.scl’);

/* FETCH method */
read: method return=num /

(scl=’sasuser.a.read.scl’);

/* GETVARC method */
cpy: method n: num return=string /

(scl=’sasuser.a.cpy.scl’);

/* CLOSE method */
_term: method /

(state=’O’, scl=’sasuser.a.trm.scl’);
endclass;

The method implementations are removed, and the method declaration statements are
modified to indicate which SCL entry contains each method implementation. This new
class specification should be compiled with the SAVECLASS command.



Example: Creating An Object-Oriented Application in SCL � The SCL USECLASS Statement 157

Next, create the method implementations in each entry. These should be compiled
with the COMPILE command, not with SAVECLASS. SASUSER.A.CONSTR.SCL
should contain

useclass ddata;

/* Constructor method */
ddata: method n: string m:string nv:num;

fid = open(n, m);
dname = n;
mode = m;
nvars = nv;

endmethod;

enduseclass;

SASUSER.A.READ.SCL should contain

useclass ddata;

/* FETCH method */
read: method return=num;

dcl num rc;
rc = fetch(fid);
return rc;

endmethod;

enduseclass;

SASUSER.A.CPY.SCL should contain

useclass ddata;

/* GETVARC method */
cpy: method n: num return=string;

dcl string c = "";
if (vartype(fid, n) = ’C’) then

c = getvarc(fid, n);
return c;

endmethod;

enduseclass;

SASUSER.A.TRM.SCL should contain

useclass ddata;

/* CLOSE method */
_term: method /(state=’O’);

if (fid) then close(fid);
_super();

endmethod;
enduseclass;



158 Using SCL Class Syntax with SAS/AF Software � Chapter 9

Using SCL Class Syntax with SAS/AF Software

So far you have created stand-alone SCL classes. SCL class syntax can be used to
create SAS/AF visual objects.

This exercise will extend the SAS/AF List Box class. The readers that were
previously developed in this tutorial will be used to read data that will be used to
initialize the items in the List Box.

To extend the List Box class, you must write a class to extend List Box and modify
the READ class that was created in “Other Classes and Further Abstraction” on page
154. The READ class will then be able to pass the new class to the list box to use for
initializing the item list instead of having it simply print the character data after
reading it.

You must create a new interface and make a minor modification to the LOOP method
in READ.

The interface has a single method, CALLBACK:

interface call;
callback: method s:string;
endinterface;

The modified LOOP method in READ is

loop: method caller:call;
do while(i.more());
caller.callback(i.next());

end;
endmethod;

The method now takes a CALL interface parameter and calls its CALLBACK method.

Note: You do not specify the implementation of a method in an interface; you simply
supply the name and parameter list. �

It is not necessary to know what the implementation for CALLBACK is at this point,
only that you call it in the read loop and pass a character value to it. Whatever class
supports the interface will supply the implementation for CALLBACK.

Now, create the extended List Box class (depending on which version of SAS you have,
you may need to create an empty MLIST class first in order for the following to work).

import sashelp.classes;
class mlist extends listbox_c supports call;

/* Local item list */
private list listid;

/* Set method */
set: method r: read;

listid = makelist();
r.loop(_self_);

endmethod;

/* Store the character value in the local list */
callback: method s:string;

rc = insertc(listid, s, -1);
endmethod;

/* Set the items attribute */



Example: Creating An Object-Oriented Application in SCL � Using SCL Class Syntax with SAS/AF Software 159

setattr: method;
_self_.items = listid;

endmethod;

endclass;

Note how the IMPORT statement and the LOOP, SET, SETATTR, and CALLBACK
methods will be used:

� The IMPORT statement defines a search path for CLASS entry references in an
SCL program so that you can refer to a class by its two-level name instead of
having to specify the four-level name each time. It is used to specify a catalog to
search for abbreviated class names. For example, the MLIST class extends
LISTBOX_C, but if LISTBOX_C is not in the current catalog, the compiler will not
know where to find it. The IMPORT statement tells the compiler to search the
SASHELP.CLASSES catalog for any classes it cannot find in the current catalog.

� The SET method is used to set up a local list that will hold the new set of items
for the list box. It will also call the LOOP method in READ, with MLIST’s object
as a parameter. Recall that MLIST supports the CALL interface, so this will work
with the new LOOP method that was created above.

� As the LOOP method executes, it will call the CALLBACK method for each
character variable that it reads. The CALLBACK method will store the variable in
the local list that was created in the SET method.

� Finally, the SETATTR method will assign the local list to MLIST’s item list, thus
changing the list of items seen when the List Box, which is actually MLIST, is
displayed.

To see how this works, create the CALL interface, as well as the classes READ and
MLIST, by using the SAVECLASS command. Then edit a frame. In the Components
window, add the MLIST class to the class list (via AddClasses on the pop-up menu).
After it appears on the list, drag and drop MLIST to the frame. In the frame’s source,
enter

init:
dcl ddata d;
dcl read r;
dcl string filename = "sasuser.x";
d = _new_ ddata(filename, "i", 2);
r = _new_ read(d);
mlist1.set(r);
mlist1.setattr();
return;

This will create a DDATA reader with an associated READ class. Now call the SET and
SETATTR methods on the new List Box class (MLIST).

Compile and use the TESTAF command on the frame. The initial list of items will be

San Francisco
Honolulu
New York
Miami



160 Flexibility � Chapter 9

Flexibility
Using the CALL interface in the above exercise allows a great deal of flexibility in

modifying the MLIST and READ classes.
For example, to process numeric data instead of character data, you could simply

overload the CALLBACK method in the interface

interface call;
callback: method s:string;
callback: method n:num;
endinterface;

and support it in the MLIST class

callback: method n:num;
/* process numeric value */

endmethod;

Now, the READ class – or any class that supports CALL – can call the CALLBACK
method with a numeric parameter. Clearly, this process can be generalized to make use
of any possible parameter lists that are needed for CALLBACK.

Another feature is that any class that supports the READER interface can be used to
read the data into the list box. For example, to use an external file, change the frame’s
SCL to

init:
dcl fdata f;
dcl read r;
dcl string filename = "some_file";
f = _new_ fdata(filename, "i");
r = _new_ read(f);
mlist1.set(r);
mlist1.setattr();
return;

We can consolidate the code further by creating another class to set up the reader:

init:
dcl SetReader g = _new_ SetReader();
dcl read r = g.get();
mlist1.set(r);
mlist1.setattr();
return;

SetReader sets up whatever reader is necessary even if your program is using external
data. Then, at the frame level, you can read from any type of data source, such as a
data set, an external file, an SCL list, or any other user-defined data source. The only
requirement is that SetReader support the reader interface.



161

P A R T3

Application Considerations

Chapter 10. . . . . . . . .Handling Exceptions 163

Chapter 11. . . . . . . . .Using SAS Tables 173

Chapter 12. . . . . . . . .Using External Files 187



162



163

C H A P T E R

10
Handling Exceptions

Introduction to SCL Exception Handling 163
Using the SCL programHalt Handler 163

Handling SCL Exceptions with CATCH and THROW 165

Example 166

How SCL Determines Which CATCH Block To Execute 167

Catching and Rethrowing Exceptions 169
Nested CATCH Blocks 170

The SCL Throwable and SCL Exception Classes 171

Introduction to SCL Exception Handling
SCL provides two mechanisms for handling error conditions:

The program halt handler
Program halt handlers typically allow your application to print a message, save
some information, and then either try to continue execution or halt the
application. The SCL generic program halt handler is sort of an all-purpose
routine for handling program halts that occur for a variety of different reasons at
any point in the program.

The CATCH and THROW statements
The SCL Exception class and the CATCH and THROW statements enable you to
define specific exceptions and recovery routines that are specific to each exception.
You can define the exceptions and recovery routines in the locations in your code
where the exceptions may be encountered, thus making error recovery code a
natural part of the program.

Using the SCL programHalt Handler
The programHalt handler is designed to handle unexpected run-time errors. The

Program Halt class contains methods that are called when certain run-time exceptions
occur. By overriding these methods, you can specify whether an application should halt
immediately or continue executing. You can control how exceptions are handled.

In the following example, the _onGeneric method creates a list named MSGS, inserts
information about the location where the application failed into the list, and displays
the list with the MESSAGEBOX function. You can use this code to create your own
program halt handler.

class myHalt extends
sashelp.classes.programHalt.class;



164 Using the SCL programHalt Handler � Chapter 10

_onGeneric:method / (STATE=’O’);
dcl list msgs=makelist();
rc = insertc(msgs, "SCL program failed at ", 1);
rc = insertc(msgs, "Entry=" || entry, 2);
rc = insertc(msgs, "Line=" || putn(lineNumber, "3.0"), 3);
if (keywordType = ’function’) then

rc = insertc(msgs, "Function=" || keyword, 4);
else

rc = insertc(msgs, "Method=" || keyword, 4);

rc = messageBox(msgs);

/* continue execution */
stopExecution = ’No’;

endmethod;
endclass;

Note: Entry, lineNumber, keyword, and keywordType are all object attributes that
are defined in the class sashelp.classes.programHalt.class. �

The _onGeneric method traps any error messages that are generated by SCL and
saves them in the MSGS list. Developers can use this list to identify and fix potential
problems in their code.

The programHalt handler must be declared at the beginning of your application. For
example:

dcl myHalt obj = _new_ myHalt();

Your program can instantiate multiple programHalt handlers, or your program may
instantiate only one handler, but then call a second program that instantiates its own
handler. The last programHalt handler that is instantiated is the current programHalt
handler. Only the current programHalt handler is active at any one time.

SCL uses a stack to keep track of programHalt handlers. Each time a programHalt
handler is instantiated, the new instance is pushed onto the stack. The handler on the
top of the stack is always the active handler. Before a program terminates it must
terminate (using the _term method) its programHalt handler. For example:

obj._term();

Terminating a programHalt handler pops it from the stack, and makes the next
programHalt handler on the stack the active handler.

For example, if your program instantiates the programHalt handler, and then calls
another SCL program, the second program may also instantiate a programHalt handler.
The second programHalt handler becomes the current programHalt handler. Before the
second program ends, it must terminate the second programHalt handler. The first
programHalt handler then becomes the current programHalt handler. If the second
programHalt handler is not terminated, it will remain active even after the program
that instantiated it has terminated.



� Handling SCL Exceptions with CATCH and THROW 165

Handling SCL Exceptions with CATCH and THROW

All exceptions are subclasses of the SCL Exception class, which is a subclass of the
SCL Throwable class. You can use the CLASS statement to define your own exception
classes, and then use the THROW and CATCH statements to handle the exception.

Because an exception is a class, you can design the class to contain any information
that is relevant to recovering from the specific exception. A simple exception class may
contain only an error message. For example, the following class defines a subclass of
SCLException called NewException, which defines an error message string named
SecondaryMessage:

Example Code 10.1 NewException Class

Class NewException extends SCLException
dcl string SecondaryMessage;

endclass;

You can then create a new instance of NewException and raise this exception with
the THROW statement,as shown in the ThrowIt class:

Example Code 10.2 ThrowIt Class

Class ThrowIt;
m: method;
dcl NewException NE = _new_ NewException(’Exception in method m’);
NE.SecondaryMessage = "There’s no code in m!";
throw NE;
endmethod;

endclass;

Note: You must always declare a variable to hold the thrown exception. �

The code that processes the exception is enclosed in CATCH blocks. CATCH blocks
can contain any code needed to process the exception, including more CATCH and
THROW statements.

When an exception is thrown, normal execution of the entry stops, and SCL begins
looking for a CATCH block to process the thrown class. The CATCH block can contain
any statements needed to process the exception. For example, the following code prints
the stack traceback at the point of the throw.

do;
dcl NewException NE = _new_ NewException(’Exception in method m’);
NE.SecondaryMessage = "There’s no code in m!";
throw NE;

catch NE;
put NE.getMessage(); /* Print exception information. */
call putlist(NE.traceback);
put NE.SecondaryMessage=; /* Print secondary message. */

endcatch;
end;

Note: CATCH blocks must always be enclosed in DO statements. �

The traceback information that is printed by this example is stored automatically by
SCL when an exception is thrown. See “The SCL Throwable and SCL Exception
Classes” on page 171 for more information.



166 Example � Chapter 10

Note: When a CATCH block has finished executing, control transfers to the end of
the current DO statement, and the program resumes normal execution. If no exception
has been thrown and SCL encounters a CATCH block, control transfers to the end of
the current DO statement and execution resumes at that location. Therefore, any SCL
statements the occur between CATCH blocks or following the last CATCH block within
the same DO group will never be executed. Any SCL statements within the DO group
that are not part of a CATCH block but must execute must be entered at the beginning
of the DO group. �

After an exception is processed, program execution continues normally.

Example
Suppose you have the following class Y. This class defines a method called update

that throws an exception that is an instance of the SCL Exception class.

import sashelp.classes;
class Y;
update: method;

if (_self_.readOnly) then
/* Throw an exception. Set message via constructor. */
throw _new_ SCLException(’Cannot update when in ready-only mode’);

endmethod;
endclass;

Class X defines method M, which declares a local variable to hold the exception, and
then calls the update method, which throws the exception. The exception is then
processed by the CATCH block for SCLE.

import sashelp.classes;
class X;
M: method;

do;
/* Declare the local exception variable. */
dcl SCLException scle;
dcl Y y = _new_ y();

/* Call update method, which throws SCLEception. */
y.update();

/* Process the SCLException. */
catch scle;

/* Print exception information. */
put scle.getMessage();
call putlist(scle.traceback);

endcatch;
end;

endmethod;
endclass;



� How SCL Determines Which CATCH Block To Execute 167

How SCL Determines Which CATCH Block To Execute
SCL uses the scope of the DO group that contains the CATCH block and the class of

the exception to determine which CATCH block to execute.
� SCL first looks in the scope of the DO group where the exception was initially

thrown. If SCL does not find a corresponding CATCH block, it expands its search
outward to the next enclosing DO group.

Note: If you are rethrowing an exception that has been thrown and caught at
least once already, then SCL automatically passes the exception outside of the DO
group where the exception was rethrown. �

SCL continues expanding the scope of its search until it finds a corresponding
CATCH block or it has searched the current SCL entry. If the current SCL entry
does not contain a CATCH block for the thrown class, then the exception is passed
up the stack to the calling entry where the process is repeated. If the calling entry
contains a CATCH statement for the thrown class, then execution resumes at the
location of the CATCH statement. If the calling entry does not contain a CATCH
statement for the thrown class, then the exception is passed up the stack until
SCL finds a corresponding CATCH statement or until the stack is completely
unwound. If SCL does not find a corresponding CATCH statement, then the
exception is treated the same as a program halt.

� SCL uses the class hierarchy to determine which CATCH block to execute. Within
the scope that it is currently searching, SCL chooses the CATCH block for the
class that is most closely related to the class of the thrown exception. For example,
if the current scope contains a CATCH block for the thrown class, then SCL will
execute that CATCH block. If the current scope does not contain a CATCH block
for the thrown class, but does contains a CATCH block for the parent class of the
thrown exception, then SCL will execute the CATCH block for the parent class. If
none of the CATCH blocks in the current scope are related to the thrown class,
then SCL continues its search for an appropriate CATCH block.

Suppose that in addition to the NewException class (see Example Code 10.1 on page
165) you define a subclass of NewException called SubException:

Example Code 10.3 NewException Class

Class NewException extends SCLException
dcl string SecondaryMessage;

endclass;

Example Code 10.4 SubException Class

Class SubException extends NewException
...code to process SubExceptions...

endclass;



168 How SCL Determines Which CATCH Block To Execute � Chapter 10

As with all exceptions, SCL first searches the current DO group for a CATCH block that
is related to the thrown class. In this example, because NEsub is an instance of
SubException and SubException is a subclass of NewException, SCL will execute the
CATCH block for NE because it is in the scope of the current DO group. The CATCH
block for NEsub is in a different scope (the outer DO group), so it will not be executed
unless the CATCH block for NE is modified to rethrow (see “Catching and Rethrowing
Exceptions” on page 169) the exception. If the CATCH block for NE rethrows the
exception, then both CATCH blocks will be executed.

Example Code 10.5 Nested DO Statements

dcl NewException NE;
dcl SubException NEsub;

do;
do;
NEsub = _new_ SubException(’Exception in method m’);
NEsub.SecondaryMessage = "There’s no code in m!";
throw NEsub;

catch NE;
put NE.getMessage(); /* Print exception information. */
call putlist(NE.traceback);
put NE.SecondaryMessage=; /* Print secondary message. */
/* Could rethrow the NEsub exception if needed. */

endcatch;
end;

/* The following CATCH block will not be executed */
/* unless the CATCH block for NE rethrows the exception. */

catch NEsub;
...code to process NEsub exceptions...

endcatch;
end;



� Catching and Rethrowing Exceptions 169

Catching and Rethrowing Exceptions
Each entry in the stack can process an exception and then pass it back up the stack

by rethrowing it, which allows the calling entry to perform additional processing. Each
entry can perform whatever processing is relevant to that entry.

do;
catch e1;

...process the exception...
throw e1; /* Rethrow the exception. */

endcatch;
end;

Note: If an exception is rethrown within a CATCH block, no CATCH block within
the same scope can recatch the exception. The exception is passed out of the scope
where it was thrown. �

If SCL finds a second CATCH block for E1 within the same SCL entry but outside of
the scope of the DO group where the exception was thrown, then execution continues
with that second CATCH block. If SCL does not find another CATCH block for E1 in
that same SCL entry, then the exception is passed up the stack to the calling entry.

Suppose you have defined the NewException class (see Example Code 10.1 on page
165) and the ThrowIt class (see Example Code 10.2 on page 165). The following
program section calls method M, which throws the exception NE. The two CATCH
blocks catch, rethrow, and recatch the exception.

init:
dcl ThrowIt TI = _new_ThrowIt();
dcl NewException NE;
do;

do;
TI.m();

catch NE;
put ’caught it’;
throw NE;

endcatch;
end;

catch NE;
put ’caught it again’;

endcatch;
end;
return;

Note: You cannot define multiple CATCH blocks for the same exception within the
same scope. �



170 Nested CATCH Blocks � Chapter 10

Nested CATCH Blocks
You can nest CATCH blocks. For example, suppose you define the class W as follows:

class w;
m: method n:num;
do;
dcl e1 e1;
dcl e2 e2;

do;
if (n < 0) then throw _new_ e2();

else throw _new_ e1();
catch e2;

put ’caught inner e2’;
do;
dcl e1 e1;
if (n<0) then throw _new_ e2();

else throw _new_ e1();
catch e1;

put ’caught inner e1’;
endcatch;
end;

endcatch;
end;
catch e1;

put ’caught outer e1’;
endcatch;

catch e2;
put ’caught outer e2’;

endcatch;
end;
endmethod;
endclass;



� The SCL Throwable and SCL Exception Classes 171

If you invoke method M with a negative argument as in the following program
section:

init:
dcl w w = _new_ w();
w.m(-2);
return;

then the output would be

caught inner e2
caught outer e2

The SCL Throwable and SCL Exception Classes
All exceptions are subclasses of the SCL Exception class, which is a subclass of the

SCL Throwable class. When an exception is thrown, SCL automatically stores the name
of the entry that throws the exception, the line number where the throw occurs, and the
stack traceback at the point of the throw. You can set the message attribute via the
constructor when an instance of the exception is created. You can use the getMessage
method to return the message.

Example Code 10.6 SCL Throwable Class

class SCLThrowable;
public string(32767) message;
public list traceback; /* stack traceback */
public string entry; /* SCL entry name */
public num line; /* line number */

SCLThrowable: public method s:string;
message = s;

endmethod;

getMessage: public method return=string;
return message;

endmethod;
endclass;

Example Code 10.7 SCL Exception Class

class SCLException extends SCLThrowable;
SCLException: public method /(state=’o’);

_super("SCLException");
endmethod;

SCLException: public method s:string /(state=’o’);
_super(s);

endmethod;
endclass;



172



173

C H A P T E R

11
Using SAS Tables

Introduction to Using SAS Tables in SCL Programs 173
Accessing SAS Tables in SCL Programs 174

Assigning Librefs in SCL Programs 174

Opening SAS Tables in SCL Programs 174

Number of Open SAS Tables Allowed 175

SAS Tables and the SCL Data Vector 175
Access Control Levels 176

Specifying a Control Level 177

Reading SAS Tables in SCL Programs 177

Linking SAS Table Columns And SCL Variables 177

Matched Column and Variable Names 177

Unmatched Column and Variable Names 178
Determining a Column’s Position in a SAS Table 178

Using Table-Lookup Techniques 179

Controlling Access to SAS Table Rows in SCL Programs 179

Permanently Subsetting Data 179

Temporarily Subsetting Data 180
Searching with WHERE versus LOCATEC or LOCATEN 180

Searching Efficiently 180

Undoing WHERE Clauses 181

Changing the Sequence of Reading Rows in SCL Programs 181

Updating SAS Tables in SCL Programs 181
Appending Rows 182

Deleting Rows 182

Remaining Rows Not Renumbered 182

Renumbering Rows 182

Closing SAS Tables in SCL Programs 183

Determining Attributes of SAS Tables and Columns in SCL Programs 183
Querying Attributes of SAS Tables 183

Querying Attributes of SAS Table Columns 184

Defining New Columns 184

Performing Other SAS Table Operations in SCL Programs 184

Preserving the Integrity of Table Data in SCL Programs 185
Manipulating SAS Table Indexes in SCL Programs 186

Introduction to Using SAS Tables in SCL Programs
SCL provides a group of features that can read or manipulate data stored in SAS

tables. For example, you may want an SCL program to update one or more SAS tables,
based on user transactions from a single user interface. For a data entry and retrieval



174 Accessing SAS Tables in SCL Programs � Chapter 11

system, you may want to use a secondary table to supplement the primary table. You
might use the secondary table as a lookup table for sophisticated error checking and
field validation. In addition, you may want to manipulate SAS tables to perform tasks
like the following:

� displaying table values in a window
� creating a new table
� copying, renaming, sorting, or deleting a table
� indexing a SAS table.

Many functions that perform SAS table operations return a SAS software return
code, called sysrc. Chapter 15, “SAS System Return Codes,” on page 791 contains a list
of return codes with a section for operations that are most commonly performed on SAS
tables. You can check for these codes to write sophisticated error checking for your SCL
programs.

The following sections describe the tasks that SCL programs can perform on SAS
tables, along with summary information about the SCL function or routine to use to
perform that task. These functions and routines are described in Chapter 13, “SAS
Component Language Dictionary,” on page 199.

Accessing SAS Tables in SCL Programs
Before an SCL program can access the values in a SAS table, a communication link

must be established between SAS software, the SAS tables, and the SCL program. You
link SAS software to the tables by assigning librefs to the data libraries in which the
SAS tables are stored. You complete the communication by linking the SAS tables and
the SCL program, using the OPEN function to open the SAS tables. (Some SCL
routines, such as CALL FSEDIT and CALL FSVIEW automatically open the SAS table
that they are displaying. Therefore, the OPEN function is not needed to open the
specified table.)

Assigning Librefs in SCL Programs
SCL provides the LIBNAME function for assigning a libref in an SCL program. You

can also assign librefs outside an SCL program that works with SAS tables by putting
the appropriate LIBNAME statement in the application’s start-up file, the autoexec file.
For more information about assigning librefs outside an SCL program, see the SAS
software documentation for your host operating system.

If you have SAS/SHARE software or SAS/CONNECT software installed at your
location, you can also use Remote Library Services (RLS) to assign librefs. RLS gives
your SCL applications “read” or “write” access to SAS tables, views and catalogs across
hardware platforms and SAS releases. Once an RLS libref is established, the RLS
functionality is transparent to SAS tables and views in SCL programs. Catalog
compatibility across platforms is architecture dependent. For further information, see
SAS/SHARE User’s Guide.

Opening SAS Tables in SCL Programs
To open a SAS table, use the OPEN function. Opening a SAS table provides the

gateway through which an SCL program and a SAS table can interact. This process



Using SAS Tables � SAS Tables and the SCL Data Vector 175

does not actually access the information in a SAS table, but it makes the table available
for the program’s use. To access the data in the SAS table, the program must perform
“read” operations on the table. When you open a SAS table, the following actions take
place:

� The SAS table data vector (TDV) for the table is created to store copies of the
table’s column values.

� A unique numeric identifier is assigned to the SAS table. This identifier is used by
other functions that manipulate data.

� An access control level is assigned to the SAS table. This control level determines
the level of access to the SAS table that is permitted to other users or applications
that try to use the SAS table at the same time.

The identifier number identifies the table to the application, and you pass it to other
SCL functions that manipulate the SAS table. Because this number is unique for each
table that is currently open, it is useful for tracking multiple SAS tables that are open
at the same time.

Note: If for some reason a SAS table cannot be opened, the OPEN function returns
a value of 0 for the table identifier. Therefore, to determine whether a SAS table has
been opened successfully, you should test the value of the return code for the OPEN
function in your SCL program. Doing this ensures that you don’t cause a program to
halt by passing a 0 to another function that uses that SAS table identifier. To
determine why the table could not be opened, use the SYSMSG function to retrieve the
message that is associated with the return code. �

Number of Open SAS Tables Allowed
An application can have a maximum of 999 SAS tables open simultaneously.

However, your operating system may impose other limits. For details, see the
documentation provided by the vendor for your operating system.

Although SCL permits you to have a large number of tables open simultaneously, be
aware that memory is allocated for each SAS table from the time the SAS table is
opened until it is closed. Therefore, try to minimize the number of tables that are open
at the same time, and close them as soon as a program finishes with them for that
session.

SAS Tables and the SCL Data Vector

When an application opens a SAS table, its TDV is empty. However, to enable the
program to work with the SAS table columns, SCL provides functions for copying table
rows one at a time from the SAS table to the TDV. Once column values for a row are in
the TDV, you can copy these values into the SCL data vector (SDV), and the application
can manipulate the column values.

Before you can display or manipulate the values of SAS table columns, those columns
must be linked to SCL variables through the TDV and the SDV. Special SCL functions
and storage locations facilitate the transfer of values between SAS table columns and
SCL variables. Figure 11.1 on page 176 illustrates the SDV and TDV that are created
for an application that opens a SAS table. This figure shows the paths that rows take
when they are read from the table, displayed in the window, processed, and then
returned to the table.



176 Access Control Levels � Chapter 11

Figure 11.1 Path of Data in SAS Table Read and Write Operations

Two steps are required in order to transfer data from an open SAS table to an SCL
program:

1 The values of the columns in a row in the open SAS table are copied into the TDV.
2 The values of the columns in the TDV are copied to the SDV, which contains all of

the SCL variables (window variables, nonwindow variables, system variables, and
so on). The transfer of data from the TDV to the SDV can be either automatic
(when the SET routine is used) or under program control (when the GETVARC or
GETVARN functions are used).

Once the values are in the SDV, you can manipulate them by using SCL statements.
Two steps are also required in order to transfer data from an SCL program to an open
SAS table:

1 The column values in the SDV are transferred to the TDV. The transfer of data
from the SDV to the TDV can be either automatic (when the SET routine is used)
or under program control (when PUTVARC or PUTVARN is used).

2 The values in the TDV are written to the columns in a row in the open table.

Access Control Levels
When a SAS table is opened, SAS software determines the control level for the table.

The control level determines the extent to which access to the table is restricted. For
example, an application may be able to gain exclusive update access to the entire SAS
table, or it may be able to gain exclusive update access to only the row that is currently
in use. In either case, there are ramifications for any users or applications that need to
access the SAS table at the same time. You can open a SAS table with one of the
following control levels:

RECORD
provides exclusive update access only to the SAS table row that is currently in the
TDV (as with the FETCH and FETCHOBS functions). With this control level, the



Using SAS Tables � Linking SAS Table Columns And SCL Variables 177

same user can open the same SAS table multiple times (multiple concurrent
access). In addition, if SAS/SHARE software is used, then multiple users can open
the same SAS table simultaneously for browsing or for editing. For more
information, see SAS/SHARE User’s Guide.

MEMBER
provides exclusive update access to an entire SAS table. While this control level is
in effect, no other user can open the table, and the same user cannot open the
table multiple times.

Specifying a Control Level
When you use the OPEN function to open a SAS data set in UPDATE mode, by

default the table is opened with RECORD-level control. However, in SCL you can use
the OPEN function with the SAS data set option CNTLLEV= to set the control level
when a SAS table opens. See “OPEN” on page 581 for more information.

Reading SAS Tables in SCL Programs
You may want to use an SCL program to manipulate column values from SAS

tables. For example, you may want to do one or more of the following:
� display data values in a window
� use the values in arithmetic calculations
� determine data values before taking certain actions.

Before a program can manipulate the data, it must read the data from the table.
After column values are changed, the program can update the values of columns in the
table. In addition to updating existing column values, programs also can add new rows
or delete obsolete rows.

After a SAS table is open, you can access any column value for any row in the SAS
table. The first step in accessing the data involves reading (or copying) a row from the
SAS table to the TDV—for example, by using the FETCH function. By default, the
FETCH function starts with the first row in the SAS table and reads the next row from
the SAS table each time it executes.

Linking SAS Table Columns And SCL Variables
The next step in accessing the data is to link the SAS table columns in the TDV with

the SCL window variables and nonwindow variables in the SDV. The function that you
use depends on whether the SCL variables and SAS table columns have the same name
and type. If an application has some SCL variables that match SAS table columns and
others that do not, then you can use a combination of these techniques.

Matched Column and Variable Names
If columns of a SAS table and SCL variables have the same names and types, then

you can use the SET routine to link all of them automatically with a single program
statement. The SET routine is typically invoked immediately following the OPEN
function.

Note: If you use the SET routine and then also use the PUTVARC or PUTVARN
routine for an SCL variable that has a matching SAS table column, the SET routine



178 Determining a Column’s Position in a SAS Table � Chapter 11

overrides the PUTVARC or PUTVARN routine. Doing this is inefficient because
duplicate actions are performed. �

Unmatched Column and Variable Names
When the SCL variables do not have the same names or types as SAS table columns,

you must use a GETVARC or GETVARN statement (for character and numeric values,
respectively) for each unmatched column to link them from the TDV to the SDV. Once
the columns have been manipulated, use an individual PUTVARC or PUTVARN routine
to link each one from the SDV back to the TDV.

Note: The GETVARC and GETVARN functions establish only a temporary link
between a SAS table column and an SCL variable. When the statement executes, the
columns are linked. After the statement executes, the link is terminated. Therefore,
you must use the GETVARC or GETVARN function one time for each SAS table column
that you want to link. This is different from the SET routine, which establishes a
permanent link between any matching SAS table and SCL variables until the open SAS
table is closed. �

Determining a Column’s Position in a SAS Table
Some functions, such as GETVARC, GETVARN, PUTVARC and PUTVARN, require

the position of a column in the SAS table row. Use the VARNUM function to determine
the position, and then use the position repeatedly throughout your program. The
following example uses the VARNUM function to determine the position of several
columns. After the column positions have been determined, the program links to a
labeled section called GETVALUE to determine the column values.

INIT:
control enter;
houses=open(’sasuser.houses’,’u’);
if (houses=0) then _msg_=sysmsg();
else

do;
vtype=varnum(houses,’style’);
vsize=varnum(houses,’sqfeet’);
vbedrms=varnum(houses,’bedrooms’);
vbathrms=varnum(houses,’baths’);
vaddress=varnum(houses,’street’);
vcost=varnum(houses,’price’);
link getvalue;

end;
return;

MAIN:
...more SCL statements...

return;

TERM:
if (houses>0) then rc=close(houses);

return;

GETVALUE:
rc=fetch(houses);
type=getvarc(houses,vtype);



Using SAS Tables � Permanently Subsetting Data 179

size=getvarn(houses,vsize);
bedrms=getvarn(houses,vbedrms);
bathrms=getvarn(houses,vbathrms);
address=getvarc(houses,vaddress);
cost=getvarn(houses,vcost);

return;

Using Table-Lookup Techniques
Table lookup, the process of looking up data in a data structure, has several useful

applications for data entry applications. For example, you may want to display certain
information in a window based on a value that a user has entered. If this information is
stored in another SAS table, then you can use table-lookup techniques to read and
display this information. In addition, you can use table lookup to perform field
validation by ensuring that a value entered by a user is a value that is contained in a
specified SAS table.

To validate a field value, you can use the LOCATEC, LOCATEN, or WHERE function
to search a secondary SAS table for a specific character or numeric value that has been
entered by a user. For example, you might want to make sure that users enter names
that exist in another SAS table. You also can use these techniques to display text from
a secondary SAS table, based on values that users enter in the fields. For example,
when a user enters a valid name in the Employee Name field, you can look up the
associated sales region and sales to date in the secondary SAS table and then display
this information in the window.

Controlling Access to SAS Table Rows in SCL Programs
For many applications, you may want an SCL program to read from a SAS table only

the rows that meet a set of search conditions. For example, if you have a SAS table that
contains sales records, you may want to read just the subset of records for which the
sales are greater than $300,000 but less than $600,000. To do this, you can use
WHERE clause processing, which is a set of conditions that rows must meet in order to
be processed. In WHERE clause processing, you can use either permanent or temporary
WHERE clauses.

Permanently Subsetting Data
A permanent WHERE clause applies a set of search conditions that remain in effect

until the SAS table is closed. You might use a permanent WHERE clause to improve
the efficiency of a program by reading only a subset of the rows in a SAS table. You
might also want to use a permanent WHERE clause in applications when you want to
limit the SAS table rows that are accessible, or visible, to users. For example, if you are
working with a large SAS table, users may not need access to all the rows to use your
application. Or, for security reasons, you may want to restrict access to a set of rows
that meet certain conditions.

SCL provides several features that enable you to subset a SAS table based on
specified search conditions. To apply a permanent WHERE clause to a SAS table, you
can use the SAS data set option WHERE= with the OPEN function. For example, the
following WHERE clause selects only the records for which the sales are greater than
$300,000 but less than $600,000:



180 Temporarily Subsetting Data � Chapter 11

/* Open the SAS table and display a */
/* subset of the SAS table rows */

salesid=open
("sample.testdata(where=((sales > 300000)"||

"and (sales < 600000)))",’i’);

You can also use the WHERE= option in SCL with the FSEDIT and FSVIEW routines.

Temporarily Subsetting Data
In addition to restricting access to SAS table rows, you may want to enable users to

subset the accessible records even further. In this case, you can use the WHERE
function to apply a temporary WHERE clause. A temporary WHERE clause applies a
set of search conditions that can be modified or cancelled by subsequent SCL statements.
For example, you could apply a temporary WHERE clause like the following:

rc=where(dsid,’SSN=’||ssn);

When a SAS table is indexed, you can use the SETKEY function for subsetting. For
example, if a SAS table is indexed on the column SSN, you could use:

rc=setkey(dsid,’SSN’,’eq’);

Searching with WHERE versus LOCATEC or LOCATEN
You can search efficiently with the WHERE function if you are working with a large

SAS table that is indexed by the column or columns for which you are searching. It is
also appropriate to use the WHERE function when you are using an expression that
involves several columns to locate rows.

However, you can use LOCATEC or LOCATEN to find a row when one or more of the
following conditions are met:

� The SAS table is small.
� You are searching for one row that meets a single search condition (for example,

the row that contains a particular name).
� You are looking for one row that meets a single search condition in a large SAS

table, if the SAS table is sorted by the column for which you are searching, and if
you are using the more efficient binary search. See the following section for more
information.

Searching Efficiently
By default, LOCATEC and LOCATEN search a SAS table sequentially. However, a

sequential search is not always the most efficient way to locate a particular row,
especially if your SAS table has been sorted. If a SAS table has already been sorted by
the column for which you want to search, you can specify a faster, more efficient binary
search. For a binary search, use an additional optional argument with LOCATEC or
LOCATEN to specify the order in which the SAS table has been sorted (A for ascending
order or D for descending order). For example, assuming that the SAS table
MYSCHOOL.CLASS has been sorted in ascending order by NAME, you can use the
following statements to perform a binary search:

dsid=open(’myschool.class’);
vnum=varnum(dsid,’name’);



Using SAS Tables � Updating SAS Tables in SCL Programs 181

sname=’Gail’;
val=locatec(dsid,vnum,sname,’a’);

Undoing WHERE Clauses
WHERE clauses impose certain restrictions on other SCL functions that manipulate

data. Therefore, in some cases, you may need to undo a WHERE clause in an SCL
program before using other functions. When you specify a WHERE clause, the WHERE
conditions replace the conditions that were specified in the previous WHERE clause.
However, you can augment a WHERE condition with the ALSO keyword. For example,
the following WHERE clause adds the condition of "age greater than 15" to an existing
WHERE clause:

rc=where(dsid,’also age > 15’);

To undo the condition that was added by the ALSO keyword, you could use the
following statement:

rc=where(dsid,’undo’);

To undo (or delete) a temporary WHERE clause, use the WHERE function and
specify only the SAS table identifier argument. This process undoes all temporary
WHERE clauses that are currently in effect.

Changing the Sequence of Reading Rows in SCL Programs

When an application displays a subset of a SAS table, you may want to let users
display and scroll through all rows that meet the search conditions. To do this, you can
use a set of SCL functions that reread table rows. For example, when a program
displays the first row that meets the conditions, SCL provides functions that you can
use to mark the row. Then a user can continue to search the rest of the SAS table for
any other rows that meet the search conditions, counting them along the way. After
finding the last row that meets the search conditions, the user can redisplay the first
row in the subset (the row that was marked earlier). The following sequence of steps
implements this technique:

1 Use the NOTE function to mark a row in the subset for later reading.

2 Use the POINT function to return to the marked row after you have located all
rows that meet the search conditions.

3 Use the DROPNOTE function to delete the NOTE marker and free the memory
used to store the note after the program finishes using the noted row.

Updating SAS Tables in SCL Programs

When a table row is read, its data follow a path from the SAS table through the
TDV to the SDV, where finally they can be manipulated. After the data is manipulated,
it must follow the reverse path from the SDV through the TDV back to the SAS table.
If you use the SET routine to link the values from the TDV to the SDV, then any
changed values are automatically linked from the SDV back to the TDV. If you do not
use SET, then you must explicitly copy the value of each variable to the TDV. In either
case, you use the UPDATE function to copy the values from the TDV to the SAS table.



182 Appending Rows � Chapter 11

Appending Rows
To add new rows to a SAS table rather than updating the existing rows, use the

APPEND function. If the SCL variables have the same name and type as the SAS table
columns and you use the SET routine to link them, then using the APPEND function is
straightforward, and the values are automatically written from the TDV to the SAS
table.

Note: If the program does not use the SET routine, or if the APPEND function is
used with the NOSET option, a blank row is appended to the SAS table. This is a
useful technique for appending rows when the SCL program or the window variables do
not match the SAS table columns. For example, when the SET routine is not used, you
would use a sequence of statements like those below to append a blank row and then
update it with values. �

rc=append(dsid);
...PUTVARC or PUTVARN program statement(s)...
rc=update(dsid);

Deleting Rows
To delete rows from a SAS table, use the DELOBS function. In order to use this

function, the SAS table must be open in UPDATE mode. The DELOBS function
performs the following tasks:

� marks the row for deletion from the SAS table. However, the row is still physically
in the SAS table.

� prevents any additional editing of the row. Once a row has been marked for
deletion, it cannot be read.

Remaining Rows Not Renumbered
Although deleted rows are no longer accessible, all other rows in the SAS table

retain their original physical row numbers. Therefore, it is important to remember that
a row’s physical number may not always coincide with its relative position in the SAS
table. For example, the FETCHOBS function treats a row value as a relative row
number. If row 2 is marked for deletion and you use FETCHOBS to read the third row,
FETCHOBS reads the third non-deleted row—in this case, row 4. However, you can use
FETCHOBS with the ABS option to count deleted rows.

Non-deleted rows are intentionally not renumbered so that you can continue to use
row numbers as pointers. This is important when you are using the FSEDIT procedure
or subsequent SAS statements that directly access table rows by number, such as the
POINT= option in a SAS language SET statement.

You can control row renumbering if necessary. See the next section for details.

Renumbering Rows
To renumber accessible SAS table rows, an SCL program must use one of the

following techniques to process the SAS table:

� Sort the table, using either the SORT function in SCL or the SORT procedure. If
the SAS table is already in sorted order, then you must use the FORCE option.



Using SAS Tables � Querying Attributes of SAS Tables 183

Note: The SORT function and PROC SORT do not sort and replace an indexed
SAS table unless you specify the FORCE option, because sorting destroys indexes
for a SAS table. �

� Copy the table, using either the COPY function in SCL or the COPY procedure. In
this case, the input and output tables must be different. The output table is the
only one that is renumbered.

� Read the remaining data table rows, using the SAS language SET statement in a
DATA step (not the SCL SET statement), and write these rows to a data table. To
avoid exiting from SCL, you can use a submit block. For example:

houseid=open(’sasuser.houses’,’u’);
...SCL statements that read rows and delete rows...

submit continue;
data sasuser.houses;

set sasuser.houses;
run;

endsubmit;

Closing SAS Tables in SCL Programs
After an SCL program has finished using a SAS table, the program should close the

table with the CLOSE function at the appropriate point in your program. If a SAS table
is still open when an application ends, SAS software closes it automatically and
displays a warning message. In general, the position of the CLOSE function should
correspond to the position of the OPEN function, as follows:

� If the OPEN function is in the initialization section, then put the CLOSE function
in the termination section.

� If the OPEN function is in MAIN, then put the CLOSE function in MAIN.

Note: If you’re designing an application system in which more than one program
uses a particular SAS table, and if the identifier for this table can be passed to
subsequent programs, then close the SAS table in the termination section of the
program that uses the table last. �

Determining Attributes of SAS Tables and Columns in SCL Programs
SCL provides features for determining characteristics (or attributes) of the SAS table

or columns with which a program is working. For example, one approach is to open a
table, determine how many columns are in the table, and then set up a program loop
that executes once for each column. The loop can query the attributes of each column.
To do this, the program needs to determine how many columns are in the SAS table, as
well as the name, type, length, format, informat, label, and position of each column.

Querying Attributes of SAS Tables
SAS tables have a variety of numeric and character attributes associated with them.

These attributes can provide some basic information to your SCL program. For



184 Querying Attributes of SAS Table Columns � Chapter 11

example, to determine the number of columns in an existing SAS table, use the NVARS
argument with the ATTRN function. For a list of other table attributes and how to
retrieve them, see “ATTRC and ATTRN” on page 231.

Querying Attributes of SAS Table Columns
Columns in a SAS table also have several attributes that your program may need to

query. Here is a list of column attributes and the SCL functions that you can use to
retrieve those attributes:

name VARNAME function

number VARNUM function

data type VARTYPE function

length VARLEN function

label VARLABLE function

format VARFMT function

informat VARINFMT function.

Defining New Columns
After determining the name, type, length, label, format, and informat of each

column, you can add a new column that has these attributes to the column list for a
new SAS table. To do this, first use the OPEN function with the N argument (for NEW
mode), and then use the NEWVAR function.

CAUTION:
Your program should check to see whether the SAS table exists before opening it in NEW
mode. When used with the N argument (for NEW mode), the OPEN function replaces
an existing SAS table that has the same name. If you do not want to delete an
existing SAS table by opening it in NEW mode, then use the EXIST function to
confirm that the table does not exist before using OPEN to create a new SAS table. �

Performing Other SAS Table Operations in SCL Programs
There are other SCL functions that you can use to perform operations on SAS tables.

The tasks that you can perform, along with the function to use, are as follows:
� To copy a table, use the COPY function. By default, if the target file already exists,

the COPY function replaces that file without warning. To avoid unintentionally
overwriting existing files, your program should use the EXIST function to
determine whether the target file exists before executing the COPY function. (You
can use COPY with a WHERE clause to create a new table that contains a subset
of the rows in the original table.)

� To create a new table, use the OPEN function with the N option. (The table must
be closed and then reopened in UPDATE mode if the program will update it).
Then, use NEWVAR to create columns.

� To enable users to create a new table interactively, use the NEW function.



Using SAS Tables � Preserving the Integrity of Table Data in SCL Programs 185

� To enable users to create a new table interactively from an external file, use the
IMPORT function or the IMPORT wizard.

� To delete a table, use the DELETE function. (The table must be closed).

� To rename a table, use the RENAME function. (The table must be closed.)

� To sort a table, use the SORT function. (The table must be open in UPDATE mode.)

Preserving the Integrity of Table Data in SCL Programs

SCL provides a group of functions that specify and enforce integrity constraints for
SAS tables. Integrity constraints preserve the consistency and correctness of stored
data, and they are automatically enforced for each addition, update, and deletion
activity for a SAS table to which the constraints have been assigned. For such a table,
value changes must satisfy the conditions that have been specified with constraints.

There are two basic types of integrity constraints: general constraints and referential
constraints. The following list shows the specific types of integrity restraints that you
can apply through SCL. The first four items are general constraints, which control
values in a single SAS table. The last item is a referential constraint, which establishes
a parent-child relationship between columns in two or more SAS tables.

� A column can contain only non-null values.

� A column can contain only values that fall within a specific set, range, or list of
values, or that duplicate a value in another column in the same row.

� A column can contain only values that are unique.

� A column that is a primary key can contain only values that are unique and that
are not missing values.

� A column that is a foreign key (the child) can contain only values that are present
in the associated primary key (the parent) or null values. A column that is a
primary key can contain only values that cannot be deleted or changed unless the
same deletions or changes have been made in values of the associated foreign key.
Values of a foreign key can be set to null, but values cannot be added unless they
also exist in the associated primary key.

SCL provides the following functions for creating and enforcing integrity constraints:

ICCREATE
creates and specifies integrity constraints for a SAS table.

ICDELETE
drops an integrity constraint.

ICDESCRIBE
obtains the attributes for all existing integrity constraints within a SAS table. You
can also obtain integrity constraint information using the CONTENTS procedure.

ICTYPE
returns the type of constraint that is assigned to a SAS table.

ICVALUE
returns the varlist or WHERE clause that is associated with an integrity
constraint.

For more information about integrity constraints, see SAS Language Reference:
Concepts .



186 Manipulating SAS Table Indexes in SCL Programs � Chapter 11

Manipulating SAS Table Indexes in SCL Programs
When you develop an application that creates a SAS table, you may want to give

users the option of creating an index for the table. An index, which provides fast access
to rows, is an auxiliary data structure that specifies the location of rows, based on the
values of one or more columns, known as key columns. Both compressed and
uncompressed SAS tables can be indexed by one or more columns to aid in the
subsetting, grouping, or joining of rows. SAS table indexes are particularly useful for
optimizing WHERE clause processing.

SCL provides a set of functions for creating and manipulating SAS table indexes.
However, SCL functions are just one way of building and querying SAS table indexes.
Other ways include:

� the DATASETS procedure in Base SAS software
� the INDEX= option (when you are creating a SAS table)
� the SQL procedure in Base SAS software.

There are two types of indexes: simple indexes and composite indexes. A simple
index is an index on a single column, and a composite index is an index on more than
one column. A SAS table can have multiple simple indexes, multiple composite indexes,
or a combination of simple and composite indexes.

SCL provides the following functions for manipulating indexes:

ICREATE
creates an index for SAS tables that are open in UTILITY mode.

IVARLIST
returns a list of one or more columns that have been indexed for the specified key
in the table.

ISINDEX
returns the type of index for a column in a SAS table, as follows:

BOTH The column is a member of both simple and composite indexes.

COMP The column is a member of a composite index.

REG The column is a member of a regular (simple) index.

(blank) No index has been created for the specified column.

IOPTION
returns a character string that consists of the options for the specified key and
index columns. The options are separated by blanks.

IDELETE
deletes an index for a SAS table that is open in UTILITY mode. You can delete an
index when a program finishes with it, or if you find that the index is not operating
efficiently. Keep in mind that indexes are not always advantageous. Sometimes
the costs outweigh the savings. For a detailed discussion of when to use indexes,
see the information about SAS files in SAS Language Reference: Concepts.



187

C H A P T E R

12
Using External Files

Introduction to Using External Files in SCL Programs 187
Accessing External Files in SCL Programs 188

Assigning Filerefs in SCL Programs 188

Opening Files in SCL Programs 189

Making an Open File Available to Other Programs 189

Number of Open Files Allowed 189
File Data Buffers and SCL Data Vectors 190

Reading Values from External Files in SCL Programs 190

Order of Reading Records 191

Reading Record Values into the SDV 191

Reading Records as Separate Values 192

Identifying a Value’s Starting Column 192
Modifying External Files in SCL Programs 192

Writing Modified Records or New Records to a File 192

Closing Files in SCL Programs 193

Changing the Sequence of Reading Records in SCL Programs 193

Other Ways SCL Interacts with External Files 193
Determining Attributes and Attribute Values 194

Determining Information about an FDB 194

Renaming and Deleting an External File 194

Reading and Modifying Files in the Same Directory with SCL 194

Determining the Number of Files in a Directory 195
Finding the Names of Files 195

Manipulating Files in an Open Directory 195

Opening Files in an Open Directory 195

Closing Files in an Open Directory 195

Changing All the Files in a Directory 195

Creating a Subdirectory 196
Closing a Directory 196

Other Manipulations for Directories 196

Introduction to Using External Files in SCL Programs
In addition to using SCL to manipulate SAS tables, you can use it to manipulate

external files. External files are files that are created and maintained on a host
operating system (for example, files that you have created with your system editor or
files in which you have stored the output of SAS procedures). They have different
internal formats than SAS files.

When you use external files to store data or other information, you can use SCL
functions to read, update, and write information to new files, and to perform utility



188 Accessing External Files in SCL Programs � Chapter 12

operations on existing files. These functions enable you to create SCL programs that do
the following:

� read values from external files for field validation
� manipulate data values that your site maintains in external files
� write information in a form that can be read by applications that were created

with the software of other vendors.

Note: Your operating system maintains groups of files in an aggregate storage
location. Your operating system may identify these locations with different names (for
example, directory, folder, subdirectory, partitioned data set, or MACLIB). If you need
more information, see the SAS documentation for your operating environment. �

Ordinarily, you must use a logical name called a fileref to identify the location of an
external file to SAS software. SCL allows you to assign a fileref to a directory and then
to open and perform operations on as many of its files as the program requires.

Many functions that perform external file operations return a SAS system return
code, called sysrc. Chapter 15, “SAS System Return Codes,” on page 791 contains a list
of return codes with a section for operations that are commonly performed on external
files. You can check for these codes to write more sophisticated error checking for your
SCL programs.

Accessing External Files in SCL Programs
Before SCL programs can work with external files, you must establish a

communication link between SAS software, the file, and your SCL program. You start
the communication link by assigning a fileref to the file, which links the file to SAS
software. You complete the communication link by using an SCL function to open the
file, which links the file to the SCL program. SCL also enables you to establish this
communication link between SAS software, a directory, and your SCL program. Your
program can then use any file in that directory without assigning a fileref to it. This
can make it easier for you to process multiple files in the same directory.

Assigning Filerefs in SCL Programs
To establish the communication between SAS software and an external file, you

must assign a fileref to the file with the FILENAME function. If an application requires
that users specify the name of the physical file, then create a block of SCL code labeled
with a window variable name to run only when a user enters a filename in that field.
You can also put the FILENAME function in the MAIN section so that it executes after
a user specifies the filename. In this case, add a statement to check that the field
containing the filename has been modified so that the FILENAME function does not
run every time the MAIN section runs. When a program can specify the name of the
physical file without user input, put the function in the initialization section so that the
function executes only once, before the window opens.

You can also assign filerefs outside of an application when files are used by all or
large parts of your application. You assign filerefs to these files by using the
FILENAME statement in Base SAS in the application’s start-up file (the autoexec file).
For more information about assigning filerefs, see the SAS documentation for your
operating environment.

There are other SCL functions that you can use to manipulate filerefs. Use these
functions to prevent programs from terminating prematurely because of possible errors
(for example, a fileref is already assigned or a physical file does not exist).



Using External Files � Number of Open Files Allowed 189

� Use the FILEREF function to verify that a fileref has been assigned to a physical
file for the current SAS session or process.

� Use the FEXIST function to verify that the file associated with a specified fileref
exists.

� Use the FILEEXIST function to verify that the file associated with a physical
name exists.

Opening Files in SCL Programs

To complete the communication link between an application and an external file, use
the FOPEN function to open the file. Opening a file does not access the information in
the file. It simply makes the file available to the program.

When you open an external file, a unique identifier is assigned to the external file.
This identifier is used by any other SCL functions that manipulate the file. In addition,
a temporary storage buffer is automatically created for the external file. This storage
area is used to store copies of file records.

The FOPEN function returns the program’s identification number for that file. This
unique number is called the file identifier. You use this identifier by storing it in an SCL
variable and passing the variable name as an argument to all the SCL functions that
manipulate that file or directory. This technique enables you to open and manipulate
multiple files at the same time and to clearly identify which file to manipulate.

When you open a file, you specify an open mode. The open mode determines the
actions that can be performed on the file. With the FOPEN function, you can also
specify the file’s record length. If you specify a record length of 0, the existing record
length is used. For details about the modes and record lengths and how to specify them,
see “FOPEN” on page 407.

Making an Open File Available to Other Programs
After you open an external file, its contents are available to all programs in your

application. However, you must link the file to the programs by using one of the
following techniques to pass them the variable that contains the file identifier.

� You can pass the file identifier as a parameter to other programs by using the
parameter-passing mechanism of the DISPLAY or METHOD routine with the
ENTRY or METHOD statement. This is the preferred method.

� You can store the file identifier value by using the SETPARMID routine, and you
can retrieve it by using the GETPARMID function. This method limits you to
passing only one file identifier at a time.

� You can pass the file identifier value as a macro variable by using the SYMPUTN
routine, and you can retrieve it by using the SYMGETN function.

� You can pass the file identifier as an item in the local environment list. For details
about this list, see Chapter 5, “SCL Lists,” on page 49.

Number of Open Files Allowed
SCL allows a maximum of 999 external files to be open simultaneously in an

application. However, your operating system may impose other limits. For further
details, refer to the documentation provided by the vendor for your operating system.

Although SCL allows you to have a large number of files open simultaneously, you
should be aware that memory is allocated for each file from the time the file is opened



190 File Data Buffers and SCL Data Vectors � Chapter 12

until it is closed. Therefore, you should try close files as soon as your program is
finished with them.

File Data Buffers and SCL Data Vectors
When an SCL program starts executing, an SCL Data Vector (SDV) is created for

the program. The SDV contains temporary storage areas for the program’s SCL
variables. Values of program variables are manipulated and stored in the SDV before
they are written to or deleted from an external file. When an external file is opened, a
temporary storage buffer called the file data buffer (FDB) is created for it. The FDB is
the length of the file’s records, and it is empty until a record is read from the file. A
“read” function copies a record from the file into the FDB. A “write” function moves the
contents of the FDB to a record in the physical file and clears the file’s FDB. Once a
record is in the FDB, it remains there until the record is written back to the file, until
another record is read in, or until the file is closed.

Figure 12.1 on page 190 illustrates the SDV and the FDB for an application that
uses an external file. This figure shows the paths that file records take when they are
read from the file, displayed in the window, processed, and then returned to the file.

Figure 12.1 Path of Data in File Read and Write Operations

Reading Values from External Files in SCL Programs
Before an SCL program can use the information in an external file, the program

must read the file’s records. For example, an application may need to use external file
records to do the following:

� display the values for users to browse or edit
� modify existing values



Using External Files � Reading Record Values into the SDV 191

� add new values or records

� delete values or records.

In order to read record values from the external file, your SCL program must first
copy a record from the file into the FDB. Then it must copy the contents of the FDB
into the SDV to make the values available to your SCL program. A value can be either
part of a record or an entire record. Unless you must read values separately for some
reason, reading an entire record as a single value is the easier technique to use. To
complete the process of reading values from an open file, follow these steps:

1 A record must be copied from the file to the FDB. Use the FREAD function to copy
the values to the FDB, starting at the file’s first record and reading each record
sequentially.

2 Each value in the record must be copied from the FDB to the SDV, where the
value can be used by the application. Use the FGET function to copy the contents
of the FDB (interpreted as values) to the SDV.

Order of Reading Records
Many types of external files can be read only sequentially, from the first record to the

last. However, when a file supports random access, you can use SCL functions to
change that sequence and either reread a particular record or start at the first record
and reread the entire file. For more information, see “Changing the Sequence of
Reading Records in SCL Programs” on page 193.

Reading Record Values into the SDV
When the FGET function reads values from the FDB into the SDV, it makes the

contents of the FDB available to the SCL program. You can control how this step
processes the contents of the FDB by reading the FDB contents either as one single
value or as a series of separate values. Reading the contents of the FDB as a single
value can simplify your program. To do this, you can design a single control or field in
the window to display the entire contents of the record. If you need to read record
values into separate window variables, you can read the FDB contents as a single value
into a program variable in the SDV. Then, you can use SAS character functions (like
SCAN or SUBSTR) to assign parts of that program variable to window variables. The
following example finds the length of a record and then reads the entire record as a
single value into the window variable ROW.

length=finfo(fileid,’lrecl’);
reclen=inputn(length,’best.’);
rc=fget(fileid,row,reclen);

If ROW is a nonwindow variable instead of a window variable, then values that are
read from the FDB are in the SDV, but they are not displayed in the window until they
are assigned to a window variable.

Note: The code in the preceding example is host specific. See the SAS
documentation for your operating environment for more information. �

You determine whether the contents are treated as one value or as a series of values.
There is a column pointer in the FDB that is set to 1 when the contents are read. By
default, the FGET function copies the value from the current position of the column
pointer to the next separator character. The default separator character is one blank.
Therefore, the default action of the FGET function is to copy the value from the current



192 Reading Records as Separate Values � Chapter 12

position of the column pointer to the next blank. (To designate a different character as
the separator character, use the FSEP function).

After each FGET function, the column pointer is positioned one column past the last
character that was read. When the FDB contains no more values, the FGET function
returns −1 to signal that it has reached the end of the FDB.

Reading Records as Separate Values
Reading the contents of the FDB as a series of separate values brings up a different

set of considerations. Your applications must process a specified number of file values
and display them in window variables of a particular size. Also, in order to read
separate values, you need to know more about the external files that your application
will process. You need to know how many values a record contains, and it is helpful if
you know the starting columns for the values or the characters that separate the
values. Finally, you need to define separate controls or fields to display the values.

When you read the FDB contents as separate values, you can locate these values by
positioning the FDB column pointer at the column where the value begins or by
specifying the character that separates these values. By default, the separator
character for file records is a blank.

Identifying a Value’s Starting Column
When you know the numbers of the columns where the values start, you can use the

FPOS function to move the “read” pointer to the column where the next value begins.
When the FPOS and FGET functions are used together, the FPOS function sets the
starting column for the FGET function, which reads the FDB contents up to the next
separator character unless a length is specified.

The following example shows how to read separate values when you know the
numbers of the columns where the values start. This example reads record values into
the variables NAME, HEIGHT, and WEIGHT by using the FPOS function to specify the
position of the “read” pointer.

rc=fget(fileid,name,20);
rc=fpos(fileid,21);
rc=fget(fileid,height);
rc=fpos(fileid,28);
rc=fget(fileid,weight);

Modifying External Files in SCL Programs
An application can enable users to modify the values in external files interactively.

External files can be modified by updating existing records, by adding new records, or
by deleting records. To store record values in external files, you can use functions to
update the FDB with values that are stored in window variables or program variables.
When you write the contents of the FDB to a file, you can update an existing record, or
you can append the record at the end of the file.

Writing Modified Records or New Records to a File
In order to return values to a file that is open for writing, an application must do the

following:



Using External Files � Other Ways SCL Interacts with External Files 193

1 Write each value from a window or program variable. Use the FPUT function to
copy values from the SDV to the FDB.

2 Write record values from the FDB to the external file. Use the FWRITE or
FAPPEND function to write the current values to the external file and to clear the
FDB.

Some operating systems do not allow new records to be appended to external files.
For example, you cannot append records to members of partitioned data sets under the
z/OS operating system. If you use this type of operating system, you can append records
to files by maintaining blank records in the file, usually at the end of the file. Then,
when you want to add a record, you can update an existing blank record.

After a value is written to the FDB with the FPUT function, the column pointer
moves to the first column following that value.

To return modified records as updates to the file’s records, use the FWRITE function
to overwrite each record in the physical file with the contents of the FDB. After the
FDB contents are written to the file, the FDB’s column pointer is positioned in column
1, and the FDB is filled with blanks.

Closing Files in SCL Programs
You should close an external file or directory when your application is finished with

it. To close a file, use the FCLOSE function. To close a directory, use the DCLOSE
function. Ordinarily, when you open a file or directory in the initialization section for
the window, you close it in the window’s termination section. When you open a file or
directory in MAIN, you also close it in MAIN.

Changing the Sequence of Reading Records in SCL Programs
To start reading a file from its beginning, you can move the “read” pointer to the first

record in a file. Then, the next FGET or FPUT function manipulates the first record. To
return the “read” pointer to the file’s first record, use the FREWIND function.

In addition to reading records sequentially, you can generally designate records for
later reading, or you can re-read a file’s first record. However, some file types do not
support this feature.

When a record is in the FDB, you can mark it so that the “read” pointer can read it
later. For example, because there are no search functions for files, you may want to
mark a found record so you can use it again. To designate a record for later reading,
perform these steps:

1 Use FNOTE to mark the record that is in the FDB for later reading.
2 Use FPOINT to return the “read” pointer to the marked record when you are

ready to read it.
3 Use FREAD to read the record marked by the “read” pointer.
4 After you are finished using the marked record, use DROPNOTE to delete the note

marker and to free the memory that was allocated to store the note.

Other Ways SCL Interacts with External Files
There are other SCL functions that enable you to determine the names and values of

attributes that your operating system maintains for external files. These functions are



194 Determining Attributes and Attribute Values � Chapter 12

listed in the following sections and are described completely in the appropriate entry in
Chapter 13, “SAS Component Language Dictionary,” on page 199.

Determining Attributes and Attribute Values
Files and directories have several operating system attributes that are assigned and

maintained by the file management system (for example, the date modified and name
attributes). These attributes can vary among operating systems and are described in
the SAS documentation for your operating environment. You can use the following SCL
functions to determine the attributes and attribute values for external files:

FOPTNUM reports the number of attributes maintained for files in your
operating system.

FOPTNAME returns the name of a file attribute.

FINFO returns the value of a file attribute.

Determining Information about an FDB
You can also use SCL functions to find a file’s record length and the position of the

column pointer in the FDB.

FRLEN returns the length of a record in the FDB.

FCOL returns the position of the column pointer in the FDB.

Renaming and Deleting an External File
You can use SCL functions to rename or delete an external file.

DELETE
FDELETE

delete an external file.

RENAME renames an external file.

Reading and Modifying Files in the Same Directory with SCL

To assign a fileref to a directory, use the FILENAME function, just as you would to
assign a fileref to a file. Before you can perform operations on multiple files in a
directory, you must open the directory, just as you open an external file. To open a
directory, use the DOPEN function.



Using External Files � Changing All the Files in a Directory 195

Determining the Number of Files in a Directory
To find out the name of a file in a directory, you must know the number of files in the

directory. You can determine that number by using the DNUM function.
In a program that displays the filenames in an extended table or in an SCL list, you

use the value returned by the DNUM function to determine how many rows to display
in the extended table or list.

Finding the Names of Files
After you find the number of files in the directory, you can use the DREAD function

to read their names.
If you are using DREAD in a program that is not for an extended table, put the

function in a DO loop so that it processes from 1 to the value returned by the DNUM
function, as follows:

dirid=dopen(fileref);
numfiles=dnum(dirid);
do i=1 to numfiles;

name=dread(dirid,i);
...more SCL statements...
end;

Manipulating Files in an Open Directory
When you open and close files in a directory that you opened with the DOPEN

function, you can manipulate any of the files without assigning a fileref to each file. To
use this technique, you must

� open the file
� manipulate the file’s records
� close the file.

Opening Files in an Open Directory
To open a file in a directory that you opened with the DOPEN function, use the

MOPEN function. This function returns a file identifier. You can use this identifier with
any function that uses a file identifier value returned by the FOPEN function. That is,
you can use any SCL file function on any file that you have opened with the MOPEN
function. For example, when you open files with the MOPEN function, you use the
FCLOSE function to close the files.

Closing Files in an Open Directory
When your program is finished with a file in an open directory, you must close that

file. To close a file, use the FCLOSE function.

Changing All the Files in a Directory
When you use the directory and file functions, you can create applications that

enable users to make a change in each file in a directory. For example, you might want



196 Creating a Subdirectory � Chapter 12

to change a date or multiply all the salaries by the same percentage when everyone
represented in the file receives the same percentage raise in pay.

To make the same change to all the files in a directory, first pass the directory name
to the FILENAME function, and then use the DOPEN function to open the directory.
Then, follow these steps:

1 Use the DNUM function to return the number of files in the directory. Use the
number as the end of a DO loop that processes each file.

2 Use the DREAD function to read the name of a file for each repetition of the loop.

3 Use the MOPEN function to open the file.

4 Use the FREAD function to read a record from the file.

5 Use the FPOS function to move the FDB column pointer to the value’s start
column.

6 Use the FGET function to copy data from the File Data Buffer (FDB) and to assign
it to the specified character variable.

7 Use the FPOS function to return the FDB column pointer to the value’s start
column.

8 Use the FPUT function to write the modified value back to the FDB.

9 Use the FWRITE function to write the modified record back to the external file.

10 Use the FCLOSE function to close the file at the end of the processing loop.

Creating a Subdirectory
You can use the DCREATE function to create a subdirectory.

Closing a Directory
When your application is finished with the files in a directory, you should close the

directory. To close a directory, use the DCLOSE function.

CAUTION:
Be careful to complete operations on all files before closing the directory. When you use
the MOPEN function to open files, be sure your program completes its operations on
all the directory’s files before you use the DCLOSE function. When you use the
DCLOSE function, SCL closes all the directory’s files that were opened previously
with the MOPEN function. �

Other Manipulations for Directories
The following SCL functions provide additional information about directory

attributes:

DOPTNUM reports the number of directory attributes available for a file.

DOPTNAME returns the name of a directory attribute for a file.

DINFO returns the value of a directory attribute for a file.



197

P A R T4

Reference

Chapter 13. . . . . . . . .SAS Component Language Dictionary 199

Chapter 14. . . . . . . . .The SCL Debugger 753

Chapter 15. . . . . . . . .SAS System Return Codes 791



198



199

C H A P T E R

13
SAS Component Language
Dictionary

SCL Elements by Category 200
Array 200

Catalog 200

Character 201

Command 201

Control Flow 202
Control or Field 203

Cursor 204

Declarative Statement 204

Directory 204

Extended Table 205

External File 205
Formatting 207

Image 207

Interface to SAS Software 208

Keys 208

Legend 209
List 209

Macro 211

Message 211

Modular Programming 211

Object-Oriented 212
SAS System Option 214

SAS Table 214

Selection List 217

Submit Block 218

System Variable 218

Utility 219
Variable 220

Widget or Field 220

Window 221



200 SCL Elements by Category � Chapter 13

SCL Elements by Category

Array

“ASORT” on page 230
Sorts an array

“COMPAREARRAY” on page 273
Allows you to compare two arrays for size and data equality

“COPYARRAY” on page 286
Allows you to copy data from one array into another array

“DELARRAY” on page 312
Deletes a dynamic array

“MAKEARRAY” on page 531
Creates an array of the given size with all elements in the array initialized to
missing for numerics or blank for characters

“REDIM” on page 615
Resizes a dynamic array

“REDIMOPT” on page 618
Marks an array as implicitly growable

Catalog

“CATLIST” on page 244
Displays a host selector window that lists entries in a SAS catalog, and returns
user selections

“CATNAME” on page 246
Defines a concatenated catalog, which contains a logical combination of the entries
in two or more catalogs

“CEXIST” on page 251
Verifies the existence of a SAS catalog or SAS catalog entry

“IMPORT” on page 469
Defines a search path for references to CLASS entries

“SEARCH” on page 646
Creates or manipulates the current catalog search path

“SEARCHPATH” on page 650
Reports the complete pathname of a SAS catalog entry



SAS Component Language Dictionary � Command 201

Character

“CENTER” on page 250
Returns a centered character string

“LEFT” on page 500
Returns a left-aligned character string

“LENGTH” on page 504
Returns the length of a trimmed character string

“MLENGTH” on page 549
Returns the maximum length of a variable

“RIGHT” on page 630
Returns a right-aligned character value

Command

“EXECCMD” on page 364
Executes one or more commands when control returns to the application

“EXECCMDI” on page 365
Executes one or more global commands immediately before processing the next
statement, or executes one non-global command when control returns to the
application

“LASTCMD” on page 496
Returns the text of the last command that was issued from the application window

“LOOKUPC” on page 527
Searches for a string among a list of valid tokens

“NEXTCMD” on page 569
Discards the current command on the command line

“NEXTWORD” on page 571
Deletes the current word and advances to the next word in the current command

“SYSTEM” on page 703
Issues a host system command

“WORD” on page 744
Returns a word from a command that was issued with the command line, function
keys, command processing, or a control

“WORDTYPE” on page 746
Identifies the word type of a word on the command line



202 Control Flow � Chapter 13

Control Flow

“CATCH” on page 243
Processes an exception that has been thrown with the THROW statement

“CONTINUE” on page 277
Stops processing the current DO loop and resumes with the next iteration of that
DO loop

“CONTROL” on page 279
Controls the execution of labeled program sections and the formatting of submit
blocks

“DO” on page 337
Designates a group of statements to be executed as a unit

“ENDCATCH” on page 346
Ends a CATCH statement block

“GOTO” on page 444
Branches immediately to another entry

“LEAVE” on page 498
Stops processing the current DO group and resumes with the next statement in
sequence

“RETURN” on page 624
Stops executing statements in the program section that is currently executing and
may return a value to the caller

“RUN” on page 635
Stops executing statements in the program section that is currently executing

“SELECT” on page 653
Executes one of several statements or groups of statements

“STOP” on page 688
Stops executing statements in the program section that is currently executing

“THROW” on page 704
Raises an exception

“WAIT” on page 736
Suspends execution of the next program statement



SAS Component Language Dictionary � Control or Field 203

Control or Field

“ACTIVATE” on page 222
Activates or grays either a Version 6 check box or radio box widget, or a station in
a choice group

“CLRFLD” on page 269
Clears the value from variables whose values match a specified value

“DISPLAYED” on page 334
Reports whether a control or field is currently visible

“ERROR” on page 357
Reports whether a FRAME entry control or field contains an invalid value

“ERROROFF” on page 359
Clears the error flag on one or more FRAME entry controls or fields

“ERRORON” on page 360
Sets the error flag for one or more FRAME entry controls or fields

“GRAY” on page 446
Grays FRAME entry controls and stations of a choice group

“HOME” on page 448
Positions the cursor on a window’s command area

“ISACTIVE” on page 484
Returns the number of the active button in a radio box or check box or the active
station in a choice group

“ISGRAY” on page 485
Reports whether a FRAME entry control or choice group is grayed

“MODIFIED” on page 550
Reports whether a field or FRAME entry control has been modified

“PROTECT” on page 607
Assigns protection to a FRAME entry control or field

“SETCR” on page 660
Controls the cursor’s response to the carriage-return key

“SETFLD” on page 662
Assigns a value to up to ten blank variables

“UNGRAY” on page 708
Ungrays a window element

“UNPROTECT” on page 711
Removes protection from a FRAME entry control or a field



204 Cursor � Chapter 13

Cursor

“CURFLD” on page 297
Returns the name of the FRAME or PROGRAM entry control or field on which the
cursor is currently positioned

Declarative Statement

“ARRAY” on page 227
Defines elements of an explicit array

“DECLARE” on page 309
Declares variables and specifies their data types

“LENGTH” on page 505
Declares variables and specifies their length and whether their data type is
numeric or character

Directory

“DCLOSE” on page 307
Closes a directory

“DINFO” on page 326
Returns information about a directory

“DNUM” on page 336
Returns the number of members in a directory

“DOPEN” on page 338
Opens a directory

“DOPTNAME” on page 339
Returns the name of a directory attribute

“DOPTNUM” on page 340
Returns the number of information items that are available for a directory

“DREAD” on page 341
Returns the name of a directory member

“MOPEN” on page 553
Opens a member file in a directory



SAS Component Language Dictionary � External File 205

Extended Table

“CURTOP” on page 302
Returns the number of the row that is currently displayed at the top of an
extended table

“ENDTABLE” on page 350
Stops the processing of the getrow section of a dynamic extended table

“ISSEL” on page 488
Returns the selection number for a specified row of a selection list

“NSELECT” on page 577
Returns the number of rows that have been selected in a selection list

“SELECT” on page 652
Selects a specified row of a selection list

“SELECTED” on page 654
Returns the number of the row that corresponds to a user’s choice in a selection list

“SETROW” on page 678
Determines the characteristics of extended tables

“TOPROW” on page 704
Scrolls a row to the top of an extended table

“UNSELECT” on page 713
Deselects a specified row of a selection list

External File

“DCREATE” on page 308
Creates an external directory

“FAPPEND” on page 369
Appends the current record to the end of an external file

“FCLOSE” on page 371
Closes an external file, a directory, or a directory member

“FCOL” on page 372
Returns the current column position from the File Data Buffer (FDB)

“FDELETE” on page 373
Deletes an external file

“FEXIST” on page 377
Verifies the existence of the external file that is associated with the specified fileref

“FGET” on page 378
Copies data from the File Data Buffer (FDB)



206 External File � Chapter 13

“FILEDIALOG” on page 383
Displays a selection window that lists external files

“FILEEXIST” on page 385
Verifies the existence of an external file, a directory, or a SAS data library by its
physical name

“FILENAME” on page 389
Assigns or deassigns a fileref for an external file, a directory, an output device, or a
catalog entry

“FILEREF” on page 391
Verifies that a fileref has been assigned for the current SAS session or process

“FINFO” on page 398
Returns a file information item

“FNOTE” on page 404
Identifies the last record that was read

“FOPEN” on page 407
Opens an external file

“FOPTNAME” on page 409
Returns the name of an item of information for a file

“FOPTNUM” on page 410
Returns the number of information items that are available for an external file

“FPOINT” on page 412
Positions the “read” pointer on the next record to be read

“FPOS” on page 414
Sets the position of the column pointer in the File Data Buffer

“FPUT” on page 415
Moves data to the File Data Buffer (FDB) for an external file, starting at the
FDB’s current column position

“FREAD” on page 417
Reads a record from an external file into the File Data Buffer (FDB)

“FREWIND” on page 418
Positions the file pointer at the beginning of the file

“FRLEN” on page 419
Returns the size of the last record read, or, if the file is opened for output, returns
the current record size

“FSEP” on page 422
Sets the token delimiters for the FGET function

“FSLIST” on page 423
Displays an external file for browsing

“FWRITE” on page 427
Writes a record to an external file

“PATHNAME” on page 590
Returns the physical name of a SAS data library or an external file



SAS Component Language Dictionary � Image 207

Formatting

“FORMAT” on page 411
Verifies that the specified format is valid

“INFORMAT” on page 471
Verifies that the specified informat is valid

“INPUTC and INPUTN” on page 473
Read a character value using an informat

“PUTC and PUTN” on page 609
Return a formatted value, using the specified format

Image

“IMGCTRL” on page 461
Performs control operations on the Image window

“IMGINIT” on page 463
Starts an image task

“IMGOP” on page 464
Performs image operations

“IMGTERM” on page 466
Terminates an image task

“LNAMECHK” on page 518
Validates a path string

“LNAMEGET” on page 519
Decodes a path string

“LNAMEMK” on page 520
Makes a path string for an image file

“PICCLOSE” on page 592
Closes the graphics environment

“PICDELETE” on page 592
Deletes a region

“PICFILL” on page 593
Defines a region and fills it with an image

“PICOPEN” on page 595
Initializes the graphics environment



208 Interface to SAS Software � Chapter 13

Interface to SAS Software

“RLINK” on page 630
Reports whether a link exists between the current SAS session and a remote SAS
session

“RSESSION” on page 633
Returns the name, description, and SAS software version of a remote session

“RSTITLE” on page 634
Defines a description for an existing connection to a remote session

“SASTASK” on page 636
Determines whether a SAS procedure is running

Keys

“EVENT” on page 361
Reports whether a user has pressed a function key, ENTER key, or mouse button

“FKEYNAME” on page 399
Returns the name of the specified function key

“GETFKEY” on page 428
Returns the command that is assigned to a function key

“LASTKEY” on page 497
Returns the number of the last function key that was pressed from the application
window

“NUMFKEYS” on page 577
Returns the number of function keys that are available for the device

“SETFKEY” on page 661
Assigns a command to a function key



SAS Component Language Dictionary � List 209

Legend

“ENDLEGEND” on page 347
Closes the LEGEND window

“LEGEND” on page 501
Displays a legend window or refreshes the current LEGEND window

“POPLEGEND” on page 601
Restores to the LEGEND window the last contents saved with the PUSHLEGEND
routine

“PUSHLEGEND” on page 608
Saves the contents of the LEGEND window

“PUTLEGEND” on page 611
Specifies the contents of one line in the LEGEND window

List

“CLEARLIST” on page 266
Clears the items from an SCL list without deleting the list and optionally clears
all sublist items

“COMPARELIST” on page 275
Compares two SCL lists

“COPYLIST” on page 289
Copies or merges the contents of an SCL list into an existing list or a new list

“CURLIST” on page 298
Designates or reports the current result SCL list

“DELITEM” on page 315
Deletes an item from an SCL list

“DELLIST” on page 316
Deletes a list and optionally deletes all of its sublists



210 List � Chapter 13

“DELNITEM” on page 317
Deletes a named item from an SCL list

“DESCRIBE” on page 320
Fills an SCL list with items of system information about a SAS table, view, or
catalog entry

“ENVLIST” on page 356
Returns the list identifier of an SCL environment list

“FILLIST” on page 392
Fills an SCL list with text and data

“GETITEMC, GETITEML, GETITEMN, and GETITEMO” on page 430
Returns a value that is identified by its position in an SCL list

“GETLATTR” on page 431
Returns the attributes of either an SCL list or an item in the list

“GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO” on page 433
Return a value identified by its item name in an SCL list

“HASATTR” on page 447
Reports whether an SCL list or a list item has a specified attribute

“INSERTC, INSERTL, INSERTN, and INSERTO” on page 474
Insert a value into an SCL list

“ITEMTYPE” on page 490
Reports the type of an item in an SCL list

“LISTLEN” on page 516
Reports the length of an SCL list

“LVARLEVEL” on page 529
Fills an SCL list with the unique values of a column from a SAS table

“MAKELIST” on page 533
Creates an SCL list

“MAKENLIST” on page 534
Creates an SCL list that contains named items

“NAMEDITEM” on page 556
Returns the index of a named item in a list

“NAMEITEM” on page 559
Returns and optionally replaces the name of an item in an SCL list

“POPC, POPL, POPN, and POPO” on page 598
Removes an item from an SCL list and returns the value of the item

“POPMENU” on page 601
Displays a pop-up menu that contains character items from an SCL list

“PUTLIST” on page 612
Displays the contents of an SCL list in the LOG window

“REVLIST” on page 626
Reverses the order of the items in an SCL list

“ROTLIST” on page 631
Rotates the items in an SCL list



SAS Component Language Dictionary � Modular Programming 211

“SAVELIST” on page 640
Stores SCL list items in a SAS catalog entry or in an external file

“SEARCHC, SEARCHL, SEARCHN, and SEARCHO” on page 648
Search for a value in an SCL list and return its position number

“SETITEMC, SETITEML, SETITEMN, and SETITEMO” on page 664
Store a value at an indexed position in an SCL list

“SETLATTR” on page 669
Sets the attributes of an SCL list or an item in a list

“SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO” on page 674
Assign a value to a named item in an SCL list

“SORTLIST” on page 684
Sorts the items in an SCL list by value or by name

Macro

“SYMGET and SYMGETN” on page 699
Return the value stored in a macro variable

“SYMPUT and SYMPUTN” on page 700
Store a value in a SAS macro variable

Message

“STDMSG” on page 687
Displays the text of the SAS software message that is generated by an unknown
command

“SYSMSG” on page 701
Returns the text of SCL error messages or warning messages

“SYSRC” on page 702
Returns a system error number or the exit status of the most recently called entry

Modular Programming

“CBT” on page 248
Runs a CBT entry

“DISPLAY” on page 330
Runs a catalog entry that was created with SAS/AF software

“ENDMETHOD” on page 348
Ends a METHOD statement block

“ENTRY” on page 351
Receives parameters from the DISPLAY function or routine



212 Object-Oriented � Chapter 13

“GETPARMID” on page 437
Returns the numeric value stored by the SETPARMID routine

“METHOD” on page 537
Executes a method block that is defined in an SCL entry

“METHOD” on page 539
Defines a method that can be called by the METHOD routine

“NOCHANGE” on page 571
Causes the called program to return the original values for the variables that it
received as parameters in an ENTRY statement

“SETPARMID” on page 677
Makes the value of an SCL numeric variable available between SCL programs

Object-Oriented

“APPLY” on page 225
Invokes a method whose arguments are passed from an SCL list

“CBT” on page 248
Runs a CBT entry

“CLASS” on page 253
Creates a class using SCL code

“CREATESCL” on page 293
Writes class or interface information to an SCL entry

“DIALOG” on page 325
Runs a FRAME entry that was created with SAS/AF software and disables all
other windows

“DISPLAY” on page 330
Runs a catalog entry that was created with SAS/AF software

“ENDCLASS” on page 347
Ends a CLASS statement block

“ENDMETHOD” on page 348
Ends a METHOD statement block

“ENDPACKAGE” on page 348
Ends a PACKAGE statement block

“ENDUSECLASS” on page 351
Ends a USECLASS statement block

“ENTRY” on page 351
Receives parameters from the DISPLAY function or routine

“GETPARMID” on page 437
Returns the numeric value stored by the SETPARMID routine

“IMPORT” on page 469
Defines a search path for references to CLASS entries



SAS Component Language Dictionary � Object-Oriented 213

“INSTANCE” on page 477
Creates an object and returns its identifier

“INTERFACE” on page 478
Defines a group of abstract methods shared by the related classes

“ITEM” on page 489
Specifies the classes on the server that can be accessed by applications on the client

“LOADCLASS” on page 522
Loads a class and returns its identifier number

“LOADRES” on page 523
Loads a RESOURCE entry

“METHOD” on page 539
Defines a method that can be called by the METHOD routine

“METHOD” on page 537
Executes a method block that is defined in an SCL entry

“_NEO_” on page 561
Creates an object

“_NEW_” on page 565
Creates an object and runs an associated class constructor

“NOCHANGE” on page 571
Causes the called program to return the original values for the variables that it
received as parameters in an ENTRY statement

“NOTIFY” on page 575
Sends a method to a control that is identified by its name

“PACKAGE” on page 589
Defines a group of classes whose metadata must be recognized by objects defined
on the client

“SEND” on page 656
Sends a method to an object using its identifier and can return a value from a
called method

“SETPARMID” on page 677
Makes the value of an SCL numeric variable available between SCL programs

“SUPAPPLY” on page 695
Invokes the inherited definition of a method and passes the method’s arguments in
an SCL list

“SUPER” on page 697
Invokes the inherited definition of a method

“USECLASS” on page 715
Implements methods for a class and binds them to the class definition



214 SAS System Option � Chapter 13

SAS System Option

“COMAMID” on page 272
Returns the list of communications access methods for an operating system

“GETFOOT” on page 429
Returns the text of a footnote definition

“GETTITLE” on page 437
Returns the text of a title definition

“GGLOBAL” on page 441
Returns the text of a SYMBOL, PATTERN, LEGEND, or AXIS statement

“GGLOBALE” on page 442
Deletes an internal table of SYMBOL, PATTERN, LEGEND, or AXIS definitions

“GGLOBALN” on page 443
Returns the number of SYMBOL, PATTERN, LEGEND, or AXIS statements that
are currently defined

“OPTGETC and OPTGETN” on page 587
Return the current setting of a SAS system option

“OPTSETC and OPTSETN” on page 588
Assign a value to a SAS system option

“SETFOOT” on page 663
Sets the text of a footnote definition

“SETTITLE” on page 680
Sets the text of a title definition

SAS Table

“APPEND” on page 224
Appends a new row to a SAS table

“ATTRC and ATTRN” on page 231
Return the value of an attribute for a SAS table

“CLOSE” on page 268
Closes a SAS table

“CONTENTS” on page 276
Displays the attributes of a SAS table

“CUROBS” on page 300
Returns the number of the current row in a SAS table

“DATALISTC and DATALISTN” on page 304
Displays a selection list window that contains the values of particular columns
from rows in a SAS table and returns user selections



SAS Component Language Dictionary � SAS Table 215

“DELOBS” on page 320
Deletes a row from a SAS table

“DROPNOTE” on page 342
Deletes a note marker from either a SAS table or an external file

“DSID” on page 343
Searches for a SAS table name and returns the table identifier

“DSNAME” on page 345
Returns the SAS table name that is associated with a table identifier

“EXIST” on page 367
Verifies the existence of a member of a SAS data library

“FETCH” on page 374
Reads the next nondeleted row from a SAS table into the Table Data Vector (TDV)

“FETCHOBS” on page 375
Reads a specified row from a SAS table into the Table Data Vector (TDV)

“FSEDIT” on page 420
Displays a SAS table by row

“FSVIEW” on page 425
Displays a SAS table in tabular format

“GETVARC and GETVARN” on page 438
Assign the value of a SAS table column to an SCL variable

“GETVARF” on page 439
Assigns the formatted value of a SAS table column to a character SCL variable

“ICCREATE” on page 449
Creates integrity constraints on a SAS table

“ICDELETE” on page 453
Drops an integrity constraint from a SAS table

“ICDESCRIBE” on page 454
Obtains the attributes for all existing integrity constraints within a specified SAS
table

“ICREATE” on page 456
Creates an index for a SAS table

“ICTYPE” on page 458
Returns the type of integrity constraint that is assigned to a SAS table

“ICVALUE” on page 459
Returns the column names or the condition associated with an integrity constraint

“IDELETE” on page 460
Deletes an index from a SAS table

“IMPORT” on page 467
Creates a SAS table from an external file

“INITROW” on page 472
Initializes the Table Data Vector (TDV) for a SAS table to missing values

“IOPTION” on page 483
Returns options for index columns and key columns



216 SAS Table � Chapter 13

“ISINDEX” on page 487
Returns the type of index for a SAS table column

“IVARLIST” on page 491
Returns the column names for an index key

“KEYCOUNT” on page 492
Returns the number of rows that meet the criteria specified by an index key

“LIBLIST” on page 508
Displays a host selection window that lists the currently assigned librefs, and
returns user’s selections

“LIBNAME” on page 511
Assigns or deassigns a libref for a SAS data library

“LIBREF” on page 513
Verifies that a libref has been assigned

“LOCATEC and LOCATEN” on page 524
Search a SAS table for a row that contains a specified value

“LOCK” on page 526
Locks or unlocks a SAS table or a SAS catalog entry

“NEW” on page 563
Defines a new SAS table interactively

“NEWVAR” on page 568
Adds a column to a new SAS table

“NOTE” on page 573
Returns an identifier for the current row of a SAS table

“OBSINFO” on page 579
Returns information about the current row in an FSEDIT application

“OPEN” on page 581
Opens a SAS table

“POINT” on page 597
Locates a row that is identified by the NOTE function

“PUTVARC and PUTVARN” on page 614
Write a value to the Table Data Vector (TDV) for a SAS table

“REWIND” on page 627
Positions the table pointer at the beginning of a SAS table

“SET” on page 658
Links SAS table columns to SCL variables of the same name and data type

“SETKEY” on page 666
Defines an index key for retrieving rows from a SAS table

“SORT” on page 682
Sorts a SAS table by one or more columns

“UNLOCK” on page 710
Releases a lock on the current row

“UPDATE” on page 714
Writes values from the Table Data Vector (TDV) to the current row in a SAS table



SAS Component Language Dictionary � Selection List 217

“VARLIST” on page 727
Displays a dialog window that lists the columns in a SAS table, and returns the
user’s selections

“WHERE” on page 738
Applies a WHERE clause to a SAS table

Selection List

“CATLIST” on page 244
Displays a host selector window that lists entries in a SAS catalog, and returns
user selections

“COLORLIST” on page 270
Displays a selection list of the names of a device’s valid colors and returns user
selections

“DEVLIST” on page 322
Displays a selection list of graphic hardware devices and returns user selections

“DIRLIST” on page 327
Opens a host selection list window that lists members of one or more SAS data
libraries, and returns a user’s selections

“FILELIST” on page 386
Displays a host selection window that lists the currently assigned filerefs, and
returns user selections

“FONTSEL” on page 405
Opens the selector window for host fonts or for portable fonts

“LISTC and LISTN” on page 513
Display a selection list window containing values stored in a catalog entry

“OPENENTRYDIALOG” on page 583
Displays a dialog window that lists catalog entries, and returns the user’s selection

“OPENSASFILEDIALOG” on page 585
Displays a dialog window that lists SAS files, and returns the user’s selection

“SAVEENTRYDIALOG” on page 637
Opens a dialog window that lists catalog entries, and returns the name of the
selected entry

“SAVESASFILEDIALOG” on page 642
Displays a dialog window that lists SAS files, and returns the name of the selected
file

“SELECTICON” on page 655
Displays a dialog window that contains a list of icons, and returns the value of the
selected icon

“SHOWLIST” on page 681
Displays a selection list window that contains up to 13 items, and returns the
user’s selections



218 Submit Block � Chapter 13

Submit Block

“ENDSUBMIT” on page 349
Ends statements to be submitted to SAS software for execution

“PREVIEW” on page 604
Manipulates an application’s preview buffer

“REPLACE” on page 623
Substitutes a replacement string for a reference to an SCL variable in the
SUBMIT block

“SUBMIT” on page 691
Submits statements or commands to SAS for execution

“SUBMITCLEAR” on page 694
Aborts a pending submit transaction

System Variable

“_BLANK_” on page 237
Special missing value

“_CFRAME_” on page 252
Contains the identifier of the FRAME entry that is currently executing

“_CURCOL_” on page 296
Contains the value of the leftmost column in an extended table control in a
FRAME entry

“_CURROW_” on page 301
Contains the number of the current row in an extended table

“_EVENT_” on page 363
Contains the type of event that occurred on a FRAME entry control

“_FRAME_” on page 416
Contains the identifier of either the FRAME entry that contains the control or the
FRAME entry that is being used as a method

“_METHOD_” on page 547
Contains the name of the method that is currently executing

“_MSG_” on page 555
Contains the text to display on the window’s message line the next time the
window is refreshed

“_SELF_” on page 655
Contains the identifier of the control for the currently executing method, or the
identifier of the FRAME entry if the FRAME entry is not running as a method



SAS Component Language Dictionary � Utility 219

“_STATUS_” on page 686
Contains the status of program execution or overrides the normal flow of control

“_VALUE_” on page 720
Contains the value of a FRAME entry component

Utility

“ALARM” on page 223
Sounds an alarm on a device when the current window is refreshed or redisplayed.

“BUILD” on page 241
Invokes the BUILD window in SAS/AF software

“COPY” on page 284
Copies a SAS table, view, catalog, or catalog entry

“DELETE” on page 313
Deletes a member of a SAS data library or an external file or directory

“LETTER” on page 506
Displays the FSLETTER window or sends a letter that was created with the
FSLETTER procedure

“LIBREF” on page 513
Verifies that a libref has been assigned

“MESSAGEBOX” on page 535
Displays a host message window with a specified text and icon

“NAMEDIVIDE” on page 558
Returns the number of parts of a compound name as well as the values of each part

“NAMEMERGE” on page 560
Returns a compound name by merging name parts

“PUT” on page 609
Writes text to the LOG window

“RENAME” on page 620
Renames a member of a SAS data library, an external file, or a directory

“RGBDM” on page 628
Returns the name supported by the SAS windowing environment for a color

“SASNAME” on page 635
Verifies that a name is a valid SAS name

“TRACEBACK” on page 706
Displays traceback information for an SCL execution stack

“UNIQUENUM” on page 709
Returns a unique number

“WAIT” on page 736
Suspends execution of the next program statement



220 Variable � Chapter 13

Variable

“MODVAR” on page 551
Changes the name, label, format, or informat of a column in a SAS table

“VARFMT” on page 722
Returns the format that is assigned to a SAS table column

“VARINFMT” on page 723
Returns the informat that is assigned to a SAS table column

“VARLABEL” on page 724
Returns the label that is assigned to a SAS table column

“VARLEN” on page 725
Returns the length of a SAS table column

“VARLEVEL” on page 726
Reports the unique values of a SAS table column

“VARNAME” on page 730
Returns the name of a SAS table column

“VARNUM” on page 731
Returns the number of a SAS table column

“VARSTAT” on page 732
Calculates simple statistics for SAS table columns

“VARTYPE” on page 734
Returns the data type of a SAS table column

Widget or Field

“CURSOR” on page 301
Positions the cursor in a specified widget or field of a FRAME entry

“CURWORD” on page 303
Returns the word that is at the cursor position

“FIELD” on page 379
Performs an action on or reports the state of FRAME entry widgets or fields

“FLDATTR” on page 400
Changes the color and display attributes of a field, text entry widget, or text label
widget to those stored in an attribute string

“FLDCOLOR” on page 402
Changes the color and display attributes of a field, text entry widget, or text label
widget to those stored in an attribute string

“STRATTR” on page 689
Defines a string for color and display attributes



SAS Component Language Dictionary � Window 221

Window

“BLOCK” on page 238
Displays a menu containing up to 12 choice blocks and returns the number of the
user’s choice

“DMWINDOW” on page 335
Sets the color and highlighting for lines in the OUTPUT and LOG windows

“ENDBLOCK” on page 346
Closes the window that is created by the BLOCK function

“ICON” on page 455
Associates an icon with a window

“PMENU” on page 596
Changes the PMENU for an application

“REFRESH” on page 620
Redisplays a window using current field or control values

“SAVESCREEN” on page 645
Saves the values of data entry fields without exiting from the window

“SCREENNAME” on page 646
Returns the name of the current window

“WDEF” on page 737
Resizes the active window

“WINFO” on page 740
Returns information about the current window

“WNAME” on page 743
Specifies a name for the active window

“WOUTPUT” on page 748
Manipulates the OUTPUT window

“WREGION” on page 750
Defines the boundaries for the next window that is displayed



222 ACTIVATE � Chapter 13

ACTIVATE

Activates or grays either a Version 6 check box or radio box widget, or a station in a choice group

Category: Control or Field

Syntax
rc=ACTIVATE(var-name,station<,row>);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

var-name
is the FRAME entry control or choice group to activate.

Type: Character

station
is the number of the station or item to be activated or grayed:

>0 is the number of the station to be activated.

<0 is the number of the station designated by the absolute value of
the argument to be grayed instead of activated. Users cannot
select a station that has been grayed.

0 indicates that no station is to be activated.
Type: Numeric

row
is the row number for a choice group that is in the scrollable section of an extended
table. Row is valid for PROGRAM entries but not for FRAME entries. Specify row
only when you want to activate a station from outside an extended table’s getrow or
putrow section. Do not specify row if you want to activate a station with the _getrow
or _putrow method or from the getrow or putrow sections.

Type: Numeric



SAS Component Language Dictionary � ALARM 223

Details
ACTIVATE works only for Version 6 widgets in FRAME entries and for choice groups in
PROGRAM entries. Version 8 and later SCOM controls use attribute settings to
implement this functionality. ACTIVATE is not valid in FSEDIT or FSVIEW programs.

The station value is the number of the check box or the item or button in a check box
or choice group. For example, if your application has three fields named A, B, and C,
and they all belong to the same radio box, then you can make the B field active by
passing 2 for the station value (B is the second field).

ACTIVATE makes a check box or an item in a radio box or choice group active by
assigning the station or item number to the associated window variable. ACTIVATE
grays a check box or an item in a radio box or choice group when you assign the negative
number of the station or item. When a window element is grayed, users cannot select it.

FRAME entry controls can also use the _activate method.
For linked action fields in choice groups, the action-type pair is considered one

station. Linked action fields have the following form:

& &A_____ & &B_____ & &C_____

To make the linked action pair for B active, pass 2 for the value of station, not 4.

Examples

Example 1: Activating a Radio Box Station Activate the second station in the radio
box HOBBY:

rc=activate(’hobby’,2);

Example 2: Activating a Station in an Extended Table Make the third station in the
fourth row of an extended table the active station in the choice group LIST:

if (activate(’list’,3,4)) then
do;

...SCL statements to handle the error condition...
end;

See Also
“GRAY” on page 446
“ISACTIVE” on page 484
“ISGRAY” on page 485
“UNGRAY” on page 708

ALARM

Sounds an alarm on a device when the current window is refreshed or redisplayed.

Category: Utility

Syntax
ALARM;



224 APPEND � Chapter 13

Details
The ALARM statement sounds the bell when the current window is refreshed or
redisplayed. This statement works for devices that support sounds.

See Also
“CURSOR” on page 301
“FIELD” on page 379

APPEND

Appends a new row to a SAS table

Category: SAS Table

Syntax
sysrc=APPEND(table-id<,option>);

sysrc
contains the return code for the operation:

0 successful

≠0 an error or warning condition occurred

table-id
contains the identifier for the SAS table, which is returned by the OPEN function.

Type: Numeric

option
is one of the following options:

’NOSET’
appends a row with all column values set to missing, even if the SET routine has
been called.

’NOINIT’
appends a row with the values currently in the Table Data Vector (TDV), even if
the SET routine has not been called.

Type: Character

Details
APPEND adds a row to the end of a SAS table. By default, the added row contains
missing values. However, you can add a row with the current values in the TDV if SET
has been called or if the NOINIT option is specified as the second argument. If SET has
been called, the NOSET argument can still force APPEND to fill the row with missing
values.

If the SET routine has not been called, you can PUTVARC and PUTVARN to specify
values for each column in the TDV before calling APPEND with the NOINIT option.
You can use INITROW to initialize the TDV to missing to prevent APPEND from



SAS Component Language Dictionary � APPLY 225

writing bad data to a row values are not explicitly assigned to some columns through
PUTVARC or PUTVARN.

Example

Add a row to the SAS table WORK.DATAONE, which has two columns, FNAME and
SSN. Because SET is called, the values ROBERT and 999-99-9999 are written to the
new row.

tableid=open(’work.dataone’,’u’);
call set(tableid);
fname=’Fname’;
ssn=’999-99-9999’;
if (append(tableid)) then do;

_msg_=sysmsg();

If SET had not been called, then using the NOINIT option would produce the same
results:

tableid=open(’work.dataone’,’u’);
fname=’ROBERT’;
ssn=’999-99-9999’;
call putvarc(tableid,varnum(tableid,’fname’),fname);
call putvarc(tableid,varnum(tableid,’ssn’),ssn);
if (append(tableid,’noinit’)) then

_msg_=sysmsg();

See Also
“OPEN” on page 581
“PUTVARC and PUTVARN” on page 614
“SET” on page 658
“UPDATE” on page 714
“INITROW” on page 472

APPLY

Invokes a method whose arguments are passed from an SCL list

Category: Object Oriented

Syntax
CALL APPLY(control-id,method-name,arg-list-id);

return-value=APPLY(control-id,method-name,
arg-list-id);

control-id
is the control whose method is being invoked.



226 APPLY � Chapter 13

Type: Numeric

method-name
is the method to invoke.

Type: Character

arg-list-id
contains the identifier of a list of arguments that the method requires. An invalid
arg-list-id produces an error condition.

Type: Numeric

return-value
contains the value returned by method-name. The data type for return-value should
match the data type for the called method.

Type: Character, List, Numeric, Object, Class, Interface.

Details
APPLY provides the functionality of CALL SEND except that you can build a dynamic
parameter list at run time instead of coding a fixed parameter list. You can also use
APPLY as a function if the called method returns a value with a RETURN statement in
the program that defines the method.

Example
Instead of using the following statement to invoke a method that you have defined and
named METHOD,

control.method(10,’abc’,’xyz’,x);

you can use

args = makelist(4);
args = setitemn(args,10,1);
args = setitemc(args,’abc’,2);
args = setitemc(args,’xyz’,3);
args = setitemn(args,x,4);
call apply(control,’method’,args);

More useful is the ability to combine APPLY with the ARGLIST= and REST=
keywords in order to write methods that accept variable argument lists:

length _method_ $40;
m: method arglist=args;

call apply(otherControl,_method_, args);

This calls the method with the same arguments to the otherControl.
For example, a control receiving a method could rebroadcast the method to all

controls on its _RECEIVERS_ list:

m: method arglist=args;
_receivers_=getniteml(_self_,’_receivers_’,

1, 1, 0);
if _receivers_ then do

r=listlen(_receivers_) to 1 by -1;
call apply(getiteml(_receivers_, r),

_method_, args);
end;

endmethod;



SAS Component Language Dictionary � ARRAY 227

See Also
“NOTIFY” on page 575
“RETURN” on page 624
“SEND” on page 656
“SUPAPPLY” on page 695
“SUPER” on page 697

ARRAY

Defines elements of an explicit array

Category: Declarative Statement
Comparisons: SAS Statement with limitations in SCL

Syntax
ARRAY array-name<{n}><$>< length>< elements>

<(initial-values)>;

array-name
is the name of the array. It cannot be the same as the name of a window variable.
However, window variables can be elements of an array.

Type: Character

{n}
is either the dimension of the array, or an asterisk (*) to indicate that the dimension
is determined from the number of array elements or initial values. Multidimensional
arrays are allowed. If an asterisk is specified without any array elements or initial
values, then the array is a reference array. The dimension of this array will be
determined at execution time, based on the corresponding array in the calling
program.

Type: Numeric

$
indicates that the array type is character.

length
is the maximum length of elements in the array. For character arrays, the maximum
length cannot exceed 200. The default length is 8 characters. Length is ignored for
numeric arrays.

Type: Numeric

elements
are the variables (either window or nonwindow variables) that make up the array, or
you can specify ’_TEMPORARY_’ to create a list of temporary data elements.

Type: Character

initial-values
are the values to use to initialize some or all of the array elements. Separate these
values with commas or blanks. By default, all the elements in an array are
initialized to missing.

Type: Character



228 ARRAY � Chapter 13

Details
If you have elements that you reference only with subscripting, then you can save
memory by using the _TEMPORARY_ keyword. The SCL compiler has to allocate
memory for the array name and the names of the array elements. However, if this
keyword is used, the compiler allocates memory only for the array name. For large
arrays, this could result in significant memory savings.

Note: Do not use ’_TEMPORARY_’ for elements if you plan to use the SET routine to
fetch values from a SAS table directly into an array. Use GETVARN and GETVARC
when ’_TEMPORARY_’ is specified. �

Note: You can also declare temporary arrays using the DECLARE statement. �

Reference Array A reference array is a pointer to another defined array. Previously,
when an array needed to be passed as a parameter to a METHOD or ENTRY statement,
an array of equal size needed to be defined in both the calling program and the called
program. This technique used twice as much memory as was actually required. With
reference arrays, only one array needs to be defined with the actual size. The array in
the called program uses the actual memory of the array in the calling program.

By using reference arrays, you can create general array functions, because the array
dimension is determined by the calling program. That is, you do not need to hardcode
the array dimension in the SCL program that contains the ENTRY or METHOD
statement. See the example later in this section for an illustration of this concept.

Using multidimensional reference arrays is allowed when the dimensions match. For
example, if a two-dimensional array is passed in, the reference array must also be
two-dimensional.

Reference arrays can currently be used as parameters only in a METHOD or ENTRY
statement. Once a reference array has been created by a call to another program, it can
be used in any way that a regular array can be used.

Differences from DATA Step in ARRAY Statement Execution The ARRAY statement in
SCL is very similar to the ARRAY statement in the DATA step and is used to define
single or multidimensional arrays. The ARRAY statement in SCL differs from the
DATA step ARRAY statement in the following ways:

� SCL does not support implicitly subscripted arrays.

� SCL does not support the _NUMERIC_, _CHAR_, or _ALL_ keywords.

� SCL allows a repetition factor for initialization of arrays.

� SCL allows arrays to be used with the IN operator.

� SCL supports reference arrays.

For details about the ARRAY statement in the Base SAS language, see SAS
Language Reference: Dictionary.

Examples

Example 1: Using Repetition Factors for Array Initialization In the following
statement, note that 1 is repeated three times and the pattern 2,3,4 is repeated four
times:

array a{16}(0,3*1 ,4*(2,3,4));

This statement initializes the values of the elements of array A as follows:

0, 1, 1, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4



SAS Component Language Dictionary � ARRAY 229

Example 2: Using an Array with the IN Operator Consider the following code segment:

array a 8 (2 4 6 8 10);

INIT:
b=6;
if b in a then put ’B is in array A’;

/* returns location of B in array A */
c=b in a;
put c=;

return;

This code produces the following output:

B is in array A
C=3

Example 3: Using a Reference Array with a METHOD Statement Assume that an entry
SORT.SCL contains the method definition shown below. The method illustrates the use
of a reference array to define a generic sort routine. The routine is termed generic
because NSORT does not need to know the size of the array that is being passed: the
reference array NARRAY takes on the definition of the array that is specified in the
CALL METHOD routine.

nsort: method narray [*]:num;
size = dim( narray );
do i = 1 to size - 1;

do j = i + 1 to size;
if narray( i ) > narray( j ) then

do;
ntemp = narray( i );
narray( i ) = narray( j );
narray( j ) = ntemp;

end;
end;

end;
endmethod;

Here is a sample calling program that executes the NSORT method:

array numarray(100);

MAIN:
do i=1 to dim(numarray);

numarray(i)=dim(numarray)-i+1;
end;
call method(’sort.scl’, ’nsort’, numarray);

return;

See Also
“DECLARE” on page 309



230 ASORT � Chapter 13

ASORT

Sorts an array

Category: Array

Syntax
rc=ASORT(array<,order><,elements>);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

array
is an SCL array that was declared in an ARRAY statement.

Type: Character

order
specifies the order for the sort:

’A’ ascending order (the default)

’D’ descending order
Type: Character

elements
is the number of elements to sort.

Type: Numeric

Details
By default, the array is sorted in ascending order. You can use the optional order
argument to specify either ascending or descending order.

By default, the entire array is sorted. You can use the optional elements argument to
restrict sorting to the specified number of elements (starting from the beginning of the
array).

If the value of the elements argument is greater than the total number of array
elements, the program halts execution and sends an error message to the log.

Example

Sort the first five items of array VALUES in ascending order:

array values[8] val1-val8 (3,5,2,1,6,8,7,4);

if (asort(values,’d’,5)) then _msg_=sysmsg();
else do;

_msg_=’Sort was successful’;
do i=1 to dim(values);

put values{i}=;



SAS Component Language Dictionary � ATTRC and ATTRN 231

end;
end;

This produces the following output:

values[ 1 ]=6
values[ 2 ]=5
values[ 3 ]=3
values[ 4 ]=2
values[ 5 ]=1
values[ 6 ]=8
values[ 7 ]=7
values[ 8 ]=4

ATTRC and ATTRN

Return the value of an attribute for a SAS table

Category: SAS Table

Syntax
attr-value=ATTRC(table-id,attr-name);

attr-value=ATTRN(table-id,attr-name);

attr-value
contains the value of the SAS table attribute. For ATTRC, the value is for a
character attribute. For ATTRN, the value is for a numeric attribute.

Type: Character, Numeric

table-id
contains the identifier for the SAS table. This is the identifier that was returned by
the OPEN function when the table was opened. If table-id is invalid, the program
halts.

Type: Numeric

attr-name
is the name of the SAS table attribute. If attr-name is invalid, then a missing or null
value is returned for attr-value. Values that can be used with ATTRC are listed in
“Attributes for the ATTRC Function” on page 232. Values that can be used with
ATTRN are listed in “Attributes for the ATTRN Function” on page 233.

Type: Character



232 ATTRC and ATTRN � Chapter 13

Attributes for the ATTRC Function
To check for a character attribute of a SAS table, use ATTRC with one of the following
values for attr-name:

’CHARSET’
returns a string indicating the character set of the machine that created the SAS
table. It returns either one of the following values, or an empty string if the SAS
table is not sorted:

ASCII
ASCII character set

EBCDIC
EBCDIC character set

HASCII
extended ASCII character set

ANSI
OS/2 ANSI standard ASCII character set

OEM
OS/2 OEM code format

’DATAREP’
returns a string indicating the type of file:

NATIVE
local files.

FOREIGN
non-native files.

’ENCRYPT’
returns ’YES’ or ’NO’ depending on whether the SAS table is encrypted.

’ENGINE’
returns the name of the engine used to access the SAS table.

’LABEL’
returns the label assigned to the SAS table.

’LIB’
returns the libref of the SAS data library in which the SAS table resides.

’MEM’
returns the name of the SAS data library member.

’MODE’
returns the mode in which the SAS table was opened, such as:

I INPUT mode, allows random access if the engine supports it;
otherwise, defaults to IN mode

IN INPUT mode, reads sequentially and allows revisiting rows

IS INPUT mode, reads sequentially but does not allow revisiting
rows

N NEW mode (to create a new SAS table)

U UPDATE mode, allows random access if the engine supports it;
otherwise, defaults to UN mode

UN UPDATE mode, reads sequentially and allows revisiting rows



SAS Component Language Dictionary � ATTRC and ATTRN 233

US UPDATE mode, reads sequentially but does not allow revisiting
rows

V UTILITY mode, allows modification of column attributes and
indexes that are associated with the SAS table.

For more information about open modes, see “OPEN” on page 581.

’MTYPE’
returns the type of the SAS data library member.

’SORTEDBY’
returns an empty string if the SAS table is not sorted. Otherwise, returns the
names of the BY columns in the standard BY statement format.

’SORTLVL’
returns an empty string if the SAS table is not sorted. Otherwise, returns one of
the following:

WEAK
The sort order of the SAS table is not validated. That is, the sort order was
established by a user (for example, through a SORTEDBY SAS data set
option). The system cannot validate its correctness, so the order of the rows
cannot be depended upon.

STRONG
The sort order of the SAS table is validated. That is, the order of its rows can
be depended upon. The sort order was established by the software (for
example, through PROC SORT or through the OUT= option on the
CONTENTS procedure).

’SORTSEQ’
returns an empty string if the SAS table is sorted on the native machine or if the
sort collating sequence is the default for the operating system. Otherwise, returns
the name of the alternate collating sequence that is used to sort the file.

’TYPE’
is the SAS table type.

Attributes for the ATTRN Function
To check for a numeric attribute, use ATTRN with one of the following values for
attr-name:

’ANY’
specifies whether the table has rows or columns:

-1 The table has no rows or columns.

0 The table has no rows.

1 The table has both rows and columns.

’ALTERPW’
indicates whether a password is required in order to alter the SAS table:

1 The SAS table is alter protected.

0 The SAS table is not alter protected.

’ANOBS’
indicates whether the engine knows the number of rows:

1 The engine knows the correct number of rows.



234 ATTRC and ATTRN � Chapter 13

0 The engine does not know the correct number of rows.

’ARAND’
indicates whether the engine supports random access:

1 The engine supports random access.

0 The engine does not support random access.

’ARWU’
indicates whether the engine can manipulate files:

1 The engine is not read-only. It can create or update SAS files.

0 The engine is read-only.

’AUDIT’
indicates whether an audit trail is active:

1 An audit trail is active.

0 No audit trail is active.

’AUDIT_BEFORE’
indicates whether the audit trail will log an image of the row before updates:

1 The audit trail will log an image of the row before updates.

0 No image of the row will be logged before updates.

’AUDIT_DATA’
indicates whether the audit trail will log an image of the row after updates:

1 The audit trail will log an image of the row after updates.

0 No image of the row will be logged after updates.

’AUDIT_ERROR’
indicates whether the audit trail will log an image of an unsuccessful update to
the row:

1 The audit trail will log an image of an unsuccessful update to
the row.

0 No image of an unsuccessful update to the row will be logged.

’CRDTE’
returns the SAS table creation date. The value returned is the internal SAS
DATETIME value for the creation date. Use the DATETIME format to display this
value.

’GENMAX’
returns the maximum number of generations.

’GENNEXT’
returns the next generation number to generate.

’ICONST’
returns information on the existence of integrity constraints for a SAS table:

0 No integrity constraints.

1 One or more general integrity constraints.

2 One or more referential integrity constraints.

3 Both one or more general integrity constraints and one or more
referential integrity constraints.



SAS Component Language Dictionary � ATTRC and ATTRN 235

’INDEX’
indicates whether the SAS table supports indexing:

1 Indexing is supported.

0 Indexing is not supported.

’ISINDEX’
indicates whether the SAS table is indexed:

1 At least one index exists for the SAS table.

0 The SAS table is not indexed.

’ISSUBSET’
indicates whether the SAS table is a subset:

1 At least one WHERE clause is active.

0 No WHERE clause is active.

’LRECL’
returns the logical record length.

’LRID’
returns the length of the record ID.

’MODTE’
returns the last date and time the SAS table was modified. Use the DATETIME
format to display this value.

’NDEL’
returns the number of deleted rows in the SAS table.

’NLOBS’
returns the number of logical rows (those not marked for deletion). An active
WHERE clause does not affect this number.

’NLOBSF’
returns the number of logical rows (those not marked for deletion) that match the
active WHERE clause.

Note: NLOBSF should be used with caution. Passing NLOBSF to ATTRN
requires the engine to read every row from the table that matches the WHERE
clause. Based on the file type and size, this can be a time-consuming process. �

’NOBS’
returns the number of physical rows (including those marked for deletion). An
active WHERE clause does not affect this number.

’NVARS’
returns the number of columns in the SAS table.

’PW’
indicates whether a password is required in order to access the SAS table:

1 The SAS table is protected.

0 The SAS table is not protected.

’RADIX’
indicates whether access by row number is allowed:

1 Access by row number is allowed.

0 Access by row number is not allowed.



236 ATTRC and ATTRN � Chapter 13

Note: A SAS table on a tape engine is index addressable even though it cannot be
accessed by row number.

’READPW’
indicates whether a password is required in order to read the SAS table:

1 The SAS table is read protected.

0 The SAS table is not read protected.

’TAPE’
indicates whether the SAS table is a sequential tape file:

1 The SAS table is a sequential tape file.

0 The SAS table is not a sequential tape file.

’WHSTMT’
returns information about active WHERE clauses:

0 No WHERE clause is active.

1 A permanent WHERE clause is active.

2 A temporary WHERE clause is active.

3 Both permanent and temporary WHERE clauses are active.

’WRITEPW’
indicates whether a password is required in order to write to the SAS table:

1 The SAS table is write protected.

0 The SAS table is not write protected.

Examples

Example 1: Using the ATTRC Function and MODE Ensure that the SAS table has been
opened in UPDATE mode and display an error message if it is not open:

mode=attrc(tableid,’MODE’);
if (mode ne ’U’) then _msg_=

’Table not open in UPDATE mode.’;
else rc=sort(tableid,’name’);

Example 2: Using the ATTRN Function and WHSTMT Determine whether a WHERE
clause is currently active for a SAS table:

iswhere=attrn(tableid,’whstmt’);
if (iswhere) then _msg_=

’A WHERE clause is currently active.’;

Example 3: Using the ATTRN Function to Determine Audit Trail Information To test the
AUDIT attributes of the ATTRN function, follow these steps:

1 Create a data set with an audit file by entering the following code in the SAS
Editor and then submitting it:

data sasuser.class;
set sashelp.class;

run;
proc datasets lib=sasuser;

audit class;
initiate;



SAS Component Language Dictionary � _BLANK_ 237

log data_image=yes error_image=no before_image=yes;
run;quit;

2 Query the audit file by entering the following code in an SCL file:

INIT:
dsid=open(’sasuser.class’);
auditIsActive=attrn(dsid,’AUDIT’);
auditHasDataImage=attrn(dsid,’AUDIT_DATA’);
auditHasErrorImage=attrn(dsid,’AUDIT_ERROR’);
auditHasBeforeImage=attrn(dsid,’AUDIT_BEFORE’);
put auditIsActive= auditHasDataImage= auditHasErrorImage= auditHasBeforeImage=;

return;

3 When you compile and then execute the SCL code, the SAS log displays:

auditIsActive=1 auditHasDataImage=1 auditHasErrorImage=0 auditHasBeforeImage=1;

See Also

“DESCRIBE” on page 320
“OPEN” on page 581

_BLANK_

Special missing value

Category: System Variable

Details

_BLANK_ is a system variable that is created for every SCL program that you compile.
The compiler creates a space for _BLANK_ in the SCL data vector. In SAS/AF
applications, you can compare the value of window variables against the value
_BLANK_ to test whether a value has been entered in a field in the window. The test is
valid for both numeric and character variables. You can also use _BLANK_ in
assignment statements to reset a window variable to a blank, as if the user had not
entered a value in the field. You cannot reset the value of the _BLANK_ variable itself.

In comparison operations, _BLANK_ is considered the smallest missing value.

Example

The following code fragment prints a message if X is modified and is blank:

if modified(x) and x eq _blank_ then
_msg_ = ’Please enter a value’;

See Also

“CLRFLD” on page 269
“SETFLD” on page 662



238 BLOCK � Chapter 13

BLOCK

Displays a menu containing up to 12 choice blocks and returns the number of the user’s choice

Category: Window

Syntax
choice=BLOCK(window-name,title,color,text-1, . . . ,

text-12<,icon-1, . . . , icon-12>);

choice
returns either the number (1-12) of the selected block, or one of the following:

−99
if a user requested help for SAS software

−1 to −12
if a user requested help for the block

0
if a user issued the END, CANCEL, or BYE command

99
if an unknown command is issued (see “WORD” on page 744).

Type: Numeric

window-name
is the title (up to 80 characters) for the window.

Type: Character

title
is the title (up to 60 characters) for the menu’s title box.

Type: Character

color
is a number from 0 to 33 that represents the combination of colors to be used for the
blocks. The colors and numbers are listed in “Values For The Color Argument” on
page 239. Some devices do not support changing the background color. If you have
specified that icons be used with BLOCK, then the specified color combination may
not take effect. The display of icons is host specific, and therefore the color may be
controlled by the host operating system. (Under Windows or OS/2, use the Color
Palette to alter icon colors. Under X windows, set X resources to control icon colors.)

Type: Numeric

text-1, . . . , text-12
is the text for each block or icon to display (up to 14 characters). The blocks or icons
are displayed in groups of four. Blocks for the first four text values are displayed on
the first row, blocks for the second four text values are displayed on the middle row,
and blocks for the last four text values are displayed on the last row. Twelve values
are required, but you can use null values for block positions that you do not want
displayed.

Type: Character



SAS Component Language Dictionary � BLOCK 239

icon-1, . . . , icon-12
are numbers for icons to display in place of the blocks. If no values are provided for
icons, or if the host system does not support icons, then standard rectangular blocks
are displayed. If you specify a number for which no icon is defined, then the default
SAS icon is displayed. If at least one icon number is specified, and the total number
of icons is less than the total number of text labels, then the default SAS icon is
displayed for text labels that lack an associated icon number.

Type: Numeric

Details
The number of text values that you specify determines how many blocks of icons are
displayed in the menu. In order to display an icon menu, you must specify at least one
icon position, although you can display the default SAS icon by specifying 0 for
positions for which a value for text is supplied.

Because BLOCK does not generate a physical display window, window options such
as KEYS are not recognized. The BLOCK function windows recognize only DMKEYS
settings. To alter DMKEYS settings for a BLOCK menu, you can use GETFKEY and
SETFKEY in a program that runs before the BLOCK menu opens. This program must
have a display screen associated with it.

This function attempts to display the blocks in the best manner depending upon the
characteristics of the user’s display device. The function displays up to three rows of
four blocks. Blocks are displayed in the order in which the text arguments appear in the
function. Only the nonblank choices are displayed, and the blocks in each row are
centered in the row.

When the function is called, it queries the current value of choice. If the value of
choice corresponds to a valid selection number, the cursor is positioned on the correct
block. Otherwise, the cursor is positioned in the upper-left corner of the window.

To make a selection from the block menu, a user must move the cursor to the
appropriate block and then press ENTER or click the mouse. BLOCK returns the index
of the selection.

If a user presses the HELP key on one of the selections, then the negative of the
selection is returned. If a user presses the HELP key while the cursor is not on one of
the blocks, then the value −99 is returned.

If a user issues the END or CANCEL command via a function key, then the value 0
is returned.

Use ENDBLOCK to close the menu window that is opened by BLOCK.

Values For The Color Argument

Table 13.1 Values for the Color Argument

Color Background Border Text Icon Shadow

0 black white white white white

1 black gray cyan gray blue

2 black gray cyan gray blue

3 black cyan cyan gray cyan

4 black gray white cyan gray

5 black cyan yellow cyan blue

6 black gray white blue gray

7 black gray yellow blue gray



240 BLOCK � Chapter 13

Color Background Border Text Icon Shadow

8 black gray white red gray

9 black gray white pink gray

10 black gray white yellow gray

11 black gray white red blue

12 blue gray cyan gray black

13 blue gray yellow gray black

14 blue gray white gray black

15 blue gray white magenta black

16 blue gray white red black

17 blue gray white cyan black

18 blue yellow white yellow black

19 blue gray white magenta gray

20 blue gray white red gray

21 gray blue black blue black

22 gray red black red black

23 gray magenta black magenta black

24 gray blue black cyan blue

25 gray cyan black cyan black

26 red gray white gray black

27 red gray black gray black

28 pink gray white gray black

29 pink gray black gray black

30 yellow gray black gray black

31 brown gray gray gray black

32 background* border* foreground* secondary

background*

black

33 secondary

background*

secondary

border*

foreground* background* black

* SASCOLOR window element names.

Example

Create a menu with five choices represented by icons. The first row contains two
icons, Outline and Index. The second row contains two icons, Compare Files and
Calendar. The third row contains a single icon, End.

Because the CHOICE variable is assigned the value 5 before BLOCK is called, the
cursor is positioned on the Compare Files icon when the window opens. When a user
makes a selection, the SELECT statement either exits the DO loop or calls another
PROGRAM entry. When control returns from the called program, the menu is displayed
again.



SAS Component Language Dictionary � BUILD 241

INIT:
choice=5;
LOOP:

do while(choice ne 0);
choice=block(’Writers Toolbox’,

’Main Menu’,6,’Outline’,’Index’,
’’,’’,’Compare Files’,
’Calendar’,’’,’’,
’End’,’’,’’,’’,
1,2,0,0,3,4,0,0,111,0,0,0);

select(choice);
when(1) call display(’outl.scl’);
when(2) call display(’index.scl’);
when(5) call display(’compare.scl’);
when(6) call display(’calend.scl’);
when(9) leave LOOP;
otherwise do;

if (choice<0) then
call display(’help.scl’,choice);

end;
end;

end;
call endblock();

return;

See Also

“ENDBLOCK” on page 346

BUILD

Invokes the BUILD window in SAS/AF software

Category: Utility

Syntax

CALL BUILD(entry<,open-mode<,resource><,pmenu>>);

entry
is the name of an entry in a SAS catalog. A one-level name is assumed to be
WORK.catalog. A two-level name is assumed to be libref.catalog. A three-level name
is assumed to be libref.catalog.entry.PROGRAM. A four-level name is assumed to be
libref.catalog.entry.type.

If a catalog is specified instead of a catalog entry, the Explorer window is brought
up and the three optional parameters are ignored.

Type: Character



242 BUILD � Chapter 13

open-mode
is the mode in which to open the catalog:

’EDIT’|’E’
opens the catalog entry for editing. (This is the default.)

’BROWSE’|’B’
opens the catalog entry for browsing.

’COMPILE <NOMSG>’|’C <NOMSG>’
compiles the FRAME, PROGRAM, or SCL entry specified in entry. The NOMSG
option prevents NOTE messages from being sent to the SAS log when batch files
are being run (or to the LOG window for all other files) when the program is
compiled, but it does not suppress compiler error or warning messages.

Type: Character

resource
is the RESOURCE entry if entry is a FRAME entry. A one- or three-level name can
be specified. A one-level name assumes that the RESOURCE entry is in the current
catalog, the SASUSER.PROFILE catalog, or the SASHELP.FSP catalog.

Type: Character

pmenu
is the PMENU entry for the DISPLAY window. If pmenu is not supplied, a default
PMENU entry is displayed. A one-level name assumes that the PMENU entry is in
either the current catalog, the SASUSER.PROFILE catalog, or the SASHELP.FSP
catalog. For FRAME and PROGRAM entries, you can specify a secondary PMENU
entry for the SOURCE window. Use a space to separate a secondary PMENU name
from a main PMENU name.

Type: Character

Details
You can use the BUILD routine to

� open catalog entries from within an application

� compile PROGRAM, FRAME, or SCL entries without displaying the contents of
the entries

� view SAS/GRAPH or SAS/AF entries.

If a catalog entry is specified in the first parameter instead of an entry, none of the
optional parameters are honored.

Note: When a program uses the BUILD routine, SAS/AF software must be licensed
at sites where the application is executed. �

Examples

Example 1: Opening an Entry Open a PROGRAM entry named NAME in edit mode in
the catalog MYLIB.MYCAT:

call build(’mylib.mycat.name’);

Example 2: Compiling a FRAME Entry Compile the source code for the entry
A.FRAME in the WORK.TEST catalog without opening a DISPLAY window for the
entry and without displaying any NOTES:

call build(’work.test.a.frame’,’compile nomsg’);



SAS Component Language Dictionary � CATCH 243

Example 3: Specifying RESOURCE and PMENU Entries Edit a FRAME using a
particular RESOURCE and PMENU:

call build(’lib.cat.name.frame’,’e’,
’lib.cat.build.resource’,’lib.cat.build.pmenu’);

Example 4: Specifying a Secondary PMENU Entry Edit a FRAME entry using a
custom PMENU for both the DISPLAY and SOURCE windows. The DISPLAY window
uses MYPMENU1.PMENU, and the SOURCE window uses MYPMENU2.PMENU.

call build(’lib.cat.a.frame’,’e’,’’,
’mypmenu1 mypmenu2’);

See Also
“CBT” on page 248
“DISPLAY” on page 330

CATCH

Processes an exception that has been thrown with the THROW statement

Category: Control Flow

Syntax
CATCH exception;

/* SCL statements to process the exception */

ENDCATCH;

Note: CATCH blocks must always be enclosed in DO statements. �

exception
is the local variable for the exception (which is an instance of the SCL Exception
class) that you want to process.

Details
When an exception is raised via the THROW statement, normal execution of the
program stops, and SCL begins looking for a CATCH block to process the exception.
The CATCH block can contain any statements needed to process the exception,
including additional CATCH and THROW statements.

SCL uses the scope of the DO group that contains the CATCH block and the class of
the exception to determine which CATCH block to execute. For details, see “How SCL
Determines Which CATCH Block To Execute” on page 167.

Each entry in the stack can process an exception and then pass it back up the stack
by rethrowing it, which allows the calling entry to perform additional processing. Each
entry can perform whatever processing is relevant to that entry.

If an exception is rethrown within a CATCH block, no other CATCH block within the
same scope can recatch the exception. The exception is passed out of the scope where it



244 CATLIST � Chapter 13

was thrown. Also, you cannot define multiple CATCH blocks for the same exception
within the same scope.

Example

The following DO group declares a local exception variable called NE, creates a new
instance of NE, and throws the new exception. The CATCH block prints the traceback
information that is automatically stored by SCL when an exception is thrown.

do;
dcl SCLException NE = _new_ NewException(’Exception in method m’);
throw NE;

catch NE;
put NE.getMessage(); /* Print exception information. */
call putlist(NE.traceback);

endcatch;
end;

See Also
“THROW” on page 704
Chapter 10, “Handling Exceptions,” on page 163

CATLIST

Displays a host selector window that lists entries in a SAS catalog, and returns user selections

Category: Catalog, Selection List

Syntax
selections=CATLIST(catalog-name,type,num-sel,prefix<,message>);

selections
contains one or more user selections from the list. Separate multiple selections with
one or more blanks. By default, selections is 200 bytes long. To accommodate values
longer than 200 bytes, explicitly declare selections with a longer length.

Type: Character

catalog-name
is either a SAS catalog name, in the form libref.catalog, or * to allow a user to
interactively select a libref, catalog, and entry.

Type: Character

type
is the entry type to list for selection (for example, SCL or FRAME). To display the
names of all entries in the catalog, use ’ALL’ or ’’.

num-sel
is the maximum number of items a user can select. To display the list for information
only (no selections allowed), specify 0. To specify an unlimited number of selections,



SAS Component Language Dictionary � CATLIST 245

use a value that is equal to or larger than the number of available selections. A user
cannot make a number of selections that exceeds the number of items in the list.

Type: Numeric

prefix
specifies whether selected entries are prefixed by the catalog name:

’Y’ returns selected names in the form libref.catalog.entry.type. This
is the default value if catalog-name is *.

’N’ | ’’ returns selected names in the form entry.type.
Type: Character

message
is the text for the message that is displayed at the top of the selection list window.
The default message tells users to make up to num-sel selections.

Type: Character

autoclose
is an obsolete argument but is retained for compatibility with earlier releases. If you
want to specify a value for num-sel, then specify ’’as a placeholder for this argument.

Type: Character

Details
You can provide default values that will be initially selected when the catalog selection
list is displayed. To do this, assign the values to the selections variable before calling
CATLIST. If selections contains valid values when the function is invoked, then those
names are automatically designated as selected when the selection list is displayed.

If a user closes the Catalog Entry Selector window without making a selection, then
CATLIST returns a blank value unless there was an initial value for the selections
variable before CATLIST was called.

Selections from the window can be returned in the current result list, if one is
available. The current result list is a special SCL list that is automatically filled with
the values that have been selected from a selection list. To create a current result list,
use the MAKELIST function to create it, and use the CURLIST function to designate it
as the current result list. The current result list must exist before you call the
CATLIST function.

When CATLIST is invoked, the current result list is cleared. After CATLIST is
invoked, the result list contains the following named items:

TAG
identifies the list as one that was created by CATLIST.

Type: Character

COUNT
contains either the number of selected elements, or 0 if a user makes no selections
or issues a CANCEL command in the list window.

Type: Numeric

NAME
contains the uppercase name of each selected catalog entry. If the value of prefix is
Y, then the prefix is appended to the beginning of each name. There is one NAME
element for each selection.

Type: Character

DESC
contains the description of each selected catalog entry. There is one DESC element
for each selection. The value of DESC is in the same case that was entered
originally.



246 CATNAME � Chapter 13

Type: Character

DATE
contains the date of last modification for each selected catalog entry. There is one
DATE element for each selected catalog entry.

Type: Character

Because some engines support mixed-case filenames, CATLIST now retains the cases of
the returned selected items. This may cause your application to fail if your application
contains code that assumes the returned selection is uppercased. For example,

if (catlist(dsid, ’TESTNDX’)=’NDXVAR’)

must be changed to

if (upcase(catlist(dsid, ’TESTNDX’))=’NDXVAR’

If the application cannot be modified, you may need to specify the
VALIDVARNAME=V6 system option when you run the application to ensure that the
selections returned from the CATLIST function will be uppercased.

Example

Display a selection list that contains the entries in the catalog MYLIB.TEST, and
allow users to make up to five selections. Use GETNITEMC to retrieve the selected
values from the current result list.

listid=makelist();
rc=curlist(listid);
selections=catlist(’mylib.test’,’all’,5);
n=getnitemn(listid,’COUNT’);
do i=1 to n;

name=getnitemc(listid,’NAME’,i);
desc=getnitemc(listid,’DESC’,i);
date=getnitemc(listid,’DATE’,i);
put name= desc= date=;

end;

See Also

“CURLIST” on page 298
“DIRLIST” on page 327
“FILELIST” on page 386
“LIBLIST” on page 508

CATNAME

Defines a concatenated catalog, which contains a logical combination of the entries in two or
more catalogs

Category: Catalog



SAS Component Language Dictionary � CATNAME 247

Syntax
rc=CATNAME(cat-name,action<,catalog-list><,list-id>);

rc
contains the return code for the operation:

0 successful

1 not successful
Type: Numeric

cat-name
is a two-level name (libref.catalog) for the concatenated catalog. The libref must
already be defined.

Type: Character

action
specifies the action to take on cat-name:

’SET’ sets the definition.

’CLEAR’ clears the definition.

’LIST’ lists the members and saves them in the SCL list referenced by
list-id.

Type: Character

catalog-list
lists the two-level names (libref.catalog) of two or more SAS catalogs whose entries
are logically combined in cat-name. Use at least one blank space to separate catalog
names. This list can contain concatenated catalogs that were previously defined with
the CATNAME function.

Type: Character

list-id
contains the identifier for the list of catalogs to be logically combined in cat-name, if
action is SET and catalog-list is not specified. If action is LIST, then the list contains
the following information about all of the entries:

CATNAME
The catalog name, which is a two-level name (libref.catalog) for the concatenated
catalog.

Type: Character

LEVELS
The total number of levels of the defined catalog name.

Type: Numeric

(sublist1...sublistn)
Sublist number 1 to n, where n is the total number of levels.

Type: List
The sublist elements are as follows:
� LEVEL, which is the level number. Type: Numeric
� CATALOG, which is the catalog name. Type: Character
� ENGINE, which is the engine name. Type: Character
� PHYSICAL NAME OF LIBRARY, which is the physical name of the library.

Type: Character

Type: Numeric or List



248 CBT � Chapter 13

Details
CATNAME defines a concatenated catalog that is a logical combination of the entries in
two or more SAS catalogs. When the program uses cat-name as the catalog in a catalog
entry name, SAS searches for the specified entry in the catalogs specified in catalog-list
or list-id. A concatenated catalog name that is defined with CATNAME can be part of
catalog-list or list-id for another CATNAME function.

This feature is most useful for debugging and testing during application
development. It eliminates the need to copy a whole catalog when you need to test and
change a single catalog entry that contains a particular method.

Examples

Example 1: Defining a CATNAME Create concatenated catalog S.T, which logically
combines the entries in catalogs A.B and C.D. Then, create concatenated catalog E.F,
which contains the logical combination of the entries in the concatenated catalog S.T as
well as the entries in Q.T and X.Y. A subsequent reference in a program to
S.T.TEST.SCL causes SAS to search for A.B.TEST.SCL and then for C.D.TEST.SCL. A
reference to E.F.TEST.SCL causes SCL to search for A.B.TEST.SCL, then for
C.D.TEST.SCL, then for Q.T.TEST.SCL, and finally for X.Y.TEST.SCL.

rc=catname (’s.t’,’set’,’a.b c.d’);
rc=catname (’e.f’,’set’,’s.t q.t x.y’);

Example 2: Defining a CATNAME for a list-id Use the ’LIST’ action to query the
definition of E.F from Example 1.

list=makelist();
rc=catname(’e.f’,’list’,’’,list);
call putlist(list);

See Also
“SEARCH” on page 646

CBT

Runs a CBT entry

Category: Modular Programming and Object Oriented

Syntax
CALL CBT(entry<,frame><,frame-name>);

entry
is the name of a CBT entry. Specify a CBT entry in the current catalog with entry.
Specify an entry in the current catalog with entry.type. Specify a CBT entry in a
different catalog with libref.catalog.entry. Specify a different type of entry in a
different catalog with libref.cat-name.entry.type.



SAS Component Language Dictionary � CBT 249

frame
is the number of the frame in the CBT entry to be displayed initially.

Type: Numeric

frame-name
is the name assigned to the frame in the CBT to be displayed initially. If this
argument is specified, the value of frame is ignored.

Type: Character

Details
The CBT routine opens a CBT entry window. You can optionally specify the name or
number of the CBT frame to display initially. For information about CBT entries, see
the SAS documentation for SAS/AF software. You can use CBT entries to link detailed
instructional information with an application so that the information is readily
available.

The following restrictions apply for users of a CBT entry that is called from an SCL
program:

� The SAVE command is not recognized.
� =X returns the user to the calling program.
� QCANCEL returns the user to the calling program.
� QEND returns the user to the calling program.

Examples

Example 1: Displaying a Particular CBT Frame Display the second frame of the entry
EXAMPLE.CBT:

call cbt(’example’,2);

Display the frame named ABC of the entry EXAMPLE.CBT:

call cbt(’example’,1,’abc’);

Example 2: Calling a CBT Entry Suppose an application requires users to be familiar
with a particular set of terminology. You use the following program to call a CBT course
(in this example, TERMINAL.CBT) that teaches the appropriate information. The
following example runs the CBT entry if a user issues the command TEACH. Then,
when the user exits the CBT course, it returns control to the SCL statement that
follows the call to TERMINAL.CBT.

control always;
if (upcase(word(1))=’TEACH’) then

do;
call nextcmd();
call cbt(’terminal’);

end;

See Also
“DISPLAY” on page 330
“GOTO” on page 444



250 CENTER � Chapter 13

CENTER

Returns a centered character string

Category: Character

Syntax
centered-string=CENTER(string<,length>);

centered-string
contains the centered character string. If centered-string already exists, then
specifying length changes the length of centered-string to the number of characters
specified in length.

Type: Character

string
contains the character string to be centered.

Type: Character

length
contains the length in which the character string is to be centered. The default is the
maximum length of centered-string.

Type: Numeric

Details
The default length is the maximum length of centered-string. The string is centered by
padding with spaces. To enable CENTER to work properly when centered-string is a
window variable, set the justification attribute (JUST) for the control or field to NONE.

To left- or right-justify a string, use LEFT or RIGHT, respectively.

See Also
“LEFT” on page 500
“RIGHT” on page 630



SAS Component Language Dictionary � CEXIST 251

CEXIST

Verifies the physical existence of a SAS catalog or SAS catalog entry

Category: Catalog

Syntax
rc=CEXIST(entry< ,’U’>);

rc
contains the return code for the operation:

1 The SAS catalog or catalog entry exists.

0 The SAS catalog or catalog entry does not exist.
Type: Numeric

entry
is SAS catalog, or the name of an entry in a catalog. A one- or two-level name is
assumed to be the name of a catalog. To test for the existence of an entry within a
catalog, use a three- or four-level name.

Note: The CEXIST function verifies whether the entry physically exists.
Concatenated names are a logical concatenation, not a physical entity. If you specify
a concatenated name for entry, CEXIST will return a 0. �

Type: Character

’U’
tests whether the catalog specified in entry can be opened for updating.

Type: Character

Examples

Example 1: Testing Whether a Catalog Can Be Updated Test whether the catalog
LIB.CAT1 exists and can be opened for update. If the catalog does not exist, a message
is displayed on the message line.

if (cexist(’lib.cat1’,’u’)) then
_msg_=’The catalog LIB.CAT1 exists and can be

opened for update.’;
else _msg_=sysmsg();

Example 2: Verifying the Existence of a Catalog Verify the existence of the entry
X.PROGRAM in LIB.CAT1:

if (cexist(’lib.cat1.x.program’)) then
_msg_=’Entry X.PROGRAM exists’;

else _msg_=sysmsg();

See Also
“EXIST” on page 367



252 _CFRAME_ � Chapter 13

_CFRAME_

Contains the identifier of the FRAME entry that is currently executing

Category: System Variable

Details
_CFRAME_ is a system variable that is provided automatically for FRAME entries.
_CFRAME_ has a valid value only when a FRAME entry’s SCL code is running or when
a FRAME entry or component method is running.

Example

Suppose the entry FIRST.FRAME contains an icon. The icon’s _select method is
defined to run SECOND.FRAME, which contains the following program:

INIT:
/* Send a method to the current FRAME */

_CFRAME_._setMsg(’Running the Select method’);
return;
TERM:

/* Send a method to the FRAME that */
/* contains the icon */

_FRAME_._setMsg(’The Select method has finished.’);
return;

When FIRST.FRAME displays and a user selects the icon, SECOND.FRAME
displays with the message “Running the Select method.” After the user ends from
SECOND.FRAME, FIRST.FRAME displays the message “The Select method has
finished.” This is accomplished by sending the _setMsg method to _CFRAME_ (the
FRAME entry that is currently running) in the INIT section and by sending _setMsg to
_FRAME_ (the FRAME entry that contains the icon) in the TERM section.

See Also
“_FRAME_” on page 416



SAS Component Language Dictionary � CLASS 253

CLASS

Creates a class using SCL code

Category: Object Oriented

Syntax

<ABSTRACT> CLASS class-name<EXTENDS parent-class-name>
<SUPPORTS supports-interface-clause>
<REQUIRES requires-interface-clause>;
< / (class-optional-clause)>
<attribute-statements>

<method-declaration-statements>
<method-implementation-blocks>

<event-declaration-statements>
<eventhandler-declaration-statements>

ENDCLASS;

ABSTRACT
is an optional keyword used to define a class as an abstract class. Methods defined
inside an abstract class are not required to have method implementations. Abstract
classes are used to specify a common interface for several classes. An abstract class
can not be instantiated through the _NEW_ operator.

class-name
is the name of a class that you are creating, which can be specified as a one- to
four-level name.

parent-class-name
specifies the parent class of class-name and is specified as EXTENDS
parent-class-name. Parent-class-name can be specified as a one- to four-level name.

If no EXTENDS clause is supplied, parent-class-name defaults to
SASHELP.FSP.OBJECT.CLASS, which is the parent class of all SAS/AF classes.

supports-interface-clause
lists the interfaces that this class supports. Interfaces can be specified as follows:

SUPPORTSinterface-1<,interface-2...>
The interface names can be specified as one- to four-level names. All of the

methods listed in SUPPORTS must be implemented in the CLASS block.

requires-interface-clause
lists the interfaces required for this class. Interfaces are specified as follows:

REQUIRES interface-1<,interface-2...>
The interface names can be specified as one- to four-level names. The REQUIRES

interfaces are used for the client-server model. For more information, see
“INTERFACE” on page 478.

class-optional-clause
specifies options for the class. Options should be placed inside parentheses following
a / (slash). Separate multiple options with commas. Class options can be any of the
following:



254 CLASS � Chapter 13

Description=description
is a description of the CLASS entry. This description is used to identify the class
in the Components window. A description that does not match the description of
any other class is required. There is no programmatic validation of the uniqueness
of a description.

MetaClass=class-name
is the four-level name of the CLASS entry that contains the model of a class. The
default MetaClass is SASHELP.FSP.CLASS.CLASS.

attribute-statements
defines the class attributes, which determine how an object will look and behave.
Attributes can either be scalars or arrays. The syntax of a class attribute statement
is: access-scope type var-name< / (attribute options)>;

access-scope
can be one of the following:

‘PUBLIC’
specifies that the attribute can be accessed by any SCL program. DECLARE
may be used in place of public scope.

‘PRIVATE’
specifies that the attribute can be accessed only from methods in the class
where the attribute is defined.

‘PROTECTED’
specifies that the attribute can be accessed only from methods in subclasses of
the class where the attribute is defined. Since a class can be considered a
subclass of itself, a protected attribute can also be accessed from the class where
it is defined.

type
is the data type of the attribute. NUM, CHAR, LIST, OBJECT or a four-level
class-name are possible values of type.

var-name
is the name of the attribute. You can specify a multi-dimensional array by
providing an array dimension after var-name. For example:

PRIVATE num narray{3, 2, 3};

If an array variable has the same name as a method, the method name has
higher precedence when referencing that array. To avoid ambiguity, use [ ]or { }
instead of ( )to specify the array reference.

attribute-options
specifies options for a class attribute. List options inside parentheses following a /
(slash). Separate multiple options with commas. Attribute-options can be any of
the following:

AutoCreate=’N’ | ’Y’
determines whether an SCL list is created automatically when an instance of
the class is created. If AutoCreate=’Y’ (default), a four-level object name or
SCL list is created depending on the attribute type. If ’N’, then a four-level
object name or SCL list is not created, and the user is responsible for creating
and deleting this list.



SAS Component Language Dictionary � CLASS 255

Category=category-name
specifies the category for an attribute. Categories organize attributes so that
you can display only attributes for the category. You can create your own
category names. Components that are supplied with SAS software belong to the
following categories:

Appearance

Data

Drag and drop

Help

Misc (Miscellaneous)

Region

Size/location

Misc is the default.

Description=attribute-description
specifies the description of the attribute. When you click on an attribute in the
Class Editor, this text is displayed below the list of attributes.

Editable=‘N’ | ’Y’
determines whether attributes can be altered. ’Y’ is the default.

If EDITABLE=’Y’, then the attribute can be set anywhere that it is in scope:

� If the attribute is defined in class C and it is a public attribute, then it can
be set anywhere.

� If the attribute is defined in class C and it is a private attribute, then it
can only be set from methods in the class C.

� If the attribute is defined in class C and it is a protected attribute, then it
can only be set from methods in C and subclasses of C.

If EDITABLE=’N’, then the ability to set the attribute is restricted based on
its scope:

� If the attribute is defined in a class C and it is a public attribute, then it
can only be set from methods in C and subclasses of C.

� If the attribute is defined in class C and it is a protected attribute, then it
can only be set from methods in C.

� If the attribute is defined in class C and it is a private attribute, it cannot
be set anywhere. (It is effectively a constant.)

Editor=editor-entry-name
specifies a FRAME, SCL, or PROGRAM entry that returns a value. The
Editor= option is available for attributes of all types except OBJECT. If
supplied, the specified entry is displayed and executed by the Properties window
when the ellipsis button (...) in the cell is clicked. The value that is returned
from the entry is displayed in the cell in the Properties window.

Editors are typically FRAME entries that are designed to aid an application
developer in specifying a value for an attribute. For example, for an attribute
called ’textColor’ that can be assigned to any hexcolor string, you could design a
FRAME entry window to help the user visually see what the hexcolor string
represents. The window could contain an RGB slider control with a sample box
that shows the color that is being created as a user manipulates the red/green/
blue sliders. In this example, you assign the name of the FRAME entry as the
value of EDITOR=, and this window opens when a user selects the ... button
for the TEXTCOLOR attribute in the Properties window.



256 CLASS � Chapter 13

GetCAM=method-name
specifies the custom access method to be executed when the value of the
attribute is queried. Using dot notation to query an attribute for which a
getCAM method has been defined may result in side effects. See “What
Happens When Attribute Values Are Set or Queried” on page 128.

InitialValue=initial-values
specifies an initial value for the attribute. This option is valid only for attributes
with types CHAR , NUM, and SCL LIST.For an example of using an SCL list as
an initial value, see “Initializing the Values in an SCL List” on page 53.

Linkable=‘N’ | ’Y’
determines whether an attribute is linkable from the Properties window. Only
public attributes are linkable. Private and protected attributes are not
displayed in the Properties window. Y is the default.

SendEvent=‘N’ | ’Y’
determines whether an attribute sends an event when modified. When
SENDEVENT=’Y’, SAS assigns the Event Name, which has the format
‘‘attributeName Changed’’, and registers it with the component. Y is the
default. When SENDEVENT=’N’, no Event name will be registered

SetCAM=method-name
specifies the custom access method to be executed when the attribute value is
assigned.Using dot notation to set an attribute for which a setCAM method has
been defined may result in side effects. See “What Happens When Attribute
Values Are Set or Queried” on page 128.

State=’N’|’O’
determines whether the attribute is new or is overridden. N is the default.

ValidValues=valid-values
specifies the values that are valid for the CHARACTER attribute. Use a space
or ’/’ or ’,’ to separate the values.
The following options are used for compatibility with Version 6 classes:

Automatic=‘Y’ | ’N’
specifies whether var-name is an automatic instance variable.

IV=V6-instance-variable-name
specifies the name of a Version 6 instance variable.

PureIV=‘Y’ | ’N’
When PureIV=’Y’, it specifies that var-name is a pure Version 6 instance
variable and that no associated SCOM attribute will be created. N is the default.

method-declaration-statements
list the class methods.

For method-declaration-statements, use the following syntax:

method-label-name : <access-scope> METHOD<parameter-list>
< / (method-options)>;



SAS Component Language Dictionary � CLASS 257

method-label-name
can be up to 32 characters and has the same restrictions as an SCL label. By
default, you should treat method-label-name the same as the method name. To
define a more descriptive method name which is over 32 characters, use the
method= option.

access-scope
can be one of the following:

PUBLIC
designates a method that can be inherited by subclasses and accessed anywhere
the corresponding object exists. This is the default.

PRIVATE
designates a method that can be accessed only by methods in the class in which
the method is defined. Private methods will not be inherited by subclasses of
the class.

PROTECTED
designates a method that can be accessed only by subclasses in which the
method is defined. Since a class can be considered a subclass of itself, a
protected method can also be accessed from the class in which it is defined.

parameter-list
For parameter options such as using Input/Output/Update to store the parameter
storage, using “:” operator to specify the parameter type, using Optional= to
specify the varying arguments in the method, and using Return= to specify the
method return type, as well as Arglist= and Rest=, can all be applied in the
parameter list. For more information, see “METHOD” on page 539.

method-options
specify options for a class method. You must put the list inside parentheses that
follow a / (slash). Separate multiple options with commas. The available options
are

Abstract=’N’ | ’Y’
specifies that the method is an abstract method and does not have an
implementation associated with it. Abstract methods can be declared only in
abstract classes. The default is ’N’.

Description=method-description-string
specifies the description of the method.



258 CLASS � Chapter 13

Enabled=‘N’|’Y’
determines whether a method can be temporarily disabled. Y is the default.

Label=’method-label’
identifies a method whose label is different from the method-label-name. If the
Label= option exists, the Method= option cannot be used.

Method=’method-name’
identifies the method-label-name as the label name and the ’method-name’ will
be used for the method reference in the dot notation or CALL SEND routine.
Since the ’method-name’ is a string, you can extend the method name up to 256
characters. If the Method= option exists, the Label= option cannot be used.

Native=’/executable-name:n
specifies the name of a system-implemented method.

Note: This option is generated by the CREATESCL function. �

SCL | Entry=four-level-entry-name-string
identifies the entry that contains the USECLASS block that implements the
method. This option is required when the method is not implemented in the
SCL entry that contains the CLASS statement block.

Signature=‘N’|’Y’
determines whether the method has a signature. Y is the default. All methods
in Version 6 classes have Signature=’N’. Adding parameter-list and removing
Signature=’N’ for each method will cause the SCL compiler to generate
signatures for that method. Signature=’Y’ is required for method overloading.

State=‘O’|’N’
determines whether the method has been overridden or is new.

Forward=’N’|’Y’
determines whether the method can be forward referenced when Forward=’Y’.
The SCL compiler is a one-pass compiler and will report errors when
referencing a method that has not been defined in the current class. Using
Forward=’Y’ will allow the SCL compiler to suppress the error messages and
delay validation of the forward methods which are required to be defined later
in the current class. If the forward method is not defined before the ENDCLASS
statement, the SCL compiler will report the error. N is the default. This option
can be used for methods calling each other.

ArgDesc1 | ArgDesc2 |...| ArgDescN =each-argument-description-string
specifies each argument description. This option is used for documenting the
parameters.

ReturnDesc=return-argument-description-string
specifies the return argument description. This option is used for documenting
the return parameter.

method-implementation-blocks
contain any SCL statements for the defined methods. These statements perform the
operations of the method.

event-declaration-statements
define the class events. Declare the events as follows:

EVENT event-string-name < / (event-options)>;

event-string-name
is the name of the event you are declaring.



SAS Component Language Dictionary � CLASS 259

event-options
specifies options for the event. You must put the list inside parentheses that follow
a / (slash). Separate multiple options with commas. Event options can be

Description=event-description
specifies the description of the event.

Enabled=‘N’|’Y’
determines whether an event can be temporarily disabled. Y is the default.

Method=string
identifies the method that handles the event.

Send=’Manual’|’After’|’Before’
determines when the object sends the event.

After is the default.

eventhandler-declaration-statements
define the event handler to be executed after the events are triggered. The event
handler is an SCL method that handles the event. Declare the event handler as
follows:

EVENTHANDLER eventhandler-name< / (eventhandler-options)>;

eventhandler-name
is the name of the event handler of an SCL class method that you are declaring.

eventhandler-options
specifies options for the event handler. You must put the list inside parentheses
that follow a / (slash). Separate multiple options with commas. Event handler
options can be

Description=eventhandler-description
specifies the description of the event handler.

Enabled=‘N’|’Y’
determines whether an event handler can be temporarily disabled. Y is the
default.

Event=event-name
specifies the name of the event.

Method=string
identifies the method that handles the event.

Sender=’_SELF_’ | ’_ALL_’
identifies the location of the sender to trigger the event handler. When
Sender=’_SELF_’, the event handler will only listen to events from the class
itself. When Sender=’_ALL_’, the event handler will listen to events from any
other class. Using the method _addEventHandler, you can dynamically add a
sender to trigger the event.



260 CLASS � Chapter 13

Details

The CLASS statement enables you to use SCL to create a class and to define attributes,
methods, events and event handlers for the class. The CLASS block is especially useful
when you need to make many changes to an existing class such as adding signatures to
an existing class, or when you want to create a class in batch mode. Using the CLASS
block provides the advantages of error detection at compile time and improved
performance during run time. It also enables you to use short-cut notation. Instead of
using _SELF_.attribute or _self.method(...) to reference the name of a class attribute or
a class method, you simply specify the attribute or method name. This makes programs
easier to read and maintain. In addition, you can overload method definitions, which
means that multiple methods can have the same name, but have different numbers and
types of parameters.

The program block that defines a class starts with a CLASS statement and ends with
an ENDCLASS statement. A CLASS block can contain statements that define
attributes, methods, events, event handlers and even METHOD statement blocks
implementing the operations for methods. You can also put the METHOD statements
that implement class methods in another SCL entry when you use the SCL= method
option to specify the name of that entry. Then, in the SCL entry that is specified with
SCL=, define the methods for the class within a USECLASS statement block. Defining
methods in a separate entry is useful for enabling class methods to be created, tested,
or maintained by multiple application developers. For more information, see
“METHOD” on page 537.

To create a class from an SCL entry that contains a CLASS block, you must compile
and save the SCL entry as a CLASS entry. To do this, either issue the SAVECLASS
command or select File � Save Class from the SCL Source Editor. This is equivalent to
using the Class Editor to interactively create a CLASS entry. However, the Class Editor
provides a graphical view of the class, whereas the CLASS statement in SCL provides a
language view of the class.

Do not declare the _SELF_, _FRAME_, _CFRAME_, _METHOD_, or _EVENT_
system variables inside a CLASS or USECLASS block. SCL automatically sets these
values when it is running methods that are defined in CLASS or USECLASS blocks.
Redefining any of these system variables can introduce unexpected behavior.

In methods that are defined in a CLASS statement block, all references to the
methods and the attributes of the class can bypass two-level references to
_SELF_.attribute and _SELF_.method(...). Because these methods are defined within
the class, the SCL compiler can detect whether an undefined variable is a local variable
or a class attribute.

You can also use the _super method in method code inside a CLASS statement block
without having to specify either an object identifier or the method whose super method
you are calling. You can use the _super method to call any method. For example, to
invoke the super ADD method, you would use

_super.add();

To override the _init method, you must first call the super _init method before
overriding the _init method. For example:

_super._init();
...statements that define the
overridden _init method ...

Any SCL function or routine can be called inside a METHOD statement block that is
inside a CLASS block. Outside the METHOD statement block, only class attribute
statements, event statements and event handlers are allowed in a CLASS block. Other



SAS Component Language Dictionary � CLASS 261

than the IMPORT statement, no SCL statements can be written outside the CLASS
block.

METHOD blocks can include labeled sections. However, labeled sections that are
outside a method block must be re-coded as PRIVATE methods, and the LINK
statements that call them must be changed to method calls. This programming style
will make your applications more consistent with the object-oriented paradigm.

If a local variable that is defined in a METHOD block has the same name as a class
attribute, SCL gives precedence to the local variable. If a class method has the same
name as any SCL-supported function, SCL gives precedence to the function. If an
attribute array has the same name as a class method, SCL gives precedence to the
method. It is probably best to avoid using the same name for multiple local variables,
class attributes, method names or arrays to avoid problems.

The CLASS statement also enables you to define method definitions for overloading
methods, which means that multiple methods have the same name. Methods that have
the same names are allowed in a CLASS block only if the signatures, or parameter
numbers or types, are different. For example, a class can have one COMBINE method
that has numeric parameters and adds parameter values, and another COMBINE
method that has character parameters and concatenates parameter values.

Inheritance from multiple classes is not supported in class syntax, but is allowed
with interface syntax. For more information, see “INTERFACE” on page 478.

Examples

Example 1: A CLASS Block with Method Implementation This example defines the
Arith class, a subclass of Sashelp.Fsp.Object.class, and implements the methods in the
CLASS entry. The example shows the METHOD statements using the RETURN=
option and then RETURN statements returning values to the caller.

class work.classes.arith.class;
public num total;
public char catstr;

/* A method that adds numeric values */
add: public method n1:num n2:num return=num;

total = n1 + n2;
return (total);

endmethod;
/* A method that concatenates */
/* character values */

concat: public method c1:char c2:char return=char;
catstr = c1 || c2;
return (catstr);

endmethod;
endclass;

Example 2: A CLASS Block without Method Implementation This example defines the
Combine class and specifies the SCL entry in which the methods are implemented. The
class uses overloaded COMBINE methods, one to process numeric values and another
to process character values. The code that implements the methods is defined in a
USECLASS block.

class work.classes.combine.class;
public num total;
public char catstr;

combine: public method n1:num n2:num return=num



262 CLASS � Chapter 13

/ (scl=’work.classes.combine.scl’);

combine: public method c1:char c2:char
return=char
/ (scl=’work.classes.combine.scl’);

endclass;

Here is the USECLASS block that contains the method implementations for
WORK.CLASSES.COMBINE.CLASS:

useclass work.classes.combine.class;
combine: public method

n1:num n2:num return=num;
total = n1 + n2;
return (total);

endmethod;

combine: public method
c1:char c2:char return=char;

catstr = c1 || c2;
return (catstr);

endmethod;
enduseclass;

Example 3: Definition of a Class This example imports the Collection class, which is
provided with SAS/AF software, and shows several forms of attribute declarations,
method declarations, and overloading methods. Attributes list1 and list2, which define
SCL list initialization, can also be found in this example.

import sashelp.fsp.collection.class;
class work.classes.myclass.class

extends sashelp.fsp.object.class
/ (description = ’my first class file’);

/* simple attribute with no options */
public num num1;

/* Attribute with options */
public num num2

/ (description = ’second numeric attribute’,
initialvalue= 3,
validvalues = ’1 2 3’);

/* Another attribute with options */
public char string1

/ (editable = ’n’, linkable = ’n’,
initialvalue = ’abc’);

/* SCL List initializations:items without name*/
public list list1

/ (InitialValue={1, 2, 3, ’abc’, ’def’, 4, 5, 6}
);

/* SCL List initializations:Items with name.*/
/* Address is a sublist of list2 */

public list list2
/ (InitialValue={name=’John Doe’, Number=100,

Address={State=’NC’, CITY=’CARY’},
Office=’Bldg Z’} )



SAS Component Language Dictionary � CLASS 263

/* Private array attribute */
private num arr(3) ;

/* Private list attribute */
private list list;

/* Protected collection attribute */
protected collection coll;

/* public method m0 */
m0: Public method

/* External method implementations */
/ (scl=’mylib.classes.b.scl’,
label = ’M0’,
description=’test method m0’);

/* Public method m1 */
/* with no method options */

m1: public method ;
...more SAS statements...

endmethod;

/* Private overloading method m1 */
/* with numeric parameter */

m1: private method n: num;
...more SAS statements...

endmethod;

/* Protected overloaded method m1.
* Method implementations should be placed in
* work.classes.c.scl */

m1: protected method s: char
/* external method implementation */
/ (scl = ’work.classes.c.scl’);

/* Other public method */
m2: method return=num;

...more SAS statements...
return (1);

endmethod;

/* Private method */
m3: private method;

...more SAS statements...
endmethod;

endclass;

Example 4: Illustrating Short-Cut References This example shows how to use the
_super method as well as short-cut references to _SELF_:

CLASS work.classes.another.class;
Public Num n1;
Public Num n2;
Public Char c1;
Public Char c2;
Public Num m(3);



264 CLASS � Chapter 13

_Init: method / (State=’O’);
DCL Num n2;
DCL Char c2;

/* Equivalent to call super(_init); */
_SUPER();

/* Equivalent to _SELF_.N1 = 1 */
n1 = 1;

/* Local variable N2 dominates class */
/* attribute N2 */

n2 = 1;
m{1} = abs(n2);

/* Uses { to avoid ambiguity */
/* Equivalent to _SELF_.C1 = ’a’ */

c1 = ’a’;
/* Local variable C2 dominates */
/* class attribute C2 */

c2 = ’a’;
endmethod;

/* commonly used method can be PRIVATE */
Common: Private Method a:Num;

...more SCL statements...
a = a + 1;

endmethod;

M: method;
/* Equivalent to */
/* if _SELF_.N1 > 0 then */

if n1 > 0 then
/* Equivalent to */
/* _SELF_.N1 + 1; */

n1 + 1;
common(n1);

endmethod;
/* Method M1 with numeric parameter */

M: method n: Num;
/* Equivalent to _SELF_.M(); */

M();
common(n1);

endmethod;

endclass;

Example 5: Illustrating a Set Custom Access (setCAM) Method This example shows a
setCAM method, M1, which will be invoked when the attribute N is modified in the
_init method.

Class work.mycat.camDemo.class;
Public num n / (initialValue = 5,

setCam=’m1’);
_init: Method / (State=’O’);

_super();
n = 3;
EndMethod;

m1: Method nParm:Num;
/* - nParm is input value of attribute n */



SAS Component Language Dictionary � CLASS 265

nParm = nParm + 100;
/* nParm is output value of attribute n */

EndMethod;
EndClass;

To reference the camDemo class, you can code the following program:

Init:
DCL camDemo obj = _new_ camDemo();
obj.n = 7;
/* Using the SCL debugger to trace the sequence
* of this program, you will find the value
* of obj.n = 107 */
put obj.n=;
Return;

Example 6: Illustrating User-defined Events and Event Handlers This example shows a
system-defined event, ’n Changed’, which will be automatically generated to associate
with the attribute N. An event handler, M1, which is associated with the ’n Changed’
event is also written and will be executed when the attribute N is modified. Another
user-defined event, ’myEvent’, is created by the EVENT statement. The associated
event handler, M2, will be executed when an explicit _sendEvent method is executed.

Class work.mycat.eDemo.class;
Public num n; /* sendEvent=’Y’ is default*/
Public char c / (sendEvent=’N’);
Event ’myEvent’

/ (method=’m2’);
EventHandler m1

/ (Sender=’_SELF_’,
Event=’n Changed’);

EventHandler m2
/ (Sender=’_ALL_’,

Event=’myEvent’);
m1: method a:list;

Put ’Event is triggered by attribute N’;
endMethod;

m2: method a:string b:num ;
Put ’Event is triggered by _sendEvent’;
return (100);
endMethod;

EndClass;

You could use the following program to trace the control sequence of the event
handler by using the SCL debugger.

init:
DCL eDemo obj = _new_ eDemo();
obj.n = 3; /* will trigger the m1 */
obj._sendEvent(’myEvent’,’abc’,3);
Return;

Example 7: Illustrating Forward Method, Optional= and ArgList= This example shows
how to use the method option Forward=’Y’ to write a method, M1, which can invoke
another method, M2, defined after the current method, M1. Without the Forward=’Y’



266 CLEARLIST � Chapter 13

option, the SCL compiler will issue an error. The M1 method contains Optional=, which
actually includes two overloading methods.

Class mylib.mycat.forward.class;
m2: Method n:num c:char Return=Num / (Forward=’Y’);
m1: Method n1:num Optional=n2:num Arglist=argList

Return=Num;
DCL Num listLen = listlen(argList);
DCL Num retVal;
if (listLen = 1) then

retVal = m2(n1, ’abc’);
else if (listLen = 2) then

retVal = m2(n2, ’abc’);
Return(retVal);

EndMethod;
m2: Method n:num c:char Return=Num;

Return(n+length(c));
EndMethod;

EndClass;

See Also

“ARRAY” on page 227
“CREATESCL” on page 293
“ENDCLASS” on page 347
“METHOD” on page 539
“USECLASS” on page 715

CLEARLIST

Clears the items from an SCL list without deleting the list and optionally clears all sublist items

Category: List

Syntax

rc=CLEARLIST(list-id<,recursively>);

rc
indicates whether the operation is successful:

0 successful

≠0 not successful
Type: Numeric

list-id
is the identifier of the list that contains the items to clear. An invalid list-id produces
an error condition.

Type: Numeric or List



SAS Component Language Dictionary � CLEARLIST 267

recursively
indicates whether to recursively clear all the list’s sublists as well as all sublists of
its sublists.

’D’ Clears and deletes sublists recursively.

’N’ Sublists are not cleared. (This is the default.)

’Y’ Clears sublists recursively.
Type: Character

Details
CLEARLIST clears all the items from the SCL list identified by list-id. The list is not
deleted, but its length is reduced to 0. If recursively is ’Y’, then all the list’s sublists,
including sublists of sublists, are also cleared.

CAUTION:
Before you clear a list recursively, make sure it is not needed by other parts of the SCL
program. The recursively option clears all of a list’s sublists, even if they are
referenced in other SCL lists or by other SCL variables. �

An error condition results if
� the list has the NOUPDATE or FIXEDLENGTH attribute.
� any item in the list (or in its sublists, if recursively is ’Y’) has the NODELETE

attribute.
� recursively is ’Y’, and any sublist has the NOUPDATE or FIXEDLENGTH

attribute.
� list-id is a component or class identifier.

If an error condition results, no further items or sublists are cleared.

Example

Clear all sublists from an existing list identified by MYLIST without deleting items
that are not sublists:

/* Copy the list. */
cp=copylist(mylist);
/* Clear the entire list, including sublists */
/* that also appear in CP. */

rc=clearlist(mylist,’Y’);

/* Copy the old list data. */
/* Sublists have been cleared. */

mylist=copylist(cp,’N’,mylist);

/* Delete the copied list. */
rc=dellist(cp);

See Also
“COPYLIST” on page 289

“DELITEM” on page 315
“DELLIST” on page 316
“DELNITEM” on page 317
“SETLATTR” on page 669



268 CLOSE � Chapter 13

CLOSE

Closes a SAS table

Category: SAS Table

Syntax
sysrc=CLOSE(table-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. A table-id value of
-999 closes all tables that were opened with OPEN. If table-id is invalid, the
program halts.

Type: Numeric

Details
Close all SAS tables as soon as they are no longer needed by an application. You do not
need to open and close a SAS table in each program of an application. If an application
contains several programs that use the same table, the first program can open the table
and can use the parameter passing mechanism with the DISPLAY routine or method
calls to make the table identifier value available to other programs.

Example

Use OPEN to open a SAS table. If the table opens successfully, as indicated by a
positive value for the PAYID variable, then use CLOSE to close the PAYROLL table.

payid=open(’payroll’,’u’);
...SCL statements...

if (payid>0) then payid=close(payid);

See Also
“OPEN” on page 581



SAS Component Language Dictionary � CLRFLD 269

CLRFLD

Clears the value from variables whose values match a specified value

Category: Control or Field

Syntax
CALL CLRFLD(pattern,variable-1<, . . . ,variable-10>);

pattern
is the character string to match.

Type: Character

variable-1, . . . , variable-10
names up to ten character variables. If the value of a variable in this list matches
pattern, then that value is cleared.

Type: Character

Details
Variables in the variable list whose values do not match pattern exactly are not
changed. No error occurs if there are no matches.

Example

Clear the value of any variable in the group SYM1 through SYM5 whose value is
BLUE:

call clrfld(’blue’,sym1,sym2,sym3,sym4,sym5);

See Also
“SETFLD” on page 662



270 COLORLIST � Chapter 13

COLORLIST

Displays a selection list of the names of a device’s valid colors and returns user selections

Category: Selection List

Syntax
selections=COLORLIST(color-set,num-sel<,message <,autoclose>>);

selections
contains one or more user selections from the list. Multiple selections are separated
by blanks. By default, selections is 200 bytes long. To accommodate values longer
than 200 bytes, you should explicitly declare selections with a longer length.

Type: Character

color-set
specifies the set of colors to display in the selection list:

device specifies the name of a SAS/GRAPH device. If device is supplied,
the selection list includes only the colors that are valid for the
specified device, and an All... choice to display all possible
colors. Device can be the name of a monitor, plotter, printer, or
camera. This name can be up to eight characters long and must
be specified within quotes. If the device entry is not found, the
list contains all possible colors without regard to whether the
device supports them.

’?’ opens the Color Selector window in which a user can design a
color. Only one color can be defined, so num-sel is ignored. For
additional information, use the window’s online help.

Type: Character

num-sel
is the maximum number of items that a user can select from the list. To display the
list for information purposes only (no selections allowed), specify 0. To specify an
unlimited number of selections, use a value such as 9999 that is larger than the
number of available selections. A user cannot make a number of selections that
exceeds the number of items in the list.

Type: Numeric



SAS Component Language Dictionary � COLORLIST 271

message
is the message text to display above the selection list. The default message tells
users to make up to the number of selections specified in num-sel.

Type: Character

autoclose
specifies whether the selection list window closes automatically after a user makes a
selection when only one choice is allowed:

’Y’ closes the window automatically. (This is the default.)

’N’ leaves the window open until the user explicitly closes it.

This option is ignored when num-sel is not 1.
Type: Character

Details
By default, the message above the selection list asks the user to make num-sel
selections. Also by default, the selection list window closes when the user makes a
choice and presses ENTER if the selection list allows only one choice.

The FIND item in the selection list window enables you to specify characters that a
value in the list contains. If the value is found, it is displayed as selected. If the value
is not found, a message is displayed in the selection list window.

You can provide default values that will be initially selected when the color selection
list is displayed. To do this, assign the values to the selections variable before calling
COLORLIST.

If a user closes the selection list window without making a selection, COLORLIST
returns a blank value unless there was an initial value for the selections variable before
COLORLIST was called.

Selections from the window can be placed in the current result list, if one is available.
The current result list is a special SCL list that is automatically filled with the values
that are selected from a selection list. To use a current result list, use the MAKELIST
function to create it, and use the CURLIST function to designate it as the current
result list. The current result list must exist before you call the COLORLIST function.

You can use COLORLIST to enable a user to interactively design the RGB
components for a color. If a user designs a color that is not supported on that device,
SCL uses the closest color that is supported.

When COLORLIST is invoked, the current result list is cleared. After COLORLIST
is invoked, the result list contains one element for each selected color name. The
selections can be retrieved by using GETITEMC.

Example

Display a list of devices of type MONITOR that are available in the catalog
SASHELP.DEVICES and allow users to select a device. Users can choose up to four
colors from the selection list. If no device is chosen, display a list of all possible colors.

usrdev=devlist(’sashelp.devices’,’monitor’,
’Select a device. ’);

device=substr(usrdev,41,8);
devcolor=colorlist(device,4);



272 COMAMID � Chapter 13

Use a current result list to process multiple selections:

listid=makelist();
rc=curlist(listid);
selection=devlist(’sashelp.devices’,’monitor’,

’Select a device.’);
device=substr(selection,41,8);
devcolor=colorlist(device,4);
n=listlen(listid);
do i=1 to n;

color=getitemc(listid,i);
put color=;

end;

Display a color selection dialog window:

color=colorlist(’?’,1,’Design a color for the
bars’);

See Also

“CURLIST” on page 298
“DEVLIST” on page 322

COMAMID

Returns the list of communications access methods for an operating system

Category: SAS System Option

Syntax

comamids=COMAMID(options);

comamids
are the communications access methods (comamids) for the operating system or for
SAS/SHARE software or SAS/CONNECT software, if they are requested. Multiple
values are separated by blanks.

Type: Character

options
requests comamid values that are supported by SAS/SHARE software or SAS/
CONNECT software for your operating system:

’S’ requests comamid values that are supported by SAS/SHARE
software.

’C’ requests comamid values that are supported by SAS/CONNECT
software.



SAS Component Language Dictionary � COMPAREARRAY 273

Details
COMAMID provides a list of communication access method values for a user’s operating
system. If no value is provided for options, then all comamid values for the operating
system are returned.

You can display the list to application users by using other SCL features. For
example, you can display the values in a list box by specifying that the source of list box
values is the variable that you used as the return value for COMAMID.

Note: COMAMID verifies communication access method values so that if the
module to support a value has not been installed, that value is not returned in the
string of comamid values. �

Examples

Example 1: Finding the Comamids for an Operating System Find out which comamids
are valid for the operating system:

INIT:
comamids=COMAMID();
put comamids=;

return;

This example produces the following output on an HP-UX system:

COMAMIDS= TCP

Example 2: Finding Comamids for SAS/SHARE Software Find out which comamids are
supported by SAS/SHARE software:

INIT:
comamids=COMAMID(’S’);
put ’Comamids for SAS/SHARE are ’comamids=;

return;

This example produces the following output on an HP-UX system:

Comamids for SAS/SHARE are COMAMIDS=TCP

COMPAREARRAY

Allows you to compare two arrays for size and data equality

Category: Array

Syntax
rc=COMPAREARRAY(array1,array2);



274 COMPAREARRAY � Chapter 13

rc
indicates whether the two arrays match.

0 arrays match

1 arrays do not match
Type: Numeric

array1
is one of the two arrays to be compared.

Type: Array

array2
is one of the two arrays to be compared.

Type: Array

Details
The COMPAREARRAY function allows you to compare two arrays for size and data
equality. To be considered equal, the arrays must:

� have the same number of dimensions

� be of the same type
� have the same bounds

� have the same values in each element.

Example
This example compares several different arrays.

DCL num n1(5) n2(5,5) n3(*) n4(5) n5(*,*);
DCL char c1(5);
DCL num rc;

rc = comparearray(n1,n2); put rc=;
rc = comparearray(n1,c1); put rc=;
rc = comparearray(n1,n3); put rc=;
n3 = makearray(3);
rc = comparearray(n1,n3); put rc=;
rc = redim(n3,5);
rc = comparearray(n1,n3); put rc=;
do i=1 to 5;

n1[i] = i;
n4[i] = i;

end;

rc = comparearray(n1,n4); put rc=;
rc = copyarray(n2,n5);
rc = comparearray(n2,n5); put rc=;
rc = delarray (n3); rc = delarray (n5);

The output for this code would be:

rc=1
rc=1
rc=1
rc=1



SAS Component Language Dictionary � COMPARELIST 275

rc=0
rc=0
rc=0

See Also
“COPYARRAY” on page 286
“DELARRAY” on page 312
“MAKEARRAY” on page 531
Chapter 4, “SCL Arrays,” on page 37

COMPARELIST

Compares two SCL lists

Category: List

Syntax
rc=COMPARELIST(list1-id,list2-id<,options>);

rc
contains the return code for the operation:

0 The lists match.

1 The lists do not match.

list1–id, list2–id
contain the identifiers for the two SCL lists to be compared.

options
specify one or more comparison options. Use a space to separate multiple options.
The available options are:

NAME (Default)|NONAME
determine whether the comparison is performed on the names of list items that
are in the same position in both lists. NONAME does not compare item names.

NOHONORCASE (Default)|MIXEDCASE
determine whether the comparison is performed on the uppercase or mixed case
values of all item values and names. NOHONORCASE compares the uppercase
values of item names and values. MIXEDCASE compares mixed case names and
values.

ITEM (Default)|NOITEM
determine whether the comparison is performed on the values of list items that
are in the same position in both lists. NOITEM does not compare list values.

NODUMP (Default)|LONGDUMP|SHORTDUMP
determine the extent to which differences are reported. NODUMP produces no
messages. LONGDUMP displays all differences in the LOG window.
SHORTDUMP displays the first five differences.



276 CONTENTS � Chapter 13

Details
COMPARELIST enables you to compare the information in two SCL lists. This

comparison can include item names, values, or both. Names and items can be compared
in mixed case.

Example

Compare the item names and values in OLDLIST and NEWLIST. If the lists are not
the same, write all the error messages to the SAS log. If the lists are the same, delete
OLDLIST.

rc=comparelist(oldlist,newlist,’name item nohonorcase
longdump’);

if rc=0 then
rc=dellist(oldlist);

else do;
...SCL statements to run
when the lists do not match...

end;

CONTENTS

Displays the attributes of a SAS table

Category: Catalog and SAS Table

Syntax
rc=CONTENTS(SAS-table<,mode>);

rc
contains the return code for the operation:

0 The attributes of the specified table were displayed.

≠0 An error or warning condition occurred during the operation.
Type: Numeric

SAS-table
is the name of the SAS table. (SAS data set options are ignored in this argument.)
The name of the data set would have to include the #nnn number of the generation
set. For example to view the third generation data set of WORK.ONE:

rc=contents(’work.one#003’);

Type: Character

mode
specifies whether the information can be modified:

’B’ displays the Properties window for browsing only.

’E’ allows information in the Properties window to be modified. (This
is the default.) If member-level locking is not available, then the
Properties window is displayed in BROWSE mode instead.



SAS Component Language Dictionary � CONTINUE 277

Note: Any value that begins with a character other than B or
b also selects EDIT mode. �

Type: Character

Details
The CONTENTS function opens the Properties window, which enables an application
user to browse or modify column names, formats, informats, and labels of a SAS table.
By default, the Properties window is opened in edit mode. However, if the specified
table is currently open, then you must specify B for mode.

Initially, General Properties (that is, attributes, but not column names) are listed in
the Properties window. To change the value of an attribute, do the following:

1 Click the mouse menu button on the attribute that you want to change and then
click on Modify .

2 In the dialog window that appears, make the desired changes to the text.

To change a column name, do the following:

1 Click on the down arrow at the upper right corner of the window. The menu that
appears contains information about the table, including column names. Select the
column name that you want to change.

2 Click the mouse menu button on the column name that you want to change, and
then select Modify .

3 In the dialog window that appears, make the desired change to the column name.

Example

Display the attributes for the table MYLIB.HOUSES:

if (contents(’mylib.houses’)) then
do;

_msg_=sysmsg();
...SCL statements to handle case where
contents cannot be displayed...

end;

CONTINUE

Stops processing the current DO loop and resumes with the next iteration of that DO loop

Category: Control Flow

Comparisons: SAS Statement with limitations in SCL

Syntax
CONTINUE;



278 CONTINUE � Chapter 13

Details
The CONTINUE statement is provided in SCL to control the execution of DO loops.
When you need to force the statements in a DO loop to stop executing, you can use the
CONTINUE statement to stop executing successive statements in a DO loop, and to
move back up and re-execute the DO loop, starting with the header statement.

Note: In DATA step code, the CONTINUE statement stops processing only the
current DO loop. In SCL code, the CONTINUE statement stops processing the current
DO loop or DO group, whichever is closest. For example, suppose your code contains a
DO loop that contains DO groups:

do n=1 to 5; /* DO loop */
if n=2 then do; continue; end; /* DO group */
put n=;

end;

When this code is compiled and run as part of an SCL program, the output is:

n=1
n=2
n=3
n=4
n=5

When this code is submitted as part of a DATA step, the output is:

n=1
n=3
n=4
n=5

See “DO” on page 337 for more information on DO groups and DO loops. �

When you use DO WHILE and DO UNTIL statements, use caution to prevent the
CONTINUE statement from forcing the program into an infinite loop. For example, the
following statements produce an infinite loop because the value of the variable I never
exceeds 2. When I has the value of 2, the IF statement always causes a branch around
the next two SCL statements.

/* This example causes an infinite loop */
INIT:
i=1;
do while (i<1000);

if mod(i,2)=0 then
continue;

sum+i;
i+1;

end;
return;

See the documentation for the CONTINUE statement in SAS Language Reference:
Dictionary for more information.

Example

Count the number of females in the SAS table WORK.PERSONEL and display their
average age. WORK.PERSONEL contains the column GENDER, which contains the
values F for female and M for male, as well as the column AGE, which contains numeric
values for age. The display window contains two numeric controls: AVGAGE and



SAS Component Language Dictionary � CONTROL 279

FEMALES. If the value of GENDER is not F (female), then the CONTINUE statement
skips the other statements and returns to the DO WHILE statement to read the next
row. The results are displayed in the application window, although the individual
records are not displayed.

INIT:
females=0;
total=0;
persnlid=open(’personel’);
call set(persnlid);

/* Process rows until all the */
/* rows are read. */
do while (fetch(persnlid) ne -1);

/* Skip males when processing. */
if gender ne ’F’ then

continue;
females+1;
total+age;

end;
/* Display the results in the fields */
/* FEMALES and AVGAGE. */

avgage=total/females;
return;
MAIN:
...other SCL statements...

return;

TERM:
rc=close(persnlid);

return;

See Also
“DO” on page 337
“LEAVE” on page 498

CONTROL

Controls the execution of labeled program sections and the formatting of submit blocks

Category: Control Flow
Comparisons: SAS Statement with limitations in SCL

Syntax
CONTROL options;

options
specify the type of control for program statements. The available options are
described below. You can use one or more options.



280 CONTROL � Chapter 13

Type: Character

ALLCMDS|NOALLCMDS
NOALLCMDS is in effect by default. Global or procedure-specific commands
execute immediately without executing the SCL program. The program cannot
intercept any procedure-specific commands that are issued in the application. Use
CONTROL ALLCMDS to enable SCL to intercept procedure-specific or custom
commands that are issued in the application. You can use the NEXTCMD routine
to ignore invalid commands. Use CONTROL NOALLCMDS to restore the default
behavior.

ALLCMDS provides the same functionality as the ALWAYS option and enables
a program to intercept custom commands. In addition, ALLCMDS allows an SCL
program to intercept procedure-specific commands.

In PROGRAM entries, ALLCMDS combines the effects of ENTER and ERROR
and forces statements in the MAIN section to execute even if a user issues
commands that are not recognized by the procedure.

In FSEDIT applications, ALLCMDS and ALWAYS have the same functionality,
and both enable an SCL program to intercept any procedure-specific or custom
commands.

When ALLCMDS is specified, statements execute in the MAIN section before a
command that is issued with the EXECCMD routine. This behavior could
introduce an infinite loop. Either execute the EXECCMD routine conditionally or
specify the command using EXECCMDI with the NOEXEC parameter.

FSVIEW applications ignore these options.

ALWAYS|NOALWAYS
NOALWAYS is in effect by default. The MAIN section executes only when a user
modifies a window variable with a valid value and then presses either ENTER or a
function key. Use CONTROL ALWAYS to force statements in the MAIN section to
execute even if a user issues commands that are not recognized by the procedure.
ALWAYS combines the effects of ENTER and ERROR.

ALWAYS can be used if your application supports custom commands. When
ALWAYS is specified, FSEDIT applications execute statements in the MAIN
section before handling a command that is issued with the EXECCMD routine.
This behavior could introduce an infinite loop. Either execute the EXECCMD
routine conditionally or specify the command using EXECCMDI with the
NOEXEC parameter.

FSVIEW applications ignore this option.

ASIS|NOASIS
NOASIS is in effect by default. SCL formats submit-block code and eliminates
unnecessary spaces and line breaks. Use CONTROL ASIS so that submit blocks
are submitted without formatting. You must use this option when the position of
elements in the SAS code is important (for example, if you are submitting a
DATALINES statement with a DATA step). ASIS is more efficient than NOASIS
because it reduces the time spent on formatting.

BREAK label|NOBREAK
NOBREAK is in effect by default. If a program interrupt occurs while the SCL
statements are executing, a window opens and asks the user whether program
execution should resume (that is, ignore the interrupt) or the program should quit.
If a user chooses to quit execution, no more statements are executed for the
current program, and control returns to the calling program. Use CONTROL
BREAK so that you can specify a labeled section to which control passes if an
interrupt or break condition occurs while the SCL statements are executing. Label
is the program label of the section to execute after the current statement finishes
execution. This labeled section can include SCL statements that report status and



SAS Component Language Dictionary � CONTROL 281

handle the interrupt. Use the _STATUS_ system variable to control execution such
as H to halt and R to resume.

A program can contain any number of CONTROL BREAK statements. For
example, there can be one in each of the INIT, MAIN, and TERM sections or in
any other labeled section. When a CONTROL BREAK statement executes, any
previous CONTROL BREAK statement is overwritten so that only one is in effect
at a time.

Use NOBREAK to restore the default behavior. NOBREAK clears the current
CONTROL BREAK specification.

FSVIEW applications ignore this option.

HALTONDOTATTRIBUTE/NOHALTONDOTATTRIBUTE
HALTONDOTATTRIBUTE is in effect by default. If SCL detects an error in the
dot notation used in your application, the application halts execution. If you
specify NOHALTONDOTATTRIBUTE, the application will continue to execute
when errors are detected in the dot notation, but the results will be unpredictable.
See “Accessing Object Attributes and Methods with Dot Notation” on page 124 for
more information.

ENDSAS/NOENDSAS
NOENDSAS is in effect by default. When a user issues the ENDSAS or BYE
command, the TERM sections of SCL programs in the current execution stack do
not execute. This is called an ENDSAS event. Use CONTROL ENDSAS to force
execution of the TERM section in an SCL program when an ENDSAS event
occurs. ENDSAS has no effect on the _term method.

With NOENDSAS in effect, neither SUBMIT blocks nor SCL statements that
call another entry are executed from the TERM section. Because the execution of a
method or the setting of an attribute often involves calling another entry, you may
find that updates to an object made from the TERM section are not executed.

ENDAWS/NOENDAWS
NOENDAWS is in effect by default. When a user ends a SAS session by selecting
the system closure menu in a FRAME entry that is running with the Application
Work Space (AWS), the TERM sections of SCL programs in the current execution
stack do not execute. This is called an ENDAWS event. Use CONTROL ENDAWS
to force execution of the TERM section in an SCL program when an ENDAWS
event occurs. ENDAWS has no effect on the _term method.

With NOENDAWS in effect, neither SUBMIT blocks nor SCL statements that
call another entry are executed from the TERM section. Because the execution of a
method or the setting of an attribute often involves calling another entry, you may
find that updates to an object made from the TERM section are not executed.

ENTER|NOENTER
NOENTER is in effect by default. The MAIN section executes only when a user
modifies the value of a window variable and then presses either ENTER or a
function key that is recognized by the procedure. Use CONTROL ENTER to force
MAIN to execute when a user presses the ENTER key or a function key without
modifying a window variable.

In FSVIEW applications, this option has an effect only if the cursor is on a valid
row when ENTER or a function key is pressed.

ERROR|NOERROR
NOERROR is in effect by default. Statements in MAIN do not execute if a control
or field contains a value that causes an attribute error. Thus, some statements in
MAIN do not execute if multiple fields are in error and a user has not modified all
of these fields. Use CONTROL ERROR to force statements in MAIN to execute
even if the window contains fields that are in error.



282 CONTROL � Chapter 13

If you use ERROROFF to remove the error status from a continued portion of a
field in an FSEDIT application, then you must also use a CONTROL ERROR
statement in the program. If a user does not type in the continued portion of the
field and the program does not have a CONTROL ERROR statement, the error
flag is not removed from the continued portion of the field. As a result, the default
error message may be displayed, saying that a data value is not valid.

LABEL|NOLABEL
NOLABEL is in effect by default for PROGRAM and SCREEN entries. MAIN
executes after any window variable is modified. Use CONTROL LABEL to force
sections that are labeled with a window variable name (called window variable
sections) to execute before MAIN executes. For FRAME entries, CONTROL
LABEL is the default.

Statements in a window variable block execute after the associated window
variable is modified, but only if the value does not introduce an error. That is, the
value must satisfy any attributes that have been defined for the window variable.

Statements in MAIN do not execute until statements in all the window variable
sections for modified fields execute successfully. The sequence for executing
window variable sections is determined by the physical position of the field in the
window from left to right and from top to bottom.

If a field modification introduces an attribute error, the associated window
variable section does not execute. However, other window variable sections for
modified window variables do execute. To correct an attribute error, you can allow
users to correct the error in the window, or you can include SCL statements that
make a correction in the labeled section for other fields.

If ERROR, ALWAYS, or ALLCMDS is also specified, then MAIN executes after
the window variable sections even if an error was introduced.

If the window contains an extended table, the window variable section for each
modified window variable executes for a row before the putrow section executes.
MAIN executes after the putrow section executes.

Note: If CONTROL LABEL is specified, a window variable section must not
contain a SUBMIT IMMEDIATE block. �

TERM|NOTERM
This option is valid only for FSEDIT applications. NOTERM is in effect by default.
Statements in the TERM section of FSEDIT applications do not execute when a
user scrolls off the current row in a SAS table unless the user changed the values
of one or more columns so that the current row needs to be updated in the table, or
unless the row is new. Use the TERM option to force execution of the statements in
the TERM section even if a user does not modify any columns in the current row.

Details
The CONTROL statement controls the execution of labeled program sections and also
controls the formatting of code in a submit block. A CONTROL statement option
remains in effect until another CONTROL statement option overrides it. Multiple
CONTROL statement options can be in effect at the same time.

Examples

Example 1: Using the ASIS Option Use the ASIS option:

control asis;
submit;

data a;



SAS Component Language Dictionary � CONTROL 283

input x y z;
datalines;
10 20 30
40 50 60

run;
endsubmit;
rc=preview(’display’);

With the CONTROL ASIS statement in effect, the submit block executes without errors.
If you remove the CONTROL ASIS statement, SCL formats the code within the block
as follows when the code is submitted for processing:

data a;
input x y z;
datalines;
0 20 30 40 50 60 run;

When formatted in this manner, the final statement contains a syntax error and the
code cannot execute properly.

Example 2: Controlling a Program Interrupt Define a break handler section labeled
STOPINIT. When a user interrupts processing while SCL statements in INIT are
executing, the STOPINIT label executes. If the loop index I is less than 350, execution
of the program halts and control returns to the calling program. Otherwise, execution
resumes. After the first loop is finished, execute CONTROL NOBREAK so that there is
no break handler. If a user interrupts processing during the second loop, the SCL Break
window is displayed, and the statements in STOPINIT do not execute. The user can
either abort or resume processing. Follow the same steps to define a new break handler
section labeled STOPTERM in the TERM section.

INIT:
/* define break label STOPINIT */

control break stopinit;
/* loop 500 times to allow interrupt */
/* checking with control break */
/* if user interrupts, statements in */
/* label STOPINIT execute */

do i=1 to 500;
put i=;

end;

/* reset so there is no break handler */
control nobreak;

/* loop 500 times to allow interrupt */
/* checking without control break */

do i = 1 to 500;
if (int(i/25) eq (i/25)) then put i=;

end;
return;
MAIN: return;
TERM:

/* Define the new break label STOPTERM. */
control break stopterm;

/* Loop 500 times to allow */
/* interrupt checking with control */



284 COPY � Chapter 13

/* break. If user interrupts, */
/* statements in label STOPTERM */
/* execute. */

do j=1 to 500;
put j=;

end;

/* Reset so there is no break handler. */
control nobreak;

/* Loop 500 times to allow */
/* interrupt checking without control */
/* break. */

do j = 1 to 500;
if (int(j/25) eq (j/25)) then put j=;

end;
return;

STOPINIT:
/* HALT if loop counter is less than 350, */
/* otherwise RESUME. */
/* Report the current status. */

put i=;
if (i < 350) then

_status_ = ’H’;
else

_status_ = ’R’;
return;

STOPTERM:
/* HALT if loop counter is less than 350, */
/* otherwise RESUME. */
/* Report the current status. */

put j=;
if (j < 350) then

_status_ = ’H’;
else

_status_ = ’R’;
return;

See Also

“WORD” on page 744

COPY

Copies a SAS table, view, catalog, or catalog entry

Category: Utility



SAS Component Language Dictionary � COPY 285

Syntax
sysrc=COPY(old-name,new-name<,type>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

old-name
is the name of the SAS file or catalog entry to copy. This can be a one-, two-, or
four-level name and can include SAS data set options.

Type: Character

new-name
is the new name for the SAS file or catalog entry. This must be a three- or four-level
name if type is ’CATALOG’. If a catalog entry is being copied, the function sets the
entry type of the new entry to that of the old entry. You can also specify SAS data set
options.

Type: Character

type
is the type of SAS file or catalog entry to be copied:

’ACCESS’
The member is an access descriptor that was created using SAS/ACCESS software.

’CATALOG’
The member is a SAS catalog or a catalog entry.

’DATA’
The member is a SAS data file. (This is the default.)

’MDDB’
The member is an MDDB.

’VIEW’
The member is a SAS data view.
Type: Character

Details
To copy a catalog entry, specify the complete four-level name of the entry for old-name,
a three-level name for new-name, and ’CATALOG’ for type.

You can use the WHERE= data set option to copy only those rows that meet a
WHERE subset to the new table.

The COPY function does not copy existing integrity constraints to the new SAS table.
Use the ICCREATE function to define new integrity constraints.

If the SAS table that is being copied is indexed, then all indexes are rebuilt for the
new SAS table. New-name is ignored when you use COPY to copy GRSEG catalog
entries that were created using SAS/GRAPH software. A copied GRSEG entry will have
either the same name as the original entry or, if an entry with that name already exists
in the target catalog, a unique name generated by SAS software.

CAUTION:
This function can overwrite existing files. If a table or catalog with the specified new
name already exists, COPY overwrites the existing table or catalog without
warning. �



286 COPYARRAY � Chapter 13

Example

Copy the SAS table DATA1 to DATA2 and copy WORK.TEMP.A.SCL to
SASUSER.PROFILE.B.SCL:

if (copy(’data1’,’data2’)) then
do;

_msg_=sysmsg();
...SCL statements to handle the

error condition...
end;

rc=copy(’work.temp.a.scl’,
’sasuser.profile.b.scl’, ’catalog’);

if (rc) then
do;

_msg_=sysmsg();
...SCL statements to handle the

error condition...
end;

Copy from the SAS table SASUSER.CLASS to WORK.CLASS only those rows in
which the variable GENDER=M:

if (copy(’sasuser.class(where=(GENDER=’’M’’))’,
’work.class’)) then

do;
_msg_=sysmsg();

...SCL statements to handle the
error condition...

end;

See Also
“DELETE” on page 313
“ICCREATE” on page 449
“RENAME” on page 620

COPYARRAY

Copies data from one array into another array

Category: Array

Syntax
rc=COPYARRAY(source_array,target_array<,ignoresize>);

rc
indicates whether the operation was successful.

0 successful



SAS Component Language Dictionary � COPYARRAY 287

≠0 not successful
Type: Numeric

source_array
is the array to copy the values from.

Type: Array

target_array
is the array to copy the values into.

Type: Array

ignoresize
indicates whether to check for array sizes to be the same.

’Y’ tells SCL to ignore array sizes.

’N’ tells SCL to check whether the source and target arrays are the
same size. (This value is the default.)

Type: Character

Details
The COPYARRAY function allows you to copy data from one array (source_array) into
another array (target_array). The arrays must have the same dimensions and size and
be of the same type. The source array being copied from can be a static or dynamic
array, but if it is a dynamic array then its size must already have been set using
MAKEARRAY or REDIM. The target array being copied into can also be a static or
dynamic array. If it is dynamic and has not yet been created, then COPYARRAY will
create the array to the same size of the source array. However, the low bound of a
dynamic array is always 1, so the resultant target array may end up with different low
or high bounds in each of its dimensions.

If you set ignoresize to ’Y’, then the sizes of the arrays do not have to match. Only
the types and dimensions of the arrays have to match. In this case, if the source array
is bigger than the target array, then the elements in the source array will be truncated,
and you will lose the data in the elements that do not coincide. If the source array is
smaller than the target array, then the elements in target array that are not set will be
automatically set to missing values.

If the COPYARRAY is used to create a dynamic array, the DELARRAY function
should be used to delete the dynamic array.

Examples

Example 1: Copy Elements of a One–Dimensional Array The example copies the
elements of the one–dimensional array A into the one–dimensional array B and prints
out the contents of the arrays.

DCL num a(5) b(5);
do i=1 to 5;
a[i] = i;

end;
rc = copyarray(a,b);
put a=; put b=;

The result of this code would be:

a=
a[1] = 1
a[2] = 2



288 COPYARRAY � Chapter 13

a[3] = 3
a[4] = 4
a[5] = 5
b=
b[1] = 1
b[2] = 2
b[3] = 3
b[4] = 4
b[5] = 5

Example 2: Copy Elements of a Two–Dimensional Array The example copies the
elements of the two–dimensional array A into the two–dimensional array B and prints
out the contents of the arrays.

DCL num a(2,2) b(3,4);
count=0;
do i=1 to 2;

do j=1 to 2;
count+1;
a[i,j] = count;

end;
end;
rc = copyarray(a,b,’y’);
put a=; put b=;

The result of this code would be:

a=
a[1,1] = 1
a[1,2] = 2
a[2,1] = 3
a[2,2] = 4
b=
b[1,1] = 1
b[1,2] = 2
b[1,3] = .
b[1,4] = .
b[2,1] = 3
b[2,2] = 4
b[2,3] = .
b[2,4] = .
b[3,1] = .
b[3,2] = .
b[3,3] = .
b[3,4] = .

See Also
“DELARRAY” on page 312
“MAKEARRAY” on page 531
“REDIM” on page 615
Chapter 4, “SCL Arrays,” on page 37



SAS Component Language Dictionary � COPYLIST 289

COPYLIST

Copies or merges the contents of an SCL list into an existing list or a new list

Category: List

Syntax
new-list-id=COPYLIST(list-id<,options>

<,target-list-id>);

new-list-id
is either the identifier of the new list to contain a copy of the contents of list-id, if
target-list-id is not supplied, or target-list-id, if a target list is supplied.

Type: Numeric

list-id
is the identifier of the list to copy or merge into the target list. An invalid list-id
produces an error condition.

Type: Numeric or List

options
specify whether list values are merged and control how sublists are copied or merged.
You can use one or more of the following values, separated by spaces. Later keywords
override previous keywords.

’NONRECURSIVELY’|’NO’|’N’
copies or merges only sublist identifiers as values for sublist items. (This is the
default.)

’MERGE’|’M’
merges the contents of the source list-id into the target-list-id, replacing
like-named existing items in the target list. You may combine this option with the
recursive option. An error occurs if target-list-id is not supplied or is not a valid
list identifier.

’RECURSIVELY’|’YES’|’Y’
copies or merges all items of sublists and of sublists of sublists, and so on.
Type: Character

target-list-id
is the identifier of the list into which the source list is copied or merged. If supplied,
target-list-id is also returned. Otherwise, a new list is created and returned. New
sublists are created with the same environment (local or global) as the target list.

An error condition results if the target list has attributes such as NOUPDATE and
FIXEDLENGTH that prevent copying data into it.

Type: Numeric

Details
The copy operation appends items from the source list to the end of the target list,
whereas the merge operation copies them into the target list, replacing existing named
items.

If an SCL object is passed to COPYLIST as list-id, the resulting copy is not an SCL
object. Although the new list contains all items from the original object, methods can



290 COPYLIST � Chapter 13

not be called on this copy. The copied list is also treated as a regular list for
comparisons (e.g., COMPARELIST).

If target-list-id is omitted, the function creates a new list in the same environment (L
or G) as the list being copied and makes the new list the target-list-id. (For a
description of list environments, see “ENVLIST” on page 356.) If target-list-id is
supplied, its identifier is returned in new-list-id.

When a list is copied recursively, the items in all sublists are also copied, not just
the sublist identifiers. However, even this duplication is avoided if it would result in an
infinite recursion. When copying a list recursively, SCL does not perform an infinite
recursive copy. For example, if a list contains itself, COPYLIST detects the circular
structure and recreates the structure in the copy.

Merging occurs by item names. All items in the source list (and in its sublists, if
merging is recursive) must have names. For each item, the name is used to find a
matching name in the target list, as with NAMEDITEM(list-id name). If the same
name appears multiple times in the source list, each item is merged independently.
That is, the last occurrence of the name overwrites previous merged values and does
not match with subsequent items in the target list. Thus, you should strive to keep
item names unique in the source list in order to avoid wasted processing. If the
corresponding item is not found in the target list, a new item is created.

In the merge operation, a list or sublist is merged only once, even if it appears
multiple times. Also, a warning is printed for items that do not have names.

If an item in the source list has the NOWRITE attribute, then the corresponding
item in the target list is deleted, unless it has the NODELETE attribute, in which case
it is not merged. If a scalar item replaces a sublist item in a merge, the replaced list is
not deleted because it may be used elsewhere. The SCL program must explicitly delete
the old list.

All attributes of the list and its contents are preserved when a list is copied. The
password is not copied so that you can modify the copy without knowing the password
of the original list. The copy has no password. (See “SETLATTR” on page 669 for a
discussion of passwords for lists.)

COPYLIST ignores any invalid options and uses its defaults instead.

Examples

Example 1: Copying a Single List

/* make B a local named list */
/* with 2 items named x, y */

b=makenlist(’L’,’x’,’y’);
b=setnitemc(b,’ABC’,’x’);
b=setnitemc(b,’XYZ’,’y’);

/* make A a local named list */
/* with 3 items named A, B, and C */

a=makenlist(’L’,’A’,’B’,’C’);
a=setnitemn(a,3.5,’A’);
a=setniteml(a,b,’B’);
a=setnitemn(a,9.75,’C’);

call putlist(a,’A=’,2);
NREC=copylist(a,’N’);

/* nonrecursive copy */
call putlist(NREC,’NREC=’,2);
REC=copylist(a,’Y’);

/* recursive copy */
call putlist(REC,’REC=’,2);



SAS Component Language Dictionary � COPYLIST 291

This program produces the following output:

A=( A=3.5
B=( x=’ABC’

y=’XYZ’
)[3]

C=9.75
)[5]

NREC=( A=3.5
B=( x=’ABC’

y=’XYZ’
)[3]

C=9.75
)[7]

REC=( A=3.5
B=( x=’ABC’

y=’XYZ’
)[11]

C=9.75
)[9]

The sublist named B in the outer list NREC is the same list as the sublist named B in
the outer list named A, from which NREC was copied non-recursively. Both lists named
B have the same list identifier (3), which means they are in fact the same list. However,
the sublist named B in the outer list REC, which was copied recursively from list A, is a
different list, although it has the same contents as the list named B from A. The sublist
in the outer list REC has a list identifier of 11, not 3, which shows it is a different list.

Note: [5], [7], and [9] are the list identifiers that were assigned when this example
was run and may be different each time the example is run. �

Example 2: Appending a List to Itself Append the list MYLIST to itself. Both
NEWLIST and MYLIST contain the list identifier for the copy of MYLIST.

mylist=makelist();
mylist=insertn(mylist,1,-1);
mylist=insertn(mylist,2,-1);
mylist=insertn(mylist,3,-1);
newlist = copylist(mylist,’N’,mylist);

NEWLIST contains the values 1, 2, 3, 1, 2, 3.

Example 3: Merging One List into Another List

INIT:
a = makenlist(’L’,’A’,’B’,’C’,’D’,’E’,’F’);
do i = 1 to listlen(a);

a = setitemc(a, nameitem(a,i),i);
end;
c = insertc(makelist(),’?’,-1,’NOT’);
a = insertl(a, c,-1,’WHY’);
b = makenlist(’L’,’A’,’E’,’I’,’O’,’U’);
do i = 1 to listlen(b);

b = setitemn(b, rank(nameitem(b,i)),i);
end;
b =
insertl(b, insertn(makelist(),0,-1,’NOT’),-1,

’WHY’);



292 COPYLIST � Chapter 13

call putlist(a,’A before merge:’);
call putlist(b,’B before merge:’);
b = copylist(a,’yes merge’,b);
call putlist(b,’B after merge :’);

return;

The result is

A before merge:(A=’A’ B=’B’ C=’C’ D=’D’ E=’E’
F=’F’

WHY=(NOT=’?’ )[7] )[5]
B before merge:(A=65 E=69 I=73 O=79 U=85
WHY=(NOT=0 )[11] )[9]
B after merge :(A=’A’ E=’E’ I=73 O=79 U=85
WHY=(NOT=’?’ )[11] B=’B’ C=’C’
D=’D’ F=’F’ )[9]

The result list B contains items from A where the names intersect as well as original
items from B for items that were not found in A. Because the sublist WHY was found in
both, a recursive merge replaced 0 from the sublist of B with ’?’ from the sublist of A.

Note: 7, 5, 11, and 9 are the list identifiers that were assigned when this example
was run and may be different each time the example is run. �

Example 4: Copying Multiple Instances of a List Copy a list, which contains a copy of
itself, non-recursively and recursively. The outer list R1 contains two items, named
SELF and R1, which are actually the same list as R1. When a non-recursive copy, R2,
is made, the copy has items named SELF and R1 which are still the list R1. Only when
R1 is copied recursively as R3 does the copy contain itself instead of R1.

/* Create the list L, fill it, and print R1. */
r1=makenlist(’l’,’a’,’SELF’,’r1’, ’x’);
r1=setniteml(r1,r1,’SELF’));
r1=setniteml(r1,r1,’r1’));
r1=setnitemn(r1,1,’a’));
r1=setnitemn(r1,99,’x’));
call putlist(r1,’R1=’,2));

/* Copy R1 nonrecursively into R2 and print R2 */
r2=copylist(r1,’n’);
call putlist(r2,’R2=’,2);

/* Copy R1 recursively into R3 and print R3 */
r3=copylist(r1,’y’);
call putlist(r3,’R3=’,2);

The list R2, which was created with a nonrecursive copy operation, contains the list
R1. Note that the structure of the list R3 is identical to that of R1: it contains two
copies of itself, at items named SELF and R1, because these items are lists whose list
identifier is the same as the list R3.

This program produces the following output:

R1=( a=1
SELF=(...)[13]
R1=(...)[13]
x=99

)[13]
R2=( a=1

SELF=( a=1
SELF=(...)[13]



SAS Component Language Dictionary � CREATESCL 293

R1=(...)[13]
x=99

)[13]
R1=(...)[13]
x=99

)[15]
R3=( a=1

SELF=(...)[17]
R1=(...)[17]
x=99

)[17]

Note: 13, 15, and 17 are the list identifiers that were assigned when this example
was run and may be different each time the example is run. �

Example 5: Merging Nonrecursively and Recursively Merge the contents of the list
identified in SOURCEID into the list identified in TARGETID. The second call does a
recursive merge.

targetid=copylist(sourceid,"MERGE",targetid);
targetid=copylist(sourceid,"MERGE YES",targetid);

See Also

“DELLIST” on page 316
“GETLATTR” on page 431
“HASATTR” on page 447
“MAKELIST” on page 533
“MAKENLIST” on page 534
“PUTLIST” on page 612
“SETLATTR” on page 669

CREATESCL

Writes class or interface information to an SCL entry

Category: Object Oriented

Syntax

entry-id=CREATESCL(entry-name, scl-entry<,description><,proxy>);

entry-id
contains the identifier that is assigned to the class, interface, or class package. If the
class does not exist, entry-id contains 0.

Type: Numeric



294 CREATESCL � Chapter 13

entry-name
is the one- to four-level name of the CLASS, INTERFACE, or CLASSPKG catalog
entry to load. If entry-name is a one- or two-level name, then the current search path
is used to find the CLASS, INTERFACE, or CLASSPKG entry. If the entry was
previously loaded, then the same identifier is returned. Otherwise, the entry is
loaded from the catalog into the application class list, and the entry identifier is
returned in entry-id.

Type: Character

scl-entry
is the one- to four-level name of the SCL entry to be created. If proxy is 1 and
entry-name is a CLASSPKG entry, then you can specify a two-level name for
scl-entry, and CREATESCL will generate a series of proxy entries for the classes in
the class package.

Type: Character

description
is the description of the SCL entry.

Type: Character

proxy
specifies whether CREATSCL should generate proxy entries. The default value of 0
means that CREATESCL will not generate proxy entries.

Specify 1 if you want CREATESCL to generate proxies. If entry-name is a CLASS
or an INTRFACE entry, then CREATESCL will generate a proxy entry for the class
or interface. If entry-name is a CLASSPKG entry, and scl-entry is a two-level name,
then CREATESCL will generate a proxy entry for each of the classes in the package
(each class specified in an ITEM statement).

Type: Numeric

Details
CREATESCL writes the class or interface definition that is in entry-name to an SCL
entry. The class definition is written to a CLASS or INTERFACE statement block in the
SCL entry that is specified in scl-entry.

You can revise the code in scl-entry and use the SAVECLASS command to create a
new or revised class/interface. For example, you can use the CREATESCL function to
generate an SCOM class that contains Version 6 class information. You can add the
method signatures, scope, and so on, and then generate a new class using the
SAVECLASS command. This process is described in “Converting Version 6 Non-Visual
Classes to SCOM Classes” on page 137.

For more information on the SAVECLASS command, see the online Help for SAS/AF
software.

For a description of the CLASS and INTERFACE statement syntax that is written to
the SCL entry, see “CLASS” on page 253 and “INTERFACE” on page 478.



SAS Component Language Dictionary � CREATESCL 295

Examples

Example 1: Generate CLASS SCL Entry Generate the SCL code for
SASHELP.CLASSES.CHECKBOX_C.CLASS. Store the SCL code in
WORK.A.CHECKBOX_C.SCL:

myClass=CREATESCL(’sashelp.classes.checkbox_c.class’,
’work.a.checkbox_c.scl’,
’CheckBox class to convert’);

Example 2: Generate CLASSPKG SCL Entry Generate the SCL code for
SASHELP.IOMSAMP.TSTPKG.CLASSPKG. Store the SCL code in WORK.A.B.SCL:

rc = createscl(’sashelp.iomsamp.tstpkg.classpkg’,’work.a.b.scl’);

Example 3: Generate A Proxy Entry Generate a proxy entry for
SASHELP.CLASSES.SCLLIST.CLASS.

rc = createscl(’sashelp.classes.scllist.class’,’work.a.c.scl’,’’,1);

The CLASS statement needed to generate the proxy class is stored in WORK.A.C.SCL.
If you issue the SAVECLASS command for WORK.A.C.SCL, then SCL will generate the
associated proxy class SCLLISTPROXY.CLASS.

Note: CREATESCL will generate native=’/sasprxy:0’ for each of the methods
defined in the class. Do not modify this method option. �

Example 4: Generate A Series of Proxy Entries Generate an SCL proxy file for each of
the classes specified in SASHELP.IOMSAMP.TSTPKG.CLASSPKG. This class package
contains a ITEM statement for these classes:

� SASHELP.IOMSAMP.AFTESTTYPES.CLASS
� SASHELP.CLASSES.SCLLIST.CLASS

rc = createscl(’sashelp.iomsamp.tstpkg.classpkg’,’work.a’,’’,1);

This statement creates two SCL entries in the WORK.A catalog:
AFTESTTYPESPROXY.SCL and SCLLISTPROXY.SCL. These SCL entries contain the
CLASS statements needed to generate the proxy classes. If you issue the SAVECLASS
command for these SCL entries, SCL will generate the proxy CLASS files.

Note: CREATESCL will generate native=’/sasprxy:0’ for each of the methods
defined in the class. Do not modify this method option. �



296 _CURCOL_ � Chapter 13

See Also
“APPLY” on page 225
“INSTANCE” on page 477
“LOADRES” on page 523
“NOTIFY” on page 575
“SEND” on page 656
“SUPAPPLY” on page 695
“SUPER” on page 697

_CURCOL_

Contains the value of the leftmost column in an extended table control in a FRAME entry

Category: System Variable

Details
_CURCOL_ is a system variable. It is provided automatically by the FRAME entry in
SAS/AF, and the SCL compiler automatically creates a space for it in the SCL data
vector.

The value of _CURCOL_ is updated when the getrow or putrow section or the
_getrow or _putrow method of an extended table is executing. Therefore, _CURCOL_
must be referenced only within these sections.

_CURCOL_ is available only in SAS/AF FRAME entries.

Example

Suppose you have a text entry control, TEXT, in an extended table control. TEXT is
assigned a value in the getrow section, based on a substring of a longer string. When
the extended table is scrolled left and right, the value of _CURCOL_ is updated and is
used as the position argument to the SUBSTR function.

GET1:
text = substr( longstring, _curcol_ );

return;

For more information about extended table controls for horizontal scrolling, see the
documentation for SAS/AF classes.

See Also
“_CURROW_” on page 301



SAS Component Language Dictionary � CURFLD 297

CURFLD

Returns the name of the FRAME or PROGRAM entry control or field on which the cursor is
currently positioned

Category: Cursor

Syntax
wvar-name=CURFLD();

wvar-name
contains the name of the FRAME or PROGRAM entry control or field on which the
cursor is currently positioned.

Type: Character

Details
The CURFLD function returns the name of the field FRAME or PROGRAM entry
control on which the cursor is located. If the cursor is not positioned on a window
variable, a null string is returned. CURFLD is usually used in conjunction with a
CONTROL statement that includes the ENTER, ALWAYS, or ALLCMDS option. You
can use CONTROL LABEL to achieve the same result more efficiently. FRAME or
PROGRAM entries can also use the _getCurrentName method.

Example

Use CURFLD to control the behavior of an SCL entry application:

INIT:
control enter;

return;

MAIN:
select( curfld() );

when(’PHONE’) call display(’phone.help’);
when(’EMPLOYEE’) call display

(’employee.scl’);
otherwise;

end;
return;



298 CURLIST � Chapter 13

This example can be implemented without CURFLD if the program contains a
program block that is labeled with the name of the window variable. If the program is
in a SCL entry, then the window variables must be of type PUSHBTNC or
PUSHBTNN, and the INIT section must contain CONTROL LABEL.

INIT:
controllable;
return;

PHONE:
call display(’phone.help’);

return;
EMPLOYEE:

call display(’employee.scl’);
return;

See Also
“CONTROL” on page 279
“CURSOR” on page 301
“CURWORD” on page 303

CURLIST

Designates or reports the current result SCL list

Category: List

Syntax
list-id=CURLIST(<new-list-id>);

list-id
is the identifier of the list to receive the values returned by the next SCL selection
list function that is invoked.

>0 is the list identifier of the SCL list that was previously defined as
current with the CURLIST function.

0 indicates that no list is defined as the current list.

Type: Numeric or List

new-list-id
is the identifier of the list to be designated as the current list. An invalid new-list-id
produces an error condition.

Type: Numeric



SAS Component Language Dictionary � CURLIST 299

Details
When a value is provided for new-list-id, CURLIST designates the SCL list that is
identified by new-list-id as the current result list. New-list-id must be the list identifier
that was returned by the MAKELIST, MAKENLIST, or COPYLIST function that
created this list. If you omit new-list-id, then CURLIST returns the identifier of the SCL
list that was already designated as the current result list by CURLIST. If no argument
is passed to CURLIST and no current result list has been specified, CURLIST returns 0.

The current result list is filled automatically with the values that are selected when
the next SCL selection list function executes.

The functions that can fill the current result list are the SCL selection list functions
CATLIST, COLORLIST, DATALISTC, DATALISTN, DEVLIST, DIRLIST, FILELIST,
LIBLIST, LISTC, LISTN, LVARLEVEL, and VARLIST. For example, CATLIST opens a
selection list window that displays the names of catalog entries. The value returned by
CATLIST is a character string containing each catalog name that users select,
separated by blanks. Selection list functions like CATLIST can also automatically fill
the current result list, as specified by CURLIST, with a character item for each
selection that users make. The length of that list is unbounded.

When one of the selection list functions is invoked, the values that users select
replace the entire contents of the current result list. To preserve the contents of the
current result list, use COPYLIST to copy the list before calling another selection list
function.

Example

Set up a selection list, invoke a selection list function, and access the selections:

clist=makelist();
oldcurlist=curlist(clist);

/* Allow user to choose up to 16 graphs. */
graphs=catlist(’SASUSER.DEMO’,’GRSEG’,16,’Y’);
n=getnitemn(clist,’COUNT’);
do g=1 to n;

graphName=getnitemc(clist,’name’,g);
put ’Selection #’ g ’ is ’ graphName;

end;
/* Delete temporary curlist and restore +/
/* previous curlist. */
rc=dellist(clist);
oldcurlist=curlist(oldcurlist);

See Also
“CATLIST” on page 244
“COLORLIST” on page 270
“COPYLIST” on page 289
“DATALISTC and DATALISTN” on page 304
“DELLIST” on page 316
“DEVLIST” on page 322
“DIRLIST” on page 327
“FILELIST” on page 386
“LIBLIST” on page 508
“LISTC and LISTN” on page 513
“LVARLEVEL” on page 529
“MAKELIST” on page 533
“MAKENLIST” on page 534



300 CUROBS � Chapter 13

“PUTLIST” on page 612
“VARLIST” on page 727

CUROBS

Returns the number of the current row in a SAS table

Category: SAS Table

Syntax

row-number=CUROBS(table-id);

row-number
is the current row number.

Type: Numeric

table-id
is the table identifier that was assigned when the table was opened. If table-id is
invalid, the program halts.

Type: Numeric

Details

CAUTION:
This function should be used only with an uncompressed SAS table that is accessed using
a native library engine. �

If the engine that is being used does not support row numbers, the function returns a
missing value.

In FSEDIT and FSVIEW applications, specifying a value for table-id is optional. If
the argument is not specified, CUROBS returns the value for the SAS table displayed
by FSEDIT or FSVIEW. For a SAS table view, the function returns the relative row
number. Also, on engines that do not support absolute row numbers, such as ORACLE,
CUROBS returns the relative row number.

Examples

Example 1: Getting the Row Number of a Control Use FETCHOBS to fetch the tenth
row in the SAS table MYDATA. CUROBS returns a value of 10 for row-number.

tableid=open(’mydata’,’i’);
rc=fetchobs(tableid,10);
rownum=curobs(tableid);

Example 2: Getting the Current Row Number In an FSEDIT SCL program, retrieve
the number of the row that is currently displayed:

rownum=curobs();



SAS Component Language Dictionary � CURSOR 301

_CURROW_

Contains the number of the current row in an extended table

Category: System Variable

Details

_CURROW_ is a system variable that is created for every SCL program that you
compile. The compiler creates a space for _CURROW_ in the SCL data vector.
_CURROW_ is updated when the getrow or putrow section of an extended table is
executing or when the _getrow or _putrow method of an extended table control is
executing. Therefore, _CURROW_ must be referenced only within these sections of an
SCL program.

_CURROW_ is available in PROGRAM and FRAME entries.

Example

The following getrow section of a FRAME entry fetches a row from a previously
opened SAS table, using _CURROW_ as the row number.

GET1:
if fetchobs( tableid, _currow_ ) ne 0 then

call notify(’table’,’endtable’);
return;

See Also

“_CURCOL_” on page 296
“SETROW” on page 678

CURSOR

Positions the cursor in a specified widget or field of a FRAME entry

Category: Widget or Field

Syntax

CURSOR wvar-name;

wvar-name
specifies which FRAME entry widget or field to position the cursor on.

Type: Character



302 CURTOP � Chapter 13

Details
The CURSOR statement does not move the cursor immediately while the SCL program
is executing. Rather, it specifies where the cursor will be positioned when SCL returns
control to the procedure after the frame is updated. If multiple cursor statements
execute, the cursor is positioned on the FRAME entry widget or field that was specified
in the last CURSOR statement. In SAS/AF applications, a REFRESH statement also
positions the cursor, based on the last cursor statement.

The FRAME entry widget or field cannot be an element of an array. For an array
element, use the FIELD function instead.

FRAME entry widgets can also use the _cursor method.

Example

Move the cursor to ADDRESS if NAME is filled in:

if modified (name) and name ne ’’ then
cursor address;

See Also
“CURFLD” on page 297
“CURWORD” on page 303
“DISPLAYED” on page 334
“ERROR” on page 357
“ERROROFF” on page 359
“ERRORON” on page 360
“FIELD” on page 379
“HOME” on page 448
“MODIFIED” on page 550
“PROTECT” on page 607
“UNPROTECT” on page 711

CURTOP

Returns the number of the row that is currently displayed at the top of an extended table

Category: Extended Table

Syntax
row=CURTOP();

row
is the number of the row that is currently displayed at the top of an extended table.

Type: Numeric



SAS Component Language Dictionary � CURWORD 303

Details
CURTOP can be used only on extended tables in PROGRAM entries. Because extended
tables can be defined only in SAS/AF software, this function cannot be used in FSEDIT
or FSVIEW programs.

Example

Store the number of the table’s top row in the column TOPROW:

toprow=curtop();

See Also
“ENDTABLE” on page 350

“SETROW” on page 678
“TOPROW” on page 704

CURWORD

Returns the word that is at the cursor position

Category: Widget or Field

Syntax
word=CURWORD();

word
is the text of the word.

Type: Character

Details
CURWORD returns the word on which the text cursor was located when the user last
pressed ENTER. The retrieved character string begins with the first character of the
word on which the cursor was positioned and extends to the first space after the word.
CURWORD is usually used in conjunction with a CONTROL statement that includes
the ENTER, ALWAYS, or ALLCMDS option.

If CURWORD is used on a window variable that has been modified, the field value is
justified before CURWORD executes.

Example

Suppose a PROGRAM entry window contains text entry widgets that contain the
words PROJECT1 and PROJECT2. The entry’s program determines which action to
perform by determining which word the cursor is positioned on when the user presses
ENTER.

INIT:
widget enter;



304 DATALISTC and DATALISTN � Chapter 13

return;
MAIN:

word=curword();
if (word=’PROJECT1’) then

submit continue;
proc print data=project1;
run;

endsubmit;
else if (word=’PROJECT2’) then

submit continue;
proc print data=project2;
run;

endsubmit;
else _msg_=
’Please position the cursor on a valid selection.’;

return;

TERM:
return;

See Also
“CONTROL” on page 279
“CURFLD” on page 297
“CURSOR” on page 301
“LOOKUPC” on page 527

DATALISTC and DATALISTN

Displays a selection list window that contains the values of particular columns from rows in a SAS
table and returns user selections

Category: SAS Table

Syntax
selection=DATALISTC(table-id,

col-list<,message<,autoclose<,num-sel<, label>>>>);

selection=DATALISTN(table-id,
col-list<,message<,autoclose<,num-sel<, label>>>>);

selection
is the value of the first column from the selected row. For DATALISTC, the value is
the first character column. For DATALISTN, the value is the first numeric column.
Selection is a missing value (period) if the user closes the selection list window
without making a selection.

For DATALISTC, selection is blank if the selection list window is closed and no
selections are made. By default, selection is 200 bytes long. To accommodate a value
longer than 200 bytes, explicitly declare selection with a longer length.

Type: Character, Numeric.



SAS Component Language Dictionary � DATALISTC and DATALISTN 305

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

col-list
is a list of column names, separated by blanks, from the SAS table to be displayed.
For DATALISTC, the first column in this list must be character or else the program
halts. For DATALISTN, the first column must be numeric or else the program halts.
However, the remaining columns in the list can be of any type.

Type: Character

message
is the text for a message to be displayed above the selection list. The default message
tells users to make up to the number of selections specified in num-sel.

Type: Character

autoclose
specifies whether the selection list window closes automatically after a user makes a
selection when only one choice is allowed:

’Y’ closes the window automatically. (This is the default.)

’N’ leaves the window open until the user explicitly closes it.
This option is ignored when num-sel is not 1. However, use ’’as a placeholder if

you are also specifying a value for num-sel.
Type: Character

num-sel
specifies the maximum number of items a user can select from the list. To display
the list for information purposes only (no selections allowed), specify 0. To specify
unlimited selections, use a value that is larger than the number of available
selections, such as 9999.

Type: Numeric

label
specifies whether the selection list window displays the column label text for each
column.

’N’ does not display the labels. (This is the default.)

’Y’ displays column names as column label text.
Type: Character

Details
If a user ends the selection list window without making a selection, DATALISTC and
DATALISTN return a blank value. If the user exits by using OK without making a
selection, then the selection variable is set to blank. However, if the user exits using
CANCEL without making a selection, the selection variable retains any previous value
it may have had.

Although a user can position the cursor or mouse pointer anywhere in a row to make
a selection from the list, only the value of the first column is returned. (The other
column values are displayed for information only.)

When multiple selections are allowed, selection contains only the value of the first
column in the last selected row. However, values for displayed columns for all rows that
are selected can be returned in the current result list if one is available. The current
result list is a special SCL list that is automatically filled with the values selected from
a selection list. To create a current result list, use the MAKELIST function to create it,



306 DATALISTC and DATALISTN � Chapter 13

and use the CURLIST function to designate it as the current result list. The current
result list must exist before you call the DATALISTC or DATALISTN function.

By default, a message is displayed asking the user to make one selection, and the
selection list window closes automatically when the user makes a selection.

When DATALISTC or DATALISTN is invoked, the current result list is cleared. After
DATALISTC or DATALISTN is invoked, the result list contains the following named
items:

TAG
identifies the list as one that was created by the DATALISTC function.

Type: Character

COUNT
contains either the number of selected elements, or 0 if a user makes no selections
or issues a CANCEL command in the list window.

Type: Numeric

var-name
contains the value of column var-name in var-list for each selection.

Type: Numeric or Character

Examples

Example 1: Using DATALISTC to Return a Single Selection Create a selection list
whose rows contain the values of the columns NAME, STREET, CITY, STATE, and ZIP
from the SAS table identified by the SCL variable CLASSID, which was returned by the
OPEN function. NAME contains the value for the selected row. The other columns are
displayed for information purposes only.

name=datalistc(classid,’name street city state zip’);

Example 2: Using DATALISTN to Return Multiple Selections Create a selection list
whose rows contain the values of the columns ITEMNUM, ITEMAMT, CUSTNAM, and
CUSTADR from the SAS table identified by the SCL variable SALESID. Allow users to
make up to three selections from this selection list. Then retrieve the values for each
column for each of the selected rows from the current result list.

salesid=open(’sales’);
listid=makelist();
rc=curlist(listid);
itemnum=datalistn(salesid,

’itemnum itemamt custnam custadr’,’’,’’,3);
n=getnitemn(listid,’COUNT’);
do i=1 to n;

itemnum=getnitemn(listid,’ITEMNUM’,i);
itemamt=getnitemn(listid,’ITEMAMT’,i);
custnam=getnitemc(listid,’CUSTNAM’,i);
custadr=getnitemc(listid,’CUSTADR’,i);
put itemnum= itemamt= custnam= custadr=;

end;
rc=close(salesid);



SAS Component Language Dictionary � DCLOSE 307

See Also

“LISTC and LISTN” on page 513
“LOCATEC and LOCATEN” on page 524
“SHOWLIST” on page 681
“VARLIST” on page 727

DCLOSE

Closes a directory

Category: Directory

Syntax

sysrc=DCLOSE(directory-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

directory-id
is the identifier that was assigned when the directory was opened. If directory-id is
invalid, the program halts.

Type: Numeric

Details

The DCLOSE function closes a directory that was previously opened by the DOPEN
function. DCLOSE also closes any open members of the directory before closing the
directory.

Example

Open the directory to which the fileref MYDIR has previously been assigned, return
the number of members, and then close the directory:

rc=filename(’mydir’,’fname’)
did=dopen(’mydir’);
memcount=dnum(did);
if (dclose(did)) then

do;
_msg_=sysmsg();
...SCL statements to handle the error condition...

end;



308 DCREATE � Chapter 13

See Also

“DOPEN” on page 338
“FCLOSE” on page 371
“FOPEN” on page 407
“MOPEN” on page 553

DCREATE

Creates an external directory

Category: External File

Syntax

new-directory=DCREATE(dir-name<,parent-dir>);

new-directory
contains the complete pathname of the new directory, or an empty string if the
directory cannot be created.

Type: Character

dir-name
is the name of the directory to create. This must be only the directory name and
cannot include a pathname.

Type: Character

parent-dir
is the complete pathname of the directory in which to create the new directory. If
parent-dir is not supplied, then the current directory is the parent directory.

Type: Character

Details

DCREATE enables you to create a directory in your operating environment.

Operating Environment Information: On CMS, DCREATE works only for shared file
system (SFS) directories. �

Example

� Create a new directory on UNIX, using the name stored in the variable DIRNAME:

newdir=dcreate(dirname,’/local/u/abcdef/’);

� Create a directory on Windows, using the name stored in the variable DIRNAME:

newdir=dcreate(dirname,’d:\testdir\’);

� Create a new directory on CMS, using the name stored in the variable DIRNAME:

newdir=dcreate(dirname,’auser.’);



SAS Component Language Dictionary � DECLARE 309

DECLARE
Declares variables and specifies their data types

Alias: DCL
Category: Declarative Statement

Syntax
DECLARE|DCL data-type-1 argument-1 < . . . ,data-type-n argument-n>;

data-type
specifies the data types to assign. Multiple data types may be declared with one
DECLARE statement. Use a comma to separate multiple data types. If you omit a
comma between data types, then subsequent data type names are interpreted as
variable names until the next comma is encountered.

The following are valid data types:

’CHAR <(n)>’
is for variables that can contain character values. Optionally, n is the length in
characters. The default length is 200, while the maximum is 32,767. Declaring a
length for CHAR variables that will store values shorter than 200 characters can
reduce the amount of memory required to store a program’s variables. The
STRING data type is an alias of the CHAR data type.

’LIST’
is for variables that can reference an SCL list.

’NUM’
is for variables that can contain numeric values.

’OBJECT’
is for variables that can contain the identifier of a component.

Note: The compiler cannot validate attributes or methods for objects declared
with the OBJECT keyword (generic objects). Consequently, using generic objects is
less efficient (possibly up to 25 percent less efficient) than declaring objects with
the CLASS or INTERFACE keyword. See “Objects” on page 19 for more
information. �

class-name
is for variables that can contain the identifier of an instance of a particular class.
It can be a one– to four–level name.
Type: Character

argument-1 < . . . argument-n>
can be one or more constants and/or one or more variable names. The constants and/
or variable names should be separated by spaces. When initializing lists, you can use
either braces ({ and }) or brackets ([ and]) to enclose a series of list items. Variable
names can be any of the following:

variable
variable = initial-value
variable = expression
variable-1 – variable-n = (value-1,...,value-n)
listname1={value-1,...,value-n}
listname2=[value-1,...,value-n]



310 DECLARE � Chapter 13

Constants have the following form:
constant-n<=value-n>

Type: Character or Numeric (for variables).
Type: Character (for constants).

Details
The DECLARE statement declares a variable of any SCL data type. DECLARE can be
used within a DO, SELECT, or USECLASS block to define variables that are available
only within that block. This enables you to enforce variable scoping, because variables
that you declare within a DO, SELECT, or USECLASS block are local to that block.

You can use the DECLARE statement to declare any type of array. However, arrays
that are declared with the DECLARE statement are all temporary arrays. See “Using
Temporary Arrays to Conserve Memory in SCL Programs” on page 47.

Although you can use the LENGTH statement to declare numeric and character
variables, you might want to use the DECLARE statement in order to enforce variable
scoping.

Place DECLARE statements either before the first labeled section of an SCL program
or inside a DO or SELECT block.

You can use either braces ({ and }) or brackets ([ or ])to enclose a series of list items
when you initialize an SCL list. For example, both of the following list definitions are
valid:

dcl list x = {1,2,3};
dcl list z = [4,5,6];

Comparisons
� You can use the DECLARE statement to declare any SCL data type, whereas the

LENGTH statement can declare only numeric and character variables.
� You can use the DECLARE statement inside a DO block, whereas the LENGTH

statement cannot be used inside a DO block.
� You can use the DECLARE statement to declare temporary arrays, but you must

use the ARRAY statement to declare indirect or non-temporary arrays.

For details about the LENGTH statement in the Base SAS language, see SAS
Language Reference: Dictionary.

Examples
dcl char s;
dcl num x y;
dcl char s, num x y;
dcl char(10) ar[3] x y z;
dcl list mylist;
dcl sashelp.fsp.collection.class obj3;
dcl object obj4;
dcl num m n, char(300) string, list newlist;



SAS Component Language Dictionary � DECLARE 311

Each variable or array can be followed by an initial value or expression. The
following example declares and initializes various variables and arrays.

dcl num x=1 y=20+x;
dcl num i1-i4=(1, 2, 3, 4);
dcl num arr(3)=(1, 2, 3);
dcl char(10) s=’abc’;
dcl char sarr(3)=(’abc’, ’def’, ’ghi’);
dcl list mylist = {1, ’abc’, 2, ’def’}; /* Initialize a list */
dcl list l = (100, ’abc’, 200);

Defining a Constant List with a Sublist

A constant list can be defined with a sublist.

init:
/* To edit a frame as the frame runs, */
/* it will display a pop-up menu */
/* when you press the ENTER key. */

dcl list myPopMenuList;
control enter;

/* Initialize a list with three pop-menu items: Select 1, Numeric */
/* and Character. Define a separator between items */
/* ’Select 1’ and ’Numeric’. */
myPopMenuList = { {text=’Select 1’,

helpText=’This is a selection.’,
mnemonic=’S’,
classifier = 107},

‘‘-’’,
‘‘Numeric’’,
‘‘Character’’};

return;
main:
rc = popmenu (myPopMenuList);
put rc=;
return;

term:
/* Delete myPopMenuList recursively to avoid a memory leak */
rc = dellist ( myPopMenuList, ’y’);
return;

Note: The form of the physical filename depends on the host operating system. �

See Also
“ARRAY” on page 227
“LENGTH” on page 505
“USECLASS” on page 715



312 DELARRAY � Chapter 13

DELARRAY

Deletes a dynamic array

Category: Array

Syntax
rc=DELARRAY(array);

rc
indicates whether the operation was successful.

0 successful

≠0 not successful
Type: Numeric

array
is the dynamic array to delete. A non-dynamic array causes an error condition.

Type: Array

Details
The DELARRAY function deletes dynamic arrays. An array’s contents cannot be
accessed after the array is deleted. Dynamic arrays are only accessible within the scope
that they are declared. In the following example, array B is not accessible outside of the
scope of the DO group:

DCL num a(*,*) rc;
a = makearray(5,5);
do;

DCL num b(*);
b = makearray(10);

end;

Example
This example creates a 1-dimensional array of 3 elements, resizes it to 5 elements
(preserving the data), and then deletes the array.

DCL num a(*);
a = makearray(3);
do i=1 to dim(a);

a[i]=i;
end;
rc = redim(a,5);
put a=;
rc = delarray(a);

The output would be:

a[1]=1
a[2]=2
a[3]=3



SAS Component Language Dictionary � DELETE 313

a[4]=.
a[5]=.

See Also
“COPYARRAY” on page 286
“MAKEARRAY” on page 531
“REDIM” on page 615

DELETE

Deletes a member of a SAS data library or an external file or directory

Category: Utility

Syntax
sysrc=DELETE(name<,type,<,password<,generation>>>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

name
is the name of the member of the SAS data library or the physical pathname of an
external file or directory. If a one-level name is specified for a SAS data library
member, the library is assumed to be USER.

Type: Character

type
specifies the type of element to delete:

’ACCESS’
an access descriptor that was created using SAS/ACCESS software.

’CATALOG’
a SAS catalog or catalog entry. If a one- or two-level name is specified, the catalog
is deleted. If a four-level name is specified, the entry is deleted.

’DATA’
a SAS table. (This is the default.)

’FILE’
an external file or directory.

’MDDB’
an MDDB.

’VIEW’
a SAS table view.
Type: Character



314 DELETE � Chapter 13

password
is the password that is assigned to the SAS table when type is DATA.

Type: Character

generation
is the generation number of the SAS table that is being deleted.

Type: Numeric

Details
DELETE attempts to delete the specified member and returns a value indicating
whether the operation was successful. You can use DELETE to delete files or empty
directories that are external to a SAS session, as well as members of a SAS data library.

Examples

Example 1: Deleting Tables and Catalog Entries Delete the SAS table LIB1.MYDATA
and the SAS catalog entry LIB2.CAT1.MYPROG.PROGRAM:

rc=delete(’lib1.mydata’);
rc=delete(’lib2.cat1.myprog.program’,’catalog’);

When deleting generation tables, if you delete the current (base) table without
specifying the generation parameter, all tables in the generation group are deleted. For
example:

rc=delete(’one’);
/* Deletes all tables in the generation group named ’one’*/

If you specify the current (base) table using the generation parameter, only that table is
deleted. The youngest historical table becomes the new base. For example:

rc=delete(’one’,’data’,’’,0);
/* Deletes only the table work.one (relative generation number=0) */

Example 2: Deleting Files Delete an external file:
In UNIX:

/* delete a file in a different directory */
rc=delete(’/local/u/abcdef/testfile’,’file’);

In Windows:

/* delete a file in a different directory */
rc=delete(’D:\testfile’,’file’);

Example 3: Deleting Data Set Generations Delete the third generation of a data set:

/* delete the third generation of the data set ‘work.one’ */
rc=delete(’work.one’,’data’,’’,3);



SAS Component Language Dictionary � DELITEM 315

See Also

“NEW” on page 563

DELITEM

Deletes an item from an SCL list

Category: List

Syntax

list-id=DELITEM(list-id<,index>);

list-id
is the identifier of the list from which the item is to be deleted. The function returns
the list identifier that is passed in. An invalid list-id produces an error condition.

Type: Numeric or List

index
is the position of the item in the list. The position can be specified as either a
positive or negative number. By default, index is 1 (the first item). If index is a
positive number, then the item is at position index from the beginning of the list. If
index is a negative number, then the item is at position ABS(index) from the end of
the list. An error condition results if the absolute value for index is zero or if it is
greater than the number of items in the list.

Type: Numeric

Details

The item to be deleted is specified by its position in the list that is passed in.
DELITEM does not make a copy of the list before deleting the specified item. The

delete operation is performed in place on the list, and the list identifier is returned.
When the item to be deleted is a sublist, DELITEM deletes the item but not the

sublist, because the sublist may be referenced by other SCL variables or lists.
An error condition results if

� the item has the NODELETE attribute

� the list has the NOUPDATE or FIXEDLENGTH attribute.

To check the attributes of a list or list item, use HASATTR. To change attributes, use
SETLATTR.

See Also

“DELLIST” on page 316
“DELNITEM” on page 317
“POPC, POPL, POPN, and POPO” on page 598



316 DELLIST � Chapter 13

DELLIST

Deletes a list and optionally deletes all of its sublists

Category: List

Syntax
rc=DELLIST(list-id<,recursively>);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

list-id
is the identifier of the list to be deleted. An invalid list-id produces an error condition.

Type: Numeric or List

recursively
specifies whether to recursively delete all the list’s sublists and all sublists of its
sublists.

’N’ Sublists are not deleted. (This is the default.)

’Y’ Sublists are deleted.
Type: Character

Details
A list’s contents cannot be retrieved after the list is deleted.

If recursively is ’Y’, DELLIST recursively deletes all sublists that do not have the
NODELETE attribute. For sublists that have the NODELETE attribute, the sublist
identifiers are removed from the deleted list, but the sublist is not deleted. Thus, you
should store list identifiers for sublists either in another list or in an SCL variable so
that you can access the lists later. All local lists that are not explicitly deleted are
deleted when the application ends, at the same time that SCL closes open tables and
files.

CAUTION:
Be careful when deleting lists recursively because you may inadvertently delete lists that
are needed by other parts of the SCL program. Recursively deleting a list deletes all of
its sublists even if they are referenced in other SCL lists or by other SCL variables.
If you do not want a list to be deleted when it is a sublist item in a deleted list, use
SETLATTR to assign the NODELETE attribute to the sublist. See “SETLATTR” on
page 669 for a discussion of the NODELETE attribute. �

To conserve memory, delete lists when they are no longer needed. Typically, a
DELLIST statement is placed in the termination section (TERM or FSETERM) of the
program. Although the program that creates a list is most often responsible for deleting
the lists that it creates, it does not have to delete them unless that is the appropriate
action for the application; it may return the list that it created to its caller.



SAS Component Language Dictionary � DELNITEM 317

The list is not deleted, and a non-zero value is returned to rc, if
� the list has the NODELETE attribute
� the list is the local or global environment list (the lists returned by the ENVLIST

function)
� list-id is a component identifier or a class list identifier.

To check attributes, use HASATTR. To change attributes, use SETLATTR.
If DELLIST fails because of a condition listed above, the list and/or sublists may be

partially cleared, and no further items or sublists are cleared.

See Also
“CLEARLIST” on page 266
“DELITEM” on page 315
“DELNITEM” on page 317
“SETLATTR” on page 669

DELNITEM

Deletes a named item from an SCL list

Category: List

Syntax
list-id=DELNITEM(list-id,name,<occurrence

<,start-index<,index<,forceup>>>>);

list-id
is the identifier of the list from which the item is to be deleted. The function returns
the list identifier that is passed in. An invalid list-id produces an error condition.

Type: Numeric or List

name
is the name of the item to delete. Item names are converted to uppercase and
trailing blanks are ignored when searching the list for a matching name. Thus, the
names ’abc’ and ’Abc’ are converted to ’ABC’.

Type: Character

occurrence
is the number of the occurrence of the named item to delete. The default, 1, specifies
the first occurrence of the item.

Type: Numeric

start-index
specifies where in the list to begin searching for the item. By default, start-index is 1
(the first item). If start-index is positive, then the search begins at position
start-index items from the beginning of the list. If start-index is negative, then the
search begins at the item specified by ABS(start-index) items from the end of the list.
An error condition results if the absolute value of start-index is zero or if it is greater
than the number of items in the list.

Type: Numeric



318 DELNITEM � Chapter 13

index
specifies the variable to contain the position number of the deleted item. Index must
be initialized to a nonmissing value; otherwise, errors result.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric

forceup
can have one of the following values:

’Y’ specifies a case-insensitive search, which overrides the
HONORCASE or NOHONORCASE list attribute.

’N’ specifies a search that uses the HONORCASE or
NOHONORCASE list attribute and is the default action for lists
when FORCEUP is not specified.

IGNORECASE IGNORECASE is the alias for NOHONORCASE and is the
default for a list. But you can use the SETLATTR function to set
a list’s attribute to HONORCASE.

Details
DELNITEM searches for a named item and deletes it from the list. Case is ignored only
if forceup is ’Y’; otherwise, it searches according to the list attribute HONORCASE
and NOHONORCASE.

If a list has the NOHONORCASE attribute, the case is also ignored.
If occurrence and start-index are both positive or both negative, then the search

proceeds forward from the start-index item. For forward searches, the search continues
only to the end of the list and does not wrap back to the front of the list. If occurrence or
start-index is negative, then the search is backwards. For backward searches, the search
continues only to the beginning of the list and does not wrap back to the end of the list.

DELNITEM does not make a copy of the list. The delete operation is performed in
place on the list. For example, the following statement deletes the first item named app
in the list identified by LISTID:

listid=delnitem(listid,’app’);

When the item to be deleted is a sublist, DELNITEM deletes the item but not the
sublist, because the sublist may be referenced by other SCL variables or lists.

An error condition results if
� the item has the NODELETE attribute
� the list has the NOUPDATE or FIXEDLENGTH attribute
� the named item is not found in the list.

To check the attributes of a list or list item, use HASATTR. To change these
attributes, use SETLATTR.



SAS Component Language Dictionary � DELNITEM 319

Example

The following code creates a list named A, adds four items to the list, and prints the
list. Then it deletes the third item in the list and prints the list again.

a=makelist();
rc=insertc(a,’a’,-1,’var1’);
rc=insertc(a,’b’,-1,’var2’);
rc=insertc(a,’c’,-1,’var1’);
rc=insertc(a,’d’,-1,’var2’);
call putlist(a,’Before deleting’,0);
pos=0;
rc=delnitem(a,’var1’,2,1,pos);
put pos=;
call putlist(a,’After deleting’,0);

The results of this program are:

Before deleting(VAR1=’a’
VAR2=’b’
VAR1=’c’
VAR2=’d’
)[5]

POS=3
After deleting(VAR1=’a’

VAR2=’b’
VAR2=’d’
)[5]

Note: [5] is the list identifier that was assigned when this example was tested and
may be different each time the example is run. �

See Also
“DELITEM” on page 315
“DELLIST” on page 316
“LISTLEN” on page 516
“SETLATTR” on page 669



320 DELOBS � Chapter 13

DELOBS

Deletes a row from a SAS table

Category: SAS Table

Syntax
sysrc=DELOBS(table-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the SAS table was opened. If table-id is
invalid, the program halts.

Type: Numeric

Details
You must fetch a row before it can be deleted. Some functions that fetch a row include
FETCH, FETCHOBS, LOCATEC, LOCATEN, APPEND, DATALISTC, and
DATALISTN.

Example

Delete the current row from an open SAS table. (The example assumes that the table
identifier returned by the OPEN function was stored in the SCL variable MYDATAID.)
If the function is unable to delete the row, a message is displayed on the message line.

if (delobs(mydataid)) then _msg_=sysmsg();

See Also
“APPEND” on page 224
“DATALISTC and DATALISTN” on page 304
“FETCH” on page 374
“FETCHOBS” on page 375
“LOCATEC and LOCATEN” on page 524

DESCRIBE

Fills an SCL list with items of system information about a SAS table, view, or catalog entry

Category: List



SAS Component Language Dictionary � DESCRIBE 321

Syntax
sysrc=DESCRIBE(source-name,list-id<,type>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

source-name
is the name of the table, view, or catalog entry.

Type: Character

list-id
contains the identifier of an existing list to contain the control’s description. An
invalid list-id produces an error condition.

Type: Numeric or List

type
specifies the type of control to be described:

’CATALOG’
SAS catalog entry (This is the default.) For three- or four-level names, the default
entry type is PROGRAM.

’DATA’
SAS table (This is the default for one- or two-level names.)

’VIEW’
SAS data view.
Type: Character

Details
Because DESCRIBE replaces the previous values in the list, the same list can be used
repeatedly.

The items of descriptive information are placed into the list as named items, and the
names of the list items are the names of the attributes described. Only the named
attributes that appear in the list are filled in.

The attributes that DESCRIBE can place in an SCL list are determined by the value
of type. If type is DATA or VIEW, then the items named in the list are attributes that
are returned by the ATTRN and ATTRC functions. If type is CATALOG, then the items
named in the list are DESC (the description of the catalog), EDESC (the extended
description of the catalog entry), CRDATE (the date that the entry was created), and
DATE (the date that the entry was last modified). CRDATE and DATE are SAS date
values.

For catalog entries, if a numeric list item named DATE exists in the list, then
DESCRIBE sets that item’s values to a SAS date value. Otherwise, if DATE is a
character list item, then DESCRIBE assigns a formatted date string using the
MMDDYY10. format. Use ITEMTYPE to determine the type of a list item.



322 DEVLIST � Chapter 13

Example

Create an SCL list containing items named DESC and DATE. DESCRIBE fills the
DESC and DATE items in the list with information about the catalog entry
MYLIB.MYCAT.A.SCL.

init:
desc_list=makenlist(’L’,’DESC’,’DATE’);

/* set DATE to character list item */
rc=setnitemc(desc_list,’ ’,’DATE’);
rc=describe(’MYLIB.MYCAT.A.SCL’,desc_list,’CATALOG’);
call putlist(desc_list);

return;

The output would be similar to:

(DESC=’A.SCL’ DATE=’03/25/2000’ )[5]

See Also
“ATTRC and ATTRN” on page 231

DEVLIST

Displays a selection list of graphic hardware devices and returns user selections

Category: Selection List

Syntax
selections=DEVLIST(catalog-name,device<,message

<,autoclose<,num-sel>>>);

selections
are one or more user selections from the list, or blank if the selection list window is
closed and no selections are made.

Type: Character

catalog-name
is the catalog that lists the devices. Usually the catalog SASHELP.DEVICES is used
as catalog-name.

Type: Character

device
is the type of device to be listed:

’CAMERA’
lists device catalog entries for film recorders.

’DEFAULT’
returns the current device name, description, and type instead of displaying a list.

’EXPORT’
lists device catalog entries for device drivers that produce a graphics stream file.



SAS Component Language Dictionary � DEVLIST 323

’MONITOR’
lists device catalog entries for video displays.

’PLOTTER’
lists device catalog entries for plotters.

’PRINTER’
lists device catalog entries for printers.
Type: Character

message
is the text for a message to be displayed above the selection list. The default message
tells users to make up to the number of selections specified in num-sel.

Type: Character

autoclose
specifies whether the selection list window closes automatically after a user makes a
selection when only one choice is allowed:

’Y’ closes the window automatically. (This is the default.)

’N’ leaves the window open until the user explicitly closes it.
This option is ignored when num-sel is not 1. However, use ’’as a placeholder if

you are also specifying a value for num-sel.
Type: Character

num-sel
specifies the maximum number of items a user can select from the list. To display
the list for information purposes only (no selections allowed), specify 0. To specify an
unlimited number of selections, use a value that is larger than the number of
available selections about graphic device drivers such as 9999.

Type: Numeric

Details

The value in selections consists of a 40-character description, an 8-character device
name, and an 8-character device type. For additional details about graphic device
drivers, see SAS/GRAPH: Reference and the SAS online Help for SAS/GRAPH software.

You can provide a default value or an initial selected value in the list by providing a
value for the selections variable before calling DEVLIST. If selections contains valid
entry names when the function is invoked, those names are automatically designated as
selected when the selection list is displayed.

If a user closes the selection list window without making a selection, then DEVLIST
returns a blank value unless there was an initial value for the selections variable before
DEVLIST was called.

When multiple selections are allowed, selections contains the first value selected from
the list. However, the values for all selections can be returned in the current result list,
if one is available. The current result list is a special SCL list that is automatically
filled with the values selected from a selection list. To use a current result list, use the
MAKELIST function to create the list, and use the CURLIST function to designate it as
the current result list. The current result list must exist before you call DEVLIST.

When DEVLIST is invoked, the current result list is cleared. After DEVLIST is
invoked, the result list contains the following named items:

TAG
identifies the list as one that was created by the DEVLIST function.

Type: Character



324 DEVLIST � Chapter 13

COUNT
contains either the number of selected elements, or 0 if a user makes no selections
or issues a CANCEL command in the list window.

Type: Numeric

DESC
contains the description of the selected device. There is one DESC element for
each selection. The value of DESC is in the case that was entered originally.

Type: Character

DEVICE
contains the name for each selected device. There is one DEVICE element for each
selection.

Type: Character

TYPE
contains the type of each selected device. There is one TYPE element for each
selection.

Type: Character

Examples

Example 1: Displaying the Printer Devices of a Catalog Display a list of devices of
type PRINTER that are available in the catalog SASHELP.DEVICES. After the user
selects one device from the list, the program uses the SUBSTRING function to extract
the individual items of information returned by DEVLIST.

select=devlist(’sashelp.devices’,’printer’,
’Select a device.’);

descript=substr(select,1,40);
device=substr(select,41,8);
devtype=substr(select,49,8);

Example 2: Using the Results of a DEVLIST Use the current result list to process
multiple selections:

listid=makelist();
rc=curlist(listid);
selection=devlist(’sashelp.devices’,’printer’,

’Select a device’,’ ’,3);
n=getnitemn(listid,’COUNT’);
do i=1 to n;

descript=getnitemc(listid,’DESC’,i);
device=getnitemc(listid,’DEVICE’,i);
devtype=getnitemc(listid,’TYPE’,i);
put descript= device= devtype=;

end;

See Also
“COLORLIST” on page 270



SAS Component Language Dictionary � DIALOG 325

DIALOG

Runs a FRAME entry that was created with SAS/AF software and disables all other windows

Category: Modular Programming

Syntax
CALL DIALOG(entry<,parameters>)

entry
is a FRAME entry to be displayed. It is specified as

entry.type
for a FRAME entry in the current catalog.

libref.catalog.entry.type
for a FRAME entry in a specified catalog.
Type: Character

parameters
lists one or more parameters to pass to the called entry. In order for the called entry
to accept these parameters, it must contain a corresponding ENTRY statement.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric, Character

Details
DIALOG runs a FRAME entry, makes it the active entry, and disables all other

windows. When the called entry is exited, control returns to the calling program. With
the exception of disabling all other windows, DIALOG is similar to DISPLAY.

Note: From the window created with the CALL DIALOG routine, you cannot
execute a SUBMIT statement with the CONTINUE option. See “Controlling What
Happens After a Submit Block Executes” on page 88. �

DIALOG can pass parameters through the ENTRY statement to the called Frame entry.
Parameters can be numeric constants, character constants, variables, expressions, and
array variables.

Using DIALOG without any options in the associated ENTRY statement requires a
strict correspondence between DIALOG parameters and ENTRY statement arguments.
The arguments and parameters must agree in number, data type, and relative position.
If you pass an incorrect number of parameters or a parameter of the incorrect type,
SCL halts the execution of the program. The argument-parameter correspondence is
less restrictive when you use the options REST=, ARGLIST=, and OPTIONAL= in the
ENTRY statement.

Names listed in parameter do not have to match the argument names in the ENTRY
statement.

Parameters are passed in the following ways:

call-by-reference
passes window variables and local variables and allows values to be returned to
the calling program. This method allows the called program to modify values and



326 DINFO � Chapter 13

then return them. If you do not want to return the new values, use the
NOCHANGE routine. Or, if you do not want to return the new values for
particular parameters, use the INPUT option for that parameter in the ENTRY
statement. Here is an example of call-by-reference:

array employee{50};
call dialog(’b.frame’,var1,name,num,employee{1});

call-by-value
is used for all numeric constants, character constants, and expressions. It does not
allow values to be returned to the calling program. Here is an example of
call-by-value:

call dialog(’b.frame’,100,’hello’,x+y);

See Also
“DISPLAY” on page 330
“ENTRY” on page 351
“NOCHANGE” on page 571
“RETURN” on page 624

DINFO

Returns information about a directory

Category: Directory

Syntax
attribute=DINFO(directory-id,info-item);

attribute
contains the value of the information item, or a blank if info-item is invalid.

Type: Character

directory-id
is the identifier that was assigned when the directory was opened. If directory-id is
invalid, the program halts.

Type: Numeric

info-item
is the information item to be retrieved.

Type: Character

Details
DINFO returns the value of a system-dependent directory parameter. The available
information varies according to the operating system. See the SAS documentation for
your host operating system for information about system-dependent directory
parameters.



SAS Component Language Dictionary � DIRLIST 327

Use DOPTNAME to determine the names of the available system-dependent
directory information items. Use DOPTNUM to determine the number of directory
information items available.

Example

Open the directory MYDIR, determine the number of directory information items
available, and retrieve the value of the last item:

/* Assign the fileref MYDIR to the */
/* pathname stored in the variable */
/* or entered in the DIRNAME field and open it.*/
rc=filename(’mydir’,dirname);

did=dopen(’mydir’);
numopts=doptnum(did);
foption=doptname(did,numopts);
charval=dinfo(did,foption);
rc=dclose(did);

See Also
“DOPTNAME” on page 339
“DOPTNUM” on page 340
“FINFO” on page 398
“FOPTNAME” on page 409
“FOPTNUM” on page 410

DIRLIST

Opens a host selection list window that lists members of one or more SAS data libraries, and
returns a user’s selections

Category: Selection List

Syntax
selections=DIRLIST(lib-spec,member-type,num-sel,prefix<,table-type<,sel-

excl<,message>>>);

selections
contains one or more user selections. Multiple selections are separated by blanks. By
default, selections is 200 bytes long. To accommodate values longer than 200 bytes,
explicitly declare selections with a longer length.

Type: Character

lib-spec
lists one or more librefs that are associated with particular SAS data libraries. To
include or exclude SAS data libraries, use a name specification style from “Name
Specifications for Arguments” on page 328. By default, SASHELP is not included in
the selection window.

Type: Character



328 DIRLIST � Chapter 13

member-type
lists one or more types of SAS data library members. For example, a few common
member-types are DATA, VIEW, and CATALOG. To include or exclude particular
member-types, use a name specification style from “Name Specifications for
Arguments” on page 328.

Type: Character

num-sel
is the maximum number of items that a user can select from the list. To display the
list for information purposes only (no selections allowed), specify 0. To specify an
unlimited number of selections, use a value such as 9999 that is larger than the
number of available selections.

Type: Numeric

prefix
specifies whether names that are selected are prefixed with the libref:

’Y’
Selected names are returned as libref.name.

’N’ or ’’
Selected names are returned as name.

table-type
lists one or more SAS table types. By default, the selection list displays members of
all SAS table types. To include or exclude specific table types, use a name
specification style from “Name Specifications for Arguments” on page 328. This
argument is ignored unless DATA is one of the values of member-type. For
information about table types, see the description of the TYPE= data set option in
SAS Language Reference: Dictionary.

Type: Character

sel-excl
lists one or more SAS data library members to include or exclude from the list. Use a
name specification style from “Name Specifications for Arguments” on page 328. If
prefix is N, then specify the name here as member. If prefix is Y, then specify the
name here as libref.member.

Type: Character

message
is the text for a message to be displayed above the selection list. The default message
tells users to make up to the number of selections specified in num-sel.

Type: Character

autoclose
is an obsolete argument but is retained for compatibility with earlier releases. If you
want to specify a value for num-sel, then specify ‘‘ as a placeholder for this
argument.

Name Specifications for Arguments
For lib-spec, member-type, and table-type, use these guidelines for specifying names:

� To specify one or more specific names, separate the names with a space.
� To specify all names, use an asterisk (*) or a null string (’’).
� To specify all names except those listed, use a NOT sign (^ or ) followed by one or

more names.

Details
If a user closes the selection list window without making a selection, selections contains
a blank value unless that variable contained a valid value before DIRLIST was called.



SAS Component Language Dictionary � DIRLIST 329

The values for all selections can be returned in the current result list, if one is
available. The current result list is a special SCL list that is automatically filled with
the values selected from a selection list. To use a current result list, use the MAKELIST
function to create the list, and use the CURLIST function to designate it as the current
result list. The current result list must exist before you call the DIRLIST function.

When the function is invoked, the current result list is cleared. After DIRLIST is
invoked, the current result list contains the following named elements:

TAG
identifies the list as one that was created by DIRLIST.

Type: Character

COUNT
contains the number of selected items or contains 0 if a user makes no selections
or issues a CANCEL command in the list window.

Type: Numeric

NAME
contains the uppercase name of each selected catalog entry. If prefix is Y, then the
name is in the form libref.member. Otherwise, it is in the form member. There is
one NAME element for each selection made.

Type: Character

DESC
contains the description of each selected catalog entry. There is one DESC element
for each selection made. The value of DESC is in the case entered originally. If the
SAS system option DETAILS is in effect, then DESC contains the table label.

Type: Character

TYPE
contains the type of each selected library member. There is one TYPE element for
each selection.

Type: Character

Because some engines support mixed-case filenames, DIRLIST now retains the cases
of the returned selected items. This may cause your application to fail if your application
contains code that assumes the returned selection is uppercased. For example,

if (dirlist(dsid, ’TESTNDX’)=’NDXVAR’)

must be changed to

if (upcase(dirlist(dsid, ’TESTNDX’))=’NDXVAR’

If the application cannot be modified, you may need to specify the
VALIDVARNAME=V6 system option when you run the application to ensure that the
selections returned from the DIRLIST function will be uppercased.

Example

Display a selection list of SAS tables in the SAS libraries MYLIB1 and MYLIB2
except MYLIB1.ANSWERS, and enable users to select up to three table names. The
selections are retrieved from the current environment list by using GETNITEMC.

listid=makelist();
rc=curlist(listid);
selections=dirlist(’mylib1 mylib2’,’data’,3,’Y’,

’ ’,’^ mylib1.answers’);
n=getnitemn(listid,’COUNT’);
do i=1 to n;



330 DISPLAY � Chapter 13

member=getnitemc(listid,’NAME’,i);
descript=getnitemc(listid,’DESC’,i);
memtype=getnitemc(listid,’TYPE’,i);
put member= descript= memtype=;

end;

See Also
“CATLIST” on page 244
“FILELIST” on page 386
“LIBLIST” on page 508

DISPLAY

Runs a catalog entry that was created with SAS/AF software

Category: Modular Programming and Object Oriented

Syntax
CALL DISPLAY(entry<,parameters>);

return-value=DISPLAY(entry<,parameters>);

entry
is a display entry (FRAME, PROGRAM, SCL, MENU, HELP, or CBT) that was
created using SAS/AF software. It is specified as

entry-name
for a PROGRAM entry in the current catalog.

entry.type
for an entry of the specified type in the current catalog.

libref.catalog.entry
for a PROGRAM entry in the specified catalog.

libref.catalog.entry.type
for an entry of a specified type in a specified catalog.
Type: Character

parameters
lists one or more parameters to pass to the called entry. You can pass parameters to
FRAME, PROGRAM, and SCL entries. In order for the called entry to accept these
parameters, it must contain a corresponding ENTRY statement.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric, Character

return-value
contains the value that is returned by the called entry. The data type for
return-value should match the data type for the called entry.

Type: Numeric, Character, List, Object, Class, or Interface



SAS Component Language Dictionary � DISPLAY 331

Details
DISPLAY can run a FRAME, PROGRAM, SCL, MENU, HELP, or CBT entry and make
it the active entry. When the called entry is exited, control returns to the calling
program.

DISPLAY can pass parameters to a FRAME, PROGRAM, or SCL entry and receive a
return value. Parameters can be numeric constants, character constants, variables,
expressions, and array variables. Parameters are passed to the ENTRY statement in
the called entry.

Using DISPLAY without any options in the associated ENTRY statement requires a
strict correspondence between DISPLAY parameters and ENTRY statement arguments.
The arguments and parameters must agree in number, data type, and relative position.
If you pass an incorrect number of parameters or a parameter of the incorrect type,
SCL halts the execution of the program. The argument-parameter correspondence is
less restrictive when you use the options REST=, ARGLIST=, and OPTIONAL= in the
ENTRY statement. See “ENTRY” on page 351 for examples of these options.

Names listed in parameter do not have to match the argument names in the ENTRY
statement.

Parameters are passed in the following ways:

call-by-reference
enables the specified entry to change the values of the parameters. If you do not
want the values of the parameters to be modified, use the NOCHANGE routine.
Or, if you do not want to return the new values for specific parameters, use the
INPUT option for that parameter in the ENTRY statement. Here is an example of
call-by-reference:

array employee{50};
call display(’b.frame’,var1,name,num,employee{1});

call-by-value
prevents the specified entry from changing the values of the parameters.
Call-by-value is used for all numeric constants, character constants, and
expressions. Here is an example of call-by-value:

call display(’b.frame’,100,’hello’,x+y);

Note: Use CALL CBT to run CBT applications, because it provides more options
used by CBT entries. In general, you may want to use CALL GOTO instead of CALL
DISPLAY if you do not need control to return to the calling program. This may be
helpful for applications that have memory constraints. �



332 DISPLAY � Chapter 13

Examples

Example 1: Passing Parameters Use DISPLAY in program X to pass parameters to
program Y. Program Y then declares these arguments with an ENTRY statement.
Variables I and S are call-by-reference parameters, and the constant 1 is a call-by-value
parameter.

X.SCL contains the following program:

INIT:
s = ’abcd’;
i = 2;
call display(’y.frame’, i, 1, s);

/* At this point, after the return from Y, */
/* i=7 and s=’abcde’ */

put i= s=;
return;
MAIN:
TERM:
return;

Y.SCL contains the following program:

entry j c:num str:char;
init:

j = length(str) + c;
j = j + 2;
str = str || ’e’;
c = 2;

return;

The following correspondence occurs:
� The value of variable I passes to variable J.

� The literal value 1 passes to variable C.
� The value of variable S passes to variable STR.

After program Y runs, the values of variables J and STR are returned to the
variables I and S, respectively. The variable C cannot return a value, however, because
the corresponding parameter in DISPLAY is a constant.



SAS Component Language Dictionary � DISPLAY 333

Example 2: Passing Array Parameters by Reference Use DISPLAY to pass array
parameters by reference. In this example, the variables S and A are call-by-reference
parameters, and the constant 4 is a call-by-value parameter.

X.SCL contains the following program:

array a{4} 8;
INIT:

a{1} = 1; a{2} = 2; a{3} = 3; a{4} = 4;
s = 0;
call display(’y.frame’, s, a, 4);
/* At this point, after the return

from Y, */
/* s=10, a{1}=2, a{2}=4, a{3}=6,

a{4}=8. */
put s= a=;

return;

MAIN:
TERM:
return;

Y.SCL contains the following program:

array arr{*} 8;
entry sum arr[*] len:num;
INIT:

do i = 1 to len;
sum = sum + arr{i};
arr{i} = 2 * arr{i};

end;
return;

The following correspondence occurs:
� The value of variable S passes to variable SUM.
� The array variable A is passed to the array variable ARR.
� The literal value 4 passes to variable LEN.

After program Y runs, the value of the variable SUM is returned to the variable S,
and the values in the array ARR are returned to the corresponding values in the array
A. The variable LEN cannot return a value, however, because the corresponding
parameter in DISPLAY is a constant.

See Also
“DIALOG” on page 325
“ENTRY” on page 351
“GOTO” on page 444
“INPUTC and INPUTN” on page 473
“NOCHANGE” on page 571
“RETURN” on page 624



334 DISPLAYED � Chapter 13

DISPLAYED

Reports whether a control or field is currently visible

Category: Control or Field

Syntax
rc=DISPLAYED(wvar-name);

rc
indicates whether the FRAME entry control or field is visible:

1 visible

0 not visible
Type: Numeric

wvar-name
is the name of a control or field. This name cannot be an element of an array or an
expression. An invalid wvar-name halts the program.

Type: Character

Details
In SAS/AF applications, DISPLAYED reports whether a control is currently visible or
whether it has the NONDISPLAY attribute. In FSEDIT, DISPLAYED tells you whether
a field is visible on the current screen of a multiscreen application, regardless of
whether the control has the NONDISPLAY attribute. This function is useful in
multiscreen applications in which the application developer wants to be on a specific
screen for a field.

If a control is not currently displayed, then your application can use the EXECCMD
routine to issue scrolling commands to change the screen position or to issue scrolling
commands that are specific to the procedure (for example, the =n command in the
FSEDIT procedure).

The control or field cannot be an element of an array. To report this information for
an array element, use FIELD instead.

FRAME entry controls can also use the _isDisplayed or _isHidden method.

Example

Test whether the SALARY field is displayed on the current screen of an FSEDIT
application. If not, issue an FSEDIT scrolling command to display the screen that
contains the field:

if (displayed(salary)=0) then
call execcmd(’=salary’);

See Also
“ERROR” on page 357
“ERROROFF” on page 359
“ERRORON” on page 360



SAS Component Language Dictionary � DMWINDOW 335

“FIELD” on page 379
“MODIFIED” on page 550

DMWINDOW

Sets the color and highlighting for lines in the OUTPUT and LOG windows

Category: Window

Syntax
rc=DMWINDOW(window-name,line-type,color,attribute);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

window-name
is the window for which you want to assign colors and display attributes:

’OUTPUT’
the OUTPUT window

’LOG’
the LOG window
Type: Character

line-type
is the output area to which the colors and highlighting attributes are to be assigned:

’DATA’
Data line

’ERROR’
Error line

’NOTES’
Notes line (LOG window only)

’SOURCE’
Source line (LOG window only)

’WARNING’
Warning line (LOG window only)

’BYLINE’
Byline line (OUTPUT window only)

’HEADER’
Header line (OUTPUT window only)

’TITLE’
Title line (OUTPUT window only)



336 DNUM � Chapter 13

Type: Character

color
is a color name: BLACK, BLUE, BROWN, CYAN, GRAY, GREEN, MAGENTA,
ORANGE, PINK, RED, WHITE, or YELLOW. SASCOLOR window elements can also
be used for color.

Type: Character

attribute
is a display attribute: NONE, BLINKING, HIGHLIGHT, HIREV, REVERSE, or
UNDERLINE. If you specify a SASCOLOR window element for color, then attribute
is ignored, because the SASCOLOR window element contains a display attribute.

Type: Character

Details

The device must support the specified color or highlighting attribute in order for SAS to
enable the attribute.

Example

Set the highlighting attribute of the title line in the OUTPUT window to blinking
and set its color to yellow:

rc=dmwindow(’output’,’title’,’yellow’,’blinking’);

DNUM

Returns the number of members in a directory

Category: Directory

Syntax

nval=DNUM(directory-id);

nval
contains the number of members in the directory.

Type: Numeric

directory-id
is the identifier that was assigned when the directory was opened. If directory-id is
invalid, the program halts.

Type: Numeric

Details

You can use DNUM to determine the largest member number that can be passed to
DREAD.



SAS Component Language Dictionary � DO 337

Example

Open the directory MYDIR, determine the number of members, and close the
directory:

/* Assign the fileref MYDIR to the */
/* filename stored in the variable DIRNAME */
/* and open it. */

rc=filename(’mydir’,dirname);
dirid=dopen(’mydir’);
memcount=dnum(dirid);
rc=dclose(dirid);

See Also
“DREAD” on page 341

DO

Designates a group of statements to be executed as a unit

Category: Control Flow
Comparisons: SAS Statement with limitations in SCL

Syntax
DO do-clause;

END;

Details
The following forms of the do-clause are supported:

iterative DO
executes a group of statements repetitively, based on the value of an index
variable. However, the form DO i=item-1, . . . , item-n is not supported.

DO UNTIL
executes a group of statements repetitively until a condition is true.

DO WHILE
executes a group of statements repetitively as long as a condition is true.

The form DO OVER is not supported.
To force the statements in a DO group to stop executing, you can use the SCL

statements CONTINUE or LEAVE.
For details about the DO statement in the Base SAS language, see SAS Language

Reference: Dictionary.

See Also
“CONTINUE” on page 277
“LEAVE” on page 498



338 DOPEN � Chapter 13

DOPEN

Opens a directory

Category: Directory

Syntax

directory-id=DOPEN(fileref);

directory-id
contains the return code for the operation:

0 indicates that the directory could not be opened.

>0 is the identifier that was assigned to the opened directory.
Type: Numeric

fileref
is the fileref that is assigned to the directory.

Type: Character

Details

DOPEN opens a directory and returns a directory identifier value (a number greater
than 0), which can then be used to identify the open directory to other SCL functions.
The directory to be opened must be identified by a fileref. You must associate a fileref
with the directory before calling DOPEN.

You can assign filerefs by using either the FILENAME statement or the FILENAME
function in SCL. Under some operating systems, you can also use system commands to
assign filerefs.

Operating Environment Information: The term directory used in the description of this
function and related SCL functions refers to an aggregate grouping of files that are
managed by the host operating system. Different host operating systems identify such
groupings with different names, such as directory, subdirectory, MACLIB, or partitioned
data set. See the SAS documentation for your operating environment for details. �

Example

Assign the fileref MYDIR to a directory. Then open the directory, determine how
many system-dependent directory information items are available, and close the
directory. DIRNAME is an SCL variable with a value that represents the actual name
of the directory in the form required by the host operating system.

rc=filename(’mydir’,dirname);
did=dopen(’mydir’);
infocnt=doptnum(did);
rc=dclose(did);



SAS Component Language Dictionary � DOPTNAME 339

See Also

“DCLOSE” on page 307
“FOPEN” on page 407
“MOPEN” on page 553

DOPTNAME

Returns the name of a directory attribute

Category: Directory

Syntax

attribute=DOPTNAME(directory-id,attribute-number);

attribute
contains the directory option. If nval is out-of-range, the program halts and attribute
contains the value that it held before the program halt.

Type: Character

directory-id
contains the identifier that was assigned when the directory was opened. If
directory-id is invalid, the program halts.

Type: Numeric

attribute-number
is the sequence number of the option.

Type: Numeric

Details

DOPTNAME works only if the directory was previously opened by the DOPEN function.
The names and nature of directory information items vary depending on the operating
system. The number of attributes that are available for a directory also varies
depending on the operating system.

Example

Open the directory identified by the fileref MYDIR, retrieve all system-dependent
directory information items, write them to the SAS log, and then close the directory:

/* Assign the fileref MYDIR to the */
/* filename stored in the variable DIRNAME */
/* and open it. */

rc=filename(’mydir’,dirname);
dirid=dopen(’mydir’);
numitems=doptnum(dirid);
do j=1 to numitems;



340 DOPTNUM � Chapter 13

opt=doptname(dirid,j);
put ’Directory information=’ opt;

end;
rc=dclose(dirid);

See Also

“DINFO” on page 326
“DOPTNUM” on page 340

DOPTNUM

Returns the number of information items that are available for a directory

Category: Directory

Syntax

num-attributes=DOPTNUM(directory-id);

num-attributes
contains the number of available directory information items. If an error condition
occurs, the program halts and num-attributes contains the value that it held before
the program halt.

Type: Numeric

directory-id
contains the identifier that was assigned when the directory was opened. If
directory-id is invalid, the program halts.

Type: Numeric

Details

DOPTNUM works only if the directory was previously opened by the DOPEN function.

Example

Retrieve the number of system-dependent directory information items that are
available for the directory MYDIR and then close the directory:

/* Assign the fileref MYDIR to the */
/* filename stored in the variable DIRNAME */
/* and open it. */

rc=filename(’mydir’,dirname);
dirid=dopen(’mydir’);
infocnt=doptnum(dirid);
rc=dclose(dirid);



SAS Component Language Dictionary � DREAD 341

See Also
“DINFO” on page 326
“DOPTNAME” on page 339

DREAD

Returns the name of a directory member

Category: Directory

Syntax
name=DREAD(directory-id,member-num);

name
contains either the name of the member, or a blank if an error occurs (for example, if
nval is out-of-range).

Type: Character

directory-id
contains the identifier that was assigned when the directory was opened. If
directory-id is invalid, the program halts.

Type: Numeric

member-num
is the sequence number of the member within the directory.

Type: Numeric

Details
Use DNUM to determine the highest possible member number that can be passed to
DREAD. DREAD works only if the directory was previously opened by the DOPEN
function.

Example

Open the directory identified by the fileref MYDIR, retrieve the number of members
and place the number in the variable MEMCOUNT, retrieve the name of the last
member and place the name in the variable LSTNAME, and then close the directory:

/* Assign the fileref MYDIR to the */
/* filename stored in the variable DIRNAME */
/* and open it. */

rc=filename(’mydir’,dirname);
dirid=dopen(’mydir’)
lstname=’’;
memcount=dnum(dirid);
if (memcount>0) then

lstname=dread(dirid,memcount);
rc=dclose(dirid);



342 DROPNOTE � Chapter 13

See Also

“DNUM” on page 336
“DOPEN” on page 338

DROPNOTE

Deletes a note marker from either a SAS table or an external file

Category: SAS Table

Syntax

rc=DROPNOTE(table-id|file-id,note-id);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id or file-id
contains the identifier that was assigned when the table or external file was opened.
If this variable contains an invalid value, the program halts.

Type: Numeric

note-id
contains the identifier that was assigned by the NOTE or FNOTE function. If note-id
contains an invalid value, the program halts.

Type: Numeric

Details

DROPNOTE deletes a marker that was set by NOTE or FNOTE.

Example

Open the SAS table MYDATA, fetch the first row, and set a note ID at the beginning
of the table. Return to the first row by calling POINT, and then delete the note ID by
calling DROPNOTE.

dsid=open(’mydata’,’i’);
rc=fetch(dsid);
noteid=note(dsid);

/* more SCL statements */
rc=point(dsid,noteid);
rc=fetch(dsid);
rc=dropnote(dsid,noteid);



SAS Component Language Dictionary � DSID 343

See Also
“FNOTE” on page 404

“FPOINT” on page 412
“NOTE” on page 573
“POINT” on page 597

DSID

Searches for a SAS table name and returns the table identifier

Category: SAS Table

Syntax
dsid=DSID(<table-name<,mode<,nth<,gen-num>>>>);

dsid
contains either the identifier for the table, or

0 if the table is not currently open, if the table is not open in the
requested mode, or if no nth open occurrence exists.

<0 if an error occurs. SYSMSG contains the error text.
Type: Numeric

table-name
names the SAS table to search for. The default is _LAST_, which is the last table
that was created in the current SAS session. A one-level name is assumed to be a
SAS table name in the default SAS data library, WORK. A two-level name is
assumed to be libref.table.

Type: Character

mode
specifies whether to limit the search to tables that are open in one of the modes
listed below. If mode is not specified, DSID returns the dsid for the first occurrence of
table-name that is open in any mode. Values for mode are

’I’ INPUT mode, allows random access if the engine supports it;
otherwise, defaults to IN mode.

’IN’ INPUT mode, reads sequentially and allows revisiting rows.

’IS’ INPUT mode, reads sequentially but does not allow revisiting
rows.

’N’ NEW mode, creates a new SAS table.

’U’ UPDATE mode, allows random access if the engine supports it;
otherwise, defaults to UN mode.

’UN’ UPDATE mode, reads sequentially and allows revisiting rows.

’US’ UPDATE mode, reads sequentially but does not allow revisiting
rows.

’V’ UTILITY mode, allows modification of column attributes and
indexes that are associated with the SAS table.



344 DSID � Chapter 13

For more information about open modes, see “OPEN” on page 581.
Type: Character

nth
specifies which occurrence of table-name opened in the specified mode to search for.
By default, the search returns the first occurrence.

Type: Numeric

gen-num
is the generation number of the SAS table for which the DSID is returned.

Type: Numeric

Details
DSID searches all SAS tables that are currently open. This function is useful for
accessing table identifiers across entries.

Examples

Example 1: Working with Several Tables Open several SAS tables and find the first
occurrence in various modes:

/* Open several SAS tables, varying the open mode */
dsid1 = open(’sasuser.class’, ’I’);
dsid2 = open(’sasuser.class’, ’U’);
dsid3 = open(’sasuser.class’, ’U’);
dsid4 = open(’sasuser.houses’, ’U’);
dsid5 = open(’sasuser.class’, ’I’);
dsid6 = open(’sasuser.houses’, ’U’);
dsid7 = open(’sasuser.houses’, ’I’);
dsid8 = open(’sasuser.class’, ’U’);

/* Find the first occurrence open in any mode.*/
first = DSID( ’sasuser.houses’ );
put first=;

/* Find the first occurrence open in ’I’ */
firstI = DSID( ’sasuser.houses’, ’I’ );
put firstI=;

/* Find the second occurrence open in ’I’ */
secondI = DSID( ’sasuser.class’, ’I’, 2 );
put second=;

/* Return the fourth occurrence open in ’U’ */
secondU = DSID( ’sasuser.class’, ’U’, 4 );
put secondU=;

This example produces the following output:

first=4
firstI=7
secondI=5
secondU=0



SAS Component Language Dictionary � DSNAME 345

Example 2: Returning the DSID of a Generation Data Set The following code returns
the DSID of the SAS table WORK.ONE#003.

dsid=DSID(‘work.one’,‘IN’,1,3);

See Also
“OPEN” on page 581

DSNAME

Returns the SAS table name that is associated with a table identifier

Category: SAS Table

Syntax
table-name=DSNAME(<table-id>);

table-name
contains either the table name that is associated with the specified table-id value, or
a blank if an invalid value is specified.

Type: Character

table-id
contains the identifier that was assigned when the table was opened. If DSNAME is
called from FSEDIT, FSBROWSE, or FSVIEW, this value is optional. If table-id is
not specified in an FSEDIT or FSVIEW application, then DSNAME returns the name
of the current table. If table-id is not specified in a SAS/AF application, then
DSNAME returns a blank.

Type: Character

Examples
� Determine the name of the SAS table that is associated with the table identifier

TABLEID and display this name on the message line:

_msg_=’The open table is ’||dsname(tableid)||’.’;

� In an FSEDIT or FSVIEW SCL program, display on the command line the name
of the table that is currently being edited:

_msg_=’The table being edited is ’||dsname()||’.’;

See Also
“OPEN” on page 581



346 ENDBLOCK � Chapter 13

ENDBLOCK

Closes the window that is created by the BLOCK function

Category: Window

Syntax
CALL ENDBLOCK();

Example

Create a menu that contains four choices. The first row of blocks contains two blocks
with the labels Outline and Index. The second row contains two blocks with the labels
Compare Files and Calendar. No third row of blocks is displayed. The memory that was
used in displaying the menu is freed when the ENDBLOCK routine is executed and the
window is closed.

INIT:
choice=block(’Writers Toolbox’,’Main Menu’,6,

’Outline’,’Index’,’’,’’,
’Compare Files’,’Calendar’,’’,’’,
’’,’’,’’,’’);

...more SCL statements...
return;
MAIN:

...more SCL statements...
return;

TERM:
call endblock();

return;

See Also
“BLOCK” on page 238

ENDCATCH

Ends a CATCH statement block

Category: Control Flow

Syntax
ENDCATCH;



SAS Component Language Dictionary � ENDLEGEND 347

Details
The ENDCATCH statement marks the end of a CATCH block.

See Also
“CATCH” on page 243

ENDCLASS
Ends a CLASS statement block

Category: Object Oriented

Syntax
ENDCLASS;

Details
The ENDCLASS statement marks the end of a CLASS block in an SCL program. Use
ENDCLASS to designate the end of a block of SAS statements that define a class.

See Also
“CLASS” on page 253

ENDLEGEND
Closes the LEGEND window

Category: Legend

Syntax
CALL ENDLEGEND();

Details
If the LEGEND window is not currently displayed, the routine has no effect.

For an example of using ENDLEGEND as well as other functions that manipulate
the LEGEND window, see “LEGEND” on page 501.

See Also
“POPLEGEND” on page 601
“PUSHLEGEND” on page 608
“PUTLEGEND” on page 611



348 ENDMETHOD � Chapter 13

ENDMETHOD

Ends a METHOD statement block

Category: Modular Programming and Object Oriented

Syntax
ENDMETHOD;

Details
The ENDMETHOD statement marks the end of a method block in an SCL program.
Use ENDMETHOD with a METHOD statement to indicate a block of statements that
can be called by the METHOD routine. When the method block is executed, control
returns to the calling program when ENDMETHOD is encountered.

Example

End a METHOD block:

METHOD;
...SCL statements...

endmethod;

See Also
“METHOD” on page 539

ENDPACKAGE

Ends a PACKAGE statement block

Category: Object Oriented

Syntax
ENDPACKAGE;



SAS Component Language Dictionary � ENDSUBMIT 349

Details
The ENDPACKAGE statement marks the end of a PACKAGE block. Use
ENDPACKAGE to designate the end of a block of ITEM statements that define a
package.

See Also
“PACKAGE” on page 589

ENDSUBMIT

Ends statements to be submitted to SAS software for execution

Category: Submit Block

Syntax
ENDSUBMIT;

Details
The ENDSUBMIT statement marks the end of a SUBMIT block in an SCL program.
Use ENDSUBMIT with SUBMIT to indicate a block of SAS statements to submit to
SAS software for execution.

The ENDSUBMIT statement instructs SCL to stop collecting statements in the
PREVIEW buffer and to submit the collected statements, based on the options that
were specified for the SUBMIT statement.

Example

Use SUBMIT to invoke the PRINT procedure and use ENDSUBMIT to mark the end
of the SUBMIT block:

submit immediate;
data one;

do x=1 to 10;
output;
end;

run;
proc print;
run;

endsubmit;

See Also
“SUBMIT” on page 691



350 ENDTABLE � Chapter 13

ENDTABLE

Stops the processing of the getrow section of a dynamic extended table

Category: Extended Table

Syntax
CALL ENDTABLE();

Details
The ENDTABLE routine stops the processing of the getrow section of a dynamic
extended table. A dynamic extended table is a table whose maximum number of rows is
determined when the program executes. Call the ENDTABLE routine from the getrow
section of the SCL program when the end of the extended table has been reached.

Because you can define extended tables only in SAS/AF software, you cannot use
ENDTABLE in FSEDIT or FSVIEW programs.

The ENDTABLE routine marks only the end of the table for this invocation of the
GETROW label. If the user issues a scroll command, the GETROW label is driven again
until ENDTABLE is called. This allows the size of the table to change dynamically.

Example

In this example, data for the extended table comes from the open SAS table that is
identified by the value in the variable DSID. The _CURROW_ variable, which identifies
the current row of the extended table, specifies which row to fetch. When the value of
_CURROW_ exceeds the number of rows in the table, FETCHOBS returns a nonzero
value, which indicates that the end of the extended table has been reached.
ENDTABLE is then called to stop the processing of the GETROW label.

GETROW:
...SCL statements...
if (fetchobs(dsid,_currow_) =−1) then

call endtable();
else do;

...more SCL statements...
end;

return;

See Also
“CURTOP” on page 302
“SETROW” on page 678
“TOPROW” on page 704



SAS Component Language Dictionary � ENTRY 351

ENDUSECLASS

Ends a USECLASS statement block

Category: Object Oriented

Syntax
ENDUSECLASS;

Details
The ENDUSECLASS statement marks the end of a USECLASS block in an SCL
program. Use ENDUSECLASS with USECLASS to designate a block of SAS statements
that define methods for a class that was previously defined in the Class Editor.

See Also
“USECLASS” on page 715

ENTRY

Receives parameters from the DISPLAY function or routine

Category: Modular Programming and Object Oriented

Syntax
ENTRY <argument-list> <RETURN=data-type> <OPTIONAL=argument-list |

<ARGLIST=arg-list-id | REST=rest-list-id>>;

argument-list
lists one or more sets of arguments, with each set specified as follows:

var-list <: INPUT |UPDATE |OUTPUT> :data-type

var-list
lists one or more variables to which the parameter in the corresponding position in
the DISPLAY routine or function is passed. For details, see “DISPLAY” on page
330.



352 ENTRY � Chapter 13

INPUT | I
specifies that, at run time, the variable contains the value that is copied from the
corresponding parameter of the calling program. However, when the program
finishes, the value is not copied back to the calling program. This is equivalent to
using CALL NOCHANGE() in the calling program.

UPDATE | U
specifies that, at run time, the variable contains the value that is copied from the
corresponding parameter of the calling program. When the program finishes, the
value is copied back to that parameter (unless CALL NOCHANGE is specified).

OUTPUT | O
specifies that, when the program finishes, the value is copied back to the
corresponding parameter in the calling program. An error condition results if the
corresponding parameter in the calling program is a constant, because a constant
cannot receive a value.

data-type
specifies the data type of the variable. Any valid SCL data type may be specified.
A named data type (for example, CHAR or LIST) must be preceded by the :
delimiter. The delimiter is optional for unnamed data types (for example, $).

arg-list-id
contains the identifier for the SCL list that will contain all the arguments passed
to the ENTRY statement. This includes all optional arguments.

Type: List

rest-list-id
contains the identifier for the SCL list that will contain all arguments that are
passed to the ENTRY statement but are not explicitly specified in argument-list
for either ENTRY or OPTIONAL=.

Type: List

Details
The ENTRY statement receives parameters from the DISPLAY routine or function. It
can also return a value if the ENTRY statement contains both the RETURN= option to
declare the data type of the returned value and a RETURN statement that specifies
either the variable containing the value or the literal value to be returned.



SAS Component Language Dictionary � ENTRY 353

To be compatible with the applications built in earlier releases of SAS software, the :
delimiter is optional for variables that are assigned unnamed data types (for example,
$), but it is required for variables that are assigned named data types. The following
example shows a variety of data type declarations:

ENTRY char1 :$20
char2 $20
char3 :input :char(20)
char4 char5 :char
num1 :8
num2 8
num3 :num
mylist :list
myobj :object
mybutton :mylib.mycat.button.class return=char;

RETURN=data-type enables you to return a value to the calling program. An error
condition is produced if data-type is not the same as the type of data to be returned to
the calling program. In addition, you must pass a parameter in the (call) display
statement if you want a return value passed back to the calling program. Otherwise, if
you do not pass a parameter on the (call) display statement, no return value is passed
back to the calling program. Use a RETURN statement in the program to specify the
value to return.

When there are no options in the ENTRY statement, there is a strict correspondence
between DISPLAY parameters and ENTRY statement arguments. The arguments and
parameters must agree in number, data type, and relative position. If you pass an
incorrect number of parameters or a parameter of the incorrect type, SCL stops
executing the program. The correspondence of arguments to parameters is less
restrictive when you use the options REST=, ARGLIST=, and OPTIONAL= in the
ENTRY statement.

OPTIONAL= enables you to specify a list of optional arguments that are used only if
the calling program supplies the corresponding parameters in the DISPLAY parameter
list. If the corresponding parameters in the DISPLAY routine are not supplied, then the
optional arguments are initialized to missing values.

ARGLIST= and REST= enable you to pass a variable number of parameters to the
ENTRY statement. You determine the types and order of the variable arguments. The
lists identified by arg-list-id and rest-list-id are created automatically when the entry is
called, and they are deleted automatically when the entry ends. When arrays are
passed as parameters, the array is expanded into individual items, and these items are
inserted into the arg-list-id and rest-list-id lists. ARGLIST= and REST= are mutually
exclusive, so you can use only one or the other.

The called program can modify all call-by-reference arguments that it receives.
However, it cannot modify any call-by-value arguments. For a description of
call-by-reference and call-by-value, see “DISPLAY” on page 330 .

By default, values for call-by-reference arguments are returned to the calling
program. If you want a called program to receive values but not to return values to its
calling program, use the NOCHANGE routine. Or, you can use the INPUT, OUTPUT,
or UPDATE option for each variable to specify how its value is passed and returned.



354 ENTRY � Chapter 13

An SCL program with ENTRY statement arguments cannot be executed by itself due
to the uninitialized arguments. To test a program that receives parameters via the
ENTRY statement, run it with the SCL debugger. The debugger enables you to
initialize all the ENTRY arguments before program execution starts.

Examples

Example 1: Returning a Value from the ENTRY Statement B.SCL contains the
following ENTRY statement, which uses several numeric arguments:

entry x y z u v :i :num return=num;
INIT:

total=x+y+z+u+v;
return(total);

A.SCL contains

total=display(’b.scl’,1,2,3,4,5);
put total=;

The output of A.SCL is

total=15

Example 2: Using ENTRY with OPTIONAL= B.SCL contains the following ENTRY
statement, which defines multiple character variables:

entry x :char(10)
y z :num
optional=u v w :num ;

INIT:
put x= y= z= u= v= w=;

return;

Suppose A.SCL contains

call display(’b.program’,’one’,2,3,4,5);

The output would be

X=’one’ Y=2 Z=3 U=4 V=5 W=.

Example 3: Using ENTRY with ARGLIST= B.SCL contains the following ENTRY
statement, declaring both numeric, character, and list variables:

entry x :char(10)
y z :num
optional=u v :num
arglist=mylist;

INIT:
put x= y = z= u= v=;
call putlist(mylist);

return;

Suppose A.SCL contains

call display(’b.scl’,’one’,2,3,4,5);



SAS Component Language Dictionary � ENTRY 355

The output would be

x=’one’
y=2
z=3
u=4
v=5(’one’ 2 3 4 5) [list-id]

Example 4: Using ENTRY with ARGLIST= Suppose B.SCL contains

entry arglist=mylist;
INIT:

call putlist(mylist);
return;

Suppose A.SCL contains

call display(’b.scl’,’one’,2,3,4,5);

The output would be

(’one’ 2 3 4 5) [list-id]

Example 5: Using ENTRY with REST= B.SCL contains the following ENTRY statement,
which declares numeric variables:

entry x y :num
rest=mylist;

INIT:
put x= y=;
call putlist(mylist);

return;

Suppose A.SCL contains

call display(’b.scl’,1,2,3,4,5);

The output would be

x=1
y=2
(3 4 5) [list-id]

Example 6: Using ENTRY with OPTIONAL= and REST= B.SCL contains the following
ENTRY statement, which declares both numeric and character variables along with
parameter Z, which is optional:

entry x y :num optional=z :num rest=mylist;
INIT:

put x= y= z=;
call putlist(mylist);

return;

Suppose A.SCL contains

call display(’b.scl’,1,2,3,4,5);

The output would be

x=1
y=2
z=3
(4 5) [list-id]



356 ENVLIST � Chapter 13

See Also
“DISPLAY” on page 330
“NOCHANGE” on page 571
“METHOD” on page 539
“RETURN” on page 624

ENVLIST

Returns the list identifier of an SCL environment list

Category: List

Syntax
list-id=ENVLIST(<envlist-type>);

list-id
contains the identifier of the SCL environment list.

Type: Numeric or List

envlist-type
specifies which environment list to return:

’G’ returns the identifier for the global environment list.

’L’ returns the identifier for the local environment list. (This is the
default.)

Type: Character

Details
When the SAS session starts, a global environment list that persists for the entire
session is created. When a SAS/AF or FSEDIT application starts executing, a local
environment list is created for that application. This local environment list persists for
the duration of that application and is available to each program that runs in that
application (for example, a program that is invoked by the DISPLAY routine).

Environment lists are special lists that can contain numeric items, character items,
and sublist items. You use the item names to fetch the items. You can use the item
names to fetch the items. Environment lists provide a means of creating global
variables that can be shared among different SCL programs, much like macro variables.
However, unlike macro variables, the names in an environment list do not have to be
valid SAS names, and the values in an environment list can be other lists, if you want
to associate a lot of data with a single name. For example, you can read the contents of
a small SAS table into a list and place the contents in the global environment list so
that other SCL programs do not have to read the table to fetch data.

You can also insert items that do not have names.

The Local Environment List The local environment list, which is returned by
ENVLIST(’L’), contains data that is available only to the current application. Each
executing application has its own unique local environment list. Both the contents of an
application’s environment list and the list itself are deleted when the application ends.



SAS Component Language Dictionary � ERROR 357

The Global Environment List The global environment list, which is returned by
ENVLIST(’G’), contains data that all SAS applications can share during the same SAS
session. The data remains in the global environment list until an SCL program
explicitly removes it. Thus, after one application puts data into the global environment
list, the application can exit, and another application can fetch the data.

You can insert only global lists into the global environment list. Global lists are
created with MAKELIST or MAKENLIST (using the ’G’ visibility value), or they can be
new lists that have been copied from other global lists. A fatal error results if you try to
insert a local list into the global list.

Recommendations for Modifying Environment Lists It is strongly recommended that
you insert only named items into environment lists and that you choose names that are
unambiguous. If you add items that have simple names, other applications are more
likely to unknowingly use the same name and to accidentally overwrite your data.

See Also
“CURLIST” on page 298
“DELLIST” on page 316
“MAKELIST” on page 533
“MAKENLIST” on page 534

ERROR

Reports whether a FRAME entry control or field contains an invalid value

Category: Control or Field

Syntax
rc=ERROR(wvar-name);

rc
indicates whether the FRAME entry control or field in the window is in error:

1 in error

0 not in error
Type: Numeric

wvar-name
is the name of a FRAME entry control or field in the window. This argument cannot
be an expression.

Type: Character



358 ERROR � Chapter 13

Details
Use ERRORON and ERROROFF to set and reset error conditions for the FRAME entry
control or field.

The FRAME entry control or field cannot be an element of an array. To report this
information for an array element, use FIELD instead.

FRAME entry controls can also use the _inError method.

Examples

Example 1: Using ERROR to Report Invalid Values Specify the CONTROL statement
with the ERROR option in the INIT section of the program. The statements in the
MAIN section are submitted only if the FRAME entry control OBJ1 is not in error.

INIT:
control error;

return;
MAIN:

if (error(obj1)=0) and obj1 NE _blank_ then
submit continue;

proc print data=&obj1;
run;

endsubmit;
else

_msg_=’Nothing submitted. Please correct error.’;
return;

Example 2: Generating a Compile Error with ERROR The following sequence generates
a compile error because the variable DS is not a window variable but contains the name
of a window variable. ERROR expects to be passed the window variable itself.

ds=’tablename’;
if (error(ds)) then

do;
...SCL statements to handle the error condition...
end;

See Also
“DISPLAYED” on page 334
“ERROROFF” on page 359
“ERRORON” on page 360
“FIELD” on page 379
“MODIFIED” on page 550



SAS Component Language Dictionary � ERROROFF 359

ERROROFF

Clears the error flag on one or more FRAME entry controls or fields

Category: Control or Field

Syntax
ERROROFF wvar-names |_ALL_;

wvar-names
specifies one or more window variables for which to turn off the error flag, or _ALL_
to turn off the error flag for all window variables.

Type: Character

Details
An error flag can be set either by attributes that are assigned to fields or FRAME entry
controls, or by the ERRORON statement.

Use the following statement to clear the error flag for all FRAME entry controls or
all fields in the window:

erroroff _all_;

Statements in MAIN do not execute by default if a field is placed in error. Therefore,
use a CONTROL statement that specifies the ERROR option to enable ERROROFF to
remove the error flag.

The FRAME entry control or field cannot be an element of an array. To remove the
error flag for an array element, use FIELD instead.

FRAME entry controls can also use the _erroroff method.

Example

If a user enters an invalid value in the field TABLENAME, this SAS/AF program
resets the value of TABLENAME to the default and turns off the error flag. The field
TABLENAME is assigned type INPUT, so the procedure checks to see whether the SAS
table exists when a user enters a value for TABLENAME.

INIT:
control error;

return;
MAIN:

if (error(tablename)= 1) then
do;

tablename=’my.default’;
erroroff tablename;

end;
return;



360 ERRORON � Chapter 13

See Also
“CONTROL” on page 279
“DISPLAYED” on page 334
“ERROR” on page 357
“ERRORON” on page 360
“FIELD” on page 379

ERRORON

Sets the error flag for one or more FRAME entry controls or fields

Category: Control or Field

Syntax
ERRORON wcol-names |_ALL_;

wcol-names
specifies one or more window variables for which to turn on the error flag, or _ALL_
to turn the error flag on for all window variables.

Type: Character

Details
To set an error flag for multiple fields, specify the field names following ERRORON,
separated by blanks. To set an error flag for all fields in the window, use the following
statement:

erroron _all_;

To clear the error flag for one or more fields, use ERROROFF (see the preceding
entry).

In SAS program entries, ERRORON causes the SCL program to execute when a user
presses any key the next time the window is displayed. Any fields for which the error
flag is set are marked as modified regardless of whether or not the user has changed
the value in the field.

In FSEDIT applications where a field is placed in error with ERRORON, a user can
enter a new value and the error status is removed from the field and reset if the error
condition is still met. In SAS/AF applications where a field is placed in error with
ERRORON, entering a valid value is not enough to remove the error flag. You must use
ERROROFF.

The FRAME entry control or field cannot be an element of an array. To set the error
flag for an array element, use FIELD instead.

FRAME entry controls can also use the _erroron method.



SAS Component Language Dictionary � EVENT 361

Example

Suppose your application manipulates a SAS table that contains information about
employees and the number of hours they work each week. Because only weekly
personnel are paid for overtime, the application should verify that all employees who
have reported overtime hours are weekly employees.

if (weekly=’N’ and overtime>0) then
do;

erroron overtime;
_msg_=
’Only weekly personnel can have overtime.’;
return;

end;

See Also
“CONTROL” on page 279
“DISPLAYED” on page 334
“ERROR” on page 357
“ERROROFF” on page 359
“FIELD” on page 379

EVENT

Reports whether a pending event has occurred

Category: Keys

Syntax
rc=EVENT();

rc
contains the return code for the operation:

1 a pending event has occurred.

0 a pending event has not occurred.
Type: Numeric



362 EVENT � Chapter 13

Details
EVENT is useful when you want your application to continue a task while it waits for
user input. For example, your application can read data from an external source and
display the results. When a user presses an appropriate key, you can stop processing
and handle the request.

An event can be a mouse button press or a keyboard key press. An event can also be
generated by a frame display or redisplay. Once a pending event has occurred, the
EVENT function returns 1 until the frame has been redisplayed.

A pending event can also be a system event that the user did not directly cause. For
example, the autosave feature, which is designed to save work in SAS at a specified
interval, generates an event that the EVENT function detects. To avoid accidentally
triggering the EVENT function, the autosave feature can be disabled through either the
SAS Preferences dialog box or the WAUTOSAVE OFF command. You can find the
autosave preference by selecting Tools � Options � Preferences... and the Edit tab.

Operating Environment Information: z/OS
EVENT does not work under z/OS. On this system you should use the attention

handler exit that is provided in SCL. Refer to the discussion of the BREAK option for
“CONTROL” on page 279. �

Example

Display the date and time until a user presses either ENTER or one of the function
keys. The variable DATETIME is a numeric text control on a frame entry and has the
format DATETIME17.2. When a user presses ENTER or a function key, the program
exits the loop and returns control to the application. In this example, when a user
issues a RUN command, the loop resumes.

INIT:
control allcmds;

return;
MAIN:

if _status_ in (’C’,’E’) then return;
if (word(1,’U’)=’RUN’) then

do while(event()=0);
datetime.text=datetime();
refresh;

end;
return;

TERM:
return;

See Also
“CONTROL” on page 279



SAS Component Language Dictionary � _EVENT_ 363

_EVENT_

Contains the type of event that occurred on a FRAME entry control

Category: System Variable

Details
_EVENT_ is a character system variable. It is provided automatically by the FRAME
entry in SAS/AF, and the SCL compiler automatically creates a space for it in the SCL
data vector.

In order to use _EVENT_, you must use the DECLARE or LENGTH statement to
declare it as a character variable. If _EVENT_ is not declared, the following error is
produced when the _select or _objectLabel method executes:

ERROR: Expecting string (P), received SCL number
(symbol ’_EVENT_’).

_EVENT_ has a valid value only when a window control’s _select or _objectLabel
method is executing. _EVENT_ can have one of the following values:

’ ’(blank) Modification or selection

’D’ Double click (An ’S’ select event always precedes a ’D’ double click
event.)

’C’ Command

’P’ Pop-up menu request

’S’ Selection or single click

Example

The following _select method prints the value of _EVENT_ when a window control is
modified.

length _event_ $1;

SELECT: method;
call super(_self_,’_select’);
put _event_=;

endmethod;

See Also
“_METHOD_” on page 547
“_SELF_” on page 655
“_STATUS_” on page 686
“_VALUE_” on page 720



364 EXECCMD � Chapter 13

EXECCMD

Executes one or more commands when control returns to the application

Category: Command

Syntax
CALL EXECCMD(cval);

cval
specifies one or more commands to execute. To specify multiple commands, place a
semicolon between each command.

Type: Character

Details
The commands are collected until another window is displayed or until SCL has
finished executing and control is returned to the procedure. The commands are then
submitted to the command-line processor before the next window is displayed or before
the current window is redisplayed.

The commands collected with EXECCMD will not be executed if the next window
displayed is a host window (such as CATLIST, DIRLIST, LIBLIST, FILELIST or
MESSAGEBOX). The commands will be held in a buffer until a non-host selector
window is displayed or the current window is redisplayed.

With CONTROL ALWAYS in FSEDIT applications or CONTROL ALLCMDS in other
SAS/AF applications, statements in MAIN execute before a command that is issued
with CALL EXECCMD. This behavior could introduce an infinite loop. Either execute
the EXECCMD routine conditionally or specify the command using EXECCMDI with
the NOEXEC parameter.

Example

Open the LIBNAME window and scroll down 5 items:

call execcmd(’lib; down 5’);

See Also
“EXECCMDI” on page 365



SAS Component Language Dictionary � EXECCMDI 365

EXECCMDI

Executes one or more global commands immediately before processing the next statement, or
executes one non-global command when control returns to the application

Category: Command

Syntax

CALL EXECCMDI(command<,when>);

command
specifies one or more commands to execute. To specify multiple commands, place a
semicolon between each command.

Type: Character

when
specifies when the commands will be executed:

’EXEC’
executes commands in the command buffer immediately. (This is the default.)

’NOEXEC’
executes the specified non-global command when control returns to the
application. Global commands are still executed immediately.
Type: Character

Details

By default, the EXECCMDI routine immediately executes the specified global command
or list of global commands. After executing the command, the program statement that
immediately follows the call to EXECCMDI is executed. EXECCMDI is valid only in
SCL applications that display a window.

If you specify EXEC, which is the default for the when argument, then you should
issue only windowing environment global commands and full-screen global commands
through this routine. Any procedure-specific commands that are executed with
EXECCMDI are ignored.

An error is displayed on the message line if the string that is passed to EXECCMDI
is not a valid command, but the SCL program is not halted. Any statements that follow
the call to the routine are still executed. If multiple commands are specified and one is
invalid, none of the remaining commands are executed.

With the NOEXEC option, EXECCMDI allows only one procedure-specific or custom
command to be executed. EXECCMDI saves the command in the command buffer and
does not execute the command immediately. The program statement that immediately
follows the CALL EXECCMDI routine is executed. The command in the command
buffer is executed when control returns to the application.

If multiple EXECCMDI routines each have the NOEXEC option specified, then only
the command that was issued by the last EXECCMDI routine is executed. The previous
commands are cleared.

The NOEXEC option does not alter the way global commands are handled. Global
commands are still executed immediately.



366 EXECCMDI � Chapter 13

With CONTROL ALWAYS in FSEDIT applications or CONTROL ALLCMDS in SAS/
AF applications, issuing EXECCMDI with the NOEXEC option from MAIN tells SAS
not to execute statements in MAIN again before executing the specified
procedure-specific or custom command. This is different from issuing an EXECCMD
routine from MAIN, which would execute statements in MAIN again before executing
the specified command.

Note: We do not recommend combining EXECCMD and EXECCMDI routines,
because the order of execution may be unexpected. �

Examples

Example 1: Using EXECCMDI to Ensure Correct Window Size Ensure that the window
is the correct size when the application runs:

INIT:
call execcmdi(’zoom off’);

return;

Example 2: Using EXECCMDI to Confirm a Delete Request From an FSEDIT SCREEN
entry, open CONFIRM.FRAME to confirm the delete request before the row is actually
deleted:

FSEINIT:
control always;
length confirm $ 3;

return;

INIT:
return;

MAIN:
if word(1, ’U’) =: ’DEL’ then

do;
call display(’confirm.frame’, confirm);
if confirm =

’YES’ then call execcmdi(’delete’, ’noexec’);
end;

return;

TERM:
return;

CONFIRM.FRAME contains two pushbutton controls, YES and NO, and is controlled
by the following program:

entry confirm $ 3;
YES:

confirm = ’YES’;
_status_=’H’;

return;
NO:

confirm = ’NO’;
_status_=’H’;

return;



SAS Component Language Dictionary � EXIST 367

See Also

“EXECCMD” on page 364

EXIST

Verifies the existence of a member of a SAS data library

Category: SAS Table

Syntax

rc=EXIST(member-name<,member-type<,generation>> );

rc
contains the return code for the operation:

1 The library member exists.

0 Either member-name does not exist or member-type is invalid.
Type: Numeric

member-name
is the name of the SAS data library member.

Type: Character

member-type
is the type of SAS data library member:

’ACCESS’
indicates an access descriptor that was created using SAS/ACCESS software.

’AUDIT’
indicates the existence of an associated audit file.

’CATALOG’
indicates a SAS catalog or catalog entry.

’DATA’
indicates a SAS data file. (This is the default.)

’MDDB’
indicates an MDDB.

’VIEW’
indicates a SAS data view.
Type: Character

generation
is the generation number of the SAS table whose existence you are checking. If
member-type is not DATA, generation is ignored.

Type: Numeric



368 EXIST � Chapter 13

Details
If member-name is not specified, EXIST verifies the existence of the member specified
by the system variable _LAST_. If member-type contains an invalid value, EXIST
returns the value 0.

Examples

Example 1: Verifying the Existence of a SAS Table Call the FSEDIT function only if
the SAS table specified in the variable TABLENAME exists. If the table does not exist,
display a message on the message line.

if (exist(tablename)) then call fsedit(tablename);
else _msg_=’Table ’||tablename||’ does not exist.’;

Example 2: Verifying the Existence of a SAS Data View Verify the existence of the
SAS table view TEST.MYVIEW:

rc=exist(’test.myview’,’view’);

Example 3: Determining if a Data Set Generation Exists Determine if the third
generation of the data set work.one exists:

rc=exist(’work.one’,’data’,3);

Example 4: Querying for the Existence of an Audit Trail File You can query for the
existence of an audit trail file via the EXIST function. An audit trail file is an optional
SAS file that can be created to log changes to SAS data. To test the EXIST function,
follow these steps:

1 Create a data set with an audit file by entering the following code in the SAS
Editor and then submitting it:

data sasuser.class;
set sashelp.class;

run;
proc datasets lib=sasuser;

audit class;
initiate;

quit;

2 Test for the existence of the audit file by entering the following code in an SCL file:

INIT:
hasAudit=exist(’sasuser.class’,’AUDIT’);
put hasAudit=;

return;

When you compile and then execute the SCL code, the SAS log displays
’hasAudit=1’, indicating that the audit file exists.

3 Now delete SASUSER.CLASS and then recreated it without an audit file by
entering and then submitting in the SAS Editor the following DATA step:

data sasuser.class; set sashelp.class; run;

When you execute the SCL code from step 2 , the SAS log displays ’hasAudit=0’
(indicating that the audit file does not exist).



SAS Component Language Dictionary � FAPPEND 369

See Also
“CEXIST” on page 251
“FEXIST” on page 377
“FILEEXIST” on page 385

FAPPEND

Appends the current record to the end of an external file

Category: External File

Syntax
sysrc=FAPPEND(file-id<,cc>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

cc
specifies a carriage-control character:

blank
indicates that the record starts a new line.

’0’
skips one blank line before this new line.

’-’
skips two blank lines before this new line.

’1’
specifies that the line starts a new page.



370 FAPPEND � Chapter 13

’+’
specifies that the line overstrikes a previous line.

’P’
specifies that the line is a terminal prompt.

’=’
specifies that the line contains carriage-control information.

all else
specifies that the record starts a new line.
Type: Character

Details
FAPPEND adds the record currently contained in the File Date Buffer (FDB) to the end
of an external file.

Operating Environment Information: z/OS
Records cannot be appended to partitioned data sets. �

Example

Use FAPPEND to append a record to a file:

/* Assign the fileref THEFILE to the physical */
/* filename that the user entered in the */
/* field FNAME and open it in append mode. */

rc=filename( ’thefile’,fname);
fid=fopen(’thefile’,’a’);
if (fid>0) then

do;
/* Append a new record to the file. */

rc=fput(fid,’Data for the new record’);
rc=fappend(fid);
rc=fclose(fid);

end;
else

do;
...other SCL statements...

end;
rc=filename(’thefile’’,’’);

See Also
“DOPEN” on page 338
“FGET” on page 378
“FOPEN” on page 407
“FPUT” on page 415
“FWRITE” on page 427
“MOPEN” on page 553



SAS Component Language Dictionary � FCLOSE 371

FCLOSE

Closes an external file, a directory, or a directory member

Category: External File

Syntax

sysrc=FCLOSE(file-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. A file-id value of
-999 closes all files opened with FOPEN. If file-id contains an invalid value, the
program halts.

Type: Numeric

Example

Close a file after manipulating it:

/* Assign the fileref THEFILE to the physical */
/* filename that is stored in the variable FNAME */
/* and open it in append mode. */

rc=filename( ’thefile’,fname);
fileid=fopen(’thefile’);
if (fileid>0) then

do;
rc=fread(fileid);
rc=fclose(fileid);

end;
else

do;
_msg_=sysmsg();
return;

end;
rc=filename(’thefile’,’’);

See Also

“DCLOSE” on page 307
“DOPEN” on page 338
“FOPEN” on page 407
“MOPEN” on page 553



372 FCOL � Chapter 13

FCOL

Returns the current column position from the File Data Buffer (FDB)

Category: External File

Syntax
col-num=FCOL(file-id);

col-num
contains the current column position.

Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id contains
an invalid value, the program halts.

Type: Numeric

Details
Use FCOL in conjunction with FPOS to move the pointer in the FDB and manipulate
the data.

Example

Use FCOL and FPOS to set the pointer in the FDB:

/* Assign the fileref THEFILE to the physical */
/* filename that the user entered in the field */
/* FNAME. */

rc=filename( ’thefile’,fname);
fileid=fopen(’thefile’,’o’);
if (fileid>0) then do;

/* Put data into the FDB, get the */
/* current column, move the pointer */
/* by 1 and add more data to the FDB. */

record=’This is data for the record’;
rc=fread(fileid);
rc=fput(fileid,record);
pos=fcol(fileid);
rc=fpos(fileid,pos+1);
rc=fput(fileid,’and more data’);
rc=fwrite(fileid);
rc=fclose(fileid);

end;
rc=filename(’thefile’,’’);

The record written to the external file is

This is data for the record and more data



SAS Component Language Dictionary � FDELETE 373

See Also
“FPOS” on page 414
“FPUT” on page 415
“FWRITE” on page 427

FDELETE

Deletes an external file

Category: External File

Syntax
sysrc=FDELETE(fileref);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

fileref
is the fileref that was assigned to the external file to be deleted. The fileref cannot be
associated with a list of concatenated filenames or directories. If the fileref is
associated with a directory, a PDS or a PDSE, then the directory, PDS, or PDSE
must be empty. You must have permission to be able to delete the file or directory.

Type: Character

Details
You can use either the FILENAME statement or the FILENAME function in SCL to
assign a fileref. Under some operating environments, you can also use system
commands to assign filerefs.

Example

Generate a fileref for an external file and assign it to the variable FREF. Then call
FDELETE to delete the file and call the FILENAME function again to deassign the
fileref.

length fref $ 8;
fref =_blank_;

/* Assign a fileref generated by the system */
/* to the physical filename that is stored */
/* in the variable FNAME. */

rc=filename(fref,fname);

if (rc=0) and (fexist(fref)) then



374 FETCH � Chapter 13

rc=fdelete(fref);
rc=filename(fref,’’);

See Also
“FEXIST” on page 377
“FILENAME” on page 389

FETCH

Reads the next nondeleted row from a SAS table into the Table Data Vector (TDV)

Category: SAS Table

Syntax
sysrc=FETCH(table-id<,’NOSET’>);

sysrc
contains the return code for the operation:

0 successful

>0 not successful

<0 the operation was completed, but a warning or a note was
generated. If the row is locked, it is still fetched (read in) but a
sysrc of _SWNOUPD is returned.

−1 the end of the table was reached

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

’NOSET’
prevents the automatic passing of SAS table column values to SCL variables even if
the SET routine has been called.

Type: Numeric



SAS Component Language Dictionary � FETCHOBS 375

Details
FETCH skips rows that have been marked for deletion. When a WHERE clause is
active, the function reads the next row that meets the WHERE condition.

If the SET routine has previously been called, the values for any table columns that
are also window variables or SCL variables for the application are automatically passed
from the TDV to the SCL Data Vector (SDV). To temporarily override this behavior so
that fetched values are not automatically copied to the SDV, use the NOSET option.

Example

Fetch the next row from the SAS table MYDATA. If the end of the table is reached or
if an error occurs, SYSMSG retrieves the appropriate message and displays it on the
message line.

INIT:
tableid=open(’mydata’,’i’);

return;

MAIN:
rc=fetch(tableid);
if rc then _msg_=sysmsg();
else

do;
...more SCL statements...

end;
return;

TERM:
rc=close(tableid);

return;

See Also
“APPEND” on page 224
“FETCHOBS” on page 375
“GETVARC and GETVARN” on page 438
“LOCATEC and LOCATEN” on page 524
“PUTVARC and PUTVARN” on page 614
“SET” on page 658
“UPDATE” on page 714

FETCHOBS

Reads a specified row from a SAS table into the Table Data Vector (TDV)

Category: SAS Table

Syntax
sysrc=FETCHOBS(table-id,row-number<,options>);



376 FETCHOBS � Chapter 13

sysrc
contains the return code for the operation:

0 successful

>0 not successful

<0 the operation was completed, but a warning or a note was
generated. If the row is locked, it is still fetched (read in) but a
sysrc of _SWNOUPD is returned.

−1 the end of the table was reached
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

row-number
is the number of the row to read.

Type: Numeric

options
is one or both of the following options, separated by blanks:

’ABS’
specifies that the value of row-number is absolute; that is, deleted rows are
counted.

’NOSET’
prevents the automatic passing of SAS table column values to SCL variables even
if the SET routine has been called.
Type: Character

Details
If SET has previously been called, the values for any table columns that are also
window variables or SCL variables for the application are automatically passed from
the TDV to the SCL Data Vector (SDV) with FETCHOBS. You can use NOSET in the
FETCHOBS function to temporarily override this behavior so that fetched values are
not automatically copied to the SDV. FETCHOBS treats the row value as a relative row
number unless the ABS option is specified.

The row value may or may not coincide with the physical row number on disk. For
example, the function skips rows that have been marked for deletion. When a WHERE
clause is active, the function counts only rows that meet the WHERE condition. If
row-number is less than 0, the function returns an error condition. If row-number is
greater than the number of rows in the SAS table, an ’End of file’ warning is returned.



SAS Component Language Dictionary � FEXIST 377

Example

Fetch the tenth row from the SAS table MYDATA. If the end of the table is reached,
a message to that effect is displayed on the message line. If an error occurs, the
SYSMSG function retrieves the error message and displays it on the message line.

rc=fetchobs(mydata,10);
if (rc=-1) then
_msg_=’End of table has been reached.’;

if (rc ne 0) then _msg_=sysmsg();

See Also

“APPEND” on page 224
“FETCH” on page 374
“GETVARC and GETVARN” on page 438
“LOCATEC and LOCATEN” on page 524
“PUTVARC and PUTVARN” on page 614
“SET” on page 658
“UPDATE” on page 714

FEXIST

Verifies the existence of the external file that is associated with the specified fileref

Category: External File

Syntax

rc=FEXIST(fileref);

rc
contains the return code for the operation:

1 successful

0 not successful, or there was no logical assignment for the fileref
Type: Numeric

fileref
is the fileref that was assigned to the external file.

Type: Character

Details

You can use either the FILENAME statement or the FILENAME function in SCL to
assign filerefs. Under some operating systems, you can also use system commands to
assign filerefs. Use FILEEXIST to verify the existence of a file based on its physical
name.



378 FGET � Chapter 13

Example

Verify the existence of an external file for a fileref that the user enters in the field for
the window variable FREF. A message informs the user whether the file exists.

if (fexist(fref)) then
_msg_=

’The file does exist.’;
else

_msg_=sysmsg();

See Also
“EXIST” on page 367
“FILEEXIST” on page 385
“FILENAME” on page 389
“FILEREF” on page 391
“PATHNAME” on page 590

FGET

Copies data from the File Data Buffer (FDB)

Category: External File

Syntax
sysrc=FGET(file-id,cval<,length>);

rc
contains the return code for the operation:

0 successful

−1 the end of the FDB was reached, or no more tokens were available.
Type: Numeric

file-id
is the identifier that was assigned when the file was opened. If file-id is invalid, the
program halts.

Type: Numeric

cval
is a character variable to hold the data.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Character

length
specifies how many characters to retrieve from the FDB.

Type: Numeric



SAS Component Language Dictionary � FIELD 379

Details
FGET copies data from the FDB into a character variable. If length is specified, then
only the specified number of characters is retrieved (or the number of characters
remaining in the buffer, if that number is less). If length is omitted, then all characters
in the FDB from the current column position to the next delimiter are returned. The
default delimiter is a blank. The delimiter is not retrieved. (See “FSEP” on page 422 for
more information about delimiters.)

After FGET is executed, the column pointer is automatically moved to the next
“read” position in the FDB.

Example

Read the first record in the file specified by the user and copy the first token into the
variable THESTRING.

/* Assign the fileref THEFILE to the physical */
/* filename that is stored in the */
/* variable FNAME and open it in append mode. */

rc=filename( ’thefile’,fname);
fileid=fopen(’thefile’);
if (fileid>0) then

do;
/* Read the first record, retrieve the */
/* first token of the record and store */
/* it in the variable THESTRING. */

rc=fread(fileid);
rc=fget(fileid,thestring);
put thestring;
rc=fclose(fileid);

end;
rc=filename(’thefile’,’’);

See Also
“FPOS” on page 414
“FREAD” on page 417
“FSEP” on page 422

FIELD

Performs an action on or reports the state of FRAME entry widgets or fields

Category: Widget or Field

Syntax
rc=FIELD(action<,wvar-name-1<,wvar-name-2

<,wvar-name-3>>>);



380 FIELD � Chapter 13

rc
contains the return code for the operation. The return value is dependent on the
action.

Type: Numeric

action
is an action from the list of actions described in “Values for the action Argument” on
page 380.

Type: Character

wvar-name-1, wvar-name-2, wvar-name-3
are character columns or expressions whose values are the names of one or more
FRAME entry widgets or fields in a window, separated by spaces. At least one name
is required for all actions except ALARM, BLOCKCUROFF, BLOCKCURON,
CURSCREEN, HOME, NSCREEN, and SMOOTHSCRL.

Type: Character

Values for the action Argument
The following list contains the values that you can specify for action. The list also
includes the corresponding methods that can be used in FRAME entries, which are
documented with FRAME entry classes in the online Help for SAS/AF software.

’ALARM’
sounds a bell. This action has a corresponding SCL statement.

’BLOCKCUROFF’
turns the block cursor off so that fields or text entry widgets are not highlighted
when a user tabs or moves the cursor to them.

’BLOCKCURON’
turns the block cursor on, which causes input fields to be highlighted when the
cursor is on the text entry widget or field.

’COLOR color <attribute>’
changes the color and display attribute of a field, text entry widget, or text label
widget in the window. Colors are: BLACK, BLUE, BROWN, CYAN, GRAY,
GREEN, MAGENTA, ORANGE, PINK, RED, WHITE, and YELLOW. Attributes
are: NONE, BLINKING, HIGHLIGHT, HIREV, REVERSE, and UNDERLINE.
SASCOLOR window elements can be used for color. If you specify a SASCOLOR
window element for color, then attribute is not allowed, because the SASCOLOR
window element already contains a display attribute.

’COLUMN’
returns the column where a FRAME entry widget or field is located. This option is
valid only in SAS/AF software. FRAME entry widgets can also use the _column
method.

’CUROBS’
returns the current row number for FSEDIT and FSVIEW for the specified field.

’CURSOR’
positions the cursor in the FRAME entry widget or field. If more than one field or
widget is specified, the cursor is positioned in the last one specified. This action
has a corresponding SCL statement. FRAME entry widgets can also use the
_cursor method.

’CURSCREEN’
returns the current screen number. For SAS/AF software, this is valid only for
multipage PROGRAM entries. For FSEDIT, it reports which screen of a
multiscreen application is displayed.



SAS Component Language Dictionary � FIELD 381

’DISPLAYED’
returns the total number of FRAME entry widgets or fields that are visible, or 0 if
none of them are currently displayed. For example, if you pass three field names
and two are visible, then rc is 2. This action has a corresponding SCL function.
FRAME entry widgets can also use the _isDisplayed and _isHidden methods.

’ERROR’
returns the total number of FRAME entry widgets or fields that are in error, or 0
if none of the specified fields are in error. For example, if you pass two field names
and one is in error, then rc is 1. This action has a corresponding SCL function.
FRAME entry widgets can also use the _inError method.

’ERROROFF’
removes the error status from one or more FRAME entry widgets or fields. This
action has a corresponding SCL statement. FRAME entry widgets can also use the
_erroroff method.

’ERRORON’
turns on the error status for one or more FRAME entry widgets or fields. Turning
on the error status prevents users from ending the SAS/AF application or from
leaving the current row in FSEDIT. The error status also highlights the field or
widget, using the error color and display attributes that were assigned in the
Attribute (or ATTR) window. This action has a corresponding SCL statement.
FRAME entry widgets can also use the _erroron method.

’GETOBS’
reports whether a formula is being executed in an FSVIEW application because a
column is being read. If rc is 1, then the formula is being executed because a
column is being read. If rc is 0, then the formula is being executed because a
column has been modified. If you are on a new row, rc is always 1. This is the
opposite of PUTOBS.

’HOME’
moves the cursor to the command line. This entry has a corresponding SCL
statement.

’ICON icon-number’
assigns a number for an icon that represents the field if it is a pushbutton in
PROGRAM entries. This option is valid only in SAS/AF software. FRAME entry
widgets can use the _setIcon method.

’MODIFIED’
returns the total number of FRAME entry widgets or fields that were modified, or
0 if none of them were modified. For example, if you pass two field names and
both were modified, then rc is 2. This action has a corresponding SCL function.
FRAME entry widgets can also use the _isModified method.

’NSCREEN’
returns the number of screens (for FSEDIT applications) or the number of panes
(for SAS/AF applications).

’PROTECT’
protects one or more FRAME entry widgets or fields. This prevents a user from
modifying the FRAME entry widget or field. This action has a corresponding SCL
statement. FRAME entry widgets can also use the _protect method.

’PROTECTED’
reports whether a FRAME entry widget or field is protected. FRAME entry
widgets can also use the _isProtected method.



382 FIELD � Chapter 13

’PUTOBS’
reports whether a formula is being executed in an FSVIEW application because a
column has been modified. If rc is 1, then the formula is being executed because a
column has been modified. If rc is 0, then the formula is being executed to read a
column. If you are on a new row, rc is always 0. This is the opposite of GETOBS.

’ROW’
returns the row where a FRAME entry widget or field is positioned. This option is
valid only in SAS/AF software. FRAME entry widgets can also use the _row
method.

’SMOOTHSCRL’
sets smooth scrolling to ON, OFF, or TOGGLE. Allows smooth scrolling when users
drag the thumb in the scroll bar. When smooth scrolling is on, the getrow sections
of AF extended tables are called while the thumb is dragged. In the FSVIEW
procedure, the display is refreshed while the thumb is dragged. When smooth
scrolling is turned off, the redisplay is deferred until the thumb is released. By
default, smooth scrolling is off for SAS/AF and on for FSVIEW.

If you do not specify ON or OFF, SMOOTHSCRL is toggled from OFF to ON or
from ON to OFF.

’UNPROTECT’
unprotects one or more fields or FRAME entry widgets. This enables a user to
modify the field or FRAME entry widget. This action has a corresponding SCL
statement. FRAME entry widgets can also use the _unprotect method.

Details
The FIELD function combines the functionality of the field statements (CURSOR,
DISPLAYED, ERROROFF, ERRORON, PROTECT, and so on). It also provides
additional widget over the fields.

At least one window column name is required for all actions except ALARM,
BLOCKCUROFF, BLOCKCURON, CURSCREEN, HOME, NSCREEN, and
SMOOTHSCRL.

The smooth scrolling action enables you to turn on, turn off, or toggle the scrolling
mode.

Examples

Example 1: Using FIELD to Allow Smooth Scrolling Allow smooth scrolling:

rc=field (’smoothscr1’, ’on’);

Example 2: Using FIELD to Check for Error Status of Fields Create the array
FLDNAMES and pass its elements to the FIELD function to check the error status of
the fields. If necessary, move the cursor to the field that contains invalid data.

array fldnames{*} $ 8 (’tablename’,’colname’,’list’,
’x’,’y’);

do i=1 to dim(fldnames);
if (field(’error’,fldnames{i})) then

do;
_msg_=’Field name ’||
fldnames{i}||’ is bad.’;
rc=field(’cursor’,fldnames{i});
return;



SAS Component Language Dictionary � FILEDIALOG 383

end;
end;

Example 3: Using FIELD to Turn on an Error Flag Turn on the error flag for FIELD1
and FIELD2:

rc=field(’erroron’,’field1’,’field2’);

Example 4: Using FIELD to Change a Field’s Color Change the color of FIELD1:

rc=field(’color blue’,’FIELD1’);

Example 5: Using FIELD to Change Color and Display Attributes for a Field Change
FIELD1’s color and display attributes:

rc=field(’color red reverse’,’field1’);

Example 6: Using FIELD to Specify a SASCOLOR Window Element Specify FIELD1’s
color, using the name of a SASCOLOR window element:

rc=field(’color foreground’,’field1’);

See Also
“ALARM” on page 223
“CURSOR” on page 301
“DISPLAYED” on page 334
“ERROR” on page 357
“ERROROFF” on page 359
“ERRORON” on page 360
“HOME” on page 448
“MODIFIED” on page 550
“PROTECT” on page 607
“UNPROTECT” on page 711

FILEDIALOG

Displays a selection window that lists external files

Category: External File

Syntax
rc=FILEDIALOG(dialog-type,filename<,default-file <,default-dir<,filter-1<. . .

,filter-11<,description-1 . . .<description-11>>>>>>);

rc
contains the return code for the operation:

−1 A user canceled without selecting a file.

0 Either dialog-type is OPEN and the file exists, or dialog-type is
SAVEAS and the file does not exist.



384 FILEDIALOG � Chapter 13

1 Dialog-type is SAVEAS or SAVEASNOAPPEND, the file exists, and the
user wants to replace the file.

2 Dialog-type is SAVEAS, the file exists, and a user wants to append
to the file.

Type: Numeric

dialog-type
specifies the type of dialog window to open. An invalid type specification produces an
error and halts the program. Types are

’AGGREGATE’
lists aggregate storage areas — for example, directories, partitioned data sets, or
MACLIBs.

’LIBRARY’
lists SAS data libraries.

’OPEN’
lists files that a user can open.

’SAVEAS’
lists files that a user can write to.

’SAVEASNOAPPEND’
lists files that a user can write to but the append option is not allowed.
Type: Character

filename
is the fully qualified name of the selected file, including the directory.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Character

default-file
is the name of the file (without directory information) to display as selected when the
dialog window opens. If you specify a null string (’’), the file that was selected last
is the default file.

Type: Character

default-dir
is the directory whose files are listed when the dialog window opens. If you specify a
null string (’’), the directory that was selected last is the default directory.

Type: Character

filter1 ... filter11
are up to 11 name specifications to narrow the list of files to display — for example,
*.html. The number of filter arguments is host specific. If you do not supply a filter,
the list contains all files in default-dir.

Type: Character

description1 ... description11
are up to 11 descriptions, one for each filter, to make the dialog window more
informative for application users. If no descriptions are supplied, a default
description is displayed for each specified filter. If you provide a description for any
filter, then you must supply a description for each filter that you specify.

Type: Character

Details
Depending on the values of default-dir and filter, default-file may not be in the list of
files displayed. Therefore, default-file will not be selected.



SAS Component Language Dictionary � FILEEXIST 385

An error condition is produced if you supply a description for at least one filter but
fail to supply a description for each specified filter.

Operating Environment Information: The formats of the files and filter parameters are
all host specific. The UNIX and Microsoft Windows platforms use all of the passed
filters. The Macintosh platform ignores the filter argument. All other platforms use
only the first filter that is passed. �

Examples
� Enable a user to select a file to open, and see whether the user canceled the

window:

rc=filedialog(’saveas’,selfile,’autoexec.sas’,
’/sas’,’*.sas’);

/* Process the selected file */
select(rc);

when(0) put ’New file selected’;
when(1) put ’REPLACE an existing file’;
when(2) put ’APPEND to an existing file’;
when(-1) put ’User pressed cancel’;
otherwise put ’ERROR occurred’;

end;

� Display a list of filenames that have .SAS, .HTML, and .GIF extensions, and
provide descriptions for these filters:

rc=filedialog(’open’,selfile,’’,’’,
’*.sas’,’*.html’,’*.gif’,’’,’’,’’,’’,’’,’’,’’,’’,
’SAS Files’,’Web Pages’,’Images’);

See Also
“FILELIST” on page 386

FILEEXIST

Verifies the existence of an external file, a directory, or a SAS data library by its physical name

Category: External File

Syntax
sysrc=FILEEXIST(filename);

rc
contains the return code for the operation:

1 The external file exists.

0 The external file does not exist.
Type: Numeric



386 FILELIST � Chapter 13

filename
is the name that identifies the external file to the host operating system. The
filename specification varies according to the operating system.

Type: Character

Details
FILEEXIST verifies the existence of an external file, a directory, or a SAS data library.

Although your system utilities may recognize partial physical filenames, you must
always use fully qualified physical filenames with FILEEXIST.

Example

Verify the existence of an external file whose filename the user enters in the field for
the window variable FNAME. Display a message on the message line to tell the user
whether the file exists.

if (fileexist(fname)) then
_msg_=’The external file ’||fname||’ exists.’;

else
_msg_=sysmsg();

See Also
“EXIST” on page 367
“FEXIST” on page 377
“FILENAME” on page 389
“FILEREF” on page 391
“PATHNAME” on page 590

FILELIST

Displays a host selection window that lists the currently assigned filerefs, and returns user
selections

Category: Selection List

Syntax
selections=FILELIST(<sel-excl<,message<,autoclose <,num-sel>>>>);

selections
contains the user’s selections, or a blank if no fileref was selected. Multiple selections
are separated by blanks. By default, selections is 200 bytes long. To accommodate
values longer than 200 bytes, explicitly declare selections with a longer length.

Type: Character

sel-excl
specifies which filerefs to include in the selection window. Specify as

� one or more filerefs that have been assigned for the current SAS session. Use
spaces to separate multiple filerefs.



SAS Component Language Dictionary � FILELIST 387

� an asterisk (’*’) or a null string (’’) to display all the filerefs that are defined
for the current SAS session.

� a NOT sign ( or ^) followed by one or more filerefs, to display all filerefs except
those listed after the NOT sign. For example, ’^ MYFILE1 MYFILE2’ displays
all defined filerefs except MYFILE1 and MYFILE2.

Type: Character

message
is the text for a message to display above the selection list. The default message tells
users to make up to the number of selections specified in num-sel.

Type: Character

autoclose
is an obsolete argument but is retained for compatibility with earlier releases. If you
want to specify a value for num-sel, then specify ’’as a placeholder for this argument.

Type: Character

num-sel
is the maximum number of items a user can select from the list. To display the list
for information purposes only (no selections allowed), specify 0. To specify an
unlimited number of selections, use a value such as 9999 that is larger than the
number of available selections. A user cannot make a number of selections that
exceeds the number of items in the list.

Type: Numeric

Details

The selection list displays both filerefs and the corresponding physical names of the
external files to which the filerefs are assigned, but only the selected fileref is returned.

If you omit all the arguments for FILELIST (for example,
selections=filelist();), the selection list window contains all filerefs that have
been assigned in the current SAS session.

You can provide default values that will be initially selected when the fileref selection
list is displayed. To do this, assign the values to the selections variable before calling
FILELIST.

If a user closes the selection list window without making a selection, FILELIST
returns a blank value unless there was an initial value for the selections variable before
FILELIST was called.

Selections from the window can be returned in the current result list, if one is
available. The current result list is a special SCL list that is automatically filled with
the values that are selected from a selection list. To use a current result list, use the
MAKELIST function to create the list, and use the CURLIST function to designate it as
the current result list. The current result list must exist before you call the FILELIST
function.

When FILELIST is invoked, the current result list is cleared. After FILELIST is
invoked, the current result list contains the following named items:

TAG
identifies the list as one that was created by FILELIST.

Type: Character

COUNT
contains the number of selected filerefs, or 0 if a user makes no selections or issues
a CANCEL command in the list window.

Type: Numeric



388 FILELIST � Chapter 13

FILEREF
contains the name of each selected fileref. There is a FILEREF element for each
selected fileref.

Type: Character

FILENAME
contains the physical name of the external file for each selected fileref. There is a
FILENAME element for each selection made.

Type: Character

Because some engines support mixed-case filenames, FILELIST now retains the
cases of the returned selected items. This may cause your application to fail if your
application contains code that assumes the returned selection is uppercased. For
example,

if (filelist(dsid, ’TESTNDX’)=’NDXVAR’)

must be changed to

if (upcase(filelist(dsid, ’TESTNDX’))=’NDXVAR’

If the application cannot be modified, you may need to specify the
VALIDVARNAME=V6 system option when you run the application to ensure that the
selections returned from the FILELIST function will be uppercased.

Examples

Example 1: Displaying Specified Filerefs Open a window that displays a list of all
defined filerefs except for LISTNUM.

select=filelist(’^listnum’);

Example 2: Using a Current Result List for Multiple User Selections Open a window
that displays a list of all defined filerefs except LISTNUM. Users can make up to five
selections. The selections are retrieved from the current result list.

listid=makelist();
rc=curlist(listid);
select=filelist(’^listnum’,’ ’,’ ’,5);
n=getnitemn(listid,’COUNT’);
do i=1 to n;

fileref=getnitemc(listid,’FILEREF’,i);
physname=getnitemc(listid,’FILENAME’,i);
put fileref= physname=;

end;

See Also
“CATLIST” on page 244
“DIRLIST” on page 327
“LIBLIST” on page 508



SAS Component Language Dictionary � FILENAME 389

FILENAME

Assigns or deassigns a fileref for an external file, a directory, an output device, or a catalog entry

Category: External File

Syntax
sysrc=FILENAME(fileref,filename<,device <,host-options<,dir-ref>>>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

fileref
is the fileref to assign. A blank fileref (’’) causes an error condition. If the fileref is
an SCL character variable that has a blank value, a fileref will be generated for you.

Type: Character

filename
is the physical name of an external file.

Type: Character

device
is the type of device if the fileref points to something other than a physical file:

CATALOG
a catalog entry

DUMMY
output to the file is discarded

FTP
the file transfer protocol (FTP) access method

GTERM
graphics on the user’s terminal

NAMEPIPE
a named pipe.

Note: Some operating systems do not support pipes. �

PIPE
an unnamed pipe

Note: Some operating systems do not support pipes. �

PLOTTER
an unbuffered graphics output device

PRINTER
a printer or printer spool file



390 FILENAME � Chapter 13

SOCKET
the Transmission Control Protocol/Internet Protocol (TCP/IP) socket access method

TERMINAL
the user’s terminal

TAPE
a tape drive

URL
the URL access method
Type: Character

host-options
are host-specific details such as file attributes and processing attributes. Host-options
can also be used to specify device options. For example, they could include output
destinations, and CATALOG, FTP, URL, TCPIP, and SOCKET options. For details
about host and device options for the FILENAME statement, see SAS Language
Reference: Dictionary and the SAS documentation for your operating environment.

Type: Character

dir-ref
is the fileref assigned to the directory or partitioned data set in which the external
file resides.

Type: Character

Details
The name associated with the file or device is called a fileref (file reference name).
Other SCL functions that manipulate external files and directories require that the files
be identified by a fileref rather than by a physical filename. A system-generated fileref
is not displayed in the FILENAME window.

The association between a fileref and a physical file lasts only for the duration of the
current SAS session or until you use FILENAME to change or discontinue the
association. If you specified the RECONN option when the fileref was assigned, then
you must specify the CLEAR option to deassign the fileref. You can deassign other
filerefs by specifying a null string for the filename argument.

For more information about the arguments that you can use with FILENAME, see
SAS Language Reference: Dictionary and the SAS documentation for your operating
environment.

Operating Environment Information: The term directory in this description refers to
an aggregate grouping of files that are managed by the host operating system. Different
host operating systems identify such groupings with different names, such as directory,
subdirectory, MACLIB, or partitioned data set. See the SAS documentation for your
operating environment for details.

Under some operating systems, you can also use system commands to assign filerefs.
Depending on the operating system, FILENAME may be unable to change or de-assign
filerefs that are assigned outside of a SAS session.

See the SAS documentation for your operating environment for information about
the system-dependent options that you can specify for options. �



SAS Component Language Dictionary � FILEREF 391

Examples

Example 1: Assigning a Fileref Assign the fileref MYFILE to an external file:

/* Assign fileref MYFILE to the physical */
/* filename stored in the variable FNAME */

rc=filename(’myfile’,fname);
if (rc ne 0) then

_msg_=sysmsg();

Example 2: Using a System-Generated Fileref Assign a system-generated fileref,
stored in the variable FNAME, to the file whose physical name is in the control FNAME:

fname=’ ’;
/* Assign a system-generated fileref to the */
/* filename stored in the variable FNAME */

rc=filename(fname,fname);
if (rc) then

_msg_=sysmsg();
else

do;
...more SCL statements...

end;
/* De-assign the fileref */

rc=filename(’myfile’,’’);

Example 3: Making an External File Accessible to a Client Assign a fileref to an
external file:

rc=filename(’sharedfl’,’\ABC\XYZ\AUTOEXEC.SAS);

Example 4: Assigning a Fileref for a Pipe File Assign a fileref for a pipe file with the
output from the UNIX command LS, which lists the files in the directory /u/myid:

rc=filename(’myfile’,’ls /u/myid’,’pipe’);

See Also
“FEXIST” on page 377
“FILEEXIST” on page 385
“FILEREF” on page 391
“PATHNAME” on page 590

FILEREF

Verifies that a fileref has been assigned for the current SAS session or process

Category: External File

Syntax
sysrc=FILEREF(fileref);



392 FILLIST � Chapter 13

sysrc
contains the return code for the operation:

0 Both the fileref and the external file exist.

< 0 The fileref has been assigned, but the file that it points to does
not exist.

> 0 The fileref has not been assigned.
Type: Numeric

fileref
is the fileref to be validated (up to eight characters).

Type: Character

Details
A negative return code indicates that the fileref exists but that the physical file
associated with the fileref does not exist. A positive, nonzero value indicates that the
fileref has not been assigned.

A fileref can be assigned to an external file by using the FILENAME statement or
the FILENAME function in SCL. Under some operating systems, you can also use
system commands to assign filerefs. See the SAS documentation for your operating
environment.

Examples

Example 1: Determining Whether a Fileref Has Been Assigned to an External File Test
whether the fileref MYFILE is currently assigned to an external file. A system error
message is issued if the fileref is not currently assigned.

if (fileref(’myfile’) > 0) then _msg_=sysmsg();

Example 2: Determining Whether a Fileref and Its File Exist Test the fileref MYFILE
to determine whether the fileref is assigned and whether the file that it refers to exists:

if (fileref(’myfile’) ne 0) then _msg_=sysmsg();

See Also
“FEXIST” on page 377
“FILEEXIST” on page 385
“FILENAME” on page 389
“PATHNAME” on page 590

FILLIST

Fills an SCL list with text and data

Category: List

Syntax
sysrc=FILLIST(type,source,list-id<,attr-list-id<,desc-var-name>>);



SAS Component Language Dictionary � FILLIST 393

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

type
specifies the type of file or data source named in source and one or more options to
use:

’CATALOG<(options)>’
specifies that source names a catalog entry.

’FILE<(options)>’
specifies that source names an external file.

’FILEREF<(options)>’
specifies that source names a fileref that has been assigned to an external file.

’SASICONS<(numbers)>’
specifies the numbers for icons that are provided with SAS software. (When you
specify SASICONS, source is ignored. Specify a null argument ’’for source.)

’SEARCH’
specifies catalog names in the current search path (source is ignored). Use the
SEARCH function to define the search path, or specify ’’for source.

The available options are described in“Type Options” on page 393. Separate multiple
options with blanks. For example, to fill a list from an external print file and to strip
carriage-control characters, specify FILE(PRINT STRIPCC) for type.

Type: Character

source
is a catalog entry (specified as libref.catalog.entry.type), an external file, or a fileref.

Type: Character

list-id
contains the identifier of the list to fill. An invalid list-id produces an error condition.

Type: Numeric or List

attr-list-id
contains the identifier of the list to fill with text attribute source information when
type is CATALOG and the entry type is LOG, OUTPUT, or SOURCE. An invalid
attr-list-id produces an error condition.

Type: Numeric

desc-var-name
is the name of the variable in which you want to store the text of the catalog entry
description. This argument is ignored if type is FILE or FILEREF.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Character

Type Options
ADDCC

adds default host carriage-control characters. Used with type FILE, FILEREF, and
CATALOG and with catalog entry types LOG, OUTPUT, and SOURCE.



394 FILLIST � Chapter 13

PRINT
designates an external file as a PRINT file (uses the host carriage-control
characters). Used with type FILE and FILEREF.

STRIPCC
removes carriage-control characters. Used with type FILE, FILEREF, and CATALOG
and with catalog entry types LOG, OUTPUT, and SOURCE.

TRIM
trims trailing blanks. Used with type FILE, FILEREF and CATALOG and with catalog
entry types LOG, OUTPUT, and SOURCE. TRIM is used if you want to use FILLIST to
fill a list with items that contain trailing blanks and then remove the blanks so
that they will not be displayed in a pop-up menu that is produced by POPMENU.

Details

Each line of text in the source file is placed in a separate character item of the list
identified by list-id. The number of items in the filled list is determined by the number
of lines of text. All SCL lists must be created with MAKELIST before you call FILLIST.
FILLIST automatically clears the lists before it fills the lists.

Data from the external file or catalog entry cannot exceed the maximum length of a
character value in an SCL list item, which is 32,766 characters.

External Files If type is FILE, then source is the name of an external file. If type is
FILEREF, then source is a SAS fileref. FILLIST reads each record of the file into a
separate character item.

SLIST Catalog Entries If type is CATALOG and the catalog entry type in source is
SLIST, then the types of the items in the filled list are determined by the saved list, and
they may be character strings, numbers, or other lists. All item attributes and names
are duplicated, as are the list attributes. However, the list identifier numbers are
different.

LIST Catalog Entries If type is CATALOG and the catalog entry type in source is LIST,
FILLIST reads the contents of a SAS/AF LIST entry into list-id. The list contains
either all numeric or all character items, depending on the contents of the LIST entry.
The attribute list contains the following named values, which are all character type:

INFORMAT
is the SAS informat that was specified in the LIST entry.

FORMAT
is the SAS format that was specified in the LIST entry.

MESSAGE
is the error message that was specified in the LIST entry.

CAPS
reports whether the LIST entry has the CAPS attribute. Y or N.

SORTED
reports whether the LIST entry has the SORT attribute. Y or N.

NOHONORCASE
reports whether the LIST entry has the CASE-INSENSITIVE attribute. Y or N.



SAS Component Language Dictionary � FILLIST 395

TYPE
is the TYPE attribute that was specified in the LIST entry. N for numeric, C for
character.

JUST
is the JUST attribute that was specified in the LIST entry. L, R, C, or N for left,
right, center, or none.

SOURCE, OUTPUT, and LOG Catalog Entries If type is CATALOG and the entry type is
OUTPUT, LOG, or SOURCE, the first character in each list item contains a FORTRAN
carriage-control character: 1 means that a new page starts with this line. See STRIPCC
above. ADDCC converts all carriage-control characters to ’’(blank).

If type is CATALOG and the entry type is OUTPUT, LOG, or SOURCE, then any text
attributes (such as color and display attributes), are read one element per line into
attr-list-id, if it is specified. These attributes consist of a character item for each line of
text. Each character item contains one character for each character in the line, plus a
prefix descriptor character. The prefix character is T for a title line, H for a header line,
or D for a data line. The other characters represent the text display attributes and color,
as described in the tables below.

Do not confuse text attributes (color, display, and so on) with list attributes that are
specified with SETLATTR.

The attribute list that is filled by FILLIST contains one item for each line of text
from the SAS catalog entry. The attribute string for each line has one character for
each character of text. Each attribute character represents the SAS windowing
environment color and display attribute. Not all display devices support all colors.

Color attributes are represented as follows:

Color Value Color Value

BLUE ’10’x WHITE ’70’x

RED ’20’x ORANGE ’80’x

PINK ’30’x BLACK ’90’x

GREEN ’40’x MAGENTA ’A0’x

CYAN ’50’x GRAY ’B0’x

YELLOW ’60’x BROWN ’C0’x

Display attributes are represented as follows:

Attribute Value

NONE ’00’x

HIGHLIGHT ’01’x

UNDERLINE ’02’x

BLINK ’04’x

REVERSE ’08’x



396 FILLIST � Chapter 13

You combine the color and display attributes by adding them together. For example,
you can specify GREEN UNDERLINE by adding ’40’x to ’02’x to yield ’42’x. To assign
GREEN UNDERLINE to the first 4 characters of a string, you could use a statement
like:

str = ’42424242’x;

See also “STRATTR” on page 689, which creates attribute strings.
You can use GETITEMC or POPC to retrieve an item from this list.
An error condition is produced if

� either list has the NOUPDATE, NUMONLY, or FIXEDLENGTH attribute

� any item in either list cannot be removed because it has the NODELETE attribute.

Examples

Example 1: Reading Text and Attributes Into a List Suppose you have an OUTPUT
entry named FINANCE.REPORTS.MONTHLY.OUTPUT that contains the text
"Net:($45,034)" on line 45. The text Net: is white with no highlight attributes,
whereas the text ($45,034) is red reverse. The following statements read the text and
attributes and print line 45.

INIT:
text_list=makelist();
attr_list=makelist();
rc=fillist(’CATALOG’,

’FINANCE.REPORTS.MONTHLY.OUTPUT’,
text_list,attr_list);

text=substr(getitemc(text_list,45),2);
attr=substr(getitemc(attr_list,45),2);
len=compress(put(2*length(text), 4.));
attrhex=putc(attr,’$HEX’||len||’.’);
put attr;
put text;
put attrhex;

return;

Note: SUBSTR removes the carriage-control characters. �

This example produces the following output:

ppppp(((((((((
Net: ($45,034)
7070707070282828282828282828

The line of text consists of five white characters with no attributes, represented by
the attribute value ’70’x, followed by nine red reverse characters, represented by ’28’x.



SAS Component Language Dictionary � FILLIST 397

Example 2: Performing a Recursive List Copy The following statements perform an
operation similar to a recursive list copy:

rc=savelist(’CATALOG’,’WORK.TEMP.MYLIST.SLIST’,
mylist);

new_list=makelist();
rc=fillist(’CATALOG’,’WORK.TEMP.MYLIST.SLIST’,

new_list);
rc=delete(’WORK.TEMP.TEMP.SLIST’,’CATALOG’);

Lists that are saved in a permanent catalog with SAVELIST can persist across SAS
sessions.

Example 3: Reading and Printing Out Data and Attributes from LIST Entries Consider
two LIST entries: SASUSER.DATA.A.LIST, which contains some character data, and
SASUSER.DATA.DATES.LIST, which contains formatted numeric data. The following
program reads the data and attributes from these entries and uses PUTLIST to print
the results.

INIT:
items=makelist();
attrs=makelist();
rc=fillist(’catalog’,’sasuser.data.a.list’,

items,attrs);
call putlist(items,’A.LIST contents:’,0);
call putlist(attrs,’A.LIST attributes:’,0);
rc=fillist(’catalog’,’sasuser.data.dates.list’,

items,attrs);
call putlist(items,’DATES.LIST contents:’,0);
call putlist(attrs,’DATES.LIST attributes:’,0);
rc=dellist(items);
rc=dellist(attrs);
return;

The output for these entries may look like this:

A.LIST contents:(’THIS ’
’IS ’
’A ’
’LIST ’
’ENTRY ’
’WITH ’
’EIGHT ’
’ITEMS ’
)[5]

A.LIST attributes:(INFORMAT=’’
FORMAT=’’
MESSAGE=’’
CAPS=’Y’
SORTED=’N’
NOHONORCASE=’Y’
TYPE=’C’
JUST=’L’
)[7]

DATES.LIST contents:(1765
11162
11813



398 FINFO � Chapter 13

12072
)[5]

DATES.LIST attributes:(INFORMAT=’DATE.’
FORMAT=’DATE.’
MESSAGE=’’
CAPS=’Y’
SORTED=’Y’
NOHONORCASE=’N’
TYPE=’N’
JUST=’L’
)[7]

Note: [5] and [7] are the list identifiers that were assigned when this example was
run and may be different each time the example is run. �

See Also
“SAVELIST” on page 640

FINFO

Returns a file information item

Category: External File

Syntax
item-value=FINFO(file-id,info-item);

item-value
contains the value of the file parameter, or a blank if info-item is invalid.

Type: Character

file-id
is the identifier that was assigned when the file was opened. If file-id is invalid, the
program halts.

Type: Numeric

info-item
specifies which file information item to retrieve.

Type: Character

Details
FINFO returns the value of a system-dependent information item for an external file.
The information that is available for files depends on the operating system.

FOPTNUM determines how many system-dependent information items are available.
FOPTNAME determines the names of the available items.



SAS Component Language Dictionary � FKEYNAME 399

Example

Assign the fileref MYFILE to an external file. Then open the file and determine
whether LRECL (logical record length, an attribute used on some host systems) is one
of the available information items. If the value of the variable CHARVAL is nonblank,
then a value for LRECL is displayed to the user.

rc=filename(’myfile’,fname);
fid=fopen(’myfile’);
charval=finfo(fid,’lrecl’);
if (charval=’ ’) then

_msg_= ’The LRECL attribute is not available.’;
else

_msg_= ’The LRECL for the file is ’ || charval || ’.’;
rc=fclose(fid);
rc=filename(’myfile’,’’);

See Also
“DINFO” on page 326
“FOPEN” on page 407
“FOPTNAME” on page 409
“FOPTNUM” on page 410

FKEYNAME

Returns the name of the specified function key

Category: Keys

Syntax
key-name=FKEYNAME(key-number);

key-name
contains a function key name as listed in the KEYS window. Function key names
vary according to the device.

Type: Character

key-number
is the number that corresponds to the order in which the keys are displayed in the
KEYS window.

Type: Numeric



400 FLDATTR � Chapter 13

Details
The key-number argument identifies a key by its ordinal position in the KEYS window,
not by its label. For example, if the first key in the KEYS window is named PF1, use a
1 rather than PF1 for the key-number argument to identify that key. To retrieve the
corresponding key definitions, use GETFKEY.

You can use this function only in entries that have a DISPLAY window.

Example

Return the name of function key 12:

keyname=fkeyname(12);

See Also
“GETFKEY” on page 428
“NUMFKEYS” on page 577
“SETFKEY” on page 661

FLDATTR

Changes the color and display attributes of a field, text entry widget, or text label widget to those
stored in an attribute string

Category: Widget or Field

Syntax
rc=FLDATTR(wcol-name,string);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

wcol-name
specifies the field, text entry widget, or text label widget to be changed.

Type: Character

string
specifies the color and display attributes to apply and the starting and ending
character positions within the field.

Type: Character

Details
You can use STRATTR or FILLIST to generate the attribute string. You can also
generate the attribute string by assigning hexadecimal values directly to the string.

Color attributes are represented as



SAS Component Language Dictionary � FLDATTR 401

Color Value Color Value

BLUE ’10’x WHITE ’70’x

RED ’20’x ORANGE ’80’x

PINK ’30’x BLACK ’90’x

GREEN ’40’x MAGENTA ’A0’x

CYAN ’50’x GRAY ’B0’x

YELLOW ’60’x BROWN ’C0’x

Display attributes are represented as

Attribute Value

NONE ’00’x

HIGHLIGHT ’01’x

UNDERLINE ’02’x

BLINK ’04’x

REVERSE ’08’x

To preserve a color, use the special hexadecimal value ’F0’x. To preserve a display
attribute, use ’0F’x. To preserve both the color and display attribute, add the two
special characters together (’FF’x).

For programs with extended tables you must call this function in the getrow section
of your SCL program.

FRAME entry widgets can also use the _setColorStr method.

Example

Change the first half of the field, ABC, to red reverse.

str=strattr(’red’,’reverse’,1,mlength(abc)/2);
rc=fldattr(’abc’,str);

Suppose the FRAME text entry widget, OBJ1, is BLUE REVERSE. To change the
third through the seventh character positions of OBJ1 to yellow, you must initialize the
first two characters of the attribute string to ’FF’x, then assign YELLOW in the third
through seventh characters. You can assign YELLOW to the attribute string either by
using STRATTR or by assigning the hexadecimal values directly to the string.

st =’FFFF6060606060’x;
rc=fldattr(’obj1’,str);

The previous example could have been written as follows:

str=’FFFF’x;
str=strattr(’yellow’,’’,3,5);
rc=fldattr(’obj1’,str);



402 FLDCOLOR � Chapter 13

You can also use the REPEAT function to initialize a string.

str=repeat(’FF’x,2 );
str=strattr(’yellow’,’’,3,5);
rc=fldattr(’obj1’,str);

See Also
“FLDCOLOR” on page 402
“STRATTR” on page 689

FLDCOLOR

Changes the color and display attributes of a field, text entry widget, or text label widget to those
stored in an attribute string

Category: Widget or Field

Syntax
rc=FLDCOLOR(wcol-name,color,attribute,start,length);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

wcol-name
specifies the field, text entry widget, or text label widget to be changed.

Type: Character

color
specifies either a color name, or ’’to retain the current color. Colors are BLACK,
BLUE, BROWN, CYAN, GRAY, GREEN, MAGENTA, ORANGE, PINK, RED,
WHITE, and YELLOW. SASCOLOR window elements can also be used for color.

Type: Character



SAS Component Language Dictionary � FLDCOLOR 403

attribute
specifies either a display attribute, or ’’to retain the current attribute. Attributes
are NONE, BLINKING, HIGHLIGHT, HIREV, REVERSE, and UNDERLINE. If you
specify a SASCOLOR window element for color, then attribute is ignored because the
SASCOLOR window element contains a display attribute. However, you must specify
a placeholder (’’) for attribute when you specify arguments after it.

Type: Character

start
specifies the position in the field at which to begin applying the specified color and
display attributes.

Type: Numeric

length
specifies the number of positions to which the specified color and display attributes
are to be applied.

Type: Numeric

Details
FRAME entry widgets can also use the _setColor method.

To change the color for the entire field or FRAME entry widget, you can use the
FIELD function.

Examples

Example 1: Changing the Color and Attributes of Character Positions Change the
color of the third through seventh character positions in field ABC to red, and change
the display attribute of those positions to high intensity:

rc=fldcolor(’abc’,’red’,’highlight’,3,5);

Example 2: Changing the Color of a Field Change the color of a field, but leave the
attributes the same:

rc=fldcolor(’abc’,’red’,’’,3,7);

Example 3: Using a SASCOLOR Window Element to Change the Color of a
Field Change the color of a field, using a SASCOLOR window element:

rc=fldcolor(’abc’,’foreground’,’’,3,7);

See Also
“FIELD” on page 379
“FLDATTR” on page 400
“STRATTR” on page 689



404 FNOTE � Chapter 13

FNOTE

Identifies the last record that was read

Category: External File

Syntax
note-id=FNOTE(file-id);

note-id
contains the identifier assigned to the last record that was read. The note-id value is
used by the FPOINT function to reposition the file pointer on a particular record.
SCL programs should not modify the value of the note-id variable.

Type: Numeric

file-id
is the identifier that was assigned when the file was opened. If file-id is invalid, the
program halts.

Type: Numeric

Details
You can use FNOTE like a bookmark, marking the position in the file so that your
application can later use FPOINT to return to that position.

FNOTE is limited to noting 1,000 records. When that limit is reached, the program
halts. To free the memory that is associated with each note identifier, use DROPNOTE.

Example

Assign the fileref THEFILE to an external file. Then attempt to open the file. If the
file is successfully opened, indicated by a positive value in the variable FID, then read
the records, use the variable NOTE3 to save the position of the third record that is
read, and then later use FPOINT to point to NOTE3 to update the file. After the record
is updated, close the file.

/* Assign the fileref THEFILE to the */
/* filename stored in the variable FNAME */
/* and open it in UPDATE mode. */

rc=filename(’thefile’,fname);
fileid=fopen(’thefile’,’u’);
if (fileid>0) then do;

/* Read the first record. */
rc=fread(fileid);

/* Read the second record. */
rc=fread(fileid);

/* Read the third record. */
rc=fread(fileid);

/* Note the position of third record. */
note3=fnote(fileid);

/* Read the fourth record. */
rc=fread(fileid);



SAS Component Language Dictionary � FONTSEL 405

/* Read the fifth record. */
rc=fread(fileid);

/* Point to the third record. */
rc=fpoint(fileid,note3);

/* Read the third record. */
rc=fread(fileid);

/* Copy the new text to the FDB. */
rc=fput(fileid,’New text’);

/* Update the third record with data in the FDB. */
rc=fwrite(fileid);

/* Close the file. */
rc=fclose(fileid);

end;
/* Deassign the fileref. */

rc=filename(’thefile’,’’);

See Also
“DROPNOTE” on page 342
“FPOINT” on page 412
“FREAD” on page 417
“FREWIND” on page 418

FONTSEL

Opens the selector window for host fonts or for portable fonts

Category: Selection List

Syntax
newfontlist-id=FONTSEL(oldfontlist-id,font-selector);

newfontlist-id
contains the identifier of the list that contains the selected font family, size, weight,
and style.

Type: Numeric

oldfontlist-id
contains the identifier of the list that contains the font information for the selection
list. An invalid oldfontlist-id produces an error condition. This list can be empty.

Type: Numeric

font-selector
specifies which font selector window to open:

’Y’
the host font selector window

’N’
the portable font selector window



406 FONTSEL � Chapter 13

’H’
the portable font selector window, displaying only the hardware fonts

’ ’(blank)
the default font selector window
Type: Character

Details
If oldfontlist-id is not empty, then the selector window opens with the font family, size,
weight, and style selections that are specified in the list. If oldfontlist-id is an empty
list, then the selector window opens with the default selections for font family, size,
weight, and style. The newfontlist-id identifier contains information about the font
family, size, weight, and style that the user selected.

The host font selector window enables a user to select fonts that are available on the
host in an environment-specific way. The portable font selector window enables a user
to select a portable font specification, which is used to find the closest match among
fonts that are available on a host. The host font selector window can also be opened
from the portable font selector window by using the System button.

For more information about how to use the font information that is returned, see the
documentation for the extended text entry class in SAS/AF software and its _setFont
method.

To change the default font selector window, use the SAS system option
MULTENVAPPL, which is described in SAS Language Reference: Dictionary.

Example

Make a FRAME entry with a pushbutton control named PUSHBTN and an SCOM
text entry control named TEXTENTRY1. Clicking on the pushbutton executes the code
to display the portable font selector window. Change the font selector value from N to Y
to use the host font selector window.

INIT:
fontid=makelist();

return;
PUSHBTN:

fontid=fontsel(fontid,’n’);
rc=putlist(fontid,’FONT’,1);
textentry1.font=fontid;

return;
TERM:

rc=dellist(fontid);
return;

See Also
“MAKELIST” on page 533



SAS Component Language Dictionary � FOPEN 407

FOPEN

Opens an external file

Category: External File

Syntax
file-id=FOPEN(fileref<,open-mode<,record-length

<,record-format>>>);

file-id
contains the identifier for the file, or 0 if the file could not be opened.

Type: Numeric

fileref
is the fileref that is assigned to the external file.

Type: Character

open-mode
specifies the type of access to the file:

’A’ APPEND mode, which allows writing new records after the
current end of the file.

’I’ INPUT mode, which allows reading only. (This is the default.)

’O’ OUTPUT mode, which defaults to the OPEN mode specified in
the host option in the FILENAME statement or function. If no
host option is specified, it allows writing new records at the
beginning of the file. If the file exists, its contents are
overwritten, destroying any previous contents. If the file does not
exist, it is created.

’S’ Sequential input mode, which is used for pipes and other
sequential devices such as hardware ports.

’U’ UPDATE mode, which allows both reading and writing records.

’W’ Sequential output mode, which is used for pipes and other
sequential devices such as hardware ports.

Type: Character

record-length
is the logical record length of the file. To use the existing record length for the file,
either specify a length of 0 or do not provide a value here.

Type: Numeric



408 FOPEN � Chapter 13

record-format
is the record format of the file. To use the existing record format, do not specify a
value here.

’B’ The data is to be interpreted as binary data.

’D’ Use the default record format.

’E’ Use an editable record format.

’F’ The file contains fixed-length records.

’P’ The file contains printer carriage-control characters in a
host-dependent record format.

’V’ The file contains variable-length records.

Type: Character

Details
CAUTION:

Use OUTPUT mode with care. Opening an existing file in OUTPUT mode overwrites
the current contents of the file without warning. �

The FOPEN function opens an external file for reading or updating and returns a file
identifier value that can then be used to identify the open file to other functions. You
must associate a fileref with the external file before calling the FOPEN function.

In SCL you can assign filerefs by using either the FILENAME statement or the
FILENAME function. Under some operating systems, you can also use operating
system commands to assign filerefs.

Operating Environment Information: z/OS
For z/OS data sets that have the VBA record format, specify ‘P’ for the record-format

argument. �

Examples
� Assign the fileref MYFILE to an external file. Then attempt to open the file for

input, using all defaults:

rc=filename(’myfile’,fname);
fid=fopen(’myfile’);

� Attempt to open the file for input, this time not using defaults:

fid=fopen(’file2’,’o’,132,’e’);

See Also
“DOPEN” on page 338
“FCLOSE” on page 371
“FILENAME” on page 389
“FILEREF” on page 391
“MOPEN” on page 553



SAS Component Language Dictionary � FOPTNAME 409

FOPTNAME

Returns the name of an item of information for a file

Category: External File

Syntax
item-name=FOPTNAME(file-id,item-num);

item-name
contains the name of the information item, or a blank if an error occurred.

Type: Character

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

item-num
is the number of the information item.

Type: Numeric

Details
The number, value, and type of available information items depend on the operating
system.

Example

Retrieve the system-dependent file information items and write them to the log:

length name $ 8;
rc=filename(’myfile’,fname);
fid=fopen(’myfile’);
infonum=foptnum(fid);
do j=1 to infonum;
name=foptname(fid,j);
value=finfo(fid,name);
put ’File attribute’ name ’has a value of’ value;

end;
rc=fclose(fid);
rc=filename(’myfile’,’’);

The example produces the following output:

File attribute LRECL has a value of 256.



410 FOPTNUM � Chapter 13

See Also
“DINFO” on page 326
“DOPTNAME” on page 339
“DOPTNUM” on page 340
“FINFO” on page 398
“FOPEN” on page 407
“FOPTNUM” on page 410
“MOPEN” on page 553

FOPTNUM

Returns the number of information items that are available for an external file

Category: External File

Syntax
num-items=FOPTNUM(file-id);

num-items
contains the number of information items that are available.

Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

Details
The number, value, and type of available information items depend on the operating
system.

Use FOPTNAME to determine the names of the items that are available for a
particular operating system. Use FINFO to retrieve the value of a particular
information item.



SAS Component Language Dictionary � FORMAT 411

Example

Open the external file that has the fileref MYFILE and determine how many
system-dependent file information items are available:

fileid=fopen(’myfile’);
infonum=foptnum(myfile);

See Also
“DINFO” on page 326
“DOPTNAME” on page 339
“DOPTNUM” on page 340
“FINFO” on page 398
“FOPTNAME” on page 409

FORMAT

Verifies that the specified format is valid

Category: Formatting

Syntax
rc=FORMAT(format,type);

rc
contains the return code for the operation:

1 successful

0 not successful
Type: Numeric

format
contains a format that is either supplied by SAS or created using the FORMAT
procedure. The format name must contain a period (for example, dollar6. or
dollar8.2).

Type: Character

type
specifies the type of the format:

’C’ character

’N’ numeric.
Type: Character



412 FPOINT � Chapter 13

Details

If the specified format is not known to the SAS session, then the operation is
unsuccessful. The function verifies that valid widths are specified for formats.

See SAS Language Reference: Dictionary for details about formats.

Examples

Example 1: Verifying the Validity of a Character Format Assume that you want to use
the $CHAR12. format and to verify that $CHAR12. is a valid character format. (If the
format name is valid, then the value returned to the variable RC is 1.)

rc=format(’$char12.’,’c’);

Example 2: Verifying the Validity of a Numeric Format Verify that 5.6 is not a valid
format for numeric values. (If it is not valid, then the value returned to the variable RC
is 0.)

rc=format(’5.6’,’n’);

See Also

“INFORMAT” on page 471

FPOINT

Positions the “read” pointer on the next record to be read

Category: External File

Syntax

sysrc=FPOINT(file-id,note-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

note-id
contains the identifier that was assigned by the FNOTE function.

Type: Numeric



SAS Component Language Dictionary � FPOINT 413

Details
Use FNOTE to provide the note-id value that identifies the record. FPOINT determines
only the record to read next. It has no impact on which record is written next. When
you open the file for update, FWRITE writes to the most recently read record.

Example

Assign the fileref MYFILE to an external file. Then attempt to open the file. If the
file is opened successfully, then read the records and use NOTE3 to store the position of
the third record read. Later, point back to NOTE3 to update the file, closing the file
afterward.

/* Assign the fileref MYFILE to the physical */
/* filename stored in the variable FNAME */
/* and open it in UPDATE mode. */

rc=filename(’myfile’,fname);
fileid=fopen(’myfile’,’u’);
if (fileid>0) then do;

/* Read the first record. */
rc=fread(fileid);

/* Read the second record. */
rc=fread(fileid);

/* Read the third record. */
rc=fread(fileid);

/* Note the position of the third record. */
note3=fnote(fileid);

/* Read the fourth record. */
rc=fread(fileid);

/* Read the fifth record. */
rc=fread(fileid);

/* Point to the third record. */
rc=fpoint(fileid,note3);

/* Read the third record. */
rc=fread(fileid);

/* Copy the new text to the FDB. */
rc=fput(fileid,’new text’);

/* Write data in the FDB to the third record. */
rc=fwrite(fileid);

/* Close the file. */
rc=fclose(fileid);

end;
/* Clear the fileref. */

rc=filename(’myfile’,’’);

See Also
“DROPNOTE” on page 342
“FNOTE” on page 404
“FREAD” on page 417
“FREWIND” on page 418



414 FPOS � Chapter 13

FPOS

Sets the position of the column pointer in the File Data Buffer

Category: External File

Syntax
sysrc=FPOS(file-id,nval);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

nval
is the number of the column at which to set the pointer.

Type: Numeric

Details
If the specified position is past the end of the current record, then the size of the record
is increased appropriately. However, in a fixed block file or a VBA file, if you specify a
column position beyond the end of the record, the record size does not change, and the
text string is not written to the file.

Example

Assign the fileref THEFILE to an external file and then attempt to open the file. If
the file is opened successfully, as indicated by a positive value in the variable FID, then
place data into the file’s buffer at column 12, write the record, and close the file.

/* Assign the fileref THEFILE to the physical */
/* filename stored in the variable FNAME */
/* and open it in append mode. */

rc=filename(’thefile’,fname);
fileid=fopen(’thefile’,’o’);
if (fileid>0) then do;

rc=fread(fileid);
dataline=’This is some data.’;

/* Position at column 12 in the FDB. */
rc=fpos(fileid,12);

/* Put the data in the FDB. */
rc=fput(fileid,dataline);

/* Write the record. */
rc=fwrite(fileid);



SAS Component Language Dictionary � FPUT 415

/* Close the file. */
rc=fclose(fileid);

end;
/* Clear the fileref. */

rc=filename(’thefile’,’’);

See Also
“FCOL” on page 372
“FPUT” on page 415

FPUT

Moves data to the File Data Buffer (FDB) for an external file, starting at the FDB’s current column
position

Category: External File

Syntax
sysrc=FPUT(file-id,cval<, length>);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

cval
is the data to be moved to the FDB.

Type: Character

length
is the length of the string to move to the FDB. If length is greater than cval, then the
string is padded with blanks when it is moved. If length is less than cval, the string
is truncated when it is moved. If length is less than 1, the program halts.

Type: Numeric

Details
The unformatted value of cval is passed to FPUT. The number of bytes moved to the
FDB is determined by the length of the variable, or by the value of length, if length is
specified. The value of the column pointer is then incremented to one position past the
end of the new text.



416 _FRAME_ � Chapter 13

Example

Move data to the FDB and write it to the external file:

/* Assign the fileref THEFILE to the physical */
/* filename stored in the variable FNAME */
/* and open it in append mode. */

rc=filename(’thefile’,fname);
fileid=fopen(’thefile’,’a’);
if (fileid>0) then

do;
thestring=’This is some data.’;
rc=fput(fileid,thestring);
rc=fwrite(fileid);
rc=fclose(fileid);

end;
else

_msg_=sysmsg();
rc=filename(’thefile’,’’);

See Also
“FNOTE” on page 404
“FPOINT” on page 412
“FPOS” on page 414
“FWRITE” on page 427

_FRAME_

Contains the identifier of either the FRAME entry that contains the control or the FRAME entry that
is being used as a method

Category: System Variable

Details
_FRAME_ is a system variable that is provided automatically by the FRAME entry in
SAS/AF software. A space is automatically created for it in the SCL data vector (SDV).
_FRAME_ contains the identifier of the FRAME entry that contains a component.
Otherwise, it contains the identifier of the FRAME that is running.

You can use this variable to send methods to a FRAME entry from a control’s
method. For example, a control method can send a _refresh method to the FRAME
entry, causing the FRAME entry to refresh its display.

Example

Suppose the entry FIRST.FRAME contains an icon. The icon’s _select method is
defined to run the SAS/AF FRAME entry SECOND.FRAME, which contains the
following program:



SAS Component Language Dictionary � FREAD 417

INIT:
/* Send a method to the current FRAME */

_CFRAME_._setMsg(’Running the Select method’);
return;
TERM:

/* Send a method to the FRAME that */
/* contains the icon */

_FRAME_._setMsg(’Select method has finished.’);
return;

When FIRST.FRAME displays and a user selects the icon, SECOND.FRAME
displays with the message “Running the Select method”. After the user ends from
SECOND.FRAME, FIRST.FRAME displays the message “Select method has finished.”
This is accomplished by sending the _setMsg method to _CFRAME_ (the FRAME entry
that is currently running) in the INIT section and by sending _setMsg to _FRAME_ (the
FRAME entry that contains the icon) in the TERM section.

See Also
“_CFRAME_” on page 252

FREAD
Reads a record from an external file into the File Data Buffer (FDB)

Category: External File

Syntax
sysrc=FREAD(file-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

Details
The position of the file pointer is automatically updated after the read operation so that
successive FREAD functions read successive file records.

Use FNOTE, FPOINT, and FREWIND to position the file pointer explicitly.

Example

Assign the fileref MYFILE to an external file and attempt to open the file. Read each
record from the file and list it in the LOG window.



418 FREWIND � Chapter 13

/* Assign the fileref MYFILE to the physical */
/* filename stored in the variable FNAME */
/* and open it. */

rc=filename(’myfile’,fname);
fileid=fopen(’myfile’);
if (fileid>0) then

do while(fread(fileid)=0);
rc=fget(fileid,c,200);
put c;

end;
rc=fclose(fileid);
rc=filename(’myfile’,’’);

See Also
“FGET” on page 378
“FNOTE” on page 404
“FPOINT” on page 412
“FREWIND” on page 418

FREWIND

Positions the file pointer at the beginning of the file

Category: External File

Syntax
sysrc=FREWIND(file-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

Details
FREWIND has no effect on a file that was opened with sequential access.

Example

Assign the fileref THEFILE to an external file. Then open the file and read the
records until the end of the file is reached. The FREWIND function then repositions the



SAS Component Language Dictionary � FRLEN 419

pointer to the beginning of the file. The first record is read again and is stored in the
File Data Buffer (FDB). The first token is retrieved and is stored in the variable VAL.

/* Assign the fileref THEFILE to the physical */
/* filename stored in the variable FNAME */
/* and open it. */

rc=filename(’thefile’,fname);
fileid=fopen(’thefile’);
do while (rc ne −1);

/* Read a record. */
rc=fread(fileid);

end;

/* Reposition the pointer at the beginning of */
/* the file. */

if rc= -1 then rc=frewind(fileid);
/* Read the first record. */

rc=fread(fileid);
/* Read the first token into VAL. */

rc=fget(fileid,val);
put val= ;
rc=fclose(fileid);
rc=filename(’thefile’,’’);

See Also

“FGET” on page 378

FRLEN

Returns the size of the last record read, or, if the file is opened for output, returns the current
record size

Category: External File

Syntax

length=FRLEN(file-id);

length
contains the length of the current record if the file is opened for output. Otherwise, it
is the length of the last record read.

Type: Numeric

file-id
is the identifier that was assigned when the file was opened. If file-id is invalid, the
program halts.

Type: Numeric



420 FSEDIT � Chapter 13

Example

Open the file identified by the fileref THEFILE. Determine the minimum and
maximum lengths of records in the external file, and write the results to the LOG
window.

/* Assign the fileref THEFILE to the physical */
/* filename stored in the variable FNAME */
/* and open it. */

rc=filename(’thefile’,fname);
fileid=fopen(’thefile’);
min=0;
max=0;
if (fread(fileid)=0) then do;

min=frlen(fileid);
max=min;
do while(fread(fileid)=0);

reclen=frlen(fileid);
if (reclen>max) then max=reclen;
if (reclen<min) then min=reclen;

end;
rc=fclose(fileid);

end;
put min= max=;

See Also

“FCLOSE” on page 371
“FOPEN” on page 407
“FREAD” on page 417

FSEDIT

Displays a SAS table by row

Category: SAS Table

Syntax

CALL FSEDIT(table-name<,screen-name
<,open-mode<,row-number>>>);

table-name
is the SAS table to display, in the form <libref.>member-name<(data-set-options)>. If
you omit the libref, the default WORK library is used.

You can add a list of SAS data set options in parentheses following the table name.
All data set options are valid except FIRSTOBS= and OBS=. See SAS Language
Reference: Dictionary for a list of SAS data set options and their descriptions.

Type: Character



SAS Component Language Dictionary � FSEDIT 421

screen-name
is a SCREEN entry for the FSEDIT session. (Screen entries are SAS catalog entries
of type SCREEN that define custom features for the FSEDIT session.) For
screen-name, use the form <libref.>catalog-name<.entry-name<.SCREEN>>. A one-
or two-level name is interpreted as a catalog name, and the default screen entry
name, FSEDIT.SCREEN, is assumed. (A one-level name is interpreted as a catalog
in the default SAS data library, WORK.) If the specified catalog does not already
exist, it is created.

If the screen entry does not already exist, a new screen entry is not created unless
the user issues a MODIFY command during the FSEDIT session.

If you want to use predefined SAS table labels, use an equal sign (=) for
screen-name. (A modified SCREEN entry is not saved.) Column names are used for
any fields that lack labels.

Type: Character

open-mode
specifies the type of access to the SAS table:

’ADD’
adds a new blank row to the table, then opens the FSEDIT window with the new
row displayed for editing.

’BROWSE’
opens the FSBROWSE window for reading rows.

’EDIT’
opens the FSEDIT window for editing rows. (This is the default.)

’NEW’
opens the FSEDIT NEW window for creating the specified SAS table as a new
table, then opens the FSEDIT window for entering values into the new table.
Type: Character

row-number
is the first row to be displayed when the FSEDIT or FSBROWSE window is opened.
This argument is ignored unless the value of open-mode is ’EDIT’ or ’BROWSE’.

Type: Numeric

Details
The FSEDIT routine calls the FSEDIT procedure, which opens the FSEDIT window to
display the specified SAS table. You can specify BROWSE for open-mode to open the
FSBROWSE window for browsing the table instead. You can optionally specify the
name of a screen entry to provide a custom display and the number of the row to be
displayed when the window is opened.

If you want to specify open-mode or row-number but do not want to specify a screen
entry, use a null string (’’) for screen-name.

In order to use the FSEDIT routine, SAS/FSP Software must be installed. For more
information about the commands that are available in the FSEDIT procedure, see the
SAS/FSP Procedures Guide.

Examples
� Open a SAS table named PERSONAL (in the default SAS data library WORK) for

editing:

call fsedit(’personal’);

� Open the SAS table PERSONAL in the library MASTER for editing, using a
custom SCREEN entry named PER1 in the catalog MASTER.DISPLAY:



422 FSEP � Chapter 13

call fsedit (’master.personal’,’master.display.per1’);

� Open a SAS table named MASTER.PERSONAL for browsing, using the default
FSBROWSE window display:

call fsedit(’master.personal’,’ ’,’browse’);

� To display the predefined labels that are associated with the SAS table columns
instead of the column names, specify an equal sign (=) for the screen-name
argument, as in the following example:

call fsedit(’master.personal’,’=’,’browse’);

Specify SAS data set options by enclosing them within parentheses immediately
following the SAS table name in the table-name argument, as in the following examples.

� Open a SAS table named MASTER.PERSONAL and subset the rows based on the
value that is entered for the numeric column SCRNUM:

call fsedit(’master.personal(where=(num=’||
put(scrnum,5.)||’))’);

� Open a SAS table named MASTER.PERSONAL and subset the rows based on the
value that is entered for the character column SCRNAME:

call fsedit(’master.personal(where=(name=’||
quote(scrname)||’))’);

See Also
“NEW” on page 563

FSEP
Sets the token delimiters for the FGET function

Category: External File

Syntax
sysrc=FSEP(file-id,delimiter);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
specifies the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

delimiter
specifies the token delimiter that separates items in the File Data Buffer (FDB). If
multiple characters are specified, each character is considered a delimiter. The
default delimiter is a blank.



SAS Component Language Dictionary � FSLIST 423

Type: Character

Example

Suppose the external file contains data in this form:

John J. Doe,Male,25,Weight Lifter

Note that each field is separated by a comma.

Read the file identified by the fileref THEFILE, using the comma as a separator, and
write the values for NAME, GENDER, AGE, and WORK to the LOG window:

fileid=fopen(’thefile’);
rc=fsep(fileid,’,’);
sysrc=fread(fileid);
rc=fget(fileid,cval);
do while (rc ne -1);

put cval=;
rc=fget (fileid,cval);

end;
rc=fclose(fileid);

The output of the program is

cval=John J. Doe
cval=Male
cval=25
cval=Weight Lifter

See Also

“FGET” on page 378
“FREAD” on page 417

FSLIST

Displays an external file for browsing

Category: External File

Syntax

CALL FSLIST(file<,options>);

file
is the fileref or physical filename of the external file. A physical name must be
enclosed in quotation marks.

Type: Character



424 FSLIST � Chapter 13

options
specifies one or more carriage-control options for formatting the display, with
multiple options separated by blanks and enclosed in one set of quotation marks:

’CC’
Use the host operating system’s native carriage-control characters.

’FORTCC’
Use FORTRAN-style carriage-control characters.

’NOCC’
Treat carriage-control characters as regular text. (This is the default.)
For CC or FORTCC, you can also specify an overprinting control option:

’OVP’
Print the current line over the previous line when the overprint code is
encountered. The OVP option is valid only if the CC or FORTCC option is also
specified. The default is NOOVP.

’NOOVP’
Ignore the overprint code and print each line from the file on a separate line of the
display.
If you use the FORTCC option, the first column of each line in the external file is

not displayed. The character in this column is interpreted as a carriage-control code.
Under some operating systems, FORTRAN-style carriage control is the native
carriage control. For these systems, the FORTCC and CC options produce the same
behavior.

Under some operating systems, the CC option is the default for print files.
Type: Character

Details
The FSLIST routine calls the FSLIST procedure, which opens the FSLIST window to
display an external file for interactive browsing. This routine provides a convenient
method for examining the information stored in an external file.

For more information about the commands that are available in the FSLIST
procedure, see SAS Language Reference: Dictionary.

External files (files maintained by the host operating system rather than by SAS
software) can contain various types of information:

� data records
� output from previous SAS sessions

� SAS source statements
� carriage-control information.

Examples
� Browse an external file to which the fileref MYFILE has previously been assigned.

The file contains FORTRAN-style carriage-control characters, and overprinting is
allowed.

call fslist(’myfile’,’fortcc ovp’);

� Browse the external file named FSLIST.PUB. Double quotation marks
surrounding the filename string indicate that a physical filename, not a fileref, is
being passed to the FSLIST routine.

call fslist(’"fslist.pub"’);

Note: The form of the physical filename depends on the host operating system. �



SAS Component Language Dictionary � FSVIEW 425

See Also
“FILENAME” on page 389

FSVIEW

Displays a SAS table in tabular format

Category: SAS Table

Syntax
CALL FSVIEW(table-name<,open-mode

<,formula-entry<,options>>>);

table-name
is the SAS table to be displayed. Use the format <libref.>member-name<(data-set
options)>. If the libref is omitted, the default SAS data library, WORK, is assumed.
You can add a list of SAS data set options in parentheses following the table name.
All data set options are valid except FIRSTOBS= and OBS=. Refer to SAS Language
Reference: Dictionary for a list of SAS data set options and their descriptions.

Type: Character

open-mode
specifies the type of access to the SAS table:

’ADD’
Add a new blank row to the table, and then open the FSVIEW window with the
new row displayed for editing.

’BROWSE’
Open the FSVIEW window for reading rows. (This is the default.)

’EDIT’
Open the FSVIEW window for editing rows.

’NEW’
Open the FSVIEW NEW window for creating the specified SAS table as a new
table, then open the FSVIEW window for entering values into the new table.
Type: Character

formula-entry
is the FORMULA catalog entry that defines custom features for the FSVIEW session
or that controls the display and behavior of the session.

Specify this argument as <libref.>catalog-name<.entry-name<.FORMULA>>. A
one- or two-level name is interpreted as a catalog name, and the default formula
entry name is assumed. The default formula entry name is the same as the member
name of the table specified in the table-name argument. (A one-level name is
assumed to refer to a catalog in the default SAS data library, WORK.) If the specified
catalog does not exist, it is created. If the specified formula entry does not already
exist, a new formula entry is created.

Type: Character



426 FSVIEW � Chapter 13

options
specifies whether to disable certain FSVIEW window commands for the duration of
the FSVIEW session. Separate multiple options with blanks.

’BRONLY’
disables the MODIFY command so that only browsing is allowed and ’EDIT’ and
’ADD’ modes are ignored.

’NOADD’
disables the ADD command so that new rows cannot be added to the table.

’NODELETE’
disables the DELETE command so that rows cannot be deleted.
Type: Character

Details
The FSVIEW routine calls the FSVIEW procedure, which opens the FSVIEW window to
display the specified SAS table. By default, the SAS table is opened for browsing. You
can use the open-mode argument to specify that the table should instead be opened for
editing. You can also specify a formula entry and other options for the FSVIEW session.

If you specify NEW for the open-mode argument, the FSVIEW NEW window is
opened for the user to define a new SAS table before the FSVIEW window is opened to
enter values for that table.

You can specify SAS data set options by enclosing them within parentheses
immediately following the SAS table name in the table-name argument, as in the
second example in the "Examples" section.

If you want to specify the options argument but do not want to specify a formula
entry, then use a null string (’’) for the formula-name argument.

To specify multiple values for the options argument, separate the values with blanks.
In order to use the FSVIEW routine, SAS/FSP Software must be installed. For more

information about the commands that are available in the FSVIEW procedure, see the
SAS/FSP Procedures Guide.

Examples
� Browse a SAS table named PERSONAL in the default SAS data library WORK:

call fsview(’personal’);

� Edit a SAS table named PERSONAL in the library MASTER. Only those rows in
which the SITE column has the value 5 are displayed.

call fsview
(’master.personal(where=(site=5))’,’edit’);

� Edit a SAS table named PERSONAL in the library MASTER. Rows cannot be
added or deleted during the FSVIEW session.

call fsview
(’master.personal’,’edit’,’’,’noadd nodelete’);

See Also
“FSEDIT” on page 420
“NEW” on page 563



SAS Component Language Dictionary � FWRITE 427

FWRITE

Writes a record to an external file

Category: External File

Syntax
sysrc=FWRITE(file-id<,cc>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

file-id
contains the identifier that was assigned when the file was opened. If file-id is
invalid, the program halts.

Type: Numeric

cc
specifies a carriage-control character:

’0’ skips one blank line before a new line.

’-’ skips two blank lines before a new line.

’1’ starts the line on a new page.

’+’ overstrikes the line on a previous line.

’P’ interprets the line as a terminal prompt.

’=’ interprets the line as carriage-control information.
Any other character (including a blank) starts the record on a new line.
If cc is not provided, FWRITE writes to the current line.
Type: Character

Details
FWRITE moves text from the File Data Buffer (FDB) to the external file. In order to
use the carriage-control characters, you must open the file with a RECORD format of P
(PRINT format) with FOPEN.

Example

Write the numbers 1 to 50 to an external file, skipping two blank lines. Then call
FSLIST to display the newly created file.

/* Assign the fileref THEFILE to the external */
/* filename stored in the variable FNAME. */

rc=filename(’thefile’,fname);
fileid=fopen(’thefile’,’o’,0,’P’);
do i=1 to 50;



428 GETFKEY � Chapter 13

rc=fput(fileid,put(i,2.));

if (fwrite(fileid,’-’) ne 0) then do;
_msg_=sysmsg();
put msg;
return;

end;
end;

rc=fclose(fileid);
call fslist(’thefile’,’cc’);

See Also
“FAPPEND” on page 369
“FGET” on page 378
“FPUT” on page 415

GETFKEY

Returns the command that is assigned to a function key

Category: Keys

Syntax
key-command=GETFKEY(key-name);

key-command
returns the command that is currently assigned to the function key.

Type: Character

key-name
specifies the name of the function key as listed in the KEYS window. Function key
names vary according to the device. Use FKEYNAME to retrieve the name of a
function key.

Type: Character

Details
GETFKEY returns the command that is assigned to a function key for the current
window. This is the same as the text displayed for the key in the KEYS window.

You can use this function only in entries that have a DISPLAY window.

Examples

Example 1: Using GETFKEY When the Function Key Name Is Unknown Return the
command assigned to the first function key if the name of the function key is not known:

command=getfkey(fkeyname(1));



SAS Component Language Dictionary � GETFOOT 429

Example 2: Using GETFKEY When the Function Key Name Is Known If the value of the
first function key is F1, return the command that is assigned to the first function key:

command=getfkey(’F1’);

See Also
“FKEYNAME” on page 399
“NUMFKEYS” on page 577
“SETFKEY” on page 661

GETFOOT

Returns the text of a footnote definition

Category: SAS System Option

Syntax
foot-text=GETFOOT(foot-num);

foot-text
contains the text of the footnote definition, or a blank if the footnote is not defined.

Type: Character

foot-num
is the number (1 to 10) of the footnote definition.

Type: Numeric

Details
Use GETFOOT to retrieve any footnote text that was previously defined in the SAS
session by either the FOOTNOTE statement or the SCL SETFOOT routine. Only the
footnote text is retrieved. Graphic options such as color or font are not returned.

You can view footnotes in the FOOTNOTES window by using the FOOTNOTE
command. Changing any text in the FOOTNOTES window, however, resets all
graphically defined FOOTNOTE options, such as color, font, and position.

For more information about footnotes, see SAS Language Reference: Dictionary. For
more information about graphical footnotes, see SAS/GRAPH: Reference .

Example

Store the text of FOOTNOTE2 in the variable FNOTE2:

fnote2=getfoot(2);

See Also
“GETTITLE” on page 437
“SETFOOT” on page 663
“SETTITLE” on page 680



430 GETITEMC, GETITEML, GETITEMN, and GETITEMO � Chapter 13

GETITEMC, GETITEML, GETITEMN, and GETITEMO

Returns a value that is identified by its position in an SCL list

Category: List

Syntax
cval=GETITEMC(list-id< ,index>);

sublist-id=GETITEML(list-id< ,index>);

nval=GETITEMN(list-id< ,index>);

object-id=GETITEMO(list-id< ,index>);

cval
contains the character value (returned by GETITEMC) of the item that is stored at
the specified position in list identified by list-id.

Type: Character

sublist-id
contains the list identifier (returned by GETITEML) of the sublist that is stored at
the specified position in the list identified by list-id.

Type: Numeric

nval
contains the numeric value (returned by GETITEMN) of the item that is stored at
the specified position in the list identified by list-id.

Type: Numeric

object-id
contains the object identifier (returned by GETITEMO) of the object that is stored at
the specified position in the list identified by list-id.

Type: Numeric

list-id
contains the identifier of the list that you want to query. An invalid list-id produces
an error condition.

Type: Numeric or List

index
is the position in the list of the item to return. The position can be specified as a
positive or negative number. By default, index is 1 (the first item). If index is a
positive number, then the item is at position index from the beginning of the list. If
index is a negative number, then the item is at position ABS(index) from the end of
the list. An error condition results if the absolute value for index is zero or if it is
greater than the number of items in the list.

Type: Numeric

Details
An error results if you use any of these functions to return an indexed item that has a
different data type. You can determine the data type of an item in a list by using
ITEMTYPE before using GETITEMC, GETITEML, GETITEMN, or GETITEMO.



SAS Component Language Dictionary � GETLATTR 431

Examples

Example 1: Using the GETITEMC Function Return the character values stored in the
first and third items of the list identified by the MYLIST variable:

citem=getitemc(mylist);
citem=getitemc(mylist,3);

Example 2: Using the GETITEML Function Return the list identifier stored in the
eighth item of the list identified by the MYLIST variable:

slist=getiteml(mylist,8);

Example 3: Using the GETITEMN Function Return the numeric value stored in the
fifth item of the list identified by the MYLIST variable:

nitem=getitemn(mylist,5);

Example 4: Using the GETITEMO Function Return the object identifiers stored in the
third and ninth item of the list identified by the MYLIST variable:

sublist=getitemo(mylist,3);
oitem=getitemo(mylist,9);

See Also
“GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO” on page 433
“POPC, POPL, POPN, and POPO” on page 598
“SETITEMC, SETITEML, SETITEMN, and SETITEMO” on page 664

GETLATTR

Returns the attributes of either an SCL list or an item in the list

Category: List

Syntax
attributes=GETLATTR(list-id<,index>);

attributes
contains a string of words separated by blanks. Each word is a separate attribute for
a list or item.

Type: Character

list-id
contains the identifier of the list that GETLATTR processes. An invalid list-id
produces an error condition.

Type: Numeric or List



432 GETLATTR � Chapter 13

index
is the position of the item in the list. The position can be specified as a positive or
negative number. By default, index is 1 (the first item). If index is a positive number,
then the item is at position index from the beginning of the list. If index is a negative
number, then the item is at position ABS(index) from the end of the list. An error
condition results if the absolute value for index is zero or if it is greater than the
number of items in the list.

If index is 0 or is omitted, then the attributes returned by GETLATTR are list
attributes. If index is nonzero, then GETLATTR returns the attributes associated
with the indexed item instead of the attributes for the entire list.

Type: Numeric

Details
The items in attributes can be used to assign attributes to another list or item. The
string returned as attributes contains a blank before and after each attribute, which
makes it easy to determine whether an attribute is set by searching attributes for an
attribute name. Use the INDEX function to search the string for a specified attribute.

If index is omitted, attributes contains one attribute from each row of the following
table:

Default Setting Alternate Setting

UPDATE NOUPDATE

NOFIXEDTYPE FIXEDTYPE

NOFIXEDLENGTH FIXEDLENGTH

ANYNAMES SASNAMES

DUPNAMES NODUPNAMES

NOCHARONLY CHARONLY

NONUMONLY NUMONLY

COPY NOCOPY

HONORCASE NOHONORCASE

If index is supplied, then attributes is the set of item attributes consisting of one
attribute from each row of the following table:

Default Setting Alternate Setting

ACTIVE INACTIVE

DELETE NODELETE

NOFIXEDTYPE FIXEDTYPE

UPDATE NOUPDATE

WRITE NOWRITE

For detailed information about these attributes, see “SETLATTR” on page 669.



SAS Component Language Dictionary � GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO 433

Example

Create a list LISTID with one item and print the sets of list attributes for LISTID as
well as the item attributes that are associated with the first item of LISTID. Note the
leading and trailing blanks in the attribute strings, which are made evident by
embedding the attribute strings in double quotation marks.

INIT:
listid = makelist(1);
listattrs = ’"’ || getlattr(listid) || ’"’;
put listattrs=;
found = index(listattrs,’UPDATE’);
put found=;
itemattrs = ’"’ || getlattr(listid,1) || ’"’;
put itemattrs=;
rc = dellist(listid);

return;

The output of this example is

LISTATTRS=" DELETE UPDATE NOFIXEDTYPE
NOFIXEDLENGTH ANYNAMES DUPNAMES
NOCHARONLY NONUMONLY COPY NOHONORCASE"
FOUND=10;
ITEMATTRS=" ACTIVE WRITE NOAUTO NOEDIT
DELETE UPDATE NOFIXEDTYPE "

FOUND returns the starting position of the word "UPDATE" in the string of list
attributes.

See Also
“HASATTR” on page 447
“SETLATTR” on page 669

GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO

Return a value identified by its item name in an SCL list

Category: List

Syntax
cval=GETNITEMC(list-id,name<,occurrence

<,start-index<,default<,force>>>>);

sublist-id=GETNITEML(list-id,name<,occurrence
<,start-index<,default<,force>>>>);

nval=GETNITEMN(list-id,name<,occurrence
<,start-index<,default<,force>>>>);

obj-val=GETNITEMO(list-id,name<,occurrence
<,start-index<,default<,force>>>>);



434 GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO � Chapter 13

cval
contains the character value that is returned by GETNITEMC.

Type: Character

list-id
is the identifier of the list to search. An invalid list-id produces an error condition.

Type: List

name
is the name of the item to search in the list. Item names are converted to uppercase
during the search if force is ’Y’ or if the searched list has the attribute
NOHONORCASE set. Trailing blanks are ignored when the list is searched for a
matching name. Thus, the names ’abc’ and ’Abc’ are converted to ’ABC’.

IGNORECASE is the alias for NOHONORCASE and is the default for a list. But
you can use the SETLATTR function to set a list’s attribute to HONORCASE.

Type: Character

occurrence
is the number of the occurrence of the named item to be searched. The default, 1,
indicates the first occurrence of the item.

Type: Numeric or List

start-index
specifies where in the list to begin searching for the item. By default, start-index is 1
(the first item). If start-index is positive, the search begins at position start-index
items from the beginning of the list. If start-index is negative, the search begins at
the item specified by ABS(start-index) items from the end of the list. An error
condition results if the absolute value of start-index is zero or if it is greater than the
number of items in the list.

Type: Numeric

default
is a default value to return if the named item is not found in the list. This value
must have the appropriate data type for the function that is being used:

GETNITEMC
a character value

GETNITEML
a sublist identifier or a list value

GETNITEMN
a numeric value

GETNITEMO
an object identifier.

Type: Character, Numeric, List, or Object

sublist-id
is the identifier for the sublist that is returned by GETNITEML.

Type: List

nval
is the numeric value that is returned by GETNITEMN.

Type: Numeric

obj-val
is the object identifier that is returned by GETNITEMO.

Type: Object



SAS Component Language Dictionary � GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO 435

force
specifies whether to conduct the name search in uppercase.

’N’ searches according to the list attributes HONORCASE and
NOHONORCASE, which are specified with SETLATTR. (This is
the default.)

’Y’ conducts the name search in uppercase regardless of list
attributes specified with SETLATTR.

Type: Character

Details
By default, the search starts at the beginning of the list and returns the first item found
that has the specified item name. However, you can start the search at a different place
in the list by specifying a start-index other than 1. You can also specify a different
occurrence of the item (for example, the second, tenth, or twentieth) by specifying an
occurrence other than 1. If the item is not found and you have specified a value for
default as the fifth parameter, then that value is returned instead of an error condition.

If occurrence and start-index are both positive or both negative, the search proceeds
forward from the start-index item. For forward searches, the search continues only to
the end of the list and does not wrap back to the front of the list. If occurrence or
start-index is negative, then the search is backwards. For backward searches, the search
continues only to the beginning of the list and does not wrap back to the end of the list.

GETNITEMC combines the actions of NAMEDITEM and GETITEMC. GETNITEML
combines the actions of NAMEDITEM and GETITEML. GETNITEMN combines the
actions of NAMEDITEM and GETITEMN. GETNITEMO combines the actions of
NAMEDITEM and GETITEMO.

In situations where your application manipulates an SCL list and you cannot
guarantee that the named item is character, you should not use GETNITEMC. Instead,
when manipulating SCL lists which may contain other types, you should use
NAMEDITEM with ITEMTYPE with GETITEMC, GETITEML, GETITEMN, or
GETITEMO.

An error condition results if
� the named item is not a character value and you are using GETNITEMC
� the item is not a list identifier and you are using GETNITEML
� the item is not a numeric value and you are using GETNITEMN
� the item is not an object and you are using GETNITEMO.
� the named item does not exist and default is not specified.

Examples

Example 1: Using the GETNITEMC Function Halt the program if there are fewer than
two items named ’Software Sales’ in the list identified by DIRECTORY. Omitting
the default value from GETNITEMC designates that the character item must exist in
the list.

s=getnitemc(directory,’Software Sales’,2,-1);



436 GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO � Chapter 13

This statement is equivalent to the following statements:

ssi=nameditem(directory,’Software Sales’,2,-1);
s=getitemc(directory,ssi);

Both of the preceding examples search for the second occurrence of ’Software
Sales’, starting from the end of the list.

Example 2: Searching for an Item of Unknown Type This example shows how to
search for a named item in an SCL list when you do not know the type of that item.

index = nameditem(listid, ’A’, occurrence,
startIndex);

if index then
select (itemtype(listid, index));
when (’C’) c = getitemc(listid, index);
when (’L’) l = getiteml(listid, index);
when (’N’) n = getitemn(listid, index);
when (’O’) o = getitemo(listid, index);

end;

Example 3: Using GETNITEML and Specifying a Default Value If the named item may
not be in the list, supply a list identifier value for default for GETNITEML:

sslistid=getniteml
(emp_list,’Marketing’,2,-10,-1);

The preceding program statement is equivalent to the following:

mpos=nameditem(emp_list,’Marketing’,2,-10);
if mpos ne 0 then

sslistid=getiteml(emp_list,mpos);
else

sslistid=-1;

Example 4: Using GETNITEMC and Specifying a Default Value This example shows
GETNITEMC, using a default value that contains an error message.

defaultc=’Value not found’;
s=getnitemc
(directory,’Software Sales’,2,-1,defaultc);

See Also
“GETITEMC, GETITEML, GETITEMN, and GETITEMO” on page 430
“NAMEDITEM” on page 556
“NAMEITEM” on page 559
“SEARCHC, SEARCHL, SEARCHN, and SEARCHO” on page 648
“SETLATTR” on page 669
“SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO” on page 674



SAS Component Language Dictionary � GETTITLE 437

GETPARMID

Returns the numeric value stored by the SETPARMID routine

Category: Modular Programming and Object Oriented

Syntax
nval=GETPARMID();

nval
contains the numeric value stored by a previous call to the SETPARMID routine.

Type: Numeric

Details
SETPARMID stores a value, and GETPARMID retrieves the stored value. SETPARMID
and GETPARMID allow only one value to be passed. To pass multiple values between
entries, use the ENTRY statement. Additional ways of making values available to other
SCL programs include using macro variables and SCL lists.

Example

Retrieve the table identifier value that was stored in another program by
SETPARMID:

dsid=getparmid();

See Also
“DISPLAY” on page 330

“ENTRY” on page 351
“SETPARMID” on page 677

GETTITLE

Returns the text of a title definition

Category: SAS System Option

Syntax
title-text=GETTITLE(title-num);

title-text
is the text of the title definition, or a blank if the title is not defined.



438 GETVARC and GETVARN � Chapter 13

Type: Character

title-num
is the number (1 to 10) of the title definition.

Type: Numeric

Details

Use GETTITLE to retrieve any title text that was previously defined in the SAS session
by either the TITLE statement or the SCL SETTITLE routine. Only the title text is
retrieved. Graphic options, such as color or font, are not returned.

You can view titles in the TITLES window by using the TITLE command. Changing
any text in the TITLES window, however, resets all graphically defined title options,
such as color, font, and position.

For more information about titles, see SAS Language Reference: Dictionary. For
more information about graphical titles, see SAS/GRAPH: Reference.

Example

Put the text of TITLE2 into the variable TITLE2:

title2=gettitle(2);

See Also

“GETFOOT” on page 429
“SETFOOT” on page 663
“SETTITLE” on page 680

GETVARC and GETVARN

Assign the value of a SAS table column to an SCL variable

Category: SAS Table

Syntax

cval=GETVARC(table-id,col-num);

nval=GETVARN(table-id,col-num);

cval
is the value of the character column that is returned by GETVARC.

Type: Character

table-id
is the identifier for a table that is open. If table-id is invalid, the program halts.

Type: Numeric



SAS Component Language Dictionary � GETVARF 439

col-num
is the number of the column in the Table Data Vector (TDV). This value can be
obtained by using the VARNUM function. If the column specified in col-num is
invalid, the program halts.

Type: Numeric

nval
is the value of the numeric column that is returned by GETVARN.

Type: Numeric

Details
Before you use GETVARC or GETVARN, you can use VARNUM to obtain the number of
a column in a SAS table. You can nest VARNUM, or you can assign it to a column that
can be passed as the second argument. GETVARC and GETVARN read the value of the
specified column that is in the current row in the TDV and copy that value to the
specified SCL variable in the SCL data vector (SDV).

Examples

Example 1: Using GETVARN to Search for a Value Assign VARNUM to a column that
can be passed as the second argument to GETVARN. Read row number 10 into the TDV.

pricenum=varnum(mydataid,’price’);
rc=fetchobs(mydataid,10);
price=getvarn(mydataid,pricenum);

Example 2: Using GETVARC with a Nested VARNUM Nest VARNUM in the GETVARC
function to search for the value of the character column NAME from the tenth row of
the open SAS table whose identifier is stored in the column MYDATAID.

rc=fetchobs(mydataid,10);
user=getvarc(mydataid,varnum(mydataid,’name’));

See Also
“FETCH” on page 374
“FETCHOBS” on page 375
“LOCATEC and LOCATEN” on page 524
“PUTVARC and PUTVARN” on page 614
“UPDATE” on page 714
“VARNUM” on page 731

GETVARF

Assigns the formatted value of a SAS table column to a character SCL variable

Category: SAS Table

Syntax
cval=GETVARF(table-id,col-num);



440 GETVARF � Chapter 13

cval
is the formatted value of the table column that is returned by GETVARF.

Type: Character

table-id
is the identifier for a table that is open. If table-id is invalid, the program halts.

Type: Numeric

col-num
is the number of the column in the Table Data Vector (TDV). This value can be
obtained by using the VARNUM function. If the column specified in col-num is
invalid, the program halts.

Type: Numeric

Details
GETVARF assigns the formatted value of a SAS table column to a character SCL
variable. If no format has been assigned to the specified column, GETVARF returns the
raw value for a character column or the value formatted with BEST12. for a numeric
column. The length of the returned value is the width of the format.

Example
This example first creates a SAS table with a character column, NAME, and two
numeric columns, BDAY and GENDER. It then reads each row from the table and
prints the values of each column plus the formatted values of the two numeric columns.

control asis;
submit continue;

proc format; value sexfmt 1=’Male’ 2=’Female’;
data work.samplef; input name $ 1-10 bday date. gender;
format bday date. gender sexfmt. ;
cards;

Jane 16oct63 2
Bill 15may62 1
Mary 25jan64 2
;
endsubmit;

id = open ( ’work.samplef’);
do while (fetch(id) NE -1);

name = getvarc ( id, 1);
bdayn = getvarn (id, 2);
bday = getvarf (id, 2);
gendern = getvarn (id, 3);
gender = getvarf (id, 3);
put name= bdayn= bday= gendern= gender=;
end;

rc = close (id);



SAS Component Language Dictionary � GGLOBAL 441

The output would be like the following:

name=Jane bdayn=1384 bday= 16OCT63 gendern=2 gender=Female
name=Bill bdayn=865 bday= 15MAY62 gendern=1 gender=Male
name=Mary bdayn=1485 bday= 25JAN64 gendern=2 gender=Female

See Also
“GETVARC and GETVARN” on page 438
“GETVARC and GETVARN” on page 438

GGLOBAL

Returns the text of a SYMBOL, PATTERN, LEGEND, or AXIS statement

Category: SAS System Option

Syntax
stmt-text=GGLOBAL(stmt-type,stmt-num);

stmt-text
contains the text of the retrieved SYMBOL, PATTERN, LEGEND, or AXIS
statement. If stmt-type is invalid, a missing value is returned.

Type: Character

stmt-type
is the type of statement to retrieve:

’SYMBOL’

’PATTERN’

’LEGEND’

’AXIS’
Type: Character

stmt-num
is the number of the SYMBOL, PATTERN, LEGEND, or AXIS statement to retrieve.
Valid values are from 1 to the number of statements that are defined for the specified
type, which is returned by the GGLOBALN function.

Type: Numeric

Details
Because a user can change SYMBOL, PATTERN, LEGEND, or AXIS statements during
the execution of an application, GGLOBALN must be executed before the GGLOBAL
function in order to set up an internal table that is used by GGLOBAL.

Note: SYMBOL and PATTERN can generate more than one definition per
statement. For more information about the SYMBOL, PATTERN, LEGEND, and AXIS
statements, see SAS/GRAPH: Reference. �



442 GGLOBALE � Chapter 13

Example

Assume that the following SYMBOL statements have been defined for the current
SAS session:

symbol1 c=red;
symbol30 c=blue;

Check to see that at least two SYMBOL statements are available. If this condition is
true, the text of the second SYMBOL statement is returned to the variable SYMBOL2.

numsymb=gglobaln(’symbol’);
if (numsymb >= 2)
then symbol2=gglobal(’symbol’,2);

The value returned to NUMSYMB is 2. The following value is returned to SYMBOL2:

SYMBOL30 CV=BLUE CO=BLUE CI=BLUE;

The value of HEIGHT is also returned:

SYMBOL30 CV=BLUE CO=BLUE CI=BLUE HEIGHT=1 ;

See Also
“GGLOBALE” on page 442
“GGLOBALN” on page 443

GGLOBALE

Deletes an internal table of SYMBOL, PATTERN, LEGEND, or AXIS definitions

Category: SAS System Option

Syntax
sysrc=GGLOBALE(stmt-type);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric



SAS Component Language Dictionary � GGLOBALN 443

stmt-type
specifies the type of statement to delete:

’SYMBOL’

’PATTERN’

’LEGEND’

’AXIS’
Type: Character

Details
When you have completed processing information concerning the SYMBOL, PATTERN,
LEGEND, or AXIS statements, use GGLOBALE to free the memory used for storing the
internal table that was created with GGLOBALN. For more information about the
SYMBOL, PATTERN, LEGEND, and AXIS statements, see SAS/GRAPH: Reference.

Example

Free the internal table that was created by GGLOBALN for the SYMBOL statements,
and check the return code to determine whether a message needs to be issued:

rc=gglobale(’symbol’);
if rc then _msg_=sysmsg();

See Also
“GGLOBAL” on page 441
“GGLOBALN” on page 443

GGLOBALN

Returns the number of SYMBOL, PATTERN, LEGEND, or AXIS statements that are currently defined

Category: SAS System Option

Syntax
num-stmts=GGLOBALN(stmt-type);

num-stmts
contains the number of SYMBOL, PATTERN, LEGEND, or AXIS definitions that are
currently defined.

Type: Numeric



444 GOTO � Chapter 13

stmt-type
specifies the type of statement to return:

’SYMBOL’

’PATTERN’

’LEGEND’

’AXIS’
Type: Character

Details
Information about SYMBOL, PATTERN, LEGEND, or AXIS statements is stored in an
internal table and can be retrieved with GGLOBAL. To delete the internal table created
by GGLOBALN, use GGLOBALE.

Note: SYMBOL and PATTERN can generate more than one definition per
statement. For more information about SYMBOL, PATTERN, LEGEND, and AXIS
statements, see SAS/GRAPH: Reference. �

Example

Assume that the following SYMBOL statements have been defined for the current
SAS session:

symbol1 c=red;
symbol30 c=blue;

In the variable NUMSYMB, return the number of SYMBOL statements that are
currently available. The value returned for NUMSYMB is 2, not 30.

numsymb=gglobaln(’symbol’);

See Also
“GGLOBAL” on page 441
“GGLOBALE” on page 442

GOTO

Branches immediately to another entry

Category: Control Flow

Syntax
CALL GOTO(entry<,action<,frame>>);

entry
is the name of the entry to branch to. The entry can be any of the SAS/AF display
entry types (FRAME, PROGRAM, MENU, CBT, or HELP). The entry argument can
be in the following forms:



SAS Component Language Dictionary � GOTO 445

entry
to specify a PROGRAM entry in the current catalog.

entry.type
to specify an entry in the current catalog.

libref.catalog.entry
to specify a PROGRAM entry in a different catalog.

libref.cat-name.entry.type
to specify an entry in a different catalog.
Type: Character

action
specifies how the execution stack is to be handled and where control transfers to
when the specified entry ends:

’A’ adds entry to the top of the execution stack. The specified entry is
displayed immediately. When the entry ends, the user returns to
the window that was displayed before the program with the CALL
GOTO was executed.

’C’ clears the current execution stack. The specified entry is
displayed immediately, and the stack is cleared. When the entry
ends, the user returns to the parent entry, if one was specified in
the entry, or exits the AF window. This option may be useful if
you have memory constraints. (This is the default.)

’R’ removes the top entry from the execution stack and places the
entry specified in the GOTO routine on the top of the execution
stack. The specified entry is displayed immediately. When the
entry ends, the user returns to the next entry on the stack rather
than to the program that contains the GOTO call.

Type: Character

frame
is the number of the CBT frame if you are branching to a CBT entry.

Type: Numeric

Details
The GOTO routine branches immediately to a CBT, HELP, MENU, FRAME, or
PROGRAM entry and transfers control to it. Statements that appear after GOTO are
not executed, because control is transferred to the entry that is specified in the GOTO
routine.

GOTO, which always starts a new stream, cannot be used in FSEDIT or FSVIEW
programs.

Example

Pass control to MYEND.PROGRAM, and end the SAS/AF session if the user issues
the END command. Assume there is no parent entry specified.

if _status_=’E’
then call goto(’myend.program’,’C’);



446 GRAY � Chapter 13

See Also
“DISPLAY” on page 330

GRAY

Grays FRAME entry controls and stations of a choice group

Category: Control or Field

Syntax
rc=GRAY(var-name<,station<,row>>);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

var-name
is the name of a window control or choice group to be grayed.

Type: Character

station
is the number of the button in a radio box or field in a choice group. This value must
be greater than 0 and no larger than the total number of stations defined for the
choice group. For PROGRAM entries, use the value 0 as a placeholder if the entire
choice group at a specified row is to be grayed.

Type: Numeric

row
is the number of the row when the choice group is in the scrollable section of an
extended table. Row can be used in PROGRAM entry programs but not for FRAME
entry programs. Specify row only when you want to gray a station from outside an
extended table’s getrow or putrow section. Do not specify row if you want to gray a
station from a getrow or putrow section.

Type: Numeric

Details
Users cannot select a FRAME entry control, choice group, or choice group station that
is grayed.

For linked action fields in choice groups, the ACTION-type pair is considered one
station. For example, the following line in a PROGRAM entry window defines three
linked action fields:

& &A_____ & &B_____ & &C_____

To gray the linked action pair for field B, pass in 2 for the value of station, not 4.
Window controls can also use the _gray method. You cannot use GRAY in FSEDIT or

FSVIEW programs.



SAS Component Language Dictionary � HASATTR 447

Example

Prevent users from selecting CONTINUE when the value of AGE is less than 21:

if (age<21) then
rc=gray(’CONTINUE’);

else
rc=ungray(’CONTINUE’);

See Also

“ACTIVATE” on page 222
“ISACTIVE” on page 484
“ISGRAY” on page 485
“UNGRAY” on page 708

HASATTR

Reports whether an SCL list or a list item has a specified attribute

Category: List

Syntax

rc=HASATTR(list-id,attribute<,index>);

rc
contains the return code for the operation:

1 The list or item has the specified attribute.

0 The list or item does not have the specified attribute.
Type: Numeric

list-id
is the identifier of the list that HASATTR searches. An invalid list-id produces an
error condition.

Type: Numeric or List

attribute
is an attribute for a list or list item, as described in SETLATTR. In addition, you can
test for the following special attributes:

’G’ returns 1 if the list is a global list.

’L’ returns 1 if the list is a local list.

’C’ returns 1 if the list identifier is also a class identifier.

’O’ returns 1 if the list identifier is also an object identifier.
Type: Character



448 HOME � Chapter 13

index
is the position of the item in the list. The position can be specified as a positive or
negative number. By default, index is 1 (the first item). If index is omitted,
HASATTR checks to see if the specified list has the named attribute. If index is
specified, HASATTR checks to see if the specified item has the named attribute. If
index is a positive number, then the item is at position index from the beginning of
the list. If index is a negative number, then the item is at position ABS(index) from
the end of the list. An error condition results if the absolute value for index is zero or
if it is greater than the number of items in the list.

Type: Numeric

Details
If no value is specified for index, HASATTR queries the attribute of the list. If a nonzero
value is specified for index, HASATTR queries the attribute of an item in the list.

For a list of attributes for lists and list items, see “SETLATTR” on page 669.

Examples

Example 1: Clearing a List That Has a Particular Attribute Clear the list identified by
MYLIST only if it has the UPDATE attribute:

if hasattr(mylist,’UPDATE’) then rc=clearlist
(mylist);

Example 2: Determining Whether a List Item Has a Particular Attribute Determine
whether the third item in a list has the FIXEDTYPE attribute:

isfixed=hasattr(mylist,’FIXEDTYPE’,3);

See Also
“GETLATTR” on page 431
“SETLATTR” on page 669

HOME

Positions the cursor on a window’s command area

Category: Control or Field

Syntax
HOME;



SAS Component Language Dictionary � ICCREATE 449

Details

In SAS/AF applications, the HOME statement moves the cursor immediately. In
FSEDIT and FSVIEW applications, the cursor is moved when control is returned to the
application.

See “CURSOR” on page 301 for more information about how to position the cursor in
a field.

If the PMENU facility is active, the command area for a dialog window is at the
bottom of the window.

Some systems do not position the cursor on the pull-down menu for standard
windows nor on the command area for dialog windows.

See Also

“CURSOR” on page 301
“FIELD” on page 379

ICCREATE

Creates integrity constraints on a SAS table

Category: SAS Table

Syntax

sysrc=ICCREATE(table-id,icname,ictype,icvalue<, argument-1, argument-2,
argument-3g<, message<, msgtype>>>);

sysrc
contains the status of the operation:

=0 successful

>0 not successful

<0 the operation was completed with a warning

Type: Numeric

table-id
contains the identifier for the SAS table, which is returned by the OPEN function.
Integrity constraints can be set for a new SAS table only when it is opened in NEW
mode. Integrity constraints can be set for an existing table only when it is opened in
UTILITY or NEW mode. (Remember that if you open an existing table in NEW
mode, the table is replaced without warning.)

Type: Numeric

icname
is the name of the integrity constraint.

Type: Character



450 ICCREATE � Chapter 13

ictype
specifies the type of integrity constraint to create:

’CHECK’
specifies that column values must fall within a particular set, range, or list of
values, or that values must meet a condition or be the same as values in other
columns in the same row.

’FOREIGN’
specifies that a column is linked to a column in another SAS table. A foreign key
column can contain only a null value or a value that is present in the associated
primary key column.

’NOT-NULL’
specifies that column values cannot contain missing values.

’PRIMARY’
specifies that column values must be unique and that they cannot be missing
values. If there is an associated foreign key column, then primary key values
cannot be deleted or changed unless the same deletions or changes have been
made in values of that foreign key column.

’UNIQUE’ | ’DISTINCT’
specifies that column values must be unique. If more than one column is specified,
then their concatenated values must be unique.
Type: Character

icvalue
specifies the names of one or more columns from the SAS table to which the
constraint is applied. Separate multiple column names with blanks. If ictype is
CHECK, then icvalue can contain a condition that values must meet.

Type: Character

argument-1, argument-2, argument-3
are additional specifications that are used when ictype is FOREIGN.

argument-1
is the name of the SAS table in which one or more associated primary keys are
defined. This links the two SAS tables and creates the primary/foreign key
relationship. Use libref.member to specify the SAS table. This argument is
required for foreign keys.

argument-2
is the restriction option for update operations on values in foreign key columns:

’RESTRICT’
allows the primary key value to be updated only if no foreign key matches the
current value to be updated.

’NULL’
specifies that when the primary key value is modified, all matching foreign key
values are set to NULL.

’CASCADE’
specifies that when the primary key value is modified, all matching foreign key
values are set to the same value as the primary key.



SAS Component Language Dictionary � ICCREATE 451

argument-3
is the restriction option for delete operations in foreign key columns:

’RESTRICT’
allows the primary key row to be deleted only if no foreign key values match the
deleted value.

’NULL’
allows the primary key row to be deleted and sets the values of corresponding
foreign keys to null.
Type: Character

message
is your own error message that is displayed when a data value fails to comply with
the constraint.

Note: The maximum length for the entire message, including both the user
message and the system message that may be appended to the user message, is 256
characters. If the user message is too long, either the user message or the system
message will be truncated. �

message-type
controls how the user-defined error message is displayed.

’NULL’
adds the user-defined message to the beginning of the message that is displayed
by SAS and separates the two message with a blank. This behavior is the default.

’USER’
replaces the SAS message with the user-defined message.

Details
ICCREATE defines integrity constraints for a SAS table that has been opened in an
SCL program. Integrity constraints guarantee the correctness and consistency of data
that is stored in a SAS table. Integrity constraints are enforced automatically for each
addition, update, or deletion of data in a table that contains a constraint.

You can define integrity constraints for SAS tables that contain zero or more rows.
For tables that already contain data, an integrity constraint is compared to values in all
table rows. If a single row does not comply with the constraint being defined, then the
creation of the constraint fails. When rows are added to tables that have integrity
constraints, the new rows are checked against the constraints. If a row violates an
integrity constraint, the row is not added to the table. Also, a primary key column
cannot be dropped until all foreign key columns that reference the primary key are
deleted.

The basic types of integrity constraints are general constraints and referential
constraints. The general constraints, which control values in a single SAS table, are
CHECK, NOT-NULL, PRIMARY key, and UNIQUE. Referential constraints, which
establish a parent-child relationship between columns in two SAS tables, include
FOREIGN keys and PRIMARY keys that have one or more FOREIGN key references. A
FOREIGN key column (the child) can contain only null values or values that are
present in its associated PRIMARY key (the parent). Values for a FOREIGN key cannot
be added unless the same values also exist in the associated PRIMARY key.

For more information about integrity constraints, see “Preserving the Integrity of
Table Data in SCL Programs” on page 185.



452 ICCREATE � Chapter 13

Example

This example creates integrity constraints for the SAS tables MYLIB.ONE and
MYLIB.TWO. Although they contain different data, they have one column with shared
data, an identifier number that is stored in IDNUM in MYLIB.ONE and in EMPID in
MYLIB.TWO. The following icnames are used in the example:

UQ is a UNIQUE constraint which specifies that the concatenated
values of columns D and E must be unique.

WH is a CHECK constraint which specifies that the sum of the values of
columns B and C must be less than 1000.

PK is a PRIMARY constraint which specifies that the IDNUM column
can contain only unique and non-missing values. Because IDNUM is
associated with the foreign key column EMPID in the table
MYLIB.TWO, values for IDNUM cannot be deleted or changed
unless the same changes have been made to the values in the
foreign key EMPID.

FK is a foreign key in the table MYLIB.TWO. EMPID is the foreign key
column whose primary key is IDNUM in MYLIB.ONE. Because
EMPID is a foreign key column, it can contain only values that are
present in IDNUM. The first RESTRICT specifies that a value in
IDNUM can be changed only if EMPID does not contain a value that
matches the IDNUM value to be changed. The second RESTRICT
specifies that a row can be deleted from MYLIB.ONE only if the
value of IDNUM does not match a value in EMPID in MYLIB.TWO.

NONULL is a NOT-NULL constraint which specifies that the EMPID column
cannot contain a null value.

The first integrity constraints that are defined for each of the tables MYLIB.ONE and
MYLIB.TWO have user-defined messages that will be displayed instead of the SAS
message if any data value does not conform to the integrity constraint.

table1=open(’mylib.one’,’V’);
rc=iccreate(table1,’uq’,’Unique’,’d e’,’’,’’,’’,

’This is my message for uq.’,’user’);
rc=iccreate(table1,’wh’,’Check’,’(b + c)< 1000’);
rc=iccreate(table1,’pk’,’Primary’,’idnum’);
rc=close(table1);

table2=open(’mylib.two’,’V’);
rc=iccreate(table2,’fk’,’Foreign’,’empid’,’mylib.one’,

’restrict’,’restrict’,’This is my message for fk.’,’user’);
rc=iccreate(table2,’nonull’,’Not-null’,’empid’);

...more SCL statements...
rc=close(table1);
rc=close(table2);

See Also

“ICDELETE” on page 453
“ICDESCRIBE” on page 454
“ICTYPE” on page 458
“ICVALUE” on page 459



SAS Component Language Dictionary � ICDELETE 453

ICDELETE

Drops an integrity constraint from a SAS table

Category: SAS Table

Syntax
sysrc=ICDELETE(table-id,icname);

sysrc
contains the status of the operation:

=0 successful

>0 not successful

<0 the operation was completed with a warning
Type: Numeric

table-id
contains the identifier for the SAS table, which is returned by the OPEN function.
An integrity constraint can be dropped only from a SAS table that is open in NEW or
UTILITY mode.

Type: Numeric

icname
is the name of the integrity constraint to delete.

Type: Character

Details
Referential integrity constraints (where ictype is FOREIGN) provide a link between SAS
tables. Part of the link mechanism involves the name of the table. Therefore, renaming
or deleting a table that has a FOREIGN integrity constraint is not allowed until after
the FOREIGN key is deleted.

Example
Delete the integrity constraint UQ from the table MYLIB.ONE. The constraint was
created in “Example” on page 452.

table1=open(’mylib.one’,’V’);
rc=icdelete(table1,’uq’);
rc=close(table1);



454 ICDESCRIBE � Chapter 13

See Also
“ICCREATE” on page 449
“ICTYPE” on page 458
“ICVALUE” on page 459

ICDESCRIBE

Obtains the attributes for all existing integrity constraints within a specified SAS table

Category: SAS Table

Syntax
sysrc=ICDESCRIBE(table-id, list-id);

sysrc
contains the return code for the operation:

0 successful

>0 not successful

<0 the operation was completed with a warning
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the function returns a nonzero value.

Type: Numeric

list-id
is the identifier of the list where you want to store the attributes.

Details
This function returns all of the same information that the CONTENTS procedure
displays about the constraints.

For more information about integrity constraints, see “Preserving the Integrity of
Table Data in SCL Programs” on page 185.

Example

The following example creates a SAS table, defines a primary integrity constraint
named PK, and calls ICDESCRIBE to obtain the attributes of PK.

init:
submit continue;
data one;

a=1; b=2; c=3; output; run;
endsubmit;

tableid=open(’one’,’V’); /* utility mode */
rc=iccreate(tableid,’pk’,’Primary’,’a’);



SAS Component Language Dictionary � ICON 455

iclist=makelist();
rc=icdescribe(tableid,iclist);
call putlist(iclist, ’’, 1);
rc = dellist(iclist, ’Y’);
rc=close(tableid);
return;

ICDESCRIBE returns the following information for integrity constraint PK.

( ( NUMVARS=1
NAME=’pk’
TYPE=’Primary Key’
RECREATE=’rc = iccreate( tableid, ’pk’, ’primary’, ’a’, ’’, ’’, ’’, ’’, ’’);’
MESSAGE=’’
ONDELETE=’’
ONUPDATE=’’
REF=’’
WHERE=’’
MSGTYPE=’’
VAR1=’a’

)[9]
)[5]

See Also
“ICCREATE” on page 449
“ICDELETE” on page 453
“ICTYPE” on page 458
“ICVALUE” on page 459

ICON

Associates an icon with a window

Category: Window

Syntax
rc=ICON(icon-number);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric



456 ICREATE � Chapter 13

icon-number
is the number of the icon to use to represent the application window when it is
minimized. If you specify a number for which no icon is defined, the SAS icon is used.

Type: Numeric

Details
When a user minimizes a window into an icon, SAS uses the specified icon to represent
the window.

Only systems that display icons support this function. Non-graphical devices ignore
the icon setting.

The ICON function is ignored if you are running with the SAS software Application
Work Space (AWS). To run an application without the AWS, specify the AWS=NO option
in the AF command.

Example

Assign icon number 107 as the icon for the current window:

rc=icon(107);

ICREATE

Creates an index for a SAS table

Category: SAS Table

Syntax
sysrc=ICREATE(table-id,key-name<,var-list<,options>>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid
or if the table is not opened in UTILITY mode, the index is not created and the
function returns a nonzero value.

Type: Numeric

key-name
is the name of the index key to be created.

Type: Character

var-list
is one or more columns from the SAS table to be indexed. Separate multiple names
with blanks.

Type: Character



SAS Component Language Dictionary � ICREATE 457

options
are index attributes, with multiple values separated by blanks within a single set of
parentheses:

’NONUNIQUE’|’UNIQUE’
specifies whether the values of the key columns must be unique. The default is
’NONUNIQUE’.

’MISSING’|’NOMISS’
specifies whether the index can point to missing values. The default is ’MISSING’.
Type: Character

Details
An index is an auxiliary data structure used to speed up searches for records that are
specified by the value of a column (for example, "all the records for which AGE is
greater than 65"). To create an index for a SAS table, you must open the table in
UTILITY mode (see “OPEN” on page 581 for details).

An index on a single column is called a simple index. If var-list contains only one
column name, then a simple index is created.

Note: For a simple index, key-name and var-list must both contain the same value.
If var-list is omitted, then key-name specifies the index column. �

An index on more than one column is called a composite index. If var-list contains
more than one column name, a composite index is created. In this case, key-name can
be any valid SAS name that is not already used as a column name in the table. A
composite index is based on the values of these columns, concatenated to form a single
value.

UNIQUE specifies that the index contains only unique values of the key columns.
The creation of such an index prohibits duplicate values for its columns from being
stored in the SAS table. For columns that must be uniquely specified in a row, such as
passport numbers, this option is useful for preventing duplicate values from incorrectly
getting into a table. The function returns an error condition if non-unique values are
present and UNIQUE is specified. By default, duplicate values are permitted in an
index and thus in its table.

NOMISS prevents missing values from being pointed to by an index. Unlike
UNIQUE, NOMISS does not prevent missing values from being stored in the SAS table.
This feature is useful if the key columns contain many missing values that would make
the index large and thus slower to access than if they were excluded. By default,
missing values are stored in the index.

Indexes can also be created using
� the DATASETS and SQL procedures in Base SAS software
� SAS/IML software
� the CONTENTS function in SCL
� the ACCESS procedure in SAS/ACCESS software.

Example
Create a simple index for the SAS table WORK.INVOICE. The key column for the
index is the table column ITEMTYPE.

tableid=open(’work.invoice’,’v’);
/* open in UTILITY mode */

rc=icreate(tableid,’itemtype’,’ ’,’unique nomiss’);

In this example, because the value of the var-list argument is blank, the key column
for the index is the column named in the key-name argument.



458 ICTYPE � Chapter 13

See Also
“CONTENTS” on page 276
“IDELETE” on page 460
“IOPTION” on page 483
“ISINDEX” on page 487
“IVARLIST” on page 491
“OPEN” on page 581

ICTYPE

Returns the type of integrity constraint that is assigned to a SAS table

Category: SAS Table

Syntax
ictype=ICTYPE(table-id,icname);

ictype
contains the type of integrity constraint that is returned. The constraints are listed
below and are defined in “ICCREATE” on page 449:

’CHECK’

’FOREIGN’

’NOT-NULL’

’PRIMARY’

’UNIQUE’
Type: Character

table-id
contains the identifier for the SAS table, which is returned by the OPEN function.

Type: Numeric

icname
is the name of the integrity constraint.

Type: Character

Details
ICTYPE returns the type of integrity constraint for a SAS table when you specify the
name of the constraint.

Example

Return the type of the UQ integrity constraint that is assigned to the SAS table
MYLIB.ONE. Because the constraint UQ (which was created in the example for
“ICCREATE” on page 449) was UNIQUE, the value of TYPE will be UNIQUE.

tableid=open(’mylib.one’,’i’);
type=ictype(tableid,’uq’);



SAS Component Language Dictionary � ICVALUE 459

...more SCL statements...
rc=close(tableid);

See Also
“ICCREATE” on page 449
“ICDELETE” on page 453
“ICVALUE” on page 459

ICVALUE

Returns the column names or the condition associated with an integrity constraint

Category: SAS Table

Syntax
icvalue=ICVALUE(table-id,icname);

icvalue
contains the names of one or more columns from the SAS table identified by table-id.
When ictype is CHECK, icvalue returns the condition that values must meet.

Type: Character

table-id
contains the identifier for the SAS table, which is returned by the OPEN function.

Type: Numeric

icname
is the name of the integrity constraint.

Type: Character

Details
ICVALUE returns the names of columns that are associated with the specified integrity
constraint. If ictype is CHECK and is specified as a condition, then ICVALUE returns the
condition that is assigned to the constraint.

Example

Return the value of the UQ integrity constraint. If ICVALUE returns a blank, then
display the error message. Because the constraint UQ (which was created in the
example for “ICCREATE” on page 449) specified that columns D and E must contain
unique values, COLLIST would contain D E.

tableid=open(’mylib.one’,’i’);
collist=icvalue(tableid,’uq’);
if (collist=’ ’) then _msg_=sysmsg();

See Also
“ICCREATE” on page 449



460 IDELETE � Chapter 13

“ICDELETE” on page 453
“ICTYPE” on page 458

IDELETE

Deletes an index from a SAS table

Category: SAS Table

Syntax
sysrc=IDELETE(table-id,key-name);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

key-name
is the name of the index key to be deleted.

Type: Character

Details
In order to delete an index for a SAS table, you must open the table in UTILITY mode
(see “OPEN” on page 581 for details).

You can also delete indexes using
� the DATASETS and SQL procedures in Base SAS software
� the CONTENTS function in SCL
� the ACCESS procedure in SAS/ACCESS software.

Example

Delete an index for the SAS table WORK.INVOICE. The name of the index key is
ITEMTYPE.

tableid=open(’work.invoice’,’v’);
rc=idelete(tableid,’itemtype’);

See Also
“CONTENTS” on page 276

“ICREATE” on page 456
“IOPTION” on page 483



SAS Component Language Dictionary � IMGCTRL 461

“ISINDEX” on page 487
“IVARLIST” on page 491

IMGCTRL

Performs control operations on the Image window

Category: Image

Syntax
rc=IMGCTRL(task-id,command,<other-arguments>);

rc
contains the return code for the operation:

0 successful

>0 not successful
Type: Numeric

task-id
contains the identifier of the image task, which is returned by a previous IMGINIT
function.

Type: Numeric

command
is the control command to be executed. Commands are described in “Commands
Used with IMGCTRL” on page 461.

Type: Character

other-arguments
lists the argument(s) required with each command.

Type: Character or Numeric

Commands Used with IMGCTRL
’WAIT’ seconds

specifies the amount of time to wait before executing the next command. Seconds
specifies the number of seconds to wait.

’WRAISE’
attempts to force the Image window to the top while IMGOP or IMGCTRL
commands are executing. This command may not be honored by some window
managers. Note that the ’TOPWINDOW’ option can be set at IMGINIT time to
force the window to always be on top.

’WSIZE’ width, height <xpos, ypos>
specifies the width and height of the Image window in pixels. It optionally
positions the window at xpos and ypos of the top left corner. Some window
managers may not support positioning.

’WTITLE’title’
specifies a title for the Image window. The specified title appears in parentheses
after ’SAS: IMAGE’.



462 IMGCTRL � Chapter 13

Details
IMGCTRL enables you to control the Image window. It includes, for example,
commands to assign a window title and set the window size.

Examples

Example 1: Using the WTITLE Command Extract the name of the IMAGE entry and
then use the WTITLE command to assign that name to the window:

path=lnamemk(5,catname,’format=cat’);
rc=lnameget(path,type,name,form);
gname=scan(name,3,’.’);
rc=imgop(taskid,’READ’,path);
rc=imgctrl(taskid,’WTITLE’,gname);
rc=imgop(taskid,’PASTE’,1,1);

Example 2: Using the WAIT Command Wait 5 seconds before displaying the image
after each PASTE command:

rc=imgop(taskid,’READ’,path);
rc=imgop(taskid,’PASTE’);
rc=imgctrl(taskid,’WAIT’,5);
rc=imgop(taskid,’READ’,path2);
rc=imgop(taskid,’PASTE’);
rc=imgctrl(taskid,’WAIT’,5);

Example 3: Using the WRAISE Command Force the Image window to the top:

pop:
rc=imgctrl(taskid,’WRAISE’);

return;

Example 4: Using the WSIZE Command Make the Image window match the size of the
image that is being displayed:

height=0;
width=0;
rc=imgop(taskid,’READ’,path);
rc=imgop(taskid,’QUERYN’,’WIDTH’,iwidth);
rc=imgop(taskid,’QUERYN’,’HEIGHT’,iheight);
rc=imgctrl(taskid,’WSIZE’,iwidth,iheight);
rc=imgop(taskid,’PASTE’,1,1);

Example 5: Using the WTITLE and WRAISE Commands Change the window title and
then force the Image window to the top:

path=lnamemk(5,catname,’format=cat’);
rc=lnameget(path,type,name,form);
gname=scan(name,3,’.’);
rc=imgop(taskid,’READ’,path);
rc=imgctrl(taskid,’WTITLE’,gname);
rc=imgop(taskid,’PASTE’,1,1);
rc=imgctrl(taskid,’WRAISE’);



SAS Component Language Dictionary � IMGINIT 463

IMGINIT

Starts an image task

Category: Image

Syntax
task-id=IMGINIT(<list-id>,<option>);

task-id
contains the identifier for the image task. This identifier is used by other SCL image
functions.

Type: Numeric

list-id
contains the identifier for an SCL list that contains image operation (IMGOP) and
image control (IMGCTRL) commands to pass to the function. The commands are
processed as the task starts. For command descriptions, see “Commands Used with
IMGCTRL” on page 461 and Appendix 1, “Commands Used with the IMGCTRL,
IMGOP and PICFILL Functions,” on page 803.

A value of zero means that no list is passed.
Type: Numeric or List

option
specifies a window option:

’NODISPLAY’
prevents the Image window from being created. This can be useful in SCL
programs that read, process, or write images without displaying them.

’TOPWINDOW’
causes the Image window to stay on top of the FRAME or SCL window when it is
created.
Type: Character

Details
The IMGINIT function initializes the image environment. This usually means opening
the Image window, but you must use this function even if you plan to manipulate
images without displaying them.

When you initialize the Image window, the list that you pass to IMGINIT can include
commands to initialize the window size.

Example

Initialize the Image window size:

width=700;
height=520;
xpos=0;
ypos=0;

cmdid=makelist();



464 IMGOP � Chapter 13

allcmdid=makelist();
rc=insertc(cmdid,’WSIZE’,-1);
rc=insertn(cmdid,width,-1);
rc=insertn(cmdid,height,-1);
rc=insertn(cmdid,xpos,-1);
rc=insertn(cmdid,ypos,-1);
rc=insertl(allcmdid,cmdid,-1);

taskid=imginit(allcmdid,’TOPWINDOW’);

Start the image task without displaying the Image window:

taskid=imginit(allcmdid,’nodisplay’);

IMGOP

Performs image operations

Category: Image

Syntax
rc=IMGOP(task-id,command,<other arguments>);

rc
contains the return code for the operation:

0 successful

>0 not successful

Type: Numeric

task-id
contains the identifier (returned by a previous IMGINIT function) of the task to be
operated upon.

Type: Numeric

command
is the command to execute. Valid commands are listed in “Commands Used with
IMGOP” on page 465.

Type: Character

other-arguments
lists arguments that are used for a command. The arguments required for a
command may include image file attributes. You can specify image file attributes by
enclosing the attributes in quotation marks and separating multiple attributes with
blanks. For example:

rc=imgop(tid,"WRITE",filename,
"FORMAT=TIFF
COMPRESS=G3FAX"):

Type: Character or Numeric



SAS Component Language Dictionary � IMGOP 465

Note: When read with IMGOP, Encapsulated Postscript Interchange (EPSI) files
display as low-resolution and monochrome. This degraded image is the preview version
of the actual image. �

Commands Used with IMGOP
For detailed information about these commands, see Appendix 1, “Commands Used
with the IMGCTRL, IMGOP and PICFILL Functions,” on page 803.

CONVERT
converts an image to the specified image type and depth.

COPY
copies an image.

CREATE_IMAGE
creates a new image that is stored in memory.

CROP
crops the selected image.

DESTROY
removes an image from memory and from the display.

DESTROY_ALL
removes all images from memory and from the display.

DITHER
dithers an image to a color map.

DITHER_BW
dithers the selected image to a monochrome black and white image.

EXECLIST
executes a list of commands.

FILTER
applies a filter to an image.

GAMMA
applies a gamma value to the selected image.

GENERATE_CMAP
generates a color map for the selected image.

GET_BARCODE
returns the value of the specified bar code.

GET_COLORS
returns the RGB values of the index positions of a color map for the selected image.

GET_PIXEL
returns the pixel value of a specified position in the selected image.

GRAB_CMAP
grabs the color map from the selected image.

MAP_COLORS
maps colors to the closest color in the selected color map.

MIRROR
mirrors an image.

NEGATE
changes the image to a negative.



466 IMGTERM � Chapter 13

PASTE
displays an image at a specified location.

PASTE_AUTO
displays an image automatically.

PRINT
prints an image.

QUANTIZE
reduces the number of colors used for an image.

QUERYC, QUERYL, and QUERYN
query information about images.

READ
reads an image from an external file, a SAS catalog, or a device.

READ_CLIPBOARD
reads an image from the host clipboard.

READ_PASTE
reads and displays an image.

READ_PASTE_AUTO
reads and automatically displays an image.

ROTATE
rotates an image clockwise by 90, 180, or 270 degrees.

SCALE
scales an image.

SELECT
selects the image identifier to be used in other commands.

SET_COLORS
assigns the RGB values for the index positions of a color map for the current image.

SET_PIXEL
assigns the pixel value in an image at the specified position.

STANDARD_CMAP
selects a color map.

THRESHOLD
converts color images to black and white, using the value that is specified with the
THRESHOLD command.

TILE
replicates the current image into a new image.

UNPASTE
removes an image from the display.

WRITE
writes an image to a file or to a SAS catalog.

WRITE_CLIPBOARD
writes an image to the host clipboard.

IMGTERM
Terminates an image task



SAS Component Language Dictionary � IMPORT 467

Category: Image

Syntax
rc=IMGTERM(task-id);

rc
contains the return code for the operation:

0 successful

>0 not successful

Type: Numeric

task-id
contains the identifier of the task, which was returned by a previous IMGINIT
function.

Type: Numeric

Example

This example shows IMGTERM used within the TERM section:

term:
if (task-id ne 0) then

rc=imgterm(task-id);
return;

IMPORT

Creates a SAS table from an external file

Category: SAS Table

Syntax
name=IMPORT(table-name,file<,’DEFINE’>);

name
contains the name of the last SAS table that was created.

Type: Character

table-name
is the new SAS table to create. If the table already exists, a warning message is
displayed when the IMPORT window opens.

Type: Character

file
is the fileref or physical filename of the external file from which data are to be
imported. A physical filename must be enclosed in quotation marks. (See the
example.)



468 IMPORT � Chapter 13

Type: Character

’DEFINE’
specifies to open the DEFINE window before opening the IMPORT window.

Type: Character

Details
CAUTION:

Blank lines in files can cause problems. Under some host operating systems, blank
lines in an external file may adversely affect the ability of the IMPORT function to
extract data from the file. �

The IMPORT function returns the name of the last SAS table that it created from an
external data file. This function enables users to easily import raw data from an
external file into a SAS table.

Two auxiliary windows are associated with IMPORT: the IMPORT window and the
DEFINE window.

The IMPORT Window
The IMPORT window, which defines the columns for the SAS table, is the primary
window for the IMPORT function. The first two lines of the external file are displayed
below a ruler in order to help the application user identify the variables for the columns.

If numbers for start and end columns are not supplied, then list input is used, and
items in the file must be separated by at least one blank. Users can use the following
fields in the IMPORT window to specify information about the table columns:

Name
specifies the name for the table column. This can be any valid SAS name that is
up to 32 characters long.

Start/End Column
specify the starting and ending columns of the value in the external file. These
fields are optional. You can specify a starting column without specifying an ending
column but not vice versa. If you omit the ending column, it is calculated to be one
less than the next starting column.

Type
specifies the data type of the table column. Choose the type by pressing ENTER or
clicking with the mouse on the appropriate type.

Format
specifies a SAS format. Enter a ’?’ to display a list of some common formats. This
field is optional.

Informat
specifies a SAS informat. Enter a ’?’ to display a list of some common informats.
This field is optional.

Label
specifies a label for the table column. The label can be up to eight characters long.
This field is optional.

IMPORT Window Command Menu
The File menu enables you to perform save operations, to import data with the Import
Wizard, to export data using the Export Wizard, to perform print operations, to send
mail, and to close the window.



SAS Component Language Dictionary � IMPORT 469

The Edit menu enables you to copy marked text, to select or deselect marked text, to
set the horizontal and vertical scroll amounts, to perform find operations, and to set the
keyfield (the field to search with the next Find command).

The View menu enables you to scroll right and left, to specify the sort order for fields
in the window, to display the first record in hexadecimal representation, and to open
other SAS windows.

The Tools menu enables you to specify conditions for querying values in the file, to
open a Viewtable window, and to run a session of graphics editors, the Report Editor or
Text Editor. You can also set a variety of options.

The Data menu enables you to create a SAS table from contents of the external file,
to test read the file, to define fields with the Define window, to specify a different
external file for input, to specify a new name for the SAS table to create, to display the
length of the longest record that has been read, to view the external file, and to edit or
browse the data set that was created from the external file.

The DEFINE Window

The DEFINE window is displayed when you use the DEFINE option with the IMPORT
function or when you select Data � Define fields from the IMPORT window. It displays
the first line from the external file, along with a ruler and delimiter lines. On the
delimiter lines, you can use < and > to mark the beginning and end of a column,
respectively. If the column is only one character wide, use a vertical bar (|).

In order to use the DEFINE window, you must align the data values in columns in
the data records.

When you issue the END command to exit from this window, the fields are given
default column names and types (numeric or character). The IMPORT window then
opens so that you can change the column names and optionally add formats and
informats.

Examples

� Create a new SAS table named MYLIB.NEW using data in the file to which the
fileref EXTERN has previously been assigned:

name=import(’mylib.new’,’extern’);

� Create a new SAS table named MYLIB.NEW using data in the file with the
physical name SAMPLE1.DATA. The name of the file is enclosed in quotation
marks to indicate that a physical filename, not a fileref, is being passed to the
IMPORT function.

name=import(’mylib.new’,"’sample1.data’");

Note: The form of the physical filename depends on the host operating
system. �

IMPORT

Defines a search path for references to CLASS entries

Category: Catalog, Object Oriented



470 IMPORT � Chapter 13

Syntax
IMPORT class-specification;

class-specification
is the two- to four-level name of a CLASS entry. If it is a four-level name, then that
CLASS entry is imported. If it is a two-level name, then it is used as the
libref.catalog prefix for any one- or two- level CLASS entry names in the program.
This prefix is concatenated to the one- or two-level CLASS entry name, and that is
the CLASS entry that is searched for. The first CLASS entry that is found is the one
that is imported. Any subsequent entries that are found are flagged as warnings.

Details
The IMPORT statement defines a search path for CLASS entry references in an SCL
program so that you can refer to CLASS entries with one- or two-level names instead of
having to use a four-level name in each reference. The current catalog is always the
first catalog to be searched for a one- or two-level class name, regardless of whether
there are any imported catalogs. References to CLASS entries are resolved by the SCL
compiler at compile time. The SEARCH function can be used to define a search path
that will resolve at run time.

Examples

Example 1: Defining a Search Path Define a MYLIB.MYCAT as a search path for the
program.

/* All the program’s classes */
/* are defined in MYLIB.MYCAT *

IMPORT mylib.mycat;
/* collobj1 is defined in */
/* mylib.mycat.collection.class */

DECLARE Collection c1=_new_ Collection();
/* collobj2 is defined in */
/* mylib.mycat.OrderedCollection.class */

DECLARE OrderedCollection c2=_new_ OrderedCollection();

Example 2: Importing a Class from Another Catalog This example imports class X
from another catalog. Class Y is in the current catalog.

X.SCL
class work.cat.x;

public num n;
endclass;

Y.SCL
import work.cat2;
class y;

m: method o: x;
o.n=99;

endmethod;
endclass;

Z.SCL
init:



SAS Component Language Dictionary � INFORMAT 471

import work.cat2;
dcl y yobj=_new_ y();
dcl x xobj=_new_ x();
yobj.m(xobj);
put xobj.n=;

return;

This example should produce the following output:

xobj.n=99

See Also
“DECLARE” on page 309
“SEARCH” on page 646

INFORMAT

Verifies that the specified informat is valid

Category: Formatting

Syntax
rc=INFORMAT(informat,type);

rc
contains the return code for the operation:

1 successful

0 not successful
Type: Numeric

informat
is an informat that is supplied by SAS or created using the FORMAT procedure. The
name of an informat must include a period (for example, date7. or comma10.2).

Type: Character

type
specifies the type of the informat:

’C’ character

’N’ numeric
Type: Character

Details
If the specified informat is not known to the SAS session, then the operation is
unsuccessful. The function verifies that valid widths are specified for informats.

See SAS Language Reference: Dictionary for details about informats.



472 INITROW � Chapter 13

Examples

Example 1: Verifying the Validity of a Character Informat Verify that $MYFMT. is a
valid character informat that has been defined for the current SAS session. (The value
returned to the variable RC is 1.)

rc=informat(’$myfmt.’,’c’);

Example 2: Verifying the Validity of a Numeric Informat Verify that 5.6 is not a valid
informat for numeric values. (The value returned to the variable RC is 0.)

rc=informat(’5.6’,’n’);

See Also
“FORMAT” on page 411

INITROW

Initializes the Table Data Vector (TDV) for a SAS table to missing values

Category: SAS Table

Syntax
rc=INITROW(table-id);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the SAS table was opened.

Type: Numeric

Details
INITROW initializes the TDV to missing values. This prevents bad data from being
written to a table row when you do not explicitly assign values to columns with the
PUTVARC or PUTVARN function and you use the APPEND function with the NOINIT
option.

Example

Open the table whose name is saved in the variable TABLE, initialize a new row to
missing, and then write a value for the NAME column. When the new row is appended
to the data table, the column NAME is initialized to the value JOHN while values in all
other columns are set to missing.



SAS Component Language Dictionary � INPUTC and INPUTN 473

tableid=open(table);
rc=initrow(tableid);
call putvarc(tableid,varnum(tableid,’name’),’JOHN’);
rc=append(tableid,’noinit’);
rc=close(tableid);

INPUTC and INPUTN

Read a character value using an informat

Category: Formatting

Syntax
char-value=INPUTC(char-string,char-informat);

num-value=INPUTN(char-string,num-informat);

char-value
contains char-string with the character informat applied to it.

Type: Character

num-value
contains char-string converted to a numeric value with the numeric informat applied
to it.

Type: Numeric

char-string
is the character string to be read.

Type: Character

char-informat
is the character informat to use for reading char-string.

Type: Character

num-informat
is the numeric informat to use for reading char-string.

Type: Numeric

Details
INPUTC and INPUTN both read a character value. However, INPUTC applies a
character informat and returns a character value, and INPUTN applies a numeric
informat and returns a numeric value. These functions are similar to the INPUT
function in the DATA step.

Note: Dot notation cannot be used with the INPUTC or INPUTN functions. This
restriction is necessary to allow proper parsing of the char-informat and num-informat
parameters. �

For more information about using an informat to read a value, see the INPUT
function for the DATA step in SAS Language Reference: Dictionary.



474 INSERTC, INSERTL, INSERTN, and INSERTO � Chapter 13

Examples

Example 1: Using the INPUTC Function Read the character variable NAME, using the
$UPCASE3. informat:

name=’sas’;
cval=inputc(name,’$upcase3.’);
put cval=;

This program produces the following output:

cval=SAS

Example 2: Using the INPUTN Function Read the character variable AMOUNT,
containing the value $20,000.00, into the numeric variable SALARY, using the
COMMA10.2 informat:

amount=’$20,000.00’;
informat=’comma10.2’;
salary=inputn(amount,informat);
put salary=;

This program produces the following output:

salary=20000

Example 3: Using INPUTN with a DATE Value Read the value in DATE and apply the
JULIAN8. informat:

date=’90091’;
ndate=inputn(date,’julian8.’);
put ndate=;

This program produces the following output:

ndate=11048

See Also
“PUTC and PUTN” on page 609

INSERTC, INSERTL, INSERTN, and INSERTO

Insert a value into an SCL list

Category: List

Syntax
rc=INSERTC(list-id,cval<,index<,name>>);

rc=INSERTL(list-id,sublist-id< ,index<,name>>);

rc=INSERTN(list-id,nval<,index<,name>>);

rc=INSERTO(list-id,object-id<,index<,name>>);



SAS Component Language Dictionary � INSERTC, INSERTL, INSERTN, and INSERTO 475

rc
is the list-id, which is the identifier of the modified list.

Type: Numeric

list-id
is the identifier of the list into which to insert the item. An invalid list-id produces
an error condition.

Type: Numeric or List

cval
is the character value to insert into the list with INSERTC.

Type: Character

sublist-id
is the identifier of the sublist to insert into the list with INSERTL. An invalid
sublist-id produces an error condition.

Type: Numeric

nval
is the numeric value to insert into the list with INSERTN.

Type: Numeric

object-id
is the identifier of the object to insert into the list with INSERTO. An invalid
object-id produces an error condition.

Type: Numeric or Object

index
is the position at which to insert the item into the list. The position can be specified
as a positive or negative number. By default, index is 1 (the first item). If index is a
positive number, then the item is at position index from the beginning of the list. If
index is a negative number, then the item is at position ABS(index) from the end of
the list. Index must be in the range [−(n+1),−1] or [1,n+1] where n is the length of
the list. An error condition results if the absolute value for index is zero or if it is
greater than the number of items in the list.

Type: Numeric

name
is the name to assign to the item. If name is omitted, a name is not assigned to the
item.

Type: Character

Details
The item is inserted such that after you insert an item at position index, you can
retrieve it from position index with any of these functions.

These functions do not make a copy of the list. The insertion is performed in place.
You can append an item to an SCL list of length n by inserting at index=n+1 or at
index=−1.

Note: The return value of these functions is not used to indicate whether an error
has been detected. When an error occurs, the program simply halts. �

An error condition results if
� the list has any of the following attributes:

� NOUPDATE
� FIXEDLENGTH
� CHARONLY, and you use an insert function other than INSERTC



476 INSERTC, INSERTL, INSERTN, and INSERTO � Chapter 13

� NUMONLY, and you use an insert function other than INSERTN
� SASNAMES, and name is omitted or is not a valid SAS name
� NODUPNAMES, and name duplicates the name of a list item.

� the absolute value for index is greater than 1 plus the number of items in the list
or is 0.

� you attempt to insert a local list into a global list with INSERTL.

You can use HASATTR to check the attributes of a list or list item. To change
attributes, use SETLATTR.

Examples

Example 1: Using the INSERTC Function Insert CANADA as the third item in the list:

listid=insertc(listid,’CANADA’,3);

After this insertion, return the value that was third in the list before the insertion of
CANADA shifted the value from the third to the fourth position:

cval=getitemc(listid,4);

Example 2: Using the INSERTL Function Insert the sublist NEWLIST as the third
item from the end of the list:

listid=insertl(listid,newlist,-3);

Example 3: Using the INSERTN Function Assume that the list MYLIST contains four
items, named A, B, C, and D, with the values 1, 4, 9, and 16, respectively. Insert two new
items: a string at the default position 1 (the beginning of the list), and a number at
position −1 (the end of the list). The new number is given the name E.

call putlist(mylist,’Before: ’,0);
mylist=insertc(mylist,’Squares’);
mylist=insertn(mylist,25, -1,’E’);
call putlist(mylist,’After: ’,0);

This program produces the following output:

Before: (A=1
B=4
C=9
D=16
)[3]

After: (’Squares’
A=1
B=4
C=9
D=16
E=25
)[3]

Note: [3] is the list identifier that was assigned when this example was run and
may be different each time the example is run. �

Example 4: Using the INSERTO Function Create the list MYLIST, insert the item
whose identifier is stored in the variable MYOBJECT, and assign the name My Object
to the item:



SAS Component Language Dictionary � INSTANCE 477

declare sashelp.fsp.object myobject = _new_ sashelp.fsp.object(),
list mylist;

mylist=makelist();
rc=inserto(mylist,myobject,-1,’My Object’);

See Also
“GETITEMC, GETITEML, GETITEMN, and GETITEMO” on page 430
“GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO” on page 433
“POPC, POPL, POPN, and POPO” on page 598
“SETITEMC, SETITEML, SETITEMN, and SETITEMO” on page 664
“SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO” on page 674

INSTANCE

Creates an object and returns its identifier

Category: Object Oriented

Syntax
object-id=INSTANCE(class-id<,arg>);

object-id
contains the identifier that was assigned to the new object.

Type: Numeric or Object

class-id
is the identifier for the class, which is returned by the LOADCLASS function.

Type: Numeric

arg
is an argument to pass to the _init method.

Type: Numeric

Details
When creating an object (or instance) of a class, INSTANCE sends the _init method for
the specified class to the new instance and passes arg as an argument to the _init
method. If arg is not specified, then no argument is passed to the _init method. To
indicate that the numeric parameter is optional, the _init method of all classes should
use the OPTIONAL= option in the METHOD statement or ENTRY statement.

A common practice is to use an SCL list as arg. You can then pass an arbitrary list of
data which will be accessible in the _init method.

To delete an object that was created with INSTANCE, use its _term method. For
example:

dcl object objectid;
objectid=instance(classid);
objectid._term();

You cannot use the INSTANCE function to create instances of the Frame class.



478 INTERFACE � Chapter 13

For more information about classes and methods, see the documentation for SAS/AF
classes.

Example

Load a class named Queue, a subclass of the Object class, and create two instances of
the Queue class. The Inqueue class is created with a maximum number of items. The
Outqueue class does not have a maximum.

queue=loadclass(’applib.classes.queue’);
inqueue=instance(queue, max_items);
outqueue=instance(queue);

Assume that the _init method of the Queue class is declared as

_init: method optional= maxItems 8;
...more SCL statements...

endmethod;

See Also
“APPLY” on page 225
“ENTRY” on page 351
“LOADCLASS” on page 522
“LOADRES” on page 523
“METHOD” on page 539
“_NEO_” on page 561
“NOTIFY” on page 575
“SEND” on page 656
“SUPAPPLY” on page 695
“SUPER” on page 697

INTERFACE

Defines a group of abstract methods shared by the related classes

Category: Object Oriented

Syntax
INTERFACE interface-name

<EXTENDS interface-name>
</ (interface-optional-clause)>;

<limited-method-declaration-statements>

ENDINTERFACE;

interface-name
is the name of the interface that you are defining, which can be specified as a one- to
four-level name. The entry type is INTERFACE.



SAS Component Language Dictionary � INTERFACE 479

EXTENDS-interface-name
specifies the parent interfaces as a one- to four-level name. An interface can inherit
from parent interfaces. If you do not use the EXTENDS clause, the parent-interface
defaults to SAS HELP.FSP.INTRFACE.CLASS.

interface-optional-clause
specifies options for the interface. You must put the list inside the parentheses that
follow a / (slash). Separate multiple options with commas. The only option currently
supported is

Description = description
is a description of the INTERFACE entry.

limited-method-declaration-statements
defines the interface methods. Declare the methods as follows:

method-label-name: METHOD <argument-list><OPTIONAL=argument-list>
</(method-options)>;

method-label-name
can be up to 32 characters and has the same restrictions as an SCL label.

argument-list
list one or more sets of arguments, with each set specified as follows:

var-list <:INPUT|UPDATE|OUTPUT>:data-type(length)

var-list
lists one or more variables to contain values that are passed in from a method
call using either dot notation or the METHOD, SEND, SUPER, APPLY or
SUPAPPLY routine or function. Variables can also be reference arrays.
Reference array dimensions are specified by ’*’. Use commas to separate ’*’ for
multiple dimensions. The actual size of the reference array will be determined
at run time based on the dimensions specified in the array parameter of the
calling method. For more information, see “ARRAY” on page 227 and Example 3
on page 545.

INPUT | I
specifies that, at run time, the variable contains the value that is copied from
the corresponding parameter of the calling method. However, when the program
finishes, the value is not copied back to the calling method.

UPDATE | U
specifies that, at run time, the variable contains the value that is copied from
the corresponding parameter of the calling method. When the program finishes,
the value is copied back to that parameter.

OUTPUT | O
specifies that, when the program finishes, the value is copied back to the
corresponding parameter in the calling program. An error condition results if
the corresponding parameter in the calling program is a constant, because a
constant cannot receive a value.



480 INTERFACE � Chapter 13

data-type
specifies the type of data that the variable will contain. A named data type (for
example, CHAR or LIST) must be preceded by the : delimiter. The delimiter is
optional for unnamed data types (for example, $).

CHAR<(length)>
specifies that the variable will contain character data. Length can be 1 to
32,767 characters. If length is not provided, the default length is 200.

LIST
specifies that the variable will contain an SCL list identifier.

NUM
specifies that the variable will contain a numeric value.

OBJECT
specifies that the variable will contain the identifier for an object when it is
defined at run time.

This type causes the SCL compiler to generate extra conversion
instructions. Consequently, you should use it only when necessary so as to
achieve optimal run-time performance.

class-name
specifies that the variable will contain the identifier for an object of the class
specified in class-name. Class-name must be a three- or four-level name
unless an IMPORT statement has specified the libref and catalog. In that
case, the name can be a one- to four-level name. If the entry type is not
specified, it is assumed to be CLASS.

interface-name
specifies that the variable will contain the identifier for an object of the class
that supports the interface specified in interface-name. Interface-name must
be a three– or four-level name unless an IMPORT statement has been used
to specify the libref and catalog. In that case, the name can be a one- to
four-level name.

If the entry type is not specified and a class with that name does not exist,
the default entry type of INTRFACE is assumed.

To be compatible with the applications built in earlier releases of SAS software,
the : delimiter is optional for variables that have been declared with unnamed
data types (for example, $), but it is required for variables that have been assigned
named data types. The following example shows a variety of data type
declarations, including reference arrays that use * as the dimensions:

mymethod: method
char1 : Char(20)

char2 : Char(10)
char3 :input :char(50)
charArr(*):u:char /* a reference array */
num1 : num
num2 : num
num3 : num
numArr(*):num /* a reference array */
myList :list
myObj :object
myCol :Sashelp.Fsp.Collection.class ;

Type: Character



SAS Component Language Dictionary � INTERFACE 481

length
is a numeric constant that specifies the length of the preceding variable or
variables. The length of a character variable does not have to match the length of
the corresponding passed parameter. SCL pads or truncates as necessary. When a
length is specified for a variable that is declared as CHAR, the length specification
must be enclosed in parentheses.
Type: Character

OPTIONAL=
enables you to specify one or more optional arguments that are used only if the
calling program supplies the corresponding parameters in the parameter list of the
calling routine. If corresponding parameters are not supplied, then the optional
arguments are initialized to missing values.

method-options
specify options for an interface method. You must put the list inside parentheses that
follow a / (slash). The only option currently supported is Description = description,
which may be used to provide a description of the method.

Details
In order to group related classes which share similar method names, a superclass can
be created. One approach to create the superclass is to use the INTERFACE block. You
can use the INTERFACE and ENDINTERFACE statements to create an INTERFACE
block that contains method definitions. Method implementations are not allowed in the
INTERFACE block, so all methods are defined as abstract methods.

Interfaces describe “contracts” in a pure, abstract form, but an interface is
interesting only if a class supports it. Any class that supports an interface must
implement all of the methods defined in the interface. Since the INTERFACE block
does not contain any method implementations, class developers can use the
INTERFACE block to reflect the high-level design of their applications. Any class can
also be specified with the “required” interface using the “Required-Clause”. The SCL
compiler will generate information that will be used to validate whether the actual
method used at run time matches the required interface.

To create an interface from an SCL entry that contains an INTERFACE block, you
must issue either the SAVECLASS command or from FILE menu Save Class Pmenu.
This compiles the entry and creates the INTERFACE entry that is specified by
interface-name. This is equivalent to using the Interface Editor to interactively create
an INTERFACE entry. However, the Interface Editor provides a tabular view of the
interface, whereas the INTERFACE statement in SCL provides a language view of the
interface. For maintenance purposes, the existing INTERFACE entry can also be
converted to SCL syntax by using the CREATESCL function. For more detailed
information, see “CREATESCL” on page 293.

Examples

Example 1: Defining a Simple Interface The following INTERFACE block defines a
simple myWidget interface with four GUI methods.

interface work.a.myWidget.intrface;
refresh: method;
needRefresh: method;
select: method;
tab: method n1:NUM n2:NUM;

endinterface;



482 INTERFACE � Chapter 13

The following INTERFACE block defines an I/O interface with two I/O methods.

interface work.a.myIO.
interface;

read: method string buffer;
write: method string buffer;

endinterface;

Example 2: Defining Classes That Support Interfaces The INTERFACE blocks cannot
contain method implementations, so any class that supports an interface must
implement all of the methods defined in the interface. The following class implements
methods that are defined in work.a.myIO.intrface:

class work.a.model.class supports work.a.myIO.intrface;
read: method string buffer

/ (scl=’work.a.model.scl’);
write: method string buffer

/ (scl=’work.a.model.scl’);
/* The following method is not in the interface */
myMethod: method n:Num

/ (scl=’work.a.myscl.scl’);
endclass;

The following class supports both the myWidget interface and the myIO interface.

class work.a.modelViewer.class
supports work.a.myWidget.intrface,

work.a.myIO.intrface;
refresh: method / (scl=’work.a.mv.scl’);
needRefresh: method / (scl=’work.a.mv.scl’);
select: method / (scl=’work.a.mv.scl’);
tab: method n1:NUM n2:NUM

/ (scl=’work.a.mv.scl’);
read: method string buffer

/ (scl=’work.a.model.scl’);
write: method string buffer

/ (scl=’work.a.model.scl’);
myMethod: method n: num

/ (scl=’work.a.myscl.scl’);
endclass;

Example 3: Defining Classes That Require Interfaces The following class requires
both the myWidget interface and the myIO interface. By specifying which interfaces are
required, you allow the SCL compiler to generate information that will be used to
validate whether the actual methods used at run time matched the required interface.

class work.a.myRequired.class
Requires work.a.myWidget.intrface,

work.a.myIO.intrface;
...Other implementations...

endClass;

See Also

“CLASS” on page 253



SAS Component Language Dictionary � IOPTION 483

IOPTION

Returns options for index columns and key columns

Category: SAS Table

Syntax
options=IOPTION(table-id,key-name);

options
contains options for the specified index key-name, separated by a blank:

MISSING
The index can contain missing values.

NOMISS
The index does not contain missing values.

NONUNIQUE
The index can contain non-unique values.

UNIQUE
The index contains only unique values.
Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

key-name
is the name of an index key.

Type: Character

Details
An index is an auxiliary data structure used to speed up the selection of records that
are specified by the value of a column.

You can create indexes using
� the ICREATE function in SCL
� the DATASETS and SQL procedures in Base SAS software
� SAS/IML software
� the CONTENTS function in SCL
� the ACCESS procedure in SAS/ACCESS software.

When an error occurs, IOPTION returns a blank string.



484 ISACTIVE � Chapter 13

Example

Return the options of the defined key index ITEMTYPE for the SAS table
WORK.DATAONE. If the value returned to the OPTIONS column is blank, then the
message returned by the SYSMSG function is displayed on the message line.

tableid=open(’work.invoice’,’i’);
options=ioption(tableid,’itemtype’);
if (options=’ ’) then _msg_=sysmsg();

See Also
“CONTENTS” on page 276
“ICREATE” on page 456
“IDELETE” on page 460
“ISINDEX” on page 487
“IVARLIST” on page 491

ISACTIVE

Returns the number of the active button in a radio box or check box or the active station in a
choice group

Category: Control or Field

Syntax
station=ISACTIVE(var-name<,row>);

station
contains the status of a selection:

>0 the number of the button or station that is active

0 no button or station is active
Type: Numeric

var-name
is the radio or choice group to be tested.

Type: Character

row
is the row number when the button or choice group is in the scrollable section of an
extended table in a PROGRAM entry. Do not specify row in programs for FRAME
entries. Specify row only when you want to check the active station from outside the
extended table’s getrow or putrow section.

Type: Numeric



SAS Component Language Dictionary � ISGRAY 485

Details
You cannot use ISACTIVE in FSEDIT or FSVIEW programs.

Window controls can also use the _isActive method.

Example

Suppose your application has a radio box named HOBBY in which the third button
displays the value TENNIS. Branch to an appropriate program when a user selects the
TENNIS station (either by pressing ENTER or by clicking the mouse button).

if (isactive(’hobby’)=3)
then call display(’tennis.frame’);

See Also
“ACTIVATE” on page 222
“GRAY” on page 446
“ISGRAY” on page 485
“UNGRAY” on page 708

ISGRAY

Reports whether a FRAME entry control or choice group is grayed

Category: Control or Field

Syntax
rc=ISGRAY(var-name<,station<,row>>);

rc
contains the return code for the operation:

1 the specified station is grayed

0 the specified station is not grayed, or no station in the choice
group is grayed

m the number of stations that are grayed, when an entire choice
group is not grayed

−n the total number of stations, when an entire choice group is
grayed.

Type: Numeric



486 ISGRAY � Chapter 13

var-name
is the window control or choice group to be tested.

Type: Character

station
is the number of the choice group station or the button in a radio box. Station must
be greater than 0 and must be no greater than the total number of buttons in a radio
box or the number of stations in a choice group.

Type: Numeric

row
is the number of the row when the control or choice group is in the scrollable section
of an extended table. Row is valid for PROGRAM entries. Specify row only when you
want to determine whether the station is gray from outside the extended table’s
getrow or putrow section.

Type: Numeric

Details
Window controls can also use the _isGray method.

Because choice groups can be defined only in SAS/AF software, you cannot use
ISGRAY in FSEDIT or FSVIEW programs.

Examples

Example 1: Determining Whether an Extended Table Row Is Grayed Test whether the
choice group WINE at the third row of an extended table is grayed:

if (isgray(’wine’,0,3)) then
do;
...SCL program statements...
end;

Example 2: Finding the Number of Stations in a Choice Group Find out how many
stations are defined for a choice group:

rc=gray(’wine’);
total=abs(isgray(’wine’));

See Also
“ACTIVATE” on page 222
“GRAY” on page 446
“ISACTIVE” on page 484
“UNGRAY” on page 708



SAS Component Language Dictionary � ISINDEX 487

ISINDEX

Returns the type of index for a SAS table column

Category: SAS Table

Syntax

index=ISINDEX(table-id,col-name);

index
contains the type of the index:

(blank)
No index has been created for the specified column.

BOTH
The column is a member of both simple and composite indexes.

COMP
The column is a member of a composite index.

REG
The column is a regular (simple) index.
Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

col-name
is the name of a column in the SAS table. If col-name is not a column in the table,
then ISINDEX returns a blank value.

Type: Character

Details

An index is an auxiliary data structure used to assist in the location (that is, selection)
of rows that are specified by the value of a column. An index is called a simple index if
it contains the value of only one column. A composite index merges the values for more
than one column to form a single value. A given SAS table can have multiple simple
indexes, composite indexes, or any combination of these.

You can create indexes using

� the ICREATE function in SCL

� the DATASETS and SQL procedures in Base SAS software

� SAS/IML software

� the CONTENTS function in SCL

� the ACCESS procedure of SAS/ACCESS software.



488 ISSEL � Chapter 13

Example

Return the type of index for the FNAME column in the SAS table WORK.DATAONE:

dsid=open(’work.dataone’,’i’);
ixtype=isindex(dsid,’fname’);

See Also
“CONTENTS” on page 276
“ICREATE” on page 456
“IDELETE” on page 460
“IOPTION” on page 483
“IVARLIST” on page 491

ISSEL

Returns the selection number for a specified row of a selection list

Category: Extended Table

Syntax
selection=ISSEL(row);

selection
contains the row’s selection number, or 0 if the row is not selected.

Type: Numeric

row
is the number of the row that is being queried.

Type: Numeric

Details
You can use the ISSEL function in two ways:

� to determine the order in which a certain row was selected
� to determine whether a row is being selected or deselected.

Because you can define extended tables only with SAS/AF software, you cannot use
ISSEL in FSEDIT or FSVIEW programs. ISSEL is valid only for PROGRAM entries.
Window controls must use the _issel method.

In order for an extended table to be considered a selection list, you must specify a
number of selections in the SETROW routine.



SAS Component Language Dictionary � ITEM 489

Example

Suppose that your application has a selection list with ten rows and that the user
has just selected row 3 and then row 5. If ISSEL is called with the row argument equal
to 5, then the value 2 is returned for selection, because row 5 was the second selection.

You can also use ISSEL in the putrow section of an extended table application to test
whether a row is selected. Call the function for the desired row and check the selection
value to see whether its value is positive (the row has been selected) or zero (the row
has been deselected):

PUTROW:
if (issel(_CURROW_)) then

do;
...SCL statements to process the selected row...

end;
else

do;
...SCL statements to process the deselected row...

end;
return;

See Also
“NSELECT” on page 577

“SELECT” on page 653
“SELECTED” on page 654
“UNSELECT” on page 713

ITEM
Specifies the classes on the server that can be accessed by applications on the client

Category: Object Oriented

Syntax
ITEM class-name;

class-name
is the name of a class that you want included in the class package that you are
defining. The class name is a one- to four-level name of the form
library.catalog.member.CLASS.

Details
ITEM statements define the classes on the server whose methods and attributes can be
accessed by applications on the client.

See Also
“PACKAGE” on page 589



490 ITEMTYPE � Chapter 13

ITEMTYPE
Reports the type of an item in an SCL list

Category: List

Syntax
type=ITEMTYPE(list-id<,index>);

type
contains the type of the specified item:

C The item is a character item.

N The item is a numeric item.

L The item is a sublist item.

O The item is a component item.

Type: Character

list-id
is the identifier of the list containing the item whose type is returned by ITEMTYPE.
An invalid list-id produces an error condition.

Type: Numeric or List

index
is the position of the item in the list. The position can be specified as a positive or
negative number. By default, index is 1 (the first item). If index is a positive number,
then the item is at position index from the beginning of the list. If index is a negative
number, then the item is at position ABS(index) from the end of the list. An error
condition results if the absolute value for index is zero or if it is greater than the
number of items in the list.

Type: Numeric

Details
An item’s type depends on which function was used to create the item:

C (character) items
are created by SETITEMC, SETNITEMC, INSERTC.

N (numeric) items
are created by SETITEMN, SETNITEMN, INSERTN, MAKELIST, MAKENLIST.

L (sublist) items
are created by SETITEML, SETNITEML, INSERTL.

O (component) items
are created by SETITEMO, SETNITEMO, INSERTO.

See Also
“INSERTC, INSERTL, INSERTN, and INSERTO” on page 474
“MAKELIST” on page 533
“MAKENLIST” on page 534
“SETITEMC, SETITEML, SETITEMN, and SETITEMO” on page 664
“SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO” on page 674



SAS Component Language Dictionary � IVARLIST 491

IVARLIST

Returns the column names for an index key

Category: SAS Table

Syntax
varlist=IVARLIST(table-id,key-name);

varlist
contains one or more index columns (separated by a blank) for the specified key, or a
blank if key-name is invalid.

Type: Character

table-id
contains the identifier that was assigned when the table was opened. If table-id is
invalid, the program halts.

Type: Numeric

key-name
is the name of an index key.

Type: Character

Details
An index is an auxiliary data structure used to speed up the selection of records that
are specified by the value of a column.

An index is called a simple index if it contains the value of only one column. A
composite index merges the values for more than one column to form a single value. A
given SAS table can have multiple simple indexes, composite indexes, or a combination
of these.

You can create indexes using
� the ICREATE function in SCL
� the DATASETS and SQL procedures in Base SAS software
� SAS/IML software
� the CONTENTS function in SCL
� the ACCESS procedure of SAS/ACCESS software.

Note: Because some engines now support mixed-case filenames, IVARLIST now
retains the cases of the returned selected items. If your application contains code that
assumes that the returned selection is in uppercase, your application may fail. You may
need to modify your application. For example, you can use the UPCASE* function to
convert the returned selection to uppercase:

if (upcase(ivarlist(dsid, ’TESTNDX’))=’NDXVAR’

If the application cannot be modified, you may need to specify the
VALIDVARNAME=V6 system option when you run the application to ensure that the
selections returned from the IVARLIST function are in uppercase. �

* For documentation for the UPCASE function, refer to SAS Language Reference: Dictionary.



492 KEYCOUNT � Chapter 13

Example

Return the column list that is indexed for the key ITEMTYPE in the SAS table
MYLIB.DATAONE. Assume that ITEMTYPE is a simple index (that is, it contains the
values of only one column). The returned VARLIST contains the string ITEMTYPE.

tableid=open(’mylib.dataone’,’i’);
varlist=ivarlist(tableid,’itemtype’);

See Also
VALIDVARNAME system option in SAS Language Reference: Dictionary
“ICREATE” on page 456
“IDELETE” on page 460
“IOPTION” on page 483
“ISINDEX” on page 487

KEYCOUNT

Returns the number of rows that meet the criteria specified by an index key

Category: SAS Table

Syntax
nrow=KEYCOUNT(table-id);

nrow
contains the number of rows that meet the criteria, or <0 if an error occurred. The
error message can be retrieved by using SYSMSG.

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric



SAS Component Language Dictionary � KEYCOUNT 493

Details
KEYCOUNT returns the number of rows that meet the criteria specified by the index
key column. The index key column was specified with the last SETKEY function that
was used on the table. After KEYCOUNT executes, the table points to the first row
that meets the criteria defined by the last SETKEY function. Use FETCH or
FETCHOBS to read the row.

CAUTION:
Using KEYCOUNT with composite keys may show a larger number of rows matching the
search criteria than you expect. Using a composite key with SETKEY operates the
same way as the WHERE function only when the condition is EQ. The value returned
when the condition is EQ is the same as if the columns specified in the composite key
are connected by WHERE conditions using AND or ALSO. (See Example 1.)

For all other conditions (GT, GE, LT, or LE) specified with SETKEY for a
composite key, the composite key columns are concatenated to form the index key.
The number that the KEYCOUNT function returns is the number of rows in the
table that satisfy the composite key. For example, if the composite index consists of
columns GENDER and AGE and the condition is GT (greater than), the values to
search for are concatenated such that key values of F for GENDER and 13 for AGE
yield an index key of F13. Because the search is performed on the concatenated
values, some values that you did not expect may meet the search condition . For
example, key values of M for GENDER and 11 for AGE meet the search condition,
because the string M11 is considered greater than the string F13. (See Example 2.) �

Examples

Suppose you have the following examples which use rows from the WORK.CLASS
table. Create a simple index for the table WORK.CLASS, using ICREATE or the
DATASETS procedure, with AGE as the index column. Also, create a composite index
for WORK.CLASS called COMP that consists of columns GENDER and AGE.

Example 1: Using a Simple Index Key Set up a search criteria of AGE=13. SETKEY
specifies that the key column is AGE and the condition is equality.

/* Locate rows where ’age = 13’ */
tableid = open( ’work.class’, ’v’ );

/* Create the simple index */
rc = icreate(tableid,’age’);
name = ’’; gender = ’’;
age = 13;
call set(tableid);
rc = setkey(tableid,’age’,’eq’);
nrow = keycount(tableid);

if (nrow < 0) then _msg_ = sysmsg();
else

do;
put ’Number of rows found:’ nrow;
do while (fetch(tableid) ne -1);

put name= gender= age=;
end;

end;



494 KEYCOUNT � Chapter 13

This program produces the following output:

Number of rows found: 3
name=Alice gender=F age=13
name=Becka gender=F age=13
name=Jeffery gender=M age=13

Example 2: Using a Composite Index Key with Condition ’EQ’ Set up search criteria of
GENDER=F and AGE=13. SETKEY specifies that the key is named COMP and the
condition for the search is equality.

/* Locate rows where ’gender="F"’ */
/* and ’age=13’ */

tableid = open( ’work.class’, ’v’ );

/* Create index */
rc = icreate(tableid,’comp’,’gender age’);
name = ’’; gender = ’F’; age = 13;
call set(tableid);
rc = setkey(tableid,’comp’,’eq’);
nrow = keycount(tableid);

if (nrow < 0) then _msg_ = sysmsg();
else
do;

put ’Number of rows found:’ nrow;
do while (fetch(tableid) ne -1);

put name= gender= age=;
end;

end;

This program produces the following output:

Number of rows found: 2
name=Alice gender=F age=13
name=Becka gender=F age=13



SAS Component Language Dictionary � KEYCOUNT 495

Example 3: Using a Composite Index Key with Condition ’GT’ Set up search criteria of
GENDER=F and AGE greater than 13. SETKEY specifies that the key is named COMP
and the condition for the search is greater-than. This example illustrates the
unexpected results returned by KEYCOUNT when you use composite index keys and
SETKEY using a ’GT’ argument.

/* Locate rows where ’genderage’ > ’F13’ */
tableid = open( ’work.class’, ’v’ );

/* Create index */
rc=icreate(tableid,’comp’,’gender age’);
name = ’’; gender = ’F’; age = 13;
call set(tableid);
rc = setkey(tableid,’comp’,’gt’);
nrow = keycount( tableid);

if (nrow < 0) then _msg_ = sysmsg();
else
do;

put ’Number of rows found:’ nrow;
do while (fetch(tableid) ne -1);

put name= gender= age=;
end;

end;

This program lists 14 rows from the indexed table that met the search criteria of
GENDER||AGE>=F13.

Number of rows found: 14
name=Gail gender=F age=14
name=Tammy gender=F age=14
name=Mary gender=F age=15
name=Sharon gender=F age=15
name=Thomas gender=M age=11
name=James gender=M age=12
name=John gender=M age=12
name=Robert gender=M age=12
name=Jeffrey gender=M age=13
name=Alfred gender=M age=14
name=Duke gender=M age=14
name=Guido gender=M age=15
name=William gender=M age=15
name=Philip gender=M age=16

You can see that James at AGE=12 does not meet the SETKEY requirement of AGE >
13 and GENDER > ’F’. However, his row was selected because the values were
concatenated before the comparison was made.

See Also
“SETKEY” on page 666



496 LASTCMD � Chapter 13

LASTCMD

Returns the text of the last command that was issued from the application window

Category: Command

Syntax
cmdtext=LASTCMD();

cmdtext
contains the text of the last command that was issued from the application window.

Type: Character

Details
If the command contains multiple words, only the first word is returned.

LASTCMD is usually used in conjunction with CONTROL ENTER, ALWAYS, or
ALLCMDS.

Example

Retrieve the last command that was issued in the window and display a message,
based on that command name:

INIT:
control always;

return;
MAIN:

cmd=lastcmd();
if cmd=’GO’ then

_msg_=’Last command was ’||cmd;
return;

See Also
“WORD” on page 744



SAS Component Language Dictionary � LASTKEY 497

LASTKEY

Returns the number of the last function key that was pressed from the application window

Category: Keys

Syntax

keynum=LASTKEY();

keynum
contains the number of the function key that was pressed from the application
window, or 0 if ENTER was pressed.

Type: Numeric

Details

The returned value is the ordinal position of the key definition in the KEYS window. In
order for this function to work, you must have a window variable or text in the
DISPLAY window.

To retrieve the name of the last function key pressed by a user, use FKEYNAME.
LASTKEY is used in conjunction with CONTROL ENTER, ALWAYS, and ALLCMDS.

LASTKEY does not retrieve the number of a function key that has a global command
assigned to it.

Example

Return the number of the last function key that a user pressed. (This example
requires a window with at least one window variable.)

INIT:
control enter;

return;

MAIN:
keynum=lastkey();
if (keynum ne 0) then

put ’Last function key is ’ keynum;
else

put ’Last function key is not defined
or the ENTER key was pressed’;

return;

See Also

“FKEYNAME” on page 399
“GETFKEY” on page 428
“SETFKEY” on page 661
“CONTROL” on page 279



498 LEAVE � Chapter 13

LEAVE

Stops processing the current DO group or DO loop and resumes with the next statement in
sequence

Category: Control Flow
Comparisons: SAS Statement with limitations in SCL

Syntax
LEAVE < label>;

label
is the name of a program label that is associated with the DO group.

Type: Character

Details
The LEAVE statement is provided in SCL to control the execution of DO groups. When
you need to force the statements in a DO group to stop executing, you can use the
LEAVE statement to stop executing statements in a DO group and to start executing a
statement that is outside of that DO group.

Note: In DATA step code, the LEAVE statement stops processing only the current
DO loop. In SCL code, the LEAVE statement stops processing the current DO loop or
DO group, whichever is closest. For example, suppose your code contains a DO loop
that contains DO groups:

do n=1 to 5; /* DO loop */
if n=3 then do; leave; end; /* DO group */

put n=;
end;

When this code is compiled and run as part of an SCL program, the output is:

n=1
n=2
n=3
n=4
n=5

When this code is submitted as part of a DATA step, the output is:

n=1
n=2
n=3

See “DO” on page 337 for more information on DO groups and DO loops. �

For details about the LEAVE statement in the Base SAS language, see SAS Language
Reference: Dictionary.



SAS Component Language Dictionary � LEAVE 499

Examples

Example 1: LEAVE Statements Without Label Names If a LEAVE statement does not
contain the name of a program label, the program stops executing the statements in the
DO group and starts executing the first statement after the DO group’s END statement.
For example, when the condition in the IF statement in the following program is true
(that is, when the value of SUM > 10), the program jumps immediately to the
statement following the END statement (in this case, the PUT statement).

INIT:
return;

MAIN:
do while(i<5);

sum+i;
i=i+2;
if (sum>10) then
do;

leave;
end;

put sum=;
end;

totalsum=sum;
return;
TERM:
return;

Example 2: LEAVE Statements With Label Names In this example, when the condition
SUM > 50 is true, the program leaves the LAB1 DO group and returns to the next
statement following the DO group (in this case, the PUT statement).

INIT:
sum=45;

return;
MAIN:

link LAB1;
return;
LAB1:

do i=1 to 10;
if (sum>10) then do;

k=0;
do until (k>=20);

sum+k;
if (sum>50) then leave LAB1;
k+2;

end;
end;

end;
put ’LEAVE LAB1, sum >50 ’ sum=;

return;
TERM:
return;



500 LEFT � Chapter 13

See Also
“CONTINUE” on page 277
“DO” on page 337

LEFT

Returns a left-aligned character string

Category: Character

Syntax
lstring=LEFT(string<,length>);

lstring
contains the left-aligned character string. If lstring already exists, then specifying a
length in the LEFT function affects the current length of lstring only if the specified
length is less than the trimmed length of the string.

Type: Character

string
is the character string to be left-justified.

Type: Character

length
is the length in which the character string is to be left-justified. The default is the
maximum length of lstring.

Type: Numeric

Details
Any leading blanks in the string are removed so that the first character in the string is
nonblank. The default length of the returned value is the trimmed length of the
left-aligned string. Use length to specify a different maximum length for the returned
string.

In order for LEFT to work properly when lstring is a window variable, set the
justification field (JUST) in the field attribute window for lstring to NONE.

To right-justify a character string, use RIGHT. To center a character string, use
CENTER.

See Also
“RIGHT” on page 630
“CENTER” on page 250



SAS Component Language Dictionary � LEGEND 501

LEGEND

Displays a legend window or refreshes the current LEGEND window

Category: Legend

Syntax
CALL LEGEND(<window-name<,back-color

<,border-color<,border-attr>>>>);

window-name
is the name that is displayed in the window border. Once assigned, a window name
is displayed on subsequent legend windows until it is changed by another LEGEND
routine that assigns a different name or that assigns a null string (’’) to delete the
name from the current legend window.

Type: Character

back-color
is a background color name, or ’’for the default color. Available colors are BLACK,
BLUE, BROWN, CYAN, GRAY, GREEN, MAGENTA, ORANGE, PINK, RED,
WHITE, and YELLOW. SASCOLOR window elements can also be used.

The default background color is the SASCOLOR window element "Secondary
Background."

Type: Character

border-color
is a border color name, or ’’for the default color. Available colors are listed under
back-color. SASCOLOR window elements can also be used for border-color.

The default border color is the SASCOLOR window element "Secondary Border."
Type: Character

border-attr
is a border attribute, or ’’for the default attribute. Attributes are NONE,
BLINKING, HIGHLIGHT, HIREV, REVERSE, and UNDERLINE. If you specify a
SASCOLOR window element for border-color, then border-attr is ignored, because the
SASCOLOR window element contains a display attribute.

The default border attribute is the SASCOLOR window element "Secondary
Border".

Type: Character

Details
The LEGEND routine displays legend text that has been previously specified with the
PUTLEGEND routine. You can specify any combination of optional arguments for
LEGEND.

By default, the LEGEND window has the following characteristics:

� The window occupies rows 1 through 6 and columns 1 through the width of the
display device.

� The window name is either the name that was specified by the last LEGEND
routine or the name of the current legend window.



502 LEGEND � Chapter 13

Before invoking the LEGEND routine, you may need to resize the associated
application window so that it does not obscure the LEGEND window. To do this, either
use the WDEF routine or assign a new size to the window.

Additionally, you can specify a size for a legend window by using the WREGION
routine before calling the legend.

Example

Suppose you have two FRAME entries, X and Y. Assume that X.FRAME contains two
pushbuttons named PUSHPOP and ENDLGND, and that X.SCL contains the
corresponding control labels. When the PUSHPOP button is activated, the
PUSHLEGEND call will save X’s legend, and the Y.FRAME will be displayed. Y will
then set up and display its own legend. After the return from Y, the POPLEGEND call
will restore X’s legend.

If the ENDLGND button is activated, ENDLEGEND will close the LEGEND window,
and the application window will be restored to its original size.

X.SCL contains the following program:

INIT:
/* Get the number of rows and columns for later */
/* use. */

nr = winfo(’numrows’);
nc = winfo(’numcols’);

/* Resize the application window to */
/* start at row 10. */

call wdef(10, 1, nr-9, nc);

/* Set the size of the LEGEND window - row 1 */
/* through row 9. Pass a null string */
/* as the fifth parameter to indicate */
/* that the LEGEND window has no */
/* command area. */

call wregion(1, 1, 9, nc, ’’);

/* Set up the legend text and display it. */
call putlegend(1,’This is line one of the legend for X’,

’yellow’,’none’);
call putlegend(2,’This is line two of the legend for X’,

’yellow’,’none’);
call legend(’Sample LEGEND Window for X’,

’gray’,’blue’);
return;

MAIN:
return;

/* PUSHPOP label. If this is executed, */
/* we’ll save the current */
/* legend and call y, */
/* which will display its own legend. */

PUSHPOP:

/* Push and call. */



SAS Component Language Dictionary � LEGEND 503

call pushlegend();
call display(’y.frame’);

/* Restore the original legend. */
call poplegend();

return;

/* ENDLGND label. If this is executed, */
/* the LEGEND window will be */
/* closed, and the application window */
/* will be restored to its original size. */

ENDLGND:
call endlegend();
call wdef(1, 1, nr, nc);

return;

TERM:
return;

Y.SCL contains the following program:

INIT:
/* Set up and display Y’s own */
/* LEGEND window. */

nr = winfo(’numrows’);
nc = winfo(’numcols’);
call wdef(10, 1, nr-9, nc);
call wregion(1, 1, 9, nc, ’’);
call putlegend(1,’This is line one of the legend for Y’,

’yellow’, ’none’);
call putlegend(2,’This is line two of the legend for Y’,

’yellow’, ’none’);
call legend(’Sample LEGEND Window for Y’,

’gray’, ’blue’);
return;
MAIN:
TERM:
return;

See Also
“ENDLEGEND” on page 347
“POPLEGEND” on page 601
“PUSHLEGEND” on page 608
“PUTLEGEND” on page 611



504 LENGTH � Chapter 13

LENGTH

Returns the length of a trimmed character string

Category: Character

Syntax
length=LENGTH(cval,<’NOTRIM’ >);

length
contains the length of the trimmed character string.

Type: Numeric

cval
is the character value whose length is to be determined.

Type: Character

’NOTRIM’
specifies that trailing blanks should be counted as part of the string length.

Type: Character

Details
The resulting value is the position of the right-most nonblank character in the specified
string cval.

When NOTRIM is specified, LENGTH returns the length of a string, including
trailing blanks.

By default, variables automatically remove leading blanks when values are assigned
to them. The $CHAR format and informat must be assigned to a variable in order for
leading blanks to be considered in determining the length of a variable.

Examples

Example 1: Using the LENGTH Function Return the length of the character variable S:

length s $ 5;
s=’ab ’;
l=length(s);
put ’L=’l;

This program produces the following output:

L=2

Example 2: Using the LENGTH Function with NOTRIM Return the length of the
character variable S, using the NOTRIM option:

s = ’xy ’;
l = length(s, ’notrim’);
put ’L=’l;

This program produces the following output:

L=4



SAS Component Language Dictionary � LENGTH 505

See Also

“MLENGTH” on page 549

LENGTH

Declares variables and specifies their length and whether their data type is numeric or character

Category: Declarative Statement

Comparisons: SAS Statement with limitations in SCL

Syntax

LENGTH<variable-list><DEFAULT=n>;

variable-list
is one or more variables, specified as variable-1 <. . . variable-n> <$> length, where

variable
names a variable to be assigned a length.

$
designates that the preceding variable or variables are character type.

length
is the length of the preceding variable or variables. Length can range from 1 to
32,767 for character variables. All numeric variables have a length of 8. If you
specify a different length for a numeric variable, SCL still reserves 8 bytes for it.
Type: Character

DEFAULT=n
is the maximum length of character variables that are not defined by a LENGTH
statement. If this option is not used, the default length for character variables is 200.

Type: Numeric

Details

In SCL, LENGTH is a declarative statement and can be used only to set the lengths of
nonwindow variables. If you attempt to specify a length for a window variable, a
compile error occurs.

You typically place LENGTH statements at the beginning of a program, before the
first labeled section. A compiler error occurs if you attempt to place a LENGTH
statement within a DO group or within a conditional clause.

You can use the LENGTH statement to reduce the amount of memory required for
storing character-type nonwindow variables. For example, if your program assigns only
single-character values to the variable CODE, and if the default length of character
variables is 200, then you can save 199 bytes of storage space by defining the length of
the variable explicitly in the SCL program. To do so, use a statement like the following:

length code $ 1;



506 LETTER � Chapter 13

For details about the LENGTH statement in the Base SAS language, see SAS
Language Reference: Dictionary.

Example

Set the maximum length of all character variables that are not defined by a
LENGTH statement to 150:

length default=150;
length a $ 8;
INIT:

b=’’;
max_a=mlength(a);
max_b=mlength(b);
put max_a= max_b=;

return;

The output is:

max_a=8 max_b=150

See Also

“DECLARE” on page 309

LETTER

Displays the FSLETTER window or sends a letter that was created with the FSLETTER procedure

Category: Utility

Syntax

CALL LETTER(letter-entry<,open-mode<,table-name>>);

letter-entry
is a catalog containing one or more LETTER, FORM, or EDPARMS entries. A one- or
two-level name is assumed to be catalog or libref.catalog. The catalog is created if it
does not already exist.

Type: Character

open-mode
specifies the type of access to the FSLETTER window:

’BROWSE’
opens the catalog or letter-entry for browsing.

’EDIT’
opens the catalog or letter-entry for editing. (This is the default.)



SAS Component Language Dictionary � LETTER 507

’PRINT’
prints a letter for each row in the SAS table specified by table-name. The SEND
window is not displayed for the items that are printed. PRINT mode is valid only
when the specified entry is a letter.

’SEND’
displays the FSLETTER SEND window for one row (or letter), enabling a user to
customize the letter. To use this option, you do not have to specify a value for
table-name. If a table name is provided, the letter is displayed in the SEND
window with the fields filled with values from the first row in the table. This mode
is valid only when the specified entry is a letter.
Type: Character

table-name
is the SAS table containing values for the fill-in fields. Use the syntax
<libref.>member-name<(SAS-data-set-options)>. If you omit libref, the default SAS
data library, WORK, is used.

Specify ’’to use the _LAST_ table. If no _LAST_ table exists, the program halts.
You can add a list of SAS data set options following the table name. The list must

be enclosed in parentheses. Valid data set options include DROP, KEEP, RENAME,
WHERE, and CNTLLEV. See SAS Language Reference: Dictionary for a list of data
set options and their descriptions.

Type: Character

Details

The LETTER routine displays the FSLETTER window or sends a letter.

Note: The FSLETTER window is not displayed if a PRINT argument is used. �

If the value supplied for letter-entry is a three- or four-level name, the user is
returned to the calling application when the FSLETTER window is closed. If a one- or
two-level name is supplied, the user is returned directly to the calling application when
the SAS Explorer window is closed.

SAS data set options can be specified by enclosing them within parentheses
immediately following the table-name argument, as in the following example:

call letter(’my.letters.subscrib’,’print’,
’personal(where=(name="John"))’);

In order to use the LETTER routine, SAS/FSP Software must be installed. For more
information about the commands that are available in the FSLETTER procedure, see
the SAS/FSP Procedures Guide.

Examples

� Open the FSLETTER window to edit a document named SUBSCRIB:

call letter(’my.letters.subscrib’);

� Send a copy of the SUBSCRIB letter for each row in the SAS table
SUBSCRIB.DATA. Direct FSLETTER output to a print file when you use CALL
LETTER.

rc=filename (’myfile’,fname);
call execcmdi(’prtfile myfile’);
call letter(’my.letters.subscrib’,’print’,’subscrib.data’);



508 LIBLIST � Chapter 13

� Send a copy of the SUBSCRIB letter for the first row in the SAS table
SUBSCRIB.DATA:

call letter(’my.letters.subscrib’,’send’,’subscrib.data’);

SEND mode for the letter SUBSCRIB accepts user input.

See Also
“FSEDIT” on page 420

LIBLIST

Displays a host selection window that lists the currently assigned librefs, and returns user’s
selections

Category: SAS Table

Syntax
selections=LIBLIST(<sel-excl<,engine<,message <,autoclose<,num-sel>>>>>);

selections
contains one or more librefs from the list, or blank if no selection is made. Multiple
selections are separated by blanks. By default, selections is 200 bytes long. To
accommodate values longer than 200 bytes, explicitly declare selections with a longer
length.

Type: Character

sel-excl
is one or more librefs to include or exclude from the selection list window. Specify
names using a style described in “Styles of Name Specification” on page 509.

Type: Character

engine
is one or more engines to use as criteria for determining which librefs are displayed.
Specify names using a style described in “Styles of Name Specification” on page 509.

Type: Character

message
is the text for a message to display above the selection list. The default message tells
users to make up to the number of selections in num-sel.

Type: Character



SAS Component Language Dictionary � LIBLIST 509

autoclose
is an obsolete argument but is retained for compatibility with earlier releases. If you
want to specify a value for num-sel, then specify ’’as a placeholder for this argument.

Type: Character

num-sel
specifies the maximum number of items a user can select from the list. To display
the list for information purposes only (no selections allowed), specify 0. To specify
unlimited selections, use a value such as 9999 that is larger than the number of
available selections. A user cannot make a number of selections that exceeds the
number of items in the list.

Type: Numeric

Styles of Name Specification
To specify more than one name, separate the names with a space — for example,
MYLIB1 MYLIB2.

To specify all names, use an asterisk (’*’) or a null string (’’).
To specify all names except those listed after the NOT sign, use a NOT sign ( or ^)

followed by one or more names. For example, ^MYLIB1 displays all defined librefs
except MYLIB1.

Details
LIBLIST opens the Library Selector window, which lists librefs, engines, and the
physical names of the operating system files. However, only the selected libref is
returned. The window contains a Browse button which a user can select to display the
SAS Explorer window and select from the librefs that are currently assigned and their
contents. After browsing data libraries, a user can select File � Close to return to the
Library Selector window.

If you omit all the arguments for LIBLIST (for example, selections=liblist();),
the selection list window lists all librefs that have been assigned in the current SAS
session.

You can provide a default value that will be initially selected when the libref
selection list is displayed. To do this, assign the value to the selections variable before
calling LIBLIST.

If a user closes the selection list window without making a selection, LIBLIST returns
a blank value unless there was an initial value for selections before LIBLIST was called.

Selections from the window can be returned in the current result list, if one is
available. The current result list is a special SCL list that is automatically filled with
the values that are selected from a selection list. To use a current result list, use the
MAKELIST function to create the list, and use the CURLIST function to designate it as
the current result list. The current result list must exist before you call the LIBLIST
function.



510 LIBLIST � Chapter 13

When LIBLIST is invoked, the current result list is cleared. After LIBLIST is
invoked, the result list contains the following named items:

TAG
identifies the list as one that was created by the LIBLIST function.

Type: Character

COUNT
contains the number of selected librefs, or 0 if a user makes no selections or issues
a CANCEL command in the list window.

Type: Numeric

LIBREF
contains the name of each selected libref. There is one LIBREF element for each
selected libref name.

Type: Character

LIBNAME
contains the physical name of the operating system file for each selected libref.
There is one LIBNAME element for each selected libref.

Type: Character

Examples
� Create a selection list that displays all librefs except MYLIB1 and MYLIB2, and

display the message ’Choose a libref’.

select=liblist(’^mylib mylib2’,’*’,Choose a libref’);

� Create a selection list that displays all librefs associated with the V609 engine,
and exclude the librefs SASHELP and MAPS. Allow users to make up to three
selections.

select=liblist(’^sashelp maps’,’v609’,
’Choose up to 3 librefs’,’’,3);

� Create a current result list to receive user selections. Use MAKELIST to create
the list and CURLIST to define it as the current result list. Display all librefs
except MYLIB1 and MYLIB2, and allow users to make up to five selections. Use a
DO loop to retrieve the selections from the current result list.

listid=makelist();
rc=curlist(listid);
select=liblist(’^ mylib1 mylib2’,’ ’,
’Choose up to 5 librefs’,’’, 5);
n=getnitemn(listid,’COUNT’);
do i=1 to n;

libref=getnitemc(listid,’LIBREF’,i);
physname=getnitemc(listid,’LIBNAME’,i);
put libref= physname=;

end;



SAS Component Language Dictionary � LIBNAME 511

See Also
“CATLIST” on page 244
“DIRLIST” on page 327
“FILELIST” on page 386

LIBNAME

Assigns or deassigns a libref for a SAS data library

Category: SAS Table

Syntax
sysrc=LIBNAME(libref<,SAS-data-library<,engine <,options>>>);

sysrc
contains the return code for the operation:

0 The operation was successful.

>0 The operation was not successful.

<0 The operation was completed, but a warning or a note was
generated.

Type: Numeric

libref
is the libref to assign.

Type: Character

SAS-data-library
is the physical name of the SAS data library to be associated with the libref. This
name can be up to 32K characters long. Specify this name as required by the host
operating system.

Type: Character

engine
is the engine to use for accessing the SAS files in the data library. If you are
specifying a SAS/SHARE server, the engine should be REMOTE.

Type: Character

options
are options that are used by the specified engine. Multiple options are delimited by
blank spaces in the same quoted string. For information about engines and options,
see the SAS documentation for your operating environment.

Type: Character



512 LIBNAME � Chapter 13

Details
The LIBNAME function follows the rules for the LIBNAME statement in Base SAS
software.

Operating Environment Information: Some operating systems allow a
SAS-data-library value of ’’(with a space) and some allow ’.’ to assign a libref to the
current directory. The behavior of LIBNAME when a single space or a period is
specified for SAS-data-library is host dependent. Under some operating systems, librefs
can be assigned using system commands outside the SAS session. �

Examples

Example 1: Assigning a Libref Assign the libref NEW to SAS-data-library. If an error
or warning occurs, display the message on the message line.

if (libname(’new’,’SAS-data-library’)) then
_msg_=sysmsg();

Example 2: Using Multiple Options When Assigning a Libref Assign the libref MYLIB
to SAS-data-library, and the server name and user access rights.

rc=libname(’mylib’,’SAS-data-library’,’remote’,
’server=servername access=readonly’);

Example 3: Deassigning a Libref Deassign the libref NEW. If an error or warning
occurs, display the message on the message line.

if (libname(’new’)) then
_msg_=sysmsg();

Example 4: Using a List to Assign a Libref to Multiple SAS Data Libraries Assign the
libref DEF to several PC files whose names are stored in an SCL list:

lid=makelist();
rc=insertc(lid,’’(‘‘,-1);
rc=insertc(lid,’’’M:\SAS\MAPS’’’,-1);
rc=insertc(lid,’’’C:\CATALOGS\sasuser’’’,-1);
rc=insertc(lid,’’)’’,-1);
rc=libname(’DEF’,’ ’,’’,’’,lid);

Assign the libref DEF to several UNIX files whose names are stored in an SCL list:

v1=’’(/mylib/store/data/facilities’’’;
v2=’’’/mylib/store/data/hresorces’’’;
v3=’’’/mylib/store/data/supplies’)’’;
lid = makelist ();
rc =insertc(lid,v1,-1);
rc =insertc(lid,v2,-1);
rc =insertc(lid,v3,-1);
RC =LIBNAME(’DEF’,’ ’,’’,’’,lid);

See Also
“LIBREF” on page 513



SAS Component Language Dictionary � LISTC and LISTN 513

LIBREF

Verifies that a libref has been assigned

Category: SAS Table and Utility

Syntax
sysrc=LIBREF(libref);

sysrc
contains the return code for the operation:

=0 The operation was successful.

<0 The operation was completed, but a warning or a note was
generated.

>0 The operation was not successful.
Type: Numeric

libref
is the libref to be verified.

Type: Character

Example

Verify a libref. If an error or warning occurs, the message is displayed on the
application window’s message line.

if (libref(’sashelp’))
then _msg_=sysmsg();

See Also
“LIBNAME” on page 511

LISTC and LISTN

Display a selection list window containing values stored in a catalog entry

Category: Selection List

Syntax
selections=LISTC(entry<,message<,autoclose<,num-sel>>>);

selections=LISTN(entry<,message<,autoclose<,num-sel>>>);



514 LISTC and LISTN � Chapter 13

selections
contains one or more character values that have been selected by the user.

For LISTC, if a selection is not made, selections will be blank. Multiple selections
are separated by blanks. By default, selections is 200 bytes long. To accommodate
values longer than 200 bytes, explicitly declare selections with a longer length.

For LISTN, selections is the first value that the user selected. The value is
numeric.

Type: Character or Numeric

entry
is a LIST entry (for LISTN) or a HELP, LIST, or MENU entry (for LISTC). The entry
must be specified as entry.type for an entry in the current catalog or as
libref.catalog.entry.type for an entry in a different catalog.

Type: Character

message
is text for a message to be displayed above the selection list. The default message
tells users to make up to the number of selections specified by num-sel, or 1 if
num-sel is not provided. The default is 1.

Type: Character

autoclose
specifies whether the selection list window closes automatically after a user makes a
selection when only one choice is allowed:

’Y’ closes the window automatically. (This is the default.)

’N’ leaves the window open until the user explicitly closes it.
This option is ignored when num-sel is not 1. However, use ’’as a placeholder if

you are also specifying a value for num-sel.
Type: Character

num-sel
specifies the maximum number of items a user can select from the list. To display
the list for information purposes only (no selections allowed), specify 0. To specify an
unlimited number of selections, use a value such as 9999 that is larger than the
number of available selections. The default is one selection.

Type: Numeric

Details
LISTC automatically displays a selection list containing character values that are
stored in a LIST, HELP, or MENU entry. A LIST entry that is used with LISTC must
be of character type. Typically, a LIST entry is used if the selections in the LIST entry
are self-explanatory. A HELP or MENU entry is used if a definition is needed next to
the selection.

LISTN automatically displays a selection list containing numeric values stored in a
LIST entry, which must be of numeric type. The numeric values are displayed using the
format that was specified for the LIST entry. If no format was specified, the values are
displayed using the BEST. format.

For a selection list that is produced with a LIST entry, you can provide a default or
initial selected value by specifying a value for selections before calling LISTC. If
selections contains valid values when LISTC is invoked, those values are automatically
designated as selected when the selection list is displayed.

When multiple selections are allowed in LISTN, selections contains the first value
selected from the list. However, the values for all selections can be returned in the



SAS Component Language Dictionary � LISTC and LISTN 515

current result list, if one is available. The current result list is a special SCL list that is
automatically filled with the values selected from a selection list. To use a current
result list, use the MAKELIST function to create the list, and use the CURLIST
function to designate it as the current result list. The current result list must exist
before you call LISTC. You can use GETITEMC to retrieve values from the list.

Examples

Example 1: Using LISTC with a LIST Entry Open the entry MYLIST.LIST in the
current catalog, and then display it as a selection list. Users can make up to four
selections. The selected values are retrieved from the current environment list.

listid=makelist();
rc=curlist(listid);
selections=listc(’mylist.list’,’’,’n’,4);
n=listlen(listid);
do i=1 to n;

item=getitemc(listid,i);
put item=;

end;

Example 2: Using LISTC with the Current Result List Create LIST_C and make it the
current list. Use LISTC to display a selection list containing the values ABC, DEF,
GHI, and JLK, which are stored in MYCHAR.LIST, and allow a user to make up to 4
selections.

list_c=makelist();
cur_list=curlist(list_c);

/* Display the list and put the user */
/* selection in SELECTIONS. */
/* Then print the number of selections. */

selections=listc(’mychar.list’,’ ’,’ ’,4);
put ’User selected’ selections;

/* Find out the number of items */
/* in LIST_C and print the number. */

num_selected=listlen(list_c);
put ’Total number selected is’ num_selected;

/* Get the selections from */
/* the current list */
/* and print each one. */

do i=1 to num_selected;
item=getitemc(list_c,i);
put ’Item’ i ’is ’ item;

end;

Testing the program and selecting GHI, DEF, JKL, and then ABC produces the
following output:

User selected GHI DEF JKL ABC
Total number selected is 4
Item 1 is GHI
Item 2 is DEF
Item 3 is JKL
Item 4 is ABC



516 LISTLEN � Chapter 13

Example 3: Using LISTN with the Current Result List Create LIST_N and make it the
current list. Use LISTN to display a selection list containing the numbers 1, 2, 3, and 4,
which are stored in MYLIST.LIST, and allow a user to make up to 4 selections.

list_n=makelist();
cur_list=curlist(list_n);

/* Display the list and put the first user */
/* selection in SELECTED_FIRST, */
/* then print the number of user selections. */

selected_first=listn(’mylist.list’,’ ’,’ ’,4);
put ’First selection is ’ selected_first;

/* Find out the number of items in LIST-N */
/* and print the number. */

num_selected=listlen(list_n);
put ’Total number selected is ’ num_selected;

/* Get any other selections from */
/* the current list */
/* and print each number. */

do i=1 to num_selected;
item=getitemn(list_n,i);
put ’Item ’ i ’is ’ item;

end;

Testing the program and selecting 3, 2, 4, and 1, produces the following output:

First selection is 3
Total number selected is 4
Item 1 is 3
Item 2 is 2
Item 3 is 4
Item 4 is 1

See Also
“DATALISTC and DATALISTN” on page 304

LISTLEN

Reports the length of an SCL list

Category: List

Syntax
n=LISTLEN(list-id );



SAS Component Language Dictionary � LISTLEN 517

n
contains either the length of an SCL list or status information:

>0 the length of a non-empty list

0 the list is empty

−1 the list identifier is invalid.
Type: Numeric

list-id
is the identifier of the list whose length is being queried, or any other number.

Type: Numeric or List

Details
The length of a list is the number of items in the list, excluding the contents of sublists.
Because LISTLEN returns -1 if list-id is an invalid list identifier, you can use LISTLEN
to determine whether a list exists. For example:

listid=getniteml(envlist(’G’),’MYLIST’);
invalid=(listlen(listid)=-1);
if invalid then
do;

put ’MYLIST in the global environment has been deleted.’;
stop;

end;

Example

Create the empty list LISTA, and then insert LISTA into a copy of itself, LISTB. The
lengths of the two lists are then computed and are stored in the variables LEN_A and
LEN_B.

lista=makelist();
listb=copylist(lista);
listb=insertl(listb,lista);
len_a=listlen(lista);
len_b=listlen(listb);
_msg_=’The length of LISTA is ’||len_a||’ and ’||

’the length of LISTB is ’||len_b;

This example shows that the length of LISTA is 0, whereas the length of LISTB is 1.

See Also
“MAKELIST” on page 533
“MAKENLIST” on page 534



518 LNAMECHK � Chapter 13

LNAMECHK

Validates a path string

Category: Image

Syntax
rc= LNAMECHK(path-string);

rc
contains the return code for the operation:

0 The path string is a valid path to a file.

>0 The path string is not a valid path to a file.
Type: Numeric

path-string
is the string generated by LNAMEMK.

Type: Character

Details
LNAMECHK validates that the specified path string refers to an external file that
exists. It does not determine whether the file contains a readable image.

Example

Test whether a file exists:

imgpath=lnamemk(2,fromdir,file)
rc=lnamechk(2,imgpath);
if (rc ne 0) then

do;
_msg_="File does not exist.";

end;



SAS Component Language Dictionary � LNAMEGET 519

LNAMEGET

Decodes a path string

Category: Image

Syntax
rc=LNAMEGET(path-string,type,<name-string1<,name-string2><,options>>);

rc
contains the return code for the operation:

0 successful

>0 not successful
Type: Numeric

path-string
is the string generated by LNAMEMK.

Type: Character

type
is the type of the path. See “LNAMEMK” on page 520 for more information. If no
other arguments are specified, the function returns only the type.

Type: Numeric

name-string
is the name-string provided in LNAMEMK. Specify enough name-string arguments
for the type. See “LNAMEMK” on page 520 for more information.

Type: Character

options
are any options used with LNAMEMK.

Type: Character

Details
Path strings that are created by LNAMEMK are not readable, and their internal format
may change from release to release. The only way to decode a path string is to use
LNAMEGET.

You may find it useful to encode an image filename with LNAMEMK and to store
that path string in a SAS data set. Then, later retrieve the path string and use
LNAMEGET to find the arguments that were originally specified in LNAMEMK.

If you use the type, name-string, and options arguments, they are filled with the
corresponding arguments specified in LNAMEMK (such as the libref/member name,
physical pathname, and so on). The number of optional arguments that you specify
must match the number specified in LNAMEMK.



520 LNAMEMK � Chapter 13

Examples
� Encode and decode a pathname. Store the type of path in TYPE, and store the

pathname in IMGFILE.

imgpath=lnamemk(1,filename);
rc=lnameget(imgpath,type,imgfile);

� Encode and decode the location of an image file. Store the directory that contains
the image file in DIR, and store the filename in IMGFILE.

imgpath=lnamemk(2,dirname,filename);
rc=lnameget(imgpath,type,dir,imgfile);

See Also
“LNAMECHK” on page 518
“LNAMEMK” on page 520

LNAMEMK

Makes a path string for an image file

Category: Image

Syntax
path-string=LNAMEMK(type,<name-string1<,name-string2><,attributes>>);

path-string
contains a packed string containing information about the file path and format.
Declare a length of at least 300 characters.

Type: Character

type
is a number from 1 through 5 that specifies the type of path used to read the
external file.

Type: Numeric

name-string
is the string that identifies the location of the image. The specification depends on
the value specified for type.

For type use name-string1 and name-string2

1 physical-pathname

2 directory-pathname filename

3 fileref

4 fileref filename

5 libref.catalog.member



SAS Component Language Dictionary � LNAMEMK 521

Type: Character

attributes
specify file-specific attributes. See File TypesAppendix 2, “Image File Types and
Associated Attributes,” on page 845 and Attributes for Reading Image
Files“Attributes for Reading Image Files” on page 847 for possible choices. The
FORMAT= attribute must be specified for Targa images, for images residing in SAS
catalogs, and for host-specific formats. FORMAT is not required in other cases, but it
is always more efficient to specify it.

Type: Character

Details
LNAMEMK creates a character variable that contains information about the location of
the image as well as other image attributes.

The path string can be used with the READ and WRITE commands in IMGOP or
with the image object. The path string contains binary data and can be decoded only
with the LNAMEGET and LNAMECHK functions.

Example

Create path strings for image files:

length file $ 200;

file=lnamemk(1,filename,’format=gif’);
file=lnamemk(2,directory,filename,’format=gif’);
file=lnamemk(3,fileref,’format=gif’);
file=lnamemk(4,fileref,filename,’format=gif’);

imgentry=libref||"."||catalog||"."||member;
file=lnamemk(5,imgentry,’format=cat’);

See Also
“IMGOP” on page 464
“LNAMECHK” on page 518
“LNAMEGET” on page 519



522 LOADCLASS � Chapter 13

LOADCLASS

Loads a class and returns its identifier number

Category: Object Oriented

Syntax
class-id=LOADCLASS(class-name);

class-id
contains the identifier that has been assigned to the class. If the class is not loaded,
class-id contains 0.

Type: Numeric

class-name
is the one- to four-level name of the CLASS catalog entry to load. If class-name is a
one- or two-level name, then the current search path is used to find the CLASS entry.
If the CLASS entry was previously loaded, then the same class identifier is returned.
Otherwise, the CLASS entry is loaded from the catalog into the application class list,
and the class identifier is returned in class-id.

Type: Character

Details
LOADCLASS loads a class definition from a CLASS catalog entry. The identifier
number that LOADCLASS returns can be used to create an instance of the class with
the INSTANCE function.

Example

Load SASUSER.CLASSES.TIMER.CLASS and use the INSTANCE function to create
an instance of the TIMER class:

timerclass=loadclass(’sasuser.classes.timer’);
timer=instance(timerclass);

See Also
“APPLY” on page 225
“INSTANCE” on page 477
“LOADRES” on page 523
“_NEO_” on page 561
“NOTIFY” on page 575
“SEND” on page 656
“SUPAPPLY” on page 695
“SUPER” on page 697



SAS Component Language Dictionary � LOADRES 523

LOADRES

Loads a RESOURCE entry

Category: Object Oriented

Syntax
resource-id=LOADRES(resource-name);

resource-id
contains the identifier that is assigned to the resource list.

Type: Numeric

resource-name
is the RESOURCE catalog entry to load. If resource-name is a one- or two-level
name, the current search path is used to find the RESOURCE entry.

Type: Character

Details
LOADRES loads a list of classes from a RESOURCE entry. This list is called a resource
list. RESOURCE entries are used primarily by FRAME entries, although you can
create RESOURCE entries for component classes as well. This function is useful for
loading several classes or even entire class hierarchies at one time instead of having to
load several CLASS entries.

If a class contained in the resource list has already been loaded, the existing class
replaces the class in the resource list (although the RESOURCE entry is not modified).
This prevents duplicate class lists for the same class name.

Example

Load a resource list that is stored in APPQR.HIER1.GROUPS.RESOURCE, then
load several classes contained in the RESOURCE entry. After the LOADRES call, the
LOADCLASS calls do not have to read the classes from the catalog.

groups = loadres(’appqr.hier1.groups.resource’);
c1=loadclass(’appqr.hier1.c1.class’);
c2=loadclass(’appqr.hier1.c2.class’);
c3=loadclass(’appqr.hier1.c3.class’);

See Also
“APPLY” on page 225

“INSTANCE” on page 477
“LOADCLASS” on page 522
“_NEO_” on page 561
“NOTIFY” on page 575
“SEND” on page 656

“SUPAPPLY” on page 695
“SUPER” on page 697



524 LOCATEC and LOCATEN � Chapter 13

LOCATEC and LOCATEN

Search a SAS table for a row that contains a specified value

Category: SAS Table

Syntax
rc=LOCATEC(table-id,col-num,cval<,sort<,direction>>);

rc=LOCATEN(table-id, col-num,nval <,sort<,direction>>);

rc
contains information about the search:

>0 the number of rows read before a match is found

0 no row with a matching value was found
Type: Numeric

table-id
is the identifier that was assigned when the SAS table was opened. If table-id is
invalid, the program halts.

Type: Numeric

col-num
is the number of the column to search for. This number can be returned by the
VARNUM function. If the number is invalid, the program halts and sends a message
to the log.

Type: Numeric

cval
is the character value for LOCATEC to search for. If cval is not a character value,
the program halts and sends a message to the log.

Type: Character

nval
is the numeric value for LOCATEN to search for. If nval is not a numeric value, the
program halts and sends a message to the log.

Type: Numeric

sort
indicates whether the SAS table is sorted:

’A’ The table is sorted in ascending order.

’D’ The table is sorted in descending order.

’U’ The table is not sorted. (This is the default.)
Type: Character



SAS Component Language Dictionary � LOCATEC and LOCATEN 525

direction
specifies the direction in which to search the SAS table:

’A’ searches all rows, starting with the first row. (This is the default
unless the table is opened in ’IS’ mode.)

’B’ searches from the previous row backward.

’F’ searches from the next row forward. (This is the default if the
table is opened in ’IS’ mode.)

Type: Character

Details
LOCATEC and LOCATEN do not search for partial values. For LOCATEC, preceding
blanks are part of cval but trailing blanks are not. Therefore, you can facilitate
searching for LOCATEC by using the LEFT function to left-justify character values.

LOCATEC and LOCATEN search all rows, starting with the first row by default and
skipping rows marked for deletion. When a WHERE clause is active, these functions
search the rows that meet the WHERE condition for a match. If a matching row is
found, it is loaded into the Table Data Vector (TDV). Otherwise, the current row
remains in the TDV.

LOCATEC and LOCATEN return the number of rows read before a match is found.
This number may not correspond to the row number where the match is found because
these functions skip deleted rows. Moreover, if a WHERE clause is active, they read
only the that meet the WHERE condition, and they may include appended rows that
meet the WHERE condition. Also, if direction is supplied, the number returned is the
number of rows read from the previous row where the search began. By default, the
search direction is forward, starting with the first row in the table.

If the table is sorted, then specifying ’A’ or ’D’ for sort uses the more efficient
binary search algorithm. Perform a binary search only when you have member-level
access so that no one else can be editing the table concurrently. With a binary search,
LOCATEC and LOCATEN make assumptions about how the data is sorted, and they
assume that they can identify the first and last rows. If the table is being edited
concurrently, rows could be appended so that the table is no longer in sorted order. As a
result, the binary search might not find the correct values.

Examples

Example 1: Using the LOCATEC Function Locate a customer named SMITH in the
PAYROLL table. The table is opened with a table-id of TABLEID and is sorted by
NAME. The customer’s name is specified in the CUSTOMER column.

customer=’SMITH’;
rc=locatec(tableid,varnum(tableid,’name’),customer,’a’);
if (rc=0) then _msg_=

’There is no customer named ’||customer||’.’;
else do;

...more SCL statements...
end;

return;



526 LOCK � Chapter 13

Example 2: Using the LOCATEN Function Locate a house whose price is $94,000 in the
SASUSER.HOUSES table, which is opened with a table-id of HOUSEID. The price is
specified in the window variable PRICE.

houseid=open(’sasuser.houses’);
price=94000;
rc=locaten(houseid,varnum(houseid,’price’),price);
if (rc=0) then

_msg_=’No house is priced at ’||
putn(price,’dollar9.2’)||’.’;

else do;
rows=curobs(houseid);
_msg_=

’The specified price was found in row ’||rows;
end;

return;

See Also

“FETCH” on page 374
“FETCHOBS” on page 375
“GETVARC and GETVARN” on page 438
“SET” on page 658

LOCK

Locks or unlocks a SAS table or a SAS catalog entry

Category: SAS Table

Syntax

sysrc=LOCK(member<,action>);

sysrc
contains the return code for the operation:

0 successful

>0 not successful

<0 the operation was completed, but a warning or a note was
generated.

member
is a member of a SAS data library or a SAS catalog entry. The value that you specify
can be a one-, two-, three-, or four-level name. A one-level name is presumed to be a
libref, whereas a two-level name defaults to the SAS table type DATA.

Type: Character



SAS Component Language Dictionary � LOOKUPC 527

action
specifies an action to be performed on the SAS table or catalog entry:

’CLEAR’
unlocks the specified SAS table(s) or SAS catalog entry.

’LOCK’
locks the specified SAS table(s) or SAS catalog entry. (This is the default.)

’QUERY’
queries the lock status of a SAS table or a SAS catalog entry.

_SWNOLKH
not currently locked. SYSRC of -630099.

_SWLKUSR
locked by another user. SYSRC of -630097.

_SWLKYOU
locked or in use by the caller. SYSRC of -630098.

Type: Character

Details
If action is not provided, the action defaults to LOCK.

Example

Lock the data library that is associated with a libref of A, unlock data view LIB.A,
and lock LIB.A.B.PROGRAM. Then, query the lock state of the FOO.ONE table:

rc=lock(’a’);
rc=lock(’lib.a.view’,’clear’);
rc=lock(’lib.a.b.program’);
rc=lock(’foo.one.data’,’query’);
if (rc=%sysrc(_SWLKUSR)) then
_msg_=’Table foo.one is currently locked.’;

LOOKUPC

Searches for a string among a list of valid tokens

Category: Command

Syntax
rc=LOOKUPC(string,token-1<, . . .,token-12>);



528 LOOKUPC � Chapter 13

rc
contains the return code for the operation:

0 indicates that no match was found.

>0 is the position in the token list if a unique match was found.

<0 is the negative of the position in the token list if a duplicate token
was found.

Type: Numeric

string
is the character value to search for.

Type: Character

token
is up to 12 character values, separated by commas.

Type: Character

Details
A token can be a name, a literal, digits, or special characters. This function is useful for
looking up valid commands.

The function accepts abbreviations as valid commands. That is, the function reports
a match if the search string matches the starting characters of a token.

LOOKUPC does not search the token list for embedded strings. For example, the
search string LIST would not be found in the token NEWLIST.

Example

Get the command (SURVEY, NEWLIST, or ADDNAME) that the user issued from
the command line, and execute code accordingly:

array cmds{*} $8 (’SURVEY’,’NEWLIST’,’ADDNAME’);
INIT:

control always;
return;
MAIN:
cmdword=WORD(1,’u’);
cmdnum=lookupc(cmdword,cmds{1},cmds{2},cmds{3});
select;
when (cmdnum=1)

...SCL statements to process SURVEY command...
when (cmdnum=2)

...SCL statements to process NEWLIST command...
when (cmdnum=3)

...SCL statements to process ADDNAME command...
otherwise _msg_=’Command conflict’;

end;

In this example, SUR, NEWL, and ADDN are considered valid commands.



SAS Component Language Dictionary � LVARLEVEL 529

LVARLEVEL

Fills an SCL list with the unique values of a column from a SAS table

Category: List

Syntax
rc=LVARLEVEL(dsid,varname,n-level<,list-id>);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

dsid
is the identifier that was assigned when the table was opened. An invalid dsid
produces an error condition.

Type: Numeric

varname
is the column whose unique formatted values are to be reported.

Type: Character

n-level
is the name of the variable in which the function stores the number of unique values
(or levels). This variable must be initialized to a nonmissing value before its value is
set by the LVARLEVEL function.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric

list-id
is the identifier of the list to fill with the unique formatted values. If list-id is not
provided, the values are placed in the current result list. An invalid list-id produces
an error condition.

Type: Numeric or List



530 LVARLEVEL � Chapter 13

Details
The values are placed in the list identified by list-id, or in the current result list
identified by CURLIST (if list-id is not specified). The values placed in the list are
always character values. It is an error if list-id is omitted and you have not created a
current result list with the CURLIST function. n-level must be a column, because
LVARLEVEL uses it to store the number of unique values it finds. n-level must be
initialized to any value except missing before LVARLEVEL executes.

Examples

Example 1: Placing Values in the Current List Get the unique formatted values for
the table column NAME from SASUSER.CLASS, place the values in the current list,
and print them:

dsid=open(’sasuser.class’);
nlevels=0;
rc=curlist(makelist());
rc=lvarlevel(dsid,’name’,nlevels);
put nlevels=;
call putlist(curlist(),’levels’,0);
rc=close(dsid);

Example 2: Placing Values in a Specified List Get the unique formatted values for
the table column NAME from SASUSER.CLASS, place the values in the specified list,
and print them:

dsid=open(’sasuser.class’);
nlevels=0;
listid=makelist();
rc=lvarlevel(dsid,’name’,nlevels,listid);
put nlevels=;
call putlist(listid,’levels’,0);
rc=close(dsid);
rc=dellist(listid);

See Also
“CURLIST” on page 298
“OPEN” on page 581
“VARLEVEL” on page 726
“VARSTAT” on page 732



SAS Component Language Dictionary � MAKEARRAY 531

MAKEARRAY

Creates an array of the given size with all elements in the array initialized to missing for numeric
values or blank for character values

Category: Array

Syntax
array=MAKEARRAY(dim1<,...,dimN>);

array
is the dynamic array to be created. A non-dynamic array causes an error condition.

Type: Array

dim1,...,dimN
is the size of each specified dimension. If you specify negative sizes or an invalid
number of dimensions, an error condition occurs.

Type: Numeric

Details
Unlike static arrays, whose bounds must be set at compile time, you can create and
resize (change the bounds of) dynamic arrays at run time. The low bound of the
dynamic array will always be 1, and the high bound will be determined as given at run
time. If you create a one-dimensional dynamic array with 5 elements, then the low
bound and high bound will be 1 and 5, respectively. The array must be declared using
an asterisk (*) for the array dimensions with no array elements or initial values
specified. The syntax is the same as for a reference array. For example, the following
lines declare a one-dimensional numeric dynamic array named A and a
two-dimensional character dynamic array named B:

DCL num A(*);
DCL char B(*,*);

The MAKEARRAY function creates an array of the given size. All elements in the array
initialized to missing for numeric values or blank for character values. The number of
dimensions must be the same as what was specified in the DECLARE statement.

If you use the MAKEARRAY function to resize a dynamic array, all the data is lost
and becomes garbage. If you try to reference an array element without first creating
the array, an error occurs.

Dynamic arrays can be used with the other existing array functions (DIM, HBOUND,
LBOUND) as long as the array has been created with MAKEARRAY. If you try to use
these other functions without first creating the array, a program halt occurs.



532 MAKEARRAY � Chapter 13

Examples

Example 1: Create a One–Dimensional Array This example creates a one-dimensional
array of 5 elements.

DCL num a(*);
a = makearray(5);

Example 2: Create a Two–Dimensional Array This example creates a two-dimensional
5x5 array.

DCL num a(*,*);
a = makearray(5,5);

Example 3: Create an Array from a Table This example uses table work.a, which has
only numerical variables. The data from all the table rows is placed into a
two-dimensional array. The dimensions and size of the array are determined by the
number of rows and columns in the table.

init:

/* Open the table and create the array. */

DCL num arr(*,*) rc;
dsid = open(’work.a’);
nlobs = attrn(dsid, ’NLOBS’);
nvars = attrn(dsid, ’NVARS’);
arr = makearray(nlobs,nvars);

/* Move the contents of the table into the array. */

do i = 1 to dim(arr, 1);
rc = fetch(dsid);

do j = 1 to dim(arr, 2);
arr[i,j] = getvarn(dsid, j);

end;
end;

/* Close the table and delete the array. */
call close(dsid);
rc = delarray(arr);
return;

See Also
“DECLARE” on page 309
“DELARRAY” on page 312
“REDIM” on page 615
DIM, HBOUND, and LBOUND in SAS Language Reference: Dictionary
Chapter 4, “SCL Arrays,” on page 37



SAS Component Language Dictionary � MAKELIST 533

MAKELIST

Creates an SCL list

Category: List

Syntax
list-id=MAKELIST(<n<, visibility>>);

list-id
contains the identifier of the new list, or 0 if the list could not be created.

Type: Numeric or List

n
is the number of items to place in the list initially. By default, n is 0.

Type: Numeric

visibility
specifies whether the list is global or local:

’G’ The list is global and can be shared by all applications executing
in the same SAS session. A global list is deleted when the SAS
session ends.

’L’ The list is local to the current SAS application. A local list is
deleted when the application ends. (This is the default.)

Type: Character

Details
MAKELIST creates either an empty list or a list with the number of items specified in
n. Each item contains a missing value. Use the list identifier returned by MAKELIST
with all other SCL list functions that use the list.

SCL lists can contain numeric items, character items, other list items, or object
items. Each item can have a name. Both lists and list items have attributes. See
Chapter 5, “SCL Lists,” on page 49 for complete information about using SCL lists.

Example

Create lists in the local and global environments:

n = 12;
/* Make an empty local list. */

list1=makelist();
/* Make a local list with 24 items. */

list2=makelist(2*n);
/* Make an empty global list. */

list3=makelist(0,’G’);

See Also
“CLEARLIST” on page 266
“COPYLIST” on page 289



534 MAKENLIST � Chapter 13

“DELLIST” on page 316
“LISTLEN” on page 516
“MAKENLIST” on page 534
“PUTLIST” on page 612
“SAVELIST” on page 640

MAKENLIST

Creates an SCL list that contains named items

Category: List

Syntax
list-id=MAKENLIST(visibility,name-1<, . . . ,name-n>);

list-id
contains the identifier of the new list, or 0 if the list could not be created.

Type: Numeric or List

visibility
specifies whether the list is global or local:

’G’ The list is global and can be shared by all applications executing
in the same SAS session. A global list is deleted when the SAS
session ends.

’L’ The list is local to the current SAS application. A local list is
deleted when the application ends. (This is the default.)

Type: Character

name
is one or more list item names, separated by commas. Item names are converted to
uppercase, and trailing blanks are removed. Each name can be any SCL string. The
same name can be used more than once. The maximum length of an SCL list item
name is 255 characters.

Type: Character

Details
MAKENLIST creates a list that contains an item for each name that you specify. Each
item contains a missing value. Use the list identifier returned by MAKENLIST with all
remaining functions that manipulate the list. When you create a list of named items,
you can assign or access list values by their names as well as by their positions.
However, it is more efficient to access items by position rather than by name.

You can use MAKENLIST to create structures that group related information into
one list. For example, a row in a SAS table can be placed in a named list where each
named item corresponds to the table column of the same name.



SAS Component Language Dictionary � MESSAGEBOX 535

Note that the visibility argument (L or G) is required and is the first argument, unlike
the MAKELIST function. Note also that this function does not use an n argument.

Using MAKENLIST is simpler than using MAKELIST and then naming each item
independently.

Example

The following statement creates a list of four named items:

mylist=makenlist(’L’,’A’,’B’,’C’);

It is equivalent to these four statements:

mylist=makelist(3,’L’);
rc=nameitem(mylist,1,’A’);
rc=nameitem(mylist,2,’B’);
rc=nameitem(mylist,3,’C’);

See Also
“LISTLEN” on page 516
“MAKELIST” on page 533
“NAMEDITEM” on page 556
“NAMEITEM” on page 559

MESSAGEBOX

Displays a host message window with a specified text and icon

Category: Utility

Syntax
text=MESSAGEBOX(textlist-id<,icon<,buttons

<,caption<,default<,right>>>>>);

text
contains the text of the button that a user pressed in the message dialog window.
This text can be

ABORT, APPEND, CANCEL, IGNORE, OK, NO, REPLACE, RETRY, YES, or
YESTOALL. When a user presses Enter instead of selecting a button, either default
is returned (if specified) or the text of the first button in the message window is
returned.

Type: Character



536 MESSAGEBOX � Chapter 13

textlist-id
contains the identifier for the SCL list that contains the lines of text to display in the
message window. Lines that are too long are wrapped. For example, if there are two
lines and the first is too long, the text displays as three lines.

Type: List

icon
specifies the icon to display in the message window:

’I’ Information or note icon (default)

’?’ Query icon

’!’ Warning icon

’S’ Error icon (stop sign/hand)

Type: Character

buttons
specifies the set of command buttons to display in the message window:

’O’ Ok (default)

’OC’ Ok, Cancel

’YN’ Yes, No

’YNC’ Yes, No, Cancel

’YYNC’ Yes, Yes to all, No, Cancel

’ARI’ Abort, Retry, Ignore

’RAC’ Replace, Append, Cancel

’RC’ Retry, Cancel

Type: Character

caption
is the title for the message window.

Type: Character

default
is a single character that corresponds to one of the characters specified in buttons.
Default specifies the value that is returned when a user presses Enter in the
message window instead of selecting a button. If default is not supplied, the default
selection is the text of the first button in the message window.

Type: Character

right
specifies whether the text in the message window is right- or left- justified:

’N’ Left justify the text. (default)

’Y’ Right justify the text.

Type: Character



SAS Component Language Dictionary � METHOD 537

Details
MESSAGEBOX calls a host message window and specifies text to be displayed there. It
can also specify an icon, one or more buttons, and a title to display in the window.

If the message window cannot open, or if textlist-id is invalid, the program halts.
Otherwise, MESSAGEBOX returns OK, CANCEL, ABORT, RETRY, IGNORE, YES, or
NO. On hosts that allow users to close the message window without selecting a button,
CANCEL is returned even if it is not one of the button choices.

Example

Create a window to prompt users to save the latest changes when they close an
application window. If no button is selected to close the window, NO is returned to the
variable COMMAND.

commandlist=makelist();
commandlist=insertc(commandlist,

’You have not saved the latest changes.’,1);
commandlist=insertc(commandlist,

’Do you want to save your changes?’,2);
...more SCL statements...
command=messagebox(commandlist,’!’,’YN’,’’,’N’,’’);
commandlist=dellist(commandlist);

METHOD

Executes a method block that is defined in an SCL entry

Category: Modular Programming and Object Oriented

Syntax
CALL METHOD(entry,label<,parameters>);

return-value=METHOD(entry,label< ,parameters>);

entry
is a catalog entry of type SCL. To specify an entry in the current catalog, use entry or
entry.type. To specify an entry in a different catalog, use libref.catalog.entry.type. If
type is not specified, it defaults to SCL.

Type: Character



538 METHOD � Chapter 13

label
is the name of the method block in the SCL entry.

Type: Character

parameters
are parameters to pass to the method block. The SCL entry that receives these
parameters must declare each of them in a METHOD statement.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Character

return-value
contains the value that is returned by the method block.

Type: Numeric, Character, List, Object, Class, or Interface

Details
METHOD can pass parameter values to the called method, and it can receive a value
when it is used as a function. In order to return a value, the associated METHOD
statement must contain the RETURN= option, and the RETURN statement must
specify the variable or literal value to return.

Parameters that are passed must agree with the number of arguments, relative
positions, and data types in the corresponding method block unless the REST= or
ARGLIST= options are used in the method block. The parameter names in METHOD
do not have to match the argument names in the method block.

A method block, which contains a sequence of SCL statements, can be defined either
in the current SCL entry or in another, external SCL entry. If the method block is
defined in the current entry, it is more efficient to use a LINK statement instead of a
METHOD routine.

Parameters are passed in the following ways:

call-by-reference
passes variables and enables values to be returned to CALL METHOD. This
approach enables the called method block to modify values and then to return
them.

An example of a call-by-reference is

call method(’b.scl’,’abc’,var1,name,field2);

If you do not want to return the values, use the NOCHANGE() routine in the
method block. Or, you can assign the INPUT, OUTPUT, and UPDATE options to
the variables listed in the METHOD statement to determine which variables can
receive and return values. For example:

abc: method var1 :input :num
name :update :char
field1 :output :num;

call-by-value
is used for all numeric constants, character constants, and expressions. It does not
return values to the calling METHOD routine. An example of a call-by-value is

call method(’b.scl’,’abc’,100,’hello’,x+y);



SAS Component Language Dictionary � METHOD 539

Example

Call the method block that is labeled ABC in the SCL entry CODE. The following
three parameters are passed: the contents of the variable A, the literal value 3, and the
contents of the variable C.

call method(’code.scl’,’abc’,a,3,c);

The method block can return modified values to the variables A and C unless the
NOCHANGE routine is specified in the method block or unless A and C are not
specified in the METHOD statement as input parameters.

See Also
“DISPLAY” on page 330
“NOCHANGE” on page 571
“METHOD” on page 539

METHOD

Defines a method that can be called by the METHOD routine

Category: Modular Programming and Object Oriented

Syntax
method-name-label:< method-access-scope > METHOD <argument-list>

<OPTIONAL=argument-list> <ARGLIST=arg-list-id |
REST=rest-list-id><RETURN=data-type>;

method-name-label
specifies the method name label, which can be up to 32 characters in length. Method
labels have the same syntax as SCL labels.

CAUTION:
Leading underscores in method names typically identify methods that are supplied with
the SAS System. It is recommended that you do not define method names that have
leading underscores unless the underscores are required. For example, you may
need to create a new component that supports an interface, such as the
staticStringList interface, that has methods that are defined with leading
underscores. �

method-access-scope
species how the method can be accessed. If the method-access-scope is not provided, a
method has PUBLIC scope. Method-access-scope is valid only for METHOD
statements in a CLASS or USECLASS block.



540 METHOD � Chapter 13

PUBLIC
specifies that the method can be accessed by any SCL program.

PRIVATE
specifies that the method can be accessed only by methods in the same class in
which the method is defined. Private methods are not inherited by subclasses of
the class.

PROTECTED
specifies that the method can be accessed only by subclasses of the class in which
the method is defined. Because a class can be considered a subclass of itself, a
protected method can also be accessed from the class in which it is defined.

argument-list
list one or more sets of arguments, with each set specified as
follows:var-list:<INPUT|UPDATE|OUTPUT>:data-type(length)

var-list
lists one or more variables to contain values that are passed in from a method call
using either dot notation or the METHOD, SEND, SUPER, APPLY or SUPAPPLY
routine or function. Variables can also be a reference array. Reference array’s
dimensions are specified by ’*’. Comma delimiters are required to separate ’*’ for
multiple dimensions. The actual size of the reference array will be determined at
run-time based on the dimensions specified in the array parameter of the calling
method. For more information, see “ARRAY” on page 227 and the example
Example 3 on page 545.

INPUT | I
the values of the caller’s parameters are copied into the corresponding parameters
in the called method. When the called method’s ENDMETHOD statement is
executed, any updated values are not copied out to the caller’s parameters. This is
equivalent to using CALL NOCHANGE() inside the METHOD block.

UPDATE | U
the values of the caller’s parameters are copied into the corresponding parameters
in the called method. When the called method’s ENDMETHOD statement is
executed, any updated values are copied out to the caller’s parameters (unless
CALL NOCHANGE is specified). An error condition results if the corresponding
parameter in the calling program is a constant, because a constant cannot receive
a value. All Version 6 SCL method parameters are UPDATE parameters.

OUTPUT | O
this storage type serves as an indication in the code that only the returned value
is significant, despite the fact that the input parameter might change.
Functionally, the output type is the same as update type.

data-type
specifies the type of data that the variable will contain. A named data type (for
example, CHAR or LIST) must be preceded by the : delimiter. The delimiter is
optional for unnamed data types (for example, $).

CHAR<(length)>
specifies that the variable will contain character data. Length can be 1 to 32,767
characters. If length is not provided, the default length is 200.

Note: You cannot specify length for the CHAR data-type within the RETURN
option. �

LIST
specifies that the variable will contain an SCL list identifier.



SAS Component Language Dictionary � METHOD 541

NUM
specifies that the variable will contain a numeric value.

OBJECT
specifies that the variable will contain the identifier for an object when it is
defined at run time.

This type causes the SCL compiler to generate extra conversion instructions.
Consequently, you should use it only when necessary so as to achieve optimal
run-time performance.

class-name
specifies that the variable will contain the identifier for an object of the class
specified in class-name. This type of object is defined at compile time.
Class-name must be a three- or four-level name unless an IMPORT statement
has specified the libref and catalog. In that case, the name can be a one- to
four-level name. If the entry type is not specified, it is assumed to be CLASS.

interface-name
specifies that the variable will contain the identifier for an object of the class
that supports the interface specified in interface-name. Interface-name must be a
three- or four-level name unless an IMPORT statement has been used to specify
the libref and catalog. In that case, the name can be a one- to four-level name.

If the entry type is not specified and a class with that name does not exist,
the default entry type of INTERFACE is assumed.

To be compatible with the applications built in earlier releases of SAS software,
the : delimiter is optional for variables that are declared with unnamed data
types (for example, $), but it is required for variables that are assigned named
data types. The following example shows a variety of data type declarations
including the reference arrays using * as the dimensions:

mymethod: method
char1 : Char(20)
char2 : Char(10)
char3 :input :char(50)
charArr(*):u:char /* a reference array */
num1 : Num
num2 : Num
num3 : num
numArr(*):num /* a reference array */
myList :list
myObj :object
myCol :sashelp.fsp.Collection.class ;

Type: Character

length
is a numeric constant that specifies the length of the preceding variable or
variables. The length of a character variable does not have to match the length of
the corresponding passed parameter. SCL pads or truncates as necessary. When a
length is specified for a variable that is declared as CHAR, the length specification
must be enclosed in parentheses.
Type: Character

arg-list-id
contains the identifier for the SCL list that will contain all the arguments passed to
the method. This includes all optional arguments.

Type: List



542 METHOD � Chapter 13

rest-list-id
contains the identifier for the SCL list that will contain all arguments that are
passed to the method but are not explicitly specified in argument-list for either
METHOD or OPTIONAL=.

Type: List

data-type
specifies the type of data that the method can return. The valid data types are Num,
Char, List , Object , Array, and Class types.

Details
The METHOD statement enables you to create method blocks and methods for SAS/AF
classes. A method block is a feature for defining methods or for making a frequently
used routine available to other programs. Methods define the actions for a class. A
method block starts with the METHOD labels and ends with an ENDMETHOD
statement. Only SCL entries can contain method blocks. Each method block contains
additional SCL statements.

RETURN=data-type enables you to return a value to the calling method. An error
condition is produced if data-type is not the same as the type of data to be returned to
the calling program. Use a RETURN statement in the method to specify the value to
return.

In SCL CLASS statement block or USECLASS statement block, each METHOD
statement starts a new local variable scope just like an SCL DO/END block.
Parameters with the same name but with the different types can be used across
different method statements.

The METHOD statement receives parameters from the calling routine. When there
are no optional arguments in the METHOD statement, a strict correspondence is
required between the parameters that are passed by the calling routine and the
arguments for the METHOD statement. The arguments and parameters must agree in
number, data type, and relative position. If the calling program passes an incorrect
number of parameters or a parameter of an incorrect type, SCL stops executing the
program. The argument-parameter correspondence is less restrictive when you use the
options OPTIONAL=, ARGLIST=, and REST= in the METHOD statement:

OPTIONAL=
enables you to specify one or more optional arguments that are used only if the
calling program supplies the corresponding parameters in the parameter list of the
calling routine. If corresponding parameters are not supplied, then the optional
arguments are initialized to missing values.

ARGLIST= and REST=
enable you to pass a variable number of parameters to the METHOD statement.
You determine the types and order of the variable arguments. The lists identified
by arg-list-id and rest-list-id are created automatically when the entry is called,
and they are deleted automatically when the entry ends. When an array is passed
as a parameter, the array is expanded into individual items and these items are
inserted into the arg-list-id and rest-list-id lists. ARGLIST= and REST= are
mutually exclusive, so you can use only one or the other.



SAS Component Language Dictionary � METHOD 543

Calling and Executing Method Blocks Other SCL programs call a method block by
specifying its label in a dot notation statement or in a METHOD, APPLY, SUPER,
SUPAPPLY, or SEND routine or function. Execution of the method block starts at the
METHOD statement and ends with the ENDMETHOD statement. After a method
block is executed, control returns either to the calling program statement or to the
command line. A method block can be tested individually by invoking a TESTAF
command with the label=method-name option with the SCL debugger. For example, the
following statement tests the COMBINE method:

testaf label=combine

Scope of Method Block Variables All variables that are declared using the DECLARE
statement in a method block are local to that method. You cannot use a GOTO
statement to jump into a method block in the current entry. All the method parameters
are also local to that method if method blocks are written inside a CLASS statement
block or a USECLASS statement block.

Passing Parameters to Method Blocks The METHOD statement can receive
parameter values for variables that are declared as UPDATE or INPUT. By default, all
parameters declared in a METHOD statement are UPDATE parameters.

The parameter-receiving mechanism for the METHOD statement is very similar to
that mechanism for the ENTRY statement. The METHOD statement receives
parameters from the third argument of the calling METHOD routine. The calling
METHOD routine must agree with the corresponding METHOD statement in the
following ways (unless OPTIONAL=, ARGLIST=, or REST= are specified):

� The number of arguments received must be the same as the number of parameters
passed.

� The relative positions of the arguments passed must match the parameters in the
corresponding METHOD statement.

� The data types of both sets of variables must agree.

Otherwise, SCL stops executing the calling METHOD routine and prints an error
message.

Returning Modified Parameters to the Calling Routine The METHOD statement can
return values to parameters from variables that are declared as UPDATE or OUTPUT.
A called method block can modify any argument it receives. However, it cannot return
new values to calling routine parameters that are numeric literals, character literals, or
expressions. By default, values for variables are returned to the calling routine. If you
want a called method block to receive values but not to return values to its calling
routine, declare the variables as INPUT. If you want variables in the method to only
return values, then declare the method’s variables as OUTPUT.

For more information, see “What Happens When Attribute Values Are Set or
Queried” on page 128.

Returning a Value to the Calling Routine A METHOD statement can return a value to
the calling routine when the METHOD statement uses the RETURN= option to declare
the data type of the returned value. A RETURN statement in the method specifies
either the variable or expression that contains the value or the literal value to return.



544 METHOD � Chapter 13

Examples

Example 1: METHOD Statement Declarations Method M1 contains a variety of
argument specifications.

IMPORT work.myclass.collection.class;
Class Example1;
M1: PUBLIC METHOD

/* usenum is UPDATE (default) numeric */
usenum :NUM

/* usechar is UPDATE (default) character */
usechar :CHAR

/* mylist is UPDATE (default) list */
mylist :LIST

/* myobject is UPDATE (default) object */
myobject :OBJECT

/* mycoll is UPDATE (default) collection */
mycoll :COLLECTION

/* innum is INPUT numeric */
innum :INPUT :NUM

/* state is OUTPUT character */
state :OUTPUT :CHAR

/* namelist is UPDATE list */
namelist :UPDATE :LIST

/* outputobj is OUTPUT object */
outputobj :OUTPUT :OBJECT

/* amountin is INPUT numeric */
amountin :I :NUM

/* c3 is OUTPUT character */
c3 :O :CHAR

/* l3 is UPDATE list */
l3 :U :LIST

/* numarr is a numeric UPDATE array */
numarr(5) : NUM

/* states is a character reference array */
states(*) : CHAR

/* return a numeric value */
RETURN=NUM;

...SCL statements that define the method...
RETURN(0);

ENDMETHOD;
EndClass;

Example 2: Using the RETURN= Option Define an ADD method to add the numbers
stored in N1 and N2, and return the sum in the variable TOTAL:

Class Example2;
add: public method n1:num n2:num return=num;

total=n1+n2;
return(total);

endmethod;
EndClass;



SAS Component Language Dictionary � METHOD 545

Example 3: Reference Array Whose Size Is Determined at Run Time The following Sort
class contains two overloaded methods that are named SORT. Each method contains an
array parameter that is a reference array. The size of the reference array will be
determined at run time based on the associated array parameters in the calling
methods.

Class Sort;
/* Generic sort routine for any size of */
/* 1-dimensional numeric array */
sort: method narr(*):Num;

/* Find dimensions from the calling program */
DCL Num temp i j;
DCL Num size = dim(narr);
/* --- Bubble Sort --- */
do i = 1 to size - 1;

do j = i+1 to size;
if narr(i) > narr(j) then
do;

temp = narr(i);
narr(i) = narr(j);
narr(j) = temp;

end;
end;

end;
/* Array narr is now sorted in ascending order */

endmethod;

/* Generic sort routine for any size of */
/* 1-dimensional character array */
sort: method carr(*):Char;

/* Find dimensions from the calling program */
DCL Char tempc;
DCL Num i j size = dim(carr);
/* --- Bubble Sort --- */
do i = 1 to size - 1;

do j = i+1 to size;
if carr(i) > carr(j) then
do;

tempc = carr(i);
carr(i) = carr(j);
carr(j) = tempc;

end;
end;

end;
/* Array carr is now sorted in ascending order */

endmethod;
EndClass;



546 METHOD � Chapter 13

Example 4: Calling a Method This example creates a new instance of the Sort class
and sends a message to the sort method to sort the order of the existing arrays CARR
and NARR.

Init:
DCL Char(20) carr(3)=(’c’,’b’,’a’);
DCL Num narr(3)={3, 2, 1};
DCL Sort obj1 = _NEW_ Sort(narr);
DCL Sort obj2 = _NEW_ Sort(carr);
put carr= narr=;

return;

The output is

carr=
carr[1]=’a’
carr[2]=’b’
carr[3]=’c’
narr[1] = 1
narr[2] = 2
narr[3] = 3

Example 5: Using the REST= Argument Add a variable number of numbers, and print
out the sum. The method ignores any character types that are passed in.

class varying;
sumPrint: method msg:Char rest=rest_list/(signature=’N’);
DCL num totsum i,

char(1) type;
if rest_list=. then
do;

put ’No numbers to add were passed in!’;
return;

end;
totsum=0;
do i=1 to listlen(rest_list);

type=itemtype(rest_list,i);
if type=’N’ then
do;

valn=getitemn(rest_list,i);
totsum=totsum+valn;

end;
end;
put msg totsum;
endmethod;

endclass;

Use the following program to invoke the SUMPRINT method:

Init:
DCL varying obj = _NEW_ Varying();
obj.SUMPRINT(’The total is:’, 15, 30, 1);

The output of this example is

The total is: 46



SAS Component Language Dictionary � _METHOD_ 547

Example 6: Parameter Scope and Method Variable Scope This program shows the
parameters of the same name and different types being used across different method
statements.

Class ReUseName;
m1: Method n:Num c:Char;

DCL Num localN;
DCL Char localC;
EndMethod;

m2: Method n:Char c:num;
DCL Char localN;
DCL Num localC;
EndMethod;

EndClass;

See Also
“IMPORT” on page 467

_METHOD_

Contains the name of the method that is currently executing

Category: System Variable

Details
_METHOD_ is a character system variable that is provided automatically by the
FRAME entry in SAS/AF. However, the SCL compiler does not automatically create a
space for it in the SCL data vector. As a result, you get a warning when you compile a
FRAME or SCL entry that uses _METHOD_, because the variable is being referenced
at compile time but is not assigned a value until run time. You can safely ignore this
warning. If you prefer to prevent the warning message from being generated, use the
following assignment statement at the top of your program:

_method_=_method_;

_METHOD_ is useful when you have one or more methods that share the same
section of code but which require a CALL SUPER.

In order to use _METHOD_, you must use the DECLARE or LENGTH statement to
declare it as a character variable.

_METHOD_ has a valid value only when a method is executing.



548 _METHOD_ � Chapter 13

Example

For a window control, you may define the _update and _bupdate methods to execute
the same section of code if they perform similar functions:

length _method_ $40;
BUPDATE:
UPDATE:

method;
...code for _update and _bupdate methods...
call super(_self_, _method_);

endmethod;

Without _METHOD_, you would not know which method to do a CALL SUPER on, so
you would have to code the above as

BUPDATE:
method;
methodName = ’_bupdate’;
link update1;

endmethod;
UPDATE:

method;
methodName = ’_update’;
link update1;

endmethod;

UPDATE1:
...code for _update and _bupdate goes here...

call super(_self_, methodName);
return;

See Also
“_SELF_” on page 655
“SUPER” on page 697
“_VALUE_” on page 720



SAS Component Language Dictionary � MLENGTH 549

MLENGTH

Returns the maximum length of a variable

Category: Character

Syntax
length=MLENGTH(var);

length
contains the maximum length of a variable.

Type: Numeric

var
is the variable whose maximum length you want to determine.

Type: Character

Details
MLENGTH is different from LENGTH, which returns the trimmed length. For window
variables, MLENGTH returns the length of the variable in the display.

If a numeric variable is passed to MLENGTH, MLENGTH always returns a length of
8 for the variable. For non-window variables, MLENGTH returns the declared length of
the variable.

Example

In this example, MLENGTH returns the value 5, which is the declared length of
variable S. However, LENGTH returns the value 2, because S contains ab.

length s $ 5;
s=’ab’;
l=length(s);
m=mlength(s);

See Also
“LENGTH” on page 504



550 MODIFIED � Chapter 13

MODIFIED

Reports whether a field or FRAME entry control has been modified

Category: Control or Field

Syntax
rc=MODIFIED(wcol-name);

rc
contains the return code for the operation:

1 modified

0 not modified
Type: Numeric

wcol-name
is the name of the field or FRAME entry control in the window. This name cannot be
an element of an array nor an expression. If wcol-name is invalid, the program halts.

Type: Character

Details
A field’s state changes to modified when a user types any character in the field and
presses ENTER or a function key or selects a FRAME entry control.

The field or FRAME entry control cannot be an element of an array. To report this
information for an array element, use FIELD instead.

The ERRORON statement causes MODIFIED to return a value of 1.
FRAME entry controls can also use the _isModified method.

Examples

Example 1: Opening an FSEDIT Window Open an FSEDIT window for the SAS table
specified in the TBLNAME variable. The FSEDIT function displays the table for
interactive editing.

if (modified(tblname) and tblname ne ’ ’ ) then
call fsedit(tblname);

else
_msg_=’Please enter a valid table name.’;



SAS Component Language Dictionary � MODVAR 551

Example 2: Invalid Syntax for MODIFIED The following are examples of invalid syntax
that will not compile:

/* A literal string is used. */
rc=modified(’xyz’);

/* Concatenation of two columns. */
rc=modified(a||b);

/* An array element is used. */
rc=modified(a{i});

See Also
“DISPLAYED” on page 334
“ERROR” on page 357
“ERROROFF” on page 359
“ERRORON” on page 360
“FIELD” on page 379
“OBSINFO” on page 579

MODVAR

Changes the name, label, format, or informat of a column in a SAS table

Category: Variable

Syntax
sysrc=MODVAR(table-id,var-name,new-name<,label <,format<,informat>>>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric



552 MODVAR � Chapter 13

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-name
is the column whose attribute or attributes you want to change. The column must
already exist in the SAS table.

Type: Character

new-name
is the new name to assign to the column. The value must be a valid SAS name and
cannot already exist in the SAS table.

Type: Character

label
is the label to assign to the column.

Type: Character

format
is the format to assign to the column.

Type: Character

informat
is the informat to assign to the column.

Type: Character

Details
The table must be opened in UTILITY (V) mode, or the function halts.

If you do not want to change an argument, insert a null string (’’) as a placeholder.

Example

Change only the label for the column PHONENUM in the SAS table CUSTOMR:

dsid=open(’customr’,’v’);
if dsid then

do;
rc=modvar(dsid,’phonenum’,’’,’Office Phone’);
rc=close(dsid);

end;

See Also
“OPEN” on page 581
“VARFMT” on page 722
“VARINFMT” on page 723
“VARLABEL” on page 724
“VARLEN” on page 725
“VARNAME” on page 730
“VARNUM” on page 731
“VARTYPE” on page 734



SAS Component Language Dictionary � MOPEN 553

MOPEN

Opens a member file in a directory

Category: Directory

Syntax
file-id=MOPEN(directory-id,member-name<open-mode

<,record-length<,record-format>>>);

file-id
contains the identifier for the file, or 0 if the file could not be opened. You can use a
file-id that is returned by the MOPEN function just as you would use a file-id
returned by the FOPEN function.

Type: Numeric

directory-id
is the identifier that was returned by DOPEN when the directory was opened. If
directory-id is invalid, the program halts.

Type: Numeric

member-name
is the name of a file in the directory that is identified by directory-id.

Type: Character

open-mode
is the type of access to the file:

’A’ APPEND mode, which allows writing new records after the
current end of the file.

’I’ INPUT mode, which allows reading only. (This is the default.)

’O’ OUTPUT mode, which defaults to the OPEN mode that was
specified in host-options in the FILENAME statement or function.
If no host option was specified, then OUTPUT mode allows
writing new records at the beginning of the file.

’S’ Sequential input mode, which is used for pipes and other
sequential devices such as hardware ports.

’U’ UPDATE mode, which allows both reading and writing.
Type: Character

record-length
is the logical record length of the file. To use the existing record length for the file,
specify a length of 0 or do not provide a value here.

Type: Numeric

record-format
is the record format of the file:

’B’ Interpret data as binary data.

’D’ Use the default record format.



554 MOPEN � Chapter 13

’E’ Use an editable record format.

’F’ The file contains fixed-length records.

’P’ The file contains printer carriage-control characters in a
host-dependent record format.

’V’ The file contains variable-length records.
To use the existing record format, do not specify a value here.
Type: Character

Details

CAUTION:
Use OUTPUT mode with care. Opening an existing file for output may overwrite the
current contents of the file without warning. �

The member file is identified by directory-id and member-name instead of by a fileref.
You can also open a directory member by using FILENAME to assign a fileref to the
member, followed by a call to FOPEN. However, using MOPEN saves you from having
to use a separate fileref for each member.

If the file already exists and is opened with an open-mode of O, then the output mode
defaults to either APPEND or REPLACE, based on host-options that were specified in
the FILENAME function or statement. For example:

rc=filename(’file’,filename,’ ’,’mod’);
fid=fopen(’file’,’o’);
rc=fput(fid,’This is a test.’);
rc=fwrite(fid);
rc=fclose(fid);

If FILE already exists, then FWRITE appends a new record. However, if no host
option was specified with the FILENAME function, then FWRITE writes the value at
the beginning of the file, which could replace an existing value.

If the open fails, use SYSMSG to retrieve the message text.

Operating Environment Information: The term directory in this description refers to
an aggregate grouping of files managed by the host operating system. Different host
operating systems identify such groupings with different names, such as directory,
subdirectory, MACLIB, or partitioned data set. See the SAS documentation for your
operating environment for details.

Opening a directory member for output is not possible on some operating systems. �

Example

Assign the fileref MYDIR to a directory. Then open the directory, determine the
number of members, retrieve the name of the first member, and open that member. The
last three arguments to MOPEN are the defaults.

rc=filename(’mydir’,’filename’);
did=dopen(’mydir’);
frstname=’ ’;
memcount=dnum(did);
if (memcount>0) then

do;
frstname=dread(did,1);
fid=mopen(did,frstname,’i’,0,’d’);



SAS Component Language Dictionary � _MSG_ 555

...SCL statements to process the member...
rc=fclose(fid);

end;
else

_msg_=sysmsg();
rc=dclose(did);

See Also
“DOPEN” on page 338
“FCLOSE” on page 371
“FOPEN” on page 407

_MSG_

Contains the text to display on the window’s message line the next time the window is refreshed

Category: System Variable

Details
_MSG_ is a system variable that is created for every SCL program you compile. The
compiler creates a space for _MSG_ in the SCL data vector.

Typically an application displays error and warning messages on the window’s
message line. The text for system error and warning messages can be obtained by using
the SYSMSG or STDMSG functions. You can also assign your own text to the _MSG_
variable. Messages are displayed when the window is refreshed.

FRAME entries can also use the _getMsg and _setMsg methods to query and update
the _MSG_ variable.

On some operating systems, _MSG_ is not displayed if the window has BANNER set
to NONE.

Example

Display a message if a table cannot be opened:

INIT:
dsid = open(’sasuser.class’);
if dsid eq 0 then

_msg_ = sysmsg();
return;

See Also
“SYSMSG” on page 701



556 NAMEDITEM � Chapter 13

NAMEDITEM

Returns the index of a named item in a list

Category: List

Syntax
index=NAMEDITEM(list-id,name<,occurrence

<,start-index<,forceup>>>);

index
contains the position of the item in the list, or 0 if the named item is not found.

Type: Numeric

list-id
is the identifier of the list that NAMEDITEM searches. An invalid list-id produces
an error condition.

Type: Numeric or List

name
is the name of the item to search for. If name is specified, then trailing blanks are
removed before the search. If name is blank, the first unnamed item is returned.

Type: Character

occurrence
specifies which occurrence of the named item to search for. The default, 1, specifies
the first occurrence of the item.

Type: Numeric

start-index
specifies where in the list to begin searching for the item. By default, start-index is 1
(the first item). If start-index is positive, then the search begins at position
start-index items from the beginning of the list. If start-index is negative, then the
search begins at the item specified by ABS(start-index) items from the end of the list.
An error condition results if the absolute value of start-index is zero or if it is greater
than the number of items in the list.

Type: Numeric

forceup
can have one of the following values:

’Y’ specifies a case-insensitive search, which overrides the
HONORCASE or NOHONORCASE list attribute.

’N’ specifies a search that uses the HONORCASE or
NOHONORCASE list attribute and is the default action for lists
when FORCEUP is not specified.

IGNORECASE is an alias for NOHONORCASE.



SAS Component Language Dictionary � NAMEDITEM 557

Details
NAMEDITEM searches only the top level of the list specified by list-id. That is, it does
not search sublists. Several functions that access items in a list by position have
counterparts that access items by their names such as GETITEMC versus
GETNITEMC. Because it is more efficient to retrieve an item by its position rather
than by its name, you can use NAMEDITEM to find the position and then use the
functions that access items by position rather than by name.

If occurrence and start-index are both positive or both negative, the search proceeds
forward from the start-index item. For forward searches, the search continues only to
the end of the list and does not wrap back to the front of the list. If occurrence or
start-index is negative, the search is backwards. For backward searches, the search
continues only to the beginning of the list and does not wrap back to the end of the list.

Example

Swap the numeric values associated with the first and last occurrence of the item
named x:

/* Return first occurrence of X. */
first=getnitemn(listid,’X’);
/* Return last occurrence of X. */
last=getnitemn(listid,’X’,1,-1);
list=setnitemn(listid,last,’X’);
list=setnitemn(listid,first,’X’,1 -1);

The following example shows a slightly more efficient way to perform the swap
operation. This method does not require a second search for the item, and it can also
detect when item x does not exist in the list.

/* Return the position number of the */
/* first item X. */
ifirst=nameditem(listid,’X’);
if (ifirst>0) then

do;
first=getitemn(listid,ifirst);

/* Return the position of the last item X.*/
ilast=nameditem(listid,’X’,1,-1);
list=setitemn(listid,getitemn(listid,ilast),

ifirst);
list=setitemn(listid,first,ilast);

end;

Note: This example checks to see whether there is at least one item named x but
never checks to see whether there is another item named x. It assumes that there is at
least one more item named X �

See Also
“DELNITEM” on page 317
“NAMEITEM” on page 559
“SEARCH” on page 646



558 NAMEDIVIDE � Chapter 13

NAMEDIVIDE

Returns the number of parts of a compound name as well as the values of each part

Category: Utility

Syntax
rc=NAMEDIVIDE(name,num-parts, part-1, . . . part-4);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

name
is the name of a two- to four-part compound name to be separated.

Type: Character

num-parts
returns the number of parts in name.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric

part-1. . . part-4
contains the values of the first through fourth parts of name.

Note: These parameters are an update parameters. See “Input, Output, and
Update Parameters” on page 35 for more information. �

Type: Character

Details
NAMEDIVIDE divides a compound name into parts and returns the number of parts as
well as the value of each part.

Note: NAMEDIVIDE does not validate individual parts of the name. �



SAS Component Language Dictionary � NAMEITEM 559

Example

Divide NAME into parts and invoke DIALOG if NAME is a FRAME entry. If NAME
is not a FRAME entry, CALL DISPLAY.

rc=namedivide(name,parts,part1,part2,part3,part4);
/* Was NAMEDIVIDE successful? */

if (rc^=0) then do;
put ’Error: Invalid name ’ name;
return;

type=upcase(part4);
if (part4=’FRAME’) then

call dialog(name);
else

call display(name);

See Also
“NAMEMERGE” on page 560

NAMEITEM

Returns and optionally replaces the name of an item in an SCL list

Category: List

Syntax
item-name=NAMEITEM(list-id<,index<,new-name>>);

item-name
contains the name of the specified list item, or a blank if the item does not have a
name.

Type: Character

list-id
is the identifier of the list that contains the indexed item. An invalid list-id produces
an error condition.

Type: Numeric or List

index
is the position of the item in the list. The position can be specified as a positive or
negative number. By default, index is 1 (the first item). If index is a positive number,
then the item is at position index from the beginning of the list. If index is a negative
number, then the item is at position ABS(index) from the end of the list. An error
condition results if the absolute value for index is zero or if it is greater than the
number of items in the list.

Type: Numeric

new-name
is the new name to assign to the list item.

Type: Character



560 NAMEMERGE � Chapter 13

Details
NAMEITEM returns the name of the item at the list position specified by index. If a
value for new-name is also provided, then NAMEITEM assigns that name to the item,
replacing the old name.

An error condition results if the value for new-name is provided and the list has any
of the following attributes:

� NOUPDATE

� SASNAMES, and new-name is not a valid SAS name

� NODUPNAMES, and new-name duplicates the name of another item in the list.

To check the attributes of a list or list item, use HASATTR. To change attributes, use
SETLATTR.

See Also
“DELNITEM” on page 317
“NAMEDITEM” on page 556

NAMEMERGE

Returns a compound name by merging name parts

Category: Utility

Syntax

name=NAMEMERGE(part-1,part-2<,part-3< ,part–4>>);

name
contains a two- to four-part compound name. Name is blank if any error is detected.

part-1 . . . part-4
contain the name segments to be merged. Both part-1 and part-2 must be specified.

Details

NAMEMERGE creates a SAS name by merging the values that are stored as two to
four parts. If four parts are specified, then part-1 and part-4 can be blank.

Example

Create a CATALOG entry name, using the values stored in the variables LIBREF,
CATALOG, NAME, and TYPE. Then run the CATALOG entry through DISPLAY.

entry=namemerge(libref,catalog,name,type);
if (entry^=’ ’) and (cexist(entry)) then

call display(entry);



SAS Component Language Dictionary � _NEO_ 561

See Also
“NAMEDIVIDE” on page 558

_NEO_

Creates an object

Category: Object Oriented

Syntax
object-id=_NEO_ class-name(<init-arg< ,new-arg-1<, . . . ,new-arg-n>>>);

object-id
contains the identifier for the new object.

Type: Numeric or Object

class-name
is the name of the class from which to create the object. This can be a one- to
four-level name. If class-name is a one- or two-level name, and if the CLASS entry
that defines class-name is not in the application catalog, then class-name must exist
in one of the catalogs defined by the IMPORT statement. Otherwise, the compiler
produces an error message.

init-arg
is the argument to pass to the _init method for the new object.

Type: Character

new-arg
are additional arguments to pass to the _new method of the new object.

Type: Character

Details
The _NEO_ operator provides a faster and more direct way to create an object. It
combines the actions of loading a class with LOADCLASS and initializing the object
with the _new method, which invokes the object’s _init method.



562 _NEO_ � Chapter 13

Example

Create a frame and enter the following source code:

import sashelp.classes;

init:
dcl list AttrList RegionList;
dcl checkbox_c c;

AttrList = makelist();
RegionList = makelist();

startcol=10; startrow=10;
rc = setniteml(AttrList, RegionList, ’_region_’);
rc = setnitemn(AttrList, -1, ’num’);
rc = setnitemn(RegionList, startcol, ’ulx’);
rc = setnitemn(RegionList, startrow, ’uly’);
rc = setnitemc(RegionList, ’simple’, ’border_style’);
rc = setnitemn(RegionList, 5, ’border_width’);
rc = setnitemc(RegionList, ’red’, ’border_color’);

c = _neo_ checkbox_c(attrlist);
return;

Note that you cannot use the _NEW_ operator to do this, because _NEW_ passes its
arguments to a constructor, whereas _NEO_ passes them to the _new method (which is
what you want in this case). Even if you created a constructor for the check box, it
would not work with the _NEW_ operator because the check box will be displayed
before the constructor has a chance to run. Therefore, you must either resort to the old
behavior using CALL SEND, or use the _NEO_ operator as shown above.

See Also
“DECLARE” on page 309
“IMPORT” on page 467
“INSTANCE” on page 477
“LOADCLASS” on page 522



SAS Component Language Dictionary � NEW 563

NEW

Defines a new SAS table interactively

Category: SAS Table

Syntax
CALL NEW(table-name,model-table,num-row, display-window);

table-name
is the SAS table to be created, specified as <libref.>member. The default library,
USER, is used if libref is omitted. If a null string (’’) is specified for table-name,
then the DATAn naming convention is used to create a table in the USER library.

Type: Character

model-table
is an existing SAS table after which the new SAS table is to be modeled. Use a null
string (’’) as a placeholder if you do not want to specify a model table.

Type: Character

num-row
is the number of initial rows for the new SAS table. This value must be equal to or
greater than 0. All columns in all rows initially contain missing values. The value
for num-row cannot be a missing value.

Type: Numeric

display-window
specifies whether the NEW window is displayed so that column definitions for the
new SAS table can be edited before the table is created:

’Y’ displays the NEW window to allow editing of the column names
and attributes before the new SAS table is created. (This is the
default.)

’N’ does not display the NEW window. The column definitions in the
new SAS table will be an exact replica of those in the model table.
A value must also be supplied for model-table.

Type: Character

Details
NEW creates a new blank SAS table. However, it does not replace an existing table.

CAUTION:
Specifying an existing SAS table for table-name causes a program halt. To prevent the
program halt, use EXIST to determine whether the table already exists, DELETE to
delete the table, and CALL NEW to create a new table with the same name. �



564 NEW � Chapter 13

By default, the routine opens the NEW window to enable a user to interactively
define the names and attributes of the columns in the new SAS table. The NEW
window that this routine opens is the same as the window that is displayed when the
NEW= option is used with the PROC FSEDIT or PROC FSVIEW statement.

You can specify model-table so that all the names and attributes of the model are
automatically copied to the new table. (Only the column names and column attributes
of the model table are copied, not the values that it contains.) When you specify a
model table, you can use display-window to bypass the NEW window and create the
new table with the same column names and attributes as the model table (specify ’N’
for the display-window parameter). Open the NEW window only if you want to enable
users to alter the column names and attributes before the new table is created.

Use num-row to specify how many blank rows to create for the new SAS table. All
columns in all rows of the new table initially contain missing values.

Examples

Example 1: Creating a SAS Table from a Model Table Create a new SAS table with a
name that the user supplies in the field for the window variable TABLE. Before
attempting to create the table, determine whether a SAS table with the specified name
already exists. If so, issue a message on the application window’s message line. The
new table is modeled after the existing table MODEL.A, and the user is not given the
opportunity to modify the column definitions (the NEW window is not opened). The new
table is created with ten blank rows.

if (exist(table)) then
_msg_=’SAS table ’||table||’ already exists.’;
else

do;
call new(table,’model.a’,10,’n’);
_msg_=’SAS table ’||table||’ has been created.’;

end;

Example 2: Creating a SAS Table from a User Definition Create a new SAS table with
a name that the user supplies in the field for the window variable TABLE. These
statements display the NEW window for the user to define the columns in the table. No
model table is used.

if (exist(table)) then
_msg_=’SAS table ’||table||’ already exists.’;

else
do;

call new(table,’ ’,1,’y’);
_msg_=’SAS table ’||table||’ has been created.’;

end;

See Also
“FSEDIT” on page 420
“FSVIEW” on page 425
“NEWVAR” on page 568
“OPEN” on page 581



SAS Component Language Dictionary � _NEW_ 565

_NEW_

Creates an object and runs an associated class constructor

Category: Object Oriented

Syntax
object-id=_NEW_ class-name(<arg1, arg2, . . . , argn>);

object-id
contains the identifier for the new object.

Type: Numeric, Classes, and Object

class-name
is the name of the class from which to create the object. This can be a one- to
four-level name. If class-name is a one- or two-level name, and if the CLASS entry
that defines class-name is not in the application catalog, then class-name must exist
in one of the catalogs defined by the IMPORT statement. Otherwise, the compiler
produces an error message.

arg1, arg2, . . . , argn
are the arguments that are passed to the class constructor.

Type: Character

Examples

Example 1: Creating an Instance of an Object and Running a Class Constructor The
_NEW_ operator enables you to create an instance of an object and run a class
constructor all in one step.

X.SCL
class Complex;
private num x y;

Complex: method a1: num a2: num;
x = c.x;
y = c.y;

endmethod;
endclass;

Y.SCL
init:
dcl Complex c = _new_ Complex(1,2);
dcl Complex c2 = _new_ Complex(c);
return;



566 _NEW_ � Chapter 13

Example 2: Using a Class That Has an Overloaded Constructor Where you have a
class, Complex, that has an overloaded constructor, one version takes two numeric
arguments, and the other takes a complex number.

In the first _NEW_ statement, you create a complex number, 1 + 2i, by passing in
the real and imaginary parts (1 and 2) as arguments to the _NEW_ operator. _NEW_
first creates an instance of the Complex class, and then calls the appropriate
constructor based on its argument list. In this case, it calls the constructor that takes
two numeric arguments.

In the second _NEW_ statement, you create a complex number by passing in another
complex number (in this case, the first one you created, 1 + 2i). _NEW_ calls the
second constructor in the Complex class — the one that takes a complex number as an
argument.

Constructors must always have the same name as the class in which they are
located, and they must always be void methods (that is, they do not return a value).
Constructors provide a convenient way to initialize a class before you begin using it.

For example, if you didn’t use constructors in the above example, you would have to
create another set of methods to initialize the complex number and call those
separately, as in the following example:

X.SCL
class Complex;

private num x y;

set: method a1: num a2: num;
x = a1;
y = a2;

endmethod;

set: method c: Complex;
x = c.x;
y = c.y;

endmethod;
endclass;

Y.SCL
init:
dcl Complex c = _new_ Complex();
dcl Complex c2 = _new_ Complex();
c.set(1,2);
c2.set(c);
return;



SAS Component Language Dictionary � _NEW_ 567

You can overload constructors as shown above, or you can have only one constructor, or
you can have none. If you don’t supply a constructor in a class, the _NEW_ operator
still attempts to run a parent class constructor. In the following example, the _NEW_
operator for the class Y calls the constructor in X, since X is the parent of Y.

X.SCL
class x;
x: method n: num;

put n=;
endmethod;
endclass;

Y.SCL
class y extends x;
endclass;

Y.SCL
init:
dcl y y = _new_ y(100);
return;

This behavior applies to all classes that are instantiated by using _NEW_ — even those
that have no explicit constructors.

If you do not supply a constructor for your classes, you can still use _NEW_ with no
arguments because OBJECT.CLASS (which all classes extend) contains a constructor
that takes no arguments and performs no actions. This “dummy” constructor needs to
be overridden if you want to supply a constructor that does not take an argument by
using the following:

class x;
x: method /(state=’0’);

put ’in x constructor’;
endmethod;
endclass;

Constructors can be used only in conjunction with the _NEW_ operator. They are not
called if the object is instantiated in some other way, such as by using the _NEW_
method in CALL SEND, or by dropping the object in a frame. In particular, in the case
of a visual object, you cannot run a constructor after the object is instantiated, but only
before it is displayed. Therefore, you cannot use a constructor to initialize the object.
For these types of objects, you must either use the _NEO_ operator or use the _NEW_
method with CALL SEND.

See Also
“DECLARE” on page 309
“IMPORT” on page 467
“LOADCLASS” on page 522
“_NEO_” on page 561



568 NEWVAR � Chapter 13

NEWVAR

Adds a column to a new SAS table

Category: SAS Table

Syntax
sysrc=NEWVAR(table-id,col-name,type<,length<,label

<,format<,informat>>>>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts. The SAS table must be opened with an open mode of NEW.

Type: Numeric

col-name
is the name to assign to the new column. The name must be a valid SAS name.

Type: Character

type
specifies the data type of the new column:

’C’ character

’N’ numeric
Type: Character

length
is the length of the new column. For a character column, this value can be between 1
and 32,767. For a numeric column, it can be between 3 and 8. On some systems, the
minimum length can be 2.

Type: Numeric

label
is the label for the new column. This is a character string from 1 to 40 characters. If
the label contains single quotes, use two single quotes for each of these internal
single quotes, or surround the label with double quotes. Each set of two single quotes
counts as one character.

Type: Character



SAS Component Language Dictionary � NEXTCMD 569

format
is the format for the new column. This must be a valid SAS format name. Formats
can be either defined by the user or supplied by SAS software. If not specified, SAS
assigns a default format. If type is C, then a character format should be specified.
Otherwise, a numeric format should be specified.

Type: Character

informat
is the informat for the new column. This must be a valid SAS informat name.
Informats can be either defined by the user or supplied by SAS software. If not
specified, SAS assigns a default informat. If type is C, then a character informat
should be specified. Otherwise, a numeric informat should be specified.

Type: Character

Details

CAUTION:
The table must be opened in NEW mode, or SCL halts the program. Opening an existing
SAS table in NEW mode creates a new table that overwrites the old table. When the
table is closed after using NEWVAR, the SAS table is created with zero rows. If the
column name matches a column name that was defined for the table by a previous
NEWVAR function, the new definition overrides the previous definition. �

Example

Open a new SAS table, MYDATA, in NEW mode, and then add the column AGE,
which is numeric, and NAME, which is character. AGE has a length of 8, and NAME
has a length of 20. The label of NAME is set to Last Name.

dsid=open(’mydata’,’n’);
rc=newvar(dsid,’age’,’n’,8);
rc=newvar(dsid,’name’,’c’,20,’Last Name’);
rc=close(dsid);

See Also

“OPEN” on page 581

NEXTCMD

Discards the current command on the command line

Category: Command

Syntax

CALL NEXTCMD();



570 NEXTCMD � Chapter 13

Details
NEXTCMD deletes the words up to the next semicolon or up to the end of the command.
If a semicolon is not found, the entire contents of the command line are deleted.

Ordinarily, you clear the command line after reading a command or a series of
commands. NEXTCMD is usually used in conjunction with CONTROL ENTER,
ALWAYS, or ALLCMDS.

If the command line contains two or more commands separated by semicolons, then
only the first command on the command line is executed during the current execution of
the MAIN section. The next command is executed when control is returned to the
program or when another entry is displayed, as in the use of the DISPLAY routine.

Example

Suppose you have an FSEDIT application and you want to prevent everyone but one
user from deleting rows. You can use NEXTCMD to remove all commands that start
with DEL for users other than USERAA.

FSEINIT:
control always;

return;

INIT:
return;

MAIN:
if word(1,’u’) =: ’DEL’ and
symget(’sysjobid’) ne ’USERAA’ then

do;
call nextcmd();
_msg_=
’You are not authorized to delete rows’;

end;
return;

TERM:
return;

Issue the command AXX BXX; CXX DXX. After NEXTCMD is called, only CXX DXX
remains in the command buffer. After NEXTCMD is called a second time, no commands
remain to be processed.

See Also
“NEXTWORD” on page 571
“WORD” on page 744



SAS Component Language Dictionary � NOCHANGE 571

NEXTWORD

Deletes the current word and advances to the next word in the current command

Category: Command

Syntax
CALL NEXTWORD();

Details
A word is the text at the current position up to the next blank or semicolon. A
semicolon denotes the end of a command in addition to the end of a word. NEXTWORD
is used with WORD and is usually used in conjunction with CONTROL ENTER,
CONTROL ALWAYS, or CONTROL ALLCMDS.

If the command line contains two or more commands separated by semicolons, then
only the first command on the command line is executed during the current execution of
the MAIN section. The next command is executed when control is returned to the
program or when another entry is displayed, as in the use of the DISPLAY routine.

Example

If a user issues the command AXX BXX CXX DXX, the succession of words is as
follows:

Initial After 1st

NEXTWORD

After 2nd

NEXTWORD

word(1) AXX BXX CXX

word(2) BXX CXX DXX

word(3) CXX DXX blank

See Also
“NEXTCMD” on page 569
“WORD” on page 744
“WORDTYPE” on page 746

NOCHANGE

Causes the called program to return the original values for the variables that it received as
parameters in an ENTRY statement

Category: Modular Programming and Object Oriented



572 NOCHANGE � Chapter 13

Syntax
CALL NOCHANGE();

Details
The NOCHANGE routine causes a called program to return the original values for the
variables that it received as parameters in an ENTRY statement, disregarding any
changes that subsequently may have been made to those variables. This routine is used
in the called program that contains the ENTRY statement.

NOCHANGE has no effect on reference arrays. See “ARRAY” on page 227 for more
information about reference arrays. NOCHANGE overrides the I/O/U mode that was
specified for parameters in the ENTRY and METHOD statements.

Example

Suppose that A.SCL calls B.SCL and passes to it the parameters X, Y, and Z. B.SCL
tests the _STATUS_ variable for the value C (indicating that a CANCEL command has
been issued). If a user exits B.SCL with a CANCEL command, then no updated values
are returned to A.SCL.

Here is the A.SCL program:

INIT:
return;

MAIN:
call display(’mylib.test.b.scl’,x,y,z);
return;

TERM:
return;

Here is the B.SCL program:

entry a b c 8;
INIT:
return;

MAIN:
...SCL statements...

return;

TERM:
if _STATUS_=’C’ then call nochange();

return;



SAS Component Language Dictionary � NOTE 573

See Also
“APPLY” on page 225
“DISPLAY” on page 330
“ENTRY” on page 351
“METHOD” on page 539
“NOTIFY” on page 575
“SEND” on page 656
“SUPAPPLY” on page 695
“SUPER” on page 697

NOTE

Returns an identifier for the current row of a SAS table

Category: SAS Table

Syntax
note-id=NOTE(table-id);

note-id
contains the identifier that is assigned to the row.

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

Details
You can use note-id in the POINT function to return to the current row. (Use NOTE to
mark a row, then use POINT to return to the row.) Each note-id is a unique numeric
value. There can be up to 1,000 note-ids per open table.

To free the memory that is associated with a row ID, use DROPNOTE.



574 NOTE � Chapter 13

Example

Use NOTE to return the identifier for the 10th row. Then use POINT to point to the
row that corresponds to NOTEID.

INIT:
tableid=open(’sasuser.fitness’,’i’);

return;
MAIN:

/* Read row 10 */
rc=fetchobs(tableid,10);
if (abs(rc) ne 0) then

do;
put "Read operation failed";
return;

end;
/* Display the row number in the LOG window */

cur=curobs(tableid);
put "CUROBS=" cur;

/* Mark row 10 */
noteid=note(tableid);

/* Rewind the pointer to the beginning of the table */
rc=rewind(tableid);

/* Read first row */
rc=fetch(tableid);

/* Display the row number */
cur=curobs(tableid);
put "CUROBS=" cur;

/* POINT to row 10 marked earlier by NOTE */
rc=point(tableid,noteid);

/* Read the row */
rc=fetch(tableid);

/* Display the row number to confirm it is 10 */
cur=curobs(tableid);
put "CUROBS=" cur;
return;

TERM:
if (tableid >0) then rc=close(tableid);

return;

The output produced by this program is

CUROBS=10
CUROBS=1
CUROBS=10

See Also
“DROPNOTE” on page 342

“POINT” on page 597
“REWIND” on page 627



SAS Component Language Dictionary � NOTIFY 575

NOTIFY

Sends a method to a control that is identified by its name

Category: Object Oriented
Valid: FRAME programs only

Syntax
CALL NOTIFY(control-name,method-name<,parameters>);

control-name
is the control to send the method to, or ’.’ (a string containing a period) to send the
method to the FRAME entry component.

Type: Character

method-name
is the method to invoke.

Type: Character

parameters
specify additional numeric or character arguments, separated by commas, that are
required by the method.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric, Character

Details
NOTIFY sends a method to a control in a FRAME entry by specifying the control’s
name. NOTIFY may be called only from the SCL program for the FRAME entry to
which the control belongs, because that is the only code in which the control’s name is
not ambiguous. You can also use NOTIFY as a function if the called method returns a
value with a RETURN statement in the program that defines the method.

Note: As with DISPLAY, the SCL compiler cannot determine which data types are
expected for each of the parameters passed to a method. When the application executes,
SAS/AF software verifies that each parameter is correct. If there is a type error, the
SCL program halts. �



576 NOTIFY � Chapter 13

In most cases, put quotation marks around the control name so that the value of the
control is not passed to NOTIFY. For example, the following code hides the Version 6
control named BUTTON:

CALL NOTIFY(’button’,’_hide’);

However, if BUTTON has a value of OK, the following code hides the control named
OK:

CALL NOTIFY(button,’_hide’);

If the value of BUTTON is not the name of a control, the program halts.
Similarly, be sure to put quotation marks around method-name unless method-name

is an expression.
For more information about dot notation, see “Accessing Object Attributes and

Methods with Dot Notation” on page 124.

Example

Suppose you have a FRAME entry with two Version 6 pushbuttons, OK and NOT_OK.
The following code causes OK to be grayed when a user clicks on NOT_OK:

NOT_OK:
call notify(’ok’,’_gray’);

return;

The following example fills a list with the set of controls in the FRAME entry:

controls=makelist();
call notify(’.’,’_getWidgets’,controls);

See Also
“APPLY” on page 225
“INSTANCE” on page 477
“LOADCLASS” on page 522
“LOADRES” on page 523
“SEND” on page 656
“SUPAPPLY” on page 695
“SUPER” on page 697



SAS Component Language Dictionary � NUMFKEYS 577

NSELECT

Returns the number of rows that have been selected in a selection list

Category: Extended Table

Syntax
num-rows=NSELECT();

num-rows
contains the number of selected rows.

Type: Numeric

Details
Because you can define extended tables only in SAS/AF software, you cannot use
NSELECT in FSEDIT or FSVIEW programs. NSELECT is valid only for PROGRAM
entries. FRAME entry controls must use the _getNselect method.

In order for an extended table to be considered a selection list, you must specify a
number of selections in the SETROW routine.

Example

Return the number of selected rows:

nsel = nselect();
_msg_ =’You have selected ’ || nsel || ’ rows.’;

See Also
“ISSEL” on page 488
“SELECT” on page 652
“SELECTED” on page 654
“UNSELECT” on page 713

NUMFKEYS

Returns the number of function keys that are available for the device

Category: Keys



578 NUMFKEYS � Chapter 13

Syntax
fkeynum=NUMFKEYS();

fkeynum
contains the number of function keys that are available for the device.

Type: Numeric

Details
You can use this function only in entries that have a window variable or text in the
DISPLAY window.

You can use NUMFKEYS when you want to use SCL to return the number of
function keys, then disable procedure-specific commands and SAS windowing
commands and redefine the function keys while a window is open. When you redefine
the function keys, you can limit the commands that can be used in an application
window. (If you do this, you may want to restore the settings with SETFKEY before the
application window closes.)

Example

Assign a custom PMENU. Then use NUMFKEYS to find out how many function keys
a user’s device has. Use SETFKEY first to disable them and then again to restore the
settings when the window closes.

dcl char command(30);

INIT:
/* Assign the PMENU entry to the window. */

rc=pmenu(’editdata.pmenu’);
/* Turn the PMENU facility on. */

call execcmd(’pmenu on’);
/* Execute the MAIN section even if a user makes */
/* an error or issues an unknown command. */

control enter;
/* Determine the number of function keys */
/* on a user’s keyboard. */

numkeys=numfkeys();
do n=1 to numkeys;

command{n}=getfkey (fkeyname(n));
/* Disable function key assignments. */

call setfkey(fkeyname(n),’’);
end;

return;
MAIN:

...Statements to process custom commands...
return;
TERM:
/* Restore command assignments to function keys.*/

do n=1 to numkeys;
call setfkey(fkeyname(n),command{n});

end;
/* Turn the PMENU facility off. */

call execcmd(’pmenu off’);
return;



SAS Component Language Dictionary � OBSINFO 579

See Also
“FKEYNAME” on page 399
“GETFKEY” on page 428
“SETFKEY” on page 661

OBSINFO

Returns information about the current row in an FSEDIT application

Category: SAS Table
Valid: FSEDIT programs only

Syntax
rc=OBSINFO(info-item);

rc
contains the return code for the operation.

Type: Numeric

info-item
is one information item from the following list:

’ALTER’
reports whether the currently displayed row can be edited:

0 The row cannot be edited. If ALTER=0 and LOCKED=0, the
row is open in FSBROWSE. If ALTER=0 and LOCKED=1, the
row is open in FSEDIT, but the row is locked.

1 The row can be edited. If ALTER=1 and LOCKED=0, then the
row is open in FSEDIT.

’CUROBS’
reports the number of the current row:

n The number of the row.

−1 The table is accessed using an engine that does not support
row numbers.

CUROBS returns a missing value (.) when there are no rows in the table, when
no rows meet the specified WHERE condition, and when you are on a deleted row.



580 OBSINFO � Chapter 13

’DELETED’
reports whether the currently displayed row is marked for deletion:

1 The row is marked for deletion.

0 The row is not marked for deletion.

’LOCKED’
reports whether the currently displayed row is locked by another user:

1 The row is locked.

0 The row is not locked.

’MODIFIED’
reports whether a value has been changed in any table column in the currently
displayed row or the row is new:

1 Either column has been changed or the row is new.

0 No table columns have been changed.

’NEW’
Reports whether the currently displayed row is a new row:

1 The row is new.

0 The row already exists in the table.
Type: Character

Example

Return information for the row that is currently displayed in the FSEDIT window:

rc=obsinfo(’curobs’);
rc=obsinfo(’deleted’);
rc=obsinfo(’locked’);
rc=obsinfo(’new’);
rc=obsinfo(’modified’);

See Also
“CUROBS” on page 300



SAS Component Language Dictionary � OPEN 581

OPEN

Opens a SAS table

Category: SAS Table

Syntax
table-id=OPEN(<table-name< >,mode>);

table-id
contains the table identifier, or 0 if the table could not be opened.

Type: Numeric

table-name
is the SAS table or SAS/ACCESS view descriptor to open, specified as
<libref.>member-name<(data-set-options)>. The default value for table-name is
_LAST_, which is the last table created in the current SAS session. A one-level name
is assumed to be USER.member-name.

All SAS data set options are valid except the FIRSTOBS= and OBS= options,
which are ignored.

Type: Character

mode
specifies the type of access to the table:

’I’ an INPUT mode in which values can be read but cannot be
modified. (This is the default.) Rows are read in random order.

’IN’ an INPUT mode in which rows can be read sequentially and can
also be revisited.

’IS’ an INPUT mode in which rows can be read sequentially but
cannot be revisited.

’N’ NEW mode, which creates a new table. If table-name already
exists, the table is replaced without warning.

’U’ an UPDATE mode in which values in the table can be modified
and rows can be read in random order.

’UN’ an UPDATE mode in which values in the table can be modified,
rows can be read sequentially, and rows can be revisited.

’US’ an UPDATE mode in which values in the table can be modified
and rows can be read sequentially. However, rows cannot be
revisited.

’V’ UTILITY mode, which must be used in order to change any
column attributes or to manipulate any associated table indexes.

Type: Character



582 OPEN � Chapter 13

Details
OPEN opens a SAS table or a SAS/ACCESS view descriptor and returns a unique
numeric table identifier, which is used in most other SCL functions that manipulate
tables.

If mode is I or U , then OPEN defaults to the strongest access mode available in the
engine. That is, if the engine supports random access, OPEN defaults to random access.
Otherwise, the file is opened in IN or UN mode automatically. Files are opened with
sequential access, and a system level warning is set. For example, opening a DB2 SAS/
ACCESS view descriptor in INPUT (I) mode opens the file but produces the warning
"This task requires reading rows in a random order, but the engine allows only
sequential access." To enable the file to be read multiple times and to prevent this
warning, use an open mode of IN instead.

Note that both IS and IN (as well as US and UN )refer to sequential access.
However, IN allows revisiting a row, whereas IS does not.

Note: If sequential access is too restrictive but random access is too slow, try
specifying the TOBSNO= data set option. See SAS Language Reference: Dictionary for
more information. �

By default, a SAS table is opened with a control level of RECORD. See SAS Language
Reference: Dictionary for details about the CNTLLEV (control level) SAS data set option.

A table that is already opened can be opened again, subject to the following
restrictions:

� If the table is already opened in UPDATE or INPUT mode, it cannot be opened
again in UTILITY mode.

� If the table is already opened in UTILITY mode (so that columns can be dropped,
inserted, or changed), it can only be opened again in NEW mode.

A table that is already open in any mode can be opened again in NEW mode, because
that replaces everything in the old table.

An open SAS table should be closed when it is no longer needed.

Example

Open the table PRICES in the library MASTER, using INPUT mode:

tableid=open(’master.prices’,’i’);
if (tableid=0) then _msg_=sysmsg();
else _msg_=’PRICES table has been opened’;

You can pass values from SCL variables to be used in data set options. Open the
table MYDATA, and use the WHERE= data set option to apply a permanent WHERE
clause, using the value from the numeric variable SCRNUM:

tableid=
open(’mydata(where=(num=’||put(scrnum,5.)||’))’);

Open the table MYDATA, and use the WHERE= data set option to apply a
permanent WHERE clause, using the value from the character variable SCRNAME:

tableid=
open(’mydata(where=(name=’||quote(scrname)||’))’);

See Also
“CLOSE” on page 268



SAS Component Language Dictionary � OPENENTRYDIALOG 583

“MODVAR” on page 551
“NEWVAR” on page 568

OPENENTRYDIALOG

Displays a dialog window that lists catalog entries, and returns the user’s selection

Category: Selection List

Syntax
selection-item=OPENENTRYDIALOG(<type <,entry-name<,list-id>>>);

selection-item
contains the four-level name of the selected SAS file, or a blank if nothing is selected.

Type: Character

type
specifies the member types to list in the dialog window, such as CLASS, SCL, or
FRAME. This can reduce the length of the list in the dialog window. If type is not
used, the names of all catalog entry types in the data library are listed.

Type: Character

entry-name
is a two- or four-level name of a catalog entry to call when a user selects the
Advanced button in the dialog window. The entry can be any of the following types:
FRAME, SCL, PROGRAM, HELP, CBT, or MENU.

If entry-name is not specified, then the window does not contain Advanced .
Type: Character

list-id
contains the identifier of an SCL list that is passed to entry-name.

Type: Numeric or List

Details
OPENENTRYDIALOG displays a list of SAS catalog entries from which a user can
make a selection. You can pass that selection to code that opens the catalog entry.

If entry-name is supplied and Advanced is selected, the item selected in the dialog
window is passed to entry-name through the following variables, which are created
automatically:

USERDATA
contains the list that is passed in the call to the OPENENTRYDIALOG and
SAVEENTRYDIALOG functions.

LIBREF
contains the libref of the selected item.

MEMBER
contains the member name of the selected item.

ENTRY
contains the entry name of the selected item.



584 OPENENTRYDIALOG � Chapter 13

TYPE
contains the member type of the selected item.

List-id enables information to be passed between the calling entry and entry-name. It
is passed to entry-name through the USERDATA variable.

Examples

Example 1: Opening a Catalog Entry Select a catalog entry of type FRAME to open
and display the selected entry.

selection=openentrydialog(’frame’);
call display(selection);

Example 2: Using the Advanced Button with an SCL List Specify an entry to call when
a user selects Advanced , as well as an SCL list that contains values to pass to the entry.
The entry can be any of the following types: FRAME, SCL, PROGRAM, HELP, CBT, or
MENU. If entry-name is not specified, then the window does not contain Advanced .

dcl list mydata;
mydata=makelist();
rc=insertc(mydata,’test’);
selection=openentrydialog(’frame’,

’mylib.mycat.myentry.frame’,mydata);
if sysrc(1)=-1 then do;

...SCL statements to execute when
the user cancels from the window...
end;

else do;
...SCL statements to handle selections...

end;

The SCL entry for MYLIB.MYCAT.MYENTRY.FRAME contains the following program:

dcl char(8) libref type;
dcl char(32) catalog entry;
dcl list userdata;
init:
put libref=;
put catalog=;
put entry=;
put type=;
call putlist(userdata);
return;

Note: The SCL entry must declare these exact variables, in the order specified, to
properly reference the selected entry. �

If the user selects MYLIB2.MYCAT2.MYENTRY2.FRAME in the dialog window and
then selects Advanced , the output for this program is

libref=Mylib2
catalog=Mycat2
entry=Myentry2
type=Frame
(’test’)[1]



SAS Component Language Dictionary � OPENSASFILEDIALOG 585

See Also
“SAVEENTRYDIALOG” on page 637

OPENSASFILEDIALOG

Displays a dialog window that lists SAS files, and returns the user’s selection

Category: Selection List

Syntax
selection=OPENSASFILEDIALOG(<type<,level-count< ,entry-name<,list-id>>>>);

selection
contains the two- or three-level name of the selected SAS file, or a blank if nothing is
selected.

Type: Character

type
specifies one or more member types to list in the dialog window, such as DATA,
VIEW, MDDB, and CATALOG. This can reduce the length of the list in the dialog
window. If type is not used, the names of all SAS files in the data library are listed.
Multiple types should be separated by blanks.

Type: Character

level-count
specifies whether the function returns a two- or three-level name. The only valid
choices are 2 and 3. The default is 2.

Type: Numeric

entry-name
is a two- or four-level name of a catalog entry to call when a user selects the
Advanced button in the dialog window. The entry can be any of the following types:
FRAME, SCL, PROGRAM, HELP, CBT, or MENU.

If entry-name is not specified, then the window does not contain Advanced .
Type: Character

list-id
contains the identifier of an SCL list that is passed to entry-name.

Type: Numeric or List

Details
OPENSASFILEDIALOG displays a list of SAS files from which a user can make a
selection. You can pass that selection to code that opens the SAS file.

If entry-name is supplied and Advanced is selected, the item selected in the dialog
window is passed to entry-name through the following variables, which are created
automatically:

USERDATA
contains the list that is passed in the call to OPENSASFILEDIALOG.



586 OPENSASFILEDIALOG � Chapter 13

LIBREF
contains the libref of the selected item.

MEMBER
contains the member name of the selected item.

TYPE
contains the member type of the selected item.

List-id enables information to be passed between the calling entry and entry-name.
It is passed to entry-name through the USERDATA variable.

Examples

Example 1: Opening a SAS File Select a SAS file of type DATA to open and display
the table.

selection=opensasfiledialog(’data’);
call fsview(selection);

Example 2: Returning a Two-Level Name Open a SAS file of type DATA that returns a
two-level name.

selection=opensasfiledialog(’data view’,2’work.a.a.scl’,listid);

Example 3: Using the Advanced Button with an SCL List Specify an entry to be called
when a user selects Advanced as well as an SCL list that contains values to pass to the
entry. The entry can be any of the following types: FRAME, SCL, PROGRAM, HELP,
CBT, or MENU. If entry-name is not specified, then the window does not contain
Advanced .

dcl list mydata;
mydata=makelist();
rc=insertc(mydata,’test’);
selection = opensasfiledialog(’data’,

’mylib.mycat.myentry.frame’,mydata);
if sysrc(1)=-1 then do;

...SCL statements to execute when
the user cancels from the window...

end;
else do;

...SCL statements to handle selections...
end;

The SCL entry for MYLIB.MYCAT.MYENTRY.FRAME contains the following
program:

dcl char(8) libref type;
dcl char(32) member;
dcl list userdata;
init:
put libref=;
put member=;
put type=;
call putlist(userdata);
return;

Note: The SCL entry must declare these exact variables, in the order specified, to
properly reference the selected entry. �



SAS Component Language Dictionary � OPTGETC and OPTGETN 587

If the user selects MYLIB2.MYMEMBER2.DATA in the dialog window and then selects
Advanced , the output for this program is

libref=Mylib2
member=Mymember2
type=Data
(’test’)[1]

See Also
“SAVESASFILEDIALOG” on page 642

OPTGETC and OPTGETN

Return the current setting of a SAS system option

Category: SAS System Option

Syntax
cval=OPTGETC(option-name);

nval=OPTGETN(option-name);

cval
contains the setting of the SAS system option returned by OPTGETC, or a blank if
option-name is invalid. If cval is blank, use the SYSMSG function to check the
message that SCL returned. If the message is blank, then the value of the option is
blank; otherwise, option-name is invalid.

Type: Character

nval
contains the setting of the SAS system option returned by OPTGETN, or a missing
value if option-name is invalid. For options with binary settings of ON or OFF, the
function returns 1 if the setting is on, and 0 if the setting is off.

Type: Numeric

option-name
is the name of the SAS system option to retrieve.

Type: Character

Details
If you try to use OPTGETC to get information about a numeric option or OPTGETN to
get information about a character option, an error message is generated. To determine
whether a SAS system option has a numeric or character setting, see the SAS
documentation for your operating environment or SAS Language Reference: Dictionary.

For options that have ON/OFF settings (for example, DATE/NODATE), use
OPTGETN, because these options have the numeric value 1 for ON and 0 for OFF.

You can view current option settings by using the OPTIONS procedure in the SAS
session or by using the OPTIONS command.



588 OPTSETC and OPTSETN � Chapter 13

Examples

Example 1: Using the OPTGETC Function Check to see whether new SAS tables will be
compressed:

if optgetc(’compress’)=’YES’ then
_msg_=’Observations are compressed.’;

else _msg_=’Observations are not compressed.’;

Example 2: Using the OPTGETN Function Return the setting of the CAPS option and
place it in the column CAPS. The value returned is 0 if the NOCAPS form of the option
is in effect, or 1 if CAPS is in effect.

caps=optgetn(’caps’);

See Also
“OPTSETC and OPTSETN” on page 588

OPTSETC and OPTSETN
Assign a value to a SAS system option

Category: SAS System Option

Syntax
rc=OPTSETC(option-name,cval);

rc=OPTSETN(option-name,nval);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

option-name
is the name of the character SAS system option to set.

Type: Character

cval
is the new character setting for the option.

Type: Character

nval
is the new numeric setting for the option. For options with binary settings of ON and
OFF, specify an nval of 1 to turn the option on and 0 to turn it off.

Type: Numeric

Details
If you try to use OPTSETC to assign a value to a numeric option or OPTSETN to assign
a value to a character option, an error message is generated. To determine whether a



SAS Component Language Dictionary � PACKAGE 589

SAS system option has a numeric or character setting, see the SAS documentation for
your operating environment or SAS Language Reference: Dictionary.

For options that have ON/OFF settings (for example, DATE/NODATE), use
OPTSETN, because the options have the numeric values 1 for ON and 0 for OFF.

You can view current option settings by using the OPTIONS procedure in the SAS
session or by using the OPTIONS command.

Examples

Example 1: Using the OPTSETC Function Set the COMPRESS option to allow
compression of new SAS tables:

rc=optsetc(’compress’,’yes’);

Example 2: Using the OPTSETN Function Turn on the CAPS option:

rc=optsetn(’caps’,1);

See Also
“OPTGETC and OPTGETN” on page 587

PACKAGE

Defines a group of classes whose metadata must be recognized by objects defined on the client

Category: Object Oriented

Syntax
PACKAGE package-name<EXTENDS parent-package-name>;

<ITEM-statements>
ENDPACKAGE;

package-name
is the name that you want to assign to the class package. You can specify a name as
a one- to four-level name.

parent-package-name
specifies the parent class package of package-name. Parent-package-name can be
specified as a one- to four- level name.

ITEM-statements
are the ITEM statements that define the classes need by client objects. See “ITEM”
on page 489 for more information.

Details
To build client/server applications, class information such as methods and attributes
that are defined on the server must be recognized by objects that are defined on the
client. The class package block defines a set of classes that are defined by the server.



590 PATHNAME � Chapter 13

These classes can then be translated (by the WEB/AF proxy wizard or the CREATESCL
function, for example) to interface formats and used by client objects to invoke methods
and access attributes defined in these classes.

When you compile the entry that contains the PACKAGE block, SCL generates a
CLASSPKG entry with the name that you specified in the PACKAGE statement.

No SCL statements, except for the IMPORT statement, are allowed within the SCL
entry that contains the PACKAGE block.

Unlike RESOURCE entries, which directly embed class information in the entry,
CLASSPKG entries use a reference (or link) to the class name of each of the classes
that are defined in the class package block. Therefore, the class package will
automatically pick up any changes that are made to the classes.

Example

If you enter the following code into an SCL entry, then issue the SAVECLASS
command, SCL generates the entry work.a.a.classpkg.

package work.a.a.classpkg;
item sashelp.classes.scllist.class;
item sashelp.classes.format_c.class;

endpackage;

You can use the IMPORT statement to define the searchpath for CLASS references:

import sashelp.classes;
package work.a.a.classpkg;

item scllist.class;
item format_c.class;

endpackage;

See Also

“ITEM” on page 489
“ENDPACKAGE” on page 348

PATHNAME

Returns the physical name of a SAS data library or an external file

Category: External File

Syntax

filename=PATHNAME(fileref);

filename
contains the physical name of an external file or a SAS data library, or a blank if
fileref is invalid.

Type: Character



SAS Component Language Dictionary � PATHNAME 591

fileref
is the fileref assigned to an external file or a SAS data library.

Type: Character

Examples

Example 1: Using PATHNAME with the FILEREF Function Use the FILEREF function to
verify that the fileref MYFILE is associated with an external file, and then use
PATHNAME to retrieve the name of the external file:

rc=fileref(’myfile’);
if (rc=0) then do;

fname=pathname(’myfile’);
put "Path = " fname;

end;

Example 2: Appending to a Pathname This example assigns the fileref F1 to /u/
sasssf, and then uses F1 in a second call to FILENAME. The second call to
FILENAME defines the fileref F2 by appending /temp to the path for F1.

rc=filename(’f1’,’/u/sasssf’);
path=pathname(’f1’);
put path=;
rc=filename(’f2’,’temp’,’’,’’,’f1’);
path=pathname(’f2’);
put path=;

The output would be

path=/u/sasccf
path=/u/sasccf/temp

Example 3: Concatenating Pathname In this example, FILENAME concatenates the
directories /u/sasccf and /u/sasshh and assigns the concatenated list of names to the
fileref F1. The second call to FILENAME is the same as the second call to FILENAME
in Example 2. However, in this example, because F1 is assigned to a concatenated list
of directory names instead of to a single directory, FILENAME does not append /temp
to the paths.

rc=filename(’f1’,’’’/u/sasccf’,’/u/sasshh’’’);
path=pathname(’f1’);
put path=;
rc=filename(’f2’,’temp’,’’,’’,’f1’);
path=pathname(’f2’);
put path=;

The output would be

path=(’/u/sasccf’,’/u/sasshh’)
path=(’/u/sasccf’,’/u/sasshh’)

See Also
“FILENAME” on page 389
“FILEREF” on page 391
“FEXIST” on page 377
“FILEEXIST” on page 385



592 PICCLOSE � Chapter 13

PICCLOSE

Closes the graphics environment

Category: Image

Syntax
rc=PICCLOSE(graphenv-id);

rc
contains the return code for the operation:

0 successful

>0 not successful
Type: Numeric

graphenv-id
contains the graphics environment identifier that was returned by PICOPEN.

Type: Numeric

Details
PICCLOSE closes the graphic environment that was initialized by PICOPEN.

Example

Close the graphics environment that was opened by a previous PICOPEN:

fseterm:
rc=picclose(graphenv_id);

return;

PICDELETE

Deletes a region

Category: Image

Syntax
rc=PICDELETE(graphenv-id,region-id);

rc
contains the return code for the operation:

0 successful

>0 not successful



SAS Component Language Dictionary � PICFILL 593

Type: Numeric

graphenv-id
contains the graphics environment identifier that was returned by PICOPEN.

Type: Numeric

region-id
contains the region identifier that was returned by PICFILL

Type: Numeric

Example

Delete a region:

term:
if (region_id ne 0 and graphenv_id ne 0) then

rc=picdelete(graphenv_id,region_id);
return;

PICFILL

Defines a region and fills it with an image

Category: Image

Syntax
region-id=PICFILL(graphenv-id,type,ulr,ulc,lrr,lrc, source,<command<,arguments>>);

rc
contains the return code for the operation:

0 indicates that an error condition occurred.

>0 is the number identifying the region that was just defined.
Type: Numeric

graphenv-id
contains the graphics environment identifier that was returned by PICOPEN.

Type: Numeric

type
is the type of item to be displayed: IMAGE, GRSEG, or BITMAP.

Type: Character

ulr
is the upper left row of the screen area in which to display the image or graphics
segment.

Type: Numeric

ulc
is the upper left column of the screen area in which to display the image or graphics
segment.

Type: Numeric



594 PICFILL � Chapter 13

lrr
is the lower right row of the screen area in which to display the image or graphics
segment.

Type: Numeric

lrc
is the lower right column of the screen area in which to display the image or graphics
segment.

Type: Numeric

source
specifies the location of the image.

For type BITMAP, specify the numeric value of a bitmap in a host-dependent
resource file.

For type GRSEG, specify the four-level name of the graphic segment to be
displayed.

For type IMAGE, specify either the name of an external file to be loaded or the
path string from the LNAMEMK function.

Type: Numeric or Character

commands
lists commands that are used with type IMAGE to manipulate the image before
displaying it. Valid commands are listed in “Commands Used with PICFILL” on page
594.

Type: Character

arguments
are arguments for the specified command.

Type: Numeric

Commands Used with PICFILL
For detailed information about these commands, see Appendix 1, “Commands Used
with the IMGCTRL, IMGOP and PICFILL Functions,” on page 803.

CROP
crops the selected image.

DITHER
dithers an image to a color map.

DITHER_BW
dithers the selected image to a monochrome black and white image.

EXECLIST
executes a list of commands.

GAMMA
applies a gamma value to the selected image.

MAP_COLORS
maps colors to the closest color in the selected color map.

MIRROR
mirrors an image.

NEGATE
changes the image to a negative.

QUANTIZE
reduces the number of colors used for an image.



SAS Component Language Dictionary � PICOPEN 595

ROTATE
rotates an image clockwise by 90, 180, or 270 degrees.

SCALE
scales an image.

Details
PICFILL performs two functions:

� It defines the four corners of the region in which the image is to be displayed.
� It fills the region with the specified image.

If you specify a command, the PICFILL manipulates the image before displaying it.

Example

Display an image when the window opens:

init:
imgfile=lnamemk(2,location,file);
region_id=picfill(graphenv_id,"IMAGE",

15,12,40,78,imgfile);
return;

PICOPEN

Initializes the graphics environment

Category: Image

Syntax
graphenv-id=PICOPEN(pane-number);

graphenv-id
contains the identifier for the graphics environment:

0 indicates that an error condition occurred.

>0 is the graphics environment identifier for use in other PIC
functions.

Type: Numeric

pane-number
is the number of the pane to contain the graphics environment:

1 the main portion of a SAS/AF window, or the first screen in an
FSEDIT window.

2 the extended table portion of a SAS/AF window, or the second
screen in an FSEDIT window.

n the nth screen in an FSEDIT window.
Type: Numeric



596 PMENU � Chapter 13

Details
The PICOPEN function initializes the graphics environment within a window. Panes
are the physical areas of the screen in which text can be displayed. In SAS/AF
software, there can be two panes per window, numbered 1 and 2. An FSEDIT window
can have up to 101 screens.

A graphic environment must be opened for each pane in which an image or a graph
is to be displayed.

Example

Initialize the graphics environment in the main portion of the FSEDIT window:

fseinit:
graphenv_id=picopen(1);

return;

PMENU

Changes the PMENU for an application

Category: Window

Syntax
rc=PMENU(pmenu);

rc
contains the return code for the operation:

0 The PMENU entry was assigned successfully. However, the
PMENU function does not verify that pmenu exists.

≠0 The operation was not successful.
Type: Numeric

pmenu
is the PMENU entry to assign. If the PMENU entry resides in a different catalog,
then specify a value of the form libref.catalog.pmenu. If a one-level name is specified,
then SCL searches for the PMENU entry first in the current catalog, then in
SASUSER.PROFILE, and then in SASHELP.FSP.

Type: Character

Details
The PMENU function only changes the pull-down menu that is associated with the
window. It does not turn on the pull-down menus. If the pull-down menus are on, the
new pull-down menu is displayed immediately.

See Base SAS Procedures Guide for more information about creating custom PMENU
entries. FRAME entries can also use the _setPmenu method.



SAS Component Language Dictionary � POINT 597

Example

Change the default PMENU that is associated with an application to MYPMENU in
the catalog NEWLIB.TESTS:

rc=pmenu(’newlib.tests.mypmenu’);

POINT

Locates a row that is identified by the NOTE function

Category: SAS Table

Syntax
sysrc=POINT(table-id,note-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

note-id
is the identifier that was assigned to the row by the NOTE function, or −1 to go to
the previous non-deleted row in the table. If note-id is invalid, the program halts and
sends a message to the log.

Type: Numeric

Details
POINT locates the row identified by note-id, which is a value that is returned from
NOTE. The Table Data Vector is not updated until a “read” is performed by FETCH or
FETCHOBS.

Example

Call NOTE to obtain a row ID for the last row that was read in the SAS table
MYDATA. Call POINT to point to the row that corresponds to note-id. Call FETCH to
return the row that is marked by the pointer.

dsid=open(’mydata’,’i’);
rc=fetch(dsid);
noteid=note(dsid);

...more SCL statements...
rc=point(dsid,noteid);



598 POPC, POPL, POPN, and POPO � Chapter 13

rc=fetch(dsid);
...more SCL statements...

rc=close(dsid);

See Also
“DROPNOTE” on page 342
“NOTE” on page 573

POPC, POPL, POPN, and POPO

Removes an item from an SCL list and returns the value of the item

Category: List

Syntax
cval=POPC(list-id<,index>);

sublist-id=POPL(list-id<,index>);

nval=POPN(list-id<,index>);

obj-id=POPO(list-id<,index>);

cval
contains the character value that was removed from the list by POPC.

Type: Character

sublist-id
contains the identifier of the sublist that was removed from the list by POPL.

Type: List

nval
contains the numeric value that was removed from the list by POPN.

Type: Numeric

obj-id
contains the identifier of the object item that was removed from the list by POPO.

Type: Object

list-id
contains the identifier of the list from which the value or sublist is removed. An
invalid list-id produces an error condition.

Type: List

index
is the position of the item in the list. The position can be specified as a positive or
negative number. By default, index is 1 (the first item). If index is a positive number,
then the item is at position index from the beginning of the list. If index is a negative
number, then the item is at position ABS(index) from the end of the list. An error
condition results if the absolute value for index is zero or if it is greater than the
number of items in the list.

Type: Numeric or List



SAS Component Language Dictionary � POPC, POPL, POPN, and POPO 599

Details
These functions are useful for implementing stacks and queues of values.

An error condition results if
� the item has the NODELETE attribute
� the list has the FIXEDLENGTH or NOUPDATE attribute
� the list is empty
� the specified item is not a character item and you use POPC, the item is not a

sublist and you use POPL, the item is not numeric and you use POPN, or the item
is not an object and you use POPO.

To check the attributes of a list or list item, use HASATTR. To change attributes, use
SETLATTR. Use ITEMTYPE to test the type of an item when the list contains items
with types other than the one for which you are searching.

Examples

These examples assume that all list items are character. Programs A and B are
equivalent. Both remove the last item in an SCL list.

A: cval1=popc(listid,-1);
put cval1=;

B: cval2=getitemc(listid,-1);
put cval2=;
listid=delitem(listid,-1);

Example 1: Using the POPC Function This example creates an SCL list called
TODOQ, which represents a queue of tasks to do. A SAS/AF FRAME entry has a text
entry named NEWTASK for entering a new task into the TODOQ queue. A second text
entry, TODO, displays the first task in the to-do queue. A DONE button removes the
top task from the TODOQ queue.

INIT:
todoq = makelist();
done._gray();

return;

NEWTASK:
todoq = insertc(todoq, newtask.text, -1);

/* Enqueue */
newtask.text = ’’;
cursor newtask;

return;

DONE:
/* Dequeue */

finished = popc(todoq);
return;

MAIN:
if listlen(todoq) then do;

done._ungray();
todo.text = getitemc(todoq);

end;
else do;

done._gray();



600 POPC, POPL, POPN, and POPO � Chapter 13

todo.text = ’’;
end;

return;

TERM:
rc = dellist(todoq);

return;

Example 2: Using the POPL Function This program searches for, retrieves, and deletes
the first sublist item from the list LISTID:

LOOP:
do i=1 to listlen(listid);

if itemtype(listid,i)=’L’ then
do;

list=popl(listid,i);
leave loop;

end;
end;
...other SCL statements...

Example 3: Using the POPN Function This example creates a new list called
DATETIMES and treats it as a stack. The entry displays SAS datetime values when
the button PUSH is pressed. The text entry pops and displays SAS datetime values
from the DATETIMES stack when the button POP is pressed.

INIT:
datetimes = makelist();
pop._gray();

return;

PUSH:
datetime.value = datetime();
datetimes = insertn(datetimes, datetime.value);
pop._ungray();

return;

POP:
datetime.value = popn(datetimes);
if listlen(datetimes) = 0 then

pop._gray();
return;

TERM:
rc = dellist(datetimes);

return;

Example 4: Using the POPO Function This example inserts an object into an SCL list
and then removes the object from the list:

DCL sashelp.fsp.object.class obj1;
DCL object obj2;
init:

obj1=_new_ sashelp.fsp.object.class();
l1 = makelist();
l1 = inserto(l1,obj1);



SAS Component Language Dictionary � POPMENU 601

/* Insert object as first item of list */
obj2 = popo(l1);
/* Remove object from the list into obj2 */

return;

See Also
“DELITEM” on page 315
“GETITEMC, GETITEML, GETITEMN, and GETITEMO” on page 430
“INSERTC, INSERTL, INSERTN, and INSERTO” on page 474

POPLEGEND

Restores to the LEGEND window the last contents saved with the PUSHLEGEND routine

Category: Legend

Syntax
CALL POPLEGEND();

Details
POPLEGEND is useful if several entries in a CALL DISPLAY nested sequence have
their own legends and you want to restore the original legend of each calling entry
when a called entry ends.

If no legend contents have been saved, then this function is ignored.
To save the contents of the LEGEND window, use PUSHLEGEND.
For an example that includes POPLEGEND as well as other functions that

manipulate a legend window, see “LEGEND” on page 501.

See Also
“ENDLEGEND” on page 347
“LEGEND” on page 501
“PUSHLEGEND” on page 608
“PUTLEGEND” on page 611

POPMENU

Displays a pop-up menu that contains character items from an SCL list

Category: List



602 POPMENU � Chapter 13

Syntax

index=POPMENU(list-id<,max-popup<,row,column>>);

index
specifies the index of the item to be selected by default when the pop-up menu
appears. On return, index will be set to the index of the selected pop-up menu item.

Type: Numeric

list-id
is the identifier of the list that contains the character or list items to display in the
pop-up menu. An invalid list-id produces an error condition.

Type: Numeric or List
Lists may contain sublists as items. These list items must include one or more of

the following named items to be valid:

Text
specifies the menu text (required).

Type: Character

Checked
specifies whether a check should appear to the left of the item. Valid values are
Yes|No (Default).

Type: Character

Classifier
specifies the numeric representation of an icon to be associated with the menu
item.

Type: Numeric

Grayed
specifies whether the menu item should be grayed. Valid values are Yes|No
(Default).

Type: Character

HelpText
is the text to display on the status line.

Type: Character

Mnemonic
specifies the character that is used as a keyboard shortcut. The character must be
one of the characters of the menu text.

Type: Character

max-popup
is the maximum number of items to display in a pop-up menu window. If the list is
longer than max-popup, the menu is displayed in a window with a scrollable listbox.

Type: Numeric

row
is the starting row of the pop-up menu.

Type: Numeric

column
is the starting column of the pop-up menu.

Type: Numeric



SAS Component Language Dictionary � POPMENU 603

Details

If the list contains too many items to fit in a pop-up menu, POPMENU displays the
choices in a list box that includes scroll bars. If no display window is available,
POPMENU always puts the menu in a list box.

An item in the list that has the INACTIVE attribute cannot be selected and is grayed
on devices that support graying. However, it is still displayed in the menu. You can use
SETLATTR to assign the INACTIVE attribute to an item or to restore the item to an
ACTIVE state.

If the pop-up menu is displayed in a list box, inactive items are marked with a dash,
indicating that they may not be selected.

To display a separator on the pop-up menu, insert a dash as a character item in the
list where you would like the separator to appear.

To display a dash, add a space before or after the dash to prevent the text from
being interpreted as a separator.

POPMENU returns 0 if

� the user canceled the pop-up menu or closed it without making a selection

� the list is empty

� the list contains numeric or sublist items

� there is insufficient memory to create the pop-up.

In the last three cases, the pop-up menu is not displayed.
If row and column are specified and either is outside the boundaries of the current

window, the pop-up menu is positioned elsewhere on the window.

Note: Some window systems do not allow row and column positioning of pop-up
menus. They may appear at the position where the pointing device was last clicked. �

Example

Display a pop-up menu when the user presses ENTER. Initialize the pop-up menu
with three menu items: Select 1, Numeric, and Character. Define a separator
between Select 1 and Numeric.

init:
control enter;
list = { {text=’Select 1’,

helpText=’This is a selection.’,
mnemonic=’S’,
classifier = 107},

‘‘-’’,
‘‘Numeric’’,
‘‘Character’’};

return;
main:
rc= popmenu (list);
put rc=;
return;

term:
/* Delete the list recursively to avoid memory leak */
rc = dellist ( list, ’y’);
return;



604 PREVIEW � Chapter 13

See Also
“FILLIST” on page 392

“SETLATTR” on page 669

PREVIEW

Manipulates an application’s preview buffer

Category: Submit Block

Syntax
rc=PREVIEW(action<,argument-1<,argument-2<,argument-3>>>);

rc
contains the return code for the operation:

0 The operation was successful.

−1 For actions that open the PREVIEW window, the CANCEL
command was used to exit the PREVIEW window. For other
actions, the requested operation was not performed successfully.

Type: Numeric

action
is an action from “Actions for the PREVIEW Function” on page 604.

Type: Character

argument
specifies up to three arguments for the specified action from “Actions for the
PREVIEW Function” on page 604.

Type: Character

Actions for the PREVIEW Function
’BROWSE’

opens the PREVIEW window for browsing only. You can optionally specify a
window title as argument-1.

’CLEAR’
clears the preview buffer. Any statements that were generated previously by
SUBMIT statements or that were included by COPY or INCLUDE actions are lost.
No optional arguments are used with this action.

’CLOSE’
closes the PREVIEW window. No optional arguments are used with this action.

’COPY’
copies a catalog entry of type SOURCE, OUTPUT, LOG, or SCL into the preview
buffer. You must specify the name of the entry to be copied as argument-1. For the
syntax for argument-1, see the description of the SAVE action.

Note: If you copy an SCL entry to the PREVIEW window, you should CLEAR
the window before closing it. Otherwise, the SCL code that was copied will be
submitted to SAS. �



SAS Component Language Dictionary � PREVIEW 605

’DISPLAY|EDIT’
opens the PREVIEW window to display the contents of the preview buffer for
editing. All standard text editor commands are valid in this window. Control stays
with the PREVIEW window until the PREVIEW window is exited. Issue the END
command to exit the window and return to the SAS/AF program. Changes that a
user makes to the statements in the window are not reversed by issuing a
CANCEL command. However, the SCL program can check for the return code of
−1 from the PREVIEW function, indicating that a CANCEL command was issued
in the PREVIEW window, and can then specify not to save the contents of the
PREVIEW window.

You can optionally specify a window title as argument-1.

’FILE’
saves the current contents of the PREVIEW window to an external file. With this
action, you must specify the fileref for the external file as argument-1. You must
specify a fileref; physical filenames are not allowed.

You can specify APPEND for argument-2 to append the contents of the preview
buffer to the contents of the external file.

’HISTORY’
saves or appends the statements submitted from SCL programs to a catalog
member. You must specify the name of an entry as argument-1, in one of the
following forms:

entry
saves the submitted statements in SASUSER.PROFILE.entry.SOURCE.

entry.SOURCE
saves the submitted statements in SASUSER.PROFILE.entry.SOURCE.

libref.catalog.entry
saves the submitted statements in libref.catalog.entry.SOURCE.

libref.catalog.entry.SOURCE
saves the submitted statements in libref.catalog.entry.SOURCE.

Once a history destination is set, it remains in effect for the application until a
reset is performed. To clear the destination, invoke PREVIEW again by passing
the HISTORY action without any subsequent argument. The application stops
appending the submitted statements to the previously specified SOURCE entry.

You can also optionally specify a description of up to 40 characters for the entry
as argument-2.

’INCLUDE’
copies into the PREVIEW window the contents of an external file. With this
action, you must specify the fileref for the external file as argument-1. A physical
filename is not allowed.

’LINES’
returns the number of the last non-blank line in the PREVIEW window.

’MODIFIED’
returns 1 if the PREVIEW window was modified and 0 if it was not modified.

’OPEN’
displays the PREVIEW window and immediately returns control to the SCL
program. New SAS statements are displayed continually as they are generated.

This window is displayed until the application closes or until you use the
PREVIEW function and specify the CLOSE action. Thus, specifying OPEN enables
you to keep the window open throughout an application by allowing control to



606 PREVIEW � Chapter 13

return to the procedure while the window is open. With OPEN, you can optionally
specify a window title as argument-1.

’PRINT’
prints the contents of the PREVIEW window. This action accepts three arguments:

� You can optionally use argument-1 to specify a form to use for controlling
printing. Use name or name.FORM to specify a form in the current catalog.
Use libref.catalog.name or libref.catalog.name.FORM to specify a form in a
different catalog. If you do not specify a form,
SASHELP.FSP.DEFAULT.FORM is used. For more information about forms,
see SAS Language Reference: Dictionary.

� You can optionally use argument-2 to specify a fileref for a print file. If this
argument is blank or missing, the printout is sent to the default system
printer.

� You can optionally use argument-3 to specify append mode. Use A to append
the output to the print file. If this argument is blank or missing, each new
PRINT option replaces the contents of the print file.

’SAVE’
copies the contents of the PREVIEW window to a catalog member. With this
action, you must specify the name of an entry as argument-1, in one of the
following forms:

entry
saves the contents in SASUSER.PROFILE.entry.SOURCE.

entry.type
saves the contents in SASUSER.PROFILE.entry.type. Entry types can be
SOURCE, LOG, OUTPUT, or SCL.

libref.catalog.entry
saves the contents in libref.catalog.entry.SOURCE.

libref.catalog.entry.type
saves the contents in libref.catalog.entry.type.

You can also optionally specify a description for the entry as argument-2. The
first 256 characters of the description are saved.

You can also optionally specify APPEND as argument-3 to append the contents of
the PREVIEW window to the specified catalog entry.

Details
The preview buffer is where statements that are generated by SUBMIT blocks are
stored before they are submitted for execution.

Example

Manipulate the PREVIEW window. The user enters values in text entry controls
TABLENAME (the name of a SAS table to be created), MIMIC (the name of an existing
SAS table after which the new table is modeled), and FNAME (the fileref of a file in
which submitted SAS statements will be stored). If the user does not issue a CANCEL
command from the application window, then PREVIEW displays the statements in the
PREVIEW window. If the user does not issue a CANCEL command from the PREVIEW
window, then the statements are submitted for execution. If a user issues a CANCEL
command from the application or from the PREVIEW window, the PREVIEW window is
cleared of all statements. When a user presses the RUN button, the statements are
submitted.



SAS Component Language Dictionary � PROTECT 607

INIT:
control label;

return;
RUN:
submit;

data &tablename;
set &mimic;

run;
endsubmit;
if (_status_ ne ’C’) then

do;
if (preview(’EDIT’) = -1) then

rc=preview(’clear’);
else
do;
rc=preview(’FILE’,FNAME);

submit continue;
endsubmit;

end;
end;

else
rc=preview(’clear’);

return;

See Also
“ENDCLASS” on page 347
“SUBMIT” on page 691
“WREGION” on page 750

PROTECT
Assigns protection to a FRAME entry control or field

Category: Control or Field

Syntax
PROTECT wcol-names | _ALL_;

wcol-names
lists one or more window columns to protect, or _ALL_ to protect all window columns.
To specify multiple window columns, separate the names with blanks.

Type: Character

Details
Protecting a window column prevents the cursor from tabbing to the associated control
or field. You can use the PROTECT statement to temporarily override a PROTECT
attribute that has been specified for a window column. The column to be protected
cannot be an element of an array. To protect an array element, use the FIELD function.



608 PUSHLEGEND � Chapter 13

If you protect a field column with the PROTECT statement in FSEDIT applications
and issue the MODIFY command to edit the custom screen, the PROTECT attribute is
saved for that field column in the PROTECT window.

Window controls can also use the _protect method. Protecting some window controls
(block, check box, icon, list box, pushbutton, radio box, scroll bar, and slider) is the same
as calling the GRAY function or the _gray method.

The protection status remains in effect until the UNPROTECT statement is used.
The following statements are incorrect because they do not name window columns:

protect a{i};
protect a||b;

Example

Prevent the user from changing the value of the window column TABLENAME after
the value has been entered:

if (modified(tablename) and ERROR(tablename)=0)
then protect tablename;

See Also
“DISPLAYED” on page 334
“ERROR” on page 357
“ERROROFF” on page 359
“ERRORON” on page 360
“FIELD” on page 379
“MODIFIED” on page 550
“UNPROTECT” on page 711

PUSHLEGEND
Saves the contents of the LEGEND window

Category: Legend

Syntax
CALL PUSHLEGEND();

Details
PUSHLEGEND is useful if several entries in a CALL DISPLAY nested sequence have
their own legends and you want to restore the original legend of each calling entry
when a called entry ends.

To restore a pushed legend to the LEGEND window, use POPLEGEND.
For an example that includes PUSHLEGEND as well as other functions that

manipulate a legend window, see “LEGEND” on page 501.

See Also
“ENDLEGEND” on page 347



SAS Component Language Dictionary � PUTC and PUTN 609

“LEGEND” on page 501
“POPLEGEND” on page 601
“PUTLEGEND” on page 611

PUT

Writes text to the LOG window

Category: Utility
Comparisons: SAS Statement with limitations in SCL

Syntax
PUT <<’character-string’> <variable-name<=>><object.attribute<=>>> | _ALL_;

character-string
is the literal text to write to the LOG window.

Type: Character

variable-name
lists one or more variables whose name and value are to be written to the LOG
window.

Type: Character

_ALL_
specifies that all variables and their values are to be written to the LOG window.

Type: Character

Details
PUT supports dot notation for returning the value of an object. Use the form put
object.attribute=;. For more information about dot notation, see “Accessing Object
Attributes and Methods with Dot Notation” on page 124.

Differences in PUT Statement Execution
SCL supports only the forms of the PUT statement shown in "Syntax." You can combine
these forms. For example:

PUT ’character-string’ variable-name=;

For details about the PUT statement in the Base SAS language, see SAS Language
Reference: Dictionary.

PUTC and PUTN

Return a formatted value, using the specified format

Category: Formatting



610 PUTC and PUTN � Chapter 13

Syntax
formatted-val=PUTC(char-val,format);

formatted-val=PUTN(num-val,format);

formatted-val
contains the value with the specified format applied.

Type: Character

char-val
is the character value to be formatted by PUTC.

Type: Character

num-val
is the numeric value to be formatted by PUTN.

Type: Numeric

format
is the character format to apply with PUTC or the numeric format to apply with
PUTN. Format can be an SCL variable or a character literal.

Type: Character

Details
Dot notation cannot be used with the PUTC or PUTN functions. This restriction is
necessary to allow proper parsing of the char-val and num-val parameters.

For more information about using a format to return a value, see the PUT function
in SAS Language Reference: Dictionary.

Examples

Example 1: Using the PUTC Function Format the value that a user enters into the
text entry control named VALUE:

MAIN:
value=putc(value,’$QUOTE.’);
put value=;

return;

Entering SAS into the field displays "SAS" in the field and produces the following
output:

VALUE="SAS"

Example 2: Using the PUTN Function Format the variable NETPD using the
DOLLAR12.2 format, and store the value in the variable SALARY.

INIT:
netpd=20000;
put netpd=;
fmt=’dollar12.2’;
salary=putn(netpd,fmt);
put salary=;

return;



SAS Component Language Dictionary � PUTLEGEND 611

This program produces the following output:

NETPD=20000
SALARY= $20,000.00

See Also
“INPUTC and INPUTN” on page 473

PUTLEGEND

Specifies the contents of one line in the LEGEND window

Category: Legend

Syntax
CALL PUTLEGEND(line,text<,color<,attribute>>);

line
is the number for the line on which to display the text. If this value is larger than
the MAXROW returned from the WINFO function, the line number is ignored.

Type: Numeric

text
is the text to display on one line of the LEGEND window. Once you specify text for a
legend line, that text is redisplayed each time the LEGEND routine is called. To
delete the text for a line, you can specify either new text or a null string (’’) for that
line number.

Type: Character

color
is a color name, or ’’for the default color. Colors are BLACK, BLUE, BROWN,
CYAN, GRAY, GREEN, MAGENTA, ORANGE, PINK, RED, WHITE, and YELLOW.
SASCOLOR window elements can also be used for color.

The default color is the SASCOLOR window element "Informational Text."
Type: Character

attribute
is a display attribute, or ’’for the default attribute. Attributes are: NONE,
BLINKING, HIGHLIGHT, HIREV, REVERSE, and UNDERLINE. If you specify a
SASCOLOR window element for color, then attribute is ignored, because the
SASCOLOR window element contains a display attribute.

The default attribute is the SASCOLOR window element "Informational Text."
Type: Character

Details
Use multiple PUTLEGEND routines to display multiple lines. The default legend
window size allows four lines of text. You can change the LEGEND window size by
using WREGION. To display the legend window, use LEGEND.



612 PUTLIST � Chapter 13

For an example that includes PUTLEGEND as well as other functions that
manipulate a legend window, see “LEGEND” on page 501.

See Also
“ENDLEGEND” on page 347
“LEGEND” on page 501
“POPLEGEND” on page 601
“PUSHLEGEND” on page 608

PUTLIST

Displays the contents of an SCL list in the LOG window

Category: List

Syntax
CALL PUTLIST(list-id<,label<,indent>>);

list-id
is the identifier returned by the function that created the list.

Type: Numeric or List

label
specifies the label for the printed output.

Type: Character

indent
is the number of characters to indent list items in the printed list.

Type: Numeric

Details
After printing the optional label, PUTLIST prints a left parenthesis ’(’ to mark the
beginning of the list, followed by the list of items separated by blanks. Each named
item is preceded by its name and an equal sign (=), but nothing is printed before items
that do not have names. PUTLIST ends the list with a right parenthesis ’)’, followed by
the list’s identifier number within square brackets.

If the value for indent is greater than or equal to 0, the list is printed in a vertical
format where each list item is printed on its own line. Sublists are indented the
number of spaces to the right that is specified by indent.

If the list contains sublists that have been deleted, PUTLIST identifies each invalid
list identifier with the text <invalid list id>[listid].

Examples

The following examples are based on an SCL list whose list identifier is stored in the
variable A. This list contains the numbers 17 and 328 plus the character value “Any
characters”. These examples display the list in several ways:



SAS Component Language Dictionary � PUTLIST 613

� in its simplest form

� with values indented

� after a numeric item is replaced with a sublist item

� after the list has been added to itself as a sublist.

Example 1: Displaying a List with Indented Values Print a list and indent the list
items:

call putlist(a,’A=’,2);

The above statement produces the following output:

A=( 17
328
’Any characters’

)[7]

Example 2: Replacing a Numeric Item with a Sublist Item Replace the second item in
the list A with the list identifier for sublist B, which contains the values -4.75 and
12.875:

/* Assign the second item to list B. */
a=setiteml(a,b,2);
name=nameitem(a,1,’MIN’);
name=nameitem(a,2,’B’);
call putlist(a,’A=’,2);

These statements produce the following output:

A=( MIN=17
B=( -4.75

12.875
)[5]
’Any characters’
)[7]

Example 3: Adding a List to Itself as a Sublist If a sublist appears more than once in
the list that is being printed, PUTLIST prints only the following for the second and
subsequent occurrences of the list:

(...) [listid-number]

To view the full contents of the list, scan the output of PUTLIST for other
occurrences of [listid-number]. This prevents infinite loops if a list contains itself.

Create and display a recursive list:

r1=makelist();
r1=setnitemn(r1,1,’X’);
r1=setniteml(r1,r1,’SELF’);
call putlist(r1,’R1=’,2);

These statements display the following information in the LOG window. Note that the
full contents of the list that has the identifier 7 are printed only once. The other
occurrence is represented as (...)[7].

R1=( X=1
SELF=(...)[7]

)[7]



614 PUTVARC and PUTVARN � Chapter 13

See Also
“MAKELIST” on page 533
“MAKENLIST” on page 534

PUTVARC and PUTVARN

Write a value to the Table Data Vector (TDV) for a SAS table

Category: SAS Table

Syntax
CALL PUTVARC(table-id,col-num,cval);

CALL PUTVARN(table-id,col-num,nval);

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

col-num
is the number of the column in the SAS table. This is the number that is adjacent to
the column when the CONTENTS procedure lists the columns in the SAS table. You
can use the VARNUM function to obtain this value.

Type: Numeric

cval
is the character value to be written to the TDV.

Type: Character

nval
is the numeric value to be written to the TDV.

Type: Numeric

Details
After PUTVARC writes a character value to a table column, use UPDATE to update the
row in the SAS table.

If the SCL program uses CALL SET to link columns in the SCL data vector (SDV)
with columns in the Table Data Vector (TDV), do not use the PUTVARN and PUTVARC
routines for any columns that are linked by SET. UPDATE and APPEND automatically
copy the data from the SDV to the TDV before writing a row to a physical file.
Therefore, the value that is copied from the SDV will overwrite the value written to the
TDV by PUTVARC or PUTVARN, and the value of the corresponding table column will
not be updated with the value specified by PUTVARC or PUTVARN.

Examples

Example 1: Using the PUTVARC Routine Change an employee’s last name from SMITH
to UPDIKE in the column NAME in the table referenced by the table identifier PAYID:



SAS Component Language Dictionary � REDIM 615

vnum=varnum(payid,’name’);
rc=locatec(payid,vnum,’SMITH’,’u’);
if (rc>0) then

do;
call putvarc(payid,vnum,’UPDIKE’);
rc=update(payid);

end;

Example 2: Using the PUTVARN Routine Change an item’s price from 1.99 to 2.99 in
the table referenced by the table identifier PAYID:

vnum=varnum(payid,’price’);
rc=locaten(payid,vnum,1.99,’u’);
if (rc>0) then

do;
call putvarn(payid,vnum,2.99);
rc=update(payid);

end;

See Also
“APPEND” on page 224
“FETCH” on page 374
“FETCHOBS” on page 375
“GETVARC and GETVARN” on page 438
“INITROW” on page 472
“UPDATE” on page 714
“VARNUM” on page 731

REDIM

Resizes a dynamic array

Category: Array

Syntax
rc=REDIM(array,dim1<,dim2<,dim3....<,dimN>...>>);

rc
indicates whether the operation was successful.

0 successful

≠0 not successful
Type: Numeric

array
is the dynamic array to be resized. A non-dynamic array causes an error condition.

Type: Array



616 REDIM � Chapter 13

dim1...dimN
is the size of each specified dimension. If you specify negative sizes or an invalid
number of dimensions, an error condition occurs.

Type: Numeric

Details
You can use the REDIM function to resize a dynamic array. You cannot change the
numbers of dimensions or type of the array, only the bounds. The REDIM function will
preserve the data in the array. However, if you resize the array to a smaller size, you
will lose the data in the eliminated elements. There is no limit to the number of times
that you can resize an array.

Examples

Example 1: Resize an Array Preserving the Data This example creates a
one-dimensional array of 3 elements, populates it with data, and then resizes it using
REDIM to 5 elements while preserving the data.

DCL num a(*);
a = makearray(3);
do i=1 to dim(a);

a[i]=i;
end;
rc = redim(a,5);
put a=;
rc=delarray(a);

The output:

a=
a[1]=1
a[2]=2
a[3]=3
a[4]=.
a[5]=.

Example 2: Resize a Two-dimensional Array Preserving the Data This example creates
a 3x3 array, populates it with data, and then resizes it to a 4x4 array using REDIM,
preserving the initial data.

DCL num a(*,*);
a = makearray(3,3);
do i=1 to dim(a);
do j=1 to dim(a);

a[i,j]=i;
end;
end;
put a=;
rc = REDIM(a,4,4);
put a=;
rc = delarray(a);

The output:

a=
a[1,1] = 1



SAS Component Language Dictionary � REDIM 617

a[1,2] = 1
a[1,3] = 1
a[2,1] = 2
a[2,2] = 2
a[2,3] = 2
a[3,1] = 3
a[3,2] = 3
a[3,3] = 3
a=
a[1,1] = 1
a[1,2] = 1
a[1,3] = 1
a[1,4] = .
a[2,1] = 2
a[2,2] = 2
a[2,3] = 2
a[2,4] = .
a[3,1] = 3
a[3,2] = 3
a[3,3] = 3
a[3,4] = .
a[4,1] = .
a[4,2] = .
a[4,3] = .
a[4,4] = .

Example 3: Resize an Array Without Preserving the Data This example creates a 3x3
array, populates it with data, and then resizes it to a 4x4 array without using REDIM
and without preserving the data.

DCL num a(*,*);
a = makearray(3,3);
do i=1 to dim(a);
do j=1 to dim(a);

a[i,j]=i;
end;
end;
put a=;
a = makearray(4,4);
put a=;
rc = delarray(a);

The output:

a=
a[1,1] = 1
a[1,2] = 1
a[1,3] = 1
a[2,1] = 2
a[2,2] = 2
a[2,3] = 2
a[3,1] = 3
a[3,2] = 3
a[3,3] = 3
a=
a[1,1] = .



618 REDIMOPT � Chapter 13

a[1,2] = .
a[1,3] = .
a[1,4] = .
a[2,1] = .
a[2,2] = .
a[2,3] = .
a[2,4] = .
a[3,1] = .
a[3,2] = .
a[3,3] = .
a[3,4] = .
a[4,1] = .
a[4,2] = .
a[4,3] = .
a[4,4] = .

See Also
“DELARRAY” on page 312
“MAKEARRAY” on page 531
Chapter 4, “SCL Arrays,” on page 37

REDIMOPT

Marks an array as implicitly growable

Category: Array

Syntax
rc=REDIMOPT(array);

rc
indicates whether the operation was successful.

0 successful

≠0 not successful
Type: Numeric

array
is the dynamic array that you want to be implicitly growable.

Type: Array



SAS Component Language Dictionary � REDIMOPT 619

Details
When an array is implicitly growable, you can set the value for an out-of-bounds
element without first using the REDIM function to enlarge the array.

For each out-of-bounds assignment, if the index value of the new element is greater
than twice the current high bound of the corresponding dimension, then that dimension
increases to the index value of the new element. If the index value of the new element
is less than twice the current high bound of the corresponding dimension, then the
corresponding dimension grows to twice its current size.

You must still allocate the array before you can mark it as implicitly growable.

Example

The following example defines two dynamic arrays, a numeric array named ARR and
a character array named CARR. The code marks both arrays as implicitly growable and
assigns values to out-of-bounds elements.

init:
dcl num arr[*];
arr = makearray(3);
rc = redimopt(arr);

if rc then return;

/* The array size will double to 6. */
arr[5] = 5;
/* The array will grow to 13 because the subscript */
/* is greater than 2*6. */
arr[13] = sum(4,7);

put arr=;

/* Character arrays are also implicitly growable. */
dcl char carr[*];
rc = redimopt(carr);
if rc then return;
carr = makearray(5);
/* The array will grow to 10. */
do i=1 to 7;

carr[i] = ’test’ || i;
end;
put carr=;
return;

See Also
“MAKEARRAY” on page 531
“REDIM” on page 615
Chapter 4, “SCL Arrays,” on page 37



620 REFRESH � Chapter 13

REFRESH

Redisplays a window using current field or control values

Category: Window

Syntax

REFRESH;

Details

Refreshing a window can result in updating window variable values. FRAME entries
can also use the _refresh method.

Example

Suppose the field NAME is displayed on the left side of a PROGRAM entry and that
NEW.PROGRAM is sized so that it is displayed on the right side of the window. When
the following code runs, NAME changes to red and then NEW.PROGRAM is displayed.
If the REFRESH statement were not present, NAME would not appear red until
NEW.PROGRAM is closed and control is returned to the application.

rc=field(’color red’,’name’);
refresh;
call display(’new.program’);

RENAME

Renames a member of a SAS data library, an external file, or a directory

Category: Utility

Syntax

sysrc=RENAME(old-name,new-name<,type<,description<,generation<,password>>>>);

sysrc
contains the return code for the operation:

Type: Numeric

0 successful

≠0 not successful



SAS Component Language Dictionary � RENAME 621

old-name
is the current name of a member of a SAS data library, an external file, or an
external directory. For a member, this can be a one-, two-, or four-level name. For an
external file or a directory, old-name must be the full pathname of the file or a
directory; otherwise, the current directory is used.

Type: Character

new-name
is the new one-level name for the library member, external file, or directory.

Type: Character

type
specifies the type of element to rename:

Type: Character

’ACCESS’
an access descriptor that was created using SAS/ACCESS software

’CATALOG’
a SAS catalog or catalog entry

’DATA’
a SAS table (This is the default.)

’VIEW’
a SAS table view

’FILE’
an external file or a directory.

description
is the description of a catalog entry. You can specify description only when type is
CATALOG.

Type: Character

password
is the password for the file that is being renamed.

Type: Character

generation
is the generation number of the data set that is being renamed.

Type: Numeric

Details
You can use RENAME to rename files or directories that are external to a SAS session
as well as members of a SAS data library.

To rename an entry in a catalog, specify the four-level name for old-name and a
one-level name for new-name. You must specify CATALOG for type when renaming an
entry in a catalog.



622 RENAME � Chapter 13

Mainframe Usage of RENAME
RENAME works on directory-based operating systems only. RENAME was not
designed for mainframe operating systems, and will produce the following error:

ERROR: Requested function is not supported.

To rename external files or directories on a mainframe, use the host command for
renaming files in conjunction with the SYSTEM function. For example, on MVS you
could use the following:

rc=system("rename ’userid.old.lib’ ’userid.new.lib’");

Examples

Example 1: Renaming Tables and Catalog Entries Rename a SAS table from DATA1 to
DATA2. Also rename a catalog entry from A.SCL to B.SCL.

rc1=rename(’mylib.data1’,’data2’);
rc2=rename(’mylib.mycat.a.scl’,’b’,’catalog’);

Example 2: Renaming an External File Rename an external file:

/* rename a file that is in another directory */
rc=rename(’/local/u/testdir/first’,

’/local/u/second’,’file’);
/* rename a PC file */

rc=rename(’d:\temp’,’d:\testfile’,’file’);

Example 3: Renaming a Directory Rename a directory:

rc=rename(’/local/u/testdir/’,’/local/u/oldtestdir’,’file’);

Example 4: Renaming a Data Set Generation Rename a generation of the data set
work.one to work.two, where the password for work.one#003 is “joyful”:

rc=rename(’work.one’,’two’,’data’,’’,’joyful’,3);

See Also
“DELETE” on page 313



SAS Component Language Dictionary � REPLACE 623

REPLACE

Substitutes a replacement string for a reference to an SCL variable in the SUBMIT block

Category: Submit Block

Syntax
REPLACE variable replacement-string;

variable
is the variable whose value the replacement value is substituted for.

Type: Character

replacement-string
is the text to substitute for the variable’s value. This text can include a variable’s
value, but that is not mandatory.

Type: Character

Details
REPLACE substitutes a replacement string for a reference to an SCL variable in the
SUBMIT block only if the variable is not blank. It functions as an implicit IF statement,
determining when to substitute the string in the SUBMIT block. Using the REPLACE
statement reduces the amount of code needed to generate statements to be submitted.

The REPLACE statement is evaluated when the program is compiled. Different
replacement strings cannot be substituted based on conditions that exist at execution
time. For example, the following statements cause errors when you compile the
program:

if (x) then
replace y ’&y’;

else
replace y ’&z’;

If you use multiple REPLACE statements for the same variable, the last REPLACE
statement is used and a warning is generated by the compiler to that effect.

A good programming practice is to collect all the REPLACE statements in one place
in your SCL program.

You can also use the REPLACE option in the ATTR window of a PROGRAM entry to
specify the replacement string. However, this can be overridden by REPLACE
statements in the SCL program.

SCL performs substitution according to the following rules:
� If the value of the SCL variable is blank (or _BLANK_), no substitution is

performed.
� If the value of the SCL variable is not blank, SCL performs substitution into the

replacement string for the variable and substitutes the resulting string into the
SUBMIT block.

The replacement string can reference other SCL variables.

Note: Replacement strings are not recursive. When you refer to another variable in
the replacement string, the program uses the current value of the variable, not the
value that is based on its replacement string. �



624 RETURN � Chapter 13

Example
replace tablename ’data=&tablename’;

...more SCL statements...
submit continue;

proc print &tablename;
run;

endsubmit;

If TABLENAME contains ’’(or _BLANK_), the submitted statements are

submit continue;
proc print;
run;

endsubmit;

However, if TABLENAME contains work.sample, the submitted statements are

submit continue;
proc print data=work.sample;
run;

endsubmit;

RETURN

Stops executing statements in the program section that is currently executing and may return a
value to the caller

Category: Control Flow

Comparisons: SAS statement with limitations in SCL

Syntax
RETURN<(value)>;

value
is a value to be returned by the current method. Value can be an SCL variable, a
numeric or character constant, or an expression (except for an array). Use value only
for RETURN statements that end METHOD and ENTRY statements.

Type: Character, Numeric, List, Object

Details
When RETURN stops executing statements in the current section of an SCL program,
control passes to the next section in the program execution cycle.

The RETURN statement for an ENTRY or METHOD statement block can return
value if the ENTRY or METHOD statement contains RETURN=data type. The
returned value from the RETURN statement has no effect if the statement does not
immediately return the program control back to the calling program.

For details about the RETURN statement in the Base SAS language, see SAS
Language Reference: Dictionary.



SAS Component Language Dictionary � RETURN 625

Example

Define a method for LIB.CAT.MYCLASS.CLASS that compares two lists, L1 and L2.
Return 1 if the strings are identical and 0 if the strings are not identical.

useclass lib.cat.myclass.class;
compare: method l1 l2:list return=num;
dcl num len1 len2 i;
len1=listlen(l1);
len2=listlen(l2);
if (len1 ^= len2) then return 0;

do i=1 to len1;
dcl char(1) type;
type=itemtype(l1,i);
if (type ^= itemtype(l2,i)) then
return 0;

select type;
when (’0’) do;

if (getitemo(l1,i) ^= getitemo(l2,i)) then
return 0;

end;
when (’N’) do;

if (getitemn(l1,i) ^= getitemn(l2,i)) then
return 0;

end;
when (’L’) do;

if (getiteml(l1,i) ^= getiteml(l2,i)) then
return 0;

end;
when (’C’) do;

if (getitemc(l1,i) ^= getitemc(l2,i)) then
return 0;

end;
otherwise return 0;

end;
end;
return(1);

endmethod;
enduseclass;

See Also
“ENTRY” on page 351
“METHOD” on page 539
“RUN” on page 635
“STOP” on page 688



626 REVLIST � Chapter 13

REVLIST

Reverses the order of the items in an SCL list

Category: List

Syntax
list-id=REVLIST(list-id);

list-id
is the identifier of the list to reverse. The function returns the list identifier that is
passed in. An invalid list-id produces an error condition.

Type: Numeric or List

Details
Any names and attributes that are assigned to list items remain with the items when
the items are reversed.

REVLIST does not make a copy of the list before reversing the order of the list items.
The list is modified in place. To keep a copy of the original list, use COPYLIST before
REVLIST.

An error condition results if the list has the NOUPDATE attribute.
To check attributes, use HASATTR. To change attributes, use SETLATTR.

Example

Make a nonrecursive copy of the list identified by MYLISTID, reverse the items in
the copied list, and assign the new list identifier to the variable REVLISTID:

revlistid = revlist(copylist(mylistid));

See Also
“HASATTR” on page 447

“ROTLIST” on page 631
“SETLATTR” on page 669
“SORTLIST” on page 684



SAS Component Language Dictionary � REWIND 627

REWIND

Positions the table pointer at the beginning of a SAS table

Category: SAS Table

Syntax
sysrc=REWIND(table-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened in any mode except IS,
US, or N. If table-id is invalid, the program halts.

Type: Numeric

Details
After a call to REWIND, a call to FETCH reads the first row in the table.

If there is an active WHERE clause, REWIND moves the table pointer to the first
row that satisfies the WHERE condition.

Example

Call FETCHOBS to fetch the tenth row in the table MYDATA. Then call REWIND to
return to the first row and fetch the first row:

dsid=open(’mydata’,’i’);
rc=fetchobs(dsid,10);
rc=rewind(dsid);
rc=fetch(dsid);

See Also
“FETCH” on page 374
“FETCHOBS” on page 375
“FREWIND” on page 418
“NOTE” on page 573
“POINT” on page 597



628 RGBDM � Chapter 13

RGBDM

Returns the name supported by the SAS windowing environment for a color

Category: Utility

Syntax
DM-color-name=RGBDM(color-name<,RGB-color>);

DM-color-name
contains the name of the SAS windowing environment color that is closest to
color-name.

Type: Character

color-name
is a color name to look up: BLACK, BLUE, BROWN, CYAN, GRAY, GREEN,
MAGENTA, ORANGE, PINK, RED, WHITE, or YELLOW. Any SAS/GRAPH color
name is allowed, as well as SASCOLOR window elements. Arbitrary RGB colors can
be specified using the CXrrggbb convention.

Type: Character

RGB-color
returns color-name in the CXrrggbb format.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Character

Details
The RGBDM function provides a way to determine both the closest color that is
supported by the SAS windowing environment for a specified color and the RGB values
for a color name. If color-name is a variable and the specified color is a valid color
abbreviation, the variable is updated with the complete color name. For example, the
color "R" would be translated to "RED" and the RGB-color would be "CXFF0000". The
value for RGB-color may be different depending on the host operating system.

For more information about the CXrrggbb format, see SAS/GRAPH: Reference.



SAS Component Language Dictionary � RGBDM 629

Example

Display the color components of several different colors:

length rgbclr $ 8;
INIT:

/* display txtclr=red */
/* rgbclr=cxff0000 */

txtclr = rgbdm("RED", rgbclr);
put txtclr= rgbclr=;

/* display txtclr=red */
txtclr = rgbdm("cxf00000");
put txtclr=;

/* display txtclr=red clr=red */
clr=’r’;
txtclr = rgbdm(clr);
put txtclr= clr= ;

/* display the foreground */
/* color in rgb values */

txtclr = rgbdm("FOREGROUND", rgbclr);
put txtclr= rgbclr=;

return;

In some operating environments, this example produces the following output:

txtclr=RED rgbclr=CXFF0000
txtclr=RED
txtclr=RED clr=RED
txtclr=WHITE rgbclr=CXF2F2F2



630 RIGHT � Chapter 13

RIGHT
Returns a right-aligned character value

Category: Character

Syntax
rstring=RIGHT(string<,length>);

rstring
contains the right-aligned character string. If rstring already exists, then specifying
a length in the RIGHT function changes the current length of rstring to length. If the
length has not been defined with a DECLARE or LENGTH statement, and if rstring
is not a window variable, then the default SCL variable length is 200 characters.

Type: Character

string
is the character string to be right-justified.

Type: Character

length
is the length in which the character string is to be right-justified. The default is the
maximum length of rstring.

Type: Numeric

Details
The string is justified by padding with leading spaces. The default length is the
maximum length of rstring characters.

In order for RIGHT to work properly when rstring is a window variable, set the
justification attribute (JUST) for rstring to NONE when you define the window variables.

To left-justify a character string, use the LEFT function when you define the window
variable. To center a character string, use CENTER.

See Also
“CENTER” on page 250
“LEFT” on page 500

RLINK
Reports whether a link exists between the current SAS session and a remote SAS session

Category: Interface to SAS Software
Requires SAS/CONNECT software

Syntax
rc=RLINK(remote-session-id);



SAS Component Language Dictionary � ROTLIST 631

rc
contains the return code for the operation:

1 The link exists.

0 The link does not exist.
Type: Numeric

remote-session-id
is the name of the remote session (REMOTE= value) that is being tested.

Type: Character

Details
See SAS/CONNECT User’s Guide for details about accessing remote hosts from SAS
software.

To get the name of the last remote host that was linked to during the current SAS
session, use OPTGETC, specifying ’REMOTE’ as option-name.

Example

Check to see whether the link is active:

REMSESS=optgetc(’remote’);
msg=sysmsg();
put msg REMSESS;
rc=rlink(REMSESS);

if (rc=0) then
msg=’No link exists.’;

else
msg=’A link exists.’;

put msg;

See Also
“OPTGETC and OPTGETN” on page 587
“RSESSION” on page 633
“RSTITLE” on page 634

ROTLIST

Rotates the items in an SCL list

Category: List

Syntax
list-id=ROTLIST(list-id<,n>);



632 ROTLIST � Chapter 13

list-id
is the identifier of the list to rotate. The function returns the list identifier that is
passed in. An invalid list-id produces an error condition.

Type: Numeric or List

n
is the number of times to rotate the list. The default is 1.

Type: Numeric

Details
The items are rotated the number of times specified by n. If the value for n is positive,
the items are rotated from right to left. This means that each rotation moves the item
at the front of the list to the end of the list (that is, from position 1 to position -1). If the
value for n is negative, the items are rotated from left to right. This moves the item at
the end of the list to the front of the list (that is, from position -1 to position 1).

When a list is rotated, item names and attributes are moved along with the elements.
Fetching a named item from a list that has more than one item of the same name may

return a different item from the list after rotating than was returned before rotating.
ROTLIST does not make a copy of the list before rotating the items in the list. The

list is modified in place. To keep a copy of the original list, use COPYLIST before
ROTLIST.

An error condition results if the list has the NOUPDATE attribute.
To check a list’s attributes, use HASATTR. To change these attributes, use

SETLATTR.

Example

Manipulate the list identified by LISTID, which contains the five character values A,
B, C, D, and E. Display the list, rotate it right to left one time and display that list, and
then rotate it left to right twice and display that list.

call putlist(listid,’Input list=’);
listid = rotlist(listid); /* Rotate 1 time */
call putlist(listid,’Rotated 1=’);
listid = rotlist(listid,-2);
call putlist(listid,’Rotated -2=’);

The preceding statements produce the following changes. The net result is that the
list is rotated backwards one time.

Input list=(’A’ ’B’ ’C’ ’D’ ’E’)[3]
Rotated 1=(’B’ ’C’ ’D’ ’E’ ’A’)[3]
Rotated -2=(’E’ ’A’ ’B’ ’C’ ’D’)[3]

Note: [3] is the list identifier that was assigned when this example was run and
may be different each time the example is run. �



SAS Component Language Dictionary � RSESSION 633

See Also

“HASATTR” on page 447
“REVLIST” on page 626
“SETLATTR” on page 669
“SORTLIST” on page 684

RSESSION

Returns the name, description, and SAS software version of a remote session

Category: Interface to SAS Software

Requires SAS/CONNECT software

Syntax

cval=RSESSION(n);

cval
contains up to 48 characters of information identifying a remote session. Characters
1 through 8 contain the session identifier (the REMOTE= value). Characters 9
through 48 contain the description.

Type: Character

n
is the number of the remote session to identify.

Type: Numeric

Details

RSESSION returns the session identifier and the corresponding description for a
remote session that has been established with SAS/CONNECT software. You must have
previously defined the description using RSTITLE.

If no remote link exists, the returned value is blank. If a link exists but no description
has been specified, then characters 9 through 48 in the returned value are blanks.

See SAS/CONNECT User’s Guide for more information about establishing a link
between local and remote hosts.

Example

Retrieve the name and description of remote session number 1:

value=rsession(1);

See Also

“RLINK” on page 630
“RSTITLE” on page 634



634 RSTITLE � Chapter 13

RSTITLE

Defines a description for an existing connection to a remote session

Category: Interface to SAS Software

Requires SAS/CONNECT software

Syntax

sysrc=RSTITLE(session-id,description);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

session-id
is one to eight characters that identify the remote session (the REMOTE= value).

Type: Character

description
is one to 40 characters to associate with the remote session.

Type: Character

Details

You can retrieve the information that RSTITLE saves by using RSESSION to build a
list of connections. You can then use the list to select a connection when submitting
statements to a remote host.

In order to use this function, Release 6.07 or later of SAS software must be running
on both the local and remote host systems.

See SAS/CONNECT User’s Guide for more information about establishing a link
between local and remote hosts.

Example

Define the description MVS Payroll Data for the remote session that has the
identifier A:

session=’A’;
description=’MVS Payroll Data’;
rc=rstitle(session,description);

See Also

“RLINK” on page 630
“RSESSION” on page 633



SAS Component Language Dictionary � SASNAME 635

RUN

Stops executing statements in the program section that is currently executing

Category: Control Flow
Comparisons: SAS Statement with limitations in SCL
Alias: RETURN

Syntax
RUN;

Details
In SCL, RUN is treated as an alias for RETURN.

For details about the RUN statement in the Base SAS language, see SAS Language
Reference: Dictionary.

See Also
“RETURN” on page 624
“STOP” on page 688

SASNAME

Verifies that a name is a valid SAS name

Category: Utility

Syntax
rc=SASNAME(name);



636 SASTASK � Chapter 13

rc
contains the return code for the operation:

1 The name is a valid SAS name.

0 The name is not a valid SAS name.
Type: Numeric

name
is the name to be verified as a valid SAS name.

Type: Character

Details
SASNAME verifies that a specified name is a valid SAS name. SAS names can be up to
32 characters long. The first character must be a letter (A, B, C, . . . , Z) or underscore
(_). Other characters can be letters, numbers (0, 1, . . . , 9), or underscores. Blanks
cannot appear in SAS names, and special characters (for example, $, @, #), except
underscores, are not allowed.

Example
erroroff catalogname;
rc=sasname(’catalogname’);
if (rc=0) then do;

erroron ’catalogname’;
_msg_= ’Catalog name is invalid.’;
end;

Note: In this example, the value for CATALOGNAME must be a one-level SAS
name. SASNAME considers a two-level name of the form libref.catalog-name invalid
because it contains the dot (.) character. �

SASTASK

Determines whether a SAS procedure is running

Category: Interface to SAS Software

Syntax
rc=SASTASK();



SAS Component Language Dictionary � SAVEENTRYDIALOG 637

rc
contains the return code for the operation:

1 A SAS procedure is active.

0 No SAS procedure is active.
Type: Numeric

Example

Determine whether a SAS procedure is currently running before attempting to
submit code to SAS software. If so, display a message to inform the user why the code
cannot be submitted.

if (sastask()) then
_msg_=’Another procedure is currently active.’;
else

do;
submit continue;

data a;
x=1;

run;
endsubmit;

end;

SAVEENTRYDIALOG

Opens a dialog window that lists catalog entries, and returns the name of the selected entry

Category: Selection List

Syntax
selection=SAVEENTRYDIALOG(<type<,initial<,entry-name<,list-

id<,description>>>>>);



638 SAVEENTRYDIALOG � Chapter 13

selection
contains the four-level name of the selected SAS file, or a blank if nothing is selected.

Type: Character

type
specifies member types to list in the dialog window, such as CLASS, SCL, or FRAME.
This can reduce the length of the list in the dialog window. If type is not used, names
of all catalog entry types in the data library are listed.

Type: Character

initial
is the four-level name of the catalog entry to be the initially selected item in the
dialog window when it opens.

Type: Character

entry-name
is a two- or four-level name of a catalog entry to call when a user selects the
Advanced button in the dialog window. The entry can be any of the following types:
FRAME, SCL, PROGRAM, HELP, CBT, or MENU.

If entry-name is not specified, then the window does not contain Advanced .
Type: Character

list-id
contains the identifier of an SCL list that is passed to entry-name.

Type: Numeric or List

description
contains the description of the returned selection.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Character

Details
SAVEENTRYDIALOG enables you to implement a Save As choice by displaying a
dialog window that lists entries in SAS catalogs. SAVEENTRYDIALOG returns a user’s
selection, which enables you to create code that performs the save action. The entry can
be saved under a different name or the same name.

If entry-name is supplied, the item selected in the dialog window is passed to
entry-name through the following variables, which are created automatically:

USERDATA
contains the list passed in the call to the OPENENTRYDIALOG and
SAVEENTRYDIALOG functions.

LIBREF
contains the libref of the selected item.

CATALOG
contains the catalog name of the selected item.

ENTRY
contains the entry name of the selected item.

TYPE
contains the member type of the selected item.

List-id enables information to be passed between the calling entry and entry-name. It
is passed to entry-name through the USERDATA variable.



SAS Component Language Dictionary � SAVEENTRYDIALOG 639

Examples

Example 1: Saving a Catalog Entry Select a catalog entry of type FRAME to save and
display the selected entry.

selection=saveentrydialog(’frame’);
call display(selection);

Example 2: Using the Advanced Button with an SCL List Specify an entry to call when
a user selects Advanced , as well as an SCL list that contains values to pass to the entry.

dcl list mydata;
mydata=makelist();
rc=insertc(mydata,’test’);
selection=saveentrydialog(’frame’,’mylib.mycat.initial.frame’,

’mylib.mycat.myentry.frame’,mydata, description);
if sysrc(1)=-1 then do;

...SCL statements to execute when
the user cancels from the window...
rc=dellist(mydata);

end;
else do;

...SCL statements to handle selections...
end;

The SCL entry for MYLIB.MYCAT.MYENTRY.FRAME contains the following program:

dcl char(8) libref;
dcl char(8) type;
dcl char(32) catalog;
dcl char(32) entry
dcl list userdata;

init:
put libref=;
put catalog=;
put entry=;
put type=;
call putlist(userdata);
return;

Note: The SCL entry must declare these exact variables, in the order specified, to
properly reference the selected entry. �

If the user selects MYLIB2.MYCAT2.MYENTRY2.FRAME in the dialog window and
then selects Advanced , the output for this program is

libref=Mylib2
catalog=Mycat2
entry=Myentry2
type=Frame
(’test’)[1]



640 SAVELIST � Chapter 13

SAVELIST

Stores SCL list items in a SAS catalog entry or in an external file

Category: List

Syntax

sysrc=SAVELIST(type,target,list-id<,attr-list-id<,description>>;

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

type
specifies the type of file or data source named in source and one or more options to
use:

’CATALOG<(options)>’
saves text in a SAS catalog entry.

’FILE<(options)>’
saves text in an external file that is named in target.

’FILEREF<(options)>’
saves text in an external file that is identified by a fileref named in target.
Type: Character
The available options are described in “Type Options” on page 641. Separate

multiple options with blanks. For example, when you save a list to a catalog entry,
the first character of each item is assumed to be a carriage-control character, because
FILLIST puts a carriage control in the first character of each item when it fills a list.
If a list was not filled with FILLIST and does not have a carriage-control character
as the first character, the first character of text is lost in each item of the list saved
with SAVELIST. For lists of this type, use CATALOG(ADDCC) to add a
carriage-control character as the first character in each list item.

target
is the name of the catalog entry, external file, or fileref in which the list items are
stored. For catalog entries, this must be a four-level name
(libref.catalog.entry-name.entry-type).

Type: Character

list-id
contains the identifier of the list that contains the items to be stored in a SAS file or
external file. An invalid list-id produces an error condition. For text catalog entries,
the first character in each item in the list contains the FORTRAN carriage-control
character: 1 means that a new page starts with this line.

Type: Numeric or List



SAS Component Language Dictionary � SAVELIST 641

attr-list-id
contains the identifier of the list to fill with text attribute information when type is
CATALOG. An error condition results if attr-list-id is not a valid list identifier.

Type: Numeric

description
is the text of a catalog entry description. This argument is ignored if the value for
type is FILE or FILEREF. (The description is displayed in the catalog directory.)

Type: Character

Type Options
ADDCC

adds a default carriage-control character. Used with type FILE, FILEREF, and
CATALOG and with catalog entry types LOG, OUTPUT, and SOURCE. If you use ADDCC
and STRIPCC together, then both options are ignored.

APPEND
attempts to open the external file in APPEND mode and appends text from the list
to the external file. Used with type FILE or FILEREF.

PRINT
designates an external file as a PRINT file (uses host carriage-control characters).
Used with type FILE or FILEREF.

STRIPCC
removes carriage-control characters. Used with type FILE, FILEREF, and CATALOG
and with catalog entry types LOG, OUTPUT, and SOURCE. If you specify STRIPCC,
then carriage-control characters are ignored and default carriage control is used.
If you use both STRIPCC and ADDCC, then both options are ignored.

TRIM
trims trailing blanks. Used with type FILE, FILEREF, and CATALOG and with
catalog entry types LOG, OUTPUT, and SOURCE.

Details
SAVELIST stores the items from an SCL list into a SAS catalog entry or an external file.

When type is CATALOG and you specify LOG, SOURCE, or OUTPUT as the entry-type
of target, SAVELIST assumes that the first character of each item is a carriage-control
character, because the default behavior of FILLIST for these entry types is to put a
carriage-control character in the first item of list items when it creates a list. Therefore,
if the items in the list identified by list-id do not have a carriage-control character as
the first character, then save the list to a SOURCE entry using the ADDCC option.
That will add a default (’ ’)carriage-control character as the first character in each
line of text that is written to the SOURCE entry.

When type is CATALOG and you specify SLIST as the entry-type of target, the list —
including names, list attributes, and item attributes — can be re-created with the
FILLIST function, although the list identifiers will be different. The lists that you save
with SAVELIST can persist across SAS sessions if you save them in a permanent
catalog.



642 SAVESASFILEDIALOG � Chapter 13

When a list is stored into any file type other than an SLIST entry, each item in the
list identified by list-id must be a character string. Each string is stored as a separate
line of text. When type is CATALOG and the entry type of target is LOG, OUTPUT, or
SOURCE and a value is specified for attr-list-id, the attribute list items must also
contain text. See the description of FILLIST for a description of the text attribute
specifications. If the value for attr-list-id is omitted or is 0, then no attributes are
stored with the catalog entry. Any value specified for attr-list-id is ignored when a list
is stored in an external file or in an SLIST catalog entry.

When SAVELIST writes a list, an item that has the NOWRITE attribute is not
written to the file. This is useful for placing temporary run-time values into a list that
should not be written to the file because of its transient nature. For example, if you
place table identifiers in lists to be saved with SAVELIST and restored with FILLIST in
another task or another SAS session, the table identifiers become invalid. Thus, use
SETLATTR to set the NOWRITE attribute on that list item.

(Do not confuse text attributes such as color and highlight with list attributes as
specified with SETLATTR.) To check the attributes of a list or list item, use HASATTR.
To change attributes, use SETLATTR.

Example

Perform operations similar to copying a list recursively with COPYLIST(mylistid,’Y’):

/* Assume that the catalog WORK.TEMP exists: */
rc=savelist(’catalog’,’work.temp.mylist.slist’,

mylistid);
newlistid=makelist();
rc=fillist(’catalog’,’work.temp.mylist.slist’,

newlistid);
rc=delete(’work.temp.mylist.slist’,’catalog’);

See Also
“FILLIST” on page 392

SAVESASFILEDIALOG

Displays a dialog window that lists SAS files, and returns the name of the selected file

Category: Selection List

Syntax
selection=SAVESASFILEDIALOG(< type<,level–count<,initial<,entry-name<,list-

id>>>>>);



SAS Component Language Dictionary � SAVESASFILEDIALOG 643

selection
contains the two- or three-level name of the selected SAS file, or a blank if nothing is
selected.

Type: Character

type
specifies a member type to list in the dialog window, such as DATA, VIEW, MDDB,
and CATALOG. This can reduce the length of the list in the dialog window. If type is
not used, the names of all SAS files in the data library are listed.

Type: Character

level-count
specifies whether the function returns a two- or three-level name. The only valid
choices are 2 and 3. The default is two.

Type: Numeric

initial
is the name of the SAS file to be the initially selected item in the dialog window
when it opens.

entry-name
is a two- or four-level name of a catalog entry that is called when a user selects the
Advanced button in the dialog window. The entry can be any of the following types:
FRAME, SCL, PROGRAM, HELP, CBT, or MENU.

If entry-name is not specified, then the window does not contain Advanced .

list-id
contains the identifier for an SCL list that you can pass when entry-name is specified.
The items in this list are the items to be displayed in the application’s Advanced
window for selection by application users.

Details

SAVESASFILEDIALOG enables you to implement a Save As choice by displaying a
dialog window that lists SAS files. SAVESASFILEDIALOG returns a user’s selection,
which enables you to create code that performs the save action. The SAS file can be
saved under a different name or the same name.

If entry-name is supplied and Advanced is selected, the item selected in the dialog
window is passed to entry-name through the following variables:

USERDATA
contains the list that is passed in the call to SAVESASFILEDIALOG.

LIBREF
contains the libref of the selected item.

MEMBER
contains the member name of the selected item.

TYPE
contains the member type of the selected item.

List-id enables information to be passed between the calling entry and entry-name. It
is passed to entry-name through the USERDATA variable.



644 SAVESASFILEDIALOG � Chapter 13

Examples

Example 1: Saving a SAS File Select a SAS file of type DATA to save and display the
table.

selection=savesasfieldialog(’data view’,3,’work.one’);

Example 2: Using the Advanced Button with an SCL List Specify an entry of type
DATA to be called when a user selects the Advanced button, as well as an SCL list that
contains values to pass to the entry. The entry can be any of the following types:
FRAME, SCL, PROGRAM, HELP, CBT, or MENU. If entry-name is not specified, then
the window does not contain Advanced .

dcl list mydata;
mydata=makelist();
rc=insertc(mydata,’test’);
selection = savesasfiledialog(’data’, 2’,’mylib.mycat.initial.frame’,

’mylib.mycat.myentry.frame’,mydata);
if (sysrc(1)=-1) then do;

...SCL statements to handle when the user
cancels from window...

end;
else do;

...SCL statements to handle selections...
end;

The SCL entry for MYLIB.MYCAT.MYENTRY.FRAME contains the following program:

dcl char(8) libref;
dcl char(32) member;
dcl char(8) type;
dcl list userdata;

init:
put libref=;
put member=;
put type=;
call putlist(userdata);
return;

Note: The SCL entry must declare these exact variables, in the order specified, to
properly reference the selected entry. �

If the user selects MYLIB2.MYMEMBER2.DATA in the dialog window and then selects
Advanced , the output for this program is

libref=Mylib2
member=Mymember2
type=Data
(’test’)[1]



SAS Component Language Dictionary � SAVESCREEN 645

Example 3: Using the LEVEL Parameter Select a SAS file to save and return different
levels.

selection=savesasfiledialog (’data’’,2);
put selection=
selection=savesasfiledialog(’data’,3);
put selection=

If the user selects MYLIB.MYMEMBER.DATA for both selections, the output would be

selection=mylib.mymember
selection=mylib.mymember.data

See Also
“OPENSASFILEDIALOG” on page 585

SAVESCREEN

Saves the values of data entry fields without exiting from the window

Category: Window

Syntax
CALL SAVESCREEN();

Details
SAVESCREEN copies the current values of all window variables in a PROGRAM entry
into the user’s profile for later restoration. The values are stored for recall across
invocations of SAS software in a catalog entry named
SASUSER.PROFILE.entry.AFPGM, where entry is the name of the SAS/AF entry whose
values are saved. This is similar to the SAVE command in the SAS/AF program window.

The saved values can be reloaded either with the RECALL command in the
application window, or with the AUTORECALL=YES option in the AF command that
invokes the application.

SAVESCREEN is valid only for PROGRAM entries.

Example

Save the final contents of the fields in an application window:

TERM:
call savescreen();

return;



646 SCREENNAME � Chapter 13

SCREENNAME

Returns the name of the current window

Category: Window

Syntax
name=SCREENNAME();

name
contains the four-level name of the current window.

Type: Character

Details
The SCREENNAME function returns the name of the current window. For example,
assume that there are two PROGRAM entries named SURVEY and NEWMAP in a
catalog named MYLIB.TESTS. When SURVEY is executing, SCREENNAME returns
MYLIB.TESTS.SURVEY.PROGRAM. When NEWMAP is executing, SCREENNAME
returns MYLIB.TESTS.NEWMAP.PROGRAM.

In the FSEDIT and FSVIEW procedures, SCREENNAME returns the name of the
SCREEN or FORMULA entry that the application is currently using.

Example

Display the window name on the message line:

_msg_=screenname();

SEARCH

Creates or manipulates the current catalog search path

Category: Catalog

Syntax
rc=SEARCH(cat-name|special-argument);



SAS Component Language Dictionary � SEARCH 647

rc
contains the return code for the operation:

0 successful

−1 not successful
Type: Numeric

cat-name
is the catalog to push to the front of the current search list.

Type: Character

special-argument
are any of the following:

’-DISABLE’
to disable the current search list.

’-ENABLE’
to enable the current search list. If there is no disabled list, then the current search
list remains empty.

’-POP’
to remove the first name from the current search list.

’-POPALL’
to clear the current search list.

Note: You must include the hyphen (-) as the first character in each of these
argument values. Otherwise, the value will be treated as a catalog name in the
WORK library. �

Type: Character

Details

You do not need to know the exact location of a catalog member, only that it is in one of
the catalogs in the current search path.

When a function that uses the current search path is called, the catalogs in the
search path are searched from first to last until the specified entry is found or until the
end of the search path is reached.

If there is no current search path, or if the current search path has been disabled or
overridden, then the search is limited to the current catalog.

Example

Set up a search list with MYLIB1.CAT1, MYLIB1.CAT2 and MYLIB1.CAT3. Each
time SEARCH is called, the new value of the argument is pushed to the front of the list.
Therefore, MYLIB1.CAT3 is searched first. If MYPROG.PROGRAM exists only in
MYLIB1.CAT1, it still executes correctly, because MYLIB1.CAT1 is also in the search
path.

rc=search(’mylib1.cat1’);
rc=search(’mylib1.cat2’);
rc=search(’mylib1.cat3’);
call display(’myprog.program’);



648 SEARCHC, SEARCHL, SEARCHN, and SEARCHO � Chapter 13

See Also

“CEXIST” on page 251
“DISPLAY” on page 330
“SEARCHPATH” on page 650

SEARCHC, SEARCHL, SEARCHN, and SEARCHO

Search for a value in an SCL list and return its position number

Category: List

Syntax

index=SEARCHC(list-id, cval<, occurrence<, start-index<, ignore-case<, prefix>>>>);

index=SEARCHL(list-id, sublist-id<, occurrence<, start-index>>);

index=SEARCHN(list-id, nval<, occurrence<, start-index >>);

index=SEARCHO(list-id, object-id<, occurrence<, start-index>>);

index
contains the index from the SCL list of the item that has the specified character
value, or 0 if the value was not found.

Type: Numeric

list-id
is the identifier of the list to search. An invalid list-id produces an error condition.

Type: Numeric or List

cval
is the character value for SEARCHC to search for. Cval is compared only to the
character values in the list.

Type: Character

sublist-id
contains the identifier of the sublist for SEARCHL to search for. Sublist-id is
compared only to the list identifiers in the list.

Type: Numeric

nval
is the numeric value for SEARCHN to search for. Nval is compared only to numeric
values in the list.

Type: Numeric

object-id
contains the identifier of the object for SEARCHO to search for. Object-id is
compared only to the object identifiers in the list.

Type: Numeric or Object



SAS Component Language Dictionary � SEARCHC, SEARCHL, SEARCHN, and SEARCHO 649

occurrence
is the occurrence of the value to search for. The default, 1, indicates the first
occurrence of the item.

Type: Numeric

start-index
is the position in the list at which to start the search for the item. By default,
start-index is 1 (the first item). If start-index is positive, then the search begins at
position start-index items from the beginning of the list. If start-index is negative,
then the search begins at the item specified by ABS(start-index) items from the end
of the list. An error condition results if the absolute value of start-index is zero or if
it is greater than the number of items in the list.

Type: Numeric

ignore-case
specifies how SEARCHC should compare string values:

’Y’ ignores the case of the character strings.

’N’ does a case-sensitive comparison of the character strings. (This is
the default.)

Type: Character

prefix
specifies whether the value should be treated as a prefix:

’Y’ does a prefix comparison and searches for any items that have
cval as a prefix. SEARCHC compares only the first m characters,
where m is the length of cval.

’N’ does not do a prefix search but compares all characters to cval.
(This is the default.)

Type: Character

Details
SEARCHC, SEARCHL, SEARCHN, and SEARCHO do not search for a value in any
sublists of the list identified by list-id.

If occurrence and start-index are both positive or both negative, then the search
proceeds forward from the start-index item. For forward searches, the search continues
only to the end of the list and does not wrap back to the front of the list. If either
occurrence or start-index is negative, then the search proceeds from the last item
toward the beginning of the list. For backward searches, the search continues only to
the beginning of the list and does not wrap back to the end of the list.

To search for an item by name rather than by value, use NAMEDITEM.

Examples

Example 1: Using the SEARCHC Function Find the position of the next-to-last
occurrence of a string that begins with SAS, ignoring case:

last2=searchc(mylistid, ’sas’, 2, -1, ’Y’, ’Y’);



650 SEARCHPATH � Chapter 13

Example 2: Using the SEARCHL Function Search the list identified by MYLISTID for
the third occurrence of the identifier for the sublist item identified by the value of
NAMELISTID:

third=searchl(mylistid, namelistid, 3);

Example 3: Using the SEARCHN Function Search for the third occurrence of the
number 46 in the list identified by MYLISTID:

third=searchn(mylistid, 46, 3);

Example 4: Using the SEARCHO Function Search the list identified by MYLISTID for
the third occurrence of the identifier for the object BUTTON:

third=searcho(mylistid,objectid,3);

See Also
“NAMEDITEM” on page 556

SEARCHPATH

Reports the complete pathname of a SAS catalog entry

Category: Catalog

Syntax
path-name=SEARCHPATH(entry-name<,description>);

path-name
contains the path (four-level name) for the specified entry if it was found in the
current catalog or in the search path. If the entry was not found, then the value is
blank.

Type: Character

entry-name
is the SAS catalog entry to search for.

Type: Character

description
specifies whether to return the description of the entry and the date the entry was
last updated. Specify Y to return the description and the date.

Type: Character



SAS Component Language Dictionary � SEARCHPATH 651

Details
SEARCHPATH returns the full four-level SAS library member name for a catalog entry
if the entry is found in one of the catalogs that are in the current search path. It also
returns the description that is stored with the entry in description.

If an entry that has the specified name appears in more than one catalog in the
search path, then only the path to the first entry found is returned. If no search path is
defined, the search is limited to the current catalog (the catalog in which the executing
entry is stored).

To define the search path for your application, use SEARCH.

Note: To get the pathname and description of an entry, you can use the method
interface of the Catalog entry class. �

Example

Load a stored list from a catalog entry if the entry is found in the current search path:

init:
DCL num desclen
rc=rc;
rc=search(’sashelp.afclass’);
rc=search(’sashelp.aftools’);
rc=search<’sashelp.assist’);

path=searchpath(’listed.frame’,’y’);
pathlen=length(path);
name=scan(path,1,’’);
namelen=length(name) + 1;
desclen = pathlen - (namelen) - 10;
desc = substr(path, namelen + 1, desclen);
date = substr(path, pathlen - 9, 10);
put name=;
put desc=;
put date=;

return;

This program produces the following output:

name=sashelp.aftools.LISTED.FRAME
desc= Generic list editor
date=10/09/1996

See Also
“SEARCH” on page 646



652 SELECT � Chapter 13

SELECT

Selects a specified row of a selection list

Category: Extended Table

Syntax
rc=SELECT(row);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

row
is the number of the row to select.

Type: Numeric

Details
The selection highlights the specified row. SELECT is useful for forcing the selection of
a row. For example, you can use this function to set initial values or default values.
Ordinarily, a user selects a row by pressing ENTER or clicking on the row with the
mouse.

You can use SELECT only for selection lists that were built with extended tables in
PROGRAM entries. FRAME entry controls must use the _selectRow method. Because
you can define extended tables only in SAS/AF software, you cannot use SELECT in
FSEDIT or FSVIEW programs.

In order for an extended table to be considered a selection list, you must specify a
number of selections in the SETROW routine.

Example

Select row 5 of the selection list:

INIT:
call setrow(10,2);
rc=select(5);

return;



SAS Component Language Dictionary � SELECT 653

See Also
“ISSEL” on page 488
“NSELECT” on page 577
“SELECTED” on page 654
“SETROW” on page 678
“UNSELECT” on page 713

SELECT

Executes one of several statements or groups of statements

Category: Control Flow

Comparisons: SAS Statement with limitations in SCL

Syntax
SELECT<(select-expression)>;

WHEN-1 <(when-expression)>statement(s);

<. . .WHEN-n <(when-expression)>statement(s);>

<OTHERWISE <statement(s)>;>

END;

select-expression
is an expression that evaluates to a single value. This argument is optional. If used,
select-expression must be in parentheses.

Type: Character

when-expression
is a constant or an expression that evaluates to a single value.

Type: Character

statement(s)
are one or more executable SAS statements, including DO, SELECT, and null
statements. When used in a WHEN statement, a null statement causes SAS to
recognize a condition as true without taking further action. In OTHERWISE
statements, null statements prevent SAS from issuing an error message when all
WHEN conditions are false.

Type: Character

Differences in SELECT Statement Execution
For SELECT groups in SCL, WHEN statements of the form WHEN(a1, a2, a3) are not
supported. However, the following forms are supported:

� WHEN(constant)

� WHEN(expression).

OTHERWISE is an optional statement. If OTHERWISE is omitted, and if no WHEN
conditions are met, the program halts.



654 SELECTED � Chapter 13

Each WHEN statement implies a DO group of all statements until the next WHEN
or OTHERWISE statement. Therefore, the following program is valid:

select(x);
when(1) call display(’a’);
...optionally, more SCL statements...

when(2) call display(’b’);
...optionally, more SCL statements...

otherwise call display(’bad’);
...optionally, more SCL statements...

end;

For details about the SELECT statement in the Base SAS language, see SAS
Language Reference: Dictionary.

Example

This example shows how to use expressions with the SELECT statement:

select;
when(x=1) put ’one’;
when(2<x<5) put ’between two and five’;
when(x>5 or x<0) put ’other’;

end;

SELECTED

Returns the number of the row that corresponds to a user’s choice in a selection list

Category: Extended Table

Syntax
row=SELECTED(nval);

row
contains the number of the selected row, or −1 if the value specified for nval is
greater than the total number of selections.

Type: Numeric

nval
is the number of the selection.

Type: Numeric

Details
You can use SELECTED only for selection lists that were built with extended tables in
PROGRAM entries. FRAME entry controls must use the _selected method. Because
you can define extended tables only in SAS/AF software, you cannot use SELECTED in
FSEDIT or FSVIEW programs.

In order for an extended table to be considered a selection list, you must specify a
number of selections in the SETROW routine.



SAS Component Language Dictionary � _SELF_ 655

Example

Suppose the application displays a selection list that contains ten rows and that the
user selects first row 3 and then row 5. If SELECTED is called with the value 2
specified for nval (as in the following statement), then the value returned in the
variable ROW is 5, because row 5 was the second selection.

row=selected(2);

See Also
“ISSEL” on page 488
“NSELECT” on page 577
“SELECT” on page 652
“SETROW” on page 678
“UNSELECT” on page 713

SELECTICON

Displays a dialog window that contains a list of icons, and returns the value of the selected icon

Category: Selection List

Syntax
selected-icon=SELECTICON(< initial-icon>);

selected-icon
contains the value of the icon that is selected.

Type: Numeric

initial-icon
is the value of the icon that is active when the selector window opens. If initial-icon
is not supplied, or if initial-icon is not a valid icon, then no icon is active when the
selector window opens.

Type: Numeric

Details
SELECTICON enables a user to select a SAS icon from a selection list.

_SELF_

Contains the identifier of the control for the currently executing method, or the identifier of the
FRAME entry if the FRAME entry is not running as a method

Category: System Variable



656 SEND � Chapter 13

Details
_SELF_ is a system variable that is provided automatically by the FRAME entry in
SAS/AF. The SCL compiler automatically creates a space for it in the SCL data vector.

_SELF_ has a valid value only when the FRAME entry’s SCL code is running or
when a method is running.

See “USECLASS” on page 715 for information on bypassing _SELF_ references in a
USECLASS block.

Example

Suppose a FRAME entry contains an icon. The icon’s _select method is defined as
follows:

SELECT:
method;

/* If the icon is a SCOM object, */
/* the following statement could be */
/* _self_.icon=2; */

_self._setIcon(2);
endmethod;

When a user selects the icon, the _select method executes, and _SELF_ contains the
identifier of the icon. In a FRAME entry, _SELF_ contains the identifier of the FRAME
entry if the FRAME entry is not running as a method. For example, you can use
_SELF_ to send a method to the FRAME entry from the INIT section.

INIT:
_self_._setMsg_(’in init section’);

return;

See Also
“_METHOD_” on page 547
“SEND” on page 656
“SUPER” on page 697
“USECLASS” on page 715
“_VALUE_” on page 720

SEND

Sends a method to an object using its identifier and can return a value from a called method

Category: Object Oriented

Syntax
CALL SEND(object-id,method-name<,parameters>);

object-id
contains the identifier that is associated with the object for which the method is
invoked.



SAS Component Language Dictionary � SEND 657

Type: Numeric or Object

method-name
is the name of the method to send. The method must be defined for the object’s class
or for one of the classes from which the object inherits methods. Case and trailing
blanks are ignored in method names.

Type: Character

parameters
specifies one or more numeric or character parameters that are required by the
method. Use commas to separate multiple parameters.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric, Character

Details
SEND passes one or more arguments to a method in the form of parameters to the
routine. The method may modify any of these parameters and pass values back to the
calling program via the parameters, or the method may modify the object’s automatic
system variables. You can use the _getWidget method to return the object-id for a
control.

You can also use SEND as a function if the called method returns a value with a
RETURN statement.

The classes provided with SAS/AF software include a set of predefined methods.
Subclasses that you define from these classes inherit those methods. You can also
define your own methods. Methods are defined with the METHOD statement in an SCL
entry, or they may be entire SAS/AF entries. (SCL, PROGRAM, FRAME, HELP, and
MENU entries are allowed.) A METHOD statement uses the syntax of an ENTRY
statement to declare the types and names of the parameters that the method expects.

The parameters that are passed to SEND must match the parameter definitions of
the METHOD or ENTRY statement of the method. You can specify optional parameters,
using the OPTIONAL= option for the METHOD or ENTRY statement of the method.
You can specify variable lengths and types for parameters, using the ARGLIST= and
REST= options in the METHOD or ENTRY statement of the called method.

The same method may be defined for one or more classes; each class has its own
definition of the method. Therefore, when a method is invoked, the appropriate method
definition is determined based on the object’s class. If the specified method is not
defined for the object’s class, SAS/AF searches the hierarchy of parent classes for the
method definition.

When a method executes, the SCL variable _SELF_ is automatically initialized to the
object identifier object-id, enabling the method to invoke other methods for the same
object. Also, any of the object’s automatic system variables are initialized if the SCL
program uses a variable of the same name and type as the automatic system variable.
If a character variable named _METHOD_ is declared, it will be initialized with the
method name.

If an SCL method executes a SEND or otherwise invokes a method, the values of all
automatic SCL variables in the calling method are copied into the object. After the
called method executes, the automatic SCL variables are re-initialized with the values
of the caller’s system variables. Other routines that execute methods are APPLY,
NOTIFY, SUPAPPLY, and SUPER.

To send methods to SCOM objects, you should use dot notation instead of CALL
SEND. Dot notation provides compiler time checking and better performance at run
time. For more information about dot notation, see “Accessing Object Attributes and
Methods with Dot Notation” on page 124.



658 SET � Chapter 13

Using dot notation is the only way to call overloaded methods, because the compiler
must be able to check method signatures in order to call the correct method.

For example, to send a message to an object using dot notation, you could use

_frame_._setMsg(’Table ’||tablename||
’ does not exist’);

(The system variable _FRAME_ contains the identifier for the frame.)

Note: If a component is a control in an extended table, then you can invoke methods
only during the getrow and putrow sequences or for _init and _term methods. Also, in a
FRAME SCL entry, to send methods to controls in an extended table, you can use
NOTIFY rather than SEND. �

Example

Send a _term method to an icon whose name is ICON1 and whose identifier is stored
in the variable ICON1ID:

call send(_frame_,’_getWidget’,’icon1’,icon1id);
call send(icon1id,’_term’);

See Also

“APPLY” on page 225
“ENTRY” on page 351
“INSTANCE” on page 477
“LOADCLASS” on page 522
“LOADRES” on page 523
“METHOD” on page 539
“NOTIFY” on page 575
“SUPAPPLY” on page 695
“SUPER” on page 697

SET

Links SAS table columns to SCL variables of the same name and data type

Category: SAS Table

Syntax

CALL SET(table-id);

table-id
contains the identifier that was assigned when the table was opened. If table-id is
invalid, the program halts.

Type: Numeric



SAS Component Language Dictionary � SET 659

Details
Using the SET routine can significantly reduce the coding required for accessing the
values of variables for modification or verification. After a CALL SET, whenever a read
operation is performed from the SAS table, the values of the SCL variables are set to
the values of the corresponding SAS table columns. If the lengths do not match, then
the values are truncated or padded as needed. When UPDATE or APPEND is called,
the values that are written to the SAS table are the values of the SCL variables. If you
do not use SET, then you must use GETVARC, GETVARN, PUTVARC, and PUTVARN
to explicitly move values between table columns and SCL variables.

For each read/write operation that is performed on a SET SAS table, SCL loops
through all the SAS table columns and updates the corresponding SCL variables. If the
mapped SCL variables are only a small subset of the total SAS table columns, the
looping could slow the process and prevent optimal performance. To enhance the
performance of the application, you could open a SAS table as follows, using an option
that limits the columns to only those to be set:

dsid=open(’sasuser.employee (keep=age name)’);
call set(dsid);

SET links only SCL variables that are accessible to the entire SCL program. SET
does not link local variables, and using SET to link local variables in CLASS and
USECLASS blocks may cause compilation errors.

As a general rule, use SET immediately following OPEN if you want to link table
columns and SCL variables. Character variables that are associated with table columns
must be declared with a DECLARE or LENGTH statement. Otherwise, the SCL
compiler considers these variables to be numeric and thus sets them to missing instead
of copying the appropriate character value from the table column.

If you use SET, do not use PUTVARN and PUTVARC for any variables that would be
linked by SET. UPDATE and APPEND automatically move the data from the SCL data
vector to the table data vector before writing the row to the physical file.

If a table column and a SCOM frame control have the same name, and if the table
column has the same data type as the frame control’s default attribute, SET links the
frame control’s default attribute with the table column.

Example

Automatically set the values of the SCL variables NAME and SALARY when a row is
fetched for a window that contains the fields NAME and SALARY. The SAS table
PERSONEL has three columns: NAME, SALARY and DEPT.

tableid=open(’personel’,’i’);
call set(tableid);
rc=fetchobs(tableid,10);

See Also
“APPEND” on page 224
“FETCH” on page 374
“FETCHOBS” on page 375
“GETVARC and GETVARN” on page 438
“LOCATEC and LOCATEN” on page 524
“PUTVARC and PUTVARN” on page 614
“UPDATE” on page 714



660 SETCR � Chapter 13

SETCR

Controls the cursor’s response to the carriage-return key

Category: Control or Field

Syntax
CALL SETCR(advance,return<,modify>);

advance
specifies how the cursor moves when a user presses the carriage-return key:

’STAY’
The cursor does not move.

’HTAB’
The cursor moves to the next field in the same row. This option makes the
carriage-return key work like a horizontal tab key. When the last field in the
current row is reached, the cursor moves to the first field in the next row.

’NEWL’
The cursor moves to the first field in the next line. This option makes the
carriage-return key work like a new-line key. When the last line is reached, the
cursor moves to the first field in the first line.

’VTAB’
The cursor moves to the first field in the next line in the current column. This
option makes the carriage-return key work like a vertical tab key. When the last
field in the current column is reached, the cursor moves to the top of the next
column.

’HOME’
The cursor moves to the command line, or to the first field in the window if the
window has no command line.
Type: Character

return
specifies whether a carriage return passes control back to the application:

’RETURN’
A carriage return passes control to the application, whether or not a field is
modified. That is, the MAIN section of an SCL program is executed.

’NORETURN’
A carriage return does not pass control to the application unless a field is modified.
Type: Character

modify
specifies whether the field should be marked as modified:

’MODIFY’
A carriage return on a field is considered a modification of the field unless the field
is protected.



SAS Component Language Dictionary � SETFKEY 661

’NOMODIFY’
A carriage return on a field is not considered a modification of the field.
Type: Character

Details

SETCR works like a more powerful version of CONTROL ENTER for defining the
behavior of the carriage-return key. This routine overrides the ENTER or NOENTER
option of the CONTROL statement.

FRAME entries ignore SETCR.

Example

Move the cursor vertically to the first field in the next line in the current column
when the user presses the carriage-return key. Control does not pass to the application,
and the field is not modified by a carriage return.

call setcr(’vtab’,’noreturn’,’nomodify’);

See Also

“CONTROL” on page 279

SETFKEY

Assigns a command to a function key

Category: Keys

Syntax

CALL SETFKEY(key-name,command);

key-name
is the function key name, as listed in the KEYS window. Function key names vary
depending on the device that is being used.

Type: Character

command
is the command to assign to the key.

Type: Character

Details

You can use SETFKEY only in entries that have a DISPLAY window containing fields
or text. You cannot use it to assign function key settings in windows that use BLOCK
to display block menus.



662 SETFLD � Chapter 13

Example

Use FKEYNAME to return the name of a particular function key and GETFKEY to
return the command that is assigned to the function key. If the command is not
CANCEL, then SETFKEY assigns the CANCEL command to the function key.

INIT:
keyname=fkeyname(1);
command=getfkey(keyname);
if (command ne ’CANCEL’) then

call setfkey(keyname,’CANCEL’);
return;

See Also
“FKEYNAME” on page 399
“GETFKEY” on page 428
“NUMFKEYS” on page 577

SETFLD

Assigns a value to up to ten blank variables

Category: Control or Field

Syntax
CALL SETFLD(value,variable-1<, . . . ,variable-10>);

value
is the character value to assign.

Type: Character

variable-1, . . . ,variable-10
are up to ten character variables whose values you want to change from blank to
value.

Type: Character

Details
If the variable is blank, value is assigned to the variable. No values are changed for
variables that are not blank.

This function is useful for setting the default values for a series of fields.

Example

Set each of the variables SYM1 through SYM5 to the value -REQUIRED- for each
variable that is blank:

call setfld (’-REQUIRED-’,sym1,sym2,sym3,sym4,sym5);



SAS Component Language Dictionary � SETFOOT 663

The above statement is equivalent to the following statements:

if (sym1=’ ’) then sym1=’-REQUIRED-’;
if (sym2=’ ’) then sym2=’-REQUIRED-’;
if (sym3=’ ’) then sym3=’-REQUIRED-’;
if (sym4=’ ’) then sym4=’-REQUIRED-’;
if (sym5=’ ’) then sym5=’-REQUIRED-’;

See Also
“CLRFLD” on page 269

SETFOOT

Sets the text of a footnote definition

Category: SAS System Option

Syntax
CALL SETFOOT(foot-num,foot-text);

foot-num
is the number (1 to 10) of the footnote definition to create or modify.

Type: Numeric

foot-text
is the text for the footnote definition.

Type: Character

Details
SETFOOT works just like the FOOTNOTE statement. It clears all footnote definitions
that are numbered higher than the one created. You cannot use SETFOOT to set
graphic options such as color, tint, and position.

You can view footnote definitions in the FOOTNOTES window by using the
FOOTNOTE command. Changing any text in the FOOTNOTES window, however,
resets all graphically defined footnote options such as color, font, and position.

For more information about footnotes, see SAS Language Reference: Dictionary. For
more information about graphical footnotes, see SAS/GRAPH: Reference .

Example

Create a footnote numbered 5. The statement deletes all footnotes with numbers
greater than 5.

call setfoot(5,’This is the Fifth Footnote’);

See Also
“GETFOOT” on page 429



664 SETITEMC, SETITEML, SETITEMN, and SETITEMO � Chapter 13

“GETTITLE” on page 437
“SETTITLE” on page 680

SETITEMC, SETITEML, SETITEMN, and SETITEMO

Store a value at an indexed position in an SCL list

Category: List

Syntax
rc=SETITEMC(list-id,cval<,index<,autogrow>>);

rc=SETITEML(list-id,sublist-id<,index<autogrow>>);

rc=SETITEMN(list-id,nval<,index<,autogrow>>);

rc=SETITEMO(list-id,object-id<,index<,autogrow>>);

rc
is the list-id, which is the identifier of the modified list.

Type: Numeric

list-id
is the identifier of the list into which the value is stored. An invalid list-id produces
an error condition.

Type: Numeric or List

cval
is the character value for SETITEMC to store in the list.

Type: Character

sublist-id
is the identifier of the sublist for SETITEML to store in the list. An invalid sublist-id
produces an error condition.

nval
is the numeric value for SETITEMN to store in the list.

Type: Numeric

object-id
is the identifier of the object for SETITEMO to store in the list. An invalid object-id
produces an error condition.

Type: Numeric or Object

index
is the position of the item in the list. The position can be specified as a positive or
negative number. By default, index is 1 (the first item). If index is a positive number,
then the item is at position index from the beginning of the list. If index is a negative
number, then the item is at position ABS(index) from the end of the list. An error
condition results if the absolute value for index is zero or if it is greater than the
number of items in the list.

Type: Numeric



SAS Component Language Dictionary � SETITEMC, SETITEML, SETITEMN, and SETITEMO 665

autogrow
specifies whether the list can expand to accommodate a new item:

’N’ The size of the list cannot change. (This is the default.)

’Y’ The size of the list can increase to accommodate a new item that
is being added to the list. The list expands only if index is greater
than the current number of items in the list and the list does not
have the FIXEDLENGTH attribute.

Type: Character

Details
Using SETITEMC, SETITEML, SETITEMN, or SETITEMO is analogous to assigning a
character, a sublist identifier, a numeric value, or an object identifier, respectively, to an
indexed item in an array. Index specifies the position in the list of the item whose value
is assigned. If autogrow is Y , then index can be greater than the length of the list.
These functions then expand the list to a total of index items. They also set all other
new items to missing values, and they place the new value into the list. These functions
can add items only to the end of a list. Use INSERTC, INSERTL, INSERTN, or
INSERTO to insert values elsewhere in a list.

SETITEMC, SETITEML, SETITEMN, and SETITEMO replace an existing item in a
list and even change its type unless the item or the list has the FIXEDTYPE attribute.

SETITEMC, SETITEML, SETITEMN, and SETITEMO do not make a copy of the list
before assigning the new item. The list is modified in place.

Note: The return value of these functions is not used to indicate whether an error
has been detected. When an error occurs, the program simply halts. �

An error condition results

� if the absolute value of index is zero, or if it is greater than the number of items in
the list and autogrow is N.

� if the absolute value of index is greater than the length of the list and the list has
the FIXEDLENGTH attribute (even if autogrow is Y).

� if the list or item has the NOUPDATE attribute.

� if the list or item has the FIXEDTYPE attribute and the function attempts to set
the item to a different type. For example, if item 4 is numeric and has the
FIXEDTYPE attribute, then the following statement fails:

list=setitemc(list,’abc’,4);

� with SETITEMC or SETITEML, if the list has the NUMONLY attribute.

� with SETITEMN or SETITEML, if the list has the CHARONLY attribute.

� with SETITEML, if sublist-id identifies a local list and list-id identifies a global
list. (You cannot place local lists into global lists.)

To check the attributes of a list or list item, use HASATTR. To change attributes, use
SETLATTR.

See Also
“GETITEMC, GETITEML, GETITEMN, and GETITEMO” on page 430
“INSERTC, INSERTL, INSERTN, and INSERTO” on page 474
“NAMEITEM” on page 559
“SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO” on page 674



666 SETKEY � Chapter 13

SETKEY

Defines an index key for retrieving rows from a SAS table

Category: SAS Table

Syntax

nval=SETKEY(table-id<,key-name<,condition<,scroll-option<,list-id>>>>);

nval
contains the return code for the operation:

0 An active key was successfully set or cleared.

≠0 An error or warning condition occurred.

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

key-name
is the index key to be used for retrieval.

Type: Character

condition
specifies comparison criteria for the key value:

’EQ’ equal to the key value (This is the default.)

’GE’ greater than or equal to the key value

’GT’ greater than the key value

’LE’ less than or equal to the key value

’LT’ less than the key value.

Type: Character

scroll-option
specifies whether rows can be randomly retrieved:

’SCROLL’
Rows can be retrieved in random order. (This is the default.)

’NOSCROLL’
Rows can only be retrieved sequentially. This option improves performance when
the table is accessed via the REMOTE engine and the IS mode is specified for the
second argument of the OPEN function. Those options reduce the number of data
transfer operations that are required when the table is read.
Type: Character



SAS Component Language Dictionary � SETKEY 667

list-id
is the identifier for the list that contains values for the index key variables. You must
use SETNITEMC and SETNITEMN to assign the values to the corresponding key
variables in the list. An invalid list-id produces an error condition.

Type: Numeric or List

Details
SETKEY enables you to set an active key in an open table to a simple or composite key.
It establishes a set of criteria for reading SAS table rows by comparing the value of the
columns from the SDV to the key value in the rows.

Using a composite key with SETKEY operates the same way as the WHERE function
only when the condition is ’EQ’. The value returned when the condition is ’EQ’ is the
same as if the columns specified in the composite key are connected by WHERE
conditions using AND or ALSO.

For all other conditions (GT, GE, LT, or LE) specified with SETKEY for a composite
key, the composite key columns are concatenated to form the index key. The number
returned by the KEYCOUNT function is the number of rows in the table that satisfy
the composite key. For example, if the composite index consists of columns SEX and
AGE and the condition is GT (greater than), the values to search for are concatenated
such that key values of F for SEX and 13 for AGE yield an index key of F13. Because
the search is performed on the concatenated values, some values that you did not
expect may meet a search condition. For example, key values of M for SEX and 11 for
AGE meet the search condition, because the string M11 is considered greater than the
string F13. If the active key is a composite key and the condition parameter is set to
GT, GE, LT, or LE, the table subsets into rows whose primary key column values meet
the specified criteria. Consequently, you still have to check the values of other key parts
against the data vector to narrow down the subset of rows.

SETKEY works only after SET is called in the SCL program or when a list identifier
is passed. The list identifier must point to a list that contains the values of the index
key columns. Once an active key is set through SETKEY, it remains active until

� the table is closed
� another key is set
� the current setting is cleared by passing the table identifier alone to SETKEY.

The table is automatically positioned at the first row that meets the specified criteria.
Use FETCH or FETCHOBS to read the row.

SETKEY returns an error code if a WHERE clause is in effect. Index keys cannot be
used in conjunction with WHERE clauses.

Examples

Example 1: Defining an Index Key That Was Created Previously Define an index key
for the table MYDATA, which subsets the table into only those rows where the value of
the AGE column is greater than or equal to 20:

/* Assuming a simple key, AGE, has been defined */
age=20;
dsid=open(’MYDATA’,’I’);
call set(dsid);
rc=setkey(dsid,’age’,’ge’);
do while(fetch(dsid) ne -1);

name=getvarc(dsid,1);
put name=;

end;



668 SETKEY � Chapter 13

Example 2: Using a Composite Index Key with GE Search the table CHILDREN for all
boys who are 5 years old or older. The composite key ATTR, which is created by
ICREATE, is used for retrieval. The values of the composite key columns are
concatenated, and the search is performed on the combined value. In this example, the
key selects rows where AGE||GENDER ≥ 5M. The FETCH function within the
DO-loop returns all rows where AGE>=5. Because some of the rows may not have a
matched concatenated key part, you need an additional check on the value of the
GENDER column in order to skip unmatched rows.

dsid=open(’children’,’v’);
/* Create a composite key ATTR with AGE */
/* as primary key column */

rc=icreate(dsid,’attr’,’age gender’);
call set(dsid);
age=5;
gender=’M’;
rc=setkey(dsid,’attr’,’ge’);
do while(rc=0);

/* FETCH function applies the retrieval */
/* criteria and retrieves all rows */
/* for which AGE >=5 */

rc=fetch(dsid);
if (rc) then leave;

/* Filter out rows with gender ne ’M’ */
if (upcase (gender) ne ’M’) then continue;
child=getvarc(dsid,varnum(dsid,’name’));
put child=;

end;
rc = close (dsid);

Example 3: Using an SCL List Instead of CALL SET Using an SCL list avoids possible
name collisions. Also, it enables you to set the retrieval criteria for rows at run time
instead of at compile time.

dsid = open ( ’children’,’v’);
rc = icreate( dsid, ’attr’,’age gender’);
list = makelist();
list = setnitemc (list,cval,’gender’);

/* cval contains the value of ’M’ */
list = setnitemn (list,nval,’age’);

/* nval contains the value of 5 */
rc = setkey (dsid,’attr’,’ge’,’’,list);

/* Print out all names with */
/* age >= 5 and gender= ’M’ */

do while ( rc= 0 );
rc = fetch (dsid);
if (rc) then leave;

sex1 = getvarc (dsid, varnum(dsid, ’gender’));
if (upcase (gender) ne ’M’) then continue;
child = getvarc (dsid, varnum(dsid, ’name’));
put child=;

end;
rc = close (dsid);



SAS Component Language Dictionary � SETLATTR 669

See Also
“ICREATE” on page 456
“IDELETE” on page 460
“IOPTION” on page 483
“IVARLIST” on page 491
“KEYCOUNT” on page 492
“SET” on page 658
“WHERE” on page 738

SETLATTR

Sets the attributes of an SCL list or an item in a list

Category: List

Syntax
rc=SETLATTR(list-id,attributes<,index>);

rc
contains the return code for the operation:

0 successful

≠0 not successful

Type: Character

list-id
is the identifier of the list whose attributes or item attributes are set. An invalid
list-id produces an error condition.

Type: Numeric or List

attributes
lists one or more attributes of the list or list item as shown in “Attribute Values for
Lists and List Items” on page 670 and “Attribute Values for Lists Only” on page 670.
Use blanks to separate multiple attributes. Attributes for lists are ignored when you
are setting list item attributes, and attributes for list items are ignored when you are
setting list attributes. This enables you to create a single attribute string that you
can apply both to lists and to list items.

Type: Character

index
is the position of the list item whose attributes are being modified. The position can
be specified as a positive or negative number. By default, index is 1 (the first item).
If index is a positive number, then the item is at position index from the beginning of
the list. If index is a negative number, then the item is at position ABS(index) from
the end of the list. If index is zero or omitted, then SETLATTR sets list attributes.
An error condition results if the absolute value for index is zero or if it is greater
than the number of items in the list.

Type: Numeric



670 SETLATTR � Chapter 13

Attribute Values for Lists and List Items
’DEFAULT’

combines all the default attributes.

’DELETE’
allows the list or item to be deleted. (This is a default.)

’FIXEDTYPE’
prevents changes in the type of the item. See also NUMONLY and CHARONLY.
For a list, prevents changes in the type of all individual items.

’NODELETE’
prevents a list or list item from being deleted. List items that do not have the
NODELETE attribute can be deleted from a list with this attribute. A list without
this attribute can be deleted even though it contains items that have the
NODELETE attribute.

’NOFIXEDTYPE’
allows the type of an item to change. For a list, allows the type of each item to
change as long as the list does not have the CHARONLY or NUMONLY attribute
and the item does not have the FIXEDTYPE attribute. (This is a default.)

’NOUPDATE’
prevents updates to the value for a list item. For a list, updates are not allowed to
any item, even those with the UPDATE attribute. This enables you to make a list
read-only in one step without having to make each individual item read-only.

’UPDATE’
allows updates to the value of a list item. For a list, UPDATE allows updates to
all items that do not have the NOUPDATE attribute. (This is a default.)

Attribute Values for Lists Only
’ANYNAMES’

allows item names to be any character string, although names are always
converted to uppercase and trailing blanks are removed. (This is a default.)

’CHARONLY’
requires all items to have character values.

’COPY’
copies the list during a recursive copy operation if the list is a sublist. (This is a
default.)

’DUPNAMES’
allows duplicate names in the list. (This is a default.)

’FIXEDLENGTH’
prevents the list length from changing.



SAS Component Language Dictionary � SETLATTR 671

’HONORCASE’
specifies that searches must be case-sensitive and that values for successful
searches must match the case of the list item value.

’NOCHARONLY’
allows items to have numeric values and list identifier values. (This is a default.)

’NOCOPY’
prevents the list from being copied during a recursive copy operation if the list is a
sublist. Instead, only the list identifier is copied to the target list. No recursion
takes place for the list.

’NODUPNAMES’
requires all item names to be unique.

’NOFIXEDLENGTH’
allows the list length to change. (This is a default.)

’NOHONORCASE’
allows a search of list items to match values, regardless of the case in which they
are stored. (This is a default.)

’NONUMONLY’
allows the list to contain character values and list identifier values. (This is a
default.)

’NUMONLY’
requires all items to have numeric values.

’SASNAMES’
requires all items in the list to be named, and requires all names to be valid SAS
names with no leading or trailing blanks.

Attribute Values for List Items Only
’ACTIVE’

makes the item active in a pop-up menu that is opened by the POPMENU
function. (This is a default.)

’INACTIVE’
prevents the item from being active in a pop-up menu that is opened by the
POPMENU function. (Users cannot select it.)

’AUTO’
specifies that the item is an automatic instance variable. Refer to the online Help
for SAS/AF software for more information about automatic instance variables.

’NOAUTO’
specifies that the item is not an automatic instance variable.



672 SETLATTR � Chapter 13

’NOWRITE’
prevents the item from being written by the SAVELIST function.

’WRITE’
allows the item to be written when the list is stored via SAVELIST. (This is a
default.)

Details
If index is omitted or zero, the attributes are assigned to the list. Otherwise, the
attributes are assigned to the item at the position specified by index. Item attributes
are attached to the items in the list, not to the position in the list, so that an item keeps
its attributes after the list is rotated or reversed or after other items are inserted or
deleted. That is, if you assign the NODELETE attribute to the fourth item in the list
and then delete the item at position 2, the item still has the NODELETE attribute even
though it is now at position 3.

If a list has the NOCOPY attribute, it is not copied if it is a sublist in a recursive call
of COPYLIST. Instead, only the list identifier is copied to the target list, and no
recursion takes place on the list. You can still copy a list with NOCOPY if it is the
source (top-level) list.

Attribute Pairs
The attributes for lists and list items come in mutually exclusive pairs. For example,
NOUPDATE designates that UPDATE is off. Setting one attribute of a mutually
exclusive pair automatically turns off the other. The attribute pairs are shown in the
following table.

Attribute
Complement
Attribute Applies To

ACTIVE INACTIVE Items

ANYNAMES SASNAMES Lists

COPY NOCOPY Lists

DELETE NODELETE Items and Lists

DUPNAMES NODUPNAMES Lists

HONORCASE NOHONORCASE Lists

NOCHARONLY CHARONLY Lists

NOFIXEDLENGTH FIXEDLENGTH Lists

NOFIXEDTYPE FIXEDTYPE Items and Lists

NONUMONLY NUMONLY Lists

UPDATE NOUPDATE Items and Lists

WRITE NOWRITE Items and Lists



SAS Component Language Dictionary � SETLATTR 673

The attributes of a list (such as CHARONLY, NUMONLY, FIXEDTYPE, and
NOUPDATE) do not apply to sublists that the list contains. You must assign these
attributes to the sublists if you want them to have these attributes.

Both list and item attributes are copied by COPYLIST. However, COPYLIST does not
copy passwords.

Most of the list functions that alter lists or their contents are affected in some way by
list attributes and item attributes. See the documentation for the individual functions
to see how they are affected.

Using Passwords to Protect List Attributes from Modification
You can assign a password to list attributes, which enables you to protect them. The
password is stored with the list and must be supplied in subsequent SETLATTR
statements in order to modify either list attributes or item attributes. The password is
specified as PASSWORD=password in the attribute string. The password may not
contain any blanks, but case is significant. For example, the passwords frobble and
FROBBLE are different.

The following statements show how to assign a password:

pwd=’password=grombaq’;
myattr=’nodelete noupdate’;
rc=setlattr(mylist,myattr||’ ’||pwd);

If an SCL program attempts to modify the value of one item in MYLIST, the program
halts, because the list has the NOUPDATE attribute. If you want to permit updates of
the list again, you can execute SETLATTR as follows:

rc=setlattr(mylist,pwd ||’update’);

Note: An error condition results if you attempt to alter list attributes without
specifying the PASSWORD= option and password. �

You can remove the password from a list with NOPASSWORD=. Thereafter, any SCL
program can change attributes or set the password. Either of the following statements
removes the previously set password from the list identified by MYLIST:

rc=setlattr(mylist,’no’||pwd);

rc=setlattr(mylist,’nopassword=grombaq’);

You must supply the correct password in order to remove a password that was
previously set.



674 SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO � Chapter 13

Example

The NODELETE list attribute means that the list itself cannot be deleted with
DELLIST. The NODELETE item attribute indicates that an item cannot be deleted from
the list regardless of the item’s type. The following statements show this distinction:

a=makelist(3);
b=makelist();

/* Set 3rd item in A to B. */
a=setiteml(a,b,3);

/* Give list B the NODELETE attribute. */
/* DELLIST(b) will be an error. */

rc=setlattr(b,’NODELETE’);
/* Give the 3rd item in A the */
/* NODELETE attribute. */
/* DELITEM(a, 3) will be an error. */

rc=setlattr(a,’NODELETE’,3);
/* Move B to the second item in the list */
/* and set the third item with 0. */

a=setiteml(a,b,2);
a=setitemn(a,0,3);

/* Remove B from list A, */
/* but B still exists. */
/* DELITEM(a,2) will be an error now. */

a=delitem(a,2);

See “CLEARLIST” on page 266 and “DELLIST” on page 316 for more information
about the DELETE and NODELETE attributes.

See Also
“GETLATTR” on page 431
“HASATTR” on page 447

SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO

Assign a value to a named item in an SCL list

Category: List

Syntax
rc=SETNITEMC(list-id,cval,name,<occurrence

<,start-index <,index<,forceup>>>>);

rc=SETNITEML(list-id,sublist-id,name,<occurrence
<,start-index<,index<,forceup>>>>);

rc=SETNITEMN(list-id,nval,name ,<occurrence
< ,start-index<,index<,forceup>>>>);

rc=SETNITEMO(list-id,object-id,name, <occurrence
< ,start-index<,index<,forceup>>>>);



SAS Component Language Dictionary � SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO 675

rc
is the list-id, which is the identifier of the modified list.

Type: Numeric

list-id
is the identifier of the list that contains the named item. An invalid list-id produces
an error condition.

Type: Numeric or List

cval
is the character value for SETNITEMC to assign.

Type: Character

sublist-id
is the identifier of the sublist for SETNITEML to assign. An error condition results if
sublist-id is not a valid identifier.

Type: Numeric

nval
is the numeric value for SETNITEMN to assign.

Type: Numeric

object-id
is the identifier of the object for SETNITEMO to assign. An error condition results if
object-id is not a valid identifier.

Type: Numeric or Object

name
is the name of the item. If the named item is not found in the list, it is inserted into
the list.

Type: Character

occurrence
specifies which occurrence of the named item to assign the specified value to, starting
from the position specified in start-index. The default, 1, indicates the first
occurrence of the item.

Type: Numeric

start-index
specifies where in the list to begin searching for the item. By default, start-index is 1
(the first item). If start-index is positive, then the search begins at position
start-index items from the beginning of the list. If start-index is negative, then the
search begins at the item specified by ABS(start-index) items from the end of the list.
An error condition results if the absolute value of start-index is zero or if it is greater
than the number of items in the list.

Type: Numeric

index
is a variable to contain the index of the modified or inserted item.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric



676 SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO � Chapter 13

forceup
specifies whether to conduct the name search in uppercase.

’N’ searches according to the list attributes HONORCASE and
NOHONORCASE, which are specified with SETLATTR. (This is
the default.)

’Y’ conducts the name search in uppercase regardless of the list
attributes that are specified with SETLATTR. The HONORCASE
and IGNORECASE attributes are ignored.

IGNORECASE is an alias for NOHONORCASE.
Type: Character

Details
SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO do not make a copy of
the list before modifying or inserting an item. The list is modified in place. If the
named item is not found in the list (and if the list does not have the FIXEDLENGTH
attribute), the item is inserted into the list.

If you specify a variable name for index, then these functions return the index
number in the list of the modified or inserted item. You can reference this index to
access the same item with these functions and other SCL list functions, as long as the
items do not change positions (for example, as a result of an insert or delete operation).
If the position of items in a list is stable, then using the index argument and
subsequent index-based functions such as SETITEMC rather than name-based
functions improves performance, because the list does not have to be searched multiple
times to find a name match.

If occurrence and start-index are both positive or both negative, then the search
proceeds forward from the start-index item. For forward searches, the search continues
only to the end of the list and does not wrap back to the front of the list. If the named
item is not found, it is inserted at the end of the list. If occurrence or start-index is
negative, the search proceeds backwards from the end to the beginning of the list. For
backward searches, the search continues only to the beginning of the list and does not
wrap back to the end of the list. If the named item is not found, it is inserted at the
beginning of the list.

The result of using SETNITEMC, SETNITEML, SETNITEMN, and SETNITEMO is
similar to combining NAMEDITEM and SETITEM, SETITEML, SETITEMN, and
SETITEMO, respectively. For example, consider the following statement:

mylist=setnitemc(mylist,’Jones’,’NAMES’,1,1,i);

This statement performs the same operations as the following statements:

i=nameditem(mylist,’NAMES’);
/* If NAMES isn’t found, insert it */
/* at the end of the list. */

if i=0
then mylist=insertc(mylist,’Jones’,-1,’NAMES’);
else mylist=setitemc(mylist,’Jones’,i);



SAS Component Language Dictionary � SETPARMID 677

Note: The return value of these functions is not used to indicate whether an error
has been detected. When an error occurs, the program simply halts. �

An error condition results
� if either the item or the list has the NOUPDATE attribute.
� if either the item or the list has the FIXEDTYPE attribute and the new value is

being assigned to an item that has a different type.
� if the named item was not found and the list has the FIXEDLENGTH attribute.
� with SETNITEMC and SETNITEML, if the list has the NUMONLY attribute.
� with SETNITEMN and SETNITEML, if the list has the CHARONLY attribute.
� with SETNITEML, if list-id identifies a global list and sublist-id identifies a local

list. (Local lists cannot be placed into global lists.)

To check the attributes of a list or list item, use HASATTR. To change attributes, use
SETLATTR.

See Also
“GETNITEMC, GETNITEML, GETNITEMN, and GETNITEMO” on page 433
“INSERTC, INSERTL, INSERTN, and INSERTO” on page 474
“NAMEDITEM” on page 556
“NAMEITEM” on page 559
“SETITEMC, SETITEML, SETITEMN, and SETITEMO” on page 664
“SETLATTR” on page 669

SETPARMID

Makes the value of an SCL numeric variable available between SCL programs

Category: Object Oriented

Syntax
CALL SETPARMID(nval);

nval
is the numeric value to store for retrieval by GETPARMID.

Type: Numeric



678 SETROW � Chapter 13

Details
SETPARMID stores a number that can then be retrieved by calling GETPARMID. One
program can use SETPARMID to store a value and another program can use
GETPARMID to retrieve the value.

SETPARMID and GETPARMID allow only one value to be passed. To pass multiple
values between entries, use the ENTRY statement. Other ways of making values
available to other SCL programs include using macro variables and SCL lists.

Example

Open the SAS table MYDATA. Then use SETPARMID to store the table identifier
value so that other programs can use GETPARMID to access the table:

dsid=open(’mydata’,’i’);
call setparmid(dsid);

See Also
“DISPLAY” on page 330
“ENTRY” on page 351
“GETPARMID” on page 437

SETROW

Determines the characteristics of extended tables

Category: Extended Table

Syntax
CALL SETROW(num-rows<,num-sel<,sel-order<,dynamic>>>);

num-rows
is the maximum number of rows for the table. If the table is dynamic, num-rows can
be 0.

Type: Numeric

num-sel
is the number of items a user can select from the list. To display the list for
information purposes only (no selections allowed), specify 0. To specify unlimited
selections, use a value such as 9999 that is larger than the number of available
selections. If num-sel is 1, then selecting one row deselects any previously selected
row.

Type: Numeric



SAS Component Language Dictionary � SETROW 679

sel-order
specifies the selection order:

’Y’ Selected items are highlighted and are moved to the top of the list
in the order in which they are selected.

’N’ Selected items are highlighted, but they are not moved to the top
of the list. (This is the default.)

’A’ The selection list window automatically closes when the user
makes a selection if only one selection is allowed. This option is
valid only if num-sel is 1.

’B’ Combines Y and A.
Type: Character

dynamic
specifies whether the table is dynamic:

’Y’ specifies that the extended table is a dynamic table. Use the
ENDTABLE routine in the getrow section to specify that no more
rows are available.

Type: Character

Details
In PROGRAM entries, a regular extended table has a specified number of rows, and a
dynamic extended table has an unspecified number of rows. You cannot use the
SETROW statement in the getrow or putrow section of an SCL program. In order to
use SETROW, you must have specified the EXTENDED TABLE attribute from the
GATTR window.

You can also use both regular and dynamic extended tables as selection lists. The
second and third arguments, num-sel and sel-order, define a selection list. Making an
extended table a selection list automatically turns on the block cursor. Use FIELD to
turn off the block cursor.

To define a dynamic table that is not a selection list, specify 0 for num-sel and ’’for
sel-order.

You can use SETROW only on extended tables. Because you can define extended
tables only in SAS/AF software, you cannot use SETROW in FSEDIT or FSVIEW
programs. FRAME entries must use the _setMaxrow method.

Examples

Example 1: Specifying an Extended Table Specify an extended table that has 20 rows:

call setrow(20);

Example 2: Using an Extended Table as a Selection List Specify a selection list that
has 20 rows. Three selections are allowed, and the selections are moved to the top of
the table.

call setrow(20,3,’y’);



680 SETTITLE � Chapter 13

Example 3: Specifying a Dynamic Extended Table Specify a dynamic table:

call setrow(0,0,’’,’y’);

Example 4: Using a Dynamic Extended Table as a Selection List Specify a dynamic
table to be used as a selection list. Three selections are allowed, and the selections are
not moved to the top of the table.

call setrow(0,3,’n’,’y’);

See Also
“CURTOP” on page 302
“ENDTABLE” on page 350
“TOPROW” on page 704

SETTITLE

Sets the text of a title definition

Category: SAS System Option

Syntax
CALL SETTITLE(title-num,title-text);

title-num
is the number (1 to 10) of the title definition to create or modify.

Type: Numeric

title-text
is the text for the title definition.

Type: Character

Details
SETTITLE works just like the TITLE statement. It clears all title definitions that are
numbered higher than the one created. You cannot use SETTITLE to set graphic
options such as color, font, and position.

You can view title definitions in the TITLES window by using the TITLE command.
However, changing any text in the TITLES window resets all graphically defined title
options such as color, font, and position.

For more information about titles, see SAS Language Reference: Dictionary. For
more information about graphical titles, see SAS/GRAPH: Reference .



SAS Component Language Dictionary � SHOWLIST 681

Example

Create a title numbered 2. The statement deletes all titles with numbers greater
than 2.

call settitle(2,’This is the Second Title’);

See Also
“GETFOOT” on page 429

“GETTITLE” on page 437
“SETFOOT” on page 663

SHOWLIST

Displays a selection list window that contains up to 13 items, and returns the user’s selections

Category: Selection List

Syntax
selection=SHOWLIST(item-1<, . . . ,item-13>,message);

selection
contains the selected items, or a blank if no selection is made. By default, selection is
200 bytes long. To accommodate values longer than 200 bytes, explicitly declare
selection with a longer length.

Type: Character

item
lists up to 13 items, separated by commas, for the selection list.

Type: Character

message
is the text for a message to display above the selection list. Regardless of how many
item values are supplied, the last argument is assumed to be the message. Use a null
string (’’) to specify the default message, which instructs users to make one
selection.

Type: Character

Details
SHOWLIST automatically displays a custom selection list and returns the user’s
selections. Only one user selection is allowed, and the selection list window closes
automatically after the user makes a selection.

You can provide a default or initial selected value in the list by assigning a value to
selection before executing SHOWLIST. If selection contains a value that corresponds to
one of the item arguments when SHOWLIST executes, then that selection is designated
as selected when the selection list is displayed.

If a user closes the selection list window without making a selection, SHOWLIST
returns a blank value unless there was an initial value for selection before SHOWLIST
was called.



682 SORT � Chapter 13

Example

Open a selection list window that displays a list of three colors:

color=’BLUE’;
color=showlist
(’RED’,’BLUE’,’GREEN’,’Please select a color.’);

Because a value is assigned to the variable COLOR before SHOWLIST executes, and
the value BLUE is one of the arguments for SHOWLIST, the item BLUE in the list is
highlighted with an asterisk when the list is displayed.

See Also
“DATALISTC and DATALISTN” on page 304
“LISTC and LISTN” on page 513

SORT

Sorts a SAS table by one or more columns

Category: SAS Table

Syntax
sysrc=SORT(table-id,col-list-1<. . .col-list-4>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
contains the identifier that was assigned when the table was opened. The table must
be open in UPDATE mode. If table-id is invalid, the program halts.

Type: Numeric

col-list
is one to four quoted strings of columns or options, separated by blanks. For a list of
options, the first character in the list must be a forward slash (/). Columns and
options cannot be mixed in the same list.

Type: Character



SAS Component Language Dictionary � SORT 683

Details
SORT uses the sorting program that SAS supports on your operating system. If a
column list contains more than one column, the table is sorted by those columns in the
order in which they are specified.

You can use the following options for col-list, depending on your operating system:

DATECOPY
DIAG
EQUALS
FORCE
LEAVE
LIST
MESSAGE
NODUPKEY
NODUPLICATES
NOEQUALS
OUT
REVERSE
SORTSEQ=ASCII|EBCDIC|DANISH|FINNISH

|NATIONAL|NORWEGIAN|SWEDISH
SORTSIZE
SORTWKNO
TAGSORT
TRANTAB

SAS views cannot be sorted in place. To sort views, you must specify an output SAS
table.

If a SAS table is already in sorted order, then you must use the FORCE option.

Note: Unless you specify the FORCE option, the SORT function and PROC SORT
do not sort and replace an indexed SAS table, because sorting destroys indexes for the
table. �

Example

Use the SORT function with the options NODUPKEY, NODUPLICATES, and
TAGSORT to sort the SAS table MYDATA by column A in ascending order and by
column B in descending order:

rc=sort(mydataid,’a descending b’,
’/ nodupkey noduplicates tagsort’);



684 SORTLIST � Chapter 13

SORTLIST

Sorts the items in an SCL list by value or by name

Category: List

Syntax
rc=SORTLIST(list-id<,options<,start-index<,n-items>>>);

rc
contains the identifier of the sorted list. The value passed as list-id is returned
unless there is an error. The value 0 means out of memory.

Type: Numeric

list-id
is the identifier of the list to sort. An invalid list-id produces an error condition.

Type: Numeric or List

options
specify how the sort operation is performed. Multiple options can be specified,
separated by blanks. Each option can be abbreviated to a unique substring. The
substring can be as short as the first character for all options except ’NAME’ and
’NODUP’, which may be abbreviated to two characters, ’NA’ or ’NO’, respectively.
Later keywords override previous keywords.

’ASCENDING’
Sort the list in ascending order. (This is a default.)

’DESCENDING’
Sort the list in descending order.

’IGNORECASE’
Ignore case when comparing string values. Case is always ignored when sorting
by name, because names are always converted to uppercase.

’NAME’
Sort the list by item name. Unnamed items appear before named items in an
ascending sort.

’NODUP’
Delete duplicate items when sorting. All but the first item in the sort range that
have the same value (or the same name, if sorting by name) are deleted. The
default is not to delete duplicates.

’OBEYCASE’
Obey case when comparing string values. This is the default when sorting by
value.

’VALUE’
Sort the list by item value. In an ascending sort, character items precede list
identifiers, which precede numeric missing values, followed by non-missing
numeric values. (This is a default.)
Type: Character



SAS Component Language Dictionary � SORTLIST 685

start-index
specifies the starting position for sorting a range of items in the list. By default,
start-index is 1 (the first item). If start-index is positive, then the range begins
start-index items from the beginning of the list. If start-index is negative, then the
range begins at the item specified by ABS(start-index) items from the end of the list.
An error condition results if the absolute value of start-index is zero or if it is greater
than the number of items in the list.

Type: Numeric

n-items
specifies the number of items in the list to sort. The default is all items between
start-index and the opposite end of the list. To explicitly specify all items, specify −1.

Type: Numeric

Details
SORTLIST does not make a copy of the list before it is sorted. The list is modified in
place.

Sublists that are contained in the sorted list are not sorted recursively.
When you specify the ’NODUP’ and ’IGNORECASE’ options, the character list items or

names that are spelled the same but differ only in case are considered duplicates, and
all but the first occurrence are removed from the sorted list.

An error occurs if the list has the NOUPDATE attribute or if an item to be removed
has the NODELETE attribute, if NODUP is specified. Use HASATTR to check the
attributes of a list or item. To change attributes, use SETLATTR.

Examples
� Sort the first 10 items in a list in descending order:

list=sortlist(list,’D’,1,10);

� Sort the last 16 items in a list in ascending order:

list=sortlist(list,’’,-1,16);

� Sort the second ten items in a list in ascending name order, deleting items that
have duplicate names:

list=sortlist(list,’NODUP ASCENDING NAME’,11,10);

See Also
“HASATTR” on page 447
“REVLIST” on page 626
“ROTLIST” on page 631
“SETLATTR” on page 669



686 _STATUS_ � Chapter 13

_STATUS_

Contains the status of program execution or overrides the normal flow of control

Category: System Variable

Details

_STATUS_ is a system variable that is created for every SCL program that is compiled.
The compiler creates a space for _STATUS_ in the SCL data vector. _STATUS_ is
maintained as a single-character string variable.

When an SCL program executes, _STATUS_ can have one of the following values:

’ ’(blank) A control or field was modified or selected.

E An END or equivalent command was issued.

C A CANCEL or equivalent command was issued.

P A pop-up menu event occurred.

G The getrow section was called for the top row of an extended table.

K A command other than an END or CANCEL, or their equivalents,
was issued. Valid only for FRAME entries.

D A control was selected with a double click. Valid only for FRAME
entries.

In addition to the execution values, you can assign the following values to _STATUS_:

’H’ Terminate the current window without further input from the user.
Control returns to the program or window that invoked the
application. Note that the TERM section of the program is not
executed in this case. In FSEDIT, if a user modified a table variable
value in the current row, the modified values are not written to the
SAS table.

’R’ Resume execution of the SCL program without exiting the
application in SAS/AF or the current row in FSEDIT. When you set
the value of the _STATUS_ variable to ’R’, the procedure ignores the
END or CANCEL command that the user just issued. This value is
useful only when set in the TERM section of your program or in the
_preterm method of a FRAME entry control, because the specified
action (not allowing an exit from the program or the current row)
occurs after the user has issued an END or CANCEL command in
SAS/AF or after a user has attempted to leave a row in FSEDIT.

Assigning a value to _STATUS_ does not imply an immediate return. The value of
_STATUS_ is queried only after the SCL program returns control to the application. To
return control to the application after assigning a value to _STATUS_, use the STOP or
RETURN statement.

FRAME entries can also use the _getStatus and _setStatus methods to query and
update the _STATUS_ variable.



SAS Component Language Dictionary � STDMSG 687

Example

The following program calls OKTOEND.FRAME to display a confirmation window
that allows the user to select OK or CANCEL in response to the END command.
OKTOEND returns a 1 if it is OK to end or a 0 if it is not.

TERM:
/* Check whether the END command was issued */
if _status_ eq ’E’ then

do;
call display( ’oktoend.frame’, ok );

/* Check whether the user wants to cancel the */
/* END command */

if ok eq 0 then
do;

_status_ = ’R’;
return;

end;
end;
...The rest of the TERM section...

return;

See Also
“_EVENT_” on page 363

STDMSG

Displays the text of the SAS software message that is generated by an unknown command

Category: Message

Syntax
cval=STDMSG();

cval
contains the message text. A blank means that no window exists in which to display
the message.

Type: Character



688 STOP � Chapter 13

Example

Use WORD to read a command from the command line in a PROGRAM entry and
check the command for validity. If the command is not valid, the standard message is
displayed. Valid commands in this case are PRINTIT and FILEIT. Any other commands
produce the standard error message for invalid commands.

INIT:
control always;

return;
MAIN:

if _status_ in (’C’ ’E’) then return;
command=word(1);
call nextcmd();
select(upcase(command));

when(’PRINTIT’) _msg_=’PRINTIT is specified’;
when(’FILEIT’) _msg_=’FILEIT is specified’;
otherwise do;

call execcmdi(command);
stdmsg=stdmsg();
if stdmsg ne _blank_ then _msg_=stdmsg;
return;
end;

end;
return;
TERM:
return;

See Also
“NEXTCMD” on page 569
“NEXTWORD” on page 571
“SYSMSG” on page 701
“WORD” on page 744

STOP

Stops executing statements in the program section that is currently executing

Category: Control Flow
Comparisons: SAS Statement with limitations in SCL

Syntax
STOP;



SAS Component Language Dictionary � STRATTR 689

Example

The chain of execution is begun by executing OBJ1 and includes LAB1 and LAB2.
When the STOP statement is executed, the chain of execution ends, and the two PUT
statements are never executed. Control is passed to MAIN.

INIT:
control label;

return;
MAIN:

put ’in MAIN’;
return;

OBJ1:
link LAB1;
put ’after link to LAB1’;

return;

LAB1:
link LAB2;
put ’after link to LAB2’;

return;

LAB2:
stop;

return;

TERM:
return;

See Also
“_STATUS_” on page 686

STRATTR

Defines a string for color and display attributes

Category: Widget or Field

Syntax
cval=STRATTR(color,attribute,start,length);

cval
is a string that contains the specified color and display attributes.

Type: Character



690 STRATTR � Chapter 13

color
is a color name, or ’’to retain the current color. Colors are BLACK, BLUE, BROWN,
CYAN, GRAY, GREEN, MAGENTA, ORANGE, PINK, RED, WHITE, and YELLOW.
SASCOLOR window elements can also be used for color.

Type: Character

attribute
is a display attribute, or ’’to retain the current attribute. Attributes are NONE,
BLINKING, HIGHLIGHT, HIREV, REVERSE, and UNDERLINE. If you specify a
SASCOLOR window element for color, then attribute is ignored, because the
SASCOLOR window element contains a display attribute. However, you must specify
a placeholder (’’) for attribute when you specify arguments after it.

Type: Character

start
is the starting character position to store in the attribute string.

Type: Numeric

length
is the number of character positions to store in the attribute string.

Type: Numeric

Details
STRATTR defines a string that you can use with FLDATTR to change the color and
display attributes of fields or portions of fields in an application window. STRATTR can
be called multiple times to create a string with multiple attributes in it.

Characters whose positions are after start + length - 1 do not change color or
attributes. Characters whose positions are before the start position must be initialized
to the special hexadecimal character ’FF’x in order to maintain their current color and
attribute. For more information about using hexadecimal characters, see “FLDATTR”
on page 400.

To change the color for an entire text entry widget or field, use the FIELD function.

Example

Define an attribute string named STR that contains red reverse in the first half of the
string and blue highlight in the second half. Apply the attribute string to the field ABC.

half=mlength(abc)/2;
str=strattr(’red’,’reverse’,1,half);
str=strattr(’blue’,’highlight’,half+1,half);
rc=fldattr(’abc’,str);

See Also
“FLDATTR” on page 400

“FLDCOLOR” on page 402



SAS Component Language Dictionary � SUBMIT 691

SUBMIT

Submits statements or commands to SAS for execution

Category: Submit Block

Syntax

SUBMIT<when <where>><host> <’STATUS’>;

when
specifies when to submit the generated statements or commands for execution and
what action, if any, the procedure must take. If an option is not specified, the
SUBMIT block statements are collected by SCL in a PREVIEW buffer. Options are

CONTINUE
specifies that at the end of the current submit block, the procedure submits all
statements stored in the PREVIEW window and returns control to the SCL
program. Execution of the program continues with the statement that follows
ENDSUBMIT.

IMMEDIATE
specifies that at the end of the current submit block, the procedure submits all
statements stored in the PREVIEW window and returns control to the procedure.
You cannot use this option with FRAME entries, because its action could prevent
the execution of other labeled sections.

Note: This means that any statements following ENDSUBMIT are not
executed on this pass through the SCL program. To execute the statements
following ENDSUBMIT, use conditional logic to branch around the SUBMIT
IMMEDIATE statement. �

PRIMARY
specifies that at the end of the current submit block, the procedure submits all
SAS statements stored in the PREVIEW window, and the user is returned to the
primary window (the entry specified with the CATALOG= option in the AF
command). If the current entry is the primary entry for the application, then this
option restarts the current entry.

Note: This means that any statements following ENDSUBMIT are not
executed on this pass through the SCL program. To execute the statements
following ENDSUBMIT, use conditional logic to branch around the SUBMIT
PRIMARY statement. �

TERMINATE
specifies that at the end of the current submit block, the procedure submits all
SAS statements stored in the PREVIEW window and closes the AF window.

Note: The IMMEDIATE, PRIMARY, and TERMINATE options are honored only
if the where option is not specified, that is, only if statements are to be submitted to
the SAS system for execution. �

Type: Character



692 SUBMIT � Chapter 13

where
determines where statements are submitted for execution. If this option is omitted,
the statements are submitted to SAS for execution. Options are

COMMAND
submits command line commands to SAS for execution. You can specify multiple
commands by separating them with semicolons. You must specify the CONTINUE
option along with the COMMAND option.

Note: The COMMAND option applies only to the local host. If you specify both
the COMMAND and REMOTE options, the REMOTE option is ignored. �

EDIT
submits the statements to the Program Editor window.

Note: In Version 8 and later, using the RECALL command from the Program
Editor window does not recall code that was submitted from SCL to the Program
Editor. �

SQL
submits the statements to SQL for processing from both TESTAF and AF modes.

Note: The COMMAND, EDIT, and SQL options work only with the CONTINUE
option. �

Type: Character

host
provides instructions for submitting the code on a particular operating system.
Options are

LOCAL
executes on the current system. (This is the default.)

REMOTE
executes on a remote host. Use this option with the CONTINUE option.
Type: Character

‘STATUS’
is the instruction to display the status window at all times. Use this option with the
CONTINUE option.

Type: Character

Details
SUBMIT labels the beginning of a block of SAS statements or commands to submit to
SAS software. When SUBMIT is encountered, SCL collects all the text between
SUBMIT and ENDSUBMIT and places it in the PREVIEW buffer. Based on the value
of the when option, SCL submits the statements to SAS for execution at the appropriate
time.



SAS Component Language Dictionary � SUBMIT 693

The where and host options are valid only if the when option is specified. Regardless
of the value of the where option, all submit block text can be buffered in the PREVIEW
window. You need to make certain that the CONTINUE option is specified when you
want the statements to be submitted.

By default, when control returns to SCL, the program continues to execute the
statements that follow ENDSUBMIT.

Note: Issuing the DM command inside of a SUBMIT block may cause the submitted
statements to be executed in an unexpected order. You may want to use the CALL
EXECCMD or EXECCMDI routine instead to issue your command. �

You can use the REMOTE command to override the host option of a SUBMIT
statement. That is, in the SUBMIT statement, you can choose not to use the host option
REMOTE and can instead use the REMOTE command to control whether the generated
code is executed on the local or remote host. For more information about the REMOTE
command, see “Submitting Statements to a Remote Host” on page 89.

The ASIS option in the CONTROL statement allows a submit block to be submitted
without formatting. Use CONTROL ASIS before the SUBMIT block to submit code that
contains a DATALINES statement.

When an AF application that is invoked from an autoexec file uses both SUBMIT
CONTINUE REMOTE and LOCAL blocks, the order of execution may not be correct. In
this situation, you can avoid problems by using the following in place of the SUBMIT
CONTINUE REMOTE blocks:

submit continue;
rsubmit;
...SCL statements...
endrsubmit;

endsubmit;

Note: If CONTROL LABEL is specified, a window variable section must not contain
a SUBMIT IMMEDIATE block. �

Examples
� Submit a simple SAS program that invokes the PRINT procedure for a previously

referenced SAS table:

submit continue;
proc print;
run;

endsubmit;

� Submit the LIBNAME command:

main:
submit command continue;

libname;
endsubmit;

return;



694 SUBMITCLEAR � Chapter 13

See Also
“ENDSUBMIT” on page 349
“PREVIEW” on page 604

SUBMITCLEAR

Aborts a pending submit transaction

Category: Submit Block

Syntax
sysrc=SUBMITCLEAR();

sysrc
contains the return code for the operation:

0 successful

!0 not successful
Type: Numeric

Details
SUBMITCLEAR aborts a pending submit transaction. A submit transaction may be
pending if the submitted DATA steps or procedure statements are not complete, or if
the submitted text contains an open quoted string or other syntax errors.
SUBMITCLEAR is particularly useful for terminating programs that are waiting on
input because of unmatched quotes or other syntax errors.

A submit transaction starts as SAS/AF sends submitted text in the PREVIEW buffer
to SAS for execution (usually through the SUBMIT CONTINUE option). If SUBMIT
requests were queued up, they would be flushed out without being executed. The
currently running step is aborted, and as a result, the log will not be updated with any
specific status information relating to the step that is being terminated.

Example
This example submits code to SAS for execution, then calls SUBMITCLEAR to ensure
there is no hanging transaction due to mismatched quoted strings or other syntax errors.

SUBUMIT CONTINUE;
data test;
. . .

ENDSUBMIT;

rc = SUBMITCLEAR();



SAS Component Language Dictionary � SUPAPPLY 695

See Also

“PREVIEW” on page 604
“SUBMIT” on page 691

SUPAPPLY

Invokes the inherited definition of a method and passes the method’s arguments in an SCL list

Category: Object Oriented

Syntax

CALL SUPAPPLY(object-id,method-name,arg-list-id);

return-value=SUPAPPLY(object-id,method-name,arg-list-id);

object-id
contains the identifier of the object for which the method is invoked.

Type: Numeric or Object

method-name
is the name of the method to invoke.

Type: Character

arg-list-id
is the identifier of a list of arguments that are required by the method. An invalid
arg-list-id produces an error condition.

Type: Numeric

return-value
contains the value returned by method-name. The data type for return-value should
match the data type for the called method.

Type: Numeric, Character, List, Object-name, Class, or Interface

Details

SUPAPPLY provides the same functionality as SUPER except that you can pass
arguments to inherited methods in an SCL list. You use SUPAPPLY to execute an
inherited method when you define another method that performs additional actions. A
method that calls an inherited method and includes additional actions is called an
overloaded method. See “Overloading Methods” on page 112 for more information.

When using SCOM classes, you must use dot notation to call overloaded methods.
Dot notation provides compiler time checking and better performance at run time. With
overloaded methods, the compiler must be able to check method signatures in order to
call the correct method. For details about dot notation, see “Accessing Object Attributes
and Methods with Dot Notation” on page 124.

You can use SUPAPPLY as a function if the called method returns a value with a
RETURN statement in the program that defines the method.



696 SUPAPPLY � Chapter 13

Although the method name is typically the name of the currently executing method,
which is stored in the system variable _METHOD_, any other method name can be used.

The object identified by object-id must be the same object whose method is currently
executing. The identifier for this object is stored in the system variable _SELF_. In
methods defined in a CLASS or USECLASS statement block, all references to the class
methods and attributes can bypass references to _SELF_.attribute and
_SELF_.method(...). For example, to call a super method with dot notation in a method
definition, you can use supapply(); , which is equivalent to call
supapply(_self_,’m1’);.

Example

Consider an Object class in which a Transaction method receives a variable-length
parameter list of transactions to record in a table. A subclass of this class records the
transactions in an audit trail table that contains two numeric variables, DATETIME
and TCOUNT. These variables record the date/time and the number of transactions
processed. This example shows the Transaction method, which invokes the inherited
Transaction method and then records the size of the transaction (the number of items
in the argument list) for a table. The object has the attributes audit, tc_vnum, and
dt_vnum. Audit is a table ID for an audit table. The attribute tc_vnum is the variable
number for the TCOUNT variable. Dt_vnum is the variable number for the DATETIME
variable.

useclass lib.cat.myclass.class;

/* TRANSACT.SCL: TRANSACTION method */
Transaction: method arglist= transactions;

call supapply(_self_,’Transaction’,transactions);
if audit then do;

nTransactions=listlen(transactions);
call putvarn(audit,tc_vnum,nTransactions);
call putvarn(audit,dt_vnum,datetime());
rc=update(audit);

end;
endmethod;
enduseclass;

This method can be invoked with an arbitrary number of transactions using dot
notation, where the SCL variable listOftransactions is an SCL list that contains
one or more transaction objects.

dcl lib.cat.myclass.class obj=_NEW_lib.cat.myclass();

obj.Transaction(t1,t2,t3,t4,t5);
obj.Transaction(t1,t2);
obj.Transaction(listOftransactions);

See Also
“APPLY” on page 225
“INSTANCE” on page 477
“METHOD” on page 539
“NOTIFY” on page 575
“SEND” on page 656
“SUPER” on page 697



SAS Component Language Dictionary � SUPER 697

SUPER

Invokes the inherited definition of a method

Category: Object Oriented

Syntax
CALL SUPER(object-id,method-name<,parameters>);

<return-value=>_SUPER<.method-name>(<parameters>);

object-id
contains the identifier of the object for which the method is invoked.

Type: Numeric or Object

method-name
is the name of the method to invoke.

Type: Character

parameters
are additional numeric or character arguments that are required by the method. Use
commas to separate multiple options.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric, Character

return-value
contains the value returned by the inherited method.

Type: Numeric, Character, List, Object-name, Class, or Interface

Details
SUPER provides a convenient way of calling a method in the parent class from a
method in the child class. In particular, it is useful for calling the corresponding parent
method from an overridden method in the child.

Although method-name is typically the name of the currently executing method,
which is stored in the system variable _METHOD_, any other method name can be used.

The object identified by object-id must be the same object whose method is currently
executing. The identifier for this object is stored in the system variable _SELF_.

For more information about system variables, see “System Variables” on page 24.
SUPER can also be used with CLASS blocks, USECLASS blocks and dot notation by

using _SUPER. If you are specifying the same method in the parent and child classes,
you do not need to specify the method name.

Examples

Example 1: Calling the Parent Method of an Overridden Method In this example,
_SUPER is used to call the parent method of an overridden method in class X.

Y.SCL
class y;

m: method;



698 SUPER � Chapter 13

...SCL statements...
endmethod;

endclass;

X.SCL
class x extends y;
m: method;

_super();
/* _super invokes method M in class Y */

endmethod;
endclass;

Example 2: Calling a Different Method in the Parent Class To call a different method
in the parent class, specify the method name after _SUPER using dot notation. The
following example invokes the M2 method in class Y using _SUPER:

Y.SCL
class y;
m2: method;

...SCL statements...
endmethod;

endclass;

X.SCL
class x extends y;
m: method;

_super.m2();
endmethod;

endclass;

Example 3: Calling a Method in the Parent of a Parent Class This example
demonstrates how you can use inheritance to invoke a method in the parent of a parent
class.

S.SCL
class s;
m: method n: num return=num;

dcl num x;
x=n+199;
return x;

endmethod;
endclass;

S2.SCL
class s2 extends s;
m: method n: num return=num/(state=’O’);

dcl num x;
x=n+_super(1);
return x;

endmethod;
endclass;

S3.SCL
class s3 extends s2;
n: method return=num;

dcl num x;



SAS Component Language Dictionary � SYMGET and SYMGETN 699

x=_super.m(-10);
return x;

endmethod;
endclass;

DRS.SCL
init:
dcl s3 sobj=_new_ s3();
dcl num x;
dcl string s;
x=sobj.n();
put x=;

return;

This example results in the following output:

x=190

The calling sequence for the above example is as follows:
1 Method N in class S3 is invoked in DRS.SCL.
2 In N, method M is invoked in class S2 via _SUPER. The parameter is -10.
3 Method M, which is within S2, invokes method M in class S via _SUPER. The

parameter is 1.
4 In S, 1 is added to 199 and returned to S2.
5 In S2, 200 is added to -10 and returned to S3.
6 In S3, 190 is returned to DRS.SCL.

See Also
“APPLY” on page 225
“INSTANCE” on page 477
“METHOD” on page 539
“NOTIFY” on page 575
“SEND” on page 656
“SUPAPPLY” on page 695

SYMGET and SYMGETN

Return the value stored in a macro variable

Category: Macro

Syntax
cval=SYMGET(macro-var);

nval=SYMGETN(macro-var);

cval
contains the character value returned by SYMGET.

Type: Character



700 SYMPUT and SYMPUTN � Chapter 13

nval
contains the numeric value returned by SYMGETN.

Type: Numeric

macro-var
is the macro variable.

Type: Character

Details
SYMGET and SYMGETN return values of macro variables when the program executes,
whereas "&macro-var" returns values when the program compiles. SYMGET returns
the value of a SAS macro variable as a character value and SYMGETN returns the
value as a numeric value.

Examples

Example 1: Using the SYMGET Function Execute commands if the operating system is
Windows:

if symget(’SYSSCP’) = ’WIN’ then do;
rc = optsetn(’xwait’,0);
rc = optsetn(’xsync’,0);

end;

Example 2: Using the SYMGETN Function Return the value of the macro variable
UNIT at program execution time:

nval=symgetn(’unit’);

Example 3: Returning Macro Values at Program Compile Time Return the values of
the macro variables UNIT and SYSJOBID at program compile time:

nval=&unit;
cval="&sysjobid";

See Also
“SYMPUT and SYMPUTN” on page 700

SYMPUT and SYMPUTN

Store a value in a SAS macro variable

Category: Macro

Syntax
CALL SYMPUT(macro-var,cval);

CALL SYMPUTN(macro-var,nval);



SAS Component Language Dictionary � SYSMSG 701

macro-var
is the macro variable to store a value in.

Type: Character

cval
is the character value for SYMPUT to store in macro-var.

Type: Character

nval
is the numeric value for SYMPUTN to store in macro-var.

Type: Numeric

Details
SYMPUT stores a character value in a SAS macro variable, whereas SYMPUTN stores
a numeric value in a SAS macro variable. If macro-variable does not exist, SYMPUT
and SYMPUTN create it. SYMPUT and SYMPUTN make a macro variable assignment
when the program executes.

Examples

Example 1: Using the SYMPUT Routine Store the value of the SCL variable SCLVAR
in the macro variable TBL:

call symput(’tbl’,sclvar);

Example 2: Using the SYMPUTN Routine Store the numeric value 1000 in the macro
variable UNIT:

call symputn(’unit’,1000);

See Also
“SYMGET and SYMGETN” on page 699

SYSMSG

Returns the text of SCL error messages or warning messages

Category: Message

Syntax
cval=SYSMSG();

cval
contains the text of the SCL error message.

Type: Character

Details
SYSMSG returns the text of error messages or warning messages that are produced
when SCL encounters an error condition. If no error message is available, the returned



702 SYSRC � Chapter 13

value is blank. The internally stored error message is reset to blank after a call to
SYSMSG. Therefore, if you subsequently call SYSMSG before another error condition
occurs, it returns a blank value.

Example

Display the system error message that is generated if FETCH cannot copy the next
row into the Table Data Vector for the SAS table identified by the value stored in DSID.
The return code is 0 only when a next record is successfully fetched.

rc=fetch(dsid);
if rc ne 0 then _msg_=sysmsg();

See Also
“SYSRC” on page 702

“_MSG_” on page 555

SYSRC

Returns a system error number or the exit status of the most recently called entry

Category: Message

Syntax
rc=SYSRC(<display-stat>);

rc
contains the return code for the most recent error or warning condition, if
display-stat is omitted. Otherwise, returns the exit status of CALL DISPLAY:

0 A user used an END command.

−1 A user used a CANCEL command.
Type: Numeric

display-stat
causes the SYSRC function to return the most recent exit status of CALL DISPLAY.
The value of the argument does not matter, only whether any value is specified.

Type: Numeric

Details
If you pass an argument to SYSRC, the function returns the exit status of the most
recently called execution of CALL DISPLAY rather than the SAS system return code for
the most recent error or warning condition. Thus, you can use SYSRC to determine how
a user terminated an entry that was called with CALL DISPLAY.

To return the SAS system return code, do not specify any value for display-stat. See
Chapter 15, “SAS System Return Codes,” on page 791 for more information about how
to use return code values.



SAS Component Language Dictionary � SYSTEM 703

Example

Determine how a user exited from another entry that was called within the current
application:

call display(’test.scl’);
if sysrc(1)=-1 then
_msg_=

’User exited TEST.SCL with a CANCEL command’;
else
_msg_=

’User exited TEST.SCL with an END command’;

See Also
“SYSMSG” on page 701

SYSTEM

Issues a host system command

Category: Command

Syntax
rc=SYSTEM(cval);

rc
contains the host system return code for the operation.

Type: Numeric

cval
is the host command to be executed. To enter the host command processor for your
system, specify a blank string (’ ’).

Type: Character

Details
Using SYSTEM is equivalent to using the X command for issuing a system command.
The action that takes place depends on which command you specify. The window may
be temporarily overwritten due to the actions of the command. The commands that can
be issued are operating-system dependent.

Example

Issue the DIR command to the host operating system:

rc=system(’dir’);
if (rc) then _msg_=

’Failed to execute the DIR command.’;



704 THROW � Chapter 13

THROW
Raises an exception

Category: Control Flow

Syntax
THROW exception;

exception
is the local variable for the exception that you want to process.

Details
All exceptions are subclasses of the SCL Exception class. You can use the CLASS

statement to define your own exception classes, and then use THROW statements to
raise the exceptions.

When an exception is thrown, normal execution of the SCL entry stops, and SCL
begins looking for a CATCH block to process the exception.

Note: You must always declare a variable to hold the thrown exception. �

Example

The following class defines a subclass of SCLException called NewException, which
defines an attribute named SecondaryMessage:

Class NewException extends SCLException;
dcl string SecondaryMessage;

endclass;

You can create a new instance of NewException and raise this exception with the
THROW statement, as shown here in the ThrowIt class:

Class ThrowIt;
m: method;
dcl NewException NE = _new_ NewException(’Exception in method m’);
NE.SecondaryMessage = "There’s no code in m!";
throw NE;
endmethod;

endclass;

See Also
“CATCH” on page 243
Chapter 10, “Handling Exceptions,” on page 163

TOPROW
Scrolls a row to the top of an extended table



SAS Component Language Dictionary � TOPROW 705

Category: Extended Table

Syntax
CALL TOPROW(row);

row
is the number of the table row to be scrolled to the top of the table.

Type: Numeric

Details
The TOPROW routine cannot be called in the getrow or putrow section of an SCL
program.

You can use TOPROW only on extended tables in PROGRAM entries. Because you
can define extended tables only in SAS/AF software, you cannot use TOPROW in
FSEDIT or FSVIEW programs.

Examples

Example 1: Specifying Which Row to Scroll

Scroll the fifth row to the top of the table:

call toprow(5);

Example 2: Letting the Program Determine Which Row to Scroll

Suppose you have a PROGRAM entry window that contains three character fields:
1 VALUE, in the non-scrollable area of the window. Turn the CAPS attribute off for

VALUE.
2 NAME, the first field in the extended table’s logical row. Turn the CAPS attribute

off for NAME.
3 GENDER, the second field in the extended table’s logical row.

When a user enters a name in VALUE, the table scrolls so that the corresponding row
is at the top of the table.

This program controls the window:

INIT:
dsid=open(’sasuser.class’);
call set(dsid);
call setrow(0,0,’’,’y’);
vnum=varnum(dsid,’name’);

return;
MAIN:
rc=
where(dsid,"name contains ’"||value|| "’");
any=attrn(dsid,’any’);
if any then do;

rc=fetch(dsid);
firstmatch=getvarc(dsid,vnum);



706 TRACEBACK � Chapter 13

rc=where(dsid);
recnum=locatec(dsid,vnum, firstmatch);
call toprow(recnum);

end;
return;

TERM:
if dsid then dsid=close(dsid);

return;

getrow:
if fetchobs(dsid,_currow_)=-1
then call endtable();

return;

See Also
“CURTOP” on page 302
“ENDTABLE” on page 350
“SETROW” on page 678

TRACEBACK

Displays traceback information for an SCL execution stack

Category: Utility

Syntax
CALL TRACEBACK(<list-id><,’_ALL_’>;

list-id
contains the identifier of the SCL list to store traceback information in. You must
create the list before passing it to TRACEBACK. An invalid list-id produces an error
condition.

Type: Numeric or List

_ALL_
is the instruction to display the link stack in addition to the SCL execution stack.

Type: Character

Details
The execution stack consists of the program that is currently being executed, plus all
programs that were called to display the current program. TRACEBACK displays the
execution stack as a list of entry names and associated line numbers. The _ALL_
argument displays the link stack, which lists the labeled sections that are called within
the program. The link stack does not include labeled sections that are called with a
GOTO statement. The line number for an entry indicates where the entry transferred
control to the next entry in the list.



SAS Component Language Dictionary � TRACEBACK 707

Examples

The following examples use three SCL entries, START.SCL, ANALYZE.SCL, and
REPORT.SCL. START.SCL contains a link at line 5 and calls ANALYZE.SCL at line 9.
ANALYZE.SCL contains links at line 5, 11, and 16 and calls REPORT.FRAME at line
21.

Example 1: Tracing Program Execution The TRACEBACK routine is executed at line
6 of REPORT.SCL.

call traceback();

The following traceback list is printed in the LOG window:

In routine: LIB.TEST.REPORT.SCL line 6
Called from LIB.TEST.ANALYZE.SCL line 21
Arguments passed to DISPLAY:
1 (Character Literal) = ’report.scl’

Called from LIB.TEST.START.SCL line 9
Arguments passed to DISPLAY:
1 (Character Literal) = ’analyze.scl’

Example 2: Saving Traceback Information in an SCL List Change REPORT.SCL to
save traceback information in an SCL list, and then display the traceback list:

tb = makelist();
call traceback(tb); /* line 7 */
call putlist(tb, ’Traceback:’, 0);
tb = dellist(tb);

This program produces the following output:

Traceback:(LIB.TEST.REPORT.SCL=7
LIB.TEST.ANALYZE.SCL=21
LIB.TEST.START.SCL=9
)[1905]

Example 3: Tracing the Execution Stack and Program Links Change REPORT.SCL to
execute a traceback, using the _ALL_ argument on line 6:

call traceback(0,’_all_’);

The following traceback list is printed in the LOG window:

In routine: LIB.TEST.REPORT.SCL line 6
Called from LIB.TEST.ANALYZE.SCL line 21
Arguments passed to DISPLAY:
(Character Literal) = ’report.scl’
Linked from LIB.TEST.ANALYZE.SCL line 16
Linked from LIB.TEST.ANALYZE.SCL line 11
Linked from LIB.TEST.ANALYZE.SCL line 5
Called from LIB.TEST.START.SCL line 9
Arguments passed to DISPLAY:
1 (Character Literal) = ’analyze.scl’
Linked from LIB.TEST.START.SCL line 5

Example 4: Comparing Tracebacks With and Without _ALL_ Change REPORT.SCL to
execute the traceback without the _ALL_ option at line 8 and to execute the traceback
with the _ALL_ option at line 9:



708 UNGRAY � Chapter 13

listid1=makelist();
listid2=makelist();
call traceback(listid1);
call traceback(listid2,’_ALL_’);
call putlist(listid1,

’Traceback without LINK stack=’,0);
call putlist(listid2,

’Traceback with LINK stack=’,0);
listid1=dellist(listid1);
listid2=dellist(listid2);

This program produces the following output:

Traceback without LINK stack=(LIB.TEST.REPORT.SCL=8
LIB.TEST.ANALYZE.SCL=21
LIB.TEST.START.SCL=9

)[1905]
Traceback with LINK stack=(
LIB.TEST.REPORT.SCL=9
LIB.TEST.ANALYZE.SCL=21
LIB.TEST.ANALYZE.SCL=16
LIB.TEST.ANALYZE.SCL=11
LIB.TEST.ANALYZE.SCL=5
LIB.TEST.START.SCL=9
LIB.TEST.START.SCL=5

)[1907]

Note: 541, 1905, and 1907 are the list identifiers that were assigned when these
examples were run and may be different each time the examples are run. �

See Also
“MAKELIST” on page 533
“TRACEBACK” on page 786

UNGRAY

Ungrays a window element

Category: Control or Field

Syntax
rc=UNGRAY(var-name<,station<,row>>);

rc
contains the return code for the operation:

0 successful

≠0 unsuccessful



SAS Component Language Dictionary � UNIQUENUM 709

Type: Numeric

var-name
is the control or choice group to be ungrayed.

Type: Character

station
is the number of a field within the choice group or the number of a button within the
radio box.

Type: Numeric

row
is the number of a row when the choice group is in the scrollable section of an
extended table. The row parameter is valid for PROGRAM entries but not for
FRAME entries. Specify row only when you want to ungray a station from outside
the extended table’s getrow or putrow section.

Type: Numeric

Details
You can use UNGRAY along with GRAY to control the availability of a choice group, a
station, or a window element, based on the program flow.

When a window element is ungrayed, it becomes unprotected and reverts to its
normal color. An ungrayed window element can once again receive input such as mouse
clicks. FRAME entry controls can also use the _ungray method.

Example

Make a station available only when the value of variable DEPT is ADMIN:

if (dept=’ADMIN’) then
rc=ungray(’personal’,3);

else
rc=gray(’personal’,3);

See Also
“ACTIVATE” on page 222
“GRAY” on page 446
“ISACTIVE” on page 484
“ISGRAY” on page 485

UNIQUENUM

Returns a unique number

Category: Utility

Syntax
num=UNIQUENUM();



710 UNLOCK � Chapter 13

num
contains the unique number that is returned by the function.

Type: Numeric

Details
UNIQUENUM returns a number that is unique for each call to the function during a
SAS session.

Example
num=uniquenum();
put num=;

UNLOCK

Releases a lock on the current row

Category: SAS Table

Syntax
sysrc=UNLOCK(table-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

Details
A table that is opened in UPDATE mode receives RECORD-level locking by default.
Whenever an application reads a row from a table that was opened in UPDATE mode,
it attempts to obtain a lock on the row. All of the following functions lock a row when
the table is opened in UPDATE mode:

DATALISTC

DATALISTN

FETCH

FETCHOBS

LOCATEC

LOCATEN



SAS Component Language Dictionary � UNPROTECT 711

Row locks are implicitly released when a different row is read. However, when a user
is finished with a row but has not read another row, you can use UNLOCK to explicitly
release a lock on the row.

This function is useful when rows from a secondary SAS table are read to obtain
values.

Note: UNLOCK is not directly related to the LOCK function, which locks SAS
catalogs, catalog members, and SAS tables. However, if the table in question is accessed
through SAS/SHARE software using the REMOTE engine, then UNLOCK can be used
to enable other applications to access individual rows. See SAS Language Reference:
Dictionary for more information. �

Example

Call FETCH to read a new row from the SAS table MYDATA, which is opened in
UPDATE mode. After data from the row is processed, call UNLOCK to release the lock
on the row.

dsid=open(’mydata’,’u’);
rc=fetch(dsid);

...more SCL statements...
rc=unlock(dsid);

See Also
“CLOSE” on page 268
“DATALISTC and DATALISTN” on page 304
“FETCH” on page 374
“FETCHOBS” on page 375
“LOCATEC and LOCATEN” on page 524
“OPEN” on page 581

UNPROTECT

Removes protection from a FRAME entry control or a field

Category: Control or Field

Syntax
UNPROTECT wvar-names | _ALL_;

wvar-names
lists one or more window variables to unprotect, or _ALL_ to unprotect all window
variables. To specify multiple names, use blanks to separate the names.

Type: Character



712 UNPROTECT � Chapter 13

Details
Use UNPROTECT to temporarily override the PROTECT attribute. The variable to be
unprotected cannot be an element of an array. To unprotect an array element, use
FIELD.

When used with PROTECT, UNPROTECT enables you to unprotect and protect
controls and fields selectively. Thus, you can force the user to enter values in a
predetermined order.

If you unprotect a window variable with the UNPROTECT statement in FSEDIT
applications and then issue the MODIFY command to edit the custom screen, the
PROTECT attribute is removed for this variable in the PROTECT window.

FRAME entry controls can also use the _unprotect method. Unprotecting some
FRAME entry controls (block, check box, icon, list box, pushbutton, radio box, scroll bar,
and slider) is the same as calling the UNGRAY function or the _ungray method.

Example

Enable users to enter values for fields that were previously protected:

if (modified(tablename)) then
do;

protect tablename;
unprotect vars;
cursor vars;
_msg_=

’Enter the names of the variables to be printed.’;
end;

See Also
“DISPLAYED” on page 334

“ERROR” on page 357
“ERROROFF” on page 359
“ERRORON” on page 360
“FIELD” on page 379
“MODIFIED” on page 550
“PROTECT” on page 607



SAS Component Language Dictionary � UNSELECT 713

UNSELECT

Deselects a specified row of a selection list

Category: Extended Table

Syntax
rc=UNSELECT(row);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

row
is the row number to deselect. If an invalid row number is specified, no action is
taken.

Type: Numeric

Details
UNSELECT is useful for forcing the deselection of a row. Normally a user selects and
deselects a row by pressing ENTER or by clicking on the row with the mouse.

You can use UNSELECT only for selection lists that were built with extended tables
in PROGRAM entries. Window controls must use the _unselectRow method. Because
you can define extended tables only in SAS/AF software, you cannot use UNSELECT in
FSEDIT or FSVIEW programs.

In order for an extended table to be considered a selection list, you must specify the
number of selections in the SETROW routine.

Example

Force row 5 to be deselected:

rc=unselect(5);

See Also
“ISSEL” on page 488

“NSELECT” on page 577
“SELECT” on page 652
“SELECTED” on page 654



714 UPDATE � Chapter 13

UPDATE

Writes values from the Table Data Vector (TDV) to the current row in a SAS table

Category: SAS Table

Syntax
sysrc=UPDATE(table-id);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

Details
The table must be opened in UPDATE mode. The row to be updated is the current row.
To place values in the TDV, use PUTVARC, PUTVARN, or SET.

Example

Update the current row in the open SAS table whose table identifier value is stored
in the column MYDATAID. If the return code, RC, is nonzero, the system error message
is displayed on the message line.

rc=update(mydataid);
if rc then _msg_=sysmsg();

See Also
“APPEND” on page 224
“FETCH” on page 374
“FETCHOBS” on page 375
“GETVARC and GETVARN” on page 438
“PUTVARC and PUTVARN” on page 614
“SET” on page 658



SAS Component Language Dictionary � USECLASS 715

USECLASS

Implements methods for a class and binds them to the class definition

Category: Object Oriented

Syntax
USECLASS class-name;

<method-implementation-blocks>

ENDUSECLASS;

class-name
is the name of a class entry that has been defined either with an SCL CLASS
statement or with the AF Class Editor.

method-implementation-blocks
are SCL method implementation blocks. For detailed information, see “METHOD” on
page 539 or “CLASS” on page 253.

Details
The USECLASS statement binds methods that are implemented within it to a class
definition. USECLASS blocks are especially useful for defining method
implementations in a separate SCL entry from the one that contains the CLASS
statement that defines the class. This feature enables group development of classes,
because multiple people can work on class methods implementations simultaneously.

USECLASS labels the beginning of a program block that implements methods for
class-name. The USECLASS statement block ends with the ENDUSECLASS
statement. Class-name must be already defined in an existing CLASS entry.

The only SCL statements allowed in USECLASS blocks are METHOD
implementation blocks. The signature (parameter types) of methods must match the
associated method definitions in the CLASS entry. If a return type is defined, it must
also match the associated method definition in the CLASS entry. If the parameter
storage (INPUT/OUTPUT/UPDATE) is omitted, the SCL compiler will assume that it
has the same storage specification as the associated method definition in the CLASS
entry.

Method implementations inside a USECLASS block can include any SCL statements
(except CLASS, USECLASS, or INTERFACE statements), or SCL functions and
routines, including DECLARE to declare local variables. If you want to define a local
variable that can be used across the class, you must define it as a private attribute
either inside the CLASS statement or in the Class Editor. METHOD blocks can include
labeled sections. However, labeled sections that are outside a method block must be
re-coded as PRIVATE methods, and the LINK statements that call them must be
changed to method calls. For more information, see “METHOD” on page 539.

If a local variable that is defined in a METHOD block has the same name as a class
attribute, SCL gives precedence to the local variable. If a class method has the same
name as any SCL-supported function, SCL gives precedence to the function. If an
attribute array has the same name as a class method, SCL gives precedence to the
method.

Do not declare the _SELF_, _FRAME_, _CFRAME_, _METHOD_, or _EVENT_
system variables inside a CLASS or USECLASS block. SCL automatically sets these



716 USECLASS � Chapter 13

values when it is running methods that are defined in CLASS or USECLASS blocks.
Redefining any of these system variables can introduce unexpected behavior.

Because USECLASS binds the methods that it contains to the class that is defined in
a CLASS entry, all references to the methods and the attributes of the class can bypass
references to _SELF_.attribute and _SELF_.method(...). Because the binding occurs at
compile time, the SCL compiler can detect whether an undefined variable is a local
variable or a class attribute.

You can also use the _super method in method code that is inside a USECLASS
statement block without having to specify either an object identifier or the method
whose super method you are calling. You can use the _super method to call any method.
For example, to invoke the super ADD method, you would use

_super.add();

To override the _init method, you must first call the super _init method. The _init
method can be short-cut. For example:

_super();

The USECLASS statement also enables you to define implementations for
overloading methods, which means that multiple methods have the same name.
Methods that have the same name are allowed in a USECLASS block only if the
signatures, or parameter numbers or types, are different. For example, a class can have
a COMBINE method that has numeric parameters and that adds parameter values. It
can also contain another COMBINE method that has character parameters and that
concatenates parameter values.

Examples

Example 1: Group Development Using a USECLASS Block USECLASS can be used for
group development. Suppose a group with three members ONE, TWO and THREE was
assigned to develop WORK.A.GROUP.CLASS. This class is defined as follows:

Class work.a.group.class;
Public Num nAttr;
Public Char cAttr;
m1: Method n:Num / (scl=’work.a.one.scl’);
m1: Method c:Char / (scl=’work.a.one.scl’);
m2: Method n:num / (scl=’work.a.two.scl’);
m3: Method Return=Num / (scl=’work.a.two.scl’);
m4: Method Return=Char / (scl=’work.a.three.scl’);

EndClass;



SAS Component Language Dictionary � USECLASS 717

Issue the SAVECLASS command to create this class. After the class is created,
programmer ONE starts to create method implementations in WORK.A.ONE.SCL as
follows:

UseClass work.a.group.class;
m1: Method m:Num;

nAttr = m;
EndMethod;

m1: Method c:Char;
cAttr = c;

EndMethod;
EndUseClass; +

Programmer ONE is also responsible for compiling and testing this method
implementation before the final system integrations.

Programmer TWO creates method implementations in WORK.A.TWO.SCL as follows:

UseClass work.a.group.class;
m2: Method n:Num;

put n=;
EndMethod;

m3: Method Return=Num;
return(nAttr);

EndMethod;
EndUseClass;

Programmer TWO is also responsible for compiling and testing this method
implementation before the final system integrations.

Programmer THREE creates method implementations in WORK.A.THREE.SCL as
follows:

UseClass work.a.group.class;
m4: Method return=Char;

Return(cAttr);
EndMethod;

EndUseClass;

Programmer THREE is also responsible for compiling and testing this method
implementation before the final system integrations. From this example, we found that
a USECLASS block can be used to simplify group development in an object-oriented
development environment.

Example 2: Valid SCL Statements in a USECLASS Block This example shows that a
method implementation block is the only SCL statement allowed in a USECLASS block.
Other SCL statements such as the DECLARE statement are not allowed in a
USECLASS block. However, these SCL statements can be written inside the method
implementation block.

USECLASS work.classes.myclass.class;
/* Method M1 without a signature */

M1: method;
...more SCL statements...

endmethod;
/* The next statements are invalid because */



718 USECLASS � Chapter 13

/* they are not in a METHOD statement. They */
/* will produce a compiler warning message. */

DCL num n = 1; /* Invalid statement */
n=10; /* Invalid statement */

/* Method M1 has a numeric parameter. */
M1: method n: num;

/* Any SCL statement can be applied in the */
/* method implementation block. */
DCL num n;
n = n + 1;
...more SCL statements...

endmethod;
/* Method M1 has a character parameter. */

M1: method s: char;
DCL Char arr(3);
DCL num i;
DO i = 1 to dim(arr);

arr(i) = s;
END;
...more SCL statements...

endmethod;
/* The next statement is invalid because */
/* it is not in a METHOD statement. */

if s=1 then
put ’pass’;
/* Other methods */

M2: method return=num;
...more SCL statements...
return(1);

endmethod;
ENDUSECLASS;

Example 3: Bypassing _SELF_ References in a USECLASS Block Assume that there are
four class attributes defined for a class: N1 and N2 are numeric attributes, and C1 and
C2 are character string attributes. Both M1 methods are class methods. One of the M1
methods takes no parameter. The other M1 method takes one numeric parameter. The
private method M2 is used as a debugging routine. If the variables or methods are class
attributes or class methods, short-cut syntax (see also “Referencing Class Methods or
Attributes” on page 103) can be used to bypass dot notation.

Import Sashelp.Fsp.Collection.Class;
Useclass work.classes.another.class;

_init: method / (State=’O’);
/* Equivalent of _super._init(); */
/* or call super(_self_,’_init’); */

_super();
/* Equivalent to _self_.n1=1 */

n1=1;
/* Local variable n2 dominates */
/* class attribute n2 */

n2=1;
/* Use SAS function ABS */

n3(1)=abs(n2);



SAS Component Language Dictionary � USECLASS 719

/* Equivalent to _self_.c1=’a’ */
c1=’a’;

/* Local variable c2 dominates */
/* class attribute c2 */

c2=’a’;
endmethod;

m1: method;
/* Equivalent to if _self_.n1>0 then */

if n1>0 then
/* Equivalent to _self_.n1 + 1 */

n1+1;
else

/* Equivalent to */
/* _self_.m1(_self_.n1); */

m1(n1);
endmethod;

/* Method m1 with numeric parameter */
m1: method n: num;

if (n < 0) then
n = ---n;

/* - Invoke M1 method --- */
m1(n);
m2(n+n);
DCL Collection col = _NEW_ Collection();
/* -- Must use the dot notation here - */
col.add(3);

endMethod;

/* - Private Debugging method --- */
m2: Private Method n:Num;

put ’Debugging ’ n=;
endMethod;

endUseClass;

Example 4: Subclassing TextEntry_c for FRAME Programming

The class Mywidget is defined using SCL class syntax. First, edit
WORK.A.MYWIDGET.SCL and include the following source:

Import Sashelp.Classes;
Class work.a.Mywidget.class Extends textEntry_c;

m1: Public Method c: char / (scl=’work.a.myClass.scl’);
EndClass;

Issue the SAVECLASS command to compile this program and create the CLASS entry
WORK.A.MYWIDGET.CLASS.

Edit WORK.A.MYCLASS.SCL, using USECLASS to include the method
implementations.

Useclass work.a.Mywidget.class;
m1: Method c:char;

text = c; /* Equivalent to _SELF_.text = c; */



720 _VALUE_ � Chapter 13

/* Text is an class attribute */
EndMethod;

EndUseClass;

Compile this program.

Now edit WORK.A.B.FRAME, and in the component window add the Mywidget class
to the list (via the AddClasses button on the pop-up menu). Drag the Mywidget class to
the frame and in the frame’s SCL source, enter

Init:
Mywidget1.m1(’Hello! ’);
Return;

Main;
Return;

Compile and TESTAF this program. You should see Mywidget with “Hello!” in the text
field. This example could also be done using only the CLASS block (without
USECLASS). Just put the method implementation directly in the CLASS block.

Import Sashelp.Classes;
Class Mywidget Extends TextEntry_C;

m1: Method c:Char;
Text = c;
EndMethod;

EndClass;

See Also
“ARRAY” on page 227
“CLASS” on page 253
“CREATESCL” on page 293
“DECLARE” on page 309
“ENDCLASS” on page 347
“METHOD” on page 539

_VALUE_

Contains the value of a FRAME entry component

Category: System Variable



SAS Component Language Dictionary � _VALUE_ 721

Details
_VALUE_ is a system variable. It is provided automatically by the FRAME entry in
SAS/AF, but the SCL compiler does not automatically create a space for it in the SCL
data vector. As a result, you get a warning when you compile a FRAME or SCL entry
that uses _VALUE_. The warning is generated because _VALUE_ is being referenced at
compile time, but no value is assigned to it until run time. You can safely ignore this
warning. If you prefer to prevent the warning message from being generated, use the
following assignment statement at the top of your program:

_value_=_value_;

If the FRAME entry component has a character value, then you must declare
_VALUE_ as a character variable using the DECLARE or LENGTH statement.

Numeric FRAME entry components and character FRAME entry components cannot
share the same methods if the methods use _VALUE_, because _VALUE_ cannot be
declared as both a numeric and character variable in the same SCL entry. Doing so
results in one of the following execution errors:

ERROR: Expecting string ($),
received SCL number (symbol ’_VALUE_’).

ERROR: Expecting number (#),
received SCL string (symbol ’_VALUE_’).

_VALUE_ has a valid value only when a FRAME entry or a method for a FRAME entry
component is running.

Example

Suppose a FRAME entry contains two Version 6 text entry controls, OBJ1 and OBJ2.
OBJ1 is subclassed, and its _select method is defined as follows:

length _value_ text $20;
SELECT: method;

_frame_._getWidgets(’obj2’,obj2);
obj2._getText(text);

_value_ = text;
endmethod;

When OBJ1 is modified, the _select method queries the object identifier for OBJ2 and
retrieves its value. It then assigns that value to OBJ1 by assigning TEXT to _VALUE_.

See Also
“_SELF_” on page 655
“_METHOD_” on page 547



722 VARFMT � Chapter 13

VARFMT

Returns the format that is assigned to a SAS table column

Category: Variable

Syntax
format=VARFMT(table-id,var-num);

format
contains the format that was assigned to the specified column.

Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-num
is the number of the column’s position in the SAS table. This number is adjacent to
the column in the list that is produced by the CONTENTS procedure. The VARNUM
function returns this number.

Type: Numeric

Details
If no format has been assigned to the column, a blank string is returned.

Example

Obtain the format of the column NAME in the SAS table MYDATA:

length fmt $ 12;
dsid=open(’mydata’,’i’);
if dsid then

do;
fmt=varfmt(dsid,varnum(dsid,’name’));
rc=close(dsid);

end;

See Also
“VARINFMT” on page 723
“VARNUM” on page 731



SAS Component Language Dictionary � VARINFMT 723

VARINFMT

Returns the informat that is assigned to a SAS table column

Category: Variable

Syntax
informat=VARINFMT(table-id,var-num);

informat
contains the informat that is assigned to the column.

Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-num
is the number of the column in the SAS table. This number is adjacent to the column
in the list that is produced by the CONTENTS procedure. The VARNUM function
returns this number.

Type: Numeric

Details
If no informat has been assigned to the column, a blank string is returned.

Example

Obtain the informat of the column NAME in the SAS table MYDATA:

length infmt $ 12;
tableid=open(’mydata’,’i’);
if tableid then

do;
infmt=varinfmt(tableid,varnum(tableid,’name’));
rc=close(tableid);

end;

See Also
“VARFMT” on page 722

“VARNUM” on page 731



724 VARLABEL � Chapter 13

VARLABEL

Returns the label that is assigned to a SAS table column

Category: Variable

Syntax
cval=VARLABEL(table-id,var-num);

cval
contains the label that is assigned to the specified column.

Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-num
is the number of the column in the SAS table. This number is adjacent to the column
in the list that is produced by the CONTENTS procedure. The VARNUM function
returns this number.

Type: Numeric

Details
If no label has been assigned to the column, a blank string is returned.

Example

Obtain the label of the column NAME in the SAS table MYDATA:

length lab $ 40;
dsid=open(’mydata’,’i’);
if dsid then

do;
lab=varlabel(dsid,varnum(dsid,’name’));
rc=close(dsid);

end;

See Also
“VARNUM” on page 731



SAS Component Language Dictionary � VARLEN 725

VARLEN

Returns the length of a SAS table column

Category: Variable

Syntax
length=VARLEN(table-id,var-num);

length
contains the length of the column.

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-num
is the number of the column in the SAS table. This number is adjacent to the column
in the list that is produced by the CONTENTS procedure. The VARNUM function
returns this number.

Type: Numeric

Example

Obtain the length of the column ADDRESS in the SAS table MYDATA:

dsid=open(’mydata’,’i’);
if dsid then

do;
namelen=varlen(dsid,varnum(dsid,’address’));
rc=close(dsid);

end;

See Also
“VARNUM” on page 731



726 VARLEVEL � Chapter 13

VARLEVEL

Reports the unique values of a SAS table column

Category: Variable

Syntax
rc=VARLEVEL(array-name,n-level,table-id,var-name);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

array-name
is the array that will contain the unique column values. This should be a character
array with an element size that is large enough to hold the longest value. VARLEVEL
assigns to array items the unique values of the SAS table column var-name.

Type: Character

n-level
is the name of the variable in which the function stores the number of unique values
(or levels). This variable must be initialized to a nonmissing value before its value is
set by the VARLEVEL function.

Note: This parameter is an update parameter. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-name
is the column for which unique values are to be returned.

Type: Character

Details
VARLEVEL fills the array array-name with the unique values of the SAS table column
var-name.

This function returns values to the specified array. It also returns the total number of
unique values in the n-level argument. Therefore, the second argument to this function
cannot be a literal. If the number of unique values found exceeds the dimension of the
array, the function returns only DIM(array-name) levels. That is, VARLEVEL requires
the static allocation of an array that is big enough to hold all the unique values.

LVARLEVEL provides the same functionality, but it stores the unique values in an
SCL list rather than an array. Because an SCL list can grow dynamically, you should
consider using it rather than VARLEVEL.



SAS Component Language Dictionary � VARLIST 727

Example

Get the unique formatted values for the table column X. Use ASORT to sort those
values in ascending order. If NLEVELS is greater than 25, then only the first 25 values
are written to the array.

array values {25} $ 20;
tableid=open(’mylib.data’,’i’);
nlevels=0;
rc=varlevel(values,nlevels,tableid,’x’);
rc=asort(values);
do i=1 to dim(values);

put values(i);
end;
rc=close(tableid);

See Also
“LVARLEVEL” on page 529
“VARNAME” on page 730
“VARSTAT” on page 732

VARLIST

Displays a dialog window that lists the columns in a SAS table, and returns the user’s selections

Category: SAS Table

Syntax
selections=VARLIST(table-id,var-type,num-sel<,message

<,autoclose<,sel-order<,exclude<,select>>>>>);

selections
contains one or more user selections from the list, or a blank if no selection is made.
Multiple selections are separated by blanks. By default, selections is 200 bytes long.
To accommodate values longer than 200 bytes, explicitly declare selections with a
longer length.

Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric



728 VARLIST � Chapter 13

var-type
specifies the data type of the columns to display in the list:

’C’ The list contains only character columns.

’N’ The list contains only numeric columns.

’A’ The list contains all of the columns. (This is the default.)
Type: Character

num-sel
is the maximum number of items a user can select from the list. The default is 1. To
display the list for information purposes only (no selections allowed), specify 0. To
specify an unlimited number of selections, use a value such as 9999 that is larger
than the number of available selections. A user cannot make a number of selections
that exceeds the number of items in the list.

Type: Numeric

message
is the text for a message to display above the selection list. The default message tells
users to make up to the number of selections specified in num-sel.

Type: Character

autoclose
is an obsolete argument but is retained for compatibility with earlier releases. If you
want to specify a value for sel-order, exclude, or select, then specify ’’as a placeholder
for this argument.

Type: Character

sel-order
is an obsolete argument but is retained for compatibility with earlier releases. If you
want to specify a value for exclude or select, then you must specify ’’as a placeholder.

Type: Character

exclude
lists one or more columns to exclude from the selection list. Separate multiple
columns with at least one blank.

Type: Character

select
lists one or more columns to select for the selection list. Separate multiple columns
with at least one blank.

Type: Character

Details
VARLIST opens a dialog window in which a user can select columns from a SAS table.
The columns specified in the VARLIST function are listed in the Available list. To
make a selection, a user selects one or more columns and then presses the arrow control
that points to the Selected list. The selected values move to the Selected list and are
removed from the Available list. The Variable Details fields display the type,
length, and description of a selected column.

For each column in the table, VARLIST uses the following steps to determine which
columns to display:

� If one or more column names are specified in the select argument, VARLIST
includes those columns in the selection list. Columns that are not in the select
argument list do not appear in the selection list.

� If one or more column names are specified in the exclude argument, VARLIST
excludes those columns from the selection list.



SAS Component Language Dictionary � VARLIST 729

� If a value is specified for the var-type argument, VARLIST excludes all columns
that are not of the specified type.

You can provide default values that will be initially selected when the column
selection list is displayed. To do this, assign the column name to the selections variable
before calling VARLIST. When the window opens, the column name appears in the
Selected list.

If a user closes the dialog window without making a selection, VARLIST returns a
blank value unless there was an initial value for the selections column before VARLIST
was called.

The values for all selections can be returned in the current result list, if one is
available. The current result list is a special SCL list that is automatically filled with
the values selected from a selection list. To use a current result list, use the
MAKELIST function to create the list, and use the CURLIST function to designate it as
the current result list. The current result list must exist before you call the VARLIST
function. You can use GETITEMC to retrieve these selections.

Examples
� Display all columns and allow the user to select only one:

select=varlist(dsid,’a’,1);

� This next statement displays only character columns, allows two selections, uses a
custom message, moves the selections to the top of the list when they are selected,
and excludes the columns NAME and ADDRESS:

select=varlist(dsid,’c’,2,’Choose a column’,
’’,’’,’name address’);

� Display a dialog window that contains the character columns from an open SAS
table, excluding the columns NAME and ADDRESS. Users can make two
selections. The selected column names are retrieved from the current result list.
LISTLEN returns the number of selections because there is only one element in
the list for each selection made.

listid=makelist();
rc=curlist(listid);
select=varlist(dsid,’c’,2,
’Choose a column’,’’,’’,’name address’);
n=listlen(listid);
do i=1 to n;

varname=getitemc(listid,i);
put varname=;

end;

See Also
“DATALISTC and DATALISTN” on page 304
“LISTC and LISTN” on page 513
“SHOWLIST” on page 681



730 VARNAME � Chapter 13

VARNAME

Returns the name of a SAS table column

Category: Variable

Syntax
var-name=VARNAME(table-id,var-num);

var-name
contains the name of the column.

Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-num
is the number of the column in the SAS table. This is the number that is adjacent to
the column in the list that is produced by the CONTENTS procedure. The VARNUM
function returns this number.

Type: Numeric

Example

Copy the names of the first five columns in the SAS table CITY into an SCL variable.
The column names are separated by blanks.

length varlist $ 80;

tableid=open(’city’,’i’);
varlist=’ ’;
do i=1 to min(5,attrn(tableid,’nvars’));

j=9*(i-1)+1;
substr(varlist,j,8)=varname(tableid,i);

end;
put varlist=;
rc=close(tableid);

See Also
“VARNUM” on page 731



SAS Component Language Dictionary � VARNUM 731

VARNUM

Returns the number of a SAS table column

Category: Variable

Syntax
var-num=VARNUM(table-id,var-name);

var-num
contains the position number of the column in the SAS table, or 0 if the column is
not in the SAS table.

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-name
is the name of the column.

Type: Character

Details
VARNUM returns the number of a SAS table column.

Example

Obtain the number of a column in the SAS table MYDATA, using the value of the
NAME variable:

tableid=open(’mydata’,’i’);
if (sasname(name)) then do;

citynum=varnum(tableid,name);
if (citynum=0) then

_msg_=’The column is not in the table.’;
else

_msg_=’The column number is ’|| citynum;
end;
else

_msg_=’Invalid SAS name--please reenter.’;

See Also
“VARNAME” on page 730



732 VARSTAT � Chapter 13

VARSTAT

Calculates simple statistics for SAS table columns

Category: Variable

Syntax
rc=VARSTAT(table-id,varlist-1,statistics,varlist-2);

rc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

varlist-1
specifies one or more numeric columns for which to create the statistics.

Type: Character

statistics
specifies one or more statistics, separated by blanks, from the table below. For more
information about these statistics, see the SAS/STAT User’s Guide.

Type: Character

varlist-2
specifies one or more output variables to contain the values produced by the specified
statistics. The number of output variables must equal the number of columns in
varlist-1 multiplied by the number of statistics.

Note: These parameters are update parameters. See “Input, Output, and Update
Parameters” on page 35 for more information. �

Type: Numeric



SAS Component Language Dictionary � VARSTAT 733

Statistic Description

CSS sum of squares of a column’s values, corrected for the
mean

CV coefficient of variation of a column’s values

KURTOSIS kurtosis of a column’s values

MAX largest value for a column

MEAN mean of a nonmissing column’s values

MEDIAN median value for a column

MIN smallest value for a column

MODE value with the most rows for a column

N number of rows on which calculations are based

NMISS number of rows with missing values

NUNIQUE number of rows having a unique value for a column

RANGE range of values for a column

SKEWNESS skewness of a column’s values

STD standard deviation of a column’s values

STDERR standard error of the mean

SUM sum of nonmissing column values

USS uncorrected sum of squares for a column

VAR variance of a column’s values

Details
If more than one input column is specified with more than one statistic, then each
statistic is calculated on all columns before the next statistic is calculated.



734 VARTYPE � Chapter 13

Example

Calculate the maximum, mean, and minimum values for the columns I and X from
the table MY.NUMBERS:

tablename=’my.numbers’;
length imax xmax imean xmean xmin imin 8;
/* Declare the results as numeric. */
varname=’i x’;
numberid=open(tablename);
if (numberid=z0) then

do;
_msg_=’Cannot open ’||tablename;
return;

end;
statcode=varstat(numberid,varname,

’max mean min’,imax,xmax,imean,xmean,imin,xmin);
put ’Column X’;
put xmax= xmean= xmin=;
put ’Column I’;
put imax= imean= imin=;
rc=close(numberid);
return;

See Also
“LVARLEVEL” on page 529
“VARLEVEL” on page 726

VARTYPE

Returns the data type of a SAS table column

Category: Variable



SAS Component Language Dictionary � VARTYPE 735

Syntax
type=VARTYPE(table-id,var-num);

type
contains the data type of the column:

C character column

N numeric column
Type: Character

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

var-num
is the position number of the column in the SAS table. This is the number that is
adjacent to the column in the list that is produced by the CONTENTS procedure.
VARNUM function returns this number.

Type: Numeric

Example

Place the first five numeric columns of the SAS table MYDATA into an SCL variable:

length varlist $ 44;
dsid=open(’mydata’,’i’);
varlist=’ ’;
j=0;
do i=1 to nvar(dsid) while (j<5);
if (vartype(dsid,i)=’N’) then

do;
varlist=varlist||’ ’||varname(dsid,i);
j+1;

end;
end;
rc=close(dsid);

See Also
“MODVAR” on page 551

“VARNUM” on page 731



736 WAIT � Chapter 13

WAIT

Suspends execution of the next program statement

Category: Control Flow and Utility

Syntax
CALL WAIT(seconds);

seconds
is the number of seconds before execution resumes.

Type: Numeric

Details
You can also use WAIT to allow the screen to refresh before performing another task.

Example

Wait for 4.5 seconds between the times stored in TIME1 and TIME2, and then
display those values in the LOG window:

time1 = datetime();
call wait( 4.5 );
time2 = datetime();
diff=putn((time2-time1),’4.1’);
put time1= time2= diff=;

Take the last three digits before and after the decimal point from the two times:
TIME1=872.229 and TIME2=876.749. Subtracting TIME2 from TIME1 results in 4.52
seconds total wait time.

time1=1069234872.22999
time2=1069234876.74999
diff=4.5

Create numeric text entry controls named START and FINISH and assign the format
DATETIME20.2 to them. Enter the following program in the frame’s SCL entry:

init:
start.text=datetime();
call wait(3.1);
finish.text=datetime();

return;



SAS Component Language Dictionary � WDEF 737

WDEF

Resizes the active window

Category: Window

Syntax
CALL WDEF(start-row,start-col,num-rows,num-cols);

start-row
is the starting row for the window.

Type: Numeric

start-col
is the starting column for the window.

Type: Numeric

num-rows
is the number of rows for the window.

Type: Numeric

num-cols
is the number of columns for the window.

Type: Numeric

Details
The active window is redefined and displayed in the area specified by WDEF. The
WDEF routine performs the same function as the WDEF command. See the SAS online
Help for more information about the WDEF command.

For windows that are not of type STANDARD, you must call WDEF before the
window is displayed.

WDEF is frequently used to define a smaller size for a window that will be displayed
along with a legend window.

Example

Use WDEF to resize the current window to occupy the bottom half of the window
before calling another program. The other program is sized to display in the top half of
the window. Then, return the window back to its original size.

call wdef(13,1,12,80);
call wregion(1,1,11,80);
call display(’tophalf.program’);
call wdef(1,1,24,80);

See Also
“WINFO” on page 740

“WREGION” on page 750



738 WHERE � Chapter 13

WHERE

Applies a WHERE clause to a SAS table

Category: SAS Table

Syntax
sysrc=WHERE(table-id<,clause-1<, . . . ,clause-5>>);

sysrc
contains the return code for the operation:

0 successful

>0 not successful

0< the operation was completed, but a warning or a note was
generated. If the row is locked, it is still fetched (read in), but a
sysrc of _SWNOUPD is returned.

Type: Numeric

table-id
is the identifier that was assigned when the table was opened. If table-id is invalid,
the program halts.

Type: Numeric

clause-1, . . . , clause-5
is the condition for the search, expressed as a WHERE clause but without the
keyword WHERE. The arguments clause-1, clause-2, clause-3, clause-4, and clause-5
are treated as multiple lines of the WHERE clause. Each of the clauses, clause-1
through clause-5, can contain multiple conditions separated by the AND operator.

If the clause starts with the keyword ALSO, then the new WHERE clause is
considered to be a subclause of the current WHERE clause.

Specifying no clauses undoes all current temporary WHERE clauses that have
been applied to the SAS table.

Type: Character

Details
The WHERE function may take advantage of indexing. The syntax of the WHERE
clause is the same as for the WHERE statement in Base SAS software. Any WHERE
clause that is applied by the WHERE function is only temporary and is considered to be
a subclause of any WHERE clause that was issued when the table was opened. To
apply a permanent WHERE clause to a SAS table, use the WHERE= data set option
following the table name in OPEN.

The WHERE clause subsets the rows to which you have access. You must then issue
a function such as FETCH or FETCHOBS to read rows from the subset. When a
WHERE clause is active, FETCHOBS fetches the specified row by counting only rows
that meet the WHERE condition.

To create views with more complicated WHERE clauses, use the SQL procedure or
the SUBMIT CONTINUE SQL statement.

To remove only the last WHERE condition, use

rc=WHERE(tableid,’undo’);



SAS Component Language Dictionary � WHERE 739

To remove all WHERE conditions, use either of the following:

rc=WHERE(tableid);
rc=WHERE(tableid,’clear’);

Examples

Example 1: Applying a Compound WHERE Clause Apply a WHERE clause to the SAS
table MYDATA, which subsets the table into only those rows in which column X is
equal to 1 and column Z is less than 0:

tableid=open(’mydata’,’i’);’
rc=where(tableid,’x=1 and z<0’);

You can separate the WHERE clause into two clauses as follows. This is equivalent to
the previous example.

tableid=open(’mydata’,’i’);
rc=where(tableid,’x=1’,’and z<0’);

Example 2: Applying a WHERE Clause in Separate SCL Statements Instead of using
one WHERE clause, you can separate the WHERE clause into two statements. The
following statements are equivalent to Example 1:

tableid=open(’mydata’,’i’);
rc=where(tableid,’x=1’);

...more SCL statements...
rc=where(tableid,’also z<0’);

Example 3: Using a Numeric Variable in a WHERE Clause You can pass values from
SCL variables to the WHERE clause. Subset the table referenced by TABLEID, based
on the value that was entered for the numeric variable SCRNUM.

rc=where(tableid,’num= ’||put(scrnum,5.));

Example 4: Using a Character Variable in a WHERE Clause To subset a table based on
a character value, you can use the quote function to return the quoted value.
(Otherwise, you must use double quotation marks around the WHERE condition,
because the quoted value itself must be enclosed in quotation marks.) Subset the table
referenced by TABLEID based on the value that was entered for the character column
SCRNAME. Use the QUOTE function to return the quoted value.

rc=where(tableid,’name= ’||quote(scrname));

Example 5: Specifying Multiple WHERE Conditions Combine the previous two WHERE
conditions into one statement:

rc=where(tableid,’num= ’||put(scrnum,5.)||’and
name=’||quote(scrname));

Specify an additional condition, region=4:

rc=where(tableid,’num=’||put(scrnum,5.)||’and
name=’||quote(scrname),’and region=4’);

Example 6: Determining Whether Any Rows Meet the WHERE Condition You can
attempt to fetch a row to determine if any rows meet a WHERE condition. Apply a
WHERE clause to the SAS table MYDATA, which subsets the table into only those rows
in which the column X is equal to 1. Fetch the first row and check the return code from
the fetch. If there are no rows in the subset, the return code to the fetch will be -1.



740 WINFO � Chapter 13

tableid=open(’mydata’, ’i’);
rc=where(tableid,’x=1’);
if fetch(tableid) = -1 then

_msg_ = ’There are no rows in the WHERE subset’;

Example 7: Determining How Many Rows Meet the WHERE Condition You can use the
ATTRN function with the NLOBSF argument to determine how many rows meet a
WHERE condition. Apply a WHERE clause to the SAS table MYDATA, which subsets
the table into only those rows in which the column X is equal to 1.

tableid=open(’mydata’, ’i’);
rc=where(tableid,’x=1’);
numrows=attrn(tableid,’nlobsf’);
put numrows=;

CAUTION:
Use NLOBSF with caution. Passing NLOBSF to ATTRN requires the engine to read
every row from the table that matches the WHERE clause. Based on the file type
and size, this can be a time-consuming process. �

See Also
“ATTRC and ATTRN” on page 231
“OPEN” on page 581
“FETCH” on page 374
“FETCHOBS” on page 375
“SETKEY” on page 666

WINFO

Returns information about the current window

Category: Window

Syntax
rc=WINFO(info-item<,aux-info>);

rc
contains the return code for the operation.

Type: Numeric

info-item
specifies either a characteristic of the window or an action. See “Values for Info-item”
on page 741.

Type: Character

aux-info
specifies an additional argument that is required by some info-item actions:



SAS Component Language Dictionary � WINFO 741

pane-number (for PANECOL, PANECCOL, PANECROW, and PANEROW)
is the number of the pane to be queried. For example, in an extended table the
non-scrollable section is pane 1 and the scrollable portion is pane 2.

item-id (for PMENUGRAY)
is the item identifier that you specified with the ID= option for the ITEM
statement in PROC PMENU when you built the menu. Use the negative of the ID
number to gray a selection, and use the positive ID number to ungray a selection.

item-id (for PMENUSTATE)
is the item identifier that you specified with the ID= option for the ITEM
statement in PROC PMENU when you built the menu. Use the negative of the ID
number to turn off the check mark or radio button for the selection, and use the
positive ID number to turn on the check mark or radio button. Whether the menu
selection gets a check mark or radio button depends on the value of the STATE=
option when the menu was built.

flag (for POPUP)
can have the following values:

0 disables pop-up events.

1 enables pop-up events.

Type: Numeric

Values for Info-item
The following list explains the meaning of the return code, rc, for each value that you
can specify for info-item:

BACKCOLOR
WINFO returns 1 if the device supports background colors.

BATCH
WINFO returns 1 if the application is running in batch mode.

COMMAND
WINFO returns 1 if the window has a command line.

CURSCREEN
WINFO returns the number of the SCREEN or FRAME entry in which the cursor
is located.

CURSORCOL
WINFO returns the column number of the cursor position.

CURSORROW
WINFO returns the row number of the cursor position.

GRAPHICS
WINFO returns 1 if the user’s output device supports graphics.

ICON
WINFO returns the number of Institute-supplied icons available under the user’s
host operating system. See the SAS documentation for your operating system for
information about whether SAS software supports icons under your host operating
system.

LOGON
WINFO returns 1 if a logon was specified when the SAS/AF application was
invoked.



742 WINFO � Chapter 13

MAXCOL
WINFO returns the maximum number of columns to which the window can grow
with the current screen resolution, excluding the command and border areas.

MAXROW
WINFO returns the maximum number of rows to which the window can grow with
the current screen resolution, excluding the command and border areas.

MONO
WINFO returns 1 if the device is monochrome.

NSCREEN
WINFO returns information about the windows currently open in an application:

FSEDIT applications return the number of screens that are defined for the
current FSEDIT window.

FSVIEW applications return 4 to indicate the four parts of the FSVIEW
window: the column title area, the row number or ID column area, the data area,
and the area above the column titles.

SAS/AF applications return 1 or 2 if you used ^^^ or to divide the entry’s
window into two or more frames.

NUMCOLS
WINFO returns the current number of columns in the window.

NUMROWS
WINFO returns the current number of rows in the window.

NUMXINCH
WINFO returns the window width in inches (valid only for FRAME entries).

NUMYINCH
WINFO returns the window height in inches (valid only for FRAME entries).

NUMXPIXEL
WINFO returns the window width in pixels (valid only for FRAME entries).

NUMYPIXEL
WINFO returns the window height in pixels (valid only for FRAME entries).

PANECCOL
WINFO returns the column position of the cursor relative to the pane of the
window in which it resides. Use aux-info to specify the pane.

PANECROW
WINFO returns the row position of the cursor relative to the pane of the window
in which it resides. Use aux-info to specify the pane.

PANECOL
WINFO returns the number of columns in a specified pane. Use aux-info to specify
the pane.

PANEROW
WINFO returns the number of rows in a specified pane. Use aux-info to specify
the pane.

PMENU
WINFO returns 1 if a PMENU entry has been specified for this program
regardless of whether the PMENU facility is currently active for the window.



SAS Component Language Dictionary � WNAME 743

PMENUGRAY
WINFO returns 0 when it grays or ungrays selections in the window’s pull-down
menus. Use aux-info to specify which selection to gray or ungray.

PMENUSTATE
WINFO returns 0 when it enables or disables the state of a selection in the
window’s pull-down menus. Use aux-info to specify the state.

POPUP
WINFO returns 0 when it enables or disables pop-up events in the window. Use
the aux-info argument to specify whether events are to be enabled or disabled.

STARTCOL
WINFO returns the current column on which the window starts.

STARTROW
WINFO returns the current row on which the window starts.

UICON
WINFO returns the number of user-defined icons available under the user’s host
operating system.

XPIXCELL
WINFO returns the width (in pixels) of the font used in the SAS windowing
environment.

XPIXEL
WINFO returns the horizontal location (in pixels) of the most recent mouse event.

YPIXCELL
WINFO returns the height (in pixels) of the font used in the SAS windowing
environment.

YPIXEL
WINFO returns the vertical location (in pixels) of the most recent mouse event.

Example

Store the current size of the window, and then resize it back to its original size:

sr=winfo(’startrow’);
sc=winfo(’startcol’);
nr=winfo(’numrows’);
nc=winfo(’numcols’);
call display(’top half’);
call wdef(sr,sc,nr,nc);

See Also
“WDEF” on page 737
“WREGION” on page 750

WNAME
Specifies a name for the active window

Category: Window



744 WORD � Chapter 13

Syntax

CALL WNAME(window-name);

window-name
is up to 80 characters for the window’s name.

Type: Character

Example

Use WNAME to change the window name to "TimeData Application":

call wname(’TimeData Application’);

See Also

“WDEF” on page 737
“WINFO” on page 740
“WREGION” on page 750

WORD

Returns a word from a command that was issued with the command line, function keys, command
processing, or a control

Category: Command

Syntax

word-text=WORD(word-pos<,case>);

word-text
contains the text of the word.

Type: Character

word-pos
is the position of the word to be retrieved from the command line. Specify either 1, 2,
or 3 for the first, second, or third word.

Type: Numeric

case
is the type of case conversion to be performed:

’L’ converts the word to all lowercase characters

’U’ converts the word to all uppercase characters.
By default, SAS leaves all commands in the case in which they are entered.
Type: Character



SAS Component Language Dictionary � WORD 745

Details

WORD returns the first, second, or third word of the command that was issued. A word
is the text from the current position up to the next token, such as the end of a leading
number, a blank, an operator, or a semicolon.

Note: To retrieve more than three words, use NEXTWORD. �

To support custom commands in your application, you must use a CONTROL
statement with either the ENTER, ALWAYS, or ALLCMDS option specified. When one
of these options is specified in the CONTROL statement and when multiple commands
are specified on the command line (separated by semicolons), the MAIN section is
executed for each command. MAIN is executed only once if only one command is
entered.

When CONTROL ALWAYS is specified, words entered on the command line that are
not valid SAS commands are not flagged in error. See “CONTROL” on page 279 for
information about the advantages of each CONTROL statement option before deciding
which is best for your application.

WORD cannot capture windowing environment global commands, because the SCL
program is not executed when a SAS windowing environment command is issued.

Examples

Example 1: Using WORD to Return the Value of the Command Suppose a user types
the command AXX BXX CXX DXX on the command line. Use WORD to return the value
of the command.

word1=word(1); put ‘‘word1 is ’’ word1;
word2=word(2); put ‘‘word2 is ’’ word2;
word3=word(3); put ‘‘word3 is ’’ word3;
/* to retrieve more than three words, use NEXTWORD. */
call nextword();
word4=word(3); put ‘‘word4 is ’’ word4;

The following output is produced:

word1 is AXX
word2 is BXX
word3 is CXX
word4 is DXX

Example 2: Using WORD to Return an Alphanumeric Value Suppose the user enters
123abc on the command line of the frame. Use WORD to return the value of the
command.

init:
control enter;
return;

main:
dcl char word1 word2;
word1=word(1);
word2=word(2);
put word1= word2=;
return;



746 WORDTYPE � Chapter 13

The following output is produced:

word1=123 word2=abc

See Also
“CONTROL” on page 279
“NEXTCMD” on page 569
“NEXTWORD” on page 571

WORDTYPE

Identifies the word type of a word on the command line

Category: Command

Syntax
type=WORDTYPE(word-pos);

type
contains one of the following word types:

DATE
The word is a SAS date constant such as 25AUG98.

DATETIME
The word is a SAS datetime constant such as 25AUG98:08:15:39.30.

EOD
There are no more words on the command line (end of command).

INTEGER
The word is an integer such as 6.

LABEL
The word type is unknown to the SAS tokenizer.

NAME
The word is a SAS name such as DATA.

NUMBER
The word is a numeric constant that contains a decimal point ’.’, or a scientific
notation ’E’ for example, 6.5.

SEMI
The word is a semicolon.

SPECIAL
The word is a special operator such as ’=’, ’+’, and so on.

STRING
The word is a character string such as MYDATA.

TIME
The word is a SAS time constant such as 08:16:30.



SAS Component Language Dictionary � WORDTYPE 747

UNKNOWN
The word type is unknown to the SAS tokenizer.
Type: Character

word-pos
is the position of the word to be retrieved from the command line. Specify either 1, 2,
or 3 for the first, second, or third word.

Type: Numeric

Details
WORDTYPE returns the type of the first, second, or third word that is currently on the
command line. A word is the text at the current position and up to the end of a leading
number or the next blank or semicolon. You can use this function with WORD.

To support custom commands in your application, you must use a CONTROL
statement with either the ENTER, ALWAYS, or ALLCMDS option specified. When
CONTROL ALWAYS is specified, words entered on the command line that are not valid
SAS commands are not flagged in error. See “CONTROL” on page 279 for information
about the advantages of each CONTROL statement option before deciding which is best
for your application.

Example

Return the type of the four words that are currently on the command line:

w1=word(1); w1type=wordtype(1); put w1= w1type=;
w2=word(2); w2type=wordtype(2); put w2= w2type=;
w3=word(3); w3type=wordtype(3); put w3= w3type=;
CALL NEXTWORD();
w4=word(3); w4type=wordtype(4); put w4= w4type=;

If a user types ABC = 3 9 on the command line, then this program produces the
following output:

w1=ABC w1type=NAME
w2==w2type=SPECIAL
w3=3 w3type=INTEGER
w4=9 w4type=INTEGER

See Also
“CONTROL” on page 279

“NEXTWORD” on page 571
“WORD” on page 744



748 WOUTPUT � Chapter 13

WOUTPUT

Manipulates the OUTPUT window

Category: Window

Syntax
sysrc=WOUTPUT(action<,argument-1<, . . . ,argument-3>>);

sysrc
contains the return code for the operation:

0 successful

≠0 not successful
Type: Numeric

action
is an action to perform, from the list below.

Type: Character

argument-1, . . . , argument-3
are additional arguments that can be specified for some of the actions, as indicated in
the following list.

Type: Character

’CLEAR’
clears the OUTPUT window. There are no additional arguments for this action.

’DROPNOTE’
clears the note marked with the ’NOTE’ and causes it to use its default behavior to
write only the last output.

’FILE’
writes the current contents of the OUTPUT window to an external file. This action
allows two additional arguments:

argument-1
is the fileref for the external file to which the window contents are to be written.
This argument is required.

argument-2
optionally specifies append mode. By default, each new output replaces any
current contents of the external file. Specify the value ’A’ to append the output to
the external file instead.

’NOTE’
puts the pointer at the end of the current output. The NOTE action has a direct
effect on the FILE, PRINT and SAVE actions. When the output is written via
WOUTPUT, the pointer is reset to get the next output.

’POPOFF’
turns off the AUTOPOP option of the OUTPUT window.

’POPON’
turns on the AUTOPOP option of the OUTPUT window.



SAS Component Language Dictionary � WOUTPUT 749

’PRINT’
prints the current contents of the OUTPUT window. This action allows three
additional arguments, all of which are optional:

argument-1
is the name of a form to use to control printing. Use name.FORM or simply name
to specify a form in the current catalog. Use libref.catalog.name.FORM or
libref.catalog.name to specify a form in a different catalog. The default form is the
one specified in the FORMNAME option.

argument-2
is the fileref for a print file. If this argument is blank or if it is not specified, the
output is sent to the default system printer.

argument-3
specifies append mode. Use the value ’A’ to append the output to the current
contents of the print file. If this argument is blank or if it is not specified, then
each new output replaces the previous contents of the print file.

’SAVE’
saves the current contents of the OUTPUT window in a catalog entry of type
SOURCE, LOG, or OUTPUT. This action allows three additional arguments:

argument-1
is the name of the entry in which the window contents are saved. The name can
be a one- or three-level name. A one-level name saves the entry in
SASUSER.PROFILE.name.OUTPUT. A three-level name saves the entry in
libref.catalog.name.OUTPUT. You can also use a four-level name of the form
libref.catalog.entry.type, where type is SOURCE, LOG, or OUTPUT. This argument
is required.

argument-2
is an optional description of up to 40 characters.

argument-3
optionally specifies append mode. Specify the value ’A’ to append the output to
the current contents of the entry. By default, each new output replaces the
previous contents of the entry.

Details
The list of options varies depending on the action specified.

Example

Print the OUTPUT window and append it to the file to which the fileref EXTERN
has previously been assigned. Use the form specified in a previous FORMNAME option:

rc=woutput(’print’,’’,’extern’,’a’);



750 WREGION � Chapter 13

WREGION

Defines the boundaries for the next window that is displayed

Category: Window

Syntax
CALL WREGION(start-row,start-col,num-rows,num-cols,options);

start-row
is the starting row for the next window.

Type: Numeric

start-col
is the starting column for the next window.

Type: Numeric

num-rows
is the number of rows for the next window.

Type: Numeric

num-cols
is the number of columns for the next window.

Type: Numeric

options
are one or more window attributes that the window’s size needs to accommodate:

’’
no command line, command menu, or scroll bars

’CMDLINE’
a command area

’HSBAR’
a horizontal scroll bar

’INNERSIZE’
interior size is determined by the values of num-rows and num-cols

’PMENU’
a command menu

’VSBAR’
a vertical scroll bar
Type: Character



SAS Component Language Dictionary � WREGION 751

Details
The size of the next window depends on whether it has a command area, a pmenu, and
scroll bars. (The command area includes the message line.) By default, WREGION
assumes that the next window will have all of these attributes. You can use options to
change this assumption. Note that options does not cause the next window to have
these attributes. Rather, it helps WREGION determine the correct size.

’INNERSIZE’ specifies that the values of num-rows and num-cols will control the
interior size of the window. Normally, the num-rows and num-cols control the exterior
size of the window (including the borders).

WREGION does not affect the size of subsequent FSEDIT windows that are opened
by using CALL FSEDIT. The function cannot resize windows when a SAS/AF or
FSEDIT application is called with the NOBORDER option.

Examples
� Specify a WREGION for the LEGEND window. Notice that the options argument

to WREGION is a null string, designating that none of the display options are
used in the LEGEND window. The window size is four rows long: two lines of text
plus the top and bottom borders.

call wregion(1,1,4,80,’’);
call putlegend

(1,’This is legend line 1’,’yellow’,’none’);
call putlegend

(2,’This is legend line 2’,’yellow’,’none’);
call legend

(’mylegend window name’,’’,’white’,’reverse’);

� Execute a WREGION function and invoke a PROGRAM entry. The application
window for the entry has a command line. However, because scrolling is not
necessary, the HBAR and VBAR options are not specified. Only the CMDLINE
option is specified.

call wregion(1,1,20,80,’cmdline’);
call display(’another.program’,a,b,c);

See Also
“WDEF” on page 737
“WINFO” on page 740



752



753

C H A P T E R

14
The SCL Debugger

Overview of SCL Debugger Features and Capabilities 753
Establishing the SCL Debugging Environment 754

Invoking the SCL Debugger 755

Using the SCL Debugger Windows 755

Retrieving Previously Entered Commands 756

Using SAS Macros with the SCL Debugger 756
SCL Debugger Commands by Functional Category 757

Controlling Program Execution 757

Manipulating Debugging Requests 757

Manipulating Variables 758

Expanding Macros and Macro Variable References 758

Controlling the Windows 758
Customizing the Debugger Session 759

Overview of SCL Debugger Features and Capabilities
The SAS Component Language Debugger (SCL Debugger) is a powerful

window-oriented utility that can interactively monitor the execution of SCL programs,
enabling you to locate run-time errors. The SCL debugger also enables you to suspend
the execution of one program that is part of a series of programs and to execute the
other programs in the series. The SCL debugger interface consists of two windows, the
debugger SOURCE window and the debugger MESSAGE window. The debugger
displays the source program, specifying which line is executing, in the SOURCE
window. The MESSAGE window contains the debugger command line, as well as the
results of any debugger commands.

The debugger can
� suspend execution at selected statements and programs. The point at which

execution is suspended is called a breakpoint. Breakpoints can be set based on the
evaluation of an expression.

� monitor the values of selected variables. This is called a watch variable. When a
watch variable is set to some specified value, the debugger stops executing the
program at the statement where this occurred.

� set or query the value of SCL variables.
� display the attributes of variables.
� bypass a group of statements.
� continue execution of a halted program.
� step over statements and function calls.
� display the execution stacks of active programs.



754 Establishing the SCL Debugging Environment � Chapter 14

� display the values of the arguments passed into a program.
� display an expansion of the program’s macros and macro variable references.
� display each statement as it executes.
� execute commands conditionally.

� retrieve previous commands.
� evaluate expressions, which can include functions, in the debugger command line.
� process statements that use dot notation.
� create and use SAS macros that contain debugger commands.

� display help for individual commands.

Establishing the SCL Debugging Environment
Before you can use the SCL debugger, you must compile your SCL programs with the

DEBUG option. This directs the SCL compiler to collect information from the programs
that will be used in the debugging session.

You can activate the debug option in the following ways:
� Issue the DEBUG ON command from the SOURCE or DISPLAY window of an

open application. After you issue this command, it remains active in all currently
running tasks, and all subsequent compiles will collect debugging information.

� Specify the DEBUG option in the COMPILE statement of the BUILD procedure:

proc build c=libref.catalog.entry.type;
compile debug;

run;

� Specify the DEBUG option in the FSEDIT procedure:

proc fsedit data=data-set
screen=screen-entry debug;

run;

� SelectBuild � Debug � Debug On

� In the Explorer window, select from the pull-down menuTools � Options � Build
� Debugger Change Debugger status to On or Off .

Note: If you specify the DEBUG option from a procedure statement, the option is
active only for that procedure or task. �

In the BUILD procedure, using the DEBUG option in the COMPILE statement
compiles all the specified programs with the DEBUG option. For example, the following
statements compile all the FRAME entries in the catalog with the DEBUG option
turned on:

proc build c=mylib.mycat;
compile debug entrytype=frame;

run;

By compiling specific SCL entries with the DEBUG option, you can debug pieces of a
larger application.

The debugger session terminates and exits the current stream when you issue the
QUIT command in the MESSAGE window, or when you end the procedure session. If
the current stream is nested, then the last window in the previous stream will be



The SCL Debugger � Using the SCL Debugger Windows 755

activated. Otherwise, control returns to the point at which the application was started.
A stream contains information about the entries and windows that are used in the
application.

Because compiling with the DEBUG ON option results in a larger code size, you
should subsequently recompile your programs with the DEBUG OFF option before
installing your application in production mode.

Invoking the SCL Debugger

After you have successfully compiled a program with the DEBUG ON option, you can
choose to invoke the debugger for that entry. For an entry that can be executed with
the TESTAF, AF, or AFA command, you can invoke the debugger in the following ways:

� Enter the TESTAF command in the application window.

� If the debugging environment has not been established through the DEBUG ON
command, specify DEBUG=YES in the AF or AFA command:

afa c=libref.catalog.entry.type debug=yes

Otherwise, submit the AF or AFA command.

� Specify the DEBUG option in conjunction with the TESTAF option in a PROC
BUILD statement:

proc build c=libref.catalog.entry.type testaf debug;

� Select Build � Test

For an FSEDIT or FSVIEW application, you can invoke the debugger in the following
ways:

� Close the SOURCE window, which compiles the program, when you build the
application.

� Specify the DEBUG option in the procedure statement:

proc fsedit data=SAS-table
screen=libref.catalog.entry.SCREEN
debug;

run;

proc fsview data=SAS-table
formula=libref.catalog.entry.FORMULA
debug;

run;

Using the SCL Debugger Windows

When a debugging session starts, the debugger SOURCE window opens above the
debugger MESSAGE window. The debugger SOURCE window displays the text of the
current SCL program. The debugger MESSAGE window echoes the commands that you
enter from the debugger command prompt, DEBUG>.

You can enter debugger commands from the following locations:

� the debugger command prompt DEBUG>

� the main SAS command line, if the command menus are active



756 Retrieving Previously Entered Commands � Chapter 14

� the command line at the top of the debugger MESSAGE window, if active.
However, each debugger command that you enter from the command line must be
preceded with the word SCL, as in this example, which sets a breakpoint at line 10:

scl b 10

When you enter a debugger command, the SCL debugger

1 echoes the command in the debugger MESSAGE window

2 checks the syntax of the command and the parameters that you entered. The
debugger returns error messages for any syntax errors and reports the positions of
the errors.

3 prints the results of the command in the debugger MESSAGE window if there are
no errors.

Retrieving Previously Entered Commands

If the debugger detects an error in your command, you can retrieve the previous
command, fix the error, and press the ENTER key to re-execute the command.

There are two ways to retrieve commands that you previously entered:

� Use the ? command, which enables you to retrieve up to the last five commands.
This feature recalls a command once after you press ENTER and does not cycle
through the commands again.

� Define a function key (using the KEYS command) to issue the AGAIN command.
Once the key is defined, position the cursor on a line in the debugger MESSAGE
window and press the key that is defined as the AGAIN command. The text on
that line is displayed on the debugger command line. You can re-edit the line and
then re-execute the command or commands.

Using SAS Macros with the SCL Debugger

The SCL debugger has a complete interface with the SAS macro facility. You can
display macros with the MACEXPAND command. In addition, you can define a macro
in the debugger session to replace a debugger command list that you use frequently, as
in this example:

DEBUG> %macro ckvars; e var1 var2 %mend ckvars;

After the macro CKVARS is defined, you can invoke the macro as follows:

DEBUG> %ckvars

The macro CKVARS expands to

e var1 var2

Note: To display the definition of a macro with the CALC command, you must
enclose the macro name in quotes:

calc "%ckvars"

�



The SCL Debugger � Manipulating Debugging Requests 757

SCL Debugger Commands by Functional Category

The following sections briefly describe the commands that are available in the SCL
debugger. For detailed information about a command, see its corresponding dictionary
entry later in this chapter.

Controlling Program Execution
While you are in a debugger session, you can use the following commands to monitor

the flow of the program and even to change the way the program executes:

GO
continues program execution until a specified statement or until the next
breakpoint (if any) or program is finished.

JUMP
restarts program execution at a specified executable statement. This command
causes the interpreter to bypass execution of any intermediate statement.

STEP
steps through the program statement by statement. By default, the ENTER key is
set to STEP.

Manipulating Debugging Requests
The following debugger commands enable you to set breakpoints, tracepoints, and

watched variables, which you can then use to suspend or trace the execution so that
you can further manipulate the program variables. Whenever a debugging request is
set, it remains in effect until you use the DELETE command to delete it.

BREAK
sets a breakpoint at a particular executable program statement. When a
breakpoint is encountered, execution of the program is suspended and the cursor
is placed on the DEBUG prompt line in the debugger MESSAGE window.

DELETE
removes breakpoints, tracepoints, or watched variables that were previously set by
the BREAK, TRACE, and WATCH commands.

LIST
displays all the breakpoints, tracepoints, and watched variables that have been set
by the BREAK, TRACE, and WATCH commands.

TRACE
sets a tracepoint. When a tracepoint is encountered, the debugger prints the
information in the debugger MESSAGE window and continues processing.

WATCH
sets a watched variable. If the value of the watched variable is modified by the
program, the debugger suspends execution at the statement where the change
occurred, and it prints the old and the new values of the variable in the debugger
MESSAGE window. This command is especially useful in large programs to detect
when the value of a particular variable is being modified.



758 Manipulating Variables � Chapter 14

Manipulating Variables
When program execution is suspended, the debugger allows you to examine the

values and attributes of variables. If the value of a variable would result in a logic
error, you can then modify it so that you can continue the debugging session. Use these
commands to manipulate SCL variables from the debugger:

ARGS
displays the values of arguments that are passed into the current program
through the ENTRY statement.

CALCULATE
acts as an online calculator by evaluating expressions and displaying the result.
This is useful when you try to set the value of a variable to the result of an
expression. You can use SCL functions and dot notation in CALCULATE
expressions.

DESCRIBE
displays the name, type, length, and class attributes of a variable.

EXAMINE
displays the values of one or more variables. You can use SCL functions with
EXAMINE. You can also use dot notation to display values of object attributes and
values that are returned by methods.

PARM
displays the values of parameters that you are passing if the next executable
statement contains a function call.

PUTLIST
displays the contents of an SCL list.

SET
changes the value of a variable in the SCL program. This enables you to continue
the debugging session instead of having to stop, modify the source, and recompile
the program. You can also assign new values to variables in other active entries.

Expanding Macros and Macro Variable References
When program execution is suspended, the debugger can expand macros and macro

variable references.

MACEXPAND
displays expanded macro invocations and macro variable references. The text of
the macro or the value of the macro variable is displayed in the debugger window.

Controlling the Windows
The following commands manipulate the debugger windows:

ENVIRONMENT
enables you to set a developer environment by redisplaying the source of any
program in the execution stack. When a developer environment is set, the
debugger generates messages that show you what the current program
environment and the developer environment are. You can then scroll through the
source program, set debugging requests, and operate on the variables.



The SCL Debugger � ARGS 759

HELP
displays information about debugger commands.

QUIT
terminates a debugger session.

SWAP
switches control between the debugger SOURCE and MESSAGE windows.

TRACEBACK
displays the execution stack, which contains information about which entries are
running.

Customizing the Debugger Session
The following commands enable you to customize your debugging sessions:

ENTER
enables you to assign one or more frequently used commands to the ENTER key.
The default for ENTER is STEP, which steps through the program statement by
statement.

IF
enables you to conditionally execute other commands.

ARGS

Displays the values of arguments declared in the current program’s ENTRY statement

Syntax

ARGS

Details

The ARGS command displays the values of the arguments received from a calling
program and declared in the current program’s ENTRY statement. This command is
valid only when the current program contains an ENTRY statement. If you use this
command when you are debugging an entry that does not contain an ENTRY
statement, an error message is displayed. For more information about the ENTRY
statement, see “ENTRY” on page 351.

Example

Suppose that the program being examined begins with the following statement:

entry d e f 8;



760 BREAK � Chapter 14

In a particular program, the ARGS command might produce the following output for
the above ENTRY statement:

args
Arguments passed to ENTRY:
1 D = 10
2 E = 4
3 F = 6

See Also
“DESCRIBE” on page 766
“EXAMINE” on page 770
“PARM” on page 779
“PUTLIST” on page 780

BREAK

Suspends program execution at an executable statement

Abbreviation: B

Syntax
BREAK <location <AFTER count> <WHEN clause | DO list>>

location
specifies where to set a breakpoint (the current line, by default):

_ALL_
sets a breakpoint at every executable statement.

ENTRY
sets a breakpoint at the first executable statement in all entries in the application
catalog that contain a program.

entry-name\
specifies a catalog entry. A breakpoint is set at the first executable statement in
the program in the specified entry. If the entry resides in the current catalog, then
entry-name can be a one-level name. If the entry resides in a different catalog,
then entry-name must be a four-level name, and the entry must already be loaded
into the application’s execution stack. A backslash must follow the entry name.

label
specifies a program label. A breakpoint is set at the first executable statement in
the program label.

line-num
specifies a line number in an SCL program where a breakpoint is set. The
specified line must contain at least one executable SCL statement.

AFTER count
specifies the number of times for the debugger to execute a statement before
executing the BREAK command.



The SCL Debugger � BREAK 761

Note: When multiple statements appear on a single line, the debugger treats
them as separate statements. That is, the debugger will break on the same line as
each statement on that line is executed. In the following example, the line will break
three times in line number 10 because the condition is met three times

10 x=1 y=2 z=3
b10 after 3;

�

WHEN clause
specifies an expression that must be true in order for the command to be executed.

DO list
specifies one or more debugger commands to execute. Use semicolons to separate
multiple commands.

Details
The BREAK command sets a breakpoint at a specified statement. A breakpoint is an
executable SCL program statement at which the debugger suspends program execution.
An exclamation mark replaces the line number in the debugger SOURCE window to
designate the line at which the breakpoint is established.

When an SCL program detects a breakpoint, it

� suspends program execution

� checks the count that you specified with the AFTER command and resumes
program execution if the statement has not yet executed the specified number of
times

� evaluates the condition specified with the WHEN clause and resumes execution if
the condition evaluates to FALSE

� displays the entry name and line number at which execution is suspended

� executes any command that is specified in a DO list

� returns control to you.

If a breakpoint is set at a program line that contains more than one statement, then
the breakpoint applies to each statement on the source line. If a breakpoint is set at a
line that contains a SAS macro expansion, then the debugger breaks at each statement
that is generated by the macro expansion.

Examples

� Set a breakpoint at line 5 in the current program:

DEBUG> b 5

The output to the debugger MESSAGE window is

stop at line 5 in MYLIB.MYCAT.TEST.SCL
b 5
Stop at line 5 in MYLIB.MYCAT.TEST.SCL
Set breakpoint at line 5 in program

MYLIB.MYCAT.TEST.SCL

� Set a breakpoint in each executable statement:

DEBUG> b _all_



762 BREAK � Chapter 14

� Set a breakpoint in each executable line and print all the values:

DEBUG> b _all_ do; E _all_; end;

� Set a breakpoint at the first executable statement in each entry that contains a
program in the catalog:

DEBUG> b entry

� Set a breakpoint at the first executable statement in the MAIN section:

DEBUG> b main

� Set a breakpoint at the first executable statement in the entry TEST1.SCL:

DEBUG> b test1\

� Set a breakpoint at line 45 in the entry TEST1.SCL:

DEBUG> b test1\45

� Set a breakpoint at the MAIN label in the entry TEST1.SCL:

DEBUG> b test1\main

� Set a breakpoint at line 45 before the fourth execution of line 45:

DEBUG> b 45 after 3

� Set a breakpoint at line 45 in the entry TEST1.SCL only when both the divisor
and the dividend are 0:

DEBUG> b test1\45 when (divisor=0 AND dividend=0)

� Set a breakpoint at line 45 only when both the divisor and dividend are 0 before
the fourth execution of line 45:

DEBUG> b 45 after 3 when (divisor=0 AND dividend=0)

� Set a breakpoint at line 12 when the value of the maxLength attribute on object1
is greater than 12:

DEBUG> b 12 when (object1.maxLength > 12)

� Set a breakpoint at line 45 of the program and examine the values of variables
NAME and AGE:

DEBUG> b 45 do; e name age; end;

See Also
“DELETE” on page 764
“EXAMINE” on page 770
“LIST” on page 776
“TRACE” on page 784
“WATCH” on page 787



The SCL Debugger � CALCULATE 763

CALCULATE

Evaluates a debugger expression and displays the result

Abbreviation: CALC

Syntax
CALCULATE expression

expression
is any standard debugger expression, which can include SCL functions and dot
notation .

Details
The CALCULATE command is an online calculator that evaluates expressions for the
debugger. Expressions can include standard debugger expressions, SCL functions, and
many of the SAS arithmetic functions. You can also use dot notation to perform
operations on values that are returned by object attributes and methods.

Examples

� Add 1.1, 1.2, 3.4 and multiply the result by 0.5:

DEBUG> calc (1.1+1.2+3.4)*0.5

The output to the debugger MESSAGE window is

calc (1.1+1.2+3.4)*0.5
2.85

� Calculate the values of the variable SALE minus the variable DOWNPAY and
then multiply the result by the value of the variable RATE. Divide that value by
12 and add 50:

DEBUG> calc (((sale-downpay)*rate)/12)+50

� Calculate the sum of the values of array variables A(1), A(2), and A(3):

DEBUG> calc sum(a(1), a(2), a(3))

� Concatenate the string, the value of variable X, and the value returned from
getMaxValue method on object1:

DEBUG> calc ‘‘Values=’’||x||object1.getMaxValue()

� Display the definition of the macro CKVARS:

DEBUG> calc "%ckvars"



764 DELETE � Chapter 14

DELETE

Deletes breakpoints, tracepoints, or watched variables

Abbreviation: D

Syntax
DELETE debug-request <location>

debug-request
is an SCL debugger command to be deleted:

BREAK deletes breakpoints.

TRACE deletes tracepoints.

WATCH deletes watched variables.

location
specifies where a debugging request should be deleted. For debug-request BREAK or
TRACE, location can be

_ALL_
deletes debugging requests from all programs that are in the application’s
execution stack.

ENTRY
deletes debugging requests from the first executable statement in each entry that
contains an SCL program. If the entry resides in the current catalog, then
entry-name can be a one-level name.

entry-name\
specifies a catalog entry. The debugging requests on the first executable statement
of the specified catalog entry are deleted. If the entry resides in a different catalog,
then entry-name must be a four-level name, and it must already be loaded into the
application’s execution stack. A backslash must follow the entry name.

label
specifies a program label. The debugging requests on the first executable statement
of the specified program label are deleted. Label can be any program label.

line-num
specifies a line number in an SCL program. The debugging requests on the
specified line are deleted.
For debug-request WATCH, location can be

_ALL_
deletes the watch status for all watched variables.

<entry-name \> variable
deletes the watch status from the first executable statement of the specified
catalog entry. If the entry resides in a different catalog, then entry-name must be a
four-level name, and it must already be loaded into the application’s execution
stack. A backslash must follow the entry name. Variable specifies the name of a
particular watched variable for which the watch status is deleted.



The SCL Debugger � DELETE 765

Details
The DELETE command deletes any breakpoint, tracepoint, or watched variable
debugger requests in one or more programs that you specify.

Examples

� Delete all breakpoints from the entry TEST1.SCL:

DEBUG> d b test1\

The output to the debugger MESSAGE window is

d b test1
Stop at line 5 in MYLIB.MYCAT.TEST1.SCL
Delete all the breakpoints in MYLIB.MYCAT.TEST1.SCL

� Delete all breakpoints from the first executable statement of all entries:

DEBUG> d b entry

� Delete the tracepoint at line 35 in the program currently executing:

DEBUG> d t 35

� Delete the tracepoint at the first executable statement of the MAIN section of the
program that is currently executing:

DEBUG> d t main

� Delete the watch status from all variables in all programs that are in the
application’s execution stack:

DEBUG> d w _all_

� Delete the watch status from the variable ABC in the program that is currently
executing:

DEBUG> d w abc

� Delete the watch status from the variable XYZ in the entry TEST3.SCL:

DEBUG> d w test3\xyz

See Also
“BREAK” on page 760
“LIST” on page 776
“TRACE” on page 784
“WATCH” on page 787



766 DESCRIBE � Chapter 14

DESCRIBE

Displays the attributes of a variable

Abbreviation: DES

Syntax
DESCRIBE arg-list | _ALL_

arg-list
contains one or more arguments specified in the form <entry-name\ >variable:

entry-name\
is the name of a catalog entry that contains an SCL program. If the entry resides
in the current catalog, then entry-name can be a one-level name. If the entry
resides in a different catalog, then entry-name must be a four-level name, and the
entry must already be loaded into the application’s execution stack. A backslash
must follow the entry name.

variable
identifies an SCL variable to describe. The program that uses the specified
variable must already be loaded in the application’s execution stack.

_ALL_
describes all variables in all programs that are in the application’s execution stack.

Details
The DESCRIBE command displays the attributes of the specified variables. You can
also use dot notation to specify object attributes. The attributes reported are

Name
contains the name of the variable whose attributes are displayed.

Length
contains the variable’s length. All numeric variables have a length of 8 bytes.
Variables of type list return the number of items in the list.

Category
contains the variable’s class or category:

SYSTEM
designates a system variable.

WINDOW
designates a window variable.

NONWINDOW
designates a nonwindow variable.



The SCL Debugger � DESCRIBE 767

Type
contains the data type of the variable:

ARRAY ELMT
array element

CHAR
character

CHAR ARRAY
character array

LIST
list

LIST ARRAY
list array

NUM
numeric

NUM ARRAY
numeric array

OBJECT
object

OBJECT ARRAY
object array

Examples
� Display the name, data type, length and class of variable A:

DEBUG> des a

A is described as

des age
AGE NUM 8 NONWINDOW

� Display the name, data type, length, and class of all elements in the array ARR:

DEBUG> des arr

� Display the attributes of array element ARR[i+j]:

DEBUG> des arr[i+j]

� Display the attributes of variable A in the entry TEST1.SCL:

DEBUG> des test1\a

� Display the attributes of all elements of array BRR in the entry TEST2.SCL:

DEBUG> des test2.scl\brr

� Display the attributes of object1:

DEBUG> des object1

� Display the attributes of the visible attribute on object1:

DEBUG> des object1.visible

� Display the attributes of the attribute name on object1 in the entry TEST2.SCL:

DEBUG> des test2\object1.name



768 ENTER � Chapter 14

See Also
“ARGS” on page 759
“EXAMINE” on page 770
“PARM” on page 779
“PUTLIST” on page 780

ENTER

Assigns one or more debugger commands to the ENTER key

Syntax
ENTER <command-list>

command-list
contains one or more debugger commands, separated by semicolons.

Details
The ENTER command assigns one or more debugger commands to the ENTER key.
Each debugger command assignment replaces an existing debugger command
assignment. To clear the key setting, enter the command without any options. By
default, the ENTER key is set to the STEP command.

Example

Assign the commands EXAMINE and DESCRIBE, both for the variable ABC, to the
ENTER key:

DEBUG> enter e abc; des abc

See Also
“STEP” on page 783



The SCL Debugger � ENVIRONMENT 769

ENVIRONMENT

Displays the developer debugging environment

Abbreviation: ENV

Syntax
ENVIRONMENT <<entry-name\><line-num> | RUN>

entry-name\
sets the developer environment at the first executable statement in the program in
the specified entry. If the entry resides in the current catalog, then entry-name can
be a one-level name. If the entry resides in a different catalog, then entry-name must
be a four-level name, and the entry must already be loaded into the application’s
execution stack. A backslash must follow the entry name.

line-num
is the line to display in reverse-video.

RUN
returns the debugger to executing the program.

Details
The ENVIRONMENT command enables you to display and modify the source program
(that is, it sets a developer debugging environment) for any program in the application’s
execution stack while another program is active. When a developer environment is set,
the debugger generates messages showing both the current program environment and
the developer environment. In the developer environment, you can scroll through the
source program, set debugging requests, and operate on the variables. For example,
while TEST2.SCL is active, the ENVIRONMENT command enables you to display the
source code for TEST1.SCL, reset the values of several variables in TEST1.SCL, and
then return to TEST2.SCL.

By default, when you issue the ENVIRONMENT command from the current
executing program without options, it sets the current program environment as the
developer environment. If you issue the ENVIRONMENT command without an
argument from a program other than the current program, the developer environment
is reset to the program line containing the CALL DISPLAY statement.

Setting a developer environment does not change the way a program executes.
To return control to the active program, use the ENV RUN command to reset the

environment to the active program, or use the GO, STEP or JUMP command to leave
the developer environment and resume execution.



770 EXAMINE � Chapter 14

Example
Assume that an execution stack looks like this:

TEST3.SCL line 37
TEST2.SCL line 24
TEST1.SCL line 10

The following examples illustrate valid ENVIRONMENT commands and describe their
effect on the preceding execution stack:

� Display the source of TEST1.SCL with line 10 in reverse video:

DEBUG> env test1.scl\10

The output to the debugger MESSAGE window is

env test1.scl\10
Stop at line 37 in MYLIB.MYCAT.TEST3.SCL
Developer environment at line 10 in
MYLIB.MYCAT.TEST1.SCL

� Display the source of TEST2.SCL with line 45 in reverse video:

DEBUG> env test2\45

� Return to the current program environment (TEST3.SCL at line 37):

DEBUG> env run

� Attempt to return to the program TEST4.SCL:

DEBUG> env test4\

Because TEST4.SCL is not in the SCL execution stack, the SOURCE window
still displays TEST3.SCL. The output to the debugger MESSAGE window is

Program TEST4 is not active

See Also
“SWAP” on page 784

EXAMINE

Displays the value of one or more variables

Abbreviations: EX, E

Syntax
EXAMINE arg-list | _ALL_

arg-list
contains one or more arguments specified in the form <entry-name\>variable:

entry-name\
names a catalog entry that contains an SCL program.



The SCL Debugger � EXAMINE 771

variable
identifies a standard SCL variable. The program that uses variable must already
be loaded in the application’s execution stack.

_ALL_
examines all variables defined in all programs in the application’s execution stack.

Details
The EXAMINE command displays the value of one or more specified variables or object
attributes.

Note: You can examine only one object attribute at a time. �

Examples

� Display the values of variables N and STR:

DEBUG> e n str

The output to the debugger MESSAGE window is

e n str
N = 10
STR = ’abcdef’

� Display variable A in the entry TEST1.SCL, variable B in the current program,
and variable C in the entry TEST2.SCL:

DEBUG> e test1\a b test2\c

� Display the elements i, j, and k of the array CRR:

DEBUG> e crr[i, j, k]

� Display the elements i+1, j*2, k-3 of the array CRR:

DEBUG> e crr[i+1, j*2, k-3]

� Display the value of the text in the Text Entry control NAME:

DEBUG> e name.text

� Display the value of the enabled attribute on object1:

DEBUG> e object1.enabled

� Display the reference ID of an object or a list:

DEBUG> e object1

or

DEBUG> e object1.attributeList

Once the reference ID is known, use PUTLIST to display the list data.

See Also
“ARGS” on page 759
“DESCRIBE” on page 766
“PARM” on page 779
“PUTLIST” on page 780



772 GO � Chapter 14

GO

Starts or resumes execution of the active program from the current location

Abbreviation: G

Syntax
GO <entry-name\ | line-num | label-name | RETURN>

entry-name\
is the name of a catalog entry that contains the SCL program to resume executing.

line-num
is the number of the program line to start executing or resume executing.

label
is the program label where execution is to start or resume.

RETURN
starts or resumes execution at the next RETURN statement.

Details
The GO command starts or resumes execution of the active program. By default,
program statements execute continuously. However, you can specify one of the optional
arguments to establish a temporary breakpoint that stops the program at the
corresponding statement.

A temporary breakpoint established through the GO command is ignored when the
debugger encounters a breakpoint that was previously set before it encounters the
temporary breakpoint. That is, program execution suspends at the breakpoint that was
previously set by the BREAK command rather than at the temporary breakpoint.

Examples

� Resume executing the program and execute its statements continuously:

DEBUG> g

� Resume program execution and then suspend execution at the next RETURN
statement:

DEBUG> g return

� Resume program execution and then suspend execution at the statement in line
104:

DEBUG> g 104

� Resume program execution and then suspend execution at the first statement of
the MAIN section:

DEBUG> go main



The SCL Debugger � HELP 773

� Resume program execution and then suspend execution at the statement in line 15
in program TEST2:

DEBUG> go test2\15

See Also
“JUMP” on page 775
“STEP” on page 783

HELP

Displays information about debugger commands

Syntax
HELP <command>

command
is the debugger command for which to display help. You must use full command
names rather than abbreviations.

Details
The HELP command displays information describing the syntax and usage of debugger
commands. If command is not supplied, HELP displays a list of the debugger
commands. You can then select any command to receive information about that
command.

You can also issue the HELP command from the command line of the debugger
MESSAGE window.

Examples

� Display a list of the debugger commands:

DEBUG> help

� Display the syntax and usage information for the BREAK command:

DEBUG> help break



774 IF � Chapter 14

IF

Evaluates an expression and conditionally executes one or more debugger commands

Syntax
IF expression THEN clause <; ELSE clause>

expression
contains a condition to be evaluated before one or more commands are executed.

clause
contains either a single debugger command or a debugger DO list.

Details
The IF command immediately evaluates an expression and conditionally executes one
or more debugger commands. The expression will contain dot notation because it
resolves to a numeric variable. Character variables are converted.

The IF command must contain a THEN clause with one or more commands to
execute if the expression is true. It can also contain an ELSE clause with one or more
commands to execute if the expression is false. The ELSE clause must be separated
from the THEN clause with a semicolon, and the ELSE clause cannot be entered
separately.

Examples

� Examine the variable X if X contains a value that is greater than 0:

DEBUG> if x > 0 then e x

� Examine the variable X if X is greater than 0, or examine the value of the variable
Y if X is less than or equal to 0:

DEBUG> if (x>0) then e x; else e y

� Execute the following actions if the value of variable X is less than variable Y and
if Y is less than variable Z:

� Delete all breakpoints in all program entries.

� Set a breakpoint in the entry TEST2.SCL at the first executable statement.

� Resume program execution.

DEBUG> if ((x<y) & (y<z)) then
do; d b _all_; b test2.scl\;g;end;

� Execute the following actions if the value of the variable X is 1:

� Examine the value of variable A.

� Set a breakpoint at line 5 of the program that is currently executing.



The SCL Debugger � JUMP 775

If the value of X is not 1, then execute these actions:

� Examine the value of variable B.

� Set a breakpoint at line 15 of the program that is currently executing.

DEBUG> if x=1 then do; e a; b 5; end;
else do; e b; b 15; end;

� Set a breakpoint at line 15 of the program. Whenever the execution suspends at
line 15, if the value of the variable DIVISOR is greater than 3, execute the STEP
command; otherwise, examine the value of the variable DIVIDEND.

DEBUG> b 15 do; if divisor>3 then st;
else e dividend; end;

� Examine the variable X if the attribute attrValue on object1 is greater than 10:

if object1.attrValue > 10 then e x

JUMP

Restarts execution of a suspended program

Abbreviation: J

Syntax

JUMP line-num

line-num
is the number of a program line at which to restart the suspended program. The
specified line must contain at least one executable SCL statement.

Details

The JUMP command restarts program execution at the executable statement in the
specified line. It is different from the GO command because none of the statements
between the suspended statement and the specified line are executed. With this
capability, the JUMP command enables you to skip execution of some code that causes
incorrect results or program failure.

The JUMP command can restart only the current source entry. The values of all
variables are the same as the values at the original suspending point.

Although the JUMP command can jump to any statement in the current source, if
the target statement resides in a different section of code, then the first RETURN
statement encountered in the section that contains the target statement is treated as
the RETURN statement from the section where the JUMP command was executed.

For example, suppose you were in the TERM section and you issued a JUMP
command to jump to a statement in the MAIN section. When the program resumes
execution, the first RETURN statement that it encounters in the MAIN section
terminates the program (as the RETURN statement does in the TERM section) instead
of redisplaying the screen.



776 LIST � Chapter 14

Note: Using the JUMP command to jump to a statement that is inside a DO loop
may produce an illogical result. �

Example

The following example illustrates the use of the JUMP command:

DEBUG> j 5

The output to the debugger MESSAGE window is

Stop at line 5 in MYLIB.MYCAT.TEST2.SCL

See Also

“GO” on page 772
“STEP” on page 783

LIST

Displays a list of all program breakpoints, tracepoints, or watched variables

Abbreviation: L

Syntax

LIST <<BREAK | TRACE | WATCH | _ALL_> entry-name\ | _ALL_>

_ALL_
lists all breakpoints, tracepoints and watched variables. LIST _ALL_ performs the
same function as LIST.

BREAK
lists all breakpoints.

TRACE
lists all tracepoints.

WATCH
lists all watched variables.

entry-name\
is the name of a catalog entry that contains an SCL program. If the entry resides in
the current catalog, then entry-name can be a one-level name. If the entry resides in
a different catalog, then entry-name must be a four-level name, and the entry must
already be loaded into the application’s execution stack. A backslash must follow the
entry name.

_ALL_
displays the debugging requests that are currently set for all entries.



The SCL Debugger � LIST 777

Details
The LIST command displays a list of all debugging requests that have been set for an
application. These requests include breakpoints, tracepoints, and watched variables. By
default, the list contains all of the debugging requests for the current entry.

Examples

� List all the breakpoints, tracepoints, and watched variables for the current
program:

DEBUG> l _all_

The output to the debugger MESSAGE window is

1 _all_
Stop at line 5 in MYLIB.MYCAT.TEST2.SCL
List all the breakpoints in program
MYLIB.MYCAT.TEST2.SCL
Breakpoint has been set at line 4
Breakpoint has been set at line 8
Breakpoint has been set at line 10
List all tracepoints in program
MYLIB.MYCAT.TEST2.SCL
No tracepoint has been set in program
MYLIB.MYCAT.TEST2.SCL
No variables have been watched in program
MYLIB.MYCAT.TEST2.SCL

� List all the breakpoints, tracepoints, and watched variables for all active programs
in the execution stack:

DEBUG> l _all_ _all_

� List all the breakpoints in the current entry:

DEBUG> l b

� List all the breakpoints in all active programs in the execution stack:

DEBUG> l b _all_

� List all the breakpoints, tracepoints, and watched variables in the entry
TEST1.SCL:

DEBUG> l _all_ test1\

� List all the watched variables in the entry TEST3.SCL:

DEBUG> l w test3\

See Also
“BREAK” on page 760
“DELETE” on page 764
“TRACE” on page 784
“WATCH” on page 787



778 MACEXPAND � Chapter 14

MACEXPAND

Expands macro calls

Abbreviation: MACX

Syntax
MACEXPAND line-num

line-num
is the number of the program line that contains either a macro invocation or a macro
variable reference to expand.

Details
The MACEXPAND command expands macro invocations and macro variables. The
expansion is displayed in the debugger window. If the line does not contain a macro
invocation or a macro variable reference, then the MACEXPAND command is ignored.

Example

In this example, the program contains the macro VALAMNT:

%macro valamnt(amount);
if amount <0 or amount >500 then

do;
erroron amount;
_msg_=’Amount must be between $0 and $500.’;
stop;

end;
else erroroff amount;

%mend valamnt;

Line 33 of the SCL program calls the macro:

%valamnt(amt)

After entering 250 into the Amount control, enter in the debugger window:

DEBUG> macx 33

The debugger window displays the following output:

AMOUNT
$T0 = AMOUNT < 0
$T1 = AMOUNT > 500
$T2 = $T0 OR $T1
IF $T2 == 0 THEN #24 ERRORON(AMOUNT)
_MSG_ = ’Amount must be between $0 and $500.’
STOP
JUMP #26
ERROROFF(AMOUNT)



The SCL Debugger � PARM 779

PARM

Displays the values of variables that are passed as parameters to any SCL function or routine

Syntax
PARM

Details
The PARM command displays the values of variables that are passed as parameters to
an SCL function or routine. This command is valid only when the next executable
statement contains a function call. Otherwise, the debugger issues a warning.

If a nested function call is encountered — that is, if the parameters passed to a
function or routine are themselves function calls — then the PARM command displays
the parameter list only for the nested function. You have to keep using the PARM
command in order to display the parameter list for other function calls. For example,
assume that the next executable statement is

str1=substr(upcase(string), min(x,y), max(x,y));

A PARM command first displays the parameter STRING, which is passed to the
function UPCASE. A second PARM command displays the parameter list X, Y, which is
passed to the function MIN. Subsequent PARM commands would display the parameter
lists passed to the function MAX and then to SUBSTR.

Note: Once the values of arguments for a function or routine have been displayed,
you cannot repeat the PARM command for the same function unless you are
re-executing it. �

Example

A PARM command issued at the following statement

call display (’test2’, x, y);

generates the following output:

parm
Arguments passed to DISPLAY:
1 (Character Literal)=’test2’

Parameters passed to DISPLAY ENTRY:
1 X=0
2 Y=4

See Also
“ARGS” on page 759
“DESCRIBE” on page 766
“EXAMINE” on page 770
“PUTLIST” on page 780



780 PUTLIST � Chapter 14

PUTLIST

Displays the contents of an SCL list

Syntax
PUTLIST <arg-list | n>

arg-list
contains one or more SCL list identifiers that are returned by the MAKELIST or
COPYLIST function. Use the form <entry-name\ > variable:

entry-name\
is a catalog entry that contains the program that uses variable.

variable
is the variable that contains a list identifier.

n
is one or more numeric literals that represent the list to be printed.

Details
The PUTLIST command displays the contents of an SCL list in the debugger
MESSAGE window. The list starts with a left parenthesis, (, to mark its beginning,
followed by the list of items separated by blanks. Each named item is preceded by its
name and an equal sign, =, but nothing is printed before items that do not have names.
The PUTLIST function ends the list with a right parenthesis, ), followed by the list’s
identifier number within square brackets.

If a list appears more than once in the list being printed, the PUTLIST command
displays (...) listid for the second and subsequent occurrences of the list. You should
scan the output of the PUTLIST command for another occurrence of listid to view the
full contents of the list. This prevents infinite loops if a list contains itself as a sublist.

Examples
� Print the contents of List A, which contains the numbers 17 and 328 and the

character string ’Any string’:

DEBUG > putlist a

This produces the following output:

( 17
328
’Any string’
)[5]



The SCL Debugger � QUIT 781

� Print the list identified by number 5 (the same list shown in the previous example):

DEBUG> putlist 5

This produces the following output:

( 17
328
’Any string’
)[5]

� Print the list identified by the dot notation object.dropoperations, assuming
that dropoperations is a valid list attribute on the object identified by object:

putlist object.dropoperations
( COPY=( POPMENUTEXT=’Copy here’

ENABLED=’Yes’
METHOD=’_drop’
)[11601]

MOVE=( POPMENUTEXT=’Move here’
ENABLED=’No’
METHOD=’_drop’
)[11599]

LINK=( POPMENUTEXT=’Link here’
ENABLED=’No’
METHOD=’_drop’
)[11597]

)[11593]

See Also

“ARGS” on page 759
“DESCRIBE” on page 766
“EXAMINE” on page 770
“PARM” on page 779

QUIT

Terminates a debugger session

Abbreviation: Q

Syntax

QUIT

Details

The QUIT command terminates a debugger session and returns control to the point at
which the debugger was invoked. You can use this command on the debugger command
line at any time during program execution.



782 SET � Chapter 14

SET

Assigns new values to a specified variable

Abbreviation: S

Syntax

SET <entry-name\> variable expression

entry-name\
is the name of a catalog entry containing an SCL program entry that uses variable.
If the entry resides in the current catalog, then entry-name can be a one-level name.
If the entry resides in a different catalog, then entry-name must be a four-level name,
and the entry must already be loaded into the application’s execution stack. A
backslash must follow the entry name.

variable
is an SCL variable.

expression
contains a standard debugger expression.

Details

The SET command assigns either a value or the result of a debugger expression to the
specified variable. When you detect an error during program execution, you can use
this command to assign new values to variables. This enables you to continue the
debugging session instead of having to stop, modify a variable value, and recompile the
program. You can also assign new values to variables in other active entries.

Examples

� Set variable A to the value of 3:

DEBUG> s a=3

The output to the debugger MESSAGE window is

Stop at line 5 in SASUSER.SCL.TEST2.SCL
A = 3

� Set X to the value of item 1 in LIST:

DEBUG> s x=getitemc(list,1)

� Set variable A in program PROG1 to the value of the result of the expression a+c*3:

DEBUG> s prog1\a=a+c*3

� Assign to variable B the value 12345 concatenated with the value of B:

DEBUG> s b= 12345 || b



The SCL Debugger � STEP 783

� Set array element ARR[1] to the value of the result of the expression a+3:

DEBUG> s arr[1]=a+3

� Set array element CRR[1,2,3] to the value of the result of the expression
crr[1,1,2]+crr[1,1,3]:

DEBUG> s crr[1,2,3]=crr[1,1,2]+crr[1,1,3]

� Set the values of a whole array:

DEBUG> s crr=[’a’, ’b’, ’c’, ’d’]

STEP

Executes statements one at a time in the active program

Abbreviation: ST

Syntax
STEP <OVER|O>

OVER
specifies that if the next executable statement is a CALL DISPLAY, FSEDIT, or
FSVIEW statement, the whole reference counts as a statement. By default, the
STEP command suspends program execution at the first executable statement of the
called program if that program was compiled with DEBUG ON.

Details
The STEP command executes one statement in the active program, starting with the
suspended statement. When you issue a STEP command, the command

� executes the next statement
� displays the entry name and line number
� returns control to the developer and displays the DEBUG> prompt.

By default, the STEP command suspends the execution at the first executable
statement in the called program if the current statement is a CALL DISPLAY or CALL
FSEDIT statement. The OVER option forces the debugger to count the call of the
DISPLAY, FSEDIT, or FSVIEW routine as a statement, and program execution stops at
the statement after the CALL statement. However, if the called program contains a
display, execution is not suspended until you leave the display window.

When the STEP command is used to execute a SELECT statement, it jumps directly
to the appropriate WHEN or OTHERWISE clause without stepping through any
intervening WHEN statements.

Example

Suppose you are using the STEP command to execute the following program, which is
stopped at line 15. If VAL contains 99, the STEP command goes to line 116 immediately.

line #
15 select (val);



784 SWAP � Chapter 14

16 when (1)
17 call display(’a1’);
18 when (2)
19 call display(’a2’);
...more SCL statements...
113 when (98)
114 call display(’a98’);
115 when (99)
116 call display(’a99’);
117 when (100)
118 call display(’a100’);
119 otherwise
120 call display(’other’);
121 end;

See Also
“ENTER” on page 768
“GO” on page 772
“JUMP” on page 775

SWAP
Switches control between the debugger SOURCE window and MESSAGE window

Syntax
SWAP

Details
The SWAP command enables you to switch control between the MESSAGE window and
the SOURCE window when the debugger is running. When a debugging session is
initiated, the control defaults to the MESSAGE window until you issue a command.
While the program is still being executed, the SWAP command enables you to switch
control between the SOURCE and MESSAGE window so that you can scroll and view
the text of the program and also continue monitoring program execution.

See Also
“ENVIRONMENT” on page 769

TRACE
Sets a tracepoint for tracing the execution of the corresponding statement

Abbreviation: T



The SCL Debugger � TRACE 785

Syntax

TRACE <location <AFTER count <<WHEN clause | DO list>>

location
specifies where to set a tracepoint (at the current line, by default).

_ALL_
sets a tracepoint at every SCL executable program statement.

ENTRY
sets a tracepoint at the first executable statement in every entry in the current
catalog that contains an SCL program.

entry-name\
sets a tracepoint in an SCL program.

label
sets a tracepoint at the first executable statement in an SCL reserved label or in a
user-defined label.

line-num
sets a tracepoint at the specified line.

AFTER count
is the number of times for the debugger to execute a statement before executing the
TRACE command.

WHEN clause
specifies an expression that must be true in order for the command to be executed.

DO list
contains one or more debugger commands to execute. Use semicolons to separate
multiple commands.

Details

The TRACE command sets a tracepoint at a specified statement and traces the
execution of that statement.

A tracepoint differs from a breakpoint because a tracepoint resumes program
execution after temporary suspension. Also, a tracepoint has a higher priority than a
breakpoint. If a statement has been specified both as a tracepoint and as a breakpoint,
the debugger first prints the trace message and then suspends program execution. Each
time the tracepoint statement is encountered, the debugger does the following:

� suspends program execution

� checks the count that is specified with the AFTER command and resumes program
execution if the specified number of tracepoint activations has not been reached

� evaluates any conditions specified in a WHEN clause and resumes execution if the
condition evaluates as false

� displays the entry name and line number at which execution is suspended

� executes any command that is specified in a DO list

� resumes program execution.



786 TRACEBACK � Chapter 14

Examples

� Trace the statement at line 45:

DEBUG> t 45

� Trace each executable statement:

DEBUG> t _all_

� Trace each executable statement and print all the values:

DEBUG> t _all_ do; e _all_; end

� Trace the first executable statement in each program:

DEBUG> t entry

� Trace the first executable statement in the program’s MAIN section:

DEBUG> t MAIN

� Trace the statement at line 45 after each third execution:

DEBUG> t 45 after 3

� Trace the statement at line 45 when the values of the variables DIVISOR and
DIVIDEND are both 0:

DEBUG> t 45 when (divisor=0 and dividend=0)

� Trace the statement at line 5 in the entry TEST1:

DEBUG> t test1\5

See Also

“BREAK” on page 760
“DELETE” on page 764
“LIST” on page 776
“WATCH” on page 787

TRACEBACK

Displays the traceback of the entire SCL execution stack

Abbreviation: TB

Syntax

TRACEBACK <_ALL_>

_ALL_
displays the link stack information in addition to the SCL execution stack.



The SCL Debugger � WATCH 787

Details
The TRACEBACK command displays the entire execution stack, which consists of the
program that is currently being executed and all programs that were called to display
the current program. In addition, the _ALL_ argument displays the link stack, which
consists of the labeled sections that are called within the program.

The display of the link stack does not include labeled sections that are called with a
GOTO statement.

Example

START.SCL contains a link at line 5 and calls ANALYZE.SCL at line 9.
ANALYZE.SCL contains links at lines 5, 11, and 16.

Running the debugger and issuing TRACEBACK at line 21 of ANALYZE.SCL
produces the following output:

---- Print The Traceback ----
In routine: TEST.TRACEBAK.ANALYZE.SCL line 21
Called from TEST.TRACEBAK.START.SCL line 9

Running the debugger and issuing TRACEBACK _ALL_ at line 21 of ANALYZE.SCL
produces the following output:

---- Print The Traceback ----
In routine: TEST.TRACEBAK.ANALYZE.SCL line 21

Linked from TEST.TRACEBAK.ANALYZE.SCL line 16
Linked from TEST.TRACEBAK.ANALYZE.SCL line 11
Linked from TEST.TRACEBAK.ANALYZE.SCL line 5

Called from TEST.TRACEBAK.START.SCL line 9
Linked from TEST.TRACEBAK.START.SCL line 5

WATCH

Suspends program execution when the value of a specified variable has been modified

Abbreviation: W

Syntax
WATCH <entry-name\> variable <AFTER count> <WHEN clause | DO list >

entry-name\
is the name of the entry that contains the variable to be watched. The debugger
starts watching the variable at the first executable statement in the program in the
specified entry. If the entry resides in the current catalog, then entry-name can be a
one-level name. If the entry resides in a different catalog, then entry-name must be a
four-level name, and the entry must already be loaded into the application’s
execution stack. A backslash must follow the entry name.

variable
is the name of the variable to watch.



788 WATCH � Chapter 14

AFTER count
specifies the number of times for the value of the variable to be changed before the
debugger suspends program execution. Therefore, for an AFTER specification of 3,
the program halts when the value of the watched variable is changed for the third
time.

WHEN clause
specifies an expression that must be true in order for the command to be executed.
Clause can contain SCL functions.

DO list
contains one or more debugger commands to execute. Use semicolons to separate
multiple commands.

Details
The WATCH command monitors a variable and suspends program execution when the
value of the variable is modified. A variable is called a watched entry parameter if it is
defined as both a watched variable and as an ENTRY statement parameter. A program
is not suspended when the value of a watched entry parameter is changed by a called
program. However, a program is suspended when a changed value for a watched entry
parameter is copied back to the calling program.

Each time the variable is modified, the debugger
� suspends program execution
� checks for any AFTER count and resumes program execution if the specified

number of changes has not been reached
� evaluates the WHEN condition and resumes execution if the WHEN condition is

false
� displays the entry name and line number at which execution has been suspended
� displays the variable’s old value
� displays the variable’s new value
� executes any commands that are provided in a DO list
� returns control to the developer and displays the DEBUG> prompt.

You can watch only variables that are in the current program.

Examples

� Monitor the variable DIVISOR in TEST2 for value changes:

DEBUG> w divisor

The output to the MESSAGE window is

Stop at line 6 in MYLIB.MYCAT.TEST2.SCL
Watch variable DIVISOR has been modified
Old value=1
New value=99

� Monitor all the elements in the array NUM for value changes:

DEBUG> w num

� Monitor the variable DIVISOR in TEST1.SCL for value changes:

DEBUG> w test1\divisor



The SCL Debugger � WATCH 789

� Monitor an object attribute for its value changes:

DEBUG> w object.attribute

� Monitor the variable A[1] for value changes and suspend program execution after
its value has been altered three times:

DEBUG> w a[1] after 3

� Monitor A[1] for value changes and suspend program execution when neither X
nor Y is 0:

DEBUG> w a[1] when (x^=0 and y^=0)

� Monitor FIELD1 for value changes and suspend program execution after the third
change in the value of FIELD1 when the variables DIVIDEND and DIVISOR both
equal 0:

DEBUG> w field1 after 3 when (dividend=0
and divisor=0)

� Monitor X when it has the same value as item 1 in LIST.

DEBUG> w x when x=getitemc(list,1)

See Also
“BREAK” on page 760
“DELETE” on page 764
“LIST” on page 776
“TRACE” on page 784



790



791

C H A P T E R

15
SAS System Return Codes

Introduction to SAS System Return Codes 791
Using SAS System Return Codes 791

Obtaining a SAS System Return Code 791

Obtaining the Message for a SAS System Return Code 792

Testing for a Particular Error or Warning Condition 792

Mnemonics for SAS System Return Codes 793

Introduction to SAS System Return Codes
Many of the SCL functions that interface to external databases and file systems

return special values called SAS system return codes. These return codes report the
success or failure of a function, and they report error and warning conditions. You can
use these system return codes to include sophisticated error checking in your
applications.

Using SAS System Return Codes
The value of a SAS system return code can be interpreted as:

0 The operation was completed successfully.

>0 An error condition was detected during the operation.

<0 The operation was completed, but a warning or a note was
generated.

Not all SCL functions that return completion code values return SAS system return
codes. Some functions return a completion code value that reports the success or failure
of the requested operation (usually 1 for success or 0 for failure). These values are
referred to simply as return codes because they do not have the special property of SAS
system return codes described above.

Obtaining a SAS System Return Code
Some functions — notably OPEN, DOPEN, FOPEN, and MOPEN — return values

other than SAS system return codes. For these functions, use the SYSRC function to
obtain the SAS system return code for the operation. SAS software retains the value of
the return code for the most recent warning or error condition, and the SYSRC function
reads the stored value.



792 Obtaining the Message for a SAS System Return Code � Chapter 15

The following example assigns the SAS system return code to the variable ERRNUM
if the OPEN operation fails:

tableid=open(’prices’,’I’);
if tableid=0 then do;

errnum=sysrc();
put "Open failed" errnum;

end;

Note: If you call the SYSRC function after executing a function that returns a SAS
system return code, the value that the SYSRC function returns is the same as the value
that the original function returned. �

Obtaining the Message for a SAS System Return Code
In many cases, knowing the value of a SAS system return code enables you to

determine whether an operation succeeded or failed. However, in some cases warning
messages can be useful for informing users of special situations that may need to be
corrected.

You can use the SYSMSG function to return the text of the error message that was
produced by the most recent SCL warning or error.

For example, the following statements display the SAS system message for the error
condition that is produced when the FETCH function returns a nonzero return code:

rc=fetch(dsid);
if rc then _msg_=sysmsg();

The message string that SYSMSG() returns is reset to blank after each call to
SYSMSG() until the next error or warning condition occurs.

Testing for a Particular Error or Warning Condition

When an SCL function returns a nonzero SAS system return code, you can use the
%SYSRC macro to determine whether the code indicates one of a defined set of error
and warning conditions. The %SYSRC macro is provided in the autocall library that is
supplied by SAS Institute.

Note: In order for you to use autocall macros, the MAUTOSOURCE system option
must be in effect, and the SASAUTOS= system option must point to the
Institute-supplied autocall macro library. For more information about the autocall
facility, see SAS Macro Language: Reference and the online Help for the SAS Macro
Language. �

To test whether a specific return code is one of the documented conditions, pass a
mnemonic name for the condition to the %SYSRC macro. The syntax is

rc=%SYSRC(mnemonic);

Mnemonics consist of up to eight characters, as follows:

� an underscore (_) for the first character

� S for the second character

� E (for error conditions) or W (for warning conditions) for the third character

� a shortened version of the name of the error for the remaining characters.



SAS System Return Codes � Mnemonics for SAS System Return Codes 793

For example, _SWEOF is the mnemonic for the end-of-file warning condition.

Note: The return code for an end-of-file condition is a warning (_SWEOF). The value
of the return code is −1. �

Mnemonics are assigned only to error or warning conditions that are considered
relevant to an application developer. In some cases, SCL returns values that do not
have a corresponding mnemonic. In these cases, a negative value indicates a warning
condition, and a positive value indicates an error condition. For example, the following
statements can be used to test whether the row requested by the FETCH function was
successfully locked:

rc=fetch(dsid);
if (rc) then

do;
if (rc=%sysrc(_swnoupd)) then _msg_=

’Another user has locked the requested row.’;
else

/* fetch failed for another reason*/
_msg_=sysmsg();

end;

Mnemonics for SAS System Return Codes
Table 15.1 on page 793 lists the mnemonics for SAS system return codes along with

the value and a description of the error or warning condition. This table is sorted by
the mnemonic name, and the codes are grouped into general categories of operations
that can produce the conditions. Table 15.2 on page 796 presents the codes sorted by
the return code value.

Table 15.1 Warning and Error Conditions Sorted Alphabetically by Mnemonic

Mnemonic Value Description

Library Assign/Deassign Messages

_SEDUPLB 70004 The libref refers to the same physical library as another libref.

_SEIBASN 70006 The specified libref is not assigned.

_SEINUSE 70025 The library or member is not available for use.

_SEINVLB 70002 The library is not in a valid format for the access method.

_SEINVLN 20014 The libref is not valid.

_SELBACC 70029 The action requested cannot be performed because you do not
have the required access level on the library.

_SELBUSE 70025 The library is still in use.

_SELGASN 70006 The specified libref is not assigned.

_SENOASN 20004 The libref is not assigned.

_SENOLNM 20031 The libref is not available for use.

_SESEQLB 630032 The library is in sequential (tape) format.

_SWDUPLB −70004 The libref refers to the same physical library as another libref.

_SWNOLIB −70008 The library does not exist.



794 Mnemonics for SAS System Return Codes � Chapter 15

Mnemonic Value Description

Fileref Messages

_SELOGNM 20002 The fileref is assigned to an invalid file.

_SWLNASN −20004 The fileref is not assigned.

SAS Table Messages

_SEBAUTH 70045 The data set has passwords.

_SEBDIND 630009 The index name is not a valid SAS name.

_SEDSMOD 70018 The data set is not open in the correct mode for the specified
operation.

_SEDTLEN 20012 The data length is invalid.

_SEINDCF 630008 The new name conflicts with an index name.

_SEINVMD 20015 The open mode is invalid.

_SEINVPN 20017 The physical name is invalid.

_SEMBACC 70030 You do not have the level of access required to open the data set
in the requested mode.

_SENOLCK 630053 A record-level lock is not available.

_SENOMAC 660025 Member-level access to the data set is denied.

_SENOSAS 70037 The file is not a SAS data set.

_SEVARCF 630019 The new name conflicts with an existing variable name.

_SWBOF −570001 You tried to read the previous observation when you are on the
first observation.

_SWNOWHR −630004 The record no longer satisfies the WHERE clause.

_SWSEQ −630032 The task requires reading observations in a random order, but
the engine you are using allows only sequential access.

_SWWAUG −580016 The WHERE clause has been augmented.

_SWWCLR −580017 The WHERE clause has been cleared.

_SWWREP −580015 The WHERE clause has been replaced.

SAS File Open and Update Messages

_SEBDSNM 630087 The filename is not a valid SAS name.

_SEDLREC 630049 The record has been deleted from the file.

_SEFOPEN 20036 The file is currently open.

_SEINVON 70022 The option name is invalid.

_SEINVOV 70023 The option value is invalid.

_SEINVPS 20018 The value of the File Data Buffer pointer is invalid.

_SELOCK 70031 The file is locked by another user.

_SENOACC 20029 You do not have the level of access required to open the file in
the requested mode.

_SENOALL 630100 _ALL_ is not allowed as part of a filename in this release.

_SENOCHN 630058 The record was not changed because it would cause a duplicate
value for an index that does not allow duplicates.



SAS System Return Codes � Mnemonics for SAS System Return Codes 795

Mnemonic Value Description

_SENODEL 10011 Records cannot be deleted from this file.

_SENODLT 20030 The file could not be deleted.

_SENOERT 20035 The file is not open for writing.

_SENOOAC 70030 You are not authorized for the requested open mode.

_SENOOPN 20037 The file or directory is not open.

_SENOPF 20006 The physical file does not exist.

_SENORD 20032 The file is not opened for reading.

_SENORDX 630066 The file is not radix addressable.

_SENOTRD 570002 No record has been read from the file yet.

_SENOUPD 630006 The file cannot be opened for update because the engine is
read-only.

_SENOWRT 70040 You do not have write access to the member.

_SEOBJLK 20025 The file or directory is in exclusive use by another user.

_SERECRD 630052 No records have been read from the input file.

_SWACMEM −630032 Access to the directory will be provided one member at a time.

_SWEOF −1 End of file.

_SWNOFLE −20006 The file does not exist.

_SWNOPF −70008 The file or directory does not exist.

_SWNOREP −630002 The file was not replaced because of the NOREPLACE option.

_SWNOTFL −20002 The item pointed to exists but is not a file.

_SWNOUPD −630054 This record cannot be updated at this time.

Library/Member/Entry Messages

_SEBDMT 70015 The member type specification is invalid.

_SEDLT 70033 The member was not deleted.

_SELKUSR 630097 The library or library member locked by another user.

_SEMLEN 70028 The member name is too long for this system.

_SENOLKH 630099 The library or library member is not currently locked.

_SENOMEM 70009 The member does not exist.

_SWKNXL −670212 You have locked a library, member, or entry that does not exist
yet.

_SWLKUSR −630097 The library or library member is locked by another user.

_SWLKYOU −630098 You have already locked the library or library member.

_SWNOLKH −630099 The library or library member is not currently locked.

Miscellaneous Operations

_SEDEVOF 10008 The device is offline or unavailable.

_SEDSKFL 70039 The disk or tape is full.

_SEINVDV 20011 The device type is invalid.

_SENORNG 20034 There is no write ring in the tape opened for write access.



796 Mnemonics for SAS System Return Codes � Chapter 15

Mnemonic Value Description

_SOK 0 The function was successful.

_SWINVCC −20001 The carriage-control character is invalid.

_SWNODSK −20005 The device is not a disk.

_SWPAUAC −630104 Pause in I/O, process accumulated data up to this point.

_SWPAUSL −630105 Pause in I/O, slide data window forward and process
accumulated data up to this point.

_SWPAUU1 −630106 Pause in I/O, extra user control point 1.

_SWPAUU2 −630107 Pause in I/O, extra user control point 2.

Integrity Constraints

_SEICAU 660130 The add/update action failed for the table because the data
value(s) do not comply with the integrity constraints.

_SEICA2 660169 This error is a generic error that represents either _SEICAU or
_SENMCH. This error is returned if the corresponding integrity
constraint was set to return only the user-defined message.

_SEINTG 630025 The add/update action failed because the data value(s) do not
comply with an integrity constraint that uses the index for the
corresponding file.

_SENMCH 630188 The observation was not added and/or updated because no match
was found for the foreign key value.

Table 15.2 Warning and Error Conditions Sorted by Value

Value Mnemonic Description

−1 _SWEOF End of file.

−20001 _SWINVCC The carriage control character is invalid.

−20002 _SWNOTFL The item pointed to exists but is not a file.

−20004 _SWLNASN The fileref is not assigned.

−20005 _SWNODSK The device is not a disk.

−20006 _SWNOFLE The file does not exist.

−70004 _SWDUPLB The libref refers to the same physical library as another libref.

−70008 _SWNOPF The file or directory does not exist.

−70008 _SWNOLIB The library does not exist.

−570001 _SWBOF You tried to read the previous observation when you are on the first
observation.

−580015 _SWWREP The WHERE clause has been replaced.

−580016 _SWWAUG The WHERE clause has been augmented.

−580017 _SWWCLR The WHERE clause has been cleared.

−630002 _SWNOREP The file was not replaced because of the NOREPLACE option.

−630004 _SWNOWHR The record no longer satisfies the WHERE clause.



SAS System Return Codes � Mnemonics for SAS System Return Codes 797

Value Mnemonic Description

−630032 _SWSEQ The task requires reading observations in a random order, but the
engine you are using allows only sequential access.

−630032 _SWACMEM Access to the directory will be provided one member at a time.

−630054 _SWNOUPD This record cannot be updated at this time.

−630097 _SWLKUSR The library or library member is locked by another user.

−630098 _SWLKYOU You have already locked the library or library member.

−630099 _SWNOLKH The library or library member is not currently locked.

−630104 _SWPAUAC Pause in I/O, process accumulated data up to this point.

−630105 _SWPAUSL Pause in I/O, slide data window forward and process accumulated
data up to this point.

−630106 _SWPAUU1 Pause in I/O, extra user control point 1.

−630107 _SWPAUU2 Pause in I/O, extra user control point 2.

−670212 _SWKNXL You have locked a library, member, or entry that does not exist yet.

0 _SOK The function was successful.

10008 _SEDEVOF The device is offline or unavailable.

10011 _SENODEL Records cannot be deleted from this file.

20002 _SELOGNM The fileref is assigned to an invalid file.

20004 _SENOASN The libref is not assigned.

20006 _SENOPF The physical file does not exist.

20011 _SEINVDV The device type is invalid.

20012 _SEDTLEN The data length is invalid.

20014 _SEINVLN The libref is not valid.

20015 _SEINVMD The open mode is invalid.

20017 _SEINVPN The physical name is invalid.

20018 _SEINVPS The value of the File Data Buffer pointer is invalid.

20025 _SEOBJLK The file or directory is in exclusive use by another user.

20029 _SENOACC You do not have the level of access required to open the file in the
requested mode.

20030 _SENODLT The file could not be deleted.

20031 _SENOLNM The libref is not available for use.

20032 _SENORD The file is not opened for reading.

20034 _SENORNG There is no write ring in the tape opened for write access.

20035 _SENOERT The file is not open for writing.

20036 _SEFOPEN The file is currently open.

20037 _SENOOPN The file or directory is not open.

70002 _SEINVLB The library is not in a valid format for the access method.

70004 _SEDUPLB The libref refers to the same physical library as another libref.

70006 _SEIBASN The specified libref is not assigned.



798 Mnemonics for SAS System Return Codes � Chapter 15

Value Mnemonic Description

70006 _SELGASN The specified libref is not assigned.

70009 _SENOMEM The member does not exist.

70015 _SEBDMT The member type specification is invalid.

70018 _SEDSMOD The data set is not open in the correct mode for the specified
operation.

70022 _SEINVON The option name is invalid.

70023 _SEINVOV The option value is invalid.

70025 _SEINUSE The library or member is not available for use.

70025 _SELBUSE The library is still in use.

70028 _SEMLEN The member name is too long for this system.

70029 _SELBACC The action requested cannot be performed because you do not have
the required access level on the library.

70030 _SEMBACC You do not have the level of access required to open the data set in
the requested mode.

70030 _SENOOAC You are not authorized for the requested open mode.

70031 _SELOCK The file is locked by another user.

70033 _SEDLT The member was not deleted.

70037 _SENOSAS The file is not a SAS data set.

70039 _SEDSKFL The disk or tape is full.

70040 _SENOWRT You do not have write access to the member.

70045 _SEBAUTH The data set has passwords.

570002 _SENOTRD No record has been read from the file yet.

630006 _SENOUPD The file cannot be opened for update because the engine is read-only.

630008 _SEINDCF The new name conflicts with an index name.

630009 _SEBDIND The index name is not a valid SAS name.

630019 _SEVARCF The new name conflicts with an existing variable name.

630032 _SESEQLB The library is in sequential (tape) format.

630049 _SEDLREC The record has been deleted from the file.

630052 _SERECRD No records have been read from the input file.

630053 _SENOLCK A record-level lock is not available.

630058 _SENOCHN The record was not changed because it would cause a duplicate
value for an index that does not allow duplicates.

630066 _SENORDX The file is not radix addressable.

630087 _SEBDSNM The filename is not a valid SAS name.

630097 _SELKUSR The library or library member locked by another user.

630099 _SENOLKH The library or library member is not currently locked.

630100 _SENOALL _ALL_ is not allowed as part of a filename in this release.

660025 _SENOMAC Member-level access to the data set is denied.



SAS System Return Codes � Mnemonics for SAS System Return Codes 799

Value Mnemonic Description

630025 _SEINTG The add/update action failed because the data value(s) do not
comply with an integrity constraint that uses the index for the
corresponding file.

630188 _SENMCH The observation was not added and/or updated because no match
was found for the foreign key value.

660130 _SEICAU The add/update action failed for the table because the data value(s)
do not comply with the integrity constraints.

660169 _SEICA2 This error is a generic error that represents either _SEICAU or
_SENMCH. This error is returned if the corresponding integrity
constraint was set to return only the user-defined message.



800



801

P A R T5

Appendices

Appendix 1. . . . . . . . .Commands Used with the IMGCTRL, IMGOP and PICFILL
Functions 803

Appendix 2. . . . . . . . .Image File Types and Associated Attributes 845

Appendix 3. . . . . . . . .Recommended Reading 855



802



803

A P P E N D I X

1
Commands Used with the
IMGCTRL, IMGOP and PICFILL
Functions

CONVERT

Converts an image to the specified image type and depth

Syntax

rc=IMGOP(task-id, ’CONVERT’, type);

type
specifies the type of image to convert to:

’GRAY’
a monochrome (black and white) image

’CMAP’
a color-mapped image

’RGBA’
an RGB image
Type: Character

Details

CONVERT performs dithering, quantizing, and other operations in order to reduce an
image to a simpler form. It can also create a two-color (black and white) RGB image by
converting a monochrome image to an RGBA image. Images that are originally
gray-scale or black and white cannot be colorized. CONVERT acts on the currently
selected image.

Example

Convert an RGB image to a dithered monochrome image:

rc=imgop(task-id,’READ’,’rgb.tif’);
rc=imgop(task-id,’CONVERT’,’GRAY’);
rc=imgop(task-id,’WRITE’,’gray.tif’);



804 COPY � Appendix 1

Convert the GRAY image back to RGB. Because all color information is lost, the final
RGB image has only two colors:

rc=imgop(task-id,’READ’,’gray.tif’);
rc=imgop(task-id,’CONVERT’,’RGBA’);
rc=imgop(task-id,’WRITE’,’rgb.tif’);

COPY

Copies an image

Syntax
rc=IMGOP(task-id, ’COPY’, source-image-id<, destination-image-id>);

source-image-id
is the identifier of the image to copy.

Type: Numeric

destination-image-id
is the new identifier of the copied image.

Type: Numeric

Details
COPY copies an image from source-image-id to destination-image-id. That is, it assigns
another image identifier to an image. If destination-image-id is not specified, it copies
to the currently selected image. The copied image is not automatically displayed.

Example

Simulate zooming and unzooming an image:

path=lnamemk(5,’sashelp.imagapp.gkids’,’format=cat’);
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,path);

if (zoom eq 1) then
do;

rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’COPY’,1,2);
rc=imgop(task-id,’SCALE’,width,height);
rc=imgop(task-id,’PASTE’,1,1);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � CREATE_IMAGE 805

if (unzoom=1) then
do;

rc=imgop(task-id,’UNPASTE’);
end;

end;

CREATE_IMAGE

Creates a new image that is stored in memory

Syntax
rc=IMGOP(task-id, ’CREATE_IMAGE’, width, height,

type, depth<, color-map-len>);

width
is the width of the new image in pixels.

Type: Numeric

height
is the height of new image in pixels.

Type: Numeric

type
is the type of the image. These values match the values that QUERYN returns for
type:

1 specifies a GRAY image (1–bit depth)

2 specifies a CMAP image 8–bit depth)

3 specifies an RGB image (24–bit depth)
Type: Numeric

depth
is the depth of the new image. The depth must match the value given for type, above.

Type: Numeric

color-map-len
is the number of colors in the color map. This value is used only with a type of 2
(CMAP). If not specified, it defaults to 256.

Type: Numeric



806 CREATE_IMAGE � Appendix 1

Details

CREATE_IMAGE creates an “empty” image in which all data and color map values are
set to 0 (black). You must use SET_COLORS to set the color map and use SET_PIXEL
to set the pixel values. Note that processing an entire image in this manner can be very
slow.

Example

Copy an image. Note that the COPY command is a much faster way of doing this,
and this example is here to show how to use the commands.

COPY:
width=0; height=0; type=0; depth=0; cmaplen=0;
r=0; g=0; b=0; pixel=0; pixel2=0; pixel3=0;

task-id=imginit(0,’nodisplay’);
task-id2=imginit(0,’nodisplay’);

/* read and query original image */
rc=imgop(task-id,’READ’,’first.tif’);
rc=imgop(task-id,’QUERYN’,’WIDTH’,width);
rc=imgop(task-id,’QUERYN’,’HEIGHT’,height);
rc=imgop(task-id,’QUERYN’,’TYPE’,type);
rc=imgop(task-id,’QUERYN’,’DEPTH’,depth);
rc=imgop(task-id,’QUERYN’,’COLORMAP_LEN’,

cmaplen);

/* Create the new image */
rc=imgop(task-id2,’CREATE_IMAGE’,width,height,

type,depth);

/* Copy the color map */
do i=0 to cmaplen-1;

rc=imgop(task-id,’GET_COLORS’,i,r,g,b);
rc=imgop(task-id2,’SET_COLORS’,i,r,g,b);

end;

/* Copy the pixels */
do h=0 to height-1;

do w=0 to width-1;
rc=imgop(task-id,’GET_PIXEL’,w,h,pixel,

pixel2,pixel3);
rc=imgop(task-id2,’SET_PIXEL’,w,h,pixel,

pixel2,pixel3);
end;

end;

/* Write out the new image */
rc=imgop(task-id2,’WRITE’,’second.tif’,

’format=tif’);
rc=imgterm(task-id);
rc=imgterm(task-id2);

return;



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � CROP 807

CROP

Crops the selected image

Syntax
rc=IMGOP(task-id, ’CROP’, start-x, start-y, end-x, end-y);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’CROP’<, arguments>>);

start-x
is the row number of the upper corner.

Type: Numeric

start-y
is the column number of the upper corner.

Type: Numeric

end-x
is the row number of the lower corner.

Type: Numeric

end-y
is the column number of the lower corner.

Type: Numeric

Details
The start-x, start-y, end-x, and end-y points use units of pixels and are included in the
new image. The top left corner of the image is (0,0).

Example

Display an image and then crop it:

name=lnamemk(1,path);
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,name);

if (crop eq 1) then
do;

rc=imgop(task-id,’CROP’,ucx,ucy,lcx,lcy);
rc=imgop(task-id,’PASTE’,1,1);

end;



808 DESTROY � Appendix 1

DESTROY

Removes an image from memory and from the display

Syntax
rc=IMGOP(task-id, ’DESTROY’<, image-id>);

image-id
contains the identifier of the image to remove.

Type: Numeric

Details
DESTROY removes an image from memory and from the display. Unless image-id is
specified, this command acts on the currently selected image. The command does not
affect the image that is stored in the external file or catalog.

Example

Remove an image from the display:

if (remove=1 and imgnum > 0)
then

rc=imgop(task-id,’DESTROY’,imgnum);

DESTROY_ALL

Removes all images from memory and from the display

Syntax
rc=IMGOP(task-id, ’DESTROY_ALL’);

Details
DESTROY_ALL runs the DESTROY command for all images in memory. The external
image files are not affected.

Example

Remove all images:

if (clear=1) then
rc=imgop(task-id,’DESTROY_ALL’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � DITHER 809

DITHER

Dithers an image to a color map

Syntax
rc=IMGOP(task-id, ’DITHER’<, option>);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’DITHER’<, arguments>>);

option
specifies which color searching algorithm to use. Each algorithm searches the color
map at a different speed. You can specify FS_NORMAL, FS_FAST, FS_FASTER, or
FS_FASTEST. If you specify FS_NORMAL, then SCL exhaustively searches the color
map for the closest match. FS_FAST, FS_FASTER, and FS_FASTEST each use a
progressively faster searching algorithm. These algorithms will find a close color
match but not the closest. Usually, a close match is sufficient. The faster the search,
the less accurate the color match might be. The default option is FS_FASTEST.

Details
DITHER acts on the currently selected image. It dithers an image to the current color
map: the one specified by a previous GENERATE_CMAP, STANDARD_CMAP, or
GRAB_CMAP command.

Like the MAP_COLORS command, DITHER reduces the number of colors in an
image. Unlike the MAP_COLORS command, DITHER attempts to choose colors by
looking at pixels in groups, not as single pixels, and tries to choose groups that will
result in the appropriate color. This is similar to the half-toning algorithm that print
vendors use to show multiple colors with the use of only four ink colors. This command
is much more computationally expensive than the other color-reduction commands, but
it handles continuous-tone images much better.

Example

Dither an image:

if (dither=1) then
do;

rc=imgop(task-id,’GENERATE_CMAP’,’COLORRAMP’,
5,5,4);

rc=imgop(task-id,’DITHER’);
rc=imgop(task-id,’PASTE’);

end;



810 DITHER_BW � Appendix 1

DITHER_BW

Dithers the selected image to a monochrome black and white image

Syntax
rc=IMGOP(task-id, ’DITHER_BW’);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’DITHER_BW’<, arguments>>);

Details
This command reduces an image to a black-and-white image. DITHER_BW is much
more efficient for this task than the general purpose DITHER command.

Example

Dither an image either to black and white or to a color map:

if
(dither=1) then

do;
rc=imgop(task-id,’DITHER_BW’);
rc=imgop(task-id,’PASTE’);

end;
if (dither=2) then

do;
rc=imgop(task-id,’GENERATE_CMAP’,

’COLORRAMP’,5,5,4);
rc=imgop(task-id,’DITHER’);
rc=imgop(task-id,’PASTE’);

end;

EXECLIST

Executes a list of commands

Syntax
rc=IMGOP(task-id, ’EXECLIST’, commandlist-id);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’EXECLIST’<, arguments>>);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � EXECLIST 811

commandlist-id
contains the identifier of the SCL list of commands to pass and execute. The
commands are processed as the task starts. A value of zero means that no list is
passed.

Type: Numeric

Details
EXECLIST provides a mechanism for sending multiple commands to be processed at
one time. If your program includes the same set of commands several times, you can fill
an SCL list with those commands and then use EXECLIST to execute the commands.

Example

Create an SCL list that consists of two sublists. Each sublist contains one item for a
command name and one item for each command argument.

length rc 8;
init:

task-id=imginit(0);
main_list=makelist(0, ’G’);

sub_list1=makelist(0, ’G’);
main_list=setiteml(main_list, sub_list1, 1, ’Y’);
sub_list1=setitemc(sub_list1, ’WSIZE’, 1, ’Y’);
sub_list1=setitemn(sub_list1, 500, 2 , ’Y’);
sub_list1=setitemn(sub_list1, 500, 3 , ’Y’);

sub_list2=makelist(0, ’G’);
main_list=setiteml(main_list, sub_list2, 2, ’Y’);
sub_list2=setitemc(sub_list2, ’WTITLE’, 1, ’Y’);
sub_list2=setitemc(sub_list2, ’EXECLIST example’,

2, ’Y’);
rc=imgop(task-id, ’EXECLIST’, main_list);

return;

main:
return;
term:

rc=imgterm(task-id);
return;



812 FILTER � Appendix 1

FILTER

Applies a filter to an image

Syntax
rc=IMGOP(task-id, ’FILTER’, filter-type, matrix);

filter-type
must be specified as ’CONVOLUTION’. Other filter types will be added in the future.

Type: Character

matrix
contains the matrix size, the filter matrix, the divisor, the bias, and 1 if you want to
use the absolute value of the resulting value. If not specified, the defaults are 1 for
divisor, 0 for bias, and 0 for not using the absolute value. Separate each number with
a space.

Type: Character

Details
The FILTER command supports convolution filters that are provided by users. A filter
matrix is moved along the pixels in an image, and a new pixel value is calculated and
replaced at the pixel that is at the center point of the filter matrix. The new value is
determined by weighting nearby pixels according to the values in the filter matrix.

A detailed explanation of the concept and theory behind filtering is beyond the scope
of this document. However, it is explained in many textbooks. For example, see Digital
Image Processing, by Rafael Gonzalez and Paul Wintz, and The Image Processing
Handbook, by John C. Russ.

The equation that FILTER uses is shown in Figure A1.1 on page 813.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � FILTER 813

Figure A1.1 Calculating New Pixel Values

Example

Consider the following 3x3 matrix:

-1 -2 -3
4 5 6
-7 8 -9



814 GAMMA � Appendix 1

Design the matrix with a divisor of 1 and a zero bias, and use the absolute value of the
answer:

matrix="3 -1 -2 -3 4 5 6 -7 8 -9 1 0 1";
rc=imgop(tid,’FILTER’,"CONVOLUTION",matrix);

Note: Calculated values that are larger than 255 are normalized to 255, and
calculated values that are smaller than zero are normalized to zero. If 1 is set for
’absolute value’, then negative numbers are converted to positive numbers before
normalization.

A filter selection and creation window is available. An example of using it is in the
image sample catalog (imagedmo) named FILTEXAM.FRAME. It is essentially the
same window that is used in the Image Editor. It accesses the filters that are shipped
with the Image Editor. �

GAMMA

Applies a gamma value to the selected image

Syntax
rc=IMGOP(task-id, ’GAMMA’, gamma-value);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’GAMMA’ <, arguments>>);

gamma-value
is the gamma value to apply to the image.

Type: Numeric

Details
GAMMA corrects the image by either darkening or lightening it. Gamma values must
be positive, with the most useful values ranging between 0.5 and 3.0. A gamma value of
1.0 results in no change to the image. Values less than 1.0 darken the image, and
values greater than 1.0 lighten it.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � GENERATE_CMAP 815

Example

Apply a gamma value that has previously been stored in GAMNUM:

if
(gamma eq 1) then

do;
rc=imgop(task-id,’GAMMA’,gamnum);
if (rc ne 0) then _msg_=’gamma error’;
rc=imgop(task-id,’PASTE’);

end;

GENERATE_CMAP

Generates a color map for the selected image

Syntax

rc=IMGOP(task-id, ’GENERATE_CMAP’, COLORRAMP, reds, greens, blues);

rc=IMGOP(task-id, ’GENERATE_CMAP’, GRAYRAMP, n);

reds
is the number of red colors to generate.

Type: Numeric

greens
is the number of green colors to generate.

Type: Numeric

blues
is the number of blue colors to generate.

Type: Numeric

n
is the number of gray colors to generate.

Type: Numeric

Details

GENERATE_CMAP generates two kinds of color maps:

COLORRAMP
is a color ramp of RGB colors that fill the RGB color spectrum, given the desired
number of red, green, and blue shades to use. This command generates a color
map of reds�greens�blues colors, with a maximum of 256 colors allowed. It is
possible to generate a color map that consists only of reds, greens, or blues by
specifying that only one shade be used for the other two colors.



816 GET_BARCODE � Appendix 1

GRAYRAMP
is a color map that consists only of grays. The number of shades of gray is limited
to 256.

After the color map is generated, it can be applied to an image with either the
DITHER command or the MAP_COLORS command.

Example

Use the GENERATE_CMAP command to generate a color ramp and a gray ramp,
each containing 100 color map entries:

gray:
rc=imgop(task-id,’GENERATE_CMAP’,’GRAYRAMP’,100);

return;

color:
rc=imgop(task-id,’GENERATE_CMAP’,’COLORRAMP’,5,5,4);

return;

GET_BARCODE

Returns the value of the specified bar code

Syntax
rc=IMGOP(task-id, ’GET_BARCODE’, bar-code-type,

return-string<, x1, y1, x2, y2>);

bar-code-type
is a character string that contains one value from the following list:

’CODE39’ code 39 bar codes

’CODE39X’ extended code 39 bar codes

’CODE128’ code 128 bar codes.
Type: Character

return-string
contains the returned value. Remember to make this variable long enough to hold
the longest value that could be returned.

Type: Character

x1,y2
are the upper coordinates of the area in the image to search for the bar code. The
default is 0,0.

x2,y2
are the lower coordinates of the area in the image to search for the bar code. The
default is the width and height of the image. Note that the area specified for the
bar-code location can be larger than the bar code. This area should be relatively free
of things like other text.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � GET_COLORS 817

Details
Given an image with a bar code, the GET_BARCODE command attempts to decode the
bar code and then returns the value of the bar code. The bar code can be decoded only if
it is clear in the image. The DPI resolution that is used when the image is scanned
determines how clearly the bar code appears in the image. Below 200 DPI, recognition
is very poor.

Example

Return the value of the bar code that is located in the 10,10,300,200 area of the
image:

rc=imgop(taskid,’GET_BARCODE’,’CODE39’,retstring,
10,10,300,200);

GET_COLORS

Returns the RGB values of the index positions of a color map for the selected image

Syntax
rc=IMGOP(task-id, ’GET_COLORS’, index, red, green, blue);

index
contains the identifier for the color map index.

Type: Numeric

red
is the red value for the index.

Type: Numeric

green
is the green value for the index.

Type: Numeric

blue
is the blue value for the index.

Type: Numeric

Details

The color values must be between 0 and 255. If index is outside the valid range for the
color map, an error is returned.

Example

See the example for “CREATE_IMAGE” on page 805.



818 GET_PIXEL � Appendix 1

GET_PIXEL

Returns the pixel value of a specified position in the selected image

Syntax
rc=IMGOP(task-id, ’GET_PIXEL’, x, y, red<, green, blue>);

x
is the row location in the image.

Type: Numeric

y
is the column location in the image.

Type: Numeric

red
is either the red value of an RGB image or the pixel value for a CMAP or GRAY
image.

Type: Numeric

green
is the green value for an RGB image and is ignored for all others.

Type: Numeric

blue
is the blue value for an RGB image and is ignored for all others.

Type: Numeric

Details
The color values for a CMAP image or an RGB image must be between 0 and 255. If
any value is out of range, an error is returned. For a GRAY image, GET_PIXEL returns
a red value of either 0 or 1.

Example

See the example for “CREATE_IMAGE” on page 805.

GRAB_CMAP

Grabs the color map from the selected image

Syntax
rc=IMGOP(task-id, ’GRAB_CMAP’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � MAP_COLORS 819

Details
After the color map is grabbed, it can be applied to another image with either the
DITHER command or the MAP_COLORS command.

Example

Grab the color map of one image and then apply it to another image with the
DITHER command:

rc=imgop(task-id,’READ’,’image-1’);
rc=imgop(task-id,’GRAB_CMAP’);
rc=imgop(task-id,’READ’,’image-2’);
rc=imgop(task-id,’DITHER’);

MAP_COLORS

Maps colors to the closest colors in the selected color map

Syntax
rc=IMGOP(task-id, ’MAP_COLORS’<, option>);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’MAP_COLORS’ <, arguments>>);

option
specifies the order in which the colors are to be mapped. By default, the colors are
mapped in an order that is defined by an internal algorithm. Specify ’SAME_ORDER’
to force the color map of the image to be in the same order as the selected color map.

Type: Character

Details
MAP_COLORS acts on the currently selected image. Like the DITHER and
QUANTIZE commands, MAP_COLORS reduces the number of colors in a color image.
Unlike DITHER, MAP_COLORS attempts to choose colors by looking at pixels
individually, not in groups. This technique is much less computationally expensive than
DITHER, although it does not handle continuous-tone images as well.

Continuous-tone images contain many shades of colors. Because MAP_COLORS
maps the colors in an image to their closest colors in the color map, many of the shades
of a color re-map to the same color in the color map. This can reduce the detail in the
image. For example, a continuous-tone, black-and-white image would contain several
shades of gray in addition to black and white. When MAP_COLORS re-maps the colors
in the image, the shades of gray are mapped to either black or white, and much of the
detail in the image is lost.

Unlike the QUANTIZE command, MAP_COLORS is passed a particular color map to
use. Therefore, multiple images can be reduced to the same color map, further reducing
the number of colors used in a frame that contains multiple images. The algorithm
looks at each pixel in the image and determines the closest color in the color map. This



820 MIRROR � Appendix 1

type of algorithm works best for images that are not continuous-tone images, such as
charts, cartoon images, and so on.

Specify the option ’SAME_ORDER’ if you are mapping several images and you want
the color map to be identical for all of them.

Example

Grab the color map of one image and then apply it to another image with the
MAP_COLORS command:

rc=imgop(task-id,’READ’,image1);
rc=imgop(task-id,’GRAB_CMAP’);
rc=imgop(task-id,’READ’,image2);
rc=imgop(task-id,’MAP_COLORS’);

MIRROR

Mirrors an image

Syntax
rc=IMGOP(task-id, ’MIRROR’);

Details
MIRROR acts on the currently selected image. It flips an image on its vertical axis,
resulting in a “mirror” copy of the original image.

Example

Mirror an image:

if (mirror=1) then
rc=imgop(task-id,’MIRROR’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � PASTE 821

NEGATE

Changes an image to a negative

Syntax
rc=IMGOP(task-id, ’NEGATE’);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’NEGATE’<, arguments>>);

Details
NEGATE acts on the currently selected image. It creates a photographic negative of the
image by reversing the use of dark/light colors. The negative is created by replacing
each color with its complement.

Example

Create a negative of an image:

if (negative=1) then
rc=imgop(task-id,’NEGATE’);

PASTE

Displays an image at a specified location

Syntax
rc=IMGOP(task-id, ’PASTE’<, x, y>);

x
is the X coordinate of the top left corner of the image.

Type: Numeric

y
is the Y coordinate of the top left corner of the image.

Type: Numeric

Details
PASTE acts on the currently selected image. If no coordinates are specified, the selected
image is displayed either at location 0,0 or at the coordinates that were set by a
previous PASTE. To set new coordinators, you can use a PASTE command with no image
specified. Coordinates that are specified by a new PASTE override previous settings.



822 PASTE_AUTO � Appendix 1

Example

Display an image with its upper left corner at 200, 200:

if (display=1) then
rc=imgop(task-id,’PASTE’,200,200);

PASTE_AUTO

Displays an image automatically

Syntax
rc=IMGOP(task-id, ’PASTE_AUTO’<, x, y>);

x
is the X coordinate (on the display) of the top left corner of the image.

Type: Numeric

y
is the Y coordinate (on the display) of the top left corner of the image.

Type: Numeric

Details
PASTE_AUTO acts on the currently selected image. It provides the same basic function
as PASTE. In addition, PASTE_AUTO modifies an image by dithering it (changing the
color map) or quantizing it (reducing the number of colors it uses), so that you can
display it on the current device. It also attempts to prevent switching to false colors or
to a private color map.

Example

Automatically display an image with its upper left corner at 200, 200:

if (display=1) then
rc=imgop(task-id,’PASTE_AUTO’,200,200);

PRINT

Prints an image

Syntax
rc = IMGOP(task-id, ’PRINT’<, x, y<, width, height<, type>>>);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � PRINT 823

x
is the X coordinate (on the page) of the top left corner of the image.

Type: Numeric

y
is the Y coordinate (on the page) of the top left corner of the image.

Type: Numeric

width
specifies either the actual width in pixels or a scaling factor for the width.

Type: Numeric

height
specifies either the actual height in pixels or a scaling factor for the height.

Type: Numeric

type
specifies the type to convert the image to before the image is printed. You can specify
one of the following:

CMAP color mapped image (maximum of 256 colors)

GRAY gray-scale image

MONOCHROME two-color (black and white) image

RGBA true-color image.
Type: Character

Details

By default, PRINT centers the image. If you do not specify the width and height,
PRINT fills the page.

If you want to specify either x or y, you must specify both. Also, if you want to
specify either width or height, you must specify both. If you specify only one option in
either of these pairs, PRINT uses the default values for both options in the pair. For
example, if you specify the width but not the height, PRINT uses the default values for
both the width and the height.

Use options x and y to position the image on the page. To center an image, specify -1
for the dimension in which you want to center the image (either x or y, or both). For
example, if x is 0 and y is 999999, then the image will be printed in the lower left
corner. If both x and y are 0, then the image will be printed in the upper left corner. If
both x and y are -1, then the image will be printed in the center of the page.

To specify the actual width or height that you want to use to print the image, specify
a positive number. To use the actual image size, specify 0 for both width and height. To
scale the image, specify the scaling factor as a negative number. A scaling factor of
-100 prints the image without scaling it up or down. A scaling factor of -150 is a
scaling factor of 150 percent, and -50 is a scaling factor of 50 percent.

To keep the same aspect ratio, specify 0 for either width or height. For example, if
you specify -75 for one option and 0 for the other, PRINT scales the image by 75 percent
while keeping the same aspect ratio. You cannot specify 0 for both width and height.

If the scaling factor that you specify is larger than the easel, PRINT reduces the
factor to the size of the easel. If the combination of options that you specify would
position the image off the page, then the width and height options take priority, and the
position is adjusted so that the image fits on the page.



824 QUANTIZE � Appendix 1

Examples
� Position the image in the lower right corner:

rc=imgop(task-id,’PRINT’,999999,999999);

� Print the image in the center of the page and use the actual pixel size:

rc=imgop(task-id,’PRINT’,-1,-1,-100,-100);

� Scale the image up to fill the whole page:

rc=imgop(task-id,’PRINT’,0,0,-99999,-99999);

� Scale the image up by 150 percent:

rc=imgop(task-id,’PRINT’,0,0,-150,-150);

� Scale the width to 200 percent and keep the same aspect ratio:

rc=imgop(task-id,’PRINT’,0,0,-200,0 );

� Print the image with a width of 200 and keep the same aspect ratio:

rc=imgop(task-id,’PRINT’,0,0,200,0);

� Scale the width by 150 percent and use a height of 99:

rc=imgop(task-id,’PRINT’,0,0,-150,99);

� Fill in one direction and keep the same aspect ratio:

rc=imgop(task-id,’PRINT’,0,0,99999,0);

� Fill the page with the image:

rc=imgop(task-id,’PRINT’,0,0,99999,99999);

QUANTIZE
Reduces the number of colors used for an image

Syntax
rc = IMGOP(task-id, ’QUANTIZE’, colors);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’QUANTIZE’<, arguments>>);

colors
is the number of colors to use for the image. The value of the colors variable must be
between 2 through 256.

Type: Numeric

Details
QUANTIZE acts on the currently selected image. It generates a color-mapped image for
which the command assigns the values in the color map. QUANTIZE results in a very



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � QUERYC, QUERYL, and QUERYN 825

good approximation of the image, with the possible negative effect that two or more
images that are quantized to the same number of colors might still use different colors
for each image. (The algorithm is an adaptation of the Xiaolin Wu algorithm, as
described in Graphics Gems II.*)

Example

Reduce the number of colors for an image to the number stored in NUMCOLOR:

if (quantize eq 1) then
rc=imgop(task-id,’QUANTIZE’,numcolor);

QUERYC, QUERYL, and QUERYN

Query information about images

Syntax
rc=IMGOP(task-id, ’QUERYC’, attribute, information);

rc=IMGOP(task-id, ’QUERYL’, attribute, list-id);

rc=IMGOP(task-id, ’QUERYN’, attribute, information);

attribute
is the value to report. Attributes for QUERYC are listed in “Attributes for the
QUERYC Command” on page 825. Attributes for QUERYL are listed in “Attributes
for the QUERYL Command” on page 826. Attributes for QUERYN are listed in
“Attributes for the QUERYN Command” on page 827.

Type: Character

information
contains the information that is returned by QUERYC and QUERYN. QUERYC
returns a character value, and QUERYN returns a numeric value.

Type: Character or Numeric

list-id
contains the identifier for the SCL list of information items that are returned by
QUERYL. See attribute for details.

Type: List

Attributes for the QUERYC Command
The values for attribute for QUERYC are:

DESCRIPT
returns information about the image size and color map. The information can be
up to 45 characters long.

* Wu, Xiaolin (1991), “ Efficient Statistical Computations for Optimal Color Quantization,” in Graphics Gems II, ed. J. Arvo,
Boston: Academic Press, 126–133.



826 QUERYC, QUERYL, and QUERYN � Appendix 1

FILENAME
returns the image-path string.

FORMAT
returns the original file format, such as GIF.

TYPE
returns the IMAGE type, which can be ’CMAP’, ’GRAY’, or ’RGBA’.

Attributes for the QUERYL Command
The values for attribute for QUERYL are:

ACTIVE_LIST
returns an SCL list that contains the identifiers for all active images (images that
are being used but that are not necessarily visible).

GLOBAL_INFO
returns a named list that contains the following items:

NUM_ACTIVE
is the number of active images that are used but not necessarily visible.

SELECT
is the identifier of the currently selected image.

WSIZE_WIDTH
is the window width in pixels.

WSIZE_HEIGHT
is the window height in pixels.

SELECT_INFO
returns a named SCL list that contains the numeric values for the currently
selected image:

IS_ACTIVE
has a value of 1 if the image is being used and if data is associated with it. If
IS_ACTIVE=1, the following items are also returned:

WIDTH the image width in pixels

HEIGHT the image height in pixels

DEPTH the image depth

TYPE the image type: ’CMAP’, ’GRAY’, ’RGBA’

IS_VISIBLE
has a value of 1 if the image is being displayed.

XPOSN
is the x position.

YPOSN
is the y position.

NCOLORS
is the number of colors, if TYPE=’CMAP’ (color mapped)

RDEPTH
is the red depth, if TYPE=’RGBA’

GDEPTH
is the green depth, if TYPE=’RGBA’



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � QUERYC, QUERYL, and QUERYN 827

BDEPTH
is the blue depth, if TYPE=’RGBA’

ADEPTH
is the alpha depth (degree of transparency), if TYPE=’RGBA’

VISIBLE_LIST
returns an SCL list that contains the identifiers for all currently displayed images.

Attributes for the QUERYN Command

The values for attribute for QUERYN are:

ADEPTH
returns the alpha depth (degree of transparency), if TYPE=3 (RGBA).

BDEPTH
returns the blue depth, if TYPE=3 (RGBA).

COLORMAP-LEN
returns the size of the color map.

DEPTH
returns the image depth.

GDEPTH
returns the green depth, if TYPE=3 (RGBA).

HEIGHT
returns the image height in pixels.

IS_BLANK
returns a value that indicates whether the current page is blank:

1 blank

0 not blank (valid for monochrome images only).

NCOLORS
returns the number of colors.

RDEPTH
returns the red depth, if TYPE=3 (RGBA).

SELECT
returns the identifier of the currently selected image.

TYPE
returns the image type:

1 GRAY (gray-scale)

2 CMAP (color mapped)

3 RGBA.

WIDTH
returns the image width in pixels.



828 QUERYC, QUERYL, and QUERYN � Appendix 1

Details
The QUERYC, QUERYL, and QUERYN commands return information about all images
as well as about the Image window. QUERYC returns the values of character
attributes. QUERYL returns the values of attributes that are stored in an SCL list.
QUERYN returns the values of numeric attributes. These commands act on the
currently selected image.

Examples

Example 1: Using QUERYC Display the description, filename, format, and type of an
image:

rc=imgop(task-id,’READ’,
’/usr/local/images/color/misc/canoe.gif’);

rc=imgop(task-id,’QUERYC’,’DESCRIPT’,idescr);
put idescr=;
rc=imgop(task-id,’QUERYC’,’FILENAME’,ifile);
put ifile=;
rc=imgop(task-id,’QUERYC’,’FORMAT’,iformat);
put iformat=;
rc=imgop(task-id,’QUERYC’,’TYPE’,itype);
put itype=;

This program writes the following lines to the LOG window:

IDESCR=640x480 8-bit CMAP, 256 colormap entries
IFILE=/usr/local/images/color/misc/canoe.gif
IFORMAT=GIF
ITYPE=CMAP

Example 2: Using QUERYL
� Display the number of active images:

qlist=0;
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ’,path1);
rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’READ’,path2);
rc=imgop(task-id,’PASTE’);
rc=imgop(task-id,’QUERYL’,’ACTIVE_LIST’,qlist);
images=listlen(qlist);
put images=;

This program writes the following line to the LOG window:

images=2

� Display an SCL list of information about the current image:

qlist=makelist();
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYL’,’SELECT_INFO’,qlist);
call putlist(qlist);

This program writes the following information to the LOG window:

(IS_ACTIVE=1 IS_VISIBLE=0 XPOSN=0 YPOSN=0 WIDTH=1024
HEIGHT=768 DEPTH=8 TYPE=’CMAP’ NCOLORS=253 )[18]



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � READ 829

� Display an SCL list of information about the Image window:

qlist=makelist();
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYL’,’GLOBAL_INFO’,qlist);
call putlist(qlist);

This program writes the following lines to the LOG window:

(NUM_ACTIVE=1 SELECT=1 WSIZE_WIDTH=682
WSIZE_HEIGHT=475 )[20]

Example 3: Using QUERYN Display information about the Image window. (Assume
that all variables have been initialized before they are used.)

rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYN’,’SELECT’,select);
rc=imgop(task-id,’QUERYN’,’HEIGHT’,height);
rc=imgop(task-id,’QUERYN’,’WIDTH’,width);
rc=imgop(task-id,’QUERYN’,’DEPTH’,depth);
rc=imgop(task-id,’QUERYN’,’RDEPTH’,rdepth);
rc=imgop(task-id,’QUERYN’,’GDEPTH’,gdepth);
rc=imgop(task-id,’QUERYN’,’BDEPTH’,bdepth);
rc=imgop(task-id,’QUERYN’,’ADEPTH’,adepth);
rc=imgop(task-id,’QUERYN’,’NCOLORS’,ncolors);
rc=imgop(task-id,’QUERYN’,’TYPE’,type);
put select= height= width= depth= rdepth= gdepth=;
put bdepth= adepth= ncolors= type= ;

This program writes the following values to the LOG window:

SELECT=1 HEIGHT=470 WIDTH=625 DEPTH=8 RDEPTH=0
GDEPTH=0 BDEPTH=0 ADEPTH=0 NCOLORS=229 TYPE=2

READ

Reads an image from an external file, a SAS catalog, or a scanner

Syntax

rc=IMGOP(task-id, ’READ’, image-path<, attributes>);

rc=IMGOP(task-id, ’READ’, driver, ’DEVICE=type<attributes>’);

image-path
is either the pathname of the external file that contains the image or the path string
that is returned by the LNAMEMK function.

Type: Character



830 READ � Appendix 1

driver
Currently only the TWAIN driver is supported (and only on the Windows operating
environment). If you specify a driver, then you must use the DEVICE= attribute to
indicate the type of device.

Type: Character

type
the type of device: SCANNER or CAMERA

attributes
are file- or device-specific attributes. See “Attributes for Reading Image Files” on
page 847 for possible choices.

Type: Character

Details
READ acts on the currently selected image. You can specify the file directly (using its
physical filename path), or use the information returned by a previous LNAMEMK
function call. The LNAMEMK function creates a single character variable that contains
information about the location of the image (even if it resides in a SAS catalog), as well
as other image attributes.

The FORMAT= attribute must be specified for Targa images, for images that reside
in SAS catalogs, and for host-specific formats. FORMAT is not required in other cases,
but it is always more efficient to specify it.

Examples
� Read an image that is stored in a SAS catalog:

path=lnamemk(5,’sashelp.imagapp.gfkids’,’format=cat’);
rc=imgop(task-id,’READ’,path);

� Specify a file in the READ command:

rc=imgop(task-id,’READ’,’/usr/images/color/sign.gif’);

� Read from a scanner:

rc=imgop(task-id,’READ’,’twain’,’device=scanner dpi=100’);

� Read from a camera:

rc=imgop(task-id,’READ’,’twain’,’device=camera’);

� Read a Portable Networks Graphics image:

rc=imgop(taskid,’READ’,’/images/test.png’,’format=PNG’);

� Read an image and wait 5 seconds before displaying the image after each PASTE
command:

rc=imgop(taskid,’READ’,path);
rc=imgop(taskid,’PASTE’);
rc=imgctrl(taskid,’WAIT’,5);
rc=imgop(taskid,’READ’,path2);
rc=imgop(taskid,’PASTE’);
rc=imgctrl(taskid,’WAIT’,5);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � READ_PASTE 831

READ_CLIPBOARD

Reads an image from the host clipboard

Syntax
rc=IMGOP(task-id, ’READ_CLIPBOARD’);

Details
READ_CLIPBOARD acts on the currently selected image. On some hosts, the clipboard
can be read only after you use the WRITE_CLIPBOARD command.

Example

Read an image from the clipboard and display it:

rc=imgop(task-id,’READ_CLIPBOARD’);
rc=imgop(task-id,’PASTE’);

READ_PASTE

Reads and displays an image

Syntax
rc=IMGOP(task-id, ’READ_PASTE’, x, y, image-path<, attributes>);

x
is the X coordinate of the top left corner of the image.

Type: Numeric

y
is the Y coordinate of the top left corner of the image.

Type: Numeric

image-path
contains either the pathname of the external file that contains the image or the path
string that is returned by the LNAMEMK function.

Type: Character

attributes
are file-specific attributes. See “Attributes for Reading Image Files” on page 847 for
possible choices.

Type: Character



832 READ_PASTE_AUTO � Appendix 1

Details
READ_PASTE acts on the currently selected image. It provides the same functionality
as READ plus PASTE. Notice that x and y are required.

Example

Read and paste an image that is stored in a SAS catalog:

path=lnamemk(5,’sashelp.imagapp.gfkids’,
’format=cat’);

rc=imgop(task-id,’READ_PASTE’,1,1,path);

READ_PASTE_AUTO

Reads and automatically displays an image

Syntax
rc=IMGOP(task-id, ’READ_PASTE_AUTO’, x, y, image-path<, attributes>);

x
is the X coordinate of the top left corner of the image.

Type: Numeric

y
is the Y coordinate of the top left corner of the image.

Type: Numeric

image-path
contains either the pathname of the external file that contains the image or the path
string that is returned by the LNAMEMK function.

Type: Character

attributes
are file-specific attributes. See “Attributes for Reading Image Files” on page 847 for
possible choices.

Type: Character

Details
READ_PASTE_AUTO acts on the currently selected image. It provides the same
functionality as READ plus PASTE_AUTO. Notice that x and y are required.

Example

Read and automatically paste an image that is stored in a SAS catalog:

path=lnamemk(5,’sashelp.imagapp.gfkids’,’format=cat’);
rc=imgop(task-id,’READ_PASTE_AUTO’,1,1,path);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � ROTATE 833

ROTATE

Rotates an image clockwise by 90, 180, or 270 degrees

Syntax
rc=IMGOP(task-id, ’ROTATE’, degrees);

region-id=PICFILL(graphenv-id, type, ulr, ulc, lrr, lrc, source<, ’ROTATE’<,
arguments>>);

degrees
is the number of degrees to rotate the image: 90, 180, or 270.

Type: Numeric

Details
ROTATE acts on the currently selected image.

Example

Rotate an image the number of degrees stored in RV:

main:
rc=imgop(task-id,’READ’,path);
if (rv ge 90) then

do;
rc=imgop(task-id,’ROTATE’,rv);
rc=imgop(task-id,’PASTE’);

end;
return;



834 SCALE � Appendix 1

SCALE

Scales an image

Syntax

rc=IMGOP(task-id, ’SCALE’, width, height<, algorithm>);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’SCALE’<, arguments>>);

width
is the new width of the image (in pixels).

Type: Numeric

height
is the new height of the image (in pixels).

Type: Numeric

algorithm
specifies which scaling algorithm to use:

BILINEAR
computes each new pixel in the final image by averaging four pixels in the source
image and using that value. The BILINEAR algorithm is more computationally
expensive than LINEAR, but it preserves details in the image better.

LINEAR
replicates pixels when the image is scaled up and discards pixels when the image
is scaled down. The LINEAR algorithm yields good results on most images.
However, it does not work very well when you are scaling down an image that
contains small, but important, features such as lines that are only one pixel wide.
LINEAR is the default.
Type: Character

Details

SCALE acts on the currently selected image. It scales the image to a new image. If you
specify -1 for either width or height, then SCALE preserves the image’s aspect ratio.

Example

Double the size of an image:

main:
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYN’,’WIDTH’,width);
rc=imgop(task-id,’SCALE’,2*width,-1);
rc=imgop(task-id,’PASTE’);

return;



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � SELECT 835

SELECT

Selects the image identifier to be used in other commands

Syntax
rc=IMGOP(task-id, ’SELECT’<, image-id>);

image-id
contains the identifier of the image to select. The value of image-id must be between
1 and 999. The default is 1. Using a value of 32 or less is more efficient.

Type: Numeric

Details
The SELECT command enables you to work with more than one image. The command
specifies the image identifier to be used in all subsequent commands until another
SELECT command is issued.

Only the COPY, DESTROY, and UNPASTE commands can act on either the
currently selected image or on a specified image identifier.

Example

Display two images at once:

rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,path1);
rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’READ_PASTE’,200,200,path2);



836 SET_COLORS � Appendix 1

SET_COLORS

Assigns the RGB values for the index positions of a color map for the current image

Syntax
rc=IMGOP(task-id, ’SET_COLORS’, index, red, green, blue);

index
contains the identifier for the color map index.

Type: Numeric

red
is the red value for the index.

Type: Numeric

green
is the green value for the index.

Type: Numeric

blue
is the blue value for the index.

Type: Numeric

Details
SET_COLORS acts on the currently selected image. It can be used with either a new
image or an existing image. If index is outside the valid range for the color map, an
error is returned. The color values must be between 0 and 255.

Example

See the example for “CREATE_IMAGE” on page 805.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � SET_PIXEL 837

SET_PIXEL

Assigns the pixel value in an image at the specified position

Syntax
rc=IMGOP(task-id, ’SET_PIXEL’, x, y, red<, green, blue>);

x
is the row location in the image.

Type: Numeric

y
is the column location in the image.

Type: Numeric

red
is either the red value of an RGB image or the pixel value for a CMAP or GRAY
image.

Type: Numeric

green
is the green value for an RGB image and is ignored for all other image types.

Type: Numeric

blue
is the blue value for an RGB image and is ignored for all other image types.

Type: Numeric

Details
SET_PIXEL acts on the currently selected image. It can be used with either a new
image or an existing image. The colors for a CMAP and an RGB image must be
between 0 and 255. If any value is out of range, an error is returned. For a GRAY
image, SET_PIXEL returns either 0 or 1 for red.

CAUTION:
Image data can be destroyed. Use this function carefully, or you can destroy your
image data. SET_PIXEL overwrites the image data in memory and thus destroys the
original image. �

Example

See the example for “CREATE_IMAGE” on page 805.



838 STANDARD_CMAP � Appendix 1

STANDARD_CMAP

Selects a color map

Syntax
rc=IMGOP(task-id, ’STANDARD_CMAP’, color-map);

color-map
is the color map to designate as the current color map.

BEST
is a special, dynamic color map that can contain up to 129 colors. The color map
contains the 16 personal computer colors, a set of grays, and an even distribution of
colors. The colors are dynamically selected, based on the capabilities of the display
and on the number of available colors. The best set of colors is chosen accordingly.

COLORMIX_CGA
is the 16-color personal computer color map.

COLORMIX_192
is a 192-color blend.

DEFAULT
is an initial set of colors that is chosen by default. The available colors may vary
between releases of the SAS System.

SYSTEM
is the color map for the currently installed device or system. The color map that
STANDARD_CMAP obtains is a “snapshot” of the color map for the current device
and does not change when the device’s color map changes.

The System colormap does not exist for non-PseudoColor X Window System
displays or for PCs with more than 256 colors.
Type: Character

Details
STANDARD_CMAP specifies that the current color map should be filled with one of the
“standard” image color maps. This new color map can be applied to any image by using
either the DITHER command or the MAP_COLORS command.

Example

Select a new color map and use the DITHER command to apply it to an image:

rc=imgop(task-id,’STANDARD_CMAP’,’COLORMIX_CGA’);
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’DITHER’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � TILE 839

THRESHOLD

Converts a color image to black and white, using a threshold value

Syntax
rc=IMGOP(task-id, ’THRESHOLD’, value);

value
is a threshold value for converting standard RGB values to monochrome. Value can
be:

1...255 sets the threshold that determines whether a color maps to black
or white

0 defaults to 128

-1 calculates the threshold value by averaging all pixels in the image.
Type: Numeric

Details
The THRESHOLD command acts on either the currently selected image or on the
image specified by task-id. It enables documents that are scanned in color to be
converted to monochrome for applying optical character recognition (OCR) and for other
purposes. Dithering is not a good technique for converting images when OCR is used.

The threshold is a color value that acts as a cut-off point for converting colors to
black and white. All colors greater than the threshold value map to white, and all
colors less than or equal to the threshold value map to black.

The algorithm weights the RGB values, using standard intensity calculations for
converting color to gray scale.

TILE

Replicates the current image

Syntax
rc=IMGOP(task-id, ’TILE’, new-width, new-height);

new-width
is the width (in pixels) for the tiled images to fill.

Type: Numeric

new-height
is the height (in pixels) for the tiled images to fill.

Type: Numeric



840 UNPASTE � Appendix 1

Details
TILE acts on the currently selected image. The area defined by new-width�new-height
is filled beginning in the upper left corner. The current image is placed there. Copies of
the current image are added to the right until the row is filled. This process then starts
over on the next row until the area defined by new-width�new-height is filled. For
example, if the current image is 40�40 and new-width�new-height is 200�140, then
the current image is replicated 5 times in width and 3.5 times in height. This technique
is useful for creating tiled backdrops.

Note: Before tiling an image, you must turn off the SCALE option for the image. �

Example

Create a 480�480 tiled image from a 48�48 image:

rc=imgop(task-id,’READ’,’sashelp.c0c0c.access’,’format=cat’);
rc=imgop(task-id,’TILE’,480,480);

UNPASTE

Removes an image from the display

Syntax
rc=IMGOP(task-id, ’UNPASTE’<, image-id>);

image-id
contains the identifier of the image to remove from the display.

Type: Numeric

Details
UNPASTE acts either on the currently selected image or on the image specified by
image-id. The image is removed from the display, but it is not removed from memory.
UNPASTE enables you to remove an image from the display and to later paste it
without re-reading it.

Example

Display two images at once and then remove one of them:

rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,name1);
rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’READ_PASTE’,200,200,name2);
...more SCL statements...
if (omit=1) then

rc=imgop(task-id,’UNPASTE’,1);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � WRITE 841

WRAISE

Raises the Image window

Syntax

rc=IMGCTRL(task-id, ’WRAISE’);

Details

WRAISE attempts to force the Image window to the top of the display as long as the
IMGOP or IMGCTRL commands are executing. This command might not be executed
by some window managers. Note that when you start the image task with the
IMGINIT function, you can specify the TOPWINDOW option to force the window to
always be on top.

Example

Raise the Image window to the top of the display:

pop:
rc = imgctrl(task-id,’WRAISE’);

return;

WRITE

Writes an image to a file or to a SAS catalog

Syntax

rc=IMGOP(task-id, ’WRITE’, image-path<, attributes>);

image-path
contains either the pathname of the external file that contains the image or the path
string that is returned by the LNAMEMK function.

Type: Character

attributes
lists attributes that are specific to the file type. See “Attributes for Writing Image
Files” on page 849.

Type: Character



842 WRITE_CLIPBOARD � Appendix 1

Details
WRITE writes the currently selected image to an external file. The file can be specified
either directly (using its physical filename path) or by using the information that was
returned by a previous LNAMEMK function call. The LNAMEMK function creates a
character variable that contains information about the location of the image (even if it
is to reside in a SAS catalog), as well as information about other image attributes.

The FORMAT= attribute (described in “Attributes for Writing Image Files” on page
849) must be specified if image-path does not include that information.

Examples
� Write an image to a SAS catalog:

path=lnamemk
(5,’mine.images.sign’,’FORMAT=CAT’);
rc=imgop(task-id,’WRITE’,path);

� Specify a file in the WRITE command. (Notice that file attributes are included.)

rc=imgop(task-id,’WRITE’,’/user/images/sign.tif’,
’FORMAT=TIFF COMPRESS=G3FAX’);

WRITE_CLIPBOARD

Writes an image to the host clipboard

Syntax
rc=IMGOP(task-id, ’WRITE_CLIPBOARD’);

Details
WRITE_CLIPBOARD acts on the currently selected image. The image must be pasted
before it can be written to the system clipboard.

Example

Read in an image and then write it to the clipboard:

rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’WRITE_CLIPBOARD’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions � WSIZE 843

WSIZE

Sets the size of the Image window

Syntax
rc=IMGCTRL(task-id, ’WSIZE’, width, height <, x, y>);

width
is the width of the window (in pixels).

Type: Numeric

height
is the height of the window (in pixels).

Type: Numeric

x
is the X coordinate of the top left corner.

Type: Numeric

y
is the Y coordinate of the top left corner.

Type: Numeric

Details
WSIZE sets the size of the Image window. Optionally, it positions the window at x and
y. Some window managers might not support positioning.

Example

Make the Image window match the size of the image that is being displayed:

main:
height=0;
width=0;
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYN’,’WIDTH’,iwidth);
rc=imgop(task-id,’QUERYN’,’HEIGHT’,iheight);
rc=imgctrl(task-id,’WSIZE’,iwidth,iheight);
rc=imgop(task-id,’PASTE’,1,1);

return;



844 WTITLE � Appendix 1

WTITLE

Specifies a title for the Image window

Syntax
rc=IMGCTRL(task-id, ’WTITLE’, title);

title
is the text to display as the window title.

Type: Character

Details
The specified title appears in parentheses after SAS: IMAGE in the title bar of the
window.

Example

Specify gname as the title of the Image window:

path=lnamemk(5,catname,’format=cat’);
rc=lnameget(path,type,name,form);
gname=scan(name,3,’.’);
rc=imgctrl(tid,’wtitle’,gname);



845

A P P E N D I X

2
Image File Types and
Associated Attributes

File Types 845
Attributes for Reading Image Files 847

Attributes for Writing Image Files 849

Attributes for Reading Images from TWAIN Scanners 853

File Types
The file types that are supported by the IMGOP function and by the Image Data

Model class are described in Table A2.1 on page 845. The file type of the image
determines which attributes can be used when reading or writing the image. The
attributes that you can specify for each file type are described in the following sections:

Attributes for Reading Image Files“Attributes for Reading Image Files” on page 847
Attributes for Writing Image Files“Attributes for Writing Image Files” on page 849
Attributes for Reading Images from TWAIN Scanners“Attributes for Reading Images

from TWAIN Scanners” on page 853

Table A2.1 Supported Image File Types

File Type Description

BMP (Microsoft Windows Device
Independent Bitmap)

Supports color-mapped and true color images that are stored as
uncompressed or run-length encoded data. BMP was developed by
Microsoft Corporation.

CAT (SAS Catalog IMAGE entry) Supports color-mapped images as well as true color images. The images
can be optionally compressed.

DIB (Microsoft Windows Device
Independent Bitmap)

See the description of BMP.

EMF (Microsoft Enhanced Metafile) Supported under Windows 95, Windows 98, Windows 2000, and
Windows NT.

EPSI (Encapsulated PostScript
Interchange)

An extended version of the standard PostScript (PS) format. Files that
use this format can be printed on PostScript printers and can also be
imported into other applications. Notice that EPSI files can be read, but
PS files cannot be.

When read with the Image Editor, the SAS/AF Image DataModel, or
IMGOP, EPSI files are displayed using a low-resolution, monochrome
preview of the actual image.



846 File Types � Appendix 2

File Type Description

GIF (Graphics Interchange Format) Supports only color-mapped images. GIF is owned by CompuServe, Inc.
(available if licensed).

JFIF (JPEG File Interchange Format) Supports JPEG image compression. JFIF software is developed by the
Joint Photographic Experts Group.

PBM (Portable Bitmap Utilities) Supports gray, color, RGB, and bitmap files. The Portable Bitmap
Utilities are a set of free utility programs that were developed primarily
by Jef Poskanzer.

PCD (Photo CD reader) Photo CD is owned by and licensed from Eastman Kodak Company.

PCL (Printer Control Language) Developed by HP.

PCX (PC Paintbrush) Supports bitmapped, color-mapped, and true color images. PCX and PC
Paintbrush are owned by Zsoft Corporation.

PNG (Portable Networks Graphics) The PNG Reader and Writer use ‘libpng’ in their implementations.
Permission to use is freely granted. Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.

PS (PostScript Image File Format) The Image classes use only PostScript image operators. A level II PS
printer is required for color images. PostScript was developed by Adobe
Systems, Inc.

TGA (Targa) Supports both true color images and color-mapped images; however, the
current release of the Image classes supports only true color TGA files.
Targa is owned by Truevision, Inc.

TIFF (Tagged Image File Format) Internally supports a number of compression types and image types,
including bitmapped, color-mapped, gray-scaled, and true color. TIFF
was developed by Aldus Corporation and Microsoft Corporation and is
used by a wide variety of applications. (available if licensed)

WMF (Microsoft Windows Metafile) Supported only under Microsoft Windows operating systems.

XBM (X Window Bitmaps) Supports bitmapped images only. XBM is owned by MIT X Consortium.

XPM (X Window Pixmap) Is an extended version of XBM that supports color bitmaps; supported
only under UNIX operating systems.

XWD (X Window Dump) Supports all X visual types (bitmapped, color-mapped, and true color).
XWD is owned by MIT X Consortium.

Some file types are supported only in certain host operating environments. You must
include a FORMAT= attribute when you are reading or writing the image file types that
are shown in the following table:

Table A2.2 File Types and Attributes Supported Only in Certain Host Operating Environments

File Type Reader Attributes Writer Attributes Host

DIB FORMAT=DIB FORMAT=DIB Windows 3.1, Windows
95, Windows 98, Window
2000, and Windows NT

EMF FORMAT=EMF FORMAT=EMF Windows 95, Windows
98, Windows 2000, and
Windows NT

WMF FORMAT=WMF Windows operating
systems



Image File Types and Associated Attributes � Attributes for Reading Image Files 847

File Type Reader Attributes Writer Attributes Host

XBM FORMAT=XBM interactive windows
under UNIX

XPM FORMAT=XPM FORMAT=XPM X Windows System
under UNIX

Attributes for Reading Image Files
The table below describes the attributes that you can specify for the image readers.
When you are reading images, include the FORMAT= attribute in the method if any

of the following conditions are true:
� You are reading a format that is supported only on certain hosts.
� The images reside in SAS catalogs.
� The images are being read from a system pipe.

FORMAT= is not required in other cases, but it is always more efficient to specify it.

Table A2.3 Image Formats for Reading

File Type Reader Attributes Comment

BMP FORMAT=BMP

COMPRESS=NONE

COMPRESS=RLE

is the default.

sets compression to run-length encoded.

CAT FORMAT=CAT

DIB FORMAT=DIB is supported only by Windows 3.1, Windows
95, Windows 98, Windows 2000 and
Windows NT.

EMF FORMAT=EMF is supported only by Windows 95, Windows
98, Windows 2000, and Windows NT.

EPSI FORMAT=EPSI

DPI=num

When read with the Image Editor, the SAS/
AF Image DataModel, or IMGOP, EPSI
files are displayed using a low-resolution,
monochrome preview of the actual image.

specifies the number of dots per inch when
the output file is created.

GIF FORMAT=GIF

JFIF FORMAT=JFIF is required for reading JPEG files that use
JPEG File Interchange Format (JFIF).



848 Attributes for Reading Image Files � Appendix 2

File Type Reader Attributes Comment

DCT=mode selects the specific type of Discrete Cosine
Transform (DCT) to use when processing
the image; mode can be

� INT — an integer DCT

� FAST — a faster and less accurate
integer DCT

� FLOAT — a slightly more accurate
method that can be slower unless the
host has very fast floating-point
hardware.

GRAYSCALE produces a gray-scale image even if the
JPEG file is in color. This is useful for
viewing on monochrome displays. The
reader runs noticeably faster in this mode.

VERSION prints the version number and copyright
messages for the Independent JPE Group’s
JFIF software to the log.

FAST enables certain recommended processing
options for fast, low quality output;
equivalent to enabling ONEPASS,
DITHER=ORDERED, COLORS=216,
NOSMOOTH, and DCT=FAST.

NOSMOOTH uses a faster, lower quality, upsampling
routine.

ONEPASS uses a one-pass color quantization instead
of the standard two-pass quantization. The
one-pass method is faster and needs less
memory, but it produces a lower-quality
image. This attribute is ignored unless you
also specify the COLORS attribute.
ONEPASS is always enabled for gray-scale
output.

COLORS=n reduces the number of colors in the image
to at most n colors; n must be in the range
2...256.

SCALE_RATIO=n scales the output image by a factor of 1/n.
Currently the scale factor must be 1/1, 1/2,
1/4, or 1/8. This is useful when processing a
large image and only a smaller version is
needed, because the reader is much faster
when scaling down the output.

DITHER=mode selects the specific type of dithering to use
color quantization; mode can be

� FS — Floyd-Steinberg dithering

� ORDERED — ordered dithering

� NONE — no dithering.



Image File Types and Associated Attributes � Attributes for Writing Image Files 849

File Type Reader Attributes Comment

PBM FORMAT=PBM

PCD FORMAT=PCD specifies photo CD format. FORMAT=PCD
RES= specifies the image resolution to be
read. Photo CD images have multiple
resolution images in each image. Values
are:

BASE/64 64x96

BASE/16 128x192

BASE/4 256x384

BASE 512x768 (default)

4BASE 1024x1536

16BASE 2048x3072.

PCX FORMAT=PCX is not supported for writing.

PNG FORMAT=PNG

TGA FORMAT=TGA

TIFF FORMAT=TIFF

XBM FORMAT=XBM

XPM FORMAT=XPM is supported only under the X Windows
System under UNIX.

XWD FORMAT=XWD

Attributes for Writing Image Files
The table below describes the attributes that you can specify for the image writers.
When you are writing images, you must specify the FORMAT= attribute. You can

specify this attribute either directly as an argument for the WRITE command or as part
of the image-path (if you use the LNAMEMK function to specify the pathname). For
example:

/* Specify the FORMAT= attribute directly */
/* as an argument to the WRITE command. */
rc=imgop(task-id,’WRITE’,’/user/images/sign.tif’, ’format=tiff’);

/* Use the LNAMEMK function to specify the image-path, */
/* and include the FORMAT= attribute as part of the path. */
path=lnamemk(5,’mine.images.sign’,’format=cat’);
rc = imgop(task-id,’WRITE’,path);



850 Attributes for Writing Image Files � Appendix 2

Table A2.4 Image Formats for Writing

File Type Writer Attributes Comment

BMP FORMAT=BMP

CAT FORMAT=CAT

COMPRESS=G3FAX sets compression to FAX CCITT Group 3
for monochrome black-and-white images
(depth of 1) only.

COMPRESS=G4FAX sets compression to FAX CCITT Group4 for
monochrome black-and-white images
(depth of 1) only.

DESC= enables description for catalog description.

DIB FORMAT=DIB is supported only by Windows 3.1, Windows
95, Windows 98, Windows 2000, and
Windows NT.

EMF FORMAT=EMF is supported only by Windows 95, Windows
98, Windows 2000, and Windows NT.

EPSI FORMAT=EPSI

GIF FORMAT=GIF

JFIF FORMAT=JFIF is required for writing JPEG files that use
JPEG File Interchange Format (JFIF).

DCT=mode selects the specific type of Discrete Cosine
Transform (DCT) to use when processing
the image; mode can be

� INT — an integer DCT

� FAST — a faster and less accurate
integer DCT

� FLOAT — a slightly more accurate
method that can be slower unless the
host has very fast floating-point
hardware.

GRAYSCALE produces a gray-scale image even if the
JPEG file is in color. This is useful for
viewing on monochrome displays. The
writer runs noticeably faster in this mode.

VERSION prints the version number and copyright
messages for the Independent JPE Group’s
JFIF software to the log.

FAST enables certain recommended processing
options for fast, low quality output;
equivalent to enabling ONEPASS,
DITHER=ORDERED, COLORS=216,
NOSMOOTH, and DCT=FAST.

NOSMOOTH uses a faster, lower quality, upsampling
routine.



Image File Types and Associated Attributes � Attributes for Writing Image Files 851

File Type Writer Attributes Comment

ONEPASS uses a one-pass color quantization instead
of the standard two-pass quantization. The
one-pass method is faster and needs less
memory, but it produces a lower-quality
image. This attribute is ignored unless you
also specify the COLORS attribute.
ONEPASS is always enabled for gray-scale
output.

COLORS=n reduces the number of colors in the image
to at most n colors; n must be in the range
2...256.

SCALE_RATIO=n scales the output image by a factor of 1/n.
Currently the scale factor must be 1/1, 1/2,
1/4, or 1/8. This is useful when processing a
large image and only a smaller version is
needed, because the reader is much faster
when scaling down the output.

DITHER=mode selects the specific type of dithering to use
color quantization; mode can be

� FS — Floyd-Steinberg dithering

� ORDERED — ordered dithering

� NONE — no dithering.

PBM FORMAT=PBM

COMPRESS=NONE creates a text PBM file.

COMPRESS=BINARY |
RAW

creates a PBM file of reduced size by
packing the pixels as binary data (this
option is the default setting when
FORMAT=PBM is specified)

PCL FORMAT=PCL

DPI=num specifies the number of dots per inch to be
used in the output file.

EPS does not reset the printer margins; use to
embed an image into another PCL
document.

PNG FORMAT=PNG

PS FORMAT=PS

COMPRESS=NONE is the default for color images.

COMPRESS=RLE sets compression to run-length encoded;
default for gray-scale images.

Also works with colormapped (256 color)
images or RGB (millions of colors) images.



852 Attributes for Writing Image Files � Appendix 2

File Type Writer Attributes Comment

DPI=num specifies the number of dots per inch to use
to calculate the visual size of the image on
the PostScript page in the output file. The
default is 300. For example, a 600-pixel by
600-pixel image appears as a 2-inch by
2-inch image on a PostScript page if you
use the default setting.

EPS does not reset the printer margins; used to
embed an image in another PCL document.

PREVIEW specifies whether a scaled-down, 1–bit,
black-and-white preview image is written
into the encapsulation header. The preview
image enables this file to be read by
software (such as SAS) that doesn’t support
a real PostScript reader.

PREWIDTH=x

PREHEIGHT=y

sets the size of the preview image in pixels.
if PREVIEW is specified (default: 25% of
original size).

XSCALE directly sets width scaling in points (1/72
inch). Default: calculate it.

YSCALE directly sets height scaling in points (1/72
inch). Default: calculate it.

PAGEX sets the output page width in points (1/72
inch). Default: 612 (a typical 8.5–inch
page).

PAGEY sets the output page height in points (1/72
inch). Default: 792 (a typical 11–inch page).

NOFIT turns off the default of scaling an oversized
image down to fit the page. Must be used
with XSCALE and YSCALE. This option
will be replaced by PAGEFIT in releases of
SAS after 9.1.

PAGEFIT � 0 = Image size is not adjusted.

� 1 = Adjust the image size only of the
image exceeds the page size (default).

� 2 = Always adjust the image size to
fill the page.

The PAGEFIT option replaces the NOFIT
option in SAS releases after 9.1.

TIFF FORMAT=TIFF

COMPRESS=NONE is the default.

COMPRESS=G3FAX sets compression to FAX CCITT Group 3
for monochrome black-and-white (depth of
1) images only.



Image File Types and Associated Attributes � Attributes for Reading Images from TWAIN Scanners 853

File Type Writer Attributes Comment

COMPRESS=G4FAX sets compression to FAX CCITT Group 4
for monochrome black-and-white (depth of
1) images only.

WMF FORMAT=WMF is supported only under Windows operating
systems.

XBM FORMAT=XBM is supported for writing only from
interactive windows under UNIX.

XPM FORMAT=XPM is supported only under the X Windows
System under UNIX.

Attributes for Reading Images from TWAIN Scanners
The table Device Attributes for TWAIN Scanners describes the attributes that are

supported under Windows NT, Windows 2000, and Windows XP operating systems for
TWAIN scanners. You must specify DEVICE=SCANNER. For example:

rc=imgop(taskid,’READ’,’twain’,’device=scanner dpi=100’);

Table A2.5 Device Attributes for TWAIN Scanners

Attribute Description Default

BRIGHT=n sets the brightness setting. 0

CONTRAST=n sets the contrast setting. This option is ignored with bi-tonal images. 0

DPI=n sets the number of dots per inch. 200

FEEDER |
NOFEEDER

specifies how the document is scanned. FEEDER assumes that there
is a document feeder and produces an error if there is no document
feeder. NOFEEDER scans from the bed and ignores the feeder if one
is attached.

Use the feeder if it is
attached; otherwise, use
the scan from the bed.

SELSRC displays the TWAIN Select Source window. The default source is
highlighted, but you can select a different source. If you do not
specify SELSRC, then the application uses the default source.

SETCAP displays the data source’s capability window.

SCNAME=productsets the default source. Specify the product name (as displayed in the
TWAIN Select Source window) of the scanner. (This product name
may not be the same as the name of the scanner.) If product matches
more than one scanner’s product name, then the first match is
selected.

If you do not specify SCNAME, then the source defaults either to the
last source used or to the first source in the list (if the application has
not been run yet).



854 Attributes for Reading Images from TWAIN Scanners � Appendix 2

Attribute Description Default

TYPE=type sets the type of image to generate. You can specify BITONAL, RGB,
or GRAY.

For TWAIN scanners, the
highest resolution (bits/
pixel) that is supported by
the device.

UNITS=units sets the size units for the SIZE and START options. You can specify
IN, CM, MM, or PIXEL.

IN

XDPI=n sets the dots per inch for the width only. 200

XSIZE=d sets the width to scan (decimal value). 8.5 inches

XSTART=d sets the starting point of the scan along the width. 0

YDPI=n sets the dots per inch for the height only. 200

YSIZE=d sets the height to scan (decimal value). 11 inches

YSTART=d sets the starting point of the scan along the height. 0



855

A P P E N D I X

3
Recommended Reading

Recommended Reading 855

Recommended Reading

Here is the recommended reading list for this title:
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� Base SAS Procedures Guide
� SAS/ACCESS for Relational Databases: Reference
� SAS/AF Procedure Guide

� SAS/FSP Procedures Guide
� SAS Guide to Applications Development
� SAS/GRAPH: Reference

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.



856



857

Glossary

argument list
the values that are passed to a routine for processing. These values can be any SCL
expressions, such as variable names, numeric or character literals, or computed
values.

assignment statement
a DATA step statement that evaluates an expression and stores the result in a
variable. An assignment statement has the following form: variable=expression ;

attention handler
a block of code that is executed when a user interrupts the application with the
system’s BREAK, INTERRUPT, or ATTENTION key. A CONTROL BREAK
statement installs an attention handler by specifying a user-defined statement label.
The block of code that follows the statement label is executed when a user interrupts
the program.

attribute
a property of a SAS/AF component such as its color, size, or description. Unlike
instance variables, which store only the name, value, and type of a component,
attributes can specify many types of additional information (metadata) about
components.

autoexec file
a file that contains SAS statements that are executed automatically when SAS is
invoked. The autoexec file can be used to specify some of the SAS system options, as
well as to assign librefs and filerefs to data sources that are used frequently. See also
libref, fileref.

automatic instance variable
an instance variable whose value is automatically copied into the corresponding SCL
variable when an SCL method executes. The value of the variable is also copied back
into the object when the method returns. Assigning the automatic status to an
instance variable makes writing new methods for a class much easier because the
SCL method can access the automatic instance variable directly instead of accessing
it indirectly with SCL list functions. See also instance variable.

block menu
a menu in which choices are represented as blocks, as icons, or as text on the display
device. The choices that are represented by blocks are generated by the BLOCK
statement in SCL or by block objects in FRAME entries.



858 Glossary

branching
the process of continuing program execution with an executable statement that does
not immediately follow the statement that is currently executing.

breaking
in the SCL debugger, the process of suspending program execution.

breakpoint
the location in an SCL program at which the SCL debugger suspends program
execution.

call-by-reference
a type of parameter passing in which the parameters are variable names or array
references. Call-by-reference parameter passing allows values to be returned to the
calling program. See also call-by-value, parameter passing.

call-by-value
a type of parameter passing in which the parameters are numeric constants,
character constants, or expressions. Call-by-value parameter passing does not allow
values to be returned to the calling program. See also call-by-reference, parameter
passing.

class
in object-oriented programming, the template or model for an object. A class includes
data that describes the object’s characteristics (attributes or instance variables) and
the operations (methods) that the object can perform. See also subclassing, object.

command list
a sublist (named _CMDLIST_) of the local environment list. The command list
contains the components of the DM command that was used to invoke the current
SAS/AF application. See also environment list, local environment list.

control level
one of the determinants in the kind of lock that a task obtains on a SAS data set or
on an observation in the data set. The control level specifies how other SAS tasks
can access the SAS data set concurrently. Every SAS task has an open mode and a
default control level for each SAS data set that it accesses, based on how the task
operates on that data set. See also locking, open mode.

data set
See SAS data set.

data set data vector (DDV)
a temporary storage area for the values of the variables from one observation of a
data set that was opened by the current program. The DDV is empty until an
observation is read from the associated data set.

data set identifier (DSID)
a unique, positive number that is returned by the OPEN function to identify a newly
opened data set each time the program runs. This number is cleared either by the
CLOSE function or when the program terminates.

DATA step
a group of statements in a SAS program that begins with a DATA statement and
ends with either a RUN statement, another DATA statement, a PROC statement, or
the end of the job. The DATA step enables you to read raw data or other SAS data
sets and to create SAS data sets.

declarative statement
a statement that provides information to the SCL compiler but which does not result
in executable code unless initial values are assigned to the declared variables. For



Glossary 859

example, the DECLARE, LENGTH, and ARRAY statements are declarative
statements. See also executable statement.

DO group
a sequence of statements that starts with a simple DO statement and that ends with
a corresponding END statement. See also DO loop.

DO loop
a sequence of statements headed by an iterative DO, DO WHILE, or DO UNTIL
statement; ended by a corresponding END statement; and executed (usually
repeatedly) according to directions in the DO statement. See also DO group.

entry
See SAS catalog entry.

environment list
a special SCL list that contains local or global values. Values that are placed in local
environment lists are available only in the same SCL application invocation. Values
that are placed in global environment lists can be accessed in any SCL application.
The lists can contain numeric, character, and sublist items, all of which can be
retrieved by specifying their names. Names in environment lists do not have to be
valid SAS names. See also global environment list, local environment list.

executable statement
any SCL statement that is compiled into intermediate code and that results in some
action when the SCL program is executed. For example, the CURSOR, IF-THEN/
ELSE, and assignment statements are executable statements. See also declarative
statement.

execution phase
the stage at which an SCL program is executed, from initialization through
termination. During this phase, the program typically validates field values,
calculates values for computed variables based on user input, invokes secondary
windows, issues queries, executes user-issued commands, and retrieves values from
SAS data sets or from external files.

execution stack
a last-in, first-out stack that lists the current and inactive entries that were called
during the execution of a SAS/AF, FSEDIT, or FSVIEW application.

expression
See SCL expression.

extended table
a window (in a PROGRAM entry) or a window element (in a FRAME entry) that
displays values in a tabular format by repeating a set of fields (or other objects, in a
FRAME entry). The number of rows that are displayed is determined by the SAS
Component Language program or by an attribute of the extended table object in the
FRAME entry. Extended tables are either static or dynamic. For static extended
tables, the number of rows is fixed. For dynamic extended tables, the number of rows
can vary.

external file
a file that is created and maintained by a host operating system or by another
vendor’s software application. SAS can read data from and route output to external
files. External files can contain raw data, SAS programming statements, procedure
output, or output that was created by the PUT statement. A SAS data set is not an
external file. See also fileref.



860 Glossary

FDB (file data buffer)
a temporary storage area for one record value of an external file that has been
opened by a program. The FDB is empty until a record is read from the associated
file. Record values remain in the FDB until another record is read in, until the
record is written back to the file, or until the file is closed.

field
a window area in which users can view, enter, or modify a value.

field validation
the process of checking user-entered values either against attributes that have been
specified for a field or against conditions that have been specified in a SAS
Component Language program.

file data buffer (FDB)
See FDB (file data buffer).

fileref (file reference)
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or folder. The fileref identifies the file or the storage
location to SAS. See also libref.

flow of control
the order in which SCL statements are executed. The flow of control can be altered
by conditional statements such as IF/THEN-ELSE, LINK, and RETURN.

function
a component of the SAS programming language that can accept arguments, perform
a computation or other operation, and return a value. For example, the ABS function
returns the absolute value of a numeric argument. Functions can return either
numeric or character results. Some functions are included with SAS. Users can also
use SAS/TOOLKIT software to write their own functions.

global environment list
an environment list containing data that all SCL applications can share during a
SAS session. The data remains in the global environment list until SCL execution
explicitly removes the data or until the SAS session ends. See also environment list,
local environment list.

index
in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing.

initialization phase
in SAS Component Language, the stage at which initialization steps are performed
before a window is displayed in SAS/AF software or before an observation is
displayed in SAS/FSP software.

inner sublist
in a nested SCL list, the innermost list. See also nested list, outer list.

instance variable
a characteristic or data value that is associated with an object, such as its
description, its color or label, or other data that the object must store so that it can
perform its operations. All objects that are created from the same class automatically
contain the instance variables that have been defined for that class, but the values of
those variables can change from one object to another. In addition, objects can
contain local instance variables?that is, variables that are local to a particular
instance of a class. Beginning in Version 8, the use of attributes reduced the need for
instance variables. See also automatic instance variable, attribute.



Glossary 861

jumping
in the SCL debugger, the process of altering the flow of control by restarting program
execution at a specified line, bypassing any intervening statements.

key variable
a variable that is used to index SAS data sets.

legend window
a display-only, dynamic window for presenting information to users. By default, the
legend window has four lines of text and is positioned at the top of the display.

libref (library reference)
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

list box
a rectangular window element that contains a scrollable list of items.

list identifier
a unique number that is assigned to each SCL list that is created in an application.

loaded program
a program that resides in the execution stack. See also execution stack.

local environment list
an environment list that contains data that is available only to SCL entries that are
invoked in the same SCL application. This list is deleted when the application ends.
See also environment list, global environment list.

local host
the computer on which you use a SAS session to initiate a link with (log on to) a
remote host. See also remote host.

locking
a technique for preventing conflicts among requests from different SAS tasks. A task
obtains a lock on a member (for example, a SAS data set) or a record (observation)
based on the open mode and control level for that SAS data set. See also control
level, open mode.

logical row
a row of fields or objects that is repeated in an extended table. See also extended
table.

message area
the area immediately beneath a window’s command line or menu bar which displays
messages from SAS or from the SAS Component Language reserved variable _MSG_.

method
in object-oriented methodology, an operation that is defined for a class and which can
be executed by an object that is created from that class. Methods can be defined in
SCL and can be implemented with SCL routines.

method block
in SCL entries, a labeled group of statements that begins with a METHOD
statement, ends with an ENDMETHOD statement, and contains one or more SCL
statements. A method block can be called by different SAS/AF entries.

named list
a list structure that contains one or more items to which names have been assigned.



862 Glossary

nested list
a data structure in which a list contains sublists. These sublists, called nested lists,
are especially useful for creating collections of records or other data structures.

nonwindow variable
a variable that is used in a program but which is not associated with an object in a
window. Values for nonwindow variables are stored in the SCL data vector (SDV)
until the SCL program terminates and closes the SDV. See also SCL data vector
(SDV).

object
in object-oriented methodology, a specific representation of a class. An object inherits
the characteristics (attributes or instance variables) of its class as well as the
operations (methods) that class can execute. For example, a push button object is an
instance of the Push Button class. The terms object and instance are often used
interchangeably.

open mode
the way in which a SAS task accesses and operates on a member in a SAS data
library. There are three open modes for SAS files: input, update, and output. See
also control level, locking.

outer list
the first list in a nested-list structure. An outer list contains one or more sublists.
See also nested list.

parameter
(1) in SAS/AF and SAS/FSP applications, a window characteristic that can be
controlled by the user. (2) in SAS Component Language (SCL), a value that is passed
from one entry in an application to another. For example, in SAS/AF applications,
parameters are passed between entries by using the CALL DISPLAY and ENTRY
statements. (3) a unit of command syntax other than the keyword. For example,
NAME=, TYPE=, and COLOR= are typical command parameters that can be either
optional or required.

parameter list
the values that a program receives from a calling program through the ENTRY
statement. These values can be any SCL expression, such as variables, numeric or
character literals, or computed values. See also parameter passing.

parameter passing
the process of communicating values from a calling program to a receiving program.
You use the ENTRY statement in receiving programs to declare parameters. See also
call-by-reference, call-by-value.

program data vector
the temporary area of computer memory in which SAS builds a SAS data set, one
observation at a time. The program data vector is a logical concept and does not
necessarily correspond to a single contiguous area of memory.

program variable
a variable that is used in an SCL program. See also nonwindow variable, window
variable.

record
a logical unit of information that consists of fields of related data. A collection of
records are stored in a file. A record is analogous to a SAS observation.

recursive list
a data structure in which a list can contain itself or other sublists that contain it
either directly or indirectly.



Glossary 863

remote host
a computer that is in a different location than your computer but which you can log
on to from your computer. See also local host.

remote session
a SAS session that is running in a special mode on the remote host. No output or log
messages are displayed on the remote host. Instead, the results of a remote SAS
session are transmitted back to the log file and output files on the local host.

reserved label
a special label that indicates when the corresponding section of an SCL program
executes. Examples include INIT, MAIN, TERM, FSEINIT, FSETERM, GETROW,
and PUTROW.

return code
a value returned by an SCL function that indicates whether the function successfully
accomplished the specified task.

RGB
a color-coding scheme that specifies a color in terms of percentages of red, green, and
blue components.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS. Some catalog entries contain system information such
as key definitions. Other catalog entries contain application information such as
window definitions, Help windows, formats, informats, macros, or graphics output.

SAS data library
a collection of one or more SAS files that are recognized by SAS and which are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS software
a group of software interfaces, each of which makes data from a particular external
database management system (DBMS) directly available to SAS, as well as making
SAS data directly available to the DBMS.

SASUSER library
a default, permanent SAS data library that is created at the beginning of your first
SAS session. The SASUSER library contains a PROFILE catalog that stores the
customized features or settings that you specify for SAS. You can also store other
SAS files in this library.

SCL data vector (SDV)
a temporary storage area for the values of all SCL variables for the current program.
The SDV is deleted when the program terminates.

SCL expression
a sequence of operands and operators that form a set of instructions that are
performed to produce a result value. Operands can be variable names or constants,
and they can be numeric, character, or both. Operators can be symbols that request a
comparison, a logical operation, or an arithmetic calculation. Operators can also be
SAS functions and grouping parentheses. Alternatively, an SCL expression can be a
single variable name, constant, or function.



864 Glossary

SCL statement
a string of keywords, names, special characters, and operators that instructs the SCL
compiler to perform an operation, gives information to the compiler, or controls the
behavior of certain aspects of an application’s window. There are two types of SCL
statements: declarative statements, which provide information to the SCL compiler
but do not result in executable code, and executable statements, which are compiled
into intermediate code and result in some action when the SCL program is executed.
Every SCL statement must end with a semicolon.

SCL variable
a named storage location to which values can be written and from which values can
be retrieved. A value is referenced through the use of the variable’s name in the SCL
program. Some SCL variables are automatically linked to fields and objects in an
application’s window. See also window variable, nonwindow variable.

SDV (SCL data vector)
See SCL data vector (SDV).

selection list
a list of items in a window, from which users can make one or more selections.
Sources for selection lists are LIST entries, special SCL functions, and extended
tables.

shared data environment
a feature of SCL that enables you to share data among multiple program entries
within a single SCL application by placing that data in a local environment list, and
to share data among multiple SCL applications that have been started in the same
SAS session or process by storing that data in a global environment list. See
environment list, global environment list, local environment list.

stepping over
a SAS Component Language debugging process that treats a DISPLAY, FSEDIT, or
FSVIEW routine as a single statement that the debugger does not step through.
Debugging continues at the next executable statement of the current SCL program.
See also stepping through.

stepping through
a SAS Component Language debugging process that enables a program that is called
by a DISPLAY, FSEDIT, or FSVIEW routine to be debugged as a series of single
statements, suspending execution at each statement. This process is also known as
stepping into.

subclassing
in object-oriented methodology, the process of deriving a new class from an existing
class. A new class inherits the characteristics (attributes or instance variables) and
operations (methods) of its parent. It can also possess custom attributes (or instance
variables) and methods. See also class, attribute, instance variable, method.

SUBMIT block
a group of SAS statements that are submitted together to SAS for processing. A
SUBMIT block consists of a SUBMIT statement, one or more SAS language
statements, and an ENDSUBMIT statement.

system variable
a reserved variable that is automatically defined. For example, _MSG_ and
_STATUS_ are system variables.

table lookup
a processing technique in which information is retrieved from an auxiliary source,
based on the values of variables in the primary source.



Glossary 865

termination phase
in SAS Component Language, the stage at which a program processes any steps that
are required before the current observation is written to the data set and another
observation is read.

tracepoint
the location in an SCL program at which the SCL debugger temporarily suspends
execution, displays a notification message, and resumes program execution.

variable
in data vectors, a location in the SCL data vector or the program data vector to
which values can be written and from which values can be read. Variables can be
permanent or temporary. See also SCL data vector (SDV), program data vector.

watched variable
a variable that the SCL debugger monitors during program execution. If the value of
a watched variable changes, the debugger suspends execution and displays the old
and new values of the variable. A watched variable is monitored continuously until
the watch is canceled.

WHERE clause
one or more WHERE expressions used in a WHERE statement, a WHERE function,
or a WHERE= data set option.

WHERE expression
a type of SAS expression that specifies a criterion or search condition. Observations
that meet that criterion are selected for processing.

widget
a component of a graphical user interface that displays information or accepts user
input. For example, a text entry field is a widget that is used for displaying and
entering text.

window variable
a variable that passes values back and forth between an SCL program and an
application window. Each window variable is linked to a particular field in a window.

WORK data library
a SAS data library that is automatically defined by SAS at the beginning of each SAS
session or SAS job. The WORK library contains SAS files that are temporary by
default. When the libref USER is not defined, SAS uses WORK as the default library
for SAS files that are created with one-level names.



866



867

Index

A
abstract classes 101
access control levels 176, 177
access modifiers 148
ACTIVATE function 222
ALARM statement 223
alarms, device 223
ALLCMDS option, CONTROL statement 79
ALWAYS option, CONTROL statement 80
ampersand (&), and operator 30
analysis tools 6
and (&) operator 30
AND operator 30
APPEND function 224
applications

flow of execution 69
SCL entries 9
terminating 624
testing 5

APPLY function 225
APPLY routine 225
ARGS command, SCL Debugger 759
arguments

lists as arguments for methods 55
passing objects as method arguments 108
passing to functions and CALL routines 34

arithmetic operators 28
ARRAY statement 227
arrays

See SCL arrays
ASIS option, CONTROL statement 80
ASORT function 230
assignment statement 33

copying arrays with 42
ATTRC function 231
attribute linking 100
attributes 98, 120

associating custom access methods with 122
changing values of 121, 128
creating, automatically 121
dot notation 128
initial values 122
linking 123
list of valid values 122
metadata 123
querying values 128, 130
reading image files 847
referencing 103
scanner attributes 853

scope 121
setting values 128
writing image files 849

ATTRN function 231
Autocreate option 121
automatic macro variables 93
AXIS statements

internal table of, deleting 442
number of, returning 443
text of, returning 441

B
bar codes, getting value of 816
_BLANK_ system variable 237
BLOCK function 238
Boolean numeric expressions 32
Boolean operators 30
branching 444

to another entry 77
to labeled sections 77

BREAK command, SCL Debugger 760
BREAK option, CONTROL statement 80
BUILD routine 241
BUILD window, invoking 241

C
CALCULATE command, SCL Debugger 763
CALL DISPLAY routine 78
CALL routines

See SCL CALL routines
CALL SEND statements, converting to dot notation 140
CAMs (custom access methods) 122
carriage-return key, cursor response 660
case sensitivity, in file names 329, 491
catalog entries

copying 285
filerefs, assigning/deassigning 389
running 330
selection list, displaying 514, 583, 638

catalogs
concatenating 247
copying 285
search paths, creating 647

CATCH blocks 167, 170, 347
CATCH statement 165, 243
CATLIST function 244
CATNAME function 247



868 Index

CBT entries, running 248
CBT routine 248
CENTER function 250
CEXIST function 251
_CFRAME_ system variable 252
character constants 27
character strings

centering 250
left-aligned 500
length, returning 504
right-aligned 630

character variables 19
DATA step 84

check boxes
activating 222
active box, returning 484
graying 222

child classes 100
choice group stations

activating 222
graying 222, 446

choice groups
active station, returning 484
gray status, returning 485

CLASS blocks 102
from CLASS entries 103
generating CLASS entries from 103

Class class 101
class data 145
CLASS entries

CLASS blocks from 103
defining search paths 470
generating from CLASS blocks 103

CLASS statement 12, 253
classes 98, 100

abstract classes 101
ancestry 100
attributes, accessing with dot notation 128
binding methods to 715
child classes 100
CLASS blocks, from CLASS entries 103
CLASS entries, from CLASS blocks 103
client applications access to 489
converting CALL SEND to dot notation 140
converting class definitions 140
converting labels and LINK statements 139
converting Version 6 to Version 8 137
creating 102, 253
data set class 144
declaring variables 138
defining 12, 102
defining shared abstract methods for 478
example 143
exception classes 165
extending 148
identifiers, returning 522
implementing methods outside of 120
inheritance 100
instance variables 140
instantiating 101, 104
loading 522
metaclasses 101, 102
metadata 589
models 102
parent classes 100
referencing methods or attributes 103

relationships among 100
removing global variables 138
SAS/AF visual objects, creating 158
SCL Exception class 171
SCL Throwable class 171
subclasses 100, 149
syntax 143
types of 101
views 102

CLEARLIST function 266
CLOSE function 268
CLRFLD routine 269
colon modifier, for operators 29
color attributes

changing 400
storing 689

color maps
generating 815
getting RGB values 817
grabbing 818
mapping colors to 819
selecting 838

COLORLIST function 270
colors

converting to black and white 839
field, changing 400
LOG window, setting 335
names, returning 628
OUTPUT window, setting 335
reducing number of 824
selection lists, displaying 270
setting 836
text entry controls, changing 402
text label controls, changing 402

COMAMID function 272
COMMAND option, SUBMIT statement 87
commands

assigning to function keys 661
current, discarding 569
current word, deleting 571
executing 364
executing a list of 810
host system, issuing 703
issuing to host operating systems 91
last issued, returning 496
SCL Debugger 757
submitting 691
word type, determining 746
words, returning 744

commands, for images
CONVERT 803
COPY 804
CREATE_IMAGE 805
CROP 807
DESTROY 808
DESTROY_ALL 808
DITHER 809
DITHER_BW 810
EXECLIST 810
FILTER 812
GAMMA 814
GENERATE_CMAP 815
GET_BARCODE 816
GET_COLORS 817
GET_PIXEL 818
GRAB_CMAP 818



Index 869

MAP_COLORS 819
MIRROR 820
NEGATE 821
PASTE 821
PASTE_AUTO 822
PRINT 823
QUANTIZE 824
QUERYC 825
QUERYL 825
QUERYN 825
READ 829
READ_CLIPBOARD 831
READ_PASTE 831
READ_PASTE_AUTO 832
ROTATE 833
SCALE 834
SELECT 835
SET_COLORS 836
SET_PIXEL 837
STANDARD_CMAP 838
THRESHOLD 839
TILE 839
UNPASTE 840
WRAISE 841
WRITE 841
WRITE_CLIPBOARD 842
WSIZE 843
WTITLE 844

comments, in SCL programs 33
communication access methods, displaying 272
COMPAREARRAY function 274
COMPARELIST function 275
comparison operators 28
compiler 4
compiling SCL programs 4

in batch 5
interactively 4
SCL data vector and 5

components 99
constants 26

character 27
numeric 26
numeric-to-character conversion 27

constructors 106, 116
calling explicitly 118
example 146
overloading 117
overriding 118
running 565

CONTENTS function 276
CONTINUE option, SUBMIT statement 88
CONTINUE statement 73, 277
CONTROL statement 79, 279
controls 99, 607
CONVERT command 803
COPY command 804
COPY function 285
COPYARRAY function 43, 286
COPYLIST function 289
Coverage Analyzer 6
CREATE_IMAGE command 805
CREATESCL function 140, 293
CROP command 807
cropping images 807
_CURCOL_ system variable 296
CURFLD function 297

CURLIST function 298
CUROBS function 300
_CURROW_ system variable 301
CURSOR statement 301
cursors

current word, returning 303
position, returning 297
positioning 301, 448
response to carriage-return key 660

CURTOP function 302
CURWORD function 303
custom access methods (CAMs) 122

D
data set class 144
DATA step

character variables 84
expressions 84
functions 83
numeric variables 84
statements 82
variables 83
with SCL 82

DATA Step Graphics Interface Elements 93
data types

See SCL data types
DATALIST function 304
DATALISTN function 304
DCL (DECLARE) statement 309
DCLOSE function 307
DCREATE function 308
debugging 6

See also SCL Debugger
SCL lists 66

declarative statements 33
DECLARE (DCL) statement 309
DELARRAY function 312
DELETE command, SCL Debugger 764
DELETE function 313
DELITEM function 315
DELLIST function 316
DELNITEM function 317
DELOBS function 320
DESCRIBE command, SCL Debugger 766
DESCRIBE function 321
DESTROY command 808
DESTROY_ALL command 808
device alarms 223
DEVLIST function 322
DIALOG routine 325
DINFO function 326
directories

attribute names, returning 339
closing 307, 371
creating 308
deleting 313
filerefs, assigning/deassigning 389
information about, returning 326
information items, returning number of 340
member files, opening 553
members, returning name of 341
members, returning number of 336
opening 338
renaming 620
verifying existence of 385



870 Index

directory members, closing 371
DIRLIST function 327
display attributes

changing 400
storing 689

DISPLAY function
receiving parameters from 351
syntax 330

DISPLAY routine
receiving parameters from 351
syntax 330

DISPLAYED function 334
DITHER command 809
DITHER_BW command 810
dithering

black and white 810
color 809

DMWINDOW function 335
DNUM function 336
DO groups, exiting 498
DO loops 70

CONTINUE statement and 73
controlling 73
designating 337
DO statement 70
DO UNTIL statement 72
DO WHILE statement 72
iterative 70
LEAVE statement and 73
terminating 277
UNTIL clause 71
WHILE clause 71

DO statement 70, 337
DO UNTIL statement 72
DO WHILE statement 72
DOPEN function 338
DOPTNAME function 339
DOPTNUM function 340
dot notation 124

attribute values, changing or querying 128
class attributes, accessing 128
converting CALL SEND to 140
error handling 79
examples 126
nested 125
specifying a parameter to a method 128
syntax 124

DREAD function 341
DROPNOTE function 342
DSID function 343
DSNAME function 346
dynamic arrays 40

array functions with 42
deleting 46, 312
passing to methods 45
resizing 41, 615

dynamic extended tables, stopping expansion of 350

E
EDIT option, SUBMIT statement 88
ENDAWS option, CONTROL statement 80
ENDBLOCK routine 346
ENDCATCH statement 347
ENDCLASS statement 347
ENDLEGEND routine 347

ENDMETHOD statement 348
ENDPACKAGE statement 349
ENDSAS option, CONTROL statement 80
ENDSUBMIT statement 349
ENDTABLE routine 350
ENDUSECLASS statement 351
ENTER command, SCL Debugger 768
ENTER key, detecting 361
ENTER option, CONTROL statement 80
entries, branching to 77
ENTRY statement

original variables, returning 572
syntax 351

ENVIRONMENT command, SCL Debugger 769
ENVLIST function 356
error conditions 792
ERROR function 357
error handling 163

CATCH statement 165
dot notation 79
exception classes 165
exceptions 165
program halt handler 163
run-time errors 163
THROW statement 165

ERROR option, CONTROL statement 80
ERROROFF statement 359
ERRORON statement 360
event detection 361
EVENT function 361
event handlers 98, 100, 130

defining 131
example 131
metadata 133

_EVENT_ system variable 363
events 98, 130

defining 131
example 131
metadata 133
sending 131
system events 131

EXAMINE command, SCL Debugger 770
exceptions 165

CATCH blocks, determining execution of 167
CATCH blocks, ending 347
CATCH blocks, nested 170
catching 169, 243
example 166
exception classes 165
rethrowing 169
SCL Exception class 171
SCL Throwable class 171
throwing 704

EXECCMD routine 364
EXECCMDI routine 365
EXECLIST command 810
executable statements 33
EXIST function 367
expressions 31

Boolean numeric expressions 32
DATA step 84
functions in 32

extended tables
characteristics, determining 678
current row number variable 301
scrolling to top 705



Index 871

top row 302
external files 187

accessing 188
appending to 369
attribute values 194
attributes 194
bookmarking 404
browsing 423
closing 193, 371
creating SAS tables from 467
deleting 194, 373
directories, changing all files in 195
directories, closing 196
directories, closing files in 195
directories, manipulating files in 195
directories, number of files in 195
directories, opening files in 195
File Data Buffer 414
File Data Buffer (FDB) and 190, 194
filerefs 389
filerefs for 188
finding names of 195
information item names, returning 409
information items, returning number of 410
making available to other programs 189
modifying 192, 194
note markers, deleting 342
opened, number allowed 189
opening 189, 195, 407
order of reading records 191
physical names, returning 590
reading, in same directory 194
reading record values into SDV 191
reading records as separate values 192
reading values from 190
record pointer, setting to beginning 418
record pointer, setting to next 412
record size, returning 419
renaming 194, 620
SCL Data Vector (SDV) and 190, 191
selection list, displaying 383
sequence of reading records 193
starting column for values 192
subdirectories 196
verifying existence of 377, 385
writing to 427

F
FAPPEND function 369
FCLOSE function 371
FCOL function 372
FDB

See File Data Buffer (FDB)
FDELETE function 373
FETCH function 374
FETCHOBS function 375
FEXIST function 377
FGET function

syntax 378
token delimiters, setting 422

FIELD function 379
fields

attributes, changing 400
modification status, returning 550
protecting 607

unprotecting 711
File Data Buffer (FDB) 190, 194, 378

column pointer, setting 414
copying data from 378
external files 417
moving data to 415

file information items, returning 398
file interfaces, SCL lists 66
FILEDIALOG function 383
FILEEXIST function 385
FILELIST function 386
FILENAME function 389
FILEREF function 391
filerefs

catalog entries 389
directories 389
external files 389
for external files 188
output devices 389
selection list, displaying 386
verifying assignment of 391

FILLIST function 393
FILTER command 812
filtering images 812
FINFO function 398
FKEYNAME function 399
FLDATTR function 400
FLDCOLOR function 402
FNOTE function 404
fonts, selection window 405
FONTSEL function 405
footnotes

returning text of 429
setting text 663

FOPEN function 407
FOPTNAME function 409
FOPTNUM function 410
FORMAT function 411
formats, validity checking 411
formatting values 610
FORMULA entries 11
FPOINT function 412
FPOS function 414
FPUT function 415
FRAME control visibility, determining 334
FRAME entries

component values 721
cursor position, returning 297
identifier variable 416
identifiers, returning 252
leftmost column value 296
running 325
sending methods to 575

FRAME entry controls
attributes, setting 379
content validity, checking 357
error flags, clearing 359
error flags, setting 360
event type variable 363
gray status, returning 485
graying 446
modification status, returning 550
state of, returning 379
unprotecting 711

FRAME entry fields
attributes, setting 379



872 Index

content validity, checking 357
error flags, clearing 359
error flags, setting 360
state of, returning 379
visibility, determining 334

_FRAME_ system variable 416
FREAD function 417
FREWIND function 418
FRLEN function 419
FSEDIT applications

returning current row information 579
SUBMIT CONTINUE blocks in 88

FSEDIT routine 420
FSEINIT sections 10
FSEP function 422
FSETERM sections 11
FSLETTER procedure, sending letters from 506
FSLETTER window, displaying 506
FSLIST routine 423
FSVIEW routine 425
function keys

assigned commands, getting 428
assigning commands to 661
last used, returning 497
number available, returning 578
returning name of 399

functions
See SCL functions

functions, DATA step 83
FWRITE function 427

G
GAMMA command 814
gamma values, applying 814
GENERATE_CMAP command 815
GET_BARCODE command 816
GET_COLORS command 817
GETFKEY function 428
GETFOOT function 429
GETITEMC function 430
GETITEML function 430
GETITEMN function 430
GETITEMO function 430
GETLATTR function 431
GETNITEMC function 434
GETNITEML function 434
GETNITEMN function 434
GETNITEMO function 434
GETPARMID function 437
GET_PIXEL command 818
GETTITLE function 437
GETVARC function 438
GETVARF function 440
GETVARN function 438
GGLOBAL function 441
GGLOBALE function 442
GGLOBALN function 443
global commands, executing 365
global data environments 64
GO command, SCL Debugger 772
GOTO routine 444
GOTO statement 77
GRAB_CMAP command 818
graphics environment

See also images
closing 592
initializing 595

GRAY function 446
gray status, returning 485
graying

check boxes 222
choice group stations 222, 446

H
HALTONDOATTRIBUTE option, CONTROL state-

ment 80
hardware device selection list, displaying 322
HASATTR function 447
HELP command, SCL Debugger 773
HOME statement 448
host system commands, issuing 703

I
ICCREATE function 449
ICDELETE function 453
ICDESCRIBE function 454
ICON function 455
icons

associating with windows 455
displaying list of 655

ICREATE function 456
ICTYPE function 458
ICVALUE function 459
IDELETE function 460
IF command, SCL Debugger 774
IF-THEN/ELSE conditions 76
IF-THEN/ELSE statement 76
image files

file types 845
path strings, creating 520
reading 847
writing 849

image operations, performing 464
image tasks

starting 463
terminating 467

Image window
control options 461
raising to top 841
setting titles 844
sizing 843

images 803
bar codes, getting value of 816
color, converting to black and white 839
color maps, generating 815
color maps, getting RGB values 817
color maps, grabbing 819
color maps, mapping colors to 819
color maps, selecting 838
colors, reducing number of 824
colors, setting 836
converting formats 803
converting to negative 821
copying 804
creating 805
cropping 807
dithering, black and white 810
dithering, color 809



Index 873

filtering 812
gamma values, applying 814
Image window, raising to top 841
Image window, setting titles 844
Image window, sizing 843
mirroring 820
pasting 821, 822
pasting and reading 831, 832
pixel values, getting 818
pixel values, setting 837
printing 823
querying information about 825
reading and pasting 831, 832
reading from devices 829
reading from external files 829
reading from SAS catalogs 829
reading from the clipboard 831
removing 808, 840
rotating 833
scaling 834
scanner attributes 853
selecting 835
tiling 839
writing to a file 841
writing to a SAS catalog 841
writing to the clipboard 842

IMGCTRL function
commands used with 803
syntax 461

IMGINIT function 463
IMGOP function

commands used with 803
syntax 464

IMGTERM function 467
IMMEDIATE option, SUBMIT statement 88
IMPORT function 467
IMPORT statement 470
IN operator 29
indexes 186
INFORMAT function 471
informats

reading values with 473
validity checking 471

inheritance 100
INIT sections 11
INITROW function 472
input parameters 35
INPUTC function 473
INPUTN function 473
INSERTC function 474
INSERTL function 474
INSERTN function 474
INSERTO function 474
INSTANCE function 477
instance variables 98, 140
instances 99
instantiation 101, 104
integrity constraints 185
INTERFACE statement 478
interfaces 98, 134

defining 14, 134
example 135, 152

IOPTION function 483
ISACTIVE function 484
ISGRAY function 485
ISINDEX function 487

ISSEL function 488
ITEM statement 489
ITEMTYPE function 490
iterative DO loops 70
IVARLIST function 491

J
JUMP command, SCL Debugger 775

K
KEYCOUNT function 492
keywords 22

L
LABEL option, CONTROL statement 80
labeled sections 10

branching to 77
execution of 79
reserved labels 10
window variable sections 11

labels, reserved 10
LASTCMD function 496
LASTKEY function 497
LEAVE statement 73, 498
LEFT function 500
LEGEND routine 501
LEGEND statement

internal table of, deleting 442
number of, returning 443
returning text of 441

LEGEND window
closing 347
displaying 501
last saved contents, restoring 601
saving contents 608
specifying content for 611

LENGTH function 504
LENGTH statement 505
LETTER routine 506
LEVEL parameter 645
LIBLIST function 508
LIBNAME function 511
LIBREF function 513
LIBREF variable 643
librefs

for SAS tables 174
selection list, displaying 508
verifying assignment of 513

LINK statement 77
links between sessions, verifying 631
LIST command, SCL Debugger 776
List Diagnostic Utility 6
LISTC function 514
LISTLEN function 517
LISTN function 514
LNAMECHK function 518
LNAMEGET function 519
LNAMEMK function 520
LOADCLASS function 522
LOADRES function 523
local data environments 64
LOCATEC function 180, 524
LOCATEN function 180, 524



874 Index

LOCK function 526
LOG window

color, setting 335
displaying SCL lists 612
highlighting, setting 335
writing to 609

logical operators 30
LOOKUPC function 527
LVARLEVEL function 529

M
MACEXPAND command, SCL Debugger 778
macro facility, Debugger interface to 756
macro variables 91

automatic 93
names of, same as SCL variables 92
retrieving values 91
returning values from 699
storing values 91
storing values in 700

macros 15
MAIN sections 11
MAKEARRAY function 531
MAKELIST function 533
MAKENLIST function 534
MAP_COLORS command 819
MEMBER variable 643
memory, conserving with temporary arrays 47
menus

changing 596
displaying 238
PMENU function 596
pop-up, displaying 602
POPMENU function 602

message boxes, displaying 535
MESSAGEBOX function 535
messages, displaying 555, 687
metaclasses 101, 102
metadata

attribute metadata 123
class metadata 589
events and event handlers 133
method metadata 120

method arguments, passing to SCL lists 695
method blocks 13

defining 539
executing 537
in USECLASS blocks 14

METHOD function 537
METHOD routine 537
method scope 105
METHOD statement 13, 539
METHOD statement blocks, ending 348
_METHOD_ system variable 547
methods 13, 98, 99, 104

binding to classes 715
calling, when stored in SCL entries 13
constructors 106, 116
current, identifier variable 656
custom access methods 122
declaring 104
defining 13
defining method blocks 13
dot notation for 124
executing 79

forward-referencing 112
implementing 104
implementing, outside of classes 120
inherited definitions 697
interfaces and 14
invoking 225
labels for 106
lists as arguments for 55
metadata 120
name of current, returning 547
names of 106
overloading 112, 151
overriding in SCL 116
parameters 107
parameters, specifying with dot notation 128
parameters in 35
passing dynamic arrays to 45
passing objects as arguments for 108
referencing 103
returning arrays from 46
returning values from 109
scope 105
sending to FRAME entries 575
sending to objects 656
signatures 109, 152
specifying, non-constructors 119
storage types 107
USECLASS blocks and 14

MIRROR command 820
mirroring images 820
missing values 237, 472
MLENGTH function 549
model/view communication 100
models 102
MODIFIED function 550
MODVAR function 551
MOPEN function 553
_MSG_ system variable 555

N
named lists 62

determining item names 63
finding occurrence of a name 63
indexing items by position 63
replacing item names 63
starting point for searches 64

NAMEDITEM function 556
NAMEDIVIDE function 558
NAMEITEM function 559
NAMEMERGE function 560
names 21
NEGATE command 821
_NEO_ operator 561
_NEO_ system variable 561
nested lists 57

limitless levels of nesting 60
SAVELIST recursiveness 62
saving to SCL entries 60
simulating multidimensional arrays with 60

_NEW_ operator 104
syntax 565
versus _NEO_ operator 561

NEW routine 563
NEWVAR function 568
NEXTCMD routine 569



Index 875

NEXTWORD routine 571
NOALLCMDS option, CONTROL statement 79
NOALWAYS option, CONTROL statement 80
NOASIS option, CONTROL statement 80
NOBREAK option, CONTROL statement 80
NOCHANGE routine 572
NOENDAWS option, CONTROL statement 80
NOENDSAS option, CONTROL statement 80
NOENTER option, CONTROL statement 80
NOERROR option, CONTROL statement 80
NOHALTONDOATTRIBUTE option, CONTROL state-

ment 80
NOLABEL option, CONTROL statement 80
nonvisual objects 99
nonwindow variables 23
not operator 30
NOT operator 31
NOTE function 573
NOTERM option, CONTROL statement 80
NOTIFY function 575
NOTIFY routine 575
NSELECT function 577
numeric constants 26
numeric variables 18

DATA step 84
NUMFKEYS function 578

O
object identifiers 99
object-oriented application design 98
object-oriented programming (OOP) 98

applications, creating 143
attributes 120
classes 100
converting Version 6 classes to Version 8 137
dot notation 124
event handlers 130
events 130
example 143
interfaces 134
methods 104
SAS Component Object Model (SCOM) 99
terminology 98
tutorial 143

objects 19, 99
attributes, accessing with dot notation 124
creating 477, 561
creating with _NEO_ operator 561
creating with _NEW_ operator 565
generic 20
identifiers, returning 477
passing, as arguments for methods 108
SAS/AF visual objects 158
sending methods to 656
specific 20
specifying at run time 20

OBSINFO function 579
OOP

See object-oriented programming (OOP)
OPEN function 581
OPENENTRYDIALOG function 583
OPENSASFILEDIALOG function 585
operators 28

AND operator 30
arithmetic 28

Boolean 30
colon modifier 29
comparison 28
IN operator 29
logical 30
NOT operator 31
OR operator 31

OPTGETC function 587
OPTGETN function 587
OPTSETC function 588
OPTSETN function 588
or operator 30
OR operator 31
output device filerefs 389
output parameters 35
OUTPUT window 335, 748

P
PACKAGE blocks 349, 589
PACKAGE statement 589
parameters

in functions 35
in methods 35
input parameters 35
method parameters 107
output parameters 35
update parameters 35

parent classes 100
PARM command, SCL Debugger 779
PASTE command 821
PASTE_AUTO command 822
pasting and reading images 831, 832
pasting images 821, 822
path strings

creating 520
decoding 519
validating 518

PATHNAME function 590
PATTERN statement

internal table of, deleting 442
number of, returning 443
returning text of 441

performance, of SCL code 6
Performance Analyzer 6
PICCLOSE function 592
PICDELETE function 592
PICFILL function

commands used with 803
syntax 593

PICOPEN function 595
pictures

See images
pixel values

getting 818
setting 837

PMENU function 596
PMENUs, changing 596
POINT function 597
POPC function 598
POPL function 598
POPLEGEND routine 601
POPMENU function 602
POPN function 598
POPO function 598
preview buffers 604



876 Index

PREVIEW function 604
PRIMARY option, SUBMIT statement 88
PRINT command 823
printing images 823
PROC BUILD statement 5
program execution, suspending 736
program execution status 686
program flow 69

branching to another entry 77
branching to labeled sections 77
calling SCL entries 78
DO loops 70
executing methods 79
IF-THEN/ELSE conditions 76
RETURN statement 76
SELECT-WHEN/OTHERWISE conditions 74
stopping execution of current section 78

program halt handler 163
program modules 9
program sections

controlled execution 279
terminating 635, 688

programs, terminating 624
PROTECT statement 607
PUSHLEGEND routine 608
PUT statement 609
PUTC function 610
PUTLEGEND routine 611
PUTLIST command, SCL Debugger 780
PUTLIST routine 612
PUTN function 610
PUTVARC routine 614
PUTVARN routine 614

Q
QUANTIZE command 824
QUERYC command 825
QUERYL command 825
QUERYN command 825
queues, SCL lists as 65
QUIT command, SCL Debugger 781

R
radio boxes

activating 222
active button, returning 484
graying 222

READ command 829
READ_CLIPBOARD command 831
reader variables 153
READ_PASTE command 831
READ_PASTE_AUTO command 832
REDIM function 615
REFRESH statement 620
regions

defining 593
deleting 592

regions, filling with an image 593
remote host, submitting statements to 89
remote sessions

connection description, defining 634
information, returning 633

RENAME function 620
Replace attribute 90

REPLACE statement 90, 623
reserved labels 10
RESOURCE entries, loading 523
return codes

See SAS system return codes
RETURN (RUN) statement 624, 635
RETURN statement 76
REVLIST function 626
REWIND function 627
RGBDM function 628
RIGHT function 630
RLINK function 631
ROTATE command 833
rotating images 833
ROTLIST function 631
RSESSION function 633
RSTITLE function 634
RUN (RETURN) statement 624, 635
run-time errors 163

S
SAS/AF entries, branching to 77
SAS/AF software

BUILD window, invoking 241
catalog entries, running 330

SAS/AF visual objects 158
SAS catalog entries

listing 244
locking 526
pathname, returning 650
verifying existence of 251

SAS Component Language (SCL)
See SCL (SAS Component Language)

SAS Component Object Model (SCOM) 99
SAS data libraries

external files 313
librefs, assigning/deassigning 511
physical names, returning 590
verifying existence of 385

SAS data library members
deleting 313
renaming 620
selection list of 327
verifying existence of 367

SAS files
parts information, returning 558
SAS names, merging 560
saving 643
selection list, displaying 585, 643

SAS names, validating 636
SAS procedures, detecting 636
SAS statements 82

compared to SCL features 85
formatting 87
submit blocks for 85
submitting 85

SAS system options
returning 587
setting 588

SAS system return codes 791
error conditions 792
interpreting 791
messages for 792
mnemonics for 793
obtaining 791



Index 877

warning conditions 792
SAS table columns

adding 568
assigning formatted values to SCL variables 440
assigning to SCL variables 438
attributes 183
attributes, querying 184
current position, returning 372
data type, returning 735
defining 184
displaying in selection lists 727
formats, changing 551
formats, returning 722
index keys, returning names 491
index options, returning 483
informats, changing 551
informats, returning 723
key options, returning 483
labels, changing 551
labels, returning 724
length, returning 725
linking with SCL variables 177
names, changing 551
names, returning 730
numbers, returning 731
position of 178
SCL variables, linking to 658
unique values, returning 726

SAS table indexes 186
attributes 454
column options, returning 483
creating 456
defining 666
deleting 460
keys, returning column names 491
obtaining 454
type, returning 487

SAS table integrity constraints
creating 449
dropping 453
returning conditions 459
returning type of 458

SAS table rows
access control 179
appending 182, 224
counting 492
current row number, returning 300
deleting 182, 320
displaying a table by 420
renumbering 182
sequence for reading 181

SAS tables 173
access control levels 176, 177
accessing 174
attributes, determining 183
attributes, displaying 276
attributes, querying 183
attributes, returning 231
bookmarking 573
bookmarks, locating 597
closing 183, 268
copying 184, 285
creating 184
creating from external files 467
defining interactively 563
deleting 185

displaying in tabular format 425
integrity constraints 185
librefs for 174
locking 526
note markers, deleting 342
opened, maximum allowed 175
opening 174, 581
pointers, positioning at beginning 627
reading 177, 374
renaming 185
return codes 174
SCL data vector and 175
searching, efficiency 180
searching, WHERE versus LOCATEC or LOCATEN 180
searching, with LOCATEC and LOCATEN 524
selections lists from 304
sorting 185, 682
statistics, calculating 732
subsetting data, permanently 179
subsetting data, temporarily 180
table data vector and 175
table identifier, returning 343
table lookup 179
table names, returning 345
unlocking 710
updating 181, 714
WHERE clauses, syntax 738
WHERE clauses, undoing 181
writing to Table Data Vector 614

SASNAME function 636
SASTASK function 636
SAVEENTRYDIALOG function 638
SAVELIST function 640
SAVELIST recursiveness 62
SAVESASFILEDIALOG function 643
SAVESCREEN routine 645
saving programs 6
SCALE command 834
scaling images 834
scanner attributes 853
SCL analysis tools 6
SCL arrays 37

See also dynamic arrays
assigning same value to multiple elements 40
comparing 274
copying 42, 286
copying, with assignment statements 42
copying, with COPYARRAY function 43
creating 531
declaring 37
defining elements in 227
deleting 312
dynamic 40
grouping variables with sequential names 39
multidimensional, simulating with nested lists 60
referencing array elements 38
repeating actions on variables 44
returning from methods 46
sorting 230
static, initializing elements of 39
static multidimensional, initializing 40
subscripting 38
temporary, conserving memory with 47

SCL CALL routines 34, 222
APPLY 225
BUILD 241



878 Index

CBT 248
CLRFLD 269
DIALOG 325
DISPLAY 330
ENDBLOCK 346
ENDLEGEND 347
ENDTABLE 350
EXECCMD 364
EXECCMDI 365
FSEDIT 420
FSLIST 423
FSVIEW 425
GOTO 444
LEGEND 501
LETTER 506
METHOD 537
NEW 563
NEXTCMD 569
NEXTWORD 571
NOCHANGE 572
NOTIFY 575
passing arguments to 34
POPLEGEND 601
PUSHLEGEND 608
PUTLEGEND 611
PUTLIST 612
PUTVARC 614
PUTVARN 614
SAVESCREEN 645
SEND 656
SET 658
SETCR 660
SETFKEY 661
SETFLD 662
SETFOOT 663
SETPARMID 677
SETROW 678
SETTITLE 680
SUPAPPLY 695
SUPER 697
SYMPUT 700
SYMPUTN 700
TOPROW 705
TRACEBACK 706
WAIT 736
WDEF 737
WNAME 744
WREGION 750

SCL code
entering 4
performance of 6

SCL compiler 4
SCL data types 18

character (CHAR) variables 19
declaring 18
lists 19
numeric (NUM) variables 18
objects 19

SCL Data Vector (SDV) 5, 175, 190
SCL Debugger 753

See also SCL Debugger commands
argument values, displaying 759
breakpoints, deleting 764
breakpoints, listing 776
breakpoints, setting 760
calculator 763

environment for 754, 769
expressions, evaluating 763, 774
help for 773
invoking 755
macro calls, expanding 778
parameter values, displaying 779
quitting 781
resuming execution 772, 775
SAS macro interface 756
SCL list contents, displaying 780
starting execution 772
step-by-step execution 783
suspending execution 760
swapping SOURCE and MESSAGE windows 784
tracebacks 786
tracepoints, deleting 764
tracepoints, listing 776
tracepoints, setting 785
variable attributes 766
variable values, assigning 782
variable values, displaying 770
watched variables 787
watched variables, deleting 764
watched variables, listing 776
windows 755

SCL Debugger commands 757
ARGS 759
assigning to ENTER key 768
BREAK 760
by functional category 757
CALCULATE 763
DELETE 764
DESCRIBE 766
ENTER 768
ENVIRONMENT 769
EXAMINE 770
for debugging requests 757
for macros 758
for manipulating variables 758
for program execution 757
for session customization 759
for windows 758
GO 772
HELP 773
help for 773
IF 774
JUMP 775
LIST 776
MACEXPAND 778
PARM 779
PUTLIST 780
QUIT 781
retrieving 756
SET 782
STEP 783
SWAP 784
TRACE 785
TRACEBACK 786
WATCH 787

SCL entries 9
calling 78
calling methods stored in 13
class information, writing to 293
interface information, writing to 293
saving nested lists to 60

SCL environment list identifiers, returning 356



Index 879

SCL error messages, returning text of 701
SCL execution stack, displaying traceback information 706
SCL functions 34, 222

ACTIVATE 222
APPEND 224
APPLY 225
ASORT 230
ATTRC 231
ATTRN 231
BLOCK 238
CATLIST 244
CATNAME 247
CENTER 250
CEXIST 251
CLEARLIST 266
CLOSE 268
COLORLIST 270
COMAMID 272
COMPAREARRAY 274
COMPARELIST 275
CONTENTS 276
COPY 285
COPYARRAY 43, 286
COPYLIST 289
CREATESCL 293
CURFLD 297
CURLIST 298
CUROBS 300
CURTOP 302
CURWORD 303
DATALIST 304
DATALISTN 304
DCLOSE 307
DCREATE 308
DELARRAY 312
DELETE 313
DELITEM 315
DELLIST 316
DELNITEM 317
DELOBS 320
DESCRIBE 321
DEVLIST 322
DINFO 326
DIRLIST 327
DISPLAY 330
DISPLAYED 334
DMWINDOW 335
DNUM 336
DOPEN 338
DOPTNAME 339
DOPTNUM 340
DREAD 341
DROPNOTE 342
DSID 343
DSNAME 346
ENVLIST 356
ERROR 357
EVENT 361
EXIST 367
FAPPEND 369
FCLOSE 371
FCOL 372
FDELETE 373
FETCH 374
FETCHOBS 375
FEXIST 377

FGET 378
FIELD 379
FILEDIALOG 383
FILEEXIST 385
FILELIST 386
FILENAME 389
FILEREF 391
FILLIST 393
FINFO 398
FKEYNAME 399
FLDATTR 400
FLDCOLOR 402
FNOTE 404
FONTSEL 405
FOPEN 407
FOPTNAME 409
FOPTNUM 410
FORMAT 411
FPOINT 412
FPOS 414
FPUT 415
FREAD 417
FREWIND 418
FRLEN 419
FSEP 422
FWRITE 427
GETFKEY 428
GETFOOT 429
GETITEMC 430
GETITEML 430
GETITEMN 430
GETITEMO 430
GETLATTR 431
GETNITEMC 434
GETNITEML 434
GETNITEMN 434
GETNITEMO 434
GETPARMID 437
GETTITLE 437
GETVARC 438
GETVARF 440
GETVARN 438
GGLOBAL 441
GGLOBALE 442
GGLOBALN 443
GRAY 446
HASATTR 447
ICCREATE, syntax 449
ICDELETE, syntax 453
ICDESCRIBE 454
ICON 455
ICREATE 456
ICTYPE, syntax 458
ICVALUE, syntax 459
IDELETE, syntax 460
IMGCTRL, commands used with 803
IMGCTRL, syntax 461
IMGINIT 463
IMGOP, commands used with 803
IMGOP, syntax 464
IMGTERM 467
IMPORT 467
in expressions 32
INFORMAT 471
INITROW 472
INPUTC 472



880 Index

INPUTN 472
INSERTC 474
INSERTL 474
INSERTN 474
INSERTO 474
INSTANCE 477
IOPTION, syntax 483
ISACTIVE 484
ISGRAY 485
ISINDEX, syntax 487
ISSEL 488
ITEMTYPE 490
IVARLIST, syntax 491
KEYCOUNT 492
LASTCMD 496
LASTKEY 497
LEFT 500
LENGTH 504
LIBLIST 508
LIBNAME 511
LIBREF 513
LISTC 514
LISTLEN 517
LISTN 514
LNAMECHK 518
LNAMEGET 519
LNAMEMK 520
LOADCLASS 522
LOADRES 523
LOCATEC 524
LOCATEN 524
LOCK 526
LOOKUPC 527
LVARLEVEL 529
MAKEARRAY 531
MAKELIST 533
MAKENLIST 534
MESSAGEBOX 535
METHOD 537
MLENGTH 549
MODIFIED 550
MODVAR 551
MOPEN 553
NAMEDITEM 556
NAMEDIVIDE 558
NAMEITEM 559
NAMEMERGE 560
NEWVAR 568
NOTE 573
NOTIFY 575
NSELECT 577
NUMFKEYS 578
OBSINFO 579
OPEN 581
OPENENTRYDIALOG 583
OPENSASFILEDIALOG 585
OPTGETC 587
OPTGETN 587
OPTSETC 588
OPTSETN 588
parameters in 35
passing arguments to 34
PATHNAME 590
PICCLOSE 592
PICDELETE 592
PICFILL, commands used with 803

PICFILL, syntax 593
PICOPEN 595
PMENU 596
POINT 597
POPC 598
POPL 598
POPMENU 602
POPN 598
POPO 598
PREVIEW 604
PUTC 610
PUTN 610
REDIM 615
RENAME 620
REVLIST 626
REWIND 627
RGBDM 628
RIGHT 630
RLINK 631
ROTLIST 631
RSESSION 633
RSTITLE 634
SASNAME 636
SASTASK 636
SAVEENTRYDIALOG 638
SAVELIST 640
SAVESASFILEDIALOG 643
SCREENNAME 646
SEARCH 647
SEARCHC 648
SEARCHL 648
SEARCHN 648
SEARCHO 648
SEARCHPATH 650
SELECT 652
SELECTED 654
SELECTICON 655
SEND 656
SETITEMC 664
SETITEML 664
SETITEMN 664
SETITEMO 664
SETKEY 666
SETLATTR 669
SETNITEMC 675
SETNITEML 675
SETNITEMN 675
SETNITEMO 675
SHOWLIST 681
SORT 682
SORTLIST 684
STDMSG 687
STRATTR 689
SUPAPPLY 695
SYMGET 699
SYMGETN 699
SYSMSG 701
SYSRC 702
SYSTEM 703
UNGRAY 708
UNIQUENUM 709
UNLOCK 710
UNSELECT 713
UPDATE 714
VARFMT 722
VARINFMT 723



Index 881

VARLABEL 724
VARLEN 725
VARLEVEL 726
VARLIST 727
VARNAME 730
VARNUM 731
VARSTAT 732
VARTYPE 735
WHERE 738
WINFO 740
WORD 744
WORDTYPE 746
WOUTPUT 748

SCL keywords 22
SCL list items 49

accessing, relative to end of a list 57
assigning names to 62
attributes 66
attributes, returning 431, 447
attributes, setting 669
deleting 56, 598
determining type of 55
inserting 55
named, assigning values to 675
referencing by index number 57
replacing 55
storing 640
values, returning 598

SCL lists 19, 49
See also SCL list items
as queues 65
as stacks 65
attributes 66
attributes, returning 431, 447
attributes, setting 669
clearing 266
comparing 275
copying 289
creating 50, 533, 534
creating data dynamically 50
creating (example) 51
debugging 66
deleting 56, 316
designating 298
displaying, in SCL Debugger 780
displaying in LOG window 612
file interfaces 66
filling 321, 393, 529
identifying 50
indexing 57
indexing errors 57
initializing values 53
inserting values into 474
item names, returning and replacing 559
item type, returning 490
items, deleting 315
length, returning 517
manipulating 54
merging 289
named item index, returning 556
named items, deleting 317
named lists 62
nested lists 57
passing as arguments for methods 55
passing method arguments to 695
pop-up menus, displaying 602

reporting 298
retrieving values from 56
returning values by name 434
returning values by position 430
reversing 626
rotating 631
searching 648
shared data environments 64
sorting 684
storing 66
storing values at indexed positions 664
sublists 57
sublists, deleting 316

SCL numerical variables, passing as parameters 677
SCL operators

and 30
not 30
or 30

SCL program modules 9
SCL programs

See also program flow
comments 33
debugging 6
labeled sections 10
macros for 15
SAS software features in 7
saving 6
stopping execution 76, 78
structure of 9
testing 5

SCL programs, compiling 4
in batch 5
interactively 4
SCL data vector and 5

SCL (SAS Component Language) 3
elements of 3
elements of, by category 200

SCL statements 32
ALARM 223
ARRAY, syntax 227
assignment statement 33
CATCH 243
CLASS 253
CONTINUE, syntax 278
CONTROL 279
CURSOR 301
declarative 33
DECLARE (DCL) 309
DO, syntax 337
ENDCATCH 347
ENDCLASS 347
ENDMETHOD 348
ENDPACKAGE 349
ENDSUBMIT 349
ENDUSECLASS 351
ENTRY 351
ERROROFF 359
ERRORON 360
executable 33
HOME 448
IMPORT 470
INTERFACE 478
ITEM 489
jumping to a statement label 77
LEAVE, syntax 498
LENGTH, syntax 505



882 Index

METHOD 539
PACKAGE 589
PROTECT 607
PUT, syntax 609
REFRESH 620
REPLACE, syntax 623
RETURN (RUN), syntax 624
rules for coding 36
RUN (RETURN), syntax 635
SELECT 653
selecting for execution 653
STOP, syntax 688
SUBMIT 691
SUBMITCLEAR 694
submitting 691
THROW 704
UNPROTECT 711
USECLASS 715

SCL variables 22
assigning formatted values to 440
assigning values to 662
categories of 22
clearing 269
declaring 505
declaring data types 309
linking with columns in SAS tables 177
maximum length, returning 549
names of, same as macro variables 92
nonwindow variables 23
specifying 309
system variables 24
window variables 22

SCOM (SAS Component Object Model) 99
scope modifiers 145
screen values, saving 645
SCREENNAME function 646
SDV (SCL Data Vector) 5, 175, 190
SEARCH function 647
SEARCHC function 648
SEARCHL function 648
SEARCHN function 648
SEARCHO function 648
SEARCHPATH function 650
SELECT command 835
SELECT function 652
SELECT statement 74, 653
SELECT-WHEN/OTHERWISE conditions 74
SELECTED function 654
SELECTICON function 655
selection lists

catalog entries 514, 583, 638
colors 270
deselecting 713
displaying 681
external files 383
filerefs 386
hardware devices 322
librefs 508
number of selected rows, returning 577
SAS data library members 327
SAS files 585, 643
SAS table columns 727
selecting rows 652
selection number, returning 488
user choice, returning 654

_SELF_ system variable 656

SEND function 656
SEND routine 656
session links, verifying 631
SET command, SCL Debugger 782
SET routine 658
SET_COLORS command 836
SETCR routine 660
SETFKEY routine 661
SETFLD routine 662
SETFOOT routine 663
SETITEMC function 664
SETITEML function 664
SETITEMN function 664
SETITEMO function 664
SETKEY function 666
SETLATTR function 669
SETNITEMC function 675
SETNITEML function 675
SETNITEMN function 675
SETNITEMO function 675
SETPARMID routine

returning values from 437
syntax 677

SET_PIXEL command 837
SETROW routine 678
SETTITLE routine 680
shared data environments 64

global data environment 64
local data environment 64

shortcut syntax 103
SHOWLIST function 681
signatures 109

altering 111
example 152
shorthand for 110
uses for 111

SIGSTRINGs 110
SORT function 682
sorting SAS tables 185
SORTLIST function 684
SQL option, SUBMIT statement 88
SQL statements

submitting 85
stacks, SCL lists as 65
STANDARD_CMAP command 838
statements

See SAS statements
See SCL statements

Static Analyzer 6
_STATUS_ system variable 686
STDMSG function 687
STEP command, SCL Debugger 783
STOP statement 78, 688
STRATTR function 689
STRING data type 19
subclasses 100, 149
sublists 57
submit blocks 85

aborting submit transactions 694
controlling where code is executed 87
designating 85
ending 349
formatting 79, 279
modifying behavior of 87
post-execution behavior 88
processing 86



Index 883

SCL variables, replacement strings 623
submitting statements to remote host 89
substituting text in 89

SUBMIT statement 87, 691
SUBMITCLEAR statement 694
subscripting 38
subsetting data 179, 180
SUPAPPLY function 695
SUPAPPLY routine 695
SUPER routine 697
SWAP command, SCL Debugger 784
SYMBOL statement

internal table of, deleting 442
number of, returning 443
returning text of 441

SYMGET function 699
SYMGETN function 699
SYMPUT routine 700
SYMPUTN routine 700
SYSMSG function 701
SYSRC function 702
system events 131
SYSTEM function 703
system return codes, returning 702
system variables 24

_BLANK_ 237
_CFRAME_ 252
_CURCOL_ 296
_CURROW_ 301
_EVENT_ 363
_FRAME_ 416
_METHOD_ 547
_MSG_ 555
_NEO_ 561
_SELF_ 656
_STATUS_ 686
_VALUE_ 721

T
Table Data Vector (TDV) 374

initializing to missing values 472
reading SAS tables into 374, 375
writing from SAS tables 620

table lookup 179
tables

See SAS tables
TDV

See Table Data Vector (TDV)
TERM option, CONTROL statement 80
TERM sections 11
TERMINATE option, SUBMIT statement 88
testing applications 5
text entry control attributes, changing 402
text label control attributes, changing 402
THRESHOLD command 839
THROW statement 165, 704
TILE command 839
tiling images 839
title text, setting 680
tokens, searching 527
TOPROW routine 705
TRACE command, SCL Debugger 785
TRACEBACK command, SCL Debugger 786
TRACEBACK routine 706
tracebacks, displaying 706

TWAIN scanners 853
TYPE variable 643

U
UNGRAY function 708
ungraying elements 708
unique numbers, returning 709
UNIQUENUM function 709
UNLOCK function 710
UNPASTE command 840
UNPROTECT statement 711
UNSELECT function 713
UNTIL clause 71
UPDATE function 714
update parameters 35
USECLASS blocks 14, 120
USECLASS statement 156, 715
USECLASS statement blocks, ending 347, 351
USERDATA variable 643

V
_VALUE_ system variable 721
VARFMT function 722
variables, DATA step 83
variables, SCL

See SCL variables
VARINFMT function 723
VARLABEL function 724
VARLEN function 725
VARLEVEL function 726
VARLIST function 727
VARNAME function 730
VARNUM function 731
VARSTAT function 732
VARTYPE function 735
views 102, 285
visual objects 99, 158

W
WAIT routine 736
warning conditions 792
WATCH command, SCL Debugger 787
WDEF routine 737
WHERE clauses

syntax 738
undoing 181

WHERE function 180, 738
WHILE clause 71
window elements, ungraying 708
window variable sections 11
window variables 22

correcting variables in 12
windows

boundary definitions 750
closing 346
current name, returning 646
refreshing 620
resizing active 737
returning information about 740

windows names, specifying 744
WINFO function 740
WNAME routine 744
WORD function 744



884 Index

WORDTYPE function 746

WOUTPUT function 748

WRAISE command 841
WREGION routine 750

WRITE command 841

WRITE_CLIPBOARD command 842

WSIZE command 843
WTITLE command 844



Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.



 



SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly 
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set 
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press 
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you 
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the 
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels. 

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation 
To successfully implement applications using SAS software, companies in every industry and on every 
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.  
We currently produce the following types of reference documentation to improve your work experience: 

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web. 
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News 
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author 
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as 
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109



 


	Contents
	SCL Fundamentals
	Introduction
	Introduction to SCL
	SCL Elements
	Entering SCL Code
	Compiling SCL Programs
	Compiling Your SCL Program Interactively
	Compiling Your SCL Program in Batch
	The SCL Data Vector

	Testing SCL Applications
	Debugging SCL Programs
	Saving SCL Programs
	Optimizing the Performance of SCL Code
	Using Other SAS Software Features in SCL Programs
	SCL Compatibility Issues

	The Structure of SCL Programs
	Introduction to SCL Program Structure
	Using Labeled Sections in SCL Programs
	Reserved Labels
	Window Variable Sections

	Defining Classes in SCL Programs
	Defining and Using Methods in SCL Programs
	Defining Method Blocks
	Calling a Method That Is Stored in an SCL Entry

	USECLASS Blocks in SCL Programs
	Defining Interfaces in SCL Programs
	Using Macros in SCL Programs
	Example


	SCL Fundamentals
	Introduction to SCL Fundamentals
	SCL Data Types
	Declaring Data Types
	Numeric (NUM) Variables
	Character (CHAR) Variables
	Lists
	Objects

	Names in SCL
	SCL Keywords
	SCL Variables
	Window Variables
	Nonwindow Variables
	System Variables

	SCL Constants
	Numeric Constants
	Character Constants
	Numeric-to-Character Conversion

	SCL Operators
	Arithmetic Operators
	Comparison Operators
	Logical (Boolean) Operators

	SCL Expressions
	Boolean Numeric Expressions
	Using Functions in Expressions

	SCL Statements
	Executable and Declarative Statements
	The Assignment Statement

	SCL Comments
	SCL Functions
	SCL CALL Routines
	Passing Arguments to SCL Functions and CALL Routines
	Input, Output, and Update Parameters

	Rules for SCL Statements

	SCL Arrays
	Introduction to SCL Arrays
	Declaring Arrays in SCL Programs
	Referencing Array Elements in SCL Programs
	Grouping Variables That Have Sequential Names

	Initializing the Elements of a Static Array in SCL Programs
	Assigning the Same Value to Multiple Elements
	Initializing Static Multidimensional Arrays

	Creating and Initializing Dynamic Arrays in SCL Programs
	Resizing Dynamic Arrays in SCL Programs
	Explicitly Resizing An Array With REDIM

	Using Array Functions with Dynamic Arrays in SCL Programs
	Copying Elements from One Array to Another in SCL Programs
	Using Assignment Statements
	Using The COPYARRAY Function

	Repeating an Action for Variables in an Array in SCL Programs
	Passing Dynamic Arrays to Methods in SCL Programs
	Returning Arrays from Methods in SCL Programs
	Deleting Dynamic Arrays in SCL Programs
	Using Temporary Arrays to Conserve Memory in SCL Programs

	SCL Lists
	Introduction to SCL Lists
	Creating Data Dynamically in SCL
	Identifying SCL Lists
	Creating New SCL Lists
	Example: Creating an SCL List

	Initializing the Values in an SCL List
	Manipulating SCL Lists
	Determining the Type of an SCL List Item
	Passing SCL Lists as Arguments for Methods
	Inserting and Replacing Items in SCL Lists
	Retrieving Values from SCL Lists
	Deleting Lists and List Items from SCL Lists
	Referencing SCL List Items by Index Number
	Accessing Items Relative to the End of an SCL List
	Index Errors in SCL Lists
	Implementing SCL Sublists and Nested Structures
	Limitless Levels of Nesting
	Simulating Multidimensional Arrays with Nested Lists
	Saving Nested Lists to SCL Entries

	Assigning Names to SCL List Items
	Indexing a Named Item by its Position
	Determining or Replacing an Item’s Name
	Finding an Occurrence of a Name
	Specifying Where the Search for an Item Starts

	Using SCL Lists in Shared Data Environments
	Local Data Environment
	Global Data Environment

	Using SCL Lists as Stacks and Queues
	Using a List as a Stack
	Using a List as a Queue

	Assigning Attributes to SCL Lists and List Items
	Using SCL List File Functions
	Debugging SCL Lists

	Controlling Program Flow
	Introduction to SCL Program Flow
	Using SCL DO Loops
	DO Statement
	Iterative DO Loops
	DO WHILE Statement
	DO UNTIL Statement
	Controlling DO Loops (CONTINUE and LEAVE)

	Using SCL SELECT-WHEN/OTHERWISE Conditions
	Using SCL IF-THEN/ELSE Conditions
	Using the SCL RETURN Statement
	Branching to a Labeled Section (LINK) in SCL Programs
	Branching to Another Entry (GOTO) in SCL Programs
	Calling SCL Entries
	Stopping Execution of the Current Section in SCL Programs
	Executing Methods in SCL Programs
	Using the SCL CONTROL Statement

	Using SCL with Other SAS Software Products
	Introduction to Using SCL with SAS
	Using SAS DATA Step Features in SCL Programs
	Statements
	Functions
	Variables
	Expressions

	Submitting SAS Statements and SQL Statements in SCL Programs
	Submitting Statements Compared to Using SCL Features
	Designating Submit Blocks in SCL Programs
	How Submit Blocks Are Processed in SCL Programs
	How Submitted Statements Are Formatted in SCL Programs
	Modifying the Behavior of Submit Blocks in SCL Programs
	Controlling Where Submitted Code Is Executed
	Controlling What Happens After a Submit Block Executes
	Submitting Statements to a Remote Host

	Substituting Text in Submit Blocks in SCL Programs
	How Values Are Substituted in Submit Blocks
	Specifying Text for Substitutions

	Issuing Commands to Host Operating Systems from SCL Programs
	Using Macro Variables in SCL Programs
	Storing and Retrieving Macro Variable Values
	Using the Same Name for Macro Variables and SCL Variables
	Using Automatic Macro Variables

	SCL and DATA Step Graphics Interface Elements

	Developing Object-Oriented Applications
	SAS Object-Oriented Programming Concepts
	Introduction to Object-Oriented Programming
	Object-Oriented Programming and the SAS Component Object Model
	Classes
	Relationships among Classes
	Types of Classes
	Defining Classes
	Instantiating Classes

	Methods
	Defining Method Scope
	Defining Method Names and Labels
	Specifying Parameter Types and Storage Types
	Passing Objects as Arguments for Methods
	Returning Values From Methods
	Method Signatures
	Forward-Referencing Methods
	Overloading Methods
	Overriding Existing Methods
	Defining Constructors
	Implementing Methods Outside of Classes
	Method Metadata

	Attributes
	Creating Attributes Automatically
	Specifying Where an Attribute Value Can Be Changed
	Setting Initial Values and the List of Valid Values
	Associating Custom Access Methods with Attributes
	Linking Attributes
	Attribute Metadata

	Accessing Object Attributes and Methods with Dot Notation
	Syntax
	Examples
	What Happens When Attribute Values Are Set or Queried

	Events and Event Handlers
	System Events
	Defining and Sending Events
	Defining Event Handlers
	Example
	Event and Event Handler Metadata

	Interfaces
	Defining Interfaces
	Example

	Converting Version 6 Non-Visual Classes to SCOM Classes
	Removing Global Variables
	Declaring Variables
	Converting Labels and LINK Statements
	Converting CALL SEND to Dot Notation
	Converting Class Definitions with CREATESCL
	Using Instance Variables


	Example: Creating An Object-Oriented Application in SCL
	Introduction to the SCL Tutorial
	Simple Class Syntax in SCL
	Creating a Data Set Class in SCL
	Class Data
	The Data Set Class
	Constructors
	Using the Data Set Class

	Extending Classes in SCL
	Access Modifiers
	The DDATA Class as a Subclass
	The FDATA Class
	Overloaded Methods

	Interfaces and Higher Levels of Abstraction
	Other Classes and Further Abstraction
	The SCL USECLASS Statement
	Using SCL Class Syntax with SAS/AF Software
	Flexibility


	Application Considerations
	Handling Exceptions
	Introduction to SCL Exception Handling
	Using the SCL programHalt Handler
	Handling SCL Exceptions with CATCH and THROW
	Example
	How SCL Determines Which CATCH Block To Execute
	Catching and Rethrowing Exceptions
	Nested CATCH Blocks
	The SCL Throwable and SCL Exception Classes


	Using SAS Tables
	Introduction to Using SAS Tables in SCL Programs
	Accessing SAS Tables in SCL Programs
	Assigning Librefs in SCL Programs
	Opening SAS Tables in SCL Programs
	Number of Open SAS Tables Allowed

	SAS Tables and the SCL Data Vector
	Access Control Levels
	Specifying a Control Level

	Reading SAS Tables in SCL Programs
	Linking SAS Table Columns And SCL Variables
	Determining a Column’s Position in a SAS Table
	Using Table-Lookup Techniques

	Controlling Access to SAS Table Rows in SCL Programs
	Permanently Subsetting Data
	Temporarily Subsetting Data
	Searching with WHERE versus LOCATEC or LOCATEN
	Searching Efficiently
	Undoing WHERE Clauses

	Changing the Sequence of Reading Rows in SCL Programs
	Updating SAS Tables in SCL Programs
	Appending Rows
	Deleting Rows
	Remaining Rows Not Renumbered
	Renumbering Rows

	Closing SAS Tables in SCL Programs
	Determining Attributes of SAS Tables and Columns in SCL Programs
	Querying Attributes of SAS Tables
	Querying Attributes of SAS Table Columns
	Defining New Columns

	Performing Other SAS Table Operations in SCL Programs
	Preserving the Integrity of Table Data in SCL Programs
	Manipulating SAS Table Indexes in SCL Programs

	Using External Files
	Introduction to Using External Files in SCL Programs
	Accessing External Files in SCL Programs
	Assigning Filerefs in SCL Programs
	Opening Files in SCL Programs
	Making an Open File Available to Other Programs
	Number of Open Files Allowed

	File Data Buffers and SCL Data Vectors
	Reading Values from External Files in SCL Programs
	Order of Reading Records
	Reading Record Values into the SDV
	Reading Records as Separate Values
	Identifying a Value’s Starting Column

	Modifying External Files in SCL Programs
	Writing Modified Records or New Records to a File

	Closing Files in SCL Programs
	Changing the Sequence of Reading Records in SCL Programs
	Other Ways SCL Interacts with External Files
	Determining Attributes and Attribute Values
	Determining Information about an FDB
	Renaming and Deleting an External File

	Reading and Modifying Files in the Same Directory with SCL
	Determining the Number of Files in a Directory
	Finding the Names of Files
	Manipulating Files in an Open Directory
	Opening Files in an Open Directory
	Closing Files in an Open Directory
	Changing All the Files in a Directory
	Creating a Subdirectory
	Closing a Directory
	Other Manipulations for Directories


	Reference
	SAS Component Language Dictionary
	SCL Elements by Category
	Array
	Catalog
	Character
	Command
	Control Flow
	Control or Field
	Cursor
	Declarative Statement
	Directory
	Extended Table
	External File
	Formatting
	Image
	Interface to SAS Software
	Keys
	Legend
	List
	Macro
	Message
	Modular Programming
	Object-Oriented
	SAS System Option
	SAS Table
	Selection List
	Submit Block
	System Variable
	Utility
	Variable
	Widget or Field
	Window


	The SCL Debugger
	Overview of SCL Debugger Features and Capabilities
	Establishing the SCL Debugging Environment
	Invoking the SCL Debugger
	Using the SCL Debugger Windows
	Retrieving Previously Entered Commands

	Using SAS Macros with the SCL Debugger
	SCL Debugger Commands by Functional Category
	Controlling Program Execution
	Manipulating Debugging Requests
	Manipulating Variables
	Expanding Macros and Macro Variable References
	Controlling the Windows
	Customizing the Debugger Session


	SAS System Return Codes
	Introduction to SAS System Return Codes
	Using SAS System Return Codes
	Obtaining a SAS System Return Code
	Obtaining the Message for a SAS System Return Code

	Testing for a Particular Error or Warning Condition
	Mnemonics for SAS System Return Codes

	Appendices
	Commands Used with the IMGCTRL, IMGOP and PICFILL Functions
	Image File Types and Associated Attributes
	File Types
	Attributes for Reading Image Files
	Attributes for Writing Image Files
	Attributes for Reading Images from TWAIN Scanners

	Recommended Reading
	Glossary
	Index



