The CAPABILITY Procedure


References

  • Bai, D. S., and Choi, I. S. (1997). “Process Capability Indices for Skewed Populations.” Unpublished manuscript, Korean Advanced Institute of Science and Technology, Taejon, Korea.

  • Bissell, A. F. (1990). “How Reliable Is Your Capability Index?” Journal of the Royal Statistical Society, Series C 39:331–340.

  • Blom, G. (1958). Statistical Estimates and Transformed Beta Variables. New York: John Wiley & Sons.

  • Bowman, K. O., and Shenton, L. R. (1983). “Johnson’s System of Distributions.” In Encyclopedia of Statistical Sciences, vol. 4, edited by S. Kotz, N. L. Johnson, and C. B. Read. New York: John Wiley & Sons.

  • Boyles, R. A. (1991). “The Taguchi Capability Index.” Journal of Quality Technology 23:107–126.

  • Boyles, R. A. (1992). Cpm for Asymmetrical Tolerances. Technical report, Precision Castparts Corp., Portland, OR.

  • Boyles, R. A. (1994). “Process Capability with Asymmetric Tolerances.” Communications in Statistics—Simulation and Computation 23:615–643.

  • Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983). Graphical Methods for Data Analysis. Belmont, CA: Wadsworth International Group.

  • Chen, H. F., and Kotz, S. (1996). “An Asymptotic Distribution of Wright’s Process Capability Index Sensitive to Skewness.” Journal of Statistical Computation and Simulation 55:147–158.

  • Chen, K. S. (1998). “Incapability Index with Asymmetric Tolerances.” Statistica Sinica 8:253–262.

  • Chou, Y., Owen, D. B., and Borrego, S. A. (1990). “Lower Confidence Limits on Process Capability Indices.” Journal of Quality Technology 22:223–229; corrigenda, 24, 251.

  • Cohen, A. C. (1951). “Estimating Parameters of Logarithmic-Normal Distributions by Maximum Likelihood.” Journal of the American Statistical Association 46:206–212.

  • Croux, C., and Rousseeuw, P. J. (1992). “Time-Efficient Algorithms for Two Highly Robust Estimators of Scale.” Computational Statistics 1:411–428.

  • D’Agostino, R. B., and Stephens, M., eds. (1986). Goodness-of-Fit Techniques. New York: Marcel Dekker.

  • Dixon, W. J., and Tukey, J. W. (1968). “Approximate Behavior of the Distribution of Winsorized t (Trimming/Winsorization 2).” Technometrics 10:83–98.

  • Ekvall, D. N., and Juran, J. M. (1974). “Manufacturing Planning.” In Quality Control Handbook, 3rd ed., edited by J. M. Juran. New York: McGraw-Hill.

  • Elandt, R. C. (1961). “The Folded Normal Distribution: Two Methods of Estimating Parameters from Moments.” Technometrics 3:551–562.

  • Fowlkes, E. B. (1987). A Folio of Distributions: A Collection of Theoretical Quantile-Quantile Plots. New York: Marcel Dekker.

  • Gnanadesikan, R. (1997). Statistical Data Analysis of Multivariate Observations. New York: John Wiley & Sons.

  • Gupta, A. K., and Kotz, S. (1997). “A New Process Capability Index.” Metrika 45:213–224.

  • Hahn, G. J. (1969). “Factors for Calculating Two-Sided Prediction Intervals for Samples from a Normal Distribution.” Journal of the American Statistical Association 64:878–898.

  • Hahn, G. J. (1970a). “Additional Factors for Calculating Prediction Intervals for Samples from a Normal Distribution.” Journal of the American Statistical Association 65:1668–1676.

  • Hahn, G. J. (1970b). “Statistical Intervals for a Normal Population, Part 1: Tables, Examples, and Applications.” Journal of Quality Technology 2:115–125.

  • Hahn, G. J. (1970c). “Statistical Intervals for a Normal Population, Part 2: Formulas, Assumptions, Some Derivations.” Journal of Quality Technology 2:195–206.

  • Hahn, G. J., and Meeker, W. Q. (1991). Statistical Intervals: A Guide for Practitioners. New York: John Wiley & Sons.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions. 2nd ed. Vol. 1. New York: John Wiley & Sons.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous Univariate Distributions. 2nd ed. Vol. 2. New York: John Wiley & Sons.

  • Johnson, N. L., Kotz, S., and Pearn, W. L. (1994). “Flexible Process Capability Indices.” Pakistan Journal of Statistics 10:23–31.

  • Kane, V. E. (1986). “Process Capability Indices.” Journal of Quality Technology 1:41–52.

  • Kotz, S., and Johnson, N. L. (1993). Process Capability Indices. London: Chapman & Hall.

  • Kotz, S., and Lovelace, C. R. (1998). Process Capability Indices in Theory and Practice. London: Arnold Publishers.

  • Kushler, R. H., and Hurley, P. (1992). “Confidence Bounds for Capability Indices.” Journal of Quality Technology 24:188–195.

  • Lehmann, E. L., and D’Abrera, H. J. M. (1975). Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-Day.

  • Luceño, A. (1996). “A Process Capability Index with Reliable Confidence Intervals.” Communications in Statistics—Simulation and Computation 25:235–245.

  • Marcucci, M. O., and Beazley, C. F. (1988). “Capability Indices: Process Performance Measures.” Transactions of ASQC Congress 42:516–523.

  • Montgomery, D. C. (1996). Introduction to Statistical Quality Control. 3rd ed. New York: John Wiley & Sons.

  • Odeh, R. E., and Owen, D. B. (1980). Tables for Normal Tolerance Limits, Sampling Plans, and Screening. New York: Marcel Dekker.

  • Owen, D. B., and Hua, T. A. (1977). “Tables of Confidence Limits on the Tail Area of the Normal Distribution.” Communications in Statistics—Simulation and Computation 6:285–311.

  • Pearn, W. L., Kotz, S., and Johnson, N. L. (1992). “Distributional and Inferential Properties of Process Capability Indices.” Journal of Quality Technology 24:216–231.

  • Rodriguez, R. N. (1992). “Recent Developments in Process Capability Analysis.” Journal of Quality Technology 24:176–187.

  • Rodriguez, R. N., and Bynum, R. A. (1992). “Examples of Short Run Process Control Methods with the SHEWHART Procedure in SAS/QC Software.” Unpublished manuscript available from the authors.

  • Rousseeuw, P. J., and Croux, C. (1993). “Alternatives to the Median Absolute Deviation.” Journal of the American Statistical Association 88:1273–1283.

  • Royston, J. P. (1992). “Approximating the Shapiro-Wilk W Test for Nonnormality.” Statistics and Computing 2:117–119.

  • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. New York: Chapman & Hall.

  • Slifker, J. F., and Shapiro, S. S. (1980). “The Johnson System: Selection and Parameter Estimation.” Technometrics 22:239–246.

  • Terrell, G. R., and Scott, D. W. (1985). “Oversmoothed Nonparametric Density Estimates.” Journal of the American Statistical Association 80:209–214.

  • Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

  • Tukey, J. W., and McLaughlin, D. H. (1963). “Less Vulnerable Confidence and Significance Procedures for Location Based on a Single Sample: Trimming/Winsorization 1.” Sankhy$\bar{a}$, Series A 25:331–352.

  • Vännmann, K. (1995). “A Unified Approach to Capability Indices.” Statistica Sinica 5:805–820.

  • Vännmann, K. (1997). “A General Class of Capability Indices in the Case of Asymmetric Tolerances.” Communications in Statistics—Theory and Methods 26:2049–2072.

  • Velleman, P. F., and Hoaglin, D. C. (1981). Applications, Basics, and Computing of Exploratory Data Analysis. Boston: Duxbury Press.

  • Wadsworth, H. M., Stephens, K. S., and Godfrey, A. B. (1986). Modern Methods for Quality Control and Improvement. New York: John Wiley & Sons.

  • Wainer, H. (1974). “The Suspended Rootogram and Other Visual Displays: An Empirical Validation.” American Statistician 28:143–145.

  • Wilk, M. B., and Gnanadesikan, R. (1968). “Probability Plotting Methods for the Analysis of Data.” Biometrika 49:525–545.

  • Wright, P. A. (1995). “A Process Capability Index Sensitive to Skewness.” Journal of Statistical Computation and Simulation 52:195–203.

  • Zhang, N. F., Stenback, G. A., and Wardrop, D. M. (1990). “Interval Estimation of Process Capability Index Cpk.” Communications in Statistics—Theory and Methods 19:4455–4470.