
SAS ® 9.2
Publishing Framework
Developer’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Publishing Framework: Developer’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.2 Publishing Framework: Developer’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-844-7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, February 2009

1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

General Enhancements v

Chapter 1 � Overview of the Publishing Framework 1
What Is the Publishing Framework? 1

Channel Definition and Subscription Management 1

Package Publishing 2

Package Retrieval and Viewing 2

Event Publishing 2

Chapter 2 � Overview of Packages 5
What Is a Package? 5

Rendering a Package 6

Package Transports 7

Chapter 3 � Retrieving Packages and URLs 11
Retrieving Packages from Different Transports 11

SAS Package Retriever 12

SAS Package Reader 12

Retrieving URLs 13

Chapter 4 � Viewer Processing 15
Overview of Viewers 15

When To Use a Viewer 16

How to Create a Viewer 16

Using the Publish Package Interface to Apply a Viewer 21

Samples Using the <SASINSERT> and <SASTABLE> Tags 31

Sample HTML Viewer 32

Sample SAS Program with an HTML Viewer 33

Sample Viewer Template 35

Chapter 5 � Publishing Packages 37
Package Publishing 37

Using a Third-Party Client Application 38

Using the Publish Package Interface 38

Publish and Retrieve Encoding Behavior 40

Dictionary 42

PACKAGE_PUBLISH 65

Filtering Packages and Package Entries 116

Specifying Name/Value Pairs 120

Example: Publishing in the DATA Step 122

Example: Publishing in a Macro 126

iv

Example: Publishing with the FTP Access Method 128

Chapter 6 � Generating and Publishing Events 133
What Is an Event? 133

Overview of Generating and Publishing Events 134

Using the Publish Event Interface 134

Dictionary 135

XML Specification for Generic Events 147

XML Specification for SASPackage Events 148

Examples of Generated Events 152

Appendix 1 � Planning and Implementing Your Publishing Solution 157
Plan the Information Architecture 157

Establish the Content Pipeline 158

Configure Channels and Subscribers 159

Implement Content Restrictions in the SAS Metadata Authorization Layer 159

Announce Solution and Train Users 160

Index 161

v

What’s New

Overview
SAS 9.2 Publishing Framework provides enhancements to security, and support of

the HTTPS protocol and IPV6 addresses.

General Enhancements
The following enhancements have been made to the Publishing Framework:

� Write permission is required for publishing to channels. This enables you to
restrict who can publish by administering permissions.

� The HTTPS protocol and IPV6 addresses are supported when publishing to a
WebDAV server.

� The following Publishing Framework components are obsolete:
� SAS Publisher

� SAS Subscription Manager

vi What’s New

1

C H A P T E R

1
Overview of the Publishing
Framework

What Is the Publishing Framework? 1
Channel Definition and Subscription Management 1

Package Publishing 2

Package Retrieval and Viewing 2

Event Publishing 2

What Is the Publishing Framework?
The Publishing Framework feature of SAS Integration Technologies provides a

complete and robust publishing environment for enterprise-wide information delivery.
The Publishing Framework consists of SAS CALL routines, application programming
interfaces (APIs), and graphical user interfaces that enable both users and applications
to publish SAS files (including data sets, catalogs, and database views), other digital
content, and system-generated events to a variety of destinations including the
following:

� e-mail addresses
� message queues
� publication channels and subscribers
� WebDAV-compliant servers
� archive locations

The Publishing Framework also provides tools that enable both users and
applications to receive and process published information. For example, users can
receive packages with content, such as charts and graphs, that is ready for viewing.
SAS programs can receive packages with SAS data sets that might in turn trigger
additional analyses on that data.

The functions of the Publishing Framework include channel definition, subscription
management, package publishing, package retrieval, package viewing, and event
publishing.

Channel Definition and Subscription Management
The Publishing Framework enables you to define SAS publication channels, which are

conduits for publishing particular categories of information. You can set up a channel
for a particular topic, organizational group, user audience, or any other category. Once
publication channels have been defined, authorized users can subscribe to them and
automatically receive information whenever it is published to those channels.

2 Package Publishing � Chapter 1

For more information about defining channels and managing subscriptions, refer to
the help for the Publishing Framework plug-in for SAS Management Console.

The SAS Information Delivery Portal also enables users to manage their
subscriptions. The portal enables users to select channels to subscribe to, specify the
desired delivery transport (such as an e-mail address or message queue), and specify
filters that indicate which information is to be included or excluded.

Package Publishing

The Publishing Framework enables you to create packages that contain one or more
information entities, including SAS data sets, SAS catalogs, SAS databases, and almost
any other type of digital content. You can also define viewers that make the information
entities easier to display.

After creating a package, you can publish the package and its associated viewers to
one or more channels. This causes the information to be delivered to each user who has
subscribed to those channels, if the package and its contents meet the subscriber’s
filtering criteria. In addition to channels, you can publish packages directly to one or
more e-mail addresses, message queues, WebDAV-compliant servers, and archive
locations.

To create and publish packages, you can use any of the following methods:

� Use the publish CALL routines to create packages and publish them from within a
SAS program.

� Use the Java APIs that are provided with SAS Integration Technologies to create
packages and publish them from within a third-party application.

You can also use SAS Enterprise Guide or SAS Information Delivery Portal to create
and publish packages via the Publishing Framework.

Package Retrieval and Viewing

The Publishing Framework provides the SAS Package Retriever, which is a graphical
user interface to enable users to extract and save information from packages that have
been published through the Publishing Framework. The SAS Package Reader user
interface enables users to display the contents of packages. Users can also view
published information from the SAS Information Delivery Portal.

In addition, you can use CALL routines to extract and process published information
from within SAS programs. APIs are provided to enable third-party programs to extract
and process published information.

Event Publishing

SAS Integration Technologies includes the Publish Event Interface. This interface
consists of CALL routines that enable you to write SAS programs, including stored
processes, that create and publish events. Events can be generated and published
explicitly, or they can be generated implicitly as part of the publication of a package.
Implicit event generation occurs when packages are published to a channel that has
event subscribers defined.

Overview of the Publishing Framework � Event Publishing 3

Events are published as XML documents. They can be published to HTTP servers,
message queues, or to publication channels and their associated subscribers. You can
develop custom applications that receive and process events that are generated by the
Publishing Framework.

4

5

C H A P T E R

2
Overview of Packages

What Is a Package? 5
Definition of Package 5

SAS Results 5

Unstructured Content 6

Filename Extensions for Package Entry Types 6

Rendering a Package 6
Package Transports 7

Overview of Package Transports 7

Persisted Packages 8

Subscription Channels 9

Creating Channels 9

Creating Subscribers 9
Creating Subscriptions 9

What Is a Package?

Definition of Package
A package is a container for information, or digital content, that is generated or

collected for delivery to a consumer.
Knowledge takes the form of package entries, which can be either of two types:

� SAS results

� unstructured content

SAS Results
A category of package entry type is SAS results, which can take the form of any of

the following:

� SAS catalog

� SAS data set

� SAS database (such as FDB and MDDB)

� SAS SQL view

6 Unstructured Content � Chapter 2

Unstructured Content
Unstructured content is any package entry that is created external to SAS.

Supported unstructured content types include the following:

� binary file (such as Excel, GIF, JPG, PDF, PowerPoint, and Word)
� HTML file (including ODS output)
� reference string (such as URL)
� text file (such as a SAS program)
� viewer file (such as an HTML or plain text template that formats SAS file items

for viewing in e-mail)

Filename Extensions for Package Entry Types
Each entry in a package is implicitly contained in a file whose filename extension

reflects the entry type. Knowing filename extensions might be useful when retrieving
packages from the archive and WebDAV transports.

Default filename extensions are as follows:

.csv - Comma separated values

.ref - Reference

.sac - SAS Catalog

.sad - SAS Dataset

.sam - SAS MDDB

.sav - SAS SQL View

.spk - Nested package

Rendering a Package
When determining how to render packages, the publisher should consider the

following:

� the company’s business requirements
� the configuration of the business enterprise (for example, hardware, software,

business processes, and communications protocols)
� the package content (structured and unstructured data)
� the transport (such as archive, channel, e-mail, message queue, or Web) that is

used to deliver the package

Overview of Packages � Overview of Package Transports 7

The following scenarios depict business factors that might affect how a package is
rendered:

Table 2.1 Package Rendering to Meet Consumer Needs

Consumer Need Publisher Solution

Access to packages, but have limited system
storage resources

Render the package as an archive.

Access to package without having SAS software
installed

Render the package as an archive and attach
the archive to e-mail for access by using SAS
Package Reader.

Only executive-level summaries (for example,
text reports, graphics, and Web links)

Render the package as unstructured content to
known consumers via e-mail or to unknown
consumers via subscription-based channels.

Access to SAS results, but do not want to access
the package for continued processing

Apply a template to the SAS data package entry
for viewing in e-mail and on the Web.

Access to SAS results, but do not have Web
access or do not use HTML

Apply a template in plain-text format to the SAS
results for viewing in e-mail.

Direct access to SAS results for continued data
processing

Deliver SAS results package entries to message
queues or archives to enable programmatic
access to SAS data.

To span a broad professional range (executive,
manager, programmer, and knowledge worker)

Apply name/value metadata to the package and
package entries to enable consumers to filter
packages or package entries for relevancy.

Before the publisher can begin the publishing process, the administrator must first
configure the publishing environment, which might include archives, channels,
subscribers, and subscriptions.

Package Transports

Overview of Package Transports
The destination (or transport) for delivering a package is defined programmatically

in a SAS application by using PACKAGE_PUBLISH CALL routines.
Transports are as follows:

archive
a single binary collection of all the items in a package, which is compressed and
saved to a directory file. The archive contains the contents of a package and
metadata that is necessary for extracting the contents. An archived package is
also referred to as an SPK file, which is short for SAS Package.

channel
a conduit through which the defined transport (either e-mail or message queue)
delivers package items to the subscribers of the channel. The subscriber defines

8 Persisted Packages � Chapter 2

the preferred transport by using personal subscription properties. Whereas
publishing to e-mail is identity-centered (the publisher delivers packages to
recipients whose identities are known), publishing to channels is subject-centered,
allowing both the publisher and the consumer to concentrate on the subject of the
package rather than on the recipients for the package.

e-mail
mechanism for delivering selected package items to identified recipients.

message queue
in application messaging, a place where the publisher can send a message (or a
package) that can be retrieved by another program for continued processing.

WebDAV-compliant server
an acronym for Web Distributed Authoring and Versioning. Whereas the
traditional transports (archive, channel, e-mail, and message queue) are
repositories for published package data that can be retrieved and reprocessed in a
synchronous fashion, a WebDAV-compliant server facilitates concurrent access to
and update of package data on the Internet.

WebDAV is not only a delivery mechanism, but also a core technology that
extends the HTTP network protocol, enabling distributed Web authoring tools to
be broadly interoperable. WebDAV extends the capability of the Web from that of a
primarily read-only service, to a writable, collaborative medium.

Persisted Packages
Publishing a package to an archive or to a WebDAV server provides the following

advantages:

� You conserve disk resources.
� The package stays in a static location, allowing consumers or programs to retrieve

the package at their convenience.
� The SAS data package entries are available to consumers who do not have SAS

software installed on their systems.

After the administrator has configured channels with archive paths or base paths,
the publisher can publish packages directly to an archive or WebDAV server. The
publisher can use the following methods to publish to a persistent store (an archive or a
WebDAV server):

� publishing programmatically by using SAS. See “Using the Publish Package
Interface” on page 38.

� using a third-party client application. See “Using a Third-Party Client
Application” on page 38.

The consumer can use the stand-alone product SAS Package Reader subsequently to
uncompress, or unzip, and use an archived package. SAS Package Retriever can be
used to access the package from the persisted location and to store the package
elsewhere. The RETRIEVE SCL application, CALL routines, and SAS Information
Delivery Portal can also be used to retrieve persisted packages.

Overview of Packages � Subscription Channels 9

Subscription Channels

Creating Channels
The administrator uses SAS Management Console to create a channel object with the

attributes that are specified in the SAS Metadata Repository. The administrator must
create a channel for each distinct topic or audience. For example, users of a particular
application might want a channel for discussion and data exchange, while the
programmers of that application might want another channel to discuss technical
problems and future enhancements. Although the topic is the same application, the
discussion about the topic is different. Therefore, two separate channels might best
serve the needs of the two groups of users.

Creating Subscribers
The administrator must create a subscriber for each potential user of a channel.

Subscribers must be defined before subscriptions to channels can be created.

Creating Subscriptions
The association of a subscriber to a channel is a subscription. A subscription enables

the information that is published to a channel to be delivered to the interested
(subscribed) subscribers.

Subscriptions can be created by either the administrator or the subscriber. The
administrator can create subscriptions when a publishing environment is initially
configured. Individual subscribers can create personal subscriptions after the
publishing environment has been configured.

10

11

C H A P T E R

3
Retrieving Packages and URLs

Retrieving Packages from Different Transports 11
SAS Package Retriever 12

SAS Package Reader 12

Retrieving URLs 13

Retrieving Packages from Different Transports
After a package is created, the transport, or destination, and other properties control

how the package is delivered to the consumer.
Packages can be retrieved from the following destinations:
� archive
� e-mail
� message queue
� WebDAV-compliant server

For archives, you can use the stand-alone product SAS Package Reader to
uncompress, or unzip, and use SPK files. SAS Package Reader can be used to read
packages whether or not the consumer has SAS installed.

Depending on your needs and on whether you have SAS installed, you can choose
from the following products to access a package on an archive, message queue, or
WebDAV-compliant server:

� The consumer can use SAS Package Retriever to access a package and to store it
elsewhere for continued use. SAS must be installed in order to use the SAS
Package Retriever.

� If SAS is installed, then you can use the Publish Package CALL routines in order
to write SAS programs, including stored processes, that create, populate, publish,
and retrieve packages.

� If SAS is not installed, then you can use third-party client software in order to
write a third-party client application that uses SAS Integration Technologies to
access Integrated Object Model (IOM) servers. The Integrated Object Model
provides distributed object interfaces for conventional SAS features. This enables
you to develop component-based applications that integrate SAS features into the
enterprise application.

� You can also use SAS Information Delivery Portal to retrieve packages from
archives or WebDAV-compliant servers. For more information, see the product
Help.

For more information about configuring and publishing to an archive, see “Persisted
Packages” on page 8.

12 SAS Package Retriever � Chapter 3

When the publisher publishes a package via e-mail, the package is delivered to a list
of recipients. Choosing e-mail gives the publisher authority over who receives the
package. The recipient, however, requires no knowledge about the publishing
environment from which the package was sent, nor must the recipient subscribe to a
delivery channel. Also, recipients do not have to be SAS users. If the e-mail has a
package file attachment, or if the e-mail contains a link to the persisted WebDAV
package, then SAS is not needed to consume the package. The recipient can use SAS
Package Reader or a Web browser in order to read the package.

Note: There are two methods for using e-mail to publish packages. The method
described in this section refers to publishing packages explicitly to e-mail addresses.
The other method is to publish a package to a channel, which can have e-mail
subscribers. In that case, the recipient must be subscribed to a delivery channel. �

Although e-mail is suited for delivering reports and views of data to a limited
audience, a message queue is best used for collecting package data entries for continued
processing and publishing in time-critical environments. Publishing to a queue, and
retrieval from a queue, are entirely independent activities. The publishing software
(programmatic software) and the retrieval software (SAS Package Retriever or
programmatic software) communicate asynchronously without any knowledge of the
location of the other software, or even whether the other software is running.

Whereas the traditional transports (archive, channel, e-mail, and message queue) are
repositories for published package data that can be retrieved and reprocessed in a
synchronous fashion, package delivery to a WebDAV-compliant server facilitates
concurrent access to and update of package data on the Internet.

SAS Package Retriever
SAS Package Retriever is an SCL application that enables you to retrieve package

data from a transport—archive, message queue, or WebDAV-compliant server—to an
appropriate storage location on your SAS system or an external file location. After you
designate a storage location for the entry, (for example, at a libref, fileref, or a file
location), you can reference the entry for inclusion in a SAS program for continued
package publishing in the business enterprise.

Examples of package data include SAS data (such as a SAS data set, SAS catalog, or
a SAS database) and external data (such as an HTML file, binary file, text file, or
viewer file).

Underlying the functions of SAS Package Retriever is a subset of the Publish
Package CALL routines that relate explicitly to retrieving packages, which you can use
directly for programmatic package retrieval.

To invoke SAS Package Retriever, enter the following command on the SAS command
line:

retrievepackage

For more information about SAS Package Retriever, see the product Help.

SAS Package Reader
The SAS Package Reader application enables you to retrieve the contents of a SAS

package as an archive file from an archival location or from an e-mail attachment
without having to run SAS. An archive is denoted by a .spk file extension, which is an
abbreviation for SAS Package.

Retrieving Packages and URLs � Retrieving URLs 13

A read-only tool, SAS Package Reader is useful for viewing individual package
entries and saving them to local files. SAS Package Reader launches an appropriate
viewer to allow you to see the content of the package entry. For SAS data sets, it starts
a built-in data set viewer; for all other viewable data, it starts the Web browser that is
already configured on your system.

Note: Some entry types cannot be viewed. Examples include viewer files, SAS
catalogs, and SAS databases (MDDB, FDB, and DMDB files). If the selected entry type
is not viewable, then the View icon does not appear in the toolbar. In addition, if you
try to view a SAS data set that is password-protected, a message is displayed saying
that the data set cannot be accessed. �

What you do with a package corresponds to the type of consumer that you are and
the type of information that is contained in the package. Packages are created for
specific target consumers for definite purposes.

Because you do not need SAS running in order to use SAS Package Reader, you do
not need additional SAS software licensed in order to retrieve packages.

For more information about SAS Package Reader, see the product Help.

Retrieving URLs
When a package is published to a channel that is defined with a WebDAV persistent

store, then e-mail subscribers receive e-mail with a link to the persisted location. Here
is an example of an e-mail message in which the URL reference is identified:

Weekly sales

Published on 24MAR2000:20:14:19 GMT

The package contains graphs, ticket sales data,
and an executive summary.

URL:
http://www.AlphaliteAirways/weeklysales/031200

Clicking the link automatically invokes the consumer’s configured Web browser and
the URL package entry is presented for viewing in the Web browser window.

14

15

C H A P T E R

4
Viewer Processing

Overview of Viewers 15
When To Use a Viewer 16

How to Create a Viewer 16

The Sample Package 16

SAS Data Set 17

Basic Viewer 17
Overview of Basic Viewer 17

Extracting and Formatting a Variable from a SAS Data Set into a List 17

Extracting and Formatting a SAS Data Set into a Table 18

Streaming a Text File and a Reference URL 19

Filtering Package Entries 21

Using the Publish Package Interface to Apply a Viewer 21
Samples Using the <SASINSERT> and <SASTABLE> Tags 31

Sample HTML Viewer 32

Sample SAS Program with an HTML Viewer 33

Sample Viewer Template 35

Simulated Rendered View of the Package in E-mail 36

Overview of Viewers

SAS Integration Technologies provides a viewer facility that combines the robust text
rendering capabilities of HTML and plain text with the efficiency of e-mail delivery.
This facility enables you to create and apply a viewer, which is a template that contains
formatting directives for rendering a specific view to an entire package or to selected
package entries.

The viewer facility consists of a set of tagging extensions to HTML, which you can
use to create a unique template according to the specific package data that is being
rendered. For example, you can write formatting directives to stream package entries
(such as a text file or a URL reference) or to extract SAS data file entries for
presentation in e-mail. A viewer creates a presentation quality look and feel to package
data entries for distribution to a view-only audience.

A primary benefit of applying viewers to packages is that e-mail recipients can now
view package entries that otherwise would not be viewable. For example, an archive
that contains a SAS data set can be attached to e-mail, but is not viewable in e-mail
unless a viewer is applied. The viewer renders the SAS data set as a populated table.

Furthermore, a viewer facilitates publishing in the traditional sense using, for
example, an electronic newsletter. An electronic newsletter template that is coded in
HTML or plain text format can dynamically build your content, which can consist of
links to Web sites for up-to-date information about topics of interest to its readers.

16 When To Use a Viewer � Chapter 4

When To Use a Viewer

A viewer is useful under the following conditions:

Publishing to the E-mail Transport
You want to publish a package that contains a data set, for delivery to consumers
who use a view-only transport (such as e-mail). Because a SAS data set is not
viewable in e-mail, an HTML or text viewer is needed to format the SAS data for a
view-only presentation.

Publishing to Channel Subscribers
If you are publishing to a channel, the transports that are used by subscribers are
unknown to you. Therefore, you might decide to format the entire package with
the aid of a viewer to ensure maximum viewability for the broadest consumer
audience. The viewer is applied to a package that is published to subscribers who
use e-mail delivery, WebDAV subscribers, or channels that have a WebDAV
persistent store. The viewer is not applied to a package that is published to
subscribers who specify delivery to message queues.

Extracting and Formatting SAS Data
With a viewer, you can extract specific package items and variables from a SAS
data set entry and distribute to subscribers who use e-mail. Subscribers who use
e-mail receive the package entries that the viewer extracts and formats.
Subscribers who use queues receive the full package.

Formatting an Entire Package
Besides formatting a SAS data set package entry, you can also use a viewer to
format other entries in the package (such as another HTML file, a text file, a
binary file, or a reference) as input streams. Applying a viewer to the entire
package provides a comprehensive presentation for viewing purposes only.

Publishing an Electronic Newsletter
A popular form of package output is an electronic newsletter. The basic template
that imposes the look and feel of the document can contain static text or HTML
coding. However, you can code the dynamic information (in the form of news
articles or SAS data) as links to Web sites whose source data is continuously
refreshed.

Publishing an Executive Level Summary
Delivery of SAS result sets and other text and graphical information via e-mail
has the greatest value for an executive level consumer. The executive might have
a requirement to view the data (for example, in the form of summary tables) and
to read text but might not necessarily need access to the raw data for continued
processing, extraction, and delivery throughout the enterprise.

How to Create a Viewer

The Sample Package
The publisher (or the person who creates the viewer template) must have a thorough

understanding of the contents of the package in order to successfully create the

Viewer Processing � Basic Viewer 17

template. You choose the appropriate viewer tags in order to design a template that
formats the rendered view of the package.

This sample package contains four entries, in the following order:
1 SAS data set
2 text file
3 reference URL
4 HTML file

This package also contains the following description:

AlphaliteAirways Sales Force Briefing

SAS Data Set
Here is an example of a SAS data set that contains six observations, each containing

four variables: FNAME, LNAME, YEARS, and TERRITORY.

John Smith 32 NE
Gary DeStephano 20 SE
Arthur Allen 40 MW
Jean Forest 3 NW
Tony Votta 30 SW
Dakota Smith 3 HA

Basic Viewer

Overview of Basic Viewer
The file that contains the viewer template contains code that is surrounded by tags

< SASINSERT> open tag and end with the </SASINSERT> closing tag.
The viewer contains sections that format each package entry by using the

appropriate technique.
� “Extracting and Formatting a Variable from a SAS Data Set into a List” on page 17
� “Extracting and Formatting a SAS Data Set into a Table” on page 18
� “Streaming a Text File and a Reference URL” on page 19
� “Filtering Package Entries” on page 21

For a single, comprehensive viewer that contains all of the preceding examples, see
“Sample HTML Viewer” on page 32.

Extracting and Formatting a Variable from a SAS Data Set into a List
Delivery of a single variable from all observations in a SAS data set is suitable for an

unordered list.
Here is the first section from the sample template that formats a single variable from

a SAS data set into a list.

<!--Section 1: Formatting a Data Set
Variable in an HTML List-->

<SASINSERT>
<h2>Congratulations!</h2>
$(entry=1 attribute=description)

18 Basic Viewer � Chapter 4

<SASTABLE ENTRY=1>
$(VARIABLE=fname)
</SASTABLE>

</SASINSERT>

The ENTRY=1 attribute identifies the SAS data set as the first entry in the package.
The description attribute extracts the description of the package.

The HTML tag specifies an unordered list after which the <SASTABLE> tag
with the ENTRY=1 option are necessary to identify the SAS data set as the first entry
in the package. The HTML tag is used with variable substitution syntax to
identify that the variable fname is to be extracted from the SAS data file and formatted
as a list entry in the rendered view. Implicit in the <SASTABLE> construct is looping.
Each observation in the data set is read and formatted until the end of file is reached.

The following SAS HTML tags are used in this example:
� “<SASINSERT> Tag” on page 23

� “Substitution Syntax” on page 23
� “<SASTABLE> Tag” on page 27

This section of the template is rendered for viewing in e-mail as follows:

Example Code 4.1 Congratulations!

AlphaliteAirways Sales Force Briefing
John
Gary
Arthur
Jean
Tony
Dakota

Extracting and Formatting a SAS Data Set into a Table
Delivery of multiple variables or all variables from the observations in a SAS data

set is suitable for a tabular presentation.
Here is an example of a template that extracts three of four variables from a SAS

data set into a table.

<!--Section 2: Formatting a SAS Data
Set into a Table-->

<SASINSERT>
<h2>Record Sales from these Salespeople</h2>
$(entry=1 attribute=description)
<table border cellspacing=0 cellpadding=5

rules=groups>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Territory</th>
</tr>
</thead>
<tbody>
<SASTABLE ENTRY=1>
<tr>

Viewer Processing � Basic Viewer 19

<td> $(Variable=fname)</td>
<td> $(Variable=lname)</td>
<td> $(Variable=territory)</td>
</tr>
</tbody>
</SASTABLE>
</table>
</SASINSERT>

The ENTRY=1 attribute identifies the SAS data set as the first entry in the package.
The description attribute extracts the description of the entry from the package.
Standard HTML table tags set up the tabular framework that defines a row with three
columns of header text and accompanying tabular data. The <TD> tag is used with the
variable substitution syntax to identify the following variables for extraction and
insertion into the table: fname, lname, and territory. Implicit in the <SASTABLE>
construct is looping. Each observation in the data set is read and formatted until the
end of file is reached.

The following SAS HTML tags are used in this example:

� “<SASINSERT> Tag” on page 23
� “Substitution Syntax” on page 23

� “<SASTABLE> Tag” on page 27

This section of the template is rendered for viewing in e-mail as follows:

Example Code 4.2 Record Sales from These Salespeople

Table 4.1 AlphaliteAirways Sales Force Briefing

First Name Last Name Territory

John Smith NE

Gary DeStephano SE

Arthur Allen MW

Jean Forest NW

Tony Votta SW

Dakota Smith HA

Streaming a Text File and a Reference URL
The viewer template might also include the entire contents of a text file, another

HTML file, a reference URL, or a binary file.

20 Basic Viewer � Chapter 4

Here is the third section from the sample template that inserts a text file and a
reference URL into the viewer.

<!--Section 3: Inserting a Text File
and a Reference URL-->

<SASINSERT>
<h2>Letter of Congratulations</h2>
<p>Below is a copy of the letter that was sent
to each recipient of the top sales award.</p>
$(entry=2 attribute=stream)
<p>
See
for detailed sales figures.</p>
</SASINSERT>

The <H2> tag defines a descriptive heading for the text document and the reference
URL. The ENTRY=2 attribute identifies the entry (a text document) to be substituted
as an input stream to the HTML output. The ENTRY=3 attribute identifies the
reference URL.

The following SAS HTML tags are used in this example:
� “<SASINSERT> Tag” on page 23
� “Substitution Syntax” on page 23

This section of the template is rendered for viewing in e-mail as follows:

Example Code 4.3 Letter of Congratulations

Below is a copy of the letter that was sent to each recipient of the top sales award.

December 30, 2000

International Sales
AlphaliteAirways Headquarters

Dear AlphaliteAirways Salesperson,

Congratulations on your much deserved recognition as
outstanding salesperson for AlphaliteAirways for 2000.

To express our gratitude for your excellent contribution,
we wish to present you with 25 stock options in
AlphaliteAirways.

Wishing you continued success in your career with
AlphaliteAirways.

Sincerely,

Alvin O. Taft, Jr.
Director-in-Chief

See http://www.AlphaliteAirways.com/headquarters/sales
for detailed sales figures.

Viewer Processing � Using the Publish Package Interface to Apply a Viewer 21

Filtering Package Entries
Another method for locating package entries for inclusion in the viewer is name/value

filtering. You can filter package entries that are assigned an optional name/value pair
when they are created according to specified criteria. Entries that match are included in
the rendered view. Filtering is especially powerful for searching large, nested packages.

In our example, we filter for all entries that have a name/value pair of type=report
and include the matching entries in the viewer. In our fictitious package, one HTML
entry matches the name/value pair and so it is filtered for inclusion in the viewer.

Here is the fourth section from the sample template that inserts an HTML file
(according to matched criterion) into the viewer.

<!--Section 4: Filtering an Entry-->
<SASINSERT>
<h2>Message from the President</h2>
<SASREPEAT>
$(entry="(type=report)" attribute=stream)
</SASREPEAT>
</SASINSERT>

The ENTRY="(type=report)" attribute filters all package entries that contain a
name/value pair of type=report. The <SASREPEAT> open tag and the </SASREPEAT>
closing tag surround the search string in order to perform a repetitive search for the
name/value pair. Without this tag, the search would end after the first match. In this
example, only one HTML entry is matched. This entry is substituted as an input
stream to the HTML output.

The following SAS HTML tags are used in this example:

� “<SASINSERT> Tag” on page 23

� “Substitution Syntax” on page 23

� “<SASREPEAT> Tag” on page 29

This section of the template is rendered for viewing in e-mail as follows:

Example Code 4.4 Message from the President

AlphaliteAirways delivers service. AlphaliteAirways is the
recognized industry leader according to its safety
record, volume of passengers served, and number of
routes serviced.

How are we able to live up to such high expectations
consistently? First and foremost, we do it through the
abilities of our top salespeople. We owe a huge debt to
these hard-working individuals who actively pursue
revenue for this company.

Using the Publish Package Interface to Apply a Viewer

After you create a viewer template for a package, the publisher can apply it when
publishing the package to e-mail by using the Publish Package Interface. For the
e-mail, channel subscriber, and WebDAV delivery types only, you specify a viewer as a
property to the PACKAGE_PUBLISH SAS CALL routine.

You specify the VIEWER_NAME property and assign to it a viewer in the form of
either an external filename or a SAS fileref.

22 Using the Publish Package Interface to Apply a Viewer � Chapter 4

For example, the following code shows the application of an HTML viewer to a
package that is published to e-mail:

publishType = "TO_EMAIL";
properties = "VIEWER_NAME";
viewerFile = "filename:c:\dept\saletemp.html";
emailAddress = "JohnDoe@alphalite.com";
Call package_publish(pid, publishType, rc,

properties, viewerFile, emailAddress);

The following code shows the application of a text viewer to a package that is
published to e-mail:

publishType = "TO_EMAIL";
properties = "TEXT_VIEWER_NAME";
viewerFile = "filename:c:\dept\saletemp.txt";
emailAddress = "JohnDoe@alphalite.com";
Call package_publish(pid, publishType, rc,

properties, viewerFile, emailAddress);

The following code publishes the package (to which an HTML viewer is applied) to all
subscribers of the HR channel. The subject property is specified so that all e-mail
subscribers will receive the message with the specified subject.

pubType = "TO_SUBSCRIBERS";
storeInfo =

"SAS-OMA://alpair02.sys.com:8561";
viewerFile = "filename:c:\dept\saletemp.html";
channel = ’HR’;

subject = "Weekly HR Updates:";
user = "myUserName";
password = "myPassword";
props = "VIEWER_NAME, SUBJECT, CHANNEL_STORE, METAUSER,
METAPASS";
CALL PACKAGE_PUBLISH(packageId, "TO_SUBSCRIBERS", rc,

props, viewerFile, subject, storeInfo, user, password,
channel);

The following code publishes the package (to which an HTML viewer is applied) to a
WebDAV-compliant server:

rc = 0;
pubType = "TO_WEBDAV"
subject = "Nightly Maintenance Report"
properties= "VIEWER_NAME, COLLECTION_URL"
viewerFile = "filename:c:\dept\saletemp.html"
cUrl = "http://www.alpair.web/NightlyMaintReport"
CALL PACKAGE_PUBLISH(packageId, pubType,

rc, properties, viewerFile, cUrl);

For complete details about how to programmatically specify a viewer when you
publish to the e-mail and the channel subscriber types, see PACKAGE_PUBLISH CALL
routine syntax in “PACKAGE_PUBLISH” on page 65.

Viewer Processing � Substitution Syntax 23

<SASINSERT> Tag

Marks a section of the viewer file for viewer processing

Syntax
<SASINSERT> </SASINSERT>

Details
All viewer processing occurs within the opening <SASINSERT> tag and the closing
</SASINSERT> tag. SAS tags and substitution statements are recognized only when
they appear within the <SASINSERT> and </SASINSERT> tags.

The data that is inserted into the rendered view comes from a specified package
entry. The data that is extracted from the entry can be any of the following:

� value of a SAS variable

� description of the entry or package

� entire entry, which is to be streamed into the HTML file
� reference to the entry

� package or nested package abstract

Example
See the “Samples Using the <SASINSERT> and <SASTABLE> Tags” on page 31.

Substitution Syntax

A substitution statement within the <SASINSERT> opening tag and the </SASINSERT> closing tag
inserts data from the specified package entry into a viewer file for delivery as HTML or text output

Syntax
<SASINSERT> $(nested=z entry=x attribute=value)</SASINSERT>

Arguments

$()
indicates the start of substitution mode using the dollar sign ($) followed by the open
parenthesis. The close parenthesis indicates the end of substitution mode.

znested=
identifies the nested package within the main package that is to be involved in the
substitution. If the NESTED attribute is not specified, then only the entries in the
main package are involved in the substitution. For information about the syntax of

24 Substitution Syntax � Chapter 4

the z value, see “Specifying Values for the NESTED and ENTRY Attributes” on page
25.

xentry=
identifies the entry within the specified package that is to be targeted for the
substitution. For information about the syntax of the x value, see “Specifying Values
for the NESTED and ENTRY Attributes” on page 25.

someNamename=
identifies a name of a name/value pair. The value of this name/value pair will be
substituted. The name= and attribute= keywords cannot be specified on the same
substitution string. If entry= is specified along with name=, the entry’s name/value
specification will be used to make the substitution. For example, the following
substitution takes the first entry in the package and determines the value of the
name "title". This value is inserted into the HTML or text output:

$(entry=1 name="title")

This example evaluates the name/value that is specified at the main package level.
The value for the name "title" is substituted:

($name="title")

valueattribute=
identifies the attributes of the specified entry that are to be inserted into the HTML
or text output. The value that is associated with this attribute can be any of the
following:

description
inserts the description of the specified entry. For example, the following
substitution inserts the description of the specified entry into the HTML or text
output:

$(entry=1 attribute=description)

stream
streams the specified entry into the HTML or text output. The streamed entry
must be one of the following entry types:

� reference string (added to the package with the INSERT_REFERENCE
CALL routine)

� text file (added with INSERT_FILE routine)
� binary file (added with INSERT_FILE routine)
� HTML file (added with INSERT_HTML routine).

For example:

$(entry=1 attribute=stream)

reference
inserts a reference by substituting the entry’s filename into the rendered view. For
example, the following substitution inserts the filename of the first entry:

$(entry=1 attribute=reference)

abstract
Insert the package abstract at this location. If the NESTED attribute is not
specified, the abstract of the main package is inserted in the HTML or text output.
If the NESTED attribute is specified, then the abstract of the nested package is
inserted in the HTML or text output. The ENTRY attribute is not valid when the
abstract attribute is specified. For example, the following substitution inserts the
main package abstract into the HTML or text output:

Viewer Processing � Substitution Syntax 25

$(attribute=abstract)

Variable substitution is another type of substitution. It must be specified within the
<SASTABLE> tag.

Details

Specifying Values for the NESTED and ENTRY Attributes The NESTED and ENTRY
attributes are used in substitution syntax within the <SASINSERT> tag and as
attributes on the <SASTABLE> tag. The examples that appear in this section apply to
substitution syntax within the <SASINSERT> tag, but all of the syntax rules also apply
to the use of the NESTED and ENTRY attributes in the <SASTABLE> tag.

You can specify the values of the NESTED and ENTRY attributes in two forms,
numeric or name/value.

Identifying an Entry by Its Order in the Package You use the entry’s numerical order
in the package to identify which entry is to be involved in a substitution operation.

An example of package entry order follows:
1 SAS data set
2 binary file
3 reference string
4 HTML file

The SAS data set is the first entry, the binary file is the second entry, and so on.
For the NESTED attribute, a numeric value identifies the package that is involved in

the substitution based on order of nesting into the package. For example, nested=3
specifies the third package that is nested in the main package. To accommodate
packages with multiple levels of nesting, a period (.) differentiates levels of nesting. For
example, nested=2.5 specifies the fifth package that is nested in the second package
that is nested in the main package.

For the ENTRY attribute, a numeric value identifies the entry that is to be used in
the substitution that is based on the order of insertion into the package. For example,
$(entry=2) specifies the second entry in the package.

If the NESTED attribute is not specified, then the specified entry in the main
package is used for the substitution.

Identifying an Entry by Filtering the Package Name/value pairs are used in the
NESTED and ENTRY attributes to specify filters that determine which nested packages
and entries are to be involved in a substitution operation. You must quote the
name/value pair and contain it within parentheses. For example,

$(nested="(type=report)" entry="(a=b)")

When the name/value pair is specified outside the <SASREPEAT> tags, only the first
entry that matches the filter is substituted. When the name/value pair is used inside
the <SASREPEAT> tags, all entries that match the filter are substituted into the
HTML or text output.

To limit the search for an entry to the main package only, omit the NESTED
attribute. For example, $(entry="(type=report)") specifies that the entry that is to
be involved in the substitution operation is the first entry in the main package that has
a name/value pair of type=report.

Entries in the main package are always candidates for name/value substitution, even
when the NESTED attribute is specified. In the following example, the entry that is
involved in the substitution is either the first entry in the main package that matches
the a=b name/value pair or it is the first entry that matches a=b in the first nested
package with the type=report name/value pair.

26 Substitution Syntax � Chapter 4

$(nested="(type=report)" entry="(a=b)")

To substitute all entries that match the name/value pairs, enclose the substitution
within the tag. If the preceding example were enclosed in <SASREPEAT> tags, the
entries that are involved in the substitution would be all those in the main package and
the nested packages that match the a=b name/value pair.

The name/value syntax also supports the asterisk (*) wildcard on the NESTED
attribute. The asterisk indicates "all levels below." For example, to substitute "all
entries in all nested packages beneath this level," use a period (.) and an asterisk (*) in
the NESTED attribute, as follows:

$(nested="(type=report).*" entry="(a=b)")

The preceding example identifies for the substitution all entries that match the a=b
name/value pair in the following packages:

� the main package

� the first nested package that contains a match of the type=report name/value pair,
regardless of the nesting level of that package

� any package, regardless of name/value pair, that is nested beneath the first nested
package

To substitute all matching entries in the main package and in all nested packages,
use an asterisk in the NESTED attribute, as shown in the following example:

$(nested="*" entry="(a=b)")

The preceding example substitutes all entries in the main package and in all nested
packages at any level that match the name/value pair a=b.

Examples
$(entry=1 attribute=description)

indicates that the description for package entry 1 is to be substituted at this
location.

$(nested=1 entry=4 attribute=stream)
indicates that the fourth entry within the first nested package should be streamed
at this location. The entry must be either a reference, a text file, a binary file, or
an HTML file.

$(nested=1.2 entry=2 attribute=stream)
identifies for streaming the second entry in the second package that is nested in
the first package that is nested in the main package.

$(nested="*" entry="(type=report)" attribute=description)
indicates that the description of the first entry within the main package, or any
nested packages, that matches the type=report name/value pair is to be substituted
into the HTML or text output. If the substitution is contained within
<SASREPEAT> tags, then all entries in the main and nested packages that match
the type=report name/value pair are substituted into the HTML or text output.

$(nested="(type=report)" attribute=abstract)
indicates that the abstract from the nested package within the main package that
matches the type=report name/value pair is to be substituted into the HTML or
text output. If this substitution were specified within <SASREPEAT> tags, then
the abstracts of all matching nested package entries in the main package are
inserted into the HTML or text output.

$(name=title entry=1)

Viewer Processing � <SASTABLE> Tag 27

indicates that the first entry in the package is used for the substitution. Because
name= is specified, a name/value substitution occurs. Name= identifies the name
of a name/value pair; therefore, in this case, it indicates a name of title. If the first
entry’s name/value specification contains a name of title, its value is substituted.

$(name=Definition entry="(type=report)")
indicates that the substitution occurs for the first entry within the main package
that has the type=report name/value pair. The name= syntax indicates that a
name/value substitution occurs. If the entry that matches the type=report filter
has a name/value pair with the name of Definition, then its value is substituted. If
this substitution is contained in a <SASREPEAT> tag, then the name/value
substitution will occur for all entries in the main package that match the
type=report filter.

$(name=title)
indicates that because entry= is not used in this substitution string, the
name/value for the main package is used for the substitution. Name= identifies
the name of a name/value pair, so in this case it indicates a name of title. If the
package’s name/value specification contains a name of title, then its value is
substituted.

<SASTABLE> Tag

Populates HTML or text tables and lists

Syntax
<SASTABLE nested=z entry=x attribute=value> /* insert HTML tags or static text

as needed here */ $(variable=variableName) /* insert HTML tags or static text as
needed here */ </SASTABLE>

Arguments

znested=
identifies an optional nested package within the main package that is to be used to
build the table or list. If the NESTED attribute is not specified, then only the main
package is used to build the table or list. The numerical and name/value syntax
options that are available for the z value are defined in “Specifying Values for the
NESTED and ENTRY Attributes” on page 25.

28 <SASTABLE> Tag � Chapter 4

xentry=
identifies the entry within the specified package that is to be used to build the table
or list. The numerical and name/value syntax options that are available for the x
value are defined in “Specifying Values for the NESTED and ENTRY Attributes” on
page 25.

afirst=
specifies an optional numeric that designates the first row that is to be inserted into
the table or list. The default value is 1.

blast=
specifies the last row of optional numeric data that is to be inserted into the table or
list. The default is the last row in the specified entry.

Note: The LAST attribute and the N attribute are mutually exclusive. If both
are specified, the last one is used. �

cn=
specifies the total number of optional rows that are to be inserted into the table or
list, beginning with the first row in the entry. The default is all rows in the entry.

Note: The N attribute and the LAST attribute are mutually exclusive. If both are
specified, then the last one is used. �

Details
Within the <SASINSERT> tags, the <SASTABLE> tag supports the development of
HTML lists and tables. The <SASTABLE> tag populates tables and lists by repetitively
inserting HTML tags or static text and specified data into HTML or text output. The
insertion repeats for each row of data that has been specified for insertion. The location
of the data and the rows of data to be inserted are determined by the attributes of the
<SASTABLE> tag.

Variable Substitution Variable substitution is valid within the <SASTABLE> open tag
and the </SASTABLE> closing tag. The variable substitution syntax is as follows:

$(VARIABLE=variableName)

The variable substitution syntax specifies that the value of the VARIABLE attribute
in the data set is to be substituted into the tables and lists in either HTML or plain text
format. This attribute is valid only within the <SASTABLE> tag. The entry that is
named in the <SASTABLE> tag must be a valid SAS data set. Any number of variable
substitutions can be specified within the <SASTABLE> tag as long as each one
references a valid variable in the SAS data set.

Examples
The following example uses the <SASINSERT> and <SASTABLE> tags to build a list.
The SAS data set that is used is the second entry that is added to the main package.
The value of the fileName variable is substituted on each repetition.

<p>
<SASINSERT>

<SASTABLE ENTRY=2>
$(VARIABLE=fileName)
</SASTABLE>

</SASINSERT>

Viewer Processing � <SASREPEAT> Tag 29

The following example uses the <SASINSERT> and <SASTABLE> tags to build a
table. The SAS data set entry is the first entry in the main package. The value of the
variables fname, lname, state, and homepage are used to create the table. The newly
created table will contain one row for each row in the main package.

<SASINSERT>
<h1>Table Example using SASTABLE</h1>
<table border cellspacing=0 cellpadding=5

rules=groups>
<thead>
<tr><th>First Name</th>
<th>Last Name</th>
<th>State </th>
<th>HomePage</th></tr>
<tbody>
<SASTABLE ENTRY=1>
<tr> <td> $(VARIABLE=fname)</td>
<td> $(VARIABLE=lname)</td>
<td> $(VARIABLE=state)</td>
<td>

$(VARIABLE=homepage)</td></tr>
</SASTABLE>
</table>
</SASINSERT>

<SASREPEAT> Tag

Repeats a substitution for all entries that match given criteria

Syntax
<SASREPEAT> </SASREPEAT>

Details
The <SASREPEAT> tag causes a substitution that is enclosed within the tag to repeat
for all entries that match the specified name/value pair, as described in “Specifying
Name/Value Pairs” on page 120. Without the <SASREPEAT> tag, the substitution stops
after matching the first entry.

Any HTML tags or static text that are included in the <SASREPEAT> tag are
inserted into the output along with the substitution data, and those tags are repeatedly
inserted each time a new entry matches the name/value pair.

The <SASREPEAT> tag is recognized only within the <SASINSERT> tag and is
relevant only when it is used with name/value pair substitutions.

Examples
The following example uses the <SASREPEAT> tag to build a list of reports. The
substitutions and the HTML tag within the <SASREPEAT> tag are repeated for each
entry that matches the type=report name/value pair.

30 <SASECHO> Tag � Chapter 4

<SASINSERT>
Available reports include the following:

<SASREPEAT>
 $(entry="(type=report)"
attribute=description)
</SASREPEAT>

</SASINSERT>

An example of the rendered view follows:

Available reports include the following:
President’s State of the Union address
AlphaliteAirways Annual Report
Sales Quotas for Midwest Territory

The next example uses the <SASREPEAT> tag to build a table. The substitutions
and the HTML tags within the <SASREPEAT> tag are repeated for each entry in the
main package that matches the type=report name/value pair.

<table border="1" cellspacing="0" cellpadding="3">
<SASINSERT>
<SASREPEAT>
<tr><td>$(entry="(type=report)"
attribute=description)</td></tr>
</SASREPEAT>
</SASINSERT>
</table>

An example of the rendered view follows:

Table 4.2 Table Built Using <SASREPEAT> Tag

President’s State of the Union
Address

AlphaliteAirways Annual
Report

Sales Quotas for Midwest
Territory

<SASECHO> Tag

Stores a text string to send to the SAS Log

Syntax
<SASECHO text="text">

Note: The <SASECHO> open tag has no corresponding closing tag. �

Details
The <SASECHO> tag aids in the diagnosis of viewer parsing and processing problems
by printing a message to the SAS LOG window as the viewer file is processed.

Viewer Processing � Samples Using the <SASINSERT> and <SASTABLE> Tags 31

The <SASECHO> tag is recognized only within the <SASINSERT> tags. If the text
value contains embedded punctuation and spaces, surround the text with quotation
marks.

Examples
<SASECHO text="Correctly executed first segment.">

Samples Using the <SASINSERT> and <SASTABLE> Tags
The following example uses the <SASINSERT> and <SASTABLE> tags to build a

list. The SAS data set that is used is the second entry that is added to the main
package. The value of the fileName variable is substituted on each repetition.

<p>
<SASINSERT>

<SASTABLE ENTRY=2>
$(VARIABLE=fileName)
</SASTABLE>

</SASINSERT>

The following example uses the <SASINSERT> and <SASTABLE> tags to build a
table. The SAS data set entry is the first entry in the main package. The value of the
variables fname, lname, state, and homepage are used to create the table. The newly
created table will contain one row for each row in the main package.

<SASINSERT>
<h1>Table Example using SASTABLE</h1>
<table border cellspacing=0 cellpadding=5

rules=groups>
<thead>
<tr><th>First Name</th>
<th>Last Name</th>
<th>State </th>
<th>HomePage</th></tr>
<tbody>
<SASTABLE ENTRY=1>
<tr> <td> $(Variable=fname)</td>
<td> $(Variable=lname)</td>
<td> $(Variable=state)</td>
<td>

$(variable=homepage)</td></tr>
</SASTABLE>
<tr><td colspan=4 align=center>
Note: Simple table example.</td></tr>
</table>
</SASTABLE>

To see formatted output from <SASINSERT> and <SASTABLE> examples, see
“Sample Viewer Template” on page 35.

32 Sample HTML Viewer � Chapter 4

Sample HTML Viewer

This sample HTML viewer example is a collection of viewer coding sections that are
described in “How to Create a Viewer” on page 16.

<!--Section 1: Formatting a Data Set
Variable in an HTML List-->

<SASINSERT>
<h2>Congratulations!</h2>
$(entry=1 attribute=description)
<p>

<SASTABLE ENTRY=2>
$(VARIABLE=fname)
</SASTABLE>

<!--Section 2: Formatting a SAS Data Set
in a Table-->

<h2>Record Sales from these Salespeople</h2>
$(entry=1 attribute=description)
<table border cellspacing=0 cellpadding=5

rules=groups>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Territory</th>
</tr>
</thead>
<tbody>
<SASTABLE ENTRY=1>
<tr>
<td> $(VARIABLE=fname)</td>
<td> $(VARIABLE=lname)</td>
<td> $(VARIABLE=territory)</td>
</tr>
</tbody>
</SASTABLE>
</table>

<!--Section 3: Inserting a Text File
and a Reference-->

<h2>Letter of Congratulations</h2>
Below is a copy of the letter that was sent
to each recipient of the top sales award.
$(entry=2 attribute=stream)
<p>
See $(entry=3
attribute=stream) for detailed sales figures.

<!--Section 4: Filtering an Entry-->
<h2>Message from the President</h2>
<SASREPEAT>

Viewer Processing � Sample SAS Program with an HTML Viewer 33

$(entry="(type=report)" attribute=stream)
</SASREPEAT>
</SASINSERT>

To see the e-mail output, see the output from the viewer coding sections that are
described in “How to Create a Viewer” on page 16. The e-mail output from this sample
HTML viewer is a collection of the output from these sections.

Sample SAS Program with an HTML Viewer
The following SAS program example includes two parts:
� SAS code that creates two SAS data sets
� package publishing CALL routines that create a package, insert package entries,

and publish the package to e-mail with the aid of a viewer file

The PACKAGE_PUBLISH CALL routine applies a viewer that is named
realview.html to the package that is rendered in e-mail.

The following code shows the viewer properties and attributes:

data empInfo;
length homePage $256;
input fname $ lname $ ages state $ siblings homePage $;
datalines;
John Smith 32 NY 4 http://alphaliteairways.com/~jsmith
Gary DeStephano 20 NY 2 http://alphaliteairways.com/~gdest
Arthur Allen 40 CA 2 http://alphaliteairways.com/~aallen
Jean Forest 3 CA 1 http://alphaliteairways.com/~jforest
Tony Votta 30 NC 2 http://www.pizza.com/~tova
Dakota Smith 3 NC 1 http://~alphaliteairways.com/~dakota
;
run;
quit;

data fileInfo;
length fileName $256;
input fileName $;
datalines;
Sales
Marketing
R&D
;
run;
quit;

data _null_;
rc=0; pid = 0;

call package_begin(pid,"Daily Orders Report.",’’, rc);
if (rc eq 0) then put ’Package begin successful.’;
else do;

msg = sysmsg();
put msg;

end;

34 Sample SAS Program with an HTML Viewer � Chapter 4

call insert_ref(pid, "HTML",
"http://www.alphaliteairways.com",

"Check out the Alphalite Airways Web site
for more information." , "", rc);

if (rc eq 0) then put ’Insert Reference successful.’;
else do;

msg = sysmsg();
put msg;

end;

call insert_dataset(pid, "work", "empInfo",
"Data Set empInfo" , "", rc);

if (rc eq 0) then put ’Insert Data Set successful.’;
else do;

msg = sysmsg();
put msg;

end;

call insert_dataset(pid, "work", "fileInfo",
"Data Set fileInfo" , "", rc);

if (rc eq 0) then put ’Insert Data Set successful.’;
else do;

msg = sysmsg();
put msg;

end;

viewerName=’filename:realview.html’; prop=’VIEWER_NAME’;
address="John.Smith@alphaliteairways.com";
call package_publish(pid, "TO_EMAIL", rc,

prop, viewerName, address);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Publish successful’;

call package_end(pid,rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Package termination successful’;

run;

To look at the content of the viewer template, see “Sample Viewer Template” on page
35.

To look at a rendered view of the package that is delivered to e-mail, see the output
from the viewer coding sections that are described in “How to Create a Viewer” on page
16. The e-mail output from this sample HTML viewer is a collection of the output from
these sections.

Viewer Processing � Sample Viewer Template 35

Sample Viewer Template

A SAS program creates a package and applies a viewer template that is named
realview.html. During package publishing, viewer tag processing renders a view of the
package for delivery via e-mail.

<html>
<HEAD>
<META HTTP-EQUIV="Content-Type CONTENT="text/html;

charset=ISO-8859-1">
<TITLE>Daily Purchase Summary</TITLE>
</HEAD>
<BODY>
<p>

<SASINSERT>
<h1>Table Example using SASTABLE</h1>
<table border cellspacing=0 cellpadding=5

rules=groups>
<thead>
<tr><th>First Name</th>
<th>Last Name</th>
<th>State </th>
<th>HomePage</th></tr>
</thead>
<tbody>
<SASTABLE ENTRY=2>
<tr><td> $(VARIABLE=fname)</td>
<td> $(VARIABLE=lname)</td>
<td> $(VARIABLE=state)</td>
<td>

$(VARIABLE=homepage) </td>
</tr>
</tbody>
</SASTABLE>
</table>

<p>
<h1>List Example using SASTABLE</h1>

<SASTABLE ENTRY=3>
$(VARIABLE=org)
</SASTABLE>

<P>
<h2>Example using Stream</h2>
<SASINSERT>
$(ENTRY=1

ATTRIBUTE=STREAM)
</SASINSERT>
<p>
</BODY>
</html>

36 Simulated Rendered View of the Package in E-mail � Chapter 4

Simulated Rendered View of the Package in E-mail
The following table is an example of the information that might be displayed by the

preceding viewer template:

Table 4.3 Table Example using SASTABLE

First Name Last Name State HomePage

John Smith NY http://alphaliteairways.com/
~jsmith

Gary DeStephano NY http://alphaliteairways.com/
~gdest

Arthur Allen CA http://alphaliteairways.com/
~aallen

Jean Forest CA http://alphaliteairways.com/
~jforest

Tony Votta NC http://pizza.com/~tova

Dakota Smith NC http://alphaliteairways.com/
~dakota

Example Code 4.5 List Example using SASTABLE

Sales
Marketing
R&D

Example Code 4.6 Example using Stream

http://alphaliteairways.com

37

C H A P T E R

5
Publishing Packages

Package Publishing 37
Using a Third-Party Client Application 38

Using the Publish Package Interface 38

Publish and Retrieve Encoding Behavior 40

Default Publish and Retrieve Behavior 40

Rules for Determining File Encoding 41
Specifying an Encoding on the Retrieve 41

Dictionary 42

PACKAGE_PUBLISH 65

Overview of PACKAGE_PUBLISH 65

Transport Properties 66

Filtering Packages and Package Entries 116
Overview of Filtering 116

Enabling Filtering When Publishing Packages 117

Implementing MIME-Type Filters 117

Implementing Entry-Type Filters 117

Implementing Name/Value Filters 117
Specifying Name/Value Pairs 120

Overview of Name/Value Pairs 120

Specifying Name/Value Pairs for a Package Item 121

Specifying Name/Value Pairs for an Entire Package 121

Example: Publishing in the DATA Step 122
Example: Publishing in a Macro 126

Example: Publishing with the FTP Access Method 128

Package Publishing
The following activities are performed in order to publish a package:
1 Entries are inserted into the package.
2 The transport for delivering the package to the consumer is defined.
3 Other properties are defined that are specific to the transport or the rendering of

the package.
4 The package is published.

38 Using a Third-Party Client Application � Chapter 5

The following scenarios depict how the package publishing method can depend on
your role in the business enterprise or your experience as a programmer:

Table 5.1 Package Publishing Methods for Different Publishers

Type of Publisher Package Publishing Method

Novice user or someone who prefers to use a GUI Publish by using SAS Enterprise Guide or SAS
Information Delivery Portal. For more
information, see the product Help.

SAS programmer Publish programmatically by using the Publish
Package CALL routines. See “Using the Publish
Package Interface” on page 38.

Programmer who uses a language other than
SAS

Publish by writing a third-party client
application. See “Using a Third-Party Client
Application” on page 38.

Using a Third-Party Client Application

The publisher can write a third-party client application that uses SAS Integration
Technologies to access Integrated Object Model (IOM) servers.

The IOM provides distributed object interfaces for conventional SAS features. The
distributed object interfaces enable the publisher to develop component-based
applications that integrate SAS features into the enterprise application.

Client development in the Java environment enables the publisher to write applets,
stand-alone applications, servlets, and even Enterprise JavaBeans that interact with
IOM servers. By supporting industry standards (such as Java Database Connectivity
[JDBC] and CORBA), the SAS Integration Technologies software enables the publisher
to take advantage of existing programming skills and toolsets for writing client
applications. For more information, see the SAS Integration Technologies: Java Client
Developer’s Guide.

Client development in the Windows environment is based on the Microsoft
Component Object Model (COM). Because COM support is built into the operating
system and in all the leading programming language products, the publisher can
integrate SAS (and existing SAS programs) into client applications. SAS Integration
Technologies software provides the type libraries that are necessary to use the IOM
server with Visual Basic and Visual C++. For more information, see the SAS
Integration Technologies: Windows Client Developer’s Guide.

Using the Publish Package Interface

The Publish Package Interface consists of SAS CALL routines that enable you to
write SAS programs, including stored processes, that create, populate, publish, and
retrieve collections of information known as packages.

The process of publishing a package follows:

1 A package is created by using the PACKAGE_BEGIN“PACKAGE_BEGIN” on page
62 CALL routine. For example,

CALL PACKAGE_BEGIN(pid, desc, nameValue, rc);

Publishing Packages � Using the Publish Package Interface 39

This CALL routine assigns a name to the package and any optional name/value
pairs that are associated with it. Name/value pairs are used to assign metadata to
a package or individual package entries. This metadata enables you to create
filters that aid in information retrieval. The filters can be used both by subscribers
to channels and by programs that search the package archive.

2 A package is populated by adding package entries by using the INSERT_* CALL
routines. An entry can be a SAS file (for example, data set, catalog, or SAS
MDDB), or almost any other kind of file, including HTML and images. CALL
routines fall into two categories of item types:

� SAS results:
� INSERT_CATALOG
� INSERT_DATASET
� INSERT_FDB
� INSERT_MDDB
� INSERT_PACKAGE
� INSERT_SQLVIEW

� unstructured content:
� INSERT_FILE
� INSERT_HTML
� INSERT_REF
� INSERT_VIEWER

For example,

Call INSERT_DATASET(pid, libname, memname, description, NameValue, rc);

You can also nest packages by including a package as an entry in another
package. Entries are referenced in the order in which they were added to the
package.

Note: If inserting HTML file entries, see “Publish and Retrieve Encoding
Behavior” on page 40. �

3 A package is published to a delivery transport by using the PACKAGE_PUBLISH
CALL routine. Supported transports are e-mail addresses, a message queue,
subscribers to a pre-defined channel, a WebDAV-Compliant server, and an archive.
CALL routines for supported transports are as follows:

� TO_ARCHIVE. See “PACKAGE_PUBLISH (Publish Package to Archive)” on
page 70.

� TO_EMAIL. See “PACKAGE_PUBLISH (Publish Package to E-mail)” on page
71.

� TO_QUEUE. See “PACKAGE_PUBLISH (Publish Package to Queues)” on
page 76.

� TO_SUBSCRIBERS. See “PACKAGE_PUBLISH (Publish Package to
Subscribers)” on page 78.

� TO_WEBDAV. See “PACKAGE_PUBLISH (Publish Package to a
WebDAV-Compliant Server)” on page 83.

40 Publish and Retrieve Encoding Behavior � Chapter 5

For example,

publishType = "TO_ARCHIVE"
.
.
.
CALL PACKAGE_PUBLISH (pid, publishType, rc, properties, archivePath, archiveName);

4 The end of the published package is defined by using the PACKAGE_END. For
example,

CALL PACKAGE_END(pid, rc);

5 A package is retrieved from a delivery transport by using the following CALL
routines:

� COMPANION_NEXT

� ENTRY_FIRST

� ENTRY_NEXT

� PACKAGE_DESTROY

� PACKAGE_FIRST

� PACKAGE_NEXT

� PACKAGE_TERM

� RETRIEVE_CATALOG

� RETRIEVE_DATASET

� RETRIEVE_FDB

� RETRIEVE_FILE

� RETRIEVE_HTML

� RETRIEVE_MDDB

� RETRIEVE_NESTED

� RETRIEVE_PACKAGE

� RETRIEVE_REF

� RETRIEVE_SQLVIEW

� RETRIEVE_VIEWER

Publish and Retrieve Encoding Behavior

Default Publish and Retrieve Behavior
All HTML files are published with a file encoding that indicates the character set of

the HTML file. This encoding is either automatically generated or user-specified. All
published files are read as binary data.

When retrieved, all HTML files are written as binary data. By default, no translation
occurs. However, translation does occur when a file encoding is specified in the retrieve
CALL routine (such as RETRIEVE_PACKAGE, for example).

Publishing Packages � Specifying an Encoding on the Retrieve 41

Rules for Determining File Encoding
You can specify an encoding on the PACKAGE_PUBLISH CALL routine to indicate

the file’s character set. The encoding values of ASCII, EBCDIC_R15, and EBCDIC_R25
are treated as special cases in the following encoding rules. The file encoding that is
published with each HTML file is determined by the following rules:

1 The HTML file is searched for charset= within the META tags. The following
rules govern the search:

� The search covers only the META tags found within the HEAD portion of the
document.

� META tags within comments are ignored.

� By default, the search uses the encoding of the native session. If a special
encoding is specified (ASCII, EBCDIC_RS25, or EBCDIC_RS15), the search
uses that encoding rather than the native session encoding.

� The encoding specified within the META tag always takes precedence over
user-specified encodings on the INSERT_HTML CALL routine.

2 If the encoding value is found within the HTML file, then that value is published
as the encoding value.

3 If the encoding value is not found within the HTML, and if a user-specified
encoding value was not provided on the INSERT_HTML CALL routine, then the
native session encoding is published as the encoding value.

4 If the encoding value is not found within the HTML, and if the user-specified
encoding is not a special case (not ASCII, EBCDIC_RS25, or EBCDIC_RS15), then
the user-specified encoding value is published as the encoding value.

5 If the encoding value is not found within the HTML file, and if a special encoding
value of ASCII was specified, then the following rules apply:

� If running on an ASCII host at publish time, then an attempt is made to use
the current locale information to determine the flavor of ASCII encoding. If
the locale information is unavailable, then the native session encoding is used.

� If running on an EBCDIC host at publish time, then an attempt is made to
use the current locale information to determine the transport format. If set,
then the transport format is the encoding that is used. If not set, then the
default becomes ISO-8859-1.

6 If the encoding value is not found within the HTML file, and if a special encoding
value of EBCDIC_RS15 is specified, then an encoding value of OPEN_ED-1047 is
used, regardless of the host operating environment.

7 If the encoding value is not found within the HTML file, and if a special encoding
value of EBCDIC_RS25 is specified, then an encoding value of EBCDIC1047 is
used, regardless of the host operating environment.

Specifying an Encoding on the Retrieve
By default, no translation occurs when HTML files are retrieved; the files are written

as binary data. To override the default at retrieve time, supply an encoding property.
This property indicates that the HTML files should be translated into the specified
character set encoding. The encoding that is published with the file is used as the
source encoding, and the user-specified encoding is used as the destination encoding.

42 Dictionary � Chapter 5

Dictionary

INSERT_CATALOG

Inserts a SAS catalog into a package

Syntax
CALL INSERT_CATALOG(packageId, libname, memname, desc, nameValue, rc);

Arguments

packageID
identifies the package into which the catalog will be inserted.
Type: Numeric
Direction: Input

libname
names the library that contains the catalog.
Type: Numeric
Direction: Input

memname
specifies the name of the catalog.
Type: Character
Direction: Input

desc
describes the catalog.
Type: Character
Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name
� name=value
� name="value"
� name="single value with spaces"
� name=(value)
� name=("value")
� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.
Type: Character

Publishing Packages � INSERT_DATASET 43

Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Example
The following example inserts the catalog ALPHELP.PUBSUB into the PACKAGEID
package.

libname = ’alphelp’;
memname = ’pubsub’;
desc = ’Publication’s catalog’;
nameValue=’’;
CALL INSERT_CATALOG(packageId, libname,

memname, desc, nameValue, rc);

INSERT_DATASET

Inserts a SAS data set into a package

Syntax
CALL INSERT_DATASET(packageId, libname, memname, desc, nameValue, rc <,

properties, propValue1, …propValueN>);

Arguments

packageID
identifies the package.
Type: Numeric
Direction: Input

libname
names the library that contains the data set.
Type: Character
Direction: Input

memname
names the data set.
Type: Character
Direction: Input

desc
describes the data set.
Type: Character

44 INSERT_DATASET � Chapter 5

Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name
� name=value
� name="value"
� name="single value with spaces"
� name=(value)
� name=("value")
� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ALLOW_READ_PROTECTED_MEMBER
� DATASET_OPTIONS
� TRANSFORMATION_TYPE
� CSV_SEPARATOR
� CSV_FLAG

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property. The order of the values matches the
order of the property names in the properties parameter. Valid property values are
defined as follows:

ALLOW_READ_PROTECTED_MEMBER
specifies a value of "YES". It is important to note that the password and
encryption attributes are not preserved in the intermediate published format
(whether on a queue or in an archive). Because of this exposure, take care when
publishing data sets that are password protected, encrypted or both. The
ALLOW_READ_PROTECTED_MEMBER property must be asserted on
read-protected data sets in order to be published. This property ensures that the
publisher realizes that this is a read-protected data set, and that the read
password and encryption attributes are not preserved when stored in the
intermediate format. If this property is not applied, then the publish operation
fails when trying to publish the read-protected data set.

DATASET_OPTIONS
specifies data set options. For a complete list of data set options, see the SAS Data
Set Options topic in the SAS Online Help, Release 8.2.

Publishing Packages � INSERT_DATASET 45

TRANSFORMATION_TYPE
indicates that the data set should be transformed to the specified type when
published. At this time, the only supported value for this property is CSV, for
Comma-Separated-Value.

CSV_SEPARATOR
indicates the separator to use when creating the CSV file. The default separator is
a comma (,).

CSV_FLAG
indicates a CSV override flag. Supported values include NO_VARIABLES,
NO_LABELS, and EXTENDED. By default, when writing numeric variable values
into the CSV file, BEST is used to format numerics that have no format associated
with them. To override this default, specify the property value EXTENDED on the
CSV_FLAG property. This extends the number of digits used as the precision
level. By default, if the data set is transformed into a CSV file, then the file’s first
line contains all of the specified variables. The second line contains all of the
specified labels. To override this default behavior, specify flags with values
"NO_VARIABLES" or "NO_LABELS". To specify both values, a CSV_FLAG
property must be specified for each.

Type: Character or Numeric

Direction: Input

Details
When the data set is published, data set attributes are cloned so that when it is
retrieved back into SAS, the created data set will have similar attributes. Attributes
that are cloned include encryption, passwords, data set label, data set type, indexes and
integrity constraints. It is important to know that the password and encryption
attributes are not preserved in the intermediate format (whether on a queue or in an
archive). Because of this exposure, take care when publishing data sets that are
password-protected, encrypted, or both.

Examples
The following example specifies a transformation type of CSV and two CSV_FLAG
properties. The data set is transformed into a CSV file and published in CSV format.

prop=’TRANSFORMATION_TYPE,CSV_SEPARATOR,CSV_FLAG,CSV_FLAG’;
ttype=’CSV’;
separator=’/’;
flag1 = ’NO_VARIABLES’;
flag2 = ’NO_LABELS’;
CALL INSERT_DATASET(packageId, libname, memname, desc,

nameValue, rc, prop, ttype, separator, flag1, flag2);

The following example inserts the SAS data set FINANCE.PAYROLL into a package.

libname = ’finance’;
memname = ’payroll’;
desc = ’Monthly payroll data.’;
nameValue=’’;
CALL INSERT_DATASET(packageId, libname,

memname, desc, nameValue, rc);

The following example uses the DATASET_OPTIONS property to apply a password
for read access and to apply a subsetting WHERE statement to the data set when

46 INSERT_FDB � Chapter 5

publishing the package. Because the data set is read-protected, you must specify the
ALLOW_READ_PROTECTED_MEMBER property. Package publishing fails without
this property.

libname = ’hr’;
memname =’employee’;
desc = ’Employee database.’;
nameValue=’’;
properties="DATASET_OPTIONS, ALLOW_READ_PROTECTED_MEMBER";
opt="READ=abc Where=(x<10)";
allow="yes";
CALL INSERT_DATASET(packageId, libname, memname,

desc, nameValue, rc, properties, opt, allow);

The following example uses the TRANSFORMATION_TYPE property to publish a
data set in CSV format.

libname = ’hr’;
memname = ’employee’;
desc = ’Employee database.’;
nameValue=’’;
ttype =’CSV’;
prop = "TRANSFORMATION_TYPE";
CALL INSERT_DATASET(packageId, libname, memname,

desc, nameValue, rc, prop, ttype);

INSERT_FDB

Inserts a financial database into a package

Syntax
CALL INSERT_FDB(packageId, libname, memname, desc, nameValue, rc);

Arguments

packageID
identifies the package.

Type: Numeric
Direction: Input

libname
names the library that contains the FDB.
Type: Character

Direction: Input

memname
names the FDB.
Type: Character

Publishing Packages � INSERT_FILE 47

Direction: Input

desc
describes the FDB.

Type: Character

Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name

� name=value

� name="value"

� name="single value with spaces"

� name=(value)

� name=("value")

� name=(value1, "value 2",... valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.

Type: Character

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

Example
The following example inserts the FDB FINANCE.PAYROLL into the package returned
in packageId.

libname = ’finance’;
memname = ’payroll’;
desc = ’Monthly payroll data.’;
nameValue=’’;
CALL INSERT_FDB(packageId, libname,

memname, desc, nameValue, rc);

INSERT_FILE

Inserts a file into a package

Syntax
CALL INSERT_FILE(packageId, filename, filetype, mimeType, desc, nameValue, rc<,

properties, propValue1, …propValueN>);

48 INSERT_FILE � Chapter 5

Arguments

packageID
identifies the package.
Type: Numeric
Direction: Input

filename
names the file, using the following syntax:

� FILENAME: external_filename
� FILEREF: sas_fileref

Type: Character
Direction: Input

filetype
specifies the file type, which must be TEXT or BINARY.
Type: Character
Direction: Input

mimeType
specifies the MIME type, the value of which is determined by the user. Subscribers
can filter packages based on MIME type. See “Filtering Packages and Package
Entries” on page 116. For suggested values, see “Details” on page 49.
Type: Character
Direction: Input

desc
describes the file.
Type: Character
Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name
� name=value
� name="value"
� name="single value with spaces"
� name=(value)
� name=("value")
� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Publishing Packages � INSERT_FILE 49

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� PATH

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

PATH
indicates the relative path information for this file. The relative path is included
as the name of the file when defined in the ZIP file. The specified path should not
contain a drive or device letter, or a leading slash. All slashes should be forward
slashes ’/’ as opposed to backslashes ’\’. This property is recognized only by the
archive transport. It is ignored by all other transports.

Type: Character
Direction: Input

Details
The mimeType parameter is a user-specified MIME type that specifies the type of
binary file or text file that is being published. Users might choose to document the
supported values in order for publishers to use them or to use their own content strings.

Suggested MIME types include the following:
� application/msword
� application/octet-stream
� application/pdf
� application/postscript
� application/zip
� audio/basic
� image/jpeg
� image/gif
� image/tiff
� model/vrml
� text/html
� text/plain
� text/richtext
� video/mpeg
� video/quicktime

50 INSERT_HTML � Chapter 5

The following example supplies a content string of Image/gif to provide more
information about the type of binary file that is being inserted.

filename = ’filename:/tmp/Report.gif’;
filetype =’binary’;
desc = ’Report information’;
nameValue = ’’;
mimetype = ’Image/gif’;
CALL INSERT_FILE(packageId, filename, filetype,

mimetype, desc, nameValue, rc);

INSERT_HTML

Inserts HTML files into a package

Syntax
CALL INSERT_HTML(packageId, body, bodyUrl, frame, frameUrl, contents,

contentsUrl, page, pageUrl, desc, nameValue, rc<, properties, propValue1,
…propValueN>);

Arguments

packageId
identifies the package.

Type: Numeric
Direction: Input

body
names the HTML body file, using the following syntax:

� FILEREF: SAS_fileref

� FILENAME: external_filename

For information about inserting multiple body files, see “Details” on page 53.
Type: Character
Direction: Input

bodyURL
specifies the URL to be used for the body file.

Type: Character
Direction: Input

frame
names the HTML frame file, using the following syntax:

� FILEREF: SAS_fileref

� FILENAME: external_filename

Type: Character

Publishing Packages � INSERT_HTML 51

Direction: Input

frameURL
specifies the URL to be used for the frame file.
Type: Character
Direction: Input

contents
names the HTML contents file, using the following syntax:

� FILEREF: SAS_fileref
� FILENAME: external_filename

Type: Character
Direction: Input

contentsURL
specifies the URL to be used for the contents file.
Type: Character
Direction: Input

page
names the HTML page file, using the following syntax:

� FILEREF: SAS_fileref
� FILENAME: external_filename

Type: Character
Direction: Input

pageURL
specifies the URL to be used for the page file.
Type: Character
Direction: Input

desc
describes the inserted HTML package entry.
Type: Character
Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in the form of
name=value. Name/value pairs are site-specific; they are used for the purpose of
filtering. See “Filtering Packages and Package Entries” on page 116.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ENCODING
� COMPANION_FILE
� COMPANION_MIMETYPE

52 INSERT_HTML � Chapter 5

� COMPANION_URL
� GPATH
� GPATH_URL
� NESTED_NAME

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

ENCODING
indicates the character set of the HTML files, such as ISO-8859-1. For details, see
“Publish and Retrieve Encoding Behavior” on page 40. The default encoding is
assumed from the native session.

COMPANION_FILE
indicates the name of an additional HTML file that is to be added to this set of
HTML files. Multiple COMPANION_FILE properties and values can be specified.
Name the companion files, using the following syntax:

� FILEREF: SAS_fileref

� FILENAME: external_filename

COMPANION_MIMETYPE
indicates the MIME type of the companion file that is to be added to the inserted
HTML entry. If specified, then this property must be preceded by the
COMPANION_FILE property.

COMPANION_URL
indicates the URL of an HTML file that is to be added to the inserted HTML
entry. If specified, then this property must be preceded by the COMPANION_FILE
property.

GPATH
indicates the name of a single directory that contains the ODS-generated graphical
files for inclusion as companion files to the HTML file set.

Note: All files in the specified directory are included as companion files. �

GPATH_URL
indicates the URL of the directory that contains the ODS-generated graphical files.
An example of a URL might be ~ods-output/images. Alternatively, you can specify
"NONE" as the GPATH_URL property value. If the value of "NONE" is specified,
then only the filename is used as the URL.

Note: If GPATH_URL is specified, then you must also specify the GPATH
property. �

NESTED_NAME
indicates the name of the nested directory to create for the storage of the set of
HTML files. If you do not specify a value for this property, then a name is
generated automatically.

Note: The NESTED_NAME property is valid only when publishing to the
WebDAV-compliant server transport. �

Type: Character

Publishing Packages � INSERT_HTML 53

Direction: Input

Details
The files that can be inserted include the body, frame, contents, and page files.

When the NEWFILE= option is specified in the ODS HTML statement, ODS might
generate multiple body files. When ODS generates multiple body files, it uses a
numeric file naming sequence of the general form: bodyfilenameNumber, as in
body1.html, body2.html, body3.html. To insert an entire sequence of body files, use the
following syntax:

FILENAME: bodyFilename*.extension

When an asterisk is specified in the body parameter, an asterisk should also be
specified in the bodyUrl parameter. For further information about ODS, see SAS
Language: Reference and SAS Language Reference: Concepts.

Note: As a best practice, it is suggested that a MIME type be provided for any
companion files inserted into the HTML entry. The MIME type is useful for
applications that will later consume or display the published package. �

Examples

Example 1 The following example generates ODS files and inserts those files into a
package.

Desc=’HTML output for payroll processing’;
nameValue = ’’;
filename f ’/users/f.html’;
filename c ’/users/c.html’;
filename b ’/users/b.html’;
filename p ’/users/p.html’;
ods html frame=f contents=c(url=’c.html’)

body=b(url=’b.html’) page=p(url=’p.html’);

/* insert SAS statements here to generate ODS output */

ods html close;

CALL INSERT_HTML(packageId, ’fileref:b’, "b.html",
’fileref:f’, "f.html", ’fileref:c’, "c.html",

’fileref:p’, "p.html", desc, nameValue, rc);

Example 2 The following example replaces the INSERT_HTML CALL routine in the
example above with another version of the CALL routine that inserts ODS files by
using the ENCODING property. In this case, the ENCODING property specifies the
ISO-Latin-1 character set.

Desc=’HTML output for payroll processing’;
nameValue = ’’;
CALL INSERT_HTML(packageId, ’fileref:b’, "b.html",

’fileref:f’, "f.html", ’fileref:c’, "c.html",
’fileref:p’, "p.html", desc, nameValue, rc,
"encoding", "ISO-8859-1");

Example 3 The following example specifies a character set encoding and adds two
HTML files to the original set of inserted files.

54 INSERT_MDDB � Chapter 5

Desc=’HTML output for payroll processing’;
nameValue = ’’;
properties=’encoding, companion_file, companion_file’;
encodingV = "ISO-88591-1";
file1 = "filename: report.html";
file2 = "filename: dept.html";
CALL INSERT_HTML(packageId, ’fileref:b’, "b.html",

’fileref:f’, "f.html", ’fileref:c’, "c.html",
’fileref:p’, "p.html", desc, nameValue, rc,
properties, encodingV, file1, file2);

Example 4 The following example uses an asterisk (*) to specify that all body files are
to be included in the set of inserted HTML files. The naming sequence used is the same
as the naming sequence used in ODS. So the files body.html, body1.html, body2.html,
and so on (for all files found in this sequence), will be published. For further
information about the ODS naming sequence used in conjunction with the NEWLINE=
option, see the SAS Language Reference: Concepts.

Desc=’HTML output for payroll processing’;
nameValue = ’’;
CALL INSERT_HTML(packageId,

’filename:/users/jsmith/body*.html’, "body*.html",
’fileref:f’, "f.html", ’fileref:c’, "c.html",
’fileref:p’, "p.html", desc, nameValue, rc);

INSERT_MDDB

Inserts a SAS multidimensional database into a package

Syntax
CALL INSERT_MDDB(packageId, libname, memname, desc, nameValue, rc);

Arguments

packageID
identifies the package.
Type: Numeric
Direction: Input

libname
names the library that contains the MDDB.
Type: Character
Direction: Input

memname
names the MDDB.
Type: Character

Publishing Packages � INSERT_PACKAGE 55

Direction: Input

desc
describes the MDDB.

Type: Character

Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name

� name=value

� name="value"

� name="single value with spaces"

� name=(value)

� name=("value")

� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.

Type: Character

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

Details
An MDDB is a multidimensional database (not a data set) offered by SAS. It is a
specialized storage facility where data can be pulled from a data warehouse or other
data sources and stored in a matrix-like format for fast and easy access by tools such as
multidimensional data viewers.

The following example inserts the MDDB FINANCE.PAYROLL into the package
returned in packageId.

libname = ’finance’;
memname = ’payroll’;
desc = ’Monthly payroll data.’;
nameValue=’’;
CALL INSERT_MDDB(packageId, libname,

memname, desc, nameValue, rc);

INSERT_PACKAGE

Inserts a package into another package

56 INSERT_PACKAGE � Chapter 5

Syntax
CALL INSERT_PACKAGE(packageId, insertPackageId, rc<, properties, propValue1,

…propValueN>);

Arguments

packageId
identifies the package.

Type: Numeric
Direction: Input

insertPackageId
identifies the package that will be nested in the package identified by packageID.
Type: Numeric
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. At present, only one
property is supported:

� NESTED_NAME

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

NESTED_NAME
indicates the name of the nested directory to create for the storage of the nested
package. If you do not specify a value for this property, then a name is generated
automatically.

Note: The NESTED_NAME property is valid only when publishing to the
WebDAV-compliant server transport. �

Type: Character
Direction: Input

Details
Description and name/value parameters are not allowed on this CALL routine. Instead,
this CALL routine uses the description and name/value parameters that are specified in
the “PACKAGE_BEGIN” on page 62 CALL routine.

The following example initializes two packages (PACKAGEID and DSPID). All data
sets are inserted into the package that is identified by DSPID. The package that is
identified by DSPID is nested within the main package that is identified by
PACKAGEID.

Publishing Packages � INSERT_REF 57

call package_begin(packageId,
"Main package", ’’, ’’, rc);

call package_begin(dsPid, "Package
of just data sets.", ’’, ’’, rc);

libname = ’sasuser’;
memname = ’payroll’;
desc = ’Monthly payroll data.’;
call insert_dataset(dsPid, libname,

memname, desc, ’’, rc);

libname = ’sasuser’;
memname = ’employees’;
desc = ’Employee data.’;
call insert_dataset(dsPid, libname,

memname, desc,"", rc);

/* nest data set package in main package */
CALL INSERT_PACKAGE(packageId, dsPid, rc);

INSERT_REF

Inserts a reference into a package

Syntax
CALL INSERT_REF(packageId, referenceType, reference, desc, nameValue, rc);

Arguments

packageID
identifies the package.
Type: Numeric
Direction: Input

referenceType
specifies the type of the reference. Specify HTML or URL.
Type: Character
Direction: Input

reference
specifies the reference that is to be inserted.
Type: Character
Direction: Input

desc
describes the reference.

58 INSERT_REF � Chapter 5

Type: Character
Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name
� name=value
� name="value"
� name="single value with spaces"
� name=(value)
� name=("value")
� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Examples
The following example inserts links to newly created HTML files. The package is sent
by using the EMAIL transport so that subscribers receive embedded links within their
e-mail messages.

filename myfram ftp ’odsftpf.htm’;

filename mybody ftp ’odsftpb.htm’;

filename mypage ftp ’odsftpp.htm’;

filename mycont ftp ’odsftpc.htm’;

ods listing close;
ods html frame=myfram body=mybody

page=mypage contents=mycont;

/* insert SAS statements here to develop ODS output*/

ods html close;

desc="Proc sort creates a variety of ODS generated
html output." || "An example may be viewed at :";

call insert_ref(packageId, "HTML",
"http://alpair01.sys.com/odsftpf.htm", desc, "", rc);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;

Publishing Packages � INSERT_SQLVIEW 59

else
put ’Insert reference OK’;

For another example, see “Example: Publishing with the FTP Access Method” on
page 128.

INSERT_SQLVIEW

Inserts a PROC SQL view into a package

Syntax
CALL INSERT_SQLVIEW(packageId, libname, memname, desc, nameValue, rc);

Arguments

packageID
identifies the package.

Type: Numeric
Direction: Input

libname
names the library that contains the PROC SQL view.

Type: Character

Direction: Input

memname
names the PROC SQL view.
Type: Character

Direction: Input

desc
describes the PROC SQL view.

Type: Character

Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name

� name=value

� name="value"
� name="single value with spaces"

� name=(value)

� name=("value")
� name=(value1, "value 2",… valueN)

60 INSERT_VIEWER � Chapter 5

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.

Type: Character

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

Example
This example inserts the PROC SQL view FINANCE.PAYROLL into the package that is
returned in packageId.

libname = ’finance’;
memname = ’payroll’;
desc = ’Monthly payroll data.’;
nameValue=’’;
CALL INSERT_SQLVIEW(packageId, libname,

memname, desc, nameValue, rc);

INSERT_VIEWER

Inserts a viewer into a package

Syntax
CALL INSERT_VIEWER(packageId, filename, mimeType, desc, nameValue, rc<,

properties, propValue1, …propValueN>);

Arguments

packageID
identifies the package.

Type: Numeric

Direction: Input

filename
names the viewer, using the following syntax:

� FILENAME: external_filename

� FILEREF: sas_fileref

Type: Character

Direction: Input

Publishing Packages � INSERT_VIEWER 61

mimeType
specifies the MIME type, the value of which is determined by the user. Subscribers
can filter packages based on MIME type. See “Filtering Packages and Package
Entries” on page 116. For suggested values, see “INSERT_FILE” on page 47.
Type: Character
Direction: Input

desc
describes the viewer.
Type: Character
Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name
� name=value
� name="value"
� name="single value with spaces"
� name=(value)
� name=("value")
� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ENCODING
� VIEWER_TYPE

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property. The order of the values matches the
order of the property names in the properties parameter. Valid property values are
defined as follows:

ENCODING
indicates the character set of the viewer file, such as ISO-8859-1. For details, see
“Publish and Retrieve Encoding Behavior” on page 40.

VIEWER_TYPE
indicates the type of the viewer. Valid values are HTML and TEXT. The default
value is HTML.

Type: Character

62 PACKAGE_BEGIN � Chapter 5

Direction: Input

Example
The following example inserts the external file HVIEWER.HTML into the package that
is specified by packageId.

filename = ’filename:/tmp/hviewer.html’;
desc = ’HTML viewer’;
nameValue = ’’;
mimeType = ’text/html’;
CALL INSERT_VIEWER(packageId, filename,

mimeType, desc, nameValue, rc);

PACKAGE_BEGIN

Initializes a package and returns a unique package identifier

Syntax
CALL PACKAGE_BEGIN(packageId, desc, nameValue, rc<, properties, propValue1,

…propValueN>);

Arguments

packageId
identifies the new package.
Type: Numeric
Direction: Output

desc
describes the package.
Type: Character
Direction: Input

nameValue
identifies a list of one or more space-separated name/value pairs, each in one of the
following forms:

� name
� name=value
� name="value"
� name="single value with spaces"
� name=(value)
� name=("value")
� name=(value1, "value 2",… valueN)

Name/value pairs are site-specific; they are used for the purpose of filtering. See
“Filtering Packages and Package Entries” on page 116.

Publishing Packages � PACKAGE_BEGIN 63

Type: Character

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ABSTRACT

� EXPIRATION_DATETIME

� NAMESPACES

Type: Character

Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

ABSTRACT
provides an abstract (short summary) of the inserted package.

EXPIRATION_DATETIME
numeric SAS datetime value. This value should be specified in GMT format. For
details, see SAS Language: Reference.

NAMESPACES
specifies unique names that associate published packages with specific contexts on
a WebDAV-compliant server. The association of a namespace with a package
organizes package data on a server according to meaningful criteria or contexts. A
namespace is an additional scoping criterion for a name/value description of a
package or package entry. When you publish a package to WebDAV, the
name/value descriptors are stored with the package or its entries to the specified
WebDAV namespaces. As an example, a package might be described as containing
first quarter profits that were generated by the Houston office. The specified
description and scope uniquely define the package so that consumers can filter
name/value pairs on packages or entries unambiguously. An example of a
namespace definition that you enter in the Namespaces field follows:

HOUSTON=’http://www.AlphaliteAirways.com/revenue/final’

A namespace specification is case sensitive with single quotation marks
surrounding embedded values. To specify multiple namespaces, separate each
namespace definition with a space. For details about retrieving packages with the
aid of scoping and filtering criteria, see “Specifying Name/Value Pairs” on page 120.

Type: Character or Numeric

Direction: Input

Details
The package identifier returned by this CALL routine is used in subsequent INSERT
and PACKAGE CALL routines.

64 PACKAGE_END � Chapter 5

Examples
The following example initializes a package and returns the package identifier in
packageId.

packageId=0;
rc=0;
desc = "Nightly run.";
nameValue=’’;
CALL PACKAGE_BEGIN(packageId, desc, nameValue, rc);

The following example initializes a package with an expiration date and returns the
package identifier in packageId.

packageId=0;
rc=0;
desc = "Nightly run.";
nameValue=’’;
dtValue = ’20apr2010:08:30:00’dt;
CALL PACKAGE_BEGIN(packageId, desc, nameValue,

rc, "EXPIRATION_DATETIME", dtValue);

The following example initializes a package with an expiration date and an abstract
character string and returns the package identifier in packageId.

packageId=0;
rc=0;
desc = "Nightly run.";
nameValue=’’;
dtValue = ’20apr2010:08:30:00’dt;
abstract = "This package contains company

confidential information.";
properties="EXPIRATION_DATETIME, ABSTRACT";
CALL PACKAGE_BEGIN(packageId, desc, nameValue,

rc, properties, dtValue, abstract);

The following example initializes a package with two namespaces and returns the
package identifier in packageId.

packageId=0;
rc=0;
desc = "Nightly run.";
nameValue=’’;
namespaces = ’A="http://www.alpair.com/myNamespace1"

B="http://www.alpair.com/myNamespace2"’;
CALL PACKAGE_BEGIN(packageId, desc, nameValue,

rc, "NAMESPACES", namespaces);

PACKAGE_END

Frees the resources that are associated with a package

Publishing Packages � Overview of PACKAGE_PUBLISH 65

Syntax
CALL PACKAGE_END(packageId, rc);

Arguments

packageID
identifies the package.
Type: Numeric
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Details
This CALL should be made after the completion of package publishing.

The following example frees the resources that are associated with the package.

CALL PACKAGE_END(packageId, rc);

PACKAGE_PUBLISH

Overview of PACKAGE_PUBLISH
The PACKAGE_PUBLISH CALL routine publishes the specified package. The

method of publication depends on the following types of delivery transport:

� publish to an archive. See “PACKAGE_PUBLISH (Publish Package to Archive)” on
page 70.

� publish to e-mail. See “PACKAGE_PUBLISH (Publish Package to E-mail)” on
page 71.

� publish to queues. See “PACKAGE_PUBLISH (Publish Package to Queues)” on
page 76.

� publish to subscribers. See “PACKAGE_PUBLISH (Publish Package to
Subscribers)” on page 78.

� publish to a WebDAV-compliant server. See “PACKAGE_PUBLISH (Publish
Package to a WebDAV-Compliant Server)” on page 83.

66 Transport Properties � Chapter 5

Transport Properties
Valid property values are defined as follows:

ADDRESSLIST_DATASET_LIBNAME
an alternative to specifying explicit e-mail addresses, specifies a character string
that indicates the name of the SAS library in which resides the data set from
which an e-mail list can be extracted. (Applies to the following transport: e-mail.)

ADDRESSLIST_DATASET_MEMNAME
an alternative to specifying explicit e-mail addresses, specifies a character string
that indicates the name of the SAS member in which resides the data set from
which an e-mail list can be extracted. The data set is fully specified by
library.member. (Applies to the following transport: e-mail.)

ADDRESSLIST_VARIABLE_NAME
specifies a character string that indicates the name of the variable (or column) in
the data set that contains the e-mail addresses. (Applies to the following
transports: e-mail.)

APPLIED_TEXT_VIEWER_NAME
specifies a character string that names the rendered package view, which results
from the application of the text viewer template to the package for viewing in
e-mail. You can use the following syntax to specify the name of the rendered
package view:

� FILENAME: external_filename

� FILEREF: sas_fileref

This property is valid only when the TEXT_VIEWER_NAME property is also
specified. By default, the rendered view is created as a temporary file. This
property overrides the default, causing the rendered view to be saved permanently
to a file. (Applies to the following transports: e-mail, subscriber.)

APPLIED_VIEWER_NAME
specifies a character string that indicates the name of the rendered package view,
which results from the application of the HTML viewer template to the package
for viewing in e-mail. You can use the following syntax to specify the name of the
rendered package view:

� FILENAME: external_filename
� FILEREF: sas_fileref

This property is valid only when the VIEWER_NAME property is also specified.
By default, the rendered view is created as a temporary file. This property
overrides the default, causing the rendered view to be saved permanently to a file.
(Applies to the following transports: e-mail, subscriber.)

ARCHIVE_NAME
specifies a character string that indicates the name of the archive file. (Applies to
the following transports: archive, e-mail, queue, subscriber, WebDAV.)

ARCHIVE_PATH
specifies a character string that indicates the path where the archive should be
created. (Applies to the following transports: archive, e-mail, queue, subscriber,
WebDAV.)

CHANNEL_STORE
specifies a character string that indicates the SAS Metadata Repository containing
the channel and subscriber metadata. If channel definitions and subscriber

Publishing Packages � Transport Properties 67

definitions are maintained in a SAS Metadata Repository, then the syntax for the
CHANNEL_STORE property is as follows:

SAS-OMA://hostname[:portreposname=repositoryName;

Where:

hostname
is the name of SAS Metadata Server that contains channel information.
HOSTNAME must be a DNS name or IP address of a host that is running a
SAS Metadata Server.

port
is the TCP port of the SAS Metadata Server. If no port is specified, then 8561
is used as a default.

reposname
is the name of the repository.

(Applies to this transport: subscriber.)

COLLECTION_URL
specifies a character string that indicates the URL in which the WebDAV collection
is placed. You assign an explicit filename to the collection. (Applies to the
following transports: e-mail, subscriber, WebDAV.)

Note: When you use COLLECTION_URL, the default behavior is to replace
the existing collection at that location. �

CORRELATIONID
specifies a binary character string correlator that is used on the package header
message. (Applies to the following transports: queue, subscriber.)

DATASET_OPTIONS
specifies a character string that indicates the options to use for opening and
accessing a SAS data set that contains e-mail addresses that are used to populate
addressn. Specify this property as valuevalueoption1= option2= (Applies to the
following transports: e-mail, subscriber.)

ENCODING
specifies a character string that indicates the text encoding to use for the message
body. For valid encoding values, see the SAS National Language Support (NLS):
Reference Guide. (Applies to the following transports: e-mail, subscriber.)

FOLDER_PATH
specifies the folder path for the channel of interest. This value is used to search
for channels with specific names that exist in specific folder locations. When a user
defines a channel via SAS Management Console, all channels by default exist in
the /Channels folder. SAS Management Console allows the user to define multiple
folders and subfolders. All FOLDER_PATH properties must start with /Channels
and then can identify subfolders if necessary. For example, a channel named
"Sales" might be defined in two different folders:

/Channels/Reports/US/

or

/Channels/Reports/Europe/

(Applies to the following transport: subscriber.)

FROM
specifies a character string that indicates the sender (or package publisher) of the
e-mail message. (Applies to the following transports: e-mail, subscriber.)

68 Transport Properties � Chapter 5

Note: The FROM field is valid only with the SMTP e-mail interface. �

FTP_PASSWORD
indicates the password that is needed to log on to the remote host at which the
archive will be stored. Specify this property only when the remote host is secured.
(Applies to the following transports: archive, e-mail, queue, subscriber.)

FTP_USER
indicates the user ID that is needed to log on to the remote host at which the
archive will be stored. Specify this property only when the remote host is secured.
(Applies to the following transports: archive, e-mail, queue, subscriber.)

GENERATED_NAME
returns the value of the generated name of the archive (if the channel has an
archive persistent store). (Applies to this transport: subscriber.)

HTTP_PASSWORD
indicates the password that is needed to bind to the Web server on which the
package is published. Specify this property only when the Web server is secured.
(Applies to the following transports: archive, e-mail, queue, subscriber, WebDAV.)

HTTP_PROXY_URL
indicates the URL of the proxy server. (Applies to the following transports:
archive, e-mail, queue, subscriber, WebDAV.)

HTTP_USER
indicates the user ID that is needed to bind to the Web server on which the
package is published. Specify this property only when the Web server is secured.
(Applies to the following transports: archive, e-mail, queue, subscriber, WebDAV.)

IF_EXISTS
specifies one of the following character strings. Use the IF_EXISTS property to
control the treatment of same-named collections already existing on the server.
(Applies to the following transports: e-mail, subscriber, WebDAV.)

� "NOREPLACE" indicates that if the package being published contains a
collection that already exists on the server, the PUBLISH_PACKAGE call is
to return immediately without affecting the contents of the existing collection.

� "UPDATE" indicates that if the collection already exists on the server, the
PUBLISH_PACKAGE call is to update the existing collection by replacing
like-named entities and adding newly named entities. If "UPDATE" is
specified and both the package to publish and the existing collection have an
HTML set (created with INSERT_HTML) with the same NESTED_NAME,
then the HTML set in the published package replaces the HTML set in the
existing collection.

� "UPDATEANY" is identical to "UPDATE" except that the
PUBLISH_PACKAGE CALL routine can be used to update a collection that
SAS did not create. A consequence of using "UPDATEANY" is that SAS will
be unable to retrieve the published package.

Note: When names are generated automatically for HTML set collections, the
publish code ensures that name collisions will not occur. �

METAPASS
specifies the password to use when binding to the SAS Metadata Server. (Applies
to this transport: subscriber.) If the METAPASS property is not specified on the
PACKAGE_PUBLISH CALL routine, then the METAPASS system option, if set,
will be used when binding to the SAS Metadata Server.

Publishing Packages � Transport Properties 69

METAUSER
specifies the user name to use when binding to the SAS Metadata Server. (Applies
to this transport: subscriber.) If the METAUSER property is not specified on the
PACKAGE_PUBLISH CALL routine, then the METAUSER system option, if set,
will be used when binding to the SAS Metadata Server.

PARENT_URL
specifies a character string that indicates the URL under which the WebDAV
collection is placed. The collection is automatically assigned a unique name.
(Applies to the following transports: archive, e-mail, subscriber, WebDAV.)

PROCESS_VIEWER
specifies a character string of "yes" to indicate that the rendered view will be
delivered in e-mail. If you specify the PROCESS_VIEWER property with the
ARCHIVE_PATH property, then the archive is created but is not sent as an
attachment in e-mail. Instead, viewer processing occurs and the rendered view is
sent in e-mail. (Applies to the following transports: e-mail, subscriber.)

REPLYTO
specifies a character string that indicates the designated e-mail address to which
package recipients might respond. (Applies to the following transports: e-mail,
subscriber.)

Note: The REPLYTO field is valid only with the SMTP e-mail interface. �

SUBJECT
specifies a character string that provides the subject line for the e-mail message.
(Applies to the following transports: e-mail, subscriber.)

TARGET_VIEW_NAME
specifies a character string that indicates the name of the rendered view for
delivery to a WebDAV-compliant server. The specified target view name overrides
the default name, which is index.html. (Applies to the following transports:
e-mail, subscriber, WebDAV.)

TARGET_VIEW_MIMETYPE
specifies a character string that indicates the MIME type of the rendered view for
delivery to a WebDAV-compliant server. The target view mimetype overrides the
default view mimetype, which is automatically inferred from the viewer. Typical
MIME types are HTML (.htm) and plain text (.txt) files. If this field remains
blank, then the viewer filename extension is used to locate the MIME type in the
appropriate registry. Windows hosts use the Windows Registry; other hosts use the
SAS Registry. (Applies to the following transports: e-mail, subscriber, WebDAV.)

TEXT_VIEWER_NAME
specifies a character string that indicates the name of a text viewer template that
formats package content for viewing in e-mail by using the following syntax:

� FILENAME: external_filename

� FILEREF: sas_fileref

A text viewer template might be necessary if the destination e-mail program
does not support the HTML MIME type. (Applies to the following transports:
e-mail, subscriber, WebDAV.) For more information, see Chapter 4, “Viewer
Processing,” on page 15.

70 PACKAGE_PUBLISH (Publish Package to Archive) � Chapter 5

VIEWER_NAME
specifies a character string that indicates the name of the HTML viewer template
to be applied when publishing e-mail by using the following syntax:

� FILENAME: external_filename

� FILEREF: sas_fileref

(Applies to the following transports: e-mail, channel, WebDAV.) For more
information, see Chapter 4, “Viewer Processing,” on page 15.

PACKAGE_PUBLISH (Publish Package to Archive)

Publishes a package to an archive

Syntax
CALL PACKAGE_PUBLISH(packageId, publishType, rc, properties,<propValue1,

…propValueN>);

Arguments

packageID
identifies the package that is to be published.
Type: Numeric
Direction: Input

publishType
indicates how to publish the package. To publish the package by using the archive
transport, specify TO_ARCHIVE.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify ’’to indicate that no properties are to be applied:

� ARCHIVE_NAME
� ARCHIVE_PATH
� FTP_PASSWORD
� FTP_USER
� HTTP_PASSWORD
� HTTP_PROXY_URL
� HTTP_USER

Publishing Packages � PACKAGE_PUBLISH (Publish Package to E-mail) 71

For more information about these properties, see “Transport Properties” on page 66.
Type: Character
Direction: Input

propValue1, …propValueN
specifies a value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter.
Type: Character
Direction: Input

Details
The ARCHIVE_NAME property identifies the name of the archive file to create. If this
property is omitted, then the archive transport generates a unique name by default.

The ARCHIVE_PATH property identifies where the archive is created. This property
can be a physical pathname, an FTP URL, or an HTTP URL. If ARCHIVE_PATH is an
HTTP URL on a secured server, you must specify the HTTP_USER and
HTTP_PASSWORD properties. Specifying the HTTP_PROXY_URL property is optional.
If ARCHIVE_PATH is an FTP URL on a secured host, then you must specify the
FTP_USER and FTP_PASSWORD properties.

Note: In the z/OS operating environment, an archive can be published only to
UNIX System Services directories. �

Example
pubType = "TO_ARCHIVE";
properties=’archive_path, archive_name’;
path = ’/u/users’;
name = ’results’;
CALL PACKAGE_PUBLISH(packageId, pubType,

rc, properties, path, name);

PACKAGE_PUBLISH (Publish Package to E-mail)

Publishes a package using the e-mail transport

Syntax
CALL PACKAGE_PUBLISH(packageId, publishType, rc, properties,<propValue1,

…propValueN> , address1<, …addressN>);

Arguments

packageID
identifies the package that is to be published.
Type: Numeric
Direction: Input

72 PACKAGE_PUBLISH (Publish Package to E-mail) � Chapter 5

publishType
indicates how to publish the package. To publish the package by using the e-mail
transport, specify TO_EMAIL.
Type: Character
Direction: Input

rc
specifies a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify ’’to indicate that no properties are to be applied:

� ADDRESSLIST_DATASET_LIBNAME
� ADDRESSLIST_DATASET_MEMNAME
� ADDRESSLIST_VARIABLE_NAME
� APPLIED_TEXT_VIEWER_NAME
� APPLIED_VIEWER_NAME
� ARCHIVE_NAME
� ARCHIVE_PATH
� COLLECTION_URL
� DATASET_OPTIONS
� ENCODING
� FROM
� FTP_PASSWORD
� FTP_USER
� HTTP_PASSWORD
� HTTP_PROXY_URL
� HTTP_USER
� IF_EXISTS
� PARENT_URL
� PROCESS_VIEWER
� REPLYTO
� SUBJECT
� TARGET_VIEW_NAME
� TARGET_VIEW_MIMETYPE
� TEXT_VIEWER_NAME
� VIEWER_NAME

For more information about these properties, see “Transport Properties” on page 66.
Type: Character
Direction: Input

propValue1, …propValueN
specifies a value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter.
Type: Character or Numeric
Direction: Input

Publishing Packages � PACKAGE_PUBLISH (Publish Package to E-mail) 73

address1 <, …addressN>
specifies one or more e-mail addresses to use when publishing the package.
Type: Character
Direction: Input

Details

Default Behavior When publishing to e-mail, the e-mail message is sent in plain text
format by default. Only inserted reference entries are published to e-mail. For details
about inserting reference entries, see the “INSERT_REF” on page 57 CALL routine.

The package description field precedes the reference value in the e-mail message. All
other entries that are inserted into the package are ignored.

To override the default behavior, you can specify the ARCHIVE_PATH,
COLLECTION_URL, PARENT_URL, TEXT_VIEWER_NAME, or VIEWER_NAME
properties.

Note: If the mailer is not running in a Windows NT operating environment, then
you will be prompted for the mail profile to use when you send the e-mail message. To
avoid being prompted, specify the EMAILID and EMAILPW options at SAS invocation.
For example:

sas -EMAILID "Microsoft Outlook"

�

Archive Path Properties If you specify the ARCHIVE_PATH property, then an archive
is created and published as an e-mail attachment. All entries that are inserted into the
package are published as an archive. If you specify a value for ARCHIVE_PATH, then
the created archive is stored at the designated location. To create a temporary archive
that is deleted after the package is published, specify an ARCHIVE_PATH value of "" or
"tempfile".

If you specify ARCHIVE_PATH as an FTP URL or as an HTTP URL, and need
details about archive properties, see PACKAGE_PUBLISH (PublishPackage to
Archive)“Details” on page 71.

Note: In order to create an archive under the z/OS operating environment, the z/OS
environment must support UNIX System Services directories. �

If you specify the PROCESS_VIEWER property (with either the VIEWER_NAME or
TEXT_VIEWER_NAME property) along with the ARCHIVE_PATH property, then the
archive is created but is not sent as an attachment in e-mail. Instead, viewer
processing occurs and the rendered view is sent in e-mail.

For more information about the application of viewer properties, see Chapter 4,
“Viewer Processing,” on page 15.

When publishing to an archive with the e-mail transport, you can specify the
following archive properties: ARCHIVE_NAME, ARCHIVE_PATH, FTP_PASSWORD,
FTP_USER, HTTP_PASSWORD, HTTP_PROXY_URL, or HTTP_USER.

Viewer Properties If you specify the VIEWER_NAME or TEXT_VIEWER_NAME
property, then the viewer is used to create the e-mail message and to apply
substitutions. VIEWER_NAME renders the view in HTML format.
TEXT_VIEWER_NAME renders the view in text format. Only the package information
that is rendered by the viewer is published.

If you specify the PROCESS_VIEWER property (with either the VIEWER_NAME or
TEXT_VIEWER_NAME property) along with the ARCHIVE_PATH property, then the
archive is created but is not sent as an attachment in e-mail. Instead, viewer
processing occurs and the rendered view is sent in e-mail.

74 PACKAGE_PUBLISH (Publish Package to E-mail) � Chapter 5

WebDAV Properties If you specify the COLLECTION_URL property, then the package
is published to the specified URL on a WebDAV-compliant Web server. An example of a
collection URL is http://www.host.com/AlphaliteAirways/revenue/quarter1. The
collection is named quarter1. The e-mail message that is sent to subscribers will
contain a reference to the URL that is specified in the COLLECTION_URL property.

The PARENT_URL property is similar to the COLLECTION_URL property except
that it specifies the location under which the new WebDAV collection is to be placed.
The PUBLISH_PACKAGE CALL routine generates a unique name for the new
collection. The unique name is limited to eight characters, with the first character as an
s. An example of a parent URL directory location is http://www.host.com/
AlphaliteAirways/revenue. An example of a collection name that is automatically
generated might be s9811239. The e-mail message contains a reference to the
collection, which is the URL that you specified in the PARENT_URL property.

The specifications of COLLECTION_URL and PARENT_URL are mutually exclusive.
When publishing to a WebDAV-compliant server with the e-mail transport, you can

specify the following WebDAV properties: HTTP_PASSWORD, HTTP_PROXY_URL,
HTTP_USER, IF_EXISTS, TARGET_VIEW_MIMETYPE, TARGET_VIEW_NAME, and
VIEWER_NAME (or TEXT_VIEWER_NAME).

WebDAV publishing uses the following file extensions for each item type:

Table 5.2 File Extensions for Item Types

Item Type File Extension

CATALOG .sac

DATA .sad

FDB .saf

MDDB .sam

REFERENCE .ref

VIEW .sav

Examples

Example 1:

pubType = "TO_EMAIL";
properties=’’;
CALL PACKAGE_PUBLISH(packageId, pubType, rc, properties,

"user1@alphaliteairways.com", "John Smith",
"jsmith@alphaliteairways.com");

Example 2:

pubType = "TO_EMAIL";
subject = "Nightly Builds Update";
properties="SUBJECT";
Addr = "admins-l@alphaliteair03.vm.com";
CALL PACKAGE_PUBLISH(packageId, pubType,

rc, properties, subject, Addr);

Example 3: The following example publishes a package to two e-mail addresses and
designates the viewer to be used when formatting the e-mail message. The e-mail
message will contain only content that can be rendered in a view. The rendered view is
deleted after it is published.

Publishing Packages � PACKAGE_PUBLISH (Publish Package to E-mail) 75

In order to save the rendered view explicitly, you can specify the
APPLIED_VIEWER_NAME property and a filename value.

pubType = "TO_EMAIL";
properties="SUBJECT, VIEWER_NAME";
subject = "Nightly Build Updates";
viewer = "filename:template.html";
Addr = "admins-l@alphaliteair03.vm.com";
CALL PACKAGE_PUBLISH(packageId, pubType,

rc, properties, subject, viewer,
"buildmonitor@alphaliteairways.com", Addr);

Example 4:

pubType = "TO_EMAIL";
properties="ARCHIVE_PATH";
apath = "/u/users1";
Addr = "admins-l@alphaliteair05";
CALL PACKAGE_PUBLISH(packageId, pubType,

rc, properties, apath, Addr);

Example 5: The following example uses the e-mail transport to publish a collection
URL on a WebDAV-compliant server. The HTTP user ID and password enable the
publisher to bind to the secured HTTP server. All e-mail recipients who are members of
the mail list receive the e-mail announcement that the best rates are accessible at the
specified URL.

pubType = "TO_EMAIL";
properties="COLLECTION_URL, SUBJECT",

"HTTP_USER", "HTTP_PASSWORD";
collurl="http://www.alphaliteairways/fares/discount";
subj="Announcing Best Rates Yet";
http_user="vicdamone";
http_password="myway";
Addr = "admins-l@alphaliteair05";
CALL PACKAGE_PUBLISH(packageId, pubType, rc, properties,

collurl, subj, http_user, http_password, Addr);

Example 6: The following example specifies e-mail addresses that are stored in a
variable in a password-protected SAS data set.

pubType = "TO_EMAIL";
properties = "SUBJECT, ADDRESS_DATASET_LIBNAME,

ADDRESS_DATASET_MEMNAME, ADDRESSLIST_VARIABLE_NAME,
DATASET_OPTIONS";

subject = "Get out and Vote!";
lib = "voterreg";
mem = "northeast";
var = "emailaddr";
opt = "pw=’born2run’";
CALL PACKAGE_PUBLISH(packageId, pubType, rc,

properties, subject, lib, mem, var, opt);

76 PACKAGE_PUBLISH (Publish Package to Queues) � Chapter 5

PACKAGE_PUBLISH (Publish Package to Queues)

Publishes a package to one or more message queues

Syntax
CALL PACKAGE_PUBLISH(packageId, publishType, rc, properties,<propValue1,

…propValueN>, queue1<, …queueN>);

Arguments

packageID
identifies the package that is to be published.
Type: Numeric
Direction: Input

publishType
indicates how to publish the package. To publish the package by using the queue
transport, specify a publishType of TO_QUEUE.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify ’’to indicate that no properties are to be applied:

� ARCHIVE_NAME
� ARCHIVE_PATH
� CORRELATIONID
� FTP_PASSWORD
� FTP_USER
� HTTP_PASSWORD
� HTTP_PROXY_URL
� HTTP_USER

Publishing Packages � PACKAGE_PUBLISH (Publish Package to Queues) 77

For more information about these properties, see “Transport Properties” on page
66.
Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter.
Type: Character or Numeric
Direction: Input

queue1 <, …queueN>
character string that specifies the queue(s) that will be used to publish the package.
When publishing to MSMQ queues, use the following syntax:

MSMQ://queueHostMachineName\queueName

When publishing to MQSeries queues, use the following syntax:

MQSERIES://queueManager:queueName

or

MQSERIES-C://queueManager:queueName

Type: Character
Direction: Input

Details
When publishing to a queue, all entries in the package are published to the queue by
default. To override this default, specify the ARCHIVE_PATH property, which indicates
that an archive is to be created and only the archive will be published to the queue.
The archive will contain all package entries.

If you specify a value for ARCHIVE_PATH, then the archive is stored at the
designated location. To create a temporary archive that is deleted after the package is
published, specify an ARCHIVE_PATH value of "" or "tempfile".

If you specify ARCHIVE_PATH as an FTP URL or as an HTTP URL, and need
details about specifying archive properties, see PACKAGE_PUBLISH (PublishPackage
to Archive)“Details” on page 71.

Note: In the z/OS operating environment, you can publish archives only to UNIX
System Services directories. �

Queues that support transactional units of work are recommended. By using these
types of queues, the queue transport prevents partial packages from remaining on the
queue in cases where errors are encountered during package publishing. For MSMQ,
this means that the queue should be transactional. For MQSeries, this means that the
queue should support synchronization points.

When you specify the CORRELATIONID property, the package message uses the
specified CORRELATIONID value. You can retrieve packages from the queue by
correlation ID.

Examples

Example 1: The following example publishes a package to two queues. One queue is
an MQSeries queue that is named PCONE; the second queue is an MSMQ queue that is
specified by the queue manager, who is named JSMITH. A CORRELATIONID of
12345678901234567890 is assigned to the package to be published to both queues.

78 PACKAGE_PUBLISH (Publish Package to Subscribers) � Chapter 5

PubType = "TO_QUEUE";
FirstQ = "MQSERIES://PCONE:LOCAL";
SecondQ = "MSMQ://JSMITH:TRANSQ";
CorrValue = "12345678901234567890";
Call PACKAGE_PUBLISH(packageId, pubType, rc,

"CORRELATIONID", CorrValue, firstQ, secondQ);

Example 2: The following example publishes the package to one queue and does not
apply any additional queue properties:

pubType = "TO_QUEUE";
firstQ = "MQSERIES://PCONE:MYQ";
Call PACKAGE_PUBLISH(packageId,

pubType, rc, ’’, firstQ);

Example 3: The following example creates an archive and publishes it to a queue.
The ARCHIVE_PATH property is specified as "tempfile". After the archive is published
to the queue, the temporary, local copy is deleted automatically. The archive contains
all entries that are inserted into the package.

pubType = "TO_QUEUE";
firstQ = "MQSERIES://PCONE:MYQ";
prop = "ARCHIVE_PATH";
archivePath = "tempfile";
Call PACKAGE_PUBLISH(packageId, pubType,

rc, prop, archivePath, firstQ);

PACKAGE_PUBLISH (Publish Package to Subscribers)

Publishes a package to subscribers who are associated with specified channel

Syntax
CALL PACKAGE_PUBLISH(packageId, publishType, rc, properties,<propValue1,

…propValueN>, channel);

Arguments

packageID
identifies the package that is to be published.

Type: Numeric

Direction: Input

publishType
indicates how to publish the package. To publish a package to the subscribers of a
channel, specify a publishType value of TO_SUBSCRIBERS.

Type: Character

Direction: Input

Publishing Packages � PACKAGE_PUBLISH (Publish Package to Subscribers) 79

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify ’’to indicate that no properties are to be applied:

� APPLIED_TEXT_VIEWER_NAME
� APPLIED_VIEWER_NAME
� ARCHIVE_NAME
� ARCHIVE_PATH
� CHANNEL_STORE
� COLLECTION_URL
� CORRELATIONID
� ENCODING
� FOLDER_PATH
� FROM
� FTP_PASSWORD
� FTP_USER
� GENERATED_NAME
� HTTP_PASSWORD
� HTTP_PROXY_URL
� HTTP_USER
� IF_EXISTS
� METAPASS
� METAUSER
� PARENT_URL
� PROCESS_VIEWER
� REPLYTO
� SUBJECT
� TARGET_VIEW_NAME
� TARGET_VIEW_MIMETYPE
� TEXT_VIEWER_NAME
� VIEWER_NAME

For more information about these properties, see “Transport Properties” on page 66.
Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter.
Type: Character or Numeric
Direction: Input

channel
specifies the name of the channel as it is defined in the SAS Metadata Repository.
The channel contains a list of subscribers to whom the package will be published.

80 PACKAGE_PUBLISH (Publish Package to Subscribers) � Chapter 5

Type: Character

Direction: Input

Details

Overview of Publishing to a Channel When a package is published to a channel, the
package is published to each subscriber of the channel. Each subscriber’s entry contains
an attribute that specifies the publishing transport method: e-mail, message queue,
WebDAV-Compliant server, or none.

You can use the Publishing Framework plug-in for SAS Management Console to
define and manage channels and subscribers. This plug-in also enables subscribers to
define filters that determine what packages are published to them. For more
information about filters, see “Filtering Packages and Package Entries” on page 116.

When publishing to subscribers, the PACKAGE_PUBLISH CALL routine ensures
that the package is published to each subscriber only once, thus eliminating any
duplication. When the delivery transport is a message queue, the queue name is used
as the key to enforce uniqueness. When the delivery transport is WebDAV, the
collection URL is used as the key to enforce uniqueness. A parent URL is always
unique because the WebDAV transport always creates a unique collection name for
parent URLs. When the delivery transport is e-mail, the subscriber’s e-mail address is
used as the key to enforce uniqueness.

In order to publish to a channel, the publisher must have Write permission. For
information about permissions for working with publishing channels, see SAS
Intelligence Platform: Security Administration Guide.

Note: You can use the package cleanup utility to delete packages that have been
published to a channel. This utility is part of the Web Infrastructure Platform. For
more information, see the Javadoc. �

Default Properties For channel subscribers who specify an e-mail delivery transport,
the default action is to publish the e-mail message in plain text format. Only inserted
references are published to the e-mail subscriber. For details, see the “INSERT_REF”
on page 57 CALL routine.

The package description field precedes the reference value in the e-mail message. All
other inserted entries are ignored. For channel subscribers who specify a queue
delivery transport, the default action is to publish all inserted entries to the queue.

Viewer Properties To override the default e-mail behavior, you can specify the
VIEWER_NAME or TEXT_VIEWER_NAME property on the PACKAGE_PUBLISH
CALL routine. The specified viewer is used to create the content of the e-mail message
and to apply substitutions. If you specify VIEWER_NAME, then the e-mail message is
published in HTML format. If you specify TEXT_VIEWER_NAME, then the e-mail
message is published in text format. Only the package information that is rendered by
the viewer is published.

E-mail subscribers can configure the format in which they want to receive the e-mail,
either in HTML or text format. The default behavior is that the message is published
in HTML format. If the e-mail subscriber specifies text format, then the viewer is not
used, and the subscriber receives reference entries only. For more information about
the viewer facility, see Chapter 4, “Viewer Processing,” on page 15.

The VIEWER_NAME and TEXT_VIEWER_NAME properties override the default
behavior for WebDAV subscribers as well. If you specify VIEWER_NAME, then the
view is rendered in HTML format. If you specify TEXT_VIEWER_NAME, then the view
is rendered in text format. The specified viewer is used to create a rendered view that
is named index.html. To override the default name that is assigned the rendered view,

Publishing Packages � PACKAGE_PUBLISH (Publish Package to Subscribers) 81

use the APPLIED_VIEWER_NAME or APPLIED_TEXT_VIEWER_NAME, as
appropriate, to specify a filename for the rendered view.

The VIEWER_NAME and TEXT_VIEWER_NAME properties are ignored by the
queue and archive transports.

If you specify the VIEWER_NAME or TEXT_VIEWER_NAME property with the
COLLECTION_URL or PARENT_URL property, then the e-mail message contains a
reference to a URL. The specified viewer is used to create a rendered view that is
named index.html. To override the default name that is assigned to the rendered view,
use the TARGET_VIEW_NAME or TARGET_VIEW_MIMETYPE, as appropriate, to
specify a filename for the rendered view. The package is published to a
WebDAV-compliant server. For channel subscribers who specify an e-mail delivery
transport, the default action is to notify subscribers of the URL of the published
package. For channel subscribers who specify a message queue delivery transport, no
notification is given to indicate the package’s availability on the Web.

Archive Path Property When publishing to subscribers, the ARCHIVE_PATH property
indicates that the package is to be persisted to an archive using the specified archive
path. The ARCHIVE_PATH property identifies where the archive is to be persisted.
This property can be a physical pathname, an FTP URL, or an HTTP URL. The
channel metadata can be defined with a default persistent store. A persistent store
identifies a default transport that is used to persist the package before publishing to the
channel subscribers. The persistent store can be defined as a default archive path. If
you specify a blank value for the ARCHIVE_PATH property, then the channel’s default
archive path is used to determine where the archive is to be persisted.

For channel subscribers who specify e-mail as the delivery transport, the created
archive is included as an attachment to the e-mail message. If you specify the
PROCESS_VIEWER property along with the ARCHIVE_PATH property, then the
archive is created but is not sent as an attachment in e-mail. Instead, viewer
processing occurs and the rendered view is sent in e-mail. For channel subscribers who
specify a queue delivery transport, the created archive is published to the queue. For
channel subscribers who specify a WebDAV delivery transport, the archive is published
as a binary package to the WebDAV server.

If the ARCHIVE_PATH property is specified with a blank value, then the channel’s
default archive path metadata is used to determine where the archive is to be persisted.
The name of the archive is automatically generated and the archive metadata is then
cataloged in the channel metadata. For details on how to define a channel’s default
archive, see the help in the Publishing Framework plug-in for SAS Management
Console.

If the ARCHIVE_PATH is an HTTP URL, then the URL identifies the HTTP server
to use when persisting the archive. If it is a secured server, then you must specify the
HTTP_USER and HTTP_PASSWORD properties. Specifying the HTTP_PROXY_URL
property is optional. If the ARCHIVE_PATH is an FTP URL, then the URL identifies
the FTP server to use when persisting the archive. If it is a secured host, then you
must specify the FTP_USER and FTP_PASSWORD properties.

Note: If you specify both the ARCHIVE_PATH and either the VIEWER_NAME or
TEXT_VIEWER_NAME properties, then the viewer property is ignored. �

Note: In order to create an archive under the z/OS operating environment, the z/OS
environment must support UNIX System Services directories. �

WebDAV Properties The channel metadata can be defined with a default persistent
store. A persistent store identifies a default transport that is used to persist the
package before publishing to the channel subscribers. The persistent store can be
defined as a default WebDAV server.

82 PACKAGE_PUBLISH (Publish Package to Subscribers) � Chapter 5

If the COLLECTION_URL or PARENT_URL property value is blank, then the
package is published to the default WebDAV server configured in the channel metadata.
If you specify a non-blank COLLECTION_URL or PARENT_URL property value, then
the specified URL is used as the persisted location. When a non-blank value is specified
for COLLECTION_URL, the URL identifies the full path and the explicit collection
name. When a non-blank value is specified for PARENT_URL, the URL identifies the
full path and a unique name is assigned to the collection automatically.

Channel subscribers who specify an e-mail delivery transport are notified about the
availability of the new collection. The e-mail message contains a reference to the value
of the COLLECTION_URL or PARENT_URL property, which specifies the URL to
which the package is published. For channel subscribers who specify a message queue
delivery transport, no notification is given to announce the collection’s availability.

The COLLECTION_URL (or PARENT_URL) property and the ARCHIVE_PATH
property are mutually exclusive.

When publishing to a WebDAV-compliant server with the COLLECTION_URL or
PARENT_URL properties, you can specify the following WebDAV properties:
HTTP_PASSWORD, HTTP_PROXY_URL, HTTP_USER, IF_EXISTS,
TARGET_VIEW_MIMETYPE, TARGET_VIEW_NAME, and VIEWER_NAME (or
TEXT_VIEWER_NAME).

WebDAV publishing uses the following file extensions for each item type:

Table 5.3 File Extensions for Item Types

Item Type File Extension

CATALOG .sac

DATA .sad

FDB .saf

MDDB .sam

REFERENCE .ref

VIEW .sav

Examples

Example 1: The following example publishes the specified package to all subscribers
of the Report channel. The SAS Metadata Server on ALPAIR03 is searched for the
stored channel and subscriber information. The SAS Metadata Server is using port
4059 and the repository to use is MyRepos.

channelStore =
"SAS-OMA://alpair03.sys.com:4059";

channelName = "Report";
prop = "channel_store,metauser,metapass";
user = "myUserName";
password = "myPassword";
CALL PACKAGE_PUBLISH(pid, "TO_SUBSCRIBERS", rc, prop,

channelStore, user, password, channelName);

Example 2: The following example publishes the package to all subscribers of the
HR channel. The subject property is specified so that all e-mail subscribers will receive
the message with the specified subject.

pubType = "TO_SUBSCRIBERS";
storeInfo =

Publishing Packages � PACKAGE_PUBLISH (Publish Package to a WebDAV-Compliant Server) 83

"SAS-OMA://alpair03.sys.com:8561";
channel = ’HR’;
property = "SUBJECT, CHANNEL_STORE, METAUSER, METAPASS";
subject = "Weekly HR Updates:"
user = "myUserName";
password = "myPassword";
CALL PACKAGE_PUBLISH(packageId, "TO_SUBSCRIBERS",

rc, property, subject, storeInfo, user, password, channel);

PACKAGE_PUBLISH (Publish Package to a WebDAV-Compliant Server)

Publishes a package to a WebDAV-compliant server

Syntax
CALL PACKAGE_PUBLISH(packageId, publishType, rc, properties,<propValue1,

…propValueN>);

Arguments

packageID
identifies the package that is to be published.
Type: Numeric
Direction: Input

publishType
indicates how to publish the package. To publish the package using the WebDAV
transport, specify a publishType of TO_WEBDAV.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify ’’to indicate that no properties are to be applied:

� ARCHIVE_NAME
� ARCHIVE_PATH
� COLLECTION_URL
� HTTP_PASSWORD
� HTTP_PROXY_URL
� HTTP_USER
� IF_EXISTS

84 PACKAGE_PUBLISH (Publish Package to a WebDAV-Compliant Server) � Chapter 5

� PARENT_URL

� TARGET_VIEW_MIMETYPE

� TARGET_VIEW_NAME

� TEXT_VIEWER_NAME

� VIEWER_NAME

For more information about these properties, see “Transport Properties” on page 66.

Type: Character

Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter.

Type: Character or Numeric

Direction: Input

Details

Default Behavior Publishing with a publishType of TO_WEBDAV publishes a package
to a specified URL on a WebDAV-compliant server. Starting with SAS 9.2, the HTTPS
protocol is supported when publishing to a WebDAV server. WebDAV servers enable
distributed authoring and versioning, which enables collaborative development of Web
files on remote servers.

The WebDAV transport stores package entries as members of a collection.
If you specify the COLLECTION_URL property, then the package is published to the

specified URL on a WebDAV-compliant Web server. When you use COLLECTION_URL,
the default behavior is to replace the existing collection and its nested directories at that
location. If you do not want to replace an existing collection and its nested directories,
then you must use the IF_EXISTS property. An example of a collection URL is

http://www.host.com/AlphaliteAirways/revenue/quarter1

The collection is named quarter1.
The PARENT_URL property is similar to the COLLECTION_URL property except

that it specifies the location under which the new WebDAV collection is to be placed.
The PUBLISH_PACKAGE CALL routine generates a unique name for the new
collection. The unique name is limited to eight characters with the first character as an
s. An example of a parent URL directory location is http://www.host.com/
AlphaliteAirways/revenue. An example of a collection name that is automatically
generated might be s9811239.

The specifications of the COLLECTION_URL property and the PARENT_URL
property are mutually exclusive.

To announce the availability of new WebDAV collections on WebDAV-compliant
servers, use a publishType of TO_SUBSCRIBERS or TO_EMAIL.

WebDAV publishing uses the following file extensions for each item type:

Table 5.4 File Extensions for Item Types

Item Type File Extension

CATALOG .sac

DATA .sad

FDB .saf

Publishing Packages � PACKAGE_PUBLISH (Publish Package to a WebDAV-Compliant Server) 85

Item Type File Extension

MDDB .sam

REFERENCE .ref

VIEW .sav

Viewer Properties If you specify the VIEWER_NAME property with the
COLLECTION_URL or PARENT_URL property, then the view is rendered in HTML
format. If you specify the TEXT_VIEWER_NAME with the COLLECTION_URL or
PARENT_URL properties, then the view is rendered in text format.

The specified viewer is used to create a rendered view that is named index.html. To
override the default name that is assigned to the rendered view, use the
APPLIED_VIEWER_NAME or APPLIED_TEXT_VIEWER_NAME, as appropriate, to
specify a filename for the rendered view.

Archive Path Properties If you specify the ARCHIVE_PATH property, then an archive
is created and published as a binary package on a WEBDAV-compliant server. All
entries that are inserted into the package are published as an archive. If you specify a
value for ARCHIVE_PATH, then the created archive is stored at the designated
location. To create a temporary archive that is deleted after the package is published,
specify an ARCHIVE_PATH value of "" or "tempfile".

For more details on how to use the archive properties, see PACKAGE_PUBLISH
(PublishPackage to Archive)“Details” on page 71.

Note: In order to create an archive under the z/OS operating environment, the z/OS
environment must support UNIX System Services directories. �

When publishing a binary package with the WEBDAV transport, you can specify the
following archive properties: ARCHIVE_NAME, ARCHIVE_PATH, HTTP_PASSWORD,
HTTP_PROXY_URL, or HTTP_USER.

Applying a Name/Value Pair to a Package and a Package Item When publishing to a
WebDAV-compliant server, optionally specified name/value pairs are transmitted to the
WebDAV server in XML format. XML format requires that the name portion of the
name/value pair specification follow these conventions:

� It must begin with an alphabetic character or an underscore.

� It can contain only alphabetic characters, numeric characters, and these special
characters: . (period), - (hyphen), and _ (underscore).

If a namespace is associated with the name portion of a name/value pair, then the
name can also include a colon (:). Name/value pairs not explicitly associated with a
namespace might not be retained by the WebDAV server. For details about the
NAMESPACE property or about specifying the nameValue parameter for an entire
package, see “PACKAGE_BEGIN” on page 62.

For details about specifying the nameValue parameter for a single package item, see
the applicable INSERT_item CALL routine, where item can be any of the following:

� CATALOG. See “INSERT_CATALOG” on page 42.

� DATASET. See “INSERT_DATASET” on page 43.

� FILE. See “INSERT_FILE” on page 47.

� HTML. See “INSERT_HTML” on page 50.

� MDDB. See “INSERT_MDDB” on page 54.

� PROC SQL VIEW. See “INSERT_SQLVIEW” on page 59.

86 PACKAGE_PUBLISH (Publish Package to a WebDAV-Compliant Server) � Chapter 5

� REFERENCE. See “INSERT_REF” on page 57.
� VIEWER. See “INSERT_VIEWER” on page 60.

Examples

Example 1: The following example uses the HTTPS protocol when publishing to the
WebDAV server:

rc = 0;
pubType = "TO_WEBDAV";
http_user="vicdamone’’;
http_password=’’myway’’;
properties="COLLECTION_URL, http_user, http_password";
cUrl = "https://www.alpair.web/NightlyMaintReport";
CALL PACKAGE_PUBLISH(packageId, pubType,

rc, properties, cUrl, http_user, http_password);

Example 2: The following example publishes a package to a URL via the specified
proxy server by using the specified credentials:

rc = 0;
pubType = "TO_WEBDAV";
properties="COLLECTION_URL,HTTP_PROXY_URL,

IF_EXISTS,HTTP_USER,HTTP_PASSWORD";
cUrl = "http://www.alpair.secureweb/NightlyMaintReport";
pUrl = "http://www.alpair.proxy:8000/";
exists = "update";
user = "JohnSmith";
password = "secret";
CALL PACKAGE_PUBLISH(packageId, pubType, rc, properties,

cUrl, pUrl, exists, user, password);

Example 3: The following example uses the e-mail transport to publish a collection
URL on a WebDAV-compliant server. The HTTP user ID and password enable the
publisher to bind to the secured HTTP server. All e-mail recipients who are members of
the mail list receive the e-mail announcement that the best rates are accessible at the
specified URL.

pubType = "TO_EMAIL";
properties="COLLECTION_URL, SUBJECT,

HTTP_USER, HTTP_PASSWORD";
collurl="http://www.alphaliteairways/fares/discount.html";
subj="Announcing Best Rates Yet";
http_user="vicdamone";
http_password="myway";
Addr = "admins-l@alphaliteair05";
CALL PACKAGE_PUBLISH(packageId, pubType, rc, properties,

collurl, subj, http_user, http_password, Addr);

Example 4: The following example uses the ARCHIVE_PATH property to publish a
binary package to the WebDAV-compliant server. The archive path is specified as
"tempfile" so that the locally created archive file will be deleted once it has been
published to the WebDAV server.

pubType = "TO_WEBDAV";
properties="COLLECTION_URL, ARCHIVE_PATH";
cUrl = "http://www.alpair.secureweb/Reports";

Publishing Packages � COMPANION_NEXT 87

apath = "tempfile";
CALL PACKAGE_PUBLISH(packageId, pubType, rc,

properties, cUrl, apath);

COMPANION_NEXT

Retrieves the next companion HTML file in the ODS HTML set

Syntax

CALL COMPANION_NEXT(entryId, path, filename, url, rc <, properties, propValue1,
…propValueN>);

Arguments

entryIdx
identifies the companion HTML file entry.

Type: Numeric

Direction: Input

path
specifies the full path of the location that will receive the retrieved file.

Type: Character

Direction: Input

filename
returns the name of the new file.

Type: Character

Direction: Output

url
returns the URL of the companion file.

Type: Character

Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ENCODING

� MIMETYPE

Type: Character

Direction: Input

88 COMPANION_NEXT � Chapter 5

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

ENCODING
input character string that specifies the target encoding for the companion file.
The companion file is translated into the specified encoding. An example of a
target encoding value is ISO-8859-1.

MIMETYPE
character output parameter that identifies the MIME type of the companion file.
The MIME type is returned in the MIMETYPE variable. The publisher of the
companion file can set the user-specified MIME type after the companion file is
published. If the publisher does not specify the MIME type, then the returned
value is blank.

Type: Character

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

Details
The publisher can choose to publish any combination of the HTML files. Included in the
set of published files can be any number of additional HTML files or companion files.

The filename and url parameters are character variables that are updated by the
CALL routine. Because they are updated, they must be initialized with a length large
enough to contain the name of the file or the URL that is being returned. If not, the
returned value will be truncated and a warning will be printed indicating that one or
more parameters were truncated. When called from within the DATA step, use the
LENGTH statement to define the length of the variable. When called from within a
macro, initialize the variable to some value so that it will have an appropriate length.

For details about how HTML files are published and how the optional encoding
property can be used to provide encoding information to package recipients, see
“Publish and Retrieve Encoding Behavior” on page 40.

Examples

Example 1: The following example retrieves an HTML file and then retrieves the
next companion HTML file in the set.

data _null_;
length contents $64 frame $64 pages $64

body $64 contentsUrl $256 frameUrl $256
PagesUrl $256 bodyUrl $256;

path =’/finance/accounting/doc’;
CALL RETRIEVE_HTML(entryId, path, body, bodyUrl, frame,

frameUrl, contents, contentsUrl, pages, pagesUrl,rc);

CALL COMPANION_NEXT(entryId, path, fname, url, rc);

Publishing Packages � ENTRY_FIRST 89

Example 2: The following example retrieves an HTML file and then retrieves the
next companion HTML file in the set. If the publisher specifies a MIME type when
publishing a package, then the optional MIMETYPE property is specified in order for
its MIME type to be returned. The MIME type will be returned in the mime variable.

data _null_;
length contents $64 frame $64 pages $64 body $64

contentsUrl $256 frameUrl $256 PagesUrl $256
bodyUrl $256 mime $64;

path =’/finance/accounting/doc’;
CALL RETRIEVE_HTML(entryId, path, body, bodyUrl, frame,

frameUrl, contents, contentsUrl, pages, pagesUrl,rc);

properties="MIMETYPE";
CALL COMPANION_NEXT(entryId, path, fname,

url, rc, properties, mime);

ENTRY_FIRST

Returns header information for the first entry in a package

Syntax
CALL ENTRY_FIRST(packageId, entryId, entryType, userSpecString, desc, nameValue,

rc<, properties, propValue1, …propValueN>);

Arguments

packageId
identifies the package.
Type: Numeric
Direction: Input

entryId
returns the identifier of the entry.
Type: Numeric
Direction: Output

entryType
returns the type of the entry. Available types include the following:

� BINARY
� CATALOG
� DATASET
� FDB
� HTML
� MDDB

90 ENTRY_FIRST � Chapter 5

� NESTED_PACKAGE
� REFERENCE
� SQLVIEW
� TEXT
� VIEWER

Type: Character
Direction: Output

userSpecString
returns a string from the specified entry. For string content, see “Details” on page 90.
Type: Character
Direction: Output

desc
returns the entry description from the specified entry.
Type: Character
Direction: Output

nameValue
returns the name/value pairs assigned to the specified entry. Name/value pairs are
site-specific; they are used for the purpose of filtering. See “Filtering Packages and
Package Entries” on page 116.
Type: Character
Direction: Output

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� FILENAME

Type: Character
Direction: Input

propValue1, …propValueN
returns one value for each specified property name. Valid property names are
supported as follows:

FILENAME
output character string variable that returns the name of the file (as it exists in
the package).

Type: Character
Direction: Output

Details
The header information returned by this CALL routine identifies the type of the entry
and provides descriptive information.

The ENTRY_FIRST CALL routine repositions the entry cursor to the start of the list
of entries. When the packages are retrieved by way of the “RETRIEVE_PACKAGE” on

Publishing Packages � ENTRY_NEXT 91

page 109 CALL routine, the entry cursor is positioned at the start of the entry list by
default. As a consequence, the ENTRY_FIRST CALL routine does not have to be called
before the “ENTRY_NEXT” on page 91 CALL routine.

The userSpecString parameter is returned to provide further content information
about the entry. The value returned is the value that was provided by the publisher at
insert time. At this time, only file entries can return a value for this parameter. All
other entry types return a blank value. For file entries, this field is the user-specified
MIME type.

The following example returns header information for the first entry in the package.

CALL ENTRY_FIRST(packageId, entryid, type,
uSpec, desc, nv, rc);

ENTRY_NEXT

Returns header information from the next entry in a package

Syntax
CALL ENTRY_NEXT(packageId, entryId, entryType, userSpecString, desc, nameValue,

rc<, properties, propValue1, …propValueN>);

Arguments

packageId
identifies the package.
Type: Numeric
Direction: Input

entryId
returns the identifier of the entry.
Type: Numeric
Direction: Output

entryType
returns the type of the entry. Available types include the following:

� BINARY
� CATALOG
� DATASET
� FDB
� HTML
� MDDB
� NESTED_PACKAGE
� REFERENCE
� SQLVIEW
� TEXT

92 ENTRY_NEXT � Chapter 5

� VIEWER

Type: Character
Direction: Output

userSpecString
returns a string from the specified entry. For string content, see “Details” on page 92.
Type: Character
Direction: Output

desc
returns the entry description from the specified entry.
Type: Character
Direction: Output

nameValue
returns the name/value pairs assigned to the specified entry. Name/value pairs are
site-specific; they are used for the purpose of filtering. See “Filtering Packages and
Package Entries” on page 116.
Type: Character
Direction: Output

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� FILENAME

Type: Character
Direction: Input

propValue1, …propValueN
returns one value for each specified property name. Valid property names are
supported as follows:

FILENAME
output character string variable that returns the name of the file (as it exists in
the package).

Type: Character
Direction: Output

Details
The header information returned by this CALL routine identifies the type of the entry
and provides descriptive information.

The userSpecString parameter provides content information about the entry. The
value returned is the value that was provided by the publisher when the entry was
inserted in the package. For this release, only file entries can return a value for this
parameter. All other entry types return a blank value. For file entries, this field is the
user-specified MIME type.

When a package is retrieved, the entry cursor is positioned at the start of the entry
list by default. As a consequence, the “ENTRY_FIRST” on page 89 CALL routine does

Publishing Packages � PACKAGE_DESTROY 93

not have to be called before ENTRY_NEXT CALL routine. The ENTRY_FIRST CALL
routine can be used at a later time in order to move the entry cursor back to the start of
the entry list.

The following example positions the cursor at the start of an entry list.

CALL ENTRY_NEXT(packageId, entryid, type,
uSpec, desc, nv, rc);

PACKAGE_DESTROY

Deletes a package

Syntax

CALL PACKAGE_DESTROY(packageId, rc);

Arguments

packageId
identifies the package to be deleted.

Type: Numeric

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

Details

If the queue transport is used, then the package is removed from the queue, along with
all messages that are associated with the package. If the package contains nested
packages, then all entries that are contained within the nested packages are also
removed from the queue. If the archive transport is used, then the archive is deleted. If
the WebDAV transport is used, then the package and its contents are deleted from the
WebDAV server.

The PACKAGE_DESTROY CALL routine does not support package identifiers that
represent nested packages, which are returned by way of the RETRIEVE_NESTED
CALL routine. The PACKAGE_DESTROY CALL routine supports only top-level
package identifiers, which are returned by “PACKAGE_FIRST” on page 94 and
“PACKAGE_NEXT” on page 97.

The following example removes a package from a queue.

rc=0;
CALL PACKAGE_DESTROY(packageId, rc);

94 PACKAGE_FIRST � Chapter 5

PACKAGE_FIRST

Returns the header information for the first package in the package list

Syntax
CALL PACKAGE_FIRST(pkgListId, packageId, numEntries, desc, dateTime,

nameValue, channel, rc<, properties, propValue1, …propValueN>);

Arguments

pkgListId
identifies the list of retrieved packages.
Type: Numeric
Direction: Output

packageId
identifies the retrieved package.
Type: Numeric
Direction: Output

numEntries
returns the number of entries in the package.
Type: Numeric
Direction: Output

desc
returns a description of the package.
Type: Character
Direction: Output

dateTime
returns the date and time that the package was published, in GMT format.
Type: Numeric
Direction: Output

nameValue
returns the name/value pairs assigned to the package. Name/value pairs are
site-specific; they are used for the purpose of filtering. See “Filtering Packages and
Package Entries” on page 116.
Type: Character
Direction: Output

channel
returns the name of a channel to which the package was published.
Type: Character
Direction: Output

rc
receives a return code.

Publishing Packages � PACKAGE_FIRST 95

Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names to be returned from the
package. Valid property names are as follows:

� ABSTRACT
� EXPIRATION_DATETIME

96 PACKAGE_FIRST � Chapter 5

Type: Character
Direction: Input

propValue1, …propValueN
returns one value for each specified property. The order of the values matches the
order of the property names in the properties parameter. Valid property values are
defined as follows:

ABSTRACT
character string variable, if specified, is returned to the ABSTRACT variable.

EXPIRATION_DATETIME
numeric variable, if specified, is returned as the package expiration date-and-time
stamp to the EXPIRATION_DATETIME variable. The date-and-time stamp is in
GMT format.

Type: Character or Numeric
Direction: Output

Examples
The following example opens the JSMITH queue, retrieves the descriptive header
information for all packages, and then returns the header information for the first
package.

plist=0;
qname = "MQSERIES://LOCAL:JSMITH";
rc=0;
total=0;
nameValue=’’;
CALL RETRIEVE_PACKAGE(plist, "FROM_QUEUE",

qname, total, rc);

packageId = 0;
desc=’’;
num=0;
dt=0;
nv=’’;
ch=’’;
rc=0;
CALL PACKAGE_FIRST(plist, packageId,

num, desc, dt, nv, ch, rc);

The following example demonstrates the use of properties.

plist=0;
qname = "MQSERIES://LOCAL:JSMITH";
rc=0;
total=0;
nameValue=’’;
CALL RETRIEVE_PACKAGE(list, "FROM_QUEUE",

qname, total, rc);

packageId = 0;
desc=’’;
num=0;
exp=0;
abstract=’’;

Publishing Packages � PACKAGE_NEXT 97

dt=0;
nv=’’;
ch=’’;
rc=0;
props=’ABSTRACT, EXPIRATION_DATETIME’;
CALL PACKAGE_FIRST(plist, packageId, num, desc,

dt, nv, ch, rc, props, abstract, exp);

PACKAGE_NEXT

Returns the header information for the next package in the package list

Syntax
CALL PACKAGE_NEXT(pkgListId, packageId, numEntries, desc, dateTime,

nameValue, channel, rc<, properties, propValue1, …propValueN>);

Arguments

pkgListId
identifies the list of retrieved packages.
Type: Numeric
Direction: Input

packageId
returns the name of the retrieved package.
Type: Numeric
Direction: Output

numEntries
returns the total number of entries in the package.
Type: Numeric
Direction: Output

desc
describes the package.
Type: Character
Direction: Output

dateTime
returns the date and time value that the package was published, in GMT format.
Type: Numeric
Direction: Output

nameValue
returns the name/value pairs assigned to the package. Name/value pairs are
site-specific; they are used for the purpose of filtering. See “Filtering Packages and
Package Entries” on page 116.

98 PACKAGE_NEXT � Chapter 5

Type: Character
Direction: Output

channel
returns the name of the channel to which the package was published.
Type: Character
Direction: Output

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names to be returned from the
package. Valid property names are as follows:

� ABSTRACT
� EXPIRATION_DATETIME

Type: Character
Direction: Input

propValue1, …propValueN
returns one value for each specified property. The order of the values matches the
order of the property names in the properties parameter. Valid property values are
defined as follows:

ABSTRACT
character string variable, if specified, is returned to the ABSTRACT variable.

EXPIRATION_DATETIME
numeric variable, if specified, is returned as the package expiration date/time
stamp to the EXPIRATION_DATETIME variable. The date/time stamp is in GMT
format.

Type: Character or Numeric
Direction: Output

Examples
The following example returns the header information for the next package that is
associated with the list of packages named PLIST.

packageId = 0;
desc=’’;
num=0;
exp=0;
dt=0;
nv=’’;
ch=’’;
rc=0;
CALL PACKAGE_NEXT(plist, packageId,

num, desc, dt, nv, ,ch, rc);

The following example uses the ABSTRACT property so that the abstract value is
returned in the abs variable.

packageId = 0;
desc=’’;

Publishing Packages � RETRIEVE_CATALOG 99

num=0;
exp=0;
dt=0;
nv=’’;
ch=’’;
abs=’’;
props="ABSTRACT";
rc=0;
CALL PACKAGE_NEXT(plist, packageId, num,

desc, dt, nv, ch, rc, props, abs);

PACKAGE_TERM
Frees all resources associated with the package list identifier

Syntax
CALL PACKAGE_TERM(pkgListId, rc);

Arguments

pkgListId
identifies the list of packages.
Type: Numeric
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Details
This CALL routine is used when publishing a package. The following example frees all
resources that are associated with pkgListId.

CALL PACKAGE_TERM(pkgListId, rc);

RETRIEVE_CATALOG
Retrieves a catalog from a package

Syntax
CALL RETRIEVE_CATALOG(entryId, libname, memname, rc);

100 RETRIEVE_DATASET � Chapter 5

Arguments

entryId
identifies the catalog entry.
Type: Numeric
Direction: Input

libname
specifies the SAS library that will contain the retrieved catalog.
Type: Character
Direction: Input

memname
names the retrieved catalog.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Details
If the memname parameter is blank, then the RETRIEVE_CATALOG CALL routine
creates the catalog by using the original member name as it was defined at publish time.

The following example retrieves a catalog from the package and creates the catalog
WORK.TMPCAT.

lib = ’work’;
mem = ’tmpcat’;
CALL RETRIEVE_CATALOG(entryId, lib, mem, rc);

RETRIEVE_DATASET

This CALL routine retrieves a data set entry from a package

Syntax
CALL RETRIEVE_DATASET(entryId, libname, memname, rc<, properties,

propValue1, …propValueN>);

Arguments

entryId
identifies the data set entry.
Type: Numeric

Publishing Packages � RETRIEVE_DATASET 101

Direction: Input

libname
specifies the SAS library that will contain the retrieved data set.
Type: Character
Direction: Input

memname
names the retrieved data set.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� DATASET_OPTIONS
� CSV_SEPARATOR
� CSV_FLAG

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

DATASET_OPTIONS
character parameter SAS data set options that are to be applied to the retrieved
data set. For a complete list of data set options, see the SAS Data Set Options
topic in the SAS Online Help, Release 8.2.

CSV_SEPARATOR
character property that applies only when the RETRIEVE_DATASET CALL
routine is called on a CSV file entry. When this occurs, the CSV file is transformed
into a SAS data set. A binary CSV file is identified by a MIME type of
application/x-comma-separated-values. Use the CSV_SEPARATOR property to
indicate the separator to be used when creating the CSV file. The default
separator is a comma. If the CSV file was created at publish time by transforming
a SAS data set into a CSV file, then the separator used to create the CSV file will
always take precedence. If the CSV file was not created at publish time, then the
CSV_SEPARATOR property can be used to specify the separator value used. If the
CSV file was not created at publish time and no separator property is specified,
then the separator is specified as a comma, by default.

CSV_FLAG
character property that only applies when calling the RETRIEVE_DATASET
CALL routine for a binary file entry. A binary CSV file is identified by a MIME
type of application/x-comma-separated-values. This property is a CSV override
flag. By default when converting this binary CSV file into a SAS data set, the first
line will be processed as variable names. The second line will be processed as
variable label names. All remaining lines will be processed as data. To override

102 RETRIEVE_FDB � Chapter 5

this default behavior, the CSV_FLAG value must be NO_VARIABLES or
NO_LABELS. To specify both values, specify two CSV_FLAG properties, one with
a value of NO_VARIABLES, the other with a value of NO_LABELS. By default,
when a CSV file is converted into a data set, the variable lengths are determined
by the first row of data. If subsequent rows have greater lengths, then the variable
data is truncated. To override this default behavior, specify the CSV_FLAG with a
property of NO_TRUNCATION. When this flag value is specified, truncation will
not occur, but multiple passes of the data might be necessary in order to perform
the resizing.

Type: Character
Direction: Input

Details
If the MEMNAME parameter is blank, then the RETRIEVE_DATASET CALL routine
creates the data set using the original member name as it was defined at publish time.

The following example retrieves the data set WORK.OUTDATA entry from the
package.

lib = ’work’;
mem = ’outdata’;
CALL RETRIEVE_DATASET(rid, lib, mem, rc);

The following example specifies two CSV_FLAG properties.

prop=’CSV_SEPARATOR,CSV_FLAG,CSV_FLAG’;
separator=’/’;
flag1 = ’NO_VARIABLES’;
flag2 = ’NO_LABELS’;
CALL RETRIEVE_DATASET(entryId, libname, memname,

rc, prop, separator, flag1, flag2);

RETRIEVE_FDB

Retrieves a financial database entry from a package

Syntax
CALL RETRIEVE_FDB(entryId, libname, memname, rc);

Arguments

entryId
identifies the FDB entry.
Type: Numeric
Direction: Input

libname
specifies the SAS library that will contain the retrieved FDB.

Publishing Packages � RETRIEVE_FILE 103

Type: Character
Direction: Input

memname
specifies the member name of the retrieved FDB.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Details
If the memname parameter is blank, then the RETRIEVE_FDB CALL routine creates the
FDB by using the original member name as it was defined at publish time.

The following example retrieves an FDB entry WORK.OUTDATA from the package.

lib = ’work’;
mem = ’outdata’;
CALL RETRIEVE_FDB(entryId, lib, mem, rc);

RETRIEVE_FILE

Retrieves an external binary or text file from a package

Syntax
CALL RETRIEVE_FILE(entryId, filename, rc);

Arguments

entryId
identifies the file entry.
Type: Numeric
Direction: Input

filename
specifies the name of the file or fileref, using the following syntax:

� FILENAME: external_filename
� FILEREF: SAS_fileref

Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric

104 RETRIEVE_HTML � Chapter 5

Direction: Output

Details
Specifying "FILENAME:", without a filename, applies to the retrieved file the same
name that was used when the file was initially inserted into the package.The following
example retrieves a binary file from a queue.

fname = "filename: /users/jsmith.bin";
CALL RETRIEVE_FILE(entryId, fname, rc);

RETRIEVE_HTML

Retrieves an HTML entry from a package

Syntax
CALL RETRIEVE_HTML(entryId, path, body, bodyUrl, frame, frameUrl, contents,

contentsUrl, pages, pagesUrl, rc<, properties, propValue1, …propValueN>);

Arguments

entryId
identifies the HTML entry.
Type: Numeric
Direction: Input

path
specifies the full designation of the location that will receive the retrieved files.
Type: Character
Direction: Input

body
returns the name of the HTML body file.
Type: Character
Direction: Output

bodyUrl
returns the URL of the HTML body file.
Type: Character
Direction: Output

frame
returns the name of the HTML frame file.
Type: Character
Direction: Output

frameUrl
returns the URL of the HTML frame file.

Publishing Packages � RETRIEVE_HTML 105

Type: Character
Direction: Output

contents
returns the name of the HTML contents file.
Type: Character
Direction: Output

contentsUrl
returns the URL of the HTML contents file.
Type: Character
Direction: Output

pages
returns the name of the HTML page file.
Type: Character
Direction: Output

pagesUrl
returns the URL of the HTML page file.
Type: Character
Direction: Output

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ENCODING
� BODY_TOTAL
� FILE_TOTAL
� COMPANION_TOTAL

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

ENCODING
input character string that indicates the target encoding for the retrieved HTML
file. An example of a target encoding value is ISO-8859-1. Refer to “Publish and
Retrieve Encoding Behavior” on page 40 for further information.

BODY_TOTAL
numeric output parameter that returns the total number of HTML body files
published as part of this set.

FILE_TOTAL
numeric output parameter that returns the total number of all HTML files
published as part of this set. This includes all body, page, contents, frame, and
additional HTML files and companion files.

106 RETRIEVE_HTML � Chapter 5

COMPANION_TOTAL
numeric output parameter that returns the total number of extraneous HTML
files that were published as part of this set.

Type: Character or Numeric
Direction: Input or Output

Details
The ODS entry can contain any combination of the following: ODS HTML file, contents
file, pages file, or frame file.

The publisher can choose to publish any combination of the HTML files. To indicate
those files that were not published as part of this set, the output parameter that
contains the created filename will be updated to "". For example, if only the body was
published, then the page, contents, and frame parameters will be returned as "".

The pages, pagesUrl, body, bodyUrl, frame, frameUrl, contents, and
contentsUrl parameters are character variables that are updated by the CALL
routine. Because they are updated, they must be initialized with a length large enough
to contain the name of the returned filename or URL. If the length of the character
variable is less than the length of the returned filename or URL, the filename or URL
will be truncated and a warning will be issued. When calling the RETRIEVE_HTML
CALL routine from within the data step, use the LENGTH statement to define the
length of the character variable. When calling RETRIEVE_HTML from within a macro,
initialize the variable to some value so that it will have an appropriate length, as
shown in the second example below.

For information on how HTML files are published and how the optional encoding
property can be used to provide encoding information to package recipients, see
“Publish and Retrieve Encoding Behavior” on page 40.

Examples
The following example retrieves HTML entry information from the package.

data _null_;
length contents $64 frame $64 pages $64 body $64

contentsUrl $256 frameUrl $256
PagesUrl $256 bodyUrl $256;

path =’/maintenance/schedule/doc’;
CALL RETRIEVE_HTML(entryId, path, body,

bodyUrl, frame, frameUrl, contents,
contentsUrl, pages, pagesUrl, rc);

The following example uses a macro to initialize a variable to a specific length and
then retrieves HTML information from the package.

%macro initLen(variable, len);
%let &variable=.;
%do i=2 %to &len

%let &variable=&&&variable
%end;

%mend;

%initLen(contents, 64);
%initLen(contentsUrl, 256);
%initLen(pages, 64);
%initLen(pagesUrl, 256);

Publishing Packages � RETRIEVE_MDDB 107

%initLen(body, 64);
%initLen(bodyUrl, 256);
%initLen(frame, 64);
%initLen(frameUrl, 256);
%let path =/users/maintenance/doc;
%let rc=0;
%syscall RETRIEVE_HTML(entryId, path, body,

bodyUrl, frame, frameUrl, contents, contentsUrl,
pages, pagesUrl, rc);

RETRIEVE_MDDB

Retrieves an MDDB entry from a package

Syntax
CALL RETRIEVE_MDDB(entryId, libname, memname, rc);

Arguments

entryId
identifies the MDDB entry.

Type: Numeric
Direction: Input

libname
specifies the SAS library that will contain the retrieved MDDB.

Type: Character
Direction: Input

memname
specifies the name of the retrieved MDDB.

Type: Character
Direction: Input

rc
receives a return code.

Type: Numeric
Direction: Output

Details
An MDDB is a multidimensional database (not a data set) offered by SAS. An MDDB is
a specialized storage facility that can be created by tools such as multidimensional data
viewers, which populate the MDDB with data that is retrieved from sources such as a
data warehouse. The matrix format of MDDBs allows the viewer to access data quickly
and easily.

108 RETRIEVE_NESTED � Chapter 5

If the memname parameter is blank, then the RETRIEVE_MDDB CALL routine
creates the MDDB using the original member name as it was defined at publish time.

The following example retrieves an MDDB entry WORK.OUTDATA from the package:

lib = ’work’;
mem = ’outdata’;
CALL RETRIEVE_MDDB(entryId, lib, mem, rc);

RETRIEVE_NESTED

Retrieves the descriptive header information for a nested package entry

Syntax
CALL RETRIEVE_NESTED(entryId,packageId, numEntries, desc, dateTime,

nameValue, rc);

Arguments

entryId
identifies the nested package entry.

Type: Numeric
Direction: Input

packageId
returns the identifier of the nested package.
Type: Numeric
Direction: Output

numEntries
returns the number of entries in the nested package.

Type: Numeric
Direction: Output

desc
returns the description of the nested package entry.
Type: Character

Direction: Output

dateTime
returns the date and time that the nested package was published, in GMT format.

Type: Numeric
Direction: Output

nameValue
returns the name/value pairs assigned to the specified entry. Name/value pairs are
site-specific; they are used for the purpose of filtering. See “Filtering Packages and
Package Entries” on page 116.

Publishing Packages � RETRIEVE_PACKAGE 109

Type: Character

Direction: Output

rc
receives a return code.

Type: Numeric

Direction: Output

Details
The descriptive header information that is returned on this CALL routine includes the
nested package description, name/value string, datetime stamp, and total number of
entries that are contained in the nested package.

The returned packageId can then be used on subsequent “ENTRY_FIRST” on page
89 and “ENTRY_NEXT” on page 91 calls to retrieve the entry information.

Package identifiers that are returned on the RETRIEVE_NESTED CALL routine
cannot be used on the PACKAGE_DESTROY CALL routine. The RETRIEVE_NESTED
CALL routine supports only top-level packages, excluding nested packages. When
PACKAGE_DESTROY is called on a top-level package, all entries, including all nested
packages and their entries, are removed from the queue.

The following example retrieves the descriptive header information for the nested
package entry that is associated with entryId.

packageId=0;
num=0;
desc=’’;
dt=0;
nv=’’;
rc=0;
CALL RETRIEVE_NESTED(entryId, packageId,

num, desc, dt, nv, rc);

RETRIEVE_PACKAGE

This CALL routine retrieves descriptive header information for all packages

Syntax
CALL RETRIEVE_PACKAGE(pkgListId, retrievalType, retrievalInfo, totalPackages,

rc<, properties, propValue1, propValueN>);

Arguments

pkgListId
identifies the list of packages.

Type: Numeric

Direction: Output

110 RETRIEVE_PACKAGE � Chapter 5

retrievalType
specifies the transport to use when retrieving a package. Valid values include the
following:

� FROM_QUEUE

� FROM_ARCHIVE

� FROM_WEBDAV

Type: Character

Direction: Input

retrievalInfo
specifies transport-specific information that determines the package to retrieve.
When retrieving from an archive, specify the physical path and name of the archive,
excluding the extension. When retrieving from a WebDAV-compliant server, specify
the URL that identifies the package to retrieve. When retrieving from MSMQ
queues, use the following syntax:

MSMQ://queueHostMachineName\queueName

When retrieving from MQSeries queues, use the following syntax:

MQSERIES://queueManager:queueName

or

MQSERIES-C://queueManager:queueName

Type: Character

Direction: Input

totalPackages
provides the total number of packages found.

Type: Numeric

Direction: Output

rc
receives a return code.

Type: Numeric

Direction: Output

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� CORRELATIONID

� FTP_PASSWORD

� FTP_USER

� HTTP_PASSWORD

� HTTP_PROXY_URL

� HTTP_USER

� NAMESPACES

� QUEUE_TIMEOUT

Type: Character

Direction: Input

propValue1, …propValueN

Publishing Packages � RETRIEVE_PACKAGE 111

specifies a value for each specified property name. The order of the property values
must match the order of the property names specified in the properties parameter.
Valid property values are defined as follows:

CORRELATIONID
This character string specifies retrieval of only those packages that have the
specified correlation identifier. (Applies only to the message queue transport.)

FTP_PASSWORD
When retrieving with the archive transport (FROM_ARCHIVE), this character
string indicates the password that is used to connect to the remote host. Specify
this property only when the host does not accept anonymous access. (Applies to
the FROM_ARCHIVE property when the FTP protocol is used.)

FTP_USER
When retrieving with the archive transport, this character string indicates the
name of the user to connect to the remote host. (Applies to the FROM_ARCHIVE
property when the FTP protocol is used.)

HTTP_PASSWORD
When retrieving with the WebDAV transport (FROM_WEBDAV), this character
string indicates the password used to bind to the Web server. Specify this property
only when the Web server does not accept anonymous access. (Applies to the
FROM_ARCHIVE property when the HTTP protocol is used.)

HTTP_PROXY_URL
When retrieving with the WebDAV transport, this character string indicates the
URL of the proxy server. (Applies to the archive transport when the HTTP
protocol is used with archive specifications.)

HTTP_USER
When retrieving with the WebDAV transport, this character string indicates the
name of the user to bind to the Web server. (Applies to the FROM_ARCHIVE
property when the HTTP protocol is used.)

NAMESPACES
When retrieving with the WebDav transport, this character string lists one or
more namespaces that you are interested in, using the syntax shown in the
following example:

a="http://www.host.com/myNamespace"
A="http://www.host.com/myNamespace1"
B="http://www.host.com/myNamespace2"

QUEUE_TIMEOUT
This numeric value identifies the number of seconds for the poll timeout. By
default, if this property is not specified, the RETRIEVE_PACKAGE CALL routine
polls and returns immediately with the number of packages found, if any. To
override this default, specify the QUEUE_TIMEOUT property so that the
RETRIEVE_PACKAGE CALL routine will continue to poll for packages until at
least one package is found on the queue or until the timeout occurs, whichever
occurs first.

Type: Character or Numeric
Direction: Input

Details
When retrieving FROM_QUEUE, this CALL routine retrieves descriptive header
information for all packages that are found on the specified queue. The total number of

112 RETRIEVE_PACKAGE � Chapter 5

packages found is returned. The descriptive header information for each package can be
obtained by executing the “PACKAGE_FIRST” on page 94 and “PACKAGE_NEXT” on
page 97 CALL routines.

When retrieving from the queue transport, no entries or packages are removed or
deleted from the queue. Packages can be removed by calling the PACKAGE_DESTROY
CALL routine.

The ARCHIVE_PATH property identifies where the archive is created. When
retrieving from an archive, the name of the archive can be specified as a physical
pathname, an FTP URL, or an HTTP URL.

When retrieving from a WebDAV-compliant server, the name of the archive can be
specified as an FTP URL or an HTTP URL.

In the z/OS operating environment, archives can be retrieved only from UNIX
System Services directories.

Examples

Example 1: The following example opens the queue JSMITH and retrieves the
descriptive header information for all packages on that queue and the total number of
packages on the queue.

plist=0;
qname = "MQSERIES://LOCAL:JSMITH";
rc=0;
total=0;
nameValue=’’;
CALL RETRIEVE_PACKAGE(plist, "FROM_QUEUE",

qname, total, rc);

Example 2: The following example retrieves the archive named STATUS.

plist=0;
archiveName = "/maintenance/status";
rc=0;
total=0;
CALL RETRIEVE_PACKAGE(plist, "FROM_ARCHIVE",

archiveName, total, rc);

Example 3: The following example retrieves the package from WebDAV by using the
specified URL.

plist=0;
url = "http://AlphaliteAirways.host.com/~flights";
rc=0;
total=0;
property=’namespaces’;
ns="homePage=’http://AlphaliteAirs.com/’";
CALL RETRIEVE_PACKAGE(plist, "FROM_WEBDAV",

url, total, rc, property, ns);

Example 4: The following example applies a queue polling timeout value of 120
seconds. The RETRIEVE routine seeks packages on the queue until at least one
package is located or the 120-second timeout expires, whichever occurs first.

plist=0;
qname = "MQSERIES://LOCAL:JSMITH";
rc=0;

Publishing Packages � RETRIEVE_REF 113

total=0;
nameValue=’’;
prop=’queue_timeout’;
timeout = 120;
CALL RETRIEVE_PACKAGE(plist, "FROM_QUEUE",

qname, total, rc, prop, timeout);

Example 5: The following example is a SAS program that extracts entries from an
archive. The RETRIEVE_PACKAGE routine opens the archive file and retrieves the
headers for all package entries. Subsequent RETRIEVE routines are called to retrieve
the contents of the entries (in this example, data sets, catalogs, and MDDBs) and to
dispose of them appropriately.

data _null_;
length description nameValue type userSpec msg $255;
length libname $8;
length memname $32;
call retrieve_package(pid,"FROM_ARCHIVE",

"AlphaliteAir",tp,rc);
do while (rc = 0);

call entry_next(pid,eid,type,userSpec,
description,nameValue,rc);

if (rc = 0) then select (type);
when ("DATASET")

call retrieve_dataset(eid,libname,memname,rc);
when ("CATALOG")

call retrieve_catalog(eid,libname,memname,rc);
when ("MDDB")

call retrieve_mddb(eid,libname,memname,rc);
otherwise;

end;
end;
call package_term(pid,rc);

run;

RETRIEVE_REF

Retrieves a reference from a package

Syntax
CALL RETRIEVE_REF(entryId, referenceType, reference, rc);

Arguments

entryId
identifies the reference entry to be retrieved.

114 RETRIEVE_SQLVIEW � Chapter 5

Type: Numeric
Direction: Input

referenceType
returns the type of the reference, the value of which can be HTML or URL.
Type: Character
Direction: Output

reference
returns the value of the reference.
Type: Character
Direction: Output

rc
receives a return code.
Type: Numeric
Direction: Output

Example

The following example retrieves a reference entry from a package.

refType=’’;
ref=’’;
CALL RETRIEVE_REF(rid, refType, ref, rc);

RETRIEVE_SQLVIEW

Retrieves a PROC SQL view from a package

Syntax
CALL RETRIEVE_SQLVIEW(entryId, libname, memname, rc);

Arguments

entryId
identifies the PROC SQL view entry.
Type: Numeric
Direction: Input

libname
specifies the SAS library that will contain the retrieved PROC SQL view.
Type: Character
Direction: Input

memname
specifies the member name of the PROC SQL view.

Publishing Packages � RETRIEVE_VIEWER 115

Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Details
If the memname parameter is blank, then the RETRIEVE_SQLVIEW CALL routine
creates the PROC SQL view by using the original member name as it was defined at
publish time.

The following example retrieves the PROC SQL view WORK.OUTDATA from the
package.

lib = ’work’;
mem = ’outdata’;
CALL RETRIEVE_SQLVIEW(entryId, lib, mem, rc);

RETRIEVE_VIEWER

Retrieves a viewer entry from a package

Syntax
CALL RETRIEVE_VIEWER(entryId, filename, rc<, properties, propValue1,

…propValueN>);

Arguments

entryId
identifies the file entry.
Type: Numeric
Direction: Input

filename
specifies the name of the file or fileref, using the following syntax:

� FILENAME: external_filename

� FILEREF: SAS_fileref

Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

116 Filtering Packages and Package Entries � Chapter 5

properties
identifies a comma-separated list of optional property names. Valid property names
are as follows:

� ENCODING

Type: Character

Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. Valid
property values are defined as follows:

ENCODING
input character string that indicates the target encoding for the retrieved viewer
file. An example of a target encoding value is ISO-8859-1. For further information,
see “Publish and Retrieve Encoding Behavior” on page 40.

Type: Character

Direction: Input

Details
Specifying "FILENAME:", without an external filename, applies to the retrieved file the
same name that was used when the file was initially inserted into the package.

The following example retrieves a viewer from a package.

fname = "filename: /users/jsmith.bin";
CALL RETRIEVE_VIEWER(entryId, fname, rc);

Filtering Packages and Package Entries

Overview of Filtering
A filter is a property of a subscriber that enables that subscriber to receive only

content that meets certain criteria. Filters can be used to exclude content that the
subscriber is not interested in, or that the subscriber’s computing resources cannot
handle. Filters can be defined based on the entry type, MIME type, or one or more
name/value pairs that are defined for the content. A filter can be an include filter,
which means that the subscriber receives all content that meets the filter criteria, or an
exclude filter, which means that the subscriber receives all content that does not meet
the filter criteria.

When packages are published to channels, name/value filters can be used to limit the
packages that are published to individual subscribers. Subscriber-specified name/value
filters are compared to the name/value pairs in the published packages. If the filters
match the package, then the package is published to the subscriber.

Subscribers use the Publishing Framework plug-in for SAS Management Console to
define subscribers. If a subscriber specifies a delivery transport of queue, then that
subscriber can specify additional filters to limit the package entries that are included in
the packages that are published to that subscriber. Package entry or MIME type filters
are compared to the entry type or MIME type of each package entry. If the package

Publishing Packages � Implementing Name/Value Filters 117

entry type or MIME type matches the subscriber’s entry type or MIME type filters, then
that package entry is included in the package that is published to that queue subscriber.

Note: For each type of filter (entry type, MIME type, or name/value pair), you can
define either inclusion or exclusion filters (but not both). If you have previously defined
exclusion name/value filters, for example, and then specify an inclusion filter, then all of
the previously defined exclusion filters are deleted from the repository. �

Enabling Filtering When Publishing Packages
During package development, user-defined name/value pairs are added to packages

in the “PACKAGE_BEGIN” on page 62 CALL routine. Entry types are added to package
entries automatically in the various INSERT CALL routines. User-defined MIME types
are added to package entries in the “INSERT_FILE” on page 47 CALL routine.

At publish time, filtering takes place when a package is published with the
PACKAGE_PUBLISH“PACKAGE_PUBLISH (Publish Package to Subscribers)” on page
78 CALL routine with a publishType of TO_SUBSCRIBERS.

Implementing MIME-Type Filters
MIME types provide details about the information that is being published. For

example, specifying the MIME type audio/basic indicates that the file is an audio file
and requires software that can interpret such content.

You can define a filter that determines the type of information the subscriber receives.
For example, a subscriber who is connecting with a modem might not want to receive
some data types that might be large or unwieldy, such as movies or audio. By excluding
those MIME types, the subscriber never encounters those types of information.

The mimeType filters are case-insensitive filters. Like name/value pairs, MIME types
are user-defined and as such need to be maintained globally to ensure consistent
filtering. See the “INSERT_FILE” on page 47 CALL routine for a list of suggested
MIME types.

Implementing Entry-Type Filters
Each published package contains one or more entries. Each entry is one of several

possible types. You can create a filter to include or exclude one or more entry types.
Entry types are specified automatically in the various INSERT CALL routines. For a
list of available package entry types, see the syntax description of the “ENTRY_FIRST”
on page 89 CALL routine.

Implementing Name/Value Filters
Publishers can specify name/value pairs that describe the package that is being

published. Knowledge of name/value pairs enables you to define filters for a subscriber
that determine the packages that are received. If an inclusion name/value filter is
defined for a subscriber, then the subscriber receives only those packages that match
the name/value filter.

To implement name/value filters across your enterprise, the name/value pairs applied
to packages must agree with the name/value pairs that appear in subscriber filters.
Maintaining a global list of agreed-upon name/value pairs and including definitions and
usage information for each name/value pair enables accurate package description and
subscriber filtering in your enterprise.

118 Implementing Name/Value Filters � Chapter 5

The name/value filters used in your enterprise depend on the types of packages that
you publish and on the types of subscribers that receive those packages. For example,
you could define a channel called Maintenance that includes e-mail subscribers and an
archive subscriber named MaintReports. You could add a name/value filter to the
subscriber definition for the MaintReports archive subscriber that would refuse to accept
packages that contain a name/value pair of noarchive. For this filter to be effective,
packages published to the Maintenance channel would need to include the noarchive
name/value pair in the appropriate way in order to keep unwanted packages out of the
MaintReports archive. A global list of name/value pairs would help ensure that the
filters and the packages both used the noarchive name/value pair appropriately.

A wide variety of syntax options for name/value filters gives subscribers many
filtering options, including filtering based on logical relationships between multiple
name/value pairs.

A name/value pair is expressed as either a name or a relationship between a name
and a value in the following form:

name < operator value >

where

� name is a variable to which a value can be assigned. name is not case sensitive.
� operator relates the variable to the value.

� value is a character string or numeric value. value is case sensitive.

The following table lists commonly used operators:

Table 5.5 Commonly Used Operators

Comparison Operators Logical Operators

= (equals) & (AND)

!= (not equal) | (OR)

? (contains)

The following is an example of a package description that uses name/value pairs that
a publisher has assigned to a published package:

market=(Mexico, US) type=report Quarter4 sales _priority_=low

Subscribers can write meaningful filters if they know the conventions that a
publisher uses to describe packages. The following examples illustrate filter strings
that determine whether the preceding example entity would be selected by the filter. If
the package meets the filter conditions, then the package is delivered to the subscriber.

Publishing Packages � Implementing Name/Value Filters 119

market=(US, Asia, Europe)
No match. Because the equals operator (=) is used, the subscriber values and the
publisher values that are assigned to the variable name MARKET must match
exactly. In this example, the subscriber filters for US, Asia, and Europe, whereas
the publisher assigns a value of Mexico and US. The conditions for selection are
not met. Therefore, the package is not delivered to the subscriber.

market=(mexico, us)
No match. Because the equals operator (=) is used, the subscriber values and the
publisher values that are assigned to the variable name MARKET must match
exactly. In this example, the subscriber values do not match the publisher values
because of case differences.

market=US | market=Asia | market=Mexico
No match. Because the equals operator (=) is used, the subscriber values and the
publisher values that are assigned to the variable name MARKET must match
exactly. In this example, although the OR operator (|) might seem to cause a
matching condition, the equals operator (=) requires that each name/value pair
that is separated by an OR operator (|) match the publisher name/value pair
entirely. A match would result if the subscriber values were written as follows:

market=Mexico, US | market=Asia | market=Mexico

The first name/value pair in the series would match.

market=(Mexico, US)
Match. Because the equals operator (=) is used, the subscriber values and the
publisher values that are assigned to the variable name MARKET must match
exactly. In this example, the value set does match.

market=(US, Mexico)
Match. Because the equals operator (=) is used, the subscriber values and the
publisher values that are assigned to the variable name MARKET must match
exactly. In this example, the value set matches, regardless of the order of values
within the value set.

market?US & market?Asia & market?Mexico
No match. The conditions that are specified in the subscriber name/value pair
read: Variable name MARKET must contain the values US and Asia and Mexico.
The contains comparison operator (?) identifies the eligible values for
consideration. In this example, although the publisher variable MARKET contains
US and Mexico, it does not also contain Asia. Because the logical AND operator
(&) is used, its condition is not satisfied.

market?US | market?Asia | market?Mexico
Match. The conditions that are specified in the subscriber name/value pair read:
Variable name MARKET must contain the values US or Asia or Mexico. The
contains comparison operator (?) identifies the eligible values for consideration. In
this example, the publisher variable MARKET contains US, and the logical OR
operator (|) condition is satisfied.

Quarter4=sales
No match. Because the equals operator (=) is used, the subscriber values and the
publisher values that are assigned to the variable name QUARTER4 must match
exactly. In this example, because the publisher variable name QUARTER4 does
not contain a value and the subscriber variable name QUARTER4 does contain a
value of sales, the value sets do not match.

Quarter4

120 Specifying Name/Value Pairs � Chapter 5

Match. Variable names are not required to have values. In this example, because
the publisher variable name QUARTER4 does not have an assigned value and the
subscriber variable name QUARTER4 does not have an assigned value, the value
sets match.

type=report & forecast
No match. Two conditions must be met. The equals operator (=) requires that the
subscriber values and the publisher values that are assigned to variable name
TYPE match. In this example, the first condition is met because both the
publisher and the subscriber assign the value report to variable TYPE. However,
the AND logical operator (&) requires that the variable name TYPE also be
assigned the value forecast. Because the publisher variable name TYPE is not
assigned a value of forecast, the final condition is not met.

type=report & sales
Match. Two conditions must be met. The equals operator (=) requires that the
subscriber value and the publisher value that are assigned to variable name TYPE
match. In this example, the values match. Both assign the value report to the
variable name TYPE. The AND logical operator (&) also requires that the variable
name SALES match. Because both the publisher and the subscriber identify a
variable name sales with no assigned value, the final condition is also met.

For more information about name/value pairs, see “Specifying Name/Value Pairs” on
page 120.

Specifying Name/Value Pairs

Overview of Name/Value Pairs
Publishers can specify name/value pairs that describe the contents of the entire

package and of individual package items. With these descriptors, SAS channel
subscribers can use the Publishing Framework plug-in for SAS Management Console to
construct filters. For determining what packages get delivered to them in their entirety,
see “Filtering Packages and Package Entries” on page 116. Although subscribers can
filter at the package item level for the message queue only, a developer can write
retrieval programs that filter at both the package level and the package item level for
all transports.

The publisher can specify one or more space-separated name/value pairs for
“Specifying Name/Value Pairs for a Package Item” on page 121 and “Specifying Name/
Value Pairs for an Entire Package” on page 121 in the following forms:

� name

� name=value

� name="value"

� name="single value with spaces"

� name=(value)

� name=("value")

� name=(value1, "value 2",... valueN).

Publishing Packages � Specifying Name/Value Pairs for an Entire Package 121

Specifying Name/Value Pairs for a Package Item
Here is an example of specifying a single name/value pair for a package item:

type=dataset

The publisher identifies the item in the package as a data set.
To describe the package item with finer granularity, the publisher can specify

multiple name/value pairs. A space separates each name/value pair. Here is an
example of specifying multiple name/value pairs for a package item:

type=dataset hub=RDU

The publisher identifies the item in the package as a data set, which is relevant only
to the RDU hub.

Although a subscriber can filter at the package item level for a message queue only, a
developer can write a retrieval program that filters at the package item level for all
transports.

The publisher can specify name/value pairs when publishing a package item using
the Publish Package Interface. When creating a package entry, you assign name/value
pairs to the nameValue property in the INSERT_entry-type SAS CALL routine, where
values for entry-type are as follows:

� CATALOG. See “INSERT_CATALOG” on page 42.

� DATASET. See “INSERT_DATASET” on page 43.
� FDB. See “INSERT_FDB” on page 46.

� FILE. See “INSERT_FILE” on page 47.
� HTML. See “INSERT_HTML” on page 50.

� MDDB. See “INSERT_MDDB” on page 54.

� REF. See “INSERT_REF” on page 57.
� SQLVIEW. See “INSERT_SQLVIEW” on page 59.

� VIEWER. See “INSERT_VIEWER” on page 60.

The following code shows the assignment of name/value pairs to a data set package
entry.

libname = "HR";
memname = "capacityHistory";
description = "Flight Capacity History (Data)";
nameValue = "type=dataset hub=RDU";
call insert_dataset(pid, libname, memname,
description, nameValue, rc);

This nameValue property specifies a data set whose data is relevant only to the RDU
hub.

For complete details about programmatically specifying name/value pairs, see
“PACKAGE_BEGIN CALL” routine syntax on page 63.

Specifying Name/Value Pairs for an Entire Package
Here is an example of specifying a single name/value pair for an entire package:

market=US

The publisher identifies the entire package as relevant only to a US market.

122 Example: Publishing in the DATA Step � Chapter 5

To describe the contents of an entire package with finer granularity, the publisher
can specify multiple name/value pairs. A space separates each name/value pair. Here is
another example of specifying multiple name/value pairs for an entire package:

market=US type=report content=ticketsales
Quarter4 priority=high

This high-priority package contains one or more reports about fourth-quarter ticket
sales that is relevant only to a US market.

When both subscribers and developers of package-retrieval applications know about
package name/value pairs, they can construct and apply filters that control package
delivery. See “Filtering Packages and Package Entries” on page 116.

The publisher can specify name/value pairs when publishing the package by using
the Publish Package Interface. For the archive, message queue, and SAS channel
subscriber delivery types only, you assign name/value pairs to the nameValue property
in the PACKAGE_BEGIN CALL routine.

The following code shows the assignment of name/value pairs to an entire package:

packageID=0;
rc=0;
desc = "Nightly run.";
nameValue = "market=US type=report content=ticketsales
Quarter4 priority=high";
CALL PACKAGE_BEGIN(packageId, desc, nameValue, rc);

This nameValue property specifies a high-priority package that contains one or more
reports about fourth-quarter ticket sales that are relevant only to a US market.

For complete details about programmatically specifying name/value pairs for an
entire package, see “PACKAGE_BEGIN” on page 62.

Example: Publishing in the DATA Step

The following example builds a package, explicitly publishes to two queues, and then
publishes to a channel that is defined in the SAS Metadata Repository. This example
uses the DATA step, but easily can be changed to use the macro interface.

filename f ’c:\frame.html’;
filename c ’c:\contents.html’;
filename p ’c:\page.html’;
filename b ’c:\body.html’;
ods html frame = f contents =c(url="contents.html")

body = b(url="body.html") page=p(url="page.html");

/* run some data steps/procs to generate ODS output */
data b;

do i= 1 to 1000;
output;

end;
run;

data emp;
input fname $ lname $ ages state $ siblings;
cards;
Steph Lyons 32 NC 4
Richard Jones 40 NC 2

Publishing Packages � Example: Publishing in the DATA Step 123

Mary White 74 NC 1
Kai Burns 3 NC 1
Dakota Nelson 1 NC 1
Paul Black 79 NC 8
Digger Harris 5 NC 0
Coby Thomas 1 NC 0
Julie Mack 6 NC 1
Amy Gill 3 NC 1
Brian Meadows 16 HA 1
Richard Wills 17 HA 1
Diane Brown 48 CO 4
Pamela Smith 42 HA 4
Joe Thompson 44 WA 10
Michael Grant 23 IL 1
Michael Ford 31 NM 4
Ken Bush 28 NC 1
Brian Carter 27 NC 1
Laurie Clinton 32 NC 1
Kevin Anderson 33 NC 1
Steve Kennedy 33 NC 1
run;
quit;

proc print;run;
proc contents;run;
ods html close;

data _null_;
rc=0;a=’a’;b=’b’;c=’c’;d=’d’;
length filename $64 mimeType $24 fileType

$10 nameValue $100 description $100;

pid = 0;
nameValue="type=(test) coverage=(filtering,

transports)";
call package_begin(pid,"Main results package.",

nameValue, rc);
if (rc eq 0) then put ’Package begin successful.’;
else do;

msg = sysmsg();
put msg;

end;

gifpid=0;
call package_begin(gifpid,"Gif nested package.",’’, rc);
if (rc eq 0) then put ’Gif package begin successful.’;
else do;

msg = sysmsg();
put msg;

end;

nameValue="type=report, topic=census";
description="North Carolina residents.";
libname = "WORK";

124 Example: Publishing in the DATA Step � Chapter 5

memname="EMP";
call insert_dataset(pid, libname, memname,

description, nameValue, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Insert data set successful.’;

call insert_html(pid,"fileref:b", "",
"fileref:f", "",
"fileref:c", "",
"fileref:p", "", "ODS HTML Output",’’, rc);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;
else

put ’Insert html successful.’;

call insert_dataset(pid,"WORK","b",
"B dataset...",’’, rc);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;
else

put ’Insert data set successful’;

/* insert package (nested package */
call insert_package(pid, gifpid,rc);
if rc eq 0 then put ’Insert package successful’;
else do;

msg = sysmsg();
put msg;

end;

description = "Gif for marketing campaign.";
filename = "filename:campaign01.01.gif";
fileType = "Binary";
mimeType = "Image/Gif";
call insert_file(gifpid, filename, fileType,

mimeType, description,’’, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Insert file (gif) successful.’;

description = "Test VRML file.";
filename = "filename:test.wrl";
fileType = "text";

Publishing Packages � Example: Publishing in the DATA Step 125

mimeType = "model/vrml";
call insert_file(pid,filename, fileType,

mimeType, description,’’, rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Insert file (vrml) successful.’;

/* send package to the two queues that are specified */
properties=’’;
call package_publish(pid, "TO_QUEUE", rc, properties,

"MQSERIES://JSMITH.LOCAL", "MSMQ://JSMITH\transq");
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Publish successful’;

/* publish to the filter test channel
defined in the SAS Metadata Repository */

storeinfo=
"SAS-OMA://alpair01.sys.com:8561";

channel1= ’FilterTest1’;
properties=’channel_store, subject, metauser, metapass’;
subject="Filter Testing Results";
user = "myUserName";
password = "myPassword";
call package_publish(pid, "TO_SUBSCRIBERS", rc,

properties, storeinfo, subject, user, password,
channel1);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;
else

put ’Publish successful’;

call package_end(pid,rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Package end successful’;
run;
quit;

126 Example: Publishing in a Macro � Chapter 5

Example: Publishing in a Macro

The following example builds a package, publishes the package to a channel that is
defined in the SAS Metadata Repository, and then explicitly publishes to one queue.

This example uses macro variables rather than the DATA step, which allows you the
flexibility to use CALL routines throughout your code, as other processing completes.

This example illustrates how publish CALL routines are used with other SAS
statements.

%macro chkrc(function);
%if &rc = 0 %then %put "NOTE: &function succeeded.";
%else %do;

%let msg= %sysfunc(sysmsg());
%put &function failed - &msg

%end;
%mend;

%let pid = 0;
%let nameValue=type=(test) coverage=(filtering,

transports);
%let rc = 0;
%let pid = 0;
%let description=main results package;
%syscall package_begin(pid,description, nameValue, rc);
%chkrc(Package Begin);

%let gifpid=0;
%let description=Gif nested package. ;
%let nameValue=;
%syscall package_begin(gifpid, description,

nameValue, rc);
%chkrc(Package Begin);

filename f ’c:\frame.html’;
filename c ’c:\contents.html’;
filename p ’c:\page.html’;
filename b ’c:\body.html’;
ods html frame = f

contents =c(url="contents.html")
body = b(url="body.html")

page=p(url="page.html");

/* run some data steps/procs to generate ODS output */
data b;

do i= 1 to 1000;
output;

end;run;

%let nameValue=;
%let description= B, testing dataset;
%let libname = WORK;
%let memname= B;
%syscall insert_dataset(pid,libname , memname,

description, nameValue, rc);

Publishing Packages � Example: Publishing in a Macro 127

%chkrc(Insert Dataset);

data emp;
input fname $ lname $ ages state $ siblings;
cards;
Steph Jones 32 NC 4
Richard Long 40 NC 2
Mary Robins 74 NC 1
Kai Mack 3 NC 1
Dakota Wills 1 NC 1
Paul Thomas 79 NC 8
Digger Johnson 5 NC 0
Coby Gregson 1 NC 0
Julie Thomson 6 NC 1
Amy Billins 3 NC 1
Brian Gere 16 HA 1
Richard Carter 17 HA 1
Diane Ford 48 CO 4
Pamela Aarons 42 HA 4
Joe Ashford 44 WA 10
Michael Clark 23 IL 1
Michael Harris 31 NM 4
Ken Porter 28 NC 1
Brian Harrison 27 NC 1
Laurie Smith 32 NC 1
Kevin Black 33 NC 1
Steve Jackson 33 NC 1
run;
quit;

%let nameValue= type=report, topic=census;
%let description=North Carolina residents.;
%let libname = WORK;
%let memname= EMP;
%syscall insert_dataset(pid, libname, memname,

description, nameValue, rc);
%chkrc(Insert Dataset);

proc print;run;
proc contents;run;
ods html close;

%let body=fileref:b;
%let frame=fileref:f;
%let contents=fileref:c;
%let pages=fileref:p;
%let description=Generated ODS output.;
%let curl="contents.html";
%let burl = "body.html";
%let furl = "frame.html";
%let purl = "page.html";
%syscall insert_html(pid, body, burl, frame,

frameurl, contents, curl, pages, purl,
description, nameValue, rc);

128 Example: Publishing with the FTP Access Method � Chapter 5

%chkrc(Insert Html);

/* insert nested package */
%syscall insert_package(pid, gifpid,rc);
%chkrc(Insert Package);

%let giffile=filename:Boeing747.gif;
%let description=New 747 paint scheme.;
%let filetype = text;
%let mimetype = %quote(Image/gif);
%syscall insert_file(gifpid, giffile, filetype,

mimetype, description, nameValue, rc);
%chkrc(Insert File);

/* publish to the filter test channel
defined in the SAS Metadata Repository */

%let storeinfo=
"SAS-OMA://alpair01.sys.com:8561";

%let channel1=FilterTest;
%let properties=’channel_store, subject, metauser, metapass’;
%let subject=Filter Testing Results;
%let user = myUserName;
%let password = myPassword;
%let pubType=to_subscribers;
call package_publish(pid, "TO_SUBSCRIBERS", rc,

properties, storeinfo, subject, user, password,
channel1);

%chkrc(publish package);

/* publish one queue */
%let property=;
%let pubType = to_queue;
%let queueName=mqseries://JSMITH:LOCAL;
%syscall package_publish(pid, pubType,

rc, property, queueName);
%chkrc(publish package);

%syscall package_end(pid,rc);
%chkrc(Package End);

run;
quit;

Example: Publishing with the FTP Access Method

The following example uses the FTP access method to put ODS-generated output
onto the server jsmith.pc.alpair.com in the Windows operating environment. Note that
the INSERT_REFERENCE CALL routine is used so that only references to the newly
created HTML files are inserted into the package. Subscribers using the EMAIL
transport engine receive an e-mail message, with an embedded link to the HTML files
within it.

Publishing Packages � Example: Publishing with the FTP Access Method 129

filename myfram ftp ’odsftpf.htm’
host=’jsmith.pc.alpair.com’
user=’anonymous’
pass=’smi96Gth’;

filename mybody ftp ’odsftpb.htm’
host=’jsmith.pc.alpair.com’
user=’anonymous’
pass=’smi96Gth’;

filename mypage ftp ’odsftpp.htm’
host=’jsmith.pc.alpair.com’
user=’anonymous’
pass=’smi96Gth’;

filename mycont ftp ’odsftpc.htm’
host=’jsmith.pc.alpair.com’
user=’anonymous’
pass=’smi96Gth’;

ods listing close;
ods html frame=myfram body=mybody page=mypage

contents=mycont;

title ’ODS HTML Generation to PC Files via
FTP Access Method’;
data retail;

set alpairhelp.retail;
decade = floor(year/10) * 10;
run;

proc format;
/* maps foreground colors for total sales */
value salecol

low-1500 = ’red’
1500-2000 = ’yellow’
2000-high = ’green’;

/* gives the row labels some color */
value decbg

1980 = ’#00aaaa’
1990 = ’#00cccc’;

/* gives the decade flyovers */
value decfly

1980 = ’Me Me Me Generation’
1990 = ’Kinder Gentler Generation’;

run;

proc tabulate data=retail;

class year decade;
classlev decade / s={background=decbg.

flyover=decfly.};

130 Example: Publishing with the FTP Access Method � Chapter 5

classlev year / s=<parent>;

var sales;
table decade * year ,

sales *
(sum * f=dollar12. *

{style={foreground=salecol. font_weight=bold}}
median * f=dollar12. * {style={foreground=black}}

);
run;

data a;
do j=1 to 5;
do k=1 to 5;
do i = 1 to 10;

x=ranuni(i);
output;end; end; end;

run;

proc sort data=a; by j;
run;

proc sort data=a; by j k;
run;

proc univariate; by j k; var i;
run;

title1;
quit;

ods html close;

data _null_;
length desc $ 1000;
rc=0;a=’a’;b=’b’;c=’c’;d=’d’;

pid = 0;

call package_begin(pid,"Weekly Activities Report",
’Type=Report’, rc);

if (rc eq 0) then put ’Package begin successful.’;
else do;

msg = sysmsg();
put msg;

end;

desc="Retail sales information and miscellaneous
statistics viewed at :";

nv="";
call insert_ref(pid, "HTML",

"http://jsmith.pc.alpair.com/odsftpf.htm",
desc, nv, rc);

if rc ne 0 then do;

Publishing Packages � Example: Publishing with the FTP Access Method 131

msg = sysmsg();
put msg;

end;
else

put ’Insert reference ok’;

storeinfo =
"SAS-OMA://alpsrv03.sys.com:8561";
channel1= ’emailonly’;

subject = "Monday’s Update";
properties = ’subject, channel_store, metauser, metapass’;
user = "myUserName";
password = "myPassword";
call package_publish(pid, "TO_SUBSCRIBERS", rc,

properties, subject, storeinfo, user, password,
channel1);

if rc ne 0 then do;
msg = sysmsg();
put msg;

end;
else

put ’Publish successful’;

call package_end(pid,rc);
if rc ne 0 then do;

msg = sysmsg();
put msg;

end;
else

put ’Package term successful’;

run;
quit;

132

133

C H A P T E R

6
Generating and Publishing
Events

What Is an Event? 133
Overview of Generating and Publishing Events 134

Using Explicit Event Publication 134

Using Implicit Event Publication 134

XML Specifications for Events 134

Using the Publish Event Interface 134
Dictionary 135

XML Specification for Generic Events 147

XML Specification for SASPackage Events 148

Sample Code 148

Header Elements 151

Body Elements 151
Examples of Generated Events 152

Example 1: Explicitly Generated Event 152

Example 2: Implicitly Published Event 153

Implicitly Published Event 154

What Is an Event?

You can use the Publishing Framework to generate and publish events. In this
context, an event is an action or occurrence that can be detected by a computer program.
The Publishing Framework creates events by using XML specifications for events that
contain the name of the event, a set of associated pro perties, and a message body.

The Publishing Framework provides two methods for publishing an event:

explicit event publication
enables a SAS program to generate any type of event and publish it using HTTP,
message queuing, or a publication channel.

implicit event publication
enables a channel’s subscribers to be designated as event subscribers. The
Publishing Framework then automatically notifies event subscribers whenever
new information is published to the channel.

134 Overview of Generating and Publishing Events � Chapter 6

Overview of Generating and Publishing Events

Using Explicit Event Publication
Explicit event publication enables a SAS program to generate an event of any kind

and publish it explicitly. First, the event is defined by using the CALL routines
EVENT_BEGIN and EVENT_BODY. The CALL routine EVENT_PUBLISH is used to
generate the event and publish it by using HTTP, message queuing, or a publication
channel. The event is generated by using an XML specification for generic events. The
CALL routine EVENT_END is then used to free all resources associated with the event.

Note: The Publishing Framework does not currently support event retrieval.
However, custom programs can be developed to provide this functionality. �

To collect and process events that the Publishing Framework generates, you can
develop customized programs by using the Event Broker service. The Event Broker is
one of the Foundation Services that is by provided with SAS Integration Technologies.

Using Implicit Event Publication
The PACKAGE_PUBLISH CALL routine automatically generates a SASPackage

event whenever a package is published to a channel. The SASPackage event is
captured as a well-formed XML document that describes the package. For details, see
the “XML Specification for SASPackage Events” on page 148.

Subscribers to the channel who are designated as event subscribers then receive the
event via their chosen transport methods. This feature enables subscribers to be aware
that new information has been published to the channel. To designate a subscriber as an
event subscriber, use the Publishing Framework plug-in for SAS Management Console.

To collect and process events that the Publishing Framework generates, you can
develop customized programs by using the Event Broker service. The Event Broker is
one of the Foundation Services that is provided with SAS Integration Technologies.

XML Specifications for Events
The Publishing Framework uses well-formed XML specifications to generate events.

For detailed information, see the following topics:

� “XML Specification for Generic Events” on page 147, which is used for explicit
event publishing

� “XML Specification for SASPackage Events” on page 148, which is used for
implicit event publishing

� “Examples of Generated Events” on page 152, which uses both of these
specifications

Using the Publish Event Interface
The Publishing Framework supports the generation and publication of events.

Explicit event publication enables a SAS program to generate an event of any kind and
publish it explicitly.

Generating and Publishing Events � EVENT_BEGIN 135

First, you use the following CALL routines to define the event:

� “EVENT_BEGIN” on page 135
� “EVENT_BODY” on page 138

Once the event is defined, you can do the following:

� Use the EVENT_PUBLISH CALL routine to generate an event that can be
published by using HTTP, message queuing, or a publication channel. The event is
generated by using an XML specification that contains the name of the event, a set
of associated properties, and a message body. For detailed information, see the
“XML Specification for Generic Events” on page 147 and the “Examples of
Generated Events” on page 152.

� Use the EVENT_END CALL routine to free all resources that are associated with
the event.

Note: The Publishing Framework does not currently support event retrieval. �

To collect and process events that the Publishing Framework generates, you can
develop customized programs by using the Event Broker service. The Event Broker is
one of the Platform Services that is provided with SAS Integration Technologies.

The Publishing Framework also supports implicit event publication. This feature
enables a channel’s subscribers to be designated as event subscribers. The Publishing
Framework then automatically notifies event subscribers whenever new information is
published to the channel.

Dictionary

EVENT_BEGIN

Initializes an event and returns an event identifier that uniquely identifies it

Syntax
CALL EVENT_BEGIN(eventId, name, rc<,properties, propValue1, …propValueN>);

Arguments

eventId
identifies the new event.
Type: Numeric

Direction: Output

name
identifies a user-specified name of the event. The name should correspond to the
name of an event that is defined in the Event Broker Service Process Flow

136 EVENT_BEGIN � Chapter 6

Configuration. For more information, see com.sas.services.events.broker in the
Foundation Services class documentation.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Input

properties
identifies a comma-separated list of optional property names. There are two types of
properties: well-known and user-defined. EVENT CALL routines recognize and
process well-known properties. Some of the well-known properties are used to build
the header portion of the event. Other well-known properties are used by the CALL
routines to manage results that are returned as a result of the event execution.
Well-known properties are as follows:

� DOMAIN
� IDENTITY
� PASSWORD
� PRIORITY
� RESPONSE
� RESULT_URL
� SENT_FROM
� USER

Type: Character
Direction: Input

In addition to the well-known properties, you can also specify user-defined properties.
The user-defined properties are passed to the Event Broker, which passes these
properties to the processing nodes, as needed. If a user-defined property is specified, the
property value can be any user-specified character string.

propValue1, …propValueN
specifies a value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. A value
must be specified for each property that is specified in the properties parameter.
Valid property values are defined as follows:

DOMAIN
recognized and processed by the Event Broker, it is the domain for authenticating
the user ID and password that are associated with a process flow. If this property
is not specified, then the default domain that is configured with the UserService is
used.

IDENTITY
recognized and processed by the Event Broker, it uniquely identifies the message.
It enables the client to distinguish among possible responses.

PASSWORD
recognized and processed by the Event Broker, it is the password that is associated
with a process flow. For example, if a node in your process flow communicates with
IOM, then PASSWORD can be used to authenticate the user who is attempting to
access the server.

Generating and Publishing Events � EVENT_BEGIN 137

PRIORITY
recognized and processed by the Event Broker, it specifies the Java priority. The
default is 10.

RESPONSE
recognized and processed by the Event Broker, it identifies whether the Event
Broker sends an acknowledgment or a result of the event execution. RESPONSE
is not supported when publishing the event to subscribers. It is supported only
when the event is published to an explicit delivery transport, such as to a queue or
to an HTTP server. Valid values are as follows:

ACK
specifies that an acknowledgment message will be sent.

NONE
specifies that no response will be sent.

RESULT
specifies that a complete result set will be sent.

RESULT_URL
recognized and processed by the CALL routines, it manages results that are
returned. If the RESPONSE property is specified with a value of RESULT or
ACK, then the event execution returns results or an acknowledgment message,
respectively. If a result or acknowledgment is expected, then the RESULT_URL
property must be specified. This property is a URL that identifies where to write
the results to. At this time, only a URL is supported.

SENT_FROM
recognized and processed by the Event Broker, it is a user-specified text string
that identifies where the event was sent from. This property is used by the Event
Broker to log the origination of the event message.

USER
recognized and processed by the Event Broker, it is the user ID that is associated
with a process flow. For example, if a node in your process flow communicates with
IOM, then USER can be used to authenticate the user who is attempting to access
the server.

Type: Character or Numeric

Direction: Input

Examples

Example 1: The following example initializes an event and returns the event
identifier in eventId. No properties are specified.

eventId=0;
rc=0;
name = "startEvent";
CALL EVENT_BEGIN(eventId, name, rc);

Example 2: The following example sets two user-defined properties. The
user-defined property COMPANY has a value of Alphalite Airways, Inc. The
user-defined property YEAR has a value of 1993.

name = "Salary";
prop = "Company, Year";
value1 = "Alphalite Airways, Inc";

138 EVENT_BODY � Chapter 6

value2 = "1993";
CALL EVENT_BEGIN(eventId, name,

rc, prop, value1, value2);

Example 3: The following example sets the well-known property PRIORITY.

name = "Sales Figures";
prop = "Priority"
priority = "10";
CALL EVENT_BEGIN(eventId, name,

rc, prop, priority);

Example 4: The following example sets a combination of well-known and
user-defined properties. It specifies the well-known property SENT_FROM and a
user-defined property STATE.

name = "Regional Figures";
prop = "sent_From, State";
from = "d1234.us.apex.com";
state = "NC";
CALL EVENT_BEGIN(eventId, name,

rc, prop, from, state);

Example 5: The following example sets the RESPONSE property to "Result" because
results are expected from the event execution. Because the RESPONSE property is
specified, the destination for the response must also be specified. Therefore, the
RESULT_URL property must also be set to indicate where the response should be
written to.

name = "Regional Figures";
prop = "Response, Result_Url";
resp = "Result";
furl = "file:/c:/testsrc/output.xml");
CALL EVENT_BEGIN(eventId, name,

rc, prop, resp, furl);

EVENT_BODY

Sets the body of the event message, which should be specified as a file that contains an XML
document fragment

Note: The EVENT_BODY CALL routine can be omitted if the event body is
intended to be empty. �

Syntax
CALL EVENT_BODY(eventId, filename, rc);

Generating and Publishing Events � EVENT_BODY 139

Arguments

eventId
identifies the event.

Type: Numeric

Direction: Output

filename
identifies the name of the file that contains the XML fragment that constitutes the
event message. The filename parameter can be specified as either:

� FILENAME: external_filename

� FILEREF: sas_fileref

Type: Character

Direction: Input

rc
identifies the return code.

Type: Numeric

Direction: Input

Examples

Example 1: The following example uses an XML fragment that might be defined as
the body. This XML fragment is located in the file that is specified by FILENAME or
FILEREF in the CALL routine.

<Company name=’Alphalite Airways’>
<Sales region=’South’>

<Projection>1000000</Projection>
<Actual>1000050</Actual>

</Sales>
<Sales region=’West’>
<Projection>750000</Projection>
<Actual>685000</Actual>

</Sales>
<Sales region=’North’>

<Projection>500000</Projection>
<Actual>600000</Actual>

</Sales>
<Sales region=’East’>

<Projection>1000000</Projection>
<Actual>950000</Actual>

</Sales>
</Company>

Example 2: The following example uses FILENAME to specify the name of the file
that contains the body portion of the event.

fname = "filename:c:\eventBody.xml";
CALL EVENT_BODY(eventId, fname, rc);

140 EVENT_PUBLISH (Publish Event to HTTP) � Chapter 6

EVENT_PUBLISH (Publish Event to HTTP)

Publishes an event using the HTTP protocol

Syntax
CALL EVENT_PUBLISH(eventId, publishType, rc, properties, <propValue1,

…propValueN> url <,url2, …urlN>);

Arguments

eventID
identifies the event that is to be published.

Type: Numeric

Direction: Input

publishType
indicates how to publish the event. To publish the event by using the HTTP protocol,
specify a publishType of TO_HTTP.

Type: Character

Direction: Input

rc
receives a return code.

Type: Numeric

Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify double quotation marks to indicate that no
properties are to be applied:

� HTTP_PASSWORD

� HTTP_PROXY_URL

� HTTP_USER

Type: Character

Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. A value
must be specified for each property that is specified in the properties parameter.
Valid property values are defined as follows:

HTTP_PASSWORD
specifies the password that is needed to bind to the network resources.

HTTP_PROXY_URL
specifies the URL of the proxy server.

Generating and Publishing Events � EVENT_PUBLISH (Publish Event to Queues) 141

HTTP_USER
specifies the user ID that is needed to bind to the network resources.

Type: Character or Numeric
Direction: Input

url <,url2, …urlN>
identifies the URL(s) that will be used to publish the event.
Type: Character
Direction: Input

Details
If you specify multiple URLs, and if you specify the RESPONSE property in the
EVENT_BEGIN CALL routine, then the response will be received and processed only
for the URL that you specified first. The event is published to the first URL, and the
response is written to the RESULT_URL location. For all remaining URLs, the event
will be published, but the EVENT_PUBLISH CALL routine will not write the response
to the RESULT_URL location. To process results from multiple URLs, issue
EVENT_PUBLISH for each URL. Executing an EVENT_PUBLISH for each URL
creates an explicit RESULT_URL for each response.

Example

The following example publishes the event to the network resource by using the
HTTP protocol. HTTP URL identifies the machine and port to use.

pubType = "TO_HTTP";
url = "http://myhost.com:40";
CALL EVENT_PUBLISH(eventId,

pubType, rc, ’’, url);

EVENT_PUBLISH (Publish Event to Queues)

Publishes an event to one or more message queues. After EVENT_PUBLISH creates the event and
delivers it to a message queue, the Event Broker then retrieves the event and distributes it to
other applications. EVENT_PUBLISH supports event delivery to the IBM MQSeries and MQSeries-C
message queues, which are JMS compliant.

Syntax
CALL EVENT_PUBLISH(eventId, publishType, rc, properties, <propValue1,

…propValueN>, queue1 < ,queue2, …queueN>);

142 EVENT_PUBLISH (Publish Event to Queues) � Chapter 6

Arguments

eventID
specifies the event that is to be published.
Type: Numeric
Direction: Input

publishType
specifies how to publish the event. To publish the event by using the queue
transport, specify a publishType of TO_QUEUE.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
identifies a comma-separated list of optional property names. Specify any of the
following property names, or specify double quotation marks to indicate that no
properties are to be applied:

� QUEUE_TIMEOUT
� RESPONSE_QUEUE
� SELECTOR

Type: Character
Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. The order of the property values
must match the order of the property names in the properties parameter. A value
must be specified for each property that is specified in the properties parameter.
Valid property values are defined as follows:

QUEUE_TIMEOUT
specifies the poll timeout value in seconds. If the event expects a result or
acknowledgment response, then the response queue identifies the queue to receive
the response. By default, the EVENT_PUBLISH CALL routine continues to poll
until the response is received or until a 15-second timeout occurs. You can override
the default timeout value by specifying an explicit queue timeout value. The value
must be greater than zero.

RESPONSE_QUEUE
used by the Event Broker, it specifies the name of a queue to receive the result or
an acknowledgment. After the event is published, the queue is queried for the
response, which is written to a target file that is specified by the RESULT_URL
property value.

SELECTOR
specified on the CALL routine, it identifies the name/value properties to define on
the event messages that are published. These properties can be used by the Event
Broker to determine what messages should be removed from the queue. The Event
Broker can be configured so that it removes only messages from the queue that
match particular name/value selectors. If the Event Broker configures selectors,

Generating and Publishing Events � EVENT_PUBLISH (Publish Event to Queues) 143

then only messages that have properties that match the configured selector are
delivered to the Event Broker. Other messages remain on the queue.

Type: Character or Numeric

Direction: Input

queue1 < ,queue2, …queueN>
identifies the queue or queues that are used to publish the event. IBM MQSeries
queues are supported.

MQSERIES://queueManager:queueName

MQSERIES-C://queueManager:queueName

Where

queueManager
specifies the name of the queue manager.

queueName
specifies the name of the queue.

Type: Character

Direction: Input

Details
If you specify multiple queues, and if you specify the RESPONSE property in the
EVENT_BEGIN CALL routine, then the response is received and processed only for the
queue that you specified first. The event is published to the first queue, and the
response is written to the RESULT_URL location. For all remaining queues, the event
is published, but the EVENT_PUBLISH CALL routine does not query the response
queue for a result. To process results from multiple queues, issue EVENT_PUBLISH
for each queue. Executing an EVENT_PUBLISH for each queue creates an explicit
RESULT_URL for each response.

Examples

Example 1: The following example publishes the event to one queue and does not
apply any additional queue properties.

pubType = "TO_QUEUE";
firstQ = "MQSERIES://PCONE:MYQ";
Call EVENT_PUBLISH(eventId,

pubType, rc, ’’, firstQ);

Example 2: The following example publishes the event to one queue. Because a
response is expected, the RESPONSE_QUEUE property and a timeout value of 30
seconds are specified. If the response is not received in 30 seconds, a timeout occurs.

pubType = "TO_QUEUE";
firstQ = "MQSERIES://PCONE:MYQ";
prop="RESPONSE_QUEUE, QUEUE_TIMEOUT";
respQ = "PCONE:MYQ";
timeout = "30";
Call EVENT_PUBLISH(eventId, pubType, rc,

prop, respQ, timeout, firstQ);

144 EVENT_PUBLISH (Publish Event to Subscribers) � Chapter 6

Example 3: The following example publishes the event to one queue. The
SELECTOR property is used in this example to publish only event messages that are
fourth quarter reports from the HR department. The value of the SELECTOR property
should be one or more name/value pairs.

pubType = "TO_QUEUE";
firstQ = "MQSERIES://PCONE:MYQ";
prop="SELECTOR";
propValue="type=report quarter=four dept=hr";
qName="MQSERIES://QMGR:LocalQ";
Call event_publish(pid, "TO_QUEUE",

rc, prop, propValue, qName);

EVENT_PUBLISH (Publish Event to Subscribers)

Publishes an event to subscribers of the specified channel

Syntax
CALL EVENT_PUBLISH(eventId, publishType, rc,properties, <propValue1,

…propValueN>, channel);

Arguments

eventID
specifies the event that is to be published.
Type: Numeric
Direction: Input

publishType
indicates how to publish the event. To publish an event to the subscribers of a
channel, specify a publishType value of TO_SUBSCRIBERS.
Type: Character
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

properties
specifies the following property name, or specifies double quotation marks to indicate
that the property is not to be applied:

� CHANNEL_STORE
� FOLDER_PATH
� SELECTOR

Type: Character

Generating and Publishing Events � EVENT_PUBLISH (Publish Event to Subscribers) 145

Direction: Input

propValue1, …propValueN
specifies one value for each specified property name. Valid property values are
defined as follows:

CHANNEL_STORE
specifies a character string that indicates the SAS Metadata Repository that
contains the channel and subscriber metadata. If channel definitions and
subscriber definitions are maintained in a SAS Metadata Repository, then the
syntax for the CHANNEL_STORE property is as follows:

SAS-OMA://hostname[:port/reposname=repositoryName;

Where:

hostname
name of SAS Metadata Server that contains channel information. HOSTNAME
must be a DNS name or IP address of a host that is running a SAS Metadata
Server.

port
TCP port of the SAS Metadata Server. If no port is specified, then 8561 is used
as a default.

reposname
is the name of the repository.

Applies to this transport: subscriber.)

FOLDER_PATH
specifies the folder path for the channel of interest. This value is used to search
for channels with specific names that exist in specific folder locations. When a user
defines a channel via SAS Management Console, all channels by default exist in
the /Channels folder. SAS Management Console allows the user to define
multiple folders and subfolders. All FOLDER_PATH properties must start with
/Channels and then can identify subfolders if necessary. For example, a channel
named "Sales" might be defined in two different folders:

/Channels/Reports/US/

or

/Channels/Reports/Europe/

SELECTOR
specified on the CALL routine, it identifies the name/value properties to define on
the event messages that are published. These properties can be used by the Event
Broker to determine what messages should be removed from the queue. The Event
Broker can be configured so that it removes only messages from the queue that
match particular name/value selectors. If the Event Broker configures selectors,
then only messages that have properties that match the configured selector are
delivered to the Event Broker. Other messages remain on the queue.

Type: Character or Numeric

Direction: Input

channel
specifies the name of the channel where the event will be published.

Type: Character

Direction: Input

146 EVENT_END � Chapter 6

Details
When an event is published to a channel, the event is published to each subscriber of
the channel. Each subscriber definition specifies the event publishing transport method
to use for the subscriber. Valid transports are HTTP and message queues.

PUBLISH_EVENT ensures that the event is published to each subscriber only once,
thus eliminating any duplication. For the message queue transport, the name of the
queue is used as the key to enforce uniqueness. For an HTTP server transport, the
URL is used as the key to enforce uniqueness.

Publishing an event to subscribers does not support the RESPONSE property.

Example

The following example publishes the event to all subscribers of the WeeklyPayroll
channel:

channelStore =
"SAS-OMA://alpair03.sys.com:4059";

channelName = "WeeklyPayroll";
prop = "CHANNEL_STORE,METAUSER,METAPASS";
user = "myUserName";
password = "myPassword";
CALL EVENT_PUBLISH(eventId, "TO_SUBSCRIBERS",

rc, prop, channelStore, user, password, channelName);

EVENT_END

Frees all resources that are associated with the specified event

Syntax
CALL EVENT_END(eventId, rc);

Arguments

eventId
identifies the event that is to be published.
Type: Numeric
Direction: Input

rc
receives a return code.
Type: Numeric
Direction: Output

Details
Freeing resources closes all queues and files that are associated with the specified event.

Generating and Publishing Events � XML Specification for Generic Events 147

Example

The following example frees all resources that are associated with the specified event:

CALL EVENT_END(eventId,rc);

XML Specification for Generic Events

Events are published by using XML documents. The following XML specification is
used for generic events, that is, events that are generated explicitly by using the event
publishing CALL routines.

The EVENT_PUBLISH CALL routine automatically generates the header portion of
the document by using information that you provide in the EVENT_BEGIN CALL
routine properties. It creates the body portion of the document using information that
you provide in the EVENT_BODY CALL routine properties.

<?xml version="1.0" encoding="UTF-8"?>
<sas-event:Event

xmlns:sas-event=
"http://support.sas.com/xml/namespace/services.events-1.1"
sas-event:name="event_name">

<sas-event:Header>
<sas-event:Version>1.0</Version>
<sas-event:Identity>guid</sas-event:Identity>
<sas-event:Credentials

sas-event:name="userid"
sas-event:password="password"
sas-event:domain="domain"/>

<sas-event:Priority>priority</sas-event:Priority>
<sas-event:SentFrom>originator_description</sas-event:SentFrom>
<sas-event:SentAt>timestamp</sas-event:SentAt>
<sas-event:Response

sas-event:type="none|ack|result"/>
<sas-event:Properties>

<PropertyName>property_value</PropertyName>
....
</sas-event:Properties>

</sas-event:Header>
<sas-event:Body>

body content
...

</sas-event:Body>
</sas-event:Event>

The following tables explains the elements:

Table 6.1 Elements

Element Description

Event Specifies the root element that names the event. The sas-event
namespace is defined in this element.

Header Begins the event header properties.

148 XML Specification for SASPackage Events � Chapter 6

Element Description

Version Specifies the version of the event message that is required to
support multiple specifications as the service matures.

Identity Specifies the unique identifier. Responses echo this identifier so
that the originator can use it for correlation.

Credentials Specifies the credentials that are used for authentication and
authorization checks. Events that are defined at a broker can be
configured so that the sender of the event must be authenticated
and authorized to run the event. A configured event can also
specify a security context under which it should be run.

Priority Is mapped to a Java thread priority so that process flows and
listener dispatchers can be run at different priority levels.

SentFrom Specifies the description of event originator that is used for
logging purposes if available.

SentAt Specifies the time that the event was sent. This information is
echoed to the sender along with completion times. All times
should be formatted according to the International Standard
ISO 8601 standard. A brief summary is available on the W3C
Web site at: http://www.w3.org/TR/NOTE-datetime.html.

Response Specifies the type of response that the sender of an event wants.
The supported types are no response (NONE), acknowledgment
(ACK), and request/response (RESULT). Both NONE and ACK
act as broadcast events.

Properties Specifies user-defined properties that the originator can send to
be used during event execution.

PropertyName Specifies the value assigned to the property called
PropertyName.

Body Specifies the actual message content to be acted upon.

XML Specification for SASPackage Events

Sample Code
Implicitly generated events (SASPackage events) are published by using well-formed

XML documents whose details are generated as a result of the package publishing
process.

In the following example, the published package contains each entry type: SAS
catalog, SAS data set, external file, FDB, MDDB, HTML file, file reference, SQL view,
viewer, and nested package.

<?xml version="1.0" encoding="UTF-8">
<sas-event:Event

xmlns:sas-event=
"http://support.sas.com/xml/namespace/services.events-1.1"
sas-event:name="SASPackage.ChannelName">
<sas-event:Header>

Generating and Publishing Events � Sample Code 149

<sas-event:Version>1.0</sas-event:Version>
<sas-event:SentAt>timestamp</sas-event:SentAt>

</sas-event:Header>
<sas-event:Body>

<sas-publish:Package
xmlns:sas-publish=
"http://support.sas.com/xml/namespace/services.publish-1.1"
xmlns:userSpecPkgNamespace="userSpecPkgNamespaceValue"
sas-publish:version="1.0"
sas-publish:packageUrl="URL to saved package"
sas-publish:description="package description"
sas-publish:abstract="package abstract"
sas-publish:channel="channel on which the package was published"

userSpecName="value">
<sas-publish:Entries>

<sas-publish:Entry sas-publish:type="catalog"
sas-publish:description="description"
userSpecName="value">
<sas-publish:Catalog

sas-publish:name="member name"/>
</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="dataset"

sas-publish:description="description"
userSpecName="value">
<sas-publish:Dataset

sas-publish:name="member name"/>
</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="fdb"

sas-publish:description="description"
userSpecName="value">
<sas-publish:FDB

sas-publish:name="member name"/>
</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="file"

sas-publish:description="description"
userSpecName="value">
<sas-publish:File

sas-publish:type="text or binary"
sas-publish:name="file name"
sas-publish:mimetype="MIME type"/>

</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="html"

sas-publish:description="description"
userSpecName="value">
<sas-publish:HTML

sas-publish:type="body, frame, contents or page"
sas-publish:name="file name"
sas-publish:url="URL"/>

<sas-publish:Companion
sas-publish:name="file name"
sas-publish:url="URL"
sas-publish:mimetype="MIME type"/>

</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="mddb"

150 Sample Code � Chapter 6

sas-publish:description="description"
userSpecName="value">
<sas-publish:MDDB

sas-publish:name="member name"/>
</sas-publish:Entry>
<sas-publish:Entry

sas-publish:type="reference"
sas-publish:description="description"
userSpecName="value">
<sas-publish:Reference

sas-publish:type="html or url"
sas-publish:reference="reference"/>

</sas-publish:Entry>
<sas-publish:Entry

sas-publish:type="sqlview"
sas-publish:description="description"
userSpecName="value">
<sas-publish:SQLview

sas-publish:name="member name"/>
</sas-publish:Entry>
<sas-publish:Entry

sas-publish:type="viewer"
sas-publish:description="description"
userSpecName="value">
<sas-publish:Viewer

sas-publish:type="text or html"
sas-publish:name="file name"
sas-publish:mimetype="MIME type"/>

</sas-publish:Entry>
<sas-publish:Entry

sas-publish:type="nestedpackage"
sas-publish:description="description"
userSpecName="value">
<sas-publish:Package

xmlns:userSpecPackageNamespace=
"userSpecPackageNamespaceValue"
sas-publish:description="package description"
sas-publish:abstract="package abstract"
userSpecName="value" >
<sas-publish:Entries>

<sas-publish:Entry
sas-publish:type="entry type"
sas-publish:description="description"
userSpecName="value">

</sas-publish:Entry>
.
.

additional Entry elements for this nested package
.
.

</sas-publish:Entries>
</sas-publish:Package>

</sas-publish:Entry>
</sas-publish:Entries/>

Generating and Publishing Events � Body Elements 151

</sas-publish:Package>
</sas-event:Body>

</sas-event:Event>

Header Elements
The header elements are standard event elements. The event name is specified as:

"SASPackage.ChannelName"

The following tables explains the header elements:

Table 6.2 Header Elements

Element Description

Version Specifies the version of the event message.

SentAt Is a timestamp that specifies when the event was sent.

Body Elements
The following tables explains the body elements:

Table 6.3 Body Elements

Element Description

Package Begins the package definition. The following attributes are supported for
this element:

version
the version of SASPackage.

packageUrl
URL to saved package.

user-specified
one or more user-specified name/value pairs.

description
the package description.

abstract
the package abstract.

channel
the channel that the package was published to.

packageUrl
a URL to the saved package. Packages are saved to an archive or to
a WebDAV server.

The sas-publish namespace is defined in this element. Additionally, other
user-specified namespaces can be declared in this element via the xmlns:
prefix. These will be included if the user specified the NAMESPACES
property when creating the package.

Entries Defines the entries that are contained within the package.

152 Examples of Generated Events � Chapter 6

Element Description

Entry Defines an individual package entry. This element contains the required
attribute, type. This attribute identifies the type of entry. Valid types
include catalog, dataset, fdb, file, html, mddb, reference, sqlview, viewer,
and nestedpackage.

If the entry description was specified at publish time, the description
attribute will be included. If a name/value is specified for the entry, one or
more user-specified name/value attributes are included in the element.
The name portion of the name/value specification is provided as the
attribute, and the value portion is provided as the attribute value.

Catalog Defines an individual catalog entry. The required name attribute provides
the catalog member name.

Dataset Defines an individual data set entry. The required name attribute
provides the data set member name.

FDB Defines an individual FDB entry. The required name attribute provides
the FDB member name.

File Defines an individual file entry. The name and type attributes are
required. They provide the filename and the file type. Valid file types
include text or binary. The user-specified MIME type of the file entry will
be provided in the mimetype attribute.

HTML Defines an individual HTML entry. The required type and name attributes
identify the type of HTML file and its filename. Valid types include body,
frame, contents, and page. The url attribute identifies the URL.

Companion Defines an individual companion file in an HTML entry. The required
name attribute identifies name of the file. The url and mimetype
attributes can be provided. They identify the URL and the MIME type of
the file, respectively.

MDDB Defines an individual MDDB entry. The required name attribute provides
the MDDB member name.

Reference Defines an individual reference entry. The required type attribute
identifies the type of reference, either html or url. The actual reference
that is inserted into the package is provided in the reference attribute.

SQLview Defines an individual SQL view. The required name attribute provides the
SQL view member name.

Viewer Defines an individual viewer entry. The viewer type is provided in the
type attribute. Valid types include text or html. The name attribute
identifies the name of the viewer file. The user-specified MIME type for
the viewer entry will be provided in the mimetype attribute.

Examples of Generated Events

Example 1: Explicitly Generated Event
In the following example, a company’s sales information is reported in an explicitly

generated event.

Generating and Publishing Events � Example 2: Implicitly Published Event 153

<sas-event:Event xmlns:sas-event=
"http://support.sas.com/xml/namespace/services.events-1.1"
sas-event:name="event1">
<sas-event:Header>

<sas-event:Version>1.0</sas-event:Version>
<sas-event:Identity>

7FBBA000-32C4-11D6-8001-363139363230
</sas-event:Identity>
<sas-event:Response type="result"/>
<sas-event:Properties>

<Company>Alphalite Airways</Company>
</sas-event:Properties>

</sas-event:Header>
<sas-event:Body>

<Company name="Alphalite Airways">
<Sales region="South">

<Projection>1000000</Projection>
<Actual>1000050</Actual>

</Sales>
<Sales region="West">

<Projection>750000</Projection>
<Actual>685000</Actual>

</Sales>
<Sales region="North">

<Projection>500000</Projection>
<Actual>600000</Actual>

</Sales>
<Sales region="East">

<Projection>1000000</Projection>
<Actual>950000</Actual>

</Sales>
</Company>

</sas-event:Body>
</sas-event:Event>

Example 2: Implicitly Published Event
In the following example, the published package contains an external file and a

reference. Because the package is published to a WebDAV server, the
sas-publish:packageUrl attribute is specified. This attribute is a URL to an archived
package. The package was published with a name/value specification of
"report=revenue department=research".

<?xml version="1.0" encoding="UTF-8"?>
<sas-event:Event xmlns:sas-event=

"http://support.sas.com/xml/namespace/services.events-1.1"
sas-event:name=’SASPackage.AirlineChannel’>
<sas-event:Header>

<sas-event:Version>1.0<sas-event:Version>
<sas-event:SentAt>26SEP2001:19:15:37</sas-event:SentAt>

<sas-event:Header>
<sas-event:Body>

<sas-publish:Package
xmlns:sas-publish=

154 Implicitly Published Event � Chapter 6

"http://support.sas.com/xml/
namespace/services.publish-1.1"

sas-publish:version="1.0"
sas-publish:description="Revenue Info"
sas-publish:channel="Revenue Channel"
sas-publish:packageUrl=

"http://alphaliteAirways.com/
revenue/reports/2001/quarter3"

report="revenue"
department="research">
<sas-publish:Entries>

<sas-publish:Entry sas-publish:type="file"
sas-publish:description="Revenue graph">
<sas-publish:File

sas-publish:type="binary"
sas-publish:name="revenue.gif"
sas-publish:mimetype="image/gif" />

</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="reference"

sas-publish:description="Revenue details.">
<sas-publish:Reference sas-publish:type="html"
sas-publish:reference=
"http://www.alphaliteAirways.com/revenue.html" />

</sas-publish:Entry>
</sas-publish:Entries>

</sas-publish:Package>
</sas-event:Body>

</sas-event:Event>

Implicitly Published Event
In the following example, the published package contains a SAS data set, an external

text file, and an HTML file. Because the published package is not archived, the
sas-publish:packageUrl attribute is not specified. The SAS data set is defined by using
the name/value specification of "quarter=third region=south quarterly". The HTML file
contains a body, a frame, the contents, a page, and a companion file.

<?xml version="1.0" encoding="UTF-8"?>
<sas-event:Event xmlns:sas-event=

"http://support.sas.com/xml/namespace/services.events-1.1"
sas-event:name=’SASPackage.ReportChannel’>
<sas-event:Header>

<sas-event:Version>1.0</sas-event:Version>
<sas-event:SentAt>26SEP2001:19:15:37
</sas-event:SentAt>

</sas-event:Header>
<sas-event:Body>

<sas-publish:Package version="1.0"
xmlns:sas-publish=
"http://support.sas.com/xml/

namespace/services.publish-1.1"
sas-publish:version="1.0"
sas-publish:Description="Sales Reporting Data"
sas-publish:Abstract="Data necessary to create and

Generating and Publishing Events � Implicitly Published Event 155

manage the Sales reports."
sas-publish:Channel="SalesChannel">
<sas-publish:Entries>

<sas-publish:Entry sas-publish:type="dataset"
sas-publish:Description="Employee
information data set"
quarter="third" region="south"
quarterly="">
<sas-publish:Dataset
sas-publish:name="SalesData"/>

</sas-publish:Entry>
<sas-publish:Entry sas-publish:type="file"

sas-publish:description="Defects SAS job.">
sas-publish:File sas-publish:type="text"

sas-publish:name="defects.sas"
sas-publish:mimetype="application/sas"/>

</sas-publish:Entry
<sas-publish:Entry sas-publish:type="html"

sas-publish:description="ODS
generated HTML.">

<sas-publish:HTML sas-publish:type="body"
sas-publish:name="body.html"
sas-publish:url="body.html"/>

<sas-publish:HTML sas-publish:type="frame"
sas-publish:name="frame.html"
sas-publish:url="frame.html"/>

<sas-publish:HTML
sas-publish:type="contents"
sas-publish:name="contents.html"
sas-publish:url="contents.html"/>

<sas-publish:HTML sas-publish:type="page"
sas-publish:name="page.html"
sas-publish:url="page.html"/>

<sas-publish:Companion
sas-publish:name="graph.gif"
sas-publish:url="graph.gif"
sas-publish:mimetype="image/gif"/>

</sas-publish:Entry>
</sas-publish:Entries>

</sas-publish:Package>
</sas-event:Body>

</sas-event:Event>

156

157

A P P E N D I X

1
Planning and Implementing Your
Publishing Solution

Plan the Information Architecture 157
Establish the Content Pipeline 158

Configure Channels and Subscribers 159

Implement Content Restrictions in the SAS Metadata Authorization Layer 159

Announce Solution and Train Users 160

Plan the Information Architecture
Designing a successful publish and subscribe implementation starts with an

understanding of why your organization is implementing the system. You will need to
know what kind of information needs to be distributed to users and how widely that
information needs to be distributed. The two main considerations in planning are
efficiency (helping users to avoid information overload) and security (enforcing any
site-required content restrictions).

For example, you could start the planning process by understanding that your
organization needs to disseminate sales information throughout the marketing
organization and inventory data to the production organization. Starting with this
knowledge, you can begin the process of breaking down the general categories of
information into specific information channels by using a hierarchical model.

How you divide and subset the categories depends on your organization’s needs, but
you should work toward creating information channels as focused as possible, without
making them too tightly focused to be useful. Channels that are broadly defined leave
users not knowing whether information that is delivered over the channel will be useful
to them. Channels that are too narrowly defined force users to subscribe to a long list of
channels in order to ensure that they receive the information that they need.

To help focus the information that users receive, set up policies for name/value
keywords. Name/value pairs are attributes that are specified when a package is
published and that help to identify the package contents. Each subscriber definition can
include a name/value filter that allows only packages that meet the subscriber’s needs
to be delivered.

For example, if you publish a package with a name/value attribute of
market=(Mexico), that package is seen only by those subscribers whose name/value
filter indicates that they are interested in information about the Mexican market.
Although the names and associated values can be anything that your organization finds
useful, you must establish a list of acceptable keywords and values for those keywords.
This list is essential in order for publishers to be able to provide consistent metadata
that identifies published content and for subscribers to be able to filter published
content in order to focus on the information they need.

When you define your information channels, you must also consider the users that
will be accessing those channels as well as any restrictions that need to be placed on

158 Establish the Content Pipeline � Appendix 1

the channels. Although these aspects of planning are discussed separately, in practice
they are examined at the same time as you are defining your channels. You cannot
define an information channel without first knowing who needs to see the information
and how that information should be restricted.

The hierarchical model that you use can be based on both subject and access level.
For example, it is often appropriate to use group or department-level distinctions.
Identify any channels that must be restricted for either who can contribute or who can
subscribe. Restrictions are defined on channels, so don’t mix access levels within a
channel (for example, don’t include sensitive and non-sensitive content in a channel).
For example, if you plan for a single channel to distribute accounting information
throughout your organization, you will encounter a security problem when the
accounting department needs to publish sensitive information (such as employee
salaries). With only a single, unrestricted channel, you cannot publish the information
to a specific set of users. In your consultations with users, you must identify
information channels whose access needs to be controlled.

Establish the Content Pipeline
To establish the content pipeline, perform the following steps:
1 Develop or modify applications that will be used to create the content to be

published. These applications can take the form of stand-alone applications that
are written in a visual programming language or SAS programs. Publishers must
obtain or install the appropriate publishing application for their needs. For
example, an individual or department that needs to publish data-intensive reports
on a regular basis might use a SAS program for publishing, while a user who
needs to send information to a changing number of users on an occasional basis
might use the publishing functionality that is provided by SAS Enterprise Guide
or SAS Information Delivery Portal.

2 For the initial set of information channels, identify the users and groups that are
initially subscribed to those channels. If the publishing framework has open
access, then users can subscribe themselves to channels. Otherwise,
administrators can define the subscribers for each channel.

3 Determine how information is to be distributed to subscribers (whether by text-
formatted e-mail or HTML-formatted e-mail, with a WebDAV server, or through a
queue).

4 Gather address information, which is necessary for defining subscribers.
5 Create a PUBLISHERS group, and enable the PUBLISHERS group to

authenticate to the content server (if it is a secured HTTP, FTP, or WebDAV
server). Credentials can be included in your code or stored in metadata. The
following example scenarios all require the publisher to have server credentials:

� publishing to a subscriber with a delivery transport that is defined as a
secured WebDAV server

� publishing to a channel’s persistent store that is defined as a secured
WebDAV server

� publishing to a channel’s persistent store that is defined as an archive path
that is a secured HTTP server

� publishing to a channel’s persistent store that is defined as an archive path
that is a secured FTP server

Note: Token authentication is supported, beginning with SAS 9.2. For more
information about SAS token authentication, see the SAS Intelligence Platform:
Security Administration Guide. �

Planning and Implementing Your Publishing Solution � Implement Content Restrictions 159

It is usually most efficient to create one metadata group that includes all
publishers as members and give that group one login for each secured HTTP, FTP,
or WebDAV server. Each server must be registered in the metadata in its own
authentication domain. For example, the contents of the group’s Accounts tab
might as shown in the following table:

Table A1.1 Credentials for Group

Authentication Domain User ID Password

IISauth sharedIISid sharedIISpassword

FTPauth sharedFTPid sharedFTPpassword

Note: If you publish directly to subscribers who have their own WebDAV servers,
each of those servers must be registered in its own authentication domain. The
group’s Accounts tab must include a login for each such server. For more
information about credential management, see the SAS Intelligence Platform:
Security Administration Guide. �

Configure Channels and Subscribers

Use the New Subscriber and New Channel wizards in the Publishing Framework
plug-in for SAS Management Console to define the channels and subscribers that you
identified during the planning phase. Begin by defining the subscribers; the New
Channel wizard enables you to associate defined subscribers to a channel. For more
information, see the help for the Publishing Framework plug-in.

Implement Content Restrictions in the SAS Metadata Authorization
Layer

You can implement content restrictions in the SAS metadata authorization layer in
order to:

� control who can publish to a channel

� control who can create a new channel

� control who can self-subscribe to a channel

For more information about authorization and permissions by task, see SAS Intelligence
Platform: Security Administration Guide.

Note: In a new deployment, only the SAS Administrators group can add channels,
subscribers, and content. To enable all registered users to update and publish to a
particular channel, navigate on the Folders tab to System � Channels and grant W
and WM to SASUSERS on that channel’s Authorization tab (WM is required to
publish only if a channel has an archive persistent store).

To enable all registered users to add channels or subscribers, grant WMM on the
relevant parent folder (for example, on the System � Subscribers � Content
Subscribers folder). For more information about using permissions, see the SAS
Intelligence Platform: Security Administration Guide. �

160 Announce Solution and Train Users � Appendix 1

Announce Solution and Train Users

After the publishers and subscribers install the necessary applications, you can
announce your implementation to your organization. You will also need to follow up the
announcement with training for both publishers and subscribers, with training broken
down by publishing methods, publishing needs, and subscriber applications.

161

Index

A
archive path properties 73, 81, 85
archive transports 7
archives

publishing packages to 70
retrieving packages from 11

C
catalogs

inserting into packages 42
retrieving from packages 100

channel definition 1
channel subscribers

publishing to, and viewers 16
channel transports 7
channels

configuring 159
creating 9
publishing to 80

companion HTML files
retrieving next file in ODS HTML set 87

COMPANION_NEXT CALL routine 87
content pipeline 158
content restrictions 159

D
data set entries

retrieving from packages 100
data sets

creating viewers and 17
extracting and formatting into tables 18
extracting and formatting variables from data set to

list 17
inserting into packages 43

DATA step
package publishing in 122

descriptive header information
retrieving for all packages 109
retrieving for nested package entries 108

E
e-mail

publishing packages to 71
retrieving packages from 12

e-mail transport 8
publishing to, and viewers 16

electronic newsletters
publishing, and viewers 16

entry-type filters 117
ENTRY_FIRST CALL routine 89
ENTRY_NEXT CALL routine 91
event identifiers 135
event publishing 2
EVENT_BEGIN CALL routine 135
EVENT_BODY CALL routine 139
EVENT_END CALL routine 146
EVENT_PUBLISH CALL routine

publishing event to HTTP 140
publishing event to queues 142
publishing event to subscribers 144

events 133
body of event message 139
defined 133
examples of generated events 152
explicit event publication 134
freeing resources 146
generating and publishing 134
implicit event publication 134
initializing 135
methods for publishing 133
Publish Event Interface 134
publishing to HTTP 140
publishing to message queues 142
publishing to subscribers 144
publishing with HTTP protocol 140
XML specification for 134
XML specification for generic events 147
XML specification for SASPackage events 148

executive level summaries
publishing, and viewers 16

explicit event publication 133, 134
external binary files

retrieving from packages 103
extracting and formatting

data sets into tables 18
SAS data and viewers 16
variable from data set to list 17

F
file encoding 40

default publish and retrieve behavior 40
rules for determining 41

162 Index

specifying on the retrieve 41
file extensions

for item types 74, 82, 84
filename extensions

for package entry types 6
files

inserting into packages 48
retrieving from packages 103

filtering 116
enabling, when publishing packages 117
entry-type filters 117
MIME-type filters 117
name/value filters 117
overview 116
package entries 21
packages and package entries 116
SASINSERT tag and 25

financial database
inserting into packages 46
retrieving from packages 102

formatting packages, and viewers 16
FTP access method

package publishing with 128

G
generated events 152

explicitly generated 152
implicitly published 153, 154

H
header information

for first package entry 89
for first package in package list 94
for next package entry 91
for next package in package list 97
retrieving for all packages 109
retrieving for nested package entries 108

HTML entries
retrieving from packages 104

HTML files
inserting into packages 50
retrieving next companion file in ODS HTML set 87

HTML protocol
publishing events with 140

HTML tables and lists
populating 27

HTML viewer 32
sample SAS program with 33

I
implicit event publication 133, 134
information architecture 157
INSERT_CATALOG CALL routine 42
INSERT_DATASET CALL routine 43
INSERT_FDB CALL routine 46
INSERT_FILE CALL routine 48
INSERT_HTML CALL routine 50
INSERT_MDDB CALL routine 54
INSERT_PACKAGE CALL routine 56
INSERT_REF CALL routine 57
INSERT_SQLVIEW CALL routine 59
INSERT_VIEWER CALL routine 60
IOM servers 38

item types
file extensions for 74, 82, 84

L
lists

building with SASINSERT and SASTABLE tags 31
extracting and formatting variables from data set to 17

log
storing a text string for 30

M
macros

package publishing in 126
MDDB entries

retrieving from packages 107
message queue transports 8
message queues

publishing events to 142
publishing packages to 76
retrieving packages from 11

MIME-type filters 117
multidimensional database

inserting into packages 54

N
name/value filters 117

operators and 118
name/value pairs 120

applying to packages and package items 85
specifying 120
specifying for entire package 121
specifying for package items 121

nested package entries
retrieving descriptive header information for 108

O
ODS HTML set

retrieving next companion file in 87
operators

name/value filters and 118

P
package entries

filtering 21, 116
header information for first entry 89
header information for next entry 91

package entry types 5
filename extensions for 6
SAS results 5
unstructured content 6

package identifiers 62
package items

name/value pairs and 85, 121
package list

header information for first package in 94
header information for next package in 97

package list identifier
freeing resources associated with 99

package publishing 2, 37
examples 122, 126, 128

Index 163

filtering packages and package entries 116
in DATA step 122
in macros 126
methods for different publishers 38
process of 38
publish and retrieve encoding behavior 40
Publish Package Interface and 38
specifying name/value pairs 120
with FTP 128
with third-party client application 38

package retrieval and viewing 2
package transports 7

persisted packages 8
subscription channels 9

PACKAGE_BEGIN CALL routine 62
PACKAGE_DESTROY CALL routine 93
PACKAGE_END CALL routine 65
PACKAGE_FIRST CALL routine 94
PACKAGE_NEXT CALL routine 97
PACKAGE_PUBLISH CALL routine 65

overview 65
publishing package to archive 70
publishing package to e-mail 71
publishing package to queues 76
publishing package to subscribers 78
publishing package to WebDAV-compliant server 83
transport properties 66

packages 5
creating viewers and 16
deleting 93
filtering 116
formatting, and viewers 16
freeing resources 65
header information for first package in package list 94
header information for next package in package list 97
initializing 62
inserting catalogs into 42
inserting data sets into 43
inserting files into 48
inserting financial database into 46
inserting HTML files into 50
inserting into packages 56
inserting multidimensional database into 54
inserting PROC SQL views into 59
inserting references into 57
inserting viewers into 60
name/value pairs, applying to 85
name/value pairs for entire package 121
persisted 8
publishing to archives 70
publishing to e-mail 71
publishing to message queues 76
publishing to subscribers 78
publishing to WebDAV-compliant servers 83
rendering 6
retrieving catalogs from 100
retrieving data set entries from 100
retrieving descriptive header information for all pack-

ages 109
retrieving external binary files from 103
retrieving financial database entries from 102
retrieving from different transports 11
retrieving HTML entries from 104
retrieving MDDB entries from 107
retrieving PROC SQL views from 114
retrieving references from 113

retrieving text files from 103
retrieving viewer entries from 115
simulated rendered view of package in e-mail 36

PACKAGE_TERM CALL routine 99
persisted packages 8
PROC SQL views

inserting into packages 59
retrieving from packages 114

publish and retrieve encoding behavior 40
default behavior 40
rules for determining file encoding 41
specifying encoding on the retrieve 41

Publish Event Interface 2, 134
Publish Package Interface 21, 38
publishing 15

electronic newsletters, and viewers 16
executive level summaries, and viewers 16
to channel subscribers 16
to channels 80
to e-mail transport 16

Publishing Framework 1

Q
queues

publishing events to 142
publishing packages to 76

R
reference URLs

streaming text files and 19
references

inserting into packages 57
retrieving from packages 113

rendering packages 6
restricted content 159
RETRIEVE_CATALOG CALL routine 100
RETRIEVE_DATASET CALL routine 100
RETRIEVE_FDB CALL routine 102
RETRIEVE_FILE CALL routine 103
RETRIEVE_HTML CALL routine 104
RETRIEVE_MDDB CALL routine 107
RETRIEVE_NESTED CALL routine 108
RETRIEVE_PACKAGE CALL routine 109
RETRIEVE_REF CALL routine 113
RETRIEVE_SQLVIEW CALL routine 114
RETRIEVE_VIEWER CALL routine 115
retrieving packages 11

SAS Package Reader 12
SAS Package Retriever 12

retrieving URLs 13

S
SAS Integration Technologies

Publishing Framework 1
SAS metadata authorization layer

content restrictions in 159
SAS Package Reader 2, 12
SAS Package Retriever 2, 12
SAS results 5
SASECHO tag 30
SASINSERT tag 23

building a list 31
SASPackage events 148

164 Index

SASREPEAT tag 29
SASTABLE tag 27

building a list 31
streaming text files and reference URLs 19
subscribers

configuring 159
creating 9
publishing events to 144
publishing packages to 78

subscription channels 9
creating channels 9
creating subscribers 9
creating subscriptions 9

subscription management 1
subscriptions

creating 9
substitutions in tags 29

T
tables

extracting and formatting data sets into 18
tag substitutions 29
text files

retrieving from packages 103
streaming text files and reference URLs 19

text strings
storing for log 30

text tables and lists
populating 27

third-party client applications 38
token authentication 158
training users 160
transport properties 66
transports

retrieving packages from 11

U
unstructured content 6
URLs

retrieving 13

streaming text files and reference URLs 19

user training 160

V
variables

extracting and formatting from data set to list 17

viewer entries

retrieving from packages 115

viewer files

marking for viewer processing 23

viewer properties 73, 80, 85

viewer templates 35

viewers 15

applying with Publish Package Interface 21

building a list with SASINSERT and SASTABLE
tags 31

creating 16

creating basic viewers 17

inserting into packages 60

sample HTML viewer 32

sample SAS program with HTML viewer 33

sample viewer template 35

when to use 16

W
WebDAV-compliant server transports 8

WebDAV-compliant servers

publishing to 83

retrieving packages from 11

WebDAV properties 74, 81

X
XML

specification for events 134

specification for generic events 147

specification for SASPackage events 148

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	Contents
	What’s New
	Overview
	General Enhancements

	Overview of the Publishing Framework
	What Is the Publishing Framework?
	Channel Definition and Subscription Management
	Package Publishing
	Package Retrieval and Viewing
	Event Publishing

	Overview of Packages
	What Is a Package?
	Definition of Package
	SAS Results
	Unstructured Content
	Filename Extensions for Package Entry Types

	Rendering a Package
	Package Transports
	Overview of Package Transports
	Persisted Packages
	Subscription Channels

	Retrieving Packages and URLs
	Retrieving Packages from Different Transports
	SAS Package Retriever
	SAS Package Reader
	Retrieving URLs

	Viewer Processing
	Overview of Viewers
	When To Use a Viewer
	How to Create a Viewer
	The Sample Package
	SAS Data Set
	Basic Viewer

	Using the Publish Package Interface to Apply a Viewer
	Samples Using the <SASINSERT> and <SASTABLE> Tags
	Sample HTML Viewer
	Sample SAS Program with an HTML Viewer
	Sample Viewer Template
	Simulated Rendered View of the Package in E-mail

	Publishing Packages
	Package Publishing
	Using a Third-Party Client Application
	Using the Publish Package Interface
	Publish and Retrieve Encoding Behavior
	Default Publish and Retrieve Behavior
	Rules for Determining File Encoding
	Specifying an Encoding on the Retrieve

	Dictionary
	PACKAGE_PUBLISH
	Overview of PACKAGE_PUBLISH
	Transport Properties

	Filtering Packages and Package Entries
	Overview of Filtering
	Enabling Filtering When Publishing Packages
	Implementing MIME-Type Filters
	Implementing Entry-Type Filters
	Implementing Name/Value Filters

	Specifying Name/Value Pairs
	Overview of Name/Value Pairs
	Specifying Name/Value Pairs for a Package Item
	Specifying Name/Value Pairs for an Entire Package

	Example: Publishing in the DATA Step
	Example: Publishing in a Macro
	Example: Publishing with the FTP Access Method

	Generating and Publishing Events
	What Is an Event?
	Overview of Generating and Publishing Events
	Using Explicit Event Publication
	Using Implicit Event Publication
	XML Specifications for Events

	Using the Publish Event Interface
	Dictionary
	XML Specification for Generic Events
	XML Specification for SASPackage Events
	Sample Code
	Header Elements
	Body Elements

	Examples of Generated Events
	Example 1: Explicitly Generated Event
	Example 2: Implicitly Published Event
	Implicitly Published Event

	Planning and Implementing Your Publishing Solution
	Plan the Information Architecture
	Establish the Content Pipeline
	Configure Channels and Subscribers
	Implement Content Restrictions in the SAS Metadata Authorization Layer
	Announce Solution and Train Users

	Index

