
Developing Portlets for the
SAS ® Information Delivery
Portal 4.2

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010.
Developing Portlets for the SAS ® Information Delivery Portal 4.2. Cary, NC: SAS Institute
Inc.

Developing Portlets for the SAS® Information Delivery Portal 4.2
Copyright © 2010, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Developing Custom Portlets 1
Introduction to Portlet Development 1

Options for Implementing Portlets 2

Development Environments 3

Development Steps 3

Chapter 2 � Hints and Tips for Creating Custom Portlets 15
Overview 15

Avoiding Namespace Problems 15

Bundling Multiple Portlets into a Single PAR File 16

Testing Portlets 16

Obtaining a User and Session Context 16

Obtaining the User’s Name 17

Obtaining the User’s Locale 17

Chapter 3 � Using the Portlet API 19
Overview 19

Class Reference 19

Chapter 4 � Sample Portlets 21
Overview: Sample Portlets 22

Creating Portlets Using the Testportlet Scripting Facility 22

SampleWelcome: Localized Display Portlet 24

SampleForm: Interactive Form Portlet 32

SampleDisplayURL: Editable Portlet 40

SampleRemote: Remote Portlet 58

Appendix 1 � Moving Existing Custom Portlets to SAS Information Delivery Portal
4.2 75
Overview 75

Java Package Changes 75

JAR File Changes 75

Smart Object Changes 76

Remote Portlet API Changes 76

Index 79

iv

1

C H A P T E R

1
Developing Custom Portlets

Introduction to Portlet Development 1
Options for Implementing Portlets 2

Development Environments 3

Development Steps 3

Overview: Steps for Developing a Custom Portlet 3

Creating a Portlet Deployment Descriptor 4
Example Deployment Descriptor for a Local Portlet 4

Example Deployment Descriptor for a Remote Portlet 5

Creating Display Resources Files 6

Creating the Presentation JSP Page 7

Creating Action Classes 8

Thread Safety 8
Creating an Initializer Action Class 8

Creating a Portlet Action Class 9

Creating a Postprocessing Action Class 10

Creating an Error Handling Action 10

Implementing Portlet Help 11
Creating a PAR File for Deploying the Portlet in an Application 13

Introduction to Portlet Development
Portlets are the information display components of the SAS Information Delivery

Portal. A portlet can process requests from the user and generate dynamic content such
as report lists, alerts, workflow notifications, or performance metrics. In addition to a
set of standard portlets, the SAS Information Delivery Portal provides a framework
that enables you to develop and deploy custom portlets that meet your organization’s
needs. This framework, which is based on the open-source Struts architecture and
conforms to industry-standard Model-View-Controller (Model 2) design patterns,
provides the following:

� an execution environment that allows portlets to execute in the portlet container,
in the same way that servlets execute in the servlet container. The SAS
Information Delivery Portal processes all HTTP requests for portlets, while the
session and state information are maintained and shared among portlet actions
and across requests.

� support for portlets running remotely in other Web technology frameworks, with
the option to pass the session and state information to these portlets.

� simplified portlet deployment through the use of the following:
� a portlet deployment descriptor, which is an XML file that specifies the

portlet’s actions as well as initialization, path, and access control information.

2 Options for Implementing Portlets � Chapter 1

� a portlet archive (PAR) file, which includes all of the elements needed to
deploy a portlet or series of portlets, including the portlet deployment
descriptor, JavaServer Pages (JSP) files, custom Java classes, and associated
resources (such as images, resource bundles, and HTML files).

� a set of action and initializer classes, which reduce the need for developing custom
programs. These classes perform many commonly used functions, such as
displaying the JSP page that is specified in the portlet deployment descriptor.

� access to SAS custom tags and to tags in the Struts development framework to
simplify development of JSP pages for your portlets.

Portlets that are created with the framework provided in the SAS Information
Delivery Portal have a standard appearance, which includes a title bar that contains
icons that link to portlet actions, as shown in the following examples:

Options for Implementing Portlets
The action and initializer classes included in the SAS Information Delivery Portal

are designed to handle a portlet’s basic function of displaying a single JSP page.
However, to meet specialized needs you can do the following:

� write one or more Java classes that implement the
com.sas.portal.portlet.PortletActionInterface. Alternatively, you can extend the
provided com.sas.portal.portlet.HTMLPortletAction class to obtain a basic
implementation of the interface.

� write Java classes that implement the PortletInitializerInterface,
ErrorHandlerInterface, or PostProcessorInterface in the com.sas.portal.portlet
package in order to meet more specialized requirements.

� Overview: Steps for Developing a Custom Portlet 3

For more information, see Chapter 3, “Using the Portlet API,” on page 19 and
Chapter 4, “Sample Portlets,” on page 21.

Development Environments

You can create Java classes, JSP pages, and other supporting files to implement
portlets using any Java integrated development environment (IDE). However, SAS
AppDev Studio software provides templates for creating common types of portlets. For
more information about SAS AppDev Studio software, see http://support.sas.com/
rnd/appdev/.

In addition to interactive development environments, SAS Information Delivery
Portal provides a scripting facility for building portlets. To use the scripting facility, you
place source files for portlet components in designated directories and execute a
configuration script to generate the archive files required to deploy portlets. The use of
the scripting facility is illustrated in Chapter 4, “Sample Portlets,” on page 21.

Development Steps

Overview: Steps for Developing a Custom Portlet
To create a custom portlet, follow these steps:

1 Create a portlet deployment descriptor.

Each portlet that you deploy must be defined in a portlet deployment descriptor.
A portlet deployment descriptor is an XML file that provides all of the information
that the SAS Information Delivery Portal requires in order to deploy one or more
portlets. The file includes information about the portlet’s initialization, actions,
security settings, and resource paths.

2 Create display resources files.

The display resources file contains text strings for the portlet’s title and
description for use in the portlet’s metadata. If you create multiple display
resources files for different locales, the SAS Information Delivery Portal uses these
files to localize the portlet title and description at the time of deployment,
according to the default locale for the SAS Information Delivery Portal.

3 Develop presentation JSP pages.

Each portlet must have a JSP page to serve as the presentation component.

4 Create action classes.

You can use the resources of the SAS Information Delivery Portal to develop the
following types of action classes for your portlets:

� initializer classes

� portlet action classes

� postprocessing classes

� error handling classes

5 Implement portlet help.

If you want to provide customized use instructions for a portlet, you can create
an action class with an associated JSP page that contains the help text. When the

4 Creating a Portlet Deployment Descriptor � Chapter 1

user clicks a help button in the portlet’s title bar, the help appears in a pop-up
window.

6 Create a PAR file to deploy in the SAS Information Delivery Portal.
To enable automatic deployment of a portlet into the SAS Information Delivery

Portal, you must provide a PAR file that contains all of the needed files. A PAR file
can contain files for one portlet or for multiple related portlets.

For examples of fully developed portlet code, see Chapter 4, “Sample Portlets,” on
page 21.

Creating a Portlet Deployment Descriptor
For each PAR file that you create for deployment in the SAS Information Delivery

Portal, you must create a portlet deployment descriptor. The portlet deployment
descriptor is an XML file that provides all of the information that the SAS Information
Delivery Portal needs to deploy the portlets that are contained in the PAR file. The
portlet deployment descriptor file must be named portlet.xml.

A PAR file, and its associated portlet deployment descriptor, can contain one portlet
or it can contain multiple related portlets; there is no limit to the number of portlets
that a PAR file and its associated descriptor can contain.

In addition, a PAR file and its associated portlet deployment descriptor can contain
local portlets, remote portlets, or a combination of local and remote portlets.

To create a portlet deployment descriptor, use the element tags that are defined in
the portlet deployment descriptor document type definition (DTD). You can view the
portlet deployment descriptor DTD at SAS-installation-
directory\SASInformationDeliveryPortal\4.2\Static\wars\sas.portal\WEB-
INF\classes\portlet.dtd.

The following examples show portlet deployment descriptors for a local portlet and a
remote portlet. You can use these examples as templates for creating deployment
descriptors for your own portlets.

After you create the deployment descriptor file, include it in the PAR file that you
create for your portlet or group of portlets. For more information, see “Creating a PAR
File for Deploying the Portlet in an Application” on page 13.

Example Deployment Descriptor for a Local Portlet
A local portlet is a portlet that meets the following criteria:
� The portlet is deployed within the SAS Information Delivery Portal.
� The portlet executes inside the portlet container.
� The portlet consumes the computing resources (for example, CPU, memory, and

disk storage) of the server machine on which the portal container runs.
� The portlet can include resources such as Web pages, images, resource bundles,

and Java classes that are deployed inside the SAS Information Delivery Portal.

You can use the following example as a template for creating portlet deployment
descriptors for your own local portlets.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>

<local-portlet name="simplejsp" title="SimpleJspPortlet"
icon="images/ndd.jpg">

<localized-resources locales="en" />

� Creating a Portlet Deployment Descriptor 5

<deployment scope="user" autoDeploy="false"
userCanCreateMore="true">

</deployment>

<initializer-type>
com.sas.portal.portlets.JspPortlet.JspPortletInitializer

</initializer-type>

<init-param>
<param-name>display-page</param-name>
<param-value>simpleJspTest.jsp</param-value>

</init-param>

<portlet-path>/sample/portlets</portlet-path>
<portlet-actions>

<portlet-action name="display" default="true">
<type>com.sas.portal.portlets.JspPortlet.JspPortlet</type>

</portlet-action>
</portlet-actions>

</local-portlet>

</portlets>

Example Deployment Descriptor for a Remote Portlet

Remote portlets are portlets that execute outside of the portal container. You can use
remote portlets to incorporate data from external applications into the SAS Information
Delivery Portal. When a user interacts with a remote portlet, the remote portlet
appears to be the same as a local portlet.

Many of the elements in the portlet deployment descriptor DTD relate only to local
portlets. Therefore, a portlet deployment descriptor for a remote portlet requires fewer
elements than a descriptor for a local portlet.

You can use this example as a template for creating portlet deployment descriptors
for your own remote portlets:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>

<remote-portlet name="MyRemotePortlet" title="MyRemotePortlet">
<localized-resources locales="en" />
<deployment scope="user" autoDeploy="false"

userCanCreateMore="true">
</deployment>

<portlet-path>/sample/portlets/remote</portlet-path>
<portlet-actions>

<portlet-action name="display" default="true">
<url>http://d9999.mycompany.com:8080/test.html</url>

</portlet-action>
</portlet-actions>

</remote-portlet>

</portlets>

6 Creating Display Resources Files � Chapter 1

Creating Display Resources Files
A display resources file is a file that contains key=value statements to define text

strings for a portlet’s title and description. You can create display resources files for the
following purposes:

� to specify a description for your portlet. If you do not provide a display resources
file, the SAS Information Delivery Portal uses the portlet’s name to create a
default description.

Note: The <local-portlet> and <remote-portlet> elements of the portlet
deployment descriptor contain a description attribute. However, this description
is only for internal documentation purposes. It is not displayed to users. �

� to enable the SAS Information Delivery Portal to localize the portlet title and
description at the time of deployment, according to the default locale for the SAS
Information Delivery Portal. When the portlet is first deployed, the deployment
process determines which locale to use. Based on this locale, the deployment
process uses the title and description from the appropriate display resources file to
create metadata and register the portlet in the SAS Metadata Repository. The
following rules apply:

� For editable portlets, the portlet name that is displayed in the drop-down list
of portlet selections is localized based on the browser locale when the user
first logs into the portal.

Note: The locale does not apply to new portlet instances created from the
template because the user enters an explicit name and description that are
stored in metadata for the portlet instance. �

� For portlets with user scope and the autoDeploy="true" attribute in the
deployment descriptor, the browser locale when the user first logs into the
portal determines which display resources file is selected to provide the title
and description for the portlet.

� For portlets with group scope and the autoDeploy="true" attribute in the
deployment descriptor, the locale used to start the Web application server
determines which display resources file is selected to provide the title and
description for the portlet. Starting the Web application server with one
locale specified and then starting it again with a different locale specified will
result in two instances of the portlet.

If your portlet is deployed in only one locale, then the display resources files can be
omitted. The portlet name in the default locale is used.

Note: The SAS Metadata Repository cannot store multiple localized values for
metadata. Therefore, the portlet title and description are translated only into the
default locale for the SAS Information Delivery Portal. They cannot be translated based
on the user’s locale preference. �

If your portlet does not include any display resources files, the portlet deployment
mechanism sends a warning message to the server log. The message indicates that no
localized title or description can be found.

To create display resources files, follow these steps:

1 Create a separate file for each language (or each country and language
combination) that you need to support. In each file, use key=value statements to
define text strings for portlet.title and portlet.description, as in the
following examples:

� Creating the Presentation JSP Page 7

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

portlet.title=Portlet de bienvenida
portlet.description=Portlet de bienvenida

2 Name the files as follows:

� Use the base name portletDisplayResources.properties.
� If you are creating files for multiple locales, append each file’s name with the

appropriate locale identifier (for example,
portletDisplayResources_en.properties for English,
portletDisplayResources_fr.properties for French, and so on). The file
for the default locale does not need to have a locale identifier.

3 Place the files in the /portlet-name/classes directory of the PAR file.
4 Add the locale identifier for each supported locale to the locales attribute value of

the <localized-resources> element in the portlet deployment descriptor
(portlet.xml) file.

Creating the Presentation JSP Page
JavaServer Page (JSP) pages are the presentation components of local portlets.

Because you can define a local portlet’s initialization, actions, security settings, and
resource paths in the portlet deployment descriptor, the JSP page does not need to
contain this information.

In developing the JSP page, you can use the following tags:
� tags from the JSP Standard Tag Libraries (JSTL).

� tags from the Struts tag libraries.
� SAS custom tags, which are available if your site has licensed SAS AppDev Studio

software in addition to the SAS Information Delivery Portal. For information
about these tags, see the SAS Custom Tags Reference page on the AppDev Studio
Developer’s Site at http://support.sas.com/rnd/appdev.

When you create a JSP page for a portlet, the only requirements are the following:
� The JSP page must be an HTML fragment:

� The page must not contain starting and ending <HTML>, <HEAD>, or <BODY>
tags.

� The page must be able to be displayed inside a table cell in an HTML
document.

� If the JSP page includes custom tags from a tag library, you must include a taglib
directive before the first use of a tag from that library. For the JSTL format tag
library, use the following taglib directive:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

� You must include a UTF-8 directive if you want the JSP page to provide full
support for internationalization. This directive causes all user input to be encoded
in the 8-bit Unicode Transformation Format, which supports all of the world’s
languages, including those that use non-Latin1 characters.

Note: The SAS Information Delivery Portal supplies this directive when it
displays portlets on a portal page. However, you must supply the directive to
ensure correct internationalization when your portlet is displayed from the Search

8 Creating Action Classes � Chapter 1

Results panel. You should consider making your portlet actions extend the
HTMLPortletAction class, because that class supplies the directive. �

The syntax for the UTF-8 directive is:

<%@ page contentType= "text/html; charset=UTF-8"%>

� The JSP cannot import Java classes from the portlet’s PAR file.

Creating Action Classes
You can use the resources of the SAS Information Delivery Portal to develop the

following types of action classes for your local portlets:
� Initializer classes
� Portlet action classes
� Postprocessing classes
� Error handling classes

The Portlet API includes classes that you can use to create your own action classes
for custom portlets. For a summary of these classes, see Chapter 3, “Using the Portlet
API,” on page 19. For detailed information, see SAS Information Delivery Portal API
documentation at http://support.sas.com/92api.

Any action classes that you develop must be defined in the portlet’s deployment
descriptor file and included in the portlet’s PAR file. These classes cannot be accessed
by the portlet’s JSP pages.

Note: You can also develop classes other than action classes for your portlet and
include them in the portlet’s PAR file. These classes do not need to be defined in the
portlet deployment descriptor file. However, the additional classes can be accessed only
by the action classes. They cannot be accessed from the portlet’s JSP pages. �

Thread Safety
Portlet actions, like Struts actions, are multithreaded. There is only a single instance

of your PortletAction subclass, and you must make your actions thread-safe, as follows:
� You cannot use class properties to share values between member methods.
� If you use member methods, be sure to pass all values through the method’s

signature. The signature passes all values through the thread-safe stack.

Creating an Initializer Action Class
When you develop a local portlet, you can implement an initializer class that runs

before the portlet is displayed for the first time on a SAS Information Delivery Portal
page. The initializer does not execute again if the user interacts with your portlet or
with other portlets on the same page. It also does not execute again if the user
navigates to another page and then back again. However, the initializer does run again
if the user logs off, logs on again, and displays the page that contains the portlet.

Uses for an initializer might include reading initial parameters that are specified in
your portlet’s deployment descriptor file (portlet.xml) or connecting to an external
resource such as a database.

The SAS Information Delivery Portal is delivered with a default initializer class
named JspPortletInitializer, which requires a parameter named display-page. The
initializer places the value of this parameter in the PortletContext object so that it can
be used by the portlet’s action class. To pass additional parameters, you would need to
create your own initializer class.

� Creating Action Classes 9

When you create an initializer class, ensure that the following steps have been taken:
� The class must be specified in the <initializer-type> element of the portlet’s

deployment descriptor file (portlet.xml).
� The class must implement com.sas.portal.portlet.PortletInitializerInterface.

The com.sas.portal.portlet.PortletInitializerInterface class includes one method
named initialize(). The following objects are passed to the initialize() method:

java.util.Properties
contains all of the initial parameters that are specified in your portlet’s
deployment descriptor. If your portlet’s action class or JSP page requires access to
these parameters, you should place them in the portlet context object using its
setAttribute() method.

com.sas.portal.portlet.PortletContext
provides a getter method for the HttpSession object so that you can access or set
session attributes.

The following example shows an initialize() method that places initial parameters
into the portlet context:

/**
* Puts initial properties into the PortletContext object.
* These come from the portlet.xml.
* @param initProperties a Properties object
* @param context the PortletContext for this portlet
*/
public void initialize(Properties initProperties,

PortletContext context) {
context.setAttribute("display-page",

initProperties.getProperty("display-page"));
context.setAttribute("image-location",

initProperties.getProperty("image-location"));
}

Creating a Portlet Action Class
When developing a local portlet, you can implement one or more action classes for

the portlet. If you use an action class, then the following requirements must be met:
� You must specify the class in your portlet deployment descriptor file (portlet.xml).
� The class must implement com.sas.portal.portlet.PortletActionInterface.
� The class can extend DefaultPortletAction or HTMLPortletAction in

com.sas.portal.portlet. The DefaultPortletAction and HTMLPortletAction contain
two simple methods for setting and getting an instance of
com.sas.portal.portlet.PortletActionInfoInterface, as shown in the following
example:

public void setInfo(PortletActionInfoInterface pai) {
_actionInfo = pai;

}

public PortletActionInfoInterface getInfo() {
return _actionInfo;

}

The primary method, named service(), runs every time the action is executed.
For the portlet’s display action, that occurs before the portlet is displayed and

10 Creating Action Classes � Chapter 1

every time the portlet is redisplayed. For example, it runs after a user interacts
with the portlet or with a different portlet on the same page.

The service() method is provided with the HttpServletRequest,
HttpServletResponse, and PortletContext objects. From the PortletContext object,
you can obtain the HttpSession object, which provides access to many important
servlet objects.

Your service() method must return a string representing a valid URL for the
portlet. Typically, the URL is the name of the portlet’s JSP page. If your initializer
places the display-page property of the portlet deployment descriptor file into the
PortletContext object, then you can obtain the URL as in the following example:

String url = (String) context.getAttribute("display-page");

If user interaction with your portlet requires a different URL string, then you
can return that URL instead.

The service() method can handle any type of exception subclass that is thrown
by code within your action. If your portlet action needs to throw an exception, then
you can use the portlet error handler. For more information, see “Creating an
Error Handling Action” on page 10.

Creating a Postprocessing Action Class
The com.sas.portal.portlet.PostProcessorInterface is available for implementing

activity that should occur when a local portlet is no longer on display. Like other parts
of the portlet architecture, it must be defined in your deployment descriptor file. You
can use the post-processor phase to free resources that you attached to in the portlet
initializer. You could also remove HttpSession attributes that were set in the initializer
or action. This is especially important to consider because multiple copies of your portlet
could exist on other SAS Information Delivery Portal pages or even on the same page.

Creating an Error Handling Action
The com.sas.portal.portlet.ErrorHandlerInterface is available for handling any errors

that your local portlets encounter. This interface has one method, which is named
service(). The service() method has the same arguments as the service() method of the
PortletActionInterface, plus an additional object named Exception.

If you specify an error handler in your portlet deployment descriptor file
(portlet.xml), the error handler is called if the portlet action throws an exception. You
can direct your error handler to send messages to the server log and to return a URL
string representing an error page for the user to view.

If your portlet initializer encounters an exception, the error handler is not called. If
you want to ensure that the error handler executes, you can store the exception object
in the portlet context. Then, in your action class’s service() method, you can get the
exception object out of the context and re-throw it. In the following example, this code
is put into a method that should be called at the start of the action’s service() method:

/**
* Check the PortletContext for an exception object. If
* present, throw it so that the error handler is executed.
* @param context the PortletContext
*/
private static void errorCheck(PortletContext context)

throws Exception {
Exception e = (Exception) context.getAttribute("PORTLET_EXCEPTION");
if (e != null) {

� Implementing Portlet Help 11

throw e;
}

}

The following example shows a simple error handler that logs the exception and calls
a static error page. The error page supplies a general error message from the portlet’s
localized resource bundles.

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.ErrorHandlerInterface;
import com.sas.portal.portlet.NavigationUtil;

/**
* Error handler for some portlets.
* It logs the exception and returns ErrorPage.jsp
* for the portlet to display.
*/
public class MyErrorHandler implements ErrorHandlerInterface {

private final String _loggingContext = this.getClass().getName();

/**
* Returns the URL for the portlet controller to call. This is the
* name of the error page JSP.
* @param request the HttpServletRequest
* @param response the HttpServeltResponse
* @param context the PortletContext
* @param exception the exception thrown by a portlet action
* @return the URL to call
*/
public String service(HttpServletRequest request, HttpServletResponse

response, PortletContext context, Exception thrownException) {

// Prepare the localized resources for use by the jsp.
try {

NavigationUtil.prepareLocalizedResources(
"com.mycompany.portlets.Resources", request, context);

}
catch (java.io.IOException ioe) {

Logger.error(ioe.getMessage(), _loggingContext, ioe);
}
Logger.error(thrownException.getMessage(), _loggingContext,

thrownException);
return "ErrorPage.jsp";

}
}

Implementing Portlet Help
You can easily implement help for a custom portlet. If you implement help for a

portlet, then a help icon appears in the portlet’s title bar. When a user clicks the icon,
the portlet help appears in a resizable, scrollable window that is by default 400 pixels
wide and 200 pixels high, as shown in the following example:

12 Implementing Portlet Help � Chapter 1

To implement portlet help, use these steps:

1 Create an action class to display the JSP page for the help (or, if you want, you
can use an instance of com.sas.portal.portlet.JspPortlet). The following example
shows the code for an example of a custom action class to display portlet help:

package com.sas.portal.portlets.welcome;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.PortletContext;

public class HelpAction extends HTMLPortletAction {
public String service(HttpServletRequest request,

HttpServletResponse response, PortletContext context)
throws Exception {

return "help.jsp";
}

}

2 Create a JSP page that contains the help text. The JSP page must have the
following characteristics:

� The JSP page must be an HTML fragment. That is, it must not contain
starting and ending <HTML>, <HEAD>, or <BODY> tags.

� The JSP page must have the filename help.jsp. The example JSP page for
the help window that was shown previously consists of the following lines:

<h1>Portlet Help</h1>
<p>Portlet ID: <%= pid %></p>
<p>This is where portlet help would be displayed</p>

3 In the portlet’s deployment descriptor (portlet.xml) file, add a <portlet-action>
element for the action class. Set the element’s help attribute to true.

The following example of the <portlet-action> element for a portlet uses a custom
action to display its help:

<portlet-action name="help" help="true">
<type>com.sas.portal.portlets.welcome.HelpAction</type>

</portlet-action>

� Creating a PAR File for Deploying the Portlet in an Application 13

The following example of a <portlet-action> element for a portlet uses an instance
of com.sas.portal.portlet.JspPortlet to display its help:

<portlet-action name="help" help="true">
<type>com.sas.portal.portlet.JspPortlet</type>

</portlet-action>

Creating a PAR File for Deploying the Portlet in an Application
A PAR file contains all of the files needed in order to deploy a portlet or a group of

portlets into the SAS Information Delivery Portal. A single PAR file can contain files for
multiple portlets. A PAR file can contain local portlets, remote portlets, or a
combination of local and remote portlets.

For correct deployment, the portlet files must be archived in a PAR file using the
following directory structure:

/ (root)
contains the portlet deployment descriptor file, which must be named
portlet.xml.

/portlet-name
contains associated subdirectories for each portlet that is defined in portlet.xml.
The directory name must match the name of the portlet as specified in the name
attribute of the <local-portlet> or <remote-portlet> element in portlet.xml.

/portlet-name/classes
contains portlet action classes, other custom classes that are used by the portlet,
and display resources files that are used by the portlet. Replicate any package
structure as subdirectories of /portlet-name/classes. Portlet action classes (but
not other classes) must be defined in the portlet deployment descriptor file
(portlet.xml).

/portlet-name/content
contains Web resources used by the portlet, including JSPs, HTML files, and
images. Each portlet can have only one content directory. However, the content
directory can have an unlimited number of subdirectories.

/portlet-name/lib
contains any custom JAR files that are used by the portlet.

Note: The scripting facility provided with SAS Information Delivery Portal
automates the process of building the PAR file with the necessary directory structure.
For more information, see “Creating Portlets Using the Testportlet Scripting Facility”
on page 22. �

14

15

C H A P T E R

2
Hints and Tips for Creating
Custom Portlets

Overview 15
Avoiding Namespace Problems 15

Bundling Multiple Portlets into a Single PAR File 16

Testing Portlets 16

Obtaining a User and Session Context 16

Obtaining a Local User and Session Context 17
Obtaining a Remote User and Session Context 17

Obtaining the User’s Name 17

Obtaining the User’s Locale 17

Overview
This chapter provides tips and best practices for developing portlets, including the

following:
� avoiding namespace problems
� bundling multiple portlets into a single PAR file
� testing portlets
� obtaining a user or session context
� obtaining the user’s name
� obtaining the user’s locale

Note: The code samples in this chapter require that you include the appropriate
import statements at the top of your program. Here are some examples:

import com.sas.preferences.SASProfileInterface;
import com.sas.services.information.metadata.PersonInterface;
import com.sas.services.session.SessionContextInterface;
import com.sas.services.user.UserContextInterface;
import com.sas.services.user.UserServiceInterface;

�

Avoiding Namespace Problems
The portlet namespace consists of the path (with underscores in place of slashes) and

the portlet’s name. For example, a portlet with the name simpleJSP and a path
of /mycompany/portlets would be deployed as _mycompany_portlets_simpleJSP.

To avoid namespace problems, do the following:

16 Bundling Multiple Portlets into a Single PAR File � Chapter 2

� Use a standard naming convention for portlet paths.

� Avoid using the _SAS namespace.

Bundling Multiple Portlets into a Single PAR File

When you need to deploy multiple portlets, define the portlets in a single portlet
deployment descriptor (portlet.xml) file and bundle the portlets into a single portlet
archive (PAR) file if it is feasible to do so. This practice improves performance, since only
one PAR file needs to be opened and only one portlet descriptor file needs to be read.

Testing Portlets

To test and debug a local portlet that you have developed, deploy it into a staging
area (that is, a test installation of the SAS Information Delivery Portal). After the
portlet has been verified and tested, deploy it into the production environment.

For remote portlets, test and debug the Web application that is called by the portlet
by using the application’s direct URL. After the application has been verified and
tested, deploy the remote portlet into the SAS Information Delivery Portal’s production
environment.

Obtaining a User and Session Context

The SAS Foundation Services user context and session context provide a mechanism
for managing information while a user is authenticated to the SAS Intelligence
Platform middle tier. For details about using SAS Foundation Services, see the class
documentation at http://support.sas.com/92api.

A local portlet has access to the SAS Information Delivery Portal’s local user and
session context. By using the local user and session context that is shared with the
portal, all Java objects created when accessing SAS Foundation Services will be local
objects and will be shared by the portal and the portlets.

A remote portlet is implemented as a separate Web application and does not have
access to the SAS Information Delivery Portal’s local user and session context. A
remote user and session context are available to the remote portlet to support single
sign-on and passing information from the portal to the remote portlet.

The remote contexts should be used when the remote portlet does not make extensive
use of SAS Foundation Services, as illustrated in “SampleRemote: Remote Portlet” on
page 58. If more extensive use of SAS Foundation Services is required, the remote
portlet should have its own local user and session context. One reason for creating a
local user and session context for a remote portlet is to improve efficiency. Java calls
will then be local to the Web application’s JVM rather than directed to remote services.
Another reason for creating a local user and session context for a remote portlet is to
improve scalability. A Web application can run in a load-balanced cluster, but there can
be only one instance of the remote services application. In addition, the remote contexts
are limited to accessing the repositories that are defined in the remote services
deployment. Because additional repositories might be defined in the local services
deployment, you should use the local session context whenever possible. The process of
developing a remote portlet with its own local user and session context requires
additional portlet configuration files. Additional metadata must also be created. This
document does not include a sample that illustrates these additional steps.

� Obtaining the User’s Locale 17

The preferred ways to obtain the user and session contexts are from the HttpSession.
The easiest way to obtain the HttpSession in portlet code is from the request, as in the
following example:

HttpSession session = request.getSession();

If the request is not available, the HttpSession can also be obtained from the portlet
context, as in the following example:

HttpSession session = portletContext.getHttpSession();

Obtaining a Local User and Session Context
The following example obtains both the local user and session contexts from the

HttpSession:

UserContextInterface userContext =
(UserContextInterface)session.getAttribute(CommonKeys.USER_CONTEXT);

SessionContextInterface sessionContext =
(SessionContextInterface)session.getAttribute(CommonKeys.SESSION_CONTEXT);

Obtaining a Remote User and Session Context
The following example obtains both the remote user and session contexts from the

HttpSession:

UserContextInterface userContext =
(UserContextInterface)session.getAttribute(CommonKeys.REMOTE_USER_CONTEXT);

SessionContextInterface sessionContext =
(SessionContextInterface)session.getAttribute(

CommonKeys.REMOTE_SESSION_CONTEXT);

Obtaining the User’s Name

In a portlet initializer or action class, you can obtain the display name of the user
that is logged on from the user context. For information about obtaining the user
context, see “Obtaining a User and Session Context” on page 16.

IdentityInterface aPerson = userContext.getPerson();
String name = aPerson.getDisplayName();

Obtaining the User’s Locale

In a portlet initializer or action class, you can obtain the user’s locale from the user
context. For information about obtaining the user context, see “Obtaining a User and
Session Context” on page 16.

The following code obtains the SAS profile from the user context and then obtains
the locale from the instance of the SASProfileInterface:

ProfileInterface profile = userContext.getProfile();
SASProfileInterface sasProfile =
(com.sas.preferences.SASProfileInterface)profile.getProfile("SAS");

18 Obtaining the User’s Locale � Chapter 2

Locale locale = sasProfile.getLocale();

Note: The locale is null if no value was available from the SAS profile. In this case,
use the HttpServletRequest.getLocale() method instead. �

19

C H A P T E R

3
Using the Portlet API

Overview 19
Class Reference 19

Overview

The Portlet API provides access to classes that provide the SAS Information Delivery
Portal’s navigation and request processing functions. For detailed information about
the API, see the class documentation at http://support.sas.com/92api.

Class Reference

The following classes are of particular usefulness in creating custom portlets:

com.sas.portal.portlet.DefaultPortletAction
Extend this class in order to create your own portlet actions. For more
information, see “Creating a Portlet Action Class” on page 9.

com.sas.portal.portlet.ErrorHandlerInterface
Use this interface to handle errors that your portlet encounters. For more
information, see “Creating an Error Handling Action” on page 10.

com.sas.portal.portlet.HTMLPortletAction
Extend this class in order to create your own portlet actions. For more information,
see “Creating a Portlet Action Class” on page 9. Possible uses include the following:

� correctly displaying non-Latin1 character sets when a portlet is displayed in
preview mode. For an example of this use, see “Step 4: Create the Action
Class” on page 28.

� preparing URLs for actions within an interactive form JSP and populating a
JavaBean with parameters from a JSP form. For an example of these uses,
see “Step 4: Create the Action Class” on page 36.

com.sas.portal.portlet.PortletContext
Use this interface to obtain a local or remote session context, which you can use to
pass information from one portlet to another. For examples, see “Obtaining a User
and Session Context” on page 16.

com.sas.portal.portlet.NavigationUtil
Use this class to do the following:

� create URLs for buttons on your JSP pages (for example, OK and Cancel).

20 Class Reference � Chapter 3

� obtain a portlet’s resource bundles in order to create a localization context for
your portlet’s JSP page.

com.sas.portal.portlet.PortletActionInterface
Use this interface to develop an action class for your portlet. For more
information, see “Creating a Portlet Action Class” on page 9 and “Step 4: Create
the Action Class” on page 28.

com.sas.portal.portlet.PortletInitializerInterface
Use this interface to develop an initializer class, which runs before your portlet is
displayed for the first time on a portal page. Possible uses include

� reading initial parameters that are specified in your portlet’s deployment
descriptor file (portlet.xml).

� connecting to an external resource such as a database. For more information,
see “Creating an Initializer Action Class” on page 8.

com.sas.portal.portlet.PostProcessorInterface
Use this interface to develop a postprocessor class that runs when your portlet is
no longer displayed. Possible uses include the following:

� freeing resources that were used in the portlet initializer.

� removing HttpSession attributes that were set in the portlet initializer or
portlet action. This is especially important to consider because multiple copies
of your portlet could exist on other portal pages or even on the same page.

For more information, see “Creating a Postprocessing Action Class” on page 10.

21

C H A P T E R

4
Sample Portlets

Overview: Sample Portlets 22
Creating Portlets Using the Testportlet Scripting Facility 22

SampleWelcome: Localized Display Portlet 24

Overview: Steps for Creating the SampleWelcome Portlet 24

Step 1: Create the Portlet Configuration and Source Directories 25

Step 2: Create the Portlet Deployment Descriptor 26
Step 3: Create the Display Page 28

Step 4: Create the Action Class 28

Step 5: Create the Resource Bundles 30

Step 6: Create Translated Titles and Descriptions 30

Step 7: Compile Portlet Code 30

Step 8: Create the PAR File and Deploy and Test the Portlet 31
SampleForm: Interactive Form Portlet 32

Overview: Steps for Creating the SampleForm Portlet 32

Step 1: Create the Portlet Configuration and Source Directories 32

Step 2: Create the Portlet Deployment Descriptor 34

Step 3: Create the Display Page 35
Step 4: Create the Action Class 36

Step 5: Create a JavaBean to Return User Input 37

Step 6: Create a Title and Description for the Portlet 38

Step 7: Compile Portlet Code 39

Step 8: Create the PAR File and Deploy and Test the Portlet 39
SampleDisplayURL: Editable Portlet 40

Overview: Steps for Creating the SampleDisplayURL Portlet 40

Step 1: Create the Portlet Configuration and Source Directories 40

Step 2: Create the Portlet Deployment Descriptor 42

Step 3: Create the Display Pages for the Portlet and the Editor 44

Create the Viewer.jsp Page 44
Create the Editor.jsp Page 45

Create the Error.jsp Page 46

Step 4: Create the Action Classes 46

Create the Initializer Action Class 47

Create the Base Action Class 48
Create the Display Action Class 50

Create the Editor Action Class 51

Create the OK and Cancel Action Classes 52

Create the Error Handler Action Class 54

Step 5: Create the Resource Bundle 56
Step 6: Create a Title and Description for the Portlet 57

Step 7: Compile Portlet Code 57

Step 8: Create the PAR File and Deploy and Test the Portlet 58

22 Overview: Sample Portlets � Chapter 4

SampleRemote: Remote Portlet 58
Overview: Steps for Creating the SampleRemote Portlet 58

Step 1: Create the Portlet Configuration and Source Directories 59

Step 2: Create the Enterprise Application Deployment Descriptor 60

Step 3: Create the Web Application Deployment Descriptor 61

Step 4: Create the Spring Framework Configuration File 64
Step 5: Create the Display Pages for the Web Application 65

Create the Viewer.jsp Page 65

Create the Editor.jsp Page 66

Create the Error.jsp Page 67

Create the Help.jsp Page 67

Step 6: Create the Controller Servlet Class 68
Step 7: Create the Portlet Deployment Descriptor 71

Step 8: Create a Title and Description for the Portlet 73

Step 9: Compile the Remote Portlet 73

Step 10: Create the EAR and PAR Files and Deploy and Test the Portlet 74

Overview: Sample Portlets
This chapter includes complete code for portlet deployment descriptors, JSP pages,

resource files, and action classes as applicable for the following sample portlets:

SampleWelcome
is a simple display portlet that has no interactive capabilities. Because it is
internationalized, it displays text in the user’s locale (language and country)
preference.

SampleForm
is an interactive form portlet that accepts free-form input and displays it back to
the user.

SampleDisplayURL
is a portlet from which users can create their own portlet instances that display
HTML content from any URL. It is a simplified version of the standard
DisplayURL portlet template that is delivered with the SAS Information Delivery
Portal. This sample provides an edit mode that enables users to specify the URL
to display.

SampleRemote
is a remote portlet that executes a Web application that displays the name of the
user who is logged on to the SAS Information Delivery Portal. The portlet also
displays text that can be edited by the user.

For detailed information about a specific portlet development task, see “Development
Steps” on page 3.

Creating Portlets Using the Testportlet Scripting Facility
The examples in this chapter use the portlet development scripting facility provided

with the SAS Information Delivery Portal. The files for this facility can be found in the
SAS-configuration-directory/Lev1/CustomAppData/testportlet directory. The
scripting facility should be used for portlet development because it provides a process
that integrates your custom portlets with the SAS 9.2 Versioned JAR Repository.

� Creating Portlets Using the Testportlet Scripting Facility 23

The following steps provide an overview of creating a portlet using the scripting
facility. The instructions for creating the sample portlets in this chapter include
detailed examples of using the scripting facility.

Note: Before you begin developing a custom portlet, ensure that the SAS Metadata
Server is running so that metadata can be accessed during the configuration and
deployment processes. �

1 Create a configuration directory for the portlet under the
SAS-configuration-directory/Lev1/CustomAppData/ directory. Use the portlet
name for the configuration directory name. The following rules apply to the portlet
name and configuration directory structure:

� Neither portlet names nor their paths can contain spaces.

� The portlet name must match the name of the portlet that is specified in the
name attribute of the <local-portlet> or <remote-portlet> element in
the portlet deployment descriptor (portlet.xml) file.

� The portlet name must be unique.

2 Copy the contents of the testportlet directory to the new portlet configuration
directory.

3 Create a source directory for the code associated with the portlet. This directory is
referred to in subsequent instructions as the portlet source directory.

4 Edit the custom.properties file in the portlet configuration directory to specify the
portlet name and title and the locations for the configuration and source files.

5 Run the configuration script, cfg, to create the source directory structure for
building the portlet.

Note: After running the script, review the customconfig.log file for errors. This
file will be located in the directory where the script was run. �

For local portlets, the following source directory structure is created:

portlet-source-directory/Configurable/pars/archive-name
portlet-source-directory/Picklists/pars/archive-name
portlet-source-directory/Static/lib
portlet-source-directory/Static/pars/archive-name/context-root/content
portlet-source-directory/Static/pars/archive-name/context-root/source
portlet-source-directory/Static/pars/archive-name/context-root/classes

For remote portlets, the following source directory structure is created:

portlet-source-directory/Configurable/ears/archive-name/META-INF
portlet-source-directory/Configurable/pars/archive-name
portlet-source-directory/Configurable/wars/archive-name/WEB-INF
portlet-source-directory/Picklists/wars/archive-name
portlet-source-directory/Static/lib
portlet-source-directory/Static/ears/archive-name/META-INF
portlet-source-directory/Static/pars/archive-name/context-root/classes
portlet-source-directory/Static/wars/archive-name/jsp
portlet-source-directory/Static/wars/archive-name/source
portlet-source-directory/Static/wars/archive-name/WEB-INF/classes
portlet-source-directory/Static/wars/archive-name/WEB-INF/spring-config

The /Configurable and /Static directory hierarchies are used to store the
files needed to create PAR, EAR, and WAR files for the portlet, in the same
directory structure as the PAR, EAR, and WAR files themselves. The
/Configurable hierarchy is used for files in which values are substituted from
the portlet configuration file when the portlet is built. The /Static hierarchy is

24 SampleWelcome: Localized Display Portlet � Chapter 4

used for files that do not require substitution. The /Picklists directory hierarchy
is used to store picklist files that specify which of the JAR files from the SAS
Versioned JAR Repository need to be included in the portlet. The /Static/lib
directory is used to store additional JAR files needed at compile time.

6 Load source files for portlet components into the source directory structure.
7 Create a picklist file to tell the portlet which of the JAR files from the SAS

Versioned JAR Repository need to be included in the portlet.

Note: After a SAS maintenance release is applied at your site, you must copy
the updated picklist and repeat the building and deploying of PAR and EAR files
for custom portlets. �

8 Add other JAR files to the project.
9 Run the configuration script to compile Java classes.

Note: After running the script, review the customconfig.log file for errors. This
file is located in the directory where the script was run. �

10 Stop the application server on which the SAS Information Delivery Portal is
deployed so that development of the new portlet will not affect the running system.

11 Run the configuration script to build the appropriate archive files for the portlet.
This step will create a PAR file in the SAS Information Delivery Portal’s Exploded
and Deployed portlet directories. For remote portlets, it will also create the
remote portlet Web application.

Note: After running the script, review the customconfig.log file for errors. This
file is located in the directory where the script was run. �

12 For remote portlets only: Run the configuration script to deploy the Web
application EAR file to the Web application server.

Note: After running the script, review the customconfig.log file for errors. This
file is located in the directory where the script was run. �

13 Rebuild the sas.portal4.2.ear file using the SAS Deployment Manager and
redeploy the EAR file.

Note: If your SAS installation uses restrictive policy files, you might need to
update the files to provide appropriate permissions for the portlet. �

14 Start the application server where the SAS Information Delivery Portal is
deployed. The custom portlet should now be available to the portal.

Note: In order to use the scripting facility, you must have the unrestricted user
password for your SAS installation. �

SampleWelcome: Localized Display Portlet

Overview: Steps for Creating the SampleWelcome Portlet
The SampleWelcome portlet displays localized text using the user’s locale (language

and country) preference and is not interactive. The SampleWelcome portlet is a local
portlet that runs inside the portlet container.

To create the SampleWelcome portlet, follow these steps:
1 Create the portlet configuration and source directories.
2 Create the portlet deployment descriptor (portlet.xml).
3 Create the display page (Welcome.jsp).

� Step 1: Create the Portlet Configuration and Source Directories 25

4 Create the actions class (WelcomeAction.java).
5 Create resource bundles to support different locales.
6 Create translated portlet titles and descriptions to support different locales.
7 Compile portlet code.
8 Create the PAR file and deploy and test the portlet.

Note: Before you begin developing the SampleWelcome portlet, ensure that the SAS
Metadata Server is running so that metadata can be accessed during the configuration
and deployment processes. �

Step 1: Create the Portlet Configuration and Source Directories
Follow these steps to create a configuration and source directory structure for

building the portlet:
1 Create a configuration directory for the portlet named SampleWelcome under the

SAS-configuration-directory/Lev1/CustomAppData directory. This directory is
referred to as portlet-configuration-directory in the code and descriptions for this
portlet.

2 Copy the contents of the testportlet directory into this new SampleWelcome
directory.

3 Create a source code directory for the portlet named Source under the
SAS-configuration-directory/Lev1/CustomAppData/SampleWelcome directory.
This directory is referred to as portlet-source-directory in the code and descriptions
for this portlet.

4 Edit the custom.properties file in the SampleWelcome directory as follows.

Note: Be sure to substitute the full pathnames from the steps above in the
install.currprod.config.dir= and testportlet.install.dir= argument
values. �

If you change the value "testportlet", make sure to rename in all properties
here as well as in the custom_config.xml.
config.currprod.12byte=testportlet

Change the value of this property to be the name of your web application.
config.currprod.legalname=Welcome Portlet Sample

The value of this property should be the location where the configuration
files are placed. Make sure to change the level directory based on your
installation and make sure to rename testportlet if the value of
config.currprod.12byte changes above.
install.currprod.config.dir=portlet-configuration-directory

Do not change the value of this property. The name might be changed if you
change the value of config.currprod.12byte above.
webappsrv.testportlet.server=server

Change the value of this property to be the location of your portlet’s source
code and configuration files. The name might be changed if you change the
value of config.currprod.12byte above.
testportlet.install.dir=portlet-source-directory

26 Step 2: Create the Portlet Deployment Descriptor � Chapter 4

Change the value of this property to be the name of you par, war, and ear
file. The name might be changed if you change the value of
config.currprod.12byte above.
webapp.testportlet.archive.name=sample.welcome

Change the value of this property to be the context root of your web
application and the name of the portlet. The name might be changed if you
change the value of config.currprod.12byte above.
webapp.testportlet.contextroot=SampleWelcome

Change the value of this property to be the versioned name of your web
application. This property is only used for remote portlets. The name might
be changed if you change the value of config.currprod.12byte above.
webapp.testportlet.display.name=Welcome Portlet Sample

5 From the SAS-configuration-directory/Lev1/CustomAppData/SampleWelcome
directory, run the configuration script with the following arguments to create the
source directory structure for building the portlet:

cfg createLocalPortletDirectories -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

6 Review the customconfig.log file that was created in the
SAS-configuration-directory/Lev1/CustomAppData/SampleWelcome directory to
determine whether any errors occurred.

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information

that the SAS Information Delivery Portal needs to deploy one or more portlets. The
following example shows the contents of the portlet deployment descriptor file for the
SampleWelcome portlet. For more information about portlet deployment descriptor
files, see “Creating a Portlet Deployment Descriptor” on page 4.

<?xml version="1.0" encoding="UTF-8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal installation directory in
the path portal/WEB-INF. For example, on a Windows system, the DTD is located at the
following path: SAS-installation-directory/SASInformationDeliveryPortal/4.2/Static/
wars/sas.portal/WEB-INF/classes/portlet.dtd.

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>

� Step 2: Create the Portlet Deployment Descriptor 27

The <local-portlet> element assigns the name to the portlet. The name cannot contain
spaces. The portlet identifier, which consists of the portlet path (defined in the <portlet-path>
element) together with the portlet name, must be unique within the SAS Information Delivery
Portal. This example uses the testportlet scripting facility to build the portlet, which will
replace @webapp.testportlet.contextroot@ with the literal name SampleWelcome.

<local-portlet name="@webapp.testportlet.contextroot@"
title="Welcome Portlet Sample">

The <localized-resources> element lists the locales that the portlet supports. Display
resource files must be provided for each of these locales.

<localized-resources locales="de,en" />

The <deployment> element specifies that all users can create new instances of this portlet.

<deployment scope="user" autoDeploy="false" userCanCreateMore="true" />

Because the SampleWelcome portlet does not need its own initializer class, the default portlet
initializer (JspPortletInitializer) is specified. This class requires a parameter named
display-page. The initializer places the value of this parameter in the PortletContext object
so that it can be used by the portlet’s action class. The value of the parameter is the name of the
SampleWelcome portlet’s JSP page, named Welcome.jsp.

Note: The default initializer passes only the display-page parameter. To pass
additional parameters, you need to create your own initializer class. For more
information, see “Creating an Initializer Action Class” on page 8. �

<initializer-type>
com.sas.portal.portlets.JspPortlet.JspPortletInitializer

</initializer-type>

<init-param>
<param-name>display-page</param-name>
<param-value>Welcome.jsp</param-value>

</init-param>

The <portlet-path> element specifies the directory location in which the portlet is deployed.
The portlet identifier, which consists of the portlet path together with the portlet name (defined
in the local-portlet element), must be unique within the SAS Information Delivery Portal.
For example, Orion Star Sports & Outdoors could have two SampleWelcome portlets if different
paths are specified for each (as in /OrionStar/Sales/SampleWelcome and /OrionStar/
Purchasing/SampleWelcome).

<portlet-path>/sample/portlets</portlet-path>

To provide for internationalization of the text that appears inside the portlet border, the
SampleWelcome portlet has its own action class, named WelcomeAction. The name of the class
is specified in the <type> subelement of the <portlet-action> element.

<portlet-actions>
<portlet-action name="display" default="true">

<type>sample.welcome.WelcomeAction</type>
</portlet-action>

</portlet-actions>

</local-portlet>

28 Step 3: Create the Display Page � Chapter 4

</portlets>

Store this portlet deployment descriptor source text in a file named
portlet.xml.orig in the portlet-source-directory/Configurable/pars/
sample.welcome directory. The testportlet scripting facility performs name/value pair
substitution on this file to produce the portlet.xml file.

Step 3: Create the Display Page
JSP pages are the presentation components of portlets. The following example shows

the source code for the SampleWelcome portlet’s JSP page. For more information about
portlet display pages, see “Creating the Presentation JSP Page” on page 7.

<%-- Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513 --%>

The following line contains the UTF-8 directive, which is required for internationalization. This
directive causes all user input to be encoded in the 8-bit Unicode Transformation Format, which
supports all of the world’s languages including those that use character sets other than Latin1.

<%@ page language="java" contentType= "text/html; charset=UTF-8" %>

The following line contains the taglib directive for the JSP Standard Tag Library (JSTL)
formatting tags. The directive must appear before the first use of these tags.

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

The following lines use JSTL formatting tags to display text. The key attribute is used to obtain
the appropriate text from the resource bundle that most closely matches the user’s locale
preference. The SAS Information Delivery Portal makes the user’s locale available to these tags.

<fmt:message key="welcome.msg1.txt"/>

<fmt:message key="welcome.msg2.txt"/>

Store this JSP code in a file named Welcome.jsp in the portlet-source-directory/
Static/pars/sample.welcome/SampleWelcome/content directory.

Step 4: Create the Action Class
The SampleWelcome portlet has its own action class, WelcomeAction, which provides

support for localizing messages. This class extends
com.sas.portal.portlet.HTMLPortletAction, which contains code to correctly display
character sets other than Latin1 when the SAS Information Delivery Portal displays
the portlet in preview mode.

The following example shows the source code for the WelcomeAction class. For more
information about action classes, see “Creating Action Classes” on page 8.

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.welcome;

import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;
import javax.servlet.http.HttpServletRequest;

� Step 4: Create the Action Class 29

import javax.servlet.http.HttpServletResponse;

/**
* Action for the SampleWelcome Portlet. This prepares the localized resource
* bundles for use by the JSTL tags within the portlet’s JSP.
* @version 1
*/
public final class WelcomeAction extends HTMLPortletAction {

public WelcomeAction() {
}

/**
* Configure the JSTL localization context for use in the SampleWelcome
* portlet. Returns the value of "display-page" from the portlet’s
* XML descriptor.
*
* @param request The HttpServletRequest associated with the method
* invocation
* @param response HttpServletResponse associated with the method
* invocation
* @param context PortletContext mapped to the request path
*
* @return java.lang.String - representing a valid URL.
*/
public String service(HttpServletRequest request,

HttpServletResponse response,
PortletContext context)

throws Exception {

In the following code, the NavigationUtil method uses the portlet’s classloader to obtain the
portlet’s resource bundle. Using this bundle and the locale of the current user, it creates a new
JSTL localization context. The localization context is made available to the portlet’s JSP page
with request scope.

super.service(request, response, context);

NavigationUtil.prepareLocalizedResources(
"sample.welcome.res.Resources", request, context);

// This comes from the portlet.xml.
String url = (String) context.getAttribute("display-page");
return url;

}

private static final long serialVersionUID = 1L;
}

Create a directory named sample under the portlet-source-directory/Static/pars/
sample.welcome/SampleWelcome/source directory, and then create a directory named
welcome under the portlet-source-directory/Static/pars/sample.welcome/
SampleWelcome/source/sample directory. Store the class source code in a file named
WelcomeAction.java in the portlet-source-directory/Static/pars/sample.welcome/
SampleWelcome/source/sample/welcome directory.

30 Step 5: Create the Resource Bundles � Chapter 4

Step 5: Create the Resource Bundles
Resource bundles provide translated text that is displayed inside the SampleWelcome

portlet. The portlet’s WelcomeAction.class calls the
NavigationUtil.prepareLocalizedResources() method to create a JSTL localization
context based on the user’s locale preference. This context enables the JSTL tags in
Welcome.jsp to use the appropriate resource bundle to display the text.

Note: For information about localizing the portlet’s title and description, see “Step
6: Create Translated Titles and Descriptions” on page 30. �

Create the following resource files for the SampleWelcome portlet:

Resources_de.properties (for German)

This is where you put key/value pairs for message strings that need to
be localized.
These are the messages for the Welcome portlet
welcome.msg1.txt=Willkommen bei SAS Information Delivery Portal.
welcome.msg2.txt=Schauen Sie sich um!

Resources_en.properties (for English)

This is where you put key/value pairs for message strings that need to
be localized.
These are the messages for the SampleWelcome portlet
welcome.msg1.txt=Welcome to the SAS Information Delivery Portal.
welcome.msg2.txt=Take a look around!

Create a directory named res under the portlet-source-directory/Static/pars/
sample.welcome/SampleWelcome/source/sample/welcome directory. Store these
resource bundles in files named Resources_de.properties and
Resources_en.properties in the portlet-source-directory/Static/pars/
sample.welcome/SampleWelcome/source/sample/welcome/res directory.

Step 6: Create Translated Titles and Descriptions
Translated titles and descriptions for the SampleWelcome portlet are stored in

display resource files. See “Creating Display Resources Files” on page 6 for more
information about display resource files.

The following display resource files are required for the SampleWelcome portlet:

portletDisplayResources_de.properties (for German)

portlet.title=Begrungs-Portlet Muster
portlet.description=Begrungs-Portlet Muster

portletDisplayResources_en.properties (for English)

portlet.title=Welcome Portlet Sample
portlet.description=Welcome Portlet Sample

Store these files with the specified names in the portlet-source-directory/Static/
pars/sample.welcome/SampleWelcome/classes directory.

Step 7: Compile Portlet Code
The action class that was defined in Step 4 must be compiled before the portlet can

be used. SAS 9.2 uses a Versioned JAR Repository to manage the JAR files that ship

� Step 8: Create the PAR File and Deploy and Test the Portlet 31

with SAS products. The testportlet scripting facility integrates with the Versioned JAR
Repository by requiring a picklist to define which JAR files are used for compiling the
portlet and building the WAR file. If your portlet requires additional JAR files, they
must also be added to the picklist.

Follow these steps to compile the SampleWelcome portlet:

1 Create a picklist for this sample portlet. As a starting point, copy the SAS
Information Delivery Portal picklist file from the SAS-installation-directory/
SASInformationDeliveryPortal/4.2/Picklists/wars/sas.portal directory
into the portlet-source-directory/Picklist/pars/sample.welcome directory.

Note: After a SAS maintenance release is applied at your site, you must copy
the updated picklist file and repeat the building and deploying of PAR and EAR
files for all custom portlets. �

2 Copy the file named servlet-api.jar that ships with the application server into
the portlet-source-directory/Static/lib directory.

Note: The portlet-source-directory/Static/lib directory is where you store any
custom or third-party JAR files that are not defined in the SAS picklist but that
are needed to compile the custom portlet. �

3 From the SAS-configuration-directory/Lev1/CustomAppData/SampleWelcome
directory, run the configuration script with the following arguments to compile the
Java class:

cfg compileLocalPortlet -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

4 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleWelcome directory to determine whether any errors
occurred.

Step 8: Create the PAR File and Deploy and Test the Portlet
The last step in developing the SampleWelcome portlet is to archive its files into a

PAR file and deploy the new portlet. The PAR file includes all of the portlet’s
supporting files, including the files created in Steps 2 through 7. To create the PAR file
and deploy the portlet, follow these steps:

1 Stop the Web application server on which the SAS Information Delivery Portal is
deployed so that development of the new portlet will not affect the running system.

2 From the SAS-configuration-directory/Lev1/CustomAppData/SampleWelcome
directory, run the configuration script with the following arguments:

cfg buildPortletArchive -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

32 SampleForm: Interactive Form Portlet � Chapter 4

The portlet archive file will be created in the SAS-configuration-directory/Lev1/
Web/Applications/SASPortlets4.2/Deployed directory with the name
sample.welcome.par.

3 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleWelcome directory to determine whether any errors
occurred.

4 Rebuild the sas.portal4.2.ear file using the SAS Deployment Manager. This step is
required because the sas.portal4.2.ear file contains files associated with each
portlet.

5 Manually redeploy the sas.portal4.2.ear file into the Web application server.
6 Start the Web application server on which the SAS Information Delivery Portal is

deployed. The SampleWelcome portlet should now be available to the portal.

It is a good practice to deploy new portlets into a staging area (that is, a test
installation of the SAS Information Delivery Portal) for verification and testing before
deploying them into a production environment.

SampleForm: Interactive Form Portlet

Overview: Steps for Creating the SampleForm Portlet
The SampleForm portlet is an interactive portlet that accepts free-form input from

the user. When the user clicks Submit Form, the portlet displays the entered text back
to the user.

SampleForm is a local portlet that runs inside the portlet container. It was developed
using a JavaBean, which places values in the PortletContext object so that the values
are available to the JSP page. The HttpServletRequestor HttpSession object could be
used for this purpose. However, the PortletContext object is unique to the portlet and is
not shared with other processes. Therefore, using it avoids collisions that could cause
attribute values to be overwritten.

To create the SampleForm portlet, follow these steps:
1 Create the portlet configuration and source directories.
2 Create the portlet deployment descriptor (portlet.xml).
3 Create the display page (SampleForm.jsp).
4 Create the action class (DisplayAction.java).
5 Create a JavaBean to return user input (ExampleBean.java).
6 Create a title and description for the portlet.
7 Compile portlet code.
8 Create the PAR file and deploy and test the portlet.

Note: Before you begin developing the SampleForm portlet, ensure that the SAS
Metadata Server is running so that metadata can be accessed during the configuration
and deployment processes. �

Step 1: Create the Portlet Configuration and Source Directories
Follow these steps to create a source directory structure for building the portlet:
1 Create a configuration directory for the portlet named SampleForm under the

SAS-configuration-directory/Lev1/CustomAppData directory. This directory is

� Step 1: Create the Portlet Configuration and Source Directories 33

referred to as portlet-configuration-directory in the code and descriptions for this
portlet.

2 Copy the contents of the testportlet directory to the SampleForm directory.
3 Create a source code directory for the portlet named Source under the

SAS-configuration-directory/Lev1/CustomAppData/SampleForm directory. This
directory is referred to as portlet-source-directory in the code and descriptions for
this portlet.

4 Edit the custom.properties file in the SampleForm directory as follows.

Note: Be sure to substitute the full pathnames from the steps above in the
install.currprod.config.dir= and testportlet.install.dir= argument
values. �

If you change the value "testportlet", make sure to rename in all properties
here as well as in the custom_config.xml.
config.currprod.12byte=testportlet

Change the value of this property to be the name of your web application.
config.currprod.legalname=Form Portlet Sample

The value of this property should be the location where the configuration
files are placed. Make sure to change the level directory based on your
installation and make sure to rename testportlet if the value of
config.currprod.12byte changes above.
install.currprod.config.dir=portlet-configuration-directory

Do not change the value of this property. The name might be changed if you
change the value of config.currprod.12byte above.
webappsrv.testportlet.server=server

Change the value of this property to be the location of your portlet’s source
code and configuration files. The name might be changed if you change the
value of config.currprod.12byte above.
testportlet.install.dir=portlet-source-directory

Change the value of this property to be the name of you par, war, and ear
file. The name might be changed if you change the value of
config.currprod.12byte above.
webapp.testportlet.archive.name=sample.form

Change the value of this property to be the context root of your web
application and the name of the portlet. The name might be changed if you
change the value of config.currprod.12byte above.
webapp.testportlet.contextroot=SampleForm

Change the value of this property to be the versioned name of your web
application. This property is only used for remote portlets. The name might
be changed if you change the value of config.currprod.12byte above.
webapp.testportlet.display.name=Form Portlet Sample

5 From the SAS-configuration-directory/Lev1/CustomAppData/SampleForm
directory, run the following configuration script to create the source directory
structure for building the portlet:

cfg createLocalPortletDirectories -Dmetadata.connection.passwd="password"

34 Step 2: Create the Portlet Deployment Descriptor � Chapter 4

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

6 Review the customconfig.log file that was created in the
SAS-configuration-directory/Lev1/CustomAppData/SampleForm directory to
determine whether any errors occurred.

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information

that the SAS Information Delivery Portal needs to deploy one or more portlets. The
following example shows the contents of the portlet deployment descriptor file for the
SampleForm portlet. For more information about portlet deployment descriptor files,
see “Creating a Portlet Deployment Descriptor” on page 4.

<?xml version="1.0" encoding="UTF-8" ?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the DTD does not need to be accessible at the URL that the statement specifies.

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>

The <local-portlet> element assigns the name SampleForm to the portlet. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the
<portlet-path> element) together with the portlet name, must be unique within the SAS
Information Delivery Portal.

<local-portlet name="@webapp.testportlet.contextroot@"
title="Form Portlet Sample">

<localized-resources locales="en" />

The <deployment> element specifies that all users can create new instances of this portlet.

<deployment scope="user" autoDeploy="false" userCanCreateMore="true" />

Because no initializer class is specified, the SampleForm portlet uses the default initializer,
JspPortletInitializer. This initializer requires a page name as a parameter. The SampleForm
portlet has its own JSP page named SampleForm.jsp.

<init-param>
<param-name>display-page</param-name>
<param-value>SampleForm.jsp</param-value>

</init-param>

The <portlet-path> element specifies the directory location in which the portlet will be
deployed. The portlet identifier, which consists of the portlet path together with the portlet
name (defined in the <local-portlet> element), must be unique within the SAS Information
Delivery Portal.

<portlet-path>/sample/portlets</portlet-path>

� Step 3: Create the Display Page 35

To provide its interactive functionality, the SampleForm portlet has its own action class, named
DisplayAction. The name of the class is specified in the type subelement of the
<portlet-action> element.

<portlet-actions>
<portlet-action name="display" default="true">

<type>sample.form.DisplayAction</type>
</portlet-action>

</portlet-actions>
</local-portlet>

</portlets>

Store this portlet deployment descriptor source text in a file named
portlet.xml.orig in the portlet-source-directory/Configurable/pars/sample.form
directory. The testportlet scripting facility performs name/value pair substitution on
this file to produce the portlet.xml file.

Step 3: Create the Display Page
JSP pages are the presentation components of portlets. The following example shows

the code for the SampleForm portlet’s display page. This JSP page uses SAS custom
tags, which require a license for SAS AppDev Studio software. For more information,
see “Creating the Presentation JSP Page” on page 7. If SAS AppDev Studio software is
not licensed at your site, you must substitute equivalent HTML or JSP coding instead.

<%-- Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513 --%>
<%@ page language="java" import="com.sas.portal.portlet.PortletContext,

com.sas.portal.common.PortletConstants"
contentType="text/html;charset=UTF-8" %>

<%@taglib uri="http://www.sas.com/taglib/sas" prefix="sas"%>

<%-- This portlet echoes user input back to the portlet display. --%>

<% PortletContext context = (PortletContext)
request.getAttribute(PortletConstants.CURRENT_PORTLET_CONTEXT);

%>

<sas:Form id="form" name="form" method="POST"
action="<%= (String) context.getAttribute(\"formExample_baseURL\")%>">

<table border="0">

<tr>
<td align="right">Enter a value:</td>

<td><sas:TextEntry id="userInput" /></td>
</tr>

<tr>
<td align="right">You typed:</td>

<td><%=(String) context.getAttribute("formExample_userInput") %></td>
</tr>

36 Step 4: Create the Action Class � Chapter 4

</table>

<sas:PushButton id="submit"
text="Submit Form" type="submit" />

</sas:Form>

Store this JSP code in a file named SampleForm.jsp in the portlet-source-directory/
Static/pars/sample.welcome/SampleWelcome/content directory.

Step 4: Create the Action Class
The SampleForm portlet has its own action class, DisplayAction. The following

example shows the source code for the DisplayAction class. For more information, see
“Creating Action Classes” on page 8.

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.form;

import java.util.Enumeration;
import java.util.HashMap;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.beanutils.BeanUtils;

import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;

/**
* Action for the Form Example Portlet. This prepares the URL
* that is assigned to the form’s action within the portlet’s JSP.
* It also populates a bean with the parameters from the JSP form.
*
*/
public final class DisplayAction extends HTMLPortletAction {

public DisplayAction() {
}

/**
* Prepare the URL for the form used in the portlet.
* Returns the value of "SampleForm.jsp".
*
* @param request The HtppServletRequest associated with the
* method invocation
* @param response HttpServletResponse associated with the
* method invocation
* @param context PortletContext mapped to the request path
*
* @return java.lang.String - representing a valid

� Step 5: Create a JavaBean to Return User Input 37

* URL.
*/
public String service(HttpServletRequest request,

HttpServletResponse response, PortletContext context)
throws Exception{

super.service(request, response, context);

// Prepare the base URL for setting on the form in the JSP.
// The "display" is the value used in portlet.xml for this
// action.
String baseURL = NavigationUtil.buildBaseURL(context, request,

"display");
context.setAttribute("formExample_baseURL", baseURL);

// Make a new ExampleBean. Alternatively, this could be made
// once in the portlet initializer class, then you manage
// its properties in the action.
ExampleBean bean = new ExampleBean();

// The BeanUtils class populates any bean with all the
// parameters from the form.
HashMap map = new HashMap();
Enumeration names = request.getParameterNames();
while (names.hasMoreElements()) {

String name = (String) names.nextElement();

map.put(name, request.getParameterValues(name));
}
BeanUtils.populate(bean, map);

// Put the userInput into the portlet context so we can get it out
// in the JSP.
context.setAttribute("formExample_userInput", bean.getUserInput());

return "SampleForm.jsp";
}

private static final long serialVersionUID = 1L;

}

Create a directory named sample under the portlet-source-directory/Static/pars/
sample.form/SampleForm/source directory, and then create a directory named form
under the portlet-sourcedirectory/Static/pars/sample.form/SampleForm/source/
sample directory. Store the class source code in a file named DisplayAction.java in
the portlet-source-directory/Static/pars/sample.form/SampleForm/source/sample/
form directory.

Step 5: Create a JavaBean to Return User Input
The SampleForm portlet uses a JavaBean to place values in the PortletContext

object so that the values are available to the JSP page.

38 Step 6: Create a Title and Description for the Portlet � Chapter 4

The HttpServletRequestor HttpSession object could be used for this purpose.
However, the PortletContext object is unique to the portlet and is not shared with other
processes. Therefore, using it avoids collisions that could cause attribute values to be
overwritten.

The following example shows the source code for the JavaBean:

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.form;

public final class ExampleBean {

/**
* Sets the user’s input to this property. If input
* is null, it is changed to "" so that getUserInput()
* never returns null.
*
* @param input
*/
public void setUserInput(String input) {

if (input == null) {
input = "";

}
this.input = input;

}

/**
* Returns the user’s input or "".
*
* @return String
*/
public String getUserInput() {

return input;
}

private String input = "";
}

Store the source code for the JavaBean in a file named ExampleBean.java in the
portlet-source-directory/Static/pars/sample.form/SampleForm/source/sample/
form directory.

Step 6: Create a Title and Description for the Portlet

The title and description for the SampleForm portlet are stored in a display resource
file. See “Creating Display Resources Files” on page 6 for more information about
display resource files.

Create the following display resource file for the SampleForm portlet:

portlet.title=Form Portlet Sample
portlet.description=Form Portlet Sample

Store this text in a file named portletDisplayResources.properties in the
portlet-source-directory/Static/pars/sample.form/SampleForm/classes directory.

� Step 8: Create the PAR File and Deploy and Test the Portlet 39

Step 7: Compile Portlet Code
The action class that was defined in Step 4 and the JavaBean that was defined in

Step 5 must be compiled before the portlet can be used. SAS 9.2 uses a Versioned JAR
Repository to manage the JAR files that ship with SAS products. The testportlet
scripting facility integrates with the Versioned JAR Repository by requiring a picklist to
define which JAR files are used for compiling the portlet and building the WAR file. If
your portlet requires additional JAR files, they must also be added to the picklist.

Follow these steps to compile the SampleForm portlet:

1 Create a picklist for this sample portlet. As a starting point, copy the SAS
Information Delivery Portal picklist file from the SAS-installation-directory/
SASInformationDeliveryPortal/4.2/Picklists/wars/sas.portal directory
into the portlet-source-directory/Picklist/pars/sample.form directory.

Note: After a SAS maintenance release is applied at your site, you must copy
the updated picklist file and repeat the building and deploying of PAR and EAR
files for all custom portlets. �

2 Copy any custom or third-party JAR files that are not defined in the SAS picklist
but that are needed to compile the custom portlet into the portlet-source-directory/
Static/lib directory. For this sample portlet, you must copy the file named
servlet-api.jar that ships with the application server into the
portlet-source-directory/Static/lib directory.

3 From the SAS-configuration-directory/Lev1/CustomAppData/SampleForm
directory, run the configuration script with the following arguments to compile the
Java class:

cfg compileLocalPortlet -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

4 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleForm directory to determine whether any errors occurred.

Step 8: Create the PAR File and Deploy and Test the Portlet
The last step in developing the SampleForm portlet is to archive its files into a PAR

file and deploy the new portlet. The PAR file includes all of the portlet’s supporting
files, including the files created in Steps 2 through 7. To create the PAR file and deploy
the portlet, follow these steps:

1 Stop the Web application server on which the SAS Information Delivery Portal is
deployed so that development of the new portlet will not affect the running system.

2 From the SAS-configuration-directory/Lev1/CustomAppData/SampleForm
directory, run the configuration script with the following arguments:

cfg buildPortletArchive -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

40 SampleDisplayURL: Editable Portlet � Chapter 4

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

The portlet archive file is created in the SAS-configuration-directory/Lev1/Web/
Applications/SASPortlets4.2/Deployed directory with the name
sample.form.par.

3 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleForm directory to determine whether any errors occurred.

4 Rebuild the sas.portal4.2.ear file using the SAS Deployment Manager. This step is
required because the sas.portal4.2.ear file contains files associated with each
portlet.

5 Manually redeploy the sas.portal4.2.ear file into the Web application server.
6 Start the Web application server on which the SAS Information Delivery Portal is

deployed. The SampleForm portlet should now be available to the portal.

It is a good practice to deploy new portlets into a staging area (that is, a test
installation of the SAS Information Delivery Portal) for verification and testing before
deploying them into a production environment.

SampleDisplayURL: Editable Portlet

Overview: Steps for Creating the SampleDisplayURL Portlet
The SampleDisplayURL portlet is an example of an editable portlet from which users

can create their own portlet instances. The Sample DisplayURL portlet includes classes
that enable the user to edit the new portlet instance to point to any URL that returns
an HTML fragment.

To create the SampleDisplayURL portlet, follow these steps:
1 Create the portlet configuration and source directories.
2 Create the portlet deployment descriptor (portlet.xml).
3 Create the display pages for the portlet and the editor (Viewer.jsp, Editor.jsp, and

Error.jsp).
4 Create the action classes (Initializer.java, BaseAction.java, DisplayAction.java,

EditorAction.java, OKAction.java, CancelAction.java, and ErrorHandler.java).
5 Create resource bundles to supply user interface text.
6 Create a title and description for the portlet.
7 Compile portlet code.
8 Create the PAR file and deploy and test the portlet.

Note: Before you begin developing the SampleDisplayURL portlet, ensure that the
SAS Metadata Server is running so that metadata can be accessed during the
configuration and deployment processes. �

Step 1: Create the Portlet Configuration and Source Directories
Follow these steps to create a source directory structure for building the portlet:
1 Create a configuration directory for the portlet named SampleDisplayURL under

the SAS-configuration-directory/Lev1/CustomAppData directory. This directory is

� Step 1: Create the Portlet Configuration and Source Directories 41

referred to as portlet-configuration-directory in the code and descriptions for this
portlet.

2 Copy the contents of the testportlet directory to theSampleDisplayURL
directory.

3 Create a source code directory for the portlet named Source under the
SAS-configuration-directory/Lev1/CustomAppData/SampleDisplayURL directory.
This directory is referred to as portlet-source-directory in the code and descriptions
for this portlet.

4 Edit the custom.properties file in the SampleDisplayURL directory as follows.

Note: Be sure to substitute the full pathnames from the steps above in the
install.currprod.config.dir= and testportlet.install.dir= argument
values. �

If you change the value "testportlet", make sure to rename in all properties
here as well as in the custom_config.xml.
config.currprod.12byte=testportlet

Change the value of this property to be the name of your web application.
config.currprod.legalname=URL Display Portlet Sample

The value of this property should be the location where the configuration
files are placed. Make sure to change the level directory based on your
installation and make sure to rename testportlet if the value of
config.currprod.12byte changes above.
install.currprod.config.dir=portlet-configuration-directory

Do not change the value of this property. The name might be changed if you
change the value of config.currprod.12byte above.
webappsrv.testportlet.server=server

Change the value of this property to be the location of your portlet’s source
code and configuration files. The name might be changed if you change the
value of config.currprod.12byte above.
testportlet.install.dir=portlet-source-directory

Change the value of this property to be the name of you par, war, and ear
file. The name might be changed if you change the value of
config.currprod.12byte above.
webapp.testportlet.archive.name=sample.displayurl

Change the value of this property to be the context root of your web
application and the name of the portlet. The name might be changed if you
change the value of config.currprod.12byte above.
webapp.testportlet.contextroot=SampleDisplayURL

Change the value of this property to be the versioned name of your web
application. This property is only used for remote portlets. The name might
be changed if you change the value of config.currprod.12byte above.
webapp.testportlet.display.name=URL Display Portlet Sample

5 From the SAS-configuration-directory/Lev1/CustomAppData/SampleDisplayURL
directory, run the following configuration script to create the source directory
structure for building the portlet:

42 Step 2: Create the Portlet Deployment Descriptor � Chapter 4

cfg createLocalPortletDirectories -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

6 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleDisplayURL directory to determine whether any errors
occurred.

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information

that the SAS Information Delivery Portal needs to deploy one or more portlets. The
following example shows the portlet deployment descriptor file for the
SampleDisplayURL portlet. For more information about portlet deployment descriptor
files, see “Creating a Portlet Deployment Descriptor” on page 4.

<?xml version="1.0" encoding="UTF-8" ?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the DTD does not need to be accessible at the URL that the statement specifies.

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>

In the <local-portlet> element, the value of the title attribute specifies the new portlet
type that is displayed to users in the Create a New Portlet dialog box.

The attribute value editorType="portlet" indicates that portlets created from the template
are editable. When this attribute value is specified, a portlet action with the attribute value
editor="true" must also be specified. Otherwise, the portlet deployer sends a warning to the
server log and does not deploy the portlet.

Note: Add the word Sample to the name and title in order to distinguish this
portlet from the URL Display portlet that is delivered with the portal. �

<local-portlet name="@webapp.testportlet.contextroot@"
title="URL Display Portlet Sample"
editorType="portlet">

<localized-resources locales="en" />

The <deployment> element specifies that all portal users can create new instances of the portlet.

<deployment scope="user" autoDeploy="false" userCanCreateMore="true" />

<initializer-type>
sample.displayurl.Initializer

</initializer-type>

<init-param>
<param-name>error-page</param-name>
<param-value>Error.jsp</param-value>

� Step 2: Create the Portlet Deployment Descriptor 43

</init-param>

<init-param>
<param-name>display-page</param-name>
<param-value>Viewer.jsp</param-value>

</init-param>

<init-param>
<param-name>edit-page</param-name>
<param-value>Editor.jsp</param-value>

</init-param>

<error-handler>
<type>sample.displayurl.ErrorHandler</type>

</error-handler>

<portlet-path>/sample/portlets</portlet-path>

The following <portlet-action> element specifies the action class DisplayAction. The attribute
value default="true" indicates that this is the default action class, which means that the
class is invoked before the portlet’s JSP renders.

<portlet-actions>
<portlet-action name="display" default="true">

<type>sample.displayurl.DisplayAction</type>
</portlet-action>

The following <portlet-action> element specifies the action class EditorAction. The attribute
value editor="true" indicates that this action is invoked when a user clicks the portlet’s
Edit icon.

<portlet-action name="editor" editor="true">
<type>sample.displayurl.EditorAction</type>

</portlet-action>

The following <portlet-action> elements specify the action classes that are invoked when the
user clicks OK and Cancel in the editor display page.

<portlet-action name="ok" default="false">
<type>sample.displayurl.OKAction</type>

</portlet-action>

<portlet-action name="cancel" default="false">
<type>sample.displayurl.CancelAction</type>

</portlet-action>

</portlet-actions>
</local-portlet>

</portlets>

Store this portlet deployment descriptor source text in a file named
portlet.xml.orig in the portlet-source-directory/Configurable/pars/
sample.displayurl directory. The testportlet scripting facility performs name/value
pair substitution on this file to produce the portlet.xml file.

44 Step 3: Create the Display Pages for the Portlet and the Editor � Chapter 4

Step 3: Create the Display Pages for the Portlet and the Editor
The SampleDisplayURL portlet has the following JSP pages:

Viewer.jsp
is the presentation component of the portlet.

Editor.jsp
is the presentation component of the editor action.

Error.jsp
displays messages for errors that occur during the editing process.

Create the Viewer.jsp Page

The following example shows the code for the Viewer JSP page, which is the
presentation component of the SampleDisplayURL portlet:

<!-- Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513 -->
<%@ page language="java" contentType= "text/html; charset=UTF-8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.common.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c_rt" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt_rt" prefix="fmt_rt" %>

<%
PortletContext context = (PortletContext) request.getAttribute(
PortletConstants.CURRENT_PORTLET_CONTEXT);
String url = (String) context.getAttribute("SampleDisplayURL_DisplayURL");

if ((url == null) || (url.length() == 0)) {
%>
<p style="text-align: center;"><fmt:message key="viewer.nourl.txt"/></p>
<%

}
else {

try {
%>
<c_rt:import charEncoding="UTF-8" url="<%= url %>" />
<%

}
catch (Exception ex) {

%>
<p style="text-align: center;">
<fmt_rt:message key="viewer.badurl.fmt">
<fmt_rt:param value="<%= url %>"/>
<fmt_rt:param value="<%= ex.getMessage() %>"/>
</fmt_rt:message>
</p>
<%

}
}

%>

� Step 3: Create the Display Pages for the Portlet and the Editor 45

Store this JSP code in a file named Viewer.jsp in the portlet-source-directory/
Static/pars/sample.displayurl/SampleDisplayURL/content directory.

Create the Editor.jsp Page

The following example shows the code for the Editor JSP page, which is the
presentation component of the editor for the SampleDisplayURL portlet:

<!-- Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513 -->
<%@ page language="java" contentType= "text/html; charset=UTF-8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.common.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

<% PortletContext context = (PortletContext) request.getAttribute(
PortletConstants.CURRENT_PORTLET_CONTEXT); %>

<table border="0" cellpadding="2" cellspacing="0" align="center"
width="100%">

<tr>
<td colspan="3"> </td>
</tr>

<tr>
<td> </td>
<td nowrap align="center"><fmt:message key="editor.task.txt"/></td>
<td> </td>
</tr>

<tr>
<td colspan="3"> </td>
</tr>

<tr>
<td> </td>
<td> <table border="0" cellpadding="0" cellspacing="0" align="center">
<td class="celljustifyright" nowrap>

<fmt:message key="editor.url.txt"/>
</td>
<td> </td>
<td class="celljustifyleft" nowrap>

<form method="post" action="<%= context.getAttribute(
"SampleDisplayURL_EditOkURL") %>">

<input type="text" name="SampleDisplayURL_DisplayURL"
value="<%= context.getAttribute("SampleDisplayURL_DisplayURL") %>"
size="60">

</td>
</tr>

<tr>
<td colspan="3"> </td>
</tr>

<tr>
<td class="celljustifyright">

46 Step 4: Create the Action Classes � Chapter 4

<input class="button" type="submit"
value="<fmt:message key="editor.action.ok.txt"/>"
name="submit">

</form>
</td>
<td> </td>
<td class="celljustifyleft">

<form method="post" action="<%= context.getAttribute(
"SampleDisplayURL_EditCancelURL") %>">
<input class="button" type="submit"
value="<fmt:message key="editor.action.cancel.txt"/>"
name="cancel">
</form>

</td>
</tr>

</table>

Store this JSP code in a file named Editor.jsp in the portlet-source-directory/
Static/pars/sample.displayurl/SampleDisplayURL/content directory.

Create the Error.jsp Page

The following example shows the code for the Error JSP page, which displays
messages for any errors that occur during the editing process:

<%-- Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513 --%>
<%@ page language="java" contentType= "text/html; charset=UTF-8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.common.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

<% PortletContext context = (PortletContext)request.getAttribute(
PortletConstants.CURRENT_PORTLET_CONTEXT); %>

<fmt:message key="error.msg1.txt"/>

<%= context.getAttribute("Exception_message") %>

Store this JSP code in a file named Error.jsp in the portlet-source-directory/
Static/pars/sample.displayurl/SampleDisplayURL/content directory.

Step 4: Create the Action Classes

The SampleDisplayURL portlet has the following action classes:

� Initializer

� BaseAction

� DisplayAction

� EditorAction

� OKAction and CancelAction

� ErrorHandler

� Step 4: Create the Action Classes 47

Create the Initializer Action Class
The SampleDisplayURL portlet’s Initializer action class initializes properties that

are used by the other action classes and puts the properties into a PortletContext
object. The following example shows the source code for the Initializer class:

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import java.rmi.RemoteException;
import java.util.Properties;

import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.PortletInitializerInterface;
import com.sas.portal.portlet.configuration.Attribute;
import com.sas.portal.portlet.configuration.Configuration;
import com.sas.portal.portlet.configuration.ConfigurationFactory;

/**
* This initializes common properties by putting them into a
* PortletContext object.
*/
public class Initializer implements PortletInitializerInterface {

public Initializer() {
}

/* Key for the URL String in the PortletContext.*/
public static final String DISPLAY_URL_KEY =

"SampleDisplayURL_DisplayURL";

/* PortletContext key for the edit screen Ok button URL */
public static final String EDIT_OK_URL_KEY =

"SampleDisplayURL_EditOkURL";

/* PortletContext key for the edit screen Cancel button URL */
public static final String EDIT_CANCEL_URL_KEY =

"SampleDisplayURL_EditCancelURL";

/* Key for the PortletException object in the PortletContext */
public static final String PORTLET_EXCEPTION_KEY =

"sasPortletException";

/**
* Puts initial properties into the PortletContext object. These
* come from the portlet.xml.
* @param initProperties a Properties object
* @param context the PortletContext for this portlet
*/
public void initialize(Properties initProperties,

PortletContext context) {

try {

48 Step 4: Create the Action Classes � Chapter 4

// Get the initial URL from the portlet configuration object
Configuration config = ConfigurationFactory.getConfiguration(

context);
Attribute attr = config.getAttribute(

Initializer.DISPLAY_URL_KEY);
String url = (attr == null) ? "" : attr.getValue();

context.setAttribute("error-page",
initProperties.getProperty("error-page"));

context.setAttribute("display-page",
initProperties.getProperty("display-page"));

context.setAttribute("edit-page",
initProperties.getProperty("edit-page"));

context.setAttribute(Initializer.DISPLAY_URL_KEY, url);

if (Logger.isDebugEnabled(_loggingContext)){
Logger.debug("Display portlet URL: " +
url, _loggingContext);

}
}

catch (RemoteException e) {
context.setAttribute(Initializer.PORTLET_EXCEPTION_KEY, e);

}
}

private static final long serialVersionUID = 1L;
private final String _loggingContext = this.getClass().getName();

}

Create a directory named sample under the portlet-source-directory/Static/pars/
sample.displayurl/SampleDisplayURL/source directory, and then create a directory
named displayurl under the portlet-source-directory/Static/pars/
sample.displayurl/SampleDisplayURL/source/sample directory. Store the class
source code in a file named Initializer.java in the portlet-source-directory/Static/
pars/sample.displayurl/SampleDisplayURL/source/sample/displayurl directory.

Create the Base Action Class
The SampleDisplayURL portlet’s BaseAction class is a superclass that is extended by

the DisplayAction, EditorAction, OkAction, and CancelAction classes. The source code
is shown here:

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import com.sas.portal.Logger;
import com.sas.portal.container.deployment.PortletActionInfoInterface;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletActionInterface;
import com.sas.portal.portlet.PortletContext;
import sample.displayurl.Initializer;
import java.io.IOException;

� Step 4: Create the Action Classes 49

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public abstract class BaseAction implements PortletActionInterface {

public BaseAction() {
_actionInfo = null;

}

private final String _loggingContext = this.getClass().getName();

/**
* This method must be overridden in subclasses.
* The subclasses must call super and supply a return value.
* In this class, the method returns null.
*
* @see com.sas.portal.portlet.PortletActionInterface#service(
* HttpServletRequest, HttpServletResponse, PortletContext)
*/
public String service(HttpServletRequest request,

HttpServletResponse response,
PortletContext context) throws Exception {

Logger.debug("started..", _loggingContext);
response.setContentType("text/html;charset=UTF-8");

// Prepare the localized resources for use by the jsp.
try {

NavigationUtil.prepareLocalizedResources(
"sample.displayurl.res.Resources",
request, context);

}

catch (java.io.IOException ioe) {
Logger.error(ioe.getMessage(), _loggingContext, ioe);

}

return null;
}

/**
* @see com.sas.portal.portlet.PortletActionInterface#setInfo(
* PortletActionInfoInterface)
*/
public final void setInfo(PortletActionInfoInterface info) {

_actionInfo = info;
}

/**
* @see com.sas.portal.portlet.PortletActionInterface#getInfo()
*/
public final PortletActionInfoInterface getInfo()
{

return _actionInfo;

50 Step 4: Create the Action Classes � Chapter 4

}

/**
* Check the PortletContext for an exception object. If present,
* throw it to invoke the error handler.
* @param context the PortletContext
*/
protected static final void errorCheck(PortletContext context)

throws Exception {
Exception e = (Exception)context.getAttribute(

Initializer.PORTLET_EXCEPTION_KEY);
if (e != null)

throw e;
else

return;
}

private static final long serialVersionUID = 1L;
private PortletActionInfoInterface _actionInfo;

}

Store the class source code in a file named BaseAction.java in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl directory.

Create the Display Action Class
The DisplayAction class is the default action class for the SampleDisplayURL portlet.

This means that the class is invoked before the portlet’s JSP page renders. The
following example shows the source code for the DisplayAction class:

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import com.sas.portal.portlet.PortletContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Action class that presents the display page. It sets up the display
* model then instructs the portlet container to present the display
* page.
*/
public final class DisplayAction extends BaseAction {

public DisplayAction() {
}

/**
* Service the portlet request.
*
* @param request the HttpServletRequest
* @param response the HttpServeltResponse

� Step 4: Create the Action Classes 51

* @param context the PortletContext
* @return the URL to call
*/

public String service(HttpServletRequest request,
HttpServletResponse response,
PortletContext context) throws Exception {

super.service(request, response, context);

// Check whether an initialization error occurred
errorCheck(context);
return (String)context.getAttribute("display-page");

}

private static final long serialVersionUID = 1L;

}

Store the class source code in a file named DisplayAction.java in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl directory.

Create the Editor Action Class
The SampleDisplayURL portlet’s EditorAction class is invoked when a user clicks the

portlet’s Edit icon. The following example shows the source code for the EditorAction
class:

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.NavigationUtil;

/**
* Action class that presents the edit page. It sets up the edit model
* then instructs the portlet container to present the edit page.
*/
public final class EditorAction extends BaseAction {

public EditorAction() {
}

/**
* Service the portlet request.
*
* @param request the HttpServletRequest
* @param response the HttpServeltResponse
* @param context the PortletContext
* @return the URL to call

52 Step 4: Create the Action Classes � Chapter 4

*/
public String service(HttpServletRequest request,

HttpServletResponse response,
PortletContext context) throws Exception {

super.service(request, response, context);

// Create the URLs for the OK and Cancel buttons.
String url;

url = NavigationUtil.buildBaseURL(context, request,
"ok");

context.setAttribute(Initializer.EDIT_OK_URL_KEY, url);

url = NavigationUtil.buildBaseURL(context, request,
"cancel");

context.setAttribute(Initializer.EDIT_CANCEL_URL_KEY, url);

context.resetMode();

return (String) context.getAttribute("edit-page");
}

private static final long serialVersionUID = 1L;

}

Store the class source code in a file named EditorAction.java in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl directory.

Create the OK and Cancel Action Classes
The SampleDisplayURL portlet’s OkAction class is invoked when a user clicks OK in

the editor display page. The CancelAction class is invoked when a user clicks Cancel in
the editor display page. The following examples show the source code for the OKAction
and CancelAction classes:

Example Code 4.1 Code for the OKAction Class

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import com.sas.portal.Logger;
import com.sas.portal.portlet.configuration.ConfigurationFactory;
import com.sas.portal.portlet.configuration.Configuration;
import com.sas.portal.portlet.PortletContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Action class that processes the Ok action from the editor. It
* persists the user-specified URL, sets up the display model, then
* instructs the portlet container to present the display page.

� Step 4: Create the Action Classes 53

*/
public final class OKAction extends BaseAction {

public OKAction() {
}

/**
* Service the portlet request.
*
* @param request the HttpServletRequest
* @param response the HttpServeltResponse
* @param context the PortletContext
* @return the URL to call
*/
public String service (HttpServletRequest request,

HttpServletResponse response,
PortletContext context) throws Exception {

super.service(request, response, context);

String url = request.getParameter(Initializer.DISPLAY_URL_KEY);
context.setAttribute(Initializer.DISPLAY_URL_KEY, url);

// Save the URL parameter
Configuration config = ConfigurationFactory.getConfiguration(

context);
config.setAttribute(Initializer.DISPLAY_URL_KEY, url);
ConfigurationFactory.storeConfiguration(context, config);

if (Logger.isDebugEnabled(_loggingContext)){
Logger.debug("Display portlet URL: " + url, _loggingContext);

}

// Back to the default, display, mode
// context.resetMode();

return (String)context.getAttribute("display-page");
}

private static final long serialVersionUID = 1L;
private final String _loggingContext = this.getClass().getName();

}

Store the class source code in a file named OKAction.java in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl directory.

Example Code 4.2 Code for the CancelAction Class

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import javax.servlet.http.HttpServletRequest;

54 Step 4: Create the Action Classes � Chapter 4

import javax.servlet.http.HttpServletResponse;
import com.sas.portal.portlet.PortletContext;

/**
* Action class that processes the Cancel action from the editor. It
* sets up the display model then instructs the portlet container to
* present the display page.
*/
public final class CancelAction extends BaseAction {

public CancelAction() {
}

/**
* Service the portlet request.
*
* @param request the HttpServletRequest
* @param response the HttpServeltResponse
* @param context the PortletContext
* @return the URL to call
*/
public String service(HttpServletRequest request,

HttpServletResponse response,
PortletContext context) throws Exception {

super.service(request, response, context);

// Back to the default, display, mode
// context.resetMode();
return (String)context.getAttribute("display-page");

}
}

Store the class source code in a file named CancelAction.java in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl directory.

Create the Error Handler Action Class
The following example shows the source code for the ErrorHandler class:

/** Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513.
* All Rights Reserved.
*/
package sample.displayurl;

import com.sas.apps.portal.PortalException;
import com.sas.portal.Logger;
import com.sas.portal.portlet.ErrorHandlerInterface;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;
import java.io.IOException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

� Step 4: Create the Action Classes 55

/**
* Error handler for this portlet. It logs the exception and
* returns ErrorPage.jsp for the portlet to display.
*/
public class ErrorHandler implements ErrorHandlerInterface {

public ErrorHandler() {
}

private final String _loggingContext = this.getClass().getName();

/**
* Returns the URL for the portlet controller to call.
* This is the name of the error page JSP.
* @param request the HttpServletRequest
* @param response the HttpServeltResponse
* @param context the PortletContext
* @param exception the exception thrown by a portlet action
* @return the URL to call
*/
public String service(HttpServletRequest request,

HttpServletResponse response,
PortletContext context,
Exception thrownException) {

// Prepare the localized resources for use by the jsp.
try {

NavigationUtil.prepareLocalizedResources(
"sample.displayurl.Resources",
request, context);

}

catch (java.io.IOException ioe) {
Logger.error(ioe.getMessage(), _loggingContext, ioe);

}

// Send error to server log in default locale.
Logger.error(thrownException.getMessage(), _loggingContext,

thrownException);

// Get message in user’s locale.
String msg = null;
try {

PortalException ourException = (PortalException)
thrownException;
msg = ourException.getMessage(request.getLocale());

}

catch (ClassCastException cce){
msg= "";

}

56 Step 5: Create the Resource Bundle � Chapter 4

if (msg == null) {
// Prevent showing the word null in a JSP
msg = "";

}

// Make msg available for display on error jsp.
context.setAttribute("Exception_message", msg);

return (String)context.getAttribute("error-page");
}

private static final long serialVersionUID = 1L;

}

Store the class source code in a file named ErrorHandler.java in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl directory.

Step 5: Create the Resource Bundle

The resource bundles provide translated text that is displayed inside the
SampleDisplayURL portlet. The portlet’s BaseAction, EditorAction, and ErrorHandler
classes call the NavigationUtil.prepareLocalizedResources()method to create a JSTL
localization context based on the user’s locale preference. This context enables the JSTL
tags in the portlet’s JSP pages to use the appropriate resource bundle to display text.

Note: For information about localizing a portlet’s title and description, see “Creating
Display Resources Files” on page 6. �

The following example shows the resource bundle contents for the
SampleDisplayURL portlet:

Note: If you copy and paste this code, then you must remove any line breaks in the
message strings for error.msg1.txt and viewer.nourl.txt. �

Messages for the SampleDisplayURL portlet

NOTE: This is the same message text as found in
com.sas.portal.res.Resources.properties. The localized versions
from that file can be used here.
error.msg1.txt=A serious error occurred. Contact the Portal administrator.

{0} is a URL. {1} is an exception message.
viewer.badurl.fmt=Unable to display ’’{0}’’ because ’’{1}’’.
viewer.nourl.txt=No URL has been specified. Please edit the portlet to set a URL.

editor.task.txt=Enter the URL of the HTML fragment to display.
editor.url.txt=URL:

NOTE: These are the same messages as found in
com.sas.portal.res.Resources.properties. The localized versions
from that file can be used here.
editor.action.cancel.txt=Cancel
editor.action.ok.txt=OK

� Step 7: Compile Portlet Code 57

Create a directory named res under the portlet-source-directory/Static/pars/
sample.displayurl/SampleDisplayURL/source/sample/displayurl directory.
Store the resource bundle text in a file named Resources.properties in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
source/sample/displayurl/res directory.

Step 6: Create a Title and Description for the Portlet
The SampleDisplayURL portlet uses a display resources file to provide a description

that is placed in the portlet’s metadata for display to users.
You can supply multiple display resources files if you want the SAS Information

Delivery Portal to localize the portlet title and description at the time of deployment,
according to the default locale for SAS Information Delivery Portal. For more
information, see “Creating Display Resources Files” on page 6.

For the SampleDisplayURL portlet, create a display resources file with the following
contents:

portlet.title=URL Display Portlet Sample
portlet.description=Sample portlet that displays the contents of a URL

Store this text in a file named portletDisplayResources.properties in the
portlet-source-directory/Static/pars/sample.displayurl/SampleDisplayURL/
classes directory.

Step 7: Compile Portlet Code
The action classes that were defined in Step 4 must be compiled before the portlet

can be used. SAS 9.2 uses a Versioned JAR Repository to manage the JAR files that
ship with SAS products. The testportlet scripting facility integrates with the Versioned
JAR Repository by requiring a picklist to define which JAR files are used for compiling
the portlet and building the WAR file. If your portlet requires additional JAR files, they
must also be added to the picklist.

Follow these steps to compile the SampleDisplayURL portlet:
1 Create a picklist for this sample portlet. As a starting point, copy the SAS

Information Delivery Portal picklist file from the SAS-installation-directory/
SASInformationDeliveryPortal/4.2/Picklists/wars/sas.portal directory
into the portlet-source-directory/Picklist/pars/sample.displayurl directory.

Note: After a SAS maintenance release is applied at your site, you must copy
the updated picklist file and repeat the building and deploying of PAR and EAR
files for all custom portlets. �

2 Copy any custom or third-party JAR files that are not defined in the SAS picklist
but that are needed to compile the custom portlet into the portlet-source-directory/
Static/lib directory. For this sample portlet, you must copy the file named
servlet-api.jar that ships with the application server into the
portlet-source-directory/Static/lib directory.

3 From the SAS-configuration-directory/Lev1/CustomAppData/SampleDisplayURL
directory, run the configuration script with the following arguments to compile the
Java class:

cfg compileLocalPortlet -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

58 Step 8: Create the PAR File and Deploy and Test the Portlet � Chapter 4

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

4 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleDisplayURL directory to determine whether any errors
occurred.

Step 8: Create the PAR File and Deploy and Test the Portlet
The last step in developing the SampleDisplayURL portlet is to archive its files into

a PAR file and deploy the new portlet. The PAR file includes all of the portlet’s
supporting files, including the files created in Steps 2 through 7. To create the PAR file
and deploy the portlet, follow these steps:

1 Stop the Web application server on which the SAS Information Delivery Portal is
deployed so that development of the new portlet will not affect the running system.

2 From the SAS-configuration-directory/Lev1/CustomAppData/SampleDisplayURL
directory, run the configuration script with the following arguments:

cfg buildPortletArchive -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

The portlet archive file will be created in the SAS-configuration-directory/Lev1/
Web/Applications/SASPortlets4.2/Deployed directory with the name
sample.displayurl.par.

3 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleDisplayURL directory to determine whether any errors
occurred.

4 Rebuild the sas.portal4.2.ear file using the SAS Deployment Manager. This step is
required because the sas.portal4.2.ear file contains files associated with each
portlet.

5 Manually redeploy the sas.portal4.2.ear file into the Web application server.
6 Start the Web application server on which the SAS Information Delivery Portal is

deployed. The SampleDisplayURL portlet should now be available to the portal.

It is a good practice to deploy new portlets into a staging area (that is, a test
installation of the SAS Information Delivery Portal) for verification and testing before
deploying them into a production environment.

SampleRemote: Remote Portlet

Overview: Steps for Creating the SampleRemote Portlet
SampleRemote is a remote portlet that calls a Web application. The Web application

displays the string Hello user, where user is the name of the user who is logged on to
the SAS Information Delivery Portal. It also displays text that the user can edit.

To create the SampleRemote portlet, follow these steps:

� Step 1: Create the Portlet Configuration and Source Directories 59

1 Create portlet configuration and source directories.
2 Create the enterprise application deployment descriptor (application.xml).
3 Create the Web application deployment descriptor (web.xml).
4 Create the Spring framework configuration file (infrastructure-config.xml).
5 Create the display pages for the Web application (Viewer.jsp, Editor.jsp, Error.jsp,

and Help.jsp).
6 Create the controller servlet class (ControllerServlet.java).
7 Create the portlet deployment descriptor (portlet.xml).
8 Create a title and description for the portlet.
9 Compile the remote portlet.
10 Create the EAR and PAR files and deploy and test the portlet.

Note: Before you begin developing the SampleRemote portlet, ensure that the SAS
Metadata Server is running so that metadata can be accessed during the configuration
and deployment processes. �

Step 1: Create the Portlet Configuration and Source Directories
Follow these steps to create a source directory structure for building the portlet:
1 Create a configuration directory for the portlet named SampleRemote under the

SAS-configuration-directory/Lev1/CustomAppData directory. This directory is
referred to as portlet-configuration-directory in the code and descriptions for this
portlet.

2 Copy the contents of the testportlet directory to the SampleRemote directory.
3 Create a source code directory for the portlet named Source under the

SAS-configuration-directory/Lev1/CustomAppData/SampleRemote directory. This
directory is referred to as portlet-source-directory in the code and descriptions for
this portlet.

4 Edit the custom.properties file in the SampleRemote directory as follows:

Note: Be sure to substitute the full pathnames from the steps above in the
install.currprod.config.dir= and testportlet.install.dir= argument
values. �

If you change the value "testportlet", make sure to rename in all properties
here as well as in the custom_config.xml.
config.currprod.12byte=testportlet

Change the value of this property to be the name of your web application.
config.currprod.legalname=Remote Portlet Sample

The value of this property should be the location where the configuration
files are placed. Make sure to change the level directory based on your
installation and make sure to rename testportlet if the value of
config.currprod.12byte changes above.
install.currprod.config.dir=port-configuration-directory

Do not change the value of this property. The name might be changed if you
change the value of config.currprod.12byte above.
webappsrv.testportlet.server=server

60 Step 2: Create the Enterprise Application Deployment Descriptor � Chapter 4

Change the value of this property to be the location of your portlet’s source
code and configuration files. The name might be changed if you change the
value of config.currprod.12byte above.
testportlet.install.dir=portlet-source-directory

Change the value of this property to be the name of you par, war, and ear
file. The name might be changed if you change the value of
config.currprod.12byte above.
webapp.testportlet.archive.name=sample.remote

Change the value of this property to be the context root of your web
application and the name of the portlet. The name might be changed if you
change the value of config.currprod.12byte above.
webapp.testportlet.contextroot=SampleRemote

Change the value of this property to be the versioned name of your web
application. This property is only used for remote portlets. The name might
be changed if you change the value of config.currprod.12byte above.
webapp.testportlet.display.name=Remote Portlet Sample

5 From the SAS-configuration-directory/Lev1/CustomAppData/SampleRemote
directory, run the following configuration script to create the source directory
structure for building the portlet:

cfg createRemotePortletDirectories -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

6 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleRemote directory to determine whether any errors
occurred.

Step 2: Create the Enterprise Application Deployment Descriptor
Java Enterprise (J2EE) applications are deployed in the form of enterprise archive

(EAR) files. An enterprise application deployment descriptor file describes the Web
projects and other components that comprise an EAR file. The following example shows
the contents of the enterprise application deployment descriptor file for the
SampleRemote portlet:

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
version="1.4">

<display-name>@webapp.testportlet.contextroot@</display-name>
<description>@webapp.testportlet.display.name@</description>
<module>

<web>
<web-uri>@webapp.testportlet.archive.name@.war</web-uri>
<context-root>@webapp.testportlet.contextroot@</context-root>

� Step 3: Create the Web Application Deployment Descriptor 61

</web>
</module>

</application>

Store this text in a file named application.xml.orig in the
portlet-source-directory/Configurable/ears/sample.remote/META-INF directory. The
testportlet scripting facility performs name/value pair substitution on this file to
produce the application.xml file.

The EAR file must also contain a manifest file that specifies information about the
files packaged in the EAR. The SampleRemote portlet uses the following manifest file:

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Created-By: 1.5.0_12-b04 (Sun Microsystems Inc.)

Store this text in a file named MANIFEST.MF in the portlet-source-directory/Static/
ears/sample.remote/META-INF directory.

Note: This file is placed in the /Static directory hierarchy rather than the /
Configurable directory hierarchy because no substitution is required. �

Step 3: Create the Web Application Deployment Descriptor
The Web application deployment descriptor is an XML file that describes the Web

application’s initialization parameters, servlets, and other components. The following
example shows the contents of the deployment descriptor file for the SampleRemote
portlet’s Web application. For more information about creating Web application
deployment descriptors, see the documentation for your servlet container.

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="@webapp.testportlet.contextroot@" version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<context-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/spring-config/infrastructure-config.xml</param-value>

</context-param>
<context-param>

<param-name>locatorFactorySelector</param-name>
<param-value>classpath:beanRefContext.xml</param-value>

</context-param>
<context-param>

<param-name>parentContextKey</param-name>
<param-value>config.context</param-value>

</context-param>

<filter>
<filter-name>CharacterEncodingFilter</filter-name>
<filter-class>com.sas.servlet.filters.CharacterEncodingFilter</filter-class>
<init-param>

<param-name>encoding</param-name>
<param-value>UTF-8</param-value>

</init-param>
</filter>

62 Step 3: Create the Web Application Deployment Descriptor � Chapter 4

<filter>
<filter-name>PortletSecurityFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
<init-param>

<param-name>targetBeanName</param-name>
<param-value>portletSecurityFilter</param-value>

</init-param>
<init-param>

<param-name>targetFilterLifecycle</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<param-name>trusted.url</param-name>
<param-value>Logoff</param-value>

</init-param>
</filter>
<filter>

<filter-name>WIPPlatformServicesFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
<init-param>

<param-name>targetBeanName</param-name>
<param-value>platformServicesFilter</param-value>

</init-param>
<init-param>

<param-name>targetFilterLifecycle</param-name>
<param-value>true</param-value>

</init-param>
</filter>
<filter>

<filter-name>RemotePortletFilter</filter-name>
<filter-class>com.sas.portal.portlet.remote.RemotePortletFilter
</filter-class>
<init-param>

<param-name>allow-webapp-mode</param-name>
<param-value>false</param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>CharacterEncodingFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>

<filter-name>PortletSecurityFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>

<filter-name>WIPPlatformServicesFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
<filter-mapping>

<filter-name>RemotePortletFilter</filter-name>

� Step 3: Create the Web Application Deployment Descriptor 63

<url-pattern>/*</url-pattern>
</filter-mapping>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>
<listener>

<listener-class>com.sas.common.components.SpringComponentFacade
</listener-class>

</listener>

<servlet>
<servlet-name>logoff</servlet-name>
<servlet-class>com.sas.svcs.webapp.servlet.DelegatingServletProxy
</servlet-class>
<init-param>

<param-name>targetBeanName</param-name>
<param-value>logoffServlet</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>ControllerServlet</servlet-name>
<servlet-class>sample.remote.ControllerServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>logoff</servlet-name>
<url-pattern>/Logoff</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>ControllerServlet</servlet-name>
<url-pattern>/Controller</url-pattern>

</servlet-mapping>

<session-config>
<session-timeout>30</session-timeout>

</session-config>
</web-app>

Store this Web application deployment descriptor source text in a file named
web.xml.orig in the portlet-source-directory/Configurable/wars/sample.remote/
WEB-INF directory. The testportlet scripting facility performs name/value pair
substitution on this file to produce the web.xml file.

The following files provide additional settings for Web application servers. For more
information about configuring Web application servers, see SAS Intelligence Platform:
Web Application Administration Guide.

<?xml version="1.0" encoding="UTF-8" ?>
<jboss-web>

<security-domain>java:/jaas/PFS</security-domain>
<context-root>@webapp.testportlet.contextroot@</context-root>

</jboss-web>

64 Step 4: Create the Spring Framework Configuration File � Chapter 4

Store this text in a file named jboss-web.xml.orig in the portlet-source-directory/
Configurable/wars/sample.remote/WEB-INF directory. The testportlet scripting
facility performs name/value pair substitution on this file to produce the jboss-web.xml
file.

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<jsp-descriptor>

<jsp-param>
<param-name>page-check-seconds</param-name>
<param-value>-1</param-value>

</jsp-param>
</jsp-descriptor>
<container-descriptor>

<servlet-reload-check-secs>-1</servlet-reload-check-secs>
<prefer-web-inf-classes>true</prefer-web-inf-classes>

</container-descriptor>
<context-root>@webapp.testportlet.contextroot@</context-root>

</weblogic-web-app>

Store this text in a file named weblogic-web.xml.orig in the
portlet-source-directory/Configurable/wars/sample.remote/WEB-INF directory. The
testportlet scripting facility performs name/value pair substitution on this file to
produce the weblogic-web.xml file.

Step 4: Create the Spring Framework Configuration File
The Web application for the SampleRemote portlet uses the open-source Spring J2EE

application development framework. An infrastructure configuration file defines the
Spring framework components that are used in the application. The following example
shows the infrastructure configuration file for the SampleRemote portlet. For more
information about the Spring framework, see http://www.springsource.org.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<!-- Public ids provided as a part of these files are:
sas.framework.commons.jar: configurationService, urlGenerator
sas.framework.themes.jar: themeService
sas.svcs.mail.client.jar: mailService
sas.svcs.directives.client.jar: directivesService
sas.svcs.security.client.jar: authenticationService, userValidationService
sas.svcs.userinfo.client.jar: userInfoService
sas.svcs.status.client.jar: capabilityVerification, systemValidationService
Each of these depends on an id defined elsewhere for sas.svcs.cache.

-->
<import resource="classpath*:META-INF/wip-services-client-config.xml" />
<import resource="classpath*:META-INF/spring-config/aop-config.xml" />
<import resource="classpath*:META-INF/spring-config/data-config.xml" />
<import resource="classpath*:META-INF/spring-config/webapp-config.xml" />
<import resource="classpath*:META-INF/spring-config/presentation-config.xml" />

� Step 5: Create the Display Pages for the Web Application 65

<import resource="classpath*:META-INF/spring-config/jps-config.xml" />
<import resource="classpath*:META-INF/spring-config/portlet-config.xml" />

</beans>

Store this text in a file named infrastructure-config.xml in the
portlet-source-directory/Static/wars/sample.remote/WEB-INF/spring-config
directory.

Step 5: Create the Display Pages for the Web Application
The Web application for the SampleRemote portlet has the following JSP pages:

Viewer.jsp
is the presentation component of the portlet.

Editor.jsp
is the presentation component of the editor action.

Error.jsp
displays messages for errors that occur during the editing process.

Help.jsp
displays help information for the portlet.

Create the Viewer.jsp Page
The following example shows the code for the Viewer JSP page, which is the

presentation component of the SampleRemote portlet:

<%-- Copyright (c) 2009 by SAS Institute Inc., Cary, NC 27513 --%>
<%@ page language="java" contentType="text/html; charset=UTF-8" %>
<%@ page import="com.sas.portal.portlet.NavigationUtil" %>
<%@ page import="com.sas.portal.portlet.RemotePortletContext" %>
<%@ page import="com.sas.portal.portlet.remote.RemotePortletToolkitUtil" %>
<%@ page import="com.sas.services.user.UserContextInterface" %>
<%@ page import="com.sas.web.keys.CommonKeys" %>
<%@ page import="com.sas.webapp.contextsharing.WebappContextParams" %>
<%@ page import="sample.remote.ControllerServlet" %>

<%
try {

// Get the Remote User Context Information
UserContextInterface uc =

(UserContextInterface) session.getAttribute(CommonKeys.REMOTE_USER_CONTEXT);

// Determine the Display Name of the user (Remote User Context).
String user = uc.getPerson().getDisplayName();

RemotePortletContext pcontext =
RemotePortletToolkitUtil.getRemotePortletContext(request);

String pid = pcontext.getId();
String param_name = "sample.param." + pid;
String param_value = (request.getParameter(param_name) == null) ? "" : "checked";
String submiturl = NavigationUtil.buildBaseURL(pcontext, request, "formsubmit");

%>

<p>This remote portlet supports view mode, edit mode,and help mode.</p>

66 Step 5: Create the Display Pages for the Web Application � Chapter 4

<p>Hello <%= user %>.</p>

<p>Data value: <%= session.getAttribute(ControllerServlet.DATA_KEY1 + pid) %></p>

<form method="post" action="<%= submiturl %>">
<input name="<%= param_name %>" type="checkbox" <%= param_value %> />
<%= param_name %>

<button type="submit">Submit</button>

</form>

<%
} catch (Throwable thr1) {

thr1.printStackTrace();
}
%>

Store this JSP code in a file named Viewer.jsp in the portlet-source-directory/
Static/wars/sample.remote/jsp directory.

Create the Editor.jsp Page
The following example shows the code for the Editor JSP page, which is the

presentation component of the editor for the SampleRemote portlet:

<%@ page language="java" contentType="text/html; charset=UTF-8" %>
<%@ page import="com.sas.portal.portlet.RemotePortletContext" %>
<%@ page import="com.sas.portal.portlet.remote.RemotePortletToolkitUtil" %>
<%@ page import="sample.remote.ControllerServlet" %>

<%
RemotePortletContext pcontext =

RemotePortletToolkitUtil.getRemotePortletContext(request);
String pid = pcontext.getId();

%>

<table border="0" cellpadding="2" cellspacing="0" align="center" width="100%">
<tr>
<td colspan="3"> </td>

</tr>
<tr>
<td> </td>
<td nowrap align="center">Edit Page</td>
<td> </td>

</tr>
<tr>
<td colspan="3"> </td>

</tr>
<tr>
<form method="post"

action="<%= request.getAttribute(ControllerServlet.EDIT_OK) %>"
accept-charset="UTF-8">

<td> </td>
<td> <table border="0" cellpadding="0" cellspacing="0" align="center">

<tr>

� Step 5: Create the Display Pages for the Web Application 67

<td class="celljustifyright" nowrap>Input:</td>
<td> </td>
<td class="celljustifyleft" nowrap>
<input type="text" name="<%= ControllerServlet.EDIT_FIELD1 %>"

value="<%= session.getAttribute(ControllerServlet.DATA_KEY1 + pid) %>"
size="25">

</td>
</tr>
<tr>

<td colspan="3"> </td>
</tr>
<tr>

<td class="celljustifyright">
<input class="button" type="submit" value="Ok" name="submit" >

</form>
</td>
<td> </td>
<td class="celljustifyleft">
<form method="post"

action="<%= request.getAttribute(ControllerServlet.EDIT_CANCEL) %>"
accept-charset="UTF-8">

<input class="button" type="submit" value="Cancel" name="submit" >
</form>

</td>
</tr>
</table>

</td>
</tr>

</table>

Store this JSP code in a file named Editor.jsp in the portlet-source-directory/
Static/wars/sample.remote/jsp directory.

Create the Error.jsp Page
The following example shows the code for the Error JSP page, which displays

messages for any errors that occur during the editing process:

<%@ page language="java" contentType= "text/html; charset=UTF-8" %>
<%@ page import="sample.remote.ControllerServlet" %>

<h1>Error</h1>
<p><%= request.getAttribute(ControllerServlet.ERROR_MESSAGE) %></p>

Store this JSP code in a file named Error.jsp in the portlet-source-directory/
Static/wars/sample.remote/jsp directory.

Create the Help.jsp Page
The following example shows the code for the Help JSP page, which displays text to

help the user understand how to use the portlet:

<%@ page language="java" contentType= "text/html; charset=UTF-8" %>
<%@ page import="com.sas.portal.portlet.RemotePortletContext" %>
<%@ page import="com.sas.portal.portlet.remote.RemotePortletToolkitUtil" %>
<%@ page import="sample.remote.ControllerServlet" %>

68 Step 6: Create the Controller Servlet Class � Chapter 4

<%
try {

RemotePortletContext pcontext =
RemotePortletToolkitUtil.getRemotePortletContext(request);

String pid = pcontext.getId();
%>

<h1>Portlet Help</h1>
<p>Portlet ID: <%= pid %></p>
<p>This is where portlet help would be displayed</p>

<%
} catch (Throwable thr1) {

thr1.printStackTrace();
}
%>

Store this JSP code in a file named Help.jsp in the portlet-source-directory/Static/
wars/sample.remote/jsp directory.

Step 6: Create the Controller Servlet Class
The SampleRemote portlet has its own class, ControllerServlet, to support the

actions of the JSP pages for the application. The following example shows the source
code for the ControllerServlet class.

Note: This example uses the remote user context to obtain application metadata.
This is the simplest way for a remote portlet to obtain metadata, but it has a negative
effect on performance because Java objects execute in the remote services JVM rather
than locally. For more information about remote contexts, see “Obtaining a User and
Session Context” on page 16 �

package sample.remote;

import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.RemotePortletContext;
import com.sas.portal.portlet.remote.RemotePortletToolkitUtil;
import com.sas.services.session.SessionContextInterface;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

public class ControllerServlet extends HttpServlet {
/* Request attribute key for the error screen error message */
public static final String ERROR_MESSAGE = "sample.remote.errormessage";

/* Request attribute key for the edit screen Ok button URL */
public static final String EDIT_OK = "sample.remote.editok.url";

� Step 6: Create the Controller Servlet Class 69

/* Request attribute key for the edit screen Cancel button URL */
public static final String EDIT_CANCEL = "sample.remote.editcancel.url";

/* Name of field1 input parameter */
public static final String EDIT_FIELD1 = "sample.remote.editfield1.name";

/* Attribute name for persistent storage of string entered during edit mode */
public static final String DATA_KEY1 = "sample.remote.key1.";

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException

{
processRequest(request, response);

}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException

{
processRequest(request, response);

}

public boolean processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException
{

String data;

try {
// If there are multiple instances of the same remote portlet in a
// users portal session, they will use the same HttpSession. This
// requires session attributes to be namespaced.
HttpSession session = request.getSession();
ServletContext servletContext = getServletConfig().getServletContext();

// Check for logoff notification before doing anything else. Multiple
// portlet instance can have information stored in the HttpSession,
// but the logoff request will only be processed once. Use of an
// HttpSessionBindingListener is recommended if resources need to be
// cleaned up when the session is invalidated.
if (RemotePortletToolkitUtil.isLogoffRequest(request)) {

session.invalidate();
return false;

}

// Retrieve the remote portlet context that is needed to process
// the request.
RemotePortletContext pcontext =

RemotePortletToolkitUtil.getRemotePortletContext(request);
if (pcontext == null) {

// If there is no remote portlet context, goto error page.
request.setAttribute(ERROR_MESSAGE, "No remote portlet context");
RequestDispatcher rd =

servletContext.getRequestDispatcher("/jsp/Error.jsp");

70 Step 6: Create the Controller Servlet Class � Chapter 4

rd.forward(request, response);
return false;

}

// The portlet id is uniquely identifies a portlet instance.
String pid = pcontext.getId();

// A remote portlet does not have access to the portlet Configuration
// object, so it is responsible for persisting data. This codes uses
// the HttpSession to cache data, but does not implement a persistent
// store.
if (session.getAttribute(DATA_KEY1 + pid) == null)

session.setAttribute(DATA_KEY1 + pid, "initial state");

String jspurl = null;
String action = RemotePortletToolkitUtil.getAction(request, pcontext);

if (action.equalsIgnoreCase(RemotePortletToolkitUtil.PAGE_REFRESH_ACTION)
|| action.equalsIgnoreCase("default")) {
// This portlet was called with either the default action or
// no action. Both indicate a page refresh.
jspurl = "/jsp/Viewer.jsp";

} else if (action.equalsIgnoreCase("urlsubmit")) {
// This is where the portlet would process submit parameters.

// When finished processing, redisplay.
jspurl = "/jsp/Viewer.jsp";

} else if (action.equalsIgnoreCase("formsubmit")) {
// This is where the portlet would process submit parameters.

// When finished processing, redisplay.
jspurl = "/jsp/Viewer.jsp";

} else if (action.equalsIgnoreCase("startedit")) {
// Start edit mode.

// The following call resets the portlet mode back to
// display mode when the submit URL is issued and thus
// needs to be called before NavigationUtil.buildBaseURL
pcontext.resetMode();

//Create the URLs for the OK and Cancel buttons.
String submiturl =

NavigationUtil.buildBaseURL(pcontext, request, "endedit");
request.setAttribute(EDIT_OK, submiturl);
request.setAttribute(EDIT_CANCEL, submiturl);

jspurl = "/jsp/Editor.jsp";
} else if (action.equalsIgnoreCase("endedit")) {

// Exit edit mode

String submitAction = request.getParameter("submit");
if ((submitAction != null)

&& submitAction.equalsIgnoreCase("Ok")) {
// This is where you would add code to persist changes and

� Step 7: Create the Portlet Deployment Descriptor 71

// update your model.
data = request.getParameter(EDIT_FIELD1);
session.setAttribute(DATA_KEY1 + pid, data);

}

// When finished processing, redisplay.
jspurl = "/jsp/Viewer.jsp";

} else if (action.equalsIgnoreCase("help")) {
// Help mode.

jspurl = "/jsp/Help.jsp";
} else {

// An error occurred.
request.setAttribute(ERROR_MESSAGE,

"Unknown portlet action: " + action);
jspurl = "/jsp/Error.jsp";

}

RequestDispatcher rd = servletContext.getRequestDispatcher(jspurl);
rd.forward(request, response);

} catch (Exception ex) {
ex.printStackTrace();
throw new ServletException(ex);

}

return true;
}

}

Create a directory named sample under the portlet-source-directory/Static/wars/
sample.remote/source directory, and then create a directory named remote under the
portlet-source-directory/Static/wars/sample.remote/source/sample directory. Store
the class source code in a file named ControllerServlet.java in the
portlet-source-directory/Static/wars/sample.remote/source/sample/remote
directory.

Step 7: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information

that the SAS Information Delivery Portal needs to deploy one or more portlets. The
following example shows the contents of the portlet deployment descriptor file for the
SampleRemote. For more information about portlet deployment descriptor files, see
“Creating a Portlet Deployment Descriptor” on page 4.

<?xml version="1.0" encoding="UTF-8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the DTD does not need to be accessible at the URL that the statement specifies.

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>

72 Step 7: Create the Portlet Deployment Descriptor � Chapter 4

The <remote-portlet> element assigns the name SampleRemote to the portlet. The name
cannot contain spaces. The portlet identifier, which consists of the portlet path (defined in the
<portlet-path> element) together with the portlet name, must be unique within the SAS
Information Delivery Portal.

The true setting for the passContextId= attribute makes the SAS Information Delivery Portal
session information, including user identity, available to the remote portlet.

<remote-portlet name="@webapp.testportlet.contextroot@"
title="@webapp.testportlet.display.name@"
passContextId="true" editorType="portlet"
showEditProperties="true">

<localized-resources locales="en" />

<deployment scope="user" autoDeploy="false" userCanCreateMore="true" />

<portlet-path>/sample/portlets/remote</portlet-path>

The URL for the remote portlet’s Web application, named HelloUserWebApp, is specified in the
<url> subelement of the <portlet-action> element. This subelement must contain a fully
qualified URL, including a fully qualified host domain name.

<portlet-actions>
<portlet-action name="default" default="true">

<url>@javaportal.url@@webapp.testportlet.contextroot@/Controller</url>
</portlet-action>

<portlet-action name="startedit" editor="true">
<url>@javaportal.url@@webapp.testportlet.contextroot@/Controller</url>

</portlet-action>

<portlet-action name="endedit">
<url>@javaportal.url@@webapp.testportlet.contextroot@/Controller</url>

</portlet-action>

<portlet-action name="help" help="true">
<url>@javaportal.url@@webapp.testportlet.contextroot@/Controller</url>

</portlet-action>

<portlet-action name="logoff" remote-logoff="true">
<url>@javaportal.url@@webapp.testportlet.contextroot@/Controller</url>

</portlet-action>

</portlet-actions>
</remote-portlet>

</portlets>

Store this portlet deployment descriptor source text in a file named
portlet.xml.orig in the portlet-source-directory/Configurable/pars/
sample.remote directory. The testportlet scripting facility performs name/value pair
substitution on this file to produce the portlet.xml file.

� Step 9: Compile the Remote Portlet 73

Step 8: Create a Title and Description for the Portlet
The SampleRemote portlet uses a display resources file to provide a description that

is placed in the portlet’s metadata for display to users. If this file is not provided, the
portal creates a default description based on the portlet’s name. For more information
about display resources files, see “Creating Display Resources Files” on page 6.

For the SampleRemote portlet, create a display resources file with the following
content:

portlet.title=Remote Portlet Sample
portlet.description=Remote Portlet Sample

Store this text in a file named portletDisplayResources.properties in the
portlet-source-directory/Static/pars/sample.remote/SampleRemote/classes
directory.

Step 9: Compile the Remote Portlet
The action class that was defined in Step 6 must be compiled before the portlet can

be used. SAS 9.2 uses a Versioned JAR Repository to manage the JAR files that ship
with SAS products. The testportlet scripting facility integrates with the Versioned JAR
Repository by requiring a picklist to define which JAR files are used for compiling the
portlet and building the WAR file. If your portlet requires additional JAR files, they
must also be added to the picklist.

Follow these steps to compile the SampleRemote portlet:

1 Create a picklist for this sample portlet. As a starting point, copy the SAS
Information Delivery Portal picklist file from the SAS-installation-directory/
SASInformationDeliveryPortal/4.2/Picklists/wars/sas.portal directory
into the portlet-source-directory/Picklist/wars/sample.remote directory.

Note: After a SAS maintenance release is applied at your site, you must copy
the updated picklist file and repeat the building and deploying of PAR and EAR
files for all custom portlets. �

2 Copy any custom or third-party JAR files that are not defined in the SAS picklist
but that are needed to compile the custom portlet into the portlet-source-directory/
Static/lib directory. For this sample portlet, you must copy the file named
servlet-api.jar that ships with the application server into the
portlet-source-directory/Static/lib directory.

3 From the SAS-configuration-directory/Lev1/CustomAppData/SampleRemote
directory, run the configuration script with the following arguments to compile the
Java class:

cfg compileRemotePortlet -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

4 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleRemote directory to determine whether any errors
occurred.

74 Step 10: Create the EAR and PAR Files and Deploy and Test the Portlet � Chapter 4

Step 10: Create the EAR and PAR Files and Deploy and Test the Portlet
The last step in developing the SampleRemote portlet is to archive its files into EAR

and PAR files and deploy the Web application and the new portlet. For a remote portlet,
the EAR file includes all of the Web application’s supporting files, including the files
created in Steps 2 through 6. The PAR file contains the portlet definition created in
Steps 7 and 8. To create the EAR and PAR files and deploy the Web application and the
portlet, follow these steps:

1 Stop the Web application server on which the SAS Information Delivery Portal is
deployed so that development of the new portlet will not affect the running system.

2 From the SAS-configuration-directory/Lev1/CustomAppData/SampleRemote
directory, run the configuration script with the following arguments:

cfg buildWebapps -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

Note: You can specify the password either in clear text or in encoded form. For
information about generating the encoded form, see “The PWENCODE Procedure”
in Encryption in SAS. �

3 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleRemote directory to determine whether any errors
occurred.

4 From the SAS-configuration-directory/Lev1/CustomAppData/SampleRemote
directory, run the configuration script with the following arguments:

cfg deployWebapps -Dmetadata.connection.passwd="password"

For the password value, you must supply the unrestricted user password for your
SAS installation.

The sample.remote.ear file containing the Web application will be copied to
the staging area under the SAS configuration directory. You must manually deploy
the file to your Web application server.

5 Review the customconfig.log file in the SAS-configuration-directory/Lev1/
CustomAppData/SampleRemote directory to determine whether any errors
occurred.

6 Rebuild the sas.portal4.2.ear file using the SAS Deployment Manager. This step is
required because the sas.portal4.2.ear file contains files associated with each
portlet.

7 Manually redeploy the sas.portal4.2.ear file into the Web application server.
8 Start the Web application server on which the SAS Information Delivery Portal is

deployed. The SampleRemote portlet should now be available to the portal.

It is a good practice to deploy new portlets into a staging area (that is, a test
installation of the SAS Information Delivery Portal) for verification and testing before
deploying them into a production environment.

75

A P P E N D I X

1
Moving Existing Custom Portlets
to SAS Information Delivery
Portal 4.2

Overview 75
Java Package Changes 75

JAR File Changes 75

Smart Object Changes 76

Remote Portlet API Changes 76

Logoff Portlet Action 76
RemotePortletToolkitUtil Classes 76

Overview
Custom portlets developed for the previous version of the SAS Information Delivery

Portal must be recompiled before they can be used in SAS Information Delivery Portal
4.2. In some cases, additional modification might be necessary. This appendix describes
some of the portal framework changes that affect custom portlets.

Java Package Changes
Portlets that use the following Java classes must be updated and recompiled:
� com.sas.portal.mgmt.api.MetadataCredentialsHolder must be changed to

com.sas.portal.common.MetadataCredentialsHolder
� com.sas.portal.mgmt.api.MetadataCredentialsProvider must be changed to

com.sas.portal.common.MetadataCredentialsProvider
� com.sas.portal.portlet.PortletConstants must be changed to

com.sas.portal.common.PortletConstants

These package changes resolve circular dependencies.

JAR File Changes
Portlets that include the sas.portal.metadata.jar file must remove it from build-time

and run-time dependency lists. The sas.portal.jar and sas.portal.metadata.jar files were
collapsed into a single sas.portal.jar file to resolve circular dependencies.

76 Smart Object Changes � Appendix 1

Smart Object Changes

Portlets that reference the SAS 9.1.3 SP4 smart object
com.sas.portal.metadata.omr.OMRPortalSubscriber must be changed to reference the
SAS 9.2 smart object com.sas.services.information.metadata.OMRContentSubscriber.

Remote Portlet API Changes

Logoff Portlet Action
The logoff portlet action allows the Web application associated with the remote

portlet to receive notification when a user logs off the portal. This allows resources to
be cleaned up immediately, as opposed to waiting for an HttpSession time-out. To
implement, the portlet.xml file must contain a logoff action like the following:

</portlet-action>
<portlet-action name="logoff" remote-logoff="true">
<url>http://host-name:8080/SASRemotePortlet/Controller</url>

</portlet-action>

The following code in the remote portlet Web application processes the logoff action:

// Check for logoff notification before doing anything else.
if (RemotePortletToolkitUtil.isLogoffRequest(request)) {

session.invalidate();
return false;

}

RemotePortletToolkitUtil Classes
The com.sas.portal.portlet.remote.RemotePortletToolkitUtil class contains the

following new utility methods that make it easier to write remote portlets:

� A convenience routine that returns the portlet action targeted to the current
portlet instance:

static String getAction(HttpServletRequest request,
RemotePortletContext context)

The portlet action is defined in the portlet.xml file. If the request is targeted to
another portlet instance or the page is refreshing, it returns
RemotePortletToolkitUtil.PAGE_REFRESH_ACTION.

� A convenience routine that returns the portlet ID for the current portlet:

static String getPortletId(HttpServletRequest request)

Because the portlet ID is unique per portlet instance, this provides a
mechanism for allowing multiple portlet instances on a page,

� A convenience routine to retrieve the RemotePortletContext for the portlet:

static RemotePortletContext
getRemotePortletContext(HttpServletRequest request)

Moving Existing Custom Portlets � RemotePortletToolkitUtil Classes 77

� A convenience routine that checks for a logoff notification:

static boolean isLogoffRequest(HttpServletRequest request)

This call should be made before processing the request. Multiple portlet
instances can have information stored in the HttpSession, but the logoff request is
processed only once. Use an HttpSessionBindingListener if resources need to be
cleaned up when the session is invalidated.

� A convenience routine that returns true if the request was targeted to the current
portlet instance:

static boolean isPortletRequest(HttpServletRequest request)

78

79

Index

A
action classes 8

error handling 10

initializer 8

portlet 9

postprocessing 10

application programming interface

See Portlet API

D
display resources file 6

document type definition 4

DTD

See document type definition

E
EAR files

See enterprise archive files

enterprise archive files 60

error handling action class 10

H
help 11

I
initializer action class 8

J
Java Standard Tag Libraries 7

JavaServer Pages files 7

JSP files

See JavaServer Pages files

JSTL

See Java Standard Tag Libraries

L
local context 16

local portlet 4

N
namespace 15

P
PAR file

See portlet archive file
picklist 23
portlet 1

API 19
deploying in portal 13
deployment descriptor 3
display page 3
display resources file 3
implementing help 11
local 4
localizing descriptions 6
localizing titles 6
moving existing portlets 75
namespaces 15
obtaining user locale 17
obtaining user name 17
remote 5
samples 22
scripting facility 22

portlet action class 9
Portlet API 19
portlet archive file 2, 13

directory structure 13
portlet configuration directory

See testportlet scripting facility
portlet deployment descriptor 4
portlet source directory

See testportlet scripting facility
portlet.xml file

See portlet deployment descriptor
postprocessing action class 10

R
remote context 16
remote portlet 5
resource bundle 30

S
sample portlets

SampleDisplayURL 40

80 Index

SampleForm 32
SampleRemote 58
SampleWelcome 24

SampleDisplayURL portlet 40
SampleForm portlet 32
SampleRemote portlet 58
SampleWelcome portlet 24
SAS AppDev Studio 3
SAS custom tags 7
SAS Foundation Services 16
SAS Information Delivery Portal 1
session context 16
Spring framework 64

T
taglib directive 7
testportlet scripting facility 22

configuration script 23

portlet configuration directory 23
portlet source directory 23

U
user context 16
UTF-8 directive 7

V
Versioned JAR Repository 22

W
Web application deployment descriptor 61

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/spn

	Contents
	Developing Custom Portlets
	Introduction to Portlet Development
	Options for Implementing Portlets
	Development Environments
	Development Steps
	Overview: Steps for Developing a Custom Portlet
	Creating a Portlet Deployment Descriptor
	Creating Display Resources Files
	Creating the Presentation JSP Page
	Creating Action Classes
	Implementing Portlet Help
	Creating a PAR File for Deploying the Portlet in an Application

	Hints and Tips for Creating Custom Portlets
	Overview
	Avoiding Namespace Problems
	Bundling Multiple Portlets into a Single PAR File
	Testing Portlets
	Obtaining a User and Session Context
	Obtaining a Local User and Session Context
	Obtaining a Remote User and Session Context

	Obtaining the User’s Name
	Obtaining the User’s Locale

	Using the Portlet API
	Overview
	Class Reference

	Sample Portlets
	Overview: Sample Portlets
	Creating Portlets Using the Testportlet Scripting Facility
	SampleWelcome: Localized Display Portlet
	Overview: Steps for Creating the SampleWelcome Portlet
	Step 1: Create the Portlet Configuration and Source Directories
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Page
	Step 4: Create the Action Class
	Step 5: Create the Resource Bundles
	Step 6: Create Translated Titles and Descriptions
	Step 7: Compile Portlet Code
	Step 8: Create the PAR File and Deploy and Test the Portlet

	SampleForm: Interactive Form Portlet
	Overview: Steps for Creating the SampleForm Portlet
	Step 1: Create the Portlet Configuration and Source Directories
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Page
	Step 4: Create the Action Class
	Step 5: Create a JavaBean to Return User Input
	Step 6: Create a Title and Description for the Portlet
	Step 7: Compile Portlet Code
	Step 8: Create the PAR File and Deploy and Test the Portlet

	SampleDisplayURL: Editable Portlet
	Overview: Steps for Creating the SampleDisplayURL Portlet
	Step 1: Create the Portlet Configuration and Source Directories
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Pages for the Portlet and the Editor
	Step 4: Create the Action Classes
	Step 5: Create the Resource Bundle
	Step 6: Create a Title and Description for the Portlet
	Step 7: Compile Portlet Code
	Step 8: Create the PAR File and Deploy and Test the Portlet

	SampleRemote: Remote Portlet
	Overview: Steps for Creating the SampleRemote Portlet
	Step 1: Create the Portlet Configuration and Source Directories
	Step 2: Create the Enterprise Application Deployment Descriptor
	Step 3: Create the Web Application Deployment Descriptor
	Step 4: Create the Spring Framework Configuration File
	Step 5: Create the Display Pages for the Web Application
	Step 6: Create the Controller Servlet Class
	Step 7: Create the Portlet Deployment Descriptor
	Step 8: Create a Title and Description for the Portlet
	Step 9: Compile the Remote Portlet
	Step 10: Create the EAR and PAR Files and Deploy and Test the Portlet

	Moving Existing Custom Portlets to SAS Information Delivery Portal 4.2
	Overview
	Java Package Changes
	JAR File Changes
	Smart Object Changes
	Remote Portlet API Changes
	Logoff Portlet Action
	RemotePortletToolkitUtil Classes

	Index

